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Abstract of the Dissertation

Maximal Functions, Incidence Theorems,

and Efficient Partitions of Euclidean Space

by

Joshua Norbert Zahl

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Terence Tao, Chair

We establish several new results in incidence geometry and harmonic analysis. Each of the

problems we consider is about objects in Euclidean space, and we make essential use of

partitioning theorems that efficiently cut Rd into pieces that have desirable combinatorial

properties.
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CHAPTER 1

Introduction

In this thesis we will discuss several results in incidence geometry and Kakeya-type maximal

functions. The latter type of problem can also be phrased as a incidence geometry-type

problem. A common theme for all of these problems is that they consider objects (points,

lines, surfaces) in Rd, and the properties of Euclidean space will play an important role in

the theorems that follow. One key property of R is that it is ordered—if we select a point

x ∈ R, then R\{x} consists of two distinct connected sets. This property does not hold for

either C or finite fields Fp. This property of R is an important part of the discrete polynomial

partitioning theorem, which will be discussed further in Chapter 2, and which will play an

important role in each of the results below.

While the problems we consider originated in combinatorics and harmonic analysis, the

tools used to solve them rely heavily on real algebraic geometry, and these tools are discussed

in Chapter 2. In Chapter 3, we will discuss a bound on the number of incidences between

points and surfaces in R3. This is based on the author’s work in [Zah13a]. In chapter 4, we

will discuss an analogue of the Szeméredi-Trotter theorem for 2–flats in R4. This is based

on the author’s work in [Zah12b]. Finally, in Chapter 5, we will discuss a L3 bound on a

variable-coefficient analogue of the Wolff circular maximal function. This is based on the

author’s work in [Zah12a] and [Zah13b].
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CHAPTER 2

Preliminaries

2.1 Notation

Throughout this thesis, c and C will denote sufficiently small and large constants, respec-

tively, which are allowed to vary from line to line. We will write A . B to mean A < CB,

and we say that a quantity is O(A) if it is . A.

2.2 Graph theory

Throughout our arguments, we will frequently make use of the following Turan-type bound:

Theorem 1 (Kővari, Sós, Turan [KST54]). Let s, t be fixed, and let G = G1 t G2 be a

bipartite graph with |G1| = m, |G2| = n that contains no copy of Ks,t. Then G has at most

O(nm1−1/s + m) edges. Symmetrically, G has at most O(mn1−1/t + n) edges. All implicit

constants depend only on s and t.

In Chapter 4 we will require the crossing lemma. This is described below. Let G be a

graph, and let H be a drawing of G, i.e. a collection of points and curves in R2 such that

every vertex of G corresponds to a distinct point of H, and every edge of G corresponds to a

curve in H such that every two curves intersect in a discrete set, and no points (i.e. vertices)

are contained in the relative interior of any curve (i.e. edge).

Definition 2. We define V(G) to be the number of vertices of G and E(G) to be the number

of edges, and similarly for H. We define C(H) to be the crossing number of H, i.e. the
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number of times two curves cross each other. Since the intersection of any two curves is a

discrete set, C(H) is finite.

Theorem 3 (Ajtai, Chvatal, Newborn, Szemerédi [ACN82]; Leighton [Lei83]; Székely [Sz97]).

Let H be a drawing of a graph. Then either E(H) < 5V(H), or

C(G) ≥ E(H)3

100V(H)2
. (2.1)

2.3 Real algebraic geometry

2.3.1 Semi-algebraic sets

See e.g. [BPR06, BCR98] for additional information.

Definition 4. A set S ⊂ Rn is semi-algebraic if it can be expressed in the form

S =
n⋃
i=1

{x : fi,1(x) = 0, . . . fi,`i(x) = 0, gi,1(x) > 0, . . . , gi,mi(x) > 0} (2.2)

for {fi,j} and {gi,j} polynomials.

Definition 5. For S a semi-algebraic set, the complexity of S is

inf
(∑

deg fi,j +
∑

deg gi,j

)
, (2.3)

where the infimum is taken over all representations of S of the form (2.2).

Definition 6. For S a semi-algebraic set, we define the boundary ∂(S) = S\S, where S is

the closure of S in the Euclidean topology.

Proposition 7. ∂(S) is semi-algebraic, dim(∂(S)) ≤ dim(S)− 1, and the complexity of ∂(S)

is controlled by a polynomial function of the complexity of S.

Definition 8. For S a semi-algebraic set, we define its Zariski closure Zar(S) to be the

closure of S in the (real) Zariski topology

Proposition 9.
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(i) Zar(S) is an algebraic set.

(ii) dim(Zar(S)) = dim(S).

(iii) deg(Zar(S)) is bounded by a polynomial function of the complexity of S.

Proof. Statements (i) and (ii) are standard. Statement (iii) follows from the standard prop-

erties of the cylindrical algebraic decomposition (see e.g. [BPR06, BCR98]).

Proposition 10 (Effective Tarski-Seidenberg Theorem [Col75]). Let S ⊂ Rd be a semi-

algebraic set of complexity k and let π : Rd → Rd−1 be the projection onto the first d − 1

coordinates. Then π(S) is a semi-algebraic set of complexity at most kC for some constant

C that depends only on d.

2.3.2 Sign conditions

Definition 11. Let Q ⊂ R[x1, . . . , xd] be a collection of non-zero real polynomials. A strict

sign condition on Q is a map σ : Q → {±1}. If Q ∈ Q, we will denote the evaluation of σ at

Q either by σQ or σ(Q), depending on context. If σ is a strict sign condition on Q we define

its realization by

Reali(σ,Q) = {x ∈ Rd : Q(x)σQ > 0 for all Q ∈ Q}. (2.4)

If Reali(σ,Q) 6= ∅ then we say that σ is realizable. We define

ΣQ = {σ : Reali(σ,Q) 6= ∅}, (2.5)

and

Reali(Q) = {Reali(σ,Q) : σ ∈ ΣQ}. (2.6)

We call Reali(Q) the collection of “realizations of realizable strict sign conditions of Q.”

If Z ⊂ Rd is a variety, and σ is a strict sign condition on Q, then we can define the

realization of σ on Z by

Reali(σ,Q, Z) = {x ∈ Z : Q(x)σQ > 0 for all Q ∈ Q}, (2.7)

4



and we can define analogous sets

ΣQ,Z = {σ : Reali(σ,Q, Z) 6= ∅}, (2.8)

and

Reali(Q, Z) = {Reali(σ,Q, Z) : σ ∈ ΣQ,Z}. (2.9)

We call Reali(Q, Z) the collection of “realizations of realizable strict sign conditions of Q

on Z.” Note that if some Q ∈ Q vanishes identically on Z then ΣQ,Z = ∅ and thus

Reali(Q, Z) = ∅.

2.3.3 Algebra

All ideals and varieties will be assumed to be affine. Unless otherwise specified, all ideals are

subsets of R[x1, . . . , xd], and all varieties are defined over R and thus are subsets of Rd, though

sometimes we will specialize to the case d = 3. If P is a polynomial, (P ) ⊂ R[x1, . . . , xd] is

the ideal generated by P .

Special emphasis will be placed on “real ideals.” These are described in Definition 12

below, and they should not be confused with ideals that are merely subsets of R[x1, . . . , xd].

On the other hand, a “real variety” is merely a variety defined over R (as opposed to C).

If I is an ideal, we use

Z(I) = {x ∈ Rd : P (x) = 0 for all P ∈ I}

to denote the zero set of I. If P is a polynomial we shall abuse notation and use Z(P ) to

denote Z((P )) = {x ∈ Rd : P (x) = 0}. If Z ⊂ Rd is a real variety, then we define

I(Z) = {P ∈ R[x1, . . . , xd] : P (x) = 0 for all x ∈ Z}

to be the ideal of polynomials that vanish on Z.

Definition 12. An ideal I ⊂ R[x1, . . . , xd] is real if for every sequence a1, . . . , a` ∈ R[x1, . . . , xd],

a2
1 + . . .+ a2

` ∈ I implies aj ∈ I for each j = 1, . . . , `.

5



The following proposition shows that real principal prime ideals and their corresponding

real varieties have some of the “nice” properties of ideals and varieties defined over C.

Proposition 13 (see [BCR98, §4.5]). Let P ∈ R[x1, . . . , xd] be irreducible. Then the following

are equivalent:

1. (P ) is real.

2. (P ) = I(Z(P )).

3. dim(Z(P )) = d− 1.

4. ∇P does not vanish identically on Z(P ).

5. The sign of P changes somewhere on Rd (i.e. from strictly positive to strictly negative).

While not every polynomial P ∈ R[x1, . . . , xd] is a product of real ideals, the following

lemma shows that for our applications, we can always modify our polynomials to ensure that

this is the case.

Lemma 14. Let P ∈ R[x1, . . . , xd] be a real polynomial. Then there exists a real polynomial

P̃ such that deg P̃ ≤ degP, Z(P ) ⊂ Z(P̃ ), and the irreducible components of P̃ generate real

ideals.

Proof. Let Q = ∅. Write P = P1, . . . , Pa as a product of irreducible factors. Place each

irreducible factor that generates a real ideal in Q. If Pj is a factor that does not generate

a real ideal then consider ∇vPj for v a generic vector. We have deg∇vPj < degP, and

Z(Pj) ⊂ Z(∇vPj). Apply the above procedure to ∇vPj. This process will terminate after

finitely many iterations. Let P̃ =
∏

Q∈QQ.

We will make essential use of the real Bézout’s theorem and a version of Harnack’s

theorem for space curves.

Proposition 15 (Real Bézout). Let P1, . . . , Pd ⊂ R[x1, . . . , xd] be real polynomials of degrees

D1, . . . , Dd. Then the number of nonsingular intersection points of Z(P1)∩ . . .∩Z(Pd) is at

most D1 . . . Dd.
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For a proof of this proposition, see e.g. [BPR06, §4.7].

We will also require a variant of Harnack’s theorem for space curves R4.

Proposition 16 (Harnack’s theorem for space curves). Let P1, . . . , Pd−1 ∈ R[x1, . . . , xd], and

suppose that degPj = O(1) for each 1 ≤ j ≤ d − 2, and that for each 1 ≤ j ≤ d − 1,

codim(Z(P1)∩ . . .∩Z(Pj)) = j. Then the number of connected components of Z(P1)∩ . . .∩

Z(Pd−1) is O((degPd−1)2).

This proposition is Theorem 11 of [BB13].

2.3.4 Real and complex varieties

If Z ⊂ Rd is a real variety, then Z∗ ⊂ Cd denotes the smallest complex variety containing

Z. Conversely, if Z ⊂ Cd is a complex variety, then R(Z) ⊂ Rd is its set of real points.

As noted in Section 3.1.3, the number of intersection points of a collection of real polyno-

mials may exceed the product of their degrees, even if those polynomials intersect completely.

Over C things are much better behaved, so there will be times when we will wish to embed

everything into C. The following proposition relates the properties of a variety defined over

R and the corresponding variety defined over C:

Proposition 17 (see [Whi57, §10]). Let Z ⊂ Rd be a real variety and let (Z∗)1, . . . , (Z∗)` be

the irreducible components of Z∗. Then R((Z∗)1), . . . ,R((Z∗)`) are the irreducible compo-

nents of Z. Furthermore, for each j = 1, . . . , `, R((Z∗)j)
∗ = (Z∗)j, so in particular R((Z∗)j)

is non-empty.

Corollary 18. If P,Q ∈ R[x1, . . . , xd] are irreducible and (P ), (Q) are real ideals such that

dim(Z(P ) ∩ Z(Q)) = d− 2, then Z(P )∗ ∩ Z(Q)∗ is a complete intersection.

2.4 Discrete polynomial partitioning theorems

Recall the discrete polynomial partitioning theorem from [GK11, Theorem 4.1]:

Theorem 19. Let P be a collection of points in Rd, and let D > 0. Then there exists a

7



non-zero polynomial P of degree at most D such that each connected component of Rd\Z(P )

contains O(|P|/Dd) points of P.

Remark 20. Without loss of generality, we can assume that P is square-free. Indeed if P is

not square-free then we can replace P by its square-free part, and the new polynomial still

has all of the desired properties.

After applying Lemma 14, we can ensure that the irreducible components of P generate

real ideals:

Corollary 21. Let P be a collection of points in R4, and let D > 0. Then there exists a non-

zero polynomial P of degree at most D such that each connected component of R4\Z(P )

contains at most O(|P|/D4) points of P , and each irreducible component of P generates a

real ideal.

Example 22. Consider the set of 24 points

P1 = {(0,±1,±1), (0,±2,±2), (±1,±1,±1), (±2,±2,±2)} ⊂ R3,

and let D = 3. Then the polynomial P1(x1, x2, x3) = x1x2x3 partitions R3 into 8 octants,

each of which contains 2 points from P1.

Remark 23. Note as well that in the above example, the 8 points {0,±1,±1}, {0,±2, ±2}

lie on the set Z(P1) and thus they do not lie inside any of the open components of R3\Z(P1).

This is not merely a consequence of us choosing P1 poorly; it is an unavoidable phenomena

that occurs when performing the discrete polynomial partitioning decomposition. In order

to control the number of incidences between points lying on Z(P1) and surfaces in S, we shall

have to perform a second polynomial partitioning decomposition “on” the surface Z(P1). For

technical reasons, we cannot simply consider the complement of the zero set of our second

partitioning polynomial as a union of relatively open subsets of Z(P1). Instead, we need to

perform a somewhat more detailed decomposition that partitions Z(P1) into sets that are

realizations of realizable strict sign conditions of a certain family of polynomials. This is

made precise in the theorem below.

8



Theorem 24 (Discrete polynomial partitioning on a hypersurface). Let P be a collection

of points in Rd lying on the set Z = Z(P ) for P an irreducible polynomial of degree D such

that P generates a real ideal. Let ρ > 0 be a small constant, and let E ≥ ρD. Then there

exists a collection of polynomials Q ⊂ R[x1, . . . , xd] with the following properties:

1. |Q| ≤ log2(DEd−1) +O(1).

2.
∑
Q degQ . E.

3. None of the polynomials in Q vanish identically on Z.

4. The realization of each of the O(DEd−1) strict sign conditions of Q on Z contains

O( |P|
DEd−1 ) points of P.

5. Each irreducible component of each polynomial Q ∈ Q generates a real ideal.

All implicit constants depend only on ρ and the dimension d.

In our applications, we will always have d = 3 or d = 4.

Example 25. Let us continue Example 22. The polynomial P1 from Example 22 was not

irreducible, but we can factor it into the three irreducible factors x1, x2, x3. All of the points

lying on Z(P1) actually lie on the irreducible component Z(x1), so we let P2(x1, x2, x3) = x1.

Note that (P2) = (x1) is a real ideal, and D = deg(P2) = 1. Select E = 2 (which is larger

than D). Then the collection of polynomials Q = {x2, x3} satisfies the requirements of

Theorem 24. The realizations of realizable strict sign conditions of Q on Z are the 4 sets of

the form

{(x1, x2, x3) : x1 = 0, ±x2 > 0, ±x3 > 0}. (2.10)

Note that each of these sets contains 2 points of P1 ∩Z(P2). Two coincidences occur in this

example that are not present in general. First, in this example the realizations of the four

strict sign conditions ofQ on Z correspond to the four connected components of Z\
⋃
Q Z(Q).

In general, each realization of a strict sign condition may be a union of multiple connected

9



components of Z\
⋃
Q Z(Q). Second, each of the polynomials in Q were irreducible factors

of P1. In general this does not occur.

The proof of Theorem 24 will be similar to the original proof of the discrete polynomial

ham sandwich theorem in [Gut10, §4], which can be stated as follows:

Proposition 26 (Discrete polynomial ham sandwich theorem). Let V ⊂ R[x1, . . . , xd] be a

vector space of dimension `, and let F1, . . . , F` ⊂ Rd be finite families of points. Then there

exists a polynomial P ∈ V such that

|Fj ∩ {x ∈ Rd : P (x) > 0}| ≤ |Fj|/2, and

|Fj ∩ {x ∈ Rd : P (x) < 0}| ≤ |Fj|/2, j = 1, . . . , `.

Proposition 26 is proved in [Gut10] only in the special case where V is the vector space

of all polynomials of degree at most e (where e is chosen large enough to ensure that V has

the required dimension). However, the proof carries over verbatim to the general case where

V is arbitrary. To prove Theorem 24, we will iterate the following lemma:

Lemma 27. Let Z = Z(P ) ⊂ Rd for P an irreducible polynomial of degree D such that (P )

is a real ideal. Let E > 0, and let F1, . . . , F`, ` = cmin(Ed, DEd−1) be finite families of

points in Rd, with Fj ⊂ Z for each j. Then provided c is sufficiently small (depending only

on d), there exists a polynomial Q of degree at most E that does not vanish identically on

Z(P ) such that

|Fj ∩ {x ∈ Rd : Q(x) > 0}| ≤ |Fj|/2, and

|Fj ∩ {x ∈ Rd : Q(x) < 0}| ≤ |Fj|/2, j = 1, . . . , `.
(2.11)

Proof. Let R[x1, . . . , xd]≤E be the vector space of all polynomials in d variables of degree

at most E, and let (P )≤E be the vector space of all polynomials in the ideal (P ) that have

degree at most E (of course, if E < degP then (P )≤E = 0). We have

dim(R[x1, . . . , xd]≤E)− dim((P )≤E) > cmin(Ed, DEd−1)

for some (explicit) constant c depending only on the dimension d. Thus, we can find a vector

space V ⊂ R[x1, . . . , xd]≤E with dim(V ) > cmin(Ed, DEd−1) such that V ∩ (P )≤E = 0. By
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Proposition 26, we can find a polynomial Q ∈ V satisfying (2.11). Since Q ∈ R[x1, . . . , xd]≤E

but Q /∈ (P )≤E, we have Q /∈ (P ). Since P is irreducible and generates a real ideal, by Item

2 of Proposition 13, Q does not vanish identically on Z(P ).

Proof of Theorem 24. Let Q0 = {1}. For each i = 1, . . . , t, with

t = dlog2(DEd−1)e, (2.12)

use Lemma 27 to find a polynomial Qi with

deg(Qi) . max
(
(2i/D)1/(d−1), 2i/d

)
(the implicit constant depends only on d) such that for each σ ∈ ΣQi−1

we have∣∣∣{x ∈ Rd : Qi(x) > 0} ∩
(
P ∩ Reali(σ,Qi−1)

)∣∣∣ ≤ 1

2
|P ∩ Reali(σ,Qi−1)|,∣∣∣{x ∈ Rd : Qi(x) < 0} ∩

(
P ∩ Reali(σ,Qi−1)

)∣∣∣ ≤ 1

2
|P ∩ Reali(σ,Qi−1)|.

(2.13)

Some of the above sets may be empty, but this does not pose a problem. LetQi = Qi−1∪{Qi}.

None of the polynomials in Q = Qt vanish on P , so Item 3 of the theorem is satisfied.

Since E ≥ D we have

∑
Q

degQ .
t∑
i=1

(2i/D)1/(d−1) +
t∑
i=1

2i/d

. (DEd−1/D)1/(d−1) + (DEd−1)1/d

. E,

which satisfies Item 2. By (2.13), for each σ ∈ ΣQ,

|P ∩ Reali(σ,Q)| . 2−t|P|

.
|P|

DEd−1
,

(2.14)

which satisfies Item 4. Finally, Item 1 follows from (2.12).
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2.5 Intersection theory

Definition 28. Let γ ∈ Rd be an algebraic curve, and let x ∈ Rd. Then we define the

geometric multiplicity of the curve γ at the point x, multg(γ, x), as follows. Let γ′ be a

generic projection of γ onto R2, let x′ be the image of x under the same projection, and let

g be the square-free polynomial with Z(g) = γ′. Then mult(γ, x) is the order of vanishing

of g at x′. In particular, if x /∈ γ then mult(γ, x) = 0, while if x is a smooth point of γ, then

mult(γ, x) = 1.

