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This dissertation consists of two studies on international finance and macroeco-

nomics. Each study addresses different topics. The first study, written jointly with

Aaron Tornell and Zhipeng Liao, exploits Speculators’ positions in futures markets

to forecast exchange rates. The forecasting model we propose combines Engel and

Hamilton’s (1990) point that exchange rates follow long swings with Evans and Lyons’

(2004) finding that privately available information about market participants’ order

flow can predict exchange rates over the short-run. We extract speculators’ private

information by fitting a microfounded autoregressive Markov regime switching model

to the speculators’net positions data in the Commitment-of-Traders report and fore-

casting the speculators’ mode of accumulation. We then use this predicted mode

to form both directional and point exchange rate forecasts for the six most traded
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currency pairs. Over forecasting horizons ranging from 6 to 12 months, our direc-

tional forecasts have a 60% average success ratio and most of our point forecasts have

smaller mean-squared-prediction-errors than those implied by the driftless random

walk. To evaluate the performance of our directional forecasts vis-a-vis the random

walk we propose a novel test that weights each directional forecast by the realized

exchange rate change. For the point forecasts we conduct the Clark-West and the

Diebold-Mariano-West tests. The test results indicate that, over 6-to-12 months hori-

zons, our forecasts are significantly better than those from random walk models for

most currencies, except the Swiss Franc.

The second study investigates on the sources of macroeconomic fluctuations in

emerging economies. Business cycles in emerging countries exhibit notable differ-

ences from those in developed economies: the volatility of consumption relative to

output is on average greater than one and trade balance is strongly counter-cyclical.

Current theoretical explanations of these divergences of business cycle features be-

tween emerging economies and developed economies fall into two leading approaches.

The First approach, represented by Aguiar and Gopinath (2007), argues that a fric-

tionless standard real business cycle model driven mainly by shocks to trend growth

(permanent shocks to TFP) can explain all defining features of emerging economies

business cycles. The second approach, exemplified by Neumeyer and Perri (2005)

and Uribe and Yue (2006), argues that in order to explain economic fluctuations in

emerging economies, one should take into account the roles of financial imperfections

and external shocks which asymmetrically affect these countries. To test the hypothe-

ses implied by these two approaches, I compare the performance of the Aguiar and

Gopinath (AG) model with that of the encompassing model which combines shocks

to trend growth with interest rate shocks and financial frictions. Exploiting the recent

developments in the theory and implementation of Bayesian methods, I estimated two
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models using Korea’s data over the same sample period as in Aguiar and Gopinath

(2007), and Chang and Fernandez (2010). My findings are contrary to those from pre-

vious studies. First, the magnitude of permanent shocks is much larger than that of

transitory shocks. Second, the comparison of theoretical second moments of the two

models with the moments of Korean data also shows that the frictionless stochas-

tic trend model delivers closer a match to the moments calculated from the data.

Lastly, I find that the permanent productivity shocks are responsible for the bulk of

the macroeconomic fluctuations as a result of the variance decomposition. However,

these results should be interpreted with caution, because the downward trend of the

growth rate during the transition path to the steady state in Korea might be captured

as permanent shocks. This raises an issue in the empirical study of emerging market

business cycles. No existing studies examine explicitly whether the samples they use

for the estimation are generated from the transition or balanced growth path. In this

regard, extending the time series of data back in time as in Garcia-Cicco, Pancrazi

and Uribe (2009) without considering this issue might not be useful since it might be

only in the recent decades that emerging countries economies have been in the steady

state.

iv



The dissertation of Young Ju Kim is approved.

Nico Voigtlaender

Zhipeng Liao

Aaron Tornell, Committee Co-chair

Jinyong Hahn, Committee Co-chair

University of California, Los Angeles

2014

v



To my parents, my wife and two loving daughters, and my brother and his family.

vi



TABLE OF CONTENTS

1 Speculators’ Positions and Exchange Rate Forecasts: Beating the

Random Walk Models 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The Economic Model and Its Empirical Implications . . . . . . . . . 11

1.4.1 The Economic Model . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 The Empirical Model . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Estimation of the Empirical Model . . . . . . . . . . . . . . . . . . . 16

1.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Directional Forecasts of the Exchange Rate . . . . . . . . . . . . . . . 19

1.7 Evaluating the Statistical Significance of Directional Forecasts . . . . 23

1.7.1 Directional Test Weighted by the Magnitude of Exchange Rate

Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.2 Binomial Directional Test . . . . . . . . . . . . . . . . . . . . 26

1.8 Evaluating the Accuracy of Point Forecasts . . . . . . . . . . . . . . . 28

1.8.1 The Diebold-Mariano-West Test . . . . . . . . . . . . . . . . . 29

1.8.2 The Clark-West Test . . . . . . . . . . . . . . . . . . . . . . . 31

1.9 Tests Based on Orthonormal Series LRV Estimators . . . . . . . . . . 33

1.9.1 Directional Tests . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9.2 DMW and CW Tests . . . . . . . . . . . . . . . . . . . . . . . 35

1.10 Comparison with the Random Walk with Drift . . . . . . . . . . . . . 36

1.10.1 Directional Tests . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.10.2 DMW test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



1.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.12 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.12.A Equilibrium of the Dynamic Model (11)-(12) . . . . . . . . . . 42

1.12.B Constructing the LRV Estimators . . . . . . . . . . . . . . . 43

1.12.C Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Emerging Market Business Cycles: Financial Frictions vs Permanent

Shocks 87

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.2 Transitional Dynamics and Business Cycle Properties in Korea . . . . 91

2.1 Transition Dynamics . . . . . . . . . . . . . . . . . . . . . . . 91

2.2 Business Cycle Properties . . . . . . . . . . . . . . . . . . . . 92

2.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.1 The Stochastic Trend (AG) Model . . . . . . . . . . . . . . . 93

2.2 Encompassing Model . . . . . . . . . . . . . . . . . . . . . . . 96

2.4 Calibration and Estimation . . . . . . . . . . . . . . . . . . . . . . . 98

2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.2 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . 101

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.1 Priors and Posteriors . . . . . . . . . . . . . . . . . . . . . . . 103

2.2 Second Moments . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.3 Variance Decomposition . . . . . . . . . . . . . . . . . . . . . 107

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.7.A Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . 109

3 References 120

viii



LIST OF FIGURES

1 Japanese Yen exchange rate and speculators’ net positions . . . . . . 5

2 The evolution of the 9-months ahead predicted state for the Yen and

predicted probabilities of each state . . . . . . . . . . . . . . . . . . . 6

3 The performance of our 9 months ahead directional forecasts . . . . . 8

4 µ estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 θ estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Evolution of cumulative forecast success ratio: h = 1m (4 weeks) . . . 72

7 Evolution of cumulative forecast success ratio: h = 3m (13 weeks) . . 73

8 Evolution of cumulative forecast success ratio: h = 6m (25 weeks) . . 74

9 Evolution of cumulative forecast success ratio: h = 9m (38 weeks) . . 75

10 Evolution of cumulative forecast success ratio: h = 12m (50 weeks) . 76

11 D
(i)
t,h: h = 1m (4 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . . 77

12 D
(i)
t,h: h = 3m (13 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 78

13 D
(i)
t,h: h = 6m (25 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 79

14 D
(i)
t,h: h = 9m (38 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 80

15 D
(i)
t,h: h = 12m (50 weeks) . . . . . . . . . . . . . . . . . . . . . . . . 81

16 X
(i)
t,h: h = 1m (4 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . . 82

17 X
(i)
t,h: h = 3m (13 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 83

18 X
(i)
t,h: h = 6m (25 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 84

19 X
(i)
t,h: h = 9m (38 weeks) . . . . . . . . . . . . . . . . . . . . . . . . . 85

20 X
(i)
t,h: h = 12m (50 weeks) . . . . . . . . . . . . . . . . . . . . . . . . 86

21 Transitional dynamics in Korea’s economy . . . . . . . . . . . . . . . 115

22 Priors and Posteriors: Stochastic trend model . . . . . . . . . . . . . 116

23 Priors and Posteriors: Encompassing model . . . . . . . . . . . . . . 117

ix



24 Impulse Response functions: Stochastic trend model . . . . . . . . . . 118

25 Impulse response functions: Encompassing model . . . . . . . . . . . 119

x



LIST OF TABLES

1 Construction of LRV Estimators . . . . . . . . . . . . . . . . . . . . . 47

2 Forecast Success Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Forecast Success Ratio: Two subperiods . . . . . . . . . . . . . . . . 49

4 Directional test weighted by the magnitude of exchange rate changes:

No control for autocorrelation . . . . . . . . . . . . . . . . . . . . . . 50

5 Directional test weighted by the magnitude of exchange rate changes:

Control for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Binomial directional test: No control for autocorrelation . . . . . . . 52

7 Binomial directional test: Control for autocorrelation . . . . . . . . . 53

8 DMW test: No control for autocorrelation . . . . . . . . . . . . . . . 54

9 DMW test: Control for autocorrelation . . . . . . . . . . . . . . . . . 55

10 CW test: No control for autocorrelation . . . . . . . . . . . . . . . . 56

11 CW test: Control for autocorrelation . . . . . . . . . . . . . . . . . . 57

12 Directional test weighted by the magnitude of exchange rate changes:

OS LRV estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

13 Binomial directional test: OS LRV estimators . . . . . . . . . . . . . 59

14 DMW test: OS LRV estimators . . . . . . . . . . . . . . . . . . . . . 60

15 CW test: OS LRV estimators . . . . . . . . . . . . . . . . . . . . . . 61

16 Directional test weighted by the magnitude of exchange rate changes

against random walk with a drift: No control for autocorrelation . . . 62

17 Directional test weighted by the magnitude of exchange rate changes

against random walk with a drift: Control for autocorrelation . . . . 63

18 Directional test weighted by the magnitude of exchange rate changes

against random walk with a drift: OS LRV estimators . . . . . . . . . 64

xi



19 Binomial directional test against random walk with a drift: No control

for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

20 Binomial directional test against random walk with a drift: Control

for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

21 Binomial directional test against random walk with a drift: OS LRV

estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

22 DMW test against random walk with a drift . . . . . . . . . . . . . . 68

23 DMW test against random walk with a drift: OS LRV estimators . . 69

24 Second moments for Korea’s economy . . . . . . . . . . . . . . . . . . 109

25 Calibrated Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 110

26 Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

27 Posterior Distributions: Stochastic trend vs Encompassing model . . 112

28 Second moments: Data vs two alternative models . . . . . . . . . . . 113

29 Forecast Error Variance Decomposition: Stochastic trend model . . . 114

30 Forecast Error Variance Decomposition: Encompassing model . . . . 114

xii



ACKNOWLEDGEMENTS

I am greatly indebted to my advisors Aaron Tornell and Jinyong Hahn for their

excellent guidance and great inspiration. I would like to thank the other members

of the committee, Zhipeng Liao and Nico Voigtlaender. I have also benefited from

conversations with participants at the international economics and macroeconomics

proseminars. All remaining errors are my own.

Many colleagues have supported and encouraged me during the doctoral course.

Especially, huge amount of help from Yong Hyeon Yang, Bo Kyoung Kim, Keyyong

Park, Hyo Sang Kim, Jinwook Hur and Sangyup Choi are greatly acknowledged. I

also appreciate financial support from the Bank of Korea during the first two years

of the doctoral course.

xiii



VITA

2001 B.A., Economics

Seoul National University

Seoul, Republic of Korea

2001-2007 Economist

Bank of Korea

Seoul, Republic of Korea

2010 M.A., Economics

University of California, Los Angeles

Los Angeles, California

2010 C.Phil., Economics

University of California, Los Angeles

Los Angeles, California

xiv



1 Speculators’ Positions and Exchange Rate Fore-

casts: Beating the Random Walk Models

1.1 Introduction

Speculators’ positions in futures markets contain useful information to forecast ex-

change rates. We extract such information by fitting a microfounded autoregresive

Markov regime switching model to the speculators’ net positions data and forecasting

the speculators’ mode of accumulation. When our model detects that speculators in

a currency–say the Yen–shift to an accumulation mode, they tend to remain in such

a mode for several months, and during this period the Yen tends to appreciate. Anal-

ogously, when speculators in the Yen shift to a decumulation mode, the Yen tends

to exhibit a persistent depreciation. Over horizons ranging from 6 to 12 months,

our out-of-sample directional forecasts have a 60% average success ratio across the

six most traded currency pairs vis-a-vis the US Dollar. For the Australian Dollar the

average success ratio is 74% and for the Euro 68%, as shown in Table 2. Furthermore,

our point forecasts have smaller mean-squared-prediction-errors (MSPEs) than those

implied by the driftless random walk, across all currency-horizon pairs we consider,

except for the Swiss Franc.

To test the statistical significance of the success of our directional forecasts in

capturing the big moves in exchange rates, we propose a test that weights each direc-

tional forecast by the realized exchange rate change. To our knowledge, this test is

new. It captures the profitability of real world trading strategies better than typical

binomial tests that compare directional forecasts with the signs of realized exchange

rate changes, not their magnitudes. To evaluate our point forecasts we carry out the

Diebold-Mariano-West and the Clark-West tests.
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In our theoretical model, the exchange rate is driven by both a transitory and a

persistent component. The latter follows a three-state Markov switching process, as

proposed by Engel and Hamilton (1990). Speculators observe a noisy signal of the

latent persistent component, which is unobservable to the econometrician. They then

form their expectations using Bayesian updating, and take–long or short–positions in

the futures market. The model imposes a one-to-one relation between the speculators’

positions and their beliefs about the exchange rate’s persistent component. By in-

verting the speculator’s demand function for foreign currency, our model implies that

the observed speculators’ net position follows an autoregressive three-regime Markov

switching model (MSM). To estimate this model we exploit the fact that the Com-

mitment of Traders (COT) report of the CFTC breaks down the positions in futures

markets into those held by hedgers, by large speculators and a residual.1

We estimate the MSM model sequentially, using a rolling sample of speculators’

positions on each of the six most traded currency pairs: Euro, Japanese Yen, British

Pound, Australian Dollar, Canadian Dollar and Swiss Franc. Every week we generate,

for each currency, h-month ahead forecasts (h=1,3,6,9,12) of the latent state variable

which governs the speculators’ accumulation mode. We then use this predicted mode

to construct both directional and point–out of sample–forecasts of the six exchange

rates. We use a hybrid forecasting rule: we forecast appreciation between t0 and

t0 + h if accumulation is the most likely speculators’ mode over this period. We

forecast depreciation if decumulation is the most likely speculators’ mode. In the

other cases, we stick to the random walk forecasts and predict zero exchange rate

change over an h-horizon.

Our forecasts start in 1994 and end in February 2013, except for the Euro.2 Our

1The COT report is published weekly by the CFTC.
2The starting dates of our forecasts are: 01/20/1995 for the Australian Dollar and British

Pound; 09/01/1994 for the Canadian Dollar; 04/15/1994 for the Swiss Franc and Japanese Yen;
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out-of-sample appreciation/depreciation directional forecasts have a 58% average suc-

cess ratio over 1-to-12 months forecasting horizons, as can be seen in Table 2. They

are particularly accurate at the 6m, 9m and 12m horizons: 64% average success ratio

excluding the Swiss Franc.

To test whether these high forecast success ratios are not simply the result of

luck, we evaluate their statistical significance by conducting two directional tests of

the null hypothesis that the extracted information from speculators’ positions can-

not outperform the forecasts based on the driftless random walk. One test weights

each directional forecasts by the realized exchange rate change and controls for auto-

correlation in the test statistic. The other test is similar to the typical binomial test

that compares directional forecasts with the signs of actual exchange rate changes, but

corrects for auto-correlation. At the 6m, 9m and 12m horizons, controlling for auto-

correlation using the Newey-West long-run variance (LRV) estimator, the weighted

directional test rejects the null in favour of our model across all currencies, except the

Swiss Franc. At the 1m and 3m horizons, the random walk null is rejected in only 5

out of 12 currency-horizon pairs.3

To compare our point-forecasts with random-walk forecasts, we carry out the

Diebold-Mariano-West test of equal MSPEs of our point forecasts and those of the

driftless random walk, as well as the Clark-West test of equal predictive ability of

our model and the driftless random walk. Controlling for auto-correlation using the

Newey-West LRV estimator, the DMW-test rejects the null–at the 10% significance

level–over the 6m, 9m and 12m forecasting horizons across all currencies, except for

the British Pound at the 12m horizon and the Swiss Franc at all horizons. The

and 05/04/2001 for the Euro.
3Throughout this paper, when citing the Newey-West LRV estimator, we refer to the kernel

smoothed LRV estimator proposed in Newey and West (1987) and bandwidth selection rule suggested
in Newey and West (1994).
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CW-test is even more favorable to our model: over the 6m, 9m and 12m forecasting

horizons, it rejects the null across all currencies, except for the Swiss Franc. The

tests results using the Andrews LRV estimator are very similar to those based on the

Newey-West LRV estimator.4

Choosing an appropriate Long-run variance (LRV) estimator is key in carrying

out prediction accuracy tests. The Newey-West and Andrews LRV estimators are

consistent. However, they may lead to over-sized inference in finite samples. Thus,

one may argue that the rejections of the null are due to the over-sized property of

the tests based on these LRV estimators. To alleviate the size distortion caused

by consistent LRV estimators, we also conduct the above four tests using a novel

orthonormal-series LRV (OS-LRV) estimator and a fixed-bandwidth inference theory.

These alternative tests are more accurate in size, but their power may be weakened.

We show that even when the power is sacrificed, the OS-LRV tests reject the null

in favour of our model at the 6m, 9m and 12m horizons, in a majority of currency-

horizon pairs, except for the Swiss Franc.

The rest of the paper is organized as follows. Section 1.2 presents a birds-eye view

of our forecasting method. Section 1.3 presents a literature review. Section 1.4 derives

the estimation equation from a theoretical model that links the speculators’ net posi-

tions with the dynamics of the exchange rate. The model implies that net speculators’

positions follow an autoregressive model with a Markov switching component. Section

1.5 estimates this model using COT data on six currencies. Section 1.6 generates the

directional forecasts and tests two hypotheses to evaluate their performance. Section

1.8 generates the point forecasts and conducts the DMW-test and the CW-test for

comparing the pointwise prediction accuracy between our model and the random walk

4Throughout this paper, when citing the Andrews LRV estimator, we refer to the kernel smoothed
LRV estimator using Bartlett kernel and bandwidth selection rule suggested in Andrews (1991).
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model. Section 1.9 tests the null hypotheses using the orthonormal-series long-run

variance estimator and statistical inference theory which is asymptotically valid and

has good size property in finite samples. Section 1.10 tests the forecasting accuracy of

our model against the random walk model with drift. Lastly, Section 1.11 concludes.

1.2 Outline

Here, we illustrate the gist of our methodology through a series of figures that depict

the Yen-Dollar exchange rate together with the forecasting variables we use and with

our forecasts. Figure 1 plots the Yen and the large speculators’ net positions in Yen

futures at a weekly frequency. As we can see, the speculators’ net positions tend to

increase when the Yen is on an appreciation path, and they tend to decrease when

the Yen is on an depreciation path. These patterns tend to be persistent: they may

last for several months and sometimes several years.

Figure 1: Japanese Yen exchange rate and speculators’ net positions

Notes: The grey line depicts the Japanese Yen exchange rate against the US Dollar and blue one
the speculators’ net positions.
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Every week, we fit a three-state Markov switching model to the speculators’ net

positions. The three states (i.e., speculators’ modes ) we consider are: accumula-

tion, decumulation, or stasis. Based on our MSM estimates, every week we form

forecasts of the state h-months ahead. Figure 2 shows the evolution of the 9-months

ahead predicted state for the Yen (ŜYt+h). As we can see, this predicted state is quite

persistent.

Figure 2: The evolution of the 9-months ahead predicted state for the Yen and
predicted probabilities of each state

Notes: The 9-month ahead predicted state take values -1, 0 or 1. 1 (-1) on the given weeks

indicates that 9 months later the most likely speculators’ model is accumulation (decumulation). 0

means that the most likely mode is stasis.
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Our directional forecasting rule for the exchange rate predicts, at time t, a Yen

appreciation between t and t+h if speculators’ accumulation is the predicted state

in a majority of periods between t and t+h. Meanwhile, it predicts depreciation if

speculators’ decumulation is the predicted state most of the time between t and t+h.

In other cases, our rule predicts zero change in the Yen.

Figure 3 plots the Yen-Dollar exchange rate and marks the performance of our

9 months ahead directional forecasts with circles of different sizes and colors. If

an appreciation forecast was made 9 months ago (i.e., 38 weeks ago) and it turned

out to correctly predict the direction of the Yen between week t-38 and week t,

then we place a big bright-green circle on week t ’s exchange rate. In contrast, if

the appreciation forecast was wrong, the week t ’s circle is small and dark-green.

Similarly, if the depreciation forecast made 38 weeks ago turned out to correctly

predict the subsequent Yen depreciation, then in week t there is a large bright-pink

circle. Meanwhile, wrong depreciation forecasts are represented with a small dark-red

circle.5

As we can see, 360 out of 571 circles are either bright-green or bright-pink. This

generates the 63% success ratio shown in Table 2. Interestingly, the successful direc-

tional forecasts in Figure 3 tend to predict bigger moves in the Yen than the moves

following a wrong forecast. The battery of tests we consider below, evaluate formally

whether such patterns could be generated by a random walk.

5Readers looking at a black and white version of this paper can only see successful forecasts
(represented with large circles) and failed forecasts (represented with small circles).
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Figure 3: The performance of our 9 months ahead directional forecasts

Notes: The grey line depicts our 9 month ahead directional forecasts, which can take values -1,

0 or 1. 1 (-1) on the given weeks predicts appreciation (depreciation) of the Yen against the US

dollar over 9-month forecasting horizon. 0 means that our directional forecasts predict no change

over the same forecasting horizon.

1.3 Literature Review

Our paper is linked to several branches of the exchange rate forecasting literature.

First, our method of extracting information from the speculators’ position data relies

on the autoregressive Markov switching model proposed in Hamilton (1989, 1990).

Engel and Hamilton (1990) apply this model to exchange rate data to explain the long

swings exhibited by exchange rates from the mid 1970s to the end of the 1980s. Engel

(1994), however, finds that this model does not clearly outperform the random walk in

out-of-sample exchange rate forecasts. In this paper, the Markov switching model is

applied to the speculators’ positions, instead of the exchange rate itself. Furthermore,

rather than a two-state MSM, we consider three regimes: uptrend, downtrend, and

range.
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By investigating the information content of market participants’ trading positions,

our paper is linked to the pioneering paper of Evans and Lyons (2002), who show that

the order flow of a group of dealers in the interbank foreign exchange market, can

forecast exchange rates over a short horizon. While the order flow data they consider

is private information, the COT data we use is public information.

