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Abstract

Geometric Model Theory in Efficient Computability

by

Cameron Donnay Hill

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Leo Harrington, Chair

This dissertation consists of the proof of a single main result linking geometric ideas
from the first-order model theory of infinite structures with complexity-theoretic analyses
of problems over classes of finite structures. More precisely, we show that for a complete
finite-variable theory of finite structures, models are efficiently recoverable from elementary
diagrams if and only if the theory is super-rosy. In the course of the argument, we recon-
stitute the machinery of þ-independence and rosiness for classes of finite-structures, as well
as a characterization of rosy classes analogous to the Independence theorem for the simple
theories. We show that a super-rosy theory admits a weak form of model-theoretic coor-
dinatization, which can be converted into to an algorithm for the model-building problem
mentioned above in a natural and intuitive way. Conversely, we show how to extract a model-
theoretic independence relation directly from an efficient algorithm for the model-building
problem.
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Chapter 1

Introduction

1.1 Some introductory remarks
There is a significant and steadily growing literature on what may be called, roughly,

structural analysis of “easy” instances of hard computational problems, and there are, to my
mind, two main currents in this study. The first of these – and also the more developed,
it seems – is identifiable as a kind of algorithm design practice [13], wherein the analyst
isolates some structural property and exploits this property to design an efficient algorithmic
solution of the problem of interest when restricted to the corresponding sub-class of instances.
A prime example of this impulse is found in “parametrized complexity theory,” where the
structural properties under scrutiny – bounded tree-width, branch-width, rank-width and so
forth, and the associated decomposition templates – are commonly lifted from (finite) graph
theory. These graph-based structural notions are applicable when computability is examined
in the logical framework of finite model theory, but in general, they do not easily fit into the
machinery of geometric model theory, which is my primary device here. The second current
might be understood as a converse of the first; the analyst attempts to recover structure
in a sub-class of problem instances from the hypothesis of efficient computability directly
or from the efficacy of a certain style of algorithm. A central, if implicit, objective of both
currents is to see the two meet, thereby giving an exact characterization of “easy” sub-classes
of instances for a problem or of the domain of applicability of some style of algorithm.

There are at least two well-known successes of this last kind. In [5], we see that PAC-
learnability1 with a polynomially-bounded number of samples (in terms of the reciprocals
of the accuracy parameters) is possible precisely when the concept class has finite Vapnik-
Chervonenkis dimension. In [25] can be found a proof of the result – now part of the folklore
of combinatorial optimization – that the efficacy of the greedy algorithm (naively making
locally-optimal choices) corresponds exactly to the presence of matroid structure in the prob-
lem instances. Under restrictions of the nature of the objective function of the optimization

1probably approximately correct learning



CHAPTER 1. INTRODUCTION 2

problem, [18] and [14], for example, recover similar structural characterizations in terms of
somewhat less ideal structures (greedoids and matroid embeddings, respectively). I per-
sonally find it suggestive that both of these conditions – finite VC-dimension and matroid
structure – are already extensively studied in first-order model theory (of infinite struc-
tures). “Infinite VC-dimension” is known to model-theorists as the independence property,
and “dependent” theories (theories which do not have the independence property) have come
under close scrutiny in the last decade. Matroids, under the name “pregeometry,” occur
pervasively as the primitive or irreducible subsets of models in most (or all) model-theoretic
structure theorems. The work of this dissertation, then, is an attempt to see these apparent
connections between complexity theory and geometric model theory bear some fruit.

In fact, this dissertation essentially consists of the proof of a single main result linking
geometric ideas from the first-order model theory of infinite structures with complexity-
theoretic analyses of problems over classes of finite structures. To remove any suspense (and
hopefully justify the effort of reading beyond the introduction), the statement of the theorem
is as follows:

Theorem (8.24 of chapter 8). Let K = fin[TG], where T is a complete k-variable theory
with infinitely many finite models up to isomorphism.

I. If T is constructible, then K is rosy.

II. T is efficiently constructible if and only if K is super-rosy.

Obviously, a great number of definitions are needed (regardless of the readers background,
most likely) to make sense of these assertions. For the time being, it should be understood
as a shadow of the “main current” of first-order model theory – namely, Shelah’s Classi-
fication theory [27]. I take “efficiently constructible” – meaning that models of T can be
efficiently recovered from elementary diagrams of subsets (chapter 4) – to be a reasonable
substitute for “classifiable” in the classical theory. We then seek a hierarchy of structural
properties culminating in efficient constructibility in analogy with the stability-theoretic hi-
erarchy, Stable)Super-stable)Classifiable=Super-stable+NDOP. In the classical scenario,
any non-trivial bound on the number of models of the theory in each cardinality imposes
stability, which already supports the rudimentary notion of geometry known as non-forking
independence. In the scenario of this study, the hypothesis of constructibility by an al-
gorithm cursorily imitating that of an efficient algorithm in form (meaning, an essentially
inflationary program which isn’t necessarily efficient) is sufficient to impose another rudi-
mentary notion of geometry on the class of models – in this case, known as þ-independence
in a rosy class;2 this is the content of I of the theorem. The further requirement of efficiency
– polynomially-bounded running times – induces a further guarantee of good behavior in
the geometry of þ-independence, and the “only if” portion of II of the theorem (and theo-
rem 4.12) amounts to just this fact. It turns out, then, that this additional tractability in

2The character þ is pronounced “thorn.”
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the geometry gives enough purchase to devise an efficient algorithm, initially disguised as a
weak model-theoretic coordinatization result (chapter 7), for the class of the theory’s finite
models.

1.2 Outline of the dissertation
Chapter 2: Essentials of finite-variable logics.

We present the definition of the k-variable fragment of first-order logic and its
infinitary variant, as well as the k-pebble game, which characterizes “elemen-
tary equivalence” and k-variable types in analogy with Ehrenfeucht-Fraïssé
games for the full first-order logic. From the k-pebble game, we define the
complete invariant for k-variable logic and its (more useful) relaxation, the
theory TG of game tableaux for a complete k-variable theory T . Finally,
we define the notion of a capped k-variable theory, and prove that the class
fin[TG] of finite models of TG has amalgamation over sets whenever T is
capped.

Chapter 3: Essentials of transformations of structures.

We define abstractly the concept of a transformation of structures over the
class “hereditarily-finite lists,” as well as the basic programming language of
our analyses in succeeding chapters. With these definitions in place, and
after mentioning some easy and/or folkloric normalizations of programs, we
give our definition of what it means to “solve” the model-building problem
for capped k-variable theory.
A key idea throughout is that the algorithms in question are functorial and,
more, functorial “all the way down” – meaning that all sub-routines and even
the most primitive instructions of the programming language are themselves
functorial.

Chapter 4: Deeper characterizations of efficient transformations

We sketch a proof that an efficient solution of the model-problem amounts
to an “essentially inflationary” solution. (We give only a sketch because the
complete demonstration is not interestingly different from the analyses in
[1].)
We also argue that an efficient coherent solution for the model-building prob-
lem implies a certain property we call small algebraicity, which enters into
our later analyses of super-rosy classes and the recovery of an efficient model-
building algorithm for such classes.
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Chapter 5: þ-Independence and rosy Fraïssé classes.

We introduce the notions of strong dividing, þ-dividing and þ-forking for
Fraïse classes K of finite structures, as well as the local þ-rank. We define
rosiness in terms of the local þ-rank. We show that local þ-rank character-
izes þ-forking, and we use this fact to prove both that þ-independence is
a weak notion of independence in every Fraïssé class and that it is a true
independence relation if and only if K is rosy. Our analysis largely avoids
the use of the Compactness theorem, but except in some technical details,
the development differs little from the classical treatment in [22].

Chapter 6: A further characterization of rosiness and examples.

We give an additional key characterization of rosiness for Fras̈se classes –
showing that rosiness is the coarsest possible notion of independence and that
the presence of any true independence relation implies that the class is rosy.
We also give definitions of local character and super-rosiness, and we analyze
their relationship with another property which we call small algebraicity. We
also include a sketch of some properties of the Uþ-rank for super-rosy Fraïssé
classes.
Subsequently, we present two examples of rosy classes – finite vector spaces
over a finite field and models of the k-variable fragment of the theory of the
random graph. Finally, we sketch an argument showing that the theory of a
random pseudo-scale [12], even though it is capped and has small algebraicity,
is not rosy – thus demonstrating that the property of rosiness has some non-
trivial content.

Chapter 8: Coordinatization and efficient model-building

Using techniques [Alf+Usvyatsov], we demonstrate a weak notion of coordi-
natization for a super-rosy Fraïssé class (equivalently, for a countably cate-
gorical super-rosy theory with finite Uþ-rank and which eliminates imaginar-
ies). We use this notion of coordinatization to prove the converse of the main
result of chapter 7 – that any capped super-rosy k-variable theory admits
efficient model-building from elementary diagrams.

Chapter 7: Unfolding digraphs of transformations and independence

We define the naive unfolding graph of an essentially inflationary program
acting on a structure, and we show how to prune away portions of it that
obscure its model-theoretically interesting content. We then define the no-
tions of d-separation and deviation of extensions of types, and we show that
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non-deviation is a notion of independence. Finally, we show that under
conditions satisfied by a solution of the model-building problem for some
capped k-variable theory T , this notion of independence is a true indepen-
dence relation on fin[TG]. We conclude from this that if T admits essentially
inflationary model-building from elementary diagrams, then fin[TG] is a rosy
class.
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1.3 Notation and terminology
• Logic notion:

Our notion for structures (in the model-theoretic sense) is fairly standard.

– A signature ρ is a set of relation-symbols and constant symbols (usually none of
the latter) with distinguished arities; obviously, constant symbols have arity 0.
We use the notations R(n) and ari(R) = n interchangeably to mean that R is a
relation symbol arity n, and the notation R(n) ∈ ρ means that R is a relation
symbol of ρ of arity n.

– A ρ-structure, then, is a tuple A = (A, (RA)R∈ρ, (c
A)c∈ρ) where A is a set. RA ⊆

An whenever R(n) ∈ ρ, and cA ∈ A whenever c ∈ ρ is a constant symbol.
Usually, a structure is denoted by a script capitol letter – like A – and its universe,
A, is understood from context. In case the structure’s universe is not clear, we
write ||A|| to denote the universe of a structure A. If we need to consider the
cardinality of the universe of A in this scenario, we write #||A|| instead of |||A|||

– fin[ρ] denotes the class of finite ρ-structures, and if T is a theory, then fin[T ]
denotes the class of finite models of T .

– If M is a structure and A ⊆ M , then we write (A;M) as an abbreviation of
diagM(A) – the quantifier-diagram of A with respect toM.

• Sets and tuples

– For a positive finite number n, we set [n] = {1, ..., n}
– A tuple a over a set A is understood to be a function a : [n] → A for some

positive finite number n. Thus, An is formally identical to [n]A, the set of functions
[n]→ A, and if a ∈ An, rng(a) = {a(i) : i ∈ [n]} is a subset of A. For convenience,
we also write a = (a1, ..., an) with the understanding that a(i) = ai for each i ∈ [n].

– If X is a set and n is a positive number,
(
X
n

)
and

(
X
≤n

)
denote the families of

subsets of cardinality exactly n and cardinality at most n, respectively.
Note that

(
[m]
n

)
is the set of subsets of [m] = {1, ...,m} of size exactly n, and the

cardinality of
(

[m]
n

)
is
(
m
n

)
– If M is a (possibly infinite) set, we write X ⊂fin M to mean that X is a finite

subset of M . Pfin(M) denotes the set of all finite subsets of M , and

M<ω = { () }
⋃

0<n<ω

Mn

where () is the “empty tuple,” which we do not identify with the empty set.
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– As is fairly standard in the model theory literature, we write AB as shorthand
for A ∪B.

– We write |X| for the cardinality of a set X (which will almost always be a finite
number) except in the situation mentioned above.

– Suppose 0 < k < l < ω and a ∈ Ak, say a = (a1, ..., ak). Then we define

padl(a) = (a1, ..., ak, ak, ..., ak︸ ︷︷ ︸)
l − k times

• Big-O, Big-Ω and Big-Θ notaion.
We make relatively scant use of these notations, but the interpretation of the expression
Ω(g(n)) seems to be somewhat ambiguous. For functions f, g : ω → ω, we assert the
following definitions

– f(n) ∈ O(g(n)) if there are n0 < ω and δ ∈ R such that f(n) ≤ δg(n) whenever
n0 ≤ n < ω.

– f(n) ∈ Ω(g(n)) if there are n0 < ω and δ ∈ R such that f(n) ≥ δg(n) whenever
n0 ≤ n < ω.

– f(n) ∈ Θ(g(n)) if both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

• Independence

There is a small difficulty in giving a precise definition of either a "notion of indepen-
dence" or a "true independence relation" before exposing the material chapter [not this
one]. Specifically, we have not yet asserted the meaning of a type. For the moment, we
will gloss the meaning of “equivalence” in the statements of Invariance and Extension
below.
Be that as it may, the intuition behind the terminology is as follows. A notion of
independence corresponds to a proposal for a notion of geometry in a class of structures,
and the axioms associated with the term are those that should be “easy” to satisfy
and verify. Moreover, we expect that these are, then, properties of the notion itself,
requiring nothing further from the class under examination. A notion of independence
may then be a true independence relation – a useful concept of geometry in the class –
when certain other properties are satisfied by the class. For example, in chapter 5, we
find that þ-independence, |þ^ , is always a notion of independence, as we’d expect from
the terminology, and |þ^ is a true independence relation just in case the class is rosy.
Of course, these axioms (along with the Local character axiom) first appeared in the
articles leading up to [27]. To my knowledge, [17, 16] together form the only previous
treatment of model-theoretic geometry for classes of finite structures; these inform
some of the setup for our analysis but play little or no direct role. My choice of (and
names of) the axioms derives [28, 22, 10, 2].
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– Notion of independence, |◦^ :

1. Invariance. If (A,B,C) ≡ (A1, B1, C1) and A |◦^ CB, then A1
|◦^ C1B1.

2. Extension.
If A |◦^ CB and BC ⊆ D, then there are M′ ∈ KD and A′ ⊆ M ′ such that
A′ ≡BC A and A′ |◦^ CD.

3. Monotonicity. If A |◦^ CB and B0 ⊆ B, then A |◦^ CB0.
4. Base-monotonicity. If A |◦^ CB and B0 ⊆ B, then A |◦^ CB0B.
5. Partial right-transitivity. If A |◦^ CB1B2, then A |

◦
^ CB1 and A |◦^ CB1B2.

6. Preservation of algebraic dependence I. If A |◦^ CA, then A ⊆ acl(C)
Preservation of algebraic dependence II. If A |◦^ CB, then A |◦^ Cacl(B).
Preservation of algebraic dependence III.
If B ∩ acl(AC) \ acl(A) is non-empty, then A |◦/̂ CB

– True independence relation.

1. Axioms of a notion of independence.
2. Existence. A |◦^ CC.
3. Symmetry. If A |◦^ CB, then B |◦^ CA

4. Full transitivity. A |◦^ CB1B2 if and only if A |◦^ CB1 and A |◦^ CB1B2.
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Chapter 2

Essentials of finite-variable logics

One of our concessions in return for a gentler analysis is the move to considering finite-
variable-elementary classes. To some degree, this move is similar to the “decision” in classical
model theory to develop a machinery of classification theory for complete first-order theories
before tackling non-elementary classes of structures. In section 1 of this chapter, then, we
summarize the basic facts about finite-variable logics; in section 2 and thereafter, we extend
this machinery a little for a slightly restricted subset of complete finite-variable theories.

2.1 The very basics of finite-variable logics

2.1.1 The logics Lk and Lk∞,ω, and the k-pebble game

As will almost always be the case, let ρ be a finite signature with no function symbols;
let Cρ denote the set of constant symbols of ρ. Further assume that k < ω is not less that
ari(R) for every relation symbol R of ρ, and in any case, k ≥ 2. Let V = {x1, ..., xk} be a
set of variables. The k-variable fragment of first-order logic, Lk = L(ρ)k, is defined to be the
smallest set S of formulas satisfying the following:

1. If s, t ∈ V ∪ Cρ, then (s = t) ∈ S.

2. If R(n) ∈ ρ, n ≤ k, and s : n→ V ∪ Cρ, then R(s(0), ..., s(n− 1)) ∈ S.

3. If ϕ1, ϕ2 ∈ S and x ∈ V , then (ϕ1 ∧ ϕ2), (¬ϕ1) and (∃xϕ1) are in S.

The infinitary k-variable logic is obtained in the same manner with the addition of a fourth
inductive formation rule:

4. If α is an ordinal and ϕi ∈ Lk for each i < α, then
∧
i<α ϕi and

∨
i<α ϕi are in S
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This set of (infinitary) formulas is, then, denoted Lk∞,ω = L(ρ)k∞,ω.1
In analogy with the Ehrenfeucht-Fraïssé game in first-order logic, the k-pebble game

characterizes both Lk-elementary equivalence, ≡k, and (Lk, k)-types with respect to T .2 We
now describe the k-pebble game. There are two players, the Spoiler and the Duplicator, and
they play on a pair of (not necessarily distinct) ρ-structures A and B. We also maintain two
partial functions fA : [k] ⇀ A and fB : [k] ⇀ B – call them pebble functions – which, at the
outset, are empty. The k-pebble game PGk(A,B) consists of the following protocol. Play
proceeds in rounds, and each round has the following form:

1. The Spoiler selects a structure – for convenience, say he chooses A. He then chooses a
number i ∈ [k] and an element a ∈ A. We then modify fA by (re)setting fA(i) := a.

2. In response, the Duplicator chooses an element of the other structure – in this case,
some b ∈ B – and we (re)set fB(i) := b

Note that at the end of each round, the domains of fA and fB are the same, say D =
dom(fA) = dom(fB). The round is a win for the Duplicator (she survives the round) just
in case the map g = {(fA(i), fB(i)) : i ∈ D} is a partial isomorphism (i.e. it is a bijection
between rng(fA) and rng(fB), and for every atomic formula ϕ(x) and a ∈ rng(fA)x, A � ϕ(a)
iff B � ϕ(ga)). Temporarily, we write A ∼k B if the Duplicator has a strategy which permits
her to carry on the game indefinitely (for ω rounds) such that she wins each round – in
brief, the Duplicator has a winning strategy in PGk(A,B) for ω rounds. Naturally, the game
can begin with pebble functions pre-loaded with elements of the corresponding structures.
Thus, if l ≤ k, a ∈ Al and b ∈ Bl, we write PGk(A, a;B, b) for the game which begins with
fA = {(i, ai) : i ∈ [l]} and fB = {(i, bi) : i ∈ [l]}. Assuming the Duplicator has a winning
strategy in PGk(A, a;B, b), we write (A, a) ∼k (B, b), or just a ∼k b when A = B. We collect
the results regarding the k-pebble game in the following theorem:

Theorem 2.1. Let A and B be finite structures.

1. A ∼k B if and only if A and B agree on every sentence of Lk if and only if A and B
agree on every sentence of Lk∞,ω.

(The latter two conditions are denoted A ≡k B.)

2. Suppose l ≤ k, a ∈ Al and b ∈ Bl. Then (A, a) ∼k (B, b) if and only if tpk(a;A) =
tpk(b;B).

(Proofs of theorem 2.1 can be found in a number of texts, including [19] and [24].)
1In almost all of our work, no ambiguity arises when we write Lk, Lk∞,ω and dispense with indicating the

signature.
2tpk(a1, ..., ak;A) – the (Lk, k)-type of a = (a1, ..., ak) in A – is just the set of Lk-formulas satisfied by a

in A. We will deal with types of higher arity and types over sets of parameters later in this chapter.
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The remainder of this subsection is not hugely important for the main thread of the
dissertation, but the reader may find it mildly interesting. Over finite structures, Lk∞,ω-
formulas have an especially simple normal form:

Proposition 2.2 (see [19]). For every formula ϕ(x) of Lk∞,ω, there are countable families
{ϕi(x)}i<ω, {ϕ′i(x)}i<ω of Lk-formulas such that for any finite structure A,

A � ϕ(a)⇔ A �
∨
i<ω

ϕi(a)⇔ A �
∧
i<ω

ϕ′i(a)

for all a ∈ Ax.

Suppose Θ = {θi(xi)}i<m is a family of Lk∞,ω formulas. A[Θ] denotes the expansion of A
in a signature ρ[Θ] = ρ ∪̇ {Ri : i < m} such that, naturally enough, RA[θ]

i = {a ∈ Axi : A �
θi(a)} for each i < m. If m = 1, so that Θ = {θ(x)}, then we also write A[θ] in place of
A[Θ].

Lemma 2.3. Let θ(x) ∈ Lk∞,ω be a conjunction of countably many Lk-formulas. Then for
all ρ-structures A and B, A ≡k B implies A[θ] ≡k B[θ].

Proof. Suppose σ is a strategy for the Duplicator witnessing A ≡k B. We claim that σ also
witnesses A[θ] ≡k B[θ]. For convenience, we assume that θ is k-ary, but this is inessential.
Consider the end of a round in which (w.l.o.g.) dom(fA) = dom(fB) = k. Since σ allows the
Duplicator to survive ω rounds from this position, it follows that

(A, fA(1), ..., fA(k)) ≡k (B, fB(1), ..., fB(k))

so tpk(fA(1), ..., fA(k);A) = tpk(fB(1), ..., fB(k);B). In particular,

A � θ(fA(1), ..., fA(k))⇔ B � θ(fB(1), ..., fB(k))

and this proves the claim.

As an easy corollary, we have:

Proposition 2.4. Consider a family Θ = {θi(xi)}i<m of Lk∞,ω-formulas. Then for all struc-
tures A and B, A ≡k B implies A[Θ] ≡k B[Θ].

2.1.2 Types and Lk-elementary embeddings

While k-variable n-types for n ≤ k are straightforward to define, for n > k, we need to
be slightly more careful. (We follow [17] in our definition.) Let 0 < n < ω, let v1, ..., vn be
a sequence of pairwise distinct variables. Let V = {x1, ..., xk} be the set of variables used
in the construction of Lk. An n-ary augmented Lk-formula is a pair (ϕ(x1, ..., xk), f) where
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ϕ ∈ Lk and f : [k]→ [n]; we write [ϕ, f ](v1, ..., vn) for this object. If A is a ρ-structure and
a1, ..., an ∈ A, then we define

A � [ϕ, f ](a1, ..., an) ⇔ A � ϕ(af(1), ..., af(k))

Let augnLk denote the set of all n-ary augmented Lk-formulas. The complete Lk-type of a
over ∅ with respect to A – denoted tpk(a;A) or tpk(a) if A is clear from context – is the
following set of n-ary augmented Lk-formulas:{

[ϕ, f ](v1, ..., vn) ∈ augnLk : A � [ϕ, f ](a)
}

Similarly, if C ⊆ A, then the complete Lk-type of a over C with respect to A – denoted
tpk(a/C;A) or tpk(a/C) – is the set⋃

m<ω

⋃
c∈Cm

{
[ϕ, f ](v, c) : [ϕ, f ] ∈ augn+mL

k, A � [ϕ, f ](a, c)
}

Augmented Lk-formulas with parameters of the form of those occurring in tpk(a/C) are
called n-ary augmented formulas over C. The following observation is quite useful but more
or less self-evident.

Observation. Let A be a ρ-structure, C ⊆ A and a, b ∈ An. The following are equivalent:

1. tpk(a/C;A) = tpk(b/C;A)

2. For all l ≤ k, i1, ..., il ∈ [n] and cl+1, ..., ck ∈ C,

tpk(ai1 , ..., ail , cl+1, ..., ck;A) = tpk(bi1 , ..., bil , cl+1, ..., ck;A)

Suppose K is a class of finite ρ-structures. A K-realizable (Lk, n)-type over C with respect
to A (where C ⊆ A and A ∈ K) is a set π = π(v1, ..., vn) of n-ary augmented formulas over
C such that there is a structure B ∈ K and an n-tuple b ∈ Bn such that

• For all c ∈ Ck and all ϕ(x1, ..., xk) ∈ Lk, A � ϕ(c) if and only if B � ϕ(c). (We say
that B preserves (C;A).)

• For all [ϕ, f ](v, c) ∈ π, B � [ϕ, f ](b, c).

In this case, we say that b realizes π in B, and of course, it is not difficult to see that π ⊆
tpk(b/C;B). If π is an (Lk, n)-type over C with respect to A, we say that π is maximal if for
each n-ary augmented formula over C, say [ϕ, f ](v, c), either [ϕ, f ](v, c) ∈ π or [¬ϕ, f ](v, c) ∈
π; obviously, if π isK-realizable, then it’s not the case that [ϕ, f ](v, c) ∈ π and [¬ϕ, f ](v, c) ∈
π. It’s relatively easy to see that if all models under consideration are finite, then a maximal
K-realizable (Lk, n)-type π(v) over C with respect to A is always the complete Lk-type of
some n-tuple b ∈ Bn for some structure B ∈ K which preserves (C;A).
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A note for future reference: We will often use the notation K(C;A), and more briefly KC ,
to denote the sub-class of structures B ∈ K such that C ⊆ B and B preserves (C;A).

Suppose M and N are finite ρ-structures, and let A ⊆ M and h : A → N . We say
that h is a partial Lk-elementary embedding if for every a ∈ Ak and every ϕ(x1, ..., xk) ∈ Lk,
M � ϕ(a) if and only if N � ϕ(ha). Such a map h is an Lk-elementary embedding just in
case A = M .

Observation. Suppose M and N are finite ρ-structures, and let A ⊆ M and h : A → N .
Let a be an enumeration of A. Then h is a partial Lk-elementary embedding if and only if
tpk(a;M) = tpk(ha;N ).

2.2 The complete invariant for Lk and game tableaux
In this subsection, we introduce both the complete invariant Ik for k-variable theories

of finite ρ-structures and the notion of a game tableau for the Lk-theory of a fixed finite
ρ-structure. The latter is key in much of our analysis of computational problems around
finite-variable logic. The invariant is not itself terribly useful in this work, but as well as
providing the starting point for game tableaux, it is foundational to the Lk-canonization
problem, which is ancestral to our model-building problem. The material on the complete
invariant can be found in [19] or [24], and the material on game-tableaux can be found (with
non-trivial differences) in [24], where it is deployed only in relation to the 2-variable logic.

Suppose M is a finite ρ-structure. By theorem 2.1, the quotient structure Mk/≡k is
essentially synonymous with the set Skk (T ) of k-variable k-types of T , where T = Thk(M)
is the complete k-variable theory ofM. Moreover, if the set of quantifer-free k-types of ρ is
endowed (a priori but arbitrarily) with a linear order, then there is an algorithm computing
a mapping

fin[ρ] −→ fin[{<}] : N 7→ (Nk/≡k, <N )

where (Nk/≡k, <N ) is a linear order;3 this algorithm has running-time no worse than
O(|N |3k) (see [24] or [19]). Now, for each complete quantifier-free k-type θ(x1, ..., xk) of
ρ, let V (1)

θ be a new unary predicate symbol; for each permutation σ ∈ Sym [k], let P (2)
σ be

a new binary predicate symbol; and let Acc(2) be an additional unary predicate symbol. Let
ρinv be the signature consisting of these symbols together with the binary relation symbol
<. (Note that ρ * ρinv and ρinv * ρ.) Given a finite ρ-structureM, then, we define Ik(M)
to be a ρinv-structure with universe Mk/ ≡k as follows:

• <Ik(M) is the linear order, <M, of Mk/≡k described above.

• V Ik(M)
θ =

{
a/≡k : a ∈Mk,M � θ(a)

}
for each quantifier-free k-type θ.

3Here and in the sequel, fin[ρ] denotes the class of finite ρ-structures.
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• For σ ∈ Sym [k], we put (a/≡k, b/≡k) ∈ P Ik(M)
σ just in case,

(M, (aσ(1), ..., aσ(k))) ≡k (M, b)

• For a, b ∈Mk, we put (a/≡k, b/≡k) ∈ AccI
k(M) just in case there is an element m ∈M ,

such that
(M, (m, a2, ..., ak)) ≡k (M, b)

Equivalently, (a/≡k, b/≡k) ∈ AccI
k(M) if for every (a′1, ..., a

′
k) ∈ a/≡k, there is an

m′ ∈M such that
(M, (m′, a′2, ..., a

′
k)) ≡k (M, b)

This operator Ik(−) is known in the literature as the complete invariant for k-variable logic.

Theorem 2.5. ([24]) Let M and N be finite ρ-structures. Then M ≡k N if and only if
Ik(M) ∼= Ik(N ). Moreover, the mapping M 7→ Ik(M) is computable with running-time
|M |O(1).

We note that since Ik(M) is linearly ordered, there is a canonically isomorphic ρinv-
structure with universe [n], where n = |Ik(M)| < ω, in which the linear order is the standard
one, and this transformation is computable in polynomial-time. Thus, it is not terribly
abusive to write Ik(M) = Ik(N ) instead of Ik(M) ∼= Ik(N ), with the understanding that
we pass to this canonical or standard model.

Digression: Lk-canonization. Having described the Lk-invariant, we are, at last, in a posi-
tion to describe the problem which initiated the work in this dissertation – the so-called Lk-
canonization problem. For background, we begin with a more standard complexity-theoretic
question. The hardness of the Graph-Isomorphism problem, stated below, is a major open
question in complexity theory:

Graph-Isomorphism: Given a pair of finite graphs G1 and G2, accept iff G1
∼= G2.

Graph-Isomorphism is a natural candidate for an NPtime-problem which is neither in Ptime
nor NPtime-complete; such a problem must exist if Ptime 6= NPtime. A related compu-
tational problem, which would certainly provide a Ptime-solution for Graph-Isomorphism,
lies in defining a Ptime-computable operator F from finite graphs to finite graphs such that:

• F (G) ∼= G, and if |V (G)| = n, then V (F (G)) = [n].

• Isomorphism invariance: If G1
∼= G2, then F (G1) = F (G2).
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F (G) can be thought of as a canonical encoding of the isomorphism-type of G. Clearly,
the existence of an efficient graph-canonization operator immediately shows that Graph-
Isomorphism is in Ptime, and consequently, studying the possibility of defining such an
operator is little easier than settling the status of Graph-Isomorphism itself.

However, graph-canonization does lend itself to interesting relaxations. One of these
is the so-called Lk-canonization problem, wherein one seeks to define an efficient operator
F : fin[ρ]→ fin[ρ] such that

• F (M) ≡kM, and ||F (M)|| = [n] for some n ∈ N (possibly n 6= |M |).

• ≡k-invariance: IfM1 ≡kM2, then F (M1) = F (M2)

Thus, F (M) can be thought of as a canonical model of Thk(M). Of course, the invariant
Ik already meets the second criterion of an Lk-canonization operator – Ik(M1) = Ik(M2)
if and only if M1 ≡k M2. It would seem that Lk-canonization is, then, a “simple matter”
of inverting the map M 7→ Ik(M); that is, we need only seek an efficient operator Hk :
fin[ρinv] ⇀ fin[ρ] such that Ik(Hk(Ik(M))) = Ik(M). Perhaps unsurprisingly, this is, in
fact, no simple matter at all:

[24] I2 is efficiently invertible.

[12] For k ≥ 3, there is no recursive inverse Hk of Ik.

[20] For any k ≥ 2, Ik is recursively invertible when restricted to the class of finite
ρ-structuresM such that Thk(M) is stable and has the amalgamation property.

[21] For any k ≥ 2, Ik is recursively invertible when restricted to the class of finite
ρ-structures M such that Thk(M) is simple with trivial forking-dependence and has
the amalgamation property.

To cut this story short, the test problem for our analyses, which we call the model-building
problem, has the problem of inverting Ik as a special case in the sense that computing
Hk(Ik(M)) amounts to computing a model of Thk(M) from the empty induced substructure.
(We also grant each of our algorithms a great deal more specific information about the single
theory for which it is designed.) The model-building problem, and solutions of it, for a given
theory are described in detail in chapters 2 and 3.

