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ABSTRACT OF THE DISSERTATION

Private and Resilient Mobile Edge Networks

by

Joshua G Joy

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2018

Professor Mario Gerla, Chair

The oncoming data explosion of the Internet of Things, and in particular the Internet of

Vehicles, has led to placing computation near the data, as opposed to backhauling large

amounts of data to the Internet cloud. This type of edge networking provides efficiency

gains; however, mobile edge networking must also be resilient in disruptive networks as well

as provide security and privacy protection.

In this thesis, we address both challenges, namely support efficient and robust commu-

nications at the network edge, even in disruptive connectivity conditions; and in the same

conditions, maintain decentralized, private, confidential exchanges. First, we introduce the

concept of Information Centric Networks (ICNs), an increasingly popular strategy for wire-

less edge scenarios and describe how caching and Network Coding can improve performance

in disruptive wireless connectivity environments. Secondly, we introduce a privacy mech-

anism for mobile data that improves the privacy strength while preserving utility. That

is, we perform query expansion to reduce the information leakage due to an individual’s

participation.
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CHAPTER 1

Introduction

Self-driving vehicles are poised to form the most relevant realization of mobile ad hoc net-

works. Vehicle ad hoc networks (VANETs) will collaborate, communicate, and compute at

the network edge without a centralized or fixed infrastructure coordination.

Traditionally, the vehicle has been the extension of the manual ambulatory system, docile

to the drivers’ commands. Recent advances in communications, controls and embedded

systems have changed this model, paving the way to the Intelligent Vehicle Grid. The car is

now a formidable sensor platform, absorbing information from the environment, from other

cars (and from the driver) and feeding it to other cars and infrastructure to assist in safe

navigation, pollution control and traffic management. The next step in this evolution is just

around the corner: the Internet of Autonomous Vehicles.

Like other important instantiations of the Internet of Things (e.g., the smart building,

etc), the Internet of Vehicles will not only upload data to the Internet with V2I. It will

also use V2V communications, storage, intelligence, and learning capabilities to anticipate

the customers’ intentions and learn from other peers. V2I and V2V are essential to the

autonomous vehicle, but carry the risk of the loss and disruption of packets, in addition to

attacks.

The urban fleet of vehicles is evolving from a collection of sensor platforms that provide

information to drivers and upload filtered sensor data (e.g., GPS location, road conditions,

etc.) to Internet Servers; to a network of autonomous vehicles that exchange their sensor

inputs among each other in order to optimize several different utility functions. One such

function, and probably the most important for autonomous vehicles, is prompt delivery of

the passengers to destination with maximum safety and comfort and minimum impact on the

1



environment. We are witnessing today in the vehicle fleet the same evolution that occurred

ten years ago in the sensor domain from Sensor Web (i.e., sensors are accessible from the

Internet to get their data) to Internet of Things (the computers with embedded sensors are

networked with each other and make intelligent use of the sensors).

In the intelligent home, the IOT formed by the myriad of sensors and actuators that cover

the house internally and externally, can manage all the utilities in the most economical way,

with maximum comfort to residents and virtually no human intervention. Similarly, in the

modern energy grid, the IOT consisting of all components large and small can manage power

loads in a safe and efficient manner, with the operators now playing the role of observers.

In the vehicular grid, the Internet of Vehicles (IOV) is more complex than the smart

home and smart energy grid IOTs. In fact there are many different “Things” in the IOV.

Namely:

• External sensors (GPS, cameras, lidars, etc.)

• Internal automotive sensors and actuators (brakes, steering wheel, accelerator, etc.)

• Internal cockpit sensors (driver’s state of health, alertness, tone of voice, health sensors

like the Ford heart monitor seat, etc.)

• The driver’s messages (e.g., tweets, Facebook) are also measurable sensor outputs that

characterize the state of the system and of the driver.

• Vehicle’s beacons, alarm reports on the vehicle state; say, position, key internal pa-

rameters, possible dangers, etc.

This complex picture (of sensors and stakeholders) tells us that IOVs are different from

other IOTs. What sets them apart from other IOTs are the following properties/characteristics:

1. High Mobility: IoVs must manage the high mobility of vehicles and its impact on

wireless communication
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2. Safety critical Applications: this implies low latency and high reliability require-

ments

3. Vehicle-to-Vehicle Communication: short-range communication and limitations

in wireless environments pose many challenges

4. Privacy: driver behavior and vehicular sensor data must be privately crowdsourced

In the vehicular network, like in all the other IOTs, when the human control is removed,

the autonomous vehicles must efficiently cooperate to maintain smooth traffic flow in roads

and highways. Visionaries predict that the self-driving vehicles will behave much better

than human drivers, handling more traffic with lower delays, less pollution and better driver

and passenger comfort. However, the complexity of the distributed control of hundreds

of thousands of cars cannot be taken lightly. If a natural catastrophe suddenly happens,

say an earthquake, the vehicles must be able to coordinate the evacuation of critical areas

in a rapid and orderly manner. This requires the ability to efficiently communicate with

each other and also to discover where the needed resources are (e.g., ambulances, police

vehicles, information about escape routes, images about damage that must be avoided, etc.).

Moreover, the communications must be secure, to prevent malicious attacks that in the case

of autonomous vehicles could be literally deadly since there is no standby control and split

second chance of intervention by the driver (who meantime may be surfing the web).

All of these functions, from efficient communications to distributed processing over vari-

ous entities, will be provided by an emerging compute, communications and storage platform

specifically designed for vehicles—the Vehicular Cloud. The Vehicular Cloud is justified by

several observed trends:

1. Vehicles are becoming powerful sensor platforms (e.g., GPS, video cameras, pollution,

radars)

2. Spectrum is becoming scarce => Internet upload of all the sensor outputs is expensive

and infeasible
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3. Cooperative data processing by vehicles rather than uploading to the Internet (e.g.,

pedestrians crossing, shock wave mitigation, platoon coordination)

To support the above functions, the mobile Vehicle Cloud provides several basic services,

from routing to content search, through standard, open interfaces that are shared by all auto

manufacturers. These functions are dependent upon resilient communications to maintain

the fabric of the Vehicle Cloud. In addition, large scale private data collection is required in

order to streamline the efficiency of the Vehicle Cloud components.

1.1 Our Results

In this work, we put forth new approaches for resilient mobile communications in disruptive

networks by leveraging coded caches. We explore the trade-offs of coding versus no coding

and introduce a mechanism that is resilient to pollution attacks by malicious intermediary

caches. We then show how to reduce energy consumption by selectively enabling coding

when required.

Next, we introduce a mobile architecture to achieve confidentiality and enforce role-based

access control in disruptive networks even if infrastructure is not accessible. We leverage the

cryptographic primitive attribute-based encryption to cryptographically enforce the access

policy in the content itself.

Then, we show how to privately crowdsource information. We create a privacy module

that privately releases data to applications querying GPS data via the GPSD daemon which

runs on the majority of GPS enabled devices. We then show an order of magnitude scalability

enhancement to the function secret sharing cryptographic primitive. Function secret sharing

enables a group of data owners to privately upload data to a set of database servers that

provides non-attributable writes as long as at least one database operator does not collude.

Finally, we introduce a privacy mechanism that improves the privacy strength while

preserving utility. That is, we perform query expansion to reduce the information leakage

due to an individual’s participation.
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Figure 1.1: : First responders in an emergency situation share location and images with

each other. Overhead, a helicopter circles transmitting the global view down to the first

responders. Simulataneously, the first responders upload to the helicopter their local view of

the situation. Due to the intermittent connectivity, only partial images are often received,

cached and shared. The image file completion may require repeated contacts between ground

teams with each other (exchanging the partial caches) and with the helicopter [NES, fir].

1.2 Brief Overview

Resilient Communication. Both tactile networks and first responders utilizing edge net-

works rely on situation awareness updates to arrive in a timely matter, even when the fixed

infrastructure is unavailable. . The technical advancements of the commercial mobile phones

make them capable of supporting such requirements under very disruptive network condi-

tions.
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Tactical and emergency response scenarios require efficient, robust, and secure network

communications to quickly deliver data for situational awareness applications. The dy-

namic and resource limited constraints in these networks require that nodes opportunistically

communicate with limited global knowledge, and make efficient use of the scarce available

bandwidth. However, despite the remarkable increase in sensing, storage, processing, and

communication capabilities in mobile devices, efficient dissemination and storage of content

on the volatile network edge remains a challenge.

In this dissertation, we utilize coded blocks to increase the utilization of the scarce band-

width and limited resources by providing receivers with content error recovery enabling them

to fetch files in disruptive connectivity whereby without coded blocks the receivers would not

be able to download the file. Thus, situational awareness in tactical and emergency response

scenarios is increased by the use of coded blocks.

Private Data Collection. An open vehicular data testbed composed of detailed driver

behaviors and real-world statistics would provide a greater understanding and help miti-

gate the number of self-driving vehicle accidents due to driver behavior misunderstandings.

Ideally, such data should be gathered and aggregated into an open vehicular data testbed

where manufacturers and regulators are able to test and validate vehicle safety standards.

However, such a vehicle data testbed composed of detailed statistics should respect driver’s

privacy expectations.

In this dissertation, we design a privacy module to protect the release of location data

that works across the majority of GPS enabled devices, we show an order of magnitude

scalability enhancement to privately upload data over the default implementation, and we

introduce a privacy mechanism that improves the privacy strength while preserving utility.

We demonstrate the practicality of our approach by deploying our privacy system called

CrowdZen to the UCLA campus.
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1.3 Organization

We first introduce Cache Coding and show it’s resiliency in disruptive networks as well as

pollution protection in Chapter 3. We then show how to recognize the energy trade-offs of

coding versus no coding by introduction Context Aware Cache Coding. In Chapter 6 we

describe our approach for decentralized confidentiality and role-based access control without

depending on infrastructure to enforce the policies in mobile edge networks using Attribute-

Based Encryption. Finally, we describe our scalable privacy mechanism and implementation

of LocationSafe in the GPS service daemon as well as the deployment of CrowdZen to the

UCLA campus in Chapter 9.
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CHAPTER 2

Preliminaries I: Mobile Information Centric Networks

and Network Coding

2.1 Mobile Information Centric Networks

In information centric networks (ICN), the fundamental network primitive transitions from

host-based addressing to content-based addressing (see examples [JST09d, ndn, Hag]). Each

transmission unit (content block) is uniquely identified. Content is fetched by names, which

allows intermediate nodes to act as either full or partial caches.

In dynamic, intermittent networks bandwidth is scarce. However, storage is becoming

increasingly cheaper. The trend of increasingly cheap storage suggests to embrace the delay

tolerant network philosophy of compensating for intermittent connectivity with, intermediate

node caches. Store-and-forward content dissemination enables a requestor the ability to fetch

content pieces from multiple sources. This allows retrieval of content from nearby caches

without reaching all the way back to the original content source, which produces improved

throughput especially in severely disruptive scenarios. In case of popular files, this allows

requestors to download from multiple caches even when the origin is unreachable.

Mobile Ad Hoc Information Centric Networks (which we refer to as MANET ICN) have

intermittent connectivity. This introduces the following challenges during file transfer and

dissemination:

• End-to-end connectivity not guaranteed : A continuous path from source to destination

may sometimes not occur. Nodes must therefore maintain coded caches of partial

transfers and wait for contact with other nodes to continue transmission.
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• Partial caches : Various caches contain different pieces of a file. A receiver does not

know which caches contain which pieces of the file in advance and must ask each

individual cache. It is important to parameterize the coding parameters to maximize

throughput and minimize energy consumption.

