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Abstract of the Thesis

Construction of Maximin Distance Designs via

Level Expansion

by

Qian Xiao

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Hongquan Xu, Chair

Maximin distance designs as an important class of space-filling designs are widely

used today, yet their constructions are challenging. In this article, we develop

a 3-step procedure which can efficiently generate maximin distance Latin hyper-

cube designs and maximin distance fractional factorial designs. This new method

selects existing efficient low-level designs to generate high-level maximin distance

designs via level expansion. The generated maximin distance designs are of flex-

ible run and factor sizes and also have robust pairwise correlations. To justify

this method, we derive the relationships of the distance distributions between the

initial low-level designs and the generated high-level designs. We also prove the

relationships between the generalized word length patterns of the initial low-level

designs and the distance distributions of the generated high-level designs. Ex-

amples are presented to show that this new method outperforms many current

prevailing methods in generating maximin distance designs.
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CHAPTER 1

Introduction

Computer experiments play a key role in modern era of product and technol-

ogy developments. Since deterministic models are used in computer experiments,

their outputs are subject to no randomness. Thus, replicate points under any

design projection are undesirable. McKay, Beckman and Conover (1979)[MBC79]

propose the Latin hypercube designs (LHDs) whose columns are some distinct

permutations of number 1, 2, . . . , n (n is the number of runs). LHDs are widely

used in computer experiments due to their unique point projections on any one

dimension. Space-filling designs is another important class of designs suitable

for computer experiments. The space-filling property, which spreads the design

points out across the entire experimental region, can bound the bias between the

meta-models and the true models in computer experiments (Fang, Li, and Sud-

jianto (2005)[FLS05]). Thus, in practice space-filling Latin hypercube designs are

usually considered as the most desirable for computer experiments.

Constructing space-filling LHDs, especially ones with large run and factor

sizes, is challenging. Different methods and various optimality criteria have been

proposed. Some researchers construct orthogonal LHDs, e.g., Bursztyn and Stein-

berg (2002) [BS02], Cioppa and Lucas (2007)[CL07], Sun et al. (2010) [SLL10]

and Yang and Liu (2012)[YL12]. However, orthogonal LHDs are not necessarily

space-filling, e.g. design (a) in Figure 1.1. Hickernell (1998) [Hic98] defines several

discrepancy criteria via reproducing kernel Hilbert spaces and claims that designs

with smaller discrepancy values are more space-filling. Among these discrepancy
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criteria, the following defined centered L2 discrepancy (CD) is the most widely

accepted.

(CD(Dn))2 = (
13

12
)k − 2

n

n∑
i=1

k∏
j=1

[1 +
1

2
|xi,j − 0.5| − 1

2
|xi,j − 0.5|2]

+
1

n2

n∑
i=1

n∑
j=1

k∏
l=1

[1 +
1

2
|xi,l − 0.5|+ 1

2
|xj,l − 0.5| − 1

2
|xi,l − xj,l|]

where xi,j is the element of the ith row and jth column from the design matrix

Dn. However, Zhou, Fang and Ning (2012) [ZFN13] find the curse of dimen-

sionality that CD optimal designs concentrate more points in the center for high

dimensional cases.

Figure 1.1: Comparison of 9-run 2-factor LHDs

Johnson et al. (1990) [JMY90] propose the maximin distance criterion which

interpolates design points over the domain in a way that the minimum distance

between pairs of points is maximized. They have also established an equivalence

of the maximin distance criterion and an entropy criterion in a Bayesian setting.

Maximin distance designs ensure that no design points are too close to each other.

Due to the goodness and robustness of the maximin distance criterion in measuring

designs’ space-filling property, we aim at constructing maximin distance designs

in this article. Morris and Mitchell (1995)[MM95] propose a scalar value:

φp =

(
n∑
i=2

i−1∑
j=1

1

dpi,j

) 1
p

, (1.1)
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where di,j is the distance between the ith and jth row of the design. When p

becomes large enough, φp is asymptotically identical to the maximin distance

criterion. They also adopt a simulated annealing algorithm to search maximin

distance LHDs. Joseph and Hung (2008) propose a multi-objective optimiza-

tion approach to generate orthogonal maximin LHDs (OMLHDs). OMLHDs are

searched towards a multi-objective criterion combining the φp value defined in

(1.1) and the average column-wise correlation of the design. Ba et al (2014)

[BBM14] propose an efficient algorithm, available as the R package ”SLHD”, to

generate maximin LHDs with flexible run and factor sizes. The algorithms by

Joseph and Hung (2008) and Ba et al (2014) are currently most efficient ways in

generating space-filling LHDs with flexible run and factor sizes.

To achieve stratification on multi-dimensional projections, Tang (1993) [Tan93]

proposes the orthogonal array based LHDs (OALHDs). He first randomizes the

rows, columns and symbols of a randomly chosen orthogonal array (OA) and then

randomly expands its levels to generate a LHD. Yet, OALHDs can be bad towards

space-filling property, for example, design (b) in Figure 1.1. Even the orthogonal

OALHDs are still not space-filling, e.g., design (c) in Figure 1.1. As a following

research, Leary, Bhaskar and Keane (2003) [LBK03] adopt a simulated annealing

algorithm to search maximin OALHDs. Their results are still not satisfactory,

since they fail to find out suitable initial OAs (refer to part 4.1).

Besides space-filling LHDs, space-filling fractional factorial designs are also of

important use. In some combinatory drug experiments, researchers need to explore

various models on the data due to the inherent complexity of the biological system.

Under such situations, space-filling designs are desirable. In addition, since the

number of levels for every drug should be relatively small in practice, space-

filling fractional factorial designs with relatively small levels should be used (Zhou

and Xu, (2014)[ZX14]). To find maximin fractional factorial designs, Zhou and

Xu (2014)[ZX14] propose a level permutation method. They first select existing

3



orthogonal arrays with sequentially minimized generalized word length pattern.

Then they permute their levels and select the maximin distance designs.

In this article, we propose a maximin level expansion (MmLE) method which

can efficiently generate maximin distance LHDs and factorial designs with flexible

run and factor sizes. It includes three steps: first finding generalized minimum

aberration (GMA) designs (with sequentially minimized generalized word length

patterns), then selecting maximin design by doing level permutations and finally

performing level expansion (refer to part 3.1 for details). The first two steps, sim-

ilar to Zhou and Xu (2014)[ZX14], give the best initial designs for level expansion

and the third step includes Tang’s level expansion idea. In part 4.2, we present ex-

amples to show that designs by our MmLE method have better maximin distance

property than those by Zhou and Xu (2014)[ZX14]. Moreover, their permuta-

tion method requires suitable existing OAs which are hard to find in many cases

whereas our MmLE method is more flexibile in designs’ run and factor sizes. We

also develop theories on the relationships of the space-filling property between the

initial and generated designs. In addition, we prove the relationships between the

initial designs’ generalized word length patterns and the generated designs’ av-

erage space-filling property. Compared with Tang (1993), this article generalizes

Tang’s level expansion idea, provides an efficient construction of maximin distance

OALHDs, and fill in some theoretical blanks of Tang’s work.

