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Abstract

Learning from Subsampled Data:
Active and Randomized Strategies

by

Fabian Lutz-Frank Wauthier

Doctor of Philosophy in Electrical Engineering and Computer Sciences

with the Designated Emphasis in

Communication, Computation and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

In modern statistical applications, we are often faced with situations where there is either
too little or too much data. Both extremes can be troublesome: Interesting models can only
be learnt when sufficient amounts of data are available, yet these models tend to become
intractable when data is abundant. An important thread of research addresses these diffi-
culties by subsampling the data prior to learning a model. Subsampling can be active (i.e.
active learning) or randomized. While both of these techniques have a long history, a direct
application to novel situations is in many cases problematic. This dissertation addresses
some of these issues.

We begin with an active learning strategy for spectral clustering when the cost of assessing
individual similarities is substantial or prohibitive. We give an active spectral clustering
algorithm which iteratively adds similarities based on information gleaned from a partial
clustering and which improves over common alternatives.

Next, we consider active learning in Bayesian models. Complex Bayesian models often
require an MCMC-based method for inference, which makes a näıve application of common
active learning strategies intractable. We propose an approximate active learning method
which reuses samples from an existing MCMC chain in order to speed up the computations.

Our third contribution looks at the effects of randomized subsampling on Gaussian pro-
cess models that make predictions about outliers and rare events. Randomized subsampling
risks making outliers even rarer, which, in the context of Gaussian process models, can lead
to overfitting. We show that Heavy-tailed stochastic processes can be used to improve ro-
bustness of regression and classification estimators to such outliers by selectively shrinking
them more strongly in sparse regions than in dense regions.

Finally, we turn to a theoretical evaluation of randomized subsampling for the purpose
of inferring rankings of objects. We present two simple algorithms that predict a total order
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over n objects from a randomized subsample of binary comparisons. In expectation, the
algorithms match an Ω(n) lower bound on the sample complexity for predicting a permuta-
tion with fixed expected Kendall tau distance. Furthermore, we show that given O(n log(n))
samples, one algorithm recovers the true ranking with uniform quality, while the other pre-
dicts the ranking more accurately near the top than the bottom. Due to their simple form,
the algorithms can be easily extended to online and distributed settings.
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Chapter 1

Introduction

In modern machine learning applications, we frequently encounter situations with either
too little or too much training data: In many research areas (e.g., human immunology,
crowdsourcing, etc.), there is a perennial paucity of data, while in many other disciplines
(e.g., genomics, astronomy, meteorology, etc.) there has been an explosion of available data.
Both extremes can be troublesome since interesting statistical models can only be learnt
from sufficiently large datasets yet these models tend to become intractable when scaled.
An important thread of research aims to address these difficulties by subsampling the data
prior to learning. Subsampling can be divided into two main paradigms, which are suitable
in different scenarios.

Active Learning. A statistician can often actively guide the data-collection process. Bio-
logical, physical and social experiments, for example, are usually designed with a statistical
question in mind. Active learning is a class of methods that try to automate such experi-
mental design in algorithmic form. The goal is to sharply reduce the data acquisition cost
(either time or money) by carrying out only a small subset of possible experiments that
will be most “useful” for the purpose of learning a model. In this sense, active learning is
prototypically used to create or grow a dataset. However, it also applies to compressing a
large dataset by selecting a subset of examples. While the core idea of active subsampling
is intuitive, its practical implementation leaves considerable room for interpretation. For
one, active learning strategies commonly depend crucially on the internals of the statistical
model. As the models vary, so do the active learning algorithms. Some key distinctions can
be made between active learning for Bayesian and frequentist models, however, even within
these classes there is an abundance of competing frameworks. A recent literature review of
some of these can be found in Settles [68].

Randomized Subsampling. Active data acquisition is not always feasible. For example,
when data is collected from online click-through streams or purchasing preferences, data
collection is necessarily passive. In other cases, the computations required for active learning
might be too time-consuming or expensive to allow efficient compression of a large dataset
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that has already been collected. In cases as these, randomized subsampling can be viewed
as a degenerate form of active learning, where the subset of experiments is chosen randomly
(and perhaps not even by the statistician). This interpretation is useful both when slowly
building up a dataset from incoming data, or when compressing an existing, large dataset. A
multitude of different applications have led to a variety of randomized subsampling strategies.
Some well-known examples include stratified subsampling, cluster subsampling, and of course
simple randomized subsampling. A comprehensive survey can be found in [53]. A main
attraction of the randomized framework is that it is much easier to analyze than its active
counterpart. In particular, statistical learning theory (e.g. [9]) can in some cases be used to
quantify how well a model estimated on a subsample of data will generalize to the complete
dataset. For this approach to be successful, the randomized subsample must adequately
reflect properties of the test dataset. The simplest tool to ensure this is to sample the data
uniformly at random (with replacement). Alternatively, concentration inequalities (e.g. [8])
can often be used to quantify how much an estimator based on a random subsample will
deviate from its mean. Again, independent, random sampling considerably simplifies these
analyses, though some statements can also be made when the samples are weakly dependent.

1.1 Outline

A direct application of the above subsampling strategies is in many cases problematic. On
the one hand, active learning algorithms must usually be tailored to specific models. As
new models are being developed there is an ongoing need to develop effective active learning
strategies for them. This process necessarily pushes active learning into novel terrain where
new computational and statistical problems begin to dominate. On the other hand, random-
ized subsampling risks throwing away too much data. In cases where we are interested in
learning from outliers, extremes or other rare events, a drastic reduction in training set size
can make these examples even rarer. Depending on the statistical model, over- and under-
fitting can then become an issue. Lastly, the size of the random subsample has a significant
impact on the final model and guidance on its choice is of considerable interest in practical
situations. In this dissertation we demonstrate algorithmic and theoretical progress on these
topics. The contributions are as follows:

Active Spectral Clustering. To begin, we focus our attention on a new method for
active spectral clustering in Chapter 2. Spectral clustering is a widely used method for
organizing data that only relies on pairwise similarity measurements. This makes its appli-
cation to non-vectorial data straightforward in principle, provided all pairwise similarities are
available. However, in recent years, numerous examples have emerged in which the cost of
assessing similarities is substantial or prohibitive. We propose an active learning algorithm
for spectral clustering that incrementally measures only those similarities that are most likely
to remove uncertainty in an intermediate clustering solution. In many applications, similar-
ities are not only costly to compute, but also noisy. We extend our algorithm to maintain
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running estimates of the true similarities, as well as estimates of their accuracy. Using this
information, the algorithm updates only those estimates which are relatively inaccurate and
whose update would most likely remove clustering uncertainty. We compare our methods
on several datasets, including a realistic example where similarities are expensive and noisy.
The results show a significant improvement in performance compared to the alternatives.
This work was published in [85].

Bayesian Bias Mitigation for Crowdsourcing. In many applications, Bayesian models
are a valuable tool for learning from small amounts of possibly noisy data. Unfortunately,
complex Bayesian models often require MCMC-based inference, which makes active learning
impractical. We demonstrate this phenomenon in Chapter 3 where we develop Bayesian Bias
Mitigation for Crowdsourcing (BBMC), a statistical model for learning from possibly biased
crowdsourced label data. Specifically, we model each labeler in a crowd as being influenced
by a set of shared random effects, allowing labelers to give systematically different responses.
In doing so, we go beyond current methodologies which model all labels as coming from a
single latent truth, corrupted by bias and noise. Our approach can account for more complex
bias patterns that arise in ambiguous or hard labeling tasks. Due to the complexity of the
model, inference is done using a Gibbs sampler. Unfortunately, active learning is commonly
considered infeasible with Gibbs sampling inference. We propose a general approximation
strategy for Markov chains to efficiently quantify the effect of a perturbation on the stationary
distribution and specialize this approach to active learning. Experiments show BBMC to
outperform many common heuristics. This work was published in [88].

Heavy-Tailed Process Priors for Selective Shrinkage. In Chapter 4 we investigate
the effects of randomized subsampling on Gaussian process models. We demonstrate a
biological application where learning from outliers in the dataset is of significant interest.
Unfortunately, when randomly subsampling a dataset, these outliers become even rarer,
which in the context of Gaussian processes can lead to overfitting. We show that heavy-
tailed stochastic processes (which we construct from Gaussian processes via a copula), can
be used to improve robustness of regression and classification estimators to such outliers
by selectively shrinking them more strongly in sparse regions than in dense regions. We
carry out a theoretical analysis to show that selective shrinkage occurs when the marginals
of the heavy-tailed process have sufficiently heavy tails. The analysis is complemented by
experiments on biological data which indicate significant improvements of estimates in sparse
regions while producing competitive results in dense regions. This work was published in [87].

Efficient Ranking from Pairwise Comparisons. Chapter 5 is concerned with an anal-
ysis of a randomized subsampling algorithm. Ranking n objects from pairwise comparisons
is a core machine learning problem, arising in recommender systems, ad placement, player
ranking, biological applications and many others. In many practical situations the true pair-
wise comparisons cannot be actively measured, but a subset of all n(n − 1)/2 comparisons
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is passively and noisily observed. We present two simple algorithms that predict a total
order over n objects from such data. In expectation, the algorithms are shown to match
an Ω(n) lower bound on the sample complexity for predicting a permutation with fixed
expected Kendall tau distance. Furthermore, if instead an average of O(n log(n)) binary
comparisons are measured, then one algorithm recovers the true ranking in a uniform sense,
while the other predicts the ranking more accurately near the top than the bottom. We ex-
tend the algorithms to online and distributed learning settings, with benefits over traditional
alternatives. This work was published as [86].



5

Chapter 2

Active Spectral Clustering

Together with the recent explosion of available data, we are now seeing a much greater
variety of data types. Moving away from pure vectorial data, it is now common to treat
sequences, trees or even graphs as individual datapoints. Computational biology, natural
language processing and computer vision are example sources of such data. To accomodate
this every-growing variety of data types, a range of new algorithms are being developed.
As these algorithms emerge, we seek new active learning procedures to accomodate them.
In this chapter we will focus on spectral clustering as a promising algorithm for clustering
a variety of data types and will demonstrate an improved active learning algorithm that
outperforms previous methodologies.

2.1 Spectral Clustering

Clustering is a fundamental problem involving summarizing, indexing and classifying various
types of data. As data sets become larger and more complex, algorithms that depend on
pairwise similarities—rather than fixed length feature vector representations—are growing
increasingly popular. An important example is spectral clustering, which partitions data
through a spectral analysis of the Laplacian matrix induced by the similarity graph.

Although methods based on pairwise similarities are growing in popularity, a practical
difficulty is that pairwise similarities can be expensive to acquire, be it due to computational
requirements, need for human input, or lack of observability. In protein clustering, for ex-
ample, a computationally expensive alignment process may be necessary before two proteins
can be compared. Other examples in computational biology require a combinatorial search
for each pairwise similarity, even when the datapoint can be represented in a compact form
(a protein sequence is usually less than 1000 letters long). A counterpart to these compu-
tational issues is that often the only practical way to obtain similarities is to query human
annotators. Here, measurements are not only expensive, but frequently also noisy. In this
paper we consider the task of organizing a stream of snapshots taken by a wearable camera
at a rate of about one photo per 20 seconds [49]. Clustering these snapshots is beyond the
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capabilities of existing computer vision algorithms, so human guidance is necessary to either
cluster the images, or learn improved models to do the clustering for us. As the human
subject (e.g., an Alzheimer’s patient), wears the camera during an open-ended observation
period, it is not clear a priori what the clusters should be. A way to tackle this problem is to
ask human annotators to rate how similar any two photos are and then to cluster using this
data. (For example, photos may be deemed similar if they were taken in similar locations.)
This is one of many examples where crowdsourcing, albeit expensive, can be used to collect
pairwise similarity measurements. As a final example, in some situations the objects that are
being compared can disappear over time, making retrospective comparisons difficult. Con-
sider viral strains, which, if not preserved in a laboratory, may disappear, leaving behind only
indirect assessments with other viruses. While similarities among preserved viruses can be
acquired at a relatively high cost in the lab (e.g., crossreactivity of the immune responses),
similarities involving the extinct strain are not available at any cost. In addition to this
time barrier, geographic, legal and policy barriers can also make certain pairwise similari-
ties inaccessible. All these examples illustrate that similarities may be noisy and arbitrarily
expensive to compute, to the extreme where certain similarities are completely unavailable.

The potentially significant cost of obtaining pairwise similarities motivates the search
for tradeoffs between desired clustering quality and the required amount of data. In this
paper, we study this question in the setting of the spectral clustering of n objects when we
do not have access to all pairwise measurements initially, but we can iteratively query the
similarities from an external black-box procedure (which may impose restrictions on which
of the subset of all n(n−1)/2 similarities can be queried). In this active learning formulation
the goal is to find a good approximation to the true clustering based on as few similarity
evaluations as possible, thus reducing the overall cost (i.e. compute cycles, human tasks
performed, laboratory material and other data collection expenses).

A recent contribution in this direction has been made by Shamir and Tishby [69]. Their
approach was designed for querying arbitrary similarity matrices, including those where
no clustering structure is apparent. This paper significantly improves on their method by
exploiting the fact that most realistic pairwise similarity matrices, even if incomplete, do
exhibit clustering structure. Consider Figure 2.1, where on the left we show an incomplete
matrix that we might realistically encounter and on the right a matrix constructed from
random similarities. Shamir and Tishby assume no structure in the matrix (such as in the
matrix on the right) and query measurements that maximally change the overall clustering
solution. In contrast, we tailor our active learning algorithm to work well with realistic
matrices (such as the one on the left) where information about the true clustering emerges
quickly and can be leveraged to guide an improved query selection strategy.

An aspect of spectral clustering that is commonly ignored is that similarity measurements
are generally noisy. Active spectral clustering methods have so far not taken these uncertain-
ties into account. We extend our algorithm in this direction to allow repeat measurements
of noisy similarities, and use those to compute running estimates of the true similarities,
as well as estimates of their accuracy. We extend our algorithm to measure that similarity
which is inaccurate and whose update would most likely remove clustering uncertainty.
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Figure 2.1: Two incomplete similarity matrices. The left was constructed from median image
similarities, measured using Amazon Mechanical Turk (see Section 2.6). We permuted the
rows and columns so that any clusters would become visible as diagonal blocks. Then we set
82% of the similarities to 0 (black regions). The right matrix was constructed similarly, but
starting from similarities sampled uniformly in [0, 1]. The left matrix still shows clustering
structure, which is also visible in the sign vector of the second Laplacian eigenvector, plotted
below (see Sections 2.3 and 2.4 for details). The right matrix had almost no structure to
start with, so no structure is visible in the corresponding eigenvector.

The paper is organized as follows. In Section 2.2 we review related research. Section 2.3
presents some background on spectral clustering. Next, we describe our active learning
algorithm in Section 2.4. In Section 2.5 we extend the algorithm to take measurement noise
into account. We present experiments on synthetic and real datasets in Section 2.6 and
conclude with final remarks in Section 2.7.

2.2 Related Research

Spectral Clustering Spectral clustering was popularized in the machine learning com-
munity by Shi and Malik [72] and shortly afterwards revisited by Ng, Jordan and Weiss [58].
Since then, it has permeated the literature and become a firm part of the practitioner’s
toolbox. Over the years, numerous connections to other research fields have been made,
a comprehensive review of which can be found in [82]. However, very little work in the
spectral clustering literature has explicitly investigated situations when only a subset of all
similarities is known, possibly contaminated by noise.

Matrix Completion One simple approach to adapting spectral clustering to the case of
missing similarities is to exploit the burgeoning literature on matrix completion methods.
A particularly straightforward approach is to impute a constant value (e.g., zero) for the
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missing similarities. Such approaches are often used in practice, and some of its properties
have been analyzed theoretically [69].

More sophisticated methods can be deployed under the assumption that entire rows or
columns of the similarity matrix can be measured. The driving assumption behind these
methods is that the true matrix is of low rank, so that a small subset of elements ap-
proximately captures the global matrix structure. Among these approaches, the Nyström
method [27, 91] is perhaps the most well known. Other algorithms that use row/column
sampling include for instance [25, 26, 32]. Applications of some of these methods to spec-
tral clustering are given in [29, 66]. In less controlled situations, we do not have access to
entire rows/columns of measurements, but only an arbitrary subset; in this setting it is still
possible to exploit a low-rank assumption for matrix completion [1, 80]. There is debate
about the value of these methods in the spectral clustering setting; in particular, Shamir
and Tishby [69] argued that the low rank assumptions can be unrealistic in many spectral
clustering applications and demonstrated that the Nyström method often performs poorly.
Additionally, most of the row/column sampling methods require that the sampling distribu-
tion depends on the entire similarity matrix [25, 26, 27, 32]. Because this matrix is unknown,
these methods are of limited applicability in our setting. Finally, we highlight that with the
exception of Huang et al. [43], relatively little work has been done on analyzing the influence
of incomplete or perturbed similarity matrices on the spectral clustering solution.

Active Learning Until recently, the study of active learning for spectral clustering was
restricted to settings where the entire similarity matrix is known (perhaps approximately)
and an external oracle can be repeatedly queried for additional linkage constraints between
objects (of the form must-link or cannot-link). When the similarity matrix only approxi-
mately captures the desired clustering, adding such constraints iteratively can help resolve
ambiguous boundary cases. Relevant examples include [7, 54, 84, 92]. We note in particular
the work of Xu et al. [92], in which the constraints are absorbed by modifying the similarity
matrix in a way that is akin to measuring similarities of higher quality. The focus in active
learning for spectral clustering has only recently shifted to scenarios in which explicit costs
are imposed on the measurement of similarities. This focus is exemplified by Shamir and
Tishby [69], who propose and analyze an active learning method based on matrix perturba-
tion theory [78].

2.3 Spectral Clustering

We begin by presenting our notation and summarizing the key ideas of spectral clustering.
For further details we refer the reader to von Luxburg [82]. Given n objects, denote by
W the n × n symmetric matrix of pairwise similarities among these objects. Typically,
0 ≤ wij ≤ 1, i, j = 1, . . . , n and wii = 1, i = 1, . . . , n. Let D = diag(W1) be the diagonal
matrix of row sums of W . With this notation, the unnormalized Laplacian matrix induced
by W is then given by L = D −W . Spectral clustering partitions the n objects into two
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groups by thresholding the second eigenvector v2 of L. Specifically, if we let the partition be
encoded by variables ci ∈ {−1,+1}, i = 1, . . . , n, then

ci = 2 [v2(i) > 0]− 1. (2.1)

Here, we use the notation v2(i) to indicate the ith component of the vector v2. Because the
partitioning is trivial to compute from the second eigenvector, we will occasionally refer to
the eigenvector itself as the spectral clustering solution, rather than the partitioning.

Spectral clustering only sees the data as filtered through the matrix W . Thus it is
possible to adapt the spectral approach to the clustering of non-vectorial data such as graphs,
sequences and sets; it suffices that similarity scores can be computed for these objects. This
is generally accomplished via a kernel function, and computationally efficient kernels are
available for certain kinds of structured objects [34, 70]. Unfortunately, however, kernel
formulations are often too rigid to be adapted to specific needs, and often lack interpretability.
As we move to more complex datasets, the notion of similarity a practitioner is interested
in may not be captured by a kernel. Indeed, as highlighted in the Introduction, in many
practical examples the similarities cannot be evaluated by a computer at all, but must be
provided by an experiment or human annotator.

2.4 Active Learning

In this section we propose an active learning strategy that attempts to alleviate the above
issues. Our work is based on a matrix perturbation argument for an intermediate estimate
of the Laplacian matrix. Given incomplete measurements, we estimate the true Laplacian
matrix as

L̂ = D̂ − Ŵ , (2.2)

where Ŵ is the matrix of all pairwise measurements with zero imputed for unknown entries,
and D̂ = diag(Ŵ1). The motivation for imputation with zero can be seen by rewriting the
spectral clustering problem. The second eigenvector of the Laplacian L̂ can be found as

v̂2 = argminvv
>L̂v = argminv

∑
ij

ŵij(v(i)− v(j))2 (2.3)

s.t. v>v = 1 (2.4)

v>1 = 0. (2.5)

Thus, similarities act as weights on soft constraints between eigenvector components. By
imputing zero for missing similarities we merely ignore those constraints which are not sup-
ported by a measurement.

For any set of similarities Ŵ , the second eigenvector v̂2 gives the best guess for an
embedding of the objects on the line. The embedding is such that two groups of similar
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objects are embedded away from zero, on the negative or positive orthant, respectively. Any
objects that are approximately equally similar to all remaining objects are embedded near
zero. This is intuitive, for these are the objects that cannot clearly be assigned to either of
the two groups. Indeed, since a mean can be found by minimizing a mean squared error, we
see from Eq. (2.3) that an object i with approximately constant similarities ŵij to remaining
objects j should be embedded near the average of their embedding locations v̂2(j). On the
other hand, if the data actually clusters well and is reasonably balanced, then we expect the
second eigenvector v2 of the true Laplacian L to have elements with magnitude on the order
of 1/

√
n, since v>2 v2 = 1. In this way, the elements of most realistic embeddings v2 should

be expected to be bounded away from zero. Spectral clustering based on incomplete data Ŵ
partitions the objects by looking at the signs of the embedding v̂2 (Eq. (2.1), with threshold
at zero). Consequently, objects which are embedded near zero are the objects about whose
cluster label we should be most “uncertain” about.

