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ABSTRACT OF THE DISSERTATION

Runtime Data Management on Non-Volatile Memory-Based High

Performance Systems

by

Kai Wu

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, Spring 2021

Dong Li, Chair

Byte-addressable non-volatile memories (NVM) have been envisioned as a new tier

in computer systems, providing memory-like performance and storage-level capacity

and persistence. Because of the relatively high latency and low bandwidth of NVM

(comparing with dynamic random-access memory (DRAM)), NVM is often paired

with DRAM to build a heterogeneous main memory system (HMS). As a result,

application data must be carefully placed to NVM and DRAM for best performance.

Moreover, in a NVM-based HMS, data on NVM is not lost when the system crashes

because of the non-volatility nature of NVM. However, because of the volatile caches

and the processor’s reordering of instructions, data must be logged in failure-atomic

transactions and explicitly flushed from caches into NVM to ensure consistency and

correctness before crashes, which can cause large runtime overhead.

This dissertation focuses on building lightweight runtime systems on the NVM-

based HMS to effectively manage data placement and data crash consistency. This

dissertation first studies the data placement of two types of high-performance comput-

ing (HPC) applications on NVM-based HMS (i.e., message passing interface (MPI)

programs and task-parallel programs). The dissertation presents the Unimem and

Tahoe runtimes to implement automatic and transparent data placement on NVM-

based HMS for MVM-based applications and task-parallel applications, respectively.

Failure-atomic transactions are a critical mechanism for accessing and manipu-

lating data on NVM with crash consistency. This dissertation then investigates per-

formance problems in common transaction implementations on real NVM hardware

xv



and highlights the importance of considering NVM architecture characteristics for

transaction performance. The dissertation presents ArchTM, an architecture-aware

NVM transaction system.

Finally, this dissertation analyzes the cache line flushing (CLF) mechanism,

which is a fundamental building block for programming NVM to ensure crash consis-

tency. This dissertation designs and implements Ribbon to optimize CLF mechanisms

through a decoupled concurrency control and proactive CLF to change cache line sta-

tus. Ribbon also uses cache line coalescing as an application-specific solution for those

with low dirtiness in flushed cache lines.
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Chapter 1

Introduction

With the rapid development of information technique, modern applications are

often characterized by massive data sizes and intensive data processing. For example,

the Blue Brain project aims to simulate the human brain with a daunting 100PB

memory that needs to be revisited by the solver at every time step; the cosmology

simulation studying Q continuum works on 2PB per simulation. Those applications

pose high demands on data access performance and memory capacity.

Current computer systems commonly equipped with dynamic random access

memory (DRAM) cannot satisfy such an expectation. Subject to physical and man-

ufacturing limitations (e.g., power, density, resilience, and cost [1, 2, 3]), the DRAM

density cannot continue increasing while data volume quickly increases. We have to

store data on bigger but slower storage media (e.g., hard drive (HDD) and solid-state

drive (SSD)) and perform frequent I/O between the storage medium and DRAM.

Such an architecture sacrifices application performance, because there is a huge per-

formance gap between DRAM (10 ns average latency) and storage (106 ns average

latency on HDD and 104 ns average latency on SSD). Hence, new memory technolo-

gies that can replace DRAM or narrow the performance gap between DRAM and

storage increasingly attract attention.

The emerging non-violate memory (NVM) techniques, such as phase change

memory (PCM), resistive random-access memory (ReRAM), and 3D XPoints [4]

are considered as a promising candidate for future big memory machine. Com-

pare to DRAM, NVM has higher density and persistence (does not require power

refresh). Compare to HDD and SSD, NVM has better performance and offers a

1
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byte-addressable memory interface (i.e., applications access NVM via load and store

instructions). However, the appealing NVM solutions cannot as a drop-in replacement

for DRAM in systems because of two major challenges.

First, NVM has a higher latency and lower bandwidth than DRAM. Such NVM

characteristics introduce a performance gap between NVM-based and DRAM-based

systems. Though the performance gap is smaller than that of DRAM and HDD/SSD,

it still causes a dramatic slow down on applications [5, 6]. To address this challenge,

pairing NVM with DRAM to build a heterogeneous memory system (HMS) is a com-

mon solution. The recent release of the Intel Optane™DC persistent memory module-

based architecture (named Optane PM in the rest of the dissertation) equipped with

DRAM and NVM is such a system. However, efficiently running applications on

NVM-based HMS is not trivial. On one hand, we want to use DRAM as much as

possible to achieve the best performance; on the other hand, we often have a limited

amount of DRAM on HMS because DRAM is relatively expensive and consumes more

energy, compared to NVM. The above conflict presents a data placement challenge:

Which data of the application should be placed into the limited DRAM of HMS to

accomplish high performance close to the performance when the application runs on

the DRAM-only system.

Second, while NVM does not lose data after a system crash due to power loss

or hardware failure, there is no guarantee that the application data retained on the

NVM is correct and usable by the recovery process to restart applications. Existing

processors may reorder memory writes to improve performance, which results in data

not necessarily being written from volatile processor caches to NVM in program order.

To enforce the write ordering, applications running on NVM-based systems need to

explicitly flush the cache and issue a memory barrier. However, frequently executing

cache flushes and memory barriers impose high overhead on the application. More-

over, applications running on NVM need to ensure that data is modified atomically

when transitioning from one consistent state to another on NVM in order to provide

consistency after a crash. To meet such a requirement, failure-atomic transactions

are a common mechanism for accessing and manipulating data on NVM. But the

transaction mechanism is known to be expensive in terms of performance. Therefore,

how to effectively ensure the data crash consistency on NVM brings another challenge

in adopting NVM to current computer systems.
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1.1 Primary Contributions

This dissertation tries to resolve the above two challenges (data placement and

data crash consistency) by using software methods. Traditional storage-based soft-

ware solutions are not suitable for NVM-based HMS because they are built for the

performance characteristics of disks and may introduce a high software overhead.

Therefore, high-performance NVM systems call for new software solutions.

Data placement for Message Passing Interface (MPI) programs. This

dissertation first studies data placement for MPI programs on NVM-based HMS.

MPI is one of the most widely used programming models in HPC. There are several

research questions. First, how to capture and characterize memory access patterns

associated with data objects? Second, how to strike a balance between different

requirements on the frequency of data movement (i.e., the implementation of data

placement)? Third, how to minimize the impact of data movement on application

performance? To answer the above questions, we design and implement a lightweight

runtime system, named “Unimem”, to automatically and transparently decide and

implement data placement on NVM-based HMS for MPI programs.

To decide what data object should be placed on DRAM, Unimem employs an

online sampling-based profiling method to capture memory access patterns. This

method is based on performance counters. Given the collected profiling information,

we further characterize memory access patterns and associate them with data objects.

To decide the frequency of data movement, Unimem uses lightweight performance

models, based on which Unimem predicts performance benefit and cost if moving data

objects between NVM and DRAM. Based on the performance models, Unimem avoids

unnecessary data movement while maximizing the benefits of data movement.

To minimize the impact of data movement on application performance, Unimem

introduces a proactive data movement mechanism to avoid the impact of data move-

ment on application performance. Given an execution phase and a data movement

plan for the phase, this mechanism uses a helper thread to trigger data movement

before the phase. The helper thread runs in parallel with the application, overlapping

data movement with application execution.

Data Placement for Task Parallel Programs. This dissertation next stud-

ies the data placement for task-parallel programs on NVM-based HMS. A task-based
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programming model such as OpenMP tasks, decompose a program into a set of tasks

and distribute them between processing elements (e.g. CPU cores). Those program-

ming models can improve hardware utilization and have been widely explored in

HPC. Deciding data placement on HMS for task-parallel programs is a challenging

problem. First, given many possible data distributions for each task and many tasks

in a task-parallel program, we have to explore many possible data placement for best

performance, which can be time-consuming. Second, profiling the memory accesses

of tasks to decide data placement is challenging. Different tasks in a task-parallel

program often work on different data. No matter which task is profiled, the profiling

result for one task is not usable to direct data placement for other tasks, because of

the difference in memory addresses and access patterns between tasks.

We present Tahoe, a runtime system that enables efficient data placement on

NVM-based HMS. Leveraging the semantics and execution mode of task-parallel pro-

grams, Tahoe efficiently characterizes memory access patterns, decides data place-

ment for many tasks, makes the best use of limited DRAM space, and reduces data

movement overhead.

To address the challenge of profiling memory accesses for many tasks without

causing expensive overhead, Tahoe choose a few representative tasks to profile and

decide the most accessed pages. Each representative task has similar memory ac-

cess patterns to many other tasks. To make the memory access information of the

representative task generally applicable to other tasks with different memory pages

(addresses), Tahoe leverages program semantics to transform the information of the

representative task from page level to data-object level, such that other tasks can

decide their potentially most accessed pages.

To determine the data placement, Tahoe is featured with a hybrid performance

model to predict performance for various data placement cases. The hybrid perfor-

mance model uses a machine learning model to avoids most of modeling complexity,

and uses an analytical model to add modeling flexibility.

Architecture-aware transactions for NVM. This dissertation then stud-

ies the transaction mechanisms for NVM. Failure-atomic transactions are a critical

mechanism for accessing and manipulating data with crash consistency on NVM. Ex-

tensive studies have proposed various transaction mechanisms that generally employ

logging-based (undo or redo logging) or Copy-on-Write (CoW)-based designs.



5

Existing works optimize NVM transactions by reducing data copying or per-

sistence overhead. They emulate NVM based on DRAM with increased memory

latency or reduced bandwidth, but miss NVM architecture details. For instance,

logging-based transactions have a double write problem because of creating logs and

updating data in-place. The excessive writes to NVM mismatch with poor write

performance on NVM. CoW-based transactions avoid this problem, but suffers from

performance overhead due to metadata updates, which causes many small writes

misaligned with NVM internal block size.

We design ArchTM, a NVM transaction system based on two design princi-

ples: avoiding small writes and encouraging sequential writes. ArchTM is a vari-

ant of CoW-based system to reduce write traffic to NVM. Unlike conventional CoW

schemes, ArchTM reduces metadata modifications through a scalable lookup table on

DRAM. ArchTM introduces an annotation mechanism to ensure crash consistency

and a locality-aware data path in memory allocation to increases coalesable writes

inside NVM devices.

Optimizing cache line flushing mechanism for NVM. Finally, this disser-

tation studies the cache line flushing mechanism for NVM. Cache line flushing (CLF)

is a fundamental building block for programming NVM. NVM-aware workloads of-

ten rely on CLF to enforce write ordering and ensure crash consistency. However,

CLF creates a performance bottleneck on NVM, which may significantly reduce the

performance benefits promised by NVM. Most existing works focus on optimizing

persistency semantics (e.g., skipping CLF or relaxing constraints on persist barriers),

other than the CLF mechanism. They use different fault models or recovery mecha-

nisms that are designed for specific application characteristics. All these techniques

use the CLF mechanism to realize their persistency semantics.

Unlike the previous works, we focus on the CLF mechanism itself, instead of

persistency semantics. Therefore, our work is generally applicable to NVM-aware ap-

plications. we examine the performance of CLF mechanism based on the performance

characterization of well-established workloads on real NVM hardware (i.e., Intel Op-

tane PM). Based on the characteristics, we introduce Ribbon, a runtime system that

optimizes the CLF mechanism through concurrency control that adapts the intensity

of CLF and uses proactive CLF to increase the probability of flushing clean cache

lines. Ribbon, automatically detects CLF bottleneck in oversupplied or insufficient
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concurrency, and adapts accordingly. Ribbon, also proactively transforms dirty or

non-resident cache lines into clean resident ones to reduce the latency of CLF. Fur-

thermore, we investigate the cause for low dirtiness of flushed cache lines in seven

representative NVM-aware workloads and provide an application-specific solution to

coalesce cache lines.

1.2 Outline and Previously Published Work

The remainder of the dissertation is organized as follows. Chapter 2 provides a

comprehensive background for this dissertation. Chapter 3 presents the design, imple-

mentation and evaluation of Unimem,a lightweight runtime that automatically and

transparently manages data placement on HMS for MPI-based HPC applications.

Chapter 4 introduces Tahoe, a runtime system that addresses the data placement

problem for task parallel programs on NVM-based HMS. Chapter 5 identifies that

small random writes in metadata modifications and locality-oblivious memory al-

location in traditional NVM transaction systems mismatch NVM architecture, and

presents ArchTM, a NVM transaction system based on two design principles: avoiding

small writes and encouraging sequential writes. Chapter 6 examines the performance

of CLF mechanism based on the performance characterization of well-established

workloads on real NVM hardware, and introduces Ribbon, a runtime system that im-

proves the performance of CLF mechanism through concurrency control and proactive

CLF. Chapter 7 concludes this dissertation by summarizing the main lessons learned,

the open problems, and the topics for future work.

Chapter 2 contains material from “Demystifying the Performance of HPC Scien-

tific Applications on NVM-based Memory Systems”, by Ivy Peng, Kai Wu, Jie Ren

and Dong Li, which appears in the Proceedings of the 2020 IEEE International Par-

allel and Distributed Processing Symposium (IPDPS’20) [7]. The dissertation author

is the primary investigator and second author of this paper. The material in these

chapters is copyright ©2020 by the IEEE Association.

Chapter 3 contains material from “Unimem: Runtime Data Management on Non-

Volatile Memory-based Heterogeneous Main Memory”, by Kai Wu, Yingchao Huang

and Dong Li, which appears in the Proceedings of the 2017 International Conference

for High Performance Computing, Networking, Storage, and Analysis (SC’17) [5].
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The dissertation author is the primary investigator and first author of this paper.

The material in these chapters is copyright ©2020 by the Association for Computing

Machinery (ACM).

Chapter 4 contains material from “Runtime data management on non-volatile

memory-based heterogeneous memory for task-parallel programs”, by Kai Wu, Jie

Ren and Dong Li, which appears in the Proceedings of the 2018 International Confer-

ence for High Performance Computing, Networking, Storage, and Analysis (SC’18) [8].

The dissertation author is the primary investigator and first author of this paper. The

material in these chapters is copyright ©2018 by the IEEE Association.

Chapter 5 contains material from “ArchTM: Architecture-Aware, High Perfor-

mance Transaction for Persistent Memor”, by Kai Wu, Jie Ren, Ivy Peng and Dong

Li, which appears in the Proceedings of the 19th USENIX Conference on File and

Storage Technologies (FAST 2021) [9]. The dissertation author is the primary inves-

tigator and first author of this paper. The material in these chapters is copyright

©2021 by the USENIX Association.

Chapter 6 contains material from “Ribbon: High Performance Cache Line Flush-

ing for Persistent Memory”, by Kai Wu, Ivy Peng, Jie Ren and Dong Li, which appears

in the Proceedings of the 2020 International Conference on Parallel Architectures and

Compilation Techniques (PACT’20) [10]. The dissertation author is the primary in-

vestigator and first author of this paper. The material in these chapters is copyright

©2020 by the Association for Computing Machinery (ACM).



Chapter 2

Background

This chapter presents a comprehensive introduction to the background of this

dissertation.

2.1 Non-Volatile Memory

Non-violate memory (NVM) is an emerging data media narrowing the gap be-

tween traditional volatile memory (e.g., DRAM) and persistent storage (e.g., HDD

and SSD). NVM can retrieve stored information even after having been power failure.

Compared to DRAM, NVM has higher density so that NVM can implement a larger

capacity using the same area size. Compared to HDD/SSD, NVM can provide orders

of magnitude faster-accessing speed.

Over the past ten years, both industry and academic have been working hard to

develop NVM techniques. Many new NVM techniques, such as phase change memory

(PCM), resistive random-access memory (ReRAM) and Spin-Transfer Torque RAM

(STT-RAM), have been proposed. The recent release of the Intel Optane DC persis-

tent memory module (named Optane in the rest of the paper) marks the first mass

production of byte-addressable NVM. Table 2.1 summarizes performance character-

istics of recent proposed NVM techniques and DRAM [11, 12]. Intel does not publish

energy and density information of Optane DC PM yet.

8
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Table 2.1: Performance characteristics of NVM techniques, DRAM, and NAND Flash.

DRAM PCM STT-RAM ReRAM Optane PM NAND Flash
Byte-addressable Yes Yes Yes Yes Yes No
Persistence No Yes Yes Yes Yes Yes
Read time (ns) 10 10 - 50 10 - 35 <10 180 - 340 105

Write time (ns) 10 50 - 500 50 - 90 20 - 30 90 - 390 105

Standby power Refresh current None None None None None
Energy/bit (pj2) 2 - 4 2 - 100 0.1 - 1 0.1 - 3 N/A 10 - 104

Density 6 - 12 4 - 16 20 - 60 <4 N/A 1 - 4

2.2 NVM-based Heterogeneous Memory

Extensive research has proposed using NVM for implementing the main memory

to exploit its high density, persistence, and power efficiency [13, 14]. Still, the current

NVM technologies have lower performance than DRAM, and thus, main memory

designs often pair NVM with DRAM to build a heterogeneous memory system (HMS).

The Intel Optane PM-based architecture is an example of NVM-based HMS. The

work of [15] has provided detailed system evaluation of the Intel Optane PM-based

architecture, and we briefly summarize the system architecture (Figure 2.1) in this

section.

Intel Optane DC Persistent Memory. On Optane PM-based architecture,

the memory subsystem consists of DRAM DIMMs and NVDIMMs that share inte-

grated memory controllers (iMC). Each NVDIMM has a small internal controller for

address translation and a data buffer. The internal data granularity in the Optane

media is 256 bytes, while the data granularity between the processor and memory

subsystem is 64 bytes. Data is guaranteed to become persistent only after it reaches

iMC. In cases of power failure, data in write pending queue (WPQ) in iMC will be

flushed to NVDIMM by hardware. When WPQ has high occupancy, write blocking

effect could stall CPU if threads have to wait for the WPQ to drain [16]. There is

also a small DRAM buffer within the Optane device to improve the reuse of fetched

data and reduce write-amplification [12].

System evaluation has quantified that sequential and random read accesses to

NVM have a latency of 174 ns and 304 ns, respectively [15]. Write latency to NVM

depends on store instructions and data sizes. For instance, 64- to 256-byte non-

temporal data store has 180 – 200 ns latency [17]. On one socket, the read bandwidth

to NVM can reach 39 GB/s while the peak write bandwidth is only 13 GB/s [15, 17].
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Thus, the NVM exhibits about three times asymmetry in read and write bandwidth.
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Figure 2.1: The system architecture the Intel Purley platform.

The NVDIMMs can be configured in Memory or AppDirect mode. In Memory

mode, DRAM becomes a hardware-managed direct-mapped write-back cache to NVM

and is transparent to applications. Note that DRAM on one socket cannot cache

accesses to NVM on another socket [18]. In AppDirect mode, the NVM becomes a

byte-addressable persistent memory. A dax -aware file system would transparently

convert file read and write operations into 64-byte load and store instructions in this

mode to access NVM. Also, in this mode, the NVM on each socket can be exposed

as a non-uniform memory access (NUMA) node to the CPUs. Standard NUMA

management routines like numactl can be used to control data placement in this

configuration.

2.3 Crash Consistency and Cache Line Flushing

On-chip data caches are mostly implemented with volatile memory like SRAM.

Because of the prevalence of volatile caches, data corruption could occur if updates

to a data object stay in the cache but have not reached the persistent domain when

a crash happens. A persistent domain refers to the part of the memory hierarchy

that can retain data through a power failure. For instance, the system from iMC

to Optane media is the persistent domain on the Optane architecture [12]. For data

crash consistency (persistence), the programmer typically employs ISA-specific CLF

instructions, such as clflush, clflushopt, and clwb on x86 machines [19], to ensure

that data in a cache line is pushed to the persistent domain. The order of two CLF

can be enforced by an sfence instruction, which ensures the second CLF does not

happen before the first one reaches the persistent domain.
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The standard practice to ensure persistence of a data object in NVM is to flush

all cache blocks 1 of the data object [19], even though the data object may not be

fully cached. Because of the complexity and overhead of tracking dirty cache lines or

checking resident cache blocks for a particular data object in the existing hardware,

every cache block of the data object is flushed by software, exemplified in Listing 2.1.

The example is a code snippet from Intel PMDK [20].

Listing 2.1: An example of persisting a data object

1 /∗Loop through c a c h e l i n e a l i gned chunks∗/

2 /∗ cover ing a t a r g e t data ob j e c t ∗/

3 c a c h e b l o c k f l u s h ( const void ∗addr , s i z e t l en )

4 {
5 unsigned i n t 6 4 ptr ;

6 f o r ( ptr = ( unsigned i n t 6 4 ) addr & ˜(FLUSH ALIGN − 1) ;

7 ptr < ( unsigned i n t 6 4 ) addr + len ;

8 ptr += FLUSH ALIGN)

9 /∗ c l f l u s h / c l f l u s h o p t /clwb∗/

10 f l u s h ( ( char ∗) ptr ) ;

11 /∗ c l f l u s h o p t and clwb needs a f ence ∗/

12 /∗ to ensure i t s completeness ∗/

13 mm sfence ( ) ;

14 }

Flushing cache lines from the volatile cache into the persistent domain is the

building block for programming NVM. Active research in different NVM access in-

terfaces – libraries [20, 21, 22], multi-threaded programming models [23, 24, 25], and

file systems [26, 27, 28, 29] – proposes optimizations to mitigate the high overhead

of CLF. We categorize existing CLF optimizations into five classes, summarized as

follows.

Eager CLF triggers CLF explicitly at the application level after the data value

is updated. There is no delay of CLF and no skip of CLF. This kind of CLF provides

strict persistency [30], but often introduces excessive constraints on write ordering,

limiting the concurrency of writes. Frequently performing eager CLF could impose

high performance cost [31, 32, 33, 34, 35].

1We distinguish cache line and cache block in the dissertation. The cache line is a location in the
cache, and the cache block refers to the data that goes into a cache line.
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Asynchronous CLF removes CLF from the critical path of the application,

such that CLF overhead is hidden. Asynchronous CLF can be implemented by a

helper thread that performs CLF in parallel with application execution [36]. The

effectiveness of asynchronous CLF depends on workload characteristics: if the time

interval between CLF and the next memory fence is too short, then asynchronous

CLF is not effective, and exposed to the critical path.

Deferred CLF relaxes the constraints of write ordering to improve performance.

This method groups data modifications into failure-atomic intervals and delays CLF

to the end of each interval. This method ensures data consistency across intervals.

Once the system crashes, all or none of the data modifications in the interval become

visible. The existing studies determine the interval length based on either a user-

defined value [37, 38] or application semantics [23].

Passive CLF relies on natural cache eviction from the cache hierarchy to persist

data. Lazy persistence [32] is one such optimization. With passive CLF, the system

itself does not trigger CLF. Dirty data is written back to PM, depending on the

hardware eviction. In the event of system failure, the system uses checksums to

detect inconsistent data and recovers the program by recomputing inconsistent data.

Lazy persistency trades CLF overhead with recovery overhead.

Bypassing CLF avoids storing modified data in the cache hierarchy and, in-

stead, writing to PM directly [39, 40]. Specific non-temporal instructions on x86-64

architecture (e.g., movnti and movntdq) provide such support. Still, fence instruc-

tions are used to ensure the update is persisted. Bypassing CLF could avoid the

overhead in cache and CLF instructions to gain performance if there is little data

reuse in the cache [16].

2.4 Failure-atomic Transaction on NVM

Failure-atomic transactions are a common access interfaces to ensure crash con-

sistency on NVM [20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Updates in

a failure-atomic transaction either all succeed or fail, leaving the data on NVM in

a consistent state. We refer to data objects accessed in a transaction as persistent

objects. NVM transactions are implemented in two major paradigms – logging and

copy-on-write (CoW).



13

2.4.1 Logging-based Transaction

Logging-based transactions can use either undo-logging or redo-logging. Both

logging approaches must write twice to update a persistent object, i.e., update the

log and then the data (Figure 2.2a and Figure 2.2b). This in-place update to the data

could cause concurrent random writes because transactional workloads could update

arbitrary persistent objects.

2.4.2 CoW-based Transaction

CoW-based transactions create a new copy of a persistent object before modifying

it (Figure 2.2c). All updates are captured in the new copy, i.e., out-place updates.

After persisting updates in the new copy, the system updates the pointer to the

persistent object to the new copy and discards the old copy. Hence, CoW transactions

write to PM only once. Even when random persistent objects are updated, persisting

their new copies laid out sequentially still result in sequential writes.
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Figure 2.2: Three transaction implementations: undo-logging, redo-logging, and copy-on-
write.

2.4.3 Memory Management in NVM Transactions

In logging or CoW paradigms, logs are inserted and removed, or copies of persis-

tent objects are created and deleted in each transaction. Frequent memory allocation

and deallocation in concurrent transactions require scalable solutions. Also, the

persistence in PM imposes unique requirements of consistency and low fragmen-

tation on memory management.

Scalable memory allocators [54, 55, 56, 57], including state-of-the-art NVM al-

locators [20, 58, 59], typically implement thread-local free lists and global free lists.
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An allocation request is first tried on the requester thread’s local free list before be-

ing forwarded to the global free list. For a deallocation request, the freed memory

block is added to the requestor thread’s local free list to avoid synchronization on the

global free list. The existing memory allocators usually predefine a set of object size

classes. For each size class, the allocator maintains a list of free memory blocks of that

size. An allocation request is fulfilled by the list in the nearest size class. Memory

fragmentation occurs when the selected size class is larger than the requested size.

Unlike volatile memory, fragmentation on NVM has a longer-lasting impact. Volatile

memory may restart the program to diminish fragmentation while fragmentation on

NVM persists through restarts. Besides, a PM allocator needs to ensure its metadata

in a consistent state to avoid data loss and memory leakage after crash.

2.5 MPI Programming Model

Message Passing Interface (MPI) programming model is one of the most widely

used parallel programming libraries. MPI provides interfaces for programmers to de-

fine inter-processes communication methods (e.g., point-to-point, collective, or one-

sided) among multiple processes from different address spaces. Each MPI-based pro-

gram contains a set of autonomous processes that do not need to run the same

program; Following multiple instructions multiple data (MIMD) model, processes

distribute and exchange data by message passing.

2.6 Task-Based Parallel Programming Model

Taks-based programming model (e.g., OpenMP tasks, Cilk [60], and Legion [61])

is one type of shared memory parallel programming models. With task-based pro-

gramming model, the programmer or compiler identifies tasks (code regions) that

may run in parallel and annotates the memory footprint of task arguments (i.e.,

memory addresses of major data objects within tasks). The runtime system for a

task-based programming model uses memory footprint information associated with

tasks to identify task dependencies and build dependency graphs at runtime. Tasks

without dependency can be immediately scheduled for execution on available process-

ing elements; tasks with dependency stay in an internal data structure (e.g., a FIFO
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queue) within the runtime, waiting for their dependencies to be resolved. Hence,

tasks can be executed out of order by the runtime scheduler without violating pro-

gram correctness.