Definition 29. An ideal I ⊂ C[x1, . . . , xd] is said to be radical if I = I(Z(I)).

Proposition 30. if I = (f1, . . . , f`) ⊂ C[x1, . . . , xd] is a complete intersection, then I is radical

if and only if


∇f1

...

∇f`

 has full rank at every smooth point of Z.

Proposition 31. If f1, . . . , f` ∈ C[x1, . . . , xd] with ` ≤ d, then for any ε > 0, we can find a set

of numbers 0 < εj < ε, j = 1, . . . , ` so that (f1 + ε1, . . . , f` + ε`) is a radical ideal.

We will need several elementary results from intersection theory. Further details can be

found in standard textbooks such as [Ful98, Har83].

We shall frequently make use of the embedding Cd → CPd, (x1, . . . , xd)→ [x1 : . . . : xd :

1]. This embedding allows us to identify points in Cd with those in CPd, and to identify

(complex, affine) polynomials with complex homogeneous polynomials.

Definition 32. If f ∈ C[x1, . . . , xd], we will let If denote the projective ideal generated

by f (here as elsewhere, f is identified with its corresponding homogeneous polynomial).

If f ∈ C[x1, . . . , xd], let Z∗(f) be the zero set of f (either in Cd or in CPd, depending on

context). If x ∈ Cd, then OCPd,x is the local ring obtained by localizing CPd at the point x

(again, we have identified x with its image in CPd). If f1, f2, . . . , fk are polynomials, we say

that f1, . . . , fk intersect properly if codim(Z∗(f1) ∩ . . . ∩ Z∗(fk)) = k.

If f1, . . . , fk intersect properly, and V is an irreducible variety contained in Z∗(f1)∩ . . .∩
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Z∗(fk), then we define

mult(Z∗(f1), . . . ,Z∗(fk);V ) = dimOCPd,x/(If1 + . . .+ Ifj),

where x is a generic point of V .

This definition of multiplicity has several useful properties.

1. If V1, V2 are irreducible varieties, V2 is a component of Z∗(f1) ∩ . . . ∩ Z∗(fk), V1 ⊂ V2,

and V1 6⊂ (V2)sing, then

mult(Z∗(f1), . . . ,Z∗(fk);V2) = mult(Z∗(f1), . . . ,Z∗(fk);V1)

2. Let V be a codimension–k irreducible variety contained in Z∗(f1)∩ . . .∩Z∗(fk) . Then

if x is a generic point of V and H is a generic hyperplane of codimension k such that

x ∈ H. Then we can find a small ball B ⊂ Cd containing x such that x is the only

point in B∩H ∩V . Now, let f ′1 = f1 + ε1, . . . , f
′
k = fk + εk, where ε1, . . . , εk are generic

real numbers with sufficiently small magnitude. Then B ∩H ∩Z∗(f ′1)∩ . . .∩Z∗(f ′k) is

a union of mult(Z∗(f1), . . . ,Z∗(fk);V ) points. Informally, if B is a small ball centered

around a generic point of V , then if we perturb f1, . . . , fk, the intersection “splits” into

mult(Z∗(f1), . . . ,Z∗(fk);V ) sheets.

2.6 Differential geometry

Definition 33. Let Gr(d, k;C) be the Grassmanian of (complex) k–dimensional subspaces

of Cd. Note that this is a smooth manifold.

Definition 34. Let M ⊂ Cd be a smooth manifold of dimension k. Then we define the

k–dimensional Grassmannian bundle over M as

G(M,k) = {(z, Tz(M)) : z ∈M}. (2.15)

Then G(M,k) is a smooth k–dimensional sub-manifold of Cd × Gr(d, k;C) (here a k–

dimensional subspace Π ∈ Gr(d, k;C) is considered a 0–dimensional manifold, not a k–

dimensional manifold, since it is a “point” in Π ∈ Gr(d, k;C).)
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Definition 35. If M1,M2 are smooth sub-manifolds of a smooth manifold M , and dim(M1)+

dim(M2) = M, we say that M1,M2 intersect transversely at x ∈ M1 ∩ M2 if Tx(M1) +

Tx(M2) = Tx(M). We say that M1,M2 intersect transversely if they intersect transversely

at every point x ∈M1 ∩M2.

Definition 36. Let M ⊂ Rd be a smooth manifold that is contained in a compact set. We

say that M ′ is an ε–perturbation of M if there exists a diffeomorphism ψ : Rd → Rd with

ψ(M) = M ′, and ‖ψ − I‖C1 < ε. If M ⊂ Cd, we define an ε–perturbation similarly.

Proposition 37. Let M1,M2 be smooth sub-manifolds of a smooth manifold M ⊂ Rd or

M ⊂ Cd. Suppose that dimM1 + dimM2 = dimM , and that M is contained in a compact

set. Then if M1,M2 intersect transversely, there exists an ε0 > 0 such for all smooth sub-

manifolds M ′
1,M

′
2 ⊂ M , if M ′

1 is an ε–perturbation of M1 and M ′
2 is an ε–perturbation of

M2, then |M1 ∩M2| = |M ′
1 ∩M ′

2|. Note that since M is contained in a compact set and

M1,M2 are transverse and have complimentary dimension (in M), the intersections have

finite cardinality.

Proposition 38. Let (f1, f2) ⊂ C[x1, x2, x3, x4] be a (scheme-theoretic) complete intersection,

and let B ⊂ C4 be a ball. Suppose that Z(f1) ∩ Z(f2) ∩ B is a smooth 2 (complex)

dimensional manifold. Then for every ε > 0, there exists a δ > 0 so that if 0 < δ1, δ2 < δ,

then Z(f1 + δ1) ∩ Z(f2 + δ2) ∩B is an ε–perturbation of Z(f1) ∩ Z(f2) ∩B.
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CHAPTER 3

An improved bound on the number of point-surface

incidences in three dimensions

3.1 Introduction

In [CEG90], Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl obtained the following bound

on the number of incidences between points and spheres in R3:

Theorem 39 (Clarkson et al.). The number of incidences between m points and n spheres

in R3 with no three spheres meeting at a common circle is

O((mn)3/4β(m,n) +m+ n), (3.1)

where β(m,n) is a very slowly growing function of m and n. In particular, β(m,n) ≤

2Cα(m3/n)2 , where α(s) is the inverse Ackerman function and C is a large constant.

We obtain the following slight sharpening:

Theorem 40. Let k ≥ 3, and let P ⊂ R3 be a collection of m points and S a collection of n

smooth algebraic surfaces of bounded degree (the degree is allowed to depend on k) such that

for some constant C we have |S ∩ S ′ ∩ S ′′| ≤ C for all S, S ′, S ′′ ∈ S, and for any collection

of k points in R3, there are at most C surfaces that contain all k points. Then the number

of incidences between points in P and surfaces in S is

O(m
2k

3k−1n
3k−3
3k−1 +m+ n), (3.2)

where the implicit constant depends only on k, C, and the degree of the algebraic surfaces.
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In particular, the number of incidences between m points and n spheres in R3 with no

three spheres meeting at a common circle is

O((mn)3/4 +m+ n). (3.3)

Remark 41. The requirement that every three surfaces meet in a complete intersection, or

some variant thereof, is necessary to prevent the situation in which all of the surfaces meet

in a common curve and all of the points lie on that curve, yielding mn incidences (i.e. if we

don’t place any restrictions on how the surfaces can intersect, then the trivial bound of mn

incidences is sharp).

Remark 42. When k = 2 and n = m, the following example shows that Theorem 40 is sharp.

Let P be the set [−2k, 2k]2 × [0, 2k2], and let

S = {z = (x− x0)2 + (y − y0)2 + z0 : x0, y0 = −k, . . . , k; z0 = 0, . . . , k2}.

Then |P| = 32k4, |S| = k4, and we can verify that for every triple S, S ′, S ′′ of surfaces in S,

we have |S ∩ S ′ ∩ S ′′| ≤ 8, and for every three points of P , there are at most four surfaces

from S that contain all three. Since each S ∈ S hits ≥ k2 points from P . Thus there are

≥ k6 incidences total.

Remark 43. The requirements that every three surfaces meet in C points and that every

k points have at most C surfaces passing through them are analogous to the definition of

“curves with k degrees of freedom” from [PS98], though in [PS98] the curves do not need to

be algebraic.

Remark 44. Theorem 39 can be extended to the more general case of bounded degree al-

gebraic surfaces using the decomposition techniques described in [SA96, §8.3] to obtain an

analogue of (3.2). Doing so yields a bound of

O(m
2k

3k−1n
3k−3
3k−1β(m,n) +m+ n),

where β a slowly growing function.
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3.1.1 Previous results

Concurrently with (and independently of) this work, Kaplan, Matoušek, Safernová, and

Sharir in [KMS12a] obtained results similar to the bound (3.3) using similar methods. Kaplan

et. al. are able to avoid some of the technical difficulties present in this paper by using an

explicit parameterization of the sphere by rational functions.

Similar results to Theorem 3.1 and 3.2 have been obtained by  Laba and Solymosi in [IS07]

and by Iosevich, Jorati, and  Laba in [IJL09]. In [IS07] and [IJL09], however, the authors

consider a more general class of surfaces (they need not be algebraic), but they require that

the point set be “homogeneous” in a suitable sense.

Our techniques do not work well when k = 2, i.e. for obtaining bounds on point-

hyperplane incidences, but this case has been studied by other authors (see e.g. [ET05],

where the authors obtain sharp bounds on point-hyperplane incidences under a slightly dif-

ferent set of non-degeneracy conditions).

3.1.2 Proof sketch

Clarkson et al. obtain Theorem 39 through their “Canham threshold plus divide and con-

quer” technique: the arrangement of spheres in R3 is subdivided into smaller collections

through a careful partitioning of R3, and the number of incidences between these smaller

collections of spheres and points is controlled by a Turan-type bound on the number of edges

in a bipartite graph with certain forbidden subgraphs.

In this paper, we employ similar ideas, except instead of dividing the problem into smaller

subproblems by partitioning R3 into cells using a decomposition adapted to the collection

of spheres (or more general nonsingular algebraic surfaces), we employ a partition adapted

to the collection of points. This partition is obtained from the discrete polynomial ham

sandwich theorem recently used to great effect by Guth and Katz in [Gut10] and more

recently by Solymosi and Tao in [ST12] and by Kaplan, Matoušek, and Sharir in [KMS12b].

Specifically, we find a polynomial P such that the complement of the zero set of P consists
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of open “cells,” none of which contain too many points. We can then apply a Turan-type

bound to the points and surfaces inside each cell. However, some points may lie on the zero

set of P , and thus do not lie in any of the cells. To deal with these points, we perform

a second polynomial ham sandwich decomposition to find a polynomial Q whose zero set

partitions the zero set of P into cell-like objects, and we apply the Turan-type bound to each

of these “cells.” While it is possible that a point could lie in the zero set of both P and Q,

we can use Bézout-type theorems to control how often this can occur.

3.1.3 Some difficulties with real algebraic sets

There are several technical difficulties that have to be dealt with while executing the above

strategy. In contrast to the situation over C, there exist polynomials P1, . . . , Pd ∈ R[x1, . . . ,

xd] of degrees D1, . . . , Dd such that {P1 = 0} ∩ . . . ∩ {Pd = 0} contains more than D1 . . . Dd

isolated points, i.e. the näıve analogue of Bézout’s theorem fails over R. To deal with this

problem, we will sometimes be forced to embed our varieties into C and use the (usual)

Bézout’s theorem (though we have to be careful that the intersection of the embedded

varieties does not contain new, unexpected components of positive dimension).

A second difficulty concerns the failure of the Nullstellensatz for varieties defined over R.

In contrast to the complex case, If (P ) is a principal prime ideal and Q is a real polynomial,

it need not be the case that if Q vanishes identically on {x ∈ Rd : P = 0} then Q ∈ (P ).

Luckily, there is a special type of ideal known as a “real ideal” for which an analogue of the

Nullstellensatz does hold. Frequently we will be required to replace our polynomials with

new polynomials that generate real ideals.

Finally, if P ∈ R[x1, . . . , xd] then the dimension of {x ∈ Rd : P = 0} may be less than

d− 1, and even if P is square-free, ∇P may vanish on {P = 0}. Again, we can remedy this

problem by working with (irreducible) polynomials that generate real ideals.
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3.2 Main Result

We are now ready to prove Theorem 40. For the reader’s convenience, we will restate the

theorem below.

Theorem 40. Let k ≥ 3, and let P ⊂ R3 be a collection of m points and S a collection of n

smooth algebraic surfaces of bounded degree (the degree is allowed to depend on k) such that

for some constant C we have |S ∩ S ′ ∩ S ′′| ≤ C for all S, S ′, S ′′ ∈ S, and for any collection

of k points in R3, there are at most C surfaces that contain all k points. Then the number

of incidences between points in P and surfaces in S is

O(m
2k

3k−1n
3k−3
3k−1 +m+ n), (3.2)

where the implicit constant depends only on k, C, and the degree of the algebraic surfaces.

Proof. We will begin with a few definitions that will be useful throughout the proof.

Definition 45. If S̃ is a collection of smooth (real) surfaces and P̃ a collection of points,

let I(P̃ , S̃) be the number of incidences between the surfaces in S̃ and the points in P̃ . If

S ∈ S̃ is a surface, then fS is the polynomial whose zero set is S.

In our case, we have that |S ∩ S ′ ∩ S ′′| ≤ C for every three surfaces S, S ′, S ′′, and any k

points have at most C surfaces passing through all of them. Thus we have the bounds

I(P ,S) . |P||S|1−1/k + |S|, (3.4)

I(P ,S) . |P|2/3|S|+ |P|. (3.5)

From (3.4) and (3.5), we have that if n > cmk or m > cn3 for some fixed small constant

c > 0 to be specified later, then Theorem 40 immediately holds. Thus we may assume

n < cmk,

m < cn3.
(3.6)
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We may also assume that the surfaces in S are irreducible varieties. Indeed, if this was

not the case then we could let S ′ be the set of all irreducible components of surfaces in S.

We have |S ′| . |S|, and the surfaces in S ′ satisfy the same bounds as the surfaces in S. We

could then run our arguments below with S ′ in place of S.

Let P be a square-free polynomial of degree at most D (D will be determined later, but

the impatient reader can jump to (3.25)) that cuts R3 into O(D3) cells with O(m/D3) points

in each cell, and let Z = Z(P ). Let mi be the number of points lying in the i–th cell of the

above decomposition, and let ni be the number of surfaces that meet the interior of the i–th

cell.

Lemma 46. ∑
ni . D2n. (3.7)

Proof. Let S be a surface that is not contained in Z. Since there are finitely many cells, we

can select a large closed ball B ⊂ R3 so that the number of cells that meet S is equal to the

number of cells that meet S∩B. We can apply a small generic translation to S, and doing so

can only increase the number of cells that meet S∩B (and thus can only increase the number

of cells that meet S). Select a generic vector v ∈ R3 and let T (x) = v ∧∇fS(x)∧∇P (x), so

if x ∈ S ∩ Z and ∇fS(x) and ∇P (x) are non-zero and non-collinear, then T (x) = 0 if the

curve S ∩ Z is tangent at x to a plane with normal vector v.

For every cell Ω that meets S, either Ω contains an entire connected component of S

(since S has bounded degree, at most O(1) cells can contain an entire connected component

of S), or there is a point x ∈ ∂Ω ∩ S satisfying the following properties.

1. x is a smooth point of the space curve Z ∩ S.

2. x is a non-singular intersection point of Z(T ) ∩ Z ∩ S.

3. x is a smooth point of ∂Ω.

These three properties follow from the fact that v is generic and we picked a generic transla-

tion of S. From Item 3, each point x satisfying the above properties can be associated to at
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most two distinct cells. By Item 2 and the real Bézout inequality (see e.g. [BPR06, §4.7]),

there can be at most deg(P ) deg(T ) deg(fs) = O(D2) such points, and thus S can enter at

most O(D2) such cells. Since there are n surfaces in S, the result follows.

Using Lemma 46 and the bound from (3.4) we can control the number of incidences

between points not lying in Z and surfaces in S:

I(P\Z,S) =
∑
i

I(P ∩ Ωi,S)

.
∑
i

min
1−1/k
i + ni

.
(∑

i

mk
i

)1/k(∑
i

ni

)1−1/k

+D2n

.
(
D3 m

k

D3k

)1/k

(D2n)1−1/k +D2n

.
mn1−1/k

D1−1/k
+D2n.

(3.8)

We must now control I(P ∩ Z,S). We have

I(P ∩ Z,S) = I(P ∩ Z,S1) + I(P ∩ Z,S2), (3.9)

where S1 is the set of surfaces contained in Z, and S2 are the remaining surfaces. Since Z

has degree D, Z can contain at most D surfaces from S, i.e. |S1| ≤ D. By (3.5),

I(P ∩ Z,S1) . |S1| |P|2/3 + |P|

. Dm2/3 +m.
(3.10)

Thus it remains to control I(P∩Z,S2). Write P = P1 . . . P`, where each Pj is irreducible

of degree Dj, and let Zj = Z(Pj). Thus we have D1 + . . .+D` ≤ D, and Z =
⋃
Zj. We would

like to use Lemma 24 to perform a second discrete polynomial ham sandwich decomposition

on each variety Zj, but if (Pj) is not a real ideal then we cannot apply the lemma. Luckily,

the following lemma lets us remedy this situation.

Lemma 47. Let A ⊂ R[x1, . . . , xd] be a collection of irreducible polynomials. Then we can

find a new collection A′ of irreducible polynomials such that:
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1.
⋃
P∈A Z(P ) ⊂

⋃
P∈A′ Z(P ).

2.
∑

P∈A degP ≤
∑

P∈A′ degP .

3. (P ) is a real ideal for each P ∈ A′.

Proof. We shall proceed by induction on
∑

P∈A degP . If the sum is 1 then the result is

trivial since in that case A consists of a single linear polynomial, so we can let A′ = A.

Suppose the lemma has been established for all families Ã with
∑

P∈Ã degP < w, and let∑
P∈A degP = w. If (P ) is a real ideal for every P ∈ A then the result is immediate.

If not, select P0 ∈ A such that (P0) is not a real ideal. By Proposition 13 in Chapter 2,

∇P0 vanishes on Z(P0). Let v ∈ Rd be a generic unit vector. Then Z(P0) ⊂ Z(∇vP0)

and deg(∇vP0) < degP0. Write ∇vP0 = Q1 . . . Qa as a product of irreducible components,

and let Ã = A\{P0} ∪ {Q1, . . . , Qa}. We have
∑

P∈Ã degP < sumP∈ mathcalA degP = w,

and
⋃
P∈A Z(P ) ⊂

⋃
P∈Ã Z(P ). Apply the induction hypothesis to Ã to obtain a family

Ã′ satisfying Properties 1–3 with Ã in place of A. We can verify that Ã′ has the desired

properties.

After applying Lemma 47, we can assume that each irreducible polynomial Pj in the

factorization of P generates a real ideal. Write P ∩ Z =
⊔
Pj, where Pj consists of those

points lying in Zj. If a point lies on two or more such varieties, place it into only one of the

sets. We need to distinguish between several cases. Let

A1 = {j : |Pj|k < Dk
jn},

A2 = {j : Dk
jn ≤ |Pj|k < D3k−1

j n},

A3 = {j : |Pj|k ≥ D3k−1
j n}.