For many of the analyses in this dissertation, the complete invariant carries much un-
necessary information, which has the tendency to obscure what is really essential. Thus,
we reduce the complete invariant to a less informative structure called a game-tableau the-
ory. As we have noted before, the quotient set Mk/≡k is essentially synonymous with the
set Skk (T ) of k-variable k-types of the theory T = Thk(M). Moreover, the accessibility
relation between k-variable k-types of M is an invariant of T . That is, we may consider
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Acc ⊆ Skk (T ) × Skk (T ) such that for any ρ-structure N , if N � T , b ∈ Nk, p = tpk(b;N )
and (p, q) ∈ Acc, then there is an n ∈ N , such that tpk(n, b2, ..., bk;N ) = q, and moreover,
if n′ ∈ N and q′ = tpk(n′, b2, ..., bk;N ), then (p, q′) ∈ Acc. Similarly, if σ ∈ Sym [k] and
tpk(a;M) = tpk(b;N ), then

tpk(aσ(1), ..., aσ(k);M) = tpk(bσ(1), ..., bσ(k);N )

In fact, as we shall shortly see, these facts together with some types in the language of
equality effectively determine the class of models of the theory T .

Let M0 be a fixed finite ρ-structure, and let T = Thk(M0). We enumerate Skk (T )
(arbitrarily) by α1(x), ..., αN(x), where x = (x1, ..., xk) is a tuple of pairwise distinct variables
(say, an enumeration of the set V of variables used in the construction of the logic Lk). For
each α ∈ Skk (T ), let R(k)

α be a k-ary relation symbol, and let µα(x) be the unique complete
(quantifier-free) k-type in the language of equality such that T � ∀x(α(x) → µα(x)). Let
ρG =

{
Rα : α ∈ Skk (T )

}
. We define TG to be the theory in the language of ρG consisting of

the following assertions:

G1: ∀x1...xk
∨
α

(
Rα(x) ∧ ¬

∨
β 6=αRβ(x)

)
G2: The “type” Rα of a k-tuple matches the equality type of the genuine type α:∧
α ∀x1...xk (Rα(x)→ µα(x))

G3:
∧
σ∈Sym [k]

∧
α ∀x1...xk

(
Rα(x)↔ Rασ(xσ(1), ..., xσ(k))

)
.

We write ασ for the unique type β such that

T � ∀x1...xk
(
α(x)↔ β(xσ(1), ..., xσ(k))

)
G4: ∀x1...xk∀y

(
Rα(x)→

∨
β∈Acc(α,−) Rβ(y, x2, ..., xk)

)
G5:

∧
α ∃x1...xk (Rα(x))

G6:
∧
α

∧
β∈Acc(α,−) ∀x1...xk (Rα(x)→ ∃y (Rβ(y, x2, ...xk)))

Clearly, TG is an ∀∃-theory, and although we have not gone to the trouble, it is possible to
give a complete set of k-variable ∀∃-axioms for TG as well.

There is a pair of relational polynomial-time computable transformations

−G : fin[T ] −→ fin[TG], −mod : fin[TG] −→ fin[T ]

which completely characterize the relationship between T and TG.4 Firstly, suppose M ∈
fin[T ]; we defineMG to be the ρG-structure with universeM and the obvious interpretations,

RM
G

α =
{
a ∈Mk : tpk(a;M) = α

}
4Again, here and in the sequel, fin[T ] and fin[TG] denote the classes of finite models of T and TG,

respectively. Also, for a formal definition of relational polynomial-time, see chapter 3.
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for each α ∈ Skk (T ). The fact that MG � TG is an easy consequence of theorem 2.1 or of
theorem 2.5. Secondly, suppose A ∈ fin[TG] with universe A. For R(r) ∈ ρ, we set

RAmod
=
{

(ai1 , ..., air) : (a1, ..., ak) ∈ RA
α, T � ∀x (α(x)→ R(xi1 , ...xir))

}
It is essentially trivial to show that the ρ-structure Amod is well-defined and, indeed, a model
of T . Collecting these facts, we have:

Observation. The transformations −G and −mod are inverses of each other; that is to say,
for anyM∈ fin[T ] and any A ∈ fin[TG], (MG)mod =M and (Amod)G = A.

A model A of TG is called a game tableau for T , and the model Amod is sometimes called
the realization of A. Moreover, for a given model M of T , the structure MG is called the
game tableau ofM; thus, a modelM of T is the unique realization of its own game tableau.
The theory TG is the theory of game tableaux of T . Abusing notation slightly, we will write
TG∀ for the sub-theory consisting of the axioms G1 through G4.

Since there is nothing interesting to distinguish a model of T from its game tableau and
the transformation is polynomial-time computable, we generally will not distinguish between
finite models of T and finite models TG; consequently, we will also dispense with the gothic
script. Somewhat strangely, we will take as assumed that a model ofM of T is rendered as
a model TG – that is, as its own game tableau. In the next section, we will see that working
with game tableaux makes a model-theoretic analysis much more tractable than would be
the case in the original signature. The correspondence goes just a bit further in the following
proposition (whose proof we omit because it is very simple).

Proposition 2.6. Let M and N be models of T , and let A ⊆ M . For any mapping
f : A→ N , the following are equivalent:

1. f is a partial Lk-elementary embeddingM⇀ N .

2. f is a partial ρG-isomorphismMG ⇀ NG.

In particular, ifM is a model of T , then the complete quantifier-free type qtp(a;MG) of
a tuple a in the sense ofMG is equivalent, for our purposes, to the complete k-variable type
tpk(a;M).

2.2.1 Capped theories and amalgamation in fin[TG]

We will say that T is a capped theory if for any finite model A of TG∀ , there is a finite
model G of TG such that A ≤ G – that is, such that A is an induced substructure of G. For
our study, the assumption that T is capped is both natural and rather weak.

Lemma 2.7. Suppose M0 and M1 are models of TG. Suppose A is a substructure of both
M0 and M1, and M0 ∩M1 = A. (In particular, A � TG∀ .) Then there is a model C of TG∀
and ρG-embeddings gi :Mi → C such that g0�A = g1�A.
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Proof. The idea of the proof is to construct a sort of free-join of M0 and M1 over A. It
will not be a genuine free-join because even TG∀ may induce some additional equalities of
elements, and the modified equality relation will then be a non-trivial equivalence relation,
say E, onM0∪M1. (We call this the amalgam’s model of equality.) It’s key, then, to maintain
the condition E ∩ (Mi ×Mi) = 1Mi

, i < 2, in order to avoid obstructing the embeddings. It
turns out that maintaining this invariant through the construction is actually sufficient to
obtain the amalgam over A.

Let Z = M0 ∪M1, and let Q0
α = RM0

α ∪ RM1
α for each α ∈ Skk (T ). Furthermore, set

X0 = Zk \
⋃
αQ

0
α and E0 = 1M0 ∪ 1M1 . Suppose we are then given,

Xs $ Xs−1 $ · · · $ X0

such that if c ∈ Xs and σ ∈ Sym [k], then (cσ(1), ..., cσ(k)) ∈ Xs, and

Es % Es−1 % · · · % E0

where Es is an equivalence relation on Z such that Es ∩ (Mi ×Mi) = 1Mi
for i = 0, 1. Let

0 < t < k, and let c1, ..., ct ∈ M0 and ct+1, ..., ck ∈ M1 such that c ∈ Xs. Let η0, η1 ∈ Skk (T )
such that

Mmod
0 � η0(c1, ..., ct, ct, ..., ct)

and
Mmod

1 � η1(ct+1, ..., ck, ck, ..., ck)

For brevity, we identify η0(x), which asserts
∧k
i=t+1 xi = xt, with the t-type it asserts on

x1, ..., xt, and similarly for η1. We then take the following actions:

1. Let α ∈ Skk (T ) such that

T � ∀x (α(x)→ η0(x1, ..., xt) ∧ η1(xt+1, ..., xk))

Set
Qs+1
α = Qs

α ∪ (η0(M t
0)× η1(Mk−t

1 ))

defining Qs+1
ασ analogously for each σ ∈ Sym [k].

2. Let Es+1 be the ⊆-minimal equivalence relation on Z containing Es and each (ci, cj),
i ≤ t < j, such that T � ∀x (α(x)→ xi = xj).

Claim. We can choose α so that Es+1 ∩ (Mi ×Mi) = 1Mi
, i = 0, 1.

proof of claim. We prove the claim for i = 0; the other statement follows by symmetry.
Note that we may assume s > 0. Suppose a, b ∈ M0, a 6= b and aEs+1b. We may assume
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that (a, b) ∈ Es+1 \ Es and that aEsc and bEs+1c for some c ∈ M1. In particular, there are
(w.l.o.g.) elements

a1 = a, a2, ..., at′ ∈M0

c′t′+1 = c, c′2, ..., ck−t′ ∈M1

b1 = b, b2, ..., bt ∈M0

ct+1 = c, c2, ..., ck−t ∈M1

such that at step s− 1, we acted on

ζ0 = tpk(padk(a);Mmod
0 ), ζ1 = tpk(padk(c

′);Mmod
1 )

and at step s (as above), we acted on

η0 = tpk(padk(b);Mmod
0 ), η1 = tpk(padk(c);Mmod

1 )

Since ζ0 ∧ ζ1 � x1 = xt′+1 and η0 ∧ η1 � x1 = xt+1, we now that

tpk(a;Mmod
0 ) = tpk(c;Mmod

1 ) = tpk(b;Mmod
0 )

AsM0 is a model of TG, there are a′1 = a, a′2, ...a
′
t ∈M0 such that

tpk(padk(a
′);Mmod

1 ) = η0

Again, becauseM0 is a model of TG, there are dt+1, ..., dk ∈M0 such that tpk(padk(d);Mmod
0 )

is equal to η1. Now,

η0(a′) ∧ η1(d) ⇒ a = dt+1

η0(b) ∧ η1(d) ⇒ b = dt+1

so in fact, a = b, a contradiction.

Since Z is finite, there is a number n < ω such that Xn = ∅. (In fact, n ≤ |Skk (T )|2.) Let
C = Z/En, and for α ∈ Skk (T ), let

RCα = {(c1/En, ..., ck/En) : (c1, ..., ck) ∈ Qn
α}

For i = 0, 1, define gi : Bi → C by gi(b) = b/En. It remains to verify that the triple (C, g0, g1)
satisfies the requirements of the lemma.

G1: For each k-tuple c = (c1, ..., ck) ∈ Zk, either c ∈ Mk
0 ∪Mk

1 or c ∈ Xs−1 \ Xs for some
unique s ≤ n; hence, c is certainly assigned a unique type.

G2: Immediate from the claim we proved above.
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G3: Immediate from the construction.

G4: Immediate.

It’s then relatively easy to see that g0 and g1 are ρG-embeddings that agree on A (in fact,
each is the identity map on A).

The lemma, together with the assumption that T is a capped theory, easily yields the
following very useful fact.

Theorem 2.8 (AP/sets in fin[TG]). Assume that T is capped. Suppose M0 and M1 are
models of TG. Suppose A is a substructure of both M0 and M1, and M0 ∩M1 = A. Then
there is a model N of TG and ρG-embeddings gi :Mi → N such that g0�A = g1�A.

2.2.2 Example: Vector spaces over finite fields

In this aside, we will see that G-amalgamation and amalgamation in the sense of the
original signature do not coincide. In fact G-amalgamation is a strictly weaker assumption
than the latter. For our example, fix a finite field F = GF (pn) for some prime number p.
The signature of interest is, then,

ρ =
{
R

(3)
+ , 0, (R(2)

a : a ∈ F)
}

Assume k ≥ 10, and let M0 be an F-vector space of dimension no less than k2. (Later in
this chapter, we will see that the dimensions k− 1 and d ≥ k− 1 cannot be distinguished by
the k-variable logic.) We makeM0 into a ρ-structure by interpreting the relation symbols
as follows:

RA0
+ =

{
(u, v, w) ∈M3

0 : u+ v = w
}

and
RA0
a = {(u, au) : u ∈M0}

for each a ∈ F. Let VectkF = Thk(M0). It’s not terribly difficult to verify that since k ≥ 10
and dim(A0) ≥ k2, every model of VectkF is an F-vector space, and VectkF has infinitely many
finite models up to isomorphism. To make these observations somewhat more precise, we
have the following little theorem:

Theorem 2.9. Let M0 and M1 be vector spaces over F rendered as ρ-structures as above.
The following are equivalent:

1. M0 ≡kM1

2. One of the following holds:

• dim(M0) = dim(M1) < k;
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• dim(M0) ≥ k and dim(M1) ≥ k.

To prove the theorem, it’s necessary to prove a preliminary technical lemma character-
izing winning strategies for the Duplicator, and in the end, we prove a more convenient
restatement.

Fix a finite field F, and let k ≥ 10. Let m,n < ω, and suppose σ is some strategy for
the Duplicator in PGk(Fm,Fn), a priori not necessarily a winning strategy. For d ≤ k,
we say that σ is d-linear if at the end of every round of any game she plays according to
σ, the partial ρ-isomorphism {fA(i), fB(i)) : i ∈ D} extends uniquely to an isomorphism of
F-vector spaces 〈rng(fA)〉 → 〈rng(fB)〉 (where A = Fm and B = Fn). It’s easy enough to
see that if σ is a (k − 1)-linear strategy, then σ is a winning strategy. Conversely, we have:

Lemma 2.10. If σ is a winning strategy for the Duplicator in PGk(Fm,Fn), then σ is
(k − 1)-linear.

Proof. For a contradiction, suppose σ is not (k−1)-linear. In some play of the game, there is
a first round, say round r, in which the Duplicator neglects to maintain the (k− 1)-linearity
condition. Without loss of generality, we may assume that the scenario at the end of this
round is as follows:

• fA(i) = ai for each i ∈ [k] and ak /∈ 〈a2, ..., ak−1〉.

• fB(i) = ai for each i ∈ [k] and bk ∈ 〈b2, ..., bk−1〉, where bk =
∑k−1

i=2 βibi and β2, ..., βk−1

are elements of the field.

We show that from this point, the Spoiler can guarantee a win. The first step is to replace
fA(i) = ai by fA(i) = âi = βiai for each i = 2, ..., k − 1 so that the Duplicator is forced to
set fB(i) = b̂i = βibi as well (or lose immediately). For i = 2, ..., k − 1, the Spoiler enforces
the following protocol.

• Round r+ 2(i− 2) + 1. The Spoiler sets fA(1) := âi. Since Fm � Rβi(fA(i), fA(1)), the
Duplicator must respond by setting fB(1) := βi · fB(i) = b̂i.

• Round r+2(i−2)+2. The Spoiler sets fA(i) := âi. Again, since Fm � (fA(1) = fA(i)),
the Duplicator must now set fB(i) = b̂i.

At the end of round r + 2(k − 3) + 2, the situation is as follows:

1. fA(1) = â2, fA(i) = âi for i = 2, ..., k − 1 and fA(k) = ak

2. fB(1) = b̂2, fB(i) = b̂i for i = 2, ..., k − 1 and fB(k) = bk

Next, the Spoiler sets fA(1) := fA(2) = â2, so that Duplicator must respond with fB(1) :=
fB(2) = b̂2. Now, with r′ = r + 2(k − 3) + 3, the Spoiler enforces the following protocol for
i = 3, ..., k − 1:
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• Round r′ + 2(i− 3) + 1. The Spoiler resets fA(2) := fA(1), so the Duplicator must set
fB(2) := fB(1).

• Round r′+ 2(i− 3) + 2. The Spoiler resets fA(1) := fA(2) + fA(i) =
∑i

j=2 âi, so again,
the duplicator must set fB(1) := fB(2) + fB(i) =

∑i
j=2 b̂j

Thus, at end of round r′′ = r′ + k − 4, we have

fA(1) =
k−1∑
i=2

âi 6= ak = fA(k) and fB(1) =
k−1∑
i=2

b̂i = bk = fB(k)

and the Duplicator has lost, contradicting the assumption that σ was a winning strategy.

We can now prove a slightly more convenient (though obviously equivalent) restatement
of theorem 2.9.

Proposition 2.11. Let F be a finite field, and let k ≥ 10. Let m,n < ω.

1. If m,n < k, then Fm ≡k Fn if and only if m = n.

2. If m < k ≤ n, then Fm 6≡k Fn.

3. If m,n ≥ k, then Fm ≡k Fn.

Proof of 1 and 2. Ifm = n, then Fm = Fn, so there is nothing to do. Ifm < k−1 andm < n,
then there is obviously no hope of finding a (k − 1)-linear strategy in PGk(Fm,Fn).

Proof of 3. Since ≡k is evidently transitive, it suffices to show that for any m > k, then the
Duplicator has a (k − 1)-linear strategy in PGk(Fm,Fk). To prove this, it suffices to deal
with the following scenario:

1. {fB(1), ..., fB(k)} is a basis of Fk = B, and {fA(1), ..., fA(k)} is linearly independent
in Fk = A.

2. {(fA(i), fB(i)) : i ∈ [k]} extends uniquely to an isomorphism 〈rng(fA)〉 → Fk of vector
spaces.

3. The Spoiler chooses fA(k) /∈ 〈fA(1), ..., fA(k − 1)〉.

Now, the Duplicator can choose any

fB(k) ∈ Fk \
⋃{

〈fB(i)〉i∈X : X ∈
(

[k − 1]

k − 2

)}
and thereby maintain the (k − 1)-linearity condition.
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Observation. VectkF does not have amalgamation over sets with respect to ρ.

Proof. (This example was worked out in [3].) LetM0 andM1 be F-vector spaces of dimen-
sion ≥ k2, understood as ρ-structures, and let A be a set of exactly k elements such that
M0 ∩M1 = A. Assume that

∑
A = 0 in M0, and

∑
A = b 6= 0 in M1. Further assume

that for any X ∈
(
A
k−2

)
,
∑
X 6= 0 in both M0 and M1. One can show that under this

condition tpk(A;M0) and tpk(A;M1) are identical. Towards a contradiction, suppose N is
an F-vector space and gi :Mi → N are Lk-elementary embeddings such that g0�A = g1�A.
Clearly, g0 and g1 are embeddings of vector spaces (F-linear monomorphisms) in the usual
sense. Let X ∈

(
A
k−2

)
, let c1 =

∑
X, and A \X = {c2, c3}. Since c1 + c2 + c3 = 0 inM0 and

k ≥ 10, we know that
g0(c1) + g0(c2) + g0(c3) = g0(0) = 0

On the other hand,
g1(c1) + g1(c2) + g1(c3) = g1(b) 6= 0

It can also be shown that g0�A = g1�A, together with the fact that |X| ≤ k− 2, implies that
g0(c1) = g1(c1), and by definition g0(ci) = g1(ci), i = 2, 3, just because c2, c3 ∈ A. Therefore,

0 = g0(c1 + c2 + c3) = g1(c1 + c2 + c3) 6= 0

which is impossible.

Observation. VectkF is capped. In particular, VectkF has G-amalgamation.

Proof. Suppose A is a model of (VectkF)
G
∀ . There is a subset I ⊆ Skk (VectkF) comprising those

types α(x1, ..., xk) which do not assert that xi1 , ..., xik−2
are linearly dependent for some

i1 < · · · < ik−2 ≤ k. Let B ⊆ A be a ⊆-maximal subset of A subject to the requirement
that for all b1, ..., bk ∈ B, if the bi’s are pairwise distinct and (b1, ..., bk) ∈ RAα , then α ∈ I.
Observe that if c ∈ A \ B, then for some {b1, ..., bk−1} ∈

(
B
k−1

)
, there is an α /∈ I such that

bc ∈ RAα ; for otherwise, B would not be ⊆-maximal. Let d = |B|, and letM be an F-vector
space of dimension ≥ d. Let X be a basis of M. It is not difficult to see that there is an
injection g0 : B → X which is simultaneously a ρG-embedding A�B →MG. It is similarly
easy to verify that g0 extends uniquely to a ρG-embedding g : A →MG, and this completes
the demonstration.

We have seen, then, a natural example of capped Lk-theory which nonetheless does not
admit amalgamation over sets with respect to its original signature. Thus, the passage from
T to TG is nontrivial.

The final theorem of this section turns out to be unavoidable (though terribly convenient)
in a few arguments, although its use in those cases does leave us with a feeling of bad
conscience.
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Theorem 2.12. If T is capped, then fin[TG] has a Fras̈sé limit. That is, there is a model
M of TG which satisfies:

1. Th(M) is ℵ0-categorical and eliminates quantifiers.

2. M is ultrahomogeneous and Age(M) = fin[TG∀ ]

3. If M ∈ fin[TG], A ⊆ M , and g0 : (A;M) → M is a partial ρG-isomorphism, then
there is a ρG-isomorphism g :M→M extending g0.

Proof. It is straightforward to verify that when T is capped, fin[TG∀ ] is hereditary (has HP)
and has the joint-embedding and amalgamation properties (JEP and AP, respectively). By
material of chapter 7 of [15], we know that fin[TG∀ ] has a Fraïssé limit M. Using again
the fact that T is capped, one can easily show that there is an ascending chain of finite
substructures of M, say

M0 < · · · <Mn < · · · <fin M

such thatMn � TG for each n < ω. Since TG is ∀∃-theory, it follows that M =
⋃
n<ωMn

is also a model of TG, and this completes the proof of the theorem.

2.3 Closure, coherent sequences and indiscernibles
For purely stylistic reasons, we will usually (with a few exceptions) eschew using infinite

limit models in many of our arguments, but we will still need to use some of the machinery of
indiscernible sequences, which should come as little surprise to the reader with a background
in model theory. In this section, we introduce an adaptation of this technology developed
in [17] for use when working with classes of finite models – even classes without any sort of
amalgamation property and under fairly general notions of “logic.” In all of our analyses, we
will use the “logic” consisting of quantifier-free formulas with respect to a finite relational
signature σ (e.g. ρG as derived from a fixed finite-variable theory); the key properties of
this logic pertaining to indiscernible sequences is the following. Let K be a class of finite
ρ-structures which is closed under isomorphism. We first note some useful properties of the
logic of quantifier-free formulas:

(?) There is a function tσ : ω × ω → ω such that

|Sqf
n (A;M)| ≤ tσ(|A|, n)

for allM∈ K, A ⊆M and 0 < n < ω.

(??) There is a number nρ such that for all n ≥ nρ, M ∈ K, A ⊆ M and
b1, ..., bn ∈M ,

qtp(b/A;M) =
⋃

i1,...,inσ∈[n]

qtp(bi1 , ..., binσ/A;M)
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We now move to the essential definitions. LetM ∈ K, C ⊆ M , and n < ω. An (n-ary)
coherent sequence over (C;M) is a sequence of pairs (Ai, ai)i<ω such that for all i < ω,

• Ai ∈ KC and a0, ..., ai ∈ Ani

• If j ≤ i, then qtp(a0...aj/C;Aj) = qtp(a0...aj/C;Ai)

The first lemma simply asserts the existence of coherent sequences where they are needed;
the proof is a relatively routine application of König’s lemma using property (?).

Lemma 2.13. LetM ∈ K, C ⊆M , and n < ω. Let Γ = (Bm, (b
(m)

i )i≤m)m<ω be a sequence
of pairs such that Bm ∈ KC and b

(m)

i ∈ Bn
m for all i ≤ m < ω. Then, there is a coherent

sequence (Aj, aj)j<ω over (C;M) strictly patterned on Γ in the following sense: For each
j < ω, there is an mj < ω such that qtp(a0...aj/C;Aj) = qtp(b

(mj)

0 ...b
(mj)

j /C;Bmj). where
qtp(a/C;M) denotes the complete quantifier-free type over a over C in the sense ofM.

Now, fix an n-ary coherent sequence (Ai, ai)i<ω over (C;M) for some M ∈ K and
C ⊆ M , and let C0 ⊆ C. We say that (Ai, ai)i<ω is (order) indiscernible over (C0;M) (or
more succinctly, that it is C0-indiscernible) if

qtp(ai1 ...ain/C0;As) = qtp(aj1 ...ajn/C0;At)

whenever n, s, t < ω, i1, ..., in ≤ s, j1, ..., jn ≤ t, and for all p, q ∈ [n], ip < iq if and only if
jp < jq. The next lemma is proved by a straightforward application of Ramsey’s theorem
together with property (??).

Lemma 2.14. LetM∈ K, C ⊆M , and 0 < n < ω, and let (Ai, ai)i<ω be an n-ary coherent
sequence over (C;M). Then, there is an infinite subset X ⊆ ω such that (Ai, ai)i∈X is order
indiscernible over (C;M).

Combining these lemmas, we obtain the main proposition of this section, which will used
repeatedly throughout this dissertation.

Proposition 2.15. Let M ∈ K and C ⊆ M , and let 0 < n < ω. Suppose that Γ =

(Bm, (b
(m)

i )i≤m)m<ω is a sequence of pairs such that Bm ∈ KC and b
(m)

i ∈ Bn
m for all i ≤ m <

ω. Then there is a C-indiscernible coherent sequence (Aj, aj) over (C;M) strictly patterned
on Γ as above.

There is one last bit of notation which we must introduce before proceeding. Suppose
M ∈ K, A,C ⊆ M , and p(x) = qtp(b/C;M). Recall that p(x) is K-algebraic just in case
there is a number r < ω such that for every N ∈ KC , we have | {b′ ∈ N : N � p(b′)} | ≤ r.
We also define

κ(C;M) = {a ∈M : qtp(a/C;M) is K-algebraic}
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Since we do not have access to quantifiers, it is not a priori obvious that κ captures the
usual model-theoretic notion of the algebraic-closure of a set. Firstly, it is certainly plausible
that K contains a pair of models M < M′ with C ⊆ M such that κ(C;M) $ κ(C;M′).
Secondly, it is not immediately clear that κ is a closure operator, even when restricted to
subsets of a single model. To combat that latter issue, we simply iterate the construction to
obtain a closure operator:

cl0(A;M) = A

cln+1(A;M) = cln(A) ∪ κ(cln(A;M);M)

cl(A;M) =
⋃
n<ω

cln(A;M) =
⋃

n≤|M |

cln(A;M)

Now, the following is easily verified:

Observation. 1. If M ≤ M′ in K and A ⊆ M , then κ(A;M) ⊆ κ(A;M′) and
cl(A;M) ⊆ cl(A;M′).

2. There is a function fcl : ω → ω such that if (Mi)i<α, α ≤ ω, is an ascending chain in
K, A ⊆M0 and cl(A;Mi) $ cl(A;Mi+1) whenever i+ 1 < α, then α ≤ fcl(|A|).

3. Suppose M is the Fraïssé limit of K, and letM∈ Age(M) and A ⊆M . Then

cl(A;M) ⊆ aclM(A) =
⋃
{cl(A;N ) : N ∈ Age(M), A ⊆ N}

and aclM(A) ∩M = cl(A;M).

As an example, we characterize (without proof) the behavior of the cl-operator for vector
spaces over finite fields. It is a straightforward consequence of the characterization of winning
strategies as (k − 1)-linear strategies.

Observation. Let F be a finite field, and let T be the k-variable theory of finite F-vector
spaces of “large” (i.e. ≥ k) dimension. LetM � T and A0 ⊆ A ⊆M . Then

cl(A;MG) =
⋃{

cl(B;MG) = 〈B〉 : B ∈
(

A

k − 1

)}
Furthermore, if A = (A;MG) ≤MG, then

cl(A0;A) =
⋃{

cl(A0;A) = A0 ∩ 〈B〉 : B ∈
(

A0

k − 1

)}
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Chapter 3

Essentials of transformations of
structures

In this chapter, we introduce the basic algorithmic machinery of our analysis, deferring
more complex characterizations of efficient programs to the following chapters. The ideas
on programming languages here are taken almost directly from [8] and [1]. The material
on fixed-point logics is relatively standard in finite-model and can be found in [19, 11], first
appearing (to our knowledge) in [1]. However, its development to accommodate object-
creating operations like our invent-operator seems to be new, and the idea of the model-
building problem and coherent solutions are original .

3.1 Fundamental objects

3.1.1 Hereditary lists

The notion of hereditary lists is inherited, with some modification, from [8]. For an
arbitrary non-empty set X disjoint from N, we define the set of hereditarily finite lists as
follows:

HL0[X] = X ∪ N
HLn+1[X] = HLn[X] ∪ (HLn[X])<ω

HL[X] =
⋃
n<ω

HLn[X]

For a positive integer t, we define HL(t)[X] in the same manner except for the modification:

HL(t)
0 [X] = X ∪ {1, ..., t}

In our analyses, it will be convenient to fix a countably infinite set U0 disjoint from N
and such that U0 ∩ HL[U0] = U0. Every structure A, then, will be assumed to satisfy
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A ⊆ HL = HL[U0]. At times, it will be convenient to endow HL with some structure of its
own; namely, for each 0 < l < ω, let Jl ⊆ HLl+1 be the relation consisting of (l + 1)-tuples
of the form

(a1, ..., al, 〈a1, ..., al〉)
For HL(t), we use only J1, ..., Jt, and we name 1, ..., t as constant symbols. If ρ is some finite
relational signature and A is a ρ-structure such that A ⊆ HL, then we obtain an expansion
(HL,A) of HL with signature ρ∪ {D(1)} ∪ {Jl}l, with D(HL,A) = A and R(HL,A) = RA for all
R ∈ ρ. We say that A is initial if A ⊆ U0, and we define fininit[ρ] to be the set of all finite
initial ρ-structures.

Note that permutations σ of U0 lift naturally to permutations of HL recursively via

σ〈a1, ..., an〉 = 〈σa1, ..., σan〉

(where we take σ〈〉 = 〈〉); we sometimes write σ̂ for the permutation of HL induced by
σ ∈ Sym(U0). If A is a ρ-structure with A ⊆ HL, then Sym(U0) also acts on A as follows;
for σ ∈ Sym(U0), Aσ is the structure with universe σ[A] and

RA
σ

=
{

(σa1, ..., σar) : (a1, ..., ar) ∈ RA
}

for each R ∈ ρ.
Now, suppose ρin and ρout are both finite relational signatures. An HL-transformation of

type ρin → ρout is a partial function

Q : fininit[ρin] ⇀ fin[ρout]

satisfying the following conditions:

1. The graph of Q is recursively enumerable (up to a recursive enumeration of U0);

2. If A ∈ dom(Q), then A ⊆ ||Q(A)|| ⊆ HL[A];

3. Q is Sym(U0)-invariant in the following sense: If A ∈ dom(Q), Q(A) = B and σ ∈
Sym(U0), then Q(Aσ) = Bσ̂

The following theorem is from [8].

Theorem 3.1. Suppose Q is an HL-transformation of type ρin → ρout. Then there is a
partial recursive family ψ of mappings of the form

ψA : Aut(A) ↪→ Aut(Q(A))

for A ∈ dom(Q) such that for any g ∈ Aut(A), ψA(g)(b) = ĝ(b) for every b ∈ ||Q(A)||.
Here, “partial recursive” means that the relation

{(A, σ, σ1) : ψA(σ)↓ = σ1}

is recursively enumerable up to some encoding of structures and functions.
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3.1.2 Weakly constructible k-variable theories

Once again, we fix a finite relational signature ρ, and we fix a complete Lk-theory T
(with infinitely many finite models up to isomorphism) in this signature. TG is the theory
of game tableaux for models of T , and TG∀ is the theory consisting of the universal sentences
of TG. K denotes the class of finite models of TG – i.e. K = fin[TG] – and K∀ the class
of finite induced substructures of models of TG. We also assume that T is capped – that
is, for every A ∈ K∀, there is a model M ∈ K which has A as an induced substructure.
A weakly coherent solution of the model-building problem for T is an HL-transformation of
type ρG → ρ1, where ρG ⊆ ρ1 which satisfies the following requirements:

1. K∀ ⊆ dom(Q), and for each A ∈ K∀, Q(A)�ρG is a model of TG;

Moreover, for any k-type p(x) over A (with respect to Q(A)) and any M ∈ K, if
Q(A)�ρG ≤M and p(x) is algebraic, then p(Mk) ⊆ ||Q(A)||k.

2. For each A ∈ K∀ and R ∈ ρG, RQ(A) ⊆ ||Q(A)�ρG||k.
(In this formulation, we have not formally defined the reduct B�ρG for a ρ1-structure
B; for this formality, B�ρG is the ρG-structure with universe B0 =

⋃
R∈ρG fld(RB) and

interpretations RB�ρG = RB for each R ∈ ρG.)

3. If A,B ∈ K∀ and A ≤ B, then A ≤ Q(A)�ρG ≤ Q(B)�ρG.

Of course, we say that T is weakly constructible just in case T admits a weakly coherent
solution of the model-building problem. Note that weak coherence is a purely abstract
condition. Once we have introduced the machinery of a programming language, we will
make a slightly more specialized definition of coherence corresponding to efficient solutions
of the model-building problem.