• Energy efficiency : The tactical networks we are addressing here are largely comprised

of handheld devices with limited battery life. Improving the resilience of the network

requires an explicit tradeoff between energy consumption and transmission reliability.

One of the key players in this tradeoff is network coding, as it improves reliability at

the cost of extra energy.

We now examine how network coding can be used to address these issues in MANET

ICN.

In intermittent networks, the following challenges affect file dissemination:

• Last coupon problem: Teams may form and split frequently, thus a file must be trans-

mitted (and can be retrieved from caches) in a piecemeal fashion. Thus, pieces are

received out of order. This makes it difficult for the requestor to reliably reconstruct

a file.

• Lack of end to end connectivity : Hop by hop transmissions are required, with nodes

acting as partial caches. Requestors must wait for the next contact opportunity to

resume transmission.

• Partial caches : Various nodes contain different parts of a file.

• Busy caches : A requestor may find out that a cache which has the required pieces is

busy serving other requestors. This causes the requestor to either wait for the next

transmission opportunity or must locate another cache.

Content coding can help achieve reliable dissemination even when network partitions and

severe disruptions occur and can address each of the above challenges. In particular:
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• Dispenses With Last Coupon Problem: By using content coding, the last coupon prob-

lem is eliminated since with high probability each coded block received is innovative

(i.e., helpful) and can be used to reconstruct the file. Thus, the throughput will be

higher with content coding compared to not coding.

• Overcoming Intermittent Connectivity : Since transmissions are connectionless and hop-

by-hop, we cache blocks at intermediate nodes. A requestor can then ask nearby caches

for network coded blocks. The neighbors pull coded blocks from their cache and either

transmit as they are or mix them and transmit new coded blocks.

• Leverage Partial Caches : Intermediate nodes cache partial files with innovative blocks.

Since each block is helpful, nodes can make efficient use of limited connectivity by

transmitting arbitrary innovative blocks.

• Parallel Cache Download : When a requestor finds a nearby cache busy to answer

requests, it can ask other nearby caches for blocks since each network coded block is

as helpful as any other.

Given the limited contact duration in MANET scenarios and the broadcast nature of

wireless systems, the relays are most likely to obtain only partial files. The pieces (blocks)

can be different from relay to relay, but some are replicated in several relays. When requesting

a data object from multiple relays, the pieces are likely to be duplicate and arrive out of

order. There will be gaps and missing pieces, which will make reliable reconstruction of

the file difficult for a receiver. This is called the coupon collector problem (or last coupon

problem). Network coding [HMK06, FBW06] has been used in MANET [LPY06] for data

dissemination to overcome the last coupon problem.

We now briefly describe network coding. Then, we describe Cache Coding [JYP14], our

form of network coding that provides full protection from pollution attacks.
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2.2 Network Coding

Network coding [HMK06] has been used in mobile ad hoc networks [LPY06] for data dis-

semination to overcome the problem of intermittent connectivity. One major advantage of

this approach is that the ordering of partially reassembled files is no longer needed for file

transfer consistency. The requestor can retrieve arbitrary coded blocks from any node, and

reassemble the original file from a sufficiently large number of linearly independent coded

blocks without worrying about sorting them.

CodeTorrent and CodeCast has studied network coding in MANETs whereby coded

blocks are broadcasted and mixed at intermediate caches [LPY06, PGL06]. By exploiting

partial caches, unrestricted coding is able to greatly decrease the delay required to deliver

files.

2.2.1 Network Coding Overview

The algorithm of network coding is as follows [HMK06, FBW06]. A source node publishes

a file F . In order to disseminate the file in pieces using network coding, the source node

first transforms F into a set of m vectors (e.g., chunks) v1, ...,vm in an n-dimensional vector

space over a finite field GF(28). These vectors are linearly combined by drawing, from the

finite field GF(28), an encoding coefficient ei to linearly combine with the vector to create m

coded blocks b1, ...,bm. The set of these coefficients then forms the encoding vector e with

[e1, ..., en]. To reconstruct the file, a node must receive enough linearly independent coded

blocks to be able to perform matrix inversion. First, we take the transpose of the received

vectors such that: ET = [eT
1, ..., e

T
n], BT = [bT

1, ...,b
T
n], and VT = [vT

1, ...,v
T
n]. Then

we take E−1B which will reconstruct all the original blocks in the file.

Note that the major advantage of network coding out-of-order blocks are no longer an

issue. The requestor can retrieve coded blocks from any node, and reassemble the original file

as long as it obtains a sufficient number of linearly independent blocks. Each independently

generated coded blocks is equally innovative and useful to relays. The bandwidth saved by

network coding due to control overhead and redundant data blocks at relays can be huge in
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a disruptive MANET ICN.

However, network coding is easily attacked. The primary advantage of Cache Cod-

ing [JYP14] over network coding is that Cache Coding protects against pollution attacks

while still achieving high throughput for file delivery. In Cache Coding, only sources and

intermediate nodes have fully reconstructed the file, and are able to encode and propagate

the coded blocks into the network.

2.2.2 Pollution Attacks

Traditional Random Linear Network Coding (RNLC) in MANETs performs random network

coding packet mixing at intermediate nodes. The benefits of RLNC are reliable dissemination

of files despite mobility, random interference, and losses. However, the downside is that

pollution attacks become possible. A pollution attack occurs when a malicious (or faulty)

node mixes invalid linear combinations of blocks into the network. These polluted blocks

then get mixed with valid linear combinations and go undetected by honest intermediate

nodes. The attack is detected only when the receiver is unable to reconstruct the original

file, e.g. the reconstructed file hash does not match the original file hash. At this point,

the entire file must be retransmitted from the source (if still available). To protect from

pollution, homomorphic signatures (which are preserved through linear combinations) can

be used. This provides non-repudiation and the ability to track and find malicious nodes.

The drawback of homomorphic signatures is the Homomorphic NC processing cost, two order

of magnitude higher than the Conventional NC mixing cost - a prohibitive proposition in

heterogeneous MANETs that include smart phones [LGK11]. While there exist less costly

alternatives for preventing pollution attacks, these solutions place limitation on topologies,

require loose clock synchronization on the order of 100ms, limit the hop count, require large

field sizes, or demand that new public keys be generated per generation. Obviously, these

requirements are not feasible in dynamic CB-MANETs.

This leaves us with two NC alternatives. One option is to perform source only coding,

whereby only the publisher performs network coding and signs all the blocks. Since only
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the source codes and signs, non-repudiation is provided whereby the integrity of the blocks

and the linear combination used to generate the blocks can be verified. Thus, receivers

can identify pollution attacks and blacklist the malicious source. Another approach is to

allow certified intermediate nodes that have fully reassembled the file to perform coding. To

provide non-repudiation, the certified intermediate node also signs the regenerated blocks in

addition to the originator. In both these cases (source coding and full cache coding), non-

repudiation is provided and thus downstream nodes are protected from untraceable pollution

attacks.

Homomorphic cryptography is computationally expensive and on the order of magni-

tude 2 times more expensive than unrestricted coding [LGK11]. This makes homomorphic

cryptography infeasible for mobile devices such as smartphones.

More practical approaches for wireless networks have been proposed which utilize check-

sums [DCN09]. However, these approaches require the receiver to establish loose time syn-

chronization with the sender. Additionally, attacker identification requires joint cooperation

between the receiver and source. Both of these constraints are difficult if not impossible to

achieve in CB-MANETs and DTN type environments.

Oh and Gerla showed that it is sufficient in a MANET for a small fraction of nodes to

use homomorphic signatures with unrestricted network coding, while the other nodes simply

forward [OG10]. This is useful in heterogeneous radio scenarios with powerful laptops and

light smart phones internetworked in the battlefield. Untrusted nodes are only able to

forward blocks; thus, signatures are preserved and pollution attacks are prevented. Only

trusted nodes are able to code and append a secure ”digest” so that downstream nodes can

verify the digest and discard polluted blocks.

2.2.3 Network coding in ICNs

In content-based mobile ad hoc networks (CB-MANETs), random linear network coding

(NC) can be used to reliably disseminate large files under intermittent connectivity. Con-

ventional NC involves random unrestricted coding at intermediate nodes. This however is
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vulnerable to pollution attacks. To avoid attacks, a brute force approach is to restrict the

mixing at the source. However, source restricted NC generally reduces the robustness of the

code in the face of errors, losses and mobility induced intermittence. CB-MANETs introduce

a new option. Caching is common in CB MANETs and a fully reassembled cached file can

be viewed as a new source. Thus, NC packets can be mixed at all sources (including the

originator and the intermediate caches) yet still providing protection from pollution. The

hypothesis we wish to test in this paper is whether in CB-MANETs with sufficient caches

of a file, the performance (in terms of robustness) of the restricted coding equals that of

unrestricted coding.

In this paper, we examine and compare unrestricted coding to full cache coding, source

only coding, and no coding. As expected, we find that full cache coding remains competitive

with unrestricted coding while maintaining full protection against pollution attacks.

Montpetit et al. [MWT12] have identified network coding within content-centric network-

ing (CCN) as a strategy with tremendous potential. However, their work only presented an

architecture, rather than reporting on an empirical analysis. Further, we have introduced the

idea of adaptively enabling network coding, explained the need for context-aware network

coding to preserve energy resources on resource constrained devices, and implemented our

ideas on Android devices. We have also emulated the system, the network-wide effects, and

reported our findings.

Wu et al. [WLX13] have implemented and evaluated the benefits that network coding

provides for cache hit rates in content centric networks. Interestingly, the evaluation used

unrestricted coding applied to real traces from PPTV (peer-to-peer video streaming). How-

ever, their work does not address selectively enabling network coding, which may not always

be required in a wired peer-to-peer system. Moreover, it does not address pollution attack

protection in unrestricted coding. Our solution detects when to enable network coding, a

characteristic that is of critical importance in mobile environments with limited power.
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2.2.4 Context-aware network coding

Previous work on network coding based on context has mostly been associated with for-

warding in disrupted networks. It has focused on adjusting the degree of redundancy in

the encoding. MORE [CJK07] is the earliest work that proposes adaptive network coding

for such environments. MORE relays opportunistically form multiple paths through which

packets are re-encoded and forwarded. CodeMP [CTY12] further studies adaptive network

coding based on measured loss rates that affect TCP sessions. While this family of adap-

tive network coding approaches adjust the use of multiple paths and degree of redundancy

using link loss rate estimates, they focus on connected networks with unstable channels.

In contrast, we apply network coding in delay-tolerant networking scenarios. We have also

conducted our experiments with more realistic channel models.

Existing work on using network coding in delay-tolerant networks (DTNs [MF09]) fo-

cuses on reducing the number of transmissions needed for epidemic routing or probabilistic

forwarding. Lin et al. [LLL08] studied the tradeoff between performance and resource con-

sumption in DTNs. They propose spreading more coded packets than are needed to reduce

the number of transmissions required. Chuah et al. [CYR12] proposed CANCO, which only

spreads coded packets among some of the nodes encountered. Delivery predictability and

friendliness are used as metrics to decide which nodes to use.