According to recent survey papers by Cheung et. al. (2005), Rogoff and

Stavrakeva (2008) and Rossi (2013), the Meese and Rogoff (1983) puzzle is still alive:

at horizons of less than one year, the driftless random walk beats fundamentals-based

exchange rate out-of-sample forecasts, with few exceptions. Using a panel specifica-

tion, Engel, Mark and West (2007) test whether fundamentals-based models beat the

random-walk. Using the CW-test, they find the predictability, over a 4-year horizon,

for the monetary model and the PPP model in 11 and 13 out of 18 currencies, respec-

tively. However, over 1 quarter they don’t find predictability.6 Molodtsova and Papell

(2009) consider the one-month ahead predictability of Taylor rule based models for

individual currencies. In the most successful specification–heterogenous coefficients,

smoothing, and a constant–the CW-test rejects the null (at the 10% significance level)

in favor of a symmetric Taylor rule model for 10 out of 12 currencies. Gourinchas and

Rey (2007) use net foreign assets as a predictor of future exchange rate changes and

forecast the trade-weighted US dollar rather than individual exchange rates. Using

the CW-test they find that net foreign assets can predict the exchange rate better

than the driftless random walk at both long and short horizons.7 Although, none of

these papers carry out the DMW-test, Rossi (2013) reports that both at the 1-quarter

and the 4-year forecasting horizons, the DMW-test finds no evidence of forecastability

for the monetary model, the PPP model, and the Taylor rule based model across all

6Similar results are reported by Mark and Sul (2001).
7Net foreign assets is the deviation from trend of a weighted combination of gross assets, gross

liabilities, gross exports and gross imports.
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currencies she considers.8 In this paper, we carry out both the CW and DMW tests.

As we described in the Introduction, at the 6-to-12 months horizons, both tests reject

the respective nulls in favour of our model in basically all currency-horizon pairs,

except the Swiss Franc. However, at the 1 and 3 months forecasting horizons there

is weak evidence of forecastability of our model.

There are many other papers that test the evidences of traditional predictors of

exchange rate changes: interest rate differentials (UIRP) are considered by Meese

and Rogoff (1988), Cheung, Chinn and Pascual (2005), Alquist and Chinn (2008)

among others; price and inflation differentials (PPP) is considered in Rogoff (1996),

Cheung, Chinn and Pascual (2005); Meese and Rogoff (1983), Chinn and Meese

(1995), Mark(1995), Kilian (1999), Groen (1999), Berkowitz and Giorgianni (2001),

Faust et al (2003) and Rossi (2005) explore exchange rate forecastability using the

monetary model. More recently, new predictors have been used: Molodtsova et al

(2010), Giacomini and Rossi (2010), Inoue and Rossi (2012) and Molodtsova and

Papell (2012) study exchange rate forecasting using Taylor rule fundamentals. Alquist

and Chinn (2008), and Della Corte, Sarno and Sestieri (2010) use the net foreign asset

model. Chen and Rogoff (2003), Chen, Rogoff and Rossi (2010), and Ferraro, Rogoff

and Rossi (2011) exploit commodity price indices. Bacchetta, van Wincoop and

Beutler (2010), and Rossi and Sekhposyan (2011) use oil prices.

Finally, like this paper, there are several papers that use commitment-of-traders

data. Moskowitz, et. al. (2012) document momentum over the time dimension

across different asset classes and find that speculators profit from this time series

momentum. Hong and Yogo (2012) find that open-interest in futures markets has

predictive power over the excess returns of several assets classes over an one-month

horizon. Brunnermeier and Petersen (2008) find that, in-sample, forex crash risk

8She does not carry out the DMW test for the net foreign assets model.
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increases with speculators’ positions in currency futures markets. Tornell and Yuan

(2012) find that the peaks and troughs of speculators net positions are generally useful

predictors of future exchange rates. Unlike our paper, out-of-sample forecasting is not

the focus of these papers.

1.4 The Economic Model and Its Empirical Implications

Our empirical strategy consists of extracting the implicit exchange rate change fore-

casts from the speculators’ net positions data in the COT report. The COT report

provides weekly positions for three groups of traders in futures markets: hedgers,

large speculators and the residual. Hedgers use the futures markets to insure against

exchange rate changes, while large speculators participate in the futures markets to

make capital gains. Here, we consider the portfolio problem of a representative in-

vestor and derive the estimation equation, which we will bring to the data in the next

Section.9

1.4.1 The Economic Model

Let et be the time-t price of a foreign currency futures contract, in terms of US Dollars.

To simplify the exposition, we will refer to any non-US dollar currency as a Euro.

Thus, we will refer to et simply as the exchange rate and to an increase(decrease) in

et as an appreciation(depreciation) of the Euro.

As in Engel and Hamilton (1990), the exchange rate is assumed to be driven by

9Even though the futures market is tiny compared with the spot foreign exchange market, spec-
ulators’ positions contain valuable information about exchange rates. According to the 2013 BIS
Triennial Central Bank Survey of turnover in foreign exchange markets, the daily average trading
volume of spot markets worldwide is 2 trillion dollars in April 2013. Meanwhile, the value of foreign
currency futures and options is around 160 billion dollars during the same period.
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an unobservable stochastic trend xt and a transitory component εt:

∆et+1 = et+1 − et = xt + εt+1, εt+1 ∼ WN(0, σ2
ε) (1)

where WN(0, σ2
ε) denotes white noise with mean zero and variance σ2

ε . The un-

observable trend xt is the sum of a state-dependent mean µ(St) and a white noise

ut ∼ WN(0, σ2
u), i.e.

xt = µ(St) + ut. (2)

Depending on the state St, the mean µ(St) of the stochastic trend xt may take a

positive, negative or zero value. The state St is a discrete first-order Markov-switching

random variable with transition probability matrix Π = [pi,j]1≤i,j≤3, i.e.

µ(St) =


µ(1) > 0, if St = 1 (up-trend)

µ(2) = 0, if St = 2 (range)

µ(3) < 0, if St = 3 (down-trend)

, (3)

where pi,j = Pr(St = j|St−1 = i) is the conditional probability that the state is j

at time t, given that it was i at time t − 1. We take the unobservable trend xt as

a primitive. It might depend on expectations of fundamentals, sentiment or other

unobservable factors.

There are overlapping generations of two-period lived risk-averse speculators. A

young t-date speculator observes a noisy signal (yt) of the unobservable exchange rate

trend xt:

yt = xt + vt, vt ∼ WN(0, σ2
v). (4)

This signal allows the speculator to form better forecasts of future exchange rate

changes than those based on the historical exchange rate data she observes. Because
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the unobservable trend xt affects ∆et+1 directly and the information of xt is directly

contained in yt. Meanwhile, with available exchange rate data, i.e. {∆es}ts=1, the

speculator can only estimate xt−1.

During the first period of her life, the young representative speculator takes a

position bt in the Euro futures market. During the second period of her life, the now

old speculator closes her position. The representative young speculator is risk averse

and solves the following problem

max
bt∈R

E [− exp (−γWt+1) |It ] , with Wt+1 = bt (et+1 − et) (5)

where It = {y1, . . . , yt} denotes the information at time t and γ is the risk-aversion

coefficient and Wt+1 is her wealth next period.10 The speculator may take either a

long position (bt > 0), a short position (bt < 0) or stay out of the market (bt = 0).

Notice that the speculator faces no position limits (there are no bounds on bt) and she

needs not post margin.11 Furthermore, we did not include the interest rate differential

in the payoff because it is included in the futures’ price spread ∆et+1.

The representative date-t young speculator’s prior distribution on the stochas-

tic exchange rate trend xt is given by the posterior distribution of her predecessor.

To close the model, we assume that the prior of the first cohort (date-1 ) of young

speculators is x0 ∼ N(0, σ2
u).

In order to solve the t-date young representative speculator’s problem, note that

she enters period t with a prior x̂t|t−1 ∼ N(x̂t−1, σ
2
t−1), where x̂t−1 and σ2

t−1 are the

mean and variance of her predecessor’s posterior distribution. Bayesian updating

10We treat bt as a real number, while the futures contract in the Chicago Mercantile Exchange is
for 125,000 Euros.

11To a first-order this is a realistic assumption as the margin requirements are quite small. For
instance, on February 7, 2013 the initial margin required on a Euro futures contract at the CME
was around $2500, while the dollar value of the Euro futures contract was $167,000.

13



implies that after observing the signal yt, the t-date speculator’s posterior on xt is

normal with mean x̂t and variance σ2
t , which are given by the following filter

x̂t = (1− kt)x̂t−1 + ktyt (6)

σ2
t = kt−1σ

2
v and kt−1 =

σ2
t−1 + σ2

u

σ2
t−1 + σ2

u + σ2
v

. (7)

Since the prior of the first cohort (date-1 ) of speculators is x0 ∼ N(0, σ2
u), this

recursion is initialized at x̂0 = 0 and σ2
0 = σ2

u.

It follows from (52) and (6) that the speculator’s posterior belief is that exchange

rate changes are normal with mean Et [∆et+1] = x̂t and variance Vart(∆et+1) =

σ2
t + σ2

ε . Thus, the speculator’s problem (5) can be rewritten as

max
bt∈R

[
− exp

(
−γx̂tbt +

γ2

2
(σ2

t + σ2
ε)b

2
t

)]
.

By taking the derivative with respect to bt, we have that the representative specula-

tor’s demand for Euro futures is

b∗t =
E (∆et+1 |It )

γ · Var(∆et+1 |It )
=

x̂t
γ(σ2

t + σ2
ε)
. (8)

Equation (8) says that the representative speculator’s Euro position is posi-

tive(negative) if she expects an appreciation(depreciation) of the Euro, i.e., x̂t >

0(< 0). The position size is decreasing in the degree of risk-aversion and the variance

of expected returns.

1.4.2 The Empirical Model

The empirical counterpart of the model’s demand for Euro futures b∗t is the specula-

tors’ net position data in the COT report, which we denote by Zt. That is, Zt = b∗t .
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Here, we use the solution to the speculator’s problem (equations (6)-(8)) to recover

the information about yt–the noisy signal observed by speculators–from the observed

data on the speculators’ net positions Zt. These equations show that if speculators

observe a long enough sequence of positive(negative) yt-signals, they gradually in-

crease their belief that the Euro will appreciate(depreciate). Based on these posterior

beliefs speculators gradually increase their long(short) Euro position b∗t .

Note from the first equation in the speculators’ filter (6) that we can express the

yt-signal as follows

yt =
1

kt
x̂t −

1− kt
kt

x̂t−1 = gtx̂t + (1− gt)x̂t−1, where gt ≡ k−1
t . (9)

Using the representative speculator’s demand for Euro futures (8) we have that x̂t =

γ(σ2
t + σ2

ε)gtb
∗
t . Replacing this expression in (9), we see that the unobserved signal

can be expressed in terms of speculators’ net positions as follows

yt = γ(σ2
t + σ2

ε)b
∗
t + γ(σ2

t−1 + σ2
ε)(1− gt)b∗t−1. (10)

Since Zt = b∗t , equation (10) implies that the speculators’ net positions follow an

AR(1) process

Zt = θtZt−1 + σx,tyt, (11)

where

σx,t =
1

γ(σ2
t + σ2

ε)gt
and θt =

σ2
t−1 + σ2

ε

σ2
t + σ2

ε

(1− kt). (12)

In Appendix A.1, we show that there σ2
t is convergent such that the limit of θt is in

(0, 1).
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1.5 Estimation of the Empirical Model

In this section, we describe the method used to estimate the empirical model (11). We

allow for heterogeneous DGPs for the speculators’ positions Zi,t in different currencies,

indexed by i. For ease of notation, however, we ignore the subscript ‘i’ in Zi,t, unless

necessary.

To recover the signal observed by speculators, we estimate the following AR(1)

Markov switching model using rolling samples:

Zt = θZt−1 + µ∗(St) + v∗t , with µ∗(St) = σxµ(St) and v∗t = σx(vt + ut), (13)

where the Markov switching component µ(St) is defined in (3) and v∗t is i.i.d. nor-

mal with mean zero and variance σ2
v∗ .12 Given the unknown parameters α =

(θ, µ∗(1), µ
∗
(2), µ

∗
(3), σ

2
v∗ ,Π) and observations on the speculators’ net positions up to time

t: Zt = (Zt, Zt−1, ..., Z0), the density of Zt conditional on the state St taking the value

j is given by

f(Zt|Zt−1, St = j;α) =
1√

2πσv∗
exp

[
−

(Zt − θZt−1 − µ∗(j))2

2σ2
v∗

]
, j = 1, 2, 3. (14)

Given the prediction probabilities

ξj,t−1 = Pr(St = j|Zt−1;α), j = 1, 2, 3 (15)

12The theoretical model (11)-(12) indicates that Zt follows an auto-regressive process with time
varying coefficients (θt, σx,t). The rolling sample estimation of model (13) can be viewed as a local
constant approximation of the theoretical model (11)-(12). In Appendix A.1, we show that (θt, σx,t)
has a convergent fixed point (θ∗, σ∗

x) with |θ∗| < 1.
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we can calculate the conditional density of Zt given Z(t−1) as

f(Zt|Z(t−1);α) =
3∑
j=1

f(Zt|St = j,Zt−1;α)ξj,t−1. (16)

Using the above conditional density we can compute filtered probabilities

Pr(St = j|Zt;α) =
f(Zt|Zt−1, St = j;α)ξj,t−1

f(Zt|Zt−1;α)
for j = 1, 2, 3, (17)

which together with the transition probabilities implies that the filtered probabilities

are

ξj,t =
3∑

k=1

pk,j Pr(St = k|Zt, α) for j = 1, 2, 3. (18)

The log-likelihood function is therefore

Qn(α) =
n∑
t=1

log
[
f
(
Zt|Zt−1, α

)]
,

where, given α, f (Zt|Zt−1, α) is calculated using (14)-(18) with the initial values

Pr(S1 = k|Z0, α) for t = 1, ..., n.

The log-likelihood function Qn(α) is a highly nonlinear and complicated function

of α. Thus, we use the EM algorithm proposed by Hamilton (1990) to obtain the

maximum likelihood (ML) estimator α̂n of α.13 To ensure that a global maximum is

attained, we consider 150 different initial values for maximum likelihood estimation.

Given the ML estimator α̂n, we estimate the filtered probabilities by Pr(St = j|Zt, α̂n)

and the prediction probabilities by Pr(St+1 = j|Zt, α̂n) for t = 1, ..., n.

13The main advantage of the EM algorithm over direct numerical optimization methods is its
robustness with respect to the multiple local maxima problem.
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1.5.1 Data

We obtain data on the large speculators’ positions and open interest from the

Commitments-of-Traders (COT) Report published by the Commodities and Futures

Trade Commission (CFTC). Typically, every week the CFTC gathers positions data

as of Tuesday and publishes the COT report three days later, on Friday after markets

close. Thus, for each of the six currencies we consider, every Friday we fit Markov

switching model (13) to the speculators’ net positions normalized by open interest.

Based on these estimates we generate our new forecasts every Friday. We evaluate our

forecasts using weekly spot exchange rates at the end of trading on Friday, released

by the FRB.

Our sample begins in September 1992, which is when the CFTC started to release

the COT report on a weekly basis, except for the Euro, for which the data begins in

January 1999. There are a few missing values in net positions and open interest data

over the sample period.14 We replace the missing values using a linear interpolation,

using the last available value before the missing value and the first available value

after the missing value.

For each of the six currencies (i = 1, ..., 6), we estimate the Markov switching

model (13) using an initial sample with n
(i)
0 observations, i.e. {Zi,t}

n
(i)
0
t=1. We then

re-estimate the Markov switching model using a rolling sample: Every week we add

a new observation and drop the first observation in the previous sample. Thus, if for

currency i we have n(i) observations, the model is estimated n(i) − n(i)
0 many times.

We consider three rolling window sizes {80,100,120} weeks. For each currency, we

choose the rolling window size that generates the highest average forecast success

ratio across the five forecasting horizons we consider: 1m, 3m, 6m, 9m, and 12m.15

14There are 27 missing values for the Australian Dollar and 2 for the Swiss Franc.
15The forecast success ratios are considered in the next subsection.
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We thus set the rolling window size and the initial sample to 80 for the Japanese Yen

and Swiss Franc; 100 for the Canadian Dollar; and 120 for the Euro, British Pound

and Australian Dollar.

Figure 4 depicts the series of the three estimated means
{
µ∗(1), µ

∗
(2), µ

∗
(3)

}
of each

state in our AR(1) Markov switching model (13). As we can see, for all currencies the

means of the up-trend states µ∗(1) are strictly positive; the means of the down-trend

states µ∗(3) are negative; while the means of the range states µ∗(2) fluctuate around

zero. Figure 5 depicts the series of the estimated autoregresive coefficient θ for each

currency. Its value ranges between 0 and 1, which is consistent with our theoretical

model (see equation (11)).

1.6 Directional Forecasts of the Exchange Rate

We construct our exchange rate forecasts in two steps. In the first step, we use the

estimates of our model (13) to compute the most likely accumulation mode of the

speculators in each period between t0 and t0 + h. In the second step, we use this

sequence of ”predicted states” to obtain our exchange rate forecasts. Specifically, we

forecast appreciation between t0 and t0 + h if in a majority of periods, accumulation

is the most likely speculators’ mode. Conversely, we forecast depreciation if decumu-

lation is the most likely speculators’ mode. In the other cases, we stick to the random

walk forecasts and predict no exchange rate change over an h-horizon.

In the first step, we compute the h-week ahead prediction probabilities of each

state for each currency i, based on t0 information, as follows

(
ξ̂

(i)
1,t0+h, ξ̂

(i)
2,t0+h, ξ̂

(i)
3,t0+h

)
=
(
ξ̂

(i)
1,t0
, ξ̂

(i)
2,t0
, ξ̂

(i)
3,t0

)
(Π̂

(i)
t0 )h, (19)

where Π̂
(i)
t0 is the estimated transition matrix based on the rolling sample of spec-
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ulators’ net positions Z
(t0)
i = (Zi,t0−n0+1, ..., Zi,t0), and ξ̂

(i)
j,t0

is the estimated filtered

probabilities state j. It is given by

ξ̂
(i)
j,t0

= P (S
(i)
t0 = j|Z(t0)

i , α̂(i)
n0

(t0)) for j = 1, 2, 3, (20)

where α̂
(i)
n0(t0) is the estimator of the unknown parameters based on the rolling sample

Z
(t0)
i .

Based on the prediction probabilities (19), our time-t0 prediction of the most likely

speculators’ mode in period t0 + h, which we will refer to as the ”predicted state” is

given by

Ŝ
(i)
t0+h =


1, if ξ̂

(i)
1,t0+h > max

{
ξ̂

(i)
2,t0+h, ξ̂

(i)
3,t0+h

}
2, if ξ̂

(i)
2,t0+h > max

{
ξ̂

(i)
1,t0+h, ξ̂

(i)
3,t0+h

}
3, if ξ̂

(i)
3,t0+h > max

{
ξ̂

(i)
1,t0+h, ξ̂

(i)
2,t0+h

} . (21)

Ŝ
(i)
t0+h = 1(resp. 3) means that the time-t0 forecast of the most likely speculators’

mode on currency i at time t0 + h is accumulation(resp. decumulation).

In the second step, we use the sequence of most likely speculators’ modes{
Ŝ

(i)
t0+1, Ŝ

(i)
t0+2, ..., Ŝ

(i)
t0+h

}
to construct our exchange rate directional forecasts. Specifi-

cally, at t0 we forecast an exchange rate appreciation(depreciation) over the following

h periods, if between t0 and t0 + h the majority of the predicted states indicate spec-

ulators’ accumulation(decumulation). In other cases, we forecast zero exchange rate

change. That is, for any t0 with ni0 ≤ t0 ≤ n − h, our directional exchange rate

forecasts are:

D
(i)
t0,h

=


1, if X

(i)
t0,h

> 0

0, if X
(i)
t0,h

= 0

−1, if X
(i)
t0,h

< 0

, X
(i)
t0,h
≡

h∑
s=1

(
2− Ŝ(i)

t0+s

)
(22)
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Notice that D
(i)
t0,h

= 1 (resp. −1) means that our directional forecast over an h-period

horizon is appreciation (resp. depreciation). Meanwhile, if D
(i)
t0,h

= 0, we predict no

change. The variable X
(i)
t,h can take values ranging from -h to +h. It indicates the net

number of periods with predicted speculators’ accumulation between t0 and t0 +h (if

X
(i)
t,h > 0) or the net number of periods with predicted decumulation (if X

(i)
t,h < 0). For

example, X
(i)
t,h = −h when speculators’ decumulation is the predicted state in every

period on (t,t+h); while X
(i)
t,h = +h when speculators’ accumulation is the predicted

state in every period on (t,t+h).

Intuitively, one can think of the transition probabilities as capturing the low fre-

quency component of the speculators’ accumulation mode, whereas the filtered proba-

bilities capture the high frequency component of the speculators mode. Equation (19)

implies that for a short forecasting horizon h, the predicted probabilities of the state

ξ̂
(i)
j,t0+h are determined mainly by the time-t filtered probabilities ξ̂

(i)
j,t0

. In contrast,

for long enough h the predictions are determined by the ergodic distribution implied

by the transition matrix Π̂
(i)
t0 , by the well known convergence property of Markov

chains. Our directional exchange rate forecasts in (22) have the same properties: at

short horizons they are determined the estimated filtered probabilities, whereas at

long horizons the are determined mainly by the estimated transition matrix.

During every week, we generate out-of-sample exchange rate directional forecasts

for five horizons: 1m, 3m, 6m, 9m, and 12m. For each currency i, our directional

forecasts start the week after the first estimation of the MSM, and end h weeks prior

to the end of the COT sample (week n). That is, they start in week n
(i)
0 and end in

week n(i) − h. Our sample starts on 10/2/1992 (In terms of the date of publication

of COT report) for all currencies except the Euro, which starts on 01/08/1999. Our

sample ends on 02/08/2013 for all currencies. Thus, our directional forecasts start on

01/20/1995 for the Australian Dollar and British Pound; 09/01/1994 for the Canadian
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Dollar; 04/15/1994 for the Swiss Franc and Japanese Yen; and 05/04/2001 for the

Euro.16

Table 2 exhibits the forecast success ratio of our out-of-sample directional forecasts

at the 1m, 3m, 6m, 9m, and 12m horizons.17 The forecast success ratio is the number

of successful depreciation or appreciation forecasts divided by the total number of

depreciation and appreciation forecasts. As we can see, the aggregate forecast success

ratio is 58% over the period October 1992-February 2013. Interestingly, our forecast

accuracy is greater at the 6m to 12m horizons than at the 1m to 3m months horizons.