Chapter 3

Unimem: Runtime Data Placement

on NVM-based Heterogeneous

Memory for MPI Programs

3.1 Overview

In this chapter, we introduce a software-based solution to decide and place data

objects on NVM-based HMS for MPI programs. Using a software-based solution to

manage the data placement on NVM-based HMS has multiple research challenges.

First, how to capture and characterize memory access patterns associated with data

objects? This question is important for making data placement decisions. As we

show in Section 3.3, after we move some data object from NVM with less memory

bandwidth to DRAM, there is a big performance improvement. However, we do not

have such performance improvement after moving this data object from NVM with

longer access latency to DRAM. We claim such data object is sensitive to memory

bandwidth. Similarly, we find some data object which is only sensitive to memory

latency, or sensitive to both bandwidth and latency. Characterizing data objects

based on their sensitivity to bandwidth or latency is critical to model and predict

performance benefit of data placement.

Second, how to strike a balance between different requirements on the frequency

of data movement (i.e., the implementation of data placement)? On one hand, we

want data movement to be frequent, such that data placement is adaptive to variation

16
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of memory access patterns across execution phases. On the other hand, we want to

minimize data movement to avoid performance loss.

Third, how to minimize the impact of data movement on application perfor-

mance? Data movement is known to be expensive in terms of performance and

energy cost. Hiding data movement cost and achieving high performance is a key to

be successful in the HPC domain.

In this chapter, we introduce a runtime system (named “Unimem”) that auto-

matically and transparently decides and implements data placement. This runtime

meets the above goals and addresses the above three challenges. In particular, we

employ online profiling based on performance counters to capture memory access

patterns for execution phases, based on which we characterize the sensitivity of data

objects in each phase to memory bandwidth and latency. This addresses the first

challenge. We further introduce lightweight performance models, based on which

we predict performance benefit and cost if moving data objects between NVM and

DRAM. Given the performance benefit and cost of data movement, we formulate

the problem of deciding optimal data placement as a knapsack problem. Based on

the performance models and formulation, we avoid unnecessary data movement while

maximizing the benefits of data movement. This addresses the second challenge.

To avoid the impact of data movement on application performance, we intro-

duce a proactive data movement mechanism. Given an execution phase and a data

movement plan for the phase, this mechanism uses a helper thread to trigger data

movement before the phase. The helper thread runs in parallel with the application,

overlapping data movement with application execution. This proactive data move-

ment mechanism takes data movement overhead off the critical path, which addresses

the third challenge. To further improve performance, we introduce a series of tech-

niques, including (1) optimizing initial data placement to reduce data movement cost

at runtime, (2) exploring the tradeoff between phase local search and cross-phase

global search for optimal data placement, and (3) decomposing large data objects

to enable fine-grained data movement. Altogether, those techniques in combination

with our performance models greatly narrow the performance gap between NVM and

DRAM:

In summary, we make the following contributions.
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• We study the performance of HPC workloads with large data sets on multiple

nodes with various NVM bandwidth and latency, which is unprecedented. Our

study reveals a big performance gap between NVM-based and DRAM-based

main memories. We demonstrate the feasibility of using a runtime-based solu-

tion to narrow such gap for HPC.

• We introduce a lightweight runtime system to manage data placement with-

out hardware modifications and disruptive changes to applications and system

software.

• We evaluate Unimem with six representative HPC workloads and one produc-

tion code (Nek5000). The performance difference between DRAM-only and

HMS with Unimem is only 6.2% on average and 16% at most. We success-

fully narrow the performance gap and demonstrate better performance than a

state-of-the-art software-based solution.

3.2 Definitions and Basic Assumptions

For a parallel application based on MPI, we decompose the application into

phases. A phase can be a computation phase delineated by MPI operations; A phase

can also be an MPI communication phase doing collective operations, point-to-point

communication operations, or synchronization. For a non-blocking communication

(e.g., MPI Isend), the MPI communication call is not a phase. Instead, it is merged

into the immediately following phase. The communication completion operation (e.g.,

MPI Wait) is a communication phase.

Furthermore, we target on parallel applications from the HPC domain with an it-

erative structure. In those applications, each program phase is executed many times.

Such parallel applications are very common. As an example, Figure 3.1 depicts a typ-

ical iterative structure from CG (an NAS parallel benchmark [62]), which dominates

the execution time of CG.

We claim a data object is bandwidth sensitive, if there is a big performance

difference between placing it in NVM with less memory bandwidth and DRAM. We

claim a data object is latency sensitive, if there is a big performance difference between

placing it in NVM with longer memory access latency and DRAM.
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Figure 3.1: A conceptual description for an MPI-based program (CG) decomposed into
phases. A is a 2D matrix, and q, p, z, and r are vectors.

3.3 Preliminary Performance Evaluation with NVM-

based Main Memory

NVM has relatively long access latency and low memory bandwidth. Based on

performance characteristics shown in Table 2.1, we perform preliminary performance

study to quantify the impact of NVM on HPC application performance.

We use Quartz, a DRAM-based, lightweight performance emulator for NVM [63]

because NVDIMM is not on the market at the time of preparing this manuscript.

The existing work uses cycle-accurate simulation to study NVM performance [64, 65].

However, the long simulation time makes impossible simulate HPC applications with

large data sets on multiple nodes. The performance of HPC workloads on NVM is

always mysterious. Using Quartz, we can study performance (execution time) of HPC

workloads with much shorter time. We deploy our tests on four nodes in Platform A

(the configurations of those nodes and Platform A are summarized in Section 3.6.1).

We change the emulated NVM bandwidth and latency, and run a set of NAS parallel

benchmarks. We use Class D as input and run 16 MPI processes (4 MPI processes

per node). For the benchmark FT, we use CLASS C as input because of the long

execution time with Class D. Figures 3.2 and 3.3 show the emulation results.

Observation 1: We find a big performance gap between DRAM-only and NVM-

only systems. This observation is contrary to an existing conclusion (i.e., no big gap)
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Figure 3.2: The benchmark performance (execution time) on NVM-based main memory
(NVM-only) with various bandwidth. The performance is normalized to that of DRAM-only
systems.

Figure 3.3: The benchmark performance (execution time) on NVM-based main memory
(NVM-only) with various latency. The performance is normalized to that of DRAM-only
systems.

Figure 3.4: The impact of data placement on performance (execution time) of NVM-
based main memory. The performance is normalized to DRAM-only systems. The legend
entries “in buffer+out buffer”, “lhs”, and “rhs” are the data objects placed in DRAM in
the DRAM+NVM system. The x axis shows the configuration of NVM (4x DRAM latency
or 1/2 DRAM bandwidth).

for HPC workloads based on a single node simulation [64]. Furthermore, HPC appli-

cation performance (execution time) is sensitive to different NVM technologies with

various bandwidth and latency. With memory bandwidth reduced by only 1/2 or
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latency increased by only 2x in NVM, some benchmarks already show a big slow-

down. For example, LU has 2.19x and 2.14x slowdown with NVM configured with

1/2 DRAM bandwidth (Figure 3.2) and 2x DRAM latency (Figure 3.3) respectively.

We further study whether data placement in HMS can bridge the performance

gap between DRAM-based and NVM-based systems. We choose SP benchmark

and focus on four critical data objects of SP (the arrays lhs, rhs, in buffer and

out buffer). We use two configurations for NVM, one with 1/2 DRAM bandwidth

and the other with 4x DRAM latency. For each data object with an NVM configura-

tion (either 1/2 DRAM bandwidth or 4x DRAM latency), we do three tests. In the

first test, we use a DRAM-only system. In the second test, we use a DRAM+NVM

system. For this test, a target data object is placed in DRAM (see the legend entries

in Figure 3.4), while the rest of data objects are placed in NVM. In the third test,

we use an NVM-only system. In each test, we use four nodes with one MPI task per

node, and use CLASS C and CLASS D as input. Figure 3.4 shows the results. The

results are normalized to the performance of DRAM-only.

Observation 2: A good data placement can effectively bridge the performance

gap. For example, with the data object lhs placed in DRAM, we bridge the perfor-

mance gap between DRAM and NVM (using the configuration of 4x DRAM latency

and CLASS C) by 31% (see Figure 3.4).

Observation 3: Different data objects manifest different sensitivity to limited

NVM bandwidth and latency, shown in Figure 3.4. For example, for the data objects

in buffer and out buffer (CLASS D), there is no big performance difference (2.1

vs. 2.15) between placing them in DRAM and placing them in NVM configured

with 4X DRAM latency; However, there is a big performance difference (1.14 vs.

1.25) between placing them in DRAM and placing them in NVM configured with 1/2

DRAM bandwidth (CLASS D). This indicates that the two data objects are sensitive

to memory bandwidth but not memory latency. lhs (CLASS D) tells us a different

story: it is sensitive to latency (1.71 vs. 2.15), but not bandwidth (1.21 vs. 1.25).

Also, rhs is sensitive to both latency and bandwidth.

Different data objects have different memory access patterns which manifest

different sensitivity to bandwidth and latency. A data object with a memory access

pattern of bad data locality and massive, concurrent memory accesses (e.g., streaming

pattern) is sensitive to memory bandwidth, while a data object with a memory access
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pattern of bad data locality and dependent memory accesses (e.g., pointer-chasing)

is sensitive to memory latency.

Our preliminary performance study highlights the importance of capturing mem-

ory access patterns of data objects. It also shows us that it is possible to bridge the

performance gap between NVM and DRAM by appropriately directing data place-

ment on HMS.

3.4 Unimem Design

Motivated by the preliminary performance study, we introduce a runtime system

(named “Unimem”) targeting on directing data placement on HMS for MPI programs.

Unimem directs data placement for data objects (e.g., multi-dimensional arrays).

The data objects must be allocated using certain Unimem APIs by the programmer.

We call those data objects, the target data objects, in the rest of the proposal. Unimem

is phase based. It decides and changes data placement for target data objects for each

phase based on runtime profiling and lightweight performance models.

In particular, Unimem profiles memory references to target data objects with a

few invocations of each phase. Then Unimem uses performance models to predict per-

formance benefit and cost of data placement, and formulates the problem of deciding

optimal data placement as a knapsack problem. The results of the performance mod-

els and formulation direct data placement for each phase in the rest of the application

execution. We describe the workflow details in this section.

3.4.1 Workflow

Unimem includes three steps in its workflow: phase profiling, performance mod-

eling, and data placement decision and enforcement. The phase profiling happens in

the first iteration of the main computation loop of the application. At the end of

the first iteration, we build performance models and make data placement decision.

After the first iteration, we enforce the data placement decision for each phase. We

describe the three steps in details as follows.
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Phase Profiling

This step collects memory access information for each phase. This information

is leveraged by the second and third steps to decide data placement for each phase.

We rely on hardware performance counters widely deployed in modern processors.

In particular, we collect the number of last level cache miss event, and then map

the event information to data objects. Leveraging the common sampling mode in

performance counters (e.g., Precise Event-Based Sampling from Intel or Instruction-

based Sampling from AMD), we collect memory addresses whose associated memory

references cause last level cache misses. Those memory addresses help us identify

target data objects that have frequent memory accesses in main memory.

Note that the number of last level cache misses can reflect how intensive main

memory accesses happen within a fixed sampling interval. It works as an indication

for which target data objects potentially suffer from the performance limitation of

NVM. However, there are other events that cause main memory accesses, such as

cache line eviction and prefetching operations. The current performance counters

either do not support counting such event (cache line eviction) or do not have the

sampling mode for such event (prefetching operation). Hence, we cannot include

those events when counting main memory accesses. However, the last level cache

miss accounts for a large part of main memory accesses. It can work as a reliable

indicator to direct data placement, as shown in the evaluation section. The last level

cache miss is also one of the most common events in modern processors, which makes

our runtime highly portable across HPC platforms. To compensate for the potential

inaccuracy caused by the limitation of performance counters, we introduce constant

factors in the performance models in Step 2.

Performance Modeling

Given the memory access information collected for each phase, we select those

target data objects that have memory accesses recorded by performance counters.

Those data objects are potential candidates to move from NVM to DRAM. To decide

which target data objects should be moved, we introduce lightweight performance

models.

General description. The performance models estimate performance benefit
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(Equations 3.2 and 3.4.1) and data movement cost (Equation 3.3) between NVM

and DRAM. We trigger data movement only when the benefit outweighs the cost. To

calculate the performance benefit, we must decide if the data object is bandwidth sen-

sitive or latency sensitive (Equation 3.1). This is necessary to model the performance

difference between bandwidth sensitive and latency sensitive workloads.

Bandwidth sensitivity vs. latency sensitivity. To decide if a target data

object in a phase is bandwidth sensitive or latency sensitive, we use Equation 3.1. This

equation estimates main memory bandwidth consumption due to memory accesses to

the data object (BWdata obj).

BWdata obj =
#data access× cacheline size

#samples with data accesses
#samples

× phase execution time
(3.1)

The numerator of Equation 3.1 is the accessed data size. #data access in the

numerator is the number of memory accesses to the data object in main memory.

#data access is collected in Step 1 (phase profiling) with performance counters.

For a target data object in a phase, the accessed total data size is calculated as

(#data access× cacheline size).
The denominator of the equation is the fraction of the execution time that has

memory accesses to the target data object in main memory. This fraction of the exe-

cution time is calculated based on #samples with data accesses
#samples

, which is the ratio between

the number of samples that collect non-zero accesses to the target data object and

the total number of samples.

For example, suppose that the phase execution time is 10 seconds, the hardware

counter sampling rate is 1000 cycles, and the CPU frequency is 1 GHz. Then we will

have 107 samples in total during the phase execution. Assuming that 105 samples

of all samples have memory accesses to the data object, then the fraction of the

execution time that accesses the data object is 105

107
× 10 = 0.1s.

Given a data object in a phase, if its BWdata obj reaches t1% of the peak NVM

bandwidth BWpeak (t1 = 80 in our evaluation), then this data object is most likely

to be bandwidth sensitive. The performance benefit after moving the data object

from NVM to DRAM (i.e., BFTdata obj bw) is dominated by the memory bandwidth

effect, and can be calculated based on Equation 3.2, which will be discussed next. If

BWdata obj of the data object is less than t2% of BWpeak (t2 = 10 in our evaluation),

then this data object is most likely to be highly latency sensitive. The performance
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benefit of moving the data object from NVM to DRAM (i.e., BFTdata obj lat) is dom-

inated by the memory latency effect, and can be calculated based on Equation 3.4.1,

which will be discussed next. If BWdata obj of the data object is between t1% and

t1%, then the data object is likely to be sensitive to either bandwidth or latency.

The performance benefit after data movement from NVM to DRAM is estimated

by max(BFTdata obj bw, BFTdata obj lat). To measure BWpeak, we run a highly mem-

ory bandwidth intensive benchmark, the STREAM benchmark [66], with maximum

memory concurrency, and use Equation 3.1 and performance counters.

Calculation of data movement benefit. Equations 3.2 and 3.4.1 calculate

performance benefits (after data movement from NVM to DRAM) for bandwidth

sensitive and latency sensitive data objects, respectively. The two equations are

simply based on an estimation of the performance difference between running the

application on NVM and on DRAM. If the data object is bandwidth-sensitive, then

the application performance on a specific memory is modeled by accssed data size
mem bw

(mem

is NVM or DRAM). accessed data size is

#data access × cacheline size, the same as the one in Equation 3.1. If the data

object is latency-sensitive, then the application performance on a specific memory is

modeled by #data access×mem lat (mem is NVM or DRAM).

BFTdata obj bw = (
#data access× cacheline size

NVM bw
−

#data access× cacheline size

DRAM bw
)× CF bw (3.2)

BFTdata obj lat = (#data access×NVM lat−#data access×DRAM lat)× CF lat

In the above two equations, we have constant factors CF bw (see Equation 3.2)

and CF lat (see Equation 3.4.1). Such constant factors are used to improve modeling

accuracy. To meet high performance requirement of our runtime, the performance

models are rather lightweight, and only capture the critical impacts of memory band-

width or memory latency. However the models ignore some important performance

factors (e.g., overlapping between memory accesses, and overlapping between mem-

ory accesses and computation). Also, the limitation of the sampling-based approach

to count performance events can underestimate the number of memory accesses due

to the inability of counting cache eviction and prefetching operations and sampling

nature of the approach. The constant factors CF bw and CF lat work as a simple
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but powerful approach to improve modeling accuracy without increasing modeling

complexity and runtime overhead.

The basic idea of the two factors is to measure performance ratios between mea-

sured performance and predicted performance for representative workloads, and then

use the ratios to improve online modeling accuracy for other workloads.

In particular, we run the bandwidth-sensitive benchmark STREAM to obtain

CF bw offline. We calculate the performance ratio between the predicted perfor-

mance and measured performance, and such ratio is CF bw. The predicted perfor-

mance is calculated based on (#data access × cacheline size/DRAM bw), where

#data access is collected with performance counters using the sampling-based ap-

proach. Hence, CF bw accounts for the potential performance difference between

our sampling-based modeling and real performance. The constant factor CF lat

is obtained in the similar way, except that we use a latency-sensitive benchmark,

the pointer-chasing benchmark [67] (using a single thread and no concurrent mem-

ory accesses). Also, to calculate the predicted performance, we use (#dataaccess ×
DRAM lat). Given a hardware platform, CF bw and CF lat need to be calculated

only once.

Calculation of data movement cost. Data placement comes with data move-

ment cost. The data movement cost can be simply calculated based on data size and

memory copy bandwidth between NVM and DRAM, which is ( data size
mem copy bw

). To re-

duce the data movement cost, we want to overlap data movement with application

execution. This is possible with a helper thread that runs in parallel with the ap-

plication to implement an asynchronous data movement. We discuss this in details

in Section 3.5. In summary, the data movement cost (COSTdata obj) is modeled in

Equation 3.3 with the overlapped cost (mem comp overlap) included.

COSTdata obj = max(
data size

mem copy bw
−mem comp overlap, 0) (3.3)

We describe how to calculate mem comp overlap as follows. To minimize the

data movement cost, we want to overlap data movement with application execution

as much as possible. Meanwhile, we must respect data dependency and ensure ex-

ecution correctness. This means during data movement, the migrated data object

must not be read or written by the application. Given the above requirement on re-

specting data dependency and minimizing the data movement cost, we can estimate
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Figure 3.5: An example to show how to calculate mem comp overlap for the data object
a in the phase i. The yellow arrow is the point to trigger the migration of a from NVM to
DRAM for the phase i, if a is not in DRAM. The letters in brackets represent target data
objects referenced in the corresponding phases.

mem comp overlap.

Figure 3.5 explains how to calculate mem comp overlap with an example. This

example shows how to calculate mem comp overlap for a data object (a) in a specific

phase (the phase i). If a is not in DRAM, we can trigger data migration of a as early as

the beginning of the phase j, because a is not referenced between j and i. We cannot

trigger data migration of a at the beginning of the phase j−1, because a is referenced

there. mem comp overlap is the application execution time between the phases j and

i. The data movement time, data size
mem copy bw

, can be smaller than mem comp overlap. In

this case, the data movement is completely overlapped with application execution,

and the data movement cost COSTdata obj is 0.

Our estimation on COSTdata obj could be an overestimation (a conservative esti-

mation). In particular, when a data object is to be migrated from NVM to DRAM

for a phase, it is possible that the data object is already in DRAM. Use Figure 3.5 as

an example again. Since the phase j − 1 references a, it is possible that a is already

in DRAM before the point to trigger the data migration. Also, COSTdata obj does

not include the cost of moving data from DRAM to NVM when there is no enough

space in DRAM and we need to switch data. Such overestimation and ignorance of

data movement from DRAM to NVM are due to the fact that the data movement

cost for each phase is isolatedly calculated during the modeling time. Hence, what

data objects are in DRAM and whether there is enough space in DRAM is uncertain

during the modeling time. We will solve the above problems in the next step (Step



28

3).

Data Placement Decision and Enforcement

Based on the above formulation for the benefit and cost of data movement, we

determine data placement for all phases one by one. In particular, to determine

data placement for a specific phase, we define a weight w for each target data object

referenced in this phase:

w = BFTdata obj − COSTdata obj − extra COSTdata obj (3.4)

extra COSTdata obj accounts for the data movement cost, when there is no enough

space in DRAM to move the target data object from NVM to DRAM and we have

to move data from DRAM to NVM to save space. To calculate extra COSTdata obj,

we must decide which data object in DRAM must be moved. We make such decision

based on the sizes of data objects in DRAM. In particular, we move data objects

from DRAM to NVM whose total size is just big enough to allow the target data

object to move from NVM to DRAM. Note that since we determine data placements

for all phases one by one, when we decide the data placement for a specific phase, we

have made the data placement decisions for previous phases. Hence, we have a clear

knowledge on which data objects are in DRAM and whether the target data object

is already in DRAM.

Besides the weight w, each data object has a data size. Given the DRAM size

limitation, our data placement problem is to maximize total weights of data objects

in DRAM while satisfying the DRAM size constraint. This is a 0-1 knapsack prob-

lem [68].

The knapsack problem can typically be solved by dynamic programming in

pseudo-polynomial time. If each data object has a distinct value per unit of weight

(data size/w), the empirical complexity is O((log(n))2) [68], where n is the number

of target data objects referenced in a phase.

The above approach can determine data placement for individual phases. We

name this approach as “phase local search”. Determining data placement at the

granularity of individual phases can lead to the optimal data placement for each

phase, but result in frequent data movements, some of which may not be able to
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Figure 3.6: An example to show proactive data migration with a helper thread. The letters
in the figure represent data objects. The letters in brackets (e.g., (a) and (b)) represent
target data objects that are determined to be placed in DRAM for the corresponding phases.
DRAM can hold two data objects at most.

be completely overlapped by application execution. Alternatively, determining data

placement at the granularity of all phases (named “cross-phase global search”) has

less data movement than phase local search, because all phases are in fact treated

as a combined single phase: Once the optimal data placement is determined within

the combination of all phases, there is no data movement within the combination.

However, the optimal data placement for the combination of all phases does not

necessarily result in the best performance for each individual phase.

Based on the above discussion, we use dynamic programming to determine the

data placement using both phase local search and cross-phase global search, and then

choose the best data placement of the two searches.

After we make the data placement decision at the end of the first iteration,

we enforce data placement since the second iteration. At the beginning of each

phase, the runtime asks a helper thread (see Section 3.5 for implementation details) to

proactively move data objects between NVM and DRAM based on the data placement

decision for future phases.

Figure 3.6 gives an example for how to enforce data placement with a helper

thread after determining data placement. In this example, there are three target

data objects (a, b, and c) and five phases. The data placement decision for each phase

is represented with letters in brackets (e.g., (a) for the phase 1). We assume DRAM

can hold two data objects at most. The data movement enforced by the helper thread

respects data dependence across phases and the availability of DRAM space. Such
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example is a case of phase local search, where each phase makes its own decision for

data placement. There are eight data movements in total. With a cross-phase global

search, only two data objects will be moved to DRAM for all phases. The cross-

phase global search results in only two data movements. Based on the performance

modeling and dynamic programming, we can decide whether the cross-phase global

search or phase local search is better.

3.4.2 Optimization

To improve runtime performance, we introduce a couple of optimization tech-

niques as follows.

Handling workload variation across iterations. In many HPC applications,

the computation and memory access patterns remain stable across iterations. This

means once the data placement decision is made at the end of the first iteration, we

can reuse the same decision in the rest of iterations. However, some HPC applications

have workload variation across iterations. We must adjust data placement decision

correspondingly.

To accommodate workload variation across iterations, Unimem monitors the per-

formance of each phase after data movement. If there is obvious performance variation

(larger than 10%), then the runtime will activate phase profiling again and adjust the

data placement decision.

Initial data placement. By default, all data objects are initially placed in

NVM and moved between DRAM and NVM by Unimem at runtime. However, data

movement can be expensive, especially for large data objects, even though we use

the proactive data movement to overlap data movement with application execution.

To reduce the data movement cost, we selectively place some data objects in DRAM

at the beginning of the application, instead of placing all data objects in NVM. The

existing work has demonstrated performance benefit of the initial data placement on

GPU with HMS [69, 70]. Our initial data placement technique on NVM-based HMS

is consistent with those existing efforts.

For initial data placement, we place in DRAM those target data objects with

the largest amount of memory references (subject to the DRAM space limitation).

To calculate the number of memory reference for each target data object, we em-
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ploy compiler analysis and represent the number of memory reference as a symbolic

formula with unknown application information, similar to [71]. Such information in-

cludes the number of iterations and coefficients of array access. This information is

typically available before the main computation loop and before memory allocation

for target data objects. Hence it is possible to decide and implement initial data

placement before main computation loop for many HPC applications. However, we

cannot determine initial data placement for those data objects that do not have the

information available before the main computation loop (e.g., the number of iteration

is determined by a convergence test at run time).

Our method determines initial data placement simply based on the number of

memory reference and ignores caching effects. The ignorance of caching effects can

impact the effectiveness of initial data placement. In particular, some data objects

with intensive memory references may have good reference locality and do not cause

a lot of main memory accesses. However, our practice shows that in all cases of

our evaluation, initial data placement based on compiler analysis makes the data

placement decision consistent with the runtime data placement decision using the

cross-phase global search. Using compiler analysis can work as a practical and effective

solution to direct initial data placement, because the target data objects with a large

amount of memory references tend to frequently access main memory.

Handling large data objects. We move data between DRAM and NVM at

the granularity of data object. This means a data object larger than the DRAM

space cannot be migrated. This problem is common to any software-based data

management on HMS.

A method to address the above problem is to partition the large data object into

multiple chunks with each chunk smaller than the DRAM size. At runtime, we can

profile memory access for each chunk instead of the whole data object, and move

data chunk if the benefit overweight the cost of data chunk movement. This method

exposes new opportunities to manage data and improve performance.

However, this solution is not always feasible, because it can involve a lot of

programming efforts to refactor the application such that memory references to the

large data object are based on chunk-based partitioning. A compiler tool can be

helpful to transform some regular memory references into new ones based on chunk-

based partitioning (assuming the input problem size and number of loop iterations
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Table 3.1: APIs for using Unimem runtime

API Name Functionality

unimem init initialization for hardware counters, timers and global variables

unimem start identify the beginning of the main computation loop

unimem end identify the end of the main computation loop

unimem malloc identify and allocate target data objects

unimem free free memory allocation for target data objects

are known). However, this kind of automatic code transformation can be impotent

for high-dimensional arrays with the notorious memory alias problem and irregular

memory access patterns. In Unimem, we employ a conservative approach which only

partitions those one-dimensional arrays with regular memory references.