3.2 The invent-programming language
In subsection 3.2.1, we introduce the most primitive instructions of our programming

language, called basic expressions, and their semantics. For this, we choose to understand
first-formulas as operators on the set of structures, and to define the response of applying
a basic expression to a structure, we define a secondary operator resp. We will then,
in subsection 3.2.2, extend the programming syntax to included some necessary control
structures and extend the definition of the resp-operator to accommodate these.

3.2.1 Basic expressions

As usual, fix a finite relational signature ρ1. For evaluating basic expressions, we must
understand all first-order formulas in the language of ρ1 to be relativized to the predicate D,
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distinguishing the universe of a finite structure A such that A ⊆ HL; such a ρ1-structure is
called situated. Recall, then, that the D-relativization of a first-order ρ1-formula is defined
as follows:

• R(x1, ..., xn)D = R(x1, ..., xn)

• (ϕ ∧ ψ)D = ϕD ∧ ψD

• (¬ϕ(x1, ..., xn))D =
∧n
i=1D(xi) ∧ ¬ϕD

• (∃xϕ)D = ∃x(D(x) ∧ ϕD)

(Note that D is never going to be a symbol of ρ1, neither will be any of the predicate symbols
structuring HL itself.) Throughout our analyses, we will suppress the superscript D in our
notation, but it is important to keep in mind that all sets in question – the definable sets
in particular – are subsets of some cartesian power of D. Now, suppose that ϕ(x1, ..., xn)
is a first-order formula in the language of ρ1; the formula ϕ, then, supports two kinds of
operators on situated ρ1-structures:

{x|ϕ}(A) = {(a1, ..., an) ∈ An : A � ϕ(a1, ..., an)}
inventk{x|ϕ}(A) = {(a1, ..., an, 1̂ a, ..., (k − n)̂ a) : (a1, ..., an) ∈ {x|ϕ}(A)}

(In the latter case, we assume that k > n.) These operators give rise to the interpretations
of the the basic expressions of our programming language:

• If ϕ(x1, ..., xn) ∈ L(ρ1) and X ∈ ρ1 with ari(X) = n, then

(X ← {x|ϕ})

is a basic expression. If A is a situated ρ1-structure, then

resp((X ← {x|ϕ}),A) = A [X/{x|ϕ}(A) ]

That is, resp((X ← {x|ϕ}),A) is the ρ1-structure with universe A,

Y resp((X←{x|ϕ}),A) = Y A

whenever Y 6= X, and
Xresp((X←{x|ϕ}),A) = {x|ϕ}(A)

• If ϕ(x1, ..., xn) ∈ L(ρ1) and X ∈ ρ1 with ari(X) = k > n, then

(X ← inventk{x|ϕ})

is a basic expression. If A is a situated ρ1-structure, then

resp((X ← inventk{x|ϕ}),A) = A′

where A′ = A ∪ fld(inventk{x|ϕ}(A)), Y A′ = Y A if Y ∈ ρ1 \ {X} and XA
′

=
inventk{x|ϕ}(A).
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3.2.2 Control structures

The basic expressions encode all of the direct actions taken on a structure A, but of
course, the programming language also requires control structures. We define the set of
invent-programs (with respect to ρ1) by the following grammar:

α ::= <basic expressions> | α;α | (ifψ thenα elseα) | (whileψ doα)

where ψ ranges over sentences of L(ρ1), relativized to D as always. Less succinctly, invent-
programs are the members of the following inductively-defined set P of formal expressions.

1. Every basic expression is in P.

2. If P1 and P2 are in P, then P1;P2 is in P.

3. If P1 and P2 are in P and ψ isD-relativized sentence in L(ρ1), then (ifψ thenP1 elseP2)
is in P.

4. If P is in P and ψ is D-relativized sentence in L(ρ1), then (whileψ doP ) is in P.

The semantics of these programs is defined inductively as follows (our measure of time-
complexity is defined in parallel):

• resp(P1;P2,A) = resp(P2, resp(P1,A))

cpx(P1;P2,A) = cpx(P1,A) + cpx(P2, resp(P1,A))

• resp((ifψ thenP1 elseP2),A) =

{
resp(P1,A) if A � ψ
resp(P2,A) if A 2 ψ

cpx((ifψ thenP1 elseP2),A) =

{
cpx(P1,A) if A � ψ
cpx(P2,A) if A 2 ψ

• resp((whileψ doP ),A) = An∗ where

A0 = A
Ai+1 = resp(P,Ai)
n∗ = min {i < ω : Ai � ¬ψ}

Of course, such an n∗ may not exist or some resp(P,Ai) may be undefined, and in
either case, resp((whileψ doP ),A) is undefined. Assuming resp((whileψ doP ),A)
is defined, we set

cpx((whileψ doP ),A) =
∑
i<n∗

cpx(P,Ai)
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Lemma 3.2. Let A be a siturated ρ1-structure, and let ε be a basic expression over ρ1. Then,
if 0 < r < ω and b ∈ ||resp(ε,A)||r, then

b
Aut(A)

=
{
σ̂b : σ ∈ Aut(A)

}
⊆ ||resp(ε,A)||r

Moreover, b
Aut(A)

is a union of orbits of Aut(resp(P,A)) on r-tuples.

Proof. For the first claim, we give the demonstration when r = 1; for r > 1, nothing more
complicated is going on. If ε is not an invent-expression, then obviously, there is nothing
to prove. Hence, we assume that ε is of the form

(X ← inventk{x|ϕ})

where ϕ = ϕ(x1, ..., xn) is in FO[ρ1] and n < k. We may assume, then, that there is an
n-tuple (a1, ..., an) ∈ An such that A � ϕ(a1, ..., an) and an i ∈ {1, ..., k − n} such that
b = 〈i, a1, ..., an〉. If σ ∈ Aut(A), then

σ̂b = σ̂〈i, a1, ..., an〉 = 〈σi, σa1, ..., σan〉 = 〈i, σa1, ..., σan〉

Since σ is an automorphism, we have A � ϕ(σa1, ..., σan), and it follows that σ̂b is in
||resp(ε,A)||, as desired.

For the second claim, the verification when ε is not an invent-expression is routine, so
we assume again that ε is of the form

(X ← inventk{x|ϕ})

Thus, assuming b = (b1, ..., br), for each j = 1, ..., r, there are ij ∈ {1, ..., k − n} and
(aj1, ..., a

j
n) ∈ {x|ϕ}(A) such that bj = 〈ij, aj1, ..., ajn〉. Note that every b

′ in the orbit of
b under Aut(resp(ε,A)) is of the form b

′
= (b′1, ..., b

′
r), where for each j = 1, ..., r, there

are lj ∈ {1, ..., k − n} and (cj1, ..., c
j
n) ∈ {x|ϕ}(A) such that b′j = 〈lj, cj1, ..., cjn〉. (Then for

σ ∈ Aut(A), σ̂b = b
′ just in case lj = ij for each j = 1, ..., r and σ(bji ) = σ(cji ) for all

j = 1, ..., r and i = 1, ..., n.) If σ ∈ Aut(resp(ε,A)) takes b to b
′, then as σ preserves

inventk{x|ϕ}(A), we have lj = ij for each j = 1, ..., r. Moreover, for each j,

σ(aj1, ..., a
j
n, 〈ij, a

j
1, ..., a

j
n〉) = (cj1, ..., c

j
n, 〈lj, c

j
1, ..., c

j
n〉)

Thus, for each automorphism σ ∈ Aut(resp(ε,A), there is an automorphism τ of the struc-
ture A[X/{x|ϕ}(A) ] such that σ = τ̂ , and this suffices to prove the claim. (When b consists
of both elements of A and invented elements, the proof is not significantly different, so we
leave the demonstration here.)

Proposition 3.3. Let A be a situated ρ1-structure, and let P be an invent-program over
ρ1 such that resp(P,A) is defined. Then, if 0 < r < ω and b ∈ ||resp(P,A)||r, then
b
Aut(A) ⊆ ||resp(P,A)||r and bAut(A)

is a union of orbits of Aut(resp(P,A)) on r-tuples.
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Proof. The demonstration is a straightforward inductive argument using the fact that eval-
uating resp(P,A) is identical to evaluating a certain sequence of basic expressions.

The following theorem is also from [8].

Theorem 3.4. Every HL-transformation is computable by an invent-program up to iso-
morphism over universes of input structures.

3.2.3 Some easy program normalizations

Let ρ1 ⊂ ρ′1, where ρ′1 is finite, and assume V ∈ ρ′1 \ ρ1 is a unary relation variable. Let
P be a program over ρ1 and P ′ a program over ρ′1. Let K be a set of situated ρ1-structures
which is closed under isomorphisms. For any situated ρ1-structure A, there is a “trivial”
ρ′1-expansion A′ of A in which Y A′ = ∅ for all Y ∈ ρ′1 \ ρ1. We say that P ′ captures P over
K if for every A ∈ K, if resp(P,A) is defined, then resp(P ′,A′) is defined and, setting
B = resp(P ′,A′), 〈

V B,
(
XB ∩ (V B)ari(X) : X ∈ ρ1

)〉 ∼= resp(P,A)

We say that a basic expression ε = (X ← {x|ϕ}) or ε = (X ← inventk{x|ϕ}) is flat just in
case ϕ(x1, ..., xn) is of one of the the following forms:

1. An equality type, τ(x1, ..., xn);

2. A literal ±Y (x1, ..., xn), where Y ∈ ρ1;

3. A conjunction or disjunction:

Y1(xi1 , ..., xir) ∧ Y2(xj1 , ..., xjs) or Y1(xi1 , ..., xir) ∨ Y2(xj1 , ..., xjs)

where {xiu , xjv , u ∈ [r], v ∈ [s]} = {x1, ..., xn}.

4. An existential ∃xn+1...xn+t Y (x1, ..., xn, xn+1, ..., xn+t). (In this case, we allow xn+i ∈
{x1, ..., xn}, i = 1, ..., t.

The following propositions are folklore:

Proposition 3.5. Let P be a program over ρ1. Then there are ρ′1 ⊃ ρ1, a program P ′ over
ρ′1 and a number d < ω such that

1. P ′ captures P over the set of all situated ρ1-structures.

2. cpx(P ′,A′) ≤ (2 + cpx(P,A))d whenever resp(P,A) is defined.

3. P ′ is of the form Q0; (whileψ doQ); where Q is loop-free and Q0 is a sequence of flat
basic expressions.
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Proposition 3.6. Let Q be a loop-free program over ρ1. Then there are ρ′1 ⊃ ρ1, a program
Q′ over ρ′1 and a number c < ω such that

1. P ′ captures P over the set of all situated ρ1-structures.

2. cpx(Q′,A′) ≤ c · (2 + cpx(Q,A)) for all situated ρ1-structures A.

3. Q′ is of the form

(ifψ1 thenR1 else id); ...; (ifψm thenRm else id)

where ∅ `
∨m
i=1 ψi, ψi ∧ ψj ` false whenever i 6= j, and for each i = 1, ...,m, Ri is a

sequence of flat basic expressions.

3.2.4 Essentially inflationary programs and constructible theories

Throughout this section, we consider fully normalized invent-programs P over a signa-
ture ρ1. That is, P is of the form Ppre;Ploop – and more precisely of the form:

Ppre; ( whileϕloop do (ifψ1 thenR1 else id); ...; (ifψm thenRm else id) )

satisfying the following conditions:

1. Ppre is a sequence of basic expressions.

2. ∅ `
∨
i ψi and if i 6= j, then ψi ∧ ψj ` false

3. For each i = 1, ...,m, Ri is a sequence of flat basic expressions.

We will also desire that Ploop is essentially inflationary in a sense to be made precise next. A
relation variable X ∈ ρ1 is called private (with respect to P ) if (a) it does not occur in any
of ψ1, ..., ψm or ϕloop, and (b) for each i = 1, ...,m, X does not occur in the body of any basic
expression of Ri before it has occurred as the head of a basic expression in Ri. Naturally
enough, X is called public with respect to P if it is not private, and we let pub(P ) denote
the set of public relation variables of P . We say that P is essentially inflationary if for each
i = 1, ...,m, for each X ∈ pub(P ), every basic expression in Ri with X as the head is the
form (X ← {x|X(x) ∨X1(x)}) – that is, Ri is explicitly inflationary with respect to X.

We are at last in a position to specify our notion of a (fully) coherent solution of the
model-building problem for a k-variable theory T . Let P be a fully normalized invent-
program over a signature ρ1 ⊇ ρG (with respect to T ); then P is a (fully) coherent solution
of the model-building problem for T just in case:

1. P is a weakly coherent solution of the model-building problem for T ;

2. P is essentially inflationary;
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3. ρG ⊆ pub(P ).

As before, T is (fully) constructible if it admits a fully coherent solution for the model-
building problem. In the next chapter, we will summarize how to show that any polynomial-
time weakly coherent solution for the model-building is necessarily fully coherent, and in
chapter 8, we will also show how to extract an independence relation on fin[TG] from the
hypothesis of full constructibility.

3.3 Fixed-point logics over HL and HL(t)

3.3.1 Some background on fixed-point logics

Let ρ be a finite relational signature. We define the fixed-point logic FP [ρ], and extension
of the first-order language of ρ, as follows:

1. Every first-order formula is in FP [ρ], and FP [ρ] is closed under the boolean connectives
and first-order quantification.

2. Suppose ϕ = ϕ(x1, ..., xn, y;X(n), Y1, ..., Ym) is a formula of FP [ρ ∪ {X, Y1, ..., Ym}].
Then

[fp : X, (x1, ..., xn) : ϕ](v1, ..., vn, y;Y )

is in FP [ρ ∪ {Y1, ..., Ym}]

For the most part, we will only deploy the syntax of fixed-point logic in the analysis of
essentially inflationary programs, but for completeness, we will provide the so-called partial
(pfp) semantics in addition to the inflationary (ifp) semantics of the fixed-point logic. Let
V be a nonempty set, and let F : P(V )→P(V ). We then define,

F 0 = ∅
Fα+1 = Fα ∪ F (Fα)

F λ =
⋃
α<λ

Fα (if λ is a limit ordinal)

ifp(F ) =
⋃

α<2|S|

Fα

The ifp-semantics of FP [ρ] are then given as follows:

1. The semantics of first-order formulas is unchanged, as are the conditions for satisfaction
of conjunctions, negations and first-order quantification.
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2. Suppose ϕ = ϕ(x1, ..., xn, y;X(n), Y1, ..., Ym) is a formula of the “larger” fixed-point logic
FP [ρ∪{X, Y1, ..., Ym}]. LetM′ = (M, R1, ..., Rm) be a ρ∪{Y1, ..., Ym}-structure, where
M is a ρ-structure, and let b ∈My. Define Fϕ,b,R : P(Mn)→P(Mn) by

Fϕ,b,R(S) =
{
a ∈Mn :M′ � ϕ(a, b;S,R)

}
Then

M′ � [fp : X, (x1, ..., xn) : ϕ](a, b) ⇔ a ∈ ifp(Fϕ,b,R)

We now move to the pfp-interpretation of FP [ρ]. Again, let V be a nonempty set, and
let F : P(V )→P(V ). We then define,

F 0
p = ∅

Fm+1
p = F (Fm

p )

pfp(F ) =

{
F n
p if n = min

{
m : Fm+1

p = Fm
p

}
exists

∅ otherwise

The rest of the interpretation is unchanged from the ifp-interpretation.
Constructions using simultaneous fixed-points are also of interest, although it can be

proved that simultaneous fixed-point constructions do not contribute any additional expres-
sive power. Suppose

Ψ = {ψ1(x1, ..., xm;X1, ..., Xm), ..., ψm(x1, ..., xm;X1, ..., Xm)}

are formulas of FP [ρ ∪ {X1, ..., Xm}] were ari(Xi) = ri for each i = 1, ...,m. We have an
additional formula construction,

[fp : Xi, x
1
i , ..., x

ri
i : Ψ](v1, ..., vri)

The associated operator for a ρ-structureM,

FΨ : P(M r1 × · · · ×M rm) −→P(M r1 × · · · ×M rm)

is given by

(R1, ..., Rm) 7→

{
(a1, ..., am) :

m∧
i=1

M � ψi(a1, ..., am;R)

}
The ifp- and pfp-semantics are then nearly identical to those for single-formula fixed-points
– computing the simultaneous fixed-point of the system (if it exists) and simply extracting
the desired relation.
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3.3.2 Fixed-point logic over HL(t)

Recall that the signature of HLt is τ tHL = {J1, ..., Jt, 1, ..., t}, where 1, ..., t are constant
symbols and for each r = 1, ..., t,

JHL(t)

r =
{

(a1, ..., ar, 〈a1, ..., ar〉) : a1, ..., ar ∈ HL(t)
}

If ρ is a finite relational signature (disjoint from τ tHL), then we define ρ + τ tHL to be the
signature ρ ∪̇ τ tHL ∪̇ {D}.

Lemma 3.7. Let ε be a basic expression over ρ of arity k ≤ t. Then there is a first-order
formula θε(x1, ..., xn) of ρ+ τ tHL such that for all ρ-structures A with A ⊆ HL(t),

(a1, ..., ak) ∈ ε(A) ⇔ (HL(t),A) � θε(a1, ..., ak)

for all a1, ..., ak ∈ HL(t).

Proof. First, if ε = (X ← {x|ϕ}), where ϕ(x1, ..., xk) is in FO[ρ], then θε(x) is simply ϕD.
Now, suppose ε = (X ← inventk{x|ϕ}) where ϕ(x1, ..., xn) is in FO[ρ] and n < k. Then,
θε(x1, ..., xk) is the following formula:

ϕD(x1, ..., xn) ∧
k∧

i=n+1

Jn+1(i− n, x1, ..., xn, xi) (3.1)

The verification is routine, and we omit it.

Proposition 3.8. Let P be an invent-program over ρ, where ari(X) ≤ t for all X ∈ ρ.
Then there is a set of first-order formulas

{
θXP (x1, ..., xn)

}
X∈ρ of ρ + τ tHL such that for all

ρ-structures A with A ⊆ HLt and every X(n) ∈ ρ,

(a1, ..., an) ∈ Xresp(P,A) ⇔ (HLt,A) � θXP (a1, ..., an)

for all a1, ..., an ∈ HLt. Moreover, if P is fully normalized and essentially inflationary, then
we may use the ifp-semantics in the evaluation of the formula.

Proof. We deal with the several construction rules for invent-programs.

P is a basic expression with head X(r): For Y (n) ∈ ρ\{X}, θYP (x1, ..., xn) is just Y (x1, ..., xn),
and θXP (x1, ..., xr) is θP (x1, ..., xr) as in the previous lemma.

P = P1;P2: Let X ∈ ρ. Obtain θXP be replacing occurrence Y (v1, ..., vn) of Y in θXP2
by

θYP1
(v1, ..., vn) for each Y (n) ∈ ρ.
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P = (ifϕ thenP1 elseP2): For each X(n) ∈ ρ, let θXP (x1, ..., xn) be

(ϕD ∧ θXP1
(x)) ∨ ((¬ϕ)D ∧ θXP2

(x))

P = (whileϕdoP1): For each X(n) ∈ ρ, let ψXP (x1, ..., xn) be

(ϕD ∧ θXP1
(x)) ∨ ((¬ϕ)D ∧X(x))

[fp : X, x1, ..., xn : ΨP ](x1, ..., xn)

Again, the verification is straightforward, so we omit it.

To obtain a converse of proposition 3.8, we specialize the full fixed-point logic (syntacti-
cally speaking) to a natural fragment FP ∗[ρ]:

1. Every first-order formula of the form ϕD or of that in lemma 3.7 is an FP ∗[ρ]-formula,
and FP ∗[ρ] is closed under boolean connectives and first-order quantification.

2. The fixed-point formula construction is unchanged.

The proof of the following proposition is not hard, but quite long and tedious – we omit the
demonstration in the interest of not boring the reader into an early grave.

Proposition 3.9. Let Ψ =
{
ψX(x1, ..., xr) : X(r) ∈ ρ

}
be a family of FP ∗[ρ]-formulas, pos-

sibly involving simultaneous fixed-point constructions.

1. (Evaluation under pfp-semantics) There is a fully normalized invent-program PΨ such
that for every initial ρ-structure A, resp(PΨ,A) is defined if and only if{

a ∈ (HLt)r : (HLt,A) � [pfp : X, x : Ψ](a)
}

is finite for each X(r) ∈ ρ. Moreover, if resp(PΨ,A) is defined, then

Xresp(PΨ,A) =
{
a ∈ (HLt)r : (HLt,A) � [pfp : X, x : Ψ](a)

}
for each X ∈ ρ.

2. (Evaluation under ifp-semantics) There is a fully normalized essentially inflationary
invent-program QΨ satisfying the same conditions that PΨ did in the previous state-
ment.
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Chapter 4

Characterizations of efficient
transformations

In this chapter, we will sketch the proofs of some program normalizations that apply
specifically to efficient programs, showing in particular that every efficient program is cap-
tured by an efficient essentially inflationary program. Once again, the analysis is only mildly
different from that of [1], and our contribution is simply to extend the technique to accom-
modate object-creation. Before embarking on that project, however, we pause to show how
our model of computation fits in with more “standard” machine-based ones; hopefully, this
demonstration will satisfy the reader that our analysis is reasonably robust to details of the
model of computation. Through this chapter’s analyses it will become clear that in order to
characterize efficient model-building, it suffices to consider essentially inflationary programs.
Using this fact, we will see, in chapter 8, that if T is efficiently constructible, then fin[TG]
is rosy.

4.1 Relational Turing machines
In this section, we introduce the notion of a relational Turing machine – a standard Turing

machine interacting with a structure exclusively through first-order definable transformations
of the structure. (The idea of such a machine seems to go back to [1] and related papers by
the same authors, where it is thought of as a database query language, like SQL, embedded
in a Turing-complete programming language, like C.) Formally, a relational Turing machine
(RTM) is a tuple M = (Σ, Q, q0, F, ρ1, S, B, δ) such that:

1. Σ is a finite alphabet. Q is a finite set of states; q0 ∈ Q is the initial state; and F ⊆ Q
is a set of final or halting states.

2. ρ1 is a finite relational signature; S is a finite set of FO[ρ1]-sentences; B is a finite set
of basic expressions over ρ1.
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3. δ : Q× (Σ∪̇{�})×P(S) −→ Q× Σ× {l, r} ×B is the transition function.

A configuration of M is a pair (w,A), where w is a word of the regular language �Σ∗(Q×
(Σ ∪ {�}))Σ∗� and A is a ρ1-structure with A ⊆ HL. In particular, w takes one of the
following forms:

�w′x(q, z)yw′′� where x, y ∈ Σ, q ∈ Q, and w′, w′′ ∈ Σ∗

�(q, z)yw′′� where y ∈ Σ, q ∈ Q, and w′′ ∈ Σ∗

�w′x(q, z)� where x ∈ Σ, q ∈ Q, and w′ ∈ Σ∗

�(q, z)� where q ∈ Q

and in each case z ∈ Σ∪ {�}. The machine’s read/write head is understood to be scanning
the symbol z ∈ Σ∪̇{�} paired with the state symbol. If q ∈ F , then the machine has halted,
so there is no succeeding configuration. Assuming, then, that q /∈ F , we set SA = {ψ ∈
S : A � ψ}, and consider (z1, q1, d, ε) = δ(q, z, SA) where d ∈ {l, r} and ε ∈ B is a basic
expression. We deal with transitions from each of the four configuration types in turn:

1. w = �w′x(q, z)yw′′�:

If d = l, then the next configuration is (�w′(q1, x)z1yw
′′�, resp(ε,A)), and if d = r,

then it is (�w′z1(q1, y)w′′�, resp(ε,A)).

2. w = �(q, z)yw′′�:

If d = l, then the next configuration is (�(q1, z1)yw′′�, resp(ε,A)), and if d = r, then
it is (�z1(q1, y)w′′�, resp(ε,A)). (The machine’s tape is infinite only to the right)

3. w = �w′x(q, z)�:

If d = l, then the next configuration is (�w′(q1, x)z1yw
′′�, resp(ε,A)), and if d = r,

then it is (�z1(q1,�)�, resp(ε,A)).

4. w = �(q, z)�:

If d = l, then the next configuration is (�(q1, z1)�, resp(ε,A)), and if d = r, then it
is (�z1(q1,�)�, resp(ε,A)).

As a convention, the initial configuration of an RTM-computation on a structure A will
always be (�(q0,�)�,A) – that is, the tape is initially empty. The output of an RTM-
computation output(M,A) is simply the structure whose universe comprises all elements
that occur in a relation register at any point of the computation and whose relations are
those stored in the relation registers upon termination. The time-complexity of an RTM
computation, cpxtime(M,A), is measured simply as the number of steps in the computation
until it halts. The space-complexity, cpxspace(M,A), is measured as the sum of (a) the
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number of non-�-marked cells left on the tape at the end of the computation, (b) nk where
k is the maximum arity of a relation symbol ofM and n is the cardinality of ||output(M,A)||
For a function f : N→ N, an HL-transformation Q is in rel-time(f(n)) just in case there
is an RTM M such that A 7→ output(M,A) is identical to Q (up to isomorphism over A)
on dom(Q) and there is a number c such that for almost all A ∈ dom(Q), cpxtime(M,A) ≤
c ·f(|A|). rel-space(f(n)) is defined similarly. We then define the analogues of the classical
complexity classes, Ptime and Pspace, as follows:

rel-Ptime =
⋃
t<ω

rel-time(nt)

rel-Pspace =
⋃
t<ω

rel-space(nt)

Note that due to the presence of invent-operations, these definitions of rel-Ptime and rel-
Pspace are not trivially identical to the definitions posited in [1]; it can be shown, however,
that our definitions and those of [1] coincide for decision problems. In [1], it is also proved that
rel-Ptime coincides with fixed-point logic under ifp-semantics, and rel-Pspace coincides
with fixed-point logic under pfp-semantics (under their definitions). Further, it is proved that
rel-Pspace contains exactly those decision problems computable by unrestricted while-
programs (our invent-programs, omitting the invent-operation), and more saliently, rel-
Ptime contains exactly those decision problems computable by inflationarywhile-programs.
In the remainder of this chapter, we will sketch how to adapt the methods of [1] to prove
similar equivalences for invent-programs and HL-transformations.

4.1.1 Equivalences over ordered initial structures

In this section, we assume that our finite relational signature ρ1 contains a binary relation
symbol <. An ordered initial ρ1-structure, then, is an initial ρ1-structure A such that <A
is a linear order of its universe A. The arguments for the following propositions are quite
standard (requiring only very minor modifications) – templates for all of them can be found
in [19] or [11]. All of them boil down to more or less elaborate encoding excercises.

Proposition 4.1. Let K be a set of ordered initial ρ1-structures, closed under isomorphism,
and let M be an RTM over a signature ρ′1 ⊇ ρ1. Suppose that M has polynomial running
time over K – that is, for some d < ω,

cpxtime(M,A) ≤ (2 + |A|)d

for all A ∈ K. Then there is a family Ψ =
{
ψX : X ∈ ρ′1

}
of first-order formulas of ρ′1 + τ tHL

for some 0 < t < ω such that for all A ∈ K and every X(r) ∈ ρ′1,

Xoutput(M,A) =
{

(a1, ..., ar) ∈ (HLt)r : (HLt,A) � [fp : X, x : Ψ](a)
}
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evaluating the simultaneous fixed-point under the ifp-semantics.

The following corollary is, then, an immediate consequence of the preceding proposition
together with proposition 3.9 of chapter 3.

Corollary 4.2. Let K be a set of ordered initial ρ1-structures, closed under isomorphism,
and let M be an RTM over a signature ρ′1 ⊇ ρ1. Suppose that M has polynomial running
time over K. Then there is a fully normalized essentially inflationary invent-program PM
over ρ′′1 ⊇ ρ′1 and a number c < ω such that for all A

cpx(PM ,A) ≤ c · (2 + cpxtime(M,A))

and for every X ∈ ρ′1, Xoutput(M,A) = Xresp(PM ,A) and X ∈ pub(PM).

As one might expect, the RTM model of computation is universal for “relational” models
of computation – those which interact with structures only through first-order definable
transformations. In particular, we have:

Lemma 4.3. Let K be a set of (not necessarily ordered) initial ρ1-structures, closed under
isomorphism, and let P be an invent-program over a signature ρ′1 ⊇ ρ1. Then there is an
RTM MP over ρ1 and a number c′ < ω such that for all A ∈ K,

cpxtime(MP ,A) ≤ c′ · (2 + cpx(P,A))

and Xoutput(MP ,A) = Xresp(P,A) for every X ∈ ρ1.

To conclude this section, we note that the dependencies on the linear order in these facts
is not as strict as it may appear. More precisely, if < and E are 2k-ary relation symbols in
ρ1 such that for all A ∈ K, (i) EA is an equivalence relation on Ak, (ii) <A is a linear order
of Ak/EA, and (iii) the action of the program or machine “respects E-classes” in a certain
sense (see the next section), then we obtain essentially the same results provided that we
simply measure complexity as a function of |Ak/E| rather than |A|. If the class K admits an
ensemble (E,<) of this kind (explicitly or definably), then we say that K is pseudo-ordered
by (E,<), and (E,<) is a k-ary pseudo-order for K.

4.2 Reduction to pseudo-ordered structures
Before we can proceed, there are some necessary pieces of machinery to introduce first.

To smooth the discussion, we will assume that our finite relational signature ρ1 contains only
relation symbols of arity exactly k for some positive integer k. Let Φ be a set of formulas
of the language of ρ1 of arity ≤ k. Φ may be infinite, but in general, we will assume that
Φρ1 ⊆ Φ, where

Φρ1 = {R(x1, ..., xk) : R ∈ ρ1} ∪

{∧
i<j

(xi = xj)
σ(i,j) : σ : [k]× [k]→ {0, 1}

}
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for some fixed set of pairwise distinct variables {x1, ..., xk}. We say, then, that Φ is acceptable.
Let A be a ρ1-structure, and let (E,<) be a k-ary pseudo-order of A. We say that (E,<)
is a Φ-respecting pseudo-order of A just in case for each ϕ(x1, ..., xk) ∈ Φ, there is a set
{C1, ..., Cm} of E-classes such that {x|ϕ}(A) =

⋃m
i=1 Ci. Assuming Φ is finite, we define

another, larger set of formulas Φ∗ as follows:

1. Φ0 is the set of formulas of the form

ϕ(x1, ..., xn) ∧
k∧

i=n+1

xi = xn

for ϕ(x1, ..., xn) ∈ Φ.

2. Given Φm, we immediately put Φm ⊆ Φm+1.

Suppose ϕ(x) ∈ Φ0 and R1(v1), ..., Rs(vs) is an enumeration of the atomic subformulas
of ϕ, with repetitiions . Let ψ1(x), ..., ψs(x) ∈ Φm, and let ϕ[ψ1, ..., ψs] be the formula
obtain by replacing Ri(vi) by ψi(vi) for each i = 1, ..., s. Then ϕ[ψ1, ..., ψs] is in Φm+1.
(Note the ϕ[ψ1, ..., ψs] and ϕ have the same set of free variables, and in particular,
every formula in Φm+1 is k-ary.)

3. Φ∗ =
⋃
m<ω Φm.

(E,<) is a finest Φ∗-respecting pseudo-order of A if for all a, b ∈ Ak, (a, b) ∈ E implies that
A � ϕ(a) iff A � ϕ(b) for all ϕ(x1, ..., xk) ∈ Φ∗.

Theorem 4.4. [1] Let Φ be an acceptable finite set of ρ1-formulas. There is an inflationary
while-program QΦ over ρ1 ∪ {E(2k), <(2k)} such that the following holds:

Suppose A is a ρ1-structure and (E0, <0) is Φρ1-respecting pseudo-order of A. Then, if
(A, E1, <1) = resp(QΦ, (A, E0, <0)), then (E1, <1) is a finest Φ∗-respecting pseudo-order of
A such that

1. (a, b) ∈ E1 ⇒ (a, b) ∈ E0,

2. a/E0 <0 b/E0 ⇒ a/E1 <1 b/E1,

for all a, b ∈ Ak. Moreover, cpx(QΦ, (A, E0, <0)) ∈ |A|k·O(1).