(3.11)

For each j ∈ A1 we have

I(Pj,S2) . |Pj|n1−1/k + n

. Djn,
(3.12)
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where the second inequality uses the assumption |Pj| < Djn
1/k. Summing (3.12) over all

j ∈ A1, we obtain

I(
⋃
j∈A1

Pj,S2) .
∑
A1

Djn

≤ Dn.

(3.13)

Now we must control the incidences between surfaces and points lying on varieties Zj, j ∈

A2 or A3. If j ∈ A2, use Theorem 19 to select a square-free polynomial Qj of degree at most

Ej,

Ej =
( |Pj|k
nDk

j

)1/(2k−1)

, (3.14)

that cuts R3 into O(E3
j ) cells, each of which contains O(|Pj|/E3

j ) points of Pj. Recall that

Pj is irreducible, (Pj) is real, and j ∈ A2 implies deg(Qj) ≤ Ej < deg(Pj). Thus Qj does

not vanish identically on Zj. Let Qj = {Qj} and let Wj = Z(Qj).

If j ∈ A3, let Ej be as in (3.14) and use Theorem 24 (with E = Ej) to find a family

Qj of polynomials satisfying properties 1–4 of the theorem. In particular, the realizations of

the realizable strict sign conditions of Qj on Zj partition Zj into O(DjE
2
j ) (not necessarily

connected) sets, each of which contains O
(
|Pj|/DjE

2
j

)
points, plus the “boundary” Zj ∩⋃

Qj Z(Q). Define Wj =
⋃
Qj Z(Q) (thus the definition of Wj depends on whether j ∈ A2 or

j ∈ A3).

Regardless of whether j ∈ A2 or A3, have

I(Pj,S2) = I(Pj\Wj,S2) + I(Pj ∩Wj,S2). (3.15)

We shall begin by bounding the first term of (3.15). If j ∈ A2, then through the same

computation performed in (3.8) we have

I(Pj\Wj,S2) .
|Pj|n1−1/k

E
1−1/k
j

+ nE2
j

≤ |Pj|n
1−1/k

E
1−1/k
j

+ nDjEj.

(3.16)
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If j ∈ A3, then let Ωij be the realization of the i–th realizable strict sign condition

of Qj on Zj. Recall that there are O(DjE
2
j ) such realizable strict sign conditions. Let

mij = |Pj ∩ Ωij|, and let nij be the number of surfaces in S2 that intersect Ωij.

Lemma 48. ∑
i

nij . nDjEj. (3.17)

Proof. If a surface S ∈ S2 lies in Wj then it does not contribute to the above sum, so we need

only consider those surfaces that do not lie in Zj or Wj. First, we can replace each Q ∈ Q by

the polynomial Q+ε for ε > 0 a sufficiently small constant. If S∩{x ∈ R3 : Q(x) > 0}∩Zj 6=

∅, then there must be a point on S ∩ Zj where Q is positive, so S ∩ {x ∈ R3 : Q(x) + ε >

0} ∩ Zj 6= ∅ for ε sufficiently small, and similarly for S ∩ {x ∈ R3 : Q(x) < 0} ∩ Zj. Thus

replacing each Q ∈ Q by Q + ε does not increase the number of realizations of realizable

strict sign conditions that meet S. We shall select a small generic (with respect to S and

Zj) choice of ε.

By Corollary 56 in Appendix A below, we can assume that each irreducible component

of each polynomial in Qj generates a real ideal.

Instead of counting
∑

i nij directly, we shall bound the number of times a surface S

enters a connected component of Zj\Wj, as this quantity controls
∑

i nij (i.e. if the same

surface enters multiple connected components of the same realization of a realizable strict

sign condition then we will over-count, but this is acceptable). The proof is essentially

topological.

Let S ∈ S2 with S not contained in Wj. As in Lemma 46, we can select a large closed ball

B so that the number of connected components of Zj\Wj that S enters is equal to the number

of connected components that S ∩ B enters. Now, replace S by S ′ = Z((fS + ε)(fS − ε))

for ε > 0 a sufficiently small generic number. Provided ε is sufficiently small, if S meets a

connected component ∆ of Z\Wj then S ′ also meets ∆, since fS is a continuous function on

the (relatively) open set ∆, so fS vanishes somewhere on ∆ but does not vanish identically

on ∆. Thus it suffices to count the number of times S ′ meets a connected component of
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Zj\Wj. After replacing S by S ′ (and recalling that we applied a small generic perturbation

to each Q ∈ Q), every point in Zj ∩Wj ∩ S ′ is a point of non-singular intersection.

Now, if S meets a connected component ∆ of Zj\Wj, then one of the following two things

must occur:

1. ∆ contains (all of) a connected component of S ′ ∩ Zj.

2. S ′ ∩ ∆ contains a (topological) curve that meets the boundary of ∆ at a point x ∈

S ′ ∩ Zj ∩Wj. Furthermore, there is at most one other connected component ∆′ for

which Item 2 holds for the same point x.

We will first bound the number of times Item 1 can occur by showing that S ′∩Zj contains

O(D2
j ) = O(DjEj) connected components. Apply a generic rotation to the coordinate axes,

and consider the plane curve γ = Z(resx3(fS′ , Pj)), where resx3 is the resultant of fS′ and

Pj in the x3 variable. Since neither of the (two) irreducible components of S ′ are contained

in Zj, γ is indeed a plane curve, and γ contains the image of the projection of S ′ ∩ Zj in

the x3 direction. Thus, the number of connected components of S ′ ∩ Zj is bounded by the

number of connected components of γ plus the number of singular points of γ. Since γ has

degree O(Dj), both these quantities are O(D2
j ) (this follows from Bézout’s theorem in the

plane and the Harnack curve theorem).

We will now bound the number of times Item 2 can occur. By the real Bézout’s inequality,

S ′∩Zj∩Wj contains O(DjEj) points of non-singular intersection, and thus Item 2 can occur

at most O(DjEj) times.

Thus S ′ can enter at most O(DjEj) connected components of Zj\Wj. Since there are at

most n surfaces, the result follows.

Remark 49. A similar result to Lemma 48 can be obtained from the recent work of Barone

and Basu in [BB12] and Solymosi and Tao in [ST12].
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Using Lemma 48, we have

I(Pj\Wj,S2) =
∑
i

I(Pj ∩ Ωij,S2)

.
∑
i

mijn
1−1/k
ij + nij

≤
(∑

i

mk
ij

)1/k(∑
i

nij

)1−1/k

+ nij

.
(
DjE

2
j

|Pj|k

(DjE2
j )
k

)1/k

(nDjEj)
1−1/k + nDjEj

=
|Pj|n1−1/k

E
1−1/k
j

+ nDjEj.

(3.18)

Our analysis of the second term of (3.15) will be the same regardless of whether j ∈ A2

or A3. We shall express this bound as a lemma.

Lemma 50. For j ∈ A2 ∪ A3, let Zj, Wj, Pj, and S2 be as above. Then

I(Pj ∩Wj,S2) . nDjEj + |Pj|. (3.19)

Proof. We shall write

I(Pj ∩Wj,S2) = I1(Pj ∩Wj,S2) + I2(Pj ∩Wj,S2), (3.20)

where I1 counts those incidences between points p ∈ Pj ∩ Wj and surfaces S ∈ S2 such

that p∗ lies on a 1 (complex) dimensional component of S∗ ∩ Z∗j ∩W ∗
j , and I2 counts the

remaining incidences. To control I2, note that by Bézout’s inequality (over C), for each

S ∈ S2, S
∗ ∩ Z∗j ∩W ∗

j contains O(DjEj) isolated points. Since |S2| ≤ n we obtain

I2(Pj ∩Wj,S2) . nDjEj. (3.21)

Thus it remains to control I1. First, we shall replace Qj with a new family of polynomials

Q̃j with the following properties:

1. Zj ∩Wj ⊂ Zj ∩
⋃
Q∈Q̃j Z(Q).

2.
∑

Q∈Q̃j degQ ≤ Ej.
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3. Each Q ∈ Q̃j is irreducible.

4. For each Q ∈ Q̃j, every irreducible component of Z∗j ∩Z(Q)∗ that contains a real point

has (complex) dimension 1.

The procedure will be similar to that in the proof of Lemma 47: For each Q ∈ Qj, write Q =

Q1, . . . , Qa as a product of irreducible factors. Discard those factors Qb with Z(Qb)∩Zj = ∅.

Of the remaining factors, place each irreducible factor that generates a real ideal in Q̃j. If

Qb is a factor that does not generate a real ideal then consider ∇vQb for v a generic vector.

By assumption, Qb does not vanish identically on Zj, but it does vanish on at least one

point on Zj. Thus Qb is not constant on Zj, so ∇Qj does not vanish identically on Zj and

hence if v is a generic vector then ∇vQb does not vanish identically on Zj. Thus we can

repeat the above procedure with ∇vQb in place of Qb. This process will eventually terminate,

and the resulting collection of polynomials Q̃j has the desired properties; Properties 1–3 are

immediate. To obtain Property 4, suppose that for some Q ∈ Q̃j, Z∗j ∩ Z(Q)∗ fails to be a

complete intersection. Then there exists some variety Y that is an irreducible component of

both Z∗j and Z(Q)∗. by Proposition 17 in Chapter 2, R(Y ) is an irreducible component of

Zj and Z(Q), and thus either R(Y ) = ∅ or R(Y ) = Zj = Z(Q). The latter is impossible

since Zj and Z(Q) have dimension 2, while Zj ∩ Z(Q) has dimension at most 1.

Let

W̃j =
⋃
Q∈Q̃j

Z(Q).

We can write

Z∗j ∩ W̃ ∗
j =

⋃
Yj (3.22)

as a union of irreducible (complex) varieties. By Property 4 above, we need only consider

those components with (complex) dimension 1. We shall discard all components that have

dimension 2. Let

P̃j = {p ∈ Pj : there exists a (Euclidean) neighborhood U ⊂ C3 of p∗ such

that Z∗j ∩ W̃ ∗
j ∩ U is a (topological) 1–complex-dimensional curve}.
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We shall establish several claims.

1. Z∗j ∩ W̃ ∗
j is a union of O(DjEj) irreducible varieties.

2. If p ∈ P̃j then p∗ lies on at most one of the irreducible components from (3.22).

3. Let Y be a variety from the above decomposition. If there exist three surfaces S1, S2, S3

in S2 such that Y ⊂ S∗i , i = 1, 2, 3, then |Pj ∩R(Y )| ≤ C.

4. If S ∈ S2, then there are O(DjEj) points p /∈ P̃j such that p∗ is contained in a

1–dimensional component of S∗ ∩ Z∗j ∩W ∗
j .

For Item 1, see e.g. [Ful98]. Item 2 follows from the assumption that every variety in the

decomposition (3.22) has dimension 1. Item 3 follows from the requirement that any three

surfaces intersect in at most C points. To obtain Item 4, suppose that Dj ≤ Ej (if not, we

can interchange the roles of Zj and Wj). Note that if p satisfies the requirements of Item 4,

then S∗ ∩ Z∗j ∩W ∗
j fails to be a complex (C0) curve in a small neighborhood of p∗ (i.e. in

a small neighborhood of p∗, S∗ ∩ Z∗j ∩W ∗
j is a union of several complex curves all passing

though p∗), and thus S∗ ∩ Z∗j fails to be a complex (C0) curve in a small neighborhood of

p∗. Thus after a generic rotation of the coordinate axis, the image of p∗ under the projection

(x1, x2, x3) 7→ (x1, x2) is a singular point of the (complex) plane curve Z(resx3(fS, Pj))
∗,

where resx3 is the bivariate polynomial obtained by taking the resultant of fS and Pj in the

x3 variable. This curve has degree O(Dj) and thus has O(D2
j ) = O(DjEj) singular points.

Now, for each S ∈ S2, at most O(DjEj) points p ∈ Pj\P̃j can contribute to I1(Pj, {S}),

so the total contribution from all surfaces in S2 is O(nDjEj). To control the remaining

incidences, use Item 3 to write {Yj} = {Y ′j } t {Y ′′j }, where the first set consists of varieties

that are contained in at most 2 surfaces S ∈ S2, and the second consists of varieties that

contain at most C points. Each point p ∈ P̃j with p∗ ∈
⋃
Y ′j can be incident to at most two

surfaces, so the total contribution from such points is O(|Pj|). On the other hand, by Item

1 at most O(DjEj) points can be contained in R(
⋃
Y ′′j ), so these points can contribute at

most O(nDjEj) incidences.
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Combining (3.16), (3.18), and (3.19) and optimizing in Ej, we see that our choice of Ej

from (3.14) yields the bound

I(Pj,S2) . |Pj|
k

2k−1n
2k−2
2k−1D

k−1
2k−1

j +mj. (3.23)

Summing (3.23) over all j ∈ A2∪A3 and noting that 2k−1
k

and 2k−1
k−1

are conjugate exponents,

we obtain

I(
⋃

j∈A2∪A3

Pj,S2) .
∑
A2∪A3

|Pj|
k

2k−1n
2k−2
2k−1D

k−1
2k−1

j + |Pj|

. n
2k−2
2k−1

(∑
j

|Pj|
) k

2k−1
(∑

j

Dj

) k−1
2k−1

+m

. m
k

2k−1n
2k−2
2k−1D

k−1
2k−1 +m.

(3.24)

Finally, selecting

D = m
k

3k−1n
−1

3k−1 , (3.25)

which by (3.6) satisfies D > C, and combining (3.6), (3.8), (3.10), (3.13), and (3.24), we

obtain

I(P ,S) . D2n+m+
mn1−1/k

D1−1/k
+Dm2/3

+ nD +m+m
k

2k−1n
2k−2
2k−1D

k−1
2k−1

. m
2k

3k−1n
3k−3
3k−1 +m

2
3

+ k
3k−1n

−1
3k−1 +m+ n

. m
2k

3k−1n
3k−3
3k−1 +m+ n.

(3.26)

3.3 Applications

In [Erd46, Erd60], Erdős asked how many unit distances there could be amongst m points

in the plane or in R3. Theorem 40 yields new bounds for the R3 version of this question.

Let P be a collection of m points in R3, and let S be a collection of unit spheres centered
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about the points in P . We can immediately verify that any three spheres have at most eight

points in common, so Theorem 40 tells us that there are O(m3/2) point-sphere incidences,

i.e.

Theorem 51. The maximum number of unit-distance pairs in a set of m points in R3 is

O(m3/2).

This is a slight improvement over the previous bound of O(m3/2β(m)) from [CEG90],

where β is a very slowly growing function.

As observed in [CEG90], Theorem 40, combined with the method outlined in [Chu88]

can be used to establish bounds on the number of incidences between points and spheres in

Rd. Specifically, we have the following theorem:

Theorem 52. The maximum number of incidences between m points and n spheres in Rd

is

O(md/(d+1)nd/(d+1) +m+ n), (3.27)

provided no d of the spheres intersect in a common circle.

Again, this is a slight improvement (by a β(m,n) factor) from the analogous bounds

established in [CEG90]. See [CEG90, §6.5] for additional applications of Theorem 40. In

each case, we are able to slightly sharpen the bound from [CEG90] by removing the β(m)

factor.

3.4 Generalizations to higher dimension

It is reasonable to ask whether Theorem 40 can be generalized to incidences between points

and hypersurfaces in higher dimensions. This task appears to be quite involved, as the

necessary algebraic geometry becomes more difficult. In particular, it appears that in order

to generalize the proof of Theorem 40 to (say) spheres in Rd, we need to perform d − 1

polynomial ham sandwich decompositions, with each successive decomposition performed
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on the variety defined by the previous decompositions. As d increases, the number of cases

to be considered increases dramatically, and certain difficulties such as the failure of the

connected components of a complete intersection to themselves be a complete intersection,

the failure of an arbitrary complete intersection to be a nonsingular complete intersection,

etc. become increasingly problematic.

One could also consider two dimensional surfaces in Rd, d > 3, and this appears to be

more promising. However, the analogues of (3.10) and Lemma 50 become more difficult:

an algebraic variety of dimension d − 1 can contain many 2–dimensional surfaces without

obvious constraints being imposed on its structure, and in higher dimensions there are more

(and more complicated) ways in which varieties can fail to intersect completely. Nevertheless,

this is certainly a promising area for future work.

Appendix A: Removing non-real components from a polynomial

Definition 53. If P ⊂ R[x1, . . . , xd] is a polynomial and P = P1, . . . , P` is its factorization,

we define P̂ to be the polynomial obtained by removing those irreducible components that

generate ideals that aren’t real. If every irreducible component of P generates an ideal that

is not real, then we define P̂ = 1.

Example 54. Let P = (x2
1 +x2

2 +x2
3−1)(x2

1 +x2
2). Then P̂ = x2

1 +x2
2 +x2

3−1. Geometrically, if

P̂ 6= 1, then Z(P ) is a (d−1)–dimensional (real) variety, but some of the components of Z(P )

may have dimension less than d − 1. P̂ keeps only those factors that generate components

that have dimension d − 1, and discards the rest. Note that Z(P̂ ) may still contain points

whose local dimension is less than d− 1.

The existence of polynomials that do not generate real ideals complicates our analysis,

but since the zero sets of such polynomials have codimension at least 2, we can ignore them

when we are computing the number of times a surface meets the realization of a realizable

strict sign condition of a family of polynomials. The following theorem helps make this

statement precise.
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Theorem 55. Let Q ⊂ R[x1, . . . , xd], d ≥ 3 be a collection of real polynomials and let

Q̂ = {Q̂ : Q ∈ Q}. Then there exists a bijection

τ : Reali(Q)→ Reali(Q̂)

such that

X ⊂ τ(X) for every X ∈ Reali(Q). (3.28)

Similarly, if Z = Z(P ) where P ∈ R[x1, . . . , xd] generates a real ideal and no polynomial

Q ∈ Q vanishes identically on Z, then there exists a bijection

τ : Reali(Q, Z)→ Reali(Q̂, Z)

such that

X ⊂ τ(X) for every X ∈ Reali(Q, Z). (3.29)

Proof. First, by Item 5 of Proposition 13, for each Q ∈ Q we have that Q/Q̂ ≥ 0 or Q/Q̂ ≤ 0

on all of Rd. Choose εQ ∈ {±1} so that εQQ/Q̂ ≥ 0. Now, note that if there exist Q1, Q2 ∈ Q

with Q̂1 = Q̂2 and if σ is a strict sign condition on Q, then either εQ1σ(Q1) = εQ2σ(Q2)

or Reali(σ,Q) = ∅. Thus if σ is a realizable strict sign condition on Q, then we can define

σ̂ : Q̂ → {±1} by σ̂(T ) = εQσ(Q), where Q ∈ Q satisfies T = Q̂, and σ̂ is well-defined.