In our evaluation with representative numerical kernels, we find that partitioning

large data objects is often not helpful, because making the data placement decision

based on chunks leads to much more frequent data movements, most of which are

difficult to be overlapped with application execution and hence exposed to the critical

path, but we do have a benchmark (FT) benefit from partitioning large data objects.

3.5 Implementation

We have implemented Unimem as a runtime library to perform online adaptation

of data placement on HMS. To leverage the library, the programmer needs to insert

a couple of APIs into the application. Such change to the application is very limited,

and is used to initialize the library and identify the main computation loop and target

data objects. In all applications we evaluated, the modification to the applications is

less than 20 lines of code. Table 3.1 list those APIs and their functionality.

The runtime library decides data placement at the granularity of execution phase.

As discussed before, a phase is delineated by MPI operations. To automatically form

phases, we employ the MPI standard profiling interface (PMPI). PMPI function

behaves in the same way as MPI function, but PMPI allows one to write functions

that have the behavior of the standard function plus any other behavior one would

like to add. Based on PMPI, we can transparently identify execution phases and

control profiling without programmer intervention. Figure 3.7 depicts the general



33

Figure 3.7: Transparently identifying phases based on PMPI.

idea. In particular, we implement an MPI wrapper based on PMPI. The wrapper

encapsulates the functionality of enabling and disabling profiling and uses a global

counter to identify phases.

To identify target data objects, the programmer must use

unimem malloc to allocate them before the main computation loop. This API

allows Unimem to collect pointers pointing to target data objects. Collecting those

pointers are necessary to implement data movement without asking the programmer

to change the application after data movement. In particular, after data movement

for a target data object, the runtime changes the data object pointer and makes

it point to the new memory space of the data object without disturbing execution

correctness. If there is a memory alias to the data object but such alias is created

within the main computation loop, then the memory alias can still work correctly,

because it is updated in each iteration and will point to the new memory space of

the data object after data movement. If the memory alias to the data object is

created before the main computation loop, then such memory alias information must

be explicitly sent to the runtime by the programmer using unimem malloc, such

that the memory alias can be updated and points to the correct memory space after

data movement.

The DRAM space is limited in HMS. To manage the DRAM space, we avoid

making any change to the operating system (OS), and introduce a user-level service.

Each node runs an instance of such service. The service coordinates the DRAM al-

location from multiple MPI processes on the same node. In particular, the service

responds to any DRAM allocation request from the runtime, and bounds the memory
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allocation within the DRAM space allowance. Our current implementation for such

service is based on a simple memory allocator without consideration of memory allo-

cation efficiency and fragmentation, because we expect that data movement should

not be frequent, and data allocation for data movement should not be frequent for

performance reason. However, an advanced implementation could be based on an

existing memory allocator, such as HOARD [72] and the lock-free allocator [73].

As discussed in Section 4.3 (see Step 2), we use a helper thread to proactively

trigger data movement, such that data movement is overlapped with application ex-

ecution. The helper thread is invoked in unimem init. In the main computation

loop, the helper thread and the main thread interact through a shared FIFO queue.

The main thread puts data movement requests into the queue; the helper thread

checks the queue, performs data movement, and removes the data movement request

off the queue once the data movement is done. At the beginning of each phase, the

runtime of the main thread will check the queue status to determine if all proac-

tive data movement for the current phase is done. Hence, the queue works as a

synchronization mechanism between the helper thread and the main thread. Note

that checking the queue status and putting data movement requests into the queue

is lightweight, because we avoid frequent data movement in our design.

As discussed in Section 4.3 (see Step 2), to ensure execution correctness, the

runtime must respect data dependency across phases when moving data objects with

the helper thread. The data dependency check is implemented by static analysis. We

introduce an LLVM [74] pass to analyze data references to target data objects be-

tween MPI calls. To handle those unresolved control flows during the static analysis,

we embed data dependency analysis result for each branch, and delay data depen-

dency analysis until runtime. The compiler-based data dependency analysis can be

conservative due to the challenge of pointer analysis [75]. There is also a large body of

research related to the approximation of pointer analysis to improve compiler-based

data dependency analysis. However, to simplify our implementation, we currently use

a directive-based approach that allows the programmer to use directives to explicitly

inform the runtime of data dependency for target data objects across phases. This

approach is inspired by task dependency clauses in OpenMP, and works as a practi-

cal solution to address complicated data dependency analysis. Figure 3.8 depicts the

general workflow.
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Figure 3.8: The general workflow for Unimem.

3.6 Evaluation

3.6.1 Evaluation Methodology

In our evaluation, we use Quartz emulator [63]. Quartz enables an efficient

emulation of a range of NVM latency and bandwidth characteristics. Quartz has

low overhead and good accuracy (with emulation errors 0.2% - 9%) [63]. We do

not use cycle-accurate architecture simulators because of their slow simulation which

cannot scale to large workloads. Furthermore, Quartz allows us to consider cache

eviction effects, memory-level parallelism, and system-wise memory traffic, which is

not available in other state-of-the-art, software-based emulation approaches [76, 77].

However, due to the limitation of Quartz, we can only emulate either bandwidth

limitation or latency limitation, but cannot emulate both of them.

Using Quartz requires the user to have privilege access to the test system. We

do not have such privilege access on the test platform for our strong scaling tests.

Hence, instead of using Quartz, we leverage NUMA architecture to emulate NVM. In

particular, we carefully manage data placement at the user level, such that, given an

MPI task, a remote NUMA memory node works as NVM while the NUMA node local

to the MPI task works as DRAM. The latency and bandwidth difference between the

remote and local NUMA memory nodes emulates that between NVM and DRAM.

On our test platform for strong scaling tests, the emulated NVM has 60% of DRAM

bandwidth and 1.89x of DRAM latency.

We have two test platforms for performance evaluation. One test platform

(named “Platform A”) is a small cluster. Each node of it has two eight-core In-

tel Xeon E5-2630 processors (2.4 GHz) and 32GB DDR4. We use this platform for



36

Table 3.2: Target data objects in NPB benchmarks and Nek5000

Benchmark Target data objects % of total app
mem footprint

CG colidx, a, w, z, p, q, r, rowst, x 42%

FT u, u0, u1, u2, twiddle 99%

BT rhs, forcing, u, us, vs, ws, qs, rho i,
square, out buffer, in buffer, fjac,
njac, lhsa, lhsb, lhsc

99%

LU u, rsd, frct, flux, a, b, c, d, buf , buf1 99%

SP u, us, vs, ws, qs, rho i, square, rhs,
forcing, out buffer, in buffer, lhs

98%

MG buff , u, v, r 99%

Nek5000(eddy) Geometry arrays and main simulation
variables (48 data objects in total)

35%

tests in all figures except Figure 3.12. We deploy Quartz on such platform. The

other test platform is the Edison supercomputer at Lawrence Berkeley National Lab

(LBNL). We use this platform for tests in Figure 3.12. Each Edison node has two

12-core Intel Ivy Bridge processor (2.4 GHz) with 64GB DDR3. As discussed before,

we perform strong scaling tests and leverage NUMA architecture to emulate NVM

on this system.

We use six benchmarks from NAS parallel benchmark (NPB) suite 3.3.1, and one

production scientific code Nek5000 [78]. For Nek5000, we use eddy input problem with

a 256×256 mesh. The target data objects of those benchmarks are listed in Table 3.2.

Those data objects are the most critical data objects accounting for more than 95% of

memory footprint except CG and Nek5000. For CG, there are three large data objects

(aelt, acol, and arow) only used for problem initialization. They are not treated as

target data objects. For Nek5000, we use main simulation variables and geometry

arrays in Nek5000 core. Those are the most important data objects for Nek5000

simulation. We use GNU compiler (4.4.7 on Platform A and 6.1.0 on Edison) and

use default compiler options for building benchmarks. We use the sampling-based

approach to collect performance events on the two platforms. The sampling interval

is chosen as 1000 CPU cycles, such that the sampling overhead is ignorable while the

sampling is not sparse to lose modeling accuracy.
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Figure 3.9: The performance (execution time) comparison between DRAM-only, NVM-
only, the existing work (X-Mem), and HMS with Unimem. NVM has 1/2 DRAM band-
width.

Figure 3.10: The performance (execution time) comparison between DRAM-only, NVM-
only, the existing work (X-Mem), and HMS with Unimem. NVM has 4x DRAM latency.

3.6.2 Evaluation Results

The goal of our evaluation is multiple-folding. First, we want to test if our run-

time can effectively direct data placement to narrow the performance gap between

NVM and DRAM; Second, we want to test if our runtime is lightweight enough; Third,

we want to test the performance of our runtime in various system configurations, in-

cluding different DRAM sizes and different system scales. Unless indicated otherwise,

performance in this section is normalized to that of the DRAM-only system.

Basic performance tests. We compare the performance (execution time) of

DRAM-only, NVM-only, and HMS with Unimem. We use four nodes in Platform A

with one MPI task per node. We use CLASS C as input problem for NPB benchmarks.

NVM and DRAM sizes are 16GB and 256MB respectively. Figures 3.9 and 3.10 show

the results. NVM is configured with 1/2 DRAM bandwidth (Figure 3.9) or 4x DRAM

latency (Figure 3.10).

We first notice that there is a big performance gap between NVM-only and
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Figure 3.11: Quantifying the contributions of our four major techniques to performance
improvement.

DRAM-only cases. On average, the gap is 18% for NVM with 1/2 DRAM bandwidth

and 47% for NVM with 4x DRAM latency. However, Unimem greatly narrows the

gap and makes performance very close to DRAM-only cases: the average performance

difference between DRAM-only and HMS is only 3% for NVM with 1/2 DRAM

bandwidth and 7% for NVM with 4x DRAM latency, and the performance difference

is no bigger than 10% in all cases. This demonstrates that Unimem successfully directs

data placement for those performance-critical data objects. This also demonstrates

that Unimem is very lightweight after we optimize runtime performance and hide

data movement cost.

We compare Unimem and X-Mem [79] (a recent software-based solution for data

placement in HMS). The results are shown in Figures 3.9 and 3.10. X-Mem uses

PIN-based offline profiling to characterize memory access patterns and make the

decision on data placement. They do not consider data movement cost and assume

a homogeneous memory access pattern within a data object. The results show that

Unimem performs similarly to X-Mem, but performs 10% better than X-Mem for

Nek5000. Nek5000 is a production code with various memory access patterns across

phases. Unimem adapts to those variations, hence performing better. Also , Unimem

does not need any offline profiling for applications.

Detailed performance analysis. Based on the results of basic performance

tests, we further quantify the contributions of our runtime techniques to performance

improvement on HMS. This quantification study is important to investigate how

effective our techniques are and when they can be effective. We study four major

techniques: (1) cross-phase global search, (2) phase local search, (3) partitioning

large data objects, and (4) initial data placement.
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Table 3.3: Data migration details for HMS with Unimem (NVM has 1/2 DRAM band-
width).

Benchmark Times of Mi-
gration

Migrated data
size (MB)

Pure runtime
cost

% overlap

CG 3 132 0.5% 66.7%

FT 4 201 1.5% 75%

BT 24 720 1% 87.5%

LU 3 187 1% 60%

SP 9 348 1.5% 66.7%

MG 1 17 2% 100%

Nek5000(eddy) 102 1101 3% 70.6%

We apply the four techniques one by one. In particular, we apply (1), and then

apply (2) to (1), and then apply (3) to (1)+(2), and then apply (4) to (1)+(2)+(3).

We measure the performance variation after applying each technique to quantify the

contribution of each technique to performance. We use the same system configura-

tions as basic performance tests with NVM configured with 1/2 DRAM bandwidth.

Figure 3.11 shows the results.

We notice that cross-phase global search can be very effective. In fact, in bench-

marks CG and LU, more than 90% of the contribution comes from this technique.

However, cross-phase global search could lose some opportunities to improve perfor-

mance on individual phases, because it uses the same data placement decision on all

phases. Using phase local search can complement cross-phase global search. For BT

and SP, using phase local search we improve performance by 19% and 5% respectively.

Initial data placement is very useful. In fact, it takes effect on all benchmarks.

For SP, it is the most effective approach (87% contribution comes from this technique).

Partitioning large data objects does not take effect except FT, because it intro-

duces very frequent data movement which loses performance. In FT, this technique

contributes to 58% performance improvement, while the other three techniques make

42% contribution by manipulating small data objects. In general, by this study , we

learn the importance of combining all techniques to maximize performance improve-

ment for various HPC workloads.

To further study the effectiveness of Unimem, we collect some detailed data

migration information for HMS with Unimem (NVM has 1/2 DRAM bandwidth).

Table 3.3 shows the results. “Pure runtime cost” in the table accounts for the overhead
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Figure 3.12: CG strong scaling tests on Edison (LBNL).

of collecting hardware counters, modeling costs, and synchronization cost between the

helper thread and main thread. “Pure runtime cost” does not include data movement

cost and benefit. “% overlap” in the table shows the percentage of data movement

cost that is successfully overlapped with the computation.

From Table 3.3, we notice that Unimem has very small runtime overhead (less

than 3% in all cases). Directed by Unimem, the data migration can happen very

often (e.g., 102 times in Nek5000 and 24 times in BT), and the migrated data size

can be very large (e.g., 1.1GB in Nek5000 and 720MB in BT). However, even with

the frequent data migration, Unimem successfully overlaps data migration with com-

putation (70.6% in Nek5000 and 87.5% in BT). Also, the performance benefit of data

migration outweighs those non-overlapped data migration, and narrows down the

performance gap between NVM and DRAM to 9% at most (see Figure 3.9).

Scalability study. To study how Unimem performs in larger system scales.

We did strong scaling tests on Edison at LBNL. For each test, we use one MPI task

per node and use CLASS D as input problem. We use 256MB for DRAM and 32GB

for NVM. Figure 3.12 shows the results for CG. Performance (execution time) in the

figures is normalized to the performance of DRAM-only.

As we change the system scale, the sizes of data objects change. The numbers of

main memory accesses also change because of caching effects: Such changes in main

memory accesses impact the sensitivity of data object to memory bandwidth and

latency. Because of the above changes, the runtime system must be adaptive enough

to make a good decision on data placement. In general, Unimem does a good job for

all cases: the performance difference between DRAM-only and HMS with Uimem is

no bigger than 7%.

Sensitivity study. We use various configurations of DRAM size in HMS and
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test if our runtime can perform well. As DRAM size changes, we will have differ-

ent opportunities to place data objects. The change of DRAM size will impact the

frequency of data movement and impact whether we should decompose large data

objects to improve performance. Figure 3.13 shows the results as we use 128MB,

256MB and 512MB DRAM. In all tests, we use 16GB NVM configured with 1/2

DRAM bandwidth and CLASS C as input problem. We use Platform A and four

nodes (1 MPI task per node) to do the tests. In the figure, performance (execution

time) is normalized to that of DRAM-only.

In general, Unimem performs well in all cases except one case: the performance

difference between DRAM-only and HMS with Unimem is no bigger than 7% in all

cases except MG with 128MB DRAM. For MG with 128MB DRAM, we have 13%

performance difference between DRAM-only and HMS with Unimem. After careful

examination, we find that DRAM is not well utilized, because large data objects

cannot be placed in such small DRAM. We also cannot partition large data objects

in MG by using our compiler tool because of widely employment of memory alias

in the benchmark. But even so, our runtime still narrows performance gap between

NVM-only and DRAM-only by 35%.

Figure 3.13: Unimem performance sensitivity to DRAM size in HMS.

3.7 Related Work

Software-managed HMS has been studied in prior work. Dulloor et. al [79] intro-

duce a data placement runtime based on offline profiling of application memory ac-

cess patterns. Their work targets on enterprise workloads. To decide data placement,

they classify memory access patterns into streaming, pointer chasing, and random.
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Giardino et. al [80] rely on OS and application co-scheduling data placement. In

particular, they build APIs that allow programmers to describe their memory usage

characteristics to OS, through which OS receives and implements responsive page

placement and data migration. Lin et. al [81] introduce a protected OS service for

asynchronous memory movement on HMS. Du et. al [82] develop a PIN-based offline

profiling tool to collect memory traces and provide guidance for placing data on HMS.

Different from the prior efforts, our work requires neither offline profiling as

in [79, 82] nor programmer involvement to identify memory access patterns as in [80].

Furthermore, our work does not require the modification of OS, which is different

from [81]. Our work aims for legacy HPC applications and systems.

Some studies introduce hardware-based data placement solutions for the NVM-

based HMS. Bivens et al. [83] and Qureshi et al. [84, 85] use DRAM as a set-associative

cache logically placed between processor and NVM. NVM is accessed when DRAM

buffer eviction or buffer miss happens. Yoon et al. [86] place data based on row buffer

locality in memory devices. Wang et al. [70] rely on static analysis and advanced

memory controller to monitor memory access patterns to determine data placement

on GPU. Wu et al. [65] leverage the knowledge of numerical algorithms to direct

data placement. They introduce hardware modifications to support massive data

migration and performance optimization. Agarwal et al. [69] introduce a bandwidth-

aware data placement on GPU, driven by compiler extracted insights and explicit

hints from programmers.

A key limitation of the above hardware-based approaches is that they heavily

rely on modified hardware to monitor memory access patterns and migrate data.

Some work, such as [84, 85, 70, 86], ignores application semantics and triggers data

movement based on temporal memory access patterns, which could cause unnecessary

data movement. Our work avoids any hardware modification, and explores global

optimization on data placement.

3.8 Summary

The limitation of NVM imposes a question on whether NVM is a feasible solution

for HPC workloads. In this chapter, we quantify the performance gap between NVM-

based and DRAM-based systems, and demonstrate that using a carefully designed
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runtime, it is possible to significantly reduce the performance gap. We hope that our

work can lay the foundation to embrace NVM for future HPC.



Chapter 4

Tahoe: Runtime Data Placement

on NVM-based Heterogeneous

Memory for Task-Parallel

Programs

4.1 Overview

In the previous chapter, we explored the data management on MPI-based pro-

grams. With the rapid rise of massive parallelism on the many-cores platform, shared

memory programming attracts more attention. In this chapter, we focus on task-

parallel programs and introduce a runtime system, Tahoe, to address data placement

on NVM-based HMS.

Task-based programming models for building task-parallel programs, such as

OpenMP tasks, Cilk [60], and Legion [61], decompose a program into a set of tasks and

distribute them between processing elements. Those programming models improve

performance by exposing a higher level of concurrency than what is usually extracted

by compiler and programmer. Task-based programming models and task-parallel

programs have been widely explored in HPC.

Different from the existing performance optimization work for task-parallel pro-

grams, deciding on data placement on HMS for task-parallel programs is a new and

challenging problem. First, the existing work for task-parallel programs [87, 88, 89]

44
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studies task movement (e.g., making a task close to data on a NUMA node), while

on HMS, we study data movement. Moving data to DRAM can be beneficial for

performance on HMS [5, 65, 79, 80, 86, 90, 91, 92, 93], because of a relatively big per-

formance gap between DRAM and NVM. However, data movement is expensive. As

a result, we want to move data that can bring the largest performance benefit among

all data and avoid less beneficial data movement. Furthermore, a task can have its

data distributed on both DRAM and NVM. Given many possible data distributions

for each task and many tasks in a task-parallel program, it is non-trivial to make a

decision on data placement.

Second, profiling the memory accesses of tasks to decide data placement is chal-

lenging. The existing work commonly uses online performance profiling [5, 94, 95, 96,

97] for HPC applications. Leveraging iterative structures in HPC applications, pro-

filing an execution phase can often make good performance prediction for the future

execution phases. This profiling method is based on an implicit assumption that the

profiled phase and future execution phases access the same data. Hence, the profiling

result in one phase can be used to direct data placement for the same data for the

future execution phases. However, this assumption does not hold for task-parallel

programs: To enable task level and data level parallelism, different tasks in a task-

parallel program often work on different data. No matter which task is profiled, the

profiling result for one task is not usable to direct data placement for other tasks,

because of the difference in memory addresses and access patterns between tasks. In

essence, the execution model of task-parallel programs brings this unique profiling

challenge.

In this chapter, we introduce a runtime system, Tahoe, to enable efficient data

management (i.e., data placement between NVM and DRAM) on NVM-based HMS.

Leveraging the semantics and execution mode of task-parallel programs, Tahoe effi-

ciently characterizes memory access patterns, decides data placement for many tasks,

makes the best use of limited DRAM space, and reduces data movement overhead.

To address the challenge of profiling memory accesses for many tasks without

causing expensive overhead, Tahoe chooses a few representative tasks to profile and

decide the most accessed pages. Each representative task has similar memory access

patterns to many other tasks. To make the memory access information generally

applicable to other tasks with different memory pages (addresses), Tahoe leverages
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program semantics to transform the information from page level to data-object level,

such that other tasks can decide their potentially most accessed pages using data

object information.

To decide data placement, Tahoe is featured with a hybrid performance model to

predict performance for various data placement cases. The hybrid performance model

combines the power of both machine learning modeling and analytical modeling.

Predicting the performance of various data placements must capture complicated

(possibly non-linear) relationships between execution time and many performance

events. A complicated analytical model is possible but would cause large runtime

overhead and present challenges in model construction, even for simple data placement

cases. We reveal that lightweight machine learning modeling is sufficient to make the

prediction for simple data placement cases. However, lightweight machine learning

modeling lacks flexibility, as making prediction for complicated data placement cases

increases model parameters by 40%. Such a machine learning model is difficult to train

and heavyweight for runtime. Analytical modeling does not have this problem because

of its flexible parameter setting and formulation. Hence, to predict performance for

a task with all of its data placed in one memory (simple data placement cases), we

apply a machine learning model. To predict the performance for a task with its data

distributed in both NVM and DRAM (complicated data placement cases), we apply

a lightweight analytical model based on the machine learning modeling result. In

essence, the machine learning model avoids most of modeling complexity, while the

analytical model introduces modeling flexibility.

The primary contributions of this chapter are as follows:

• We introduce a runtime system for task-parallel programs to manage data place-

ment on NVM-based HMS;

• We explore how to capture and characterize memory access information for

many tasks;

• We use a hybrid performance model to make data placement decisions with

high prediction accuracy (the prediction error is less than 7%);

• Evaluating with six benchmarks and one scientific application, we show that

Tahoe achieves higher performance than a conventional HMS-oblivious runtime
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(24% improvement on average) and two state-of-the-art HMS-aware solutions

(16% and 11% improvement on average, respectively).

4.2 Definitions and Basic Assumptions

In this chapter, we use two terms, task type and task size. We define them as

follows. Tasks in a typical task parallel program can run the same code region or

different code regions. If some tasks run the same code region with the same input

data size, we claim those tasks have the same task type. Those tasks are different

instances of the same task type. Task size is related to task execution time. A task

with a small (or big) size has a short (or long) execution time.

In this chapter, we consider the OmpSs programming model [98], which is a

task-based programming model using syntax similar to the OpenMP task pragma.

This programming model introduces a dependency clause that allows task arguments

to be declared as in (for read-only arguments), out (for write-only arguments), and

inout (for read and written arguments). Our runtime, Tahoe, is an extension of

Nanos++ [99], a runtime system that supports OmpSs, OpenMP and Chapel task-

based programming models.

Figure 4.1 gives an example code from a benchmark (heat) in the BSC application

repository [100] to show task parallel programs. Lines 15-25 are a code region where

a task construct (Lines 1-11) is enclosed in a parallel region (i.e., a three-level nested

loop). All tasks running the code region have the same task type.

A task in a task-based programming model can be in different execution states.

In Nanos++, a task can be in the following four states, and tasks in the state of

ready are placed in a queue (readyQueue). Our runtime leverages the four states

to make data migration. We review the four states as follows. (1) Initialized : The

task is created and dependencies are computed. (2) Ready : All input dependencies

of the task are addressed. (3) Active: The task has been scheduled to a processing

element, and will take a finite amount of time to execute. (4) Completed : The task

terminates, and its state transformations are guaranteed to be globally visible. The

task also frees its output dependencies to other tasks.

In this chapter, we migrate data at the granularity of memory pages using

move pages() at the user level. In addition, we use the term “data migration” in-



48

1 #pragma omp task \
2 in ( ( [ realN ] o ldPanel ) [ 1 ; BS ] [ 1 ; BS ] . . . ) out ( . . . )
3 void j a c o b i ( long realN , long BS , \
4 double newPanel [ realN ] [ realN ] , \
5 double o ldPanel [ realN ] [ realN ] ) {
6 f o r ( i n t i =1; i <= BS ; i++) {
7 f o r ( i n t j =1; j <= BS ; j++) {
8 newPanel [ i ] [ j ] = 0 .25 ∗ ( o ldPanel [ i −1] [ j ] \
9 + oldPanel [ i +1] [ j ] + oldPanel [ i ] [ j −1] \

10 + oldPanel [ i ] [ j +1]) ;
11 } } }
12

13 void main ( ) {
14 . . .
15 #pragma omp taskwai t
16 f o r ( i n t i t e r s =0; i t e r s <L ; i t e r s ++) {
17 i n t currentPane l = ( i t e r s + 1) % 2 ;
18 i n t l a s tPane l = i t e r s % 2 ;
19 f o r ( long i=BS ; i <= N; i+=BS) {
20 f o r ( long j=BS ; j <= N; j+=BS) {
21 j a c o b i ( realN , BS , \
22 ( m t ) &A[ currentPane l ] [ i −1] [ j −1] , \
23 ( m t ) &A[ l a s tPane l ] [ i −1] [ j −1] ) ;
24 } } }
25 #pragma omp taskwai t
26 . . .
27 }

Figure 4.1: Code snippet from a task parallel benchmark (heat).

terchangeably with the term “page migration”; “memory page” and “memory ad-

dress“ in the rest of the paper refer to “virtual memory page” and “virtual memory

address”. NVM endurance is out of the scope of this work and can be handled by

memory controllers [101, 102]. Many related works focus on performance, not on

NVM endurance [5, 82, 79, 90].

4.3 Tahoe Design

The design goal of Tahoe is to automatically manage data placement (or migrate

data) on NVM and DRAM for tasks with minimum runtime overhead. Initially,

all data objects (or memory pages) in all tasks are on NVM, but Tahoe moves data

objects between NVM and DRAM before task execution to improve task performance.

We describe the design of Tahoe in details in this section.
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4.3.1 Overview

Tahoe is built with four basic components for data management, including task

metadata and profiling, performance modeling, data migration, and DRAM space

management. In addition, Tahoe has three optimization techniques for performance

improvement. We explain the typical workflow of Tahoe to briefly introduce the four

basic components. Figure 4.2 generally depicts the workflow.

Tahoe decides if a task is scheduled to immediately run, based on task metadata.

Before a task (named as the “target task” in the rest of the discussion) to run, Tahoe

determines which memory pages of the task should be migrated from NVM to DRAM.

Tahoe makes such decision based on the information provided by the components of

DRAM space management and task profiling.