Our work differs from previous work in several respects. First, our goal is to maximize the

delivery rate while reducing the energy consumption by selectively enabling and disabling

network coding. Prior work is unable to adapt to improved network conditions. In such

cases, always-on network coding imposes a cost, and depletes precious power on resource

constrained devices. Second, the context we use is the condition of the network, rather than

the history of encounters or social relationships with other nodes. Third, we employ network

coding by broadcasting blocks over UDP connections to neighbors, rather than reducing

transmissions by forwarding to only a subset of nodes. More importantly, we provide an

algorithm and evaluate an implementation that automatically switches between fragmenting

and network coding the content, based on the runtime context. Of equal significance, we
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have performed emulations of real-world scenarios and implemented the system on Android

devices. In contrast, earlier work on context-aware and adaptive network coding is limited

to theoretical analysis or simulations of limited scenarios. It is worth noting that CACC

can be used with previously proposed coding-aware routing protocols, such as [LLL08] and

[CYR12].
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CHAPTER 3

Resilient Mobile Edge Networking

With Cache Coding [JYP14], the content originator encodes the file being transferred. In-

termediate nodes can re-encode only if they have cached the file. More precisely, each file

consists of file fragments. The originator transforms the file into coded blocks, which are

linear combinations of fragments of the file. These coded blocks are then propagated in the

network. Note that in this scheme, a node can code only if it has possession of the entire file

in its cache. Such nodes are either the originator or an intermediate node that happens to

have cached the whole file. Thus, both originators and intermediate caches perform Cache

Coding.

Cache Coding, like network coding, improves file delivery in real-world scenarios with

severely disrupted networks. The benefits are summarized here:

• Overcoming intermittent connectivity : Since end-to-end connectivity is not guaranteed,

blocks are cached at intermediate nodes. A requestor can ask nearby nodes for network

coded blocks. The neighbors pull coded blocks from their cache and, depending on

context, either transmit them as they are or mix them and transmit new coded blocks.

• Exploiting partial caches : Nodes cache partial files that are encoded in the form of lin-

early independent “innovative” blocks. Since each coded block is as useful for decoding

as any another, a requestor need not contact a particular cache to find missing blocks.

Any node that has blocks for that file will do.

• Leveraging alternative peer caches : When a requestor discovers that the nearest cache

is offline or is too busy to answer requests, it can ask other nearby coded caches for

blocks since each network coded block is as useful as any other for decoding the file.
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• Efficient battery usage: It has previously been shown that network coding achieves

the minimum energy per bit required for reliable dissemination of files in environments

with intermittent connectivity [WCK05, LMH04]. However, network coding leads to

shorter battery lifetimes due to the processing overhead [KR08, FWL06]. Our contri-

bution, Context-Aware Cache Coding specifically addresses this problem. It detects

when Cache Coding is required based on the context of the transfer. It then forwards

packets as they come in, without extra code processing overhead, thus saving precious

energy. This allows nodes to limit the use of Cache Coding (and corresponding energy

consumption) to the situations when it is needed. At all other times, Cache Coding is

automatically disabled.

3.1 Cache Coding Basics

Cache Coding provides good diversity, which is necessary for network coding efficiency, with-

out requiring unrestricted network coding at all intermediate nodes. If we recode at interme-

diate nodes (without Cache Coding), we must protect the data from pollution attacks, e.g.,

by using homomorphic codes. With Cache Coding, a node signs the cache before mixing

packets. When the generation is decoded, if it fails the signature, it is discarded. Because

signed blocks cannot be repudiated, malicious intermediate nodes are easily detected.

The contribution of this dissertation is two-fold. First, we demonstrate that Cache Cod-

ing must be used to ensure reliable file delivery in situations where intermittent connectivity

losses and/or severe network disruptions occur. Secondly, we introduce an energy efficient,

Context-Aware Cache Coding scheme (CACC) that adapts to network conditions and de-

ployed applications. Using simple metrics, such as link loss rate and file size, CACC identifies

the context in which Cache Coding is needed and then enforces it. Both emulation and real-

world deployment on Android-based smartphones show that CACC
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3.2 Full Cache Coding

In CB-MANETs, files are opportunistically cached at mobile nodes to favor future file re-

quests. Files can be downloaded in parallel from multiple caches to make downloads reliable

and fast. Network coding across parallel caches further improves the throughput. However,

in intermittent connectivity, caches may often be partial. Thus, these caches cannot be signed

since the signature implies that the intermediate node has received the full file, has verified

the signature and has replaced in each block the originator signature with its own. Note

that an intermediate cache can reconstruct the file from contributions from different caches

which is the traditional unrestricted coding. One may then state that the full cache strategy

is like the unrestricted strategy in the following manner. As soon as an intermediate node

decides to mix, it must fully reassemble the file and verify integrity before it reissues newly

mixed packets. As we shall see, this intermediate full cache mixing can improve performance

considerably as compared to source only coding.

The above implies that the full cache strategy must be network coding aware. The

question is whether a node should fully cache and decode/recode before forwarding (and

signing) or should just forward the blocks as it receives them, no signature required. There is

a trade off between reassembly delay (-) and improved orthogonality (ie. linear independence)

of the packets (+). We will show that in some cases we can achieve higher throughput if we

wait for the full cache.

3.2.1 Pollution Protection With Full Caches

There are two types of pollution attacks to consider. The first is whereby a malicious node

mixes and corrupts the coefficients such that downstream nodes are never able to successfully

decode. The second attack occurs when blocks are polluted in such a way that downstream

nodes are able to decode; yet, the reconstructed file’s signature does not match the original

file signature.

By pollution protection with full caches only, we mean the following. The file is first

signed by the source, thus providing authentication, integrity, and non-repudiation. The
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signature can be saved in the header of the payload. Once an intermediate cache receives

the full file, it verifies the source signature. Once the source signature has been validated,

only then does the intermediate cache now assume responsibility for the integrity and non-

repudiation. The file is random linearly network coded, and each block is signed by the

cache owner (the intermediate node). Signing each block provides non-repudiation. By non-

repudiation, we mean the following. If coded blocks from cache A cannot be decoded in

spite of the collection of a full rank set, cache A is black-listed and avoided in the future

(or inspected for faulty software). Now, with source signatures when the file is published

and with intermediate node signatures after full cache reconstruction, the system is fully

protected from pollution attacks.

Thus, to recover from either form of pollution attack, a receiver takes the following

actions. Suppose a node receives from N caches and cannot decode. The receiver then

requests blocks from a single cache at a time. The receiver must try to decode data from one

cache at a time in order to isolate the faulty cache. The cache that provides an un-decodable

stream or faulty signature is the polluter and must be investigated.

3.3 System Description

The CB-MANET system used to evaluate the different NC pollution protection strate-

gies subsumes both the family of peer-to-peer content dissemination network (e.g. Hag-

gle [SHC06, SSH07, NGR]) as well as the family of Content-Based Networks in which all

blocks are uniquely identifiable (e.g. NDN [Zha10, JST12, JST09a, Zha11]). To improve the

delivery of content, we segment a large file into blocks. The transmissions are performed in

the unit of data blocks and all blocks are named as filename/blockID. In the case of network

coding, the blocks of a file are encoded as coded blocks and the block IDs are randomly

generated.
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3.3.1 CB-MANET System Operation

The basic operation of our system is as follows. Three messages are periodically broadcast at

each node: interest, request, and cache summary. All three messages are represented in the

form of bloom filters. The interest represents a collection of file names a node itself wants, and

may be opportunistically disseminated over multiple hops when the bandwidth is sufficient.

Relays have full control on when and which interests should be propagated. The request

represents a collection of file the node is willing to receive at the time the request is sent.

Note that the interest is separate from the request so that the node has the right to decide

what contents to request based on the volume of interests it receive, the network condition,

and its local content prioritization policy. Requests are broadcast only one hop to retrieve

available contents from neighbors. To assist the prioritization and compactness of requests,

nodes also periodically broadcast their cache summaries (in chunks or files, depending on

the completeness of the data at this node.) The cache summaries are leveraged by neighbor

nodes to decide which files/chunks to send. Cache summaries are useful in terms of reducing

bandwidth waste, as nodes may blindly push redundant file/chunk based on a request for

a large file. Additionally, the nodes also update neighborsćache summaries based on the

control messages and data communication they hear.

Data transmissions may be triggered when a new request comes in or when a new data

is received. When a new request comes in, the node examines the request with the data it

currently has and the requesters’ cache summary, and initiates data transmissions for the

data that matches the requesterś request. A three-way handshake procedure is assciated with

each data block transmission to eliminate redundant transmission in the broadcast network.

For each data block, the sending node first sends a Request-To-Send-Block (RTSB), which

carries the block name, to the target node. Upon receiving an RTSB, the target node replies

a RTSB-Reply, which may accept or reject the block. If the block is rejected, a reject code is

carried in RTSB-Reply to indicate one of the three reasons to reject: (1) The block is already

received (2) The file is already received (3) The block is being sent by other neighbors. The

data is then transmitted if accepted. Once the target node receives the data, it acknowledges
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by an ACK. Note that all neighbors of the target node may update their cache summaries

based on the broadcast RTSB-Reply and ACK.

When a data block is received, the receiver may propagate the data back to its original

requester(s) by checking all requests it received from neighbors. If matches are found, the

receiver (now becomes the sending node) starts another three-way handshake to deliver the

block. In this way, the file or blocks are delivered back to the original requestors via the trail

of breadcrumbs in a multi-hop environment.

3.4 Energy Efficient and Context-Aware

While Cache Coding has the advantages as previously described, it requires extra band-

width to carry the coefficients and handle the computational resources dedicated to the

encoding/decoding processes. The tradeoffs of performance gain and overhead for disruptive

MANET ICNs must be managed by our proposed energy-efficient CACC.

Our proposed contribution CACC aims to adaptively switch between Cache Coding,

low-overhead fragmentation, and atomic transmission of data objects. Depending on the

context, CACC automatically turns Cache Coding on and off for a given data object. The

objective is to eliminate unnecessary bandwidth consumption due to increased header size

and processing overhead when Cache Coding is unlikely to improve end-to-end performance,

but be ready to trigger Cache Coding instantly in emergencies by using context indicators.

3.4.1 Context Indicators

The nature of Cache Coding methods requires fragmenting the data object being trans-

mitted to utilize the benefit of transmitting random coded blocks, either when frequent

retransmissions are required from one source or when multiple content sources may be lever-

aged. However, in the case when a data object is small, fragmenting that object may be less

efficient than simply requesting an atomic re-transmission due to the fact that identification

of the fragments requires additional overhead. Moreover, Cache Coding incurs even higher
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overhead due to the required coefficients in each coded block. Therefore, Cache Coding

should remain disabled in the case when the file size is relatively small compared to the

basic fragment unit.

The major advantage of Cache Coding is its resilience to intermittent links due to high

mobility. This advantage comes from the fact that Cache Coding is randomized and all

coded blocks contain equal entropy. When the link breaks down often, it is difficult to

predict which fragmented blocks get lost without proper feedback. With Cache Coding,

however, all sources/caches can send innovative blocks (i.e., each one of them is linearly

independent with the rest of the received fragments) without waiting for feedbacks, which

leads to a higher chance of finishing full file transmission given a reasonably short period of

time over one hop. Another important factor to consider is the coefficient overhead of Cache

Coding. The coefficient overhead increases the transmission unit size and may worsen the

performance. Therefore, it is expected that Cache Coding should be disabled when the link

is not lossy.