We shall show that the map ΣQ → ΣQ̂, σ 7→ σ̂ is a bijection. To prove injectivity, note

that if distinct σ1, σ2 both map to the same element σ̂, then εQσ1(Q) = εQσ2(Q) for all

Q ∈ Q, so clearly σ1 = σ2. To establish surjectivity, note that each σ1 ∈ ΣQ̃ has a pre-image

under the map σ 7→ σ̂. Thus every element of ΣQ̃ may be written as σ̂ for some strict sign

condition σ on Q. All that we must establish is that σ is realizable. For each Q ∈ Q, we

have

dim
(
{Q̂ > 0}\{εQQ > 0}

)
≤ d− 2, (3.30)

(see i.e. [BCR98] for the dimension of a semi-algebraic set). On the other hand, the realization

of each realizable strict sign condition of Q̂ has dimension d. Thus if Reali(σ̂, Q̂) 6= ∅

then Reali(σ,Q) can be written as a (non-empty) dimension d semi-algebraic set minus a

dimension d− 2 semi-algebraic set, and in particular, Reali(σ,Q) 6= ∅.
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Thus the map Reali(Q) → Reali(Q̂) given by Reali(σ,Q) 7→ Reali(σ̂, Q̂) is well-defined

and is a bijection. Now, note that by Items 3 and 5 of Proposition 13, {εQQ > 0} ⊂ {Q̂ > 0},

and similarly with “>” replaced by “<”). Thus

Reali(σ,Q) ⊂ Reali(σ̂, Q̂),

so (3.28) holds.

The same arguments establish the second part of the theorem. The only new thing that

must be verified is that the map ΣQ,Z → ΣQ̂,Z , σ 7→ σ̂ is onto. However, this is established

by (3.30) plus the fact that the realization of each realizable strict sign condition of Q on Z

has dimension d− 1.

Corollary 56. Let S ⊂ R3 be a smooth surface, let Q be a collection of polynomials, and let

Q̂ be as in Theorem 55. Then

|{X ∈ Reali(Q) : X ∩ S 6= ∅}| ≤ |{X ∈ Reali(Q̂) : X ∩ S 6= ∅}|. (3.31)

Similarly, let S ⊂ R3 be a smooth surface, let Z = Z(P ) where P ∈ R[x1, x2, x3] generates a

real ideal, let Q be a collection of polynomials, none of which vanish identically on Z, and

let Q̂ be as in Theorem 55. Then

|{X ∈ Reali(Q, Z) : X ∩ S 6= ∅}| ≤ |{X ∈ Reali(Q̂, Z) : X ∩ S 6= ∅}|. (3.32)

33



CHAPTER 4

A Szemerédi-Trotter type theorem in R4

4.1 Introduction

In [ST83], Szemerédi and Trotter proved the following theorem:

Theorem 57 (Szemerédi-Trotter). The number of incidences between m points and n lines

in R2 is O(m2/3n2/3 +m+ n).

Theorem 57 has seen a number of generalizations. In [T03], Tóth generalized Theorem

57 to complex points and lines in C2. However, as of this writing (2013), Tóth’s paper is still

in the midst of a lengthy review process while awaiting publication. Solymosi and Tardos

[ST07] gave a simpler proof of the same result in the special case where the point set is

a Cartesian product of the form A × B ⊂ C2. Edelsbrunner and Sharir [ES91] obtained

incidence results for certain configurations of points and codimension–1 hyperplanes in R4,

and  Laba and Solymosi [IS07] obtained incidence bounds for points and a general class of

2–dimensional surfaces in R3, provided the points satisfied a certain homogeneity condition.

Elekes and Tóth [ET05] and later Solymosi and Tóth [Sol05] obtained incidence results

between points and hyperplanes in Rd, again provided the points satisfied various non-

degeneracy and homogeneity conditions.

In [ST12], Solymosi and Tao used the discrete polynomial ham sandwich theorem to

obtain bounds for the number of incidences between points and flats. Aside from an ε loss

in the exponent, Solymosi and Tao’s result resolved a conjecture of Tóth on the number

of incidences between points and d–flats in R2d. The discrete polynomial ham sandwich

theorem was also used by the author in [Zah13a] to obtain incidence results between points
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and 2–dimensional surfaces in R3 (with no homogeneity condition), and by Kaplan et al. in

[KMS12a] to obtain similar bounds on the number of incidences between points and spheres

in R3.

Here, we combine the crossing lemma and the discrete polynomial ham sandwich theorem

to obtain a new result which can be seen either as a sharpening of the R4 version of the

Solymosi-Tao result from [ST12] or a generalization of Tóth’s result from [T03]. To the best

of the author’s knowledge, this is the first time these two techniques have been used together.

4.1.1 New Results

Definition 58. Let P be a collection of points in R4 and S a collection of 2–flats. We define

the set of incidences of P and S to be

I(P ,S) = |{(p, S) ∈ P × S : p ∈ S}|.

In [Zah12b], the author proved the following theorem.

Theorem 59. Let P ⊂ R4 be a collection of points, with |P| = m. Let S be a collection of

2–flats, with the property that no two 2–flats meet in a common line. Suppose that m ≤ n.

Then

I(P ,S) . m2/3n2/3 +m+ n. (4.1)

In this section, we will give an abbreviated proof of the theorem (the original theorem in

[Zah12b] was more general).

4.1.2 Corollaries and applications of Theorem 59

We can use Theorem 59 to recover the Szemerédi-Trotter theorem for complex lines in C2,

which was originally proved by Tóth in [T03]. Note that by point-line duality in C2, we can

always assume that the number of lines is at least as great as the number of points (i.e. we

can always assume ρ ≤ 1). Thus we have:
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Corollary 60 (Complex Szemerédi-Trotter). Let P be a collection of m points and let S be

a collection of n (complex) lines in C2. Then the number of incidences between points in P

and complex lines in S is O(m2/3n2/3 +m+ n).

4.1.3 Proof sketch

The basic idea is as follows. Since each pair of points has at most two 2–planes passing

through both of them, we can use the Cauchy-Schwarz inequality to obtain a rudimentary

bound on the cardinality of any collection of point-flat incidences. We will call this the

Cauchy-Schwarz bound. Using the discrete polynomial ham sandwich theorem, we find a

polynomial P of controlled degree whose zero set cuts R4 into open “cells,” such that each

cell contains roughly the same number of points from P , and each 2–flat from S does not

enter too many cells. We can then apply the Cauchy-Schwarz bound within each cell. This

allows us to count the incidences occurring between flats and points in P\Z. In order

to count the remaining incidences, we perform a “second level” polynomial ham sandwich

decomposition on the variety Z. This gives us a polynomial Q which cuts Z into a collection

of 3–dimensional cells, which are open in the relative (Euclidean) topology of Z. We then

apply the Cauchy-Schwarz bound to each of these 3–dimensional cells. The only incidences

left to count are those between flats in S and points in P∩Z∩{Q = 0}. Let Y = Z∩{Q = 0}.

We can choose P and Q in such a way that Y is a 2–dimensional variety in R4. Let S be a

2–flat in S. Then S will intersect Y in a union of isolated points (proper intersections) and 1–

dimensional curves (non-proper intersections) (the case where S meets Y in a 2–dimensional

variety can be dealt with easily). The number of isolated points in the intersection can be

controlled by the degrees of the polynomials P and Q (we are working over R, where Bézout’s

theorem need not hold, so we need to be a bit careful), and thus the number of incidences

between points p ∈ P ∩ Y and flats S ∈ S such that p is an isolated point of S ∩ Y can be

controlled.

The only remaining task is to control the number of incidences between points of P ∩ Y
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and 1–dimensional curves arising from the intersection of Y and flats S ∈ S. To simplify the

exposition, pretend Y is a disjoint union of N 2–planes, i.e. Y = Π1 t . . . t ΠN (of course,

we will not make this assumption when we prove the actual result). Then for each plane Πi,

Πi ∩ S = LS,i is a line on Πi. It remains to count the number of incidences between P ∩ Πi

and {LS,i}S∈S . The Szemerédi-Trotter theorem for lines in R2 would give us the bound

I(P ∩ Πi, {LS,i}S∈S) ≤ C|P ∩ Πi|2/3|S|2/3 + |P ∩ Πi|+ |S|, (4.2)

but if we sum (4.2) over the N values of i, we have only bounded the number of incidences

by N1/3|P|2/3|S|2/3 + |P| + |S|. Since N can be quite large, this is not sufficient. Instead,

recall Székely’s proof in [Sz97] of the Szemerédi-Trotter theorem, which uses the crossing

lemma (the crossing lemma and all other graph-related quantities are defined in Section 2.2).

Loosely speaking, we consider the graph drawing Gi on Πi whose vertices are the points of

P ∩Πi, and two vertices are connected by an edge if there is a line segment from {Li,S}S∈S

passing through the two points. Then the number of edges of the graph is comparable to the

number of incidences between points and lines, and this is controlled by C(Gi)
1/3V(Gi)

2/3,

where C(Gi) is the number of edge crossings and V(Gi) is the number of vertices of Gi. Thus

in place of (4.2), we have

I(P ∩ Πi, {LS,i}S∈S) ≤ C|P ∩ Πi|2/3|C(Gi)|1/3 + |P ∩ Πi|+ |S|. (4.3)

The key insight is that ∑
i

|C(Gi)| ≤ |S|2. (4.4)

Indeed, every pair of 2–planes S, S ′ ∈ S can intersect in at most one point, and since we

assumed the planes {Πi} composing Y were disjoint, the intersection point of S ∩ S ′ can

occur on Πi for at most one index i. Summing (4.3) over all choices of i, applying Hölder’s

inequality, and inserting (4.4), we obtain the correct bound on the number of incidences

between 2–flats in S and points lying on Y .

Unfortunately, the assumption that Y is a disjoint union of 2–planes need not be true.

Thus we must cut Y up into pieces, each of which behaves like a 2–plane, and we need to
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prove a more general form of the Szemerédi-Trotter theorem for families of curves and points

that lie on suitable domains. This is a purely topological argument, and it is done using the

crossing lemma. The decomposition of Y into suitable domains relies on results from real

algebraic geometry, and it works well provided Y is not of too high degree. The degree of Y

depends on the value of (log |P|)/(log |S|). If |P| is too large compared to |S|, the degree of

Y is too big, and we cannot cut Y into suitable pieces without introducing error terms that

are larger than the bounds we are trying to prove. This is why we impose the requirement

m ≤ n. In [Zah12b], we use more sophisticated techniques to get around this problem,

4.2 Proof of Theorem 59 step 1: cell partitionings

4.2.1 Initial reductions

We shall prove the statement by induction on m. Thus, we may assume that (4.1) holds for

all collections |P ′|, |S ′ with |P ′| ≤ m. Let C0 be the implicit constant in (4.1).

From Lemma 1, we have

|I| . mn1/2 + n, (4.5)

|I| . m1/2n+m (4.6)

Thus we may assume

n < cm2,

m < cn2,
(4.7)

where c is a small constant (we may make c as small as we like by making the implicit

constant in (4.1) larger). Thus we may assume

m+ n < c0m
2/3n2/3, (4.8)

where we may make c0 arbitrarily small at the cost of increasing the implicit constant in

(4.1).
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4.2.2 First polynomial partition

Let

D = m1/3n−1/6, (4.9)

which by (4.7) satisfies

C < D < n1/2. (4.10)

Let P be a square-free polynomial of degree at most D such that Z = Z(P ) cuts R4 into

O(D4) cells {Ωi}, such that |P ∩ Ωi| . m/D4. Let mi be the number of points in the i–th

cell, and let ni be the number of 2–flats in S that meet the i–th cell. We have mi . m/D4.

Lemma 61. ∑
ni . D2n (4.11)

Proof. The proof is similar to the proof of Lemma 46 in Chapter 3, so we will only give

a brief sketch here. Let S ∈ S. Select a large number R so that every cell that meets

S does so within the ball centered at the origin of radius R. Let P̃ = P · fB, where

fB(x1, x2, x3, x4) = x2
1 +x2

2 +x2
3 +x2

4−R2. Thus the number of cells of Z(P ) that S meets is

at most the number of bounded cells of Z(P̃ ) that S meets. Since the property of S meeting

a cell is open, we can apply a small generic translation to S and a small generic perturbation

to P̃ , and doing so can only increase the number of bounded cells that S meets. Now, we

can find f1, f2 such that S ⊂ Z(f1) ∩ Z(f2), (f1, f2) is a reduced ideal, and f1 and f2 are of

bounded degree. Let v be a generic vector in R4, and let T (x) = v ∧∇f1 ∧∇f2 ∧∇P̃ . Then

deg T (x) . D. Now, the number of cells of Z(P̃ ) that S enters is controlled by the number

of (necessarily non-singular) intersection points of S, Z(P̃ ), and Z(T ) (again, see Lemma 46

in Chapter 3 for details), and this is O(D2).
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We have ∑
i

I(P ∩ Ωi,S) .
∑
i

(|P ∩ Ωi|n1/2
i + ni)

≤
(∑

i

(
m

D4
)2
)1/2(∑

i

ni

)1/2

+
∑
i

ni

.
mn1/2

D
+ nD2.

(4.12)

Selecting D as in (4.9), we have

∑
i

I(P ∩ Ωi,S) . m2/3n2/3. (4.13)

4.2.3 Boundary incidences of the first partition

Let

S = S1 t S2, (4.14)

where S1 (resp. S2) consists of those 2–flats that are contained (resp. not contained) in Z.

Lemma 62.

|I ∩ I(P ∩ Zsmooth,S1)| . m. (4.15)

Proof. Let p ∈ P , and let H = Tp(Z). Suppose there existed flats S1, S2 ∈ S1 with p ∈ S, p ∈

S ′. Since S ⊂ Z, we have S ⊂ Tp(Z) = H. Similarly, S ′ ⊂ H. Recall that Tp(S)∩Tp(S ′) = p.

Thus we have two affine 2–planes, S and S ′ which meet only at the point p, but both are

contained in the affine 3–plane H. This cannot occur. Thus for each point p ∈ P , there can

exist at most one flat S ∈ S1 with p ∈ S.

Thus it suffices to consider incidences between 2–flats and points lying on Zsing. Let R

be the square-free part of |∇P |2, i.e. (R) is radical and Z(R) = Z(|∇P |2). Since P was

square-free, Z ∩Z(R) is a complete intersection. If we let S ′1 ⊂ S1 be those 2–flats contained

in Z ∩ Z(R), then we must have |S ′1| . D2, and thus applying Lemma 1, we have

I(P ∩ Zsing,S ′1) . D2m1/2 +m. (4.16)
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Let S ′2 ⊂ S1 be those 2–flats (contained in Z) that are not contained in Z(R). We must now

control I(P ∩ Z,S2) and I(P ∩ Z(R),S ′2). But note that Z and Z(R) are both the zero-set

of polynomials of degree O(D), and thus the two collections of incidences can be dealt with

in the same fashion.

4.2.4 Second ham sandwich decomposition

We shall now control |I ∩ I(P ∩ Z,S2)|. Factor P = P1 . . . , P`, with each Pj irreducible of

degree Dj, and let Zj = {Pj}. Let Pj ⊂ Zj ∩ P so that
⊔
Pj = P ; if the same point p lies

on several Zj, place p into just one of the sets Pj (the choice of set does not matter).

Let

A0 = {j : |Pj|2 ≤ c1nD
6
j},

A1 = {j : |Pj|2 ≥ c1nD
6
j}.

4.2.4.1 Incidences on varieties in A0

We have ∣∣ ⋃
j∈A0

Pj
∣∣ ≤ c1

∑
j∈A0

n1/2D3
j

≤ c1n
1/2D3

≤ c1m.

(4.17)

Thus by our induction hypothesis, we have

I(
⋃
j∈A0

Pj,S) ≤ C0c
2/3
1 m2/3n2/3 +m+ n

≤ C0(c0 + c1)m2/3n2/3,

(4.18)

where c1 is the constant from (4.8). If we choose c0 and c1 small enough, then the contribution

from (4.18) is acceptable.
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4.2.4.2 Incidences on varieties in A1

For each j ∈ A1, define

Ej = |Pj|1/2n−1/4D
−1/2
j . (4.19)

Use Theorem 24 to find a collection of polynomials Q ⊂ R[x1, . . . , x4] whose strict sign

conditions partition Zj into O(DjE
3
j ) “cells” (note that a cell need not be connected), such

that each cell contains O(|Pj|/DjE
3
j ) points from P . Let mij be the number of points from

Pj in the i–th strict sign condition, and let nij be the number of flats from S2 that meet the

i–th strict sign condition.

Lemma 63. ∑
i

nij . nDjEj. (4.20)

Proof. This proof is similar to the proof of Lemma 15 in [Zah13a], so we will only provide

a brief sketch here. Let S ∈ S. Write S ∩ Z as a union of irreducible curves, and denote

this collection of irreducible curves by Γ. By Harnack’s theorem (Proposition 16),
⋃
γ∈Γ γ

can have at most O((degP )2) components. Now, for each irreducible curve γ ∈ Γ and each

Q ∈ Q, either γ∗ ⊂ Z∗(Q) or |γ∗ ∩Z∗(Q)| . deg γ degQ, and thus |γ ∩Z(Q)| . deg γ degQ.

We will call intersections of this type “important” intersections between S, Z and Z(Q). If

γ∗ ⊂ Z∗(Q), then since γ∗ ⊂ Z∗(Q), γ ⊂ Z(Q), and thus γ does not enter any realizations

of realizable strict sign conditions of Q on Z. Now, if Ω is a realization of a realizable

sign condition of Q on Z, and S ∩ Ω 6= ∅, then we can associate to the pair (S,Ω) an

important intersection of S, Z, and Z(Q) for some Q ∈ Q in such a way that every important

intersection is assigned to at most 2 pairs (S,Ω). Thus the number of realizations of realizable

strict sign conditions of Q on Z is at most O(degP
∑

Q∈Q degQ) = O(DE).

Remark 64. A similar result to Lemma 63 can be obtained from the recent work of Barone

and Basu in [BB12].
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For each index j, we now have∑
i

I(Pj ∩ Ωij,S2) .
∑
i

mijn
1/2
ij +

∑
i

nij

.
(∑

i

(
|Pj|
DjE3

j

)2
)1/2(

DjEjn
)1/2

+DjEjn

.
|Pj|n1/2

Ej
+DjEjn.

(4.21)

Thus, if Wj =
⋃
Q∈Qj Z(Q), then

∑
j

I(Pj\Wj,S2) .
∑
j

(
|Pj|n1/2

Ej
+DjEjn)

. n3/4
∑
j

|Pj|1/2D1/2
j

. n3/4m1/2D1/2

. m2/3n2/3.

(4.22)

It remains to control the incidences that occur between flats in S2 and points that lie on⋃
j∈A1
Pj ∩Wj. We will do this in the next section.

4.3 Proof of Theorem 59 step 2: incidences on a surface in R4

Let

Y =
⋃

j∈A1∪A2

Zj ∩Wj. (4.23)

Recall that

degZj = Dj, degWj ≤ Ej, (4.24)

where
∑
Dj ≤ D (D is specified in (4.9), and Ej is specified in (4.19)). Our task is now to

establish the bound

I(P ∩ Y,S2) . m2/3n2/3 +m+ n. (4.25)

Once this has been done, Theorem 59 will be complete.
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Remark 65. Before we begin, let us first recall Székely’s proof in [Sz97] of the Szemerédi-

Trotter theorem, which uses the crossing lemma. Let P̃ be a collection of points and L a

collection of lines in R2. Let I(P̃ ,L) be the number of incidences between points in P̃ and

lines in L. Suppose that all of the points (and thus all of the incidences) are contained in

some large disk U ⊂ R2. Consider the following graph drawing H: the vertices of H are

the points of P̃ and the points where a line from L meets ∂U . The edges of H are the line

segments connecting two vertices that arise from lines in L. To each incidence (p, L) ∈ I,

we can associate an edge of H in such a way that the same edge is assigned to at most two

incidences. Thus I(P̃ ,L) . E(H). Now, delete all of the edges involving a vertex on ∂U ,

and delete the vertices on ∂U . We have deleted at most 2|L| edges. Let H ′ be the resulting

graph drawing. Then I(P̃ ,L) . E(H ′) + 2|L|. By the crossing lemma,

E(H ′) . V(H ′) + C(H ′)1/3V(H ′)2/3

. |P̃|+ |L|2/3|P̃|2/3.