For the next few lemmas, it will be convenient to define

inventk(a) = (a1, ..., an, 1̂ a, ..., (k − n)̂ a)

(padk(a) was defined in the introduction.)



CHAPTER 4. CHARACTERIZATIONS OF EFFICIENT TRANSFORMATIONS 44

Lemma 4.5. Let Φ be an acceptable finite set of ρ1-formulas. Suppose (E0, <0) is a finest
Φ∗-respecting pseudo-order of a situated ρ1-structure A.

Let ϕ(x1, ..., xn) ∈ Φ and ε = (R ← inventk{x|ϕ}), and let a, b ∈ {x|ϕ}(A) and c, d ∈
Ak. Suppose (c, d) ∈ E0 and (padka, padkb) ∈ E0, and suppose X, Y ⊆ [k] is a partition of
[k]. Then

resp(ε,A) � ψ( (c�X )̂ (inventk(a)�Y ) )

if and only if
resp(ε,A) � ψ( (d�X )̂ (inventk(b)�Y ) )

for all ψ(x1, ..., xk) ∈ Φ∗.

Let <k
ρ1
be a linear order of the set Sqf

k (ρ1) of complete quantifier-free k-types of the
language of ρ1. If A is a ρ1-structure, there is a natural Φρ1-respecting pseudo-order (Ek

ρ1
, <k

ρ1

) of A. By theorem 4.4, there is a canonical finest Φ∗-respecting pseudo-order (EA,≺A) of A
modulo (Ek

ρ1
, <k

ρ1
) and the program QΦ, and this is computable in relational polynomial-time

just because the invent-operator is not in play.

??? For the rest of this section, we assume that P is a fully normalized program over ρ1, and
we assume that there is a fixed set {x1, ..., xk} of first-order variables such that all control
sentences and formulas appearing in P take their variables from this set.

Let ΦP be the set of formulas that appear in P , whether as control or in basic expressions,
together with every formula of Φρ1 ; obviously, this set is finite. Let ρ◦1 be the following
signature:{

≺(2)
}
∪
{
E

(2)
X : ∅ 6= X ⊆ [k]

}
∪
{
F (2)
σ : σ ∈ Sym [k]

}
∪
{
Vq : q ∈ Sqf

k (ρ1)
}

Given a ρ1-structure, we define canonically a ρ◦1-structure A/P as follows:

• ||A/P || = Ak/EA, ≺A/P =≺A

• EA/PX =
{

(a/EA, b/EA) :
∧
i∈X ai = bi

}
• FA/Pσ =

{
(a/EA, b/EA) : b = (aσ(1), ..., aσ(k))

}
• V A/Pq =

{
a/EA : A � q(a)

}
There is also a natural translation of k-variable formulas of the language of ρ1 into formulas
in the language of ρ◦1:

• If θ(x1, ..., xk) is a quantifier-free, then θ◦(v) is∨
{Vq(v) : θ(xi1 , ..., xim) ∈ q(x)}
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• (θ1 ∨ θ2)◦ = (θ◦1 ∨ θ◦2) and (¬θ)◦ = (¬ θ◦)

• (∃xi θ(x))◦(v) = ∃u(E{i}(u, v) ∧ θ◦(u))

The following, lemma 4.6, is folklore – proofs can be found in [19, 11, 1]. The succeeding
assertion, proposition 4.2, is a straightforward consequence of lemma 4.6 and theorem 4.4.
(Its proof is tedious and not at all enlightening, so we omit it.)

Lemma 4.6. Let A be a ρ1-structure. Then for any k-variable formula ϕ(x1, ..., xk) of the
language of ρ1, for any a ∈ Ak

A � ϕ(a) ⇔ A/P � ϕ◦(a/EA)

Moreover, for any k-variable sentence ψ of ρ1, A � ψ if and only if A/P � ψ◦.

Proposition 4.7. Let ϕ(x1, ..., xn) be a formula of ρ1 such that ε = (X ← inventk{x|ϕ})
is a basic expression of P . There is a sequence of basic expressions δ1; ...; δm over ρ◦1 such
that for any ρ1-structure A,

resp(ε,A)/P = resp(δ1; ...; δm,A/P )

As a consequence of proposition , we find that there is program P ◦ over ρ◦1 of the form

P ◦pre; (whileϕ◦loop do (ifψ◦1 thenR
◦
1 else id); ...; (ifψ◦m thenR◦m else id))

which satisfies the following conditions for every ρ1-structure A:

1. resp(P ◦pre,A/P ) = resp(Ppre,A)/P and resp(R◦i ,A/P ) = resp(Ri,A)/P for each
i = 1, ...,m

2. A � ϕloop if and only if A/P � ϕ◦loop, and for each i = 1, ...,m, A � ψi if and only if
A/P � ψ◦i .

Moreover, if P is essentially inflationary, then P ◦ is as well. One of our key theorems, then,
is an immediate consequence of these observations:

Theorem 4.8. Let K be a set of ρ1-structures which is closed under isomorphism.

1. Suppose f : N → N is such that cpx(P,A) ≤ f(|A|) for all A ∈ K, and suppose
g : N→ N is such that g(nk) ≤ f(n) for all n < ω. Then cpx(P ◦,A/P ) ≤ g(|Ak/EA|)
for all A ∈ K.

2. Suppose g : N→ N is a function such that cpx(P ◦,A/P ) ≤ g(|Ak/EA|) for all A ∈ K.
Then cpx(P,A) ≤ g(|A|k) for all A ∈ K.

In particular, P is polynomial-time if and only if P ◦ is polynomial-time.
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Given theorem 4.4, it is not difficult to verify that the transformation A 7→ A/P is
computable in relational polynomial-time by an inflationary program QP . Now, we suppose
that P is a polynomial-time invent-program (over K). Since A/P is a linearly ordered
structure whenever A ∈ K, we know that P ◦ is captured over K/P = {A/P : A ∈ K} by an
essentially inflationary program, say P ◦◦ (this is by proposition 4.1 and lemma 4.3). Finally,
there is a (constant-time) sequence of basic expressions, R, such that QP ;P ◦◦;R captures
P . This line of argument is summarized in the following theorem:

Theorem 4.9. Let K be a set of initial ρ1-structures which is closed under isomorphism,
and suppose Q is an HL-transformation of type ρ1 → ρ2 such that K ⊆ dom(Q). If Q is
computable over K by a polynomial-time invent-program, then it is computable over K by
an essentially inflationary polynomial-time invent-program.

4.3 Efficiency and small algebraicity
Much of our later analysis of efficient model-building is insensitive to the distinction

between genuinely polynomial-time invent-programs – which we’ve just learned are captured
by essentially inflationary programs – and essentially inflationary programs that are not
necessarily efficient. Dealing in program analysis alone, it does not seem likely that we will
find a more refined characterization, and we, therefore, turn to model theory to provide that
refinement.

For this section, we assume that K is an ∀∃-axiomatized class of finite ρ-structures with
amalgamation over sets. Suppose M is a countable Fraïssé limit of K; in particular, M
is ultrahomogeneous, and Th(M) is ℵ0-categorical and eliminates quantifiers. We further
assume that P is a fully coherent solution of the model-building problem for K, and without
loss of generality, we assume that resp(P,A) ⊆ ||M|| whenever A ⊂fin ||M||, A = (A;M).
It follows that aclM(A) ⊆ resp(P,A) in this case.

Lemma 4.10 (Polynomial-space). Suppose P is as stated above. If there are numbers δ, d
such that cpx(P, (A;M)) ≤ δ|A|d for all sufficiently large A ⊂fin ||M||, then are number
δ1, d1 such that #||resp(P, (A;M))|| ≤ δ1|A|d1 for all large enough A.

Proof. It is easy to see that if ε is a basic expression, then there is a number r(ε) such that for
any structure (of the appropriate signature) #||resp(ε,A)|| ≤ |A|r(ε). Let r be the maximum
r(ε) for all basic expressions ε appearing in P . Then, clearly, #||resp(P,A)|| ≤ δ|A|rd , which
suffices.

For any finite subset C ⊂fin ||M||, let Salg(C) denote the set of p(x) ∈ Sqf
1 (C;M) which

are algebraic. Of course, if a ∈ aclM(C), then qtp(a/C;M) ∈ Salg(C), so the following
corollary is immediate from the polynomial-space constraint.
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Corollary 4.11. Suppose P is a polynomial-time fully coherent solution of the model-building
problem for K. Then there are dalg < ω and δalg ∈ R such that |Salg(C)| ≤ δalg|C|dalg
whenever C ⊂fin ||M|| is sufficiently large.

Recall that K is said to have small algebraicity if there is a number dK < ω such that for
all C ⊂fin ||M||, if p(x) ∈ Sqf

1 (C;M) is algebraic, then p(x)�C0 is already algebraic for some
C0 ∈

(
C
dK

)
. Clearly, for any C ⊂fin ||M|| and 0 < r < ω,{

p ∈ Sqf
1 (C) : ∃C0 ∈

(
C

r

)
. p�C0 ∈ Salg(C0)

}
⊆ Salg(C)

Thus, if P satisfies a polynomial-time constraint, then for some ε ∈ R, we have

ε|C|dalg ≤ |
{
p ∈ Sqf

1 (C) : ∃C0 ∈
(
C

r

)
. p�C0 ∈ Salg(C0)

}
| ≤ |Salg(C)| ≤ δalg|C|dalg

whenever C ⊂fin ||M|| is sufficiently large. That is, |Salg(C)| ∈ Θ(|C|dalg), and for some
c < ω and all large enough C,

Salg(C) ⊆
{
p ∈ Sqf

1 (C) : ∃C0 ∈
(

C

cdalg

)
. p�C0 ∈ Salg(C0)

}
which proves:

Theorem 4.12. Suppose K = fin[TG], where T is a capped complete Lk-theory with in-
finitely many finite models up to isomorphism. If K is efficiently constructible – that is, K
admits a polynomial-time fully coherent solution of its model-building problem – then K has
small algebraicity.
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Chapter 5

þ-Independence and rosy Fraïssé classes

5.1 Definitions for þ-independence and rosiness
For easier reference in the sequel, we collect most of the fundamental definitions and

notation together here. They are little changed from the classical case of [22]. (One difference
is that there is nothing to distinguish types from formulas, as everything in sight is finite.)
There are alternative but equivalent ways of making these definitions, but naturally, the ones
we use suffice for our purposes.

Throughout, we take K to be a Fraïsse class – that is, K is an isomorphism-closed class
of finite structures with infinitely many finite models up to isomorphism and which admits
amalgamation over sets. Moreover, all types in consideration are assumed to be quantifier-
free, though we will tend to indicate this explicitly with the notation qtp. Let M0 ∈ K
and C ⊆M0. Let ϕ(x1..., xm, y1, ..., yn) be a partial (quantifier-free) type over (C;M0), and
let q(y) = qtp(b0/C;M0) for some b0 ∈ Mn

0 . The first two definitions are used in all of
our other definitions; the first of these, setwise unboundedness, obviates the need to employ
imaginaries explicitly.

• The assertion, “
{
ϕ(x, b) : b � q ...

}
is setwise unbounded over KC ,”1 means that for

every t < ω, there is a modelM∈ KC such that

|
{
θ(Mm, b) : b ∈Mn, b � q ...

}
| ≥ t

where (as is standard) ϕ(Mn, b) =
{
a ∈Mn :M � θ(a, b)

}
.

• The assertion, “
{
ϕ(x, b) : b � q ...

}
is r-inconsistent over KC ,” means that for every

M∈ KC , if b1, ..., br ∈ q(Mn) are pairwise distinct, then

ϕ(Mm, b1) ∩ · · · ∩ ϕ(Mm, br) = ∅
1The ellipsis “...” means that there may be additional constraints involved in the specification of the

family of sets.
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Now, we move to the fundamental definitions of the theory of þ-independence. Connecting
these with our study of finite-variable theories – specifically, with the notion of game tableaux
– we assume that every relation symbol R is of arity at least two and, of course, that the
signature is finite.

• We say that ϕ(x, y) divides strongly over C in q if there is a positive integer r such
that

{
ϕ(x, b) : b � q

}
is setwise unbounded and r-inconsistent over KC .

• ϕ(x, b) divides strongly over C just in case it divides strongly over C in qtp(b/C;M0)

• ϕ(x, b) þ-divides over C if there is a modelM1 ∈ KC and a tuple d ∈ M<ω
1 such that

ϕ(x, b) divides strongly over Cd = C ∪ rng(d).

• We say that ϕ(x, b) þ-forks over C if there areM ∈ KC , formulas (i.e. partial types)
θ1(x, y1), ..., θs(x, ys) and b′i ∈Mni , 1 ≤ i ≤ s < ω, such that

KCbb1...bs
� ϕ(x, b)→

s∨
i=1

θi(x, b
′
i)

and each θi(x, b
′
i) þ-divides over C.

Finally, we define the notion of þ-independence, |þ^ , as follows: Let M ∈ K, B,C ⊆ M

and a ∈ M<ω; then a is þ-independent from B over C – denoted a |þ^ CB – just in case
qtp(a/BC;M) does not þ-fork over C.

As is often the case in geometric model theory, there is a concept of an ordinal-valued
of local rank associated with the notions þ-dividing and þ-forking. Again, letM0 ∈ K and
C ⊆M0, and let π(x1, ..., xm) be a partial type over C. Let Φ be a a finite set of quantifier-
free formulas without parameters of the form ϕ(x, y), and similarly, let ∆ be a finite set of
quantifier-free formulas of the form δ(y, z).

• þC(π,Φ,∆, r) ≥ 0 just in case π is KC-consistent.

• þC(π,Φ,∆, r) ≥ α + 1 if there are formulas ϕ(x, y) ∈ Φ and δ(y, z) ∈ ∆, a model
M∈ KC and a tuple d ∈M z such that

1.
{
ϕ(x, b) : b � δ(y, d)

}
is setwise unbounded and r-inconsistent over KCd

2.
{
ϕ(x, b) : b � δ(y, d), þCd(π ∪ {ϕ(x, b)},Φ,∆, r) ≥ α

}
is setwise unbounded over

KCd.

• þC(π,Φ,∆, r) =∞ if þC(π,Φ,∆, r) ≥ α for all α < ω.

(For economy in the notation, we assert that α <∞ for all ordinals α.)
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• We say that K is rosy if þC(π,Φ,∆, r) <∞ for all C, π,Φ,∆ as above.

The central result of this chapter is the demonstration that K is rosy if and only if |þ^ is
a true independence relation in the sense specified in the Introduction (chapter 1). Before
embarking on this development, we collect a few facts about the local

5.2 Basic properties of the local þ-rank
Lemma 5.1. The local þ-rank has the following properties in all classes (with or without an
amalgamation property):

(Rank-monotonicity) Suppose Φ ⊆ Φ′, ∆ ⊆ ∆′ and π ⊆ π′, where π′ is a partial type
over (C;M0) andM0 ∈ K. Then

þC(π′,Φ′,∆′, r) ≥ þC(π,Φ,∆, r)

(Rank-transitivity) Suppose π0 ⊆ π1 ⊆ π2, where π2 is a partial type over (C;M0) and
M0 ∈ K. Assuming þC(π0,Φ,∆, r) <∞, the following are equivalent:

1. þC(π0,Φ,∆, r) = þC(π2,Φ,∆, r)

2. þC(π0,Φ,∆, r) = þC(π1,Φ,∆, r) and þC(π1,Φ,∆, r) = þC(π2,Φ,∆, r)

(Additivity) Let π0, π1 be quantifier-free formulas over (C;M0) andM0 ∈ K. Then

þC(π0 ∨ π1,Φ,∆, r) = max
i=0,1

þC(πi,Φ,∆, r)

(Rank-extension) Let π be a partial type over (C;M0) and M0 ∈ K. Then there is a
complete (quantifier-free) type p over (C;M0) extending π such that

þC(π,Φ,∆, r) = þC(p,Φ,∆, r)

proof of rank-monotonicity. Clearly, it will suffice to prove the following claim:

Claim. If π, π′, Φ,Φ′ and ∆,∆′ are as in the statement of the lemma and α < ω, then
þC(π,Φ,∆, r) ≥ α implies þC(π′,Φ′,∆′, r) ≥ α

proof of claim. The proof is by induction on α. For α = 0, it’s enough to observe that
since π ⊇ π′, if π is KC-consistent, then π′ must be also. Now, inductively assume that
þC(π,Φ,∆, r) ≥ α0 implies þC(π′,Φ′,∆′, r) ≥ α0 whenever α0 ≤ α.

Suppose that þC(π,Φ,∆, r) ≥ α + 1 is witnessed by ϕ(x, y) ∈ Φ, δ(y, z) ∈ ∆,M ∈ KC

and d ∈M z. Let t < ω be given. Then, there is a modelM1 ∈ KCd such that{
ϕ(x, b) :M1 � δ(b, d), þCd(π ∪ {ϕ(x, b)},Φ,∆, r) ≥ α

}
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has cardinality at least t (as a family of subsets of Mx
1 ). By the inductive hypothesis, it

follows that {
ϕ(x, b) :M1 � δ(b, d), þCd(π

′ ∪ {ϕ(x, b)},Φ′,∆′, r) ≥ α
}

Of course, {ϕ(x, b) :M1 � δ(b, d)} remains r-inconsistent. As t was arbitrary, ϕ, δ,M1 and
d witness the fact that þC(π′,Φ′,∆′, r) ≥ α + 1, as required.

proof of rank-transitivity. By rank-monotonicity, we find that

þC(π2,Φ,∆, r) ≤ þC(π1,Φ,∆, r) ≤ þC(π0,Φ,∆, r) <∞

and rank-transitivity follows immediately from the inequality.

proof of additivity. In view of rank-monotonicity, it suffices to prove:

Claim. For every α < ω,

þC(π0 ∨ π1,Φ,∆, r) ≥ α ⇒ max
i=0,1

þC(πi,Φ,∆, r) ≥ α

Proof.

Sub-claim. Suppose þC(π0 ∨ π1,Φ,∆, r) ≥ α + 1, witnessed by ϕ(x, y) ∈ Φ, δ(y, z) ∈ ∆,
N ∈ KC and d ∈ N z. Then, for every m < ω, there are N1 ∈ KCd and an i < 2 such that{

ϕ(x, b) : N1 � δ(b, d), þCd(πi ∪ {ϕ(x, b)},Φ,∆, r) ≥ α
}

has cardinality at least m (as a family of subsets of Nx
1 ).

proof of subclaim. Let m < ω be given. Choose any n ≥ 2m+ 1, and let Nm ∈ KCd be such
that

Hm

{
ϕ(x, b) : Nm � δ(b, d), þCd((π0 ∨ π1) ∪ {ϕ(x, b)},Φ,∆, r) ≥ α

}
has cardinality at least n as a family of subsets of Nx

m. Note that for every b ∈ Ny
m, if

ϕ(x, b) ∈ Hm, then at least one of π0 ∪ {ϕ(x, b)} or π1 ∪ {ϕ(x, b)} is KCdb-consistent. Define
hm : Hm → 2 by

hm(ϕ(x, b)) = min
{
i < 2 : π0 ∪ {ϕ(x, b)} is KCdb-consistent

}
By our choice of n, either |h−1

m (0)| ≥ m or |h−1
m (1)| ≥ m, and obviously this proves the

sub-claim.
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Assume þC(π0∨π1,Φ,∆, r) ≥ α+ 1, witnessed by ϕ(x, y) ∈ Φ, δ(y, z) ∈ ∆, N ∈ KC and
d ∈ N z. Define f : ω → 2 by

f(m) = min
{
i < 2 : |h−1

m (i)| ≥ m
}

where Nm, Hm and hm are those chosen in the proof of the sub-claim. At least one of
f−1(0) or f−1(1) is infinite, and in case f−1(i) is infinite, ϕ, δ, N , d witness the fact that
þC(π,Φ,∆, r) ≥ α + 1.

proof of rank-extension. Assume π = π(x1, ..., xn). Since ρ and C are finite, we may
enumerate p0, ...., ps−1 all of the complete extensions of π to C. Clearly, KC � π ↔

∨
i<s pi,

so by rank-additivity, we have,

þC(π,Φ,∆, r) = max
i<s

þC(pi,Φ,∆, r)

and any type pi realizing maximum is a witness to rank-extension.

Proposition 5.2 (Invariance of þ-rank). Assume K has amalgamation over sets. LetM∈
K and C,C ′ ⊆M , and let π be a partial type over C ∩ C ′. Then

þC(π,Φ,∆, r) = þC′(π,Φ,∆, r)

Proof. As usual, the proposition reduces to the following claim.

Claim. Let α < ω. For any Φ and ∆, and for any M ∈ K, any C,C ′ ⊆ M , and be any
partial type π over C ∩ C ′, þC(π,Φ,∆, r) ≥ α implies þC′(π,Φ,∆, r) ≥ α.

proof of claim. Suppose that þC(π,Φ,∆, r) ≥ α + 1, witnessed by ϕ(x, y) ∈ Φ, δ(y, z) ∈ ∆,
M1 ∈ KC and d ∈ M z

1 . Let M2 ∈ KC′ , and let N be an amalgam of M1 and M2 over
C ∩C ′. Then it’s easy to see that (up to the embeddings of the amalgamation) ϕ(x, y) ∈ Φ,
δ(y, z) ∈ ∆,M1 ∈ KC and d ∈ N z.

5.3 Basic properties of þ-independence

In this section, we collect the basic properties of |þ^ (proposition 5.3) that hold in any
class (with AP/sets), rosy or not. That is, we show that þ-independence is always a notion
of independence. In the next section, we will find that |þ^ is a true notion of independence
in a class K precisely when K is rosy.
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Proposition 5.3. The relation |þ^ has the following properties in any class K with amalga-
mation over sets, rosy or not.

1. Invariance: SupposeM,M1 ∈ K, B,C ⊆ M , B1, C1 ⊆ M1 and a ∈ M<ω, a1 ∈ M<ω
1 ,

and suppose qtp(aBC;M) = qtp(a1B1C1;M1). If a |þ^ BC, then a1
|þ^ C1B1.

2. Extension: Let M ∈ K, B,C ⊆ M and a ∈ M<ω, and suppose a |þ^ CB. Let M′ ∈
KBC, and suppose BC ⊆ D ⊆M ′.
Then there areM1 ∈ KD and a1 ∈M<ω

1 such that qtp(a1/BC;M1) = qtp(a/BC;M)

and a1
|þ^ CD.

3. Base-extension Let M0 ∈ K, B ⊆ M0 and a ∈ M<ω
0 , and suppose a |þ^ CB. Let

M∈ KBC, and suppose c ∈M<ω.
Then there areM1 ∈ KaBC and c′ ∈M<ω

1 such that qtp(c′/aBC;M) = qtp(c/aBC;M)

and a |þ^ Cc′B

4. Monotonicity: LetM∈ K, B,C ⊆M and a ∈M<ω, and suppose a |þ^ CB. If B0 ⊆ B,
then a |þ^ CB0.

5. Base-monotonicity: Let M ∈ K, B,C ⊆ M and a ∈ M<ω, and suppose a |þ^ CB. If
B0 ⊆ B, then a |þ^ B0CB.

6. Partial right-transitivity Let M ∈ K, B1, B2, C ⊆ M and a ∈ M<ω, and suppose
a |þ^ CB1B2. Then a |þ^ CB1 and a |þ^ B1CB2.

7. Preservation of algebraic dependence I: Suppose M ∈ K, B ⊆ M and a ∈ M<ω. If
a |þ^ Ba, then a ∈ acl(B;M).

8. Preservation of algebraic dependence II: SupposeM∈ K, C ⊆M and a, b ∈M<ω. If
b ∈ acl(Ca) \ acl(C), then a |þ/̂ Cb.

proof of extension. ForM∈ K and B0 ⊆ B ⊆M , define

Dþ
x(B/B0) =

{
ϕ(x, b) : ϕ(x, y) þ-divides over B0

}
nDþ

x(B/B0) =
{
¬ϕ(x, b) : ϕ(x, b) ∈ Dþ

x(B/B0)
}

Claim. M∈ K and B0 ⊆ B ⊆M , and let π(x) be a partial type over C. Then, the partial
type π(x) ∪ nDþ

x(B/B0) is K-realizable if and only if π(x) does not þ-fork over B0.

Proof. (⇐) For the contrapositive, suppose π(x) ∪ nDþ
x(B/B0) is not K-realizable. Let

p1(x), ..., ps(x) be an enumeration of all of the complete extensions π(x) to B. By hypothesis,
pi(x)∩Dþ

x(B/B0) is non-empty for each i ∈ [s], and it follows immediately that π(x) þ-forks
over B0.
(⇒) Immediate from AP/sets and the definition of þ-forking.
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Now, letM ∈ K, B,C ⊆ M and a ∈ M<ω, and suppose a |þ^ CB. LetM′ ∈ KBC , and
suppose BC ⊆ D ⊆ M ′. Let p(x) = qtp(a/BC;M), which does not þ-fork over BC. By
the claim, there is a complete extension p′(x) of p(x) ∪ nDþ

x(D/C) to D, and by definition
of nDþ

x(D/C), p′(x) does not þ-fork over C, as desired.

proof of monotonicity. Let M ∈ K, B,C ⊆ M and a ∈ M<ω, and suppose a |þ^ CB
and B0 ⊆ B. Let b enumerate B \ B0, and let p(x, y) = qtp(a, b/B0C;M) and p0(x) =
qtp(a/B0C;M). Towards a contradiction, suppose that p0(x) þ-forks over C. Then, there
are c1, ..., cs and formulas ϕ1(x, y1), ..., ϕs(x, ys) such that

KCc1...cs � p0(x)→
s∨
i=1

ϕi(x, ci)

and each ϕi(x, ci) þ-divides over C. Clearly,

KCbc1...cs
� p(x, b)→

s∨
i=1

ϕi(x, ci)

so ϕi(x, c1), ..., ϕs(x, cs) witness the fact that p(x, b) þ-forks over C, contradicting the as-
sumption that a |þ^ CB.

proof of base-monotonicity. LetM∈ K, B,C ⊆M and a ∈M<ω, and suppose a |þ^ CB

and B0 ⊆ B. Let p(x) = qtp(a/BC;M). Towards a contradiction, suppose a |þ/̂ B0CB – that
is, let ϕ1(x, y1), ..., ϕs(x, ys) be formulas and c1, ..., cs tuples such that

KB0Cc1...cs � p(x)→
s∨
i=1

ϕi(x, ci)

and each ϕi(x, ci) þ-divides over B0C. By definition, then, ϕi(x, ci) þ-divides over C as well,
so these formulas witness a |þ/̂ CB, a contradiction.

proof of partial right-transitivity. Let M ∈ K, B1, B2, C ⊆ M and a ∈ M<ω, and
suppose a |þ^ CB1B2. By Monotonicity, we know that a |þ^ CB1, so it remains only to show
that a |þ^ B1CB2. Again by Monotonicity, it suffices to show that a |þ^ B1CB1B2, and this follows
from a |þ^ CB1B2 by Base-monotonicity, which completes the proof of the claim.

proof of preservation of algebraic dependence I. Suppose M ∈ K, B ⊆ M and a ∈
M l. Suppose a |þ^ Ba and a is not algebraic. For a contradiction, we will show that qtp(a/aB;M)
divides strongly (hence þ-forks) over B. Naturally, we let ϕ(x1, ..., xl, y1, ..., yl) be the formula∧l
i=1 xi = yi, and let q(x) = qtp(a/B;M). Then, as q(x) is not algebraic,

{ϕ(x, a′) : a′ � q}

is setwise unbounded and 2-inconsistent over KB, as desired.
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proof of preservation of algebraic dependence II. We name the complete types p(x, y)
= qtp(a, b/C;M), p0(x) = qtp(a/C;M) and p1(y) = qtp(b/C;M). Since acl(Ca) 6= acl(C),
we know that p0 is non-algebraic, and p1 is non-algebraic by hypothesis. But, as p(a, y) is
algebraic, let 0 < r < ω be such that

|
{
p(a, b

′
) : b

′ ∈ Ny
}
| < r

as N ranges over KCa. It is easy enough to see that ifM1 ∈ KC and a1 ∈ Mx
1 is such that

a1 � p0, then
|
{
p(a1, b

′
) : b

′ ∈ Ny
}
| < r

as N ranges over KCa1 . As p1 is non-algebraic, it follows that{
p(x, b

′
) : b

′
� p1

}
is both setwise unbounded and r-inconsistent over KC ; that is, p(a, y) þ-divides – hence,
þ-forks – over C, as required.

proof of base-extension. LetM0 ∈ K, B ⊆ M0 and a ∈ M<ω
0 , and suppose a |þ^ CB. Let

M ∈ KBC , and suppose c ∈ M<ω. . Let p(x, y) = qtp(ac/BC;M). By Extension, we can
choose an M1 ∈ KBCc and an a1 ∈ M<ω

1 such that M1 � p(a1, c) and a1
|þ^ CBc, and by

Partial right-transitivity, it follows that a1
|þ^ CcB. Now, we may choose M2 ∈ KBCa and

c′ ∈M |c|
2 such thatM2 � p(a, c′) By Invariance, then, we have a |þ^ Cc′B, as desired.

Lemma 5.4 (Partial left-transitivity). Let M ∈ K, B,C ⊆ M and a1, a2 ∈ M<ω, and
suppose a1

|þ^ CB and a2
|þ^ a1CB. Then a1a2

|þ^ CB.

Proof. The proof is identical to that of the result of the same name in [22], so we omit the
demonstration here.

5.4 þ-Independence in rosy classes
In this section, we will show that þ-independence in a rosy class is a true independence

relation. A key step in this development is the connection between the global property of
þ-forking with the local property described by the local þ-rank. Thus, one main theorem of
this section is the following:

Theorem 5.5. Assume K is rosy. Let M ∈ K and B,C ⊆ M , and let p(x) be a complete
type over (BC;M). Then, the following are equivalent:

1. þ(p, ϕ, δ, r) = þ(p�C,ϕ, δ, r) for all quantifier-free formulas ϕ(x, y) and δ(y, z);
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2. p does not þ-fork over C.

We break the proof of theorem 5.5 into two propositions, 5.6 and 5.10 which are treated in
this section.

Proposition 5.6. Assume K is rosy. Let M ∈ K and B,C ⊆ M , and let p(x) be a com-
plete quantifier-free type over (BC;M). Suppose p(x) þ-forks over C. Then þ(p, ϕ,∆, r) <
þ(p�C,ϕ,∆, r) for some 1 < r < ω, ϕ(x, y) and ∆.

Proof. Assuming p(x) þ-forks over C, we find b1, ..., bs ∈ M<ω and formulas ϕ1(x, y1),...,
ϕs(x, ys) such that

KCb1...bs
� p(x)→

s∨
i=1

ϕi(x, bs)

and for each i ∈ [s], ϕi(x, bi) þ-divides over (C;M). Without loss of generality, we may
assume that b1, ..., bs ∈ (BC)<ω. Thus, for each i ∈ [s], we may further assume that there is
a tuple di ∈M<ω such that ϕi(x, bi) divides strongly over Cdi, and let 1 < ri < ω such that{

ϕi(x, b) : b � qtp(bi/Cdi;M)
}

is setwise unbounded and ri-inconsistent over KCdi
. For convenience, let c be an enumeration

of C. Then if δi(yi, v, zi) = qtp(bicdi;M), we may also say that ϕi(x, yi) divides strongly
in δi(yi, c, di) over (C;M). For convenience in the exposition we will assume that b1, ..., bs
are all of the same arity and d1, ..., ds are all of the same arity (possibly with repetitions
of coordinates); in particular, we assume that z1 = · · · = zs. We make several additional
definitions

• r = maxi∈[s] ri

• w is a tuple of fresh variables of the same length as the yi’s, and y′ = y1̂ · · · ŷŝ w;
similarly, for each i ∈ [s], bi = b1̂ · · · b̂ŝ bi

• ψ(x, y′) =
∨s
i=1(w = yi ∧ ϕi(x, yi))

• δ′i(y′, v, z) = w = yi ∧ δi(w, v, z)

• ∆′ = {δ′i(y′, z) : i ∈ [s]}

Clearly, if a′ = a1̂ · · · âŝ ai, then ψ(x, a′) ↔ ϕi(x, ai) is valid over K. It only remains to
prove,

Claim. þ(p, ψ,∆′, r) < þ(p�C,ψ,∆′, r)
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proof of claim. By construction, we know that

KCb1...bs
� p(x)→

s∨
i=1

ψ(x, b
i
)

and further, for each i ∈ [s],
{
ψ(x, b

′
) : b � δ′i(y

′, c, di)
}

is both setwise unbounded and r-
inconsistent over KCb1...bs

. By rank-extension, there is a complete type q(x) over the enlarged
domain (BCb1...bs;M) extending p such that þ(q, ψ,∆′, r) = þ(p, ψ,∆′, r). Since

KCb1...bs
� p(x)→

s∨
i=1

ψ(x, b
i
)

we may assume that ψ(x, b
1
) ∈ q, and clearly, q�C = p�C by definition. Now,{

ψ(x, b) : b � δ′1(y′, c, d1)
}

is setwise unbounded and r-inconsistent over KCd1
just because ϕ1(x, d1) divides strongly

over (C;M) in δ1(y1, c, d1). By the definition of þ-rank, therefore, we have

þ(p�C,ψ,∆′, r) = þ(q�C,ψ,∆′, r)

≥ þ(q, ψ,∆′, r) + 1

= þ(p, ψ,∆′, r) + 1

> þ(p, ψ,∆′, r)

which proves the claim.