Based on the above observations, we propose two context indicators.

• Application-related context indicator: The data object size needs to be considered

when deciding whether the data object is more suitable for Cache Coding (i.e., the

overhead can be compensated) vs. atomic (re-)transmission.

• Network condition-related context indicator: When the connectivity is intermit-

tent and the contact time is short, the link loss rate can reflect the current situation

(i.e., network condition and node mobility) to determine whether Cache Coding can

speed up the data delivery from multiple sources/caches.

3.4.2 CACC

Our adaptive Cache Coding algorithm takes the following steps. By default, Cache Coding

is disabled for new data objects and destination nodes.

1. CACC monitors the link loss rate for all known one-hop neighbors. The loss rate
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estimation is simply a weighted moving average over a fixed interval of time. The

link loss rate is estimated based on the number of successful receptions of periodic

beacons at the link layer. The beacon interval4t is parameterized and can be adjusted

to vary sensitivity. For downstream nodes, if the downstream link quality is good,

fragmentation can be used for subsequent hops after receiving Cache Coded blocks

and reconstructing content. We use the following equations to compute the loss rate

estimate:

α = 1− e
4t
−W (3.1)

ln(t) = α · bi + (1− α) · ln(t− 1) (3.2)

where W is defined as the length of the interval of time to measure the loss estimate

over, 4t is defined as the duration between beacons, and bi is 1 if no beacon was

received (indicating a loss) and 0 if a beacon was received (indicating no loss). ln(0)

is defined to be 1, indicating that we perform cache coding until the loss rate settles

down to a point where we can safely stop using it.

2. At the sender side (i.e., the sender can be a cache or a data source), Cache Coding is

enabled for data objects that satisfy the following two conditions:

ln(t) > lth (3.3)

s(d) > sth (3.4)

where lth and sth are the threshold values of link loss rate and data object size, respec-

tively. ln(t) is the average link loss rate at time t for the 1-hop neighbor node n. s(d)

is the size of data object d.

Note that even relay nodes that are not data sources nor caches (i.e., did not issue

an interest for this file) must apply the CACC procedure. More precisely, if the link

loss criterion determines that Cache Coding should be used, the Relay must start

accumulating blocks of the file in question until it has cached the entire file. At that

point it switches to Cache Coding. It is intuitive to understand why arbitrary relays
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(not interested in the file) must cache code. In fact, a relay node may be attacked by

an adversarial jammer and drop all the packets. Recovery is possible only if the Relay

nodes on the cut-set under attack enter the Cache Code mode, thus providing enough

diversity to overcome the attack.

3. At the receiver side (i.e., the receiver may be a relay node or the intended receiver),

if a Cache Coded block is received from any of its neighbors, the previously received

un-encoded fragments are converted to encoded blocks.

The conversion from an un-encoded fragment to an encoded block allows CACC to recycle

already received fragments rather than waiting sufficient numbers of innovative blocks are

generated from a source and disseminated to a receiver. In CACC, the i-th fragment of a file

can be seen as a special case of coded block in which the coefficients used to encode this block

is a unit vector in which the i-th element is 1 and all other elements are 0. Therefore, the

fragment can be converted to a coded block by simply encoding it with such a unit vector. For

example, to convert the second fragment f2 of a 4-fragment file, we compute the converted

coded block by [0, 1, 0, 0][0,f 2,0,0]. In this way, all received fragments and encoded blocks

can be used for decoding the original data object so that all successful transmissions are

utilized.
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CHAPTER 4

Evaluation I: Mobile Information Centric Networks

and Network Coding

Unrestricted network coding, in which intermediate nodes perform unrestricted mixing (as

opposed to mixing of fragments from the cached file), offers more diversity than Cache Cod-

ing. The restriction to Cache Coding thus accepts a greater cost in performance. However, as

mentioned earlier, unrestricted coding is vulnerable to devastating pollution attacks launched

by malicious intermediate nodes, and can corrupt all downstream blocks. Conventional so-

lutions use homomorphic signatures to overcome these pollution attacks. Unfortunately,

homomorphic codes are typically 100 times more processor-intensive than regular network-

ing codes, and have a 100-fold increase in expenditure [LGK11]. Cache Coding provides full

protection against pollution attacks while avoiding the extra processing overhead of homo-

morphic coding [JYP14]. This comes at the cost of a modest loss in code diversity and thus

throughput efficiency, which is offset by enormous processing and energy savings.

The remainder of this section discusses our system and the alternatives to unrestricted

coding. We then perform a throughput comparison of the three options: unrestricted coding,

full cache only coding, and finally source only coding.

4.1 Implementation

We implemented and evaluated our context-aware cache coding (CACC) scheme in an

ICN architecture called Information-CEntric Mobile Ad hoc Networking (ICEMAN) which

was developed for the DARPA Content-Based Mobile Edge Networking (CBMEN) [dar13,

WMJ15, WMJ13, JYG13]. ICEMAN is a modular, open-source, content-based mobile net-
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working framework with a simple but expressive attribute-based mechanism for describing

content and expressing interest, and in-network resolution to offer content dissemination by

matching content to interest. Further details can be found in [enc15].

The ICEMAN architecture [WMJ15, WMJ13] is event-driven, modular, and layer-less,

which provides flexibility and scalability. Central in the architecture is the kernel. It imple-

ments an event queue, over which managers that implement the functional logic communi-

cate. Managers are responsible for specific tasks such as managing communication interfaces,

encapsulating a set of protocols, and forwarding content.

A total of 45K lines of C++ code were added or modified to ICEMAN to implement

ICEMAN (among which 10K lines of code were added for cache coding) on Linux and

Android systems. ICEMAN has been tested and run on up to 30 real deployed Android

phones. ICEMAN’s cache coding feature is based on CodeTorrent (available at https://

github.com/uclanrl/codetorrent), which has been further extended to support context-

awareness as proposed by CACC.

In ICEMAN, files are opportunistically cached at mobile nodes to favor future file re-

quests. Files can be downloaded in parallel from multiple caches to make downloads reliable

and fast. Cache Coding across parallel caches further improves the throughput. However, in

intermittent connectivity, caches may often be partial. Thus, these caches cannot be signed

since the signature implies that the intermediate node has received the full file, has verified

the signature and has replaced in each block the originator signature with its own.

The traditional unrestricted network coding in which all relays may mix (i.e., re-encode)

any available chunks even if the cached data object is partial, exposes security concerns in

an ICN due to the possibility of pollution attack. Therefore, we apply the cache coding,

which allows only the caches who have the full data objects to reencode, generate, and sign

new coded blocks. Caches holding only partial data objects are only allowed to forward the

coded blocks they have received as is. In this way, attackers can be identified and blacklisted

by looking at the signature.

In ICEMAN, interests are composed of key-value pairs to describe the content the re-
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questor is searching for. Suppose node n broadcasts an interest and gets metadata notifica-

tion from the source node s as a match to its interest. Node n then starts downloading the

blocks from node s. During this process, node n learns the unique content identifier (Cid)

of the file carried in each block, which can be used to optimize the content flow of blocks.

For this purpose, we introduce the concept of precise interests when the requestor learns,

from its neighbors, Cid for which it is searching for. Using Cid, node n can check the

Bloom filters received from other neighbors and determine if there are other caches for file

f . Knowing that other neighbors have a copy of f , n can send them precise interests, which

is essentially Cid of f and can start pulling the blocks from multiple caches in parallel. This

multiple cache downloading via precise interests improves the performance of Cache Coding.

In this case, Bloom filters (cache summaries that disseminated side by side with interests to

provide a view of the files available, both complete and incomplete files) can serve as routing

tables to indicate the direction to the cache.

CACC switches between cache coding and low-overhead fragmentation by generating

an event in ICEMAN architecture. The switching occurs at a sender for specific target

nodes; that is, the decision is based on each pairwise link. The link loss rates are calculated

as a moving average of the percentage of lost beacon packets over given period of time.

To measure the packet loss, an event is sent from the Ethernet connectivity module of

ICEMAN to notify the loss estimation module upon successfully receiving a beacon. The

loss estimation module then decides to generate another event to CACC that in turn triggers

switching between Cache Coding and fragmentation. A node switches to Cache Coding for

data transmissions targeting nodes associated with the high loss links, and switches back

to fragmentation on other links upon receiving this event. The implementation of CACC

parameterizes lth and sth, via user-defined configuration files.

4.2 Model

Consider the corridor model that used in Oh and Gerla’s 2009 paper [OGT09]. The model

depict two possible multipath configurations in a MANET, with perfectly disjoint and highly
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Figure 4.1: 1-3-3-1 corridor model [OGT09]. There is a single node which broadcasts at the

top. A single receiver subscribes to all files.

interfering paths respectively. The reality will be ”in the middle”, so we will study both cases

and argue about average behavior.

In our case, the origin of the file is the node S. Node R has issued an interest for the file.

The interest has traced several paths (as shown in Fig (a) and (b)). The file is splits into

blocks which are broadcasted on the mesh (or braid) created by the interests. The broadcast

mode precludes MAC layer ACKs so, no loss detection and retransmissions.

4.2.1 No Coding

First we consider the non coded file transmission. Each packet is triplicated by broadcast.

Thus, 3 copies travel along the braid. With some probability a packet will be lost and the

file cannot be properly received. Note that the probability of packet loss is much higher in

(a) than in (b), because of greater (b) redundancy. However, (b) is slower than (a). More

precisely, (b) is three times slower than (a), so in principle we could improve redundancy

in (a) by transmitting each block 3 times. In general, with jamming and mobility, this non

coding strategy becomes unacceptable.
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4.2.2 Unrestricted Coding

Consider first the braid (a). If packets are transmitted one at the time as soon as the get

in, no mixing is possible and the performance is the same as for the non coded file. In order

to benefit from mixing we must accumulate at least 2 blocks and mix them to generate new

mixed blocks. In this case, if a block is lost on a strand of the braid, the next coded block will

allow recovery. The more blocks we accumulate in a queue, the more losses we can recover.

Naturally, when the blocks are merged at the end, the triple redundancy of the three strands

also comes to help. Next, consider the braid (b). In this case, because of the interconnection

between the paths, two or three blocks are accumulated in each queue at each stage. These

blocks can be mixed and will allow the recovery of the lost blocks. In summary, to exploit

NC, we must ACCUMULATE AND MIX at intermediate nodes, at the expense of a few

block delays. If blocks are not mixed, the performance is the same as for no coding

4.2.3 Full Cache Only Coding

Suppose the blocks are coded at the source and sent out in the network, ie they are broadcast

on the braid. If there is no intermediate node mixing, the performance is the same as for

uncoded file, i.e. potentially very bad. To improve the performance, the top three nodes in

the corridor will assemble the file, while transmitting to the nodes below.