In many practical cases, a relatively small amount of data suffices so that v̂2 already
indicates a useful clustering. The left sign vector shown in Figure 2.1 demonstrates this on
a real dataset. We use such partial information as a guide towards measurements that more
quickly reveal the true nature of the clustering. In this approach, our earlier intuition about
the magnitude of v̂2 components plays a crucial role. More specifically, our active learning
strategy uses matrix perturbation theory to reveal that entry of Ŵ for which a constant
perturbation would change the minimum magnitude element of v̂2 the most. The rationale
is that by focussing on small magnitude components, we more quickly move them away from
the cluster boundary (i.e. 0), and thus reduce uncertainty in the partial clustering. In effect,
we try to choose measurements that help us push the embedding clusters further apart. If
the data actually clusters well, this should quickly guide us to the clean clustering we expect
to find.

Suppose we have the Laplacian eigenvector decomposition L̂ =
∑n

p=1 λ̂pv̂pv̂
>
p and that

λ̂1 ≤ λ̂2 . . . ≤ λ̂n. For spectral clustering, λ̂1 = 0 and v1 = 1/
√
n. Matrix perturbation

theory (e.g. Stewart and Sun [78], Chapter V, Section 2.3) gives the first order change of
the second eigenvector as

dv̂2

dŵij
=

n∑
p>2

v̂>2

[
∂L̂/∂ŵij

]
v̂p

λ̂2 − λ̂p
v̂p, (2.6)

provided λ̂2 has multiplicity 1. Note that ∂L̂/∂ŵij = (ei − ej)(ei − ej)
>, where ei is the

indicator vector of i. If kmin = argmink|v̂2(k)|, the change to the smallest magnitude ele-
ment of v̂2 is dv̂2(kmin)/dŵij. Our proposed active learning algorithm, IU-RED, is given in
Algorithm 1.

A recent algorithm due to Shamir and Tishby [69] has a similar structure. The main steps
are shown in Algorithm 2, which we refer to as S&T throughout.1 The algorithm chooses
measurements that maximize the global change to v̂2 by maximizing the norm on line 2.

1The full algorithm requires a “budget” parameter b which specifies the maximum number of measure-
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Algorithm 1: IU-RED

S = {(i, j) : i, j ∈ {1, . . . , n}, i < j}
Ŵ = I
for t = 1, . . . , n(n− 1)/2

L̂ = diag(Ŵ1)− Ŵ =
∑n

p=1 λ̂pv̂pv̂
>
p

kmin = argmink|v̂2(k)| (1)

(i∗, j∗) = argmax(i,j)∈S

∣∣∣dv̂2(kmin)
dŵij

∣∣∣ (2)

= argmax(i,j)∈S

∣∣∣∣∑n
p>2

v̂>2 [∂L̂/∂ŵij]v̂p
λ̂2−λ̂p

v̂p(kmin)

∣∣∣∣ (3)

S = S \ {(i∗, j∗)}
ŵi∗j∗ = wi∗j∗ , ŵj∗i∗ = wj∗i∗

return Second eigenvector of L̂ = diag(Ŵ1)− Ŵ

The reasoning is the following: As more measurements are acquired, the estimate v̂2 will
necessarily converge to the true eigenvector v2, regardless of the query ordering, since only
a finite number of measurements can be made. Since constant perturbations to elements of
Ŵ can have varying effects on v̂2, we should choose to update that element where the effect
is largest.

If the similarity matrices were random, we would not expect to see partial clusterings
emerge in v̂2, even with fairly large amounts of data. Figure 2.1 has highlighted this. In this
unstructured setting, Shamir and Tishby’s method may well be the best we can do, for it
targets the global change in the clustering solution. Our algorithm exploits that practical
similarity matrices are highly structured even when severely subsampled and uses this partial
information as a guide for query selection. Our experiments emphasize that the empirical
improvements of our method are significant, even though the algorithmic differences may at
first appear minor.

2.5 Measurement Noise

In many settings, only noisy similarities can be measured. In the Section 2.6, for example,
we consider a crowdsourcing application where similarities are manually assigned by human
labelers. A significant factor there is that even cooperative workers may disagree on simi-
larity scores. Noisy similarities can be a fundamental problem, yet their impact on spectral
clustering has not been thoroughly understood. Huang et al. [43] are among the few to

ments that can be requested from an oracle. For this paper, we set b = n(n− 1)/2. Another version of their
algorithm interleaves active selection with random selection, which we consider in our experiments.
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Figure 2.2: Results on synthetic datasets. For each dataset we sampled a total of 200
points from two Gaussians of increasing separation. Methods are evaluated on the average
misclustering error rate, relative to a spectral clustering solution with complete data. Our
proposed methods are “IU-RED” and “IU-RED, interleave”.

investigate the effects of perturbations when all similarities are known. To our knowledge,
active spectral clustering with costly and noisy measurements has not been considered.

The simplest way to deal with noise is to take the mean or median of multiple repeated
measurements. However, given m repeated measurements of normally distributed similari-
ties, both the mean and median have a standard deviation that is only a factor of O(1/

√
m)

smaller than that of a single measurement. Thus, to halve the standard deviation we need
about four times as many measurements. Thus, measuring every similarity multiple times is
a fairly expensive way to reduce the effects of noise. It is especially wasteful since it is likely



CHAPTER 2. ACTIVE SPECTRAL CLUSTERING 13

0 0.05 0.1 0.15 0.2
0

0.2

0.4

iris

E
rr

or
 r

at
e

Fraction of similarities

(a)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

wine

E
rr

or
 r

at
e

Fraction of similarities

(b)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

pendigits

E
rr

or
 r

at
e

Fraction of similarities

(c)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

waveform

E
rr

or
 r

at
e

Fraction of similarities

(d)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

segmentation

E
rr

or
 r

at
e

Fraction of similarities

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

face

E
rr

or
 r

at
e

Fraction of similarities

(f)

Figure 2.3: Results on several real datasets. Methods are evaluated on the average mis-
clustering error rate, relative to a spectral clustering solution with complete data. Our
proposed methods are “IU-RED” and “IU-RED, interleave”. Note that the scaling of the
x-axis changes between plots.

that only similarities of objects close to the cluster boundaries need to be known accurately
to resolve the decision boundary. This section gives an active learning algorithm that asks
for repeat measurements only when the measurement can significantly change the current
solution and when our uncertainty in the true similarity is large.

We have extended IU-RED to maintain a “running median” estimate for each similarity.
At any time, the true similarity is estimated as the median of any repeat measurements. Ad-
ditionally, we maintain for each similarity estimate ŵij an estimate of its standard deviation,
σ̂ij. When no measurements were made, we let the standard deviation be that of a uniform
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Algorithm 2: S&T [69]

S = {(i, j) : i, j ∈ {1, . . . , n}, i < j}
Ŵ = I
for t = 1, . . . , n(n− 1)/2

L̂ = diag(Ŵ1)− Ŵ =
∑n

p=1 λ̂pv̂pv̂
>
p (1)

(i∗, j∗) = argmax(i,j)∈S

∣∣∣∣∣∣ dv̂2dŵij

∣∣∣∣∣∣2
2

(2)

= argmax(i,j)∈S

∣∣∣∣∣∣∣∣∑n
p>2

v̂>2 [∂L̂/∂ŵij]v̂p
λ̂2−λ̂p

v̂p

∣∣∣∣∣∣∣∣2
2

(3)

S = S \ {(i∗, j∗)}
ŵi∗j∗ = wi∗j∗ , ŵj∗i∗ = wj∗i∗

return Second eigenvector of L̂ = diag(Ŵ1)− Ŵ

on [0, 1]; i.e., σ̂ij =
√

1/12 ≈ 0.2887. After a single measurement we set σ̂ij = s, an estimate
of the population standard deviation, and we let σ̂ij = s/

√
m for m repeat measurements.2

IU-RED was then modified to choose that measurement (possibly a repeat) where the prod-
uct σ̂ij|dv̂2(kmin)/dŵij| is maximal. This amounts to choosing that measurement where our
current estimate is uncertain and where the uncertainty matters. The S&T algorithm can
be similarly modified and is considered in that form during our experiments.

2.6 Experiments

We begin this section by evaluating the basic IU-RED algorithm of Section 2.4 on synthetic
and real datasets. Subsection 2.6 then considers the extension to noisy measurements.

Our methods include IU-RED and a version of IU-RED with interleaved random selection.
We compared against three alternatives: S&T, S&T with interleaved random selection, and
random selection only. The last three methods have been previously evaluated in Shamir
and Tishby [69] using a similar evaluation methodology as we consider here. We consider
binary classification, which can be extended to more than two clusters by recursive splitting
or by expanding the reasoning outlined here to more eigenvectors. Shamir and Tishby also
evaluated a Nyström algorithm [29], but often found performance to be poor if the low rank
assumption was not met. We evaluate all methods on the misclustering error, relative to a
spectral clustering solution with complete dat and give average results over 20 runs.

2Several variations of this theme could be considered. Given enough samples, frequentist confidence
intervals of the median could be estimated using the bootstrap. Alternatively, given prior information one
could use Bayesian techniques to estimate posterior means and variances.
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Figure 2.4: Spectral clustering of photos with complete data. The top row shows example
views of the kitchen, and the bottom row example views of the living room. Humans can
easily determine that photos in each row were probably taken in the same room, but a
computer algorithm would have difficulty solving this task.

Synthetic Datasets

We first present results on a simple clustering task in which the data is drawn from mixtures
of Gaussians with two components. The data and results are shown in Figure 2.2. For each
dataset we sampled a total of 200 points from two Gaussians of increasing separation. We
normalized the data to lie in the unit hypercube and used a standard radial basis function
kernel to compute similarities. As expected, random selection usually performs worst, except
when the cluster separation is minimal. Compared to our two algorithms, S&T does poorly
even on easy problems. As reported in [69], interleaving with random selection significantly
boosts performance. IU-RED outperforms both versions of S&T early on, but ties with them
towards the end. Interestingly, while interleaving IU-RED appears to eventually stabilize
the error rates, it slightly hurts performance early on.

Real Datasets

We have also evaluated our algorithm on a variety of real datasets. Five of the sets in this
subsection are from the UCI repository [30] (iris, wine, pendigits, waveform, segmentation).
An additional dataset concerning the similarity of faces is available from the University of
Washington [59]. We followed [43, 69] and normalized the data to lie in the unit hypercube
and used the Gaussian kernel to compute similarities.3 Figures 2.3(a)–2.3(e) show the results
on the UCI datasets. Figure 2.3(f) shows results on the face dataset. Note that the scaling
of the x-axis changes between plots. The difference between methods is amplified on these
datasets. Except for the iris dataset in Figure 2.3(a), S&T performs relatively poorly, and

3Although the UCI datasets were previously analyzed in [69], the results are not directly comparable,
since their evaluations used different kernel parameters. Also, since each of these datasets contains more
than two classes, it is possible that we chose two different classes for evaluating the spectral clustering.
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is eventually outperformed by random selection. On three of five UCI datasets IU-RED
outperforms all other methods early on. Interleaving usually increases the error initially, but
eventually leads to a more stable algorithm with marginally lower error. The exception is
the waveform dataset in Figure 2.3(d) where interleaving helps significantly. Lastly, on the
face dataset IU-RED also outperforms S&T early on, with slight gains for interleaving.

We conducted a further experiment to assess whether the superior performance of IU-
RED over S&T can be seen after a single active learning step, or only emerges after many
such steps. In this experiment, we sampled a subset of similarities of approximately constant
size uniformly at random and measured the decrease in error rate over one active selection
step. These results were averaged over 30000 restarts. The first five rows of Table 2.1 show
results for UCI data, the sixth row for the face data, and the last row for similarity matrices
with off-diagonal entries uniform in [0, 1]. On four out of five UCI datasets and on the face
dataset, IU-RED decreases the error more than S&T. The one dataset where we perform
worse is the waveform dataset, which Figure 2.3(d) shows to be challenging for all methods.
Overall, our method performs much better than S&T on structured similarity matrices. On
random matrices both perform poorly, but now S&T performs better than IU-RED.

Wearable Camera Dataset

Our next experiment focuses on the realistic example outlined in the Introduction where
similarities are hard to compute and noisy. The data of interest is a photo stream, acquired
by a wearable camera at a rate of about one photo per 20 seconds. Clustering the data by
the location at which an image was taken may be useful in a variety of applications, ranging
from health (e.g., in diagnosis and life quality improvement for Alzheimer’s patients) to sum-
marization of personal memories. Because the data is collected in an entirely unconstrained
way, analyzing it is beyond the capabilities of current unsupervised algorithms. The top row
of Figure 2.4, for example, shows five images taken in the same kitchen. Clustering clearly
requires some human input; at the very least a preliminary annotation that could be used to
train supervised computer vision algorithms. It is impractical to ask annotators to simply
label images by their location, since salient locations and their number only become evident
as the stream progresses and may change from week to week, and from subject to subject.
Also, locations may be interconnected, and multiple locations might be visible from the same
viewpoint. In our data, for example, an open kitchen connects to the living room so that
large parts of the space can be perceived to belong to both rooms. It is much more natural
to collect similarities between images and to infer a clustering from that data.

We took this approach in order to cluster 100 images taken from the photo stream
described above [49]. Of these, about 50 were taken in an open kitchen, and 50 were taken
in the adjacent living room. Some example images are shown in Figure 2.4. We asked
workers on Amazon Mechanical Turk to rate, on a scale from 1 to 10, how likely it was that
a given pair of images was taken in the same room, with 10 indicating certainty. The user
ratings were divided by 10 and then used as similarities. Humans are adept at matching
rooms by a loose jumble of visible objects, making this task fairly realistic. Indeed, the two
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rows of Figure 2.4 show representative examples from a partition that was found by spectral
clustering using the complete median similarity matrix, with the median running over three
repeat measurements. A subsampled version of the median similarity matrix was shown in
Figure 2.1 on the left. To collect one similarity for each pair of photos costs a total of US$74,
so the three repeats required for the median cost a total of US$222.

We first evaluated our algorithms on the median similarity matrix using the same meth-
ods as before. The results are shown in Figure 2.5(a). The legend is the same as in Figure 2.2.
Note that the x-axis is scaled to extend beyond 1.0, to account for the three repeat mea-
surements necessary to compute one median similarity. A fraction of f indicates that a total
of fn(n − 1)/2 pairwise measurements were made. As before, our method outperforms a
number of competitors early on. The results can be also interpreted in terms of the amount
of money that must be expended to achieve a clustering result of fixed quality. Each image
comparison cost us US$0.045 on Amazon Mechanical Turk. Table 2.2 shows the resulting
approximate cost in US$ for each algorithm in order to achieve an error rate of 0.05. IU-RED
is at least 4 times cheaper than S&T, which costs more than 30% of the complete-labelling
cost. This difference can easily render larger image clustering tasks than ours impractical.

We also evaluated how IU-RED and S&T compare over only one active choice. The result
is shown in the row of Table 2.1 labeled “photos.” As before, our active learning framework
outperforms that of Shamir and Tishby.

Next, we consider the extension of IU-RED to deal with noisy similarities, as outlined
in Section 2.5. Figure 2.6 illustrates the type of noise encountered in this labelling task.
We allow up to three repeat measurements of similarities that are known with high un-
certainty and which can potentially change the current solution. The results are shown in
Figure 2.5(b). For comparison, Figure 2.5(c) shows results when no repeat measurements
are allowed and the standard deviation is not estimated. The latter is the extreme coun-
terpart to measuring every similarity three times. All error rates are relative to a spectral
clustering computed from the complete median similarity matrix, averaged over 20 runs. As
before, we scaled the x-axes to show the effective fraction of pairwise measurements that was
made. For the no-repeats framework in Figure 2.5(c) this fraction cannot be larger than 1.0.
Another important consequence of this measuring framework is that all algorithms should
yield approximately the same average error rate at a fraction of 1.0, since at that point every
algorithm has observed one complete set of (noisy) similarities. The differences between
algorithms are thus only appreciated in the first half of the Figure 2.5(c).

Both versions of IU-RED continue to beat the remaining algorithms in either of the two
new settings. However, random interleaving now helps slightly, where it was detrimental be-
fore. With the exception of S&T, most methods improve early on compared to Figure 2.5(a).
On the one hand this is intuitive, since as long as the similarities are not extremely noisy,
three measurements do not convey three times as much information as one. One the other
hand, it suggests that moderately noisy measurements can still be quite informative. Even
so, we emphasize again that all algorithms should perform identically at a fraction of 1.0
in Figure 2.5(c). Maintaining running estimates and their accuracies is therefore preferable
as it does not force performance to equalize once a fixed measurement quantum has been
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Figure 2.5: Results on the “photos” dataset. Figure 2.5(a) shows results when true similar-
ities are estimated as the median of three measurements. Figure 2.5(b) shows results when
the algorithm is allowed choose which repeat measurements to make. Up to three repeats
are allowed. Figure 2.5(c) shows results when similarities are estimated by a single noisy
measurement. The legend is the same as in Figure 2.3.

Figure 2.6: Worker disagreement for two image comparisons on Amazon Mechanical Turk.
For the left two photos, workers agreed they were certainly taken in the same room; for the
right two, one worker asserted they were definitely not.

reached. Indeed, both IU-RED and IU-RED with random interleaving perform marginally
better in Figure 2.5(b) than Figure 2.5(c) once a fraction of 1.0 measurements is reached.
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Dataset IU-RED S&T

iris 0.0078 ± 0.0002 0.0016 ± 0.0001
wine 0.0103 ± 0.0003 -0.0010 ± 0.0003

pendigits 0.0067 ± 0.0002 -0.0007 ± 0.0002
waveform -0.0018 ± 0.0002 0.0008 ± 0.0001

segmentation 0.0104 ± 0.0002 0.0002 ± 0.0002
face 0.0009 ± 0.0001 0.0001 ± 0.0001

photos 0.0126 ± 0.0003 -0.0021 ± 0.0002

uniform -0.0057 ± 0.0009 -0.0037 ± 0.0007

Table 2.1: Average decrease in error rate across one selection step. IU-RED generally de-
creases the error more than S&T.

Random S&T S&T, inter. IU-RED IU-RED, inter.

$53 > $70 $32 $17 $21

Table 2.2: Approximate labelling costs in US$ to achieve a 0.05 error rate on the photos
dataset.

2.7 Conclusions

In this paper we have presented and evaluated an active learning algorithm for spectral
clustering. Our main insight is that similarity matrices are not random, but usually exhibit
clear clustering structure. Even when observing only a small fraction of the data, this
structure becomes evident. Furthermore, assuming that the data clusters well, the final
v2 will usually have elements well away from zero. Motivated by these observations, our
algorithm uses the current estimate v̂2 to choose measurements that will be most useful in
removing elements close to zero, i.e., to push the two clusters in v̂2 apart. We have applied
this algorithm to a range of datasets and showed that it generally outperforms a related
algorithm by Shamir and Tishby.

The effects of costly and noisy similarities have so far been ignored in the active learning
setting. We propose an extension of our algorithm that maintains running estimates of the
true similarities as well as their accuracies. By taking these accuracies into account during
query selection, we can potentially avoid unnecessary repeat measurements and speed up
the learning process in noisy settings.

Rahimi and Recht [62] previously showed that a version of spectral clustering related
to normalized cuts [72] clusters data by finding a hyperplane that cuts the data in a lifted
space. The signed distances of points to the hyperplane are given by rescaled elements of an
Laplacian eigenvector, and the partitioning can be done by taking the sign of the distances.
If we have that W1 = c1, for some c > 0, then their result implies that our version of spectral
clustering also finds such a hyperplane, and that the signed distances are proportional to
the second eigenvector v2. Our active learning approach can then be interpreted as choosing
measurements that can maximally perturb the margin between a hyperplane and the lifted
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datapoints. Rahimi and Recht’s observation has recently been used to derive an active
learning rule for the spectral graph transducer [7]. Here W is completely known, but for
each object an additional binary class label can be queried. The rule chooses to label that
point next which is currently closest to a hyperplane. Similar heuristics have also been
employed in a number of other classifiers and clustering frameworks [13, 54, 81, 92]. In all
these methods, however, the pairwise similarities are assumed to be known initially (either
implicitly or explicitly) but additional labels or constraints can be queried. In contrast, our
setting allows for incomplete similarities which we can (perhaps only noisily) measure at
high cost.
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Chapter 3

Bayesian Bias Mitigation for
Crowdsourcing

As models become more complex, traditional methodologies for active learning tend to be-
come harder to implement. For example, consider complex Bayesian models, which often
rely on an MCMC-based method for inference. Here, active learning is commonly thought to
be computationally infeasible, since a näıve scoring implementation would require running
many additional MCMC chains. We consider this problem in the context of a Bayesian
model for crowdsourcing. Because the crowdsourced data is complex, the Bayesian model is
also complex, and we chose to use an MCMC-based inference procedure. After introducing
the model, we propose a new MCMC-based framework for tractable, approximate active
learning, which reuses samples from an existing MCMC chain for approximate scoring. This
avoids running extra MCMC chains and outperforms the näıve approach.