Having proved proposition 5.6, we obtain a second proof of the Extension property of |þ^ in
rosy classes, which the author finds somewhat more natural to this scenario where everything
in sight is finite. We also easily derive the Existence property of |þ^ from proposition 5.6.

Observation (Extension in rosy classes). Let M ∈ K, B,C ⊆ M and a ∈ M<ω, and
suppose a |þ^ CB. LetM′ ∈ KBC, and suppose BC ⊆ D ⊆M ′.

Proof. We first choose a function frk : ω × ω → ω such that for any n < ω, N ∈ K,
B0 ⊆ B ⊆ N , and any complete n-type p(x) over (B;N ), the following are equivalent:

1. þ(p,Φ,∆, r) < þ(p�B0,Φ,∆, r) for some Φ,∆ and r.

2. With m = frk(n, |B0|), þ(p, Fm, Fm,m) < þ(p�B0, Fm, Fm,m) where Fm is the set of
≤ m-ary quantifier-free formulas, counted up to logical equivalence.
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Such a function exists just due to the fact that, for all n, t < ω, the set{
(q, (A;N )) : N ∈ K, A ∈

(
N

t

)
, q(x1, ..., xn) ∈ Sqf

n (A;N )

}
is finite up to isomorphism of the base sets (A;N ). We may also assume that frk is monotone
in each coordinate – that is, if n ≤ n1 and t ≤ t1, then frk(n, t) ≤ frk(n1, t1).

Now, let M ∈ K, B,C,D ⊆ M such that BC ⊆ D, and a ∈ Mn, and assume that
a |þ^ CB. Let p1(x) = qtp(a/BC;M) and p0 = p1�C, and let m = frk(n, |BC|). By Rank-
extension, there is an extension p2(x) of p1(x) to (D;M) such that

þ(p2, Fm, Fm,m) = þ(p1, Fm, Fm,m)

where m = frk(n, |BC|). To prove the claim, it suffices to show that p2(x) does not þ-fork
over (C;M), and by proposition 5.6, p2 does not þ-fork over BC. Again, by proposition 5.6
and the monotonicity of frk, in order to show that p2 does not þ-fork over C, it suffices to
show that

þ(p2, Fm, Fm,m) = þ(p0, Fm, Fm,m)

Thus – towards a contradiction – we suppose that

α = þ(p1, Fm, Fm,m) = þ(p2, Fm, Fm,m) < þ(p0, Fm, Fm,m)

There are, then, ϕ(x, y), δ(y, z) ∈ Fm and (w.l.o.g.) e ∈M z such that{
ϕ(x, b

′
) : b

′
� δ(y, e)

}
is m-inconsistent over KBCe and{

ϕ(x, b
′
) : b

′
� δ(y, e), þ(p0 ∪ {ϕ(x, b

′
)}, Fm, Fm,m) ≥ α

}
is setwise unbounded. By AP/sets, some b′ � δ(y, e) is algebraic over dom(p1) = BC, and it
follows that p1 þ-forks (even þ-divides) over C, which is a contradiction to the assumption
that a |þ^ CB.

Proposition 5.7 (Existence property of |þ^ in rosy classes). SupposeM∈ K, B ⊆M and
a ∈M<ω. Then a |þ^ BB.

Proof. Immediate from proposition 5.6.

The proof of the next theorem is mostly the same as the proof of the analogous theorem
in [22] – the only novel aspect being the use of coherent sequences. We note that because
we make recourse to the machinery of coherent sequences, the assumption of amalgamation
over sets is not actually necessary in the argument, except insofar as it is used in proving
the Extension property.
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Theorem 5.8 (Symmetry). Assume K is rosy. Let M0 ∈ K, C ⊆ M0, a, b ∈ M≤k
0 . Then

a |þ^ Cb implies b |þ^ Ca.

Proof. SupposeM0 ∈ K, C ⊆M0 and a ∈M≤k
0 , b ∈M<ω

0 , and assume a |þ^ Cb but b |
þ/̂
Ca. We

will derive a contradiction to the assumption that K is rosy. Let p(x, y) = qtp(a, b/C;M0)
– so, p(a, y) þ-forks over C. By definition, we can assume that there are formulas ϕ1(y, v1),
..., ϕs(y, vs), tuples e1, ..., es and d1, ..., ds in M0 such that

KCae1...es � p(a, y)→
s∨
i=1

ϕi(y, ei)

and for each i ∈ [s], ϕi(y, ei) divides strongly over (Cdi;M0).
Our first goal is to define a coherent sequence (Nn, (an, en, d

n
))n<ω in the type

qtp(a, e0, d
0
/Cb;M0)

(where e0 = e1̂ · · · ês and d
0

= d1̂ · · · d̂s) such that for all n < ω, an |
þ

^ Cba<ne
<nd

<n.

Construction:

• Naturally, we set a0 = a, e0 = e1̂ · · · ês and d
0

= d1̂ · · · d̂s. Let p0(x) = qtp(a/C;M0)

and q0(y, z) = qtp(e0d
0
/Cb;M0).

• Suppose we have chosen ai, e
i, d

i and Mi for all i ≤ n, and the associated types are
pi(x) = qtp(ai/Ca<ie

<id
<i

;Mi) and qi = (ei, d
i
/Cbe<id

<i
;Mi). We also assume that

pi does not þ-fork over C.

1. Applying Extension, choose pn+1(x) over (Ca≤ne
≤nd

≤n
;Mn) extending pn which

does not þ-fork over C, and choose M′
n+1 ∈ K

Ca≤ne
≤nd

≤n and an+1 in M′
n+1

realizing pn+1.

2. Applying Extension again, choose qn+1(y, z) over the enlargement

(Ca≤ne
≤nd

≤n
an+1;M′

n+1)

extending qn which does not þ-fork over (Ca<ne
<nd

<n
;Mn), and chooseMn+1 ∈

K
Ca≤ne

≤nd
≤n
an+1

and tuples en+1d
n+1 inMn+1 to realize qn+1.

Finally, we may select a coherent sequence (Nn, (an, en, d
n
))n<ω patterned strictly on the

sequence (M′
n, (an, e

n, d
n
))n<ω.

Claim. Let m < n < ω. Then am+1...an |
þ

^ Cd
mem.
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proof of claim. Given m < ω, the claim is proved by induction on the difference t = n−m.
The argument is identical to that in [22], so we omit it in the interest of brevity.

Now, up to some padding, we may assume that all of the ei’s have the same length, and
all of the di’s have the same length. Let w be a fresh tuple of variables, and define

ψ(y, v1...vsw) =
s∨
i=1

(w = vi ∧ ϕi(y, w))

Furthermore, let
δi(vi, z, u) = qtp(ei, di, c;M0)

where c is an enumeration of C, and let

δ′i(v1...vsw, u) = (w = vi ∧ δi(w, z, u))

and ∆′ = {δ′i : i ∈ [s]}. Finally, let r = maxi∈[s] ri, where for each i ∈ [s], the family{
ϕi(y, e) : e � δi(vi, di)

}
is setwise unbounded and ri-inconsistent over KCdi

Claim. Let m < n < ω. Then

þ(qtp(b/Cam...an;Nn), ψ,∆′, r) < þ(qtp(b/Cam+1...an;Nn), ψ,∆′, r)

proof of claim. The argument is almost identical to the argument for the similar claim in
the proof of proposition 5.6, so we refrain from duplicating it here.

Thus, by rank-monotonicity, þ(qtp(b/C;M0), ψ,∆′, r) ≥ α + 1 for all α < ω, which
contradicts the assumption that K is rosy, and this completes the proof of the theorem.

Theorem 5.9 (Transitivity). Assume K is rosy. LetM0 ∈ K, B1, B2, C ⊆M0 and a, b1, b2 ∈
M≤k

0 . Then, the following are equivalent:

1. a |þ^ Cb1b2

2. a |þ^ CB1 and a |þ^ Cb1
b2.

Proof. We have already proved that 1⇒2 holds in all theories, so we only need to show here
that 2⇒1. Let M0 ∈ K, B1, B2, C ⊆M0 and a ∈M≤k

0 , and suppose a |þ^ CB1 and a |þ^ B1CB2.
Then,

a |þ^ Cb1 & a |þ^ Cb1
b2 =⇒ b1

|þ^ Ca& b2
|þ^ Cb1

a

=⇒ b1b2
|þ^ Ca

=⇒ a |þ^ CB1B2

by Symmetry;Partial left-transitivity;Symmetry, as required.
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Finally, we can complete the characterization of þ-forking in terms of local þ-rank, theo-
rem 5.6. Again, the proof is not significantly different from that in [22].

Proposition 5.10. Assume K is rosy. Let M ∈ K and B,C ⊆ M , and let p(x) be a
complete quantifier-free type over (BC;M). Suppose p(x) does not þ-fork over C. Then
þ(p, ϕ,∆, r) = þ(p�C,ϕ,∆, r) for all 1 < r < ω, ϕ(x, y) and ∆.

Proof. We will prove, by induction on α < ω, that þ(p�C,ϕ,∆, r) ≥ α implies þ(p, ϕ,∆, r) ≥
α for all p, ϕ(x, y), ∆ and r as in the statement of the proposition (in particular, that p
does not þ-fork over C). When α = 0, the claim is obviously true. Assuming the claim for
all α0 ≤ α, suppose that þ(p�C,ϕ,∆, r) ≥ α + 1. In particular, let δ(y, z) ∈ ∆,M1 ∈ KBC

and d ∈M z
1 be such that

{
ϕ(x, b) : b � δ(y, d)

}
is setwise unbounded and r-inconsistent over

KBCd and {
ϕ(x, b) : b � δ(y, d), þ(p�C ∪ {ϕ(x, b)}, ϕ,∆, r) ≥ α

}
is setwise unbounded over KBCd.

Claim. Let q(y) be a complete type over C which is K-consistent with δ(y, d). Suppose
N ∈ KBCd and b ∈ q(Ny) are such that þ(p�C ∪ {ϕ(x, b)}, ϕ,∆, r) ≥ α. Then þ(p ∪
{ϕ(x, b)}, ϕ,∆, r) ≥ α.

Proof. Fix a � p – a |þ^ CB by hypothesis. By Extension, let q′(y) be a complete extension
of q(y) to BCa which does not þ-fork over Ca, and without loss of generality, assume b � q′;
thus, b |þ^ CaB. Now, we derive:

a |þ^ CB& b |þ^ CaB
(Sym.)=⇒ B |þ^ Ca&B |þ^ Cab

(Trans.)=⇒ B |þ^ Cab

(Trans.)=⇒ B |þ^ Cba

(Sym.)=⇒ a |þ^ CbB

Thus, a |þ^ CbB, and þ(p�C ∪ {ϕ(x, b)}, ϕ,∆, r) ≥ α by the assumptions of the claim. By the
inductive hypothesis, þ(p ∪ {ϕ(x, b)}, ϕ,∆, r) ≥ α, which proves the claim.

From the claim, we find that{
ϕ(x, b) : b � δ(y, d), þ(p ∪ {ϕ(x, b)}, ϕ,∆, r) ≥ α

}
is setwise unbounded over KBCd. Thus, þ(p, ϕ,∆, r) ≥ α + 1, as required.
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5.5 Sufficiency of symmetry and transitivity
In this section, we prove (theorem 5.13) that for K (with AP/sets) to be a rosy class, it

is enough to verify that |þ^ is symmetric of K. We present two technical lemmas leading up
to the demonstration of theorem 5.13. The first of these is completely obvious:

Lemma 5.11. There is a function find : ω×ω → ω such that for anyM∈ K, A ⊆M , and
b1, ..., bm ∈ Mn, if m > find(n, |A|) and (bi)

m
i=1 is A-indiscernible, then there is an infinite

A-indiscernible coherent sequence (Mi, b
′
i)i<ω in KA such that

qtp(b
′
i1
...b
′
im/A;Mj) = qtp(b1...bm/A;M)

whenever i1 < · · · < im ≤ j < ω.

Lemma 5.12. Let ϕ(x, y) and δ(y, z) be quantifier-free formulas, and let 1 < r < ω. Suppose
þ((x = x), ϕ, δ, r) = ∞. Then there are M ∈ K, a ∈ Mx, and an infinite a-indiscernible
coherent sequence (Mi, bi)i<ω such that for each i < ω,

1. Mi � ϕ(a, bi)

2. ϕ(x, bi) þ-divides over
⋃{

rng(bj) : j < i
}

3. qtp(bi/a,
⋃
j<i rng(bj);Mi) does not þ-fork over

⋃
j<i rng(bj).

Proof. For each n < ω, we must implement the following inductive construction:

• Set π0(x) = (x = x) =
∧
i xi = xi. Choose Mn,0 ∈ K, an,0 ∈ Mx

n,0, bn,0 ∈ M
y
n,0 and

cn,0 ∈M z
n,0 such that

– Mn,0 � ϕ(an,0, bn,0) ∧ δ(bn,0, cn,0);
– qtp(bn,0/cn,0;Mn,0) is non-algebraic
– þ(π0(x) ∪ {ϕ(x, bn,0)}, ϕ, δ, r) ≥ n

–
{
ϕ(x, b

′
) : b

′
� δ(x, cn,0), þ(π0(x) ∪ {ϕ(x, b

′
)}, ϕ, δ, r) ≥ n

}
is setwise unbounded

over Kcn,0

–
{
ϕ(x, b

′
) : b

′
� δ(x, cn,0)

}
is r-inconsistent over Kcn,0 .

• Suppose we are given a finite coherent sequence (Mn,j, an,j, bn,j, cn,j)i≤j and types
π0(x) ⊂ π1(x) ⊂ · · · ⊂ πi(x), where πt is over the set Dn,t =

⋃
j<t rng(bn,j), and

þ(πt(x), ϕ, δ, r) ≥ n− t+ 1

for each t ≤ i.

Then, we chooseMn,i+1 ∈ KDn,i , an,i+1 ∈ Mx
n,i+1, bn,i+1 ∈ My

n,i+1 and cn,i+1 ∈ M z
n,i+1

such that
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– Mn,i+1 � ϕ(an,i+1, bn,i+1) ∧ δ(bn,i+1, cn,i+1);

– qtp(bn,i+1/Dn,icn,i+1;Mn,i+1) is non-algebraic

– qtp(bn,i+1/Dn,i ∪
⋃
j≤i rng(an,j);Mn,i+1) does not þ-fork over Dn,i

– þ(πi(x) ∪ {ϕ(x, bn,i+1)}, ϕ, δ, r) ≥ n

–
{
ϕ(x, b

′
) : b

′
� δ(x, cn,i+1), þ(πi(x) ∪ {ϕ(x, b

′
)}, ϕ, δ, r) ≥ n

}
is setwise unbounded

over Kcn,0

–
{
ϕ(x, b

′
) : b

′
� δ(x, cn,0)

}
is r-inconsistent over Kcn,0 .

In this manner, we obtain a sequence of finite coherent sequences

Γ =
( (
Mn,i, an,i, bn,i, cn,i

)
i≤n

)
n<ω

Applying König’s lemma, we extract from Γ a single infinite coherent sequence (Mn, anbn)n<ω
such that for allm ≤ n < ω,Mn � ϕ(an, bm) and ϕ(x, bn) þ-divides over C<n =

⋃
i<n rng(bi).

Applying Ramsey’s theorem, we may assume that (Mn, an, bn)n<ω is indiscernible.
Now, suppose find(|x|, |y|) < m < ω, and again applying Ramsey’s theorem, choose

s(m) < ω large enough to ensure that if n ≥ s(m), then (bi)i<n contains an an-indiscernible
subsequence of length at least m. In Mn, let i1 < · · · im < n be such that (bij)

m
j=1 is

(rng(an);Mn)-indiscernible. Note that by definition of þ-dividing, ϕ(x, bit) þ-divides over⋃
u<t rng(biu) for each t ≤ m.
Up to renaming elements, we fix a tuple a, and using the argument of the previous

paragraph, we obtain a sequence Γ∗ = (Mn, (bn,i)i≤n)n<ω over Ka (not necessarily coherent)
such that Mn � ϕ(a, bn,i) for all i ≤ n < ω and ϕ(x, bn,i) þ-divides over

⋃
j<i rng(bn,j) for

each i ≤ n. By applying techniques we’ve deployed several times previously, we then extract
an infinite a-indiscernible coherent sequence strictly patterned on Γ∗ – and by definition of
Γ∗, it has the desired properties.

Hopefully, the proof of preceding lemma, 5.12, adequately demonstrates how gnarly ar-
guments that completely avoid the Compactness theorem can be. The next theorem can
also be proved without appeal to the Compactness theorem, although this proof involves,
essentially, duplicating the preceding argument while satisfying some additional constraints
– hence, demanding many more applications of König’s lemma and Ramsey’s theorem. To
save ourselves and the reader this horror, we give, together with the bald assertion that it is
not strictly necessary, an argument that does involve the Compactness theorem.

Theorem 5.13. Assume K has an ℵ0-categorical K-universal limit model, M (a Fras̈se
limit). If |þ^ is symmetric in K, then K is a rosy class.
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Proof. We prove the contrapositive assertion. Suppose K is not rosy – in particular, we may
suppose that there are ϕ(x, y) and δ(y, z), quantifier-free formulas without parameters, and
some 1 < r < ω such that þ(x = x, ϕ, δ, r) =∞. By lemma 5.12, there areM∈ K, a ∈Mx,
and an infinite a-indiscernible coherent sequence (Mn, bn)n<ω such that for each n < ω,
Mn � ϕ(a, bn), ϕ(x, bn) þ-divides over

⋃
i<n rng(bi) and qtp(bn/a,

⋃
i<n rng(bi);Mn) does

not þ-fork over
⋃
i<n rng(bi). Now, the next claim follows directly from the Compactness

theorem and the fact that M is ℵ0-categorical.

Claim. There are a ∈ ||M||x and an a-indiscernible sequence (bn)n≤ω in ||M||y such that

• M � ϕ(a, bn) for all n ≤ ω

• ϕ(x, bn) þ-divides over
⋃
i<n rng(bi) for all n ≤ ω

• qtp(bn/a,
⋃
i<n rng(bi);M) does not þ-fork over

⋃
i<n rng(bi).

From the claim, it then follows immediatly that bω |
þ

^ b0
a. Furthermore,

þ(qtp(a/b0;M), ϕ, δ, r) ≥ þ(qtp(a/b0bω;M), ϕ, δ, r) + 1

by the construction, so a |þ/̂ b0
bω. Thus, the failure of rosiness implies the failure of the

symmetry of |þ^ , as desired.

Finally, we extend the relation |þ^ to triples of (finite) sets as follows: If M ∈ K,
A,B,C ⊆M , then

A |þ^ CB ⇔ a |þ^ CB whenever a ∈ Ak

It is, then, not difficult to show (from Symmetry) that, provided K is rosy,

A |þ^ CB ⇔ a |þ^ Cb whenever a ∈ Ak and b ∈ Bk

Thus, we have the principal theorem of this chapter:

Theorem 5.14. Let T be the complete k-variable theory of a finite ρ-structure which is
capped and has infinitely many finite models up to isomorphism, and let K = fin[TG]. Then,
K is rosy if and only if |þ^ is a true independence relation.

5.6 Imaginaries, and why we haven’t talked about them
until now

In this section, we will introduce and discuss the notion of “imaginary elements” that
seems to be most natural (in our opinion) for a class K = KG of finite structures with
amalgamation over sets. To remove any suspense for the treatment, the key observation –
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towards retaining our analysis of þ-independence mutatis mutandis – is simply that only
finitely many imaginary sorts carry any “new” information with respect to a finite base set.

Obviously, we proceed with the definitions first. Let K be a class of finite ρ-structures
with amalgamation over sets. Let θ = θ(x1, ..., xm, y1, ..., yn) be quantifier-free formula in the
language of ρ (with an explicit separation of variables), and letM∈ K. For convenience in
the sequel, we assume that ρ contains a unary predicate symbol S0 such that SN0 = N for all
N ∈ K We expand the signature ρ to t ρθ = ρ∪ {S(1)

θ , P
(n+1)
θ }, and forM∈ K, we define a

ρθ-expansionMθ with new interpretations as follows:

• SMθ

θ =
{
θ(Mm, b) : b ∈Mn

}
\ {∅}

• ||Mθ|| = M ∪̇SMθ

θ

• PMθ

θ =
{

(b, θ(Mm, b)) : b ∈Mn
}

Further, if A ⊆M , we also define a structure (A;M)θ as follows:

• Dθ(A;M) =
{
b ∈Mn : Am ∩ θ(Mm, b) 6= ∅

}
• S(A;M)θ

0 = A

• S(A;M)θ

θ =
{
Am ∩ θ(Nm, b) : N ∈ KA, b ∈ Dθ(A;N )

}
\ {∅}

• ||(A;M)θ|| = S
(A;M)θ

0 ∪̇S(A;M)θ

θ

• P (A;M)θ

θ =
{

(b, Am ∩ θ(Mm, b)) : b ∈ Dθ(A;M) ∩ An
}

• R(A;M)θ = Ar ∩RM whenever R ∈ ρ and r = ari(R).

Observation. Let θ1 and θ2 be quantifier-free formulas a in the language of ρ (with an
explicit separation of variables). Suppose M ∈ K and A ⊆ M . Then (Mθ1)θ2 = (Mθ2)θ1

and (Mθ1)θ2 = (Mθ2)θ1.
It can also be shown that if θ1 and θ2 are both K-adherent (defined below), then θ2 is

Kθ2-adherent.

Thus, if Θ is a set of quantifier-free formulas in the language of ρ (with explicit separations
of variables), then the operatorsM 7→MΘ and (A;M) 7→ (A;M)Θ, specified via any linear
order of Θ, are well-defined.

Our first two lemmas of this section (whose fairly routine proofs we omit) demonstrate
that there is – as in the full first-order scenario –essentially only one “level” in construction
of imaginaries; more precisely, every imaginary element is determined by its trace on the real
universe.
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Lemma 5.15. Let ψ(x, x′; y) be a quantifier-free formula of ρΘ, for some set Θ of quantifier-
free formulas of the language of ρ, and assume that

ψ �
∧
i

S0(xi) ∧
∧
j

¬S0(x′j)

Then there is a quantifier-free formula ψ̂(x′′; y) such that ψ̂ �
∧
l S0(x′′l ) and for everyM∈ K

and all b1, b2 ∈ ||MΘ||y,

ψ̂(Mx′′ , b1) = ψ̂(Mx′′ , b2) ⇔ ψ(Mx, ||MΘ||x′ , b1) = ψ(Mx, ||MΘ||x′ , b2)

We will now specify two criteria which we believe are both natural and intrinsic to the
notion of imaginary elements (in the full first-order scenario) as the the notion is “pushed
down” onto our scenario in this dissertation. The first criterion is the analog of what hap-
pens in the full first-order case when considering a common diagram of structuresMeq

1 and
Meq

2 . The second criterion is the analog of the observation that (up to transformation by a
canonical functor) adding imaginaries does not affect the theory in question.

K-adherence. Let θ(x, y) be a quantifier-free formula

1. LetM,N ∈ K, let f : M→ N be an embedding. Then there is a unique good
expansion f θ :Mθ → N θ of f determined by the rule

f θ( θ(Mx, b) ) = θ(Nx, fb)

If A ⊆ M , then there are such good expansions f ′(A;M)θ → N θ, but they need
no be unique. Now, consider the situation of a sequence of embeddings:

(A;M)
f−→ N g−→ N1

We then say that the expansion f ′ is g-compatible just in case gθ ◦ f ′ is a good
expansion of g ◦ f .

2. We say that θ(x, y) is K-adherent if for any amalgamation quartet of K

(A;M0)
f1 //

f2

��

M1

g1

��
M2 g2

// N

for any good expansions f ′1, f ′2 of f1, f2, respectively, f ′i is gi-compatible, i = 1, 2,
and gθ1 ◦ f ′1 = gθ2 ◦ f ′2.
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T -admissibility. Again, let θ(x, y) be a quantifier-free formula of ρ. We say that
θ(x, y) is T -admissible if |y| ≤ k andMθ ≡k N θ for allM,N ∈ K = fin[TG]

The following proposition is an easy consequence of the fact that everything in sight is finite.

Proposition 5.16. Let θ1(x1, y) and θ2(x2, y) be KG-adherent quantifier-free formulas, and
assume that θ1(x1, y) is T -admissible. Suppose that

(?) for someM∈ KG, for all b, b ∈My, if qtp(b;M) = qtp(c;M), then

θ1(Mx1 , b) = θ1(Mx1 , c) ⇔ θ2(Mx2 , b) = θ2(Mx2 , c)

Then, the following are equivalent:

1. θ2(x2, y) is T -admissible;

2. T � ∀y, z [∀x1(θ(x1, y)↔ θ1(x1, z))↔ ∀x2(θ(x2, y)↔ θ2(x2, z)) ]

If θ1 and θ2 satisfy the condition ? in proposition 5.16, then we say that θ1 subsumes
θ2 over K. Let Q(T ) denote the set of all quantifier-free formulas θ(x, y) which are both
K-adherent and T -admissible, and let ≺ be any linear order of Q(T ). Then, define π≺ :
Q(T )→ Q(T ) so that for any θ(x, y), up to substitutions of variables, θ′(x′, y) = π≺(θ(x, y))
is the ≺-least formula that subsumes θ over K.

Observation. ΦK(≺) = img(π≺) is finite.

Now, consider M ∈ K and its expansion MΦK(≺), which necessarily has either infinitely
many or no sorts beyond ρG. Let

τ (≺) = ρG ∪ {Sθ : θ ∈ ΦK(≺)} ∪ {Pθ : θ ∈ Q(T )}

be a new signature. We obtain a τ (≺)-expansion M(≺) (of M) by interpreting the new
relation symbols as follows:

1. SM(≺)

θ = SM
θ

θ whenever θ ∈ ΦK(≺)

2. Let θ(x, y) ∈ Q(T ) and θ0(x0, y) = π≺(θ); then set

PM
(≺)

θ =
{

(b, θ0(Mx0 , b)) : b ∈My, θ(Mx, b) 6= ∅
}

Let ≺1 and ≺2 be linear orders of Q(T ). It is quite easy to see that, up to renaming
the relation symbols naming the imaginary sorts, M(≺1) and M(≺2) are identical. Thus,
specifying a linear order ≺ of Q(T ) arbitrarily, we define ρeq = τ (≺), Meq = M(≺) for
M∈ K, and Keq = {Meq :M∈ K} without any significant ambiguity.

For brevity, we write M eq as a shorthand for ||Meq||. Furthermore, ifM∈ K, A ⊆M eq

and 0 < n < ω, then we let Sn(A;Meq) to denote the set of complete quantifier-free n-types
over A in the language of ρeq
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Observation. The following are all easily verified.

1. If K admits amalgamation over sets, then Keq does, too.

2. There is a function h : ω×ω → ω such that for anyM∈ K, A ⊆M eq and 0 < n < ω,
|Sn(A;Meq)| ≤ h(|A|, n).

3. There is a function grk : ω × ω → ω such that for any n < ω, N ∈ K, B0 ⊆ B ⊆ N ,
and any complete type p(x) over (B;N ), the following are equivalent:

(a) þ(p,Φ,∆, r) < þ(p�B0,Φ,∆, r) for some Φ,∆ and r.

(b) With m = grk(n, |B0|),

þ(p,Gm, Gm,m) < þ(p�B0, Gm, Gm,m)

where Gm is the set of ≤ m-ary quantifier-free ρeq-formulas with non-equality
atoms in

ρG ∪ {Sθ : θ ∈ ΦK(≺)} ∪ {Pθ : θ = θ(x1, ..., xl, y), l ≤ m}

counted up to logical equivalence.

Our development of þ-independence and rosiness, can then be recovered mutatis mutandis.
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Chapter 6

Characterizing rosy classes

This chapter contains a number of results that are essential to our analysis of efficient
computability of the model-building problem but which don’t fit very nicely into any of the
other chapters. The first of these is a characterization of þ-independence and rosiness anal-
ogous to the Independence theorem for simple theories. More precisely, we show (following
[10]) that |þ^ is the coarsest possible notion of independence on any class K, and if K admits
any true independence relation at all, then K is rosy.

A reader with a background in model theory will probably have noticed that we have not
yet made any mention of Local character thus far. As it turns out, Local character is inessen-
tial to the formulation of rosiness for classes of finite structures. Indeed the characterization
mentioned in the previous paragraph does not require it, in contrast to the situation in the
first-order model theory of infinite structures. In our situation, we find that the presence of
Local character is equivalent to a stronger condition which might be called “super-rosiness.”

6.1 Local character, Uþ-rank and small algebraicity

6.1.1 Local character

Up to this point, we have had no need of the property known as Local character in the
model theory literature, and we have held off from this part of the development because
establishing the definition of Local character is, to some degree, a philosophical matter.
The definition we present certainly “works,” but in contrast to the full first-order scenario,
we don’t have the cardinality of the theory to use as point of comparison. Further, the
definition we give already enforces a condition that would be identified as “super-rosiness” in
the literature. In any case, we say that |þ^ has Local character over K if there is a function
floc : ω → ω such that for allM∈ K and A,B ⊆M , A |þ^ B0B for some B0 ∈

(
B

floc(|A|)

)
.

Proposition 6.1. If |þ^ has Local character over K, then K is rosy.
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Proof. Assume |þ^ has Local character over K via floc : ω → ω. For a contradiction, suppose
ϕ(x, y), δ(y, z) are quantifier-free formulas and 1 < r < ω are such that þ(x = x, ϕ, δ, r) =∞.
By lemma 5.12, there are M0 ∈ K, a ∈ Mx

0 , and an a-indiscernible coherent sequence
(Mi, bi)i<ω such that

1. Mi � ϕ(a, bi)

2. ϕ(x, bi) þ-divides over Bi =
⋃{

rng(bj) : j < i
}

whenever 0 < i < ω. By Local character, there is a subset C ⊂
⋃
i<ω Bi such that |C| ≤

floc(|x|) and a |þ^ CBi for all large enough i < ω. (More precisely, for each i < ω, there is a
subset Ci ⊆ Bi such that |Ci| ≤ floc(|x|) and a |þ^ CiBi. By monotonicity, a |þ^ CiBj whenever
j ≤ i, so we may assume that Cj ⊆ Ci whenever j ≤ i < ω.) This contradicts the fact that
ϕ(x, bi) ∈ qtp(a/Bi+1;Mi+1) þ-divides over Bi. Thus, K is rosy.

6.1.2 Uþ-rank and small algebraicity

We use a standard definition of the Uþ-rank, adapted slightly for our purposes: Let
M∈ K, C ⊆M0 and p(x) ∈ Sqf

k (C;M0)

• Uþ(p) ≥ 0

• Uþ(p) ≥ α + 1 if there are M ∈ KC , C ⊆ D ⊆ M and p′(x) ∈ Sqf
k (D;M) extending

p(x) such that (i) p′ þ-forks over (C;M) and (ii) Uþ(p′) ≥ α.