Once the top nodes have assembled the files, the mix them again and they transmit as

many blocks as necessary to compensate for the lost blocks. In this particular case, the same

outcome is achieved by transmitting additional blocks from the source. To guarantee that

no blocks are repeated, each block is mixed (from the blocks in the cache) at the time it

is transmitted. Loss recovery is very good. In fact as good as in the intermediate mixing

case. Suppose ALL the blocks of the first broadcast are lost. Once the three caches start

emptying their blocks, just 1/3 of blocks from each cache will suffice to recover the entire

file. This is an interesting observation. If instead of building the three caches, we just relied

on the source to transmit more coded blocks, we would take three times more to recover.
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4.2.4 Pre-Existing Caches

Suppose now that there are several preexisting caches and that the interest query reaches

multiple caches. If the caches are full caches, we can assume that they will be remixed

as they are transmitted, so diversity is guaranteed and the recovery from loss very good.

If the caches are partial caches and remixing is allowed, the mixing can be helpful if the

caches are overlapped in the vector space. If the caches are disjoint subsets, as would be

the case of a UAV spewing out the full coded file and 3 soldiers getting each a different 1/3

of the file, the mixing would not help much when they join and try to assemble the full

file. Mixing will help if there is significant overlap in the files, as it will increase diversity.

Anyway, as we saw earlier, if the soldier coded files already have built in diversity, further

mixing at intermediate nodes will not help much. In summary, even with partial caches, the

intermediate node mixing in general does not buy much.

4.2.5 When does intermediate mixing help?

Intuition suggests that intermediate node mixing helps if there is a sudden upsurge of losses

and jamming that requires added redundancy. Suppose that the file is transmitted by the

source in encoded fashion. Everything is fine for a few wireless hops and no copies are made

nor mixing occurs at intermediate nodes. Until at some depth of the network intense jamming

occurs that causes, say 90With the caching strategy, one solution is actually possible if mixing

upon full cache is allowed, namely reassembling the entire file at the upstream nodes and

releasing freshly mixed blocks thereafter.

4.2.6 Hypothesis

We have the following hypothesis: (1) intermediate full cache re-encoding provides better

performance than source only network coding and (2) intermediate mixing is after all not

very critical if diverse caches (full or not full) can be tapped in the network.

Our explanation is as follows:
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• Explanation of hypothesis 1 (i.e., full cache re-encoding is better than source only

coding). Suppose a receiver receives packets from two streams. If the streams have

been independently coded by the upstream caches, the probability of getting a full

rank set is higher than if the neighbors provide two identical sets.

• Explanation of hypothesis 2 (i.e., full cache re-encoding provides comparable perfor-

mance to unrestricted coding). In our scenarios, the main advantage of unrestricted

coding is that even partial caches and, in the limited, nodes with two packets can

mix thus creating more diversity. Also, unrestricted coding incurs less latency since it

need not reassemble the entire file before mixing. However, unrestricted coding must

accumulate and mix. Even in the extreme conditions when all else (but intermediate

mixing) fails, the ability to create a full cache at node upstream of the critical section

would save the day.

4.3 Evaluation: Cache Coding

We evaluated the throughput of unrestricted coding, full-cache coding, source-only coding,

and finally no coding. We examine both a static topology using the corridor model [OGT09]

with varying levels of packet loss and a mobile model using random waypoint. For simplicity,

we evaluate a single generation, though our results are generalizable to multiple generations

as our technique is not bound to generations.

4.3.1 Evaluation Description

Our test scenarios utilize multiple publishers disseminating using broadcast. The network is

intermittent due to interference and induced packet loss, and in the dynamic case mobility.

Many caches are partial; however, a receiver can download from multiple caches in parallel.

Due to using broadcast there are no retransmissions. Redundancy is provided by multiple

paths. After a time, the decoder discards the file that cannot be decoded. In both scenarios

we perform our evaluation using Qualnet 6.1. The radio range is about 70 meters.
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Figure 4.2: Corridor model with 30% packet loss. Single publisher and single downstream

receiver with partial and full intermediate caches.

Figure 4.3: 10 node mobility with 3 publishers and 7 receivers.

4.3.2 Results

In our static scenario as seen in Figure 4.2, we observe that as expected, full cache coding

competes with unrestricted coding. This is due to the ability for the intermediate nodes to

be able to quickly reconstruct the original file in parallel from the multiple publishers. The

intermediate nodes act as seeds to propagate the file to the remaining receivers. Source only

coding delivers files quicker than no coding. However, due to the bandwidth and processing

overhead of network coding due to the encoding vector, source only coding is not able to as

efficiently utilize the parallel caches as well as full cache coding.

During mobility as seen in Figure 4.3, full cache coding performs as well as unrestricted

mixing. As we observed in our hypothesis, unrestricted mixing gains its power when it is able

to accumulate and mix new innovative blocks. During mobility, unrestricted mixing is not
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able to accumulate enough new innovative blocks, where the partial cache outperforms simply

forwarding blocks. In the case of the full cache, unrestricted coding generates innovative

blocks; however, so does full cache coding. This leads to the equivalent throughput.

4.4 Evaluation: Context Aware Cache Coding

It should be noted that in an ICN architecture the decision to cache or not to cache at

intermediate nodes can also be made context-aware. If an intermediate node is already a

receiver, i.e., a requester, then the cache is available for free. However, if the intermediate

note did not issue an interest for this file, then caching is an extra cost. If the link loss from

the intermediate node to destination is high (e.g., due to enemy jamming), then caching is

appropriate since this gives us more diversity and eventually more throughput. This way

context awareness is used to optimize the trade off between energy (i.e., processing cost)

and performance in the case of Cache Coding, initial coding, or no coding. However, in our

evaluation, we only focus on using context awareness to determine when to enable Cache

Coding.

4.4.1 Micro Benchmark

We first evaluate the performance overhead of Cache Coding versus fragmentation in a simple

2-node scenario. We run a 6 minute scenario in which two nodes publish 60 objects each, in

order to measure the overhead of NetCode versus Fragmentation under ideal conditions on

a resource constrained device.

In the Micro Benchmark, there is good connectivity between the two Android phones, and

Frag performs better. In Table 4.1, NetCode imposes extra overhead due to the expensive

coding operations, while Frag allows data to be transmitted quickly and with lower power

usage. This motivates the development of CACC, which switches intelligently between them.
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Files

Delivered

Normalized

Energy

Utility

Frag 30 1.0

NetCode 20 0.33

Table 4.1: Micro Benchmark: In static scenarios with good connectivity, NetCode has un-

ncessary overhead.

Figure 4.4: Search patrol scenario with 30 nodes: 2 squads (composed of 3 sub-squads) walk

in a triangle pattern between 3 rendezvous points.

4.4.2 Scenarios

Our evaluation tests CACC across two scenarios: a search patrol scenario in Section 4.4.2.1,

and a data mule scenario in Section 4.4.2.2; to illustrate the behaviour of CACC in dynamic

settings.

4.4.2.1 Search Patrol Scenario

Consider the search patrol model in Figure 4.4, where a search patrol visits rendezvous points

and shares reconnaissance and updates information. In this search patrol scenario, there are

2 squads with 14 members each. Each squad is composed of 2 subgroups. Intra-squad

communication occurs periodically at each rendezvous point (i.e., central servers, hot spot,

and red box in Figure 4.4).
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Both the central servers publish two 512KB files each. Each scout in each subgroup takes

a 1MB picture at the hot zone and performs intra-subgroup sharing. This results in a total

of 60 files published and shared to a total of 30 subscribers. Intra-squad sharing occurs only

at each rendezvous point. Inter-squad file sharing occurs in the middle ground as illustrated

as the red box in Figure 4.4. Due to intermittent connectivity, each node only has partial

caches. The partial caches consist of the files from the central servers, and pictures taken at

the hot zone. If there are partial files, intra-squad sharing continues as each squad walks to

next rendezvous point. This scenario continues for 720 seconds.

4.4.2.2 Data Mule Scenario

In the data mule model, two large squads (4x4 and 3x4 members each) are connected by

a few data mules which ferry files. Nodes in a squad are 30 meters apart. Intra-squad

communication is conducted by multi-hop connections while inter-squad communication is

facilitated by three data mules. In this scenario, every node in each squads publishes two

1MB files, one every five minutes. The three data mules publish five 512K files, one every

minute. All nodes subscribe to all content. The data mule speed is 1.4 m/s. Each data mule

is out of range of other data mules and communicates with each squad for 60 seconds. The

duration of this scenario is 600 seconds. This model allows us to evaluate the effects of large,

internally connected groups that are interconnected with each other by a low-bandwidth

connection. We expect to see the coupon collector problem taking effect and slowing down

the file reconstruction between the two groups.

4.4.3 Setup

In order to evaluate the performance on larger mobile scenarios, our test framework emulates

mobile network scenarios on a Linux server. The network emulation is done using EMANE

802.11 [ema]. EMANE includes a path loss model and interfaces with the Common Open

Resource Emulator, CORE 4.3 [ADH08]. We use EMANE and CORE together to run real-

istic emulations of mobile performance on a Linux server using the same codebase that runs
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on Android devices with real testbed experiments. EMANE models the network topology,

and CORE is responsible for the mobility model and moving nodes around in accordance

with scenario requirements. We use CORE for compartmentalization so that multiple virtual

ICEMAN nodes can exist on the same physical machine; through the use of resource and

network isolation.

For Android testing, we ran tests on Nexus S smartphones running Gingerbread. In order

to emulate the resource constrained nature of an Android device, we use the cpulimit [cpu]

tool to limit the CPU time allocated to ICEMAN processes.

To capture the energy requirement, we use a normalized energy utility measurement.

We define this as measuring the total number of files delivered and the total CPU time

needed. We then normalize both file delivery and CPU overhead to fragmentation (no

coding). Finally, we divide the normalized number of files delivered by the normalized CPU

overhead. It has been shown previously that coding induces noticeable computation overhead

on mobile devices [SL10, SL09]. Thus, we capture the CPU overhead as an distinguishing

energy indicator when comparing coding versus no coding.

4.4.4 Parameters

Our test framework runs publisher and subscriber applications on each ICEMAN node that

communicates with the ICEMAN process on each virtual node according to the requirements

set by the scenario. Each publisher and subscriber application keeps logs of the data objects

that are sent and received. These logs are then analyzed, along with emulation output

from EMANE and CORE, to study the bandwidth, latency, and delivery rates from the

experiment.

We configured our system to use Cache Coding for files larger than 32KB. The block

size for Cache Coding operations was also set to 32KB. The window parameter W for the

loss estimate calculation was set to 30 seconds. Data Objects were disseminated using

UDP broadcast. The UDP broadcast mode precludes MAC layer ACKs so there was no

loss detection and retransmission. Through out our experiments, we use ieee802.11abg link
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Files

Delivered

Normalized

Energy

Utility

Frag 158 1.0

CACC(0.2) 513 1.08

CACC(0.4) 489 0.92

CACC(0.6) 363 0.87

CACC(0.8) 382 0.71

NetCode 396 0.71

Table 4.2: Search Patrol Scenario: CACC is able to utilize both NetCode and Frag for

improved delivery rates and reduced power consumption.

provided by EMANE with an omnidirectional antenna gain of -5 dbi and a system noise

factor of 4 db in freespace loss model.

4.4.5 Results

To measure the effectiveness of dissemination, we measure both the delivery rate, in terms

of the number of data objects delivered, as well as the normalized energy utility as defined

in Section 4.4.3.

We compare across three different schemes, low overhead fragmentation (Frag); cache

coding without any context aware switching (NetCode), and network coding with context

aware switching (CACC). We use the notation CACC(lth) to indicate the usage of a CACC

with the given value of lth.