The article is organized as follows: in part 2, we develop theories to justify the

method. In part 3, we introduce the 3-step procedure, the threshold accepting

(TA) searching algorithm and the justifications for the MmLE method. In part 4,

examples are given to show that our MmLE method outperforms the ordinary level

expansion method by Leary, Bhaskar and Keane (2003) [LBK03], the OMLHD

method by Joseph and Hung (2008), the R package ”SLHD” by S Ba, the level

permutation method by Zhou and Xu (2014)[ZX14], and the uniform designs by

Kaitai Fang and his colleagues. In part 5, we introduce the multi-phase MmLE

4



method for constructing large maximin designs. Part 6 concludes and all proofs

are given in the Appendix.
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CHAPTER 2

Some Theoretical Results

Denote D(n, sk) as an n-run, k-factor and s-level (labelled as 1, 2, . . . s) balanced

design where each level appears n/s times in every column. From D(n, sk) we

can generate a set of designs D
′
(n, (ms)k) with ms levels by the following level

expansion procedure. For each column in design D, we replace the n/s positions

of entry l (l = 1, 2, . . . , s) by a random sequence of n/(ms) replicates of numbers:

(l−1)m+1, (l−1)m+2, . . . , (l−1)m+m. Here n, k, s,m are all positive integers

which are larger than 1, and n is divisible by ms. When m = n/s, the generated

designs D
′

are LHDs.

Example 1 As an illustration, here we perform the level expansion procedure to

generate D
′
(8, 42) from D(8, 22). For each column of design D, we first replace

all 4 entries of 1 in D with a random permutation of numbers: 1, 1, 2, 2, and then

replace all 4 entries of 2 with a random permutation of numbers: 3, 3, 4, 4, thus

generating a 4-level design D
′
. In all we have 1296 possible D

′
s.

D =

 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

T

⇒ D
′
=

 1 2 1 2 3 4 4 3

1 3 2 4 1 4 2 3

T

or . . .

Denote xi,l as the (ith,lth) element and xi as the ith row of the design matrix D.

After the level expansion process, they become x
′

i,l and x
′
i of the generated design

D
′

respectively. Denote hi,j as the Hamming distance (number of positions that

the corresponding entries in the pair of rows are different) between rows xi and

xj. Define dil,jl = |xi,l − xj,l|. Denote the L-1 distance between two rows xi and
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xj as di,j =
∑k

l=1 dil,jl. Denote dmin(D) as the minimum L-1 distance among all

pairs of rows in design D. In the same way, we define h
′
i,j, d

′

il,jl, d
′
i,j and dmin(D

′
)

for the derived design D
′

respectively. For any balanced design D, we define the

L-1 distance distribution as

Bl(D) = n−1#{(i, j) : di,j = l;xi, xj ∈ D, i, j = 1, 2, . . . , n} . (2.1)

It is easy to show that B0(D) > 1 and a design without repeated runs has B0(D) =

1. The maximin distance design is defined as the one which sequentially minimizes

the distance distribution B0(D), B1(D), B2(D), B3(D), . . .. Thus, designs with

smaller φp values defined in (1.1) have better distance distributions.

Lemma 1 (a) The upper and lower bounds for the pairwise L-1 distances of the

generated design D
′

are: (i, j = 1, 2, . . . , n and i 6= j)

mdi,j − (m− 1)hi,j 6 d
′

i,j 6 mdi,j + (m− 1)k .

(b) The upper and lower bounds for the minimum pairwise L-1 distance of the

generated design D
′

are:

mdmin(D)− (m− 1)hmax(D) 6 dmin(D
′
) 6 mdmin(D) + (m− 1)k ,

where hmax(D) is the largest pairwise Hamming distance in design D.

Given n, s and k, from different initial designs D(n, sk), by level expansion

we can generate different sets of designs D
′
(n, (ms)k). By Lemma 1, the upper

bound for dmin(D
′
) is solely determined by dmin(D). Thus, if we start from the

maximin distance initial design D and can generate a derived design D
′

optimal with

dmin(D
′

optimal) = mdmin(D)+(m−1)k, then it’s clear that D
′

optimal has the largest

minimum L-1 distance among all possible D
′
s from all possible initial designs D.

The lower bound of dmin(D
′
) is also positively correlated with dmin(D). Therefore,

the maximin initial designs can improve the possible best and worst cases of the

generated designs by level expansion.
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From a specific initial design D, by the level expansion process we have N1 =(
(n/s)!

( n
ms

!)m

)sk
possible generated D

′
. In the following Theorem 1, the expectation

and variance are given towards all these N1 possible D
′
.

Theorem 1 For any different ith and jth row (i, j = 1, 2, . . . , n and i 6= j), the

expectation and variance of the pairwise L-1 distances of the generated designs D
′

via level expansion have the following relationship with the pairwise L-1 distance

of the initial balanced design D.

E(d
′

i,j) = mdi,j + (k − hi,j)γ and Var(d
′

i,j) = C1,0 + C1,1hi,j ,

where γ = n(m2−1)
3m(n−s) , C1,0 = n(m2−1)(m2n+2n−3m2s)

18m2(n−s)2 k and C1,1 = m2−1
18m2(n−s)2 (2m2n2 −

2n2 − 3sm2n+ 3m2s2) > 0.

Two-level initial designs D(n, 2k) are useful to generate maximin designs with

even number of runs via level expansion. Since the Hamming distances hi,j are

equal to the L-1 distances di,j for two-level designs, by Theorem 1 we have:

E(d
′
i,j) = 2m2(n−3)+n

3m(n−2)
di,j + nk(m2−1)

3m(n−2)
and Var(d

′
i,j) = C1,0 + C1,1di,j. Thus, for

any pair of rows the expectation and variance of d
′
i,j are solely determined by

di,j from the initial design. Another useful class of initial designs is saturated

orthogonal arrays, which provide the largest number of factors k (k = n−1
s−1

) given

n while keeping the orthogonality. Mukerjee and Wu (1995)[MW95] show that

the Hamming distances are constants n/s for all saturate OAs. By Theorem 1 we

have: E(d
′
i,j) = mdi,j + n−s

s(s−1)
γ and Var(d

′
i,j) = C1,0 + C1,1

n
s
. Thus, the average

d
′
i,j is also solely determined by di,j and the variance is constant. In the second

step of MmLE method in part 3.1, we search best candidates for initial designs

through level permutation, which don’t change hi,j for arbitrary i and j. Thus, in

general a candidate initial deign D with better distance distribution will generate

D
′
s with better distance distribution on average.