If we confine our attention to 6m, 9m and 12m forecasting horizons, the aggregate

success ratio is 60.2% (63.8% excluding the Swiss Franc). When taken individually,

we can see that the 6m to 12m success ratios are greater than 56% in all cases–except

for the Swiss Franc–and that in several cases the success ratio is larger than 66%.

The high average success ratios observed in Table 2 are not dominated by specific

periods of successful forecasts. In most country-horizon pairs, the performance of

the directional forecast is stable over the sample period. Figures 6, 7, 8, 9 and 10

show this stability by plotting the evolution of the cumulative forecast success ratios

for each forecasting horizon. As we can see, approximately after 400 weeks, these

ratios converge to a stable level, above 50% in most country-horizon pairs. Initially,

however, these ratios fluctuate quite a bit because the sample size is small. For

example, the 9m ahead forecasts for the yen initially fluctuate between 60% and 90%

before converging to the mid-60%s in Figure 9.

Like Table 2, Table 3 exhibits the forecast success ratios of our directional fore-

casts, but partitions the sample period into two sub-periods: 04/15/1994-11/29/2002

16The dates of the last forecasts are 2013-01-18 for h = 1 month, 2012-11-16 for h = 3m, 2012-08-
24 for h = 6m, 2012-05-25 for h = 9m, and 2012-03-01 for h = 12m.

17Throughout the paper 1, 3, 6, 9 and 12 months correspond to 4, 13, 25, 38 and 50 weeks,
respectively.
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and 12/06/2002-02/08/2013. As we can see, the forecast success ratios are very simi-

lar across the two sub-periods for the Yen, the British Pound, Australian Dollar and

the Swiss Franc. For the Canadian Dollar, however, the ratios are around 20% higher

in the second period.

1.7 Evaluating the Statistical Significance of Directional

Forecasts

The high forecasting success ratios in Table 2 illustrate the usefulness of the COT

data in generating directional exchange rate forecasts. The issue remains, however,

whether this success isn’t simply the result of luck. Wouldn’t flipping a coin result in

similar success ratios? Here, we investigate the statistical significance of the success

of our directional forecasts by conducting two formal tests of the null hypothesis

that our MSM-based forecasts cannot improve the directional forecasts relative to a

driftless random walk model:

e
(i)
t+1 = e

(i)
t + ε

(i)
t+1, (23)

where {ε(i)
t } is a white noise process with mean zero and variance σ2

i,ε.

We carry out two tests and both of them control for auto-correlation of the data.

The first test gives more weight to the directional forecasts associated bigger exchange

rate moves, while the second test gives the same weight to all forecasts. The first test

is more closely linked to the profitability of trading strategies, and captures the spirit

of George Soros’s observation: It’s not whether you’re right or wrong, but how much

money you make when you’re right and how much you loose when you’re wrong.

The weighted directional test is, to our knowledge, new. The second test has the
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same spirit as the traditional binomial tests of directional forecast performance.18

However, our test controls for auto-correlation, while traditional tests do not.

Figures 11 through 15 depict the evolution of our directional forecasts D
(i)
t,h in (22)

together with the actual exchange rate movement for all currencies.

1.7.1 Directional Test Weighted by the Magnitude of Exchange Rate

Changes

Here, we test the null hypothesis that our weighted directional forecasts are unable to

improve upon random walk forecasts. We maintain the assumption that, under the

null, {εt} is a martingale difference sequence. Given the observations {e(i)
t+h−e

(i)
t }n

(i)−h
t=n

(i)
0

and our directional forecasts {D(i)
t,h}

n(i)−h
t=n

(i)
0

on each currency i, we consider the following

test statistic

T (i)
a,n =

1

n
(i)
1

n(i)−h∑
t=n

(i)
0

D
(i)
t,h(e

(i)
t+h − e

(i)
t ), where n

(i)
1 ≡ n(i) − n(i)

0 − h+ 1. (24)

Under the driftless random walk specification, the optimal forecast is a zero exchange

rate change. If we replace D
(i)
t,h in T

(i)
a,n by the optimal forecasts generated under

the driftless random walk hypothesis, T
(i)
a,n becomes zero for all n. Thus, the null

hypothesis underlying the test statistic T
(i)
a,n can be specified as

H0 : E
[
D

(i)
t,h(e

(i)
t+h − e

(i)
t )
]

= 0 for any i and t. (25)

That is, under the null our directional forecasts are uncorrelated with future realized

exchange rate changes.

Notice that the above zero expectation holds as {ε(i)
t } is a martingale difference

18For instance, the binomial test in Pesaran and Timmerman (1992), Gordon Leitch and J. Ernest
Tanner (1991), Engel (1994) and Cheung, et.al. (2005).
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sequence with respect to the natural sigma field generated by the COT process {Zi,t}t

and the variables D
(i)
t,h only depend on the COT data up to time t. On the other hand,

if the COT data was useful in forecasting e
(i)
t+h− e

(i)
t , then one would expect that T

(i)
a,n

converge to some strictly positive number.

In order to test null hypothesis (25), let V
T

(i)
a ,n

denote the consistent estimator

of the asymptotic variance of T
(i)
a,n.19 Then by Slutsky’s theorem and the martingale

central limit theorem, we deduce that

√
n

(i)
1 V

−1/2

T
(i)
a,n

T (i)
a,n →d N(0, 1). (26)

For the empirical implementation, we consider several different LRV estimators. Ta-

ble C.2 does not control for auto-correlation in
{
D

(i)
t,h(e

(i)
t+h − e

(i)
t )
}n−h
t=n0

. Meanwhile,

Table C.3 controls for auto-correlation by using the Newey-West LRV estimator or

the Andrews LRV estimator to construct V
T

(i)
a ,n

. Below, in Section 1.9, we consider

orthonormal series LRV (OS-LRV) estimators.

Two overall results are worth mentioning. First, the high forecast success ratios

in Table 2 translate into strong predictability of our directional forecasts for future

exchange rate changes (except for the Swiss Franc). Second, these results are robust

to the correction for auto-correlation in {Di
t,h(e

i
t+h − eit)}n

(i)−h
t=n

(i)
0

over the 6m to 12m

forecasting horizons.

Tables 4 and 5 present the values of the T
(i)
a,n statistic, and its t-values (test statis-

tics), for the 6 currencies (Euro, Japanese Yen, British Pound, Australian Dollar,

Canadian Dollar and Swiss Franc) and the 5 horizons (1m, 3m, 6m, 9m and 12m)

we consider. Tables 4 and 5 test the same null (25) that our directional forecasts

are uncorrelated with future realized exchange rate changes. They just differ in the

19See Appendix 1.12.B for the construction of various LRV estimators.
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construction of the LRV estimators of T
(i)
a,n. In both tables, the null is rejected if the

test statistic T
(i)
a,n is significantly larger than zero. For the one-sided test, a t-value

greater than 1.282 implies a 10% significance level.

As we can see in Table 4–which does not control for autocorrelation–the null is

rejected in all the 3m to 12m forecasting horizons in 5 out of the 6 currencies, except

for the Swiss Franc. At the 1m forecasting horizon the null is rejected in 4 currencies.

Table 5 shows that even after controlling for autocorrelation, over the 6m to 12m

horizons, there is very strong evidence of exchange rate predictability in all currencies

except for the Swiss Franc. As we can see in panel A, using the Newey-West LRV

estimator, the null is rejected in all the 15 country-horizon pairs at the 6m, 9m and

12m horizons. Panel B shows that using the Andrews LRV estimator to control for

autocorrelation, the null is rejected in 12 out of those 15 country-horizon pairs. At

the 1m and 3m horizons there is weak evidence of predictability: the random walk

null is rejected in only 5 out of 12 currency-horizon pairs.

1.7.2 Binomial Directional Test

Here, we test the significance of our model in forecasting the sign of e
(i)
t+h− e

(i)
t . When

the exchange rate is a driftless random walk, we define a new dummy variable R
(i)
t,h

that captures the direction of the realized exchange rate change of currency i over

horizon h:

R
(i)
t,h =

 1, if e
(i)
t+h − e

(i)
t ≥ 0

−1, if e
(i)
t+h − e

(i)
t < 0

. (27)

The null hypothesis we test is that our directional forecasts D
(i)
t,h are uncorrelated with

the future direction of the exchange rate R
(i)
t,h

H0: Cov
(
D

(i)
t,h, R

(i)
t,h

)
= 0, (28)
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while the alternative hypothesis could be one sided or two sided:

Hone-sided
1 : Cov

(
D

(i)
t,h, R

(i)
t,h

)
> 0 or Htwo-sided

1 : Cov
(
D

(i)
t,h, R

(i)
t,h

)
6= 0.

Consider then the following test statistic

T
(i)
b,n =

1

n
(i)
1

n−h∑
t=n

(i)
0

D
(i)
t,hR

(i)
t,h −

1

n
(i)
1

n−h∑
t=n

(i)
0

Dt,h
1

n
(i)
1

n−h∑
t=n

(i)
0

R
(i)
t,h,

which is the sample covariance of the two random variables: D
(i)
t,h and R

(i)
t,h. In order to

test null hypothesis (28), let V
T

(i)
b,n

denote the consistent estimator of the asymptotic

variance of T
(i)
b,n.20 Then we have

√
n

(i)
1 V

− 1
2

T
(i)
b,n

T
(i)
b,n →d N(0, 1).

Overall the test results are very similar to those of the weighted directional test.

Over 6m, 9m and 12m forecasting horizons, the binomial test suggests that our

directional forecasts have strong predictability for the directional changes in future

exchange rate in 5 currencies, except the Swiss Franc.

Tables 6 and 7 present the values of the T
(i)
b,n statistic, and its t-values, for the 6

currencies and the 5 horizons we consider. They test the same null, but differ in the

construction of the long-run variance estimators of T
(i)
b,n. Table 6 does not control for

auto-correlation, while Table 7 controls for it. The null is rejected if the t-value of the

T
(i)
b,n statistic is positive and statistically significant. For the one-sided test, a t-value

greater than 1.282 implies a 10% significance level.

As we can see in Table 6–that does not control for autocorrelation–excluding the

20See Appendix 1.12.B for the construction of various LRV estimators.
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Swiss Franc, evidence of predictability for directional change is found in 21 out of

the 25 currency-horizon pairs. Table 7 reports the test results using Newey-West

LRV estimator (Panel A) and Andrews LRV estimator (Panel B) to control for auto-

correlation. Excluding the Swiss Franc, the null is rejected in 17 (Panel A) and 16

(Panel B) out of the 25 currency-horizon pairs. Especially over 6m, 9m and 12m

horizons, strong evidence of directional predictability is found in 14 (Panel A) and 13

(Panel B) out of 15 cases, excluding the Swiss Franc.

1.8 Evaluating the Accuracy of Point Forecasts

The standard practice in the exchange rate forecasting literature has been to test the

accuracy of out-of-sample point-forecasts of various models vis-a-vis random-walk

forecasts. The most widely used tests are those proposed by Diebold and Mariano

(1995) and West (1996)–the DMW test–and by Clark and West (2006)–the CW test.

In this section, we use our MSM model to generate h-period-ahead point forecasts

and carry out the standard DMW and CW tests against the driftless random walk,

which has proven to be a tougher benchmark to beat than the random walk with

drift. In Section 1.9 we carry out these tests using OS-LRV estimators. In Section

1.10 we consider the random walk with drift.

Our h-period ahead point forecast for currency i is that between t and t+h, the

magnitude of the appreciation(depreciation) will be proportional to the net number

of periods with predicted speculators’ accumulation(decumulation) over the following

h-weeks, given by X
(i)
t,h in (22). That is, the h-period ahead point forecasts for currency

i, made at time t, is

ê
(i)
t+h = e

(i)
t + β̂h,m0X

(i)
t,h, for m0 + 1 ≤ t ≤ n(i) − h, (29)

28



where m0 is the first week that the out-of-sample point forecasts begin, n(i) is the last

week of the speculator’s net position data sample, and β̂h,m0 denotes the estimated

effect of X
(i)
t,h on the exchange rate change over horizon h. It is given by

β̂h,m0=

∑5
i=1

∑m0−h
t=n

(i)
0 +1

X
(i)
t,h

(
e

(i)
t+h − e

(i)
t

)
∑5

i=1

∑m0−h
t=n

(i)
0 +1

[X
(i)
t,h]2

. (30)

Three comments are in order. First, the summation in (30) starts in n
(i)
0 + 1

because we use the initial n
(i)
0 COT weekly observations to estimate the MSM for

currency i. Second, while for five currencies our sample period starts on October 2,

1992, for the Euro it starts on January 8, 1999. Thus, to maximize the number of

out-of-sample forecasts, we exclude the Euro from the estimation of β̂h,m0 . Third, we

estimate β̂h,m0 using OLS, setting m0 = 360. In this way, we synchronize to the 360th

week in which the first point forecast is generated across all currencies, except the

Euro. It follows that our first out-of-sample point forecasts start on 04/09/1999 for

the five currencies excluding the Euro. For the latter it starts on 05/04/2001. Our

last point forecasts are generated on February 8, 2013. Figure 16 through 20 depict

the evolution of the net number of periods with predicted speculators’ accumulation

(decumulation) over the following h-weeks X
(i)
t,h in (22) together with actual exchange

rate movement for all currencies.

1.8.1 The Diebold-Mariano-West Test

The test proposed by Diebold and Mariano (1995) tests the null that the mean squared

prediction error (MSPE) of a random walk is equal to the MSPE generated by the

point forecasts of a given model. Under the assumption that the exchange rate

follows a driftless random walk, the h-period-ahead point forecast for currency i is
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e
(i)
t+h = e

(i)
t (i = 1, ..., 6). Thus, we can evaluate the accuracy of our point forecast

using the DMW
(i)
h,n test statistic

DMW
(i)
h,n =

1

n
(i)
1

n(i)−h∑
t=m0+1

[(
e

(i)
t − e

(i)
t+h

)2

−
(
β̂h,m0X

(i)
t,h + e

(i)
t − e

(i)
t+h

)2
]
, (31)

where n
(i)
1 = n(i)−m0− h. That is, our point forecasts are more (less) accurate than

those produced by the driftless random walk model if DMW
(i)
h,n > 0 (DMW

(i)
h,n < 0).

The null hypothesis of equal MSPEs of our model and the driftless random walk

can be expressed as follows.

H
(i)
0 : plimnDMW

(i)
h,n = 0 for any i. (32)

Diebold and Mariano (1995) suggest testing this null using the following asymptotic

distribution

V
− 1

2

DMW (i),h

√
n

(i)
1 DMW

(i)
h,n →d N(0, 1) (33)

for i = 1, ..., 6, where VDMW (i),h denotes the LRV estimator of

√
n

(i)
1 DMW

(i)
h,n.21

Overall, the test results show that, over 6m, 9m and 12m forecasting horizons, our

point forecasts significantly outperform the driftless random walk in the Australian

dollar, Canadian dollar, Euro, Yen and the British Pound.

Tables 8 and 9 contain the DMW
(i)
h,n test statistics and their p-values for the 6

currencies and the 5 forecasting horizons we consider. Both tables test the same null,

but differ in the construction of the LRV estimators of

√
n

(i)
1 DMW

(i)
h,n. Table 8 does

not control for autocorrelation, while Table 9 controls for it by using Newey-West

LRV estimator and Andrews LRV estimator. Below, in Section 1.9, we test the null

using a OS-LRV estimator of

√
n

(i)
1 DMW

(i)
h,n to control for auto-correlation.

21See Appendix 1.12.B for the construction of various LRV estimators.
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The null is rejected if the DMW
(i)
h,n test statistic is statistically significant and

positive. For the one-sided test we consider, a t-value greater than 1.282 implies a 10%

significance level. As we can see in Table 8, if we do not control for autocorrelation,

the null is rejected at the 3m to 12m horizons in all currencies except for the Swiss

Franc. At the 1m horizon, the null is rejected only for the Australian Dollar. These

result are in line with those for the directional forecast in Tables 4 through 7.

Panel A in Table 9 reports the test results using Newey-West LRV estimator when

we compute VDMW (i),h. Excluding the Swiss Franc, over the 6m, 9m and 12m horizons

our point forecasts statistically significantly outperform the driftless random walk in

all currencies, except for the British Pound at the 12m horizon. At the 3m horizon

the null is rejected for 3 currencies, while at the 1m horizon it is rejected only for the

Australian Dollar. Panel B shows that when using the Andrews LRV estimator, the

test results are a bit weaker: The 12m Yen and the 3m British Pound cease to be

significant. Still, over 6m, 9m and 12m forecasting horizons, the null is rejected in

13 out of 15 currency-horizon pairs.

1.8.2 The Clark-West Test

The test proposed by Clark and West (2006) uses out-of-sample forecasts to test the

null that a forecasting model is equivalent to the random walk model. In the case of

our model (29), the null is

Hcw
0 : E

[
X

(i)
t,h

(
e

(i)
t+h − e

(i)
t

)]
= 0 (34)

That is, the null is that the h-period ahead predicted directional intensity of appre-

ciation(depreciation) is uncorrelated with realized exchange rate changes. Clark and

West (2006) note that this null is different from the null tested by the DMW test–
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that the MSPE of the random walk is equal to the MSPE generated by the point

forecasts of our model. They show that if the two models are nested, the DMW-test

under-rejects the null (34). Clark and West (2006) propose a revised statistic–the CW

test–that eliminates the bias in favour of the random walk from the DMW-statistic.

We carry out the standard CW test, in which it is assumed that under the null the

exchange rate follows a driftless random walk. Decomposing the statistic DMW
(i)
h,n,

we get

DMW
(i)
h,n = −

β̂2
h,n0

n
(i)
1

n(i)−h∑
t=m0+1

[X
(i)
t,h]2 +

2β̂h,n0

n
(i)
1

n(i)−h∑
t=m0+1

X
(i)
t,h

(
e

(i)
t+h − e

(i)
t

)

where the first term on the right hand side of the above equation represents the bias

in the DMW test statistic. The CW test statistic is defined as

CW
(i)
h,n = DMW

(i)
h,n +

β̂2
h,n0

n
(i)
1

n(i)−h∑
t=m0+1

[X
(i)
t,h]2 =

2β̂h,n0

n
(i)
1

n(i)−h∑
t=m0+1

X
(i)
t,h

(
e

(i)
t+h − e

(i)
t

)
.

Let VCW (i),h denote the consistent LRV estimator of the CW test statistic.22 Then

using the central limit theorem and the continuous mapping theorem, we have

V
− 1

2
CW,h

√
n

(i)
1 CW

(i)
h,n →d N(0, 1). (35)

As in the recent literature (e.g., Rossi (2013)) the CW test is implemented using

Newey-West LRV estimator VCW (i),h. In addition, we also present test results using

Andrews LRV estimator.

Tables 10 and 11 contain the CW
(i)
h,n test statistics, and their p-values for the

6 currencies and the 5 horizons. These tables test the same null, but differ in the

22See Appendix 1.12.B for the construction of various LRV estimators.
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construction of the long-run variance estimators. While Table 10 does not control

for auto-correlation, Table 11 controls for it. The null is rejected if the CW
(i)
h,n test

statistic is significantly greater than zero. For the one-sided test we consider, a t-value

greater than 1.282 implies a 10% significance level.

This standard CW test is easier to pass than the previous DMW test. Thus,

we expect that the CW test results will turn out to be more in favor of our point

forecasts than those reported in Tables 8 and 9. Indeed, as we can see in Table 10,

the null is rejected in all currencies except for the Swiss Franc over all of the 3m to

12m months horizons, and the p-values are lower than in the DMW test presented in

Table 8. Moreover, at the 1m horizon, the null is rejected in 3 currencies rather than

only in 2 currencies as in Table 8.

When we control for auto-correlation using the Newey-West LRV estimator, we

can see in Table 11 that the null is rejected in all currencies, except for the Swiss

Franc, over the 6m, 9m and 12m forecasting horizons. The number of rejections is

larger and p-values are lower than the DMW-test results shown in Table 9. At the

3m(1m) horizon the null is rejected in the same three(one) currencies as with the

DMW-test. Tests results using Andrews LRV estimator are similar as those using

Newey-West LRV estimator, except for the 12m horizon, in which the null is not

rejected in two currencies.

1.9 Tests Based on Orthonormal Series LRV Estimators

In this section, we implement alternative tests about the null hypotheses in Sections

1.6 and 1.8. Our main motivation here is to check whether the test results of the

previous sections change when different statistics and inference theories are applied

to test the null hypotheses (25), (28), (32) and (34).
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The asymptotic theory underlying the inference based on consistent LRV estima-

tors typically requires that the bandwidth goes to zero when the sample size diverges

to infinity. In reality, however, the smoothing parameter is always finite, which may

bias the resulting inference and cause size-distortion in finite samples. Here, we con-

sider an orthonormal series LRV estimator and test the null hypotheses using a fixed

bandwidth asymptotic theory. The OS-LRV estimator is very easy to compute in

practice and is automatically positive definite in finite samples. The fixed bandwidth

asymptotic theory does not require the bandwidth to be zero or converge to zero. As

a result, these tests enjoy high order accuracy and hence good size properties in finite

samples, as illustrated in Jansson (2004), Sun et al. (2008), Sun (2013) and Zhang

and Shao (2013). The cost of the better size properties of these alternative tests is

that their power may be weakened. Appendix A.2 includes detailed description of

the OS-LRV estimators of test statistics investigated in this section.

1.9.1 Directional Tests

Let Σ
T

(i)
a,n

(M) and Σ
T

(i)
b,n

(M) denote the OS-LRV estimators for T
(i)
a,n and T

(i)
b,n using

M many orthonormal basis functions in L2[0, 1].23 By the martingale central limit

theorem and continuous mapping theorem, we have that

Σ
− 1

2

T
(i)
a,n

(M)

√
n

(i)
1 T

(i)
a,n →d t(M) and Σ

− 1
2

T
(i)
b,n

(M)

√
n

(i)
1 T

(i)
b,n →d t(M), (36)

where t(M) denotes the student-t random variable with M degrees of freedom. The

asymptotic theory in (36) is used to test the null hypothesis (25) and (28).

Table 12 presents the weighted directional test results using the OS-LRV esti-

mators.24 Even in this case, the null is rejected in 15 (Panel A) and 18 (Panel B)

23See Appendix 1.12.B for the construction of OS-LRV estimators.
24In Table 12, the test statistic follows t-distribution with M degrees of freedom. M equal to 4 (6)
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out of 25 currency-horizon pairs excluding the Swiss franc. Over 6m, 9m and 12m

horizons, the null is rejected in 11 (Panel A) and 13 (Panel B) out of 15 cases. Ta-

ble 13 presents the binomial directional test results using the OS-LRV estimators.