3.1 Crowdsourcing

Crowdsourcing is becoming an increasingly important methodology for collecting labeled
data, as demonstrated among others by Amazon Mechanical Turk, reCAPTCHA, Netflix,
and the ESP game. Motivated by the promise of a wealth of data that was previously
impractical to gather, researchers have focused in particular on Amazon Mechanical Turk
as a platform for collecting label data [75, 77]. Unfortunately, the data collected from
crowdsourcing services is often very dirty: Unhelpful labelers may provide incorrect or biased
responses that can have major, uncontrolled effects on learning algorithms. Bias may be
caused by personal preference, systematic misunderstanding of the labeling task, lack of
interest or varying levels of competence. Further, as soon as malicious labelers try to exploit
incentive schemes in the data collection cycle yet more forms of bias enter.

The typical crowdsourcing pipeline can be divided into three main steps: 1) Data col-
lection. The researcher farms the labeling tasks to a crowdsourcing service for annotation
and possibly adds a small set of gold standard labels. 2) Data curation. Since labels from
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the crowd are contaminated by errors and bias, some filtering is applied to curate the data,
possibly using the gold standard provided by the researcher. 3) Learning. The final model
is learned from the curated data.

At present these steps are often treated as separate. The data collection process is often
viewed as a black box which can only be minimally controlled. Although the potential for
active learning to make crowdsourcing much more cost effective and goal driven has been
appreciated, research on the topic is still in its infancy [24, 71, 93]. Similarly, data curation is
in practice often still performed as a preprocessing step, before feeding the data to a learning
algorithm [44, 64, 73, 75, 77, 83]. We believe that the lack of systematic solutions to these
problems can make crowdsourcing brittle in situations where labelers are arbitrarily biased
or even malicious, such as when tasks are particularly ambiguous/hard or when opinions or
ratings are solicited.

Our goal in the current paper is to show how crowdsourcing can be leveraged more
effectively by treating the overall pipeline in a Bayesian framework. We present Bayesian
Bias Mitigation for Crowdsourcing (BBMC) as a way to achieve this. BBMC makes two
main contributions.

The first is a flexible latent feature model that describes each labeler’s idiosyncrasies
through multiple shared factors and allows us to combine data curation and learning (steps
2 and 3 above) into one inferential computation. Most of the literature accounts for the
effects of labeler bias by assuming a single, true latent labeling from which labelers report
noisy observations of some kind [20, 21, 24, 44, 64, 71, 73, 75, 89, 90, 93, 94]. This assumption
is inappropriate when labels are solicited on subjective or ambiguous tasks (ratings, opinions,
and preferences) or when learning must proceed in the face of arbitrarily biased labelers. We
believe that an unavoidable and necessary extension of crowdsourcing allows multiple distinct
(yet related) “true” labelings to co-exist, but that at any one time we may be interested in
learning about only one of these “truths.” Our BBMC framework achieves this by modeling
the sources of labeler bias through shared random effects.

Next, we want to perform active learning in this model to actively query labelers, thus
integrating step 1 with steps 2 and 3. Since our model requires Gibbs sampling for inference, a
straightforward application of active learning is infeasible: Each active learning step relies on
many inferential computations and would trigger a multitude of subordinate Gibbs samplers
to be run within one large Gibbs sampler. Our second contribution is a new methodology
for solving this problem. The basic idea is to approximate the stationary distribution of a
perturbed Markov chain using that of an unperturbed chain. We specialize this idea to active
learning in our model and show that the computations are efficient and that the resulting
active learning strategy substantially outperforms other active learning schemes.

The paper is organized as follows: We discuss related work in Section 3.2. In Section 3.3
we propose the latent feature model for labelers and in Section 3.4 we discuss the inference
procedure that combines data curation and learning. Then we present a general method to
approximate the stationary distribution of perturbed Markov chains and apply it to derive
an efficient active learning criterion in Section 3.5. In Section 3.6 we present comparative
results and we draw conclusions in Section 3.7.



CHAPTER 3. BAYESIAN BIAS MITIGATION FOR CROWDSOURCING 23

3.2 Related Work

Relevant work on active learning in multi-teacher settings has been reported in [24, 71, 93].
Sheng et al. [71] use the multiset of current labels with a random forest label model to score
which task to next solicit a repeat label for. The quality of the labeler providing the new
label does not enter the selection process. In contrast, Donmez et al. [24] actively choose
the labeler to query next using a formulation based on interval estimation, utilizing repeated
labelings of tasks. The task to label next is chosen separately from the labeler. In contrast,
our BBMC framework can perform meaningful inferences even without repeated labelings
of tasks and treats the choices of which labeler to query on which task as a joint choice in a
Bayesian framework. Yan et al. [93] account for the effects of labeler bias through a coin flip
observation model that filters a latent label assignment, which in turn is modeled through a
logistic regression. As in [24], the labeler is chosen separately from the task by solving two
optimization problems. In other work on data collection strategies, Wais et al. [83] require
each labeler to first pass a screening test before they are allowed to label any more data.
In a similar manner, reputation systems of various forms are used to weed out historically
unreliable labelers before collecting data.

Consensus voting among multiple labels is a commonly used data curation method [77,
83]. It works well when low levels of bias or noise are expected but becomes unreliable when
labelers vary greatly in quality [71]. Earlier work on learning from variable-quality teachers
was revisited by Smyth et al. [73] who looked at estimating the unknown true label for a task
from a set of labelers of varying quality without external gold standard signal. They used an
EM strategy to iteratively estimate the true label and the quality of the labelers. The work
was extended to a Bayesian formulation by Raykar et al. [64] who assign latent variables
to labelers capturing their mislabeling probabilities. Ipeirotis et al. [44] pointed out that
a biased labeler who systematically mislabels tasks is still more useful than a labeler who
reports labels at random. A method is proposed that separates low quality labelers from
high quality, but biased labelers. Dekel and Shamir [21] propose a two-step process. First,
they filter labelers by how far they disagree from an estimated true label and then retrain the
model on the cleaned data. They give a generalization analysis for anticipated performance.
In a similar vein, Dekel and Shamir [20] show that, under some assumptions, restricting
each labeler’s influence on a learned model can control the effect of low quality or malicious
labelers. Together with [64, 90, 94], [20] and [21] are among the recent lines of research to
combine data curation and learning. Work has also focused on using gold standard labels to
determine labeler quality. Going beyond simply counting tasks on which labelers disagree
with the gold standard, Snow et al. [75] estimate labeler quality in a Bayesian setting by
comparing to the gold standard.

Collaborative filtering has looked extensively at completing sparse matrices of ratings [79].
Given some gold standard labels, collaborative filtering methods could also be used to curate
data in a sparse label matrix. However, collaborative filtering generally does not combine
this inference with the learning of a labeler-specific model for prediction (step 3). With the
exception of [96], active learning has not been studied in the collaborative filtering setting.
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3.3 Modeling Labeler Bias

In this section we specify a Bayesian latent feature model that accounts for labeler bias and
allows us to combine data curation and learning into a single inferential calculation. For
ease of exposition we will focus on binary classification, but our method can be generalized.
Suppose we solicited labels for n tasks from m labelers. In practical settings it is unlikely that
a task is labeled by more than 3–10 labelers [83]. Let task descriptions xi ∈ Rd, i = 1, . . . , n,
be collected in the matrix X. The label responses are recorded in the matrix Y so that
yi,l ∈ {−1, 0,+1} denotes the label given to task i by labeler l. The special label 0 denotes
that a task was not labeled. A researcher is interested in learning a model that can be used
to predict labels for new tasks. When consensus is lacking among labelers, our desideratum
is to predict the labels that the researcher (or some other expert) would have assigned, as
opposed to labels from an arbitrary labeler in the crowd. In this situation it makes sense to
stratify the labelers in some way. To facilitate this, the researcher r provides gold standard
labels in column r of Y to a small subset of the tasks. Loosely speaking, the gold standard
allows our model to curate the data by softly combining labels from those labelers whose
responses will useful in predicting r’s remaining labels. It is important to note that our model
is entirely symmetric in the role of the researcher and labelers. If instead we were interested
in predicting labels for labeler l, we would treat column l as containing the gold standard
labels. The researcher r is just another labeler, the only distinction being that we wish to
learn a model that predicts r’s labels. To simplify our presentation, we will accordingly
refer to labelers in the crowd and the researcher occasionally just as “labelers,” indexed by
l, and only use the distinguishing index r when necessary. We account for each labeler l’s
idiosyncrasies by assigning a parameter βl ∈ Rd to l and modeling labels yi,l, i = 1, . . . , n,
through a probit model p(yi,l|xi, βl) = Φ(yi,lx

>
i βl), where Φ(·) is the standard normal CDF.

This section describes a joint Bayesian prior on parameters βl that allows for parameter
sharing; two labelers that share parameters have similar responses. In the context of this
model, the two-step process of data curation and learning a model that predicts r’s labels is
reduced to posterior inference on βr given X and Y . Inference softly integrates labels from
relevant labelers, while at the same time allowing us to predict r’s remaining labels.

Latent feature model

Labelers are not independent, so it makes sense to impose structure on the set of βl’s.
Specifically, each vector βl is modeled as the sum of a set of latent factors that are shared
across the population. Let zl be a latent binary vector for labeler l whose component zl,b
indicates whether the latent factor γb ∈ Rd contributes to βl. In principle, our model
allows for an infinite number of distinct factors (i.e., zl is infinitely long), as long as only
a finite number of those factors is active (i.e.,

∑∞
b=1 zl,b < ∞). Let γ = (γb)

∞
b=1 be the

concatenation of the factors γb. Given a labeler’s vector zl and factors γ we define the
parameter βl =

∑∞
b=1 zl,bγb.
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For multiple labelers we let the infinitely long matrix Z = (z1, . . . , zm)> collect the vectors
zl and define the index set of all observed labels as L = {(i, l) : yi,l 6= 0}. The likelihood is
then written as

p(Y |X, γ, Z) =
∏

(i,l)∈L

p(yi,l|xi, γ, zl) =
∏

(i,l)∈L

Φ(yi,lx
>
i βl). (3.1)

To complete the model we need to specify priors for γ and Z. We define the prior distribution
of each γb to be a zero-mean Gaussian γb ∼ N (0, σ2I), and let Z be governed by an Indian
Buffet Process (IBP) Z ∼ IBP(α), parameterized by α [40]. The IBP is a stochastic process
on infinite binary matrices consisting of vectors zl. A central property of the IBP is that with
probability one, a sampled matrix Z contains only a finite number of nonzero entries, thus
satisfying our requirement that

∑∞
b=1 zl,b <∞. In the context of our model this means that

when working with finite data, with probability one only a finite set of features is active across
all labelers. To simplify notation in subsequent sections, we use this observation and collapse
an infinite matrix Z and vector γ to finite dimensional equivalents. From now on, we think of
Z as the finite matrix having all zero-columns removed. Similarly, we think of γ as having all
blocks γb corresponding to zero-columns in the original matrix Z removed. With probability
one, the number of columns K(Z) of Z is finite so we may write βl =

∑K(Z)
b=1 zl,bγb , Z>l γ,

with Zl = zl ⊗ I the Kronecker product of zl and I.

3.4 Inference: Data Curation and Learning

We noted before that our model combines data curation and learning in a single inferential
computation. In this section we lay out the details of a Gibbs sampler for achieving this.
Given a task j which was not labeled by r (and possibly no other labeler), we need the
predictive probability

p(yj,r = +1|X, Y ) =

∫
p(yj,r = +1|xj, βr)p(βr|X, Y )dβr. (3.2)

To approximate this probability we need to gather samples from the posterior p(βr|Y,X).
Equivalently, since βr = Z>r γ, we need samples from the posterior p(γ, zr|Y,X). Because
latent factors can be shared across multiple labelers, the posterior will softly absorb label
information from labelers whose latent factors tend to be similar to those of the researcher
r. Bayesian inference p(βr|Y,X) combines data curation and learning by weighting label
information through an inferred sharing structure. Importantly, the posterior is informative
even when no labeler in the crowd labeled any of the tasks the researcher labeled.

Gibbs sampling

For Gibbs sampling in the probit model one commonly augments the likelihood in Eq. (3.1)
with intermediate random variables T = {ti,l : yi,l 6= 0}. The generative model for the label
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yi,l given xi, γ and zl first samples ti,l from a Gaussian N (β>l xi, 1). Conditioned on ti,l, the
label is then defined as yi,l = 2 1[ti,l > 0] − 1. Figure 3.1(a) summarizes the augmented
graphical model by letting β denote the collection of βl variables. We are interested in
sampling from p(γ, zr|Y,X). The Gibbs sampler for this lives in the joint space of T, γ, Z
and samples iteratively from the three conditional distributions p(T |X, γ, Z), p(γ|X,Z, T )
and p(Z|γ,X, Y ). The different steps are:

Sampling T given X, γ, Z: We independently sample elements of T given X, γ, Z from a
truncated normal as

(ti,l|X, γ, Z) ∼ N yi,l(ti,l|γ>Zlxi, 1), (3.3)

where we useN−1(t|µ, 1) andN+1(t|µ, 1) to indicate the density of the negative- and positive-
orthant-truncated normal with mean µ and variance 1, respectively, evaluated at t.

Sampling γ given X,Z, T : Straightforward calculations show that conditional sampling
of γ given X,Z, T follows a multivariate Gaussian

(γ|X,Z, T ) ∼ N (γ|µ,Σ), (3.4)

where

Σ−1 =
I

σ2
+
∑

(i,l)∈L

Zlxix
>
i Z
>
l µ = Σ

∑
(i,l)∈L

Zlxiti,l. (3.5)

Sampling Z given γ,X, Y : Finally, for inference on Z given γ,X, Y we may use techniques
outlined in [40]. We are interested in performing active learning in our model, so it is
imperative to keep the conditional sampling calculations as compact as possible. One simple
way to achieve this is to work with a finite-dimensional approximation to the IBP: We
constrain Z to be an m×K matrix, assigning each labeler at most K active latent features.
This is not a substantial limitation; in practice the truncated IBP often performs comparably,
and for K →∞ converges in distribution to the full IBP [40]. Let m−l,b =

∑
l′ 6=l zl′,b be the

number of labelers, excluding l, with feature b active. Define βl(zl,b) = zl,bγb +
∑

b′ 6=b zl,b′γb′
as the parameter βl either specifically including or excluding γb. Now if we let z−l,b be the
column b of Z, excluding element zl,b then updated elements of Z can be sampled one by
one as

p(zl,b = 1|z−l,b) =
m−l,b + α

K

n+ α
K

(3.6)

p(zl,b|z−l,b, γ,X, Y ) ∝ p(zl,b|z−l,b)
∏

i:yi,l 6=0

Φ(yi,lx
>
i βl(zl,b)). (3.7)

After reaching approximate stationarity, we collect samples (γs, Zs) , s = 1, . . . , S, from the
Gibbs sampler as they are generated. We then compute samples from p(βr|Y,X) by writing
βsr = Zs

r
>γs.
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Figure 3.1: 3.1(a) A graphical model of the augmented latent feature model. Each node
corresponds to a collection of random variables in the model. 3.1(b) A schematic of our
approximation scheme. The top chain indicates an unperturbed Markov chain, the lower
a perturbed Markov chain. Rather than sampling from the lower chain directly (dashed
arrows), we transform samples from the top chain to approximate samples from the lower
(wavy arrows).

3.5 Active Learning

The previous section outlined how, given a small set of gold standard labels from r, the
remaining labels can be predicted via posterior inference p(βr|Y,X). In this section we
take an active learning approach [15, 51] to incrementally add labels to Y so as to quickly
learn about βr while reducing data acquisition costs. Active learning allows us to guide the
data collection process through model inferences, thus integrating the data collection, data
curation and learning steps of the crowdsourcing pipeline. We envision a unified system that
automatically asks for more labels from those labelers on those tasks that are most useful in
inferring βr. This is in contrast to [71], where labelers cannot be targeted with tasks. It is
also unlike [24] since we can let labelers be arbitrarily unhelpful, and differs from [93] which
assumes a single latent truth.

A well-known active learning criterion popularized by Lindley [51] is to label that task
next which maximizes the prior-posterior reduction in entropy of an inferential quantity of
interest. The original formulation has been generalized beyond entropy to arbitrary utility
functionals U(·) of the updated posterior probability [15]. The functional U(·) is a model
parameter that can depend on the type of inferences we are interested in. In our particular
setup, we wish to infer the parameter βr to predict labels for the researcher r. Suppose we
chose to solicit a label for task i′ from labeler l′, which produced label yi′,l′ . The utility of this
observation is U(p(βr|yi′,l′)). The average utility of receiving a label on task i′ from labeler
l′ is I((i′, l′) , p(βr)) = E(U(p(βr|yi′,l′))), where the expectation is taken with respect to the
predictive label probabilities p(yi′,l′ |xi′) =

∫
p(yi′,l′ |xi′ , βl′)p(βl′)dβl′ . Active learning chooses

that pair (i′, l′) which maximizes I((i′, l′) , p(βr)). If we want to choose the next task for the
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researcher to label, we constrain l′ = r. To query the crowd we let l′ 6= r. Similarly, we can
constrain i′ to any particular value or subset of interest. For the following discussion we let
U(p(βr|yi′,l′)) = ||Ep(βr)(βr)−Ep(βr|yi′,l′ )(βr)||2 be the `2 norm of the difference in means of βr.
Picking the task that shifts the posterior mean the most is similar in spirit to the common
criterion of maximizing the Kullback-Leibler divergence between the prior and posterior.

Active learning for MCMC inference

A straightforward application of active learning is impractical using Gibbs sampling, because
to score a single task-labeler pair (i′, l′) we would have to run two Gibbs samplers (one for
each of the two possible labels) in order to approximate the updated posterior distributions.
Suppose we started with k task-labeler pairs that active learning could choose from. De-
pending on the number of selections we wish to perform, we would have to run k . g . k2

Gibbs samplers within the topmost Gibbs sampler of Section 3.4. Clearly, such a scoring
approach is not practical. To solve this problem, we propose a general purpose strategy
to approximate the stationary distribution of a perturbed Markov chain using that of an
unperturbed Markov chain. The approximation allows efficient active learning in our model
that outperforms näıve scoring both in speed and quality.

The main idea can be summarized as follows. Suppose we have two Markov chains,
p(βtr|βt−1

r ) and p̂(β̂tr|β̂t−1
r ), the latter of which is a slight perturbation of the former. Denote

the stationary distributions by p∞(βr) and p̂∞(β̂r), respectively. If we are given the stationary
distribution p∞(βr) of the unperturbed chain, then we propose to approximate the perturbed
stationary distribution by

p̂∞(β̂r) ≈
∫
p̂(β̂r|βr)p∞(βr)dβr. (3.8)

If p̂(β̂t|β̂t−1) = p(β̂t|β̂t−1) the approximation is exact. Our hope is that if the perturbation
is small enough the above approximation is good. To use this with MCMC, we first run the
unperturbed MCMC chain to approximate stationarity, and then use samples of p∞(βr) to
compute approximate samples from p̂∞(β̂r). Figure 3.1(b) shows this scheme visually.