8



Xu and Wu (2001) [XW01] define the generalized word length pattern (A1,A2,

. . . Ak) for fractional factorial designs on k factors. The values of Aj(D) rep-

resent the total aliasing between the general mean and all j-factor interactions

in the full ANOVA model. The generalized minimum aberration (GMA) designs

by Xu and Wu (2001) [XW01] sequentially minimize designs’ generalized word

length patterns. If we permute the levels of designs, their generalized word length

patterns do not change, but their distance distributions can be improved. Our

MmLE method combines the level permutation process and the level expansion

process. The following two lemmas are from Xu (2003) and Zhou and Xu (2014)

respectively.

Lemma 2 The Hamming distances from design D(n, sk) have the following rela-

tionships with the generalized word length pattern of design D

∑
16i<j6n

(k − hi,j) =
n2A1(D) + kn2 − ksn

2s
,

∑
16i<j6n

(k − hi,j)2 =
n2(2A2(D) + (2k + s− 2)A1(D) + k(k + s− 1))− n(ks)3

2s2
.

Lemma 3 Consider all possible level permutations of design D(n, sk) and define

Bl(D) as the average of Bl(D) (defined in (2.1)). We have

1

n

(s−1)k∑
l=1

lBl(D) =
k(s2 − 1)

3s
− s+ 1

3s
A1(D) ,

1

n

(s−1)k∑
l=1

l2Bl(D) = C0,0 + C0,1A1(D) + 2

(
s+ 1

3s

)2

A2(D) ,

where C0,0 = k (s2−1)(s2+2ks2−2k+2)
18s2

and C0,1 = −(s+1)(3s2+4(k−1)(s2−1))
18s2

.

Lemma 2 gives the relationship between design’s Hamming distance and its

generalized word length pattern. Lemma 3 shows the relationship between design’s

average distance distribution and its generalized word length pattern under all

9



possible level permutations. By these two lemmas, we can prove the following

Theorem 2. Given a design D(n, sk), by doing all possible level permutations

we have a set of designs {D1, D2, . . . , DN2} where N2 = (s!)k. From any Dp

(p = 1, 2, . . . N2)), by level expansion we can generate a set of derived designs

{D′
p,1, D

′
p,2, . . . , D

′
p,N1
} where N1 =

(
(n/s)!

( n
ms

!)m

)sk
. Thus, when all possible level

permutations towards the initial design D(n, sk) are considered, by level expansion

totally we have N1∗N2 possible generated designs D
′
(denote this set as Θ). For a

balanced design D(n, sk), it’s easy to show that for all possible d
′
i,j,
∑n

i 6=j=1 d
′
i,j =

kn2(m2s2−1)
3ms

. In the following Theorem 2, the expectations are taken over the set

Θ.

Theorem 2 If all possible level permutations towards the initial design D(n, sk)

are considered, the relationships between the pairwise L-1 distances of the gener-

ated designs D
′

and the generalized word-length pattern of the initial design D

are
n∑

i 6=j=1

EΘ((d
′

i,j)
2) = C2,0 + C2,1A2(D)

where C2,0 and C2,1 > 0 are constants.

The quantity
∑n

i=1

∑n
j=1 EΘ((d

′
i,j)

2) measures variance of the pairwise L-1 dis-

tances of D
′

in the set Θ. Since for balanced designs the average distances are

constants and C2,1 > 0, the variance is minimized when the initial designs are OAs

(A2 = 0). Thus, when suitable OAs exist, we should choose OA initial designs for

our MmLE algorithm. When suitable OAs don’t exist, we should choose a bal-

anced design with smallest A2 value. It’s clear that this theorem gives the mean

and variance of the pair-wise L-1 distances of the OALHDs by Tang (1993)[Tan93].

10



CHAPTER 3

The Maximin Level Expansion (MmLE) Method

3.1 Procedures of MmLE

Benefiting from many existing orthogonal arrays, in this article we focus on MmLE

method starting from low-level OAs to generate high-level maximin designs. We

should also notice that MmLE method in fact can start from any designs, for

example, supersaturated designs, nearly-OAs, randomly generated balanced de-

signs or even unbalanced designs. Here we start from OA(n, skmax) to generate

D
′
(n, (ms)k) where k 6 kmax. The MmLE method includes the following three

steps.

1. Select the GMA k-column subset from OA(n, skmax) and denote the gener-

ated design as D(n, sk).

2. If s > 2, select the maximin distance design from ones generated by doing

all possible level permutations of D. Denote it as Dp(n, s
k).

3. For each column in Dp, replace n/s positions of entry l (l = 1, 2, . . . , s) by

a random sequence of n
ms

replicates of numbers: (l − 1)m + 1, (l − 1)m +

2 . . . , (l − 1)m + m. Select the maximin one from all generated designs as

D
′
(n, (ms)k).

In step 1, if the GMA design is not known from current literatures, we usually

search it from saturated strength two OA(n, skmax) where kmax = n−1
s−1

. When(
kmax

k

)
is small, we can enumerate and compare all subsets. When

(
kmax

k

)
is large,

11



we adopt a local searching method: randomly generate 5000 subset designs and

select the GMA one. As a special case, for regular designs we choose minimum

aberration (MA) designs in step 1. For step 2 and 3, we adopt the threshold

accepting (TA) algorithm introduced in the following part 3.2 for the searching

process.

3.2 The Threshold Accepting Algorithm in MmLE

Here we adopt and modify the threshold accepting (TA) algorithm by Gilli et

al (2006)[GKH06]. Compared with the simulated annealing algorithm by Kirk-

patrick (1984)[Kir84], TA converges faster (Dueck and Scheuer (1990)[DS90]). Let

φ(D) = φp(D) as the object function to be minimized in our TA algorithm. The

steps for the TA algorithm are shown as follows:

1. Set up the predetermined value of nrounds, nsteps and nseq.

2. Randomly choose the initial Dc.

3. For i from 1 to nseq, randomly generate a new design Dn from the neighbours

N(Dc), denote the difference δi = |φ(Dc)− φ(Dn)|.

4. Compute the empirical distribution of δi , i = 1, 2, . . . , nseq, denote as F .

5. The threshold sequence τr = F−1
(

0.8 ∗ nrounds−r
nrounds

)
, r = 1, 2, . . . , nrounds.