We experiment across various values of lth, using values of 20%, 40%, 60%, and 80%.

Conceptually, Frag is equivalent to using CACC with an lth value greater than 100%; as lth

can never exceed 1, network coding will never be enabled. NetCode is equivalent to using

an lth value of 0% as network coding will then immediately be enabled.
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Figure 4.5: Search Patrol Scenario: CACC delivers more data objects than NetCode using

less power.

4.4.5.1 Search Patrol Scenario

In this scenario, the subsquads move as groups and the channel loss rates between intra-squad

links are low, while the average loss rates of inter-squad links are relatively high. Additionally,

the rendezvous time is short so that data objects are delivered in parts. Therefore, NetCode

has a clear advantage for transmissions between nodes from different squads. However, since

the number of nodes in the mobile group is small and the number of data objects to be

exchanged within the mobile group is few, the interference caused by channel contention is

relatively low. Therefore, NetCode is not required for intra-subsquad communications and

would just introduce unnecessary overhead. Frag gets the fewest data objects through, since

it gets hit with the coupon collector problem.

CACC combines the best of both worlds, it is able to utilize low-overhead Fragmentation

for intra-subsquad transmissions and use NetCode when needed for inter-subsquad transmis-

sions. From the results we can see that CACC uses less power than NetCode; and delivers

many more data objects in the case of CACC(0.2) and CACC(0.4).

Figure 4.5 and Table 4.2 illustrate this point clearly. Note that the delivery rate is a

function of the mobility, and jumps when the subsquads interact. Initially, NetCode performs

the best and has the lowest latency, at the expense of power consumption; NetCode always

uses expensive network coding operations while CACC tries to save power and use low-
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Files

Delivered

Normalized

Energy

Utility

Frag 114 1.0

CACC(0.2) 256 1.29

CACC(0.4) 202 1.21

CACC(0.6) 287 1.45

CACC(0.8) 262 1.31

NetCode 248 1.25

Table 4.3: Data Mule Scenario: CACC delivers more data than NetCode while using similar

amounts of power.
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Figure 4.6: Data Mule Scenario: CACC delivers more data than NetCode and Frag.

overhead Fragmentation. Over time, when enough blocks get through and the squads meet

again, CACC is able to reconstruct data objects and improve delivery rates.

4.4.5.2 Data Mule Scenario

The Data Mule scenario illustrates the benefits of using CACC for delivery rates versus

simply using NetCode or Frag. Intra-squad sharing is reliable, but inter-squad sharing

depends on how efficiently blocks can be transmitted by the data mules to the other squad.

In this scenario, the delivery rates are a function of the mobility. We expect that all intra-

squad subscriptions will complete successfully, while the delivery rate for inter-subsquad
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subscriptions will depend on the mules. If the mules have a shorter stay, the spikes in data

object delivery will be closer together. However, the spikes would be shorter as the mules

would not be able to receive/send enough data objects when they are in contact with the

squads. A stay duration of 60 seconds, as in our scenario, is a reasonable middle ground.

In Table 4.3, we can see CACC outperforms both NetCode and Frag. CACC(0.6) delivers

more data objects when compared to plain NetCode. Other cases (except CACC(0.4))

perform like NetCode in terms of delivery rate. CACC is able to utilize the network context

to learn that blocks should be sent to the mules. It thus pays the cost of network coding

for those nodes, but avoids expensive network coding operations when sharing data over

reliable intra-squad links. We note that the power consumption is similar to NetCode, but

more data is delivered.

Figure 4.6 illustrates this point. Frag takes much longer to deliver data objects intra-

squad initially, due to the coupon collector problem. Very few data objects are delivered

through the mules, again due to the same problem. NetCode, since it does not suffer from

the coupon collector problem, is able to deliver more data objects, and deliver them quickly.

Initially, the performance of CACC is somewhere in between NetCode and Frag. This is

due to the fact that at startup a lot of data is being exchanged, and CACC needs to detect

the network state. CACC detects the initial lossy channel and switches to network coding.

Later on, past the 100 second mark, when enough blocks and fragments come in through

the mules, intra-squad sharing can proceed through low-overhead fragmentation and thus

delivery rates are improved.

4.4.5.3 Search Patrol Scenario on Android

Results for the Search Patrol scenario on Android are presented in Table 4.4 and Figure

4.7. We can see that NetCode initially takes longer to deliver data objects, due to the time

required to encode and decode blocks on a slower CPU. In this time, CACC, using a mix of

fragmentation and network coding, is able to deliver data objects with lower latency. Note

that Frag is unable to deliver many data objects as it is hit hard by the coupon collector
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Files

Delivered

Normalized

Energy

Utility

Frag 60 1.0

CACC(0.2) 330 7.93

CACC(0.4) 353 7.06

CACC(0.6) 234 3.58

CACC(0.8) 178 2.73

NetCode 252 5.81

Table 4.4: Android Search Patrol Scenario: CACC(0.2) delivers the most data while using

the least power.
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Figure 4.7: Android Search Patrol Scenario: CACC delivers more data than NetCode and

Frag.

problem.

In terms of power usage, we see that CACC(0.2) uses the least power, while other

CacheCode settings use more power. In addition, Frag uses more power per data object

than NetCode in this scenario, due to the fact that delivery rates are low. This illustrates

that the choice to use low-overhead transmissions must also consider the fact that data de-

livery may be adversely affected. We can also observe that CACC is adaptive and able to

both save power and increase delivery rates.
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CHAPTER 5

Preliminaries II: Decentralized Content Confidentiality

and Authorization

Today people carry various consumer electronic devices such as digital cameras, smartphones,

and laptops. These Internet-enabled smart devices are both the consumers of published

content and the producers of user generated content. Content creation has become very

easy, and anyone can post content using Web 2.0 tools, e.g., YouTube, Flickr, Twitter,

etc. As a result, personal content is exploding—content is shared and scattered in multiple

places ranging from personal devices to cloud storage. A recent report estimated that by

2015, terabytes of data will be in a person’s pocket, and petabytes of data in a person’s

home [Sto07]. Under this circumstance, it is very important to have a system that seamlessly

enables networking of personal content such that users can manage personal content scattered

over multiple devices (including cloud storage) and selectively share content with friends.

The first step toward this goal is to introduce single persistent naming over personal

content scattered over multiple devices. Since the current generation of personal devices

keeps individual namespace in each device, content is tied to a device. As the amount of

content increases, users tend to lose track of what files are where, and content management

becomes difficult. A unified view with persistent naming will allow users to make location

independent (or content centric) queries where there is no need to specify which device

has the requested content. For instance, Alice can access her favorite songs via name:

“Alice/Music/My Favorites.” Similarly, she can share the collection to Bob, by simply

telling the name.

This content centric approach is widely acknowledged as a key feature of the future
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Internet as in content centric networking (CCN) that replaces conventional host-to-host

conversations with name-based communications and provides secure binding between name

and data to thwart security attacks [JST09b]. Name-based routing of CCN enables content

retrieval over a fully distributed network without specifying where the content is located as

any nodes that have the requested data locally answer the request [JST09b]. While CCN was

originally designed for large-scale content dissemination (or even replacing the existing IP

network), its key principles (i.e., name based routing and secure binding) are also applicable

to realize secure personal content networking. However, due to scalability and performance

reasons CCN transfers data and also caches data on untrusted nodes that forward/store

data properly and yet do not necessarily keep data confidential. Additionally, CCN lacks

an essential component of personal content networking, namely secure content management

such as content updates and access control over untrusted nodes.

While secure content management is an active area of research in the field of distributed

file systems, existing work mostly focused on host-centric, trusted file systems—a trusted

file server handles user authentication and access control authorization and then provides

data confidentiality by securing the communication channel (e.g., SFS [MKK99]). When

dealing with untrusted storage, the files must be encrypted to assure data confidentiality

as in the Cryptographic File System (CFS) [Bla93] and Plutus [KRS03]. However, such a

cryptographic storage system cannot generally provide fine-grained, expressive access control;

e.g., in Plutus, a file can be only encrypted using a single key. If a user wants to share the file

with more than two groups, it is not clear which key should be used for encryption. A simple

solution is to use a common key for file encryption and to encrypt this key using each user’s

public key as in SiRiUS [GSM03]. This approach is still limited in that the metadata size

linearly scales with the number of users, and supporting more expressive access control is

difficult as it only uses a single file encryption key. Moreover, existing cryptographic systems

do not support secure binding between name and data, and as a result, the channel must be

secured to prevent a man-in-the-middle-attack.
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5.1 Content Centric Networking Review

PCN’s underlying content retrieval is based on Content Centric Networking (CCN) [ccn12,

JST09c]. CCN is a specific design and implementation of Information Centric Network-

ing architecture, and was one of the precursors of today’s information centric networking

architectures.

In this section, we review the core components of CCN, namely (1) naming, (2) content

reachability, (3) content retrieval, and (4) content centric security.

Naming: CCN names a file with a user friendly, structured, location-independent name,

and each file is divided into segments. Consider: “/ucla.edu/music/abc.mp3/v3/s0.” Here,

“ucla.edu” is a globally routable name (called prefix), “/music/abc.mp3 ” is a local name in

“ucla.edu,” “v3 ” is a version name (represented using a timestamp), and “s0 ” denotes the

segment number.

Content reachability: As a future Internet architecture, CCN operates on top of an

underlying physical network topology that could include end-user devices. Like BGP of the

current Internet, a prefix owner announces the prefix to the entire network. For instance,

Alice from “ucla.edu” announces her files say “/ucla.edu/Alice/ ” from her laptop. Each node

in the network broadcasts the incoming prefix to its neighboring nodes. Whenever a node

receives the prefix, it sets up a backward pointer to the sender in its Forwarding Information

Base (FIB) for that prefix. As a result, any node can reach the node that announces the

prefix by following the backward pointer in the FIB.

Content retrieval: Content retrieval is pull-based as in HTTP (i.e., get and response).

A user sends a request (via an Interest packet), and any nodes that have the requested

content in its local storage (or cache) can respond. For a given prefix, the Interest packet is

forwarded along the reverse path toward each data source by following the backward pointer

in the FIB. Whenever a node receives an Interest packet, the breadcrumb information (i.e.,

a backward pointer to the previous forwarder) is stored in the Pending Interest Table (PIT).

The corresponding data packet will then be delivered by following the reverse path in the

PIT.
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If content is replicated in multiple nodes, the same prefix will be announced by these

nodes. This allows that any nodes in the network reach these nodes. When forwarding an

Interest packet, CCN uses the longest prefix matching algorithm; i.e., in the FIB, a node

finds the longest prefix entry that has the largest number of leading letters matching those

of the content name in the interest packet. For instance, Alice’s desktop has “/Alice/my

music/pepper/,” and Alice’s laptop has “/Alice/my music/.” When Bob accesses “/Alice/my

music/pepper/abc.mp3,” it matches the prefix entry of “/Alice/my music/pepper/ ” and the

Interest packet will be delivered toward Alice’s desktop.

Note that the CCN forwarding engine has a content cache (or content store), which is

similar to the packet buffer of the IP counterpart. An incoming data packet is stored into

the cache such that later requests of the same data packet can be served locally. In addition,

a CCN node has a local repository that is a non-volatile content store in a disk. When a user

publishes content, it is stored in the local repository, and the prefix of content is advertised

to the network.