Thus I(P̃ ,L) . |P̃|2/3|L|2/3|+ |P̃|+ |L|.

We wish to do the same thing on a 2–dimensional real algebraic variety in R4. In this

section, we will develop the tools to do this.

Definition 66. Recall that Yj = Zj ∩Wj. We define

I0 = {(p, S) ∈ P × S2 : p ∈ S, there exists an index j such that p

is an isolated point of S ∩ Yj}, (4.26)

I1 = I\I0. (4.27)

Note that since S 6⊂ Yj for any S ∈ S, I1 consists of those pairs (p, S) such that for each

index j, either p /∈ S ∩ Yj or p lies on a 1–dimensional component of S ∩ Yj.

We shall first deal with I0. Fix a choice of S and j. Since S 6⊂ Zj, S ∩ Zj consists

of 0 and 1–dimensional irreducible components. By Harnack’s theorem (Proposition 16),

S ∩ Zj can contain at most D2
j 0–dimensional components. Now, consider the collection Υ
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of 1–dimensional irreducible components of S ∩ Zj. We have
∑

γ∈Υ deg γ . Dj. For each

curve γ ∈ Υ, either γ∗ ⊂ W ∗
j , or γ∗ ∩W ∗

j is a discrete set. Let Υ1 and Υ2 denote those sets

where the former (resp. latter) occurs. If γ ∈ Υ1, then we must have γ ⊂ Yj, and thus for

any point p ∈ P that lies on γ, we must have (p, S) ∈ I1 (we will deal with these incidences

later). If γ ∈ Υ2, then by Bézout’s theorem (over C), |γ∗ ∩W ∗
j | ≤ deg γ ·Ej, and thus there

are at most O(deg γ · Ej) points p ∈ P for which p ∈ γ and (p, S) ∈ I0. Summing over all

curves in Υ2, we conclude ∑
γ∈Υ2

{(p, S) ∈ I0 : p ∈ γ} . DjEj. (4.28)

Summing (4.28) over all indices j and all choices of S ∈ S and adding back the incidences

that lie on 0–dimensional components of S ∩ Zj for al choices of S ∈ S, we obtain

|I0| . n
∑
j

(D2
j +DjEj)

. m2/3n2/3.

(4.29)

It remains to control |I1|. We will do this in the next section.

4.3.1 Building an incidence model: R–Alg −→ C0

Lemma 67. Let Y, {Yj}, P , S2, and I1 be as above.

Then there exists an “error set” I ′1 ⊂ I1 and an “incidence model”

M = {(Ui, Ai, Bi, ιi)}Mi=1,

where for each i,

• Ui ⊂ R4 is homeomorphic to an open subset of R2.

• Ai is a collection of open curves (homeomorphic to (0, 1)) contained in Ui.

• Bi ⊂ Ui is a collection of points.
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• ιi : Ui ↪→ R4 is an embedding.

M and I ′ have the following properties:

(i) M does not increase crossing number:

∑
i

∑
α,α′∈Ai

|α ∩ α′| ≤
∑
S,S′∈S

|S ∩ S ′|. (4.30)

(ii) M counts incidences: If (p, S) ∈ I1\I ′1, then there exists some index i, some p̃ ∈ Bi,

and some α ∈ Ai such that ιi(p̃) = p, p ∈ ιi(α), α = ι−1
i (S), and p̃ ∈ α.

(iii) The curves in Ai are quasi-lines: For each index i, and for pair of points p1, p2 ∈ Bi,

there is at most one curve in Ai passing through both p1 and p2.

(iv) M does not contain too many curves:

∑
i

|Ai| . |S|
∑
j

DjEj. (4.31)

(v) I ′ is not too big:

|I ′| . m2/3n2/3. (4.32)

Proof. We shall begin by constructing the “error set” I ′1:

I ′1 = {(p, S) ∈ I : p ∈ Ysing, p lies on a 1–dimensional

component of S ∩ Ysing}.
(4.33)

First, note that Ysing is an algebraic curve, and

deg(Ysing) ≤
(∑

j

DjEj

)2

.

Now, if p ∈ (Ysing)smooth and there exist two distinct flats S, S ′ ∈ S such that both (p, S)

and (p, S ′) are in I ′1, then S ∩ S ′ must contain a 1–dimensional component of Ysing, so in

particular S ∩S ′ is not a discrete set, which contradicts the requirement that every two flats
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meet at a single point. Thus for each p ∈ (Ysing)smooth, there exists at most one S ∈ S for

which (p, S) ∈ I ′1. Thus it suffices to control

∑
p∈(Ysing)sing

# of curves of Ysing passing through p. (4.34)

However, (4.34) is bounded by the degree of (Ysing)sing, which is

O
((∑

j

DjEj

)4)
.

Since m ≤ n, this establishes (4.32).

Now for each S ∈ S, we shall partition the curves of S ∩ Y that do not lie in Ysing into

classes ΓS,j. Write S ∩ Y as a union of irreducible real curves and isolated points. For

each irreducible real curve γ, either γ ⊂ Ysing, or there is a unique index j for which every

1–dimensional connected component of γ lies in Yj (note that γ may have 0–dimensional

components, which need not lie in Yj, but since we are only counting incidences in I1, we do

not care about incidences involving 0–dimensional components). If γ 6⊂ Ysing, place γ in ΓS,j

for this choice of j.

Similarly, partition P into collections {Pj}, where p ∈ Pj if j is the minimal index for

which p ∈ Yj. Then if p ∈ P , S ∈ S, (p, S) ∈ I1\I ′1, then there is a unique index j such that

p ∈ Pj and there exists a curve γ ∈ ΓS,j with p ∈ γ. Indeed, the only way this can fail to be

the case is if p ∈ Pj and every irreducible curve γ ⊂ S ∩ Y containing p lies in ΓS,j′ for some

index j′ 6= j. But this would imply that p is an isolated point of S ∩ Yj, and by assumption

I1 does not contain any pairs (S, p) for which this can occur.

Thus

I1\I ′1 ⊂
⋃
j

I1 ∩ {(p, S) : p ∈ γ for some γ ∈ ΓS,j}. (4.35)

We wish to consider each variety Yj and the associated points and curves on that variety

separately. However, before we do this we need to ensure that the same intersection S ∩ S ′

does not get counted as two distinct “crossings” on two different varieties (say Yj and Yj′).
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To prevent this from happening, we will keep track of the points where such an accident

might occur. To this end, for each S ∈ S and each index j let

ΞS,j =
⋃

γ∈ΓS,j

{x ∈ γ : there exists an index j′ 6= j such that

x is a discrete point of γ ∩ Yj}.
(4.36)

Recall the definition of the geometric multiplicity of a curve at a point (Definition 28)

By the same arguments used above to obtain (4.29),∑
x∈ΞS,j

∑
γ∈Γs,j

multg(γ, x) ≤ Ej
∑
γ∈ΓS,j

deg γ. (4.37)

Once we have removed the points ΞS,j, we can control the number of times two curves

intersect: ∑
j

∑
S,S′

∑
γ∈ΓS,j
γ′∈ΓS′,j

|(γ\ΞS,j) ∩ (γ′\ΞS′,j)| ≤
∑
S,S′

|S ∩ S ′|. (4.38)

Indeed, the only way (4.38) could fail is if the following occurs—there exist:

• Two flats S and S ′,

• A point x ∈ S ∩ S ′,

• Two indices j and j̃,

• Four curves γ ∈ ΓS,j, γ̃ ∈ ΓS,j̃, and γ′ ∈ ΓS′,j, γ̃
′ ∈ ΓS′,j̃

such that

x ∈ γ ∩ γ′, x ∈ γ̃ ∩ γ̃′, (4.39)

and

x /∈ ΞS,j ∪ ΞS,j̃ ∪ ΞS′,j ∪ ΞS′,j̃. (4.40)

But if (4.39) holds then x is an isolated point of γ ∩ Yj̃, so x ∈ ΞS,j and thus (4.40) fails.

This establishes (4.38) .

Thus, we can consider each variety Yj and its associated point and curve sets Pj, {ΓS,j}S∈S

individually. We are reduced to proving the following lemma.
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Lemma 68. Suppose we are given the following data:

• A 2–dimensional real variety of the form Yj = Zj ∩ Wj with Zj = Z(Pj), Wj =

Z(Qj), deg(Pj) = Dj, deg(Qj) = Ej.

• A collection of points P, a collection of 2–flats S, and for each S ∈ S, a collection ΓS,j

of irreducible curves in S ∩ Yj such that for each γ ∈ ΓS,j, γ 6⊂ (Yj)sing.

• A collection of incidences I ⊂ {(p, S) : p ∈ S} such that for each (p, S) ∈ I, there

exists γ ∈ ΓS,j with p ∈ γ.

• For each S ∈ S, a finite collection of “bad” points ΞS.

Then there exists an incidence model Mj = {(Ui, Ai, Bi, ιi)}Mi=1 satisfying:

(i) For each i, Ai is a collection of simple open curves, Bi is a collection of points, Ui is

homeomorphic to a open subset of R2, and ιi : Ui ↪→ R4 is an embedding.

(ii) ∑
i

∑
α,α′∈Ai

|α ∩ α′|

≤
∑
S,S′∈S

∣∣∣∣( ⋃
γ∈ΓS,j

γ\ΞS

)
∩
( ⋃
γ′∈ΓS′,j

γ′\ΞS′

)∣∣∣∣, (4.41)

i.e. the number of crossings between pairs of curves in the incidence model is controlled

by the number of crossings of the curves from ΓS,j and ΓS′,j that do not occur on the

“bad” sets ΞS or ΞS′ , as S and S ′ range over all pairs of flats.

(iii) If p ∈ P, S ∈ S, and γ ∈ ΓS,j, then there exists some index i, some p̃ ∈ Bi, and some

α ∈ Ai such that ιi(p̃) = p, α = ι−1
i (S), and p̃ ∈ α, i.e. the incidence model counts

curve-point incidences.

(iv) For each i, the curves in Ai are quasi-lines (in the sense of Item (iii) from Lemma 67).

(v) ∑
i

|Ai| .(D2
j +DjEj)n+

∑
S∈S

∑
x∈Xis

∑
γ∈ΓS,j

multg(γ, x), (4.42)
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where multg(γ, x) is as defined in Definition 28.

Once we have Lemma 68, we can prove Lemma 67 as follows. For each index j, apply

Lemma 68 to each collection (Yj,S, {ΓS,j}S∈S , I ∩ I(Pj,S), {ΞS,j}), and denote the resulting

incidence model Mj = {(U (j)
i , A

(j)
i , B

(j)
i , ι

(j)
i )}. From (4.38) and (4.41), we have∑

j

∑
i

∑
α,α′∈A(j)

i

|α ∩ α′| . |S|2. (4.43)

If (p, S) ∈ I, then as noted above there exists a unique index j and a curve γ ∈ ΓS,j with

p ∈ Pj and p ∈ γ. But then by Property (iii), there exists some index i, some p̃ ∈ B(j)
i , some

α ∈ A(j)
i such that p ∈ ι(j)i (α).

Finally, ∑
j

∑
i

|A(j)
i | . n

∑
j

(D2
j +DjEj) +

∑
S∈S

|Ξ(j)
S |

. n
∑
j

DjEj,
(4.44)

where on the final line we used the fact that Dj . Ej.

Thus the incidence model M =
⋃
jMj verifies the requirements of Lemma 67. This

concludes the proof of Lemma 67, modulo the proof of Lemma 68.

Proof of Lemma 68. We shall select a very large ball B0 containing all of the points from P ,

and we shall decompose B0 ∩ (Yj)smooth into a union of 2–dimensional C∞ manifolds. The

manifolds will have the property that for a suitably chosen 2–plane

Π0 = 〈e1, e2〉, (4.45)

any affine translate of Π0 will intersect a given manifold at most once (such manifolds are

called “monotone” in the computational geometry literature).

Indeed, let

Xj = {z ∈ (Yj)smooth : dim(Π0 ∩ Tz(Yj)) ≥ 1}. (4.46)

50



Figure 4.1: Here, Yj is a 2–torus in R4. In the figure, we have projected Y into R3 with a

projection π chosen so that π(Π0) is a vertical line passing through the origin. The set Xj

is denoted by the blue line.

If our choices for e1 and e2 in (4.45) are generic, then Xj may be empty or it may be

a union of isolated points and 1–dimensional curves. We can see that each (necessarily

smooth) connected component of (Yj)smooth\Xj is monotone: First, let π : R4 → R3 be a

generic projection in the direction of some vector v ∈ Π0, so π(Π0) ⊂ R3 is a line passing

through the origin (see Figure 4.1). Let e be a vector so that 〈e〉 = π(Π). Then if U is a

(necessarily bounded) connected component of B0∩ (Yj)smooth\Xj then π(U) is also bounded

and connected. It suffices to show that for any z ∈ π(U), z is a smooth point of π(U), and the

line z+ 〈e〉 meets π(U) solely at the point z. First, suppose π(U) is not smooth, and let z be

a singular point. Then since U is smooth and π is a local diffeomorphism in a neighborhood

of each pre-image point of π−1(z), in a small neighborhood of z, π(U) is a union of distinct,

smooth 2–manifolds, each of which contains z. Thus, we can find a nearby point z′ for which

z′ + 〈e〉 meets π(U) in at least two distinct points, call them z′1 and z′2. Now, let β be a

smooth path in U connecting a pre-image of z′1 to a pre-image of z′2. Then π(β) is a smooth

curve in π(U), and d(π(β)) always lies in TCg(π(U)), the geometric tangent cone of π(U).

But TCg(π(U)) never contains 〈e〉, which is a contradiction. Thus each compact connected

component of (Yj)smooth\Xj is monotone.

We must now count how frequently a curve γ ∈ ΓS,j intersects (Yj)sing ∪Xj. This will be

done in the next two lemmas.

Lemma 69. Let P ,S, Yj, Zj,Wj, Pj, Qj and {ΓS,j}S∈S be as in the statement of Lemma 68.
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Select γ ∈ ΓS,j and let Xj be as in (4.46). Then

|γ ∩Xj ∩ (Yj)smooth| . deg γ · (Dj + Ej). (4.47)

Proof. First, note that if our choices of e1 and e2 in (4.45) are generic, then for each curve

γ ∈
⋃
S ΓS,j, we have that Xj ∩ γ will be a discrete set of points. Thus, we can guarantee

the following things:

1. Every point of Xj ∩ (Yj)smooth ∩ γ is a smooth point of γ and a smooth point of Xj. In

particular, no point of Xj ∩ (Yj)smooth ∩ γ is an isolated point of Xj.

2. At every point z ∈ Xj ∩ (Yj)smooth ∩ γ, we have the following property: let B ⊂ C4 be

a sufficiently small ball centered at z∗, then

G(B∗ ∩ Z∗j ∩W ∗
j , 2) = {(z, Tz(Yj)) : z ∈ B ∩ (Yj)smooth}

is a smooth 2–(complex)-dimensional sub-manifold of C4 ×Gr(4, 2;C). Let

J = C4 × {Π ∈ Gr(4, 2;C) : dim(Π ∩ Π0) ≥ 1}. (4.48)

Then if z ∈ Xj ∩ (Yj)smooth ∩ γ, we have that T (B ∩ Z∗j ∩W ∗
j ) and J intersect trans-

versely at the point (z, Tz(Yj)) ∈ C4 × Gr(4, 2;C). Thus (since e1 and e2 were chosen

generically), T (B ∩ Z∗j ∩W ∗
j ) ∩J is a smooth curve in C4 ×Gr(4, 2;C). Furthermore,

if we apply a small C1 perturbation to the surface B ∩Z∗j ∩W ∗
j , then the image of the

perturbed surface in C4 ×Gr(4, 2;C) will still intersect J transversely.

First, observe: If (Pj, Qj) is a radical ideal (which by Proposition 30 is equivalent to

dim
(∇Pj
∇Qj

)
= 2 on (Yj)smooth), then

(Yj)sing ∪Xj = Yj ∩ Z(Ψ(Pj, Qj; ·)), (4.49)

where

Ψ(Pj, Qj; z) = det


e1

e2

∇Pj

∇Qj

 (z). (4.50)
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Then, to compute |γ∩(Xj∪(Yj)sing)|, it suffices to count the number of intersection points

in γ ∩ Z(Ψ(Pj, Qj; ·)), and this is a (set-theoretic) complete intersection. We are working

over R, so we cannot appeal directly to Bézout’s theorem, but we can use arguments similar

to those used to obtain (4.29).

In order to make this argument work, we will need to perturb Pj and Qj to make (Pj, Qj)

a radical ideal. Doing so will cause Z(Pj)
∗ ∩Z(Qj)

∗ to “split” (in a small neighborhood of a

smooth point) into several sheets, and (locally) there will be one or more copy or copies of

γ on each sheet. Through careful counting, we can recover the above result.

The first difficulty is that S ∩ Yj is not a proper intersection; S and Yj each have codi-

mension 2, so we would expect S ∩ Yj to have dimension 0, but instead it has dimension 1.

This will complicate our attempts to use tools from intersection theory. To deal with this,

we will replace S with a larger variety that does intersect Yj properly. We will then recover

the intersection properties of S from those of the larger variety.

Let S be the 2–flat and let γ ∈ ΓS,j be the curve in the statement of Lemma 69. We

define

S† =
⋃
x∈S

(x+ 〈e〉), (4.51)

where e is a generic vector in R4. We can verify that S† is an irreducible 3–dimensional

variety of bounded degree: in short, select a rotation of R4 so that e is the x1–direction. By

the Tarski-Seidenberg theorem (see e.g. [BCR98]), the projection πx1(S) is a bounded degree

algebraic variety, with ideal I ⊂ R[x2, x3, x4]. Let S† = Z(I†), where I† ∈ R[x1, . . . , x4] is

the canonical embedding of I into R[x1, . . . , x4]. S† has codimension 1, so we can write

S† = Z(fS) for some polynomial fS that generates a real ideal.

Now, S† has codimension 1, Yj has codimension 2, and S† ∩ Yj is a 1–dimensional curve.

Thus S† ∩ Yj is a proper intersection (this is the entire point of introducing S†). We also

have (S†)∗ ∩Z∗j ∩W ∗
j is a 1–dimensional (complex) curve and so (S†)∗ ∩Z∗j ∩W ∗

j is a proper

intersection. Since γ ⊂ S ∩ Yj we also have γ ⊂ S† ∩ Yj, so there exists an irreducible

component γ† ⊂ S† ∩ Yj such that (as sets) γ† = γ. We define (γ†)∗ ⊂ (S†)∗ ∩ Z∗j ∩W ∗
j
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similarly. We define

mult(Z∗j ,W
∗
j ; (γ†)∗) = dimOP4,x/(IPj + IQj), (4.52)

where x is a generic point of (γ†)∗. By Proposition 17, (γ†)∗ is irreducible, and thus

mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗) is well-defined.

Since (γ†)∗ lies generically in (Z∗j ∩W ∗
j )smooth, there exists a unique irreducible component

V of (Z∗j ∩W ∗
j )smooth that contains (γ†)∗, and

mult(Z∗j ,W
∗
j ; γ) = mult(Z∗j ,W

∗
j ;V ),

where the latter multiplicity is given by Definition 32.

Let P ′j = Pj − ε1, Q
′
j = Qj − ε2, where ε1, ε2 are chosen generically from the interval

(0, ε); ε will be chosen later. Then by Proposition 31, (P ′j , Q
′
j) is a radical ideal.