The task profiling component collects task execution information and memory ac-

cess information by running representative tasks. A representative task has the same

task type as the target task. Using the representative task, we avoid the necessity

of profiling every task. The memory access information is collected by performance

counters in the sampling mode, such that we can attribute memory accesses to mem-

ory pages. The memory access information is compact to enable good performance.

To handle the cases where multiple target tasks are scheduled to immediately

run and the DRAM space must be partitioned between those tasks, we introduce a

hybrid performance model to predict what is task execution time when some memory

pages of a task is on DRAM, while other pages of the task are on NVM. Using the

performance model, the data migration component makes the best use of DRAM for

performance improvement.

The DRAM space management component provides information on page resi-

dency on DRAM. This component also migrates memory pages from DRAM to NVM

based on the recency of task execution. The DRAM space management component

ensures that DRAM does not run out of space.

We describe the above components in details as follows.

4.3.2 Task Metadata and Profiling

Our runtime leverages task metadata associated with each task to facilitate data

migration. Also, data migration for each task is based on performance profiling on
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Figure 4.2: The typical workflow of Tahoe

representative tasks. We describe those details in this section.

Task metadata. Task metadata is critical for data migration. In Nanos++,

each task has metadata created during task creation. The metadata includes (1)

task execution state and (2) data object information for task execution. The data

object information includes data addresses (starting addresses) and data sizes for

data objects referenced in the task. The data addresses and data sizes information

are useful for Nanos++ to identify data dependency between tasks. Nanos++ also

has a FIFO queue (i.e., readyQueue). This queue saves those tasks that already

resolve data dependency and are ready to run.

Tahoe leverages the existing task execution state in Nanos++ to decide when to

trigger data migration. A task with the execution state as Initialized means that the

task has the memory information ready, and Tahoe can use performance modeling

(Section 4.3.4) to decide which data should be migrated. A task with the execution

state as ready is ready to migrate its data, but the data migration must finish before

the runtime sets the task as active. A task with completed state is ready to release

its data for migration by Tahoe.

Tahoe leverages the existing data object information in Nanos++ to determine

which task should wait because of data migration of other tasks. Tahoe also calculates

virtual page numbers by the aligned data addresses and data sizes. The virtual page

numbers are needed to profile page-level memory access information for tasks (see

below).
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Task profiling. To decide which memory pages should be migrated for each

task, we must collect task execution information and memory access information for

memory pages. The task execution information of a task includes number of instruc-

tions, last level cache miss rate, and execution time when all data of the task are on

NVM. Such task execution information is necessary for using our performance model

(Section 4.3.4). The memory access information includes the number of memory

accesses to memory pages of the task.

To collect the above information, Tahoe profiles one instance (i.e., a representa-

tive task) of each task type, and then uses the profiling information to direct data

placement for the other instances of the same task type. This profiling method is

based on the observation that all instances of the same task type often perform the

similar computation and have similar memory access patterns.

The task execution information can be easily measured with common perfor-

mance counters in processors. To collect the memory access information, we use the

common sampling mode in performance counters (e.g., Precise Event-based Sampling

from Intel or Instruction-based Sampling from AMD). Such a sampling mode allows

us to take a sample of a performance event (e.g., last level cache miss or first-level

cache hit) every n of such events. The sampling mode allows us to correlate the

sample with a memory address whose associated memory reference causes the perfor-

mance event. Using the memory address and task metadata (particularly data object

addresses), we can know which memory page is accessed and which data object is

accessed.

The number of last level cache miss can indicate the number of main memory

accesses [5, ?]. Although other events, such as prefetching and cache coherence, can

also cause main memory accesses, there is no common method to measure those

events. To measure the number of main memory accesses, we use the approach in [?]

by adding the number of hits in the first-level cache to the number of last level cache

misses as main memory accesses, because the first-level cache loads include accesses

to prefetched data. Using the above sampling mode, we can estimate the number of

memory accesses to all memory pages of a task and decide the most accessed pages.

Profiling overhead analysis. The runtime overhead is an important concern

when attributing memory samples to memory pages. In our design, such runtime

overhead is small, because of the following reasons. First, the number of representative
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Table 4.1: The number of task type for evaluation benchmarks.

FFT BT Strassen CG Heat RandomAccess SPECFEM3D

6 23 10 10 1 1 22

tasks is typically small and each task type has many instances, which means we

do not have many pages for profiling. Studying all benchmarks (17 benchmarks)

from the BSC application repository [100], we find that the average number of task

type per benchmark is 7 (23 at most). We list the number of task types for those

benchmarks used in our evaluation in Table 4.1. Each task type can have at least 30,

and sometimes more than 1000 instances. Also, we observe that in many benchmarks,

each representative task has a small memory footprint (less than a few megabytes)

and the size of the memory footprint is independent of the input problem size of

benchmarks. Having such task with a relatively small memory footprint is due to

the nature of task-parallel HPC programs, which is to decompose computation into

many fine-grained tasks and encourage task-parallelism.

Representation of memory access information. To reduce storage overhead

of recording the number of memory accesses to each memory page of a representative

task and quickly locate the most accessed pages, we use the following method: we

coalesce memory pages with continuous virtual addresses and with a similar number

of memory accesses (less than 10% difference) into a memory group. The number of

memory groups in a task is much less than the number of memory pages. The number

of memory accesses for each page within a memory group is the average number of

memory accesses of all pages within the group. The memory access information is

represented as a list of items, each of which includes the number of memory accesses

and starting address for either a memory group or a memory page.

The memory access information is collected for the representative task and can-

not be directly used by other tasks, because different tasks can use different virtual

addresses for their data objects. To solve this problem, we map the memory access

information from page level to data object level. Leveraging data semantics, the

memory access information at the data object level is generally applicable to any

task with the same task type as the representative task.

We use Figure 4.3 to further explain the idea. In this figure, the task i has
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Figure 4.3: Mapping memory access information from page level to data object level.

a memory page frequently accessed. Mapping the memory access information from

page level to data object level, we know that this page is filled with elements of a data

object a[]. Hence, those elements of a[] are frequently accessed. The task j has the

same task type as the task i. Based on the profiling information at data object level

in task i, we reason that those elements of a[] in task j will be frequently accessed

and the corresponding memory page will also be frequently accessed.

Putting it all together. Tahoe maintains a hashmap, named as a profiling

database. The profiling database uses the task type as the key and the profiling

information (task execution information and memory access information) as the value.

A task type is represented by a concatenation of the following items: (1) the address

of the first instruction in the code region of the task type; and (2) the size of each

data object listed in the dependency clauses of the task.

Tahoe picks up tasks from readyQueue one by one to decide data placement and

run tasks. For each task, Tahoe queries the profiling database to decide if a task with

the same task type has been executed before. If not, Tahoe will not make any data

migration for the task. Instead, the task will be scheduled to run as usual with its data

on NVM. The task is a representative task for any instance of the same task type. The

profiling information is collected during the execution of the representative task and

saved into the profiling database. If such a type of the task has been executed before,

then the profiling information is loaded from the profiling database for deciding data

migration and performance modeling.

Similarity of memory access patterns between tasks. Tahoe uses a single

task as a representative task for a task type, based on the assumption that all tasks

with the same task type have similar memory access patterns. However, we find a

couple of cases, e.g., the benchmarks heat and RandomAccess (see Table 4.4), that
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violate the assumption. Nevertheless, the profiling result from the representative task

still provides better guidance for data placement than an HMS-oblivious runtime (see

Figure 4.4 and 4.5). Also, profiling multiple representative tasks (instead of one) for

a task type can make such guidance even more useful.

4.3.3 Data Migration

Whenever there is a processing element ready to run a task, a task at the front of

readyQueue will be scheduled to immediately run. Right before the task runs, Tahoe

decides which memory pages of the task should be migrated from NVM to DRAM.

We must handle the following issues for data migration.

Deciding which memory pages to migrate. A task can reference many

memory pages. Given the limited DRAM capacity, not all memory pages can be mi-

grated. We must decide migrating which memory pages bring the largest performance

benefit. We make such decision using two steps.

First, we decide how many memory pages can be migrated. Based on the DRAM

space management (Section 4.3.5), we can know which memory pages of the task

are already in DRAM. Combining such information with the availability of DRAM

space, we can decide how many memory pages can be migrated from NVM to DRAM.

Second, based on the profiling information (Section 4.3.2), we decide the most accessed

memory pages to migrate and then update the DRAM information in the DRAM

space management.

Data migration for multiple tasks. When there are multiple processing

elements ready to co-run multiple tasks, we must partition the available DRAM space

between the tasks to maximize performance benefit of data migration. We use a

performance model to decide the partition.

Assume that we have K tasks to co-run. After deciding the DRAM space parti-

tion, a task i (1 ≤ i ≤ K) has mi pages on DRAM and its performance is perfi. To

maximize the system throughput to process tasks, we have the following formulation,

where size is the available DRAM space and Perf is the execution time to finish all

K tasks:
K∑
i=1

mi = size (4.1)
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Perf = max
1≤i≤K

perfi (4.2)

To know perfi, we use a performance model (Equation 4.4). To solve the above

equations, we use dynamic programming. To avoid the overhead of dynamic pro-

gramming, when co-run tasks have the same task type, we evenly partition avail-

able DRAM space between co-run tasks without using dynamic programming. This

method is based on the observation that tasks with the same task type have similar

memory access patterns in most cases.

Handling conflicting decisions on page migration. A memory page can be

referenced by more than one task, and multiple tasks can make conflicting decisions

on the placement of a page. For such a case, we always place the page on DRAM,

because those tasks that decide to place the page on NVM do not lose performance

when the page is actually placed on DRAM.

4.3.4 Performance Modeling

Performance modeling is used to decide the DRAM space partition between

multiple tasks, when those tasks are ready to be run by multiple processing elements.

To achieve the above modeling goal, our performance model aims to predict the

performance for a task when a part of its memory pages is on DRAM and the other

part is on NVM (i.e., perfi for task i in Equation 4.2).

Our performance model has two parts. The first part uses a machine learning

model to predict the performance of a task with all of its memory pages on DRAM

(we name such a case as complete data placement). The second part is based on the

first one and predicts the performance when some (not all) of the task’s memory pages

are placed on DRAM (we name such case as partial data placement). The second part

is an analytical model.

We have the following requirements for our performance modeling. (1) Applica-

tion generality: the model must work for a large variety of applications; (2) Complex-

ity: the model must be simple enough to have low runtime overhead; (3) Usability:

the model must have low programmer involvement; (4) Hardware generality: the

model must be easily extensible to different hardware platforms. We describe our

performance model in details as follows.
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Performance Modeling for Complete Data Placement

We introduce a performance model based on machine learning. We do not use

analytical modeling because when capturing the sophisticated relationship between

execution time and performance events, the analytical modeling tends to be complex

(e.g., [103]). It can bring large runtime overhead and construction difficulty, violating

the above requirements (2)-(4).

Given a task, the machine learning model uses the following information as input:

(1) last level cache miss rate, and (2) IPC (instructions per cycle) when all memory

pages of the task are on NVM. The model outputs (predicts) IPC for task execution

when all memory pages of the task are on DRAM. The input of the model can be

obtained from the profiling database. In particular, using the task type as a key, we

can get the task execution information collected from a representative task from the

database. Based on this information, we calculate the model input. With the model

output (i.e., predicted IPC), we calculate the task execution time of complete data

placement, using the number of instructions obtained from the profiling database.

We choose last level cache miss rate and IPC as the model input, because they

are highly correlated with performance variation across different cases of data place-

ment, and hence can serve as important performance indicators. In particular, the

last level cache miss rate reflects how intensively main memory is accessed. The per-

formance of an application with a high last level cache miss rate could be sensitive

to the change of main memory bandwidth and latency. IPC can reflect main mem-

ory access intensity and overlapping between computation and memory access. The

performance of an application with high IPC may not be sensitive to the change of

main memory bandwidth and latency.

We explore two common supervised machine learning techniques to build our

models and meet the modeling requirements: multiple linear regression analysis (LR)

and artificial neural network (ANN).

Multiple LR analysis. Our regression model is as follows.

y = β1x1 + β2x2 + ε (4.3)

where x1, and x2 are IPC and last level cache miss rate, respectively. y is the

predicted IPC. β1, β2 and ε are modeling coefficients we learn through model training.
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Table 4.2: Training time and prediction accuracy. NVM bandwidth is 1/x bandwidth of
DRAM (x = 4, 8, and 16).

Multiple LR model ANN model

NVM bandwidth 1/4 1/8 1/16 1/4 1/8 1/16

Average training time per epoch
(s)

25.3 23.5 22.4 32.4 31.7 33.8

Total training time (s) 207.2 191.4 195.0 254.9 249.6 262.3

Average prediction error 10.9% 26.4% 45.9% 3.6% 4.1% 5.1%

Prediction error variance 0.2 57.2 4.7× 103 0.007 0.016 0.017

ANN. A typical ANN has a number of neurons. Each neuron receives inputs

from other neurons or ANN input, and produces an output via activation functions.

Neurons, connected with weights and organized as layers, constitute the network

structure of ANN.

In our model, we use a three-layer, fully-connected ANN containing one input

layer with ten input neurons, one hidden layer with five neurons, and one output layer

with one output neuron. We use such simple ANN to avoid large runtime overhead

when making online performance prediction. We use Rectified Linear Unit (ReLu) as

the activation function in our ANN.

Model training and validation. We use seven task parallel benchmarks (see

Table 4.4) from the BSC application repository [100] for model training and val-

idation. In particular, we choose every six benchmarks of the seven task-parallel

benchmarks to build two models (LR and ANN), and use the one remaining bench-

mark for validation (training and validation use different data sets). In total, we build

seven LR models and seven ANN models for cross-validation. For each model, we

have at least three million tasks from six benchmarks for training, and use at least

0.7 million of tasks from one remaining benchmark for validation.

The training data is collected in a machine described in Section 4.4. On this

machine, we configure our NVM emulation with three different bandwidth (1/4, 1/8,

and 1/16 of DRAM bandwidth). Hence, we have three NVM cases, and for each case,

we collect the training data to train the two models (LR and ANN). The average

training time of those models is summarized in Table 4.2. Overall, the training time

is short less than five minutes for all cases.

Performance modeling accuracy. Table 4.2 shows the prediction accuracy
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and reveals that the ANN model achieves high prediction accuracy (less than 6%

prediction error on average) for the three different NVM cases. LR, however, does

not predict well (e.g., 45.9% prediction error on average, when the NVM bandwidth

is configured as 1/16 of DRAM bandwidth). Hence we use the ANN model in Tahoe.

Modeling complexity. Our ANN model is simple. The model training hap-

pens offline, and to make a prediction at runtime, the model uses 76 floating point

multiplications and 75 floating point additions. As a result, the modeling complexity

is low.

In summary, our ANN model meets our modeling requirements: it has good

application generality and is simple and usable. The model training time is also

short.

However, the machine learning-based performance modeling is not suitable for

making performance prediction for partial data placement (more complicated data

placement cases), because we have to introduce at least two more input (one for

DRAM and the other for NVM) to represent and distinguish cases with different

numbers of memory pages on DRAM and NVM and possibly a couple more input to

characterize memory access patterns to improve modeling accuracy. This increases

model parameters by at least 40% (considering just two more input). Such a model is

not only difficult to train but also brings large runtime overhead, which violates the

model requirements on complexity, usability, and generality. This problem, in essence,

comes from the lack of flexibility to build and use the machine learning model.

Performance Modeling for Partial Data Placement

We introduce an analytical model to make performance prediction for partial

data placement. The model uses the prediction result of the complete data placement

and uses simple formulation and parameters to capture the performance relationship

between complete and partial data placement. The model avoids the problem of

model training and concerns on runtime overhead in the machine learning model.

Assume that Tc NVM and Tc DRAM are the execution times with complete data

placement on NVM and DRAM, respectively. We have performance difference (Tc NVM−
Tc DRAM), and the performance difference between partial data placement (Tp) and

complete data placement on DRAM (Tc DRAM) should be less than (Tc NVM−Tc DRAM).
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In general, more NVM accesses in partial data placement result in a larger perfor-

mance difference between partial data placement and complete data placement on

DRAM. Such a performance difference should be related to the ratio of NVM ac-

cesses to total memory accesses (including both DRAM and NVM accesses).

Tp = (Tc NV M − Tc DRAM )×
p nvm acc

tot mem acc
+ Tc DRAM (4.4)

Equation 4.4 shows the model based on the above rationale and predicts the

performance for partial data placement (Tp). Tc NVM in the model is measured and

obtained from the profiling database. Tc DRAM is the predicted execution time with

the ANN model. (Tc NVM −Tc DRAM) is the performance difference for complete data

placement, which is the largest performance difference we can have. The performance

difference for partial data placement scales the largest performance difference by

(p nvm acc/tot mem acc), where p nvm acc is the number of NVM accesses in partial

data placement and tot mem acc is total number of memory accesses in complete

data placement. p nvm acc is the model input and can be leveraged to explore the

performance of various data placement as in Equation 4.2. tot mem acc is measured

and obtained from the profiling database.

To verify the modeling accuracy, we test the seven benchmarks listed in Table 4.4.

We use a machine with two NUMA nodes to emulate NVM based on Quartz [63]

emulator. Section 4.4 has more details on our test platform. We do not set the

limitation on DRAM size. Both DRAM and NVM can hold all memory pages of the

benchmarks. We collect the execution times and the number of memory accesses on

NVM and DRAM under three configurations: (1) placing all memory pages on NVM,

(2) memory is allocated using a round robin approach on both NVM and DRAM, and

(3) placing all memory pages on DRAM. The model makes performance prediction for

the second configuration, and uses the first and third configurations as model inputs.

We compare the measured time and predicted time for the second configuration, and

compute the prediction error shown in Table 4.3. In summary, the prediction error is

less than 7%, demonstrating the effectiveness of our model.
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Table 4.3: Performance prediction error for partial data placement

Benchmarks FFT BT Strassen CG Heat RA SPECFEM3D

p nvm acc 5.7× 107 1.9× 108 7.7× 106 4.3× 107 5.2× 107 1.0× 108 7.4× 107

tot mem acc 1.2× 108 4.1× 108 1.6× 107 7.4× 107 2.2× 108 2.7× 108 1.45× 108
p nvm acc

tot mem acc
0.48 0.46 0.48 0.58 0.24 0.37 0.51

Prediction error 6.9% 3.6% 3.0% 1.5% 3.0% 3.0% 6.5%

4.3.5 DRAM Space Management

DRAM space management has two functionalities: (1) recording which memory

pages are in DRAM; (2) migrating memory pages from DRAM to NVM when DRAM

runs out of space and there is a task pending to execute.

To implement the first functionality, Tahoe represents DRAM pages as a list

of memory regions. Each memory region is represented as the starting address and

size of the region. Each memory region is a set of memory pages with continuous

addresses. If a task wants to check which pages of the task are on DRAM, it sends

the address ranges of its memory pages, and compares its address ranges with the

address ranges in the list of memory regions.

All memory pages are initially allocated on NVM and no memory page is on

DRAM. As memory pages are migrated from NVM to DRAM, DRAM can run out of

space, and we must migrate some page from DRAM to NVM to accommodate new

memory pages from the upcoming task executions.

To decide which DRAM pages should be migrated to NVM, we could use an LRU

policy and migrate those pages that are the least used. However, this would require

the runtime to continuously track memory references to DRAM pages, which is costly.

To avoid large runtime overhead, we migrate those DRAM pages that are used by

the least recently executed task. In particular, Tahoe maintains a FIFO queue with

a length of ten to record DRAM memory footprints of the last ten executed tasks.

If DRAM runs out of space, DRAM pages referenced by the task at the end of the

queue are moved out of DRAM.

In other words, we migrate memory pages from DRAM to NVM based on the

recency of task execution, not the recency of memory usage. This method has some

limitation, however. A memory page used by the least recently executed task can

still be referenced by recently executed tasks, and it is possible that the memory

page will be accessed by the upcoming tasks too. To reduce this limitation, before
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migrating pages from DRAM to NVM, we quickly examine readyQueue to check if

the most upcoming task is going to use the pages pending to migrate from DRAM to

NVM. We do not migrate those DRAM pages that are going to be used by the most

upcoming task.

4.3.6 Performance Optimization

We introduce several techniques to improve performance.

Using helper thread to reduce data migration cost. After migrating data

for the task at the front of readyQueue, it is possible that DRAM still has space.

For such case, Tahoe will proactively migrate data for the task after the front task

in the queue. Such proactive data migration is implemented with a helper thread

running in parallel with Tahoe, overlapping with task computation and minimizing

data migration cost.

Performance optimization for data migration. Calling the page migration

function (i.e., move pages()) involves flushing translation lookaside buffer (TLB). Mi-

grating multiple pages of a task with one invocation of move pages() often triggers

TLB flush multiple times. TLB flushing is known for causing a large performance

overhead [104, 105]. Hence, we combine multiple TLB flushes in one invocation of

move pages() into one TLB flush. Such a method reduces the number of TLB flushes,

hence improve performance.

Note that an invocation of move pages() only migrates pages for one task, not

for multiple tasks, because a task cannot execute until the page migration function

finishes. An invocation of move pages() for multiple tasks delays the execution of

multiple tasks and reduces system throughput.

Optimization of task scheduling. Tasks with the same parent usually per-

form the same computation and work on overlapped memory pages. Based on such

observation, we slightly change scheduling orders of tasks in readyQueue, such that

those tasks with the same parent are scheduled one after another. Such a task schedul-

ing strategy maximizes DRAM page reuse before DRAM pages are evicted out of

DRAM.
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4.3.7 Discussions

NVM has asymmetric memory read and write latencies. However, we do not

distinguish memory read and write, because using software techniques (e.g., using

mprotect to make memory pages read-only and trigger a signal when write occurs)

to collect read and write information for pages can be very costly. Most runtime

designs for NVM rely on hardware mechanisms [106, 86, 107] to consider latency

difference of read and write. The existing runtime solutions [79, 80, 81, 82, 5] do not

consider such difference.

When profiling tasks and using performance models, we do not consider per-

formance interferences between tasks. Those interferences can cause cache conflict

misses and memory accesses. Due to the dynamic scheduling nature of task parallel

programs, quantifying and predicting those performance interferences require runtime

to infer possible task execution scenarios, which greatly increases runtime overhead

and complicates runtime design. Hence, we do not consider performance interferences

in our runtime.

4.4 Evaluation

Experiment methodology. We use a 16-core machine with two eight-core

Xeon E5-2630 processors and 32GB DDR4 (two NUMA memory nodes). We use this

machine for model training and validation in Section 4.3.4. We use Quartz [63] for

NVM emulation. Quartz can emulate NVM with a range of latency and bandwidth,

and offer high emulation accuracy. With Quartz, one NUMA node of the machine is

used as NVM, while the other is as DRAM.

We use six task parallel benchmarks from the BSC application repository [100]

and one production code SPECFEM3D [108]. Table 4.4 summarizes their input

parameters and the ratio of the DRAM size (128 MB) to the total size of data objects

of each benchmark. For performance profiling, we use the sampling-based approach

with sample rate as 1000. Such sampling rate offers high modeling accuracy with

tolerable runtime overhead [5].

We use six systems for evaluation: HMS with Tahoe, unmanaged HMS with

default Nanos++ (i.e., the HMS-oblivious runtime), DRAM-only (no NVM) with
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Table 4.4: Benchmarks for evaluation. Size ratio is the ratio of DRAM size to the total
size of all data objects.

Benchmark Input Parameter Size ratio

FFT 4096× 4096 double matrix 1:15
BT-MZ (BT) CLASS=C NPROCS=1 1:10

Strassen 4096× 4096 double matrix 1:5
CG 4096× 4096 double matrix 1:6

Heat (Jacobi) 4096× 4096 double matrix 1:10
RandomAccess (RA) 1024MB memory with 1000 tasks 1:9

SPECFEM3D (SF3D) NEX XI=128 NEX ETA=128 1:11

Nanos++, NVM-only (no DRAM) with Nanos++, HMS with X-mem [79], and HMS

with Unimem [5]. With the unmanaged HMS, Linux allocates memory with no

knowledge of the underlying memory types but is restricted by a limited DRAM

size. X-mem and Unimem are two recent software-based solutions for data placement

on HMS. X-mem uses offline profiling to characterize memory access patterns and

make the decision on data placement. Unimem makes data placement decision at the

granularity of execution phases delineated by MPI operations. Because five of our

benchmarks do not have MPI, we delineate execution phases by task code regions

for evaluating Unimem. Unless otherwise indicated, we use eight threads for evalua-

tion and use the performance of the unmanaged HMS for performance normalization,

and NVM is configured with 1/4 DRAM bandwidth. Unless otherwise indicated, we

choose 128MB as DRAM size, which is the same as recent work [109, 5, 107, 110].

Such DRAM size is smaller than the total size of all data objects of the benchmarks,

such that not all memory pages of the benchmarks are on DRAM. We list the ratio

of the DRAM size to the total size of data objects of each benchmark in Table 4.4.

Basic performance tests. We first compare the performance (execution time)

of the six systems. NVM has 1/4 DRAM bandwidth (Figure 4.4) or 4x DRAM latency

(Figure 4.5).

Using the performance of the unmanaged HMS as the baseline, X-mem, Unimem

and Tahoe reduce execution time by 5%, 11% and 21% on average respectively, when

NVM has 1/4 DRAM bandwidth. When NVM has 4x DRAM latency, X-mem,

Unimem and Tahoe reduce execution time by 10%, 14% and 26% on average, respec-

tively. The unmanaged HMS does not know underlying memory types in HMS. Thus,

it does not make good use of DRAM. Tahoe outperforms X-mem and Unimem by
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Figure 4.4: Performance (execution time) comparison between unmanaged HMS, NVM-
only, X-mem, Unimem and Tahoe. The performance is normalized to that of unmanaged
HMS. NVM has 1/4 DRAM bandwidth.

Figure 4.5: Performance (execution time) comparison between Unmanaged HMS, NVM-
only, X-mem, Unimem and Tahoe. The performance is normalized to that of unmanaged
HMS. NVM has 4x DRAM latency.

16% and 11% on average, respectively. Tahoe performs better than X-mem, because

X-mem uses offline profiling and uses the same data placement decision for all tasks.

X-mem avoids frequent data movement, but lacks the flexibility of data movement to

maximize performance benefit of using DRAM. Unimem does not have the problem of

X-mem, but it performs worse than Tahoe, because Unimem lacks a good capability

to migrate large data objects from NVM to make best use of DRAM.

Detailed performance analysis. We quantify the contribution of our three

optimization techniques to total performance improvement in Figure 4.6. The three

techniques are (1) using helper thread for proactive data migration (labeled as “Using

helper thread”), (2) performance optimization for data migration (labeled as “Opti-

mized migration”), and (3) optimization of task scheduling (labeled as “Optimized

scheduling”).