Content centric security: CCN supports the secure binding between name and con-

tent (called content-based security) where protection and trust travel with the content it-

self [JST09b]. To this end, CCN uses asymmetric cryptography: all content is authenticated

with digital signatures, and private content is protected with encryption. Each data packet

contains a signature by owner P , SignP (N,C) which is over the name (N) and content (C).

This content-based security is critical since content can be cached in untrusted intermedi-

ate nodes. For key management, CCN can use a traditional certificate-based public key

infrastructure (PKI) or the arbitrary graphs used by the PGP Web of Trust.

5.2 Content Confidentiality and Role-Based Access Control

Distributed file systems: Research on distributed file systems for a mobile environment

has been mainly directed to extending existing client-server based file systems to cope with

node mobility and network disruption [RHR04, SGZ02, PSY04]. The common technique

is to use optimistic file replication and eventual consistency. BlueFS [NF04] extends a
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client/server based file system by focusing on power management to save energy of mo-

bile devices. EnsemBlue [PF06] builds upon BlueFS to provide a consistent view of all files

scattered over multiple devices with heterogeneous device capabilities. Ficus [RHR04] uses

a peer-to-peer (P2P) model for optimistic replication where all replicas are equal and can

propagate updates to all other replicas. Bayou [TTP95] is also based on a P2P model; it

uses anti-entropy for consistently management and supports a database language for data

retrieval.

There are several systems designed for a multi-device environment. Unmanaged Internet

Architecture (UIA) provides zero-configuration connectivity among mobile devices through

personal names [FSL06]. Unlike existing work, UIA assumes that each device has its own

persistent namespace, and a user has to keep track of all the files scattered over multiple

devices. Instead, Eyo [SLP09] offers a device transparency model in which users view and

manage their entire data collection of all the devices by periodically flooding meta-data ev-

erywhere. PersonalRAID [SGZ02] supports optimistic replication at a volume level, and a

mobile storage device is used to synchronize the volume in a delay tolerant fashion. Foot-

loose [PSY04] supports application specific optimistic replication with eventual consistency

(e.g., address book), and yet it uses a persistent, flat namespace (called ObjectID).

Wide area P2P storage systems: Wide area P2P storage can be classified based on

the overlay structure; (1) a structured system (e.g., PAST, CFS, Ivy) forms a structured

overlay network using a distributed hash table (DHT); (2) a structureless scheme (e.g.,

Gnutella and eDonkey) forms a structureless overlay network where the overlay links are

arbitrarily established. Unlike unstructured P2P networks, DHTs provide a better perfor-

mance for searching items over a large number of distributed nodes, and they have been

widely adopted to implement wide area P2P storage. Most P2P storage systems assume

wired Internet scenarios and support strong consistency, which is less suitable for personal

content networking.

Decentralized access control: The following concepts are closely related, namely user

authentication, access control authorization, and data confidentiality. Existing access control

systems could be classified based on types of authentication methods. When AUTH SYS
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(UNIX’s default) and Kerberos are used, systems mostly provide UNIX-style ACL (e.g., NFS,

AFS, xFS). When public-key cryptography is used, systems typically support either UNIX-

style ACL (e.g., SFS [MKK99]) or certificate authorization (e.g., DisCFS [MPI03]). These

systems basically assume that file servers are trustworthy, but the network is not secure;

thus, data confidentiality is guaranteed by securing the channel (e.g., SSL). If the servers are

not trustworthy, we can either rely on some other semi-trusted servers as in Cobalt [VMF08]

or use cryptographic encryption to preserve data confidentiality as in Cryptographic File

System (CFS) [Bla93], Plutus [KRS03], and SiRiUS [GSM03]).

In the latter approach (called a cryptographic file system), authentication is typically

done using public key cryptography where a user’s public key is used as an ID, and digital

certificate is used for authentication. CFS uses a single key for encryption (coarse grained,

e.g., directory/volume) and is dependent on the underlying file system for write authoriza-

tion [Bla93]. Later variants used a lockbox to protect the keys (with more fine-grained access

control) and introduced several mechanisms for verifying the write operations without de-

pending on the underlying file system [KRS03, GSM03]. In particular, SiRiUS [GSM03]

permits that a file can be shared by multiple individuals or groups using a common file

encryption key which is encrypted again using each user/group’s public key.

Given that attribute-based encryption (ABE) is designed to provide a fine-grained, ex-

pressive access control, several existing work used ABE for read-only content sharing over

untrusted storage [YRL08, BBS09, YWR10]. In particular, Yu et al. [YWR10] used key-

policy ABE (KP-ABE) to provide privacy-aware content sharing over untrusted cloud stor-

age and Proxy Re-Encryption (PRE) to delegate the task of re-encryption on the cloud

servers. While PCN is considered as a cryptographic file system, unlike existing systems,

PCN provides fine-grained, expressive access control using CP-ABE in a fully distributed

environment with untrusted nodes and allows file owners to set up expressive read and write

access policies based on attributes (e.g., college friends, family members). Further, none of

the aforementioned systems do provide secure binding between name and data, and thus,

the channel must be secured to prevent a man-in-the-middle-attack.
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CHAPTER 6

Decentralized Content Confidentiality and

Authorization

Securely sharing/managing personal content is considered to be a challenging task in a multi-

device environment. In this dissertation, we design and implement a new platform called

personal content networking (PCN). Our work is inspired by content centric networking

(CCN) in that we aim at enabling seamless access of personal content without specifying its

location. The unique challenge of PCN is to support secure file operations such as replication,

updates, and access control over distributed untrusted nodes. The main contribution of this

paper is the design and implementation of a secure content management mechanism that

supports secure replication/updates and fine-grained content centric access control. Further,

we demonstrate its feasibility with prototype implementation on the basis of CCNx.

We propose the personal content networking (PCN) platform that provides a secure con-

tent management mechanism over CCN, enabling secure replication/updates and fine-grained

content centric access control. We extend CCN to build a basic framework for distributed

content management with replication and updates. We then propose and implement a secure

content centric access control mechanism using a recently proposed cryptography tool called

attribute-based encryption (ABE) that permits secure sharing of content within a group

over untrusted nodes [BSW07]. ABE supports fine-grained, expressive access policies called

attribute based access control (ABAC). An owner can define a set of attributes (e.g., college

friends, CS219 team, and family members) and issues a secret key for the assigned attributes

to an individual. A file is encrypted based on the access policy over the attributes using an

owner’s public key. For a given encrypted file and access policy, any user can decrypt the

file as long as he has the secret key with the attributes that satisfy the given policy.
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While ABE was designed and has been used for selective read-only content sharing over

untrusted storage [YRL08, YWR10], to the best of our knowledge, our work is the first

attempt to build a fully distributed personal storage system that supports ABE-based fine-

grained access control with read-write operations over untrusted devices and secure-binding

between name and data. The main contribution is twofold. We design the PCN platform

by significantly extending CCN to realize a secure content management mechanism that

supports secure replication/updates and fine-grained content centric access control. Further,

we build a PCN prototype by integrating the whole system using FUSE, a user level file

system and demonstrate that a user can seamlessly access/manage content using PCN.

The rest of this section is organized as follows. We present the design goals of PCN.

We then provide an overview of PCN’s basic framework and secure content management

methods. Next, we present the prototype implementation of PCN.

6.1 Secure Personal Content Networking

Recent advances of technology in consumer electronics have promoted a lifestyle where peo-

ple live with convenience and ease by accessing any kind of information at their finger tips.

These devices also allow people to generate/share a sheer amount of personal content such

as photos, videos, and documents. However, personal content is now exploding, and per-

sonal content sharing/management is considered to be a challenging task particularly when

users need to deal with personal content scattered over multiple devices. To mitigate this

problem, we aim at enabling seamless access of personal content without specifying its lo-

cation via information centric networking (ICN) over personal content. In this paper, we

design a platform called personal content networking (PCN) that uses a single persistent,

hierarchical naming space for personal content, allows users to securely initialize their de-

vices and establish trust with other users, enables efficient content management over multiple

devices (e.g., updates, removal, replication), and supports content centric access control via

attribute-based encryption (ABE) for selective sharing where access control is not tied into

hosts and yet fine-grained attribute based access control is permitted. We demonstrate its
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feasibility with prototype implementation on the basis of CCNx.

Personal content is exploding. The storage demand appears to be infinite. A recent

report estimated that by 2015, terabytes of data will be in a person’s pocket, and petabytes

of data in a person’s home [Sto07]. Under this circumstance, it is very important to have a

system that seamlessly enables networking of personal content such that users can efficiently

manage personal content scattered over multiple devices and selectively share content with

friends.

Our work is motivated by the recent proposal of future Internet, namely information

centric networks (ICN), a new Internet architecture that replaces conventional host-to-host

conversations with named data oriented communications based on an URL-like persistent

namespace [JST09b]. The key features of ICN are that (1) it supports single persistent,

hierarchical naming space and provides secure binding between name and data which can

effectively thwart most security attacks; (2) it supports name based content access in which

users can request content without specifying where the content is located, and any nodes

that have the requested data can answer the request as nodes can cache data locally.

While building upon CCNx, PCN addresses the unique issues that are essential to per-

sonal content networking scenarios. First, the system should provide an intuitive trust man-

agement mechanism for trustworthy content sharing among users (e.g., introducing other

users into a personal network). Second, the system should support distributed content man-

agement over multiple devices such as replica management and content updates/consistency

management. Third, the system must enable content centric access control for selective con-

tent sharing among friends. Simple public key based end-to-end encryption is not sufficient

for access control, because this approach complicates content naming and nullifies the benefit

of content caching in the intermediate nodes. Finally, the system should provide efficient

content routing using an overlay network that is on the basis of social relationship.
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6.2 PCN System Design

While building upon CCN, our system design aims to support the following features that are

essential to realize personal content networking: (1) PCN uses a single hierarchical, persistent

naming scheme of N = P : L (where P is the name of a user, and L is the label representing

the location of data in the hierarchy) and manages the trust using SPKI/SDSI [CEE01];

(2) for secure identity introduction in mobile environments, PCN uses a secure introduction

protocol that can effectively thwart the man-in-the-middle-attack; (3) given that one of the

key functions of personal content networking is to share content among friends, PCN builds

an overlay network based on social relationship; (4) PCN supports attribute based access

control (ABAC) with attribute based encryption (ABE) to enable selective content sharing

among users [BSW07]; and (5) PCN users can effectively manage content in their personal

devices and support content updates and automatic synchronization over CCN.

6.3 Motivating Scenario and Design Goals

We use the following example to motivate the needs of personal content networking. Bob

has a number of smart devices: Internet TV, desktop, iPhone, EyeFi-enabled digital camera,

Internet fridge, and network attached storage (NAS). He has other devices at school (e.g.,

desktop, laptop) and also maintains a few cloud servers (e.g., Amazon EC2). His personal

content is currently scattered over these places, and Bob had a hard time tracking all these

files. For instance, his friend Alice asks him to send the lecture material of the course that

they took last year. He only remembers that it is located at some document directory, but he

forgot where he put it. He searches through machines one by one: laptop, servers, desktop,

and NAS, and finds that it is stored in his NAS at home. After locating the lecture material,

Bob feels a bit frustrated because the size is over 1GB (even after compression) and cannot

send it via email. He calls Alice saying he will give the files to Alice using his USB stick.