We claim: Suppose z and B satisfy the following:

• z is a smooth point of γ (and thus z∗ is a smooth point of (γ†)∗),

• z is a smooth point of Yj,

• z is a smooth point of S† ∩ Yj,

• B ⊂ C4 is a sufficiently small ball centered at z∗

then:

• B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ is a union of mult(Z∗j ,W

∗
j ; (γ†)∗) smooth disjoint 2–manifolds, and

each of these 2–manifolds is a O(ε)–perturbation of B ∩ Z∗j ∩W ∗
j .

• B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗ is a union of mult(Z∗j ,W

∗
j , (S

†)∗; (γ†)∗) smooth curves, and

each of these curves is a O(ε)–perturbation of B∩(γ†)∗. These curves lie on the various

connected components of B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗.

The key observation is the following.
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Lemma 70. Select z ∈ γ ∩Xj ∩ (Yj)smooth and let ρ > 0. Let B be the ball centered at z of

radius ρ. Then provided ε is sufficiently small (depending on ρ), we have

|B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗∩(S†)∗ ∩ Z∗(Ψ(P ′j , Q

′
j; ·))|

≥ mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗).
(4.53)

Proof. The idea is to show that each of the 1–dimensional curves in B∩ (Z ′j)
∗∩ (W ′

j)
∗∩ (S†)∗

(there are mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗) such curves) intersects some 1–dimensional curve from

B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ Z∗(Ψ(P ′j , Q

′
j; ·)). We expect this to happen because the (unperturbed)

curves intersect transversely, and the perturbation is very small.

Indeed, let ζ ⊂ B be a simple curve from B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗. Then since γ ∩ B

is smooth, ζ is a O(ε)–perturbation of γ ∩ B, in the sense of Definition 36. Let U ⊂

B ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ be the smooth 2–manifold containing ζ. Then since B ∩ Xj is smooth,

U ∩ Z∗(Ψ(P ′j , Q
′
j; ·)) is a O(ε) perturbation of B ∩ X∗j . Now, z is one of finitely many

intersection points of γ and Xj, and each of these intersections are transverse. Thus if

we select ε sufficiently small (depending on both the transversality of the intersection and

ρ), then ζ and U ∩ Z∗(Ψ(P ′j , Q
′
j; ·)) must intersect. Thus in particular, ζ intersects B ∩

(Z ′j)
∗∩ (W ′

j)
∗∩Z∗(Ψ(P ′j , Q

′
j; ·)). But there are mult(Z∗j ,W

∗
j , (S

†)∗; (γ†)∗) such curves ζ. This

establishes Lemma 70.

We claim: if ε is sufficiently small, then there exists a curve ζγ ⊂ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗

which is the “image” of (γ†)∗ under the above perturbation. Indeed, we can select a small

constant c so that if G ⊂ (γ†)∗ is the set of points that are distance at least 2c from any

point of Z∗j ∩W ∗
j ∩ (S†)∗ that does not lie in (γ†)∗, then G contains an open interval. Let

z ∈ G ∩ (γ†)∗smooth ∩ (Z∗j ∩ W ∗
j )smooth be a point contained in the relative interior of this

open interval, and let B1 be a small ball centered at z. Then if we select ε sufficiently small,

then B1 ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗ is a union of curves, each of which is a c–perturbation of

B1 ∩ (γ†)∗. Let ζγ be the smallest algebraic set containing B1 ∩ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗. We

have ζγ ⊂ (Z ′j)
∗ ∩ (W ′

j)
∗ ∩ (S†)∗. ζγ corresponds to the intuitive notation of the “image” of

(γ†)∗ under the perturbation.
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We can now bound the degree of ζγ. Let H ⊂ C4 be a generic 3–plane. Then |H ∩ γ| =

deg γ. But by the definition of multiplicity above, to each point x ∈ H ∩ γ, we can find a

small ball B centered at x such that

B ∩ ζγ ∩H = mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗).

Thus

deg ζγ = deg γ ·mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗). (4.54)

Lemma 70 can be rephrased as the statement

|ζγ∩Z∗(Φ(P ′j , Q
′
j; ·))|

≥ |γ ∩Xj ∩ (Yj)smooth| ·mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗),
(4.55)

i.e.

|γ ∩Xj ∩ (Yj)smooth| ≤
|ζγ ∩ Z∗(Φ(P ′j , Q

′
j; ·))|

mult(Z∗j ,W
∗
j , (S

†)∗; (γ†)∗)
. (4.56)

But this and (4.54) imply that

|γ ∩Xj ∩ (Yj)smooth| ≤ deg γ · deg Φ(P ′j , Q
′
j; ·)

. deg γ · (Dj + Ej).
(4.57)

This concludes the proof of Lemma 69.

We can now complete the proof of Lemma 68. Fix a choice of S ∈ S. For each γ ∈ ΓS,j,

Delete the following points:

• The points that lie in ΞS,

• The points of γ ∩ (Yj)sing,

• The points of γ ∩Xj,

• The points that lie on some γ′ 6= γ.
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We can verify that after these points have been removed, the remaining set is a disjoint

union of connected 1–dimensional manifolds. Furthermore, the number of 1–manifolds is

O
(

(Dj + Ej)
∑
γ∈ΓS,j

deg γ +
∑
γ∈ΓS,j

∑
x∈γ∩(Yj)sing

mult(γ, x)

+
( ∑
γ∈ΓS,j

deg γ
)2

+
∑
x∈ΞS

∑
γ∈γS,j

mult(γ, x)
) (4.58)

Indeed, every time a point x is removed, the number of manifolds can increase by at most∑
γ∈ΓS,j

mult(γ, x). If x ∈ γ ∩ (Yj)smooth ∩ Xj, then mult(γ, x) = 1, so the number of

curves added by removing points of this type is at most O
(

(Dj + Ej)
∑

γ∈ΓS,j
deg γ

)
=

O(D2
j +DjEj).

The only term remaining to bound is the following

Lemma 71. Let ΓS,j and Yj be as above. Then∑
γ∈ΓS,j

∑
x∈γ∩(Yj)sing

mult(γ, x) . DjEj +D2
j . (4.59)

Proof. Let S† be as defined in (4.51). For each γ ∈ ΓS,j, let γ† and (γ†)∗ be defined as

above. Then if x ∈ γ ∩ (Yj)sing, there must be smooth points of Yj in every (Euclidean)

neighborhood of x (γ ∈ ΓS,j implies γ lies generically on (Yj)smooth). Thus x∗ is a singular

point of Z∗j ∩W ∗
j , so

dimOCP4,x/(IfS + IPj + IQj) > mult((S†)∗, Z∗j ,W
∗
j ; (γ†)∗). (4.60)

From this we can conclude that x∗ is a singular point of the (not necessarily irreducible) curve

(S†)∗ ∩Z∗j ∩W ∗
j . Furthermore, the number of intersection points of (γ†)∗ with (Z∗j ∩W ∗

j )sing

(counting multiplicity) as γ ranges over all curves in ΓS,j is controlled by the number of

singular points of (S†)∗ ∩ Z∗j ∩ W ∗
j that occur on S∗ (again, counting multiplicity). Let

ζ ⊂ (S†)∗ ∩ Z∗j ∩W ∗
j be the union of all irreducible curves in (S†)∗ ∩ Z∗j ∩W ∗

j that are not

contained in S∗. Then the number of singular points of (S†)∗ ∩ Z∗j ∩W ∗
j that occur on S∗

is at most the number of singular points of S∗ ∩ Z∗j ∩W ∗
j plus the number of intersection

points of ζ with S∗ (again, counting multiplicity). The former quantity is at most D2
j , and

the latter is at most DjEj.
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After the points described above have been deleted from γ, we are left with a collection

of 1–manifolds. Each of these manifolds is homeomorphic to either the interval (0, 1) or

the circle S1. For those manifolds that are homeomorphic to circles, remove two points at

random to obtain two curves homeomorphic to (0, 1). Our new collection of simple curves

has the same cardinality (up to a factor of two), and each curve lies entirely within a single

component of (Yj)smooth\Xj. Let {Ui} be the connected components of (Yj)smooth\Xj, and

let Ai consist of those simple curves lying in Ui, as γ ranges over
⋃
S∈S ΓS,j. Let Bi = Ui∩Pj

and let ιi : Ui ↪→ R4 be the canonical embedding of Ui into R4.

From (4.58) we have

∑
i

|Ai| . D2
j +DjEj +

∑
S∈S

∑
x∈ΞS

∑
γ∈γS,j

mult(γ, x), (4.61)

so Requirement (v) is satisfied. In order to verify the remaining requirements we shall

introduce some notation.

Definition 72. Let α ∈ Ai for some index i. Then there exists a unique 2–flat S0 ∈ S and

a unique curve γ0 ∈ ΓS0,j such that α ⊂ ι−1
i (γ). We will define S(α) to be S0 and we will

define γ(α) to be γ0.

We can verify that Pj =
⋃
iBi, i.e. that Xj ∩ Pi = ∅, since the vectors e1 and e2 from

(4.45) were chosen generically. Recall as well that by assumption, Pj ∩ (Yj)sing = ∅. If

γ ∈ ΓS,j, p ∈ P , p ∈ γ, then we can immediately verify that either there exists an index i and

a curve α ∈ Ai with γ(α) = γ and p ∈ ∂(ιi(α)), or there exists an index i, a curve α ∈ Ai,

and a point p̃ in Bi with ιi(p̃) = p, γ(α) = γ, and p̃ ∈ α. Thus Requirement (iii) is satisfied.

To verify Requirement (ii), note that if α, α′ ∈ Ai and x ∈ α ∩ α′, Then ιi(x) ∈ ιi(α) ∩

ιi(α)′, and x /∈ ΞS(α) ∪ ΞS(α′). Furthermore, (α, α′) are the unique pair of curves in {Ai}

corresponding to the triple (ιi(x), γ(α), γ(α′)).

To obtain Requirement (iv), we shall apply a slight perturbation to the curves of {Ai} as

follows: for each curve α ∈ Ai and point p ∈ Bi, if p ∈ α but (S(α), ι(p)) /∈ I, modify α in a

small neighborhood of p so that p /∈ α. We can always do this in such a way that the number
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of crossings between α and the other curves is not affected, and α remains unchanged in a

small neighborhood of every point p′ ∈ Bi distinct from p. After this perturbation has been

performed for every curve, then the collection {(Ai, Bi)} satisfies Requirement (iv). Indeed,

since I is k–admissible, if there exists an index i, a collection of k points p1, . . . , pk ∈ Bi,

and a collection of C0 + 1 curves in Ai such that each curve is incident to each of p1, . . . , pk,

then there must exist two curves α, α′ from this collection of curves such that S(α) = S(α′).

However, this implies that ιi(α) either contains a singular point of γ(α), or it contains a

point of γ(α′) (if γ(α′) 6= γ(α)). But by our construction of Ai, no such points may lie on

any curve in Ai. Thus Requirement (iv) is satisfied.

Finally, recall that we already established Requirement (i) above (in the discussion pre-

ceding Lemma 69).

4.3.2 Szeméredi-Trotter on a domain

Use Lemma 67 on the data (Y,P ∩ Y,S, I1). Denote the resulting incidence model M and

the resulting error set I ′. We have

∑
i

|I(Ai, Bi)| ≥ |I1|, (4.62)

∑
i

|Bi| ≤
∑
j

|Pj|, (4.63)

∑
i

|Ai| ≤ |S|
∑
j

DjEj, (4.64)

∑
i

C(Ui) ≤
∑
S,S′

|S ∩ S ′|. (4.65)

(4.62), (4.63), and (4.65) follow from the definition ofMj and the observation that if α ∈ Ai,

|∂α| = 2, i.e. an open curve only has two ends.

We will now control the number of incidences that occur on the surfaces {Ui}.

Definition 73. Let A be a collection of simple curves (i.e. homeomorphic images of (0, 1))

and B a collection of points on a planar domain U ⊂ R2. Then we define the number of
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incidences between curves in A and points in B to be

I(A,B) = {(α, p) ∈ A×B : p ∈ α},

and we define the number of crossings of curves in B to be

C(U) = |{(α, α′, p) ∈ A2 × U : p ∈ α ∩ α′}|.

Lemma 74. Let:

• U be a smooth 2–dimensional manifold that is homeomorphic to an open subset of R2.

• A be a collection of 1–dimensional open curves lying on U .

• B be a collection of points on U .

• Let C0 be a constant so that for any two points p1, p2 ∈ B, there are at most C0 curves

from A that contain p1 and p2

Then

|I(A,B)| . |B|2/3C(U)1/3 + |B|+ |A|. (4.66)

where the implicit constant depends only on C0.

Remark 75. Note that in Definition 73, a point is incident to an (open) curve if it lies on the

closure of that curve. On the other hand, a crossing of two curves is a point common to the

relative interior of both curves. Similarly, in Lemma 74 we require that for any two points,

there are at most O(1) curves which contain those points in their relative interiors—there

may be arbitrarily many curves whose closures contain the two points.

Proof. Since all of the quantities we wish to consider are invariant under homeomorphism,

without loss of generality we can assume U is an open subset of R2. Now, replace each curve

γ ∈ A with a slightly “shrunk” curve γ′, so that ∂(γ′) does not meet any point from B nor

any curve from A. If A′ denotes the set of shrunk curves, then |I(A′, B)| ≥ |I(A,B)| − 2|A|.
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Delete from A′ those curves γ′ that are incident to fewer than 2 points from B, and denote

the resulting set of curves A′′. Then |I(A′′, B)| ≥ |I(A,B)| − 4|A|.

Consider the drawing H of the graph whose vertices are the points of B and where two

vertices are connected by an edge if the two corresponding points are joined by a curve from

A′′. Then H is an admissible graph drawing. Note that E(H) ≥ 1
2
|I(A′′, B)|, so by Theorem

3,

|I(A,B)| . |B|2/3C(U)1/3 + |B|+ 4|A|.

By Lemma 67, Item ii, we have

I1 ≤ m2/3n2/3 +
∑
i

I(Ai, Bi), (4.67)

where the indices i run over the elements of the incidence model M. Applying Lemma 74,

we thus have

I1 ≤ m2/3n2/3 +
∑
i

|Bi|2/3C(Ui)1/3 +
∑
i

|Bi|+
∑
i

|Ai|

. m2/3n2/3 +
(∑

i

|Bi|
)2/3(∑

i

C(Ui)
)1/3

+m2/3n2/3

. m2/3n2/3.

(4.68)

This establishes the bound (4.25), and thus concludes the proof of Theorem 59.
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CHAPTER 5

A variable coefficient Wolff circular maximal function

5.1 Introduction

In [Wol97a], Wolff considered the following maximal function:

M δf(r) = sup
x∈R2

1

|Cδ(x, r)|

∫
Cδ(x,r)

|f(y)|dy, (5.1)

where Cδ(x, r) is the δ–neighborhood of a circle centered at x of radius r. This maximal

function has the same relationship to Besicovich-Rado-Kinney (BRK) sets (compact subsets

of the plane containing a circle of every radius 1/2 ≤ r ≤ 1) as the Kakeya maximal function

has to Kakeya sets. In particular, a bound of the form

∥∥M δf
∥∥
Lp([1/2,1])

≤ Cεδ
−ε ‖f‖Lp(R2) (5.2)

for some value of p and all ε > 0 would imply that every BRK set has Hausdorff dimension

2. See [Wol99] for further details. By considering the examples where f is the characteristic

function of a ball of radius δ and a rectangle of dimensions δ ×
√
δ, we can see that p = 3 is

the smallest value of p for which (5.2) can hold. In [Wol97a], Wolff proved (5.2) for p = 3.

In a similar vein, Wolff and Kolasa considered the more general class of maximal functions

M δ
Φf(r) = sup

x∈U1

1

|Γδ(x, r)|

∫
Γδ(x,r)

|f(y)|dy. (5.3)

Here, U1 is a sufficiently small neighborhood of a point a ∈ R2, and Γδ(x, r) is the δ–

neighborhood of the curve

Γ(x, r) = {y ∈ U2 : Φ(x, y) = r}, (5.4)
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where U2 is a sufficiently small neighborhood of a point b ∈ R2 and

Φ: R2 × R2 → R

is a smooth function satisfying Sogge’s cinematic curvature conditions at the point (a, b):

•
∇yΦ(a, b) 6= 0. (5.5)

•
det

(
∇x

 e · ∇yΦ(x, y)

e · ∇y

( e·∇yΦ(x,y)

|∇yΦ(x,y)|

)
 ∣∣∣∣

(x,y)=(a,b)

)
6= 0, (5.6)

where e is a unit vector orthogonal to ∇yΦ(a, b).

See [Sog91] for further discussion of cinematic curvature and its properties. Cinematic

curvature was first introduced when studying the Bourgain circular maximal function (see

e.g. [Bou86]), and it appears that replacing the circles C(x, r) in (5.1) by families of curves

satisfying the cinematic curvature condition is the most natural variable-coefficient general-

ization of the Wolff circular maximal function. In particular, geodesic circles for a Rieman-

nian metric satisfy the cinematic curvature condition provided that the injectivity radius is

larger than the diameter of the circles.

In [KW99], Wolff and Kolasa established the bound

∥∥M δ
Φf
∥∥
Lq([1/2,1])

≤ Cp,qδ
− 1

2
( 3
p
−1) ‖f‖Lp(R2) , p <

8

3
, q ≤ 2p′. (5.7)

In particular, (5.7) implies that any compact set containing a curve of the form {y :

Φ(x, y) = r} for each 0 < r < 1 must have Hausdorff dimension at least 11/6. We shall call

such sets Cinematic BRK sets.

5.1.1 New results

In [Zah13b], the author proved the following theorem:
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Theorem 76. Let Φ satisfy the cinematic curvature conditions (5.5) and (5.6). Then for

all ε > 0 there exists a constant Cε such that

∥∥M δ
Φf
∥∥
L3([1/2,1])

≤ Cεδ
−ε ‖f‖L3(R2) . (5.8)

In particular, every cinematic BRK set must have Hausdorff dimension 2.

Corollary 77. Equation (5.2) holds with p = 3.

Theorem 76 improves upon a previous result of the author in [Zah12a] in which a similar

statement is proved under the additional restriction that the function Φ be algebraic. We

follow a similar proof strategy in this proof as in [Zah12a], but at a key step we use the discrete

polynomial ham sandwich theorem rather than the vertical algebraic decomposition.

5.1.2 Proof sketch

Through standard techniques, it suffices to obtain certain weak-type bounds on
∑
χΓδ for a

collection of curves {Γ} with δ–separated “radii.” The main difficulty arises when many pairs

of curves are almost tangent, and indeed a result due to Schlag in [Sch03] shows that we can

obtain the desired bounds on MΦ if we can control the number of such almost-tangencies.

More specifically, ifW and B are collections of curves such that all curves inW (resp. B) are

close to each other in a suitable parameter space, and all curves inW are far from curves in B

(again in a suitable parameter space), then we need to control the number of near-tangencies

between curves in W and curves in B. We shall do this with an induction argument.

First, we shall use Jackson’s theorem to replace the curves {Γ} by algebraic curves that

closely approximate them. The degree of the algebraic curves will depend on δ, but the

dependence is mild enough to be controllable. We will then identify the curves in W with

points in R3 (if the curves were actually circles, we could use the center and radius of the

circle to perform this identification). We then use the discrete polynomial ham sandwich

theorem to find a low degree trivariate polynomial P whose zero set partitions R3 into open

“cells,” such that the points are evenly split up amongst the cells. To each curve Γ ∈ B we
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associate a semi-algebraic set Q(Γ) ⊂ R3 (of controlled degree), such that if Γ ∈ B is almost

tangent to Γ̃ ∈ W , then Q(Γ) must intersect the cell containing (the point associated with)

Γ̃. The bounds on the degree of P and Q(Γ) yield bounds on the number of cells that Q(Γ)

can intersect. We then apply the induction hypothesis within each cell. Summing over all

cells, we obtain the desired bound on the total number of almost-tangencies between curves

in W and B.