To map this idea to our active learning setup we conceptually let the unperturbed chain
p(βtr|βt−1

r ) be the chain on βr induced by the Gibbs sampler in Section 3.4. The perturbed
chain p̂(β̂tr|β̂t−1

r ) represents the chain where we have added a new observation yi′,l′ to the
measured data. If we have S samples βsr from p∞(βr), then we approximate the perturbed
distribution as

p̂∞(β̂r) ≈
1

S

S∑
s=1

p̂(β̂r|βsr), (3.9)

and the active learning score as U(p(βr|yi′,l′)) ≈ U
(
p̂∞(β̂r)

)
. To further specialize this

strategy to our model we first rewrite the Gibbs sampler outlined in Section 3.4. We suppress
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mentions of X and Y in the subsequent presentation. Instead of first sampling (T |γt−1, Z)
from Eq. (3.3), and then sampling (γt|T, Z) from Eq. (3.4), we combine them into one larger
sampling step (γt|γt−1, Z). Starting from a fixed γt−1 and Z we sample from γt as

(
γt|γt−1, Z

) d
= ηΣ + µ = Σ

ησ−2I +
∑

(i,l)∈L

Zlxi
[
η1 +

(
ti,l|γt−1, Z

)], (3.10)

where ηΣ is a zero-mean Gaussian with covariance Σ, and η1 a standard normal random
variable. If it were feasible, we could also absorb the intermediate sampling of Z into the
notation and write down a single induced Markov chain (βtr|βt−1

r ), as referred to in Eqs. (3.8)
and (3.9). As this is not possible, we will account for Z separately. We see that the effect
of adding a new observation yi′,l′ is to perturb the Markov chain in Eq. (3.10) by adding an
element to L. Supposing we added this new observation at time t− 1, let Σ(i′,l′) be defined
as Σ but with (i′, l′) added to L. Straightforward calculations detailed in the Appendix give
that, conditioned on γt−1, Z, we can write the first step of the perturbed Gibbs sampler as a
function of the unperturbed Gibbs sampler. If we let Ai′,l′ = ΣZl′xi′x

>
i′Z
>
l′ /(1+x>i′Z

>
l′ ΣZl′xi′)

for compactness, then we yield(
γt(i′,l′)|γt−1, Z

) d
= (I − Ai′,l′)

(
γt|γt−1, Z

)
+ Σ(i′,l′)Zl′xi′

[
η1 +

(
ti′,l′|γt−1, Z

)]
. (3.11)

To approximate the utility U(·) we now appeal to Eq. (3.9) and estimate the difference in
means using recent samples γs, Zs, s = 1, . . . , S from the unperturbed sampler. In terms of
Eqs. (3.10) and (3.11),

U(p(βr|yi′,l′)) =
∣∣∣∣∣∣Ep(βr)(βr)− Ep(βr|yi′,l′ )(βr)∣∣∣∣∣∣

2
(3.12)

≈
∣∣∣∣∣
∣∣∣∣∣E
(

1

S − 1

S∑
s=2

Zs−1
r
> [(

γ|γs−1, Zs−1
)
−
(
γ(i′,l′)|γs−1, Zs−1

)])∣∣∣∣∣
∣∣∣∣∣
2

. (3.13)

Note that the sample γs is a realization of (γ|γs−1, Zs−1). We have used this to approximate
E((γ|γs−1, Zs−1)) ≈ γs. Thus, the sum only runs over S − 1 terms. Finally, we use samples
from the Gibbs sampler to approximate p(yi′,l′ |xi′) and estimate I((i′, l′) , p(βr)) for querying
labeler l′ on task i′. The full derivation of the criterion is given in the Appendix.

3.6 Experiments

We evaluated our active learning method on an ambiguous localization task which asked
labelers on Amazon Mechanical Turk to determine if a triangle was to the left or above a
rectangle. Examples are shown in Figure 3.2. Tasks such as these are important for learning
computer vision models of perception. Rotation, translation and scale, as well as aspect
ratios, were pseudo-randomly sampled in a way that produced ambiguous tasks. We expected
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(a) (b) (c)

Figure 3.2: Examples of easy and ambiguous labeling tasks. We asked labelers to determine
if the triangle is to the left or above the square.

labelers to use centroids, extreme points and object sizes in different ways to solve the tasks,
thus leading to structurally biased responses. Additionally, our model will also have to deal
with other forms of noise and bias. The gold standard was to compare only the centroids
of the two objects. For training we generated 1000 labeling tasks and solicited 3 labels for
each task. Tasks were solved by 75 labelers with moderate disagreement. To emphasize our
results, we retained only the subset of 523 tasks with disagreement. We provided about 60
gold standard labels to BBMC and then performed inference and active learning on βr so as
to learn a predictive model emulating gold standard labels. We evaluated methods based on
the log likelihood and error rate on a held-out test set of 1101 datapoints.1 All results shown
in Table 3.1 were averaged across 10 random restarts. We considered two scenarios. The
first compares our model to other methods when no active learning is performed. This will
demonstrate the advantages of the latent feature model presented in Sections 3.3 and 3.4.
The second scenario compares performance of our active learning scheme to various other
methods. This will highlight the viability of our overall scheme presented in Section 3.5 that
ties data collection together with data curation and learning.

First we show performance without active learning. Here only about 60 gold standard
labels and all the labeler data is available for training. The results are shown in the top three
rows of Table 3.1. Our method, “BBMC,” outperforms the other two methods by a large
margin. The BBMC scores were computed by running the Gibbs sampler of Section 3.4 with
2000 iterations burnin and then computing a predictive model by averaging over the next
20000 iterations. The alternatives include “GOLD,” which is a logistic regression trained
only on gold standard labels, and “CONS,” which evaluates logistic regression trained on the
overall majority consensus. Training on the gold standard only often overfits, and training
on the consensus systematically misleads.

Next, we evaluate our active learning method. As before, we seed the model with about
60 gold standard labels. We repeatedly select a new task for which to receive a gold stan-
dard label from the researcher. That is, for this experiment we constrained active learning
to use l′ = r. Of course, in our framework we could have just as easily queried labelers in
the crowd. Following 2000 steps burnin we performed active learning every 200 iterations

1The test set was similarly constructed by selecting from 2000 tasks those on which three labelers
disagreed.
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Algorithm Final Loglik Final Error

No Active
Learning

GOLD −3716± 1695 0.0547± 0.0102
CONS −421.1± 2.6 0.0935± 0.0031
BBMC -219.1± 3.1 0.0309± 0.0033

Active
Learning

GOLD-ACT −1957± 696 0.0290± 0.0037
CONS-ACT −396.1± 3.6 0.0906± 0.0024
RAND-ACT −186.0± 2.2 0.0292± 0.0029

DIS-ACT −198.3± 5.8 0.0392± 0.0052
MCMC-ACT −196.1± 6.7 0.0492± 0.0050
BBMC-ACT -160.8± 3.9 0.0188± 0.0018

Table 3.1: Prediction results: Various models were evaluated on a test set of 1101 held-out
tasks. The top three rows give results without and the bottom six rows results with active
learning. For logistic regression models the final log likelihood (loglik) is the log likelihood
of the learnt regression on the gold standard labels. For models using our bias model, it
is the log likelihood in Eq. (3.1) evaluated on the gold standard labels and averaged over
posterior samples of γ and Z. The error rate is computed by taking the maximum likelihood
predicted task labels and comparing to the gold standard. Our proposed models, BBMC
and BBMC-ACT outperform other algorithms in their category.

for a total of 100 selections. The reported scores were computed by estimating a predic-
tive model from the last 200 iterations. The results are shown in the lower six rows of
Table 3.1. Our model with active learning, “BBMC-ACT,” outperforms all alternatives.
The first alternative we compared against, “MCMC-ACT,” does active learning with the
MCMC-based scoring method outlined in Section 3.5. In line with our utility U(·) this
method scores a task by running two Gibbs samplers within the overall Gibbs sampler and
then approximates the expected mean difference of βr. Due to time constraints, we could
only afford to run each subordinate chain for 10 steps. Even then, this method requires
on the order of 10 × 83500 Gibbs sampling iterations for 100 active learning steps. It
takes about 11 hours to run the entire chain, while BBMC only requires 2.5 hours. The
MCMC method performs very poorly. This demonstrates our point: Since the MCMC
method computes a similar quantity as our approximation, it should perform similarly given
enough iterations in each subchain. However, 10 iterations is not nearly enough time for
the scoring chains to mix and also quite a small number to compute empirical averages,
leading to decreased performance. A more realistic alternative to our model is “DIS-ACT,”
which picks one of the tasks with most labeler disagreement to label next. Baseline alterna-
tives include “GOLD-ACT” and “CONS-ACT” which pick a random task to label and then
learn logistic regressions on the gold standard or consensus labels respectively. Those results
can be compared against “RAND-ACT,” which uses our model and inference procedure but
similarly selects tasks at random. As before, we outperform these two baseline methods
when no active learning is done.
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3.7 Conclusions

Bayesian Bias Mitigation for Crowdsourcing (BBMC) is a framework that unifies the three
main steps in the crowdsourcing pipeline: data collection, data curation and learning. Our
model aims to capture labeler bias through a flexible latent feature model and conceives of
the entire pipeline in terms of probabilistic inference. An important contribution is a general
purpose approximation strategy for Markov chains that allows us to efficiently perform active
learning, despite relying on Gibbs sampling for inference. Our experiments show that BBMC
is fast and greatly outperforms a number of commonly used alternatives.
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3.8 Appendix

Perturbations of a one-step Markov chain

Suppose we have an unperturbed Markov chain (γt|γt−1, Z) as given in Eq. (3.10) and we
add a new observation yi′,l′ to it. We show that conditioned on γt−1, Z the first step of the
perturbed Markov chain can be written as a function of the first step of the unperturbed
Markov chain. Let

Σ−1
(i′,l′) =

I

σ2
+
∑

(i,l)∈L∪(i′,l′)

Zlxix
>
i Z
>
l (3.14)

We write Σ(i′,l′) in terms of Σ using the Sherman-Morrison-Woodbury equation

Σ(i′,l′) = Σ− ΣZl′xi′x
>
i′Z
>
l′ Σ

1 + x>i′Z
>
l′ ΣZl′xi′

, (3.15)

and define Ai′,l′ = ΣZl′xi′x
>
i′Z
>
l′ /(1 + x>i′Z

>
l′ ΣZl′xi′). Substituting into Eq. 3.10 and simpli-

fying we yield

(γt(i′,l′)|γt−1, Z)
d
= Σ(i′,l′)

ησ−2I +
∑

(i,l)∈L∪(i′,l′)

Zlxi
[
η1 +

(
ti,l|γt−1, Z

)] (3.16)

= (γt|γt−1, Z) + ΣZl′xi′
[
η1 +

(
ti′,l′ |γt−1, Z

)]
− (3.17)

ΣZl′xi′x
>
i′Z
>
l′ Σ

1 + x>i′Z
>
l′ ΣZl′xi′

ησ−2I +
∑

(i,l)∈L∪(i′,l′)

Zlxi
[
η1 +

(
ti,l|γt−1, Z

)] (3.18)

= (γt|γt−1, Z) + ΣZl′xi′
[
η1 +

(
ti′,l′ |γt−1, Z

)]
− (3.19)

ΣZl′xi′x
>
i′Z
>
l′ Σ

1 + x>i′Z
>
l′ ΣZl′xi′

[
Σ−1(γt|γt−1, Z) + Zl′xi′

[
η1 +

(
ti′,l′|γt−1, Z

)]]
(3.20)

= (I − Ai′,l′) (γt|γt−1, Z) + Σ(i′,l′)Zl′xi′
[
η1 +

(
ti′,l′|γt−1, Z

)]
(3.21)

Eq. (3.21) tells us the first step of the perturbed Gibbs sampler as a function of the first step
of the unperturbed Gibbs sampler, all conditioned on γt−1, Z.
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Approximating the mean difference

Utilizing the approximation in Eq 3.9 we wish to approximate the mean difference norm as

U(p(βr|yi′,l′)) =
∣∣∣∣∣∣Ep(βr)(βr)− Ep(βr|yi′,l′ )(βr)∣∣∣∣∣∣

2
(3.22)

≈
∣∣∣∣∣
∣∣∣∣∣E
(

1

S − 1

S∑
s=2

Zs−1
r
> [(

γ|γs−1, Zs−1
)
−
(
γ(i′,l′)|γs−1, Zs−1

)])∣∣∣∣∣
∣∣∣∣∣
2

(3.23)

=

∣∣∣∣∣
∣∣∣∣∣E
(

1

S − 1

S∑
s=2

Zs−1
r
>[
Ai′,l′

(
γ|γs−1, Zs−1

)
−Σ(i′,l′)Z

s−1
l′ xi′

[
η1+

(
ti′,l′|γs−1, Zs−1

)]])∣∣∣∣∣
∣∣∣∣∣
2

. (3.24)

Pushing the expectation into the sum we make the following approximation: Rather than
computing E((γ|γs−1, Zs−1)) explicitly, we take the sample γs ∼ (γ|γs−1, Zs−1) that we
already collected as an unbiased estimator of this mean. Computing the conditional expec-
tation of the truncated normal, given a particular observation yi′,l′ , we yield

U(p(βr|yi′,l′))≈
∣∣∣∣∣
∣∣∣∣∣ 1

S−1

S∑
s=2

Zs−1
r
>
[
Ai′,l′γ

s−Σ(i′,l′)Z
s−1
l′ xi′

[
µs−1
i′,l′ +E

(
yi′,l′

φ(µs−1
i′,l′)

yi′,l′Φ(µs−1
i′,l′)

)]]∣∣∣∣∣
∣∣∣∣∣
2

, (3.25)

where we let µs−1
i′,l′ = γs−1>Zs−1

l′ xi′ . The final step is to compute the expectation over possible
observations yi′,l′ . For this we estimate the predictive probability p(yi′,l′|X, Y ) by integrating
over the samples γs, Zs collected from the Gibbs sampler.
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Chapter 4

Heavy-Tailed Process Priors for
Selective Shrinkage

The previous chapters considered active learning strategies to grow a small dataset that was
tailored to inferring particular statistical quantities. In this chapter we will begin to consider
randomized subsampling and its effects on statistical models. Randomized subsampling can
be used both as an algorithm and as a theoretical framework: When vast amounts of data are
available a random subsample can be used to make training more tractable. This subsampling
is not necessary when only small amounts of data are available to start with. However, in
that case we can still treat the data as if it were a random subsample from a larger dataset
and perform theoretical analyses on it. In this chapter we are interested in the former usecase
of randomized subsampling. We will exhibit situations where subsampling makes it difficult
to learn from “outliers”. The specific example we will focus on comes from computational
biology, where distributions over rare angles in a proteins (so-called rotamers) are a key
ingredient in, for example, the Rosetta energy function which is used during the design of
proteins. Subsampling a large dataset of rotamers uniformly at random makes these rare
examples even rarer, which leads many estimators to overfit them. One well-known model
that suffers from this deficiency is Gaussian process classification. In this chapter we will
present a technique for controlling the tendency of Gaussian process classification to overfit.

4.1 Overfitting

Gaussian process classifiers (GPCs) [63] provide a Bayesian approach to nonparametric clas-
sification with the key advantage of producing predictive class probabilities. Unfortunately,
when training data are unevenly sampled in input space, GPCs tend to overfit in the sparsely
populated regions. Our work is motivated by an application to protein folding where this
presents a major difficulty. In particular, while Nature provides samples of protein config-
urations near the global minima of free energy functions, protein-folding algorithms, which
imitate Nature by minimizing an estimated energy function, necessarily explore regions far
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from the minimum. If the estimate of free energy is poor in those sparsely-sampled regions
then the algorithm has a poor guide towards the minimum. More generally this problem can
be viewed as one of “covariate shift,” where the sampling pattern differs in the training and
testing phase.

In this paper we investigate a GPC-based approach that addresses overfitting by shrink-
ing predictive class probabilities towards conservative values. For an unevenly sampled input
space it is natural to consider a selective shrinkage strategy: We wish to shrink probability
estimates more strongly in sparse regions than in dense regions. To this end several ap-
proaches could be considered. If sparse regions can be readily identified, selective shrinkage
could be induced by tailoring the Gaussian process (GP) kernel to reflect that information.
In the absence of such knowledge, Goldberg and Williams [37] showed that Gaussian process
regression (GPR) can be augmented with a GP on the log noise level. More recent work
has focused on partitioning input space into discrete regions and defining different kernel
functions on each. Treed Gaussian process regression [39] and Treed Gaussian process clas-
sification [12] represent advanced variations of this theme that define a prior distribution
over partitions and their respective kernel hyperparameters. Another line of research which
could be adapted to this problem posits that the covariate space is a nonlinear deformation
of another space on which a Gaussian process prior is placed [18, 67]. Instead of directly
modifying the kernel matrix, the observed non-uniformity of measurements is interpreted
as being caused by the spatial deformation. A difficulty with all these approaches is that
posterior inference is based on MCMC, which can be overly slow for the large-scale problems
that we aim to address.

This paper shows that selective shrinkage can be more elegantly introduced by replac-
ing the Gaussian process underlying GPC with a stochastic process that has heavy-tailed
marginals (e.g., Laplace, hyperbolic secant, or Student-t). While heavy-tailed marginals are
generally viewed as providing robustness to outliers in the output space (i.e., the response
space), selective shrinkage can be viewed as a form of robustness to outliers in the input
space (i.e., the covariate space). Indeed, selective shrinkage means the data points that are
far from other data points in the input space are regularized more strongly. We provide a
theoretical analysis and empirical results to show that inference based on stochastic processes
with heavy-tailed marginals yields precisely this kind of shrinkage.

The paper is structured as follows: Section 4.2 provides background on GPCs and high-
lights how selective shrinkage can arise. We present a construction of heavy-tailed processes
in Section 4.3 and show that inference reduces to standard computations in a Gaussian
process. An analysis of our approach is presented in Section 4.4 and details on inference al-
gorithms are presented in Section 4.5. Experiments on biological data in Section 4.6 demon-
strate that heavy-tailed process classification substantially outperforms GPC in sparse re-
gions while performing competitively in dense regions. The paper concludes with an overview
of related research and final remarks in Sections 4.7 and 4.8.
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4.2 Gaussian Process Classification and Shrinkage

A Gaussian process (GP) [63] is a prior on functions z : X → R defined through a mean
function (usually identically zero) and a symmetric positive semidefinite kernel k(·, ·). For
a finite set of locations X = (x1, . . . , xn) we write z(X) ∼ p(z(X)) = N (0, K(X,X)) as
a random variable distributed according to the GP with finite-dimensional kernel matrix
[K(X,X)]i,j = k(xi, xj). Let y denote an n-vector of binary class labels associated with
measurement locations X1. We will refer to the label for covariate xi as y(xi). For Gaussian
process classification (GPC) [63] the probability that a test point x∗ is labeled as class
y(x∗) = 1, given training data (X, y), is computed as

p(y(x∗) = 1|X, y, x∗) = Ep(z(x∗)|X,y,x∗)
(

1

1 + exp{−z(x∗)}

)
(4.1)

p(z(x∗)|X, y, x∗) =

∫
p(z(x∗)|X, z(X), x∗)p(z(X)|X, y)dz(X).

The predictive distribution p(z(x∗)|X, y, x∗) represents a regression on z(x∗) with a com-
plicated observation model y|z. The central observation from Eq. (4.1) is that we could
selectively shrink the prediction p(y(x∗) = 1|X, y, x∗) towards a conservative value 1/2 by
selectively shrinking p(z(x∗)|X, y, x∗) closer to a point mass at zero.

4.3 Heavy-Tailed Processes via the Gaussian Copula

In this section we construct the heavy-tailed stochastic process by transforming a GP. As with
the GP, we will treat the new process as a prior on functions. Suppose that diag (K(X,X)) =
σ21. We define the heavy-tailed process f(X) with marginal c.d.f. Gb as

z(X) ∼ N (0, K(X,X)) (4.2)

u(X) = Φ0,σ2(z(X)) (4.3)

f(X) = G−1
b (u(X)) = G−1

b (Φ0,σ2(z(X))).

Here the function Φ0,σ2(·) is the c.d.f. of a centered Gaussian with variance σ2. Presently,
we only consider the case when Gb is the (continuous) c.d.f. of a heavy-tailed density gb
with scale parameter b that is symmetric about the origin. Examples include the Laplace,
hyperbolic secant and Student-t distribution. We note that other authors have considered
asymmetric or even discrete distributions [16, 60, 76] while Snelson et al. [74] use arbitrary
monotonic transformations in place of G−1

b (Φ0,σ2(·)). The process u(X) has the density of a
Gaussian copula [57, 76] and is critical in transferring the correlation structure encoded by
K(X,X) from z(X) to f(X). If we define z(f(X)) = Φ−1

0,σ2(Gb(f(X))), it is well known [45,

1To improve the clarity of exposition, we only deal with binary classification for now. A full multiclass
classification model is used in our experiments.
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52, 60, 74, 76] that the density of f(X) satisfies

p(f(X)) =

∏
i=1 gb(f(xi))

|K(X,X)/σ2|1/2 exp

{
−1

2
z(f(X))>

[
K(X,X)−1 − I

σ2

]
z(f(X))

}
. (4.4)

Observe that if K(X,X) = σ2I then p(f(X)) =
∏

i=1 gb(f(xi)). Also note that if Gb were
chosen to be Gaussian, we would recover the Gaussian process. The predictive distribution
p(f(x∗)|X, f(X), x∗) can be interpreted as a Heavy-tailed process regression (HPR). It is easy
to see that its computation can be reduced to standard computations in a Gaussian model
by nonlinearly transforming observations f(X) into z-space. The predictive distribution in
z-space satisfies

p(z(x∗)|X, f(X), x∗) = N (µ∗,Σ∗) (4.5)

µ∗ = K(x∗, X)K(X,X)−1z(f(X)) (4.6)

Σ∗ = K(x∗, x∗)−K(x∗, X)K(X,X)−1K(X, x∗). (4.7)

The corresponding distribution in f -space follows by another change of variables. Having
defined the heavy-tailed stochastic process in general we now turn to an analysis of its
shrinkage properties.