The null is rejected in 11 (Panel A) and 10 (Panel B) out of 15 cases in the same

currency-horizon combinations.

1.9.2 DMW and CW Tests

Let ΣDMW (i)(M) and ΣCW (i)(M) denote the OS-LRV estimators of the DMW-

test statistic and CW-test statistic respectively. Using the OS-LRV estimator

ΣDMW (i)(M), we can also test the null hypothesis (32) using the following asymp-

totic theory

Σ
− 1

2

DMW (i)(M)

√
n

(i)
1 DMW

(i)
h,n →d t(M). (37)

Meanwhile, using the OS-LRV estimator ΣCW (i)(M), we can test the null hypothesis

(34) using the following asymptotic theory

Σ
− 1

2

CW (i)(M)

√
n

(i)
1 CW

(i)
h,n →d t(M). (38)

The test results are presented in Tables 14 and 15. When the size of the test

is emphasized, we see that the predictability of exchange rate becomes less evident.

However, our point forecasts perform better than the driftless random walk in 4

currencies (Australian dollar, Canadian dollar, Euro, Japanese Yen) over 6m, 9m

and 12m forecasting horizons.

and thus a t-value of 1.533 (1.440) corresponds to a 10% significance level.
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1.10 Comparison with the Random Walk with Drift

The forecasting accuracy evaluation tests conducted in the previous sections are

against the driftless random walk model. In this section, we compare our direc-

tional and point forecasts with these constructed from the random walk model with

drift:

e
(i)
t+1 = e

(i)
t + c(i) + ε

(i)
t+1, (39)

where {ε(i)
t } is a white noise process with mean zero and variance σ2

i,ε, and c(i) is some

finite constant. The motivation is that we want to evaluate the robustness of our

empirical findings by considering different random walk models.

1.10.1 Directional Tests

When the null hypothesis is a random walk with drift, the optimal h-period ahead

forecast of e
(i)
t+h is hc(i) + e

(i)
t given the martingale assumption on {ε(i)

t }. Because

the term hc(i) is unknown and can be estimated by e
(i)
n,h = n−1

1

∑n−h
t=m0

(e
(i)
t+h − e

(i)
t ),

the feasible point forecast from random walk with drift is e
(i)
t + e

(i)
n,h. Our weighted

directional forecast evaluation test is defined as

T (i)
c,n =

1

n
(i)
1

n−h∑
t=n

(i)
0

D
(i)
t,h(e

(i)
t+h − e

(i)
t − e

(i)
n,h), (40)

where D
(i)
t,h is defined in (22).

The null hypothesis is that

E
[
D

(i)
t,h(e

(i)
t+h − e

(i)
t − hc(i))

]
= 0 (41)

for any pre-specified h and any t, which means that after the adjustment of determin-
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istic trend, our directional forecasts are uncorrelated with future realized exchange

rate changes. Let V
T

(i)
c,n

and Σ
T

(i)
c,n

(M) denote the consistent and OS-LRV estimators

for T
(i)
c,n respectively.25 The inference of the null in (41) is based on the following

asymptotic theory

V
− 1

2

T
(i)
c,n

√
n

(i)
1 T

(i)
c,n →d N(0, 1) and Σ

− 1
2

T
(i)
c,n

(M)

√
n

(i)
1 T

(i)
c,n →d t(M). (42)

Tables 16, 17 and 18 present the values of the T
(i)
c,n statistic, and its t-values,

for the 6 currencies and the 5 horizons we consider. Tables 16, 17 and 18 are the

counterparts of Tables 4, 5 and 12, respectively, in the sense that they use the same

variance estimators. The only difference is that they test the null that our directional

forecast is uncorrelated with future realized exchange rate changes adjusted by the

deterministic trend (i.e., E[D
(i)
t,h(e

(i)
t+h − e

(i)
t − hc(i))] = 0). The overall results confirm

that our directional forecasts provide strong evidence of exchange rate predictability

over the same forecasting horizons (i.e., 6m, 9m and 12m) and they are robust to

controlling for the deterministic trend.

Table 16 uses the naive variance estimator which does not control for the auto-

correlation in {D(i)
t,h(e

(i)
t+h − e

(i)
t − hc(i))}n(i)−h

t=m0
. As we can see, the results are very

similar to those in Table C.3. Excluding the Swiss Franc, the null is rejected in 5 out

of 6 currencies for most forecasting horizons. Table 17 provides the tests results with

autocorrelation robust variance estimators. Similarly, strong evidence of exchange

rate predictability can be found in 5 currencies over 6m, 9m and 12m horizons. When

we use Newey-West and Andrews LRV estimators in Table 17, the null is rejected

in 14 (Panel A) and 12 (Panel B) out of 15 currency-horizon pairs over 6m, 9m and

12m horizons excluding the Swiss Franc. Table 18 shows the results of using OS-LRV

25See Appendix 1.12.B for the construction of various LRV estimators.

37



estimators. Even in this case, the null is rejected in 11 (Panel A) and 10 (Panel B)

out of the same pairs over the same forecasting horizons.

For the Binomial directional test, the test statistic becomes

T
(i)
d,n =

1

n
(i)
1

n−h∑
t=n

(i)
0

D
(i)
t,hR̂

(i)
t,h −

1

n
(i)
1

n−h∑
t=n

(i)
0

D
(i)
t,h

1

n
(i)
1

n−h∑
t=n

(i)
0

R̂
(i)
t,h

where R̂
(i)
t,h = 1 if e

(i)
t+h− e

(i)
t − he(i)

n ≥ 0, and R̂
(i)
t,h = −1 otherwise, e(i)

n = 1
n(i)

∑n(i)

t=1 e
(i)
t .

Let V
T

(i)
d,n

and Σ
T

(i)
d,n

(M) denote the consistent LRV estimator and OS-LRV estimator

for T
(i)
d,n respectively.26 Then we have

V
− 1

2

T
(i)
d,n

√
n

(i)
1 T

(i)
d,n →d N(0, 1) and Σ

− 1
2

T
(i)
d,n

(M)

√
n

(i)
1 T

(i)
d,n →d t(M)

which is used in testing the null hypothesis

H0: Cov(D
(i)
t,h, R

(i)

t,h) = 0, (43)

where R
(i)

t,h = 1 if e
(i)
t+h − e

(i)
t − hc(i) ≥ 0, and Rt,h = −1 otherwise.

Tables 19, 20 and 21 present the values of the T ∗d,n statistic, and its t-values, for

the 6 currencies and the 5 horizons we consider. They are analogous to Table 6, 7

and 13 respectively, in the sense that they use the same variance estimators. The

only difference is that they test the null that our directional forecast is uncorrelated

with the directional sign of future realized exchange rate changes adjusted by the

deterministic trend (i.e., Cov(D
(i)
t,h, R

(i)

t,h) = 0). The overall results confirm that the

previous results remain valid even if the realized exchange rate trend is controlled in

the determination of the sign of change. Furthermore, some evidence of predictability

26See Appendix 1.12.B for the construction of various LRV estimators.
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is found for the Swiss Franc at 9m and 12m horizons. Table 19 uses the naive variance

estimator which does not control for the autocorrelation. Including the Swiss Franc,

the null is rejected in 24 out of 30 currency-horizon pairs. Table 20 and 21 provide the

tests results with autocorrelation robust variance estimators. When we use Newey-

West LRV estimator and Andrews LRV estimator in Table 20, the null is rejected

in 16 (Panel A) and 14 (Panel B) out of 18 currency-horizon pairs over 6m, 9m and

12m horizons including the Swiss Franc. In Table 21 where OS-LRV estimators are

used, the null is rejected 10 (Panel A) and 12 (Panel B) out of 18 cases in the same

currency-horizon combinations.

1.10.2 DMW test

In this subsection, we compare the point prediction accuracy of our model with the

random walk with a drift term, i.e.

e
(i)
t+h = γh + e

(i)
t + ε

(i)
t+h (44)

where γh = ch is a finite constant. The h-period ahead prediction based on the

random walk model is

e
(i)
t+h = γ̂h,m0 + e

(i)
t for m0 + 1 ≤ t ≤ n

where

γ̂h,m0 =

∑6
i=1

∑m0−h
t=1

(
e

(i)
t+h − e

(i)
t

)
6(m0 − h)

.
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Using the quadratic loss function, we can evaluate the accuracy of our point forecast

by the statistic DMW
(i)
h,n, i.e.

DMW
(i)
h,n =

1

n
(i)
1

n(i)−h∑
t=m0+1

[(
γ̂h,m0 + e

(i)
t − e

(i)
t+h

)2

−
(
β̂h,m0X

(i)
t,h + e

(i)
t − e

(i)
t+h

)2
]

(45)

where β̂h,m0 is defined in (30).

From the definition of the DMW
(i)
h,n statistic in (45), we can construct consistent

LRV estimators and OS-LRV estimator.27 Hence asymptotic theory similar to these

stated in (33) and (37) can be used to test the null hypothesis (32).

Tables 22 and 23 contain the test statistics of DMW
(i)
h,n, and their p-values for

different currencies i and different forecasting horizons h, for the 6 currencies and the

5 horizons. Table C.21 and C.22 test the same null that the MSPE of a random walk

with a drift is equal to that of our point forecasts. Table 22 uses Newey-West LRV

estimator and Andrews LRV estimator to construct the test statistics, while Table

23 uses OS-LRV estimators. The null is rejected if the test statistics of DMW
(i)
h,n is

significantly greater than zero. For the one-sided test we consider, a t-value greater

than 1.282 implies a 10% significance level in Table 22. The overall results show

that our point forecasts significantly outperform the random walk with a drift in

5 currencies in most forecasting horizons. Interestingly, evidence of forecastability

against random walk with a drift can be found for the Swiss Franc while the null is

not rejected for the British pound.

Table 22 reports the test results using Newey-West LRV estimator (Panel A) and

Andrews LRV estimator (Panel B) methods to control for auto-correlation. Our point

forecasts significantly outperform the random walk with a drift in 25 (Panel A) and

22 (Panel B) out of 30 currency-horizon pairs. When we uses more robust OS-LRV

27See Appendix 1.12.B for the construction of various LRV estimators.
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estimators to control for autocorrelation in Table 23, our point forecasts perform

better than the random walk with a drift in 16 (Panel A) and 16 (Panel B) out of 30

currency-horizon pairs.

1.11 Conclusion

Exchange rates tend to exhibit swings of appreciation and depreciation. Although

these swings can be identified in-sample, they have proven difficult to predict out-

of-sample. In this paper, we forecast exchange rates by fitting an autoregressive

Markov regime switching model to the speculators’ position data in futures markets.

The forecasting method we propose combines Engel and Hamilton’s (1990) point that

exchanges rate follow long swings with Evans and Lyons’ (2004) finding that privately

available information about market participants’ order flow can predict exchange rates

over the short-run.

While Evans and Lyons focus on weekly forecasting horizons and use private in-

formation, we concentrate on the 1-to-12 months horizons and use public information

from the Commitment-of-Traders report. Interestingly, we find that over forecasting

horizons ranging from 6 to 12 months, our forecasts outperform those from random

walk models for most currencies, except the Swiss Franc. Our directional forecasts

have a 60% average success ratio and most of our point forecasts have smaller mean-

squared-prediction-errors than those implied by the driftless random walk. A battery

of econometric tests indicate that, over 6-to-12 months horizons, the outperformance

of these two types of forecasts is statistically significant at the 10% level for five out

of the six most traded currency pairs vis-a-vis the US Dollar: Euro, Japanese Yen,

British Pound, Australian Dollar, Canadian Dollar.
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1.12 Appendix

1.12.A Equilibrium of the Dynamic Model (11)-(12)

In this appendix, we show that the dynamic model (11)-(12) has a convergent fixed

point. From the equations in (7), we can write

σ2
t =

σ2
t−1 + σ2

u

σ2
t−1 + σ2

u + σ2
v

σ2
v

which implies that

σ2
t+1 − σ2

t =

[
σ2
t + σ2

u

σ2
t + σ2

u + σ2
v

−
σ2
t−1 + σ2

u

σ2
t−1 + σ2

u + σ2
v

]
σ2
v

=
(σ2

t − σ2
t−1)σ2

v

(σ2
t + σ2

u + σ2
v)(σ

2
t−1 + σ2

u + σ2
v)
σ2
v .

This means that if we have σ2
t = σ2

t−1 for some t = t∗, then σ2
t+1 = σ2

t for any t ≥ t∗.

Otherwise, we have

σ2
t+1 − σ2

t

σ2
t − σ2

t−1

=
σ4
v

(σ2
t + σ2

u + σ2
v)(σ

2
t−1 + σ2

u + σ2
v)

which together with

(σ2
t + σ2

u + σ2
v)(σ

2
t−1 + σ2

u + σ2
v) > σ4

v

implies that

σ2
t+1 − σ2

t

σ2
t − σ2

t−1

< 1.
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Hence, by the contraction mapping theorem we know that σ2
t converges to a unique

equilibrium (fixed point). Moreover, by definition,

θt =
σ2
t−1 + σ2

ε

σ2
t + σ2

ε

(1− kt) =
σ2
t−1 + σ2

ε

σ2
t + σ2

ε

σ2
v

σ2
t + σ2

u + σ2
v

which together with the convergence of σ2
t implies that the limit of θt is between 0

and σ2
v(σ

2
u + σ2

v)
−1.

1.12.B Constructing the LRV Estimators

For any weakly dependent process {Wt,n}nt=1 with

E [Wt,n] = 0 for all t and n, (46)

and finite positive LRV VW , its sample autocovariance can be defined as

ΓW,n(j) =
1

n− j

n−j∑
t=1

(
Wt,n −W n

) (
Wt+j,n −W n

)
(47)

for j = 0, . . . , n − 1. It is clear that the sample autocovariance satisfies ΓW,n(−j) =

ΓW,n(j) for j = 0, . . . , n − 1. Note that the sample autocovariance is sample mean

centered, which improves the power of the test of the hypothesis in (46).

The kernel based LRV estimator for {Wt,n}nt=1 is then defined as

VW,n =
n+1∑

j=−n+1

K(j/M)ΓW,n(j) (48)

where K(·) is some kernel smoothing function with bandwidth M . Under some reg-

ularity conditions (see, e.g., Newey and West (1987), Andrews (1991) and Hansen
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(1992)), there is

VW,n →p VW . (49)

One key condition for the above consistency result is that M goes to infinity at

certain rate. In finite samples, there are two different rules of selecting M : One is

the rule proposed in Newey and West (1994) and the other is the parametric (AR(1))

approximation rule in Andrews (1991).

Let M to be any fixed even integer. For the weakly dependent process {Wt,n}nt=1,

we define

ΛW,2m−1 = n
−1/2
1

n∑
t=1

ϕ2m−1(
t

n
)Wt,n and ΛW,2m = n

−1/2
1

n−h∑
t=n0

ϕ2m(
t

n
)Wt,n,

for m = 1, ...,M/2, where

ϕ2m−1(x) =
√

2 cos(2mπx) and ϕ2m(x) =
√

2 sin(2mπx).

Then the OS-LRV estimator can be defined as

ΣW,n(M) =
1

M

M/2∑
m=1

(
Λ2
W,2m−1 + Λ2

W,2m

)
. (50)

The functional central limit theorem and the continuous mapping theorem imply that

ΛW,k = n
−1/2
1

n∑
t=1

ϕk(
t

n
)Wt,n →d V

1
2
W

∫ 1

0

ϕk(u)dB(u) for k = 1, ...,M (51)

where B(·) denotes the standard Brownian motion. By the orthogonality between
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ϕi(u) and ϕj(u) with i 6= j and the fact that

∫ 1

0

ϕk(u) = 0 and

∫ 1

0

ϕ2
k(u) = 1 for k = 1, ...,M,

we know that B(u) and
∫ 1

0
ϕk(u)dB(u) (k = 1, ...,M) are independent standard

normal random variables. This implies that

Σ
−1/2
W,n (M)n

−1/2
1

n∑
t=1

Wt,n →d
B(1)√

1
M

∑M
k=1

[∫ 1

0
ϕk(u)dB(u)

]2
∼ t(M).

For more details on the theoretical properties of the OS-LRV estimators and the

related auto-correlation robust inference, we refer to Phillips (2005) and Sun (2013).

The weak convergence n
−1/2
1

∑n
t=1Wt,n →d B(1) is derived under the assumption

in (46). When this assumption does not hold, we will have n
−1/2
1

∑n
t=1 Wt,n →p

∞. The LRV estimator VW,n defined in (48) converges to the LRV of the process

{Wt,n − E [Wt,n]}nt=1, regardless assumption in (46) holds or not. This implies that

the test of the assumption in (46) based on the statistic

TVW ,n = V
− 1

2
W,nn

−1/2
1

n∑
t=1

Wt,n

has good power property because VW,n converges to a finite real constant VW un-

der both the null and alternative hypotheses. On the other hand, even when the
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assumption in (46) is invalid, we still have the weak convergence in (51), because

ΛW,k = n
−1/2
1

n∑
t=1

ϕk(
t

n
)Wt,n

= n
−1/2
1

n∑
t=1

ϕk(
t

n
) (Wt,n − E [Wt,n]) + E [Wt,n]n

−1/2
1

n∑
t=1

ϕk(
t

n
)

= V
1
2
W

∫ 1

0

ϕk(u)dB(u) + op(1)

where the last equality is by the functional central limit theorem and the fact that∫ 1

0
ϕk(u) = 0. This indicates that the power of the test statistic

TΣW ,n = Σ
− 1

2
W,nn

−1/2
1

n∑
t=1

Wt,n

may not be as good as that of TVW ,n, because the numerator Σ
1
2
W,n in TΣW ,n converges

in distribution to a scaled Chi-square random variable

1

M

M∑
k=1

[∫ 1

0

ϕk(u)dB(u)

]2

∼ χ2(M)

M

which is larger than any finite constant with non-zero probability.

In the rest of this appendix, we briefly describe how to construct the LRV estima-

tors for the test statistics presented in the main text. The Newey-West and Andrews

LRV estimators can be constructed using the formula in (47), and the OS-LRV esti-

mator can be calculated using the expression in (50). Hence for each test statistic, we

only need to define its corresponding ”Wt,n” for the construction of LRV estimators,

which are summarized in Table 1. For the ease of notation, we ignore the index ”i”

in each test statistic.
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1.12.C Tables and Figures

Table 1: Construction of LRV Estimators

Test Statistic Wt,n

Ta,n Dt,h(et+h − et)
Tb,n (Dt,h −Dn,h)(Rt,h −Rn,h)
Tc,n Dt,h(et+h − et − en,h)
Td,n (Dt,h −Dn,h)(R̂t,h − R̂n,h)

CMh,n 2β̂h,n0Xt,h (et+h − et)
DMW dl

h,n (et+h − et)2 − (et+h − et −Xt,hβ̂h,m0)2

DMW d
h,n (et+h − et − γ̂h,m0)2 − (et+h − et −Xt,hβ̂h,m0)2

Notes: DMW dl
h,n and DMW d

h,n refer to the DMW test statistics against the random walk with

and without the drift term respectively. Similarly, CW dl
h,n denotes the CW test statistic
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Table 2: Forecast Success Ratio

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR 46.4% 50.8% 69.0% 66.7% 67.0%

(125) (124) (113) (99) (88)

JPY 56.3% 56.1% 60.9% 63.0% 58.6%

(547) (574) (573) (571) (560)

GBP 50.6% 55.2% 58.4% 60.3% 60.1%

(324) (364) (365) (363) (363)

AUD 58.0% 67.4% 72.4% 72.7% 77.7%

(269) (282) (283) (275) (265)

CAD 54.9% 55.3% 56.0% 68.0% 66.8%

(381) (398) (398) (391) (391)

CHF 52.1% 49.1% 51.4% 50.2% 50.1%

(576) (621) (623) (614) (603)

Notes:

1. This table reports the forecast success ratio of our model. The forecast success ratio is defined

as the number of successful depreciation or appreciation forecasts divided by the total number of

depreciation and appreciation forecasts. The total number of appreciation and depreciation forecasts

is in parentheses. When we predict no change (Dt,h = 0), we do not count it in the calculation of

forecast success ratio.

2. Our sample starts on 10/02/1992 for all currencies except the Euro, which starts on 01/08/1999.

Our sample ends on 02/08/2013 for all currencies.

3. For each currency, our directional forecasts start the week after the first estimation of the

MSM, and end h weeks prior to the end of the COT sample. Thus, our directional forecasts start on

01/20/1995 for AUD and GBP; 09/01/1994 for CAD; 04/15/1994 for CHF and JPY; and 05/04/2001

for the Euro.