6. for r from 1 to nrounds, do

7. for i from 1 to nsteps, do

8. Randomly generate a new design Dn from the neighbours N(Dc) and

compute difference δ = φ(Dn)− φ(Dc)

9. if δ < τr then let Dc = Dn

12



10. end for

11. end for

12. Output solution Dsol = Dc

Here nrounds represents the number of thresholds, nsteps represents the number

of steps per threshold and nseq represents the number of random steps to compute

the threshold sequence. In practice, based on the design size and time limits,

normally we choose nrounds from 25 to 75, nsteps from 2500 to 7500 and set nseq

equal to 2000. We apply this TA algorithm both in step 2 and 3 of our MmLE

method. Denote the current design as Dc. In step 2, Dc is a random generated

design by doing all possible level permutations of D from step 1. To generate

neighbour designs Dn = N(Dc), we randomly choose two distinct levels from a

randomly chosen column of Dc and exchange all elements of these two levels. In

step 3, Dc is a randomly generated design by doing level expansion of Dp from

step 2. We define the neighbour design Dn = N(Dc) by exchanging the levels in

two positions which have the same value in Dp but different values in Dc.

3.3 Justifications for the procedures of MmLE

There are in all N0 =
(

n!
((n/(ms))!)ms

)k
possible designs for D

′
(n, (ms)k) (including

isomorphic designs). By the level expansion procedure, we greatly reduce the

number of possible designs from N0 to N1 =
(

(n/s)!
( n
ms

!)m

)sk
. However, N1 is still so

large that the local searching method doesn’t work well. In MmLE method, we

adopt the TA algorithm in searching. If we can increase the average space-filling

property of these N1 designs, we can improve the TA algorithm’s efficiency and

robustness. The purpose of step 1 and 2 is to find an optimal initial design which

can improve the efficiency of the TA algorithm used in step 3.

Here we first show that generally speaking, the maximin design Dp from step

13



2 will generate D
′
s with best distance distribution on average in step 3 of our

MmLE method. By Theorem 1, for any pair of rows i, j (i 6= j), we have E(d
′
i,j) =

mdi,j − γhi,j + γk where di,j and hi,j are from Dp and d
′
i,j is from D

′
. For any Dp

where n > 2s and s > 2, it is easy to verify that m > 1.5γ. In fact, when k is

relatively large, m ≈ 3γ. In addition, di,j is always no less than hi,j. Furthermore,

in step 2 all Dp are generated from the same design D by level permutation

which doesn’t change the Hamming distance for any pair of rows. Thus, E(d
′
i,j)

is dominated by di,j.

Zhou and Xu (2014)[ZX14] show that from GMA initial designs, we can get

the best distance distribution designs on average by doing all possible level per-

mutations. Thus choosing GMA design D in step 1 can benefit finding maximin

design Dp in step 2. Further, the maximin initial design Dp can generate D
′
s

with best distance distribution on average in step 3. Moreover, by Theorem 2,

when all-level permutations are considered (step 2), if the MmLE method starts

from OA initial designs D in the first step, the variance of pairwise L-1 distances

for all possible D
′
s are minimized. We should also notice that the averages are

always constants when balanced initial designs are used. In addition, if generated

from OA initials, the derived designs D
′

can achieve some stratifications on two-

dimensional subspaces, since we can always collapse the levels in D
′

back to the

initial OAs. For this reason, the average pairwise correlations of the generated

designs are robust. Further, when suitable OAs do not exist, choosing GMA de-

signs D which have the sequentially minimized A1 and A2 are clearly the best in

step 1.

Next, we justify our method from a geometric point of view. To get a space-

filling n-run, k-factor design, a straightforward idea is that we divide the design

space equally into n k-dimensional lattices, put one point into each lattice, and

adjust every point’s position within its lattice. This geometric structure of ”one

point within each lattice” can be achieved by performing level expansion to the
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full factorial initial designs. For example, see the LHD (b),(c) and (d) in Figure

1.1 generated by the level expansion process from full factorial design D(9, 32).

These three designs have only one point within each lattice formed by the solid

lines, but their positions within the lattices are different. We should notice that

by either level permutation or level expansion process, the ”one point within each

lattice” structure will not be changed, but the distance distribution of the design

can be improved. Thus, by our MmLE method with full factorial initials, we can

find the design with best distance distribution while keeping the ”one point within

each lattice” structure, e.g. the design (d) in Figure 1.1.

Furthermore, as a generalization, when n < sk, an initial design with most

sub-spaces that are full factorials is be ideal for our MmLE method, and GMA

designs have such property in many cases. Box and Hunter (1961) [BH61] point

out that any p-dimensional (p < r) projection of a 2-level regular design with

resolution r is a full-factorial design. Additionally Chen (1998)[Che98] proves that

for a two level regular design,
(
n
p

)
−
∑p

j=r

(
n−j
p−j

)
Aj(D) p-dimensional projections

(p = r, . . . , br + (r − 1)/2)c) are full-factorial designs and the above result can

be generalized to fractional factorial designs with any levels of a prime power.

Under these cases, since the GMA initials have largest resolutions and sequentially

minimizes Aj(D) (j = 1, 2, . . . k), they have the most parts that are full-factorials

in p-dimensional projection spaces (p 6 br + (r − 1)/2)c). We should notice that

by all possible level permutations, designs’ GMA properties keep unchanged while

their distance distributions change.
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CHAPTER 4

Results and Comparison

4.1 Construction of Maximin LHDs

First, we compare our MmLE method with an ordinary level expansion (OdLE)

method in generating maximin OALHDs. This OdLE method follows the logic

of Leary, Bhaskar and Keane (2003)[LBK03] and Tang (1993)[Tan93]. It first

randomly selects column-subset designs D from the corresponding saturated OAs,

then performs level expansion towards D to generate LHDs, and finally searches

the maximin one from all generated LHDs. In order to make a fair comparison, we

replace the simulated annealing searching algorithm in Leary, Bhaskar and Keane

(2003)[LBK03] with the more efficient TA algorithm used in this article. Table

4.1 lists some randomly chosen cases for comparison.

For all tables in this article, we use bold font to represent the better results.

For ”d(pairs)”, d represents the smallest L-1 distance among all pairs of rows in

the design matrix; ”(pairs)” represents the number of pairs of which the distance is

d. For the MmLE method here, in the 32, 48, 64 and 128 runs cases, we start from

the respective 2-level minimum aberration initial designs by R package ”FrF2”;

in the 27, 54, 81 and 125 runs cases, we start from initial designs OA(27, 313),

OA(54, 325), OA(81, 340) and OA(125, 531) respectively. The OdLE method here

starts from the corresponding 2-level saturated OAs for the 32, 48, 64 and 128

runs cases, 3-level saturated OAs for the 27, 54 and 81 runs cases, and 5-level

saturated OAs for the 125 runs cases. All OAs are from R-package ”DoE.base”.
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Codes are run in R on a ThinkPad X1 laptop with a Intel 2.50GHz I7 CPU. Time

used by MmLE method ranges from 5 minutes to half an hour for different cases

here. For all cases, the OdLE method uses at least twice as much time as the

MmLE method.