4.4 Selective Shrinkage

By “selective shrinkage” we mean that the degree of shrinkage applied to a collection of
estimators varies across estimators. As motivated in Section 4.2, we are specifically interested
in selectively shrinking posterior distributions near isolated observations more strongly than
in dense regions. This section shows that we can achieve this by changing the form of
prior marginals (heavy-tailed instead of Gaussian) and that this induces stronger selective
shrinkage than any GPR could induce. Since HPR uses a GP in its construction, which
can induce some selective shrinkage on its own, care must be taken to investigate only the
additional benefits the transformation G−1

b (Φ0,σ2(·)) has on shrinkage. For this reason we
assume a particular GP prior which leads to a special type of shrinkage in GPR and then
check how an HPR model built on top of that GP changes the observed behavior.

In this section we provide an idealized analysis that allows us to compare the selective
shrinkage obtained by GPR and HPR. Note that we focus on regression in this section so that
we can obtain analytical results. We work with n measurement locations, X = (x1, . . . , xn),
whose index set {1, . . . , n} can be partitioned into a “dense” set D with |D| = n− 1 and a
single “sparse” index s /∈ D. Assume that xd = xd′ ,∀d, d′ ∈ D, so that we may let (without
loss of generality) K̃(xd, xd′) = 1,∀d, d′ ∈ D. We also assert that xd 6= xs ∀d ∈ D and
let K̃(xd, xs) = K̃(xs, xd) = 0 ∀d ∈ D. Assuming that n > 2 we fix the remaining entry
K̃(xs, xs) = ε/(ε + n − 2), for some ε > 0. We interpret ε as a noise variance and let
K = K̃ + εI.
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Figure 4.1: Illustration of G−1
b (Φ0,σ2(x)), for σ2 = 1.0 with Gb the c.d.f. of 4.1(a) the Laplace

distribution 4.1(b) the Hyperbolic secant distribution 4.1(c) a Student-t inspired distribution,
all with scale parameter b. Each plot shows samples—dotted, dashed, solid—for growing b.
As b grows distributions become heavy-tailed and the gradient of G−1

b (Φ0,σ2(x)) increases.

Denote any distributions computed under the GPR model by pgp(·) and those computed
in HPR by php(·). Using K(X,X) = K, define z(X) as in Eq. (4.2). Let y denote a vector
of real-valued measurements for a regression task. The posterior distribution of z(xi) given
y, with xi ∈ X, is derived by standard Gaussian computations as

pgp(z(xi)|X, y) = N
(
µi, σ

2
i

)
µi = K̃(xi, X)K(X,X)−1y

σ2
i = K(xi, xi)− K̃(xi, X)K(X,X)−1K̃(X, xi).

For our choice of K(X,X) one can show that σ2
d = σ2

s for d ∈ D. To ensure that the posterior
distributions agree at the two locations we require µd = µs, which holds if y satisfies

y ∈ Ygp ,
{
y|
(
K̃(xd, X)− K̃(xs, X)

)
K(X,X)−1y = 0

}
=

{
y

∣∣∣∣∣∑
d∈D

y(xd) = y(xs)

}
.

A similar analysis can be carried out for the induced HPR model. By Eqs. (4.5)–(4.7) HPR
inference leads to identical distributions php(z(xd)|X, y′) = php(z(xs)|X, y′) with d ∈ D if
measurements y′ in f -space satisfy

y′ ∈ Yhp ,
{
y′|
(
K̃(xd, X)− K̃(xs, X)

)
K(X,X)−1Φ−1

0,σ2(Gb(y
′)) = 0

}
=
{
y′ = G−1

b (Φ0,σ2(y))|y ∈ Ygp

}
.

To compare the shrinkage properties of GPR and HPR we analyze select pairs of measure-
ments in Ygp and Yhp. The derivation requires that G−1

b (Φ0,σ2(·)) is strongly concave on
(−∞, 0], strongly convex on [0,+∞) and has gradient > 1 on R. To see intuitively why
this should hold, note that for Gb with fatter tails than a Gaussian, |G−1

b (Φ0,σ2(x))| should
eventually dominate |Φ−1

0,b2(Φ0,σ2(x))| = (b/σ)|x|. Figure 4.1 demonstrates graphically that
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the assumption holds for several choices of Gb, provided b is large enough, i.e., that gb
has sufficiently heavy tails. Indeed, it can be shown that for scale parameters b > 0, the
first and second derivatives of G−1

b (Φ0,σ2(·)) scale linearly with b. Consider a measurement
0 6= y ∈ Ygp with sign (y(xd)) = sign (y(xd′)) ,∀d, d′ ∈ D. Analyzing such y is relevant, as
we are most interested in comparing how multiple reinforcing observations at clustered lo-
cations and a single isolated observation are absorbed during inference. By definition of Ygp,
for d∗ = argmaxd∈D|y(xd)| we have |y(xd∗)| < |y(xs)| as long as n > 2. The corresponding
element y′ = G−1

b (Φ0,σ2(y)) ∈ Yhp then satisfies

|y′(xs)| =
∣∣G−1

b (Φ0,σ2(y(xs)))
∣∣ > ∣∣∣∣G−1

b (Φ0,σ2(y(xd∗)))

y(xd∗)
y(xs)

∣∣∣∣ =

∣∣∣∣y′(xd∗)y(xd∗)
y(xs)

∣∣∣∣ . (4.8)

Thus HPR inference leads to identical predictive distributions in f -space at the two locations
even though the isolated observation y′(xs) has disproportionately larger magnitude than
y′(xd∗), relative to the GPR measurements y(xs) and y(xd∗). As this statement holds for any
y ∈ Ygp satisfying our earlier sign requirement, it indicates that HPR systematically shrinks
isolated observations more strongly than GPR. Since the second derivative of G−1

b (Φ0,σ2(·))
scales linearly with scale b > 0, an intuitive connection suggests itself when looking at
inequality (4.8): The heavier the marginal tails, the stronger the inequality and thus the
stronger the selective shrinkage effect.

The previous derivation exemplifies in an idealized setting that HPR leads to improved
shrinkage of predictive distributions near isolated observations. More generally, because
GPR transforms measurements only linearly, while HPR additionally pre-transforms mea-
surements nonlinearly, our analysis suggests that for any GPR we can find an HPR model
which leads to stronger selective shrinkage. The result has intuitive parallels to the paramet-
ric case: Just as `1-regularization improves shrinkage of parametric estimators, heavy-tailed
processes improve shrinkage of nonparametric estimators. We note that although our anal-
ysis kept K(X,X) fixed for GPR and HPR, in practice we are free to tune the kernel to
yield a desired scale of predictive distributions. The above analysis has been carried out for
regression, but motivates us to now explore heavy-tailed processes in the classification case.

4.5 Heavy-Tailed Process Classification

The derivation of heavy-tailed process classification (HPC) is similar to that of standard
multiclass GPC with Laplace approximation in Rasmussen and Williams [63]. However,
due to the nonlinear transformations involved, some nice properties of their derivation are
lost. We revert notation and let y denote a vector of class labels. For a C-class classi-
fication problem with n training points we introduce a vector of nC latent function mea-
surements (f 1(x1), . . . , f 1(xn), f 2(x1), . . . , f 2(xn), . . . , fC(x1), . . . , fC(xn))>. For each block
c ∈ {1, . . . , C} of n variables we define an independent heavy-tailed process prior using
Eq. (4.4) with kernel matrix Kc. Equivalently, we can define the prior jointly on f by let-
ting K be a block-diagonal kernel matrix with blocks K1, . . . , KC . Each kernel matrix Kc
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is defined by a (possibly different) symmetric positive semidefinite kernel with its own set
of parameters. The following construction relaxes the earlier condition that diag (K) = σ21
and instead views Φ0,σ2(·) as some nonlinear transformation with parameter σ2. By this
relaxation we effectively adopt Liu et al.’s [52] interpretation that Eq. (4.4) defines the cop-
ula. The scale parameters b could in principle vary across the nC variables, but we keep
them constant at least within each block of n. Labels y are represented in a 1-of-n form and
generated by the following observation model

p(y(xi)
c = 1|f(xi)) = πci =

exp{f c(xi)}∑
c′ exp{f c′(xi)}

. (4.9)

For inference we are ultimately interested in computing

p(y(x∗)
c = 1|X, y, x∗) = Ep(f(x∗)|X,y,x∗)

(
exp{f c(x∗)}∑
c′ exp{f c′(x∗)}

)
, (4.10)

where f(x∗) = (f 1(x∗), . . . , f
C(x∗))

>. The previous section motivates that improved selective
shrinkage will occur in p(f(x∗)|X, y, x∗) if the prior marginals have sufficiently heavy tails.

Inference

As in GPC, most of the intractability lies in computing the distribution p(f(x∗)|X, y, x∗). We
use the Laplace approximation to address this issue. A Gaussian approximation to p(z|X, y)
is found and then combined with the Gaussian p(z(x∗)|X, z, x∗) to give us an approximation
to p(z(x∗)|X, y, x∗). This is then transformed to a (typically non-Gaussian) distribution in
f -space using a change of variables. Hence we first seek to find a mode and corresponding
Hessian matrix of the log posterior log p(z|X, y). Recalling the relation f = G−1

b (Φ0,σ2(z)),
the log posterior can be written as

J(z) , log p(y|z) + log p(z) = y>f −
∑
i

log
∑
c

exp {f c(xi))} −
1

2
z>K−1z − 1

2
log |K|+ const.

Let Π be an nC × n matrix of stacked diagonal matrices diag (πc) for n-subvectors πc of π.
With W = diag (π)− ΠΠ>, the gradients are

∇J(z) = diag

(
df

dz

)
(y − π)−K−1z

∇2J(z) = diag

(
d2f

dz2

)
diag (y − π)− diag

(
df

dz

)
Wdiag

(
df

dz

)
−K−1.

Unlike in Rasmussen and Williams [63], −∇2J(z) is not generally positive definite owing to
its first term. For that reason we cannot use a Newton step to find the mode and instead
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resort to a simpler gradient method. Once the mode ẑ has been found we approximate the
posterior as

p(z|X, y) ≈ q(z|X, y) = N
(
ẑ,−∇2J(ẑ)−1

)
,

and use this to approximate the predictive distribution by

q(z(x∗)|X, y, x∗) =

∫
p(z(x∗)|X, z, x∗)q(z|X, y)df.

Since we arranged for both distributions in the integral to be Gaussian, the resulting Gaussian
can be straightforwardly evaluated. Finally, to approximate the one-dimensional integral
with respect to p(f(x∗)|X, y, x∗) in Eq. (4.10) we could either use a quadrature method,
or generate samples from q(z(x∗)|X, y, x∗), convert them to f -space using G−1

b (Φ0,σ2(·)) and
then approximate the expectation by an average. We have compared predictions of the latter
method with those of a Gibbs sampler; the Laplace approximation matched Gibbs results
well, while being much faster to compute.

Parameter estimation

Using a derivation similar to that in [63], we have for f̂ = G−1
b (Φ0,σ2(ẑ)) that the Laplace

approximation of the marginal log likelihood is

log p(y|x) ≈ log q(y|x) = J(ẑ)− 1

2
log | − 2π∇2J(ẑ)| (4.11)

= y>f̂ −
∑
i

log
∑
c

exp
{
f̂ c(xi)

}
− 1

2
ẑ>K−1ẑ

− 1

2
log |K| − 1

2
log | − ∇2J(ẑ)|+ const.

We optimize kernel parameters θ by taking gradient steps on log q(y|x). The derivative needs
to take into account that perturbing the parameters can also perturb the mode ẑ found for
the Laplace approximation. At an optimum ∇J(ẑ) must be zero, so that

ẑ = Kdiag

(
df̂

dẑ

)
(y − π̂), (4.12)

where π̂ is defined as in Eq. (4.9) but using f̂ rather than f . Taking derivatives of this
equation allows us to compute the gradient dẑ/dθ. Differentiating the marginal likelihood
we have

d log q(y|x)

dθ
= (y − π̂)>diag

(
df̂

dẑ

)
dẑ

dθ
− dẑ

dθ
K−1ẑ +

1

2
ẑ>K−1dK

dθ
K−1ẑ −

1

2
tr

(
K−1dK

dθ

)
− 1

2
tr

(
∇2J(ẑ)−1d∇2J(ẑ)

dθ

)
.
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Figure 4.2: 4.2(a) Schematic of a protein segment. The backbone is the sequence of
C ′, N, Cα, C

′, N atoms. An amino-acid-specific sidechain extends from the Cα atom at one
of three discrete angles known as “rotamers.” 4.2(b) Ramachandran plot of 400 (Φ,Ψ)
measurements and corresponding rotamers (by shapes/colors) for amino-acid arginine (arg).
The dark shading indicates the sparse region we considered in producing results in Fig-
ure 4.3. Progressively lighter shadings indicate how the sparse region was grown to produce
Figure 4.4.

The remaining gradient computations are straightforward, albeit tedious. In addition to
optimizing the kernel parameters, it may also be of interest to optimize the scale parameter
b of marginals Gb. Again, differentiating Eq. (4.12) with respect to b allows us to compute
dẑ/db. We note that when perturbing b we change f̂ by changing the underlying mode ẑ as
well as by changing the parameter b which is used to compute f̂ from ẑ. Suppressing the
detailed computations, the derivative of the marginal log likelihood with respect to b is

d log q(y|x)

db
= (y − π̂)>

df̂

db
− dẑ

db

>
K−1ẑ − 1

2
tr

(
∇2J(ẑ)−1d∇2J(ẑ)

db

)
.

4.6 Experiments

To a first approximation, the three-dimensional structure of a folded protein is defined by
pairs of continuous backbone angles (Φ,Ψ), one pair for each amino-acid, as well as discrete
angles, so-called rotamers, that define the conformations of the amino-acid sidechains that
extend from the backbone. The geometry is outlined in Figure 4.2(a). There is a strong
dependence between backbone angles (Φ,Ψ) and rotamer values; this is illustrated in the
“Ramachandran plot” shown in Figure 4.2(b), which plots the backbone angles for each
rotamer (indicated by the shapes/colors). The dependence is exploited in computational
approaches to protein structure prediction, where estimates of rotamer probabilities given
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Figure 4.3: Rotamer prediction rates in percent in 4.3(a) sparse and 4.3(b) dense regions.
Both flavors of HPC (hyperbolic secant and Laplace marginals) significantly outperform
GPC in sparse regions while performing competitively in dense regions.

backbone angles are used as one term in an energy function that models native protein
states as minima of the energy. Poor estimates of rotamer probabilities in sparse regions
can derail the prediction procedure. Indeed, sparsity has been a serious problem in state-
of-the-art rotamer models based on kernel density estimates (Roland Dunbrack, personal
communication). Unfortunately, we have found that GPC is not immune to the sparsity
problem. To evaluate our algorithm we consider rotamer-prediction tasks on the 17 amino-
acids (out of 20) that have three rotamers at the first dihedral angle along the sidechain2.
Our previous work thus applies with the number of classes C = 3 and the covariates being
(Φ,Ψ) angle pairs. Since the input space is a torus we defined GPC and HPC using the
following von Mises-inspired kernel for d-dimensional angular data:

k(xi, xj) = σ2 exp

{
λ

((
d∑

k=1

cos(xi,k − xj,k)
)
− d
)}

,

where xi,k, xj,k ∈ [0, 2π] and σ2, λ ≥ 03. To find good GPC kernel parameters we optimize an
`2-regularized version of the Laplace approximation to the log marginal likelihood reported
in Eq. 3.44 of [63]. For HPC we let Gb be either the centered Laplace distribution or the
hyperbolic secant distribution with scale parameter b. We estimate HPC kernel parameters
as well as b by similarly maximizing an `2-regularized form of Eq. (4.11). In both cases we
restricted the algorithms to training sets of only 100 datapoints. Since good regularization
parameters for the objectives are not known a priori we train with and test them on a grid
for each of the 17 rotameric residues in ten-fold cross-validation. To find good regularization
parameters for a particular residue we look up that combination which, averaged over the
ten folds of the remaining 16 residues, produced the best test results. Having chosen the
regularization constants we report average test results computed in ten-fold cross validation.

2Residues alanine and glycine are non-discrete while proline has two rotamers at the first dihedral angle.
3The function cos(xi,k − xj,k) = [cos(xi.k), sin(xi,k)][cos(xj.k), sin(xj,k)]> is a symmetric positive semi-

definite kernel. By Propositions 3.22 (i) and (ii) and Proposition 3.25 in Shawe-Taylor and Cristianini [70],
so is k(xi, xj) above.
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We evaluate the algorithms on predefined sparse and dense regions in the Ramachandran
plot, as indicated by the background shading in Figure 4.2(b). Across 17 residues the sparse
regions usually contained more than 70 measurements (and often more than 150), each of
which appears in one of the 10 cross validations. Figure 4.3 compares the label prediction
rates on the dense and sparse regions. Averaged over all 17 residues HPC outperforms
GPC by 5.79% with Laplace and 7.89% with hyperbolic secant marginals. With Laplace
marginals HPC underperforms GPC on only two residues in sparse regions—by 8.22% on
glutamine (gln), and by 2.53% on histidine (his). On dense regions HPC lies within 0.5%
on 16 residues and only degrades once by 3.64% on his. Using hyperbolic secant marginals
HPC often improves GPC by more than 10% on sparse regions and degrades by more than
5% only on cysteine (cys) and his. On dense regions HPC usually performs within 1.5%
of GPC. In Figure 4.4 we show how the average rotamer prediction rate across 17 residues
changes for HPC, GPC, as well as CTGP [12] as we grow the sparse region to include
more measurements from dense regions. The growth of the sparse region is indicated by
progressively lighter shadings in Figure 4.2(b). As more points are included the significant
advantage of HPC lessens. Eventually GPC does marginally better than HPC and much
better than CTGP. The values reported in Figure 4.3 correspond to the dark shaded region,
which contains an average of 155 measurements per residue.

4.7 Related Research

Copulas [57] allow convenient modelling of multivariate correlation structures as separate
from marginal distributions. Early work by Song [76] used the Gaussian copula to generate
complex multivariate distributions by complementing a simple copula form with marginal
distributions of choice. Popularity of the Gaussian copula in the financial literature is gen-
erally credited to Li [50] who used it to model correlation structure for pairs of random
variables with known marginals. More recently, the Gaussian process has been modified in
a similar way to ours by Snelson et al. [74]. They demonstrate that posterior distributions
can better approximate the true noise distribution if the transformation defining the warped
process is learned. Jaimungal and Ng [45] have extended this work to model multiple parallel
time series with marginally non-Gaussian stochastic processes. Their work uses a “binding
copula” to combine several subordinate copulas into a joint model. Bayesian approaches fo-
cusing on estimation of the Gaussian copula covariance matrix for a given dataset are given
in [23, 60]. Research also focused on estimation in high-dimensional settings [52].

4.8 Conclusions

This paper analyzed learning scenarios where outliers are observed in the input space, rather
than the output space as commonly discussed in the literature. We illustrated heavy-tailed
processes as a straightforward extension of GPs and an economical way to improve the
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Figure 4.4: Average rotamer prediction rate in the sparse region for both flavors of HPC,
standard GPC well as CTGP [12] as a function of the average number of points in the region.

robustness of estimators in sparse regions beyond those of GP-based methods. Importantly,
because these processes are based on a GP, they inherit many of its favorable computational
properties; predictive inference in regression, for instance, is straightforward. Moreover,
because heavy-tailed processes have a parsimonious representation, they can be used as
building blocks in more complicated models where currently GPs are used. In this way
the benefits of heavy-tailed processes extend to any GP-based model that struggles with
covariate shift.
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Chapter 5

Efficient Ranking from Pairwise
Comparisons

Ranking n objects from pairwise comparisons is a core machine learning problem, arising
in recommender systems, ad placement, player ranking, biological applications and others.
In many practical situations the true pairwise comparisons cannot be actively measured,
but a subset of all n(n − 1)/2 comparisons is passively and noisily observed. Optimization
algorithms (e.g. the SVM) could be used to predict a ranking with fixed expected Kendall
tau distance, while achieving an Ω(n) lower bound on the corresponding sample complexity.
However, due to their centralized structure they are difficult to extend to online or distributed
settings. In this paper we show that much simpler algorithms can match the same Ω(n) lower
bound in expectation. Furthermore, if instead an average of O(n log(n)) binary comparisons
are measured, then one algorithm recovers the true ranking in a uniform sense, while the other
predicts the ranking more accurately near the top than the bottom. We discuss extensions
to online and distributed ranking, with benefits over traditional alternatives.