• Uþ(p) =∞ just in case Uþ(p) ≥ α for all α < ω.

If p(x) = qtp(a/C;M), then obviously we may write Uþ(a/C;M) in place of Uþ(p(x))
without ambiguity.

The first goal of this section is to find a natural condition (with respect to efficient
computability) which is enough to ensure that in a rosy class K satisfying that condition,
Uþ is always defined and takes only finite values. The condition we isolate – small algebraicity
– was shown in chapter 4 to obtain whenever the model-building problem for K admits a
(relational) polynomial-time solution.

Thus, we assume that K is an ∀∃-axiomatized class of finite ρ-structures with amalgama-
tion over sets. Suppose M is a countable Fraïssé limit of K; in particular, M is ultrahomoge-
neous and Th(M) is ℵ0-categorical and eliminates quantifiers. Recall, then, that K has small
algebraicity if there is a number dK < ω such that for all C ⊂fin ||M||, if p(x) ∈ Sqf

1 (C;M)
is algebraic, then p(x)�C0 is already algebraic for some C0 ∈

(
C
dK

)
.

The first fact we prove seems to be incidental, but we include it anyway, for some reason.
Subsequently, we derive characterizations of strong dividing and þ-dividing that will allow
us to prove that Local character holds under the assumption of small algebraicity.
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Lemma 6.2. Let K and M be as above, and assume that K is rosy and has small algebraicity.
Let 0 < t < ω. If a ∈ ||M||t and

C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂fin M

is a strictly increasing chain of algebraically closed finite sets, then there is a number n0

aclM(aCn) = aclM(aCn0) ∪ Cn

whenever n0 ≤ n < ω.

Proof. Towards a contradiction, suppose there are a ∈ ||M||t, a chain of finite algebraically
closed sets

C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂fin M

and for each n < ω
bn+1 ∈ aclM(aCn+1) \ (aclM(aCn) ∪ Cn+1)

By the assumption of small algebraicity, for each n < ω, there is a tuple cn+1 ∈ CdK
n+1 such

that qtp(bn+1/acn+1) is algebraic. Of course, for each n < ω, qtp(bn/a) is non-algebraic.
By the pigeonhole principle, we may assume that ϕ(x, y) = qtp(a, bn) and δ(y, z) =

qtp(bn/cn) are both a constant over n < ω. With r = 1 + falg(t + dK), it is then routine to
verify that þ(qtp(a), ϕ, δ, r) =∞, contradicting the hypothesis that K is rosy.

Lemma 6.3 (Triviality of strong dividing). Assume that K has small algebraicity. Let
M ∈ K, C ⊆ M and a, b, e ∈ M<ω, and let p(x, y) = qtp(a, b/C;M). If p(x, b) divides
strongly over Ce, then there are b∗ ∈ rng(b) and D ∈

(
Ce
dK

)
such that qtp(a, b∗/D;M) divides

strongly in qtp(b∗/D).

Proof. By definition of strong dividing, qtp(b/Cea) is algebraic, while qtp(b/Ca) is not. Since
K is a Fraïssé class, we know that each b ∈ rng(b) is also algebraic over (Cea;M), so that
qtp(a, b/C) divides strongly over Ce in qtp(b/Ce) provided qtp(b/Ce) is not already algebraic.
Thus, we choose any b∗ ∈ rng(b) such that qtp(b∗/Cea) is algebraic and qtp(b∗/Ce) is not.
By the small algebraicity assumption, there is a subset D ∈

(
Ce
dK

)
such that qtp(b∗/Da) is

algebraic. Of course, qtp(b∗/D) is not algebraic, so qtp(a, b∗/D) divides strongly in qtp(b∗/D).

Proposition 6.4 (þ-Dividing configurations). Assume that K has small algebraicity. Let
M0 ∈ K, a ∈M<ω

0 and b ∈M0, and let p0(x, y) = qtp(a, b;M). There is a (finite) set D(p0)
of types of the form q(x, y, z1, ..., zl) laterally extending p0, l ≤ dK, such that if M ∈ K,
C ⊆M , and p(x, y) ∈ Sqf(C;M) is an extension of p0, then the following are equivalent:

1. p(x, b) þ-divides over (C;M).

2. qtp(b/C;M) is non-algebraic and for some type q(x, y, z) ∈ D(p0) and c ∈ Cz, q(x, b, c)
⊆ p(x, b).
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Proof. This is an easy-enough consequence of the triviality of strong dividing.

Now, we define A(K) to be the set of types q(y, z1, ..., zdK ) such that ifM ∈ K, b ∈M ,
c ∈ M z, andM � q(b, c), then b ∈ acl(c;M). Using the families D(−) and A(K), the next
proposition follows almost immediately:

Proposition 6.5 (Local character). Assume that K is rosy with small algebraicity. Let
M0 ∈ K, a0, b0 ∈ Mk

0 , and let p0(x, y) = qtp(a0, b0;M). Then there is a finite set F(p0) of
lateral extensions q(x, y, z) of p0 such that for any M ∈ K, C0 ⊆ C ⊆ M , a, b ∈ Mk such
that for p0 ⊆ p(x, y) = qtp(a, b/C;M), the following are equivalent:

1. p(x, b) does not þ-fork over C0;

2. For each q(x, y, z) ∈ F(p0), if there is a c ∈ Cz such that M � q(a, b, c), then there is
a c0 ∈ Cz

0 such thatM � q(a, b, c0)

As a corollary (using symmetry of |þ^ ), we determine that |þ^ has Local character over K.

Theorem 6.6. Assume that K is rosy with small algebraicity. Then Uþ-rank is defined and
finite-valued for every type in K.

Proof. Naturally, we suppose

C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂fin ||M||

is an infinite ascending chain of finite subsets of M, where M is the countable Fraïssé limit
of K, and for each n < ω, let pn(x) be a complete quantifier-free type over (Cn;M) so that
pm(x) ⊂ pn(x) whenever m < n < ω. By Local character, for each n < ω, there is a subset
Cn,0 ∈

(
Cn

floc(|x|)

)
such that pn does not þ-fork over Cn,0. By monotonicity, there is a number

t < ω such that if n ≥ t, then pn does not þ-fork over D =
⋃
m≤tCm,0 ⊆ Cn. In particular, if

n > t and a � pn, then a |
þ

^DCn, which implies that a |þ^ Cn−1Cn by the transitivity property
of |þ^ . In particular, we have Uþ(p0) ≤ t, as desired.

We can also obtain a converse of 6.6 without too much difficulty.

Proposition 6.7. Assume that K is rosy, and Uþ-rank is defined and finite-valued for every
type in K. Then |þ^ has Local character over K, and K has small algebraicity.

Proof. To see that |þ^ has Local character, it suffices to define floc : ω → ω via

floc(n) = 2 ·max
{
Uþ(p(x)) : p(x) ∈ Sqf

n (∅)
}

It is easily verified that floc works as advertised. For small algebraicity, we set dK = floc(1).
SupposeM∈ K, C ⊆M and a ∈ acl(C;M). Let p(x) = qtp(a/C;M). By Local character,
there is a subset C0 ⊆ C such that |C0| ≤ dK and p does not þ-fork over C0. It follows that
Uþ(p�C0) = Uþ(p) = 0, so p�C0 is algebraic, as required.
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To summarize the results we produced thus far in the chapter, we have the following
theorem and a definition:

Theorem 6.8. Let K be a rosy Fraïssé class of finite structures. The following are equiva-
lent:

1. K has small algebraicity

2. |þ^ has Local character over K

3. Uþ-rank is defined and finite-valued for every type in K

If K satisfies any one (hence all) of the above, then we say that K is super-rosy.

Besides its existence, the only properties of Uþ-rank that we will actually require are
contained in the following theorem. Its proof is exactly the same as that of the analogous
statement in [28], so we forgo recapitulating the demonstration.

Theorem 6.9 (Lascar’s equality). Assume that K is super-rosy. SupposeM∈ K, C ⊆M ,
and a, b ∈M<ω. Then

Uþ(a, b/C;M) = Uþ(a/C;M) + Uþ(b/Ca;M)

6.2 þ-Independence is weakest
In this section, we prove a key characterization of þ-independence, namely theorem 6.10.

Essentially, the theorem asserts that þ-forking is the most stringent possible interpretation of
phrases of the form “... depends on...”; equivalently, |þ^ is the weakest possible interpretation
of the phrase “... is independent from...” From this, we can easily derive a characterization
of rosy classes that will be fundamental to our analysis of efficient computability of the
model-building problem.

Theorem 6.10 (þ-Independence is weakest). Assume that T is the complete k-variable
theory of a finite ρ-structure, which is capped and has infinitely many finite models up to
isomorphism, and let K = fin[TG]. Suppose |◦^ is a notion of independence in K. Then for
anyM∈ K, A,B,C ⊆M , A |◦^ CB implies A |þ^ CB.

For the proof of theorem 6.10 (which is not significantly different here from the presen-
tation in [10]), we will require a few technical lemmas and observations.

Lemma 6.11. Let M ∈ K, C ⊆ D ⊆ M , a, b ∈ M<ω, and p(x, b) = qtp(a/Cb;M). If
p(x, b) divides strongly over D, then qtp(b/Da;M) is algebraic, while qtp(b/D;M) is non-
algebraic.
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Proof. Obviously, q(y) = qtp(b/D;M) must be non-algebraic by definition of strong dividing.
If q′(a, y) = qtp(b/Da;M) is non-algebraic, then for every r < ω, there is a model N ∈ KDa

such that the family {
q′(x, b

′
) : b

′ ∈ Ny,N � q′(a, b′)
}

is not r-inconsistent, so that p(x, b) cannot divide strongly over D.

Lemma 6.12. Suppose |◦^ is a notion of independence in K. Let M ∈ K, C ⊆ M ,
a, b ∈M<ω. If a |◦^ Cb, then p(x, b) = qtp(a/Cb;M) does not þ-divide over C.

Proof. Assume a |◦^ Cb, and towards a contradiction, suppose p(x, b) þ-divides over C. With-
out loss of generality, we may assume that there is a subset C ⊆ D ⊆ M such that p(x, b)
divides strongly over D. In particular, qtp(b/D;M) is non-algebraic and for some 1 < r < ω,
the family {

p(x, b
′
) : b

′
� qtp(b/D;M)

}
is setwise unbounded and r-inconsistent over KD. Since |◦^ , being a notion of indepen-
dence, has the Extension property and Partial right-transitivity, we may further assume
that a |◦^ CDb and, hence, that a |

◦
^DDb and a |

◦
^Db. By the preceding lemma, we know that

qtp(b/Da;M) is algebraic – that is,

b ∈ acl(Da;M) \ alg(D;M)

So, as |◦^ has the property of Preservation of algebraic dependence II, it follows that a |◦/̂ DDb,
a contradiction, and this completes the proof of the lemma.

With these lemmas in hand, we now proceed to the (happily, very concise) proof of the
main theorem.

Proof of theorem 6.10. Let M ∈ K, a, b ∈ M<ω and C ⊆ M . For the contrapositive,
suppose a |þ/̂ Cb. By the definition of þ-forking, we may assume that there is a subset
C ⊆ C1 ⊆ M such that every complete extension of p(x, b) = qtp(a/Cb;M) to (C1;M)
þ-divides over C1. If a |◦^ Cb, then by the Extension property for |◦^ , we may assume that
a |◦^ CC1b, and by Partial right-transitivity, we find that a |◦^ C1b. By lemma 6.11, it follows,
then, that qtp(a/C1b;M) does not þ-divide over C1, a contradiction. Thus, a |◦/̂ Cb, as
desired.

Corollary 6.13. Let K be a Fraïssé class of finite structures. The following are equivalent:

1. K admits a notion of independence with Local character.

2. K is rosy with small algebraicity.

3. K is super-rosy.
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Proof. The equivalence of 2 and 3 has already been proven, and 3⇒1 is immediate. For
1⇒2, by proposition 6.1, it suffices to show that if |◦^ is a notion of independence in K with
Local character – via f ◦loc : ω → ω – then |þ^ has Local character as well. Given M ∈ K,
A,B ⊆ M , let B0 ⊆ B such that |B0| ≤ f ◦loc(|A|) and A |◦^ B0B. By theorem 6.10, we have
then A |þ^ B0B, as desired.

6.2.1 Rosiness (possibly) without super-rosiness

As we’ve noted before in this chapter, Local character does not seem to be intrinsic to
the concept of rosiness for Fraïssé classes of finite structures, and consequently, it would
probably be an act of bad conscience to end our discussion with corollary 6.13. Working
exclusively with finite sets, however, 6.13 does seem to be the end of what can be recovered,
so at this point, it is natural to examine notions of independence in the classical sense.

Thus, we define an independence relation in the classical sense – or, more briefly, a
classical independence relation – in the same manner as we’ve been using, except that we
eliminate our restrictions to finite sets, and we do not require the Base-monotonicity prop-
erty. For clarity, the concept we have (and will be) particularly interested in will be called,
temporarily, a finitary notion of independence or a finitary independence relation. (Note that
a finitary notion of independence is only defined for triples of subsets of finite structures.)
We now show how to lift a finitary notion of independence to a classical one. Suppose |◦^
is a finitary notion of independence on the Fraïssé class K, and let T c = Th(M), where M
is the countable Fraïssé limit of K. Note that T c is countably categorical and eliminates
quantifiers. Let M∗ be the monster model of T c. For A,B,C ⊂ ||M∗||, we assert A |̂◦^ CB
just in case the following condition obtains:

For all a ∈ A<ω, there is a C0 = C0(a) such that for all b ∈ B<ω, if C0 ⊆ D ⊆fin C,
then a |◦^Db.

Proposition 6.14. If |◦^ is a finitary notion of independence, then |̂◦^ is a classical notion
of independence with the Existence property.

Proof. Invariance, Monotonicity, Base-monotonicity, Partial right-transitivity, and Preserva-
tion of algebraic dependence I-III are all easy to verify. Thus, it remains only to demonstrate
that |̂◦^ has the Extension property.

Suppose a |̂◦^ CB, where a is a finite tuple, and let B ⊆ B1. For b1 ∈ B<ω
1 and a partial

type π(x, b1) over B1C consistent with qtp(a/BC), we say that π(x, b1) is a bad type if there
is a finite subset C0 ⊆ D ⊆fin C such that if a′ � π(x, b1), then a′ |◦^Db1. By the invariance
property of |◦^ and compactness, every bad type has a finite subtype which is also bad.
Using the Extension property of |◦^ , a routine compactness argument shows that for some
p(x) ⊇ qtp(a/BC) over B1C, if a′ � p, then a′ |̂◦^ CB1.
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Proposition 6.15. If |◦^ is a finitary true independence relation, then |̂◦^ is a classical true
independence relation.

Proof. We need only verify that |̂◦^ is symmetric and transitive. The former is obvious
from the definition of |̂◦^ under the assumption that |◦^ is symmetric. For transitivity,
suppose a |̂◦^ CB1 and a |̂◦^ CB1

B2; we must show that a |̂◦^ CB1B2. First, we make two simple
observations – the first easily follows from the transitivity of |◦^ , and the second immediately
from the symmetry of |◦^ .

Observation. If b1, b2 are finite and a |̂◦^ Cb1 ∧ a |̂
◦

^ Cb1
b2, then a |̂

◦
^ Cb1b2.

Observation. For arbitrary sets A,B,C, A |̂◦^ CB if and only if a |̂◦^ Cb for all a ∈ A<ω and
b ∈ B<ω.

We now complete the proof of the fact that |̂◦^ is fully transitive. For the contrapositive,
note that if a |̂◦/̂ CB1B2, then B1B2

|̂◦/̂
Ca, so that b1b2

|̂◦/̂
Ca for some b1 ∈ B<ω

1 and b2 ∈ B<ω
2 ;

thus, by the first observation, a |̂◦/̂ Cb1 or a |̂◦/̂ Cb1
b2, and this completes the proof.

Now, in [10], those authors prove the following theorems, the first being the direct analog
of our theorem 6.10. The proof of the second theorem seems to depend strongly on work of
the first author’s thesis, through which forking and þ-forking are characterized in terms of
finite satisfiability of extensions of types. “Finite-satisfiability” is not a useful condition for
the analysis of finitary notions of independence, and of course, this was the reason for our
examination of classical notions of independence in the first place.

Theorem 6.16 (þ-Independence is weakest, classical version: 3.3 of [10]). Suppose |̂
∗
is

a classical notion of independence for a theory T (on real subsets of models). Then, for all
real subsets A,B,C, A |̂

∗
CB implies A |þ^ CB.

Theorem 6.17 (3.8 of [10]). Suppose |̂
∗
is a classical notion of independence for a theory

T (on real subsets of models).

1. If |̂
∗
has Local character (in the classical sense), then T is real-rosy and |þ^ is a

classical true independence relation (for real subsets of models).

2. If |̂
∗
is symmetric and fully transitive, then T is real-rosy.

As a corollary, we can partially recover the characterization of rosiness from [10]. The
recovery is partial, for as we compose this dissertation, it does not seem easy to show that
the classical Local character of the canonical limit theory T c pushes down to Local character
in the sense we defined above
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Lemma 6.18. Let K be a Fraïssé class of finite structures, and let T c = Th(M), where M
is the countable Fraïssé limit of K. If T c is (real) rosy, then K is rosy.

Proof. Assuming T c is rosy, we know that þ(x = x,Φ,∆, r) < ω is always defined, which, of
course, means that K is rosy.

Corollary 6.19. Let K be a Fraïssé class of finite structures. Let |◦^ be a finitary notion of
independence in K. If |◦^ is finitary true independence relation, then K is rosy.

Proof. If |◦^ is symmetric and transitive, then its canonical lift |̂◦^ is symmetric and transitive.
Thus, T c, the canonical limit theory, is real-rosy, and it follows from the lemma, that K is
rosy.

6.3 Examples and non-examples
In this section, we will present a few slightly interesting examples – two of rosy finite-

variable theories and one non-rosy theory. This list is, obviously, not at all exhaustive, and
to remove any suspense, we state now the kinds of examples we have not been able to find
thus far:

1. Are there rosy classes which are not super-rosy?

In the context of capped finite-variable theories, this amounts to confirming or refuting
the assertion, “all capped finite-variable theories have small algebraicity.” To us, it
seems most likely that this assertion is true – and indeed we have not found any
natural theories that do not have small algebraicity – but a proof, so far, eludes us. In
the more general context of an arbitrary Fraïssé class, we have no strong opinions in
either direction.

2. Are there rosy classes which are not simple?

In the full first-order world, this question is not difficult at all, for every o-minimal
theory is rosy and un-simple. In k-variable logic with k ≥ 3, an ordered finite graph,
say, is determined up to isomorphism by its k-variable theory. Thus, we don’t have
recourse to this easy example. In future work, we expect to examine the k-variable
theory of the triangle-free random graph and/or large bipartite digraphs.

Before we begin with specific examples, we present a proposition which will be essential
in the later exposition. Let ρ be a finite relational signature, and assume that k ≥ ari(R)
for all R ∈ ρ (and in any case, k ≥ 2). Suppose l < k, and let θ(x1, ..., xl, y) be a complete
quantifier-free l + 1-type of ρ. Then, let θ0(x1, ..., xl) unique quantifier-free l-type such that
θ � θ0, which call the type induced on x1, ..., xl by θ. For brevity in the sequel, we write
θ�(x1,...,xl) for θ0. The extension axiom over θ is the sentence,

Eθ : ∀x1, ..., xl (θ0(x1, ..., xl)→ ∃y θ(x, y))
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If T is a k-variable theory, we say that θ is compatible with T if T ∪ {∃x, y θ} has a (not
necessarily finite) model. We lift the following theorem directly from [12].

Proposition 6.20 (Extension axioms). Let T be a consistent k-variable theory. The follow-
ing are equivalent

1. T is complete and eliminates quantifiers.

2. T � Eθ for every quantifier-free l + 1-type, l < k, θ(x, y) which is compatible with T .

6.3.1 “Large” vector spaces over finite fields

For this section, we fix a finite F . The signature for F -vector spaces is the following:

ρvs =
{
P

(1)
0 , R

(3)
+

}
∪
{
R(2)
α : α ∈ F

}
IfM is an F -vector space, we can easily interpret it as a ρvs-structure:

• PM0 = {0A}

• RM+ = {(a, b, c) ∈M3 : a+ b = c}

• RMα = {(b, αb) : b ∈M}

We saw in chapter 2, that if A is of sufficiently high dimension over F , then T = Thk(M0)
is a capped theory with infinitely many models up to isomorphism. Computing algebraic
closures in the sense of T , it is relatively straightforward to show that the following is an
independence relation in K = fin[TG]: SupposeM∈ K, A,B,C ⊆M ; then

A |◦^ CB ⇔ 〈AC〉 ∩ 〈BC〉 = 〈C〉 in Nmod for some N ∈ KABC

where 〈·〉 denotes linear span. It follows that K is a rosy class. It’s also easy to show that
K has small algebraicity, so in fact, K is super-rosy.

6.3.2 The random graph in k-variables

As usual, the signature graphs ρgr has a single relation symbol R(2). For k ≥ 2, we define
RGk to be the theory consisting of the symmetry axiom, ∀xy(R(x, y) → R(y, x)), and the
following extension axioms,

El,S : ∀x1, ..., xl

∧
i<j

xi 6= xj → ∃y

∧
i∈S

R(xi, y) ∧
∧

i∈[l]\S

¬R(xi, y)
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for each l < k and S ⊆ [l]. By proposition 6.20,RGk is a complete k-variable with elimination
of quantifiers. Moreover, RGGk amounts to specifying the complete quantifier-free k-types,
so there is really nothing to distinguish the two.

As for the full first-order theory of the random graph, it can be show that ifM � RGk,
A ⊆ M and b ∈ M is algebraic over A, then b ∈ A. Hence, RGk has small algebraicity, and
it follows, without further analysis, that |þ^ has Local character, so that RGk is super-rosy.

6.3.3 Random pseudo-scales – an analog of parametrized equiva-
lence relations

One of the most natural examples of a non-rosy theory in the classical sense is sometimes
called the theory of parametrized equivalence relations, which for clarity in the rest of this
section, we now present. LetM be the structure with two sorts Sp = ω and Sf = ωω (points
and functions), and let EM ⊆ ωω × ωω × ω be the family of equivalence relations given by

EM = {(g1, g2, a) : g1(a) = g2(a)}

Then, it is routine to verify that þ(Sf (x), E(x, x′, y), Sp(y), 2) = ∞. The objective of this
section is to define a 3-variable theory which, essentially, simulates this classical example,
and which is still capped. In order provably to ensure that the latter condition is satisfied, we
must introduce a certain amount of complexity into the construction. Fortunately, much of
the analysis has already been carried out in [12], and our presentation is a minor perturbation
of that, so we omit the proofs. The terms scale and pseudo-scale come from that paper as
well, although we do not concern ourselves explicitly enforcing bijectivity anywhere.

The signature for scales and pseudo-scales, like that for parametrized equivalence rela-
tions, is to be understood as encoding a family of functions from one sort to another. In
order to economize on variables, we have an additional sort consisting of the “names” of the
functions, and we identify functions with their graphs. Thus, the signature of scales and
pseudo-scales is,

ρsc =
{
S

(1)
1 , S

(1)
2 , Q(1), F (1), P

(2)
1 , P

(2)
2 , E

(2)
1 , E

(2)
2 , R

(2)
∈

}
and the “natural” interpretation of these in a modelM is as follows:

1. SM1 , SM2 are disjoint sets, and QM = SM1 × SM2

2. PM1 =
{

((a1, a2), a1) : (a1, a2) ∈ QM
}
⊆ QM × SM1

PM2 =
{

((a1, a2), a2) : (a1, a2) ∈ QM
}
⊆ QM × SM2

3. EM1 =
{

((a1, a2), (b1, b2)) ∈ QM ×QM : a1 = b1

}
EM2 =

{
((a1, a2), (b1, b2)) ∈ QM ×QM : a2 = b2

}
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4. FM is a non-empty set of functions SM1 → SM2

5. RM∈ =
{

((a, b), f) ∈ QM × FM : f(a) = b
}

Such a structure is called a natural scale, and any structure isomorphic to some natural scale
is called a scale.

Lemma 6.21. The class of scales is axiomatizable by a single sentence of L(ρsc)
3.

For parameters 0 < n, l, ω, we define a probability space of natural pseudo-scales,W (n, l),
as follows. For eachM∈ W (n, l),

• SM1 and SM2 are disjoint copies of [n], and QM = SM1 × SM2

• PM1 , PM2 , EM1 , EM2 have their natural interpretations, and FM will have its natural
interpretation once FM is specified.

• FM =
{
fM1 , ..., fMl

}
is a multiset of function names, and for each i ∈ [l], we choose

fi : [n]→ [n] independently and uniformly at random.

We observe, then, that

P

{
M∈ W (n, l) :

∨
i<j

fMi = fMj

}
≤ l2 · P

{
(f, g) ∈ ([n][n])2 : f = g

}
≤ l2 · nn

(nn)2

=
l2

nn

Hence, take l(n) = n5, say, we have

lim
n→∞

P

{
M∈ W (n, n5) :

∨
i<j

fMi = fMj

}
= 0

Equivalently,
lim
n→∞

P
{
M∈ W (n, n5) :M is a natural scale

}
= 1

Now, for a pseudo-scaleM, let ϕ∗(x1, x2) be the following L3-formula.

(F (x1) ∧ F (x2) ∧ x1 6= x2) ∧ ∃x3(Q(x3) ∧R∈(x3, x1) ∧R∈(x3, x2))

Thus, in a pseudo-scale, ϕ∗ defines the set,

DM =
{

(f, g) ∈ FM × FM : f 6= g ∧ ∃x(f(x) = g(x))
}

and we expand the signature ρsc to ρ∗sc = ρsc ∪ {D(2)} and adjoin an additional axiom:
ϕD = ∀x1x2(D(x1, x2)↔ ϕ∗(x1, x2)). Now, the following proposition is found in [12]:
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Proposition 6.22 (Lemma 14 of [12]). There is an L3-theory T of the signature ρsc such
that the following hold:

1. T is complete for L3, and the L3-theory of the class of expansions

{(M, DM) :M � T}

is complete and eliminates quantifiers.

2. There is a number n0 < ω such that if n ≥ n0, then there is a natural scale M such
that SM1 = SM2 = [n], |FM| = n5 andM � T .

We take it as obvious that T has small algebraicity, and the following proposition is proved
using almost identical methods:

Proposition 6.23. T is capped. More precisely, suppose A is a finite model of TG∀ with
n1 = |SAmod

1 |. Then, for sufficiently large n1 ≤ n < ω,

P {M ∈ W (n, n5) : A ≤M∧M � T}
P {M ∈ W (n, n5) : A ≤M}

> 0

We note, however, that there is no guarantee that the capping model of an induced dia-
gram A is of bounded size. In fact, the argument proceeds by taking n so much larger than n1

that replacing W (n, n5) with another probability space WA(n, n5) of pseudo-scales guaran-
teed to preserve A is inconsequential. In any case, the following observation, demonstrating
that T is not rosy, is fairly easy to see:

Observation. If ϕ(x1, x2, x3) = R∈(x3, x1)∧R∈(x3, x2) and δ(x2, x3) = S1(x2)∧P (x3), then
þ(F (x1), ϕ(x1, x2), δ(x2, x3), 2) =∞.
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Chapter 7

Coordinatization and efficient
model-building

Throughout this chapter, we take K to be a super-rosy class of finite ρ-structures which
has amalgamation over sets and which eliminates imaginaries. The class Keq, where K =
fin[TG] and T is a finite-variable theory fits this description. We will make rather heavy use
in this chapter of the Uþ-rank (defined below), especially of the Lascar equality (see chapter
6). Under the assumption of super-rosiness, we show that K admits a polynomial-time
solution of its model-building problem.

For the sake of brevity, we will not address the issue of resolving algebraic types. However,
by the super-rosiness assumption – i.e. small algebraicity – it should be clear that such
resolution is tractable in relational polynomial-time, as first-order logic, whence invent-
programs, can “count” up to an a priori fixed number, and this can be hard-coded into the
program. (If we wished to recover the program itself by algorithmic means, we could not
gloss this point.) Thus, the algorithm in our presentation amounts to proving a weak model-
theoretic coordinatization theorem and using this to keep track of the flow of information
– more specifically, keep track of the need to invent new elements – in the model-building
process.

7.1 Coordinatization machinery
In this section, we define a notion of coordinatization in the model-theoretic sense. Our

result is significantly weaker than those recovered in [6, 7], [9], or even [21], as the “coordi-
natizing object” we obtain is not a tree, nor even acyclic in fact. We note, for the sake of
interest, that it is possible to obtain a somewhat more typical coordinatization result, but
this is result is not terribly useful algorithmically.

A further note on the content of this section is in order. The material in subsection
7.1.1 was discovered independently by the present author in the late summer of 2009, but
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it has since been published in [23], which appeared on arXiv.org in October 2009. The
presentation given below is a compromise between the notation of our derivation and that
in [23], and part 3 of the definition of a coordinate was not part of our independent result.

7.1.1 Finding coordinates of tuples

LetM ∈ K, D ⊆M and a, b, e ∈M<ω, and assume Uþ(a/D) = α + 1. We say that the
pair (b, e) is a coordinate of a over D if the following conditions are satisfied:

1. a |þ^De and a |þ^Dbe;

2. Uþ(a/Db) = α and qtp(a, b/D;M) divides strongly overDe in qtp(b/De) (in particular,
qtp(b/Dae;M) is algebraic);

3. Uþ(b/De) = 1.

Lemma 7.1. Let M0 ∈ K, C ⊆ M0, a ∈ M<ω
0 and p(x) = qtp(a/C;M0), and suppose

Uþ(p) = α + 1. Then there areM ∈ KCa, b ∈ M<ω, and an extension q(x, b) of p(x) to Cb
such that U(q(x, b)) = α and q(x, b) þ-divides over C.

Proof. By the definition of Uþ-rank, let M ∈ KC and C $ C1 ⊆ M , and let p1(x) be a
complete extension of p(x) to C1 such that Uþ(p1) = α and p1 þ-forks over C. Since p1

þ-forks over C, there are b1, ..., bs ∈ C<ω
1 and formulas ϕ1(x, y1), ..., ϕs(x, ys) such that

KC � p1(x)→
s∨
i=1

ϕi(x, bi)

and each ϕi(x, bi) þ-divides over C. As p1 is a complete type, we may assume, without loss
of generality, that ϕ1(x, b1) ∈ p1, and we set q(x, b1) = p1�Cb1. Then q(x, b1) þ-divides over
C, and

α = Uþ(p1) ≤ Uþ(q(x, b1)) < Uþ(p) = α + 1

so that Uþ(q(x, b1)) = α, as desired.

Lemma 7.2. LetM0 ∈ K, C ⊆M0 and a, b ∈M<ω
0 , and suppose qtp(a/Cb) þ-divides over

C. Then there areM∈ KCab and e ∈M<ω such that

1. a |þ^ Cbe

2. qtp(a/Cbe;M) divides strongly over Ce in qtp(b/Ce;M) (so qtp(b/Cae;M) is alge-
braic)

3. Uþ(a/Cbe;M) < Uþ(a/Ce;M)
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Proof. Let N ∈ KCb and d ∈ N<ω such that qtp(a/Cb;M) divides strongly over Cd in
qtp(b/Cd;N ). Observe that if qtp(b/Cd) is algebraic, then it cannot possibly induce strong
dividing, so qtp(b/Cd) must be non-algebraic. Without loss of generality, we may assume
that N ∈ KCab. Then d |þ^ CbCb by Existence, so by Extension, Symmetry and Mono-
tonicity, we obtain M ∈ KCab and e ∈ M<ω such that qtp(e/Cb;M) = qtp(d/Cb;N ) and
a |þ^ Cbe. Clearly, qtp(a/Cbe;M) divides strongly over Ce in qtp(b/Ce;M), and in particular,
qtp(a/Cbe;M) þ-forks over Ce, which necessitates Uþ(a/Cbe;M) < Uþ(a/Ce;M).

Proposition 7.3 (Coordinate-finding lemma). Let M0 ∈ K, C ⊆ M0 and a ∈ M<ω
0 , and

suppose Uþ(a/C) > 1. Then there are M ∈ KCa and b, e ∈ M<ω such that (b, e) is a
coordinate of a over C.