MmLE OdLE SLHD OMLHD

n k d(pair) ψp d(pair) d(pair) d(pair) ψp

27 9 72(2) 0.012 68(5) 55(1) 60(1) 0.025

32 20 205(1) 0.005 205(2) 184(1) 177(1) 0.012

48 31 476(4) 0.0026 474(3) 437(1) 409(1) 0.0067

54 20 329(1) 0.0034 317(1) 287(1) 279(1) 0.0083

54 25 425(3) 0.0022 399(1) 373(1) 360(1) 0.012

64 20 378(1) 0.0034 369(1) 332(1) 310(1) 0.0084

64 40 813(1) 0.0025 804(1) 771(1) 698(1) 0.0048

81 25 604(2) 0.0022 577(1) 516(1) 504(1) 0.0028

81 40 1016(1) 0.0016 962(1) 919(1) 899(1) 0.0016

125 23 797(1) 0.0021 640(1) 726(1) 668(1) 0.0021

125 31 1126(1) 0.0014 971(1) 1025(1) 955(1) 0.0076

128 49 1893(1) 0.0014 1873(1) 1801(1) 1643(1) 0.0057

128 64 2512(1) 0.0017 2479(1) 2497(1) 2239(1) 0.0061

Table 4.1: Comparisons of constructions of maximin LHDs

From Table 4.1, it’s clear that the MmLE method generates better OALHDs

than the OdLE method for all comparable cases. Compared with the MmLE

method, OdLE method only includes the step 3, but does not have the step 1

and step 2 of the MmLE method. Thus, Table 4.1 also shows the usefulness of

the first and second steps in the MmLE method which provide the optimal initial

designs for the level expansion process in the step 3. We should notice that for

2-level initial designs, the step 2 can be skipped since level permutations do not
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change the design. Therefore, from the 32, 48, 64 and 128 run cases we can see

the usefulness of step 1 alone. From the 54-run/25-factor, 81-run/40-factor and

125-run/31-factor cases, we can observe the usefulness of step 2 alone. From the

rest cases, we can see the effects of the step 1 and 2 together.

Next, we compare our MmLE method with the R package ”SLHD” by S Ba

and the OMLHD method by Joseph and Hung (2008)[JH08] in generating space-

filling LHDs. The R package ”SLHD” is available at https://cran.r-project.

org/web/packages/SLHD/index.html. It generates maximin LHDs when setting

option t = 1. Joseph and Hung (2008)[JH08] propose a multi-objective criterion

(ψp)

ψp = ωρ2 + (1− ω)
φp − φp,lb
φp,ub − φp,lb

, (4.1)

where φp is defined in (1.1) with p = 15, ρ2 is the average column-wise correlation,

ω is the weight which is set to 0.5, φp,lb and φp,ub are the smallest and largest

possible φp values. Joseph and Hung (2008)[JH08] argue that designs with smaller

ψp values are more space-filling. They also provide a modified simulated annealing

algorithm to search the OMLHDs which have the smallest ψp values for given n

and k. Table 4.1 lists some randomly chosen cases for comparison. We apply R

package ”SLHD” in software R and generate OMLHDs by applying the C++ code

from Ying Hung’s homepage. For all cases in Table 4.1, the time used by either

the SLHD method or the OMLHD method is at least three times as much as the

time used by our MmLE method.

From Table 4.1, it’s clear that in all cases the MmLE method generates better

LHDs than both the SLHD method and the OMLHD method towards the maximin

distance criterion. Moreover, designs by our MmLE method also have better ψp

values compared with those by the OMLHD method. We should notice that unlike

the OMLHD method searching towards ψp directly, our MmLE method searches

towards φp criterion alone. In fact, designs by the MmLE method are born with

small and robust pairwise correlations, since they are generated from OAs via level
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expansion and inherit orthogonality in big picture. In addition, it’s clear that our

MmLE method saves great computations compared with the OMLHD method,

since the C++ language (used in OMLHD method) on Visual Studio runs much

faster than R language (used in MmLE method) by nature. Above all, our MmLE

method not only generates better LHDs, but also saves tremendous computations

compared with the SLHD method and the OMLHD method.

4.2 Construction of Maximin Factorial Designs

We first compare our MmLE method with the level permutation (LP) method

by Zhou and Xu (2014)[ZX14] in generating maximin fractional factorial designs

(FFDs). Zhou and Xu (2014)[ZX14] include a table of 10 maximin designs with

n 6 32 that are comparable here. In Table 4.2(a) we list these small designs as the

first ten cases. We also select another eight larger cases with n > 48 to compare

these two methods in Table 4.2 (b). All designs are 4-level FFDs. For the MmLE

method, in the 16, 32, 64, and 128 run cases, 2-level MA initial designs are used; in

the 48 and 80 run cases, OA(48, 247) and OA(80, 279) are used as the initials. For

the LP method, in the 48, 64, 80 and 128-run cases, initial designs OA(48, 413),

OA(64, 411), OA(80, 411) and OA(128, 440) are used respectively. Both methods’

codes are run in R. For all cases, the LP method uses at least twice as much time

as the MmLE method.

In Table 4.2 (a), for the first 9 cases both methods generate designs with the

same smallest pairwise distances. For the last case in Table 4.2 (a) and all cases

in Table 4.2 (b), the MmLE method generates better designs with larger smallest

pairwise distances compared with the LP method. Furthermore, the LP method

relies on existing OA initials that have the same number of runs, factors and levels

as the generated designs. However, such OAs are often difficult to find or even do

not exist. For example, there is no OA(24, 68) can be used to generate maximin
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(a)

MmLE LP

n k d(paris) d(paris)

16 3 2(12) 2(12)

16 4 4(60) 4(56)

16 5 4(1) 4(4)

32 3 2(156) 2(156)

32 4 2(8) 2(8)

32 5 4(100) 4(106)

32 6 5(48) 5(58)

32 7 6(24) 6(28)

32 8 8(132) 8(128)

32 9 9(62) 8(6)

(b)

MmLE LP

n k d(paris) d(paris)

48 10 9(6) 8(3)

48 13 13(15) 12(10)

64 9 8(395) 6(38)

64 11 10(77) 9(12)

80 7 5(177) 4(48)

80 11 9(1) 8(29)

128 29 30(42) 29(79)

128 40 43(1) 40(2)

Table 4.2: Comparison on the MmLE and LP method for constructing four-level

maximin designs
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D
′
(24, 68). Compared with the LP method, our MmLE method has much more

flexibility in design size, since we can start from low-level designs to generate high-

level designs. For example, we can start from a 2-level OA(24, 223) to generate

a 24-run and 6-level design with up to 23 factors. Above all, compared with the

LP method, our MmLE method can generate better maximin FFDs with more

flexibility in design size and within shorter computing time.