4. The dates of the last forecasts are 01/18/2013 for h = 1m, 11/16/2012 for h = 3m, 08/24/2012

for h = 6m, 05/25/2012 for h = 9m, and 03/01/2012 for h = 12m.
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Table 3: Forecast Success Ratio: Two subperiods

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

First half period: 04/15/1994 - 11/29/2002

EUR 28.6% 57.1% 71.4% 28.6% 57.1%

(7) (7) (7) (7) (7)

JPY 59.5% 57.4% 64.4% 66.0% 60.4%

(232) (242) (247) (247) (240)

GBP 51.8% 54.5% 58.3% 63.1% 63.5%

(218) (244) (242) (241) (241)

AUD 60.0% 80.0% 90.0% 87.5% 75.0%

(10) (10) (10) (8) (4)

CAD 47.2% 45.2% 30.8% 33.8% 28.8%

(89) (84) (78) (77) (66)

CHF 54.4% 50.2% 48.8% 47.7% 52.7%

(307) (307) (297) (283) (273)

Second half period: 12/06/2002 - 02/08/2013

EUR 47.5% 50.4% 68.9% 69.6% 67.9%

(118) (117) (106) (92) (81)

JPY 54.0% 55.1% 58.3% 60.8% 57.2%

(315) (332) (326) (324) (320)

GBP 48.1% 56.7% 58.5% 54.9% 53.3%

(106) (120) (123) (122) (122)

AUD 57.9% 66.9% 71.8% 72.3% 77.8%

(259) (272) (273) (267) (261)

CAD 57.2% 58.0% 62.2% 76.4% 74.5%

(292) (314) (320) (314) (325)

CHF 49.4% 48.1% 53.7% 52.3% 47.9%

(269) (314) (326) (331) (330)

Notes:

1. The information on our directional forecasts is described in the notes to Table 2.
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Table 4: Directional test weighted by the magnitude of exchange rate changes:
No control for autocorrelation

This table tests the null that our directional forecasts are uncorrelated with future
exchange rate changes:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t )] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
a,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t )

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR −0.0003 0.0012∗ 0.0034∗∗∗ 0.0051∗∗∗ 0.0044∗∗∗

(−0.6219) (1.3942) (3.0859) (3.5578) (2.9045)

JPY 0.0020∗∗∗ 0.0024∗∗ 0.0071∗∗∗ 0.0115∗∗∗ 0.0097∗∗∗

(2.5682) (1.7542) (3.9060) (5.4813) (3.7022)

GBP 0.0002 0.0023∗∗∗ 0.0040∗∗∗ 0.0057∗∗∗ 0.0061∗∗∗

(0.3838) (3.3596) (4.6674) (5.5837) (4.4786)

AUD 0.0018∗∗∗ 0.0038∗∗∗ 0.0105∗∗∗ 0.0163∗∗∗ 0.0187∗∗∗

(2.5797) (3.1934) (6.0708) (8.2381) (7.9564)

CAD 0.0008∗∗ 0.0030∗∗∗ 0.0037∗∗∗ 0.0109∗∗∗ 0.0156∗∗∗

(1.9240) (3.8377) (3.2232) (8.1831) (10.1058)

CHF 0.0014∗∗ −0.0012 −0.0023 0.0016 −0.0034
(1.9902) (−0.8921) (−1.3107) (0.7725) (−1.3669)

Notes:

1. This table presents the test results without controlling for autocorrelation induced by overlapping

observations in the forecasts.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 5: Directional test weighted by the magnitude of exchange rate changes:
Control for autocorrelation

This table tests the null that our directional forecasts are uncorrelated with future
exchange rate changes:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t )] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
a,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t )

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR −0.0003 0.0012 0.0034∗∗ 0.0051∗∗∗ 0.0044∗∗

(−0.4164) (0.7794) (1.8532) (2.5681) (2.3198)

JPY 0.0020∗∗ 0.0024 0.0071∗∗ 0.0115∗∗∗ 0.0097∗

(1.7643) (0.7881) (1.6739) (2.3762) (1.5367)

GBP 0.0002 0.0023∗∗ 0.0040∗∗ 0.0057∗∗∗ 0.0061∗∗

(0.2469) (1.6863) (2.1486) (2.5339) (2.0537)

AUD 0.0018∗∗ 0.0038∗ 0.0105∗∗∗ 0.0163∗∗∗ 0.0187∗∗∗

(1.7390) (1.5055) (2.7428) (3.5925) (3.3212)

CAD 0.0008 0.0030∗∗ 0.0037∗ 0.0109∗∗∗ 0.0156∗∗∗

(1.2193) (1.8026) (1.4773) (4.0637) (4.4803)

CHF 0.0014 −0.0012 −0.0023 0.0016 −0.0034
(1.1540) (−0.4040) (−0.5656) (0.3277) (−0.5672)

Panel B: Andrews

EUR −0.0003 0.0012 0.0034∗∗ 0.0051∗∗∗ 0.0044∗∗∗

(−0.4169) (0.6852) (1.6869) (2.5681) (2.3343)

JPY 0.0020∗∗ 0.0024 0.0071 0.0115∗ 0.0097
(1.6543) (0.6078) (1.1873) (1.6196) (0.9933)

GBP 0.0002 0.0023∗ 0.0040∗ 0.0057∗∗ 0.0061∗

(0.2412) (1.4758) (1.6431) (1.8056) (1.5694)

AUD 0.0018∗∗ 0.0038 0.0105∗∗ 0.0163∗∗∗ 0.0187∗∗

(1.7054) (1.2678) (1.9416) (2.4115) (2.1030)

CAD 0.0008 0.0030∗∗∗ 0.0037 0.0109∗∗∗ 0.0156∗∗∗

(1.1910) (1.5088) (1.1638) (3.1393) (3.0347)

CHF 0.0014∗ −0.0012 −0.0023 0.0016 −0.0034
(1.3752) (−0.3916) (−0.4262) (0.2421) (−0.4002)

Notes:

1. Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for auto-correlation,

respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 6: Binomial directional test: No control for autocorrelation

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate:

Cov(D
(i)
t,h, R

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
b,n = 1

n
(i)
1

∑n−h
t=n

(i)
0

D
(i)
t,hR

(i)
t,h − [ 1

n
(i)
1

∑n−h
t=n

(i)
0

D
(i)
t,h][ 1

n
(i)
1

∑n−h
t=n

(i)
0

R
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR −0.0033 0.0284∗ 0.0963∗∗∗ 0.0775∗∗∗ 0.0658∗∗∗

(−0.1780) (1.5357) (5.4232) (4.5399) (4.0015)

JPY 0.0684∗∗∗ 0.0722∗∗∗ 0.1310∗∗∗ 0.1606∗∗∗ 0.1082∗∗∗

(2.8749) (2.9366) (5.3150) (6.4845) (4.2999)

GBP 0.0017 0.0405∗∗ 0.0597∗∗∗ 0.0763∗∗∗ 0.0774∗∗∗

(0.0868) (1.9751) (2.8837) (3.6518) (3.6553)

AUD 0.0291∗ 0.0695∗∗∗ 0.0966∗∗∗ 0.0896∗∗∗ 0.1102∗∗∗

(1.6727) (3.9220) (5.4394) (5.0463) (6.3396)

CAD 0.0258 0.0334∗ 0.0252 0.1061∗∗∗ 0.1028∗∗∗

(1.2679) (1.5940) (1.1898) (5.1046) (4.8624)

CHF 0.0269 −0.0011 0.0319 0.0295 0.0339
(1.0987) (−0.0421) (1.2258) (1.1249) (1.2860)

Notes:

1. This table presents the test results without controlling for autocorrelation induced by overlapping

observations in the forecasts.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 7: Binomial directional test: Control for autocorrelation

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate:

Cov(D
(i)
t,h, R

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
b,n = 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,hR

(i)
t,h − [ 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,h][ 1

n
(i)
1

∑n−h

t=n
(i)
0

R
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR −0.0033 0.0284 0.0963∗∗∗ 0.0775∗∗∗ 0.0658∗∗∗

(−0.1290) (0.8961) (2.9207) (2.9415) (2.7704)

JPY 0.0684∗∗ 0.0722∗ 0.1310∗∗∗ 0.1606∗∗∗ 0.1082∗∗

(2.0627) (1.5776) (2.5936) (2.9155) (1.8589)

GBP 0.0017 0.0405 0.0597∗ 0.0763∗∗ 0.0774∗∗

(0.0647) (1.0472) (1.5385) (1.7746) (1.7234)

AUD 0.0291 0.0695∗∗ 0.0966∗∗∗ 0.0896∗∗∗ 0.1102∗∗∗

(1.0783) (2.0978) (2.6608) (2.4684) (2.9635)

CAD 0.0258 0.0334 0.0252 0.1061∗∗ 0.1028∗∗

(0.8769) (0.8232) (0.5558) (2.3356) (2.2760)

CHF 0.0269 −0.0011 0.0319 0.0295 0.0339
(0.7460) (−0.0221) (0.5656) (0.5017) (0.5646)

Panel B: Andrews

EUR −0.0033 0.0284 0.0963∗∗∗ 0.0775∗∗∗ 0.0658∗∗∗

(−0.1268) (0.8006) (2.4029) (2.8796) (2.7278)

JPY 0.0684∗∗ 0.0722∗ 0.1310∗∗ 0.1606∗∗ 0.1082
(2.0450) (1.3684) (1.9976) (2.0856) (1.2871)

GBP 0.0017 0.0405 0.0597∗ 0.0763∗ 0.0774∗

(0.0638) (0.9460) (1.3360) (1.4015) (1.3526)

AUD 0.0291 0.0695∗∗ 0.0966∗∗ 0.0896∗∗ 0.1102∗∗

(1.0907) (1.8671) (2.0918) (1.9158) (2.0373)

CAD 0.0258 0.0334 0.0252 0.1061∗∗ 0.1028∗∗

(0.8663) (0.7230) (0.4473) (1.7898) (1.6907)

CHF 0.0269 −0.0011 0.0319 0.0295 0.0339
(0.7808) (−0.0219) (0.4419) (0.3735) (0.4039)

Notes:

1. Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for autocorrelation,

respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 8: DMW test: No control for autocorrelation

This table presents the results of DMW test of the null of equal MSPEs between

random walk without a drift and our forecasts.

For each forecasting horizon, the following statistics is reported:√
n

(i)
1 DMW

(i)
h,n√

V
DMW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR −0.444 2.110∗∗ 2.940∗∗∗ 3.918∗∗∗ 3.239∗∗∗

(0.671) (0.017) (0.002) (0.000) (0.001)

JPY 1.225 2.268∗∗ 4.811∗∗∗ 5.284∗∗∗ 3.443∗∗∗

(0.110) (0.012) (0.000) (0.000) (0.000)

GBP 0.004 2.979∗∗∗ 4.864∗∗∗ 4.667∗∗∗ 2.413∗∗∗

(0.498) (0.001) (0.000) (0.000) (0.008)

AUD 2.388∗∗∗ 4.079∗∗∗ 6.206∗∗∗ 8.863∗∗∗ 8.090∗∗∗

(0.008) (0.000) (0.000) (0.000) (0.000)

CAD 1.055 3.642∗∗∗ 3.994∗∗∗ 7.854∗∗∗ 10.683∗∗∗

(0.146) (0.000) (0.000) (0.000) (0.000)

CHF −0.171 −1.473 −2.905 −1.923 −2.535
(0.568) (0.930) (0.998) (0.973) (0.994)

Notes:

1. This table presents the test results without controlling for auto-correlation induced by overlapping

observations.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively. Positive and statistically significant test statistics indicate that our forecasts outperform

the driftless random walk in forecasting the future exchange rate.

3. The first point forecast starts on 04/09/1999 for five currencies excluding the Euro. For the

Euro it starts on 05/04/2001. The dates of the last point forecasts are 01/18/2013 for h = 1m,

11/16/2012 for h = 3m, 08/24/2012 for h = 6m, 05/25/2012 for h = 9m, and 03/01/2012 for h =

12m.
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Table 9: DMW test: Control for autocorrelation

This table presents the results of DMW test of the null of equal MSPEs between

random walk without a drift and our forecasts.

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 DMW

(i)
h,n√

V
DMW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR −0.287 1.111 1.614∗ 2.541∗∗∗ 2.384∗∗∗

(0.613) (0.133) (0.053) (0.006) (0.009)

JPY 0.770 1.057 2.118∗∗ 2.261∗∗ 1.438∗

(0.221) (0.145) (0.017) (0.012) (0.075)

GBP 0.003 1.554∗ 2.251∗∗ 2.065∗∗ 1.089
(0.499) (0.060) (0.012) (0.019) (0.138)

AUD 1.622∗ 1.964∗∗ 2.995∗∗∗ 4.020∗∗∗ 3.509∗∗∗

(0.052) (0.025) (0.001) (0.000) (0.000)

CAD 0.643 1.675∗∗ 1.819∗∗ 3.630∗∗∗ 4.787∗∗∗

(0.260) (0.047) (0.034) (0.000) (0.000)

CHF −0.102 −0.678 −1.260 −0.829 −1.060
(0.541) (0.751) (0.896) (0.797) (0.856)

Panel B: Andrews

EUR −0.286 0.979 1.356∗ 2.473∗∗∗ 2.384∗∗∗

(0.613) (0.164) (0.088) (0.007) (0.009)

JPY 0.685 0.793 1.408∗ 1.337∗ 0.794
(0.247) (0.214) (0.080) (0.091) (0.214)

GBP 0.003 1.249 1.548∗ 1.286∗ 0.728
(0.499) (0.106) (0.061) (0.099) (0.233)

AUD 1.586∗ 1.596∗ 2.038∗∗ 2.531∗∗∗ 2.044∗∗

(0.056) (0.055) (0.021) (0.006) (0.020)

CAD 0.650 1.366∗ 1.370∗ 2.524∗∗∗ 2.917∗∗∗

(0.258) (0.086) (0.085) (0.006) (0.002)

CHF −0.123 −0.693 −0.845 −0.549 −0.673
(0.549) (0.756) (0.801) (0.708) (0.750)

Notes:

1. Panel A and B report the test results using the Newey-West and Andrews LRV estimators to control for autocor-

relation, respectively.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribu-

tion are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3. The information on our point forecasts is described in the notes to Table 8.
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Table 10: CW test: No control for autocorrelation

This table presents the results of Clark and West (2006) test of the null of

equal predictive power under the martingale assumption.

For each forecasting horizon, the following statistics is reported:√
n

(i)
1 CW

(i)
h,n√

V
CW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR −0.002 2.226∗∗ 3.415∗∗∗ 4.333∗∗∗ 3.503∗∗∗

(0.501) (0.013) (0.000) (0.000) (0.000)

JPY 1.949∗∗ 2.483∗∗∗ 5.732∗∗∗ 6.336∗∗∗ 4.057∗∗∗

(0.026) (0.007) (0.000) (0.000) (0.000)

GBP 0.580 3.156∗∗∗ 5.534∗∗∗ 5.501∗∗∗ 2.899∗∗∗

(0.281) (0.001) (0.000) (0.000) (0.002)

AUD 2.782∗∗∗ 4.210∗∗∗ 6.715∗∗∗ 9.430∗∗∗ 8.416∗∗∗

(0.003) (0.000) (0.000) (0.000) (0.000)

CAD 1.857∗∗ 3.862∗∗∗ 4.835∗∗∗ 8.929∗∗∗ 11.312∗∗∗

(0.032) (0.000) (0.000) (0.000) (0.000)

CHF 0.547 −1.268 −2.043 −0.921 −1.979
(0.292) (0.898) (0.979) (0.822) (0.976)

Notes:

1.This table presents the test results without controlling for auto-correlation induced by overlapping

observations.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively. Positive and statistically significant test statistics indicate that our forecasts have

predictive power over the future exchange rate movement.

3.The information on our point forecasts is described in the notes to Table 8.
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Table 11: CW test: Control for autocorrelation

This table presents the results of Clark and West (2006) test of the null of

equal predictive power under the martingale assumption.

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 CW

(i)
h,n√

V
CW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newy-West

EUR −0.001 1.173 1.872∗∗ 2.767∗∗∗ 2.547∗∗∗

(0.500) (0.120) (0.031) (0.003) (0.005)

JPY 1.221 1.157 2.521∗∗∗ 2.713∗∗∗ 1.696∗∗

(0.111) (0.124) (0.006) (0.003) (0.045)

GBP 0.378 1.643∗∗ 2.540∗∗∗ 2.420∗∗∗ 1.305∗

(0.353) (0.050) (0.006) (0.008) (0.096)

AUD 1.884∗∗ 2.028∗∗ 3.234∗∗∗ 4.267∗∗∗ 3.650∗∗∗

(0.030) (0.021) (0.001) (0.000) (0.000)

CAD 1.126 1.777∗∗ 2.200∗∗ 4.113∗∗∗ 5.059∗∗∗

(0.130) (0.038) (0.014) (0.000) (0.000)

CHF 0.327 −0.584 −0.886 −0.397 −0.828
(0.372) (0.720) (0.812) (0.654) (0.796)

Panel B: Andrews

EUR −0.001 1.033 1.568∗ 2.647∗∗∗ 2.516∗∗∗

(0.500) (0.151) (0.058) (0.004) (0.006)

JPY 1.084 0.867 1.663∗∗ 1.596∗ 0.935
(0.139) (0.193) (0.048) (0.055) (0.175)

GBP 0.380 1.314∗ 1.711∗∗ 1.480∗ 0.870
(0.352) (0.094) (0.044) (0.069) (0.192)

AUD 1.838∗∗ 1.644∗∗ 2.191∗∗ 2.647∗∗∗ 2.114∗∗

(0.033) (0.050) (0.014) (0.004) (0.017)

CAD 1.121 1.445∗ 1.646∗∗ 2.821∗∗∗ 3.043∗∗∗

(0.131) (0.074) (0.050) (0.002) (0.001)

CHF 0.390 −0.597 −0.592 −0.261 −0.520
(0.348) (0.725) (0.723) (0.603) (0.699)

Notes:

1.Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for auto-correlation.

2.p-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3.The information on our point forecasts is described in the notes to Table 8
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Table 12: Directional test weighted by the magnitude of exchange rate changes:
OS LRV estimators

This table tests the null that our directional forecasts are uncorrelated with future
exchange rate changes:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t )] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
a,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t )

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR −0.0003 0.0012 0.0034∗ 0.0051∗∗ 0.0044∗

(−0.9234) (1.1511) (1.9584) (2.6264) (2.1776)

JPY 0.0020∗∗ 0.0024 0.0071∗∗ 0.0115∗∗ 0.0097
(2.4021) (1.3343) (2.9734) (2.1805) (0.9934)

GBP 0.0002 0.0023∗ 0.0040∗∗ 0.0057∗∗ 0.0061∗

(0.3178) (2.0673) (3.2564) (2.7072) (1.6275)

AUD 0.0018∗ 0.0038∗ 0.0105∗ 0.0163∗ 0.0187∗

(1.6570) (1.7805) (1.5664) (1.5347) (1.7342)

CAD 0.0008 0.0030 0.0037 0.0109 0.0156
(0.9414) (1.2225) (1.0489) (1.5176) (1.4232)

CHF 0.0014∗ −0.0012 −0.0023 0.0016 −0.0034
(1.9156) (−0.4193) (−0.3399) (0.1751) (−0.3799)

Panel A: M = 6

EUR −0.0003 0.0012 0.0034∗ 0.0051∗ 0.0044∗

(−1.0177) (0.9696) (1.4493) (1.8687) (1.8305)

JPY 0.0020∗ 0.0024 0.0071∗∗ 0.0115∗∗ 0.0097
(1.6240) (0.7347) (1.9800) (2.3194) (1.0844)

GBP 0.0002 0.0023∗∗ 0.0040∗∗ 0.0057∗∗ 0.0061∗

(0.3497) (2.4807) (2.6964) (2.0323) (1.4958)

AUD 0.0018∗ 0.0038∗ 0.0105∗ 0.0163∗ 0.0187∗

(1.7253) (1.5130) (1.7868) (1.7633) (1.7429)

CAD 0.0008 0.0030 0.0037 0.0109∗ 0.0156∗

(0.9913) (1.2183) (1.0057) (1.8129) (1.7429)

CHF 0.0014∗∗ −0.0012 −0.0023 0.0016 −0.0034
(1.9578) (−0.4732) (−0.4049) (0.2081) (−0.3842)

Notes:

1. Panel A and B report the test results using the orthonormal series long-run variance estimators of Ta,n. Panel A

and B use 4 and 6 for smoothing parameter (M), respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 13: Binomial directional test: OS LRV estimators

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate:

Cov(D
(i)
t,h, R

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
b,n = 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,hR

(i)
t,h − [ 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,h][ 1

n
(i)
1

∑n−h

t=n
(i)
0

R
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR −0.0033 0.0284∗ 0.0963 0.0775∗ 0.0658∗

(−0.3407) (1.7169) (1.4018) (1.9911) (1.9806)

JPY 0.0684∗ 0.0722∗ 0.1310∗∗∗ 0.1606∗∗∗ 0.1082∗

(2.2768) (2.0478) (5.0622) (6.2087) (1.7975)

GBP 0.0017 0.0405∗∗ 0.0597∗ 0.0763 0.0774∗

(0.0715) (2.4183) (2.0539) (1.5299) (1.5617)

AUD 0.0291 0.0695∗∗∗ 0.0966∗∗ 0.0896∗ 0.1102∗∗

(1.4453) (4.0074) (2.1648) (1.7510) (2.5816)

CAD 0.0258 0.0334 0.0252 0.1061∗∗ 0.1028
(1.2145) (1.4375) (1.4088) (2.2646) (1.2906)

CHF 0.0269 −0.0011 0.0319 0.0295 0.0339
(1.5000) (−0.0226) (0.3497) (0.2727) (0.3801)

Panel A: M = 6

EUR −0.0033 0.0284 0.0963∗ 0.0775∗∗ 0.0658∗∗

(−0.1686) (1.2583) (1.7394) (2.1653) (2.0292)

JPY 0.0684∗∗ 0.0722∗ 0.1310∗∗∗ 0.1606∗∗∗ 0.1082∗

(2.0920) (1.6934) (4.3504) (5.8846) (1.6948)

GBP 0.0017 0.0405∗∗ 0.0597∗ 0.0763∗ 0.0774∗

(0.0722) (2.9275) (1.5969) (1.6035) (1.7966)

AUD 0.0291 0.0695∗ 0.0966∗ 0.0896 0.1102
(1.0025) (1.6248) (1.5286) (1.3848) (1.3692)

CAD 0.0258 0.0334 0.0252 0.1061 0.1028
(0.7774) (0.9083) (0.3803) (1.0474) (0.9157)

CHF 0.0269 −0.0011 0.0319 0.0295 0.0339
(1.2007) (−0.0215) (0.3846) (0.2890) (0.3002)

Notes:

1. Panel A and B report the test results using the orthonormal series long-run variance estimators of Tb,n. Panel A

and B use 4 and 6 for smoothing parameter (M), respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our directional forecasts described in the notes to Table 2

59



Table 14: DMW test: OS LRV estimators

This table presents the results of DMW test of the null of equal MSPEs between

random walk without a drift and our forecasts.

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 DMW

(i)
h,n√

V
DMW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR −0.619 2.297∗∗ 2.219∗∗ 2.187∗∗ 1.481
(0.715) (0.021) (0.047) (0.047) (0.106)

JPY 0.642 0.965 1.553∗ 1.277 0.7711
(0.278) (0.195) (0.095) (0.135) (0.258)

GBP 0.003 0.993 1.296 0.954 0.519
(0.499) (0.189) (0.132) (0.197) (0.316)

AUD 1.474 1.761∗ 1.710∗ 1.773∗ 1.771∗

(0.107) (0.077) (0.081) (0.075) (0.076)

CAD 0.591 1.084 1.292 1.515 1.558∗

(0.293) (0.170) (0.133) (0.102) (0.097)

CHF −0.180 −0.816 −0.840 −0.453 −0.681
(0.499) (0.189) (0.132) (0.197) (0.316)

Panel A: M = 6

EUR −0.621 1.577∗ 1.563∗ 1.938∗∗ 1.624∗

(0.721) (0.083) (0.084) (0.050) (0.078)

JPY 0.752 0.723 1.261 1.302 0.762
(0.240) (0.248) (0.127) (0.120) (0.238)

GBP 0.003 0.985 1.295 1.039 0.625
(0.499) (0.181) (0.121) (0.169) (0.277)

AUD 1.760∗ 1.857∗ 1.767∗ 1.840∗ 1.544∗

(0.064) (0.056) (0.064) (0.058) (0.087)

CAD 0.706 1.263 1.486∗ 1.815∗ 1.899∗

(0.253) (0.127) (0.094) (0.060) (0.053)

CHF −0.169 −0.523 −0.560 −0.351 −0.485
(0.564) (0.690) (0.702) (0.631) (0.678)

Notes:

1. Panel A and B report the test results using the orthonormal series based long-run variance estimators of√
n

(i)
1 DMW

(i)
h,n . Panel A and B use 4 and 6 for smoothing parameter (M), respectively.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our point forecasts is described in the notes to Table 8.
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Table 15: CW test: OS LRV estimators

This table presents the results of Clark and West (2006) test of the null of

equal predictive power under the martingale assumption.