Proof. Let p(x) = qtp(a/C;M0), so that Uþ(p) = α + 1 > 1. By lemma 7.1, we select
M1 ∈ KC , b ∈ M<ω

1 and a complete extension p1(x, b) of p(x) such that Uþ(p1(x, b)) = α
and p1(x, b) þ-divides over C. By 7.2, there are M2 ∈ KCab and e ∈ M<ω

2 such that
a |þ^ Cbe, qtp(a/Ceb;M2) divides strongly over Ce in qtp(b/Ce;M2) (so b ∈ acl(Cae)) and
Uþ(a/Cbe;M2) < Uþ(a/Ce;M2). Now,

α = Uþ(a/Cb;M1)

< Uþ(a/Cbe;M2)

≤ Uþ(a/Ce;M2)

= Uþ(a/C;M0)

= α + 1

so Uþ(a/Ce;M2) = α + 1 = Uþ(a/C;M0); it follows that a |þ^ Ce from the definition of
Uþ-rank. It remains only to show that Uþ(b/Ce;M2) = 1.

By the Lascar inequality and since Uþ(b/Cae;M2) = 0 (because qtp(b/Cae;M2) is
algebraic), then,

Uþ(ab/Ce;M2) = Uþ(a/Ce;M2) + Uþ(b/Cae;M2)

= (α + 1) + Uþ(b/Cae;M2)

= α + 1

Again, applying the Lascar inequality,

Uþ(b/Cae;M2) + Uþ(a/Ce;M2) = Uþ(ab/Ce;M2)

= Uþ(a/Ce;M2) + Uþ(b/Cae;M2)

so that
α + Uþ(b/Ce;M2) ≤ α + 1 ≤ α + Uþ(b/Ce;M2)

Thus, Uþ(b/Ce;M2) = 1, as desired.
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7.2 Self-coordinatized systems
Our notion of coordinatization in this section, specifically the idea of a self-coordinatized

set, is based on the very similar notion in [21], where it is deployed to understand ℵ0-
categorical simple theories with 1-based trivial non-forking independence. (Here, since we
surrender the requirement that the coordinatizing object is tree, we can do without the 1-
basedness hypothesis, and since we do not care whether algebraic closure is a pregeometry on
the self-coordinatized set, we can also do without trivial independence.) Intuitively speaking,
perhaps the best way to think about our self-coordinatized systems is as a systemic way of
obtaining models through iterating the algebraic-closure operation.

In this section particularly, it will be most convenient to work in a (countably) infinite
Fraïsse limit M of the class K. Thus, if a ∈ ||M||<ω and C ⊆ ||M||, then we have

Uþ(a) = Uþ(a;M) = Uþ(qtp(a;M))

and
Uþ(a/C) = Uþ(a/C;M) = Uþ(qtp(a/C;M))

We also write a ≡qf b to mean that qtp(a;M) = qtp(b;M). We fix t < ω such that t ≥ ari(R)
for all R ∈ ρ, and in any case t ≥ 2. So as to forestall some burdensome notation, we will
suppress most explicit references to t in the sequel.

Let t ≤ m < ω and let A,L ⊆ ||M||≤m such that L ⊆ A ∩ ||M||t. For a ∈ ||M||<ω, we
write a v L if there are c1, ..., cn ∈ L such that rng(a) = rng(c1) ∪ · · · ∪ rng(cn). We say
that the pair (A,L) is v-reflexive if e v L for every e ∈ E, and we say that A is flush if for
all a, b ∈ ||M||≤m, if a ∈ A and a ≡qf b, then b ∈ A.

Now, assume that A,E ⊆ ||M||≤m are flush, L ⊆ A ∩ ||M||t is also flush, and (A ∪E,L)
is v-reflexive, and consider a partial function

crd : A ⇀ (A× E) ∪ {?}

Suppose that crd satisfies the following conditions:

1. If a ∈ dom(crd) and a ≡qf a′, then a′ ∈ dom(crd).

2. If a ∈ A and Uþ(a) ≤ 1, then crd(a)↓ = ?.

3. If a ∈ dom(crd) and Uþ(a) > 1, then (b, e) = crd(a) is a coordinate of a over ∅ such
that rng(b) ∩ acl(e) = ∅ and rng(a) ∩ rng(b) = ∅.

4. If a, a′ ∈ dom(crd) and a ≡qf a′, then â crd(a) ≡qf a′̂ crd(a′).

The quartetA = (A,E, L, crd) is called partial self-coordinatized system (pSCS) if A is flush,
(L,E) is a v-reflexive pair, crd satisfies the conditions just described and one additional
condition:
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5. Suppose a, a1, b, b1 ∈ A such that ab ≡qf a1b1, and suppose (b, e) = crd(a). Then, for
all e1 ∈ ||M||≤m, if abe ≡qf a1b1e1, then e1 ∈ E.

If A = (A,E, L, crd) is a pSCS, we define

δ(A) =

{
max

{
Uþ(a) : a ∈ A \ dom(crd)

}
if A \ dom(crd) 6= ∅

0 otherwise

and we say that A is a self-coordinatized system (SCS) just in case δ(A) = 0. (Note that if
A is not an SCS, then δ(A) > 1.)

We now consider the problem of enlarging a pSCS. Let A = (A,E, L, crd) be a pSCS,
and suppose a ∈ A \ dom(crd) such that Uþ(a) > 1. Let (b, e) be a coordinate of a over ∅.
Define 0 ≤ λA(be) ≤ dr/te if there are c1, ..., cn ∈ L such that

|rng(be) \ (rng(c1) ∪ · · · ∪ rng(cn))| ≤ r

We say that (b, e) is an A-optimal coordinate of a over ∅ if it minimizes λA(e) subject to the
constraints rng(b) ∩ acl(e) = ∅ and rng(a) ∩ rng(b) = ∅. An enlargement of A is a pSCS
A′ = (A′, E ′, L′, crd′) such that A ⊆ A′, E ⊆ E ′, L ⊆ L′ and crd ⊆ crd′.

We define the notion of a locally optimal enlargement of a given pSCS A = (A,E, L, crd).
Firstly, if A happens to already be an SCS, then A is itself the unique locally optimal
enlargement of A. Now, assume that δ(A) > 1, and define a locally optimal enlargement
A+ = (A+, E+, L+, crd+) as follows:

1. Choose a ∈ A \ dom(crd) to maximize Uþ(a), and choose an A-optimal coordinate
(b, e) of a over ∅.

2. Let λA(be) = dr/te. If r > 0, choose c1, ..., cn ∈ L such that

rng(be) \ (rng(c1) ∪ · · · ∪ rng(cn)) = {x1, ..., xr}

Choose a minimal cover X1, ..., Xd of [r] by t-multisets (so d = dr/te) , and let xj =
(xi : i ∈ Xj) for each j ∈ [d].

3. Let

L+ = L ∪
d⋃
j=1

{
d ∈ ||M||<ω : d ≡qf xj

}
A+ = A ∪ L+ ∪

{
b
′ ∈ ||M||<ω : b

′ ≡qf b
}

and

E+ = E ∪
d⋃
j=1

{
d ∈ ||M||<ω : ∃a1b1 ≡qf ab. abe ≡qf a1b1d

}
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4. Define crd+ ⊃ crd as necessary such that (a, (b, e)) ∈ crd+.

Under these definitions, the proof of the following proposition is more or less trivial.

Proposition 7.4. Let A be a pSCS. Let B0 = A, and for n < ω, let Bn+1 be a locally
optimal enlargement of Bn. Then, for some nA < ω, BnA

is an SCS – i.e. δ(BnA
) = 0.

Note that up to imposing a linear order on the (finite) set of quantifier-free t-types over
∅, the mapping A 7→ Aopt = BnA

is well-defined. Consider an SCS A = (A,E, L, crd); let
a ∈ A such that Uþ(a) > 1, and let (b, e) = crd(a). We, then, say that b is the A-successor
of a and that e is the A-support of the arrow a→b. (We also set a→? when Uþ(a) ≤ 1.) Let
SA ⊆ (A ∪ {?}) × (A ∪ {?}) be the reflexive-transitive closure of the A-successor relation.
The A-successor relation induces the structure of a rooted tree with vertex set A ∪ {?},
directed towards the root ?. If a ∈ A is not the A-successor of an a0 ∈ A, then a is called
an A-leaf, which justifies the notation L in the definition of a pSCS.

We say that the SCS A is insufficient if there is a tuple c ∈ ||M||t such that for every
finite set X of A-leaves, c is not algebraic over

⋃
a∈X

{
rng(b) : (a, b) ∈ SA

}
. In this case, we

say that c is a witness to the insufficiency of A. Clearly, if c is a witness to the insufficiency
of A and c′ ≡qf c, then c′ is also a witness, so without too much ambiguity, we may say that
qtp(c) is a witness as well. Of course, A is sufficient just in case it is not insufficient.

Now, suppose c is a witness to the insufficiency of an SCSA. DefineA+c = (A′, E, L′, crd)
so that L′ = L∪

{
c′ ∈ ||M||<ω : c′ ≡qf c

}
and A′ = A∪L′ . Selecting c according to a fixed lin-

ear order on the set of quantifier-free t-types over ∅, the mapping A 7→ Υ(A) is well-defined,
where

Υ(A) =

{
A if A is sufficient
(A+c)opt if qtp(c) is a “minimal” witness to insuff. of A

Under these definitions, the proof of the following proposition is, once again, essentially
trivial.

Proposition 7.5. Let A be a pSCS. Let B0 = (A)opt, and for n < ω, let Bn+1 = Υ(Bn).
Then, for some hA < ω, BhA is a sufficient SCS.

If A = (A,E, L, crd) is SCS, we define dA < ω – the stretch of A – to be the smallest
number d < ω such that for all a ∈ A such that Uþ(a) > 1, if (b, e) = crd(a), then there are
c1, ..., cd ∈ L such that rng(be) = rng(c1) ∪ · · · ∪ rng(cd). Up to sacrificing optimality (after
the fact), we may assume that for every a ∈ A, Uþ(a) > 1, we have crd(a) = (b, e1̂ · · ·̂edA)
where ei ∈ L for each i = 1, ..., dA. Abusing terminology somewhat, we then say that A has
constant stretch.

7.3 A sufficient SCS as a structure
Throughout this section, let A = (A,E, L, crd) be a sufficient SCS with constant stretch

dA. For some of the remaining analysis, it will be convenient to render A itself as a relational
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structure. The signatures of interest to us are:

τcrd =
{
S

(1)
0 , S

(1)
1 , E(dA), L(1), R

(2+dA)
crd

}
∪
{
R

(1+n)
qtp(a) : a = (a1, ..., an) ∈ A

}
τ ◦crd =

{
S

(1)
1 , E(dA), L(1), R

(2+dA)
crd

}
∪
{
R

(1)
◦,qtp(a) : a = (a1, ..., an) ∈ A

}

We make A into a τcrd-structure with the following interpretations:

• SA
0 = ||M||

• SA
1 = {η(a) : a ∈ A} ∪ {?} where η : ||M||<ω → ω is an injective map.

(Without loss of generality, we assume that ||M||<ω ∩ ω = ∅.)

• EA = {(η(e1), ..., η(ed)) : e1̂ · · ·̂edA ∈ E}
• LA = {η(a) : a ∈ L}

• RA
crd is the set of tuples (η(a), η(b), η(e′1), ..., η(e′dA)) such that

1. e′1, ..., e′dA ∈ L

2. (b, e1̂ · · ·̂edA) = crd(a) for some e1, ..., edA ∈ L such that

(a, b, e′1̂ · · ·̂e′dA) ≡qf (a, b, e1̂ · · ·̂edA)

• If σ = qtp(a0), a0 ∈ A, then RA
σ = {(η(a), a1, ..., an) : M � σ(a)}

Of course, A◦ is defined in the same manner except that

RA◦

◦,σ = {η(a) : M � σ(a)}

when σ = qtp(a0), a0 ∈ A. The notation for A and A◦ is slightly cumbersome as presented,
so for economy in the sequel, we will often write Rσ when we mean R◦,σ. Naturally, there’s
no obstruction per se to making the same definitions for an insufficient SCS or even a
pSCS. Finally, observe that for X ⊆ ||M||, aclA(X) ⊆ aclM(X), and if Y ⊆ ||A◦||, then
aclA

◦
(Y ) ⊆ aclA(Y )

The first theorem, 7.6, of this section follows quite easily from the fact that M is ℵ0-
categorical and (obviously) A is bi-interpretable (in fact, bi-definable) with M without pa-
rameters. The corollary, 7.7, is a standard fact about countably categorical theories.

Theorem 7.6. Let A = (A,E, L, crd) be a sufficient SCS for M. Then as a τcrd-structure,
A is ℵ0-categorical, and A◦ is ℵ0-categorical as a τ ◦crd-structure.
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Corollary 7.7. Let A = (A,E, L, crd) be a sufficient SCS for M. Then, as structures, A
and A◦ are uniformly locally finite: There are functions g, g◦ : ω → ω such that |aclA(X)| ≤
g(|X|) for any X ⊂fin ||A|| and |aclA

◦
(Y )| ≤ g◦(|Y |) for any Y ⊂fin ||A◦||.

Substructures and localizations:
It will be convenient to designate a notion of substructure for SCS’s and pSCS’s; let

A = (A,E, L, crd) and A0 = (A0, E0, L0, crd0) be pSCS’s. . We write A0 ≤ A just in case:

1. A0 ⊆ A, E0 ⊆ E and L0 ⊆ L

2. RA0
crd = RA

crd ∩ (η[A0]× ((η[A0]× η[E0]) ∪ {?}))

We will also use a notion of localization for pSCS’s. Specifically, suppose A is a pSCS and
X ⊆ ||M||. We define AX (as a structure) as follows:

• SAX
0 = X,

• SAX
1 = SA

1 ∩ {η(x) : x ∈ X<ω} ∪ {?}
EAX = EA ∩ ({η(x) : x ∈ X<ω})d

LAX = LA ∩ {η(x) : x ∈ X<ω}

• RAX
σ = RA

σ ∩ (η[X<ω]×X<ω)

• RAX
crd = RAcrd ∩ (η[X<ω])d+2

We say that AX is a localization of A if for all η(c) ∈ SAX
1 ,

A � ∃y, z1, ..., zd(Rcrd(η(c), y, z)) ⇒ AX � ∃y, z1, ..., zd(Rcrd(η(c), y, z))

The project of this section, then, is to use the fact of uniform local finiteness to convert a
sufficient SCS into a coherent solution of the model-building problem.

Surrogates for subsets of ||M||:
We assume that A = (A,E, L, crd) is a sufficient SCS for M. Let τ = qtp(a0) for some

a0 ∈ A.
V (τ) =

{
M∈ (Age(M) ∩KG) : ∃a ∈ τ(M).η(a) ∈ aclA(M)

}
/∼=

We say that τ is necessary just in case V (τ) is a cofinite subset of (Age(M) ∩ KG)/∼=. If
C ⊆ SA

1 , then we set
proj(C) =

⋃
{rng(c) : η(c) ∈ C}

Now, consider X ⊂ ||M||, and let B ⊆ ||A◦||; we say that B is a surrogate for X with respect
to A if
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1. X ∩ fld(η−1(SA
1 )) ⊆ proj(B), and for x ∈ X<ω, if qtp(x) is necessary, then η(x) ∈ B.

2. If τ is necessary, then there is an η(a) ∈ B such that M � τ(a).

3. Suppose η(a0), η(b0) ∈ B and a1, b1 ∈ A, e1, ..., ed ∈ L such that (b1, e1 · · · ed) = crd(a1)
and a1b1 ≡qf a0b0; let θ(x, y, z) = qtp(a1, b1, e1 · · · ed). Then there are η(b) ∈ B and
η(c1), ...., η(cd) ∈ B ∩ L such that M � θ(a0, b, c1 · · · cd).

The first lemma regarding surrogates is the following (whose proof we omit that we might
avoid galling tedium).

Lemma 7.8 (Preparation lemma). There is a loop-free invent-program Psurr, depending
on A◦, such that (up to canonical embedding in A◦) the follow holds: For every X ⊆ ||M||,
resp(Psurr,M�X) is a surrogate for X with respect to A. Furthermore, if X is finite, then
resp(Psurr,M�X) is finite as well, and in any case, resp(Psurr,M�X) terminates in |X|O(1)

many steps (when A is held constant).

Proposition 7.9. Let X ⊆ ||M||, and suppose C ⊆ ||A◦|| is a surrogate for X with respect
to A. Let D1 = aclA

◦
(C), and let

D2 = resp(Psurr,M�acl
M(proj(D1) ∪X) )

D = X ∪ proj(D2)

Then there is a B ≤ A, an SCS, such that C ⊆ D2 ⊆ ||B◦|| and BD is a localization of B.
In particular, if X is a finite set, then we may assume that C, D1, D and BD are each

finite as well.

Sketch of the proof. Let Q = {qtp(a) : η(a) ∈ D2}. Define B = B[D2] as follows:

• SB
0 = ||M||

• SB
1 =

{
η(a) ∈ SA

1 : qtp(a) ∈ Q
}
∪ {?},

EB = EA ∩ (SB
1 )d, LB = LA ∩ SB

1 .

• RB
τ = RA

τ for all τ ∈ Q (and RB
τ does not exist if τ /∈ Q).

• RB
crd = RA

crd ∩ (SB
1 × SB

1 × EB).

It’s quite easy to see that B ≤ A and C ⊆ D2 ⊆ ||B◦||. It’s also easy enough to see that D2

is a surrogate of D with respect to B (even with respect to A), and from this observation,
it follows that BD is a localization of B.

We observe that, up to the resolution of algebraic types, the transformation X  BD in
proposition 7.9 is computable in relation polynomial-time.
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Proposition 7.10. Assume t > k. Let X ⊆ ||M|| such that X = aclM(X) and AX is a
surrogate for X with respect to A. As in proposition 7.9, let

D1(X) = aclA
◦
(AX)

D2(X) = resp(Psurr,M�acl
M(proj(D1(X)) ∪X) )

D(X) = X ∪ proj(D2(X))

Suppose:

1. B = B[D2(X)] is a sufficient SCS for M

2. D(X) = X

3. BX is a localization of B

Then (M�X)ρG is a model of TG.

Proof. We write XG for the set ||(M�X)ρG|| as well as the induced substructure with this
universe. Since MρG is model of TG, we know that XG satisfies the ∀-axioms G1-G4 of TG
(see chapter [not this one]). That XG satisfies axiom G5 =

∧
α ∃xRα(x) follows immediately

from the fact that B[D2(X))] is sufficient for M. Thus, we need only verify that

XG �
∧
α

∧
α∈Acc(α,−)

∀x1...xk(Rα(x)→ ∃y Rβ(y, x2, ..., xk))

Let (a1, ..., ak) ∈ RXG

α and β ∈ Acc(α,−). Let τ1,..., τn enumerate all quantifier-free t-types
in the language of M such that

τi(x, y, z) � α(x1, ..., xk) ∧ β(y, x2, ..., xk)

By definition of sufficiency, we may assume that there are an i ∈ [n] and a number s < ω,
for every (a′, b′, c) ∈ τ(M), there are d1, ..., ds ∈ LB such that (a′, b, c) is algebraic over
Y (d1, ..., ds) =

⋃s
i=1

{
rng(e) : SB(di, e)

}
. It follows that there is a formula ϕ(y, a′) (not

necessarily quantifier-free) which is uniformly algebraic in the type of a′ and such that
ϕ(b′, a′) � Rβ(b′, a2, ..., a

′
k). As X is algebraically-closed, there is a b ∈ X such that ϕ(b, a),

so Rβ(b, a1, ..., ak), as required.

In light of the two preceding propositions, the next theorem is easy to verify:

Theorem 7.11. By Propositions 7.9 and 7.10, the following procedure

ComputeSurrogateSCSandExpand(−;Psurr,A)

amounts to a coherent solution of the model-building problem for T .
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Procedure: ComputeSurrogateSCSandExpand(−;Psurr,A)

1. Given X ⊂fin ||M||

2. Set V (X) =
⋃
i<ω U

i(X), where:

(a) U0(X) = aclM(X)

(b) For i < ω, define

i. Ci(X) = resp(Psurr,M�U i(X))
Di

1(X) = aclA
◦
(Ci(X))

Di
2(X) = resp(Psurr,M�aclM(proj(Di

1(X)) ∪ U i(X)) )

ii. U i+1(X) = U i(X) ∪ proj(Di
2(X))

3. If resp(Psurr,M�V (X)) does not meet every type realized in A, then add the optimal
one, obtaining an extension X ′ ⊃ X, and return to 2 with X ′ in place of X.
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Chapter 8

Unfolding digraphs and separation
independence

Throughout this chapter, consider fully normalized invent-programs P over a signature
ρ. That is, P is of the form Ppre;Ploop;Ppost – and more precisely of the form:

Ppre; ( whileϕloop do (ifψ1 thenR1 else id); ...; (ifψm thenRm else id) );Ppost

satisfying the following conditions:

1. Ppre and Ppost are sequences of basic expressions.

2. ∅ `
∨
i ψi and if i 6= j, then ψi ∧ ψj ` false

3. For each i = 1, ...,m, Ri is a sequence of flat basic expressions.

We also assume that P is essentially inflationary.

8.1 Construction of the P -unfolding digraph

8.1.1 Construction of the naive Ri-unfolding digraphs

For this subsection (basically so that we can use the subscript i without worry), we fix
a sequence of basic expressions Q = ε1; ...; εn, but we keep the distinguished set of public
variables pub(P ) in mind. Given a Γ-structure A, we devise a digraph GAQ to represent the
evaluation of resp(Q,A).

As usual, we set A0 = A and Ai+1 = resp(εi+1,Ai) for i = 1, ..., n. Set var(0) =
var(n+ 1) = pub(P ) and var(i+ 1) = var(i)∪ {head(εi+1)} if i < n. For 0 ≤ i ≤ n+ 1, set

Vi(G
A
Q) =

⋃
X∈var(i)

{{
(i, a,X,+) : a ∈ XAi

}{
(i, a,X,−) : a ∈ Aari(X)

i \XAi
}
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and set V (GAQ) =
⋃
i Vi(G

A
Q). For i < n, set E0

i,i+1(GAQ) =

=
⋃

X∈var(i),X 6=head(εi+1)

{{
((i, a,X,+), (i+ 1, a,X,+)) : a ∈ XAi

}{
((i, a,X,−), (i+ 1, a,X,−)) : a ∈ Aki+1 \XAi

}
These pairs are called trivial edges, for they simply carry existing information forward when
no change to the variable has occurred. By contrast, E1

i,i+1(GAQ) depends on εi+1:

• If εi+1 = (Y ← {x|τ(x)}), then E1
i,i+1(GAQ) = ∅

• If εi+1 = (Y ← {x|X(x)}), then E1
i,i+1(GAQ) ={

((i, a,X,+), (i+ 1, a, Y,+)) : a ∈ XAi
}

• If εi+1 = (Y ← {x|¬X(x)}), then E1
i,i+1(GAQ) ={

((i, a,X,−), (i+ 1, a, Y,+)) : a ∈ Aki \XAi
}

• If εi+1 = (Y ← {x|∃y X(x, y)}), then E1
i,i+1(GAQ) ={(

(i, ab,X,+), (i+ 1, a, Y,+)
)

: ab ∈ XAi
}

• If εi+1 = (Y ← {x|X1(x) ∧X2(x2)}), then E1
i,i+1(GAQ) ={

((i, a�xj, Xj,+), (i+ 1, a, Y,+)) : a ∈ Aki , a�xj ∈ XAi , j = 1, 2
}

• If εi+1 = (Y ← {x|X1(x) ∨X2(x2)}), then E1
i,i+1(GAQ) =

=
⋃

{
((i, a�x1, X1,+), (i+ 1, a, Y,+)) : a ∈ Aki , a�x1 ∈ XA1 , a�x2 /∈ XA2

}{
((i, a�x2, X2,+), (i+ 1, a, Y,+)) : a ∈ Aki , a�x1 /∈ XA1 , a�x2 ∈ XA2

}{
((i, a�xj, Xj,+), (i+ 1, a, Y,+)) : a ∈ Aki , a�xj ∈ XAj , j = 1, 2

}
• If εi+1 = (Y ← inventk {x1...xs : X(x)}), s < k, then E1

i,i+1(GAQ) ={
((i, a,X,+), (i+ 1, inventk(a), Y,+)) : a ∈ XAi

}
where for a ∈ Asi , we define

inventk(a) = (a1, ..., as, 1̂ a, ..., (k − s)̂ a)

Set Ei,i+1(GAQ) = E0
i,i+1(GAQ) ∪ E1

i,i+1(GAQ), and E(GAQ) =
⋃
i≤nEi,i+1(GAQ).
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8.1.2 Extension to the Ploop-digraph and to the P -digraph

For convenience in typesetting, we now give the inner part of Ploop the name Q:

(ifψ1 thenR1 else id); ...; (ifψm thenRm else id)

If A is a ρ-structure such that resp(Q,A) is defined, then by definition, resp(Q,A) = A(n∗)

where

A(0) = A
A(i+1) = resp(Q,A(i))

n∗ = min
{
i < ω : A(i) � ¬ϕloop

}
Furthermore, there is a well-defined map

e = eA : {0, 1, ..., n∗ − 1} −→ {1, ...,m}

such that e(i) = t if and only if Ai � ψt. As previously, for each i ∈ {1, ...,m}, li denotes
the length of Ri – that is, the number of basic expressions comprising Ri = εi1; ...; εili . Thus,
for a ρ-structure A, the levels of GARi are numbered 0, 1, ..., li, li + 1.

We obtain the Q-digraph by connecting GA(0)

Re(0)
to GA(1)

Re(1)
to GA(2)

Re(2)
and so forth. More

formally,
V (GAPloop) =

⋃
i≤n∗

(
{i} × V (GA

(i)

Re(i)
)
)

E(i)(GAQ) =
{

((i, u), (i, v)) : (u, v) ∈ E(GA
(i)

Re(i)
)
}

E(i,i+1)(GAQ) = · · ·

· · · =
⋃

X∈pub(P )

{(
(i, (le(i), a,X,±)), (i+ 1, (0, a,X,±))

)
: (le(i), a,X,±) ∈ Vle(i)(G

A(i)

Re(i)
)
}

E(GAQ) =
⋃
i≤n∗

E(i)(GAQ) ∪
⋃
i<n∗

E(i,i+1)(GAQ)

The subsequent definition of GAP is much more concise. Setting

Apre = resp(Ppre,A)�pub(Ploop)

we then define GAP = G
Apre
Ploop
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8.1.3 Pruning by algebraicity

The naive Ploop-unfolding digraphs, GAPloop , are really quite naive, as the name suggests;
in a sense they retain too much information about the computation. To dispel this difficulty,
we prune away much of the naive Ploop-unfolding digraph in a manner that leaves (what
seems to be) only the model-theoretically interesting data. In particular, only public (hence,
explicitly inflationary) relation variables are retained.

If K is a class of pub(P )-structures, we set

Kpre = {resp(Ppre,A) : A ∈ K}

resp(P,K)∗ = {Ai : A ∈ K, i = 0, 1, ...., nA}
where for A ∈ K, we define nA < ω so that

A(0) = Apre
A(i+1) = resp(R,A(i))

nA = min
{
i < ω : A(i) � ¬ϕloop

}
Finally, we set

KP = {M�pub(P ) :M∈ resp(P,K)∗}
ForM∈ KP and A ⊆M , we define (as usual),

KP
A = KP

(A;M) =
{
N ∈ KP : A ⊆ N, diagN (A) = diagM(A)

}
Suppose m,n ∈ {ari(X) : X ∈ pub(P )}, and let p(x1, ..., xm, y1, ..., yn) be a quantifier- free
type over ∅ in the language of pub(P ), which we assume is complete. We say that p(x, y) is
an algebraic step with respect to KP just in case it is

1. p(x, y) itself is non-algebraic over KP : for every r < ω, there is a modelM∈ KP such
that

|
{
ab ∈Mm+n :M � p(a, b)

}
| ≥ r

2. There is a number 0 < r < ω such that for allM∈ KP and a ∈Mm,

|
{
b ∈Mn :M � p(a, b)

}
| ≤ r

We are now prepared to construct the true P -unfolding digraph HAP for a structure
A ∈ K. Again, we have resp(Ploop,Apre) = A(nA). For the vertex set, have simply

V (HAP ) =
⋃

0≤i≤nA

{
(i, (0, a,X,±)) ∈ V (GAP ) : X ∈ pub(P )

}
As in the naive construction, we define edges only between adjacent levels – that is, we define
the edge sets Ei,i+1(HAP ). For each i < nA, Ei,i+1(HAP ) contains two kinds of edges:
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1. If (i, (0, a,X, ξ)) and (i+ 1, (0, a,X, ξ)), ξ = ± are in V (HAP ), then

〈 (i, (0, a,X, ξ)), (i+ 1, (0, a,X, ξ)) 〉

is in Ei,i+1(HAP ).

2. Suppose (i, (0, a,X, ξ)) and (i + 1, (0, b, Y,+)) are in V (HAP ), where (0, a,X, ξ) and
(0, b, Y,+) are different from each other and ξ ∈ {+,−}. Then〈

(i, (0, a,X, ξ)), (i+ 1, (0, b, Y,+))
〉

is in Ei,i+1(HAP ) just in case:

• There is a directed path from (i, (0, a,X, ξ)) to (i + 1, (0, b, Y,+)) in the naive
unfolding graph GAP ;

• The quantifier-free type p(x, y) of (a, b) in A(i+1) is an algebraic step.

• (i, (0, b, Y,+)) is not in V (HAP )

8.2 Definitions towards an independence relation

Digraphs and d-separation:
Let G = (V,E) be a directed graph (digraph). For u, v ∈ V , we say that v is a descendant

of u if there is a (directed) path from u to v in G; we denote by Desc(u) the set containing
u and all of u’s descendants in G. A trail in G is a sequence of vertices t = (v1, ..., vn) such
that for each i = 1, ..., n − 1, either (vi, vi+1) or (vi+1, vi) is an edge – that is, a trail is a
path in the undirected graph associated with G. The internal vertices of t, v2, ..., vn−1, can
be classified into three types:

1. vi is head-to-head if (vi−1, vi) and (vi+1, vi) are both edges.

2. vi is tail-to-tail if (vi, vi−1) and (vi, vi+1) are both edges.

3. vi is head-to-tail just in case either (vi−1, vi) and (vi, vi+1) are edges, or (vi+1, vi) and
(vi, vi−1) are edges.

We can now define the key notion of d-separation in digraphs. Firstly, suppose A,B,C are
pairwise disjoint subsets of V ; we say that A and B are d-separated by C in G if for each
trail t = (v1, ..., vn) with v1 ∈ A and vn ∈ B, at least one of the following conditions holds
for some 1 < i < n:

1. vi is tail-to-tail in t and vi ∈ C

2. vi is head-to-tail in t and vi ∈ C
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3. vi is head-to-head in t and Desc(vi) ∩ C = ∅.