Next, we compare the designs from our MmLE method with some existing

uniform designs listed on the Uniform Design Homepage (http://uic.edu.hk/

isci/). These uniform designs (UD-page designs) are searched by Kaitai Fang

and his collaborators towards CD criterion. In order to make a fair comparison,

here we also include another MmLE-CD method. The only difference between

the original MmLE and the modified MmLE-CD methods is that in the step 3 of

the latter we search designs toward CD criterion. In Table 4.3, we select some

4-level and 6-level designs for comparison. For both methods we start from the

initial designs OA(32, 231), OA(40, 239) and OA(48, 247) to generate the 4-level

designs, OA(36, 313), OA(48, 247), OA(54, 318) and OA(60, 230) to generate the

6-level designs for the corresponding cases.

From Table 4.3, it’s clear that designs by the MmLE method are always better

towards maximin distance criterion compared with the UD-page designs. Further,

for all cases here MmLE-CD can generate better CD designs than the respective

UD-page designs. Though the Maximin distance and CD criteria are different

in expression, both measure some space-filling geometric properties. It’s clear

that the 3-step procedures of the MmLE method are efficient and generate better

space-filling designs compared with the UD-page designs.
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MmLE MmLE-CD UD-page designs

n k s CD d(pair) CD d(pair) CD d(pair)

32 7 4 0.074 6(18) 0.070 5(6) 0.071 4(1)

32 13 4 0.0343 13(5) 0.0343 13(5) 0.0344 12(2)

40 13 4 0.3186 13(4) 0.3067 12(5) 0.3068 11(1)

40 15 4 0.5080 16(56) 0.4969 13(1) 0.4987 14(1)

48 11 4 0.1841 10(11) 0.1758 8(1) 0.1767 7(1)

48 15 4 0.461 15(13) 0.447 13(1) 0.449 12(1)

36 12 6 0.1744 20(15) 0.1673 19(14) 0.1691 17(1)

48 12 6 0.1416 19(21) 0.1362 16(2) 0.1374 16(1)

54 9 6 0.0601 12(13) 0.0564 8(1) 0.0568 10(3)

54 12 6 0.1362 17(14) 0.1268 16(1) 0.1299 16(2)

60 9 6 0.0576 12(11) 0.0544 8(1) 0.0546 9(2)

Table 4.3: Comparison with UD-homepage designs
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CHAPTER 5

Multi-phase Maximin Level Expansion Method

In this part, we briefly introduce the multi-phase MmLE method suitable to gen-

erate very large maximin designs. In part 3.1, we introduce the 3-step procedures

for the MmLE method which only includes one phase. The multi-phase MmLE

method shares the same step 1 and step 2 as the above one-phase MmLE. The

difference lies in the step 3: instead of directly generating D
′
(n, (ms)k) from

Dp(n, s
k), we gradually expand the levels from s to ms by t (t > 2) phases. For

example, in a two-phase (t = 2) MmLE method where m1, m2 are integers and

m1 ∗m2 = m, in step 3 we first generate the maximin design D1(n, (m1s)
k) via

level expansion from Dp by step 2; then from D1 we generate the maximin design

D2(n, (m2m1s)
k) (which is the D

′
(n, (ms)k)) via level expansion again. By The-

orem 1, from maximin initial designs we can generate designs with best distance

distributions on average via level expansion. Thus, it’s efficient to select the max-

imin design D1 in the first phase to be the initial design to generate D2 in the

second phase. It’s straight forward to generalize and justify this process for more

phases.

The more phases (larger t) we use, the more restrictions are put on the search-

ing space. In practice, choosing the number of phases t is a trade-off process. On

one hand, the number of designs needed to be compared decreases dramatically for

every one more phase. For example, to generate D
′
(16, 82) from D(16, 22), for the

one-phase MmLE method, we totally have 4 ∗ 1013 possible D
′
s to be compared;

while, for the two-phase MmLE method, we only need to compare 1.7∗106 designs.
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On the other hand, more restrictions on the searching space also means that we

are more likely to miss good results. In Table 5.1, we compare the one-phase

and two-phase MmLE method in generating maximin LHDs. For both methods,

we start from the respective full factorial designs for the first 5 cases, and from

OA(27, 313), OA(32, 231), OA(54, 324), OA(64, 263), OA(75, 59), OA(81, 340) and

OA(125, 531) for the rest cases respectively. The time is recorded in seconds and

”sequence” in Table 5.1 represents the level expansion path from s to n for the

two-phase MmLE method.

One-phase Two-phase

n k d(pair) time d(pair) time sequence

32 5 37(1) 103 37(3) 101 2→ 8→ 32

64 6 83(1) 301 81(1) 306 2→ 8→ 64

27 3 14(4) 67 14(5) 107 3→ 9→ 27

81 4 50(1) 478 50(3) 490 3→ 9→ 81

125 3 38(5) 603 37(3) 950 5→ 25→ 125

27 10 79(1) 150 79(4) 179 3→ 9→ 27

32 15 151(1) 211 150(2) 218 2→ 8→ 32

54 12 173(1) 886 178(2) 806 3→ 9→ 54

54 20 309(1) 1346 322(2) 1275 3→ 9→ 54

64 40 805(1) 1062 813(1) 1026 2→ 8→ 64

75 8 133(1) 889 134(3) 810 5→ 25→ 75

81 40 1005(1) 1479 1014(1) 936 3→ 9→ 54

125 31 1111(1) 2085 1116(1) 1548 5→ 25→ 125

Table 5.1: Comparison of one-phase and two-phase MmLE method

From Table 5.1, we can observe that if run and factor sizes are relatively large,

two-phase method is better, e.g. the last 6 cases. Otherwise, one-phase method

works slightly better, e.g., the 2nd, 5th and 7th cases. Generally speaking, when
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the available computation is limited compared to the design size, it’s better to

use more phases. In such case, we depend more on our theoretical results and

geometrical concern to find the best design. Otherwise, choosing less phases is

better.
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CHAPTER 6

Conclusions

In this article, we propose the maximin level expansion (MmLE) method which

can efficiently generate maximin distance LHDs and maximin distance multi-level

factorial designs. This method is a combination and improvement of the level per-

mutation method by Zhou and Xu (2014)[ZX14] and the level expansion method

by Tang (1993) [Tan93]. The first two steps in our method is to find optimal initial

designs for the one or multi-phase level expansion process in step 3. To justify

our method, we establish a relationship of the L-1 distance distributions between

the initial and generated designs via level expansion. When all possible level

permutations are considered, we also give the mean and variance of the pairwise

L-1 distances of the generated design in our method. Besides the mathematical

justifications, we also show the geometrical interpretations of our method. Since

from full factorial initials the expanded designs have the ”one point within each

lattice” geometric property, when n < sk we want to select an initial design which

has the most sub-sets that are full factorial. In this article, we focus on generating