5.1 Introduction

Ranking from binary comparisons is a ubiquitous problem in modern machine learning ap-
plications. Given a set of n objects and set of (possibly inconsistent) binary comparisons
between pairs of objects (such as “player i won against player j,” or “the customer bought
book i instead of j”), the task is to infer a total order over objects that aggregates the given
measurements. Common settings for this problem allow binary comparisons to be mea-
sured either actively [4, 5, 46, 11, 35], repeatedly [56, 6, 28], or assume that all n(n − 1)/2
comparisons are known up to some noise [10, 11]. We believe that in many challenging ap-
plications, these assumptions are unrealistic: (1) Active measurements are often infeasible,
either because measurements must be made passively (e.g., from click-through data, pur-
chasing preferences), or because pairwise comparisons are too time consuming to measure
in series (e.g., measuring protein-protein interactions). (2) Repeated measurements are not
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practical if comparisons are derived from the outcomes of sports games or the purchasing
behavior of a customer (a customer typically wants to purchase a product only once). (3)
The O(n2) growth of comparisons between n objects usually prohibits exhaustive measuring
when n is large.

Since a total order can be uniquely determined by sorting distinct object “scores,” it
is common to formalize the problem as follows: Given a subset of (possibly noisy) binary
comparisons c̄i,j between n objects, we desire a scoring function Π̂ : {1, . . . , n} → R so

that c̄i,j = 1 ⇐⇒ Π̂(i) < Π̂(j) for as many examples in the training data as possible.
Traditional optimization losses targeting this objective are intuitive (e.g., count the number
of inversions between the training data and the scoring function,) but discontinuous and
non-convex. The substantial literature on learning to rank can be specialized to this setting
by learning scoring functions that only depend on the object identity. This approach sug-
gests ways to approximately solve the optimization problem by relaxing the intractable loss
to convex surrogates [19, 31, 42, 48]. Although some of these methods (e.g., the SVM) can
achieve an Ω(n) lower bound on a certain sample complexity, we feel that optimization-based
approaches may be unnecessarily complex in this situation. The question arises whether sim-
pler algorithms could be equally effective. In this paper we demonstrate that two very simple
algorithms achieve the same Ω(n) lower bound without solving an explicit optimization prob-
lem. Furthermore, given slightly more measurements, we can show interesting differences
between the two algorithms: The first predicts rankings with approximately uniform quality
across the ranking, while the second predicts the true ranking with higher quality near the
top of the ranking than the bottom. Additionally, we view the simple form of the algorithms
as a significant asset which makes them much easier to extend. As a demonstration, we
discuss extensions to online and distributed learning, and highlight important benefits over
traditional alternatives.

The paper is organized as follows: We first introduce some notation and quality measures
in Section 5.2. In Section 5.3 we discuss related research and background. Section 5.4
presents two simple ranking algorithms and analyzes their performance in terms of the
expected Kendall tau distance as well as high probability bounds on rank displacements.
In Section 5.5 we evaluate and validate our theoretical findings. We touch on extensions
to online and distributed ranking in Section 5.6, before concluding with final thoughts in
Section 5.7. The complete proofs for all propositions, lemmas and theorems are collected in
the supplementary material.

5.2 Preliminaries

Throughout the paper we denote the true permutation we wish to recover by π∗ ∈ Sn. We
use the notation π(i) to indicate the position of object i in permutation π. Without loss
of generality, let π∗ = (1, 2, . . . , n), so that π∗(j) = j. We will reveal to an algorithm a
subset of binary comparisons, chosen among the n(n − 1)/2 available pairs. Specifically,
each comparison is measured independently with probability m(n)/n, so that on average
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O(nm(n)) measurements are made. Each comparison can be measured only once (i.e. we
measure without replacement)1. The function m(n) is a key quantity; we will characterize
various sample complexities in terms of bounds on its growth. For some results we will find
that m(n) ∈ Θ(1) suffices, while in others we need m(n) ∈ Θ(log(n)). We will always assume
that m(n) ∈ o(n). Noiseless binary comparisons are denoted by ci,j = 1 (π∗(i) < π∗(j)). A
common observation model is to assume that each binary comparison is independently flipped
with probability 1− p, where p > 1/2 [10, 28]. To capture the overall measurement process,
we introduce binary variables si,j which indicate whether ci,j was measured, and let c̄i,j be
the (possibly noisy) measurement that was made. We will assume throughout that sj,i = si,j
and if sj,i = si,j = 1, then c̄j,i = 1− c̄i,j.

In this paper we analyze the quality of the proposed algorithms in two ways. The first
counts the number of inverted binary comparisons of the predicted permutation π̂ relative
to π∗. That is, we use the loss

inv(π̂) =
∑

π∗(i)<π∗(j)

1(π̂(j) < π̂(i)). (5.1)

This quantity is also known as the Kendall tau distance. Using results in Fulman [33], one
can show that if π̂ is chosen uniformly at random in Sn, then inv(π̂) concentrates around
(1/2)(n(n − 1)/2). To be interesting we will thus require our algorithms to have expected
risk E(inv(π̂)) ≤ (η/2)(n(n − 1)/2) for some 0 < η < 1. We note that another common
comparison metric is Spearman’s footrule

dis(π̂) =
n∑
j=1

|π̂(j)− π∗(j)|. (5.2)

As shown in Diaconis and Graham [22], inv(π̂) is related to dis(π̂) as inv(π̂) ≤ dis(π̂) ≤
2inv(π̂). Our results on the expected Kendall tau distance thus directly transfer to Spear-
man’s footrule. We also analyze the prediction π̂ by how far individual objects are displaced
relative to π∗. When appropriate, we will bound the largest displacement

max
j
|π̂(j)− π∗(j)|. (5.3)

However, in some cases the recovery is not uniform, warranting a detailed inspection of the
set of displacements {|π̂(j)− π∗(j)| : j = 1, . . . , n}.

5.3 Related Research

Several threads of research aim to give various sample complexities in the active ranking
setting. Ailon et al. [4], for example, give an active algorithm which produces a permutation

1In some other analyses measurements are made independently with replacement [61, 55].



CHAPTER 5. EFFICIENT RANKING FROM PAIRWISE COMPARISONS 50

with small loss relative to the optimal loss (which may be zero). This result was refined
by Ailon et al. [5] to show that if the true scoring function is linear, one can find a scoring
function with small loss (relative to the optimal loss) using O(n log4(n)) active queries.
Braverman and Mossel [11] give an active algorithm with query complexity O(n log(n)) for
noisy binary comparisons that produces a ranking in time that is with high probability
polynomial. Agarwal [2] has developed a comprehensive theory for bipartite ranking. Here,
instead of receiving binary comparisons, we receive binary labels (e.g., relevant/irrelevant)
for each object, and the goal is a function which orders negative before positive examples.

A number of recent papers have analyzed lower bounds for the demanding task of exact
score recovery. Jamieson and Nowak [46], for example, consider the case when the true
scoring function reflects the Euclidean distance of object covariates from a global reference
point. If objects are embedded in Rd, then any algorithm that exactly identifies the true
ranking must sample at least O(d log(n)) comparisons. While this bound can be achieved
by an active algorithm, any algorithm that uses only random measurements must see almost
all pairwise comparisons in order to exactly predict the true ranking. Gleich and Lim [36]
suppose that the true score differences (i.e., Π∗(j) − Π∗(i), or functions thereof) can be
measured. Given an incomplete matrix of such measurements they use low rank matrix
completion to estimate the true object scores. If the measurements are in fact score differ-
ences, their algorithm recovers the true scores with high probability exactly using between
O(n log2(n)) and O(n2 log2(n)) random measurements (depending on the shape of the true
scores). Although their work considers random measurements, their theory does not apply
when binary comparisons are measured in lieu of score differences. Mitliagkas et al. [55]
focus on exactly recovering the preferences expressed by a population of r users. Each user’s
preferences are recorded by a permutation over objects, which can be queried (either actively
or by random sampling) through pairwise comparisons between objects. The randomized
sampling result is not helpful in our setting (where r = 1) since it then requires O(n2 log(n))
measurements (with replacement) for exact recovery.

SVM Ranking. It is well-known that the SVM could be used to learn a linear scoring
function in the setting of Section 5.2: For each observed comparison c̄i,j, create a feature
vector xi,j = ej − ei (where ei is a binary indicator vector with a 1 at the i-th coordinate)
and associate with it the label ȳi,j = 2c̄i,j − 1. Learning a scoring function now reduces to
inferring a separating hyperplane w so that the function sign(w>xi,j) best predicts the labels
ȳi,j on training data. The predicted permutation π̂ follows from sorting the elements in w.
Statistical learning theory shows that in the noiseless case (p = 1), the sample complexity
for inferring a w which with high probability induces a Kendall tau distance of at most
(η/2)(n(n − 1)/2) is small. Indeed, using results of Radinsky et al. [61] one can show the
following proposition, which we prove in the supplementary material

Proposition 5.3.1. There is a constant d, so that for any 0 < η < 1, if we noiselessly
measure dn/η2 binary comparisons, chosen uniformly at random with replacement, and n >
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n0 is large enough, the SVM will produce a prediction π̂, which satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.4)

The proposition highlights that the SVM needs to sample Θ(n/η2) examples with replace-
ment for an expected risk of at most (η/2)(n(n− 1)/2). Some algebra then reveals that this
amounts to an average of O(n) distinct samples. As the following proposition, a summary
of results of Giesen et al. [35], demonstrates, the sample complexity of Proposition 5.3.1 is
tight up to constants.

Proposition 5.3.2. For η < 1, any randomized, comparison-based algorithm that produces
for all π∗ a prediction π̂ with an expected risk of

E(inv(π̂)) ≤ η

2

(
n
2

)
(5.5)

must on expectation use at least Ω(n) comparisons in the worst case.

The proposition is proved in the supplementary material for completeness. Although the
SVM is effectively optimal in this setting, we feel that its direct application is overly heavy
handed. The goal of this paper is to exhibit two much simpler algorithms which also achieve
the above sample complexity, while being easier to extend to novel applications.

5.4 Two Simple Algorithms

In this section we present two simple rank estimators using the randomized data collection
framework outlined in Section 5.2.

Balanced Rank Estimation

We begin this paper by analyzing BRE, which estimates an object’s score as the relative
difference of the number of items preceding and succeeding it.

Balanced Rank Estimation (BRE):
Measure each binary comparison independently with probability m(n)/n. Define the scores

Π̂(j) =

∑
i 6=j si,j(2c̄i,j − 1)

2m(n)
∝
∑
i 6=j

si,j(2c̄i,j − 1) .

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Our first result concerns the expected number of inversions of π̂ relative to π∗.
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Theorem 5.4.1. For any 0 < η < 1 there is a constant c(p, η) ∈ Θ(1/((2p− 1)2η2)) so that
if m(n)/n ≥ c(p, η)/n, and n > n0 is large enough, BRE satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.6)

To give some intuition for this theorem, we briefly sketch the proof. Since we assumed
π∗ = (1, . . . , n), the expected Kendall tau distance is

E(inv(π̂)) =
∑
i<j

P
(

Π̂(j) ≤ Π̂(i)
)
. (5.7)

The score difference Π̂(i) − Π̂(j) can be written as a sum of 2n − 3 independent random
variables. By controlling their mean, variance and magnitude, if n > n0 is large the following
bound can be derived for i < j:

P
(

Π̂(j) ≤ Π̂(i)
)

(5.8)

≤ exp

{
−
[
j − i
n

]2
3

32
(2p− 1)2m(n)

}
. (5.9)

Applying this to Eq. (5.7), we bound E(inv(π̂)) by

n−1∑
k=1

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
(5.10)

≤
∫ n

0

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
dk (5.11)

≤ n

n− 1

√
128

3

1

(2p− 1)
√
m(n)

(
n
2

)
. (5.12)

Matching this upper bound with the target quantity (η/2)(n(n − 1)/2), we find m(n) ∈
Θ(1/((2p− 1)2η2)).

In the noiseless case (p = 1), Theorem 5.4.1 guarantees that for any 0 < η < 1, BRE in
expectation has the same sample complexity as the SVM in Proposition 5.3.1. In particular,
BRE also achieves the Ω(n) lower bound of Proposition 5.3.2. This may seem at first
surprising. However, a similar algorithm was recently shown to have favorable properties in
a different context [17].

More informative statements can be made if a slightly larger number measurements is
available. As the following theorem shows, given an average of Θ(n log(n)) measurements,
BRE predicts permutations with uniform quality across the entire permutation.
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Theorem 5.4.2. For any c > 0 and 0 < ν < 1, if each comparison is measured with proba-
bility m(n)/n = c log(n)/n, then BRE predicts with probability at least 1− 2n1−an 3

8
(2p−1)2ν2c

a permutation π̂ with

max
j
|π̂(j)− π∗(j)| ≤ νn, (5.13)

where an is a sequence with an → 1.

The crux of the argument is that the estimated scores Π̂(j) concentrate around their
expectation Π̃∗(j) , E(Π̂(j)) = aj/n + b, where a = (2p − 1) and b ∈ R (as before we
assume π∗ = (1, . . . , n)). If all scores concentrate uniformly well, they will reveal the true
permutation up to local displacements. Using a similar analysis as in Theorem 5.4.1, our
proof first establishes the following Bernstein concentration:

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

(5.14)

≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

)} , (5.15)

to which we then apply a union bound (introducing the log(n) factor)

P
(
∃j :

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ > t

)
(5.16)

≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

) + log(n)

}
. (5.17)

Thus, the relative ordering of two objects that are far apart in the π∗ (large t) should be
harder to confuse than that of nearby objects (small t). Indeed, using the following intuitive
lemma, the uniform concentration of scores translates into a uniform bound on displacements
|π̂(j)− π∗(j)|.

Lemma 5.4.3. For any a > 0, and b ∈ R, if ∀j, we have |Π̂(j)− (aj/n+ b) | ≤ t, then we
have that ∀j, |π̂(j)− π∗(j)| ≤ 2tn/a.

The lemma applies to the union bound with a = (2p− 1). The proof is then completed
by setting t = (2p− 1)ν/2 and simplifying Eq. (5.17). The following corollary immediately
follows from Theorem 5.4.2 and highlights for what constants c the probability given in
Theorem 5.4.2 converges.

Corollary 5.4.4. For 0 < ν < 1, there is a constant c = c(p, ν) with 2/((2p − 1)2ν2) <
c(p, ν) < 3/((2p− 1)2ν2), so that for BRE P(maxj |π̂(j)− π∗(j)| ≤ νn)→ 1.
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Unbalanced Rank Estimation

In many situations, we are not interested in learning the entire permutation accurately but
only care about the highest (or lowest) ranked objects. The well-known discounted cumula-
tive gain [47], for example, captures this notion and has been important in the information
retrieval literature. More recently, Rudin [65] proposed p-norms for ranking losses that pe-
nalize errors near the top more severely than in the tail of the list. The approach has been
taken to the ∞-norm limit by Agarwal [3]. When n grows, the number of top elements
we are interested in will typically also grow; in many natural phenomena, for example, we
expect more extreme examples to appear as we make more observations. Suppose then,
that for some 0 < ν < 1 we wish to recover the placement of the first νn elements in the
permutation with fairly good accuracy, but care less about the remaining (1− ν)n elements.
Surprisingly, a very slight modification of the Balanced Rank Estimation Algorithm yields a
method that is useful in this situation. Furthermore, it still only requires a random subset of
pairwise comparisons. The new algorithm, URE, estimates an object’s score by the fraction
of measured items preceding it.

Unbalanced Rank Estimation (URE):
Measure each binary comparison independently with probability m(n)/n. Define the scores

Π̂(j) =
1

m(n)

∑
i 6=j

si,j c̄
n
i,j ∝

∑
i 6=j

si,j c̄
n
i,j.

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

To begin, we first establish that this algorithm in expectation still achieves the Ω(n)
lower bound given in Proposition 5.3.2.

Theorem 5.4.5. For any 0 < η < 1, there is a constant c(p, η) ∈ Θ(1/((2p− 1)2η2)) so that
if m(n)/n ≥ c(p, η)/n, URE satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.18)

Similar to Theorem 5.4.1, the proof relies on a tail inequality for the difference Π̂(i)−Π̂(j).
Supposing that π∗ = (1, . . . , n), we show in the proof that for i < j

P
(

Π̂(j) ≤ Π̂(i)
)

(5.19)

≤ exp

{
−
[
j − i
n

]2
3

100
(2p− 1)2m(n)

}
. (5.20)

As in Theorem 5.4.1 we can use this to bound the Kendall tau distance as

E(inv(π̂)) ≤ n

n− 1

√
400

3

1

(2p− 1)
√
m(n)

(
n
2

)
. (5.21)
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Finally, equating this upper bound with (η/2)(n(n − 1)/2) allows us to solve for m(n) ∈
Θ(1/((2p− 1)2η2)).

Theorem 5.4.5 guarantees in the noiseless case (p = 1) that for any 0 < η < 1, URE in
expectation achieves the same Θ(n/η2) sample complexity as the SVM in Proposition 5.3.1.
Our main interest in URE, however, is encapsulated in the following theorem which shows
that predicted permutations are much more accurate near the top than the bottom if an
average of Θ(n log(n)) measurements are made instead2.

Theorem 5.4.6. For any c > 0, and 0 < ν < 1, if each comparison is measured with
probability m(n)/n = c log(n)/n, URE predicts with probability at least

1− 2n1− 3
2 [(2p−1)2ν2/(3(1−p)+(5p−1)ν)]c (5.22)

a permutation π̂ with

|π∗(j)− π̂(j)|≤
{

4νn if π∗(j) < νn

4
√
νπ∗(j)n if π∗(j) ≥ νn

. (5.23)

The proof parallels that of Theorem 5.4.2 and shows that Π̂(j) concentrates around its
expectation Π̃∗(j) , E(Π̂(j)) = aj/n + b, with a = (2p − 1) and b ∈ R (again, we assume
π∗ = (1, . . . , n)). However, while in Theorem 5.4.2 the tail bound was identical for each j,
here the scores Π̂(j) have variances that depend on j. To build intuition, in the noiseless
case (p = 1), since the first element j = 1 in π∗ has no items preceding it (i.e., ∀i 6= j
c̄i,j = ci,j = 1(i < j) = 0), the estimated score Π̂(j) will always be zero and have zero
variance, regardless of how many elements we measure. For remaining elements, the mean of
the estimated scores will progressively increase down the permutation, as will their variance.
The increase in variance brings a decrease in their predictive accuracy, which is reflected in
the theory. Specifically, one can show that

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

(5.24)

≤ 2 exp

{
− t2m(n)

2
(
j
n
p+ (1− p) + t

3

)} . (5.25)

Before applying a union bound to the above bounds, it is convenient to first eliminate the
j-dependence of the upper bounds. To do this, we define the following set of increasing
deviation events

Aj =


{∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > √νt} if j < νn{∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ >√ j

n
t

}
if j ≥ νn.

(5.26)

2Of course, a minor modification of the algorithm leads to better estimation near the bottom.
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Some algebra then gives, for all j,

P (Aj) ≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν
(1− p) + t

3

)
 , (5.27)

which yields the following union bound:

P
(
∪nj=1Aj

)
≤ 2n exp

−
√
νt2m(n)

2
(√

νp+ 1−p√
ν

+ t
3

)
 . (5.28)

As in Theorem 5.4.2, we turn this concentration result into a bound on the rank displacement
using a lemma.

Lemma 5.4.7. For a > 0, 0 < γ < a2 and b ∈ R, if∣∣∣∣Π̂(j)−
(
aj

n
+ b

)∣∣∣∣ ≤ {γ/a if j < γn/a2√
γj/n if j ≥ γn/a2 , (5.29)

then

|π̂(j)− π∗(j)| ≤
{

4γn/a2 if j < γn/a2

4
√
γjn/a if j ≥ γn/a2 . (5.30)

The proof of the lemma shows that even if a sorting algorithm breaks ties in the least
favorable way, the final rank positions cannot differ too much from the true positions in
π∗. The main difficulty for this argument lies in a suitable definition of the sets Aj, which
translates into the preconditions used for this lemma. As before, the lemma applies with
a = (2p− 1). The result follows if for any 0 < ν < 1 we set t = a

√
ν in the definition of sets

Aj, γ = νa2 in Lemma 5.4.7, simplify Eq. (5.28) and then substitute π∗(j) for j.
The following corollary, highlighting suitable constants c, follows immediately from The-

orem 5.4.6 and shows for what constants c the probability in Theorem 5.4.6 converges.

Corollary 5.4.8. For any 0 < ν < 1, there is a constant c = c(p, ν) with 2p/((2p− 1)2ν) +
2(1−p)/((2p−1)2ν2) ≤ c(p, ν) ≤ 3p/((2p−1)2ν)+2(1−p)/((2p−1)2ν2), so that as n→∞
the displacement bounds of Theorem 5.4.6 hold with probability 1.