We perform our analysis with the following method. We first remove the three

techniques from Tahoe. The performance result of this case is labeled as “Preliminary
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Figure 4.6: Quantifying the performance contributions of the three optimization tech-
niques.

Tahoe”. We then compute performance difference between the preliminary Tahoe and

unmanaged case. Such performance difference is the performance contribution of the

preliminary Tahoe. We then add the three techniques one by one. In particular, we

apply (1), and then apply (2) to (1), and then apply (3) to (1)+(2). We measure

performance variation for each case. Such performance variation is the performance

contribution of each optimization technique. We normalize the performance contri-

butions of all cases by the performance difference between the full-featured Tahoe

and unmanaged case.

Figure 4.6 shows the results. We notice using helper thread for proactive data

migration particularly works well for CG and Strassen, because the two benchmarks

have many tasks with small data sizes. Those tasks cannot make best use of DRAM,

hence brings opportunities for proactive data migration. The technique of optimized

migration makes big contributions to FFT, because FFT has a relatively large num-

ber of page migration requests shown in Figure 4.13. The technique of optimized

scheduling makes limited contributions (comparing with other techniques), except in

the benchmarks FFT, Strassen, and BT. Those benchmarks often use recursive task

parallelism, thus have many tasks with the same parents, which provides opportuni-

ties for applying optimized scheduling.

Performance sensitivity analysis. We change NVM bandwidth and latency,

number of threads, number of nodes and DRAM size to study how Tahoe responses

with the various system configurations.

Figure 4.7 shows the results when NVM has 1/4, 1/8 and 1/16 DRAM band-

width. Tahoe brings larger performance gains (from 21% to 29%) as NVM bandwidth

decreases from 1/4 to 1/16 DRAM bandwidth. This result is especially pronounced
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in RandomAccess (not shown in Figure 4.7): The performance gain increases from

32% to 86% as the NVM bandwidth decreases from 1/4 to 1/8 DRAM bandwidth.

Figure 4.7: Tahoe performance (execution time) sensitivity to NVM bandwidth. The
performance is average performance of all benchmarks. Performance is normalized to that
of unmanaged HMS.

The performance results are slightly different when we increase NVM latency

from 4x to 16x DRAM latency (Figure 4.8). Tahoe has only 4% performance variance

when NVM latency increases. The biggest improvement (from 28% to 37%) happens

in CG (not shown in Figure 4.8).

When changing the number of threads, our machine can only offer 8 threads at

most because of Quartz emulation. To enable better performance study, we use the

Edison supercomputer at Lawrence Berkeley National Lab (LBNL). Each node of

Edison has two 12-core Intel Ivy Bridge processors (2.4 GHz) with 64GB DDR3 (two

NUMA nodes). On this platform, we leverage its NUMA architecture to emulate

NVM instead of using Quartz, because Quartz requires the user to have privilege

access to the test system, and we do not have such access on Edison. On the Edison

nodes, threads run on one processor using the processor’s local attached NUMA

node as DRAM and the remote NUMA node as NVM. The latency and bandwidth

difference between the remote and local NUMA nodes emulates the difference between

NVM and DRAM. The emulated NVM has 60% of DRAM bandwidth and 1.89x of

DRAM latency. Because of such NVM emulation, the Edison node can offer up to 12

threads.

Figure 4.9 shows the results when we change the number of threads (from 1 to 12

threads) on an Edison node. We only report average performance of all benchmarks,

because of limited paper space. Tahoe performs well consistently in all cases. In

particularly, FFT (not shown in Figure 4.9) has only 2% performance variance when
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Figure 4.8: Tahoe performance (execution time) sensitivity to NVM latency. The per-
formance is average performance of all benchmarks. Performance is normalized to that of
unmanaged HMS.

Figure 4.9: Tahoe performance (execution time) sensitivity to the number of threads on
a single Edison node. Performance is average performance of all benchmarks. Performance
is normalized to that of unmanaged HMS.

we change the number of threads. RandomAccess (not shown in Figure 4.9) has the

largest performance difference (only 6%).

Figure 4.10 shows the results when we use different number of nodes (up to 64

nodes). We perform strong scaling tests. We only use BT and SPECFEM3D, because

other benchmarks do not have MPI support. For each test, we use one MPI process

per node, and each MPI process uses either 4 or 8 threads. For BT, we use CLASS D

as input problem; For SPECFEM3D, we use NEX XI = 256 and NEX ETA = 128. As

the system scale becomes larger, the performance gain of Tahoe decreases from 10%

to 3% and from 16% to 4% for BT and SPECFEM3D, respectively (comparing with

the unmanaged case), because the memory footprint size per node becomes smaller

and more data objects can be placed into DRAM by the unmanaged case. Tahoe

performs well in all cases no matter how large the memory footprint size is.

Figure 4.11 shows the results when we change the DRAM size. Overall, Tahoe

brings performance benefit in all cases (comparing to the unmanaged case), but as the
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Figure 4.10: Tahoe performance (execution time) sensitivity to the number of nodes on
Edison. Performance is normalized to that of unmanaged HMS.

Figure 4.11: Tahoe performance (execution time) sensitivity to DRAM size. Performance
is average performance of all benchmarks. Performance is normalized to that of unmanaged
HMS.

Figure 4.12: Memory access breakdowns. The number of memory accesses is normalized
by that of the unmanaged cases.

DRAM size becomes bigger, the benefit decreases from 21% to 15%, because a larger

DRAM provides better opportunities to place data on DRAM for the unmanaged

case.

Memory utilization analysis. Figure 4.12 shows the number of main memory

accesses for DRAM and NVM, normalized by the numbers with the unmanaged cases.

Tahoe has larger numbers of DRAM memory accesses than other systems, and hence
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Figure 4.13: Comparing different systems in terms of number of page migrations per
second.

effectively utilizes DRAM space. This result is aligned with Figures 4.4 and 4.5, where

Tahoe performs consistently better than other systems.

Figure 4.13 shows number of page migrations per sec. The unmanaged and NVM-

only do not have page migration. X-mem does not have either, because it is not a

runtime solution. The page migration is more frequent in Tahoe than in Unimem,

because Tahoe and Unimem work on different data granularities (page vs. data

object). The finer-grained data migration as in Tahoe triggers more frequent data

migration and makes the best use of DRAM, which transforms to better performance.

4.5 Related Work

Data management on HMS. Software-based solutions are summarized as fol-

lows. Du et. al [82] develop an offline profiling tool to analyze memory accesses to

guide data placement. Lin et. al [81] introduce an OS service for asynchronous mem-

ory movement on HMS. Dulloor et. al [79] introduce a data placement runtime based

on classification of memory access patterns. Giardino et. al [80] rely on OS and ap-

plication co-scheduling data placement. Wu et.al [5] introduce MPI runtime for data

placement. Yu et. al [90] propose three bandwidth-aware memory placement poli-

cies. Perarnau et.al [111] study data migration performance with user-space memory

copy and Linux kernel-based memory migration. They demonstrate the importance

of choosing a good ratio of worker threads to migration threads for performance.

Different from the prior efforts, our work does not require offline profiling as

in [79, 82] nor programmer involvement to identify memory access patterns as in [80].

Our work also supports data migration for large data objects which is not fully sup-
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ported in [5]. Furthermore, our work does not require the modification of OS, which

is different from [81, 90]. We do not use user-space memory copy as in [111], because

that may involve extensive application modification to use new data addresses after

data copy.

Hardware-based solutions are summarized as follows. Yoon et al. [86] dynam-

ically determine data placement based on row buffer locality. Wang et al. [70] use

static analysis and memory controller to determine replacement on GPU. Wu et

al. [65] use numerical algorithms and hardware modification to decide data replace-

ment. Agarwal et al. [69] introduce a bandwidth-aware data placement on GPU.

The major drawback of those solutions is hardware modifications. Some work, such

as [84, 85, 70, 86], ignores application semantics and triggers data movement based

on temporal memory access patterns, which could cause unnecessary data movement.

Our work avoids hardware modification and leverage application semantics.

Performance optimization for task parallel programs. Papaefstathiou et

al. [112] modify hardware to prefetch task data and guide the replacement decision

in caches. Ni et al. [113] uses a runtime based on Charm++ to prefetch data into

fast memory. This work, however, cannot decide optimal data placement for multiple

ready tasks. Pan and Pai [114] introduce a runtime to instruct hardware to prioritize

data blocks with future reuse. This work needs application and hardware modifica-

tions. Li et al. [89] adopt machine learning to estimate scheduling performance for

task parallel programs. However, they cannot predict performance for various data

placement cases. Our work is different from the existing efforts, and we are the first

one to study performance optimization for task parallel programs on NVM-based

HMS.

4.6 Summary

Using runtime of a programming model to direct data placement on HMS is

promising. In this chapter, we introduce a runtime system for task parallel programs.

It leverages task metadata and representative tasks to collect memory access infor-

mation and make data migration decisions. It uses a hybrid performance model to

decide optimal data placement for multiple tasks. Our runtime system effectively

uses DRAM space for performance improvement.



Chapter 5

ArchTM: Architecture-Aware,

High Performance Transaction for

NVM

5.1 Overview

Crash consistency is a primary challenge in using NVM. With NVM, programs

can recover their persistent data on NVM even in the event of crashes. However,

such a recovery requires a guarantee that persistent data is in a consistent state, a

requirement referred as the crash consistency guarantee. Failure-atomic transactions

are a popular mechanism to ensure crash consistency. Extensive studies [20, 41, 42,

47, 49, 43, 44, 48, 45, 46, 50, 51, 52, 53] have proposed various transaction mechanisms

that generally employ logging-based (undo or redo logging) or Copy-on-Write (CoW)-

based designs.

Existing works optimize NVM transactions by reducing data copying [43, 115,

116, 117] or persistence overhead [30, 118, 119, 117, 120, 121]. They emulate NVM

based on DRAM with increased memory latency or reduced bandwidth, but miss

NVM architecture details. In this study, we focus on the implications of real NVM

architecture (i.e., Intel Optane PM) on transaction performance. Our performance

analysis on state-of-the-art NVM transaction systems identifies that the NVM micro-

architecture, such as internal buffers and data block size, has significant impacts on

transaction performance. The mismatch between the transaction implementation and

71
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NVM architecture can cause 3x-58x slowdown, compared to an architecture-aware

implementation.

Performance characterization of NVM architecture leads us to rethink the de-

sign of NVM transactions. Logging-based transactions have a double write problem

because of creating logs and updating data in-place. The excessive writes to NVM

mismatch with poor write performance on NVM. CoW-based transactions avoid this

problem, but suffers from performance overhead due to metadata updates, which

causes many small writes misaligned with NVM internal block size.

Therefore, high-performance NVM transactions call for new design principles

tailored to the characteristics of the emerging NVM architecture, which is distinctive

from conventional block devices and more than just a slower DRAM. We introduce

two design principles customized to NVM architecture.

• Avoid small (less than 256 bytes) writes to NVM. Small writes in NVM suf-

fer from write amplification because data in a small write must be aligned

with the internal write block size (256 bytes) in NVM, which wastes memory

bandwidth and delays transactions. Our characterization study reveals that

in state-of-the-art NVM transaction systems (one in PMDK [20], Romulus [46],

DUDETM [122], and an Oracle transaction system [48]), more than 78% of data

objects are smaller than 64 bytes, when the transaction systems perform write

operations on 512-byte persistent objects. The main source of those small data

objects comes from metadata for transaction runtime state, memory allocation

and object mapping.

• Encourage coalescable writes. Sequential write performs much faster than ran-

dom write on NVM (e.g., for 64-byte writes, sequential write is 3.7x faster than

random write). Multiple sequential writes can be coalesced in an internal buffer

of Optane, enabling high performance.

We follow the above principles in ArchTM. uses a CoW-like design to avoid the

double write problem in logging-based transactions. To avoid small writes, stores

metadata of memory allocator and data objects on DRAM to reduce frequent small

random writes to NVM. However, such a design suffers from a fundamental tradeoff

between performance and crash consistency. In particular, metadata on DRAM,
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although leading to high transaction performance can be lost when a crash happens,

leading to a problem of identifying crash consistency of data objects.

The above problem is caused by the fact that metadata is the only connection

between the transaction state and data objects for crash recovery. Such a connection

is not NVM-oriented. Removing it causes isolation between transaction state and

data objects. To address this challenge, ArchTM introduces a lightweight annotation

mechanism. This mechanism adds data object metadata (object ID and size) and

transaction ID into the data object, and adds transaction ID into the transaction

metadata (i.e., the transaction state variable). The transaction ID is persistent and

sets up an alternative connection between data objects and the transaction state.

Using the transaction ID, the data object ID and size, ArchTM can easily locate data

objects and identify their crash consistency after a crash.

To encourage coalescable writes, ArchTM makes best efforts to allow consecutive

memory allocation requests to get contiguous memory allocations. This strategy

is based on the observation that in a transaction, data objects that are allocated

consecutively are likely to be updated together. For example, in a key-value store

system, memory allocation requests for a key data object and a value data object

associated with the key often happen together. Writes to the key and value data

objects happen in sequential and continuous order. Hence, allocating the key and

value contiguously in the address space likely results in coalescable write.

However, to implement the above strategy, we must re-examine the traditional

wisdom for memory allocation. The existing memory allocators typically use multiple

free lists for each thread. Each free list supports allocation requests for specific sizes.

Such size-class-based memory allocation is used to reduce memory fragmentation.

However, it allocates noncontiguous memory blocks to consecutive memory allocation

requests if they are fulfilled by multiple free lists. Hence, there is a fundamental

tradeoff between allocation locality and memory fragmentation.

To break this tradeoff and encourage coalescable writes, ArchTM uses a single

free list and a lightweight online defragmentation mechanism. In particular, ArchTM

supports locality-aware data path using the single free list for allocation and uses a

recycle list to collect and merge freed memory blocks. For defragmentation, ArchTM

aggregates data objects in highly fragmented memory regions to create large and

contiguous memory blocks.
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By designing and implementing ArchTM, we make the following contributions:

• We reveal the performance characterization of realistic NVM hardware and pin-

point the performance problems in the representative NVM transactions. Such

problems are caused by the negligence of the characteristics of NVM architec-

ture in traditional NVM transaction designs.

• We identify two fundamental tradeoffs to enable high performance NVM trans-

actions. We introduce a new NVM transaction design, ArchTM, customized to

the NVM architecture and breaking the tradeoffs.

• ArchTM beats state-of-art NVM transaction systems PMDK, Romulus, DUDETM

and the Oracle system by 58x, 5x, 3x and 7x on average, using micro-benchmarks

and real-world workloads on NVM hardware.

5.2 Performance Characterization

In this section, we study the performance of NVM transactions and Optane DC

PM to gain insights for our design.

5.2.1 Transaction Performance Study

We study four representative NVM-based transaction systems: PMDK [20], Ro-

mulus [46], DUDETM [122], and one from Oracle [48]. PMDK uses undo-logging, Ro-

mulus and DUDETM use redo-logging, and the Oracle system (denoted as OCoW )

uses CoW. The specification of our Optane platform is in Section 5.5. We focus

on write operations because they are the most expensive transaction operation, and

writes to NVM are expensive. A write operation in a transaction needs to update

persistent object, log (if logging-based), and metadata. Figure 5.1a shows the latency

breakdown of a write operation in NVM transactions. We report the performance on

small (64-byte) and large (512-byte) persistent objects. The figure shows that most

time is spent on log updates or metadata updates.

We instrument the APIs used to persist data objects (e.g., pmemobj persist() in

PMDK) to study the performance of write operations. The APIs use the starting

address and size of the data objects as input. Figure 5.1b reports the distribution
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Figure 5.1: Performance characterization of write operations in NVM transactions.

of the persisted data size in transactions that perform write operations on 512-byte

persistent objects. The figure reveals that more than 78% of persisted objects are

smaller than 64 bytes, i.e., a lot of small writes on NVM. Furthermore, we study

write amplification, quantified as the ratio between write traffic in NVM measured by

performance counters and the number of bytes modified by transactions. Figure 5.1c

reports the write amplification in transactions that perform write operations on 64-

and 512-byte persistent objects. All systems exhibit write amplification, inflating

NVM write traffic by 1.8x - 27x.

Performance analysis. We find that the metadata updates are the primary

source of small writes. In general, transaction systems have four types of metadata:

metadata for transaction runtime, metadata for memory allocation, log metadata, and

metadata for persistent objects. Metadata for transaction runtime records transaction

status, e.g., COMMIT or ABORT, and transaction IDs. Metadata for memory allo-

cation has information about memory consumption. Log metadata has information

on logs (e.g., the indexing of log records), and is unique in logging-based transactions.

Metadata for persistent objects store pointers to the new or old copy of persistent

objects, and is unique in CoW-based transactions. By design, CoW-based systems

have more metadata updates than logging-based ones. For instance, OCoW has about

270% more metadata updates than the other three logging-based systems. For each

update, a CoW-based transaction must allocate a new data copy, remap pointers to

the data, and deallocate the old data copy. This process generates frequent small

writes to metadata for memory allocation and persistent objects.
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Figure 5.2: Sequential and random write bandwidth at different write sizes on Optane
PM and DRAM.

5.2.2 Performance Study of NVM Writes

We study the write performance on Optane DC PM using a microbenchmark

that performs random and sequential writes. Each write is followed by cache line

flushes to persist to Optane PM. Various write sizes, ranging from one to 11 cache

lines, are tested. Figure 5.2 reports the bandwidth of performing 100M writes using 24

threads on Optane PM and DRAM. We have the following observations and insights

for high-performance NVM transactions.

Figures 5.2a and 5.2b show that write bandwidth of Optane PM is significantly

lower than that of DRAM. On our system, write bandwidth to DRAM reaches

60 GB/s but only 13 GB/s to Optane PM. Furthermore, on Optane PM, the peak

write bandwidth is 13 GB/s, 3x lower than the peak read bandwidth. These results

are consistent with the existing work [12]. Hence, reducing write traffic on NVM

is critical for high-performance transactions. The logging-based transaction systems

need to write data twice to update a persistent object, which causes excessive write

traffic.

Figure 5.2a shows that small random writes on Optane PM perform worse than

sequential writes. When writing only 64 bytes (Figure 5.2a), random write merely

achieves 25% of the bandwidth of sequential write. This performance gap is caused

by the 256-byte Optane internal granularity and write amplification, and the gap re-

duces when the write size increases. The logging-based transactions update persistent

objects in-place. This could result in random writes, because persistent objects in a
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transaction can be randomly distributed on Optane PM. Using out-place updates, as

in CoW-based transactions, can enable sequential writes because the new copies of

persistent objects are manageable and can be laid out contiguously in Optane PM.

Figure 5.2a shows that the random writes on Optane PM have performance spikes

at write sizes that are a multiple of 256 bytes, e.g., four and eight cache lines. In

contrast, random writes on DRAM (Figure 5.2b) exhibits no such pattern. Such per-

formance on Optane PM is due to the effect of the write combining buffer. It buffers

and combines 64-bytes stores into a 256-byte internal store. Small simultaneous writes

to contiguous address space are more likely to be combined into one internal store

than small writes to arbitrary addresses. Therefore, increasing the probability of con-

current writes to contiguous address space can increase the opportunity to leverage

the combining buffer hardware to coalesce writes inside the Optane PM.

5.3 Design Principles and Major Techniques

Driven by the performance characterization and analysis of existing NVM trans-

actions and the real NVM hardware (i.e., Optane PM), we introduce two design

principles and five techniques in ArchTM for high-performance architecture-aware

transactions.

• Avoid small writes on NVM.

(1) Logless. ArchTM favors the CoW mechanism to reduce write traffic to

NVM.

(2) Minimize metadata modifications on NVM with guaranteed crash consis-

tency. ArchTM keeps transient metadata on DRAM to avoid frequent metadata

modifications on NVM. Also, ArchTM introduces an annotation mechanism to

connect the persistent transaction state with data objects. From the transac-

tion state of data objects, ArchTM can detect the consistency of data on NVM

and recover from a crash.

(3) Scalable persistent object referencing. ArchTM uses a scalable object lookup

table on DRAM to quickly locate the latest copies of persistent objects in con-

current transactions.
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• Encourage coalescable writes.

(4) Consecutive allocation requests get contiguous memory blocks. ArchTM

supports a locality-aware data path for small memory allocations to encourage

sequential writes in transactions.

(5) Avoid memory fragmentation. ArchTM employs a lightweight online mem-

ory defragmentation technique that examines memory usage by regions and

reduces fragmentation on NVM.

5.3.1 Logless

ArchTM employs a CoW-like mechanism to reduce write traffic to NVM. Upon

an update request, ArchTM creates a new copy of the persistent object and applies

updates to the new copy. The out-of-place update in CoW reduces the number of

NVM writes. When committing the new copy to NVM, consecutive writes into con-

tiguous memory addresses increase the possibility of writes coalesced at the combining

buffer. However, naively adopting CoW incurs excessive metadata updates on NVM

due to object remapping and allocation management (Section 5.2.1). We address this

challenge by maintaining metadata on DRAM.

5.3.2 Minimize Metadata Modification on NVM

ArchTM places the memory allocation metadata on DRAM. It does not record

memory allocation and reclamation into logs on NVM as in previous NVM transaction

systems [20, 47, 46, 21, 58]. Also, ArchTM avoids modifying the persistent object

metadata on NVM by using an object lookup table on DRAM. This lookup table is

used to locate the latest copy of a persistent object quickly. Existing CoW-based

implementations [48] must modify the persistent object metadata on NVM to update

the pointer to the object to the new copy (Figure 2.2c). With these metadata in

DRAM, ArchTM reduces small NVM writes and accelerates the lookup, but cannot

ensure crash consistency. ArchTM introduces an annotation mechanism to guarantee

crash consistency.

Annotation. ArchTM annotates a transaction by adding a transaction ID into

the transaction metadata (the transaction state variable). The embedded transaction
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ID is persisted immediately when the transaction state changes to start. ArchTM also

annotates a persistent object by adding the object information, i.e., object ID, object

size, and transaction ID, into the object header on NVM when the object is created.

During the recovery from a crash, ArchTM uses the object ID and size to identify

each persistent object on NVM. Then, ArchTM uses the annotated transaction ID

to identify the most recent copy of a persistent object, recycle the stale copies, and

discard uncommitted modifications.

5.3.3 Scalable Object Referencing

ArchTM uses an object lookup table to find the critical information, such as the

location of the latest copy of a persistent object. The table is indexed by persistent

object IDs. When a persistent object is allocated, the allocator thread gets an object

ID and populates the corresponding entry in the lookup table. Multiple threads can

reference persistent objects from the table concurrently and efficiently because DRAM

supports higher bandwidth than NVM.

The object lookup table is essential for high-performance transactions. Com-

pared to decentralized object referencing [52, 48], the object lookup table in ArchTM

resides on a contiguous DRAM space, which brings convenience for management (e.g.,

checkpointing) and migration. If the DRAM space is insufficient to store the whole

lookup table, the spilling part of the table is placed on NVM. Compared with gen-

eral concurrent index data structures, such as hash tables, our object lookup table is

easy to implement and has no synchronization overhead. The competition between

threads to get an entry from the lookup table cannot happen, because threads are as-

signed with disjoint sets of object IDs and hence update disjoint sets of table entries.

The object lookup table can find the object metadata in one step because it uses the

object ID as the index of the table, which differs from other indexes (e.g., hash table

and B-trees) that require additional calculations or queries to find object metadata.

5.3.4 Contiguous Memory Allocations

ArchTM customizes memory allocation and reclamation for transactional work-

loads on NVM to maximize the possibility of sequential writes. Small allocations are

the main optimization focus because sequential writes benefit small objects more than
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large objects (See Figure 5.2a). In ArchTM, there are two data paths for persistent

object allocation and reclamation: (1) a regular data path for large allocations and

reclamations, similar to existing allocators like JEMalloc [54]; and (2) a locality-aware

data path for small allocations. The latter optimizes through a single free list and

global recycling procedure.

A single free list is used in ArchTM for allocating objects of various sizes.

Existing approaches [20, 54, 55, 56, 57, 58, 59] use multiple free lists, each for a dif-

ferent allocation size. Multiple free lists could cause consecutive allocation requests

of different sizes to go to different free lists. Consequently, those requests get non-

contiguous memory allocations, and writing to them leads to nonsequential writes to

NVM. Instead, using a single list of freed segments in sorted order would encourage

consecutive requests to get sequential allocations. To maximize concurrency, ArchTM

assigns each thread with a dedicated portion from the global free list (Section 5.4.1).

Recycle and merge memory blocks globally. Current approaches [20, 54,

56, 57, 58, 59] return freed memory blocks to thread-local free lists directly. This

procedure avoids synchronization on managing a global free list but may harm the

locality of freed memory blocks. Free memory blocks in a free list may be noncontigu-

ous so that consecutive allocation requests get noncontiguous allocations. ArchTM

runs a helper thread to collect and merge freed blocks from threads. These freed

blocks are sorted and merged into a global recycle list before returning them to the

global free list. The global recycling procedure does not happen in the critical path

and does not affect the efficiency of memory deallocation.

5.3.5 Reduce Memory Fragmentation

Using a single free list for various allocation sizes could result in memory frag-

mentation. ArchTM uses a 64-byte size class in the memory allocator. An allocation

smaller than the size class gets rounded up. We choose this size class to avoid false

sharing in cache lines.

ArchTM introduces an online defragmentation mechanism to reduce memory

fragmentation. The mechanism monitors the memory usage of the persistent object

pool in the background to identify underutilized memory regions. During the memory

allocation, this mechanism dynamically aggregates persistent objects distributed in
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Figure 5.3: Major data structures in ArchTM

the underutilized memory regions to improve memory usage. The online defragmen-

tation mechanism is a user-space solution that can be enabled or disabled. It requires

no modifications to operating systems as required by existing solutions [123]. Also,

the user-space solution is more flexible than offline static solutions [124] and can react

to changes in the application during execution.

5.4 ArchTM Implementation

We describe our implementation based on Section 5.3.

5.4.1 Data Structures

Persistent Data Structures on NVM. ArchTM maintains a persistent mem-

ory pool partitioned into metadata and user data areas. As depicted in Figure 5.3, the

metadata area stores a root object, a list of transaction state variables, a checkpoint

field (CHKP), and a checkpoint-diff field (CHKP-diff ).

The list of transaction state variables records the state of each ongoing transac-

tion. Each variable encodes transaction state and ID, and commit ID. We use the

transaction start timestamp as transaction ID, and the transaction commit times-

tamp as commit ID. They are global timestamps captured at the beginning and end

of a transaction. ArchTM uses hardware clock (rdtscp in x86 architectures [125, 126])
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and prevents the constant skew of the hardware clock among processors by the ORDO

primitive [126] to ensure correct ordering of transactions. The transaction state indi-

cates the progress of a transaction, e.g., BEGIN, COMMITTED, END or ABORT.