Extending this notion, if A,B,C are not necessarily pairwise disjoint, we again say that
A and B are d-separated by C just in case (a) A ∩ B ⊆ C and (b) A \ C and B \ C are
d-separated by C. We use the notation [A q B |C]G to abbreviate the assertion, “A and B
are d-separated by C in G”. The following properties of the d-separation relation are not
difficult to derive, so their proofs are omitted. In any case, the arguments can be found in
[26] or [4], and the terminology (which we consider somewhat unfortunate) is taken from
those sources:

Lemma 8.1. Let G = (V,E) be a directed acyclic graph. The relation of d-separation has
the following properties:

1. Symmetry: [AqB |C]G ⇒ [B q A |C]G

2. Decomposition: [AqB |C]G ∧B0 ⊆ B ⇒ [AqB0 |C]G

3. Weak Union: [AqB |C]G ∧B0 ⊆ B ⇒ [AqB |C ∪B0]G

4. Contraction:
[AqB1 |C]G ∧ [AqB2 |C ∪B1]G ⇒ [AqB1 ∪B2 |C]G

Algebraic closure, local separation and deviation:
We will assume that the set of (situated) structures K under consideration is closed

under isomorphism and has the amalgamation property with respect to quantifier-free for-
mulas. Since we don’t have access to quantifiers, it’s necessary to define the following closure
operator (which we actually defined in the Introduction) by an explicit recursion:

κM(A) = A ∪ {b ∈M : qtp(b/A;M) is K-algebraic}
cl0(A;M) = A

cln+1(A;M) = κM(acln(A;M))

cl(A;M) = cl|M |(A;M)

We write cl(A) in place of cl(A;M) whenM is clear from context. IfM∈ K and A ⊆M ,
then we identify A with the subset of vertices

V (HMP ) ∩
{

(0, (0, a,X,±)) : X ∈ pub(P ), a ∈ Aari(X)
}

We also define a technical notion of hereditary descendants, HDesc(A;M), which keeps
closer to the original base set in question. First, define

HDesc0(A;M) =
{

(i, (0, a,X,±)) ∈ V (HMP ) : a ∈ HL[A]
}

Next, suppose (i, v) ∈ HDesc0(A;M).
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• If v = (0, a,X,+), then (i, v) ∈ HDesc(A;M)

• If v = (0, a,X,−), then (i, v) ∈ HDesc(A;M) only if there is a (j, w) ∈ HDesc0(A;M)
such that w 6= v (so sign(w) = +), i < j, and (j, w) ∈ DescHMP (A).

Again, we sometimes write HDesc(A) in place of HDesc(A;M) when the structure M is
clear from context. Clearly, HDesc(A) ⊆ HDesc(B) when A ⊆ B ⊆M .

Finally, we define the local separation relation on subsets of K-models as follows: Let
M∈ K and A,B,C ⊆M ; then we write

A ↓
C
B/M

– and say that A and B are locally separated by C inM – just in case

[AqB |HDesc(acl(D)) ]HMP

whenever cl(C;M) ⊆ D ⊆ cl(BC;M).

Lemma 8.2 (Local monotonicities). LetM∈ K, A,B,C ⊆M and B0 ⊆ B. If A ↓C B/M,
then

1. (Monotonicity) A ↓C B0/M

2. (Base-monotonicity) A ↓CB0 B/M

Proof. 1. Suppose acl(C) ⊆ D ⊆ acl(B0C). Since acl(B0C) ⊆ acl(BC) and A ↓C B/M, we
have

[AqB |HDesc(cl(D))]HMP

and by Decomposition, we have

[AqB0 |HDesc(cl(D))]HMP

As D was arbitrary, it follows that A ↓C B0/M.

2. Suppose acl(B0C) ⊆ D ⊆ acl(B ∪ (B0C)) = acl(BC). Since acl(C) ⊆ acl(B0C) and
A ↓C B/M, we have

[AqB |HDesc(cl(D))]HMP

Again, as D was arbitrary, we have shown that A ↓B0C B/M.

We will say that a partial (quantifier-free) type π(x1, ..., xn) over a set A ⊆ M , where
M∈ K, is admissible if diag(A;M) ⊆ π; that is, π itself fixes the quantifier-free type of its
own domain. Given an admissible type π(x) over A, we write Kπ

A for the set of all N ∈ KA
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such that π is realized in N . By the amalgamation assumption, Kπ
A is infinite whenever π

is K-consistent.
Suppose M0 ∈ K, B0 ⊆ B ⊆ M0, and let π(x1, ..., xn) be an admissible type over B.

SupposeM ∈ KB and B ⊆ D ⊆ M . We define ∆M0 [π,B0](D) to be the set of all structure
N ∈ Kπ

D such that for all a ∈ Nn, if N � π(a), then

a ↓B D/N ′ ⇒ a ↓/ B0D/N ′

whenever N ′ ∈ KDa.
Note that if N ∈ ∆M0 [π,B0](D) and N ′ ∼=D N , then N ′ ∈ ∆M0 [π,B0](D). Hence,

∆M[π,B0](D) = ∆M0 [π,B0](D)/∼=D ⊆ Kπ
D/
∼=D

is well-defined, and we call this set of isomorphism types the deviation of π over B0 with
respect to D.

The notions of freeness and independence:
It is standard practice of the first-order model theory of infinite structures (more or less)

to identify all finite numbers with each other and understand all finite objects as “rank 0.”
Following this practice, we will understand the statement, “ the deviation of π over B0 with
respect to D is finite,” as equivalent to, “π has null deviation over B0 ,” or ”π does not
deviate over B0 with respect to D.”

It will be easiest – at least initially – to express our notion of independence as a set IP of
pairs (π,B0) in which π(x1, ..., xn) is an admissible type over some set B ⊇ B0. Namely, we
define IP to be just the subset of such pairs (π,B0) such that for allM∈ KB, B = dom(π),
and B ⊆ D ⊆M , ∆M[π,B0](D) is finite. IP , we say, is the weak notion of freeness induced
by P . Furthermore, if π(x) is an admissible type over B, B0 ⊆ B, π0 = π�B0 ∪ diag(B) is
the admissible restriction of π to B, and (π,B0) ∈ IP , then we say that π is a non-deviating
extension of π to B.1 The notion of independence induced by P , then, is given by

a |d^ CB ⇔ (qtp(a/BC), C) ∈ IP

when M ∈ K, B,C ⊆ M and a ∈ M<ω. In the next few sections, we get down to
proving that this notion of independence is indeed an independence relation as defined in
the Introduction.

Author’s note on the definitions: Firstly, it seems quite likely that the sets ∆M[π,C](D) will
always be either empty or equal to Kπ

D/
∼=D – and that is the intuition behind the definition

– but I haven’t been able to prove this fact. Thankfully, the stronger is not necessary for the
development. Secondly, some readers have found the definition of the expression A ↓C B/M
somewhat strangely formed insofar as the ranging parameter cl(C;M) ⊆ D ⊆ cl(BC;M)

1With heartfelt apologies to francophones.
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seems, at first look, unnecessarily complicated. However, it seems to me implausible that
the local base-monotonicity property holds without this complication. Specifically, in the
scenario, cl(C;M) ⊆ D ⊆ cl(BC;M), one could find that

[AqB |HDesc(cl(D;M)) ]HMP

holds but
[AqB |HDesc(cl(BC;M)) ]HMP

via a head-to-head collision with a descendent in HDesc(cl(BC;M)). In fact, this complex-
ity, I believe, is the reason why we should not expect the independence relation to collapse
to algebraic closure in general.

8.3 Basic properties of the notion of independence
In this section, we prove properties of our notion independence which are absolute in

the sense that we need not make any new assumptions about the class K or the program
P beyond those already made. That is, K has the amalgamation property, and P is a fully
normalized essentially inflationary program which terminates on every structure in K. The
reader will likely note that these basic properties are the same as those that hold of forking
independence and þ-forking independence in an arbitrary theory – that is, in a theory that
is not necessarily simple or rosy, respectively.

Lemma 8.3. LetM0 ∈ K and B,C ⊆M0, and let π(x) be an admissible type over BC.

1. Suppose M ∈ KBC and BC ⊆ D0 ⊆ D ⊆ M . If N ∈ Kπ
D \ ∆M0 [π,C](D), then

N ∈ Kπ
D0
\∆M0 [π,C](D0).

2. SupposeM∈ KBC and BC ⊆ D ⊆M , and suppose π0 ⊆ π is an admissible type over
BC. If N ∈ Kπ

D \∆M0 [π,C](D), then N ∈ Kπ0
D \∆M0 [π0, C](D).

Proof. 1. Let N ∈ Kπ
D \∆M0 [π,C](D). Suppose N ′ ∈ KDa, a ↓BC D/N ′ and a ↓C D/N ′ for

some a ∈ π(N). Then a ↓BC D0/N ′ and a ↓C D0/N ′ by Local monotonicity, and the claim
follows.

2. Again, suppose a ↓BC D/N ′ and a ↓C D/N ′ for some a ∈ π(N). Clearly, a ∈ π0(N), and
the claim follows.

Lemma 8.4 (IP -Existence). Suppose M0 ∈ K, B ⊆ M0, and π(x) is an admissible type
over B. Then (π,B) ∈ IP .

Proof. Let M ∈ KB and B ⊆ D ⊆ M , and suppose N ∈ Kπ
D. If N � π(a) and a ↓B

D/N , then obviously the assertion a ↓/ BD/N is nonsense, so N is not in ∆M0 [π,B](D) = ∅.
Kπ
D/
∼=D is infinite by the amalgamation assumption, so ∆M[π,B](D) is a coinfinite subset,

as required.
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Lemma 8.5 (IP -Monotonicity). LetM0 ∈ K and B,C ⊆M0, and let π(x) be an admissible
type over BC such that π�B0C is a complete quantifier-free type over B0C inM0. If (π,C) ∈
IP and B0 ⊆ B, then (π�B0C,C) ∈ IP .

Proof. LetM ∈ KB0C and B0C ⊆ D ⊆M . By the amalgamation property, we may choose
a structure N1 ∈ Kπ

BD such that N ≤ N1. If N1 /∈ ∆M0 [π,C](D), then we may choose
a ∈ π(N1) and N ′ ∈ Kπ

BDa such that a ↓BC D/N ′ and a ↓C D/N ′. This shows that
that N /∈ ∆M0 [π�B0C,C](D) provided that qtp(a/B0C;N1) is realized in N . By hypothesis,
π�B0C = qtp(a/B0C;N1), and the lemma follows.

Lemma 8.6 (IP -Base-monotonicity). Let M0 ∈ K and B,C ⊆ M0, and let π(x) be an
admissible type over BC. If (π,C) ∈ IP and B0 ⊆ B, then (π,B0C) ∈ IP .

Proof. Let M ∈ KBC and BC ⊆ D ⊆ M . Suppose N ∈ Kπ
D \ ∆M0 [π,C](D). We may,

then, choose a ∈ Nx be such that N � π(a), a ↓BC D/N and a ↓C D/N all hold. By local
base-monotonicity, the last of these facts implies a ↓B0C D/N , so a witnesses the fact that
N ∈ Kπ

D \∆M0 [π,B0C](D). Thus,

Kπ
D \∆M0 [π,C](D) ⊆ Kπ

D \∆M0 [π,B0C](D)

and it follows that

Kπ
D/
∼=D \∆M[π,C](D) ⊆ Kπ

D/
∼=D \∆M[π,B0C](D)

and therefore,
∆M[π,B0C](D) ⊆ ∆M[π,C](D)

Since the term on the right-hand side is a finite set, we know that ∆M[π,B0C](D) is finite,
and asM, D were arbitrary, the proof of the lemma is complete.

Proposition 8.7 (IP -Extension). Let M0 ∈ K and B,C ⊆ M0, and let π(x) be an admis-
sible type over BC. Suppose (π,C) ∈ IP . Then there is a complete extension p(x) of π(x)
to BC such that (p, C) ∈ IP .

Proof. Let p1, ..., ps, 0 < s < ω, be an enumeration of the complete (quantifier-free) extension
of π to BC. Thus, we must prove that (pj, C) ∈ IP for some j ∈ [s]. Towards a contradiction,
suppose that for each j ∈ [s], there are a structure Mj ∈ KBC and BC ⊆ Dj ⊆ Mj such
that ∆Mj [pj, C](Dj) is infinite. By the amalgamation property, then, we may assume that
there are a structureM∈ KD1∩ ....∩KDs and D1, ..., Ds ⊆ D ⊆M , such that ∆M[pj, C](D)
is infinite for each j ∈ [s]. Then, of course, ∆M[π,C](D) must infinite, contradicting the
assumption that (π,C) ∈ IP .

Lemma 8.8 (Partial IP -right-transitivity). LetM0 ∈ K and B1, B2, C ⊆M0, and let π(x)
be an admissible type over B1B2C such that π�B1C is a complete quantifier-free type over
B1C inM0. Suppose (π,C) ∈ IP . Then (π,B1C) ∈ IP and (π�B1C,C) ∈ IP .
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Proof. Given the assumptions, we know that (π�B1C,C) ∈ IP by the IP -monotonicity prop-
erty, which we proved above, so it only remains to show that (π,B1C) ∈ IP . Suppose
M ∈ KB1B2C and B1B2C ⊆ D ⊆ M . Let N ∈ Kπ

D \∆M0 [π,C](D), and let N � π(a) such
that a ↓B1B2C D/N and a ↓C D/N . Since B1 ⊆ D, by Local Base-monotonicity, we have
a ↓B1C D/N , so a witnesses the fact that N ∈ Kπ

D \∆M0 [π,B1C](D). Therefore,

Kπ
D/
∼=D \∆M[π,C](D) ⊆ Kπ

D/
∼=D \∆M[π,B1C](D)

and therefore
∆M[π,B1C](D) ⊆ ∆M[π,C](D)

As the right-hand side is a finite set by hypothesis, the lemma follows.

Lemma 8.9 (IP -Preservation of algebraic dependence I). SupposeM0 ∈ K and A,C ⊆M0.
If (qtp(A/AC;M0), C) ∈ IP , then A ⊆ cl(C;N ) for almost every N ∈ KAC

Proof. Let π = qtp(a/AC;M0) where a is an enumeration of A. Suppose M ∈ KAC and
AC ⊆ D ⊆ M . Let N ∈ Kπ

D = KD. As a ↓AC D/N (which holds trivially), then we may
assume (*) that a ↓C D/N , and in particular,

[AqD |HDesc(cl(C))]HNP

Since A ⊆ AC ⊆ D, it follows that A ⊆ HDesc(cl(C;N )), so by definition, we have
A ⊆ cl(C;N ). As (*) holds for almost every N ∈ KAC , the lemma follows.

Lemma 8.10 (IP -Preservation of algebraic dependence II). Suppose M0 ∈ K and B,C ⊆
M0, and let π(x) be a complete quantifier-free type over BC. Assume (π,C) ∈ IP . For any
extension π′ of π to cl(B;M0) ∪ C, (π′, C) ∈ IP .

As we conducted our arguments in “language” of IP , we summarize the results of this
section in the following theorem in the “language” of |d^ .

Theorem 8.11. |d^ satisfies the following properties of an independence relation:

1. Invariance: (A,B,C) ≡qf (A1, B1, C1) ∧ A |d^ CB ⇒ A1
|d^ C1B1.

2. Existence: A |d^ BB.

3. Monotonicity: A |d^ CB ∧B0 ⊆ B ⇒ A |d^ CB0.

4. Base-monotonicity: A |d^ CB ∧B0 ⊆ B ⇒ A |d^ B0CB.

5. Partial right-transitivity: A |d^ CB1B2 ⇒ A |d^ CB1 ∧ A |
d

^ B1CB2.

6. Preservation of algebraic dependence I: A |d^ CA⇒ A ⊆ cl(C).
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7. Preservation of algebraic dependence II: A |d^ CB ⇒ A |d^ Ccl(B).

8. Preservation of algebraic dependence III: A ⊆ cl(C)⇒ A |d^ CB

9. Extension: A |d^ CB ∧BC ⊆ B1 ⇒ ∃A′ ≡qf
BC A.A

′ |d^ CB1.

8.4 Symmetry and full transitivity
Unsurprisingly, symmetry and full transitivity, even for IP , do not seem to hold without

some additional hypothesis. In this section, we define and analyze one such assumption:
Bounded unfolding-degrees with respect to P (abbreviated BUDs/P ). In later sections, we
show that assuming the complexity of P over K is polynomially bounded, then K does
indeed have BUDs/P .

Towards defining BUDs/P , we first define our notion of unfolding-degrees. LetM0 ∈ K,
B,E ⊆M0 and 0 < n < ω; then, for any d < ω, degnP (B/E;M0) ≥ d if there areM∈ KBE

and a1, ..., ad ∈Mn such that

• (a1, ..., ad) is a BE-indiscernible sequence (with respect to quantifier-free formulas);

• [ai q aj |HDesc(BE)]HMP whenever 1 ≤ i < j ≤ d;

• [aiq/B |HDesc(E)]HMP for all i = 1, ..., d.

We say that K has bounded unfolding-degrees with respect to P if there is a function fdeg :
N3 → N such that

degnP (B/E;M0) ≤ fdeg(n, |BE|, |E|)
wheneverM0 ∈ K, B,E ⊆M0 and n ∈ N.

Lemma 8.12. Let M0 ∈ K, C ⊆ M0 and a, b ∈ M<ω
0 , and let p(x, y) = qtp(a, b/C;M0).

Assume a |d^ Cb. If b |d/̂ Ca and b ∈ cl(Ca), then K does not have BUDs/P .

Proof. Assuming b |d/̂ Ca, letM∈ KCa and C ⊆ D ⊆M \ rng(a) be such that

∆ = ∆M[p(a, y), C](Da)

is infinite. By the property of Preservation of algebraic dependence III, b ∈ cl(Ca) im-
plies that b |d^ CaDa. Let N̂ ∈ ∆ and b

′ ∈ p(a, N̂). If cl(Ca; N̂ ) ⊆ E ⊆ cl(Da; N̂ ),
then [b

′ q Da |HDesc(cl(E))]
HN̂P

just because b ⊆ HDesc(cl(E)); hence, b′ ↓Ca Da/N̂ ,

so b′ ↓/ CDa/N̂ . (Note that this is more or less the proof of Preservation of algebraic depen-
dence III.) Furthermore, if a � qtp(a/Db; N̂ ) in some N̂ ∈ KDb, then b ↓Ca′ Da′/N̂ and
b ↓/ CDa′/N̂ . Now, we consider an inductive construction:

Construction:
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• Let N0 =M0 and a0 = a.

• Suppose we are given N0, ...,Ni and a0, ..., ai such that

1. For each j ≤ i, a0, ..., aj ∈ p(Nj, b),

qtp(aj/Db;Nj) = qtp(aj/Db;Ni) = qtp(a0/Db;N0)

2. For each j < i, aj+1
|d^DbDba0...aj

• Choose Ni+1 ∈ KDba0...ai
and ai+1 ∈ p(Ni+1, b) such that

qtp(ai+1/Dba<i;Ni+1) = qtp(ai/Dba<i;Ni)

and ai+1
|d^DbDba0...ai.

By methods we’ve used several times before, we may assume that (Ni, ai) is coherent and
indiscernible over cl(Db;N0) and that cl(Db;Ni) = cl(Db;N0) for all i < ω. By Monotonicity,
we know that ai |

d
^Dbaj whenever j < i < ω, so [ai q aj |HDesc(cl(Db))]HNkP provided

i < j << k < ω. On the other hand, by Ramsey’s theorem, there is an infinite subset X ⊆ ω
and some acl(C) ⊆ E ⊆ acl(D) such that [aiq/ b |HDesc(cl(E))]

H
Nk
P

whenever i, k ∈ X and
i << k. This suffices, then, to demonstrate that K does not have BUDs/P .

Lemma 8.13. Assume K has BUDs/P . Let M0 ∈ K, C ⊆ M0 and a, b ∈ M<ω
0 , and let

p(x, b) = qtp(a/Cb;M0). Let KCb and C ⊆ D ⊆M \rng(b), and suppose ∆M[p(x, b), C](Db)
is infinite. Let q(x, b) be a complete extension of p(x, b) to Db. Then, if (q(x, b), Cb) ∈ IP ,
then q(x, b) is algebraic.

Proof. Assume N ∈ ∆ = ∆M[p(x, b), C](Db) and a′ ∈ p(N, b) such that the type q(x, b)
= qtp(a′/Db;N ) does not deviate over Cb.

Let 0 < n < ω be given. Choose n1 < ω large enough to ensure that if N ′ ∈ KDb and
a1, ..., an1 ∈ q(N ′, b), then there are cl(C;N ′) ⊆ E ⊆ cl(D;N ′) and i1 < · · · < in ≤ n1

such that (ai1 , ..., ain) is cl(Db;N ′)-indiscernible and [aij q/Db |HDesc(cl(E;N ′))]HN′P for all
j = 1, ..., n.

Now, by hypothesis, we have a |d^ CbDb, and by Extension – and using the inductive
construction of lemma 8.12 – we may choose a modelM∗ ∈ KDb and a1, ..., an1 ∈ q(M∗, b)

such that ai+1
|d^ CbDa1...ai whenever 1 ≤ i < n1. By our choice of n1, we may recover

i1 < · · · < in ≤ n1 and cl(C;M∗) ⊆ E ⊆ cl(D;M∗) such that

[aij q aik |HDesc(cl(Eb)]HM∗P

whenever 1 ≤ j ≤ k ≤ n, and

aij q/Da |HDesc(cl(E))]HM∗P
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whenever 1 ≤ j ≤ n.

Noting that n was given arbitrarily, it’s straightforward to show from this that K cannot
have BUDs/P , and this proves the lemma.

Lemma 8.14. LetM∈ K and C ⊆ D ⊆M , and let p(x) be a complete type over (C;M).
If every complete extension of p(x) to D is algebraic, then p(x) itself is algebraic.

Proof. An easy application of the amalgamation property.

Theorem 8.15. If K has BUDs/P , then |d^ is symmetric: A |d^ CB ⇒ B |d^ CA. More
precisely, suppose M0 ∈ K, C ⊆ M0 and p(x, y) = qtp(ab/C;M0) for some a ∈ Mm

0 and
b ∈Mn

0 ; then, if (p(x, b), C) ∈ IP , then (p(a, y), C) ∈ IP .

Proof. Towards a contradiction, supposeM∈ KCa and C ⊆ D ⊆M \ rng(a) are such that

∆M[p(a, y), C](Da)

is infinite. By 8.13, we may assume that p(a, y) is non-algebraic, and by the property of
Preservation of algebraic dependence III, we may select non-algebraic extension q(a, y) of
p(a, y) to Da. By 8.12, we may assume that q(a, y) deviates over Ca. That is, if b′ � q(a, y),
then b′ |d/̂ CaDa. Consequently, there is a modelM′ ∈ KDa and a subsetD $ D′ ⊆M ′\rng(a)
such that

∆M
′
[q(a, y), Ca](D′a)

is infinite. Following the construction form 8.12, we obtain an infinite sequence (Ni, bi)i<ω,
coherence and indiscernible over Da′ such that

bi |
d

^D′aD
′ab<i

whenever i < ω, but
bi ↓Da D′a/Nj ⇒ bi ↓/ CaD′a/Nj

whenever i << j < ω. By Ramsey’s theorem, there is an infinite subset X ⊆
(
ω
2

)
such that

either bi ↓/DaD′a/Nj for all {i < j} ∈ X, or bi ↓/ CaD′a/Nj for all {i < j} ∈ X. In either
case, we derive a contradiction to BUDs/P .

Lemma 8.16 (Partial left-transitivity (BUDs/P )). LetM0 ∈ K, B,C ⊆ M0, and a1, a2 ∈
M<ω

0 . If a1
|d^ CB and a2

|d^ a1CB, then a1a2
|d^ CB.

Proof. Towards a contradiction, suppose a1
|d^ CB, a2

|d^ a1CB, but a1a2
|d/̂
CB.

Claim. We may assume that ∆M0 [qtp(a1a2/BC), C](BC) is infinite.
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proof of claim. LetM∈ KBC and BC ⊆ D ⊆M such that

∆M[qtp(a1a2/BC,C](D)

is infinite. Let E = D \BC. By Extension, we may assume that a1
|d^ CBE, and we can find

a′2 (in some M′ ∈ KDa1) such that a′2 ≡
qf
BCa1

a2. Up to renaming elements, we may then
assume a1

|d^ CBE and a2
|d^ a1CBE, but

∆M
′
[qtp(a1a2/BCE), C](BCE)

is infinite.

By the property of Preservation of algebraic dependence III, we know that qtp(a1a2/C) is
non-algebraic, and it follows that qtp(a1/C) or qtp(a2/Ca1) is non-algebraic (possibly both).

Claim. qtp(a1a2/BC) is non-algebraic.

proof of claim. Towards a contradiction, suppose qtp(a1a2/BC) is algebraic. Then the type
qtp(a1/BC) is algebraic (applying the amalgamation property), and also qtp(a2/BCa1) is
algebraic. If qtp(a1/C) is non-algebraic, then a1

|d/̂
CB; and if qtp(a2/Ca1) is non-algebraic,

then a2
|d/̂
a1CB. In either case, we have a contradiction to the hypothesis of the lemma.

From the second claim, it is, then, straightforward to derive a contradiction to BUDs/P .

Theorem 8.17 (BUDs/P ). Let M0 ∈ K and A,B1, B2, C ⊆ M0. Then, A |d^ CB1 and
A |d^ B1CB2 if and only if A |d^ CB1B2.

Proof. The proof is a simple derivation:

A |d^ CB1 ∧ A |
d

^ B1CB2 ⇒ B1
|d^ CA ∧B2

|d^ B1CA

⇒ B1B2
|d^ CA

⇒ A |d^ CB1B2

by Symmetry followed by Partial left-transitivity followed by Symmetry again.

One last intermediate observation of this section (given without the now-routine proof)
is the following:

Lemma 8.18 (BUDs/P ). Let M0 ∈ K and A,C ⊆ M0. Suppose (Mi, bi)i<ω is an AC-
indiscernible coherent sequence. Then there is a function g : ω → ω such that i ≤ g(i) and,
with Bi =

⋃{
rng(bj) : j < i

}
bg(i) |

d
^
CBi

A

for all i < ω.
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The culmination of this section, then, is the following theorem, which one now derives
easily from lemma 8.18:

Theorem 8.19. Let P be an essentially inflationary invent-program over K, and suppose
K has BUDs/P . Then |d^ is an independence relation with local character. In particular, K
is rosy.

8.5 Boundedness properties of efficient programs
The reader may have observed that the notion of independence defined above does not

have anything to do with the model-building problem explicitly. In this section, we finally
return to the notion of a coherent solution of the model-building problem, and we show
that an efficient coherent solution yields a local boundedness property which then implies
BUDs/P .

Towards defining this local boundedness condition, we first consider a structureM∈ K
and A ⊆M ; we define

ress(A;M) =
{
i < ω : Vi+1(HMP ) ∩HDesc(A;M) �A Vi(H

M
P ) ∩HDesc(A;M)

}
res0(A;M) = |ress(A;M)|

The set ress(A;M) and the number res0(A;M) must exist just because resp(P,M) is
defined by assumption, and it’s easy to see that if

(res0(A;M), v) ∈ HDesc(A;M)

then v is of the form (0, a,X,+). This number should, presumably, be called the resolution
rank of A inM with respect to P . Next, we define

res(A;M) =

{
max {res0(A;N ) : N ∈ KA} if the maximum exists
∞ otherwise

and call this number the resolution rank of the diagram qtp(A;M). (It is easy to see that
res is an invariant of the isomorphism type qtp(A;M).) Finally, we say that K is locally
bounded with respect to P just in case there is a function fres : N→ N such that

res(A;M) ≤ fres(|A|)

whenever M ∈ K and A ⊆ M . The first fact involving this local boundedness property
asserts an unsurprising connection with BUDs/P .

Observation. Let M ∈ K and A ⊆ M . Suppose j ∈ ress(A;M), and let h(j) =
| {i ∈ ress(A;M) : i < j} |. Then each v ∈ Vj(H

M
P ) ∩ HDesc(A;M) has no more than

tower2(lP , h(j)) nontrivial predecessors (i.e. not in HDesc(A;M)), where tower2(x, 1); =
2x and tower2(x, n+ 1) := 2tower2(x,n).
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Proposition 8.20. Suppose K is locally bounded with respect to P . Then K has BUDs/P .

Proof. Towards a contradiction, suppose K does not have BUDs/P ; in particular, letM0 ∈
K, B,E ⊆ M0, and let (Mn, an)n<ω be a coherent BE-indiscernible sequence in KBE. Let
r = fres(|E|). Observe that if n < ω and if v is in V (HMn

P ) \ HDesc(A;Mn) but has a
descendent in HDesc(A;Mn), then v has a descendent in

HDesci(E;Mn) = Vi(H
Mn
P ) ∩HDesc(A;Mn)

for some i ∈ ress(A;Mn). By the pigeonhole principle, we may assume that for allm,n < ω,

• res0(A;Mm) = res0(A;Mn) – say

res0(A;Mm) = {im1 < · · · < imr }
res0(A;Mn) = {in1 < · · · < inr }

• For all j = 1, ..., r, HDescimj (A;Mm) ∼=A HDescinj (A;Mn) (up to renumbering levels
in the obvious way).

We may, therefore, think of all of the unions
⋃r
j=1HDescinj (E,Mn) as a single finite set Ê

which is constant relative to n.
For each n < ω and i ≤ n, let τni be a trail from ai to B in HMn

P which is not
blocked by HDesc(A;Mn). Note every head-to-head vertex of τni must have a descen-
dent in HDesc(E;Mn) (hence in Ê), and τni must have at least one head-to-head vertex
because its endpoints are on level zero while HMn

P has edges only between levels.
Now, for each n < ω, define gn : [n]→ Ê so that gn(i) is the youngest descendant of the

first head-to-head vertex of τni (reading from ai towards B). For every s < ω, there is an
ns < ω and an e ∈ Ê such that |g−1

n (e)| ≥ s. Thus, there is an e0 ∈ Ê such that |g−1
ns (e0)| ≥ s

for infinitely many s < ω, and therefore e0 has unboundedly many nontrivial predecessors,
contradicting the fact that e0 can have at most tower2(lP , r+ 1) nontrivial predecessors.

The next theorem, 8.23, is in some sense the “fundamental” theorem in showing that if K
admits an efficient coherent solution of its model-problem, then |d^ is a genuine independence
relation. Before stating the theorem, we recall the definition of “coherent solution” for the
reader’s convenience. A weakly coherent solution of the model-building problem for K is an
HL-transformation (invent-program) P of type ρ → ρ1, where ρ ⊆ ρ1 which satisfies the
following requirements:

1. K∀ ⊆ dom(P ), and resp(P,AM)�ρ ∈ K ifM∈ K and A ⊆M .2

2Recall that if B is a ρ1-structure – as must be resp(P,AM) – then B�ρ is understood, here, to be the
ρ-structure with universe B0 =

⋃
R∈ρ fld(R

B) and RB�ρ = RB ∩Bari(R)
0 for each R ∈ ρ.
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2. SupposeM∈ K and A ⊆ B ⊆M . Then

AM ≤ resp(P,AM) ≤ resp(P,BM)

3. Suppose M0 ∈ K and A ⊆ M0. Then, for any quantifier-free type p(x1, ..., xk) over
(A; resp(P,AM0)), if

resp(P,AM0)�ρ ≤M ∈ K
and p(x) is algebraic, then q(Mk) ⊆ ||resp(P,AM0)||k.

Again, P is a fully coherent solution if it is essentially inflationary (which we have assumed
throughout this chapter) and ρ ⊆ pub(P ). Now, the argument for the theorem is almost
self-evident.

Lemma 8.21. Assume P is a fully coherent solution for K. Let M0 ∈ K, A ⊆ B ⊆ M0,
andM∈ KB. Suppose b ∈ ||HDesc(A,BM)||, and let

q(x) = qtp (b/||resp(P ;AM)�ρ||; resp(P,BM))

Then q(x) is algebraic in the sense of resp(P,K∀).
(We note that q(x) is a type in the language of pub(P ) ⊇ ρ, and furthermore, b need not

be an element of the set ||resp(P ;AM)�ρ||.)
Corollary 8.22. There is a function g : N→ N such that for allM∈ K and A ⊆ B ⊆M ,
#||HDesc(A;BM)|| ≤ g(|A|).
Theorem 8.23. Suppose P is a fully coherent solution of the model-building problem for K.
Then K is locally bounded with respect to P , and consequently, K has bounded unfolding-
degrees with respect to P .

Proof. The theorem follows immediately from 8.22 and the fact that P is inflationary for
relations in pub(P ).

8.6 At last, the main event
Theorem 8.24. Let K = fin[TG], where T is a complete k-variable theory with infinitely
many finite models up to isomorphism.

I. If T is constructible, then K is rosy.

II. T is efficiently constructible if and only if K is super-rosy.

Proof. By theorems 8.19 and 8.23 of this chapter, if T is constructible – i.e., if K admits a
fully coherent solution to its model-building problem – then K is rosy. We argued in chapter
7, that if K is a super-rosy Fraïssé class, then K admits a polynomial-time fully coherent
solution to its model-building problem – that is, T is efficiently constructible. Finally, if T is
efficiently constructible, then by I, K is rosy, and by theorem 4.12, K has small algebraicity.
Thus, by 6.8 of chapter 6, K is super-rosy.
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