Discussion. In both Theorems 5.4.2 and 5.4.6 the size of the bins into which we correctly
place objects can be decreased by increasing the number of measurements. If we consider the
noiseless case (p = 1), Corollary 5.4.8 predicts that to place elements j with π∗(j) < νn/2 into
bins half the current size, URE needs on average twice as many comparisons. To correctly
place objects j with π∗(j) ≥ νn into bins of half the size URE needs on average four times
as many measurements. From Corollary 5.4.4, we see that the behavior of the BRE is rather
different. There, a four-fold increase is required to halve the bin sizes uniformly across the
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permutation. The cost of URE’s improved performance near the top, however, is that for
the same amount of data, the bin sizes in the tail are typically larger than those of BRE.
Thus, if only the top elements are of interest, URE should be preferred. If a more uniform
recovery is desired, BRE should be chosen. We will highlight this tradeoff in Section 5.5
with an example. An advantage in this regard is that the algorithm can be chosen after the
data has been collected since BRE and URE work with the same type of input data. This
fact could be exploited by combining the score estimators in various ways to further improve
over the individual prediction results.

5.5 Experiments

To begin, we empirically validate Theorems 5.4.2 and 5.4.6 in the noiseless case (p = 1).
The theorems show that if each comparison is measured with probability c log(n)/n, for
some constant c, then the deviations |π∗(j)− π̂(j)| can be controlled with some probability
that depends on c. In Figures 5.1(a) and 5.1(b) we show for particular choices of ν in solid
the empirical probabilities that the displacement bounds of the theorems hold, as a function
of the constant c. Additionally, we show the theoretical lower bounds on these probabilities,
as given in Theorems 5.4.2 and 5.4.6. Notice that ν is four times smaller in Figure 5.1(b)
than in Figure 5.1(a) so that Theorems 5.4.2 and 5.4.6 predict the same upper bounds on
|π∗(j)− π̂(j)| for j s.t. π∗(j) ≤ νn. Empirically, we see that in this case BRE requires more
measurements than URE. To highlight the difference in prediction quality, we evaluated both
algorithms on an 8000-object permutation. For each of 500 simulation runs, both algorithms
saw exactly the same set of comparisons. In Figure 5.1(c) we show the median displacement
|π∗(j)− π̂(j)| across the 500 runs, as a function of π∗(j). Additionally, the error bars show
1/2 times the standard deviation of the displacements. For π∗(j) < 2000 URE predicts the
correct position with higher accuracy and smaller variance than BRE. However, for large
π∗(j) ≥ 2000 BRE outperforms.

5.6 Extensions

An important benefit of BRE/URE over active methods is that data collection can be triv-
ially parallelized: Comparisons can be collected from independent processes, each measuring
within a pre-assigned block of object pairs. Furthermore, the structure of the score esti-
mators makes it easy to extend BRE/URE to several interesting settings. For one, we see
applications in online ranking where we wish to grow rankings over n to n+1 objects as data
streams in. Online versions of BRE/URE are easy to derive, yet lead to similar guarantees
as those in Section 5.4. In contrast, the solutions of optimization-based methods can be non-
trivial to update when the problem is slightly perturbed. Cauwenberghs and Poggio [14], for
example, show that the exact update to an SVM solution requires careful bookkeeping of
dual coefficients. The simple structure of BRE/URE also makes them useful in distributed
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(c) BRE and URE on the same set of comparisons. Different prediction characteristics are
visible.

Figure 5.1: Empirical validation of Theorems 5.4.2 and 5.4.6. Figures 5.1(a) and 5.1(b)
show for various ν in solid the empirical probabilities that the displacement bounds of The-
orems 5.4.2 and 5.4.6 hold, if each comparison is measured independently with probability
c log(n)/n, as a function of c. To estimate these, we ran 300 noiseless simulations on per-
mutations over 1000 objects and computed the fraction of times the bounds held. The
empirical probabilities can be compared to the corresponding lower bounds produced by
Theorems 5.4.2 and 5.4.6, which we plot as dashed curves. Figure 5.1(c) shows a direct
comparison of our proposed algorithms. For each of 500 runs on an 8000-object permuta-
tion task, both algorithms saw exactly the same comparisons. Each plot shows the median
displacement |π∗(j)− π̂(j)|, as a function of π∗(j).

settings where costly coordination and communication among multiple processors can be
avoided. We will now explore this extension.

Distributed Ranking

In many situations, the number n of objects being compared is large. For instance, online
retailers can easily offer millions of products for sale among which comparisons could be
made. In such situations the objects (data points) are often stored on a fixed number K of
machines, so that each machine stores about f = n/K data points. A consequence of this
distributed storage is that the O(nm(n)) comparisons are likely to be collected on distinct
machines. A näıve centralized ranking algorithm would collect the individual comparisons at
a server for learning, incurring a communication cost of O(nm(n)). This cost is prohibitive
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if, relative to n, m(n) is large3. Distributed, iterative SVM-type algorithms have been
developed for such situations [41, 38] however, their application is typically complicated by
the need for running multiple iterations which must be coordinated by locking protocols. As
a result, the efficiency of these methods can rapidly deteriorate if a single machine fails. A
favorable property of BRE/URE is that their simple form lends them much more naturally
to distributed extensions, which can avoid locking protocols altogether. The main idea is
that the BRE/URE object scores can also be computed from partial scores rather than
from individual comparisons. If the number of binary comparisons O(nm(n)) is large, then
communicating partial scores can be much more efficient. We analyze this setting.

To compute comparisons, any algorithm must start by exchanging object encodings be-
tween the K machines. Let the data points allocated to machine k be Dk. There are
K(K − 1)/2 machine pairs (k < l) that need to exchange f = n/K data points from one
computer to the other. Overall, this leads to n(K − 1)/2 ∈ O(nK) = O(n2/f) data points
being exchanged. Once the O(nm(n)) comparisons have been computed (in distributed fash-
ion), we aggregate them into partial scores. Specifically, denote the set of binary comparisons
created by a machine pair k ≤ l by

C̄k,l = {c̄i,j : i ∈ Dk, j ∈ Dl, si,j = 1} . (5.31)

Because c̄j,i = 1 − c̄i,j if sj,i = si,j = 1, the set C̄l,k can easily be computed from C̄k,l. In
the following we will assume that C̄l,k has been implicitly computed in this way whenever
necessary. For BRE, use C̄k,l to compute for each pair k, l the following partial scores

Π̂k,l(j) =
∑
i∈Dk

si,j(2c̄i,j − 1) ∀j ∈ Dl. (5.32)

This amounts to a total of K2f = n2/f partial scores. The partial scores for URE follow a
similar strategy. To complete the algorithm, the partial scores must be communicated to a
central machine at cost O(n2/f). If l(j) is the machine index l ∈ {1, . . . , K} so that j ∈ Dl,
we combine the partial scores as

Π̂(j) =
K∑
k=1

Π̂k,l(j)(j). (5.33)

The overall communication time is O(n2/f). In comparison, a näıve centralized algorithm
requires communication time O(nm(n)). If m(n) ∈ O(1/((2p − 1)2η2)) � K then our
proposed algorithm significantly reduces the communication time. For practical applications,
the number of machines K is typically less than 100. In this case the our algorithm should
be a viable alternative to centralized optimization schemes with η as large as η = 0.1.

3This could be because for a particular problem size n the constant c(p, η) ∈ Θ(1/((2p− 1)2η2)) in The-
orems 5.4.1 and 5.4.5 happens to be large, or because the probability p of correctly measuring a comparison
decreases quickly as a function of n.
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5.7 Conclusions

This paper analyzed two simple algorithms for ranking n objects from a random sample of
binary comparisons. We showed that the algorithms in expectation achieve a lower bound on
the sample complexity for predicting a ranking with fixed expected Kendall tau distance. As
such, they are competitive alternatives to the SVM, which also achieves the lower bound. By
giving the algorithm slightly more measurements, we showed that interesting displacement
bounds between π̂ and π∗ can be derived.

Because the algorithms rely only on a random subset of pairwise comparisons, data
collection can be trivially parallelized. The simple structure of the scoring functions makes
them easy to adapt to new situations, such as online or distributed ranking. We showed that
in the latter case the communication cost of a traditional centralized optimization approach
can be substantially reduced if (2p− 1)2η2 is sufficiently small.

This paper has exclusively considered scoring functions Π(j) that only depend on the
object identity. However, BRE and URE can act as a useful performance baseline even for
learning parametric scoring functions, as frequently considered: If the in-sample empirical
performance of such parametric ranking functions is worse than that predicted by Theo-
rems 5.4.1 and 5.4.5, the function class may need to be redesigned or more data collected.
Moreover, the two algorithms can be used as quick, general-purpose preprocessing algorithms
for conventional ranking methods: A small subset of pairwise comparisons can be approxi-
mately completed using BRE or URE, irrespective of the true (possibly parametric) ranking
function that generated them. This larger set of comparisons could then be useful in learning
an improved parametric ranking function.
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5.8 Appendix

SVM has Optimal Sample Complexity

In this section we will show that the SVM, applied to ranking has an O(n) sample complexity.
A related claim (without complete proof) has been made in [61]. We then show that this
sample complexity is tight.

Proposition 5.3.1. There is a constant d, so that for any 0 < η < 1, if we noiselessly
measure dn/η2 binary comparisons, chosen uniformly at random with replacement, and n >
n0 is large enough, the SVM will produce a prediction π̂, which satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.34)

Proof. First, note that in the noiseless case the datapoints xi,j with associated labels ȳi,j are
linearly separable. The SVM finds such a separator. Since the measured comparisons are
chosen uniformly at random with replacement, we can prove the outcome by appealing to
learning-theoretic generalization bounds. Using results in (for example) Bousquet et al. [9]
and a VC dimension bound of [61], we have the following Lemma:

Lemma. For δ > 0, and 0 < η < 1, if we noiselessly measure dn/η2 binary comparisons,
chosen uniformly at random with replacement, then for some constant c, with probability at
least 1− δ the SVM produces a permutation π̂ with

inv(π̂) ≤ η

 c√
d

+

√
2 log

(
2
δ

)
dn

(n
2

)
. (5.35)

To use this Lemma, first define

t = η

 c√
d

+

√
2 log

(
2
δ

)
dn

(n
2

)
. (5.36)

Then by the Lemma P(inv(π̂) > t) ≤ δ. Notice that if we plug in δ = 1 into t, we get a value
t1 for which P(inv(π̂) > t1) ≤ δ = 1

t1 = η

[
c√
d

+

√
2 log (2)

dn

](
n
2

)
. (5.37)

We will thus assume that for all t ≤ t1, we have P(inv(π̂) > t) ≤ 1. We can use this result
to upper bound E(inv(π̂)) as follows. Since inv(π̂) ≥ 0,

E(inv(π̂)) =

∫ ∞
0

P(inv(π̂) > t)dt ≤ t1 +

∫ ∞
t1

P(inv(π̂) > t)dt. (5.38)
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All that remains is to express δ in terms of t. Rewriting, we find that

δ = 2 exp

{
− 1

2σ2
n

(t− µn)2

}
(5.39)

σ2
n =

η2(n(n− 1))2

4dn
µn = η

cn(n− 1)

2
√
d

. (5.40)

Returning to our original expectation,

E(inv(π̂)) ≤ t1 +

∫ ∞
t1

δdt (5.41)

= t1 + 2
√

2πσ2
n

∫ ∞
t1

1√
2πσ2

n

exp

{
− 1

2σ2
n

(t− µn)2

}
dt (5.42)

= t1 + 2
√

2πσ2
nP(σnz + µn > t1) (5.43)

≤ t1 + 2
√

2πσ2
n (5.44)

= η

[
c√
d

+

√
2 log (2)

dn

](
n
2

)
+ 2η
√

2π
n(n− 1)

2
√
dn

(5.45)

= η

[
c√
d

+

√
2 log (2) +

√
8π√

dn

](
n
2

)
(5.46)

Suppose we set d = 16c2. Then for any η/4 > ε0 > 0, there is an n0 so that if n > n0,

E(inv(π̂)) ≤
[η

4
+ ε0

](n
2

)
≤ η

2

(
n
2

)
. (5.47)

Next we prove the following proposition via results of Giesen et al. [35] to show that the
sample complexity in Proposition 5.3.1 is effectively tight.

Proposition 5.3.2. For η < 1, any randomized, comparison-based algorithm that produces
for all π∗ a prediction π̂ with an expected risk of

E(inv(π̂)) ≤ η

2

(
n
2

)
(5.48)

must on expectation use at least Ω(n) comparisons in the worst case.

Proof. Recall that for two permutations π̂, π∗, Spearman’s footrule distance is defined to be

D(π̂) =
n∑
j=1

|π̂(j)− π∗(j)| . (5.49)

Giesen et al. [35] give the following theorem (we restate slightly):
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Theorem (Giesen et al. [35]). Any randomized, comparison-based algorithm that produces for
each input permutation π∗ a prediction π̂ with expected Spearman’s footrule distance D(π̂) of
at most n2/ν(n), must on expectation use at least n (min(log(ν(n)), log(n))− 6) comparisons
in the worst case.

Because Spearman’s footrule can be upper bounded by twice Kendall’s tau distance [22]
(i.e. D(π̂) ≤ 2inv(π̂)) we have that if

E (inv(π̂)) ≤ η

2

(
n
2

)
(5.50)

then

E (D(π̂)) ≤ E (2inv(π̂)) ≤ η

(
n
2

)
< η

n2

2
(5.51)

Combining with the above theorem of Giesen et al. [35], we have the desired result.
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Proofs for BRE and URE

Proof of Theorem 5.4.1

Balanced Rank Estimation Algorithm (BRE): Measure each binary comparison in-
dependently with probability m(n)/n. Define the scores

Π̂(j) =

∑
i 6=j si,j(2c̄i,j − 1)

2m(n)
∝
∑
i 6=j

si,j(2c̄i,j − 1) . (5.52)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 5.4.1. For any fixed 0 < η < 1 there is a constant c(p, η) ∈ Θ(1/(2p− 1)2η2) so
that if m(n)/n ≥ c(p, η)/n and n > n0, the Balanced Rank Estimation Algorithm satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.53)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The
true (rescaled) rank score of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (5.54)

Knowing the true scores Π∗ clearly suffices to predict the permutation π∗ with 0 Kendall tau
distance. Equivalently, it suffices to know the true scores up to global scaling and additive
constants. We will show that the Balanced Rank Estimation Algorithm produces an unbiased
estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n
, (5.55)

where p parameterizes the observation model. We will then show that for large enough m(n),
the probability that we predict an incorrect binary comparison (i.e. we find that Π̂(j) < Π̂(i)
even though i < j) will decay fast enough with growing |j−i| to guarantee that the expected
Kendall tau distance achieves the target. Our interest lies in computing

E (inv(π̂)) = E

(∑
i<j

1
(

Π̂(j) ≤ Π̂(i)
))

(5.56)

=
∑
i<j

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
. (5.57)
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Bernstein concentration: Introduce binary random variables bi,j that capture if a com-
parison was flipped or not. Let bi,j = 1 indicate that the measurement was not flipped.
By assumption, the bi,j are i.i.d. and P(bi,j = 1) = p. Hence, we can write c̄i,j =
bi,jci,j + (1 − bi,j)(1 − ci,j). We study the difference between the estimated scores and the
target scores:

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n

)
(5.58)

=
1

n

∑
i 6=j

[
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))]
Note that given π∗, the variables in the sum are independent. Some algebra reveals:

E
(

n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
= 0

var

(
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
≤ n

4m(n)∣∣∣∣ n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))∣∣∣∣ ≤ n+m(n)

2m(n)
.

The difference
[
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

]
can be written as a sum of 2n−3 independent

terms with magnitude no more than twice and variance no more than four times that stated
above. Thus, we can derive a Bernstein concentration inequality [8]. Conditioned on π∗, one
can show that

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
(5.59)

= P
(

2m(n)

2(n+m(n))

n

2n− 3

([
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

])
≥ 2m(n)

2(n+m(n))

n

2n− 3

[
Π̃∗(j)− Π̃∗(i)

])

≤ exp

−
(2n− 3)

(
n

2n−3

)2
[
Π̃∗(j)− Π̃∗(i)

]2

2 (n+m(n))2

m(n)2

(
4n

4m(n)
m(n)2

(n+m(n))2
+

( n
2n−3)[Π̃∗(j)−Π̃∗(i)]

3
m(n)

n+m(n)

)
 (5.60)

≤ exp

{
−
[
j − i
n

]2
3

32
(2p− 1)2m(n)

}
, (5.61)

where we used the fact that we must eventually have n > 3 as well as m(n) < n−3 if n > n0.
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Returning to the expected Kendall tau distance of Eq. (5.57), we may bound

E (inv(π̂)) ≤
∑
i<j

exp

{
−
[
j − i
n

]2
3

32
(2p− 1)2m(n)

}
(5.62)

=
n−1∑
k=1

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
(5.63)

≤
∫ n

0

(n− k) exp

{
−
[
k

n

]2
3

32
(2p− 1)2m(n)

}
dk (5.64)

= n2

√
π 3

32
(2p− 1)2m(n) erf

(√
3
32

(2p− 1)2m(n)
)

2 3
32

(2p− 1)2m(n)
+ (5.65)

n2 exp
{
− 3

32
(2p− 1)2m(n)

}
− 1

2 3
32

(2p− 1)2m(n)
(5.66)

≤ n

n− 1

√
128

3

2

2(2p− 1)
√
m(n)

(
n
2

)
. (5.67)

For this bound to be no larger than η
2

(
n
2

)
, we need

η >
n

n− 1

√
128

3

2

(2p− 1)
√
m(n)

, (5.68)

so that a suitable m(n) exists which satisfies m(n) ∈ Θ(1/((2p− 1)2η2)).
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Proof of Theorem 5.4.2

Balanced Rank Estimation Algorithm (BRE): Measure each binary comparison in-
dependently with probability m(n)/n. Define the scores

Π̂(j) =

∑
i 6=j si,j(2c̄i,j − 1)

2m(n)
∝
∑
i 6=j

si,j(2c̄i,j − 1) . (5.69)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 5.4.2. For c > 0, if each comparison is measured with probability m(n)/n =

c log(n)/n, Balanced Rank Estimation produces with probability at least 1− 2n1−an 3
8

(2p−1)2ν2c

a permutation π̂ with

max
j
|π̂(j)− π∗(j)| ≤ νn, (5.70)

where an is a sequence with an → 1.

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The
true (rescaled) rank score of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (5.71)

Knowing the true scores Π∗ clearly suffices to predict the permutation π∗ with 0 Kendall tau
distance. Equivalently, it suffices to know the true scores up to global scaling and additive
constants. We will show that the Balanced Rank Estimation Algorithm produces an unbiased
estimate of the scores

Π̃∗(j) = Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n
. (5.72)

In particular, we will show that for a large enough m(n), the difference |Π̂(j)− Π̃∗(j)| is with
high probability small for all j and that we will thus not confuse the relative ordering of two
objects that are further than twice this difference apart in π∗.

Bernstein concentration: Introduce binary random variables bi,j that capture if a com-
parison was flipped or not. Let bi,j = 1 indicate that the measurement was not flipped.
We assume that P(bi,j = 1) = p and that the bi,j are i.i.d. Hence, we can write c̄i,j =
bi,jci,j + (1 − bi,j)(1 − ci,j). As in Theorem 5.4.2, we study the difference between the esti-
mated scores and the rescaled and translated target scores:

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) +

(
1− p− 1

2

)
n− 1

n

)
(5.73)

=
1

n

∑
i 6=j

[
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))]



CHAPTER 5. EFFICIENT RANKING FROM PAIRWISE COMPARISONS 68

Note that given π∗, the variables in the sum are independent. The following result, which
were previously used in Theorem 5.4.2, can be shown

E
(

n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
= 0

var

(
n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

)))
≤ n

4m(n)∣∣∣∣ n

2m(n)
si,j (2 [bi,jci,j + (1− bi,j)(1− ci,j)]− 1)−

(
ci,j(2p− 1) +

(
1− p− 1

2

))∣∣∣∣ ≤ n+m(n)

2m(n)
.

Thus, we can derive a Bernstein concentration inequality [8]. Conditioned on π∗,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

(5.74)

= P
(∣∣∣∣ n

n− 1

2m(n)

n+m(n)
Π̂(j)− n

n− 1

2m(n)

n+m(n)
Π̃∗(j)

∣∣∣∣ > n

n− 1

2m(n)

n+m(n)
t

)
(5.75)

≤ 2 exp

− (n− 1)t2
(

n
n−1

)2

2 (n+m(n))2

4m(n)2

(
n

4m(n)
4m(n)2

(n+m(n))2
+ t

3
n
n−1

2m(n)
n+m(n)

)
 (5.76)

≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

)} . (5.77)

Since there are n items to be sorted, we apply a union bound

P
(
∃j :

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ > t

)
≤ 2 exp

{
− n

n+m(n)

t24m(n)

2
(
1 + 2t

3

) + log(n)

}
. (5.78)

The concentration result tells us that the relative ordering of two objects that are far apart
in the true ordering (large t) is harder to confuse than that of nearby objects (small t). Thus,
as n gets large, the relative ordering of any sufficiently well-separated pair in π∗ should with
high probability be predicted correctly in π̂. Specifically, we have the following Lemma.