CHKP stores a persistent checkpoint of the object lookup table to speedup re-

covery (Section 5.4.6). CHKP-diff records the list of memory blocks (named memory

segments ) pre-allocated to each thread (Section 5.4.4-Allocation). CHKP-diff is use-

ful to track working objects before the next checkpoint. It is implemented as an array

of elements containing three fields: ID of ongoing transactions for which the segment

is fetched, the segment start address and size.

The user data area stores persistent objects. Each object has an object header

and data. The header contains object ID and size, and transaction ID. The user

data area is divided into a regular data path area for large object allocations and a

locality-aware data path area for small object allocations.

Transient Data Structures on DRAM ArchTM maintains an object lookup

table and a hash set per transaction. The object lookup table is a one-dimensional ar-

ray mapping a persistent object ID to a persistent object on NVM. Each NVM object

has an entry in the table. An entry has four fields, i.e., a pointer to the latest copy

(new), a pointer to the old copy (old), a variable (named writer) storing the pointer

of the transaction state variable of the ongoing transaction that modifies the latest

copy, and a write lock associated with the writer to coordinate parallel transactions.

The hash set (named write-set) is used to collect the IDs of all persistent objects

modified by a thread in an active transaction. Before committing a transaction, all

objects in the hash set must be persisted.

ArchTM manages metadata for two allocators on DRAM. The first allocator

allocates an entry in the object lookup table when a persistent object is created.

This allocator maintains a list of free IDs for persistent objects (named ID list) per

core. A persistent object ID is the index of an entry in the object lookup table.

When the allocator allocates an entry, it gets an object ID from the ID list. When a

persistent object is freed, its object ID is returned to the ID list. We reuse IDs for

persistent objects to avoid the explosion of IDs. New IDs are created only when the

ID list is empty.

The second allocator allocates persistent objects. It reuses the metadata struc-

tures in JEMalloc [54] for the regular data path but adds significant extensions to op-
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Algorithm 1 Start, read, and write operations.

1: function apt tx begin
2: volatile TxID = globaltimestamp()
3: TxState.atomic store(TxID,BEGIN)
4: Fence()
5: end function
6:
7: function apt tx read(TxState, objID)
8: obj = objLookupTable[objID]
9: if obj.new == NULL then return obj.old

10: end if
11: if obj.writer → TxID == TxState.TxID then return obj.new
12: end if
13: if obj.writer → State == COMMITTEDobj.writer → CommitID <= TxState.TxID then return

obj.new
14: end if
15: return obj.old
16: end function
17:
18: function apt tx write(TxState, objID)
19: obj ← objLookupTable[objID]
20: if obj.new! = NULLobj.writer → TxID == TxState.TxID then
21: return obj.new
22: end if
23: if lock(obj.writer) then
24: obj.writer = &TxState
25: obj.new = alloc(obj.old)
26: else abort and retry( )
27: end if
28: obj.new = duplicate(obj.old)
29: obj.new.header.txID = TxState.TxID
30: # append the object to write-set
31: write set.insert(objID)
32: return obj.new
33: end function

timize small writes to NVM (Section 5.3). For the locality-aware data path, ArchTM

maintains a global free list and a global recycle list. The global free list contains mem-

ory blocks available for allocations. To ensure sequentially when multiple threads ac-

cess the global free list, ArchTM uses a write lock on the global free list. To mitigate

contention on the global free list, each thread maintains a thread-private allocation

list, which is a portion from the global free list. Only when a thread exhausts its allo-

cation list will the thread access the global free list to get a new portion. Therefore,

synchronization on the global free list is infrequent. The global recycle list collects

memory blocks freed by all threads. The allocator manages a deallocation list per

thread to collect deallocated memory blocks. Blocks from these thread-local deal-

location lists are gathered, sorted, and merged into the global recycle list. Memory

management is described in detail in Section 5.4.4.
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Algorithm 2 Commit and post-commit operations.

1: function apt tx on commit(TxState)
2: if EMPTY(write set) then return
3: end if # read-only tx
4: for each obj ∈ write set do flush(obj.new)
5: end for Fence() # persist all modified objects
6: volatile CommitID = globaltimestamp()
7: TxState.atomic store(COMMITTED,CommitID)
8: Fence()
9: apt tx post commit(TxState)

10: end function
11:
12: function apt tx post commit(TxState)
13: for each tx ∈ Ongoing TXs do
14: if tx.TxID < TxState.CommitID then wait for(tx)
15: end if
16: end for
17: while obj ← write set.pop() do
18: free(obj.old) # append to the reclaim list
19: obj.old = obj.new
20: obj.new = NULL
21: obj.writer = NULL
22: unlock(obj.writer)
23: end while
24: TxState.atomic store(END, INF )
25: Fence()
26: end function

5.4.2 Background Threads

Background threads are helper threads transparent to the application. ArchTM

uses two background threads to manage the NVM pool at runtime – the garbage

collection (GC) manager and the fragmentation manager. The GC manager recycles

freed persistent objects. The fragmentation manager examines memory usage by

regions and aggregates memory blocks for defragmentation (see Section 5.4.4).

5.4.3 Transaction Operations

ArchTM supports five core operations to begin, read, write, commit, and post-

commit in a transaction. ArchTM provides snapshot isolation [127, 128] similar to

existing work [53, 129, 130, 131, 132, 133] and industrial production database sys-

tems [134, 135, 136, 137, 138, 139]. We illustrate the operations in Algorithms 1 and

2.

APT TX BEGIN starts a transaction and assigns a unique ID (TxID) based

on the global timestamp (Alg. 1 Line 2) to the transaction. A transaction state

variable (TxState) is created and stored in the metadata area on NVM. TxState is

a combination of the TxID, state and transaction commit ID (CommitID). At the
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transaction beginning, ArchTM adds TxID and the state BEGIN into TxState by

an atomic write.

APT TX READ returns a pointer to a copy of the persistent object with (objID).

If the object is not being updated by any transactions (Alg. 1 Line 9), the pointer

to the old copy is returned. If the object is being updated by the current transac-

tion (Alg. 1 Line 11) or a transaction committed before the current transaction starts

(Alg. 1 Line 13), the pointer to the new copy is returned. Otherwise, ArchTM returns

the pointer of the old copy. The whole process is lock-free.

APT TX WRITE returns a pointer to the persistent object objID ready for

update. If the persistent object already has a new copy and the most recent update

to the copy is performed by the current transaction, the pointer to the new copy is

returned (Alg. 1 Lines 20-22). If the persistent object does not have a new copy,

the application thread allocates a one, acquires the write lock of the writer of the

object (Alg. 1 Line 23), duplicates the old copy to the new one, and then updates

the new copy. The application thread also inserts the object ID into the write-set. If

the application thread fails to obtain the write lock of the object, APT TX WRITE

aborts and retries in a new transaction.

APT TX ON COMMIT commits a transaction. If the transaction is read-only,

no persistent operations are performed. Otherwise, ArchTM persists the modified

objects recorded in the write-set to NVM (Alg. 2 Lines 4-5). After that, ArchTM

gets a global timestamp as CommitID and updates the state to COMMITTED with

CommitID in the transaction state variable by an atomic write.

APT TX POST COMMIT cleans up a committed transaction. First, it checks

whether there is any ongoing transaction that starts before the current transaction

is fully committed (Alg. 2 Lines 13-16). It reclaims the old copy (i.e., putting the

old copy in the thread-private deallocation list) after the earlier transactions are

fully committed. This ensures that the old copy of the persistent object is no longer

required in any ongoing transaction. The above process is similar to [140]. Afterwards,

ArchTM sets the new copy as the old copy and sets the new copy as NULL. Finally, it

resets and unlocks the writer of modified objects. ArchTM also updates and persists

the transaction state to END and CommitID to INF .
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5.4.4 Memory Management for Transactions

ArchTM uses a customized persistent object allocator. Depending on the size of

an allocation request, ArchTM chooses the locality-aware data path for small alloca-

tions and use the regular data path for the others. We describe the locality-aware

data path in this Section.

Allocation. When a thread attempts to allocate a persistent object, ArchTM

searches through the thread’s private allocation list to locate the first memory block

larger than the requested size. If no block is found, ArchTM fetches freed memory

blocks from the global free list to refill the allocation list. Each fetch takes a large

and fixed-size memory segment to avoid frequent contention on the global free list.

The fetching history is stored and persisted in CHKP-diff. Each fetching event in

CHKP-diff contains the IDs of ongoing transactions, where the segment is fetched

from, the segment start address, and the segment size. If ArchTM cannot find free

memory blocks from the global free list, ArchTM replenishes memory blocks from the

global recycle list to the global free list.

Deallocation (garbage collection). When a thread deallocates a persistent

object, the object is ready for GC because no other transactions are accessing the

object (Alg. 2 Lines 13-16). The deallocated object is added to the thread’s private

deallocation list. In the background, the GC manager periodically collects freed

objects from threads to the global recycle list, during which freed blocks are zeroed.

Synchronization between application threads and the GC manager is rare because an

application thread only updates the head while the GC manager only updates the

tail of a deallocation list. The global recycle list is sorted to speed up search during

allocation and fragmentation ratio computation during defragmentation. Sorting is

inexpensive because when freed memory blocks are added to the global recycle list,

they are already mostly sorted.

Defragmentation. ArchTM implements an online defragmentation mechanism

to improve the memory usage of the global recycle list. The mechanism works at the

granularity of memory regions (4KB). The defragmentation manager monitors the

fragmentation ratio (defined as the ratio of used memory to 4KB) of each memory

region in the global recycle list. A memory region with a fragmentation ratio greater

than f (f is 50% in our evaluation) is deemed underutilized. ArchTM aggregates
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persistent objects in underutilized regions and migrates them to a newly allocated

memory region. For migration, the defragmentation manager internally creates a

“mock” write transaction to ensure the atomicity of data migration and correctness.

At the end of the “mock” write transaction, the migrated objects in the original

location will be reclaimed through the deallocation process.

5.4.5 Recovery Management

ArchTM follows a two-step recovery process to resume the program from a crash.

1) Detect uncommitted transactions : This is implemented by checking the state

of each transaction state variable on NVM. If a state is neither COMMITTED nor

END, ArchTM inserts the transaction ID of the uncommitted transaction into a

temporary buffer (named uncommittedTxIDs).

2) Rebuild object lookup table: ArchTM creates a new object lookup table on

DRAM (described in Section 5.4.1) and loads the object information to the new

table. The loading process is similar to processing write operations, with the difference

that the object information is retrieved from NVM instead of the user request. In

particular, ArchTM scans the user data area on NVM to find persistent objects and

inserts their location information (i.e., pointers to the objects on NVM) into the

lookup table. ArchTM puts the location information of each persistent object in the

lookup table based on the object ID which indicates where the location information

is in the original lookup table. To identify an object on NVM, ArchTM relies on the

object header annotated in each persistent object. The header contains the object ID

and object size, which is used to isolate persistent objects from each other on NVM.

ArchTM must eliminate object copies in uncommitted transactions. If the trans-

action ID of an object copy is found in uncommittedTxIDs, the object copy is dis-

carded, and its memory space is reclaimed.

Since ArchTM does not invalidate the memory blocks of a freed object copy until

the memory manager recycles them to the global recycle list, a persistent object may

have multiple copies in the NVM pool. Therefore, ArchTM must identify the latest

copy and discards the others. When ArchTM reads a persistent object from NVM

and finds that the object already exists in the object lookup table, ArchTM compares

the transaction IDs annotated in these two copies and only keeps the latest one. The
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mapping information in the object lookup table is then updated, and the old copy is

reclaimed.

Crash consistency is ensured because (1) all modifications in uncommitted

transactions are discarded, (2) all modifications in a committed transaction are per-

sisted, and (3) only the latest committed copy of a persistent object is retained. All

uncommitted transactions are captured in the transaction state variables stored in

NVM, and all object copies with a transaction ID in these uncommitted transactions

are discarded during recovery. A transaction is only marked committed after all mod-

ified persistent objects in this transaction (collected in write-set, (Alg. 1 Line 31))

are persisted (Alg. 2 Lines 4-5). ArchTM identifies the latest committed copy of an

object by transaction IDs, which by design guarantees that a transaction ID is no

earlier than the commit ID of another transaction if they update the same object

(Alg. 1 Lines 23-27).

5.4.6 Reduction of Recovery Time

The recovery process may take a long time if a large number of persistent objects

exist on NVM because ArchTM must scan the entire user data area to locate objects

and rebuild the object lookup table. The recovery can take as long as tens of minutes

on NVM with TBs of capacity.

We reduce the recovery time by incorporating an incremental checkpoint tech-

nique into ArchTM. In particular, ArchTM periodically copies the modifications of

the object lookup table since the last checkpoint to NVM, such that ArchTM builds

a checkpoint of the object lookup table on NVM. When restarting from a crash,

ArchTM uses the checkpoint to resume the object lookup table, instead of building

it from scratch.

ArchTM uses the following method to detect modifications of the lookup table

since the last checkpoint. After taking an incremental checkpoint, ArchTM tem-

porarily blocks all transactions, sets all pages of the object lookup table on DRAM

as read-only by enabling write protection, and then resumes the transactions. Any

following writes to those pages will trigger a write-protection page fault, indicating

that the page is modified. ArchTM records the faulted pages for the next incremen-

tal checkpoint. After a page fault is triggered, the page is not write-protected, and
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there will be no more page faults. At the time of incremental checkpoint, only those

modified pages are copied from DRAM to NVM.

Using a persistent checkpoint of the object lookup table for recovery is not enough

to reduce recovery time, because after a crash, the updates on object metadata since

the last checkpoint are lost. To solve this problem, the persistent object allocator

in ArchTM records the fetching history of memory segments in CHCP-diff (Sec-

tion 5.4.4-Allocation), and those NVM segments contain the modifications of per-

sistent objects since the last checkpoint. ArchTM scans those modified segments to

find missing updates as Section 5.4.5. Note that page information collected from the

above page fault mechanism cannot be used to locate missing segments, because it is

on DRAM and gets lost after crash. The page information is only used to implement

incremental checkpoint. Overall, ArchTM uses a combination of the checkpoint of

the object lookup table and the fetching history of memory segments in CHCP-diff

to quickly restore the object lookup table.

5.5 Evaluation

We use an Intel Purley platform that has 2nd Gen Intel R○ Xeon R○ Scalable pro-

cessor, 32KB L1 caches, 1MB L2 caches, and a shared 35MB L3 cache. The memory

subsystem consists of 12 DRAM DIMMs and NVDIMMs, providing a total of 192 GB

DRAM and 1.5 TB NVM. We compare ArchTM with four state-of-the-art transaction

systems: PMDK [20], Romulus [46], DudeTM [122], and OCoW [48]. PMDK uses

libpmemobj v1.7. Libpmemobj does not support isolation, so we use a readers-writer

lock to protect a transaction from concurrent accesses. Romulus uses RomulusLR

for the best performance, and DudeTM uses the default persistent scheduler. We set

the checkpoint frequency in ArchTM to 30 seconds, and the size of the pre-allocated

NVM segment to two GB. The granularity of memory regions for defragmentation

(Section 5.4.4) is 4KB.

5.5.1 Micro-benchmarks

Hash tables and red-black trees are two important concurrent data structures

widely used in database workloads [141, 142, 143, 144]. We evaluate hash tables and
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Figure 5.4: Performance and scalability of hash table.

red-black trees with three update rates (5%, 50%, and 80%) similar to [46, 52, 53,

50, 145]. Each transaction operation randomly accesses a key-value pair to read or

update. Each key-value pair uses an 8-byte key and 16-byte value. Figure 5.4 and 5.5

present the performance and scalability results.

Hash table. The experiments use a hash table of 10K buckets, each as a single

linked list. The hash table is initialized with 100K key-value pairs. ArchTM outper-

forms the other systems by 10x, 12x and 22x on average at 80%, 50%, and 5% update

rates respectively (Figure 5.4). ArchTM demonstrates high scalability as the concur-

rency in applications increases to the maximum. In contrast, Romulus stops scaling,

and DUDETM and OCoW have performance degradation when the application uses

more than 16 threads.

In write-intensive workloads (Figures 5.4a and 5.4b), the sequential write tech-

nique contributes significant improvement at low application concurrency. When the

number of application threads continues increasing, contention on the Optane me-

dia outweighs the write amplification. Other optimizations in ArchTM, such as the

transient metadata on DRAM, start coping with this new bottleneck, and sustain

performance scaling. In a read-intensive workload (Figure 5.4c), ArchTM achieves

nearly linear speedup through scalable object referencing on DRAM and lock-free

read operations.

Romulus scales well when the concurrency is low (i.e., 1-8 threads) for write-

intensive workloads. At high concurrency, its single-threaded write operations become

a performance bottleneck. DUDETM cannot consume volatile logs from DRAM to
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Figure 5.5: Performance and scalability of red-black trees.

NVM in time, causing long delays. OCoW has frequent metadata updates on NVM for

object remapping, allocation, reclamation, thereby reducing the overall throughput.

PMDK shows the worst performance because it uses read-write locks extensively for

logging and memory allocation.

Red-black tree. In this experiment, the red-black trees are initialized with

one million key-value pairs. ArchTM outperforms the other systems by 7x-13x on

average. It exhibits near-linear scalability as the number of threads increases for the

read-intensive workloads (Figure 5.5c).

We notice that all three workloads have performance fluctuation at about 28

application threads, likely caused by the high contention on the Optane media. This

contention point arrives later than that in the hash table, because each update in

the red-black tree needs to search longer than in the hash table, reducing its write

intensity.

PMDK, OCoW, Romulus, and DUDETM have lower scalability in the red-black

tree than in the hash table. In write-intensive workloads (Figures 5.5a and 5.5b),

the performance in these systems either fails to scale or even degrade when the con-

currency increases. They suffer from the expensive synchronization [52, 53]. The

lock-free operations and scalable object referencing in ArchTM avoid this contention

and enables high performance at high concurrency.
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5.5.2 Real World Workloads

We run TPC-C [146] and TATP [147]) against PMEMKV [148]. PMEMKV is a

in-memory key-value store developed by Intel. In this experiment, we use its cmap

storage engine.

TPC-C. We run the new-order transaction test, where each application thread

works on its corresponding warehouse and executes new order transactions. This

workload has a 100% update rate. On average, each transaction inserts more than

ten new objects into different tables and modifies more than ten existing objects.

ArchTM significantly outperforms others by 10x, 9x, and 5x on average (Figure 5.6a-

top). PMDK is more than 100 times slower than others when more than 12 threads

are used. The performance of ArchTM scales up quickly to 24 application threads and

then slightly declines due to write contention on the Optane media. DUDETM only

scales up to eight threads because its performance is limited by centralized persistent

logs. Once the background thread cannot flush the log buffer to NVM in time, the

application threads are delayed.

TATP. TATP is widely used for online transaction processing. ArchTM out-

performs DUDETM, Romulus, OCoW and PMDK by 2x, 6x, 5x, and 13x, respec-

tively (Figure 5.6a-bottom). For evaluation, we implement three read-only and three

read-write transactions similar to [53, 122]. The transactions in TATP are less write-

intensive than the TPC-C test. Therefore, ArchTM achieves performance scaling up

to the maximum application threads. Since TATP has less write traffic than TPC-C,

DUDETM sustains performance at 16 threads and beyond.

We quantify the contribution from our design techniques to performance im-

provement. We separate techniques into logless, minimized metadata modification on

NVM (MMDPM ), and contiguous memory allocation (CMAlloction). Figure 5.6b-top

compares the performance using different techniques when running TPC-C with 24

application threads. In this test, We use DUDETM as the baseline, and its through-

put is 37 Ktps. Minimized metadata modification on NVM contributes the most

(66%) performance improvement. The logless design and the contiguous memory al-

location technique contribute 18% and 16% performance improvement, respectively.

Using the same test configuration (Figure 5.6b-bottom), we quantify the write ampli-

fication in the five systems. The write amplification in ArchTM is only 2.03. ArchTM
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Figure 5.6: Real-world workloads with PMEMKV.

has 3x to 8x lower write amplification than the other systems.

5.5.3 Performance Analysis

Online defragmentation. We evaluate the online defragmentation technique

by quantifying the system throughput and memory fragmentation rate in TPC-C and

TATP against PMEMKV. Each test uses 24 application threads. We compare the

performance of ArchTM with and without online defragmentation (denoted as w.df

and w.o.df in Figure 5.7a), with four other NVM systems.

The two ArchTM-based systems outperform other systems by 12x and 3x on

average on TPC-C and TATP, respectively. The online defragmentation in ArchTM

reduces memory fragmentation from 58% to 69% with only 3% overhead on system

throughput on TPC-C. TATP is less write-intensive than TPC-C, and therefore no

noticeable performance loss is observed from the online defragmentation. Figure 5.7b

reports the memory fragmentation rate of all systems. The memory fragmentation

rate of the ArchTM with online defragmentation is 4%, 9%, 3%, and 5% lower than

PMDK, OCOW, Romulus, and DUDETM respectively. ArchTM with online de-



94

0

4

8

12

0

80

160

240

TPC-C TATP

Th
ro

u
gh

p
u

t 
(M

tp
s)

Th
ro

u
gh

p
u

t 
(K

tp
s)

PMDK OCoW
Romulus DUDETM
ArchTM(w. df) ArchTM(w.o df)

b
et

te
r

b
et

te
r

(a) Impact of online defragme-
nation

Th
ro

u
gh

p
u

t 
(M

tp
s)

ArchTM(w.o df)

0%

25%

50%

75%

100%

TPC-C TATP

Fr
ag

m
en

ta
ti

o
n

 r
at

e

PMDK OCoW
Romulus DUDETM
ArchTM(w. df) ArchTM(w.o df)

b
et

te
r

(b) Memory fragmentation

0

2.5

5

7.5

10

0

60

120

180

240

TPC-C TATP

Th
ro

u
gh

p
u

t 
(M

tp
s)

Th
ro

u
gh

p
u

t 
(K

tp
s)

CMAllocation

PMDK-allocator

JEMalloc 
Makalu

b
et

te
r

b
et

te
r

(c) Improvement from CMAl-
loction.

Figure 5.7: Evaluate the effectiveness of online defragmenation and contiguous memory
allocation.

fragmentation is 14% lower that without it, demonstrating the necessity of using our

online defragmentation.

Contiguous memory Allocation. We evaluate the effectiveness of contiguous

memory allocation (CMAllocation) in ArchTM. For comparison, we port ArchTM to

use three state-of-the-art allocators, i.e., JEMalloc [54], PM allocator in PMDK [20],

and Makalu [59]). Figure 5.7c reports the system throughput when ArchTM is

equipped with the different allocators in TPC-C and TATP against PMEMKV.

The CMAllocation-based system achieves 9% and 6% higher throughput than

JEMalloc-based system on TPC-C and TATP, respectively. It also offers 20% and 18%

higher throughout than PMDK- and Maruku-based systems. The customized locality-

aware data path enables CMAllocation to encourage sequential writes on NVM for

better performance. In the PMDK and Maruku allocators, the poor scalability and

frequent metadata updates become the bottleneck.

Checkpoint and Recovery Time. The checkpoint frequency trades off system

throughput with recovery time. We vary the frequency from one second to 60 seconds

in TPC-C against PMEMKV. We compare the system throughput with and without

checkpoints, and find that checkpoints impose 11% overhead at the highest checkpoint

frequency (i.e., one second). At a moderate checkpoint frequency, e.g., 30 seconds,

the throughput loss diminishes to less than 1%.

We trigger a random crash after the program runs two minutes and then time the

recovery. As expected, the recovery time increases linearly as the checkpoint frequency
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decreases. For the 30 GB workload set of TPC-C, ArchTM recovers the system in

eight seconds at a checkpoint interval of 30 seconds and the object lookup table

consumes 5.6 GB DRAM. For the same experiment, the other four systems recover

faster than ArchTM. The overhead in recovery in ArchTM comes from scanning the

NVM data area because ArchTM needs to identify updates since the last checkpoint

before the crash to rebuild the object lookup table. ArchTM trades a slightly longer

recovery time for better runtime performance based on the assumption that crashes

in the production environment are infrequent [32].

Transaction abort rate. Transaction aborts occur when a transaction tries to

get the write lock of the writer of a persistent object but fails. We measure the abort

rate. With 24 threads running highly write-intensive workloads with 80% update

rate using the hash table and red-black tree, the abort rate is 1% and 2% on average,

respectively. With 24 threads running the TPC-C and TATP, the abort rate is 2%

and 2% on average, respectively. In general, the abort rate is very low.

5.6 Related Work

Undo-logging based NVM transactions. Intel’s PMDK [20] (libpmemobj)

and NV-Heap [21] use undo-logging to log persistent objects on NVM for crash recov-

ery. Atlas [41] also uses undo-logging. It provides compiler and runtime supports to

instrument writes to PM. JUSTDO logging [149] implements an Atlas-like log man-

agement system designed for machines with persistent caches. It stores the program

counter and resumes the execution of critical sections from the same point where a

crash happens. iDO [150] optimizes JUSTDO logging by avoiding logging each persis-

tent store. Specifically, iDO divides the critical section into several idempotent code

regions and only logs live program states at the beginning of each idempotent region

within the critical section.

Redo-logging based NVM transactions. NVthreads [24] supports redo-

logging for multi-threaded C/C++ programs. It logs dirty pages tracked by the OS

page protection between critical sections. DUDETM [122] uses shadow DRAM to

decouple transaction updates and redo-logging. It leverages a background thread to

copy and persist the modifications in redo logs to hide the logging overhead. Romu-

lus [46] and Pisces [53] use variants of redo-logging. They both keep two copies of the
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data and replicate updates from one copy to the other to ensure crash consistency.

Romulus uses a volatile log to record memory locations modified during a transaction

to improve the performance of data copy. Pisces targets read-most workloads and

explores snapshot isolation to ensure lock-free read operations.

CoW-based NVM transactions. CDDS [116], BPFS [117], and multi-version

concurrency control based transactions (e.g., TimeStone [52]) create a new copy and

apply updates to the new copy to avoid writing log records.

The above logging-based and CoW-based works optimize NVM transactions

by reducing data replication or persistence overhead. In contrast, ArchTM intro-

duces architecture-awareness to adapt the transaction system to leverage the micro-

architecture (i.e., internal buffer and data size block) on the NVM hardware. With

the architecture-awareness, ArchTM improves the efficiency of PM writes by avoiding

small writes and encouraging coalescable writes.

5.7 Summary

Enabling high-performance transactions is critical for leveraging persistent mem-

ory for data-intensive applications. We reveal performance problems in common

transaction implementations on real NVM hardware and highlight the importance

of considering NVM architecture characteristics for transaction performance. In this

chapter, we present ArchTM, an architecture-aware NVM transaction system. On av-

erage, ArchTM outperforms the state-of-the-art NVM transaction systems (PMDK,

Romulus, DudeTM, and the Oracle system) by 58x, 5x, 3x, and 7x respectively.