The key innovation is the use of the discrete polynomial ham sandwich theorem. While

the partition of R3 described above could be done with the vertical algebraic decomposition

instead of the polynomial ham sandwich theorem, the resulting control on the number of

cells that Q(Γ) can intersect is so poor that we cannot run the induction argument except

in the special case where the defining function Φ is algebraic (and thus the algebraic curves

Γ have degree that does not depend on δ).

5.2 Proof of Theorem 76

5.2.1 Initial reductions

The first step will be to replace the defining function Φ by an algebraic approximation. This

idea was suggested to the author by Larry Guth, and it appears in a similar form in [BG11].

Throughout the proof, we shall assume that Φ satisfies the cinematic curvature conditions

at the point (a, b) = (0, 0) and that U1, U2 are small balls centered at 0. By Jackson’s

theorem (see e.g. [BBL02]), for each K > 0, A > 0, and δ > 0, we can find a polynomial

Ψ(x, y) : R2 × R2 → R such that

deg Ψ ≤ CKδ
−1/K , (5.9)

‖Ψ− Φ‖C2(B(0,100)) < δ/A, (5.10)

where CK depends on K, A, and Φ. If A is chosen sufficiently large depending on the infimum

of the quantities in (5.5) and (5.6), then Ψ satisfies (5.5) and (5.6).

Since ‖∇yΦ‖ and ‖∇yΨ‖ are bounded from below for y ∈ U1 (after possibly shrinking U1),
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we have that if A is chosen sufficiently large in (5.10) then for each x0 ∈ U2 and 1/2 < r0 < 1

we have that {y ∈ U1 : Φ(x0, y) = r0} and {y ∈ U1 : Ψ(x0, y) = r0} are contained in δ/100

neighborhoods of each other. Thus if f is supported in B(0, 1) then M δ
Φf ∼ M δ

Ψf , so it

suffices to obtain bounds on M δ
Ψf.

Remark 78. If the reader is only interested in the original Wolff circular maximal function,

then this step can be omitted, and every instance of Ψ can be replaced by Φ(x, y) = ‖x− y‖.

In this case, Ψ–circles are arcs of genuine circles. Throughout the proof, we shall refer to

this situation as the “circles” case.

Fix α > 0 sufficiently small depending on the quantities appearing in (5.5) and (5.6) and

on ‖Φ‖C3(B(0,100)). For x ∈ B(0, α) and r ∈ [1/2, 1], we define

Γ(x0, r0) = {y ∈ B(0, α) : Ψ(x0, y) = r0}. (5.11)

We shall call these sets Ψ–circles, and if Γ is a Ψ–circle then Γδ will denote its δ–neighbor-

hood. If Γ, Γ̃, etc. are Ψ–circles, then unless otherwise noted, x0, r0 and x̃0, r̃0 will refer

to their respective centers and radii. The Ψ–circles defined here are strict subsets of the

analogous sets Γ defined in the introduction. However, if the function f is supported on a

sufficiently small neighborhood of the origin then we can define a maximal function analogous

to (5.3) with Γ in place of Γ, and the two maximal functions will agree. Thus we shall

henceforth work with curves Γ defined by (5.11).

We shall restrict our attention to those Ψ–circles Γ with x0 ∈ B(0, α1), α1 = C−1
0 α,

and r0 ∈ (1 − τ, 1) where C) and τ are sufficiently small constants that depends only on

the quantities appearing in (5.5) and (5.6) and on ‖Φ‖C2(B(0,100)). By standard compactness

arguments, we can recover Lp([1/2, 1]) bounds on MΨ from those on the “restricted” version

of MΨ by considering the supremum over a finite number of scaled versions of the function.

Using standard reductions (see e.g. [Sch03], §4), in order to prove Theorem 76 it suffices

to prove the following lemma:

Lemma 79. For η > 0 and δ sufficiently small depending on η, let A be a collection of Ψ–

circles with δ–separated radii, with each radius lying in (1− τ, 1). Then there exists Ã ⊂ A
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with |Ã| ≥ 1
C
|A| such that for all Γ ∈ Ã and δ < λ < 1,∣∣∣B(0, α1) ∩ {y ∈ Γδ :

∑
Γ̃∈A

χΓ̃δ(y) > δ−ηλ−2}
∣∣∣ ≤ λ|Γδ|. (5.12)

5.2.2 Schlag’s reduction

We shall recall a result due to Schlag that shows that Lemma 79 is implied by a combinatorial

lemma controlling the number of almost-incidences between Ψ–circles. In order to state

Schlag’s result, we will first need several definitions.

Definition 80. Let Γ and Γ̃ be two Ψ circles. We define

∆(Γ, Γ̃) = inf
y∈B(0,α1) : Ψ(x0,y)=r0
ỹ∈B(0,α1) : Ψ(x̃0,ỹ)=r̃0

|y − ỹ|+
∣∣∣ ∇yΨ(x0, y)

‖∇yΨ(x0, y)‖
− ∇yΨ(x̃0, ỹ)

‖∇yΨ(x̃0, ỹ)‖

∣∣∣. (5.13)

Informally, if ∆(Γ, Γ̃) is small then there is a point y ∈ B(0, α1) where Γ and Γ̃ pass close

to each other and are nearly parallel (i.e. they are nearly tangent).

Let

d(Γ, Γ̃) = |x0 − x̃0|+ |r0 − r̃0|. (5.14)

d(·, ·) is a metric on the space of curves.

Definition 81. Let W and B be collections of Ψ–circles. We say that (W ,B) is a (δ, t)–

bipartite pair if

|r0 − r̃0| ≥ δ for all Γ, Γ̃ ∈ W ∪ B, (5.15)

d(Γ, Γ̃) ∈ (t, 2t) if Γ ∈ W , Γ̃ ∈ B, (5.16)

d(Γ, Γ̃) ∈ (0, t) if Γ, Γ̃ ∈ W or Γ, Γ̃ ∈ B. (5.17)

Definition 82. A (δ, t)–rectangle R is the δ–neighborhood of an arc of length
√
δ/t of a Ψ–

circle Γ. We say that a Ψ–circle Γ is incident to R if R is contained in the C1δ neighborhood

of Γ. We say that R is of type (& µ,& ν) relative to a (δ, t)–bipartite pair (W ,B) if R

is incident to at least µ curves in W and at least ν curves in B We say that R is of type
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(∼ µ,∼ ν) if it is of type (& µ,& ν), but is neither of type (& Cµ,& ν) nor (& µ,& Cν) for

some absolute constant C which shall be determined later. We say that two (δ, t)–rectangles

R1, R2 are comparable if R1 is contained in a A0δ–neighborhood of R2 and vice versa, where

A0 is an absolute constant. Otherwise, we say R1 and R2 are incomparable.

We are now able to state Schlag’s result.

Proposition 83 (Schlag). Let A be a family of Ψ–circles with δ–separated radii that satisfy

the following requirements:

(i)
|Γδ ∩ Γ̃δ ∩B(0, α)| . δ2

(d(Γ, Γ̃) + δ)1/2(∆(Γ, Γ̃) + δ)1/2
. (5.18)

(ii) Fix ε > 0. Then there exists a constant Cε so that for any (δ, t)–bipartite pair (W ,B),

with t > Cδ for an appropriate choice of C; W ,B ⊂ A; |W| = m; and |B| = n, the

maximum number of pairwise incomparable (δ, t)–rectangles of type (& µ,& ν) relative

to (W ,B) is at most

Cεδ
−ε
((mn

µν

)3/4

+
m

µ
+
n

ν

)
. (5.19)

Then Lemma 79 holds for the collection A.

Remark 84. Schlag uses the stronger bound

Cε(mn)ε
((mn

µν

)3/4

+
m

µ
+
n

ν

)
(5.20)

in place of (5.19). However, an examination of the proof in [Sch03] reveals that the bound

(5.19) suffices. If we restrict our attention to the original Wolff circular maximal function

(i.e. if we are only concerned with the circles case), then we obtain the bound (5.20), so

Schlag’s result can be used as a black box.

Property (i) follows from [KW99, Lemma 3.1(i)], but if the reader is only interested

in the original Wolff circular maximal function, a shorter proof can be found in [Wol99,

§3]. Property (ii) follows from the following lemma, which is an analogue of Lemma 1.4 in

[Wol97b]:
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Lemma 85. Let Ψ: R2 × R2 → R be a (multivariate) polynomial of degree k satisfying the

cinematic curvature requirements. Then for every ε > 0 there exists a constant Cε such that

if (W ,B) is a (δ, t)–bipartite pair of Ψ–circles with |W| = m, |B| = n, and if R is a collection

of pairwise incomparable (δ, t)–rectangles of type (& µ,& ν) relative to (W ,B), then

|R| ≤ Cεk
Cε(mn)ε

((mn
µν

)3/4

+
m

µ
+
n

ν

)
. (5.21)

To obtain Property (ii) from Lemma 85, select K > Cε/ε in (5.9) and note that (mn)ε ≤

δ2ε. In the case of circles we have k = O(1), and (5.21) becomes (5.20).

Thus all that remains is to prove Lemma 85. First, we shall recall several properties of

curves satisfying the cinematic curvature condition.

5.3 Cinematic Curvature and its Implications

Many of Wolff’s arguments from [Wol97a] rely on the local differential properties of families

of circles. The relevant properties are captured by the notion of cinematic curvature defined

in the introduction. In [KW99], Kolasa and Wolff establish several key properties of families

of curves with cinematic curvature which we shall recall below.

Property 86 (Straightening out). Let x0 ∈ U1. Then we can find a diffeomorphism ψx0 : U ′2 →

U2 and a choice of r0 = r0(x0) such that

Ψ(x0, ψx0(y))− r0 = y(2)

where U ′2 is an appropriately chosen domain (which may no longer be a disk). Furthermore

for fixed y0,

ψx0(y0) and r0(x0) are continuous functions of x0. (5.22)

This is discussed in [KW99, p 136]. To simplify notation, we shall say that Ψ has been

straightened out around x0 if we (temporarily) replace the function Ψ(x0, ·) with Ψ(x0,

φx0(·)) − r0(x0), i.e. in “straightened out” coordinates, Ψ(x0, y) = y(2). Note that if we

straighten out around x0 then in this new coordinate system Ψ might no longer be algebraic.
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This will not pose any problems to our analysis below; we shall only be straightening out

to simplify the proofs of certain diffeomorphism-invariant statements, and the statement

can then be “pulled back” to the original (algebraic) Ψ. This process may change some of

the constants involved in the relevant statements. However (5.22) will guarantee that the

constants are worsened by at most a bounded amount so we can safely ignore this problem.

Property 87 (Derivative bounds). If we straighten out Ψ at x0 then for y ∈ B(0, α),

|∂y(1)Ψ(x, y)|+ |∂2
y(1)Ψ(x, y)| ∼ |x− x0|, (5.23)

|∂y(2)Ψ(x, ψx0,r0(y))| ∼ 1, (5.24)

where ∂y(1) denotes the partial derivative in the y(1)–direction, etc. The constants in the

quasi-equalities above are uniform in all variables. Indeed, since the cinematic curvature

condition is diffeomorphism invariant, (5.23) and (5.24) are equivalent to the cinematic

curvature condition. This is addressed in Equation (21) of [KW99] and the surrounding

discussion.

Property 88 (Unique point of parallel normals). Let Γ, Γ̃ be Ψ–circles with

∆(Γ, Γ̃) ≤ C ′
−1|x0 − x̃0|

for a sufficiently large constant C ′. Then there is a unique point

ξ = ξ(x0, r0, x̃0) ∈ Γ ∩B(0, α)

such that

∇yΦ(x0, ξ) ∧∇yΦ(x̃0, ξ) = 0. (5.25)

Furthermore,

|Φ(x̃0, ξ)− r̃0| . ∆(Γ, Γ̃), (5.26)

and

Γ ∩ Γ̃ ∩B(0, α1) ⊂ B

(
ξ, C

( ∆(Γ, Γ̃)

|x0 − x̃0|

)1/2
)
. (5.27)

Equations (5.26) and (5.27) are Equations (26) and (27) in [KW99].
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Property 89 (Appolonius-type bounds). Let t > Cδ. Fix three Ψ–circles Γ1,Γ2,Γ3, let

B0 = B(b, α1), and let

Y =
{

Γ: ∆(Γ,Γi) < C1δ, i = 1, 2, 3;

d(Γ ∩B0,Γi ∩B0) > t, i = 1, 2, 3;

Γδ ∩ Γδi ∩B0 6= ∅, i = 1, 2, 3;

dist(ΓC1δ ∩ ΓC1δ
i B0,Γ

δ ∩ Γδj ∩B0) > C3

√
δ/t, i 6= j

}
.

(5.28)

Informally, Y is the collection of curves that are almost tangent to each of the curves

Γ1,Γ2,Γ3, with the additional requirement that the three regions of almost-tangency not

be too close to each other. If we identify Ψ–circles Γ with points (x0, r0) ∈ R3 then

Y is the union of two sets, each of diameter . t. (5.29)

This is is Lemma 3.1(ii) in [KW99].

Property 90. For three fixed curves Γ1,Γ2,Γ3, and a given curve Γ = Γ(x0, r0), we say that

Ψ is Γ–adapted if there exists points a1, a2, a3, with aj ∈ Γj such that

|aj − ξj(x0)| ≤ C−1
√
δ/t,

and

Φ(x, a1) = 0,

∇xΦ(x, a2) = (e · (a2 − a1))β

for all x, where e is a unit tangent vector to Γ1 at a1, β is a vector independent of y with

|β| ∼ 1, and

ξi(x0) = ξ(xi, ri, x0).

Remark 91. Informally, the notion of a Γ–adapted defining function is a way of getting

around the problem that we are forced to work with a defining function Ψ, but we are

actually interested in its level sets {Ψ(x, ·) = r}. Thus we are free (within certain constraints

to be dealt with below) to modify Ψ provided that our new defining function has the same
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level sets as the old one. Choosing a Γ–adapted defining function (provided a suitable one

exists) simplifies many of the technicalities in our estimates.

Lemma 3.6 in [KW99] tells us that if Γ ∈ Y then by pre-composing Ψ with suitable

diffeomorphisms, a Γ–adapted defining function Ψ exists which satisfies uniform derivative

bounds, and this function Ψ has the same level sets as our original Ψ (i.e. it gives rise to the

same Ψ–circles), so the corresponding maximal functions are identical (the adapted defining

function may not be algebraic, but this will not affect our analysis).

Now, if Ψ is Γ–adapted, define

T (x) =


∇xΨ(x, ξ1(x)) −1

∇xΨ(x, ξ2(x)) −1

∇xΨ(x, ξ3(x)) −1

 . (5.30)

Informally, if we fix a choice of Γ and select a defining function adapted to Γ, then for x in

a neighborhood of x0, T (x) describes how changing x affects how close Γ(x, r0) is to being

tangent with each of Γ1,Γ2,Γ3.

Lemma 3.8 in [KW99] tells us that when restricted to each connected component of Y

(individually), T is boundedly conjugate to its linear part, i.e. if Γ, and Γ̃ lie in the same

connected component of Y , then

T (x0)T (x̃0)−1 = I + E(x̃0), (5.31)

where (say) ‖E(x̃0)‖ < 1/100. Furthermore, for the same choice of Γ, Γ̃,

|ξ1(x̃0)− ξ1(x0)| .
√
δ/t. (5.32)

Equation (5.32) is a consequence of Equation (45) in [KW99] once we note that if Γ̃ ∈ Y

is in the same connected component as Γ ∈ Y , then since T is boundedly conjugate to its

linear part, |T (x0)(x̃0 − x0, r̃0 − r0)| < Cδ.

Property 92 (Bounds on intersection area). Let Γ, Γ̃ be Φ circles. Then

|Γδ ∩ Γ̃δ ∩B(b, C−2α)| . δ2(
d(Γ, Γ̃) + δ

)1/2(
∆B(b,C−1α)(Γ, Γ̃) + δ

)1/2
, (5.33)

This is Lemma 3.1(i) in [KW99].
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5.4 Some elementary incidence bounds on bipartite pairs of curve

families

Recall the definition of a t–bipartite pair (W ,B), a (δ, t)–rectangle, and a rectangle of type

(& µ,& ν) relative to (W ,B) (Definitions 81 and 82)

Definition 93. If (W ,B) is a (δ, t)–bipartite pair, then we define Rµ,ν(W ,B) to be the

maximum cardinality of a collection of pairwise incomparable rectangles of type (& µ,& ν)

relative to (W ,B). Define R(W ,B) to be R1,1(W ,B).

Definition 94. If (W ,B) is a (δ, t)–bipartite pair, then we define

I(W ,B) = |{(R,Γ, Γ̃) : Γ ∈ W , Γ̃ ∈ B, R is incident to Γ and Γ̃}|.

We shall state and prove a series of lemmas that are analogous to Lemmas 1.5–1.16

in [Wol97b]. If the proof of a lemma is the same as that of the corresponding lemma in

[Wol97b] we shall omit it. Throughout the discussion below, (W ,B) is a t–bipartite pair

with |W| = m, |B| = n.

Lemma 95.

(i) If ∆(Γ, Γ̃) < δ, then there exists a (δ, t)–rectangle R ⊂ B(b, α) such that Γ and Γ̃ are

tangent to any (δ, t)–rectangle in the 2–fold dilate of R.

(ii) Conversely, if Γ, Γ̃ are tangent to a common (δ, t)–rectangle R ∈ B(b, α), then ∆(Γ, Γ̃) ≤

Cδ, and if Γ, Γ̃ are tangent to comparable (δ, t)–rectangles R,R′ ∈ B(b, α) then ∆(Γ, Γ̃) .

δ.

Lemma 96. Let Γ ∈ W , Γ̃ ∈ B. Then there are at most O(1) incomparable (δ, t)–rectangles

R ⊂ B(0, α) tangent to both Γ and Γ̃.

Proof. Since d(Γ, Γ̃) ∼ t, (5.33) gives us the bound

|B(b′, α1) ∩ Γ ∩ Γ̃| . δ3/2t−1/2 (5.34)
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Each (δ, t)–rectangle has area ∼ δ3/2t−1/2 and incomparable (δ, t)–rectangles are pairwise

disjoint.

Lemma 97. There exists a collection R of pairwise incomparable (δ, t)–rectangles R ∈

B(b, α) such that

I(W ,B) . |{(R,Γ, Γ̃) ∈ R× B ×W : Γ and Γ̃ are tangent to R}|.

Proof. This can be proved in the same way as Lemma 1.7 in [Wol97b] with (5.25) and (5.26)

used in place of the analogous equations in [Wol97b].

Lemma 98. Let Γ1,Γ2,Γ3 be three Ψ–circles. Let R be a collection of pairwise incomparable

rectangles R ∈ B(b, α) with the property that for each R ∈ R there is a Φ–circle Γ such that:

• d(Γ,Γi) ≥ t, i = 1, 2, 3.

• Γ,Γ1 are tangent to R.

• There exist two (δ, t)–rectangles R2, R3 ∈ B(b, α) such that Γ and Γi are tangent to

Ri, i = 2, 3 and such that R1, R2, R3 are pairwise incomparable.

Then |R| . 1.