Lemma 5.4.3. For some a > 0 and b ∈ R, if ∀j,
∣∣∣Π̂(j)− (Π∗(j)a+ b)

∣∣∣ ≤ t, then ∀j,
|π̂(j)− π∗(j)| ≤ 2tn/a.

Proof. We have π̂(j) 6= π∗(j) when one or more elements in Π̂ are mapped to the wrong side
of Π̂(j). Equivalently, to bound |π̂(j)− π∗(j)| we can count how many elements of Π̂ can at
most map to the same value Π̂(j) and to assume that the sorting algorithm breaks ties in
the least favorable way. Note that

n

a

∣∣∣Π̂(j)− (Π∗(j)a+ b)
∣∣∣ =

∣∣∣∣na Π̂(j)−
(
j − 1 +

nb

a

)∣∣∣∣ < tn

a
. (5.79)

Hence, |π̂(j)− π∗(j)| ≤ 2tn/a.
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Putting it together: By the definition of the mean score Π̃∗ in Eq. (5.72), we see that
we need a = (2p− 1) for Lemma 5.4.3. Then, in order to show that ∀j, |π̂(j)− π∗(j)| ≤ νn
with high probability, we need that with high probability ∀j, |Π̂(j)− Π̃∗(j)| ≤ (2p− 1)ν/2.
Looking at Eq. (5.78), we can achieve this if we let m(n) ≥ c(p, ν) log(n), for a sufficiently
large constant c(p, ν). Then, as n→∞, with high probability ∀j, |π̂(j)− π∗(j)| ≤ νn.

Probability of success. The probability that the preconditions to Lemma 5.4.3 hold
depend on the constant c(p, ν). Specifically,

P
(
∀j :

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ < (2p− 1)ν

2

)
(5.80)

≥ 1− 2 exp


1− n

n+ c(p, ν) log(n)

((2p− 1)ν)2c(p, ν)

2
(

1 + (2p−1)ν
3

)
 log(n)

 (5.81)

≥ 1− 2 exp

{[
1− n

n+ c(p, ν) log(n)

3

8
((2p− 1)ν)2c(p, ν)

]
log(n)

}
(5.82)

= 1− 2n1−an 3
8

(2p−1)2ν2c(p,ν), (5.83)

where an = n/(n+ c(p, ν) log(n))→ 1.
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Proof of Theorem 5.4.5

Unbalanced Rank Estimation Algorithm (URE): Measure each binary comparison
independently with probability m(n)/n. Define the scores

Π̂(j) =
1

m(n)

∑
i 6=j

si,j c̄i,j ∝
∑
i 6=j

si,j c̄i,j. (5.84)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 5.4.5. For any fixed 0 < η < 1, there is a constant c(p, η) ∈ Θ(1/((2p − 1)2η2))
so that if each comparison is measured with probability at least m(n)/n ≥ c(p, η)/n, the
Unbalanced Rank Estimation Algorithm satisfies

E(inv(π̂)) ≤ η

2

(
n
2

)
. (5.85)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. The
true (rescaled) rank of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (5.86)

It suffices to know the true ranking scores up to global scaling and additive constants. One
can show that the Unbalanced Rank Estimation Algorithm produces an unbiased estimate
of the scores

Π̃∗(j) = Π∗(j)(2p− 1) + (1− p)n− 1

n
. (5.87)

We will show that for a large enough m(n), the probability that we predict an incorrect
binary comparison (i.e. we find that Π̂(j) < Π̂(i) even though i < j) will decay fast enough
with growing |j− i| to guarantee that the expected Kendall tau distance achieves the target.
Our interest lies in upper bounding

E (inv(π̂)) = E

(∑
i<j

1
(

Π̂(j) ≤ Π̂(i)
))

(5.88)

=
∑
i<j

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
. (5.89)

Bernstein concentration: We introduce binary random variables bi,j which encode whether
or not a comparison was flipped. Let bi,j = 1 indicate that the measurement was not
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flipped. By assumption, the bi,j are i.i.d. and P(bi,j = 1) = p. With this, we can write
c̄i,j = bi,jci,j + (1− bi,j)(1− ci,j) and so

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) + (1− p)n− 1

n

)
(5.90)

=
1

n

∑
i 6=j

[
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

]
. (5.91)

Given π∗, the random variables inside the sum are independent and one can show that

E
(

n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
= 0 (5.92)

1

n− 1

∑
i 6=j

var

(
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
(5.93)

≤ n

m(n)

1

n− 1
[(j − 1)p+ (n− j)(1− p)] (5.94)∣∣∣∣ n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

∣∣∣∣ ≤ n

m(n)
. (5.95)

The difference
[
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

]
can be written as a sum of 2n− 3 inde-

pendent, zero-mean random variables, with magnitude at most twice and variance at most
four times the above. Using the variance and magnitude bound, we can derive the following
Bernstein concentration result [8]. Conditioned on π∗,

P
([

Π̂(i)− Π̃∗(i)
]
−
[
Π̂(j)− Π̃∗(j)

]
≥
[
Π̃∗(j)− Π̃∗(i)

])
(5.96)

= P
(
m(n)

2n

n

2n− 3

([
Π̂(i)− Π̃∗(i)

]
−
[
Π̂(j)− Π̃∗(j)

])
≥ m(n)

2n

n

2n− 3

[
Π̃∗(j)− Π̃∗(i)

])

≤ exp

−
(2n− 3)

[
Π̃∗(j)− Π̃∗(i)

]2

2 (2(2n−3))2

m(n)2

(
4 n
m(n)

1
n−1

[(j − 1)p+ (n− j)(1− p)] m(n)2

4n2 +
[Π̃∗(j)−Π̃∗(i)]

3
m(n)

2(2n−3)

)


≤ exp

{
−
[
j − i
n

]2
3

100
(2p− 1)2m(n)

}
. (5.97)



CHAPTER 5. EFFICIENT RANKING FROM PAIRWISE COMPARISONS 72

Then plugging this in the expected Kendall tau distance,

E (inv(π̂)) ≤
∑
i<j

exp

{
−
[
j − i
n

]2
3

100
(2p− 1)2m(n)

}
(5.98)

=
n−1∑
k=1

(n− k) exp

{
−
[
k

n

]2
3

100
(2p− 1)2m(n)

}
(5.99)

≤
∫ n

0

(n− k) exp

{
−
[
k

n

]2
3

100
(2p− 1)2m(n)

}
dk (5.100)

= n2

√
π 3

100
(2p− 1)2m(n) erf

(√
3

100
(2p− 1)2m(n)

)
2 3

100
(2p− 1)2m(n)

+ (5.101)

n2 exp{− 3
100

(2p− 1)2m(n)} − 1

2 3
100

(2p− 1)2m(n)
(5.102)

≤ n

n− 1

√
400

3

2

2(2p− 1)
√
m(n)

(
n
2

)
. (5.103)

For this bound to be no larger than η
2

(
n
2

)
, we need

η >
n

n− 1

√
400

3

2

(2p− 1)
√
m(n)

, (5.104)

so that a suitable m(n) exists which satisfies m(n) ∈ Θ (1/((2p− 1)2η2)).
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Proof of Theorem 5.4.6

Unbalanced Rank Estimation Algorithm (URE): Measure each binary comparison
independently with probability m(n)/n. Define the scores

Π̂(j) =
1

m(n)

∑
i 6=j

si,j c̄i,j ∝
∑
i 6=j

si,j c̄i,j. (5.105)

Predict π∗ by the ordering π̂ of the estimated scores, breaking ties randomly.

Theorem 5.4.6. For c > 0, if each comparison is measured with probability m(n)/n =
c log(n)/n, Unbalanced Rank Estimation produces with probability at least

1− 2n1− 3
2 [(2p−1)2ν2/(3(1−p)+(5p−1)ν)]c (5.106)

a permutation π̂ with

|π∗(j)− π̂(j)| ≤
{

4νn if π∗(j) < νn

4
√
ν
√
π∗(j)n if π∗(j) ≥ νn

. (5.107)

Proof. Without loss of generality, we suppose that π∗ = (1, 2, . . . , n), so that π∗(j) = j. To
prove this theorem, we need to refine the Bernstein concentration from Theorem 5.4.5. The
true (rescaled) rank score of object j is denoted by

Π∗(j) =
1

n

∑
i 6=j

ci,j =
j − 1

n
. (5.108)

It suffices to know the true ranking scores up to global scaling and additive constants. We
will show that the Unbalanced Rank Estimation Algorithm produces an unbiased estimate
of the scores

Π̃∗(j) = Π∗(j)(2p− 1) + (1− p)n− 1

n
. (5.109)

Bernstein concentration: We introduce binary random variables bi,j which encode whether
or not a comparison was flipped. Let bi,j = 1 indicate that the measurement was not
flipped. By assumption, the bi,j are i.i.d. and P(bi,j = 1) = p. With this, we can write
c̄i,j = bi,jci,j + (1− bi,j)(1− ci,j) and so

Π̂(j)− Π̃∗(j) = Π̂(j)−
(

Π∗(j)(2p− 1) + (1− p)n− 1

n

)
(5.110)

=
1

n

∑
i 6=j

[
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

]
. (5.111)
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Given π∗, the random variables inside the sum are independent. Furthermore, one can show
the following results, previously used in Theorem 5.4.5

E
(

n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
= 0 (5.112)

1

n− 1

∑
i 6=j

var

(
n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

)
(5.113)

≤ n

m(n)

1

n− 1
[(j − 1)p+ (n− j)(1− p)] (5.114)∣∣∣∣ n

m(n)
si,j [bi,jci,j + (1− bi,j)(1− ci,j)]− (ci,j(2p− 1) + (1− p))

∣∣∣∣ ≤ n

m(n)
. (5.115)

With this we can derive a refined Bernstein concentration result [8]. Conditioned on π∗,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > t
)

(5.116)

= P
(
m(n)

n

n

n− 1

∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ > m(n)

n

n

n− 1
t

)
(5.117)

≤ 2 exp

− (n− 1)t2
(

n
n−1

)2

2 n2

m(n)2

(
n

m(n)
1

n−1
[(j − 1)p+ (n− j)(1− p)] m(n)2

n2 + t
3
m(n)
n

n
n−1

)
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≤ 2 exp

{
− t2m(n)

2
(
j
n
p+ (1− p) + t

3

)} . (5.119)

Let us now substitute different values of t. To begin, if j < νn, then by rescaling t,

P
(∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > √νt) ≤ 2 exp

{
− νt2m(n)

2
(
j
n
p+ (1− p) + t

3

√
ν
)} (5.120)

≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν
(1− p) + t

3

)
 (5.121)

And if j ≥ νn, by rescaling t,

P

(∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ >√ j

n
t

)
≤ 2 exp

−
t2m(n)

2n
j

(
j
n
p+ (1− p) + t

3

√
j
n

)
 (5.122)

≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν
(1− p) + t

3

)
 . (5.123)
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Notice that the upper bounds do not depend on j and are identical in the two cases. Hence,
we see that the concentration result becomes strong for small j < νn as n gets large, but
remains relatively weak for large j ≈ n. Define the events

Aj =


{∣∣∣Π̂(j)− Π̃∗(j)

∣∣∣ > √νt} if j < νn{∣∣∣Π̂(j)− Π̃∗(j)
∣∣∣ >√ j

n
t

}
if j ≥ νn.

(5.124)

Applying a union bound, we find

P

(
n⋃
j=1

Aj

)
≤ 2 exp

−
√
νt2m(n)

2
(√

νp+ 1√
ν
(1− p) + t

3

) + log(n)

 . (5.125)

To use the bound in Eq. (5.125), we first prove the following Lemma.

Lemma 5.4.7. For some a > 0, 0 < γ < a2 and arbitrary b ∈ R, if

|Π̂(j)− (Π∗(j)a+ b)| ≤
{
γ/a if j < γn/a2√
γj/n if j ≥ γn/a2 , (5.126)

then

|π̂(j)− π∗(j)| ≤
{

4γn/a2 if j < γn/a2

4
√
γjn/a if j ≥ γn/a2 . (5.127)

Proof. Let Π̃∗ = Π∗(j)a+b. We need to bound the number of elements of Π̂ that can appear
on the wrong side of Π̂(j). The prediction π̂(j) can deviate from π∗(j) by at most the
number of such misplaced elements. It suffices to bound the number of elements of Π̂ that
can take on the same value Π̂(j) and then to assume that the Unbalanced Rank Estimation
Algorithm breaks ties in the least favorable way. To maximize the number of such confusions,
the estimated score Π̂(j) must deviate up from its mean value Π̃∗(j) as much as possible,
since then the most elements k with Π̃∗(k) > Π̂(j) can map down to Π̂(j), and the most
elements k with Π̂(j) > Π̃∗(k) can map up to Π̂(j) (The conditions of the lemma ensure that
larger deviations are possible for large k than small k.) Specifically, if j ≥ γn/a2 then we
should have Π̂(j) = Π̃∗(j)+

√
γj/n. If j < γn/a2, then we should have, Π̂(j) = Π̃∗(j)+γ/a.

For the following, denote tj =
√
γj/n/a, which is how much the rescaled score Π̂(j)/a can

differ from Π̃∗(j)/a = Π∗(j) + b/a if j ≥ γn/a2.
Suppose that j ≥ γn/a2. The largest element k̄ that can overlap with j satisfies

Π̃∗(k̄)n

a
− tk̄n =

Π̃∗(j)n

a
+ tjn (5.128)

k̄ − 1 +
bn

a
− tk̄n = j − 1 +

bn

a
+ tjn (5.129)

k̄ − tk̄n = j + tjn (5.130)

k̄ −
√
nk̄
√
γ

a
= j +

√
nj
√
γ

a
. (5.131)
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Since
√
k̄ ≥ 0, we use the positive solution given by the quadratic formula:

√
k̄ =

√
nγ/a+

√
nγ/a2 + 4

√
nj
√
γ/a+ 4j

2
(5.132)

=

√
nγ/a+

√(√
nγ/a+ 2

√
j
)2

2
(5.133)

=

√
nγ

a
+
√
j. (5.134)

With this, we have

tk̄ =

√
k̄

n

√
γ

a
=

√
nγ/a+

√
j√

n

√
γ

a
=

γ

a2
+

√
γ

a

√
j

n
. (5.135)

By this derivation, at most tk̄n elements k with Π̃∗(k) > Π̂(j) can map down to Π̂(j).
Furthermore, at most tjn elements k with Π̂(j) > Π̃∗(k) can map up to Π̂(j). Taken together,
because tj ≤ tk̄, at most (tj + tk̄)n ≤ 2tk̄n = 2γn/a2 + 2

√
γ
√
jn/a elements k can map onto

Π̂(j). This means, even if the sorting algorithm breaks ties in the least favorable way, we
have ∀j ≥ γn/a2

|π̂(j)− π∗(j)| ≤ 2tk̄n =
2γn

a2
+

2
√
γjn

a
. (5.136)

Note that if j ≥ γn/a2, the second term in Eq. (5.136) is at least as large as the first term.
So ∀j ≥ γn/a2

|π̂(j)− π∗(j)| ≤ 4
√
γjn

a
. (5.137)

On the other hand, if j ≤ γn/a2, then at most k̄ elements can map to Π̂(j). The upper
limit k̄ is largest when j = γn/a2. Thus,

|π̂(j)− π∗(j)| ≤ k̄ =
√
k̄

2

=
γn

a2
+

2
√
γnj

a
+ j =

4γn

a2
. (5.138)

We can now prove the theorem. In the context of Π̃∗ in Eq. (5.109), a = (2p − 1). For
any 0 < ν < 1, set γ = νa2 in Lemma 5.4.7. If we set t = a

√
ν, then the union bound in

Eq. (5.125) controls the probability that the bounds on the scores required by the lemma
will be satisfied so that we can use the lemma to draw the desired conclusion. Specifically,
with these settings, if m(n) ≥ c(p, ν) log(n) with the constant c(p, ν) large enough, then
by the lemma we predict with high probability the first νn elements j of π∗ with accuracy
|π̂(j)− π∗(j)| ≤ 4νn and the remaining elements with accuracy |π̂(j)− π∗(j)| ≤ 4

√
ν
√
jn.
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Probability of success. The probability that the preconditions to Lemma 5.4.7 hold
depend on the constant c(p, ν). Specifically,

1− P

(
n⋃
j=1

Aj

)
≥ 1− 2 exp

−
√
ν ((2p− 1)

√
ν)

2
c(p, ν) log(n)

2
(√

νp+ 1√
ν
(1− p) + (2p−1)

√
ν

3

) + log(n)

 (5.139)

= 1− 2n1− 3
2

(2p−1)2ν2

(3(1−p)+(5p−1)ν)
c(p,ν) (5.140)
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Chapter 6

Conclusions

Although the fundamental ideas of active and randomized subsampling reach back several
decades (e.g. [51, 95]), their use in the context of novel statistical and computational models
continues to reveal problems that must be addressed. In this dissertation we presented al-
gorithmic and theoretic contributions that aim to alleviate some of these issues: Chapter 2
showed an improved active learning algorithm for spectral clustering models. In Chapter 3
we addressed tractability concerns of active learning in complex Bayesian models. We pro-
posed a method to avoid overfitting in Gaussian Process Classification models learnt from a
randomized subsample in Chapter 4. Finally, in Chapter 5 we presented theoretical analyses
to highlight two simple ranking algorithms as alternatives to learning a ranking using an
SVM. The issues we attack are often fundamental and a comprehensive treatment would
benefit from an expansion of the work presented in this dissertation.

In the context of Chapter 2, our approach for modelling label uncertainty is in its present
form fairly rudimentary, but it highlights the benefit of including probabilistic aspects into
an otherwise non-probabilistic clustering model. Future work on active spectral clustering
could benefit from a more coherent probabilistic treatment of labelling information, perhaps
using a Bayesian observation model. Furthermore, our work does not give a theoretical
account why the strategy works so much better than a randomized sampling approach.

The approximate active learning strategy of Chapter 3 highlights a method for approxi-
mating the stationary distribution of one Markov chain using the stationary distribution of
a perturbed chain. We believe this work to be a first step in making active learning more
palatable in complex Bayesian models. However, alternatives can and should be considered.
Particle filtering and importance sampling, for instance, are both concerned with approxi-
mating samples from one distribution using samples from another, and some of the theory
surrounding these techniques could be used to analyze hybrid alternatives for approximate
active learning.

At present, the Heavy-tailed Process Classification model of Chapter 4 selectively shrinks
posterior class probabilities to 1/2 in sparse regions. In several circumstances it would be
attractive to allow the model to shrink the class probabilities to arbitrary, pre-determined
values. A simple way to achieve this would be to model the latent Heavy-tailed processes
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to have non-zero mean. This would introduce extra parameters, that could be either fixed a
priori or perhaps even learnt.

Chapter 5 analyzed two ranking algorithms that are useful when a random subset of
binary comparisons is observed and data-collection cannot be actively guided at all. In
many situations the cost of active learning might be less severe so that a small number of
active measurements can be made in addition to the randomly sampled comparisons. In this
setting, one may be able to develop interesting hybrid algorithms that interpolate between
purely randomized ranking (as analyzed in Chapter 5) and traditional sorting algorithms.
For instance, once the algorithms of Chapter 5 have been run, additional comparisons could
be actively collected to refine the prediction (say) at the top of the permutation.



80

Bibliography

[1] D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations.
Journal of the ACM, 54, 2007.

[2] S. Agarwal. A Study of the Bipartite Ranking Problem in Machine Learning. PhD
thesis, University of Illinois at Urbana-Champaign, 2005.

[3] S. Agarwal. The infinite push: A new support vector ranking algorithm that directly
optimizes accuracy at the absolute top of the list. In Proceedings of the SIAM Interna-
tional Conference on Data Mining, 2011.

[4] N. Ailon. An active learning algorithm for ranking from pairwise preferences with an
almost optimal query complexity. Journal of Machine Learning Research, 13:137–164,
2012.

[5] N. Ailon, R. Begleiter, and E. Ezra. A new active learning scheme with applications to
learning to rank from pairwise preferences. arXiv CoRR, abs/1110.2136, 2011.

[6] A. Ammar and D. Shah. Ranking: Compare, don’t score. In Proceedings of the 49th
Annual Allerton Conference on Communication, Control and Computing (Allerton),
pages 776–783. 2011.
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