Chapter 6

Ribbon: High Performance Cache

Line Flushing for NVM

6.1 Overview

NVM technologies, such as Intel Optane DC PM [12, 16], provide large capacity,

high performance, and a convenient programming interface. Data access to NVM can

use load/store instructions as if to DRAM. However, the volatile cache hierarchy

on the processor imposes challenges on data persistency and program correctness. A

store instruction may only update data in the cache, not persisting data in NVM

immediately. When data is written from the cache back to memory, the order of

writes may differ from the program order due to cache replacement policies.

Data in NVM needs to be in consistency state to be able to recover the pro-

gram after a system or application crash. Therefore, cache line flushing (CLF) is a

fundamental building block for programming NVM. Most NVM-aware systems and

applications [31, 51, 24, 151, 152, 153, 154, 155, 156, 157, 158, 26, 28, 29, 159] rely on

CLF and memory fences to ensure that data is persisted in the correct order so that

the state in NVM is recoverable.

CLF can be an expensive operation. CLF triggers cache-line-sized write to the

memory controller, even if the cache line is only partially dirty. Also, CLF needs

persist barriers, e.g., the memory fence, to ensure that flushed data has reached the

persistent domain before any subsequent stores to the same cache line could happen.

Our preliminary evaluation shows that CLF can reduce system throughput by 62%

97
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for database applications like Redis. Hence, CLF creates a performance bottleneck

on NVM and may significantly reduce the performance benefits promised by NVM.

Most of the existing techniques focus on optimizing persistency semantics, other

than the CLF mechanism [30, 32, 149, 28, 160, 22, 161, 34]. Skipping CLF [32, 34]

or relaxing constraints on persist barriers [30, 149, 160, 28, 22, 161], these techniques

improve application performance by reducing CLF. Each technique may have a dif-

ferent fault model and recovery mechanism that is designed for specific application

characteristics. Still, these techniques use CLF to implement their persistency se-

mantics.

In this chapter, we focus on the CLF mechanism, instead of persistency seman-

tics. Therefore, our work applies to general NVM-aware applications. We reveal the

characteristics of CLF on the real NVM hardware (i.e., Intel Optane PM). Based

on our performance study, we introduce a runtime system called Ribbon that decou-

ples CLF from the application and applies model-guided optimizations for the best

performance. Applying Ribbon on a NVM-aware application does not change its per-

sistency semantics, i.e., fault models and recovery mechanisms, so that the program

correctness is retained.

Our performance study of CLF on the real NVM hardware reveals three op-

timization insights. First, concurrent CLF can create resource contention on the

hardware buffer inside NVM devices and memory controllers, which causes perfor-

mance loss. We define CLF concurrency as the number of threads performing CLF

simultaneously. Second, the status of a cache line can impact the performance of

CLF considerably. For instance, flushing a clean cache line could be 3.3 times faster

than flushing a dirty cache line. Third, many flushed cache lines have low dirtiness,

wasting memory bandwidth and decreasing the efficiency of CLF. The dirtiness of a

cache line is quantified as the fraction of dirty bytes in the cache line. Since a cache

line is the finest granularity to enforce data persistency, the whole cache line has to

be flushed, even if only one byte is dirty. Our evaluation of Redis with YCSB (Load

and A-F) and TPC-C workloads shows that the average dirtiness of flushed cache

lines is only 47%.

We introduce three techniques in Ribbon to improve the CLF mechanism. First,

Ribbon controls the intensity of CLF by thread-level concurrency throttling. Opti-

mal concurrency control needs to address two challenges. How to avoid the impact of
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concurrency control on application computation? How to determine the appropriate

CLF concurrency? Simply changing thread-level parallelism can reduce thread-level

parallelism available for the application. Our solution is to decouple CLF from the

application. We instrument and collect CLF in the application and manage a group

of flushing threads to perform CLF. This design supports flexible concurrency con-

trol without impacting application threads. Furthermore, we introduce an adaptive

algorithm to select the concurrency level of these flushing threads. The algorithm

achieves a balance between mitigating contention on NVM devices and increasing

CLF parallelism for utilizing memory bandwidth.

We propose a proactive CLF technique to increase the possibility of flushing clean

cache lines. Flushing a clean cache line is significantly faster than flushing dirty one.

Proactive CLF may change the status of a cache line from dirty to clean before the

application starts flushing this cache line. Ribbon leverages hardware performance

counters in the sampling mode to opportunistically detect modified cache lines with

negligible performance overhead.

Ribbon coalesces cache lines of low dirtiness to reduce the number of cache lines

to flush. We find that unaligned cache-line flushing and uncoordinated cache-line

flushing are the main reasons for low dirtiness in flushed cache lines. These problems

stem from the fact that existing memory allocation mechanisms are designed for

DRAM. Ribbon introduces a customized memory allocation mechanism to coalesce

cache-line flushing and improve efficiency.

We summarize our contributions as follows.

• We characterize the performance of the CLF mechanism in NVM-aware work-

loads on the real NVM hardware;

• We propose decoupled concurrency control, proactive CLF, and cache line coa-

lescing to improve performance of the CLF mechanism;

• We design and implement Ribbon, a runtime to optimize NVM-aware applica-

tions automatically;

• We evaluate Ribbon on a variety of NVM-aware workloads and achieve up to

49.8% improvement (14.8% on average) in the overall application performance.
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Figure 6.1: The overhead of CLF in common NVM-aware applications.

6.2 Performance Analysis of CLF

We use the Intel Optane PM hardware (specifications in Table 6.3) for the per-

formance analysis.

Overhead of CLF in NVM-aware applications. We quantify the cost of

CLF in seven representative NVM-aware applications. These applications are in-

memeory databases (Intel’s PMEMKV [148] and Redis [162]), NVM-optimized in-

dex data structures (Fast&Fair [154] and Level-Hashing [155]), and multi-threaded

C/C++ applications (Streamcluster, Canneal and Dedup) from Parsec [163] bench-

mark suite. These applications rely on various persistency semantics and fault models

to enable crash consistency, but all use the CLF mechanism. Table 6.4 summarizes

the applications. For Parsec applications, we use the native input problem and report

execution time. For other workloads, we run dbench to perform randomfill operations

and report system throughput. Figure 6.1 shows the CLF overhead in each bench-

mark in the hatched bars.

The results highlight the impact of CLF on these NVM-aware workloads. For

all workloads, CLF significantly affects the performance by 24%-62%. Redis shows

the highest performance loss because relies on frequent CLF to persist data objects

and logs to implement database transactions. The high overhead in NVM-aware

workloads motivates our work to optimize the performance of the CLF mechanism.

The performance impact of CLF concurrency. We increase the number

of threads to perform CLF and measure the performance of PMEMKV and Stream-

cluster on DRAM and Optane, respectively. Table 6.4 in Section 6.5.1 provides more

details of the workloads. For PMEMKV, the key size is 20 bytes, and the value size

is 256 bytes (Figure 6.2a) and 1 KB (Figure 6.2b). Figure 6.2c reports Streamcluster
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Figure 6.2: Performance at increased numbers of threads performing CLF.

performance.

On Optane PM (Figure 6.2), all workloads reach their peak performance at a

small number of threads, and then the performance starts degrading. In contrast,

performance on DRAM sustains scaling as the concurrency increases. Optane shows

lower scalability than DRAM because the contention at the internal buffer of Optane

and the WPQ in iMC. The increasing performance gap between DRAM and Optane

at a large number of threads reveals that high frequency of CLF exacerbates the

scaling limitation.

We identify two optimization directions to improve CLF performance. First, the

adaption in CLF concurrency should be bi-directional. At a low concurrency level,

there is no sufficient writeback traffic to exploit memory bandwidth so that NVM

is underutilized. In this scenario, increasing the concurrency to flush cache lines

becomes essential. At a high concurrency level, NVM cannot cope with high CLF

rate at the application level, and concurrency throttling becomes critical. Given the

above two optimization directions, the challenges remain in how to efficiently and

timely detect whether NVM is under- or over-utilized? Furthermore, what is the

appropriate concurrency level?

Second, different workload characteristics, such as the value size in key-value

stores and query intensity, could lead to different concurrency peak. For instance, in

PMEMKV, using the 1 KB value size in Figure 6.2b reaches the peak point using

12 threads, while using the 256-byte value size in Figure 6.2a reaches the peak point

using 16 threads. The different concurrency peaks necessitate a dynamic solution

that enables flexible controlling of CLF concurrency.
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The performance impact of cache lines status. We develop micro-benchmarks

to persist data objects of various sizes. Also, we control the locality and dirtiness of

flushed cache blocks of those data objects, in order to measure the cost of flushing

dirty (resident) cache lines, non-resident cache lines, and clean resident cache lines.

Figure 6.3 presents the measured overhead of these three CLF cases.

At a small data size, e.g., 64-byte, flushing a clean cache line resident in the

cache hierarchy is significantly cheaper (3.3x) than flushing a dirty cache line. Such

low overhead is because of reduced overhead in cache coherence directory lookup, and

also because of the elimination of writeback traffic. As a comparison, when flushing

a cache line that has been evicted from the cache hierarchy, i.e., non-resident, the

cost is much higher than flushing a resident cache line. The difference between a

dirty flush and a cache-miss flush indicates the cost of looking up the whole cache

coherence directory in our machine is high and overweights the benefit of eliminated

writeback.

The low cost of flushing a clean resident cache line motivates us to design a

proactive flushing mechanism to ‘transform’ dirty or non-resident flushing into clean-

hit flushing ahead of time. The key idea is to complete the transformation before the

latency of CLF is exposed to the critical path.

Dirtiness of flushed cache lines. We quantify the average dirtiness of flushed

cache lines, denoted as Rdb, as the ratio between the modified bytes and the cache

line size. Therefore, a workload with Rdb cache line dirtiness would waste (1 − Rdb)

bandwidth from the cache hierarchy to the memory subsystem. Moreover, write

amplification inside the NVM hardware buffer may further increase the number of
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Table 6.1: Average dirtiness of flushed cache lines.

Workloads
YCSB

TPC-C
Load A B C D E F

Dirtiness 0.43 0.55 0.56 0 0.51 0.51 0.47 0.32

clean bytes written back to NVM. For instance, if only one byte in four consecutive

cache lines is updated, 256 bytes will be eventually written to Optane PM, because

the internal transactions have a granularity of 256 bytes. Table 6.1 shows the results

for running YCSB [164] and TPC-C [146] workloads against Redis. In general, the

dirtiness is less than 0.6 in all workloads, indicating more than half memory bandwidth

is wasted for writing back clean data to NVM. Thus, improving cache line dirtiness

could benefit CLF performance on such NVM hardware.

6.3 Ribbon Design

We design Ribbon to accelerate the CLF mechanism in NVM–aware applications

without impacting program correctness and crash recovery. Ribbon decouples the

concurrency control of CLF from the application. It also proactively transforms cache

lines to clean status. It uses CLF coalescing, an application-specific optimization for

workloads that exhibit low dirtiness in flushed cache lines.

6.3.1 Decoupled Concurrency Control of CLF

Ribbon decouples CLF from the application and adjusts the level of CLF con-

currency (the number of threads performing CLF) adaptively. Ribbon throttles CLF

concurrency if contention on NVM- devices is detected. Conversely, it ramps up CLF

concurrency when NVM- bandwidth is underutilized. We illustrate the workflow in

Figure 6.4.

CLF Decoupling The decoupling design in Ribbon creates a thin layer (the

gray box in Figure 6.4) between the application and NVM. CLF and fence instructions

from the application, such as clwb, clflushopt, clflush, and sfence, are collected

and queued in this layer. Ribbon uses a group of flushing threads to execute these

intercepted instructions, respecting the order between flush and fence instructions

as in the program order. Therefore, the sequence of flush and fence is unchanged,
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Figure 6.4: Ribbon decouples CLF from the application to its control thread. By detecting
contention or underutilization on NVM, Ribbon changes the number of flushing threads to
adapt the CLF concurrency.

and consistent semantics is preserved. Furthermore, Ribbon can adapt the CLF

concurrency by changing the number of flushing threads.

Ribbon uses FIFO queues as a coordination mechanism between the application

and flushing threads. Each application thread has a private FIFO queue, while one

flushing thread may work with multiple FIFO queues. CLFs from an application

thread are enqueued at the head of its queue. At the queue tail, a flushing thread

dequeues and executes CLFs. Ribbon uses a circular buffer to implement the queue,

and only exchanges two integers, i.e., the head and tail indexes, among threads to

have a lock-less queue implementation. Synchronization between the threads is rare

because, on each queue, the application thread only updates the head and the flushing

threads only update the tail.

Assume there are N application threads and M flushing threads. Each flushing

thread handles at most bN/Mc + 1 application threads (queues). Ribbon throttles

the CLF concurrency by reducing M to be M < N . Conversely, increasing M to

M > N would increase the CLF concurrency. Separately, a control thread detects
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performance bottlenecks in NVM and adjusts the number of flushing threads.

Ribbon ensures that the flushing threads execute CLF and fence instructions in

the same order as in the application thread. Each memory fence instruction in the

application thread acts as the deadline for the flushing threads to finish all CLFs

issued before it. Therefore, CLFs after a fence cannot be executed until CLFs before

the fence are cleared from the queue. When an application thread issues a memory

fence instruction, but there are pending CLF requests in the queue, Ribbon blocks the

application thread. This interaction is essential for throttling the CLF concurrency

and ensuring program correctness, i.e., reducing the draining rate of CLFs from the

queue, without overflowing the queue.

Determining the concurrency level of CLF. A control thread monitors the

traffic to NVM and adjusts the concurrency level of CLF (NUMthr) at runtime.

The control thread monitors hardware counters in Optane PM at interval T to

track the write bandwidth to NVDIMMs (BWNVM). System evaluation shows that

when the concurrency level increases, the bandwidth to Optane PM first increases to

a peak and then starts decreasing [12, 15, 16]. BWNVM reflects the speed at which the

memory controller drains write requests from the WPQ. When memory contention

occurs in the WPQ, reducing the concurrency level would improve BWNVM . We

call the concurrency levels below the one that reaches the peak performance to be

the scaling region and above to be the contention region. The control thread sam-

ples BWNVM at four concurrency points to estimate NUMthr for achieving the peak

BWNVM .

The control thread first samples the bandwidth at the concurrency level P1 which

is equal to the number of flushing threads that saturate bandwidth on hardware. P1

is architecture-dependent and on the Optane PM, system evaluation reveals that the

peak write bandwidth is achieved at four threads [12]. Therefore, 1–P1 threads in

NVM-aware workloads have to be in the scaling region. The control thread records

the bandwidth to Optane PM at P1 to be BWNVM
1 . Then, it chooses a sample point

at the number of cores (P4) and measures BWNVM
4 . On our NVM hardware, P4 is

equal to 24. Next, samples are taken at P2 = P1 + 1 and P3 = P4 − 1, namely

BWNVM
2 and BWNVM

3 . If BWNVM
2 is higher than BWNVM

1 , and BWNVM
4 is also

higher than BWNVM
3 , it means that even the maximum parallelism has not reached

the contention region. Thus, the control thread selects NUMthr to be P4. If BWNVM
2
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is higher than BWNVM
1 , but BWNVM

4 is lower than BWNVM
3 , it means that the peak

is between P2 and P3. The control thread sets NUMthr to be the intersection between

the two lines connecting P1 to P2 and P3 to P4, respectively. Finally, if BWNVM
2 is

lower than BWNVM
1 , and BWNVM

4 is also lower than BWNVM
3 , the control thread

selects NUMthr to be P1. In practice, the number of flushing threads is subject

to the number of idle threads, and contemporary many-core platforms can provide

abundant thread-level parallelism. If there are no enough idle threads to support

NUMthr flushing threads, Ribbon automatically disables concurrency control and

regresses to use application threads to perform CLF.

We sweep all levels of CLF concurrency in all evaluated workloads and find that

this algorithm can always determine the optimal concurrency level. Figure ?? reports

all workloads (except one phase in Streamcluster) exhibit a similar trend, i.e., reaching

a peak at a low concurrency level and then decreasing performance as concurrency

increases. The dashed line and the intersection illustrate the optimal concurrency

level for PMEMKV. Streamcluster contains two phases of BWNVM . The first phase

follows the scaling trend of other applications in Figure 6.5. In the second phase

(shown in Figure 6.6), Streamcluster does not enter the contention as its bandwidth

continues increasing. The control thread determines NUMthr to be the maximum

available concurrency.

The control thread repeats the above procedure of determining concurrency level

of CLF, if the variation of BWNVM is higher than a threshold, indicating there is a

change in execution phases of the application and there is a need to adjust concurrency

level. Based on our study, the variation threshold should be set between 20% and 30%

of BWNVM for best performance. If the threshold is too low (e.g., less than 20%),

Ribbon triggers concurrency throttling frequently, which causes performance loss. If

the threshold is too high (e.g., more than 30%), Ribbon cannot timely capture the
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is 24.

change of execution phases, which loses opportunities for performance improvement.

We use 20% in Ribbon; We study the sensitivity of application performance to this

parameter in Section 6.5.3.

The time interval T to track BWNVM has impact on performance. On the

one hand, if T is too large, infrequent monitoring may fail to capture bandwidth

saturation. On the other hand, if T is too small, runtime overhead is large, thereby

amortizing the performance benefit of concurrency control. We set T to one second

in Ribbon to strike a balance between monitoring effectiveness and cost. We study

the sensitivity of application performance to this parameter in Section 6.5.3.

6.3.2 Proactive Cache Line Flushing

Ribbon proactively flushes cache lines to transform cache lines to clean state.

The proactive CLF increases the chance of flushing a clean cache line in the critical

path of the application, which has lower latency than flushing a dirty cache line. We

present the workflow in Figure 6.7.

Ribbon leverages the precise address sampling capability in hardware perfor-

mance counters, e.g., Precise Event-Based Sampling (PEBS) from Intel processor or

Instruction-based Sampling (IBS) from AMD processor, to collect the virtual mem-

ory addresses of store instructions. If a cache line is found to be updated recently,

Ribbon uses a thread to proactively issue a flush (the thread is named the proactive

thread). Later on, when the application thread flushes the cache line, it is likely to be

in clean status. Note that the cache block may have been evicted by hardware before
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Figure 6.7: Proactive cache line flushing to improve performance.

the proactive thread flushes it. However, a redundant flush by the proactive thread

has no impact on program correctness. This approach increases the probability of

clean cache lines flushed by the application, which shortens the latency on the critical

path.

The proactive CLF can slightly increase write traffic (see Section 6.5.3). For in-

stance, if a cache block is written multiple times followed by one CLF in the program,

using the proactive CLF may generate more than one CLF. To avoid the negative

impact of extra write traffic due to the proactive CLF, Ribbon disables it once CLF

concurrency is reduced because of reaching bandwidth bottleneck; The proactive CLF

is re-enabled if CLF concurrency is increased.

Ribbon separates the proactive thread and flushing threads as two independent

groups. The design is synchronization-free between the proactive thread and flushing

threads. The design does not change which cache lines should be flushed. It also

ensures that the consistency semantics in the program retains because no CLF is

skipped due to the proactive CLF.
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6.3.3 Coalescing Cache Line Flushing

We propose cache line coalescing as an application-specific optimization for work-

loads that exhibit low dirtiness in flushed cache lines. An Application is suitable for

this optimization if multiple CLFs in the application meet two requirement: First,

the multiple CLFs occur in proximity in time; Second, the flushed data objects are

coalescable to fewer cache blocks. The first requirement ensures crash consistency

after CLF coalescing. CLF coalescing delays those to-be-coalesced CLFs that happen

early in the bundle of CLFs from being coalesced. However, if all CLFs in the bun-

dle happen sequentially with no other non-coalescing CLFs occurring between these

to-be-coalesced CLFs in the application, delaying the to-be-coalesced CLFs has no

impact on crash consistency. The second requirement is the necessary condition to

have potential performance benefits.

Listing 6.1 shows an example from Redis. Lines 8 and 12 use two CLFs for

persisting newVal and newKey, respectively. Coalescing these CLFs will delay the

first CLF. Between these two CLFs, there are no other CLF. Therefore, the delay of

the first CLF still maintains execution correctness after a restart, i.e., the two CLFs

either both succeed or fail, which is consistent with the original execution. After

the coalescing, the situation that the first CLF succeeds but the second one fails is

impossible, guaranteeing the consistency.

After examining NVM-aware applications in Table 6.4, we find that in-memory

databases, such as PMEMKV and Redis, and customized NVM data indexes, such

as Fast&Fair (B+-tree) and Level-Hashing, are prone to the low dirtiness. Parallel

computing codes, such as streamcluster, caneal, and dedup from Pasec, often do not

have the low dirtiness. Furthermore, we find unaligned CLF and uncoordinated

CLF are the main reasons for low dirtiness in flushed cache lines.

The unaligned CLF happens when a persistent data object is unaligned with

cache lines. For example, a persistent data object is 100 bytes. Ideally, the object

should use two cache blocks of 64 bytes. However, the object may be unaligned at the

memory allocation and ended up occupying three cache blocks. Once the object is

updated, three cache blocks, i.e., 192 bytes, have to be flushed, increasing the number

of CLF by 50%. Uncoordinated CLFs happen when multiple associated data objects

are allocated into separate cache blocks. Here, data objects are associated if they are
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Listing 6.1: An example of CLF coalescing

1 #d e f i n e KEY LEN 24
2 #d e f i n e VALUE LEN 100
3 /∗The o r i g i n a l code without c o a l e s c i n g ∗/
4 void setGenericCommand ( c l i e n t ∗c , char ∗key , char ∗ va l . . . ) { . . .
5 TX BEGIN( s e r v e r .NVM− poo l ) {
6 char ∗ newVal = alloc mem (VALUE LEN) ;
7 dupStringObjectNVM−(newVal , va l ) ;
8 f l u s h ( newVal , VALUE LEN) ;
9 mm sfence ( ) ;

10 char ∗ newKey = alloc mem (KEY LEN) ;
11 setKeyNVM−(c−>db , key , newkey , newVal ) ;
12 f l u s h ( newkey , KEY LEN) ;
13 mm sfence ( ) ;
14 } TX ONABORT { . . . } TX END . . . }
15

16 /∗The code with c o a l e s c i n g ∗/
17 void setGenericCommand coalescing ( c l i e n t ∗c , char ∗key , char ∗ va l . . . )

{ . . .
18 TX BEGIN( s e r v e r .NVM− poo l ) {
19 char ∗ mem = alloc mem (VALUE LEN + KEY LEN) ;
20 char ∗ newVal = get mem (0) ;
21 dupStringObjectNVM−(newVal , va l ) ;
22 char ∗ newKey = get mem (VALUE LEN) ;
23 setKeyNVM−(c−>db , key , newKey , newVal ) ;
24 f l u s h (mem, VALUE LEN + KEY LEN) ;
25 mm sfence ( ) ;
26 } TX ONABORT { . . . } TX END . . . }

always updated together. Therefore, coalescing them into the same cache blocks will

reduce the number of CLFs.

Implementing cache line coalescing requires replacing memory allocation and

combining cache line flushes and memory fences. This transformation could be done

automatically by the compiler. In practice, we find that automatic conversion is chal-

lenging because even the same application logic can have different implementations in

different applications. Without application knowledge, automatic transformation is

error-prone. Therefore, we provide a simple interface and leverage the programmer’s

application knowledge in implementation.

The remainder of the section uses Redis as an example. We use a NVM–aware

version of Redis, i.e., Redis-libpmemobj [162]. As a key-value store system, Redis

provides fast access to key-value pairs. Each key-value pair includes a unique key ID

and their data (value). For each key-value pair, the key and value objects are allocated

separately on different cache blocks. Figure 6.8 gives a case where the value object
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Figure 6.8: Uncoordinated cache-line flushing in the two-level hash table in Redis.

in a key-value pair is a complex data structure. This case comes from the secondary

indexing in Redis. In this case, Redis updates the key (i.e., F n in Figure 6.8, which

is the secondary-level key) and value (i.e., V n in Figure 6.8) together. Coalescing F n

and V n objects into a fewer contiguous cache blocks reduces the number of CLFs.

To coalesce CLFs for Redis, we introduce a new memory allocation mechanism.

The old implementation in Redis-libpmemobj uses the memory allocation API from

PMDK’s libpmemobj library, which does not consider semantics correlation between

memory allocations (i.e., memory allocations for a pair of key and value). In the

new implementation, we introduce a customized memory allocation API that takes

an argument indicating whether the memory allocation is for a key or a value object.

In the original implementation of Redis, the memory allocation for a value object

happens before the memory allocation for the corresponding key object. Hence, if

the memory allocation is for a value object, in our implementation of Redis, the

memory allocation not only allocates memory for the value, but also for the key.

The key and value objects are co-located into continuous cache blocks, which enables

CLF coalescing. If the memory allocation is for a key object, no memory allocation

happens, but the previously allocated memory for the key object is returned. Also,

the new implementation attempts to avoid unaligned CLF.

6.3.4 Impact of Ribbon on Program Correctness

NVM-aware applications optimized with Ribbon maintain their program correct-

ness because their fault models and recovery mechanisms remain unchanged. Ribbon

does not eliminate any cache flush or fence instructions, nor changes their order in

the original program. Thus, the original consistency semantics in these programs are
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Table 6.2: Ribbon APIs

API name Description
int ribbon start(int numAppT,

Initialize the runtime system and resource (e.g., flushing threads and FIFO queues)
int eleFQueue)

int ribbon flush(void* addr,
Put CLF requests into fluhsing queues

size t len)
void* ribbon alloc(size t len,

Memory allocation for coalescing CLF
int type)

int ribbon stop() Terminate runtime and release resources
int ribbon fence() Ensure all pending CLF requests are flushed

int ribbon free(void* addr) Free a memory allocation

preserved even in the presence of crashes. The advantage of Ribbon is to reduce the

latency of these CLF instructions on the critical path by improving the bandwidth

to NVM or increasing the probability of a clean cache line. Although the proactive

CLF may introduce additional cache flushes, they do not occur on the critical path.

Also, changing the state of cache lines has no impact on the fault model in these

NVM-aware applications because cache line eviction and replacement is hardware-

managed and outside the application control. Coalescing multiple cache lines into

one does not eliminate the flush and fence instructions in the program. However, it

can reduce write amplification so that these instructions could complete at reduced

latency. When a crash occurs, each program will be restored to a consistent state by

employing its original recovery mechanism, e.g., undo/redo logging.