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 CW

(i)
h,n√

V
CW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR −0.003 2.917∗∗ 2.139∗∗ 2.125∗ 1.533∗

(0.501) (0.022) (0.050) (0.050) (0.091)

JPY 1.025 1.062 1.806∗ 1.509 0.831
(0.182) (0.174) (0.073) (0.103) (0.226)

GBP 0.424 1.040 1.424 1.094 0.611
(0.347) (0.179) (0.114) (0.168) (0.287)

AUD 1.649∗ 1.790∗ 1.781∗ 1.838∗ 1.809∗

(0.087) (0.074) (0.075) (0.070) (0.072)

CAD 0.944 1.130 1.439 1.613∗ 1.612∗

(0.148) (0.117) (0.071) (0.050) (0.048)

CHF 0.520 −0.690 −0.564 −0.206 −0.514
(0.315) (0.736) (0.699) (0.576) (0.683)

Panel A: M = 6

EUR −0.003 1.611∗ 1.617∗ 1.909∗ 1.659∗

(0.501) (0.079) (0.078) (0.052) (0.074)

JPY 1.203 0.793 1.498∗ 1.562∗ 0.897
(0.137) (0.229) (0.092) (0.085) (0.202)

GBP 0.392 1.027 1.400 1.170 0.730
(0.354) (0.172) (0.106) (0.143) (0.246)

AUD 1.976∗∗ 1.890∗ 1.848∗ 1.914∗ 1.587∗

(0.048) (0.054) (0.057) (0.052) (0.082)

CAD 1.143 1.323 1.687∗ 1.949∗∗ 1.967∗∗

(0.148) (0.117) (0.071) (0.050) (0.048)

CHF 0.523 −0.450 −0.391 −0.166 −0.377
(0.310) (0.666) (0.645) (0.563) (0.640)

Notes:

1. Panel A and B report the test results using the orthonormal series based long-run variance estimators to control

for auto-correlation. Panel A and B use 4 and 6 for smoothing parameter (M), respectively .

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our point forecasts is described in the notes to Table 8.
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Table 16: Directional test weighted by the magnitude of exchange rate changes against
random walk with a drift: No control for autocorrelation

This table test the null that our directional forecasts are uncorrelated with future
exchange rate changes controlling for the exchange rate trend in the sample period:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t − ē

(i)
n,h)] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
c,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t −ē

(i)
n,h)

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR −0.0001 0.0021∗∗∗ 0.0048∗∗∗ 0.0066∗∗∗ 0.0057∗∗∗

(−0.0429) (2.5462) (4.2382) (4.3505) (3.4551)

JPY 0.0020∗∗∗ 0.0024∗∗ 0.0072∗∗∗ 0.0119∗∗∗ 0.0102∗∗∗

(2.5704) (1.7512) (3.9744) (5.6914) (3.9309)

GBP 0.0002 0.0023∗∗∗ 0.0040∗∗∗ 0.0057∗∗∗ 0.0061∗∗∗

(0.3834) (3.3570) (4.6584) (5.5802) (4.4582)

AUD 0.0015∗∗ 0.0025∗∗ 0.0079∗∗∗ 0.0124∗∗∗ 0.0138∗∗∗

(2.1346) (2.1259) (4.6693) (6.6265) (6.1817)

CAD 0.0006∗ 0.0019∗∗∗ 0.0013 0.0070∗∗∗ 0.0105∗∗∗

(1.3401) (2.5669) (1.2412) (5.6891) (7.6087)

CHF 0.0017∗∗∗ −0.0003 −0.0004 0.0042∗∗ −0.0002
(2.3506) (−0.2142) (−0.2483) (2.1188) (−0.0969)

Notes:

1. This table presents the test results without controlling for auto-correlation induced by overlapping

observations in the forecasts.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 17: Directional test weighted by the magnitude of exchange rate changes against
random walk with a drift: Control for autocorrelation

This table test the null that our directional forecasts are uncorrelated with future
exchange rate changes controlling for the exchange rate trend in the sample period:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t − ē

(i)
n,h)] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
c,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t −ē

(i)
n,h)

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR −0.0001 0.0021∗ 0.0048∗∗∗ 0.0066∗∗∗ 0.0057∗∗∗

(−0.0282) (1.3678) (2.4090) (2.8658) (2.5081)

JPY 0.0020∗∗ 0.0024 0.0072∗∗ 0.0119∗∗ 0.0102∗

(1.7655) (0.7862) (1.6993) (2.4438) (1.6185)

GBP 0.0002 0.0023∗∗ 0.0040∗∗ 0.0057∗∗∗ 0.0061∗∗

(0.2467) (1.6851) (2.1444) (2.5322) (2.0439)

AUD 0.0015∗ 0.0025 0.0079∗∗ 0.0124∗∗∗ 0.0138∗∗∗

(1.4507) (1.0056) (2.1199) (2.9050) (2.5781)

CAD 0.0006 0.0019 0.0013 0.0070∗∗ 0.0105∗∗

(0.8580) (1.2125) (0.5694) (2.8479) (3.3878)

CHF 0.0017∗ −0.0003 −0.0004 0.0042 −0.0002
(1.3642) (−0.0976) (−0.1086) (0.9151) (−0.0409)

Panel B: Andrews

EUR −0.0001 0.0021 0.0048∗∗ 0.0066∗∗∗ 0.0057∗∗∗

(−0.0279) (1.1674) (2.0876) (2.7570) (2.4876)

JPY 0.0020∗∗ 0.0024 0.0072 0.0119∗ 0.0102
(1.6535) (0.6035) (1.1957) (1.6374) (1.0312)

GBP 0.0002 0.0023∗ 0.0040∗ 0.0057∗∗ 0.0061∗

(0.2410) (1.4749) (1.6394) (1.8042) (1.5611)

AUD 0.0015∗ 0.0025 0.0079∗ 0.0124∗∗ 0.0138∗∗

(1.4267) (0.8603) (1.5176) (2.0004) (1.6816)

CAD 0.0006 0.0019 0.0013 0.0070∗∗ 0.0105∗∗∗

(0.8490) (1.0341) (0.4522) (2.2548) (2.3498)

CHF 0.0017∗ −0.0003 −0.0004 0.0042 −0.0002
(1.6052) (−0.0961) (−0.0837) (0.6953) (−0.0296)

Notes:

1. Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for autocorrelation,

respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 18: Directional test weighted by the magnitude of exchange rate changes against
random walk with a drift: OS LRV estimators

This table test the null that our directional forecasts are uncorrelated with future
exchange rate changes controlling for the exchange rate trend in the sample period:

E[D
(i)
t,h(e

(i)
t+h − e

(i)
t − ē

(i)
n,h)] = 0

For each forecasting horizon, the following statistics is reported: T
(i)
c,n =

∑n(i)−h

t=n
(i)
0

D
(i)
t,h(e

(i)
t+h−e

(i)
t −ē

(i)
n,h)

n
(i)
1

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR −0.0001 0.0021 0.0048 0.0066∗ 0.0057∗

(−0.0833) (1.2042) (1.4904) (1.8258) (1.7403)

JPY 0.0020∗∗ 0.0024∗ 0.0072∗∗∗ 0.0119∗∗ 0.0102
(2.3087) (1.6015) (4.3011) (2.6997) (1.2261)

GBP 0.0002 0.0023∗ 0.0040∗∗ 0.0057∗∗ 0.0061∗

(0.3164) (2.0548) (3.2298) (2.7021) (1.6097)

AUD 0.0015 0.0025 0.0079∗ 0.0124 0.0138∗

(1.5261) (1.4047) (1.4054) (1.3842) (1.5826)

CAD 0.0006 0.0019 0.0013 0.0070∗ 0.0105∗

(0.7383) (0.9900) (0.5225) (1.2818) (1.2297)

CHF 0.0017∗∗ −0.0003 −0.0004 0.0042 −0.0002
(2.2195) (−0.1300) (−0.0713) (0.5148) (−0.0264)

Panel A: M = 6

EUR −0.0001 0.0021 0.0048∗ 0.0066∗ 0.0057∗

(−0.0792) (1.1426) (1.3401) (1.5856) (1.5876)

JPY 0.0020∗ 0.0024 0.0072∗∗ 0.0119∗∗ 0.0102
(1.5959) (0.7447) (2.0145) (2.5186) (1.2106)

GBP 0.0002 0.0023∗∗ 0.0040∗∗ 0.0057∗∗ 0.0061∗

(0.3484) (2.4638) (2.6707) (2.0286) (1.4797)

AUD 0.0015∗ 0.0025 0.0079∗ 0.0124∗ 0.0138∗

(1.5235) (1.1234) (1.5738) (1.5637) (1.5204)

CAD 0.0006 0.0019 0.0013 0.0070∗ 0.0105∗

(0.8014) (1.0015) (0.4838) (1.5298) (1.4923)

CHF 0.0017∗∗ −0.0003 −0.0004 0.0042 −0.0002
(2.4572) (−0.1532) (−0.0860) (0.6272) (−0.0284)

Notes:

1. Panel A and B report the test results using the orthonormal series long-run variance estimators of T
(i)
c,n. Panel A

and B use 4 and 6 for smoothing parameter (M), respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 19: Binomial directional test against random walk with a drift: No control for
autocorrelation

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate controlling for the exchange rate trend in the sample period::

Cov(D
(i)
t,h, R̄

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
d,n = 1

n
(i)
1

∑n−h
t=n

(i)
0

D
(i)
t,hR̂

(i)
t,h − [ 1

n
(i)
1

∑n−h
t=n

(i)
0

D
(i)
t,h][ 1

n
(i)
1

∑n−h
t=n

(i)
0

R̂
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

EUR 0.0070 0.0300∗ 0.0802∗∗∗ 0.0911∗∗∗ 0.0623∗∗∗

(0.3820) (1.6226) (4.5041) (5.3903) (3.7952)

JPY 0.0684∗∗∗ 0.0764∗∗∗ 0.1320∗∗∗ 0.1530∗∗∗ 0.0914∗∗∗

(2.8746) (3.1085) (5.3581) (6.1649) (3.6255)

GBP 0.0017 0.0405∗∗∗ 0.0596∗∗∗ 0.0761∗∗∗ 0.0772∗∗∗

(0.0868) (1.9751) (2.8793) (3.6452) (3.6485)

AUD 0.0289∗∗ 0.0618∗∗∗ 0.0908∗∗∗ 0.0793∗∗∗ 0.1091∗∗∗

(1.6573) (3.4508) (5.0595) (4.3982) (6.2030)

CAD 0.0183 0.0444∗∗ 0.0330∗ 0.1130∗∗∗ 0.1333∗∗∗

(0.9008) (2.1172) (1.5495) (5.3513) (6.2698)

CHF 0.0232 0.0048 0.0147 0.0812∗∗∗ 0.0963∗∗∗

(0.9471) (0.1882) (0.5643) (3.1099) (3.6844)

Notes:

1. This table presents the test results without controlling for auto-correlation induced by overlapping

observations in the forecasts.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard

normal distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent,

respectively. Positive and statistically significant test statistics indicate that our forecasts have

predictive power over the future exchange rate movement controlling for the exchange rate trend in

the sample period.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 20: Binomial directional test against random walk with a drift: Control for
autocorrelation

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate controlling for the exchange rate trend in the sample period::

Cov(D
(i)
t,h, R̄

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
d,n = 1

n
(i)
1

∑n−h
t=n0

D
(i)
t,hR̂

(i)
t,h − [ 1

n
(i)
1

∑n−h
t=n0

D
(i)
t,h][ 1

n
(i)
1

∑n−h
t=n0

R̂
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR 0.0070 0.0300 0.0802∗∗∗ 0.0911∗∗∗ 0.0623∗∗∗

(0.2599) (0.9824) (2.4663) (3.3112) (2.6545)

JPY 0.0684∗∗ 0.0764∗ 0.1320∗∗∗ 0.1530∗∗∗ 0.0914∗

(2.0455) (1.6318) (2.6245) (2.7721) (1.5774)

GBP 0.0017 0.0405 0.0596∗ 0.0761∗∗ 0.0772∗∗

(0.0647) (1.0472) (1.5362) (1.7713) (1.7203)

AUD 0.0289 0.0618∗∗ 0.0908∗∗∗ 0.0793∗∗ 0.1091∗∗∗

(1.0656) (1.9602) (2.4993) (2.1393) (2.9552)

CAD 0.0183 0.0444 0.0330 0.1130∗∗∗ 0.1333∗∗∗

(0.6379) (1.0758) (0.7216) (2.5787) (2.8721)

CHF 0.0232 0.0048 0.0147 0.0812∗ 0.0963∗

(0.6353) (0.0973) (0.2599) (1.4246) (1.5929)

Panel B: Andrews

EUR 0.0070 0.0300 0.0802∗∗ 0.0911∗∗∗ 0.0623∗∗∗

(0.2538) (0.9034) (2.0274) (3.0011) (2.5909)

JPY 0.0684∗∗ 0.0764∗ 0.1320∗∗ 0.1530∗∗ 0.0914
(2.0239) (1.3860) (2.0476) (1.9759) (1.0839)

GBP 0.0017 0.0405 0.0596∗ 0.0761∗ 0.0772∗

(0.0638) (0.9460) (1.3339) (1.3989) (1.3501)

AUD 0.0289 0.0618∗∗ 0.0908∗∗ 0.0793∗∗ 0.1091∗∗

(1.0825) (1.8471) (1.9679) (1.6812) (2.0672)

CAD 0.0183 0.0444 0.0330 0.1130∗∗ 0.1333∗∗

(0.6394) (0.9365) (0.5799) (2.0892) (2.1278)

CHF 0.0232 0.0048 0.0147 0.0812 0.0963
(0.6624) (0.0969) (0.1985) (1.1009) (1.1535)

Notes:

1. Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for autocorrelation,

spectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 21: Binomial directional test against random walk with a drift: OS LRV esti-
mators

This table tests the null that our directional forecasts are uncorrelated with the future

direction of the exchange rate controlling for the exchange rate trend in the sample period::

Cov(D
(i)
t,h, R̄

(i)
t,h) = 0

For each forecasting horizon, the following statistics is reported:

T
(i)
d,n = 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,hR̂

(i)
t,h − [ 1

n
(i)
1

∑n−h

t=n
(i)
0

D
(i)
t,h][ 1

n
(i)
1

∑n−h

t=n
(i)
0

R̂
(i)
t,h]

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR 0.0070 0.0300∗∗ 0.0802 0.0911∗ 0.0623
(0.8215) (3.0114) (1.2709) (1.7922) (1.4906)

JPY 0.0684∗∗ 0.0764∗ 0.1320∗∗∗ 0.1530∗∗∗ 0.0914∗

(2.7359) (2.0465) (5.7715) (6.1903) (1.6118)

GBP 0.0017 0.0405∗∗ 0.0596∗ 0.0761 0.0772∗

(0.0715) (2.4183) (2.0450) (1.5245) (1.5489)

AUD 0.0289 0.0618∗∗ 0.0908∗ 0.0793 0.1091∗∗

(1.3598) (2.8580) (1.9213) (1.4756) (2.2726)

CAD 0.0183 0.0444∗∗ 0.0330 0.1130∗∗ 0.1333∗

(1.0362) (2.4526) (1.1849) (3.0655) (1.8689)

CHF 0.0232 0.0048 0.0147 0.0812 0.0963
(1.1897) (0.0889) (0.1656) (0.7511) (0.9897)

Panel A: M = 6

EUR 0.0070 0.0300 0.0802 0.0911∗ 0.0623∗

(0.8287) (1.2738) (1.4378) (1.6960) (1.6042)

JPY 0.0684∗∗ 0.0764∗ 0.1320∗∗∗ 0.1530∗∗∗ 0.0914∗

(1.9663) (1.7751) (4.6714) (5.6426) (1.6103)

GBP 0.0017 0.0405∗∗ 0.0596∗ 0.0761∗ 0.0772∗

(0.0722) (2.9275) (1.5944) (1.6006) (1.7933)

AUD 0.0289 0.0618∗ 0.0908∗ 0.0793∗ 0.1091∗

(1.0388) (1.7302) (1.5803) (1.4909) (1.4531)

CAD 0.0183 0.0444 0.0330 0.1130∗ 0.1333
(0.6959) (1.3671) (0.6037) (1.5100) (1.4358)

CHF 0.0232 0.0048 0.0147 0.0812 0.0963
(0.9385) (0.1153) (0.1813) (0.9955) (0.9708)

Notes:

1. Panel A and B report the test results using the orthonormal series long-run variance estimators of T
(i)
d,n. Panel A

and B use 4 and 6 for smoothing parameter (M), respectively.

2. t-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our directional forecasts is described in the notes to Table 2.
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Table 22: DMW test against random walk with a drift

This table presents the results of DMW test of the null of equal MSPEs between

random walk with a drift and our forecasts

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 DMW

(i)
h,n√

V
DMW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: Newey-West

EUR 2.202∗∗ 2.300∗∗ 3.021∗∗∗ 3.597∗∗∗ 4.258∗∗∗

(0.014) (0.011) (0.001) (0.000) (0.000)

JPY 1.744∗∗ 1.522∗ 2.964∗∗∗ 4.127∗∗∗ 4.244∗∗∗

(0.041) (0.064) (0.002) (0.000) (0.000)

GBP 0.411 0.524 0.931 1.051 1.251
(0.341) (0.300) (0.176) (0.147) (0.105)

AUD 2.842∗∗∗ 1.841∗∗ 2.576∗∗∗ 3.305∗∗∗ 3.817∗∗∗

(0.002) (0.033) (0.005) (0.000) (0.000)

CAD 2.482∗∗∗ 2.543∗∗∗ 3.208∗∗∗ 4.140∗∗∗ 4.959∗∗∗

(0.007) (0.005) (0.001) (0.000) (0.000)

CHF 2.088∗∗ 2.413∗∗∗ 3.038∗∗∗ 4.293∗∗∗ 5.666∗∗∗

(0.018) (0.008) (0.001) (0.000) (0.000)

Panel B: Andrews

EUR 1.213 1.813∗∗ 1.985∗∗ 1.914∗∗ 1.901∗∗

(0.113) (0.035) (0.024) (0.028) (0.029)

JPY 0.901 1.222 1.846∗∗ 1.833∗∗ 1.585∗

(0.184) (0.111) (0.032) (0.033) (0.056)

GBP 0.212 0.373 0.551 0.516 0.537
(0.416) (0.355) (0.291) (0.303) (0.295)

AUD 1.528∗ 1.364∗ 1.690∗∗ 1.875∗∗ 1.921∗∗

(0.063) (0.086) (0.046) (0.030) (0.027)

CAD 1.432∗ 1.818∗∗ 2.159∗∗ 2.379∗∗∗ 2.583∗∗∗

(0.076) (0.035) (0.015) (0.009) (0.005)

CHF 1.287∗ 1.865∗∗ 1.946∗∗ 2.339∗∗∗ 2.898∗∗∗

(0.099) (0.031) (0.026) (0.010) (0.002)

Notes:

1. Panel A and B report the test results using Newey-West and Andrews LRV estimators to control for autocorrelation.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from a standard normal distribution

are used for inference. *, ** and *** indicate significance at 10, 5 and 1 percent, respectively. Positive and statistically

significant test statistics indicate that our forecasts outperform the random walk with a drift in forecasting the future

exchange rate.

3. The information on our point forecasts is described in the notes to Table 8.
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Table 23: DMW test against random walk with a drift: OS LRV estimators

This table presents the results of DMW test of the null of equal MSPEs between

random walk with a drift and our forecasts

For each forecasting horizon, the following statistics is reported:√
n
(i)
1 DMW

(i)
h,n√

V
DMW

(i)
h,n

Forecasting Horizon (h)

Currency 1m 3m 6m 9m 12m

Panel A: M = 4

EUR 1.236 1.721∗ 1.830∗ 1.786∗ 1.799∗

(0.142) (0.080) (0.071) (0.074) (0.073)

JPY 0.789 0.797 1.218 1.250 1.150
(0.237) (0.235) (0.145) (0.140) (0.157)

GBP 0.300 0.381 0.562 0.521 0.540
(0.390) (0.361) (0.302) (0.315) (0.309)

AUD 1.549∗ 1.343 1.588∗ 1.709∗ 1.778∗

(0.098) (0.125) (0.094) (0.081) (0.075)

CAD 1.213 1.865∗ 1.887∗ 1.962∗ 2.146∗∗

(0.146) (0.068) (0.066) (0.061) (0.049)

CHF 1.230 1.816∗ 1.721∗ 1.875∗ 2.363∗∗

(0.143) (0.072) (0.080) (0.067) (0.039)

Panel A: M = 6

EUR 1.093 1.558∗ 1.567∗ 1.542∗ 1.610∗

(0.158) (0.085) (0.084) (0.087) (0.079)

JPY 0.951 0.892 1.358 1.361 1.228
(0.189) (0.203) (0.112) (0.111) (0.133)

GBP 0.268 0.333 0.494 0.442 0.446
(0.399) (0.375) (0.320) (0.337) (0.336)

AUD 1.803∗ 1.297 1.432 1.480∗ 1.456∗

(0.061) (0.121) (0.101) (0.095) (0.098)

CAD 1.474∗ 2.162∗∗ 2.180∗∗ 2.183∗∗ 2.261∗∗

(0.095) (0.037) (0.036) (0.036) (0.032)

CHF 1.203 1.644∗ 1.565∗ 1.757∗ 2.094∗∗

(0.137) (0.076) (0.084) (0.065) (0.041)

Notes:

1. Panel A and B report the test results using the orthonormal series based long-run variance estimators. Panel A

and B use 4 and 6 for smoothing parameter (M), respectively.

2. p-values are in parentheses. We use the test as an one-sided test. Critical values from student t-distributions

with degree of freedom 4 and 6 distribution are used for inference. *, ** and *** indicate significance at 10, 5 and 1

percent, respectively.