D
′
(n, (ms)k) from OA(n, skmax) with our MmLE method. This procedure is very

easy to be generalized for mixed level designs. Starting from a mixed-level initial

deign, we can individually set the level expansion path for each factor. Thus in

this way, we can generate mixed-level factorial designs. Moreover, when suitable

OA initials are not found, the MmLE method works well for many kinds of initial

designs, e.g. supersaturated designs, nearly OAs and et cetera. The run, factor

and level sizes for designs by the MmLE method are rather flexible. We uses
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examples to show that our MmLE method outperforms the ordinary level expan-

sion process by Leary, Bhaskar and Keane (2003)[LBK03], the SLHD package by

S Ba, the OMLHD method by Joseph and Hung (2008), the level permutation

method by Zhou and Xu (2014)[ZX14]. We also find many more space-filling

designs compared with the existing uniform designs.
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CHAPTER 7

Appendix

7.1 Proof of Lemma 1

(a) For i 6= j, we have:

1. when xi,l = xj,l, min d
′

il,jl = 0 and max d
′

il,jl = m− 1.

2. when xi,l 6= xj,l, min d
′

il,jl = m(dil,jl− 1) + 1 and max d
′

il,jl = m(dil,jl− 1) +

2m− 1.

Therefore, the largest possible d
′
i,j is

max d
′

i,j = (m− 1)(k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 2m− 1) = mdi,j + k(m− 1) .

The smallest possible d
′
i,j is

min d
′

i,j = 0 ∗ (k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 1) = mdi,j − (m− 1)hi,j .

Thus, we have

mdi,j − (m− 1)hi,j 6 d
′

i,j 6 mdi,j + k(m− 1) .

(b) Let xa and xb be the pair of rows in design D that forms the smallest L-1

pairwise distance dmin(D) (there could be many such pairs). Let x
′
c and x

′

d be the

pair of rows in design D
′

that forms the smallest L-1 pairwise distance dmin(D
′
)

(there could be many such pairs).

dmin(D
′
) = d

′

c,d 6 d
′

a,b 6 mda,b + k(m− 1) = mdmin(D) + (m− 1)k .
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dmin(D
′
) = d

′

c,d > mdc,d − (m− 1)hc,d > mdc,d − (m− 1)hmax(D)

> mda,b − (m− 1)hmax(D) = mdmin(D)− (m− 1)hmax(D) .

Thus, we have:

mdmin(D)− (m− 1)hmax(D) 6 dmin(D
′
) 6 mdmin(D) + (m− 1)k .

7.2 Proof of Theorem 1

We calculate the probability distribution for dil,jl with its range from Lemma 1.

For i 6= j,

1. when xi,l = xj,l, the probability distribution is:

P (d
′

il,jl = 0) =
m
(
n/(ms)

2

)
m(m− 1)(n/(ms))2 +m

(
n/(ms)

2

) =
n−ms
m(n− s)

,

P (d
′

il,jl = t) =
2(m− t)(n/(ms))2

m(m− 1)(n/(ms))2 +m
(
n/(ms)

2

) =
2n(m− t)
m2(n− s)

for t = 1, 2, . . . ,m− 1. Thus:

E(d
′

il,jl) =
m−1∑
t=1

tP (d
′

il,jl = t) =
n(m2 − 1)

3m(n− s)
= γ , (7.1)

E((d
′

il,jl)
2) =

m−1∑
t=1

t2P (d
′

il,jl = t) =
n(m2 − 1)

6(n− s)
. (7.2)

2. When xi,l 6= xj,l, define d0 = m(dil,jl − 1) + 1. The probability distribution

is

P (d
′

il,jl = d0 + t) =
t+ 1

m2
, for t = 0, 1, . . .m− 1 ,

P (d
′

il,jl = d0 + t) =
2m− t− 1

m2
, for t = m− 1,m, . . . 2m− 2 .

.
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It’s straight forward to verify that

2m−2∑
t=0

tP (d
′

il,jl = d0 + t) =
m−1∑
x=1

(m− x)

(
m+ x− 1

m2
+
m− x+ 1

m2

)
= m− 1

2m−2∑
t=0

t2P (d
′

il,jl = d0 + t) =
m−1∑
x=1

(m− x)

(
(m+ x− 1)2

m2
+

(m− x)(m− x+ 1)

m2

)
=

(m− 1)(7m− 5)

6
.

Then we have the following for the level expanded designs:

E(d
′

il,jl) =
2m−2∑
t=0

(d0 + t)P (d
′

il,jl = d0 + t) = d0 +
2m−2∑
t=0

tP (d
′

il,jl = d0 + t) = mdil,jl ,

(7.3)

E((d
′

il,jl)
2) =

2m−2∑
t=0

(d0 + t)2P (d
′

il,jl = d0 + t) = d2
0 + 2d0

2m−2∑
t=0

tP (d
′

il,jl = d0 + t)

+
2m−2∑
t=0

t2P (d
′

il,jl = d0 + t) = m2d2
il,jl +

m2 − 1

6
. (7.4)

Note that dil,jl = 0 when xi,l = xj,l. Combining (7.1) and (7.3), we have:

E(d
′

i,j) =
k∑
l=1

E(d
′

il,jl) =
k∑
l=1

mdil,jl + (k − hi,j)γ .

Thus, we have

E(d
′

i,j) = mdi,j + (k − hi,j)γ . (7.5)

Next, combining (7.2) and (7.4), we have:

E

(
k∑
l=1

(d
′

il,jl)
2

)
=

k∑
l=1

E((d
′

il,jl)
2) = m2

k∑
l=1

d2
il,jl +

m2 − 1

6
hi,j + (k − hi,j)

n(m2 − 1)

6(n− s)
.

(7.6)
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Further, we have

E((d
′

i,j)
2) = E

( k∑
l=1

d
′

il,jl

)2
 = E

(
k∑
l=1

(d
′

il,jl)
2

)
+ E

(
k∑

p 6=q=1

d
′

ip,jpd
′

iq,jq

)
.

(7.7)

For the latter part, note that d
′
ip,jp, d

′
iq,jq (p 6= q) are independently determined

by the p, q columns in the original design D. Note that dil,jl = 0 when xi,l = xj,l.