6.4 Implementation

Programming APIs. Ribbon is implemented as a user-level library to provide

CLF performance optimization. Ribbon provides a small set of APIs and is designed

to minimize the porting efforts in existing NVM-aware applications and libraries, such

as Intel PMDK [19], Mnemosyne [77], and NVthreads [24]. Table 6.2 summarizes main

APIs.

ribbon start() initializes the flushing threads, control thread and proactive CLF

thread. This routine creates a pool of flushing threads and FIFO queues, and ini-

tializes performance counters. This routine is called only once before main execution

phase starts. ribbon stop() frees all runtime resources created in ribbon start(). This

routine is called only once before the end of the main program. ribbon flush() and

ribbon fence are used to intercept cache flush and memory fence calls in the pro-
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Table 6.3: Experiment Platform Specifications

Processor 2nd Gen Intel R○ Xeon R○ Scalable processor
Cores 2.4 GHz (3.9 GHz Turbo frequency) × 24 cores (48 HT)

L1-icache private, 32 KB, 8-way set associative, write-back
L1-dcache private, 32 KB, 8-way set associative, write-back
L2-cache private, 1MB, 16-way set associative, write-back
L3-Cache shared, 35.75 MB, 11-way set associative, non-inclusive write-back
DRAM 16-GB DDR4 DIMM x 6 per socket

PM 128-GB Optane DC NVDIMM x 6 per socket
Interconnect Intel R○ UPI at 10.4 GT/s, 10.4GT/s, and 9.6 GT/s

gram. ribbon flush() places a CLF request at the head of the private FIFO queue of

the issuing thread. ribbon fence() checks if all pending requests in the FIFO queue

have drained. If not, Ribbon blocks the application thread. ribbon alloc() and rib-

bon free() are used to replace the memory allocation and free APIs in the pmemobj

library in Redis. The two APIs are used to allocate and free memory from/to NVM

for coalescing CLF.

Using the above APIs to replace CLF and memory fence can be done automat-

ically by a compiler. To enable CLF coalescing in Redis, we make modifications

manually. The statistics of code modification given by git diff is: 10 files changed,

293 insertions(+), 64 deletions(-).

System optimization. Ribbon includes several optimization techniques to en-

able high performance. We use FIFO queues to coordinate between the application

thread and flushing threads. When the number of flushing threads is more than the

number of application threads, multiple flushing threads fetch CLF requests from

one FIFO queue, which raise contention. To avoid the contention, we dedicate one

flushing thread to fetch CLF requests from the queue and then assigns them to other

flushing threads. Our implementation uses the most recent clwb instruction to flush

cache blocks.

6.5 Evaluation

In this section, we evaluate the performance of Ribbon.
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Table 6.4: A summary of evaluated workloads

Application Program Type NVM Access Layer
PMEMKV Database Library/PMDK(undo&redo)

Redis Database Library/PMDK(undo&redo)
Fast&Fair (B+-tree) NVM-aware index Native (add custom assembly instructions)

Level-Hashing NVM-aware index Native (add custom assembly instructions)
Streamcluster Lock-based parallel code Library/NVthreads (redo)

Canneal Lock-based parallel code Library/NVthreads (redo)
Dedup Lock-based parallel code Library/NVthreads (redo)

6.5.1 Methodology

Experiment platform. We evaluate Ribbon on the Intel Optane persistent

memory. Table 6.3 describes the configuration of the testbed. The system consists

of two sockets, each with two integrated memory controllers (iMCs) and six memory

channels. Each DRAM DIMM has 16 GB capacity while a NVDIMM has 128 GB

capacity. In total, the system has 192 GB DRAM, and 1.5 TB Intel Optane DC

persistent memory. We use one socket for performance study to eliminate NUMA

effects. The persistent domain starts from iMC, i.e., a memory fence only returns

after the flushed data has reached iMC.

Applications with various NVM access interfaces. We select seven repre-

sentative PM-aware workloads from diverse domains, including in-memory database

(PMEMKV [148] and Redis [162]), NVM-aware index data structures (Fast&Fair [154]

and Level-Hashing [155]) and C++ parallel computing applications (Streamcluster,

Canneal, and Dedup from Parsec benchmark suite [163]). For PMEMKV, we use its

cmap storage engine.

These applications also use different interfaces to access NVM, such as high-

level NVM-aware libraries and native direct interaction. Table 6.4 summarizes the

application characteristics and NVM access interfaces for each workload. PMEMKV

and Redis use libpmemobj from Intel PMDK [19] library to access and persist data.

libpmemobj is a logging-based transaction system, which implements undo logging

to protect user data and redo logging to protect metadata. The Parsec applications

guarantee data consistency by the NVthreads library [24]. NVthreads supports a

redo-logging for multi-threaded C/C++ programs. The two NVM-aware index data

structures use custom assembly instructions to flush data from the cache to NVM, and

add fences to ensure the order between these flushes and other application accesses
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Figure 6.9: Overall performance (App threads = 4).

+7.2%

+11.8%

+24.8%

.0M

.6M

1.2M

1.8M

256 B 1 KB 4 KB

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc + pclf)

b
et

te
r

(a) PMEMKV.

+3.6% +7.7% +8.2%

0K

16K

32K

48K

256 B 1 KB 4 KB

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc + pclf)

b
et

te
r

(b) Redis.

+16.1%

+22.7%

+25.1%

0K

300K

600K

900K

256 B 1 KB 4 KB

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc + pclf)

b
et

te
r

(c) Fast&Fair.

+49.8%
+42.7%

+28.9%

.0M

.5M

1.0M

1.5M

256 B 1 KB 4 KB

Th
ro

u
gh

o
u

t 
(o

p
s/

se
c)

baseline
w. (cc +pclf)

b
et

te
r

(d) Level-
Hashing.

+16.5%

+17.9%

+19.9%

0

250

500

750

Streamcluster Canneal Dedup

Ti
m

e 
(s

ec
o

n
d

s)

baseline
w. (cc+pclf)

b
et

te
r

(e) Parsec.

Figure 6.10: Overall performance (App threads = 24).

to the data.

6.5.2 Overall Performance

We evaluate each workload at a low and high thread-level parallelism (using 4

and 24 application threads respectively). For Redis, we cannot change the number of

threads to run it, because it is a single-thread server; To evaluate Redis, we change

the number of client threads (using 4 and 24). PMEMKV, Redis, Fast&Fair, and

Level-Hashing run the dbench benchmark to execute one hundred million randomfill

operations. The key size is 20 bytes, and three value sizes (256 bytes, 1 KB, and 4

KB) are tested. Streamcluster, Canneal, and Dedup use the Native input problem

in [24].

Ribbon demonstrates its generality in these NVM-aware frameworks that employ

different fault models, recovery mechanisms, and interfaces to access NVM. Ribbon

achieves performance improvement in all seven workloads at different application

concurrency, without changing any CLF policy. Figures 6.9 and 6.10 present the

performance of Ribbon (w. cc+pclf ) in comparison to the original implementation
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Figure 6.11: A breakdown of performance improvement from the concurrency control and
proactive CLF (App threads = 4).
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Figure 6.12: A breakdown of performance improvement from the concurrency control and
proactive CLF (App threads = 24).

(baseline). At four application threads, Ribbon increases the concurrency of CLF and

achieves up to 17.6% improvement (9.3% on average). In contrast, at 24 application

threads, Ribbon detects memory contention and improves the performance by up to

49.8% (20.2% on average).

Ribbon brings performance benefits to all tested workloads. Among them, Rib-

bon delivers more performance benefits to those that use large value sizes (1 KB and

4 KB in our evaluation) and high application threads concurrency (24 application

threads in our evaluation). These cases can result in memory contention or lack of

CLF parallelism, which provides more opportunity to Ribbon.

We analyze the effectiveness of each optimization technique by breaking down

their contribution to performance improvement. In particular, we apply the concur-

rency control first (w. cc) and measure performance improvement. Then, on top

of it we apply the proactive CLF (w. pclf ) and measure performance improvement.

Figures 6.11 and 6.12 presents the breakdown with four and 24 application threads.
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Table 6.5: Sensitivity study on bandwidth variance threshold and monitor interval (App
threads = 24).

BW Variance Threshold Improvement
10% 7.4%
20% 16.5%
30% 17.3%
50% 14.6%

Interval (sec) Improvement
0.1 9.7%
1 16.5%
5 13.8%
10 11.3%

We find that the concurrency control and proactive CLF contribute compara-

bly to the performance improvement at a low number of application threads (Fig-

ures 6.11). At a large number of application threads, most performance improve-

ment attribute to the concurrency control technique (Figure 6.12). The difference

is because the contention on NVM devices increases when CLFs are issued by more

threads, which compete in inserting flushed data to WPQ (the start of the persistent

domain). Therefore, CLF tends to create a performance bottleneck at a large num-

ber of application threads, which is addressed by the concurrency control. Note that

Redis also benefits substantially from the proactive CLF even at the high number of

client threads because it is a single-threaded server, and CLF contention is not its

bottleneck.

6.5.3 Sensitivity Evaluation

We use Streamcluster with Native input problem for sensitivity study because

this workload has execution phases with various bandwidth consumption, imposing

challenges on concurrency control and proactive CLF.

Sensitivity on bandwidth variance threshold. We use four thresholds for

study. Table 6.5-left shows the results and the tradeoff between low and high threshold

values. 20%-30% leads to the largest improvement (Ribbon uses 20%).

Sensitivity on monitor interval T . We use four intervals for study. Ta-

ble 6.5-right shows the improvement achieved at various interval values. The highest
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Table 6.6: Sensitivity study on proactive CLF

#app threads 1 2 4 8 12 16 17-24
Improvement 5.4% 6.6% 7.5% 6.3% 4% 2.1% 0

Normalized BW cost 6.9% 6.3% 5.6% 7.2% 8.4% 8.9% 0

improvement is achieved at one second. (Ribbon uses one second for T ).

Sensitivity on proactive CLF. We evaluate how the proactive CLF responses

given various bandwidth consumption of the application. Ribbon should avoid the

negative impact of the proactive CLF on memory bandwidth. To evaluate the proac-

tive CLF itself, we disable the concurrency control, but integrate the algorithm of de-

termining concurrency level into the proactive CLF to detect bandwidth contention.

When the concurrency level needs to be reduced according to the algorithm, we do

not change concurrency but disable the proactive CLF. We sweep the number of

application threads from one to 24. We report the bandwidth consumption of the

proactive CLF normalized to the total bandwidth consumption in Table 6.6. We

report application performance normalized to that without the proactive CLF.

The proactive CLF improves the performance by 2.1%-7.5% when the number

of applications increases from one to 16. In these cases, the proactive CLF takes a

small portion (5.6%-8.9%) of the total bandwidth consumption. When the application

uses more than 16 application threads, the proactive CLF is disabled because of the

detection of bandwidth contention. As a result, there is no performance improvement.

6.5.4 Heavily Loaded System Evaluation

We evaluate Ribbon on a heavily loaded machine to understand the impact of

Ribbon on application performance. In this evaluation, we co-run three different

application combinations. For each combination, we run two applications, each using

24 application threads. PMEMKV, Level-Hashing, and Fast&Fair run dbench to

execute one hundred million randomfill operations and use 256 bytes as the value size.

Streamcluster and Canneal use the native input problem. We report the experimental

results in Figure 6.13.

We observe that all workloads can benefit from Ribbon significantly. Compared

with the system without Ribbon, Ribbon improves the performance of PMEMKV and

Streamcluster by 20.4% and 27.7%, respectively. When Level-Hashing and Canneal
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Figure 6.13: Heavily loaded system

Table 6.7: Quantify the dirtiness of flushed cache lines in Redis.

Workloads
YCSB

TPC-C
Load A B C D E F

w.o coalescing 0.43 0.55 0.56 0 0.51 0.51 0.47 0.32
w. coalescing 0.62 0.66 0.67 0 0.63 0.63 0.68 0.40

co-run on the same machine, Ribbon speeds up the two applications by 17.3% and

13.9%, respectively. Fast&Fair and PMEMKV co-run achieve the most improvement

from Ribbon, reaching 45.2% and 25.6% improvement, respectively. When multiple

applications share a machine, Ribbon predicts the optimal system-wide CLF concur-

rency according to the method described in Section 6.3.1. Ribbon decides the number

of flushing threads for each application based on the CLF throughput ratio of the two

applications.

6.5.5 Coalescing of Cache Line Flushing

We evaluate the effectiveness of CLF coalescing in Redis running YCSB [?] and

TPC-C [146] benchmarks. For YCSB, we use its default configuration. The key and

value sizes are 24 bytes and 100 bytes, respectively. We run 24 clients threads.

Our first evaluation compares the dirtiness of flushed cache lines with and without

CLF coalescing. Table 6.7 presents the results. The baseline version results in 0.32

to 0.56 cache line dirtiness in tested workloads, except for the read-only workloads

(YCSB-C). After the optimization, the cache line dirtiness is increased to 0.4-0.68.

For each workload, the coalescing effectively reduces traffic and CLF by 20%-45%.
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Figure 6.14: The performance improvement by the CLF coalescing.

We quantify the impact of the improved cache line dirtiness on the overall per-

formance, as reported in Figure 6.14. The increased dirtiness results in 18% to 33%

performance improvement (w. coalescing) for write-intensive workloads. For the

read-mostly workloads, performance improvements are less than write-based work-

loads, because these read-only workloads generate far less write traffic. We also com-

pare the CLF coalescing technology with the combination of the concurrency control

and proactive CLF (w. cc+pclf ). We observe that the CLF coalescing achieves 5.3x

higher performance improvements than the combination. This performance improve-

ment highlights the effectiveness of the CLF coalescing.

6.6 Related Work

Persistency models have been proposed to characterize and direct CLF. Pelley

et al. [30] introduce strict and relaxed persistency and consider persistency models

as an extension to memory consistency model. They propose strict, epoch, and

strand persistency models and provide a persistent queue implementation. Other

works [149, 28, 160, 22, 161] propose various optimizations to relax the constraints on

persistence ordering. Ribbon is generally applicable to various persistency models.

CLF-oriented optimizations. Lazy Persistency [32] avoids eager cache flush-

ing and relies on natural eviction from the cache hierarchy to persist data. Their

solution detects persistency failures by calculating the checksum of each persistency

region. This approach trades off rare persistency failure with a complex recovery
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procedure. NV-Tree [152] quantifies that CLF causes over 90% persistency cost in

persistent B+-tree data structure. They propose to decouple tree leaves from internal

nodes and only maintain the persistency of leaf nodes. In-cacheline log [38] supports

fine-grained checkpointing that writes the cache hierarchy to NVM at the beginning

of each epoch. They place undo log and its logged data structure in the same cache

line to reduce CLF. Link-free and soft algorithms [159] implement a durable concur-

rent set that only persists set members but avoids persisting pointers to eliminate

unnecessary CLF. Software Cache [121] implements a resizable cache to combine

writebacks and reduce CLF. Hardware modifications in the cache hierarchy and new

instructions [158, 165] are also proposed to reduce the latency of CLF. Also, some

cache designs use (relaxed) non-volatile memories [166, 167, 168], which naturally

eliminates CLF.

Many other efforts that use CLF to enable crash consistency provide solutions in

NVM-aware programming models [24, 23], language-level persistency [169, 25]. Our

solution is generally applicable to most of the existing software interfaces as their

building block relies on CLF. Unlike hardware-based solutions, we do not change

hardware. We use commonly available hardware counters on existing architectures.

We summarize software and hardware-based solutions, as well as optimizations for

concurrency controls as follows.

System software, such as file systems PMFS [28] and BPFS [26], introduce

a buffered epoch persistency model. Persistent operations within an epoch can be

reordered to improve the persist concurrency, while orders of persists across epochs

are enforced. SCMFS [27] and NOVA [29] are NVM-aware file systems with failure-

atomic, scalability optimizations.

Libraries, such as Mnemosyne [22] and NV-Heaps [170], support programmer’s

annotation of persistent data structures. Mnemosyne [22] keeps a per-thread log for

improving concurrency and uses streaming writes to NVM. NV-Heaps [170] provides

type-safe pointers and garbage collection for failure atomicity on NVM. Kamino-

tx [171] and Intel’s PMDK [20] enable transactional updates to NVM.

Hardware-based solutions extend existing instruction sets [119, 172, 173],

modify cache hierarchy or add new interfaces to memory subsystems [160, 174], to

provide low-overhead support for crash consistency on NVM. Recently, works that

rely on a hybrid of DRAM and NVM memory subsystem [120, 153, 175] to speedup
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logging into DRAM and persist later to NVM off the critical path.

Concurrency control has been studied on GPU and CPU to improve perfor-

mance. Kayiran et al. [176] propose a mechanism to balance the system-wide memory

and interconnect congestion and dynamically decide the level of GPU concurrency.

Li et al. [177] reduce thread-level parallelism to mitigate page thrashing, which brings

significant pressure on memory management, on Unified Memory. On the Optane ar-

chitecture, Yang et al. [16] identify contention on a single DIMM, when a large number

of threads access it. Their work proposes using non-interleaved memory mapping onto

NVM and binds each DIMM to a specific thread to avoid contention. Our approach

requires no modification in virtual memory mapping and can dynamically adjust con-

currency without statically binding NVDIMMs to threads. Curtis-Maury et al. [178]

and Li et al. [179, 180] use performance models to select thread-level or process-level

concurrency for best performance on CPU. Our design does not use performance

models because and provides focused guidance on CLF.

6.7 Summary

CLF is critical for ensuring data consistency in NVM. It is a building block for

many NVM-aware applications and systems. However, the high overhead of CLF

creates a new “memory wall” unseen in the traditional volatile memory. We analyze

the performance of CLF in diverse NVM-aware workloads on NVM hardware. We

design and implement Ribbon to optimize CLF mechanisms through a decoupled

concurrency control and proactive CLF to change cache line status. Ribbon also uses

cache line coalescing as an application-specific solution for those with low dirtiness

in flushed cache lines, achieving an average 13.9% improvement (up to 33.3%). For a

variety of workloads, Ribbon achieves up to 49.8% improvement (14.8% on average)

of the performance.
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Conclusion and Future Work

NVM technologies have many appealing features relative to traditional DRAM

and disk technologies. They fundamentally change the landscape of memory and stor-

age systems. However, adopting NVM into the current computer systems raises many

challenges, such as data placement and data crash consistency. Existing software so-

lutions can compromise the NVM performance with their high software overheads,

and fail to achieve high-performance and cost-efficiency. This dissertation studies

the data placement and data crash consistency problems of NVM-based HMS, and

proposes a collection of new software solutions to achieve high performance.

This dissertation first presents Unimem, a runtime solution that automatically

and transparently manage data placement on HMS for iterative MPI-based appli-

cations. Leveraging online profiling and performance models, Unimem characterizes

memory access patterns associated with data objects, and minimizes unnecessary

data movement. Experimental results show that Unimem effectively bridges the per-

formance gap between NVM and DRAM, and demonstrate better performance than

a state-of-the-art software-based solution.

Then this dissertation proposes Tahoe, a runtime system that addresses the data

placement problem for task parallel programs on NVM-based HMS. Tahoe lever-

ages task metadata and representative tasks to collect memory access information

and make data migration decisions. Tahoe uses a hybrid performance model that

combines the power of both machine learning modeling and analytical modeling to

decide optimal data placement for multiple tasks. Experimental results demostrate

Tahoe achieves higher performance than a conventional HMS-oblivious runtime and

123
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state-of-the-art HMS-aware solutions.

This dissertation also investigates the transactions performance on NVM. We

identify that small random writes in metadata modifications and locality-oblivious

memory allocation in traditional NVM transaction systems mismatch NVM archi-

tecture. We present ArchTM, a NVM transaction system based on two design prin-

ciples: avoiding small writes and encouraging sequential writes. ArchTM is a vari-

ant of CoW-based system to reduce write traffic to NVM. Unlike conventional CoW

schemes, ArchTM reduces metadata modifications through a scalable lookup table on

DRAM. ArchTM introduces an annotation mechanism to ensure crash consistency

and a locality-aware data path in memory allocation to increases coalesable writes

inside NVM devices.

Finally, this dissertation optimizes the cache line flushing (CLF) mechanism

which is critical to ensure crash consistency on NVM. We reveal the characteristics

of CLF on real NVM hardware. Based on the characterization, we introduce a run-

time system, called Ribbon. Ribbon decouples CLF from the application and applies

model-guided optimizations to the CLF mechanism. We also investigate the cause

for low dirtiness in flushed cache lines in in-memory database workloads and provide

cache line coalescing as an application specific solution to achieve performance.

Although we believe that the software solutions of this dissertation are beneficial

and useful, they also have limitations. For instance, Chapter 3 and Chapter 4 propose

runtime solutions to solve the data placement of two types of HPC applications on

the NVM-based HMS. In these two works, we assume a single application occupies a

bare-metal machine. However, in current data centers, it is also common for multiple

applications to share a machine running in a virtualization environment. The data

placement problem is especially challenging for multiple applications in a virtualized

system. Because multiple applications can compete for memory capacity on HMS.

When deciding data placement, we have to consider the competition between different

applications. To solve it, we plan to use a machine learning model to capture com-

plex memory-access patterns manifested by multiple applications, and predict future

memory accesses. Based on the prediction results of the machine learning model, we

can prefetch data from NVM to DRAM, or proactively evict data from DRAM to

NVM, which can reduce the data movement overhead.



Bibliography

[1] S. Lee. Technology scaling challenges and opportunities of memory devices. In
2016 IEEE International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.8,
Dec 2016.

[2] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of dram disturbance errors. In
Proceeding of the 41st Annual International Symposium on Computer Archite-
cuture, ISCA ’14, pages 361–372, Piscataway, NJ, USA, 2014. IEEE Press.

[3] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Di-
vakaruni, Y. Li, and C. J. Radens. Challenges and future directions for the
scaling of dynamic random-access memory (dram). IBM Journal of Research
and Development, 46(2.3):187–212, March 2002.

[4] F. T. Hady, A. Foong, B. Veal, and D. Williams. Platform storage performance
with 3d xpoint technology. Proceedings of the IEEE, 105(9):1822–1833, Sep.
2017.

[5] Kai Wu, Yingchao Huang, and Dong Li. Unimem: Runtime Data Management
on Non-volatile Memory-based Heterogeneous Main Memory. In SC, 2017.

[6] A. K. Jain, S. Lloyd, and M. Gokhale. Performance assessment of emerging
memories through fpga emulation. IEEE Micro, 39(1):8–16, Jan 2019.

[7] Ivy Peng, Kai Wu, Jie Ren, Dong Li, and Maya Gokhale. Demystifying the per-
formance of hpc scientific applications on nvm-based memory systems. In 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
2020.

[8] Kai Wu, Jie Ren, and Dong Li. Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18. IEEE Press, 2018.

[9] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. Archtm: Architecture-aware, high
performance transaction for persistent memory. In 19th USENIX Conference on

125



126

File and Storage Technologies (FAST 21), pages 141–153. USENIX Association,
February 2021.

[10] Kai Wu, Ivy Peng, Jie Ren, and Dong Li. Ribbon: High performance cache
line flushing for persistent memory. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, PACT ’20.
Association for Computing Machinery, 2020.

[11] Kosuke Suzuki and Steven Swanson. The Non-Volatile Memory Technol-
ogy Database (NVMDB). Technical Report CS2015-1011, Department of
Computer Science & Engineering, University of California, San Diego, 2015.
http://nvmdb.ucsd.edu.

[12] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,
Jishen Zhao, and Steven Swanson. Basic performance measurements of the
intel optane DC persistent memory module. CoRR, abs/1903.05714, 2019.

[13] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable
high performance main memory system using phase-change memory technol-
ogy. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 24–33, New York, NY, USA, 2009. ACM.

[14] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase
change memory as a scalable dram alternative. ACM SIGARCH Computer
Architecture News, 37(3):2–13, 2009.

[15] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. System evaluation of
the intel optane byte-addressable NVM. In Proceedings of the International
Symposium on Memory Systems. ACM, 2019.

[16] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve
Swanson. An empirical guide to the behavior and use of scalable persistent
memory. In 18th USENIX Conference on File and Storage Technologies (FAST
20), 2020.

[17] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,
Jishen Zhao, and Steven Swanson. Basic performance measurements of the
intel optane dc persistent memory module, 2019.

[18] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pin-
gali. Single machine graph analytics on massive datasets using intel optane dc
persistent memory, 2019.

[19] Intel. Persistent memory development kit, 2014.

[20] Intel. Persistent Memory Development Kit. https://pmem.io/.

https://pmem.io/


127

[21] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K.
Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Ob-
jects Fast and Safe with Next-generation, Non-volatile Memories. In Proceedings
of the Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[22] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne: Lightweight
persistent memory. In ACM SIGARCH Computer Architecture News, vol-
ume 39, pages 91–104. ACM, 2011.

[23] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: Lever-
aging locks for non-volatile memory consistency. In ACM SIGPLAN Notices,
volume 49, pages 433–452. ACM, 2014.
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LABARTA, LUIS MARTINELL, XAVIER MARTORELL, and JUDIT
PLANAS. OmpSs: A Proposal for Programming Heterogeneous Multi-core
Architectures. Parallel Processing Letters, 21(02):173–193, 2011.

[99] Barcelona Supercomputing Center. Nanos ++. https://pm.bsc.es/nanox.

[100] Barcelona Supercomputing Center. BSC application repository. https://pm.

bsc.es/projects/bar/wiki/Applications.

[101] Matt Poremba and Yuan Xie. Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories. In ISVLSI, 2012.

[102] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Oper-
ating system support for nvm+dram hybrid main memory. In HotOS, 2009.

https://pm.bsc.es/nanox
https://pm.bsc.es/projects/bar/wiki/Applications
https://pm.bsc.es/projects/bar/wiki/Applications


134

[103] Y. Huang and D. Li. Performance Modeling for Optimal Data Placement on
GPU with Heterogeneous Memory Systems. In 2017 IEEE International Con-
ference on Cluster Computing (CLUSTER), 2017.

[104] Sparsh Mittal. A Survey of Techniques for Architecting TLBs. Concurrency
and Computation: Practice and Experience, 29(10):e4061–n/a, 2017.

[105] Nadav Amit. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In USENIX ATC, 2017.

[106] Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen. Exploit-
ing Program Semantics to Place Data in Hybrid Memory. In PACT, 2015.

[107] Luiz Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page Placement in Hy-
brid Memory Systems. In International Conference on Supercomputing (ICS),
2011.

[108] D. Komatitsch and J. Tromp. Introduction to the Spectral Element Method
for Three-dimensional Seismic Wave Propagation. Geophysical Journal Inter-
national, 139(3):806–822, Dec 1999.

[109] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian. CHOP: Integrating DRAM Caches for
CMP Server Platforms. IEEE Micro, 31(1):99–108, 2011.

[110] S. Bock, B. R. Childers, R. Melhem, and D. Mossé. Concurrent Migration of
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