3. The information on our point forecasts is described in the notes to Table 8.
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Figure 4: µ estimates

Notes:

1. This graph presents the estimated means of each state in the AR(1) Markov switching model of

the net position for all currencies. The red solid line( blue line) depicts the estimated mean of the

up (down) state, while the black line describes the estimated mean of the range state.

2. The rolling window size in the estimation of the Markov switching model is 120 weeks for EUR,

GBP and AUD, 100 weeks for CAD, and 80 weeks for JPY and CHF. The estimation begins on

01/20/1995 for GBP and AUD, on 09/01/1994 for CAD, on 04/15/1994 for JPY and CHF, and on

05/04/2001 for EUR.
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Figure 5: θ estimates

Notes:

1. This graph presents the estimated AR(1) coefficient of the Markov switching model of the net

position for all currencies. The red solid line depicts the estimated AR(1) coefficient.

2. The information on the rolling window sizes in the estimation of the Markov switching model are

described in the notes to Figure 4.
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Figure 6: Evolution of cumulative forecast success ratio: h = 1m (4 weeks)

Notes:

1. t=0 is the first week in which h month ahead forecasts are generated.

2.The forecast success ratio is defined the number of successful depreciation or appreciation forecasts

divided by the total number of depreciation and appreciation forecasts. When we predict no change

(Dt,h = 0, we do not count it in the calculation of forecast success ratio
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Figure 7: Evolution of cumulative forecast success ratio: h = 3m (13 weeks)

Notes:

1. The information on the cumulative forecast success ratio is described in the notes to Figure 6.
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Figure 8: Evolution of cumulative forecast success ratio: h = 6m (25 weeks)

Notes:

1. The information on the cumulative forecast success ratio is described in the notes to Figure 6.
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Figure 9: Evolution of cumulative forecast success ratio: h = 9m (38 weeks)

Notes:

1. The information on the cumulative forecast success ratio is described in the notes to Figure 6.
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Figure 10: Evolution of cumulative forecast success ratio: h = 12m (50 weeks)

Notes:

1. The information on the cumulative forecast success ratio is described in the notes to Figure 6.
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Figure 11: D
(i)
t,h: h = 1m (4 weeks)

Notes:

1. This graph presents the D
(i)
t,h on which our directional forecasts are based. D

(i)
t,h (blue scatter

plot) is on the left axis and the exchange rate (red line) on the right axis.

2. Blue scatter plots can take values -1 or 1. No scatter plots on the given weeks indicate D
(i)
t,h = 0.

-1 (1) predicts depreciation (or appreciation) of the given currency against US Dollar over the h

month forecasting horizon. No scatter plots on the given weeks mean that our directional forecasts

predict no change over the same forecasting horizon.
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Figure 12: D
(i)
t,h: h = 3m (13 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 11.
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Figure 13: D
(i)
t,h: h = 6m (25 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 11.
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Figure 14: D
(i)
t,h: h = 9m (38 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 11.
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Figure 15: D
(i)
t,h: h = 12m (50 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 11.
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Figure 16: X
(i)
t,h: h = 1m (4 weeks)

Notes:

1. This graph presents the X
(i)
t,h , which is the net number of periods with predicted speculators’

accumulation (decumulation) over the following h months. X
(i)
t,h (blue scatter plot) is on the left axis

and the exchange rate (red line) on the right axis.

2. Blue scatter plots can take values from -h to h except for 0, No scatter plots on the given weeks

indicate X
(i)
t,h = 0. -h (or h) indicates the magnitude of depreciation (or appreciation) over the h

forecasting horizon. No scatter plots on the given weeks mean that our directional forecasts predict

no change over the same forecasting horizon.
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Figure 17: X
(i)
t,h: h = 3m (13 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 16.
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Figure 18: X
(i)
t,h: h = 6m (25 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 16.
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Figure 19: X
(i)
t,h: h = 9m (38 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 16.
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Figure 20: X
(i)
t,h: h = 12m (50 weeks)

Notes:

1. The information on the graph is described in the notes to Figure 16.
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2 Emerging Market Business Cycles: Financial

Frictions vs Permanent Shocks

2.1 Introduction

Business cycles in emerging economies exhibit notable differences from those in devel-

oped economies: the volatility of consumption relative to output is on average greater

than one and trade balance is strongly counter-cyclical. Current theoretical explana-

tions of these divergences of business cycle features between emerging economies and

developed economies fall into two leading approaches.

The first approach, represented by Aguiar and Gopinath (2007), argues that a fric-

tionless standard real business cycle model driven mainly by shocks to trend growth

(permanent shocks to total factor productivity (TFP)) can explain all defining fea-

tures of business cycles in emerging economies. According to this view, emerging

countries, in contrast to developed countries, experience frequent regime changes be-

cause of the sudden swings in economic policies. Therefore, shocks to trend growth

are the main source of economic fluctuations in these economies, unlike developed

economies whose fluctuations are primarily driven by transitory shocks to TFP. The

second approach, exemplified by Neumeyer and Perri (2005) and Uribe and Yue

(2006), argues that in order to explain economic fluctuations in emerging economies,

one should take into account the roles of financial imperfections and external shocks

which asymmetrically affect these countries. This line of research, for example, in-

troduces foreign interest rate shocks coupled with financial frictions such as working

capital into a standard small open economy model.

To test the hypotheses implied by these two approaches from an empirical per-

spective, we need to distinguish transitory shocks from permanent shocks in the data
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and measure the relative importance of these two shocks in economic fluctuations

in emerging economies. Recent related empirical literature, encouraged by the de-

velopments in the theory and implementation of Bayesian methods, has focused on

estimating the parameters of the exogenous shock processes to test the empirical

performance of these two approaches. The results of recent studies are in favor of

the role of financial frictions and against that of shocks to trend growth. Garcia-

Cicco, Pancrazi and Uribe (2009) estimate the Aguiar and Gopinath (AG) model,

using Argentine and Mexican data over the period 1900-2005. They find that the AG

model does a poor job at explaining the observed business cycles in Argentina and

Mexico. Instead, an augmented version of the AG model, which incorporates pref-

erence shocks and country risk premium shocks into the AG model, mimics well the

observed business cycles in emerging countries. Furthermore the augmented model

assigns a negligible role to permanent productivity shocks. Chang and Fernandez

(2010) compare the performance of the AG model with that of encompassing model

which combines shocks to trend growth with interest rate shocks and financial fric-

tions, using the Mexican data of Aguiar and Gopinath (2007). Their results are also

supportive of the view that explaining fluctuations in emerging economies requires

the assumption of financial imperfections that amplify transitory shocks. In their

study, permanent shocks play an insignificant role if financial frictions are present.

However, it is too early to make conclusions since most empirical studies are cen-

tered on Latin American countries. In this paper, I instead focus on Korea, which

shares the same features of macroeconomic fluctuations observed in other emerging

countries but has gone through a different economic development process. I follow

the encompassing model developed by Chang and Fernandez (2010) as an alternative

model to the AG model. I employ the Korean data over the same period of 1980:1Q-

2003:2Q as in Aguiar and Gopinath (2007) and Chang and Fernandez (2010), thus
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ensuring that my results can be directly compared with their findings for Latin Amer-

ican countries. My work differs from Chang and Fernandez (2010) in several dimen-

sions. First, using reliable capital stock data, I explore the transitional dynamics in

Korea and its implications for the estimation results. Second, with country spread

data unavailable in Korea, I calibrate and estimate the parameters using different

methods.

As a result of Bayesian estimations of the two models, my findings are quite

contrary to those from previous studies. First, when we estimate the underlying

productivity parameter, the magnitude of permanent shocks is much larger than

that of transitory shocks. The estimated posterior mode ratio of volatilities between

transitory and permanent shocks is 0.59 in the AG model, which is very close to the

value of 0.37 obtained in Aguiar and Gopinath (2007). Furthermore, the relative

importance of permanent shocks does not subside even when financial frictions are

present. The ratio is 0.1 in the encompassing model, which is in stark contrast with

the findings of Chang and Fernandez (2010) that the volatility of innovations is much

smaller in the permanent technology process than in the transitory one. In their

results, the ratio is 5.5. Moreover, the random walk component of the Solow residual,

a measure of the relative importance of trend shocks, is as high as what Aguiar and

Gopinath (2007) obtained. This is at odds with the findings of Chang and Fernandez

(2010), and Garcia-Cicco, Pancrazi and Uribe (2009).

Second, the comparison of theoretical second moments of the two models with the

moments of Korean data also shows that the AG model delivers a closer match to the

moments calculated from the data. The AG model estimates the ratio of consump-

tion volatility relative to output as 1.13, which is almost equal to the value of 1.11

generated from the data. On the other hand, the encompassing model severely over-

estimates the ratio. Furthermore, the ratio of trade balance share volatility relative
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to output estimated by the AG model is exactly the same as that calculated from the

data.

Lastly, when I evaluate the relative contribution of the different shocks to ag-

gregate fluctuations using the variance decomposition, I find that the permanent

productivity shocks are responsible for the bulk of the macroeconomic fluctuations.

The striking result is that the contribution of transitory shocks and world interest

rate shocks to business cycles in Korea is predicted to be too trivial. They play virtu-

ally no role in explaining movements in output and consumption growth and a minor

role in explaining the variance of investment growth and the change in trade balance

share. All four of these variables are mainly driven by permanent shocks.

However, these results should be interpreted with caution, because the downward

trend of the growth rate during the transition path to the steady state in Korea might

be captured as permanent shocks. As Section 2 indicates, Korea’s economy was on

the transition path to the steady state during most of the time of the sample period

of 1980:1Q - 2003:2Q. This raises an issue in the empirical study of emerging market

business cycles. No existing studies examine explicitly whether the samples they use

for the estimation are generated from the transition or balanced growth path. In this

regard, extending the time series of data back in time as in Garcia-Cicco, Pancrazi

and Uribe (2009) without considering this issue might not be useful since it might be

only in the recent decades that emerging countries economies have been in the steady

state.

The rest of this paper is organized as follows. Section 2 examines the transition

dynamics and the key moments of business cycle in Korea. Section 3 presents the

competing models under study. Section 4 calibrates the models using Korean data and

discusses the methodology of Bayesian estimation. Section 5 presents and discusses

the results. Section 6 concludes.
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2.2 Transitional Dynamics and Business Cycle Properties in

Korea

In this Section, I briefly explore the role of transitional dynamics in explaining Korea’s

economic growth. I confirm that before the Asian crisis, Korea’s economy was on

convergence path to the steady state and thus its economic growth rate had declined

gradually over time. Also, I provide the second moment properties of the Korean

business cycle over the period of 1970-2008. Korea’s economy shares the business

cycle properties common to other emerging economies as noted in Neumeyer and

Perri (2005): consumption is more volatile than output and trade balance is strongly

countercyclical.

2.1 Transition Dynamics

Figure 21 shows the historical behaviors of the logarithm of GDP per capita, labor

share, capital to output ratio and real rate of return to capital in Korea over the

period 1970-2008, which are depicted on a quarterly basis. As we can see, the Korean

labor share gradually increased from 40% in 1970 and converged to 60% in mid-1990s.

The real rate of return to capital declined from about 12% to 2% over the period 1970

- the mid-1990s. The capital-output ratio continued to rise until the early 2000s and

has been stable around 10 since then. The trajectory of the logarithm of GDP per

capita implies that the growth rate of output gradually declined from the early 1990s.

This evidence suggests that Korea’s economy featured the transition dynamics and

gradually converged to the balanced growth path from 1970 to the mid-1990s. This

confirms Young (1994, 1995)’s findings that increasing investment rates and factor

input accumulation mainly contributes to growth in the Asian growth miracles.
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2.2 Business Cycle Properties

Table 24 presents the volatilities of the data, in terms of standard deviations, volatil-

ities relative to output, correlations with output and trade balance, and autocorrela-

tions. It uses the data in log differences except for the trade balance relative to output

(trade balance share) for which level differences are used. The column 1 of Table 24

uses the same period (1980:1Q- 2003: 2Q) as in Aguiar and Gopinath (2007), and

Chang and Fernandez (2010) so that my results can be compared with the findings for

Mexico and other emerging countries. Column 2 uses the period (1998:1Q-2008:4Q)

during which, arguably, Korea’s economy is in the steady state. Column 3 employs the

entire sample period (1970:1Q - 2008:4Q). Moments were calculated using generalized

method of moments (GMM), and standard errors are reported in parentheses.

Panel A of column 1 reports the volatility of log difference in the variables (out-

put, consumption, investment and first difference in trade balance share) for Korea’s

economy. Compared to the findings for Mexico as reported in Aguiar and Gopinath

(2007), and Chang and Fernandez (2010), Korea’s output and consumption are more

volatile but its investment and trade balance share are more stable. Panel B of column

1 reports the volatility of the variables relative to output. As we can see, consumption

is more volatile than output. The ratio of consumption volatility relative to output

is 1.1, which is smaller than that of Mexico (1.27). Panel C of column 1 presents

the correlation of the variables with output. It shows strong counter-cyclicality of

trade balance in Korea, which is also present in Mexico. Panel E of column 1 reports

autocorrelation of the variables. A notable difference between Korea and Mexico is

that the autocorrelation of output in Korea is almost zero while in Mexico it is 0.27.

The comparison across the columns in Table 24 reveals the changes in second

moments of Korea’s business cycle properties before and after the Asian crisis. After
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the crisis, output and consumption volatilities increased while investment and trade

balance volatilities declined. Interestingly, the relative volatility of consumption to

output increased from 1.11 to 1.37 while investment became less volatile relative to

output.

2.3 Models

In this section, I briefly introduce two models: the stochastic trend model developed

by Aguiar and Gopinath (2007) and encompassing model in Chang and Fernandez

(2010).

2.1 The Stochastic Trend (AG) Model

Aguiar and Gopinath (2007) have recently emphasized that the empirical failures

of the standard emerging market model can be fixed by allowing labor augmenting

growth to be random. In this section, I briefly introduce their model. Technology

is characterized by a Cobb-Douglas production function that uses capital(Kt) and

labor(Nt) as inputs:

Yt = eztK1−α
t (ΓtNt)

α (52)

where α represents labor share of output. zt and Γt represent the productivity pro-

cesses. The two productivity processes are characterized by different stochastic com-

ponents. Specifically, zt is an AR(1) process:

zt = ρzzt−1 + εzt

with |ρz| < 1, εzt is an i.i.d. process with N(0, σz).

Γt represents the cumulative product of growth shocks. In particular,
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Γt = gtΓt−1 =
t

Π
s=0
gs (53)

ln(gt+1/µg) = ρg ln(gt/µg) + εgt (54)

with |ρg| < 1, εgt is an i.i.d. process with N(0, σg). µg is the long run mean growth

rate of the economy.

Since realization of g permanently influences Γ, output is nonstationary with a

stochastic trend. Further on the Γt process is:

ln Γt = ln gt + ln Γt−1

So, we clearly see that this process is permanent in levels of Γt, while transitory

in growth rates of Γt which is gt.

I focus on GHH (1998) preferences in stead of Cobb-Douglas preferences in the

original AG model. GHH preferences are widely known to help reproduce some

emerging economies business cycles facts by making the labor supply not depend on

income levels. GHH preferences take the form as follows,

Ut =
(Ct − τΓt−1N

υ
t )1−σ

1− σ
(55)

where υ > 1 and τ > 0. The elasticity of labor supply is given by 1
υ−1

, and the

intertemporal elasticity of substitution is given by 1
σ
. To ensure that labor supply

remains bounded along the growth path, cumulative growth in the disutility of labor

is included. For utility to be well defined, βµ1−σ
g must be less than 1.
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The per period resource constraint is

Ct +Xt = Yt −Bt + qtBt+1

International financial transactions are restricted to one-period, risk-free bonds.

The level of debt due in period t is denoted Bt, and qt is the time t price of debt

due in period t + 1. The price of debt is sensitive to the level of outstanding debt,

taking the form used in Schnitt-Grohe and Uribe (2003). This is needed for the level

of bond holdings to be stationary and one of six methods imposing stationarity of

bond holdings.

1

qt
= 1 + rt = 1 + r∗ + ψ

[
e
Bt+1

Γt
−b − 1

]
(56)

where r∗ is the world interest rate, b represents the steady-state level of debt, and

ψ > 0 governs the elasticity of the interest rate to change in indebtness.

In choosing the optimal amount of debt, the representative agent does not inter-

nalize the fact that she faces an upward-sloping supply of loans, i.e. she is still a price

taker.

Capital accumulates according to

Kt+1 = Xt + (1− δ)Kt −
φ

2
(
Kt+1

Kt

− µg)2Kt

Capital depreciates at the rate δ, and changes to the capital stock includes capital

adjustment cost φ
2
(Kt+1

Kt
− µg)2Kt.

For any variable, we can normalize by trend productivity in period t − 1. A hat

is introduced to denote its detrended counterpart.

x̂t =
xt

Γt−1
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In normalized form, the representative agent’s problem can be stated recursively.

V (K̂t, B̂t, zt, gt) = max
Ĉt,Nt,K̂t+1,B̂t+1

U(Ĉt, Nt) + βg1−σ
t EtV (K̂t+1, B̂t+1, zt+1, gt+1) (57)

where U(Ĉt, Nt) =
(Ĉt−τNυ

t )1−σ

1−σ

The optimization is subject to the budget constraint

Ĉt + gtK̂t+1 = Ŷt + (1− δ)K̂ − φ

2
(gt
K̂t+1

K̂t

− µg)2K̂t − B̂t + gtqtB̂t+1 (58)

The accumulation of the capital stock, production function and net export are

given by

gtK̂t+1 = X̂t + (1− δ)K̂t −
φ

2
(
K̂t+1

K̂t

− µg)2K̂t

Ŷt = eztK̂1−α
t (gtNt)

α

N̂X t = Ŷt − X̂t − Ĉt

2.2 Encompassing Model

I follow the encompassing model developed by Chang and Fernandez (2010), which

basically introduced financial frictions into the AG model in the previous subsection.

First, they include two financial frictions (Assumption of a country spread linked to

expected productivity and Working capital assumption) into the AG model as follows.

1. Assumption of a country spread linked to expected productivity
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The price of the agent’s debt is assumed to be given from the equation (56)

1/qt = Rt + ψ

[
e
Bt+1

Γt
−b − 1

]
(59)

where Rt is a country specific rate,

Rt = StR
∗
t (60)

where R∗t is the world interest rate and St a country spread.

Unlike the AG model, The world interest rate is now assumed to be random. The

process R∗t is given by

ln(R∗t /R
∗
t−1) = ρR ln(R∗t−1/R

∗) + εRt (61)

where |ρR| < 1 and εRt is i.i.d. Innovation with mean 0 and standard deviation σR.

As in Neumeyer and Perri (2005), they let the deviations of the country spread

from its long-run level depend on expected future productivity as follows

ln(St/S) = −ηEt ln zt+1 (62)

2. Working capital assumption

Another financial friction they introduce comes from Neumeyer and Perri (2005)

and Uribe and Yue (2006), which assume that firms in emerging economies should

finance a fraction of their labor cost in advance. In this case, the labor market

equilibrium condition requires

Wt [1 + θ(Rt−1 − 1)] = α
Ŷt
Nt

(63)
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This implies that firms are assumed to finance their labor cost from households

and forced to pay a fraction θ of the labor cost before production.

Second, Chang and Fernandez (2010) allowed the country spread to depend on

permanent technology shocks as well as transitory technology shocks in their encom-

passing model. To carry out this idea, they modify the assumption (3.13) on country

risk and allow for stochastic trend shocks to also affect the spreads.

ln(St/S) = −η1Et ln zt+1 − η2Et ln(gt+1/µg)

One particular version of this, which they use, assumes that the spread is given by

(2.12), except that the transitory productivity shock zt+1 is replaced by total factor

productivity (Solow residual: SRt+1)

ln(St/S) = −ηEt ln(SRt+1/SR) (64)

where SRt = ztg
α
t and SR = µαg .

Thus, their encompassing model is given by the country spread process in (64)

along with the assumptions of stochastic interest rates (59,60 and 61), the working

capital requirement (63), and trend shocks (53) and temporary productivity shocks

(54)

2.4 Calibration and Estimation

For each model, I calibrate some parameters and estimate the rest using Korean data.

Since I explore the relative importance of sources of business cycles fluctuations, I esti-

mate the parameters of exogenous shocks processes. More specifically, the parameters

of transitory and permanent productivity processes in both models are estimated. In
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the encompassing model, the parameters of world interest rate process are also esti-

mated. To calibrate the parameter values discount factor (β) and long-run country

spread S as in Chang and Fernandez (2010) and Aguiar and Gopinath (2007), I need

Korea’s gross interest rate data. Unfortunately, the data is not available for Korea. I

instead use Korea’s capital stock data to calibrate those parameter values. For some

parameter values, there exist notable differences between Korea and other emerging

countries.

2.1 Calibration

Table 25 reports the parameter values calibrated using the steady state equations

or standard values from the literature. The time unit in the model is a quarter in

my calibration. The parameter values in the GHH preferences (55) that I set to

conventional values are the coefficients of relative risk aversion σ that I set to 2 and

the curvature of labor υ that I set to 1.6 in both models.

I follow Schmitt-Grohe and Uribe (2003) and assign a small value 0.001 to the

parameter ψ in the country’s debt equation (59) for both models, measuring the

sensitivity of the country interest rate premium to deviations of external debt from

the trend.

For the other structural parameters, I calibrated µg, α, β, τ and δ so that the

balanced growth paths in the model are consistent with the long-run averages in the

data, using the Korean data for the period from 1980:1Q to 2003:2Q. In particular,

I set the growth rate parameter µg for both models to 1.015 to match the average

growth rate of 1.5% per quarter. I set the labor share parameter α in the production

function (52) to 0.57 in the stochastic trend model to match an average labor share

of income during the sample period, which is quite lower than that of other emerging
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countries. In the encompassing model, I set α to 0.58 in the encompassing model28.

The labor parameter τ in the GHH preferences for the stochastic trend model is set to

3.004 to match average time spent working of 41.7% of total time (10 hours per day),

which reflects that average hours worked per month in Korea is 210 hours during the

period29. In the encompassing model, taking adjusted labor share into account, I set

it to 2.8104.