Proof. We shall establish the proof with the additional restriction that R must lie in B(b,

C−2α) for b in a sufficiently small neighborhood of 0. Once this has been established, we

can recover the full result by selecting O(1) choices of b′ such that B(0, α) ⊂
⋃
bB(b, C−2α).

Let R ∈ R and let Γ be a Ψ–circle satisfying the above conditions. Then we must have

Γ ∈ Y, where Y is as defined in (5.28); indeed the above requirements on Γ are precisely

those needed to ensure that Γ ∈ Y . By (5.33),

Γ ∩ Γ1 ∩B(b, C−2α) ⊂ B(ξ(x0, r0, x1), Cδ1/2t−1/2). (5.35)

Now, let Γ0 ∈ Y and let Ψ̃ be a Γ0–adapted defining function with the same level sets as

Ψ. Since Ψ̃ has the same level sets as Ψ and the gradient of Ψ̃ is comparable to that of Ψ,
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it suffices to prove the lemma for Ψ̃. However, by (5.32) we have that if Γ is in the same

connected component of Y as Γ0 then

|ξ(x1, r1, x0)− ξ(x1, r1, x)| .
√
δ/t. (5.36)

Since Y contains only two connected components, (5.35) and (5.36) imply that⋃
(x0,r0)∈Y

Γ(x0, r0) ∩ Γ1 ∩B(b, C−2α)

⊂
(
B(z0, Cδ

1/2t−1/2) ∩ Γ1

)
∪
(
B(z1, Cδ

1/2t−1/2) ∩ Γ1

)
,

(5.37)

where z0, z1 are points in the two connected components of Y respectively. In particular, the

set on the right hand side of (5.37) has measure . δ3/2t−1/2. Since every R ∈ R must lie in

this set, and pairwise incomparable rectangles must be disjoint, we obtain |R| . 1.

Lemma 99. Let Γ, Γ̃ be Ψ–circles with d(Γ, Γ̃) = t > Cδ and r0 ≥ r̃0. Let R, R̃ ∈ B(0, α1)

be comparable (δ, t)–rectangles with Γ, Γ̃ tangent to R, R̃ respectively. Then

(i) Γ̃ ∩B(0, α1) is contained in the Cδ–neighborhood of

{y ∈ B(0, α) : Φ(x0, y) ≤ r0}.

(ii) For any constant A there is a constant C(A) such that the cardinality of any set of

pairwise incomparable (δ, t)–rectangles R ∈ B(0, α1) each of which is tangent to Γ and

intersects the Aδ–neighborhood of

{y ∈ B(0, α) : Φ(x̃0, y) ≤ r0}

does not exceed C(A).

Proof. Straighten Φ around x0. By Lemma 95.(ii), with α replaced by C−1
0 α, we have

∆(Γ, Γ̃) ≤ CC−1
0 δ. Thus if we choose the value of C(A) in the statement of the Lemma

99.(ii) to be sufficiently large (depending on C ′), then |x0− x̃0| > C ′′∆(Γ, Γ̃), so by Property

88 of cinematic curvature, there exists a unique point ξ(x̃0, r̃0, x0) ∈ Γ̃ satisfying (5.25), i.e.

∇yΨ(x̃0, ξ) = (0,±1),
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so ξ(1) is the point where the function y(1) 7→ Ψ(x̃0, (y
(1), y(2))) achieves its maximum in the

domain (y(1), y(2)) ∈ B(0, α), where y(2) = y(2)(y(1)) is implicitly defined by (y(1), y(2)(y(1))) ∈

Γ̃ (we can verify without difficulty that this is well-defined). By (5.26) (noting that in the

straightened out coordinate system, Γ = {y(2) = 0} ∩ U ′2),

Ψ(x̃0, ξ) . ∆(Γ, Γ̃)

. δ,

and thus for an appropriate choice of C,

Γ̃ ∩ U ′2 ⊂ {y(2) < Cδ}.

Returning to our original coordinate system, this is Statement (i) of the lemma.

To obtain the second statement, note that by the same reasoning as above,

ΓCδ ∩
(
{y ∈ B(b, α) : Φ(x̃0, y) ≤ r̃0}+B(0, Aδ)

)
⊂ ΓC(A)δ ∩ Γ̃C(A)δ ∩B(b, α)

(5.38)

for a suitable constant C(A), where the + in the above equation denotes the Minkowski

sum. The result then follows from (5.33) and the fact that incomparable rectangles are

disjoint.

Lemma 100.

(i) The cardinality of any set of (∼ µ,∼ ν) rectangles is

O(
mn2/3

µν2/3
) (5.39)

(ii) The cardinality of any set of (& µ,& ν) rectangles is

O(
mn2/3

µν2/3
+
n

ν
log

m

µ
) (5.40)

Remark 101. Recall that a rectangle of type (& µ,& ν) is a rectangle that is incident to at

least Cµ curves in W and at least Cν curves in B for some absolute constant C (a rectangle

of type (∼ µ,∼ ν) is defined similarly), so the statement of the lemma is well defined.
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Proof. Combined with the previous lemmas, Statement (i) is just the graph-theoretic state-

ment, due to Kővari, Sós, and Turan in [KST54], that a m × n matrix with entries 0 and

1 which has a forbidden 2 × 3 sub-matrix of 1s has . mn2/3 1s in total. Statement (ii) is

obtained from Statement (i) by dyadic summation.

If every Ψ–circle fromW and B are incident to some common rectangle R then I(W ,B) =

|W||B|. However, if neither W nor B contain large clusters then this cannot occur. The

following lemma (which is an analogue of Lemma 1.11 in [Wol97b]) is a quantitative version

of this statement.

Lemma 102. Let (W ,B) be a t–bipartite pair that has no (& 1,& ν0) or (& µ0,& 1)

rectangles R ∈ B(b, α). Then

I(W ,B) . µ
1/3
0 nm2/3 log ν0 + ν0m log µ0. (5.41)

Definition 103. We define a cluster of Ψ–circles analogously to Wolff’s definition in [Wol97b]:

A cluster is a subset C ⊂ W (or B) with the property that there exists a (δ, t)–rectangle R

such that every Γ ∈ C is tangent to a (δ, t)–rectangle comparable to R.

Lemma 104. Let C ⊂ W be a cluster and let Γ ∈ B. Then then any set of pairwise

incomparable (δ, t)–rectangles each of which is tangent to some circle in C and to Γ has

cardinality O(1).

Remark 105. Lemma 99 is used to prove this lemma. See Lemma 1.14 of [Wol97b] for details.

Lemma 106. Given a value of µ0, we can write

W =Wg tWb, (5.42)

where

(i) Wg and B have no (δ, t)–rectangles of type (& µ0,& 1).

(ii) Wb is the union of . |W|
µ0

(logm)(log n) clusters.
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5.4.1 Algebraic considerations

We shall identify the Ψ–circle Γ with the point (x0, r0) ∈ R3 (actually in B(0, α)×(1−τ, 1) ⊂

R3). Thus if W is a collection of Ψ–circles, we shall abuse notation and simultaneously

consider W as a subset of R3.

Lemma 107. Let Ψ: R2 ×R2 → R be a (multivariate) polynomial of degree k that satisfies

the cinematic curvature conditions. For each Ψ–circle Γ, there exists a set Q(Γ) ⊂ R3 with

the following properties:

(i) ∂Q(Γ) is contained in an algebraic set SΓ of dimension 2 and complexity O(kC) (see

Appendix 2.3 for relevant definitions).

(ii) Let Γ̃ be a Ψ–circle with d(Γ, Γ̃) > Aδ for A a sufficiently large constant. If Γ̃ ∈ Q(Γ)

then ∆(Γ, Γ̃) ≤ 100δ. Conversely, if ∆(Γ, Γ̃) < δ then Γ̃ ∈ Q(Γ).

Remark 108. Informally, Q(Γ) can be understood as follows. If γ1 = C(x1, r1), γ2 = C(x2, r2)

are two circles, then γ1 and γ2 are tangent if and only if (x2, r2) lies on the right-angled light-

cone Zγ1 = {(y, t) : |r− t| = ‖x− y‖}, and γ1 and γ2 are almost tangent if (x2, r2) lies in the

δ–neighborhood of Zγ1 . Q(Γ) is the analogue of the δ–neighborhood of the light cone Zγ1 for

general curves Γ.

Proof. Define

VΓ = V1,Γ ∩ V2,Γ ∩ V3,Γ ∩ V4,Γ, (5.43)

where

V1,Γ = {(x̃0, r̃0, y, ỹ) : ‖x̃0‖2 < α2, 0 < 1− r̃0 < τ, ‖y‖2 < α2, ‖ỹ‖2 < α2},

V2,Γ = {(x̃0, r̃0, y, ỹ) : Ψ(x0, y) = r0, Ψ(x̃0, ỹ) = r̃0},

V3,Γ = {(x̃0, r̃0, y, ỹ) : ‖y − ỹ‖2 < δ2},

V4,Γ = {(x̃0, r̃0, y, ỹ) : ‖∇yΨ(x0, y) ∧∇yΨ(x̃0, ỹ)‖2

< 4δ2 ‖∇yΨ(x0, y)‖2 ‖∇yΨ(x̃0, ỹ)‖2}.
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Each Vj,Γ, j = 1, 2, 3, 4 is a semi-algebraic set of complexity O(kC) (see Appendix 2.3 for

relevant definitions), and thus so is VΓ. Let

Q(Γ) = (π(x̃0,r̃0)VΓ) ∩ {x̃0 : ‖x0 − x̃0‖2 > A2δ2}, (5.44)

where π(x̃0,r̃0) : (x̃0, r̃0, y, ỹ) 7→ (x̃0, r̃0) is the projection map.

An examination of the definition of ∆(Γ, Γ̃) verifies that Q(Γ) satisfies Property (ii), so

all that remains is to verify Property (i). Since VΓ is a semi-algebraic set of complexity

O(kC), by the Tarski-Seidenberg theorem (see Proposition 10 in Appendix 2.3), so is Q(Γ).

Thus by Proposition 7 in Appendix 2.3, either Q(Γ) is empty or ∂(Q(Γ)) has dimension at

most 2 and complexity O(kC), so by Proposition 9, its Zariski closure, ZΓ = Zar(∂(Q(Γ))), is

an algebraic set of dimension at most 2 and degree O(kC). If dim(ZΓ) = 2 then let SΓ = ZΓ.

If not, we can find an algebraic set of dimension 2 containing ZΓ whose degree is controlled

by a polynomial function of the degree of ZΓ and we shall let this set be SΓ.

Definition 109. LetW ⊂ RN be a finite collection of points. We say thatW is hypersurface

generic if for every polynomial P ∈ R[x1, . . . , xN ] of degree D we have

|{P = 0} ∩W| ≤
(
D

N

)
− 1.

Lemma 110. Let W ⊂ R3 be finite. Then after an infinitesimal perturbation, W is hyper-

surface generic

Proof. Identify the space of all sets H ⊂ R3 of cardinality ` with (RN)`. Let |W| = m. Then

the subset of (RN)m corresponding to sets of cardinality m that are not hypersurface generic

is Zariski closed—it is a finite union of determinantal varieties.

5.4.2 Proof of Lemma 85

In order to prove Lemma 85, it suffices to consider the case where µ = ν = 1 and establish

the following bound:
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Lemma 111. Let (W ,B) be as in Lemma 85. Then for all ε > 0, there exists a constant Cε

such that

R(W ,B) ≤ Cεk
Cε(mn)ε((mn)3/4 +m+ n). (5.45)

To obtain (5.21) from (5.45) we apply a random sampling argument. The details can be

found in [Wol97b, p1253], so we shall not reproduce them here.

Proof of Lemma 111. We shall proceed by induction on the quantity |W||B|. To handle the

base case, we may assume

mn > Cεk
Cε , (5.46)

since otherwise we can use the trivial bound R(W ,B) . mn. Now suppose Lemma 111 has

been established for all (δ, t)–bipartite pairs (W ′,B′) with |W ′||B′| < mn.

We may assume

Am1/3+ε < n < m, (5.47)

for a large constant A (depending on ε) to be determined later, since if the first inequality

fails then the result follows from (5.40) (and after selecting a sufficiently large value of Cε,

depending on A), while if the second inequality fails we can reverse the roles of W and B.

Let µ0 = (mn)1/4, and use Lemma 106 to writeW =Wg tWb and similarly B = Bg tBb.

Using Lemma 104, we have

R(Wg,B) ≤ 1

100
(mn)3/4+ε, (5.48)

R(W ,Bg) ≤
1

100
(mn)3/4+ε. (5.49)

See [Wol97b, p1251-2] for details. Thus in order to prove Lemma 111, it suffices to establish

the following bound:

R(Wg,Bg) <
1

2
CεK

Cε(mn)3/4+ε + CεK
Cε(mn)ε(m+ n). (5.50)

Use Proposition 19 to select a polynomial P ∈ R[x1, x2, r] of degree at most D (D shall

be chosen later, but it should be thought of as δ−ε) so that the set R3\{P = 0} is a union of

. D3 cells, each of which contains . |Wg|/D3 Ψ–circles Γ ∈ Wg.
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Lemma 112. Let Ω be a cell from the above decomposition. If Γ ∈ Bg, Γ̃ ∈ Ω, and

∆(Γ, Γ̃) ≤ δ, then at least one of the following must hold.

(i) ∂Q(Γ) ∩ Ω 6= ∅.

(ii) Ω ⊂ Q(Γ).

Indeed, since ∆(Γ, Γ̃) ≤ δ, by Property (ii) of Q(Γ) from Lemma 107, Γ̃ ∈ Q(Γ) and thus

Ω ∩ Q(Γ) 6= ∅. Since Ω is an open connected set, it must either be contained in Q(Γ) or it

must meet the (topological) boundary of Q(Γ).

Now, for each cell Ω, let

Bg = BΩ
1 t BΩ

2 t BΩ
3 ,

where BΩ
1 (resp. BΩ

2 ) contains those Γ ∈ Bg for which Item (i) (resp. Item (ii)) occurs, and

Γ ∈ BΩ
3 if ∆(Γ, Γ̃) > δ for all Γ̃ ∈ Ω.

We shall first consider incidences involving BΩ
2 .

Lemma 113. Suppose D satisfies

D < nε/6. (5.51)

Then if m and n are sufficiently large, at least one of the following must hold:∣∣∣⋃
Ω

BΩ
2

∣∣∣ < n/1000, (5.52)

|Wg| < m/1000. (5.53)

Proof. Suppose (5.53) fails. By (5.47), (5.51), and the fact thatW is hyperplane generic, we

have that for each cell Ω,

|Wg ∩ Ω| & |Wg|D−3

& mD−3.

Thus each Γ ∈
⋃

Ω BΩ
2 is incident to & mD−3 Ψ–circles from Wg, so

I(Wg,Bg) & mD−3
∣∣∣⋃

Ω

BΩ
2

∣∣∣. (5.54)
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On the other hand, by Lemma 102 (with µ0 = ν0 = (mn)1/4),

I(Wg,Bg) . m5/4n1/4 logm+m3/4n13/12 log n. (5.55)

Combining (5.54), (5.55), and (5.47), we obtain∣∣∣⋃
Ω

BΩ
2

∣∣∣ . D3n1−ε log n. (5.56)

This and (5.46), (5.51) gives us (5.52).

If either (5.52) or (5.53) holds, then we can apply the induction hypothesis to the pair

(Wg,
⋃

Ω BΩ
2 ) and conclude that

R(Wg,
⋃
Ω

BΩ
2 ) ≤ 1

100
Cεk

Cε(mn)ε((mn)3/4 +m+ n)

≤ 1

10
Cεk

Cε(mn)3/4+ε,

(5.57)

where on the second line we used (5.47).

Remark 114. Lemma 113 is an analogue of Equation (5.23) from [Zah12a]. In essence, both

state that if |Wg| were too big then that would force an illegally large number of incidences to

occur. However, the current formulation is much simpler. In [Zah12a], the analogue of Q(Γ)

was defined differently and thus we needed statements of the form “if two curves Γ1,Γ2 are

almost tangent then after a slight perturbation they are exactly tangent.” Making statements

such as this rigorous introduced many technical difficulties that have been avoided in the

present proof.

We shall now control incidences involving BΩ
2 . Let

nΩ = |{Γ ∈ Bg : ∂(Q(Γ)) ∩ Ω 6= ∅}|.

Since ∂(Q(Γ)) ⊂ SΓ, we have

nΩ ≤ |{Γ ∈ Bg : SΓ ∩ Ω 6= ∅}|.

By a Thom-Milnor type theorem (see e.g. [BB12, Theorem 1.1]), we have that for each

Γ ∈ Bg, SΓ\{P = 0} contains O(kCD2) connected components. Since the number of cells
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that intersect ∂(Q(Γ)) is bounded by the number of connected components of SΓ\{P = 0},

we have ∑
Ω

nΩ ≤ C1D
2kCn. (5.58)

Let mΩ = |Wg ∩ Ω|. Applying the induction hypothesis,∑
Ω

R(Wg ∩ Ω,BΩ
1 )

≤ kCεCε

[∑
m

3/4+ε
Ω n

3/4+ε
Ω + (mn)ε

∑
mΩ + (mn)ε

∑
nΩ

]
≤ Cεk

Cε

[(∑
m

4
1−4ε

(3/4+ε)

Ω

) 1−4ε
4
(∑

nΩ

)3/4+ε

+ (mn)ε
∑

mΩ +
∑

(mn)εnΩ

]
≤ Cεk

Cε

[(
D3m

3+4ε
1−4εD−

9+12ε
1−4ε

) 1−4ε
4

(C1D
2kCn)3/4+ε + (mn)εm+ (mn)εC1D

2kCn

]
= Cεk

Cε(mn)ε
[
C1(mn)3/4kC

D2ε
+m+ C1D

2kCn

]
.

(5.59)

Finally, since the points of W are hypersurface generic, we have that

|Wg ∩ {P = 0}| . D3,

and thus

R(Wg ∩ {P = 0},Bg) ≤ C2D
3n. (5.60)

We have

R(Wg,Bg) =
∑

Ω

R(Wg ∩ Ω,BΩ
1 ) +

∑
Ω

R(Wg ∩ Ω,BΩ
2 ) + R(Wg ∩ {P = 0},Bg). (5.61)

Combining (5.57), (5.59), and (5.60), we conclude that there there exists an absolute

constant C0 such that

R(Wg,Bg) ≤ Cεk
Cε(mn)ε

(C1(mn)3/4kC0

D2ε
+ C2D

3kC0n+m
)
. (5.62)

Now, select D > 1 satisfying (5.51) and also

C1k
C0

D2ε
<

1

100
, (5.63)

C2D
3kC0n <

(mn)3/4

100
. (5.64)
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The existence of such a D is guaranteed by (5.46) and (5.47) provided we select the constants

Cε (from (5.46)) and A (from (5.47)) to be sufficiently large (depending on the constant C0

from (5.62) and the ε that appears in the statement of Lemma 111). With such a choice

of D, (5.50) is satisfied. This completes the proof of Lemma 111 and hence also Theorem

76.

Remark 115. The use of a “low degree” partitioning polynomial to prove incidence theorems

was first introduced by Solymosi and Tao in [ST12]. What we do here is very similar,

except instead of using a bounded degree variety and the general heuristic that operations

such as projection, etc. send bounded degree varieties to bounded degree varieties, we use a

variety of “sub-polynomial” degree, and we rely on the heuristic that projections, etc. send

sub-polynomial degree varieties to sub-polynomial degree varieties.

84



References

[ACN82] M. Ajtai, V. Chvatal, M. Newborn, and E. Szemerédi. “Crossing-free subgraphs.”
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