Combining (7.1) and (7.3), we have:

E

(
k∑

p 6=q=1

d
′

ip,jpd
′

iq,jq

)
=

k∑
p6=q=1

E(d
′

ip,jp)E(d
′

iq,jq) = m2

k∑
p6=q=1

dip,jpdiq,jq+

+ 2(k − hi,j)γ
k∑
l=1

mdil,jl + (k − hi,j)(k − hi,j − 1)γ2 .

(7.8)

Combining (7.6), (7.7), (7.8), we have:

E((d
′

i,j)
2) = m2d2

i,j + (k − hi,j)2γ2 + 2mγdi,j(k − hi,j)

− γ2(k − hi,j)−
(m2 − 1)

6(n− s)
(shi,j − nk) ,

Then, we have:

V ar(d
′

i,j) = E
(

(d
′

i,j)
2
)
−
(
E(d

′

i,j)
)2

= −γ2(k − hi,j)−
s(m2 − 1)

6(n− s)
hi,j +

n(m2 − 1)

6(n− s)
k

= C1,0 + C1,1hi,j

where C1,0 = n(m2−1)(m2n+2n−3m2s)
18m2(n−s)2 k and C1,1 = m2−1

18m2(n−s)2 (2m2n2 − 2n2 −

3sm2n+ 3m2s2).

Note that n > ms > 2s and m > 2. When n > 3s, 2m2n2 − 2n2 − 3sm2n +

3m2s2 = (m2 − 2)n2 + m2n(n − 3s) + 3m2s2 > 0; when n = 2s with m = 2,

2m2n2 − 2n2 − 3sm2n+ 3m2s2 = 12s2 > 0. Thus C1,1 > 0 in both cases.
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7.3 Proof of Theorem 2

As stated in part 2, from an initial design D, by all possible level permutations

we can generate N2 possible designs (denote as σ(D) here). From each σ(D), by

level expansion we can generate N1 possible designs (denote as π(σ(D)) here).

Denote Eσ as the expectation towards designs generated by all possible level

permutations. Denote Eπ as the expectation towards designs generated by level

expansion. Denote EΘ(d
′
i,j) as the expectation over all N1 ∗N2 possible designs in

set Θ as defined in part 2. To simplify notations, we use d
′
i,j to represent the L-1

distance in designs π(σ(D)); use dσi,j and hσi,j to represent the L-1 and Hamming

distances in designs σ(D). Design D and σ(D) have the same Hamming distance

distribution (hσi,j = hi,j) and generalized word-length pattern.

For all balanced designs π(σ(D)) with n-run, k-factor andms-level, the average

of all pair-wise L-1 distances are constants.

n∑
i 6=j=1

EΘ(d
′

i,j) = 2k
n

ms

ms−1∑
i=1

i(ms− i) =
kn2(m2s2 − 1)

3ms
. (7.9)

Thus we have:

n∑
i 6=j=1

EΘ((d
′

i,j)
2) =

n∑
i 6=j=1

EπEσ((d
′

i,j)
2) =

n∑
i 6=j=1

EσEπ((d
′

i,j)
2)

= m2

n∑
i 6=j=1

Eσ(dσi,j)
2+

n∑
i 6=j=1

(k−hi,j)2γ2+2mkγ
n∑

i 6=j=1

Eσ(dσi,j)−2mγ
n∑

i 6=j=1

Eσ(dσi,j)hi,j

− γ2

n∑
i 6=j=1

(k − hi,j)−
s(m2 − 1)

6(n− s)

n∑
i 6=j=1

hi,j +
n2(n− 1)(m2 − 1)

6(n− s)
k . (7.10)

By Lemma 2, we can easily get the following equations for the balanced design

D where A1 = 0:
n∑

i 6=j=1

hi,j =
kn2(s− 1)

s
, (7.11)

32



n∑
i 6=j=1

(k − hi,j) =
kn(n− s)

s
, (7.12)

n∑
i 6=j=1

h2
i,j =

n2

s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]} . (7.13)

n∑
i 6=j=1

(k − hi,j)2 =
n2

s2
(2A2(D) + k(k + s− 1))− nk2 . (7.14)

By Lemma 3, for a balanced design we have:

n∑
i 6=j=1

Eσ(dσi,j) = n

(s−1)k∑
l=1

lBl(D) =
kn2(s2 − 1)

3s
, (7.15)

n∑
i 6=j=1

Eσ(dσi,j)
2 = n

(s−1)k∑
l=1

l2Bl(D) = n2(C0,0 + 2

(
s+ 1

3s

)2

A2(D)) . (7.16)

By all possible level permutations of D, if the two positions xi,l and xj,l have

the same level, they are always the same (dil,jl = 0). If they are different, the

average of all cases is:

Eσ(dil,jl) =
2 ∗ (1 ∗ (s− 1) + 2 ∗ (s− 2) + . . .+ (s− 1) ∗ 1)

s(s− 1)
=
s+ 1

3
.

Since all possible level permutations do not change the Hamming distance hi,j

between the ith and jth row, given hi,j,

Eσ(dσi,j) =
k∑
l=1

Eσ(dil,jl) = 0 ∗ (k − hi,j) +
s+ 1

3
hi,j =

s+ 1

3
hi,j.

Thus,together with (7.13) we have:

n∑
i 6=j=1

E(dσi,j)hi,j =
s+ 1

3

n∑
i 6=j=1

h2
i,j

=
(s+ 1)n2

3s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]}.

Combining (7.10), (7.11), (7.12), (7.14), (7.15) and (7.16), we have:

n∑
i 6=j=1

EΘ((d
′

i,j)
2) = C2,0 + C2,1A2(D),
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where

C2,0

n2
= m2C0,0 +

kγ2

ns2
(nk + ns− n− ks2) +

2mk2γ(s2 − 1)

3s

− 2mkγ(s2 − 1)

3s2
(1 + sk − k)− k(n− s)γ2

ns
+
k(m2 − 1)

6(n− s)
(n− s) ,

and

C2,1

2n2
= m2

(
s+ 1

3s

)2

+
n2(m2 − 1)2

9m2s2(n− s)2
− 2n(m2 − 1)(s+ 1)

9s2(n− s)

=
s+ 1

9s2(n− s)
{m2[(s− 1)n− s(s+ 1)] + 2n}+

n2(m2 − 1)2

9m2s2(n− s)2
.

Since n > ms > 2s, we have (s−1)n−s(s+1) > 2s(s−1)−s(s+1) = s(s−3).

Thus, when s > 3, we have C2,1 > 0. When s = 2, it’s easy to calculate that

C2,1 > 0 for all n > ms.
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