For calibrating δ, notice that given the observations for the average investment

to output ratio, the average capital to output ratio and the average growth rate

calculated from Korean data, we can pindown depreciation rate of capital δ from the

steady state equation. The average investment to output ratio and capital to output

ratio are 0.308 and 8.03 respectively during the sample period. The average growth

rate is 1.015. Therefore, depreciation rate of capital δ is calculated to 0.022 in both

models. Given the values for µg, δ, α, σ and the average capital to output ratio, we

can calibrate the discount rate β to 0.9982 using steady state debt Euler equation

and capital Euler equation in the stochastic trend model. Also, R∗ can be pin downed

as 1.0321. In the encompassing model, in order to set β and S, we need the gross

country specific interest rate data. Unfortunately, those data are not available in

Korea during the sample period. Instead, we have the real rate of return to capital

and gross foreign interest rate R∗ which is quarterly average US real interest rate

during the sample period, 1.0025. Therefore, I set R and S (R − R∗) to 1.0305 and

1.028 respectively in the encompassing model. Accordingly, β is calculated to 0.9992.

Data of debt to output ratio during the sample period is not available. I set b to 0.1

28In the encompassing model, α is not exactly equal to labor share, but it is α = labor share ×
[1 + (R− 1)θ]. I compute the value using the posterior mode of θ, 0.83.

29According to OECD (2008), over the period from 1980 to 2006, the average hours worked per
year per employed person in Korea 2,669, which was much longer than 1,821 in the US and 1,833 of
average in OECD countries.
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in both models, considering steady state trade balance to output ratio and country

specific interest rates R.

2.2 Bayesian Estimation

I estimate the remaining parameters, using Bayesian methods and Korean data on

aggregate output (Y ), consumption (C), investment (I), and the trade balance to

output ratio (TB/Y ). For comparison with Latin American countries, the data are

quarterly for the period from 1980:1Q to 2003:2Q, as in Aguiar and Gopinath (2007)

and Chang and Fernandez (2010). Key parameters to be estimated are ρz, ρg, σz and

σg governing the transitory and permanent productivity processed in both stochas-

tic trend and encompassing model. In the encompassing model, I estimate the AR

coefficient ρR and standard deviation of the innovations σR of the world interest rate

process. In addition, the elasticity of the spread to expected productivity (η) and the

working capital requirement parameter (θ) are also estimated in the encompassing

model. In both cases, I estimate the parameter φ governing the capital adjustment

cost. I also estimate four non-structural parameters representing the standard de-

viations of i.i.d. measurement errors on the four aggregate variables, σC , σC , σI and

σTB/Y .

My empirical implementation follows the methods of Chang and Fernandez (2010)

which draw on An and Schorfheide (2007), Fernandez-Villaverde (2010) and etc. Once

the model is linearized around its non-stochastic steady state, the system of equations

can be characterized in the form of a transition equation

Zt = PZt−1 +Qυt

where Zt is a vector with model variables, υt is a vector of structural shocks, and P
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and Q are system matrices.

The system of equations should be transformed into following measurement equa-

tion to implement Kalman filter.

Dt = F +GZt + εt

where Dt is an observed data set and εt are exogenous i.i.d. measurement errors.

In this model, since the solutions of the model is characterized in terms of log-

deviations from steady state, it is difficult to deal with the trend shock. So a trans-

formation of data and model variables is needed as shown below.

∆ ln(Dt) = lnµg + (d̂t − d̂t−1) + ĝt

where ∆ ln(Dt) denotes the first log difference of the data and a hat denotes log-

deviations from steady state values.

Since trade balance to output ratio is not affected by trend shocks, we can directly

map the observed data to the model based data. Moreover, we take a linear approx-

imation (not log-linearization) to model-based measure of trade to output ratio, the

mapping in terms of first difference is

∆(TBt/Yt) = (t̂byt − t̂byt−1)

I repeat the maximization algorithm using random starting values for the param-

eters drawn from their prior support to find the posterior mode and check whether

multiple modes exist. Then, I used the Random Walk Metropolis algorithm to gen-

erate 150,000 draws from the posterior distribution. The initial 50,000 draws were

discarded.
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2.5 Results

Since there are no earlier studies on Korea’s business cycle, I use the same priors

over the parameters to be estimated as in Chang and Fernandez (2010). Their priors

are based on earlier studies on emerging market business cycles such as Aguiar and

Gopinath (2004), Garcia-Cicco et al (2009), Neumeyer and Perri (2005) and Uribe

and Yue (2006). Since Korean and Mexican economies share the same business cycles

properties in many aspects, I believe that it is reasonable that I use the same priors

for Mexico over the parameters of Korea’s economy to be estimated.

2.1 Priors and Posteriors

The priors I use are described in Table 26. Key parameters to be estimated are

those that govern the temporary and permanent technology processes: σz, σg, ρz

and ρg. The relative magnitude of σz and σg is especially crucial to identifying

the sources of emerging market business cycles. Unfortunately, prior studies on the

relative magnitude of two shocks present mixed results. While Aguiar and Gopinath

(2004) estimated a ratio of σz
σg

= 0.41
1.09

= 0.4 for Mexico, Garcia-Cicco et al (2009)

finding was ,σz
σg

= 1.9
1.7

= 1.1. Chang and Fernandez (2010), which I follow, set their

prior mean of 0.74 for σz and σg using the mean of the point estimates of σz and σg

in Aguiar and Gopinath (2004).

Table 27 describes the estimated posterior distributions of the parameters of the

AG and encompassing models. The first three columns present priors and posterior

modes, means and 90 percent confidence intervals of the parameters in the AG model.

The next two columns report posterior modes, means and 90 percent interval for the

encompassing model. Figure 22 and 23 depict priors and posterior distributions for

the AG and encompassing models, respectively.
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Several results are worth mentioning:

1. The data are informative in the sense that the estimated posteriors provide

more precise information than priors as measured by the width of the 90 percent

confidence intervals. For example, the 90 percent interval of the posterior for

ρg, the parameter that governs the persistence of the permanent technology

process, becomes much narrower than that of the prior in the estimation of

encompassing model. By contrast, the 90 percent interval of the posterior for

ρz, the parameter that governs the persistence of the transitory technology

process, shows no changes compared to that of the prior. This finding is quite

at odds with Chang and Fernandez (2010) and Garcia-Cicco et al. (2009) who

weakly identified the persistence of the trend shock to productivity.

2. The role of trend shocks in the encompassing model is more dominant than

that implied by the prior. The estimated posterior mode ratio of volatilities

between transitory and trend shocks, σz
σg

= 0.13
1.25

= 0.1, is far below the value

(5.5) estimated by Chang and Fernandez (2010). This result is more consistent

with Aguiar and Gopinath’s (2007) finding that the volatility of innovations is

much larger in the permanent technology process than in the transitory one.

To see this more clearly, I estimate the AG model shutting down both interest

rate shocks and financial frictions. The ratio in the AG model, 0.59, is very

close to the value (0.38) estimated by Aguiar and Gopinath’s (2007) while it is

quite below the value estimated by Chang and Fernandez (2010).

3. To confirm the relative importance of trend shocks, I calculate the random walk

component (RWC) of the Solow residual defined as in Aguiar and Gopinath
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(2007).

RWC =
α2σ2

g/(1− ρg)2

[2/(1 + ρz)2] +
[
α2σ2

g/(1− ρg)
]

RWC for the encompassing model, 4.7, is far above the value of 0.2 estimated

by Chang and Fernandez (2010), while that for the AG model, 4.6, is quite close

to the value obtained by Aguiar and Gopinath (2007).

4. In contrast with the major role played by permanent shocks, transitory shocks

play a minor role in the encompassing model. Interestingly, the volatility of

innovation in the transitory technology process is much smaller in the encom-

passing model than in the AG model. However, the volatility of innovation in

the permanent technology process are the same in both models.

5. The volatility of innovation in the country interest rate process, 0.25%, is below

the value of 0.40% estimated by Chang and Fernandez (2010).

6. Posterior distributions of the parameters θ and η governing the degree of fi-

nancial frictions in the encompassing model are positive. The posterior mode

for θ is 0.68, which is very close to the 0.69 value estimated by Chang and

Fernandez (2010). The posterior mode of 0.84 for η, which is higher than the

0.73 value in Chang and Fernandez (2010), reveals a significant elasticity of the

spread to the expected movements in the country fundamentals, included in the

Solow residual. Even though the data assign a non-negligible role to financial

frictions, this does not necessarily mean that the encompassing model mimics

well the observed business cycle in Korea. In the next subsection, I evaluate the

two models comparing the sample moments from the data with the moments

predicted by the two models.
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2.2 Second Moments

The literature on the economies business cycles in emerging economies has empha-

sized some key moments in model evaluation. The counter-cyclicality of the trade

balance and high volatility of consumption relative to output have drawn much atten-

tion in evaluating existing models. In this regard, Table 28 summarizes key moments

of interest such as volatilities, correlations with output and trade balance, and serial

correlations implied by the AG and encompassing models, along with filtered sample

moments of Korean data. I filter the data using log-differences for output, consump-

tion and investment, and first differences for the trade balance share. Model-based

moments are computed using posterior mode estimates.

Table 28 shows that the AG model delivers a close match to the moments cal-

culated from the data. First, the encompassing model severely underestimate the

volatility of output and investment. By contrast, the AG model predicts more accu-

rate investment and consumption volatilities in accordance with the data. Second,

the AG model estimates the ratio of consumption volatility relative to output, 1.13,

which is almost equal to the value of 1.11 generated from the data. On the other

hand, the encompassing model severely overestimates the ratio. Furthermore, the

ratio of trade balance share volatility relative to output estimated by the AG model

is exactly the same as that calculated from the data. Third, the AG model also

predicts that the correlation between trade balance share and output, a measure of

counter-cyclicality of trade balance, is - 0.53, which is very close to the value of -0.43

in the data. Lastly, the AG model delivers a very close match to negative correlations

of the trade balance share with consumption and investment in the data.
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2.3 Variance Decomposition

Table 29 and 30 report the variance decomposition predicted by the AG and encom-

passing models, respectively. They assess the relative role of each structural shock in

explaining macroeconomic fluctuations in Korea. I computed each share of structural

shocks in both models in the variance of output growth (gY ), consumption growth

(gC), investment growth (gI) and the changes in the trade balance to GDP ratio

(dTB/Y ). Variance decompositions are computed from the estimation using above

four variables and measurement errors. Numbers are reported using posterior means

estimates and only the role of the structural shocks was taken into account.

Table 29, which reports the variance decomposition predicted by the AG model,

shows that trend shocks play a major role in explaining the variance of all variables.

Notably, trend shocks explain 80.1% and 98.6% of the variances of investment growth

and the change in the trade balance to GDP ratio, respectively. On the other hand,

the shares of transitory shocks in explaining the variance of each variable are all lower

than those of permanent shocks.

In Table 30 which presents the variance decomposition predicted by the encom-

passing model, the dominant role of permanent shocks does not subside but grows.

The notable result is that the contribution of transitory shocks and world interest

rate shocks to business cycles in Korea is predicted to be too trivial. Transitory and

world interest rate shocks play virtually no role in explaining movements in output

and consumption growth. In addition, they play a minor role in explaining the vari-

ance of investment growth and the change in trade balance share. All four of these

variables are driven by permanent shocks.
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2.6 Conclusion

In this paper, I compare the performance of AG(stochastic trend) model and Chang

and Fernandez (2010)’s encompassing model that combines stochastic trend with

interest rate shocks and financial frictions, using the Korean data set over the pe-

riod 1980-2003:1Q, which is the same period as in Aguiar and Gopinath (2007) and

Chang and Fernandez (2010). In contrast to the results of Garcia-Cicco, Pancrazi and

Uribe (2009) and Chang and Fernandez (2010) for Mexico and Argentina, the role

of permanent shocks seems to be dominant in both models. The estimated posterior

mode ratios of volatilities are σz
σg

= 0.74
1.25

= 0.59 in the stochastic trend model and

σz
σg

= 0.13
1.25

= 0.1 in the encompassing model. Also, the random work components of

the Solow residual are also high for both models.

These findings are also confirmed by the results of variance decompositions and

the comparison of theoretical second moments of each model with the moments of the

Korean data. The permanent productivity shocks play a dominant role in explaining

macroeconomic fluctuations in Korea over the sample period. Also, the stochastic

trend model delivers a closer match to the moments calculated from the data.

However, these results should be interpreted with caution, because the downward

trend of the growth rate in the transition path could be captured as permanent shocks.

As section 2 indicates, Korea’s economy was in the transition path during most of

the time in the sample period of 1980-2003:1Q. In fact, Korea’s growth rate tended

to keep going down gradually within the sample period until the Asian crisis in 1997

which, I believe, is the starting point of the balanced growth path in Korea.
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2.7 Appendix

2.7.A Tables and Figures

Table 24: Second moments for Korea’s economy

X 80 : 1Q ∼ 03 : 2Q 98 : 1Q ∼ 08 : 4Q 70 : 1Q ∼ 08 : 4Q

Standard Deviation (SD) (%)

gY 1.82 (0.22) 1.99 (0.46) 1.84 (0.39)

gC 2.02 (0.54) 2.72 (0.78) 1.85 (0.59)

gI 4.34 (0.44) 4.06 (0.92) 6.09 (0.92)

dTB/Y 0.98 (0.21) 1.20 (0.34) 0.92 (0.22)

SD(gX or dX)/SD(gY )

gC 1.11 (0.22) 1.37 (0.13) 1.01 (0.15)

gI 2.39 (0.19) 2.04 (0.17) 3.31 (0.53)

dTB/Y 0.54 (0.08) 0.61 (0.07) 0.50 (0.05)

Correlation with gY

gC 0.73 (0.12) 0.91 (0.05) 0.67 (0.11)

gI 0.66 (0.11) 0.88 (0.06) 0.51 (0.09)

dTB/Y −0.43 (0.24) −0.64 (0.21) −0.27 (0.24)

Correlation with dTB/Y

gC −0.73 (0.13) −0.79 (0.13) −0.49 (0.29)

gI −0.52 (0.16) −0.66 (0.18) −0.38 (0.12)

Serial correlation

gY 0.01 (0.17) 0.18 (0.07) −0.01 (0.11)

gC 0.32 (0.08) 0.08 (0.09) 0.21 (0.08)

gI 0.17 (0.13) 0.13 (0.06) −0.07 (0.10)

dTB/Y 0.13 (0.10) −0.05 (0.06) 0.05 (0.10)

Notes:

1. This table presents values of the second moments for Korea’s economy over three different periods.

Moments are calculated using GMM. The standard deivations are in parenthesis.

2. gX and dX denote log-differences and first differences in X = Y, C, I and TB/Y, respectively.

For gX and dX, unfiltered data are used.
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Table 25: Calibrated Parameters

Parameter Description Stochastic trend Encompassing

σ Intertemporal elasticity of substitution (1/σ) 2 2

β Discount factor 0.9982 0.9992

τ Labor parameter so that N = 0.417 3.004 2.810

ν Labor supply elasticity [1/(ν − 1)] 1.6 1.6

µg Growth rate 1.015 1.015

α Labor share 0.57 0.58

δ Depreciation rate 0.022 0.022

b Debt to GDP ratio 0.1 0.1

ψ Debt elastic interest rate parameter 0.001 0.001

R∗ Gross foreign interest rate 1.0321 1.0025

R Gross country specific interest rate - 1.0305

S Long-run country spread - 1.0280

Notes:

1. α is given as labor share *[1+(R∗ − 1)]θ in the encompassing model. To calibrate α, I use the posterior mode of θ.

110



Table 26: Prior Distributions

Parameter Range Density Mean S.D(%) 90% C.I

Parameters common to both models

ρz [0, 1) beta [356.2; 18.75] 0.95 1.12 [0.92; 0.97]

σz R+ Gamma [2.060; 0.004] 0.74 0.56 [0.12; 1.67]

φ R+ Gamma [3.000; 2.000] 6.00 346 [1.62; 12.6]

σX R+ Gamma [4.000; 0.005] 2.00 1.00 [0.67; 3.86]

ρg [0, 1) beta [285.1; 110.9] 0.72 2.25 [0.68; 0.76]

σg R+ Gamma [2.060; 0.004] 0.74 0.56 [0.12; 1.67]

Parameters specific to the encompassing model

ρR [0, 1) beta [44.26; 9.06] 0.83 5.10 [0.74; 0.91]

σR R+ Gamma [5.5552; 0.0013] 0.72 0.31 [0.30; 1.29]

θ [0, 1) Beta [2.000; 2.000] 0.83 22.4 [0.13; 0.87]

η R+ Gamma [99.52; 0.010] 1.00 10.1 [0.84; 1.17]

Notes:

1. ρz is the AR(1) coefficient in the transitory technology process.

2. σz is the standard deviation(%) of transitory shock.

3. φ is the capital adjustment cost parameter.

4. σX is the standard deviation(%) of the measurement error in X = Y, C, I and TB/Y.

5. ρg is the AR(1) coefficient in the permanent technology process.

6. σg is the standard deviation of permanent shock(%).

7. ρR is the AR(1) coefficient in the foreign interest rate process.

8. σR is the standard deviation(%) of foreign interest shock.

9. θ is the working capital parameter.

10. η is the country spread elasticity.
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Table 27: Posterior Distributions: Stochastic trend vs Encompassing model

Stochastic trend Encompassing
Parameter Prior Mode Mean & 90% C.I Mode Mean & 90% C.I

ρz 0.95 0.95 0.95 0.95 0.95
[0.92, 0.97] [0.93, 0.96] [0.93, 0.97]

ρg 0.72 0.71 0.71 0.65 0.65
[0.68, 0.76] [0.68, 0.74] [0.62, 0.68]

σz 0.74 0.74 0.74 0.13 0.11
[0.12, 1.67] [0.51, 0.96] [0.02, 0.23]

σg 0.74 1.25 1.26 1.25 1.26
[0.12, 1.67] [1.10, 1.54] [1.04, 1.50]

φ 6.00 12.4 12.7 34.9 35.2
[1.62, 12.6] [9.4, 17.0] [27.4, 43.9]

σY 2.00 0.87 0.88 1.17 1.18
[0.67, 3.86] [0.63, 1.12] [1.03, 1.37]

σC 2.00 0.86 0.86 0.62 0.61
[0.67, 3.86] [0.64, 1.07] [0.33, 0.86]

σI 2.00 3.04 3.08 3.33 3.37
[0.67, 3.86] [2.70, 3.51] [2.98, 3.82]

σTB/Y 2.00 0.44 0.43 0.51 0.51
[0.67, 3.86] [0.24, 0.61] [0.32, 0.68]

ρR 0.83 0.82 0.83
[0.74, 0.91] [0.73, 0.90]

σR 0.72 0.26 0.25
[0.30, 1.29] [0.13, 0.40]

θ 0.50 0.68 0.67
[0.13, 0.87] [0.23, 0.97]

η 1.00 0.84 0.83
[0.84, 1.17] [0.67, 0.98]

Notes:

1. ρz is the AR(1) coefficient in the transitory technology process.

2. σz is the standard deviation(%) of transitory shock.

3. φ is the capital adjustment cost parameter.

4. σX is the standard deviation(%) of the measurement error in X = Y, C, I and TB/Y.

5. ρg is the AR(1) coefficient in the permanent technology process.

6. σg is the standard deviation(%) of permanent shock.

7. ρR is the AR(1) coefficient in the foreign interest rate process.

8. σR is the standard deviation(%) of foreign interest shock.

9. θ is the working capital parameter.

10. η is the country spread elasticity.
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Table 28: Second moments: Data vs two alternative models

Variable Korean data Stochastic trend model Encompassing model

Standard Deviation (SD) (%)

gY 1.82 (0.22) 1.63 1.20

gC 2.02 (0.54) 1.84 1.91

gI 4.34 (0.44) 3.15 2.62

dTB/Y 0.98 (0.21) 0.88 1.07

SD(gX or dX)/SD(gY )

gC 1.11 (0.22) 1.13 1.59

gI 2.39 (0.19) 1.93 2.18

dTB/Y 0.54 (0.08) 0.54 0.89

Correlation with gY

gC 0.73 (0.12) 0.95 0.97

gI 0.66 (0.11) 0.92 0.83

dTB/Y −0.43 (0.24) −0.53 −0.70

Correlation with dTB/Y

gC −0.73 (0.13) −0.76 −0.86

gI −0.52 (0.16) −0.81 −0.97

Serial correlation

gY 0.01 (0.17) 0.11 0.21

gC 0.32 (0.08) 0.06 0.10

gI 0.17 (0.13) 0.01 −0.08

dTB/Y 0.13 (0.10) −0.06 −0.11

Notes:

1. gX and dX denote log-differences and first differences in X = Y, C, I and TB/Y, respectively.

2. This table compares model based moments from two alternative models with histroical moments

calculated using the Korean data, 1980:1Q- 2003:2Q. Historical moments are calculated using

GMM. The standard deivations are in parenthesis.

3. Model based moments are computed using posterior mode. All estimations use measurement

errors in all four variables.

113



Table 29: Forecast Error Variance Decomposition: Stochastic trend model

Structural shock gY gC gI dTB/Y

εg 50.9 76.4 80.1 98.6
Permanent productivity shock

εz 49.1 23.6 19.9 1.4
Transitory productivity shock

Notes:

1. gX and dX denote log-differences and first differences respectively. Variance decompositions

computed from the estimation using four observables and measurement errors in all variables.

Values are reported using posterior modes.

Table 30: Forecast Error Variance Decomposition: Encompassing model

Structural shock gY gC gI dTB/Y

εg 96.8 92.0 74.7 61.8
Permanent productivity shock

εR
∗

1.0 3.3 14.6 25.8
World interest rate shock

εz 2.2 4.6 10.6 12.4
Transitory productivity shock

Notes:

1. gX and dX denote log-differences and first differences respectively. Variance decompositions

computed from the estimation using four observables and measurement errors in all variables.

Values are reported using posterior modes.
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Figure 21: Transitional dynamics in Korea’s economy

Sources: The Bank of Korea and author’s calculations
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Figure 22: Priors and Posteriors: Stochastic trend model

Notes:

1. The plots in this figure draw the prior and posterior distributions of the parameters in the

stochastic trend model.
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Figure 23: Priors and Posteriors: Encompassing model

Notes:

1. The plots in this figure draw the prior and posterior distributions of the parameters in the

encompassing model.
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Figure 24: Impulse Response functions: Stochastic trend model

Notes:

1. Each column depicts the repones of output(Y), consumption(C), investment(I), employment(h)

and trade balance scaled by output (TB/Y) as deviations form steady state, after an estimated 1

S.D. shock to transitory technology process (z shock) and permanent technology process (g shock).

Dash lines depict 90 percent interval based on the posterior distribution.
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Figure 25: Impulse response functions: Encompassing model

Notes:

1. Each column depicts the repones of output(Y), consumption(C), investment(I) and trade balance

scaled by output (TB/Y) as deviations form steady state, after an estimated 1 S.D. shock to transi-

tory technology process (z shock), the foreign interest rate process (R∗) and permanent technology

process (g shock). Dash lines depict 90 percent interval based on the posterior distribution.
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