This example clearly illustrates the needs of seamless networking of personal content such

that users can manage personal content scattered over multiple devices and selectively share
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content with friends. The design goals of PCN can be summarized as follows:

• Single persistent, hierarchical namespace: Single persistent, hierarchical naming of per-

sonal content will guide users to have a unified view of their personal content scattered

over multiple devices. Hierarchical namespace is critical because people typically prefer

managing their personal content hierarchically [JPG05, HS09]—it is reported that hier-

archical naming significantly lessens the cognitive overhead of locating files [Lan88]. We

expect that single namespace with location-independent content access could greatly

reduce the cognitive burden in a multi-device environment.

• Social networking : Users often want to share content with their friends. PCN should

leverage the social networking aspect by establishing/managing trust relationship among

friends and by building an overlay network for content sharing.

• Fine-grained access control : PCN must provide fine-grained, expressive access con-

trol to enable secure content management over distributed untrusted servers that

store/transfer data properly and yet do not necessarily keep data confidential.

• Disrupted operations : Since devices can go offline at any time, users should be able

to replicate files, and files must be automatically synchronized whenever they become

online again as in existing distributed file systems [SKK90, RHR04, PSY04].

• Security guarantee: Since PCN deals with distributed untrusted devices connected

over the Internet, it must be resilient to well-known security attacks such as a denial

of service attack, and a false data injection attack.

In the above scenario, PCN will allow Bob to easily locate the material (say, “/Bob/My

Doc/CS101 ”) and to pass this link to his friend Alice. Bob does not need to examine each

device, but simply need to browse his namespace at any machine. Alice can download the

content using that link. In the following, we review CCN, a building block of PCN (Section

3) and show how PCN’s basic framework can be built over CCN (Section 4).
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6.4 Basic PCN Framework with CCNx

We build a basic framework of PCN by extending CCNx. PCN is based on a web of trust

with SPKI/SDSI [CEE01] and a UIA-style secure introduction process for secure key ex-

changes [FSL06]. PCN uses a single hierarchical, persistent naming scheme of P : L where

P is the identifier of a user, and L is the label representing the location of data in the hierar-

chy. PCN builds an overlay network based on social relationship as one of the key functions

of personal content networking is to share content among friends.

6.4.1 Naming

The current generation of personal devices use rigid and weak naming of the form “host-

name:path.” The key problem is that content is tied to a host, making personal content

management non-trivial, particularly when a user interacts with a number of devices (e.g.,

laptop, desktop, smartphone) including cloud-based storage services (e.g., Dropbox). A user

has to track what files are located in each of these devices/services and to decide how to

migrate/replicate/update content.

In PCN, we define a single persistent, hierarchical namespace for each person. It is

known that global namespaces are politically and technically difficult to implement (e.g.,

X.509, PEM). Thus, we use local, decentralized namespaces of SPKI/SDSI [CEE01]. Each

person has a public-private key pair to verify the identity of the sender (sign/verify) and to

ensure privacy (encrypt/decrypt). Relationship among users in personal content networking

is considered to be flat, and it is sufficient to use the public key as identity. Nonetheless there

are cases where hierarchical naming is useful; e.g., a group of users has a set of sub-groups.

In SPKI/SDSI, a user can define a local namespace as a sequence of length two consisting of

her key K followed by a single identifier (that is distinct within the local namespace). For

instance, Alice with key Ka makes her own name as “Ka Alice.” A study group with key Kg

can name its sub-groups as “Kg sub1” and “Kg sub2.” If a sub-group has multiple smaller

groups inside, that group can name those groups similarly; e.g., sub1’s two internal groups

(ssg1 and ssg2) can be named as “Kg sub1 ssg1” and “Kg sub1 ssg2.” Note that a local
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name is globally unique because the name contains a public key of the user. Moreover, each

user can make signed statements of these local names, which allows anyone to certify a key

via a web of trust [CEE01].

Given this, a name of data is of the form N = P : L where P is the name of a user (or its

cryptographic hash), and L is the label representing the location of data in the hierarchy; e.g.,

Alice’s music can be denoted as “/Ka Alice/music/.” PCN’s naming can be used in CCN

with minimal modification as CCN uses hierarchical naming (e.g., “/ucla.edu/test.txt”). As

in CCN, each device will advertise the content reachability information by broadcasting the

name prefix of the content that is stored in the device. For instance, Bob’s laptop will

advertise “Kb Bob/my doc/,” and his iPad will advertise “/Kb Bob/my music/beatles/.”

For the sake of brevity, hereafter we will use abbreviated names without a public key, e.g.,

“/Bob/my music/.”

6.4.2 Trust management

Each PCN user has a private-public key pair which is used to define a user’s name. When

a new device is purchased, this information must be securely installed to initialize a PCN

service. Moreover, for content sharing with others, a user must establish trust relationship

by securely exchanging the public keys (e.g., how does Bob make sure that a key belongs to

Alice?)—nonetheless trust relationship does not necessarily guarantee data confidentiality.

For both problems (i.e., device initialization and trust establishment) secure key distribu-

tion is the key issue. Users can use USB sticks or can use local/wide area networks for

key exchanges. The latter is less secure than the former, because it is vulnerable to the

man-in-the-middle-attack—an attacker can eavesdrop the channel and make independent

connections with the victims and relays messages between them, making them believe that

they are talking directly to each other over a private connection, when in fact the entire

conversation is controlled by the attacker.

A simple method of avoiding the attack is to use another secure channel. Alice can show

(or read) her public key to Bob (e.g., via physical presence, SMS, email, voice communica-
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tions), and ask Bob to check whether his key matches with the key that she received. Given

that checking a large number is laborious and erroneous, Ellison et al. [DE02] proposed an

approach where the keys are represented in color bars so that users can easily verify the key.

In UIA, multiple choice questions are used to further reduce the burden of users [FSL06].

Alice sends her multiple choice question to Bob, and Bob sends his question to Alice. Af-

ter solving each other’s question, they exchange the hashed values of their answers (and

both keys), hoping that the attacker cannot solve the questions and thus fails to control the

conversation.

However, this approach is vulnerable to the man-in-the-middle-attack since a malicious

user can perform a dictionary attack. The attacker knows both keys and the multiple choice

questions. He can easily find the answer by computing a hashed value for each answer

choice and comparing this value with the received answer. Like UIA, we use multiple choice

questions, and yet we solve the man-in-the-middle-attack by using Ellison’s approach [Ell96]

that is based on Pedersen’s interlock protocol [Ped91]. Given that the secret (answer of a

multiple choice question) is a, one chooses a random value u and then computes x = gahu

mod p where p is prime, g and h are generators of the group mod p. Alice and Bob generate

their own numbers and exchange these values: i.e., Alice: xA = gaAhuA mod p, and Bob:

xB = gaBhuB mod p. The attacker cannot infer value u and must use a random value to

finish the transaction, thus effectively thwarting the dictionary attack.

6.4.3 CCN overlay construction

Trust management among friends can be used to form a social network. We use this social

relationship to create an overlay network for content centric networking (CCN). Whenever

identity introduction happens, corresponding personal devices also exchange IP addresses

and join the overlay network. Each device maintains a peer list that contains IP addresses

and port numbers of other devices. For a given user, the list includes a user’s own devices

and direct friends’ devices. For instance, Alice’s laptop has a list of all her devices and a list

of Bob’s devices. These devices periodically check the availability of neighboring devices to
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maintain the overlay network.

A device may be behind a NAT, and it cannot actively participate in the overlay network.

In this case, the device can be connected through a relay node that is not behind a NAT and

is stable enough (say 90% of time the device is up and running). NAT can potentially reduce

the number of peering devices, thus lowering the connectivity among devices. We can increase

the connectivity by allowing devices to exchange IP addresses of k-hop friends’ devices. For

instance, when k = 2, Alice can connect to Bob and also to Bob’s friends. Further, computing

resources in the cloud systems could be utilized to increase the connectivity; e.g., a personal

account in Dropbox can serve as a node for personal content networking.

6.5 Secure Content Management

We first illustrate file replication and synchronization and justify the need of prefix protection

for replication. Then, we present the details about content-centric access control, followed

by the illustration of remote content management and the discussion of key revocation.

6.5.1 Synchronization

PCN provides “eventual consistency” in which all replicas eventually converge to the same

version given enough messages exchanged among participating devices (i.e., a file with the

freshest timestamp) [PSY04, RHR04]. Eventual consistency is one of the widely used con-

sistency models in disruption-prone mobile environments.

Whenever a replicated file is updated, a new version is created (with a new timestamp).

Each replica has an associated version vector that tracks its update history [RHR04, PGH98].

To alert this event, the node that makes the update will re-announce the corresponding prefix

with a modification mark, which is a special type of the prefix announcement used for update

notification. The prefix announcement also contains detailed information of the updated file,

including its name, the current version, and the version vector. For synchronization, the local

client compares the version vector of the local replica with that of the updated file. If the
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updated file is strictly newer than the local one, its version vector will dominate; the local

client fetches the updated file and replaces the local file in the repository. If two version

vectors are not equal and neither one dominates, an update/update conflict has happened.

If automatic merging fails, PCN notifies the user that a conflict has detected. The user will

be presented with a revision history including authors, dates, and versioned content. It is

up to the user to resolve the conflicts and mark the content as merged. Note that whenever

intermediate nodes hear the modification announcements, their local caches are examined to

find whether there are matching files, and the matched files (or data packets) in the caches

are invalidated.

Synchronization of a replicated directory needs special care. Although the only modifica-

tion operations are adding new entries or deleting/changing existing entries, a directory

replica can be modified from multiple places, which causes several well-known synchro-

nization issues such as insert/delete ambiguity, remove/update conflicts, and name con-

flicts [BP98, PGH98]. In PCN, we basically adopt the existing solutions used in the Ficus

file system [RHR04, PGH98].

When a node re-joins the PCN network after disruption, it first checks its neighbors

to find any missing prefix announcements. As we will see, a PCN user has a reserved

namespace for devices, namely “/dev,” and devices are accessible through this name; e.g.,

Alice’s iPod is named as “/Alice/dev/iPod.” For prefix announcement synchronization, each

device stores the received prefix announcements in a designated place; e.g., Alice’s iPod has

“/Alice/dev/iPod/received prefix.” This allows the node to search for the updates of the files

located in its local storage. If the node finds a prefix with a modification mark, it performs

file synchronization as illustrated earlier.

Note that in PCN, nodes fetch the updated file for synchronization. If the size of a file

is large and only small part of the file is updated, the bandwidth wastage will be severe. A

simple solution to this problem is that a node generates/publishes a delta file (e.g., using

diff) and includes the link of the delta file in the prefix announcement.
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6.5.2 Prefix protection

So far we assume that any node can replicate the content and announce the named prefix.

After replicating the content, however, malicious users can launch an attack by inundating

the network with fake update announcements. PCN nodes could waste considerable resources

to handle such updates. Given that CCN does not deal with updates, this problem is unique

to PCN.

To solve this problem, we propose to restrict that a prefix announcement is signed by the

prefix owner. This mechanism is a reasonable approach in that people typically want to have

a full control of their namespace and the locations of files in a multi-device environment.

A similar technique is used in BGP security where each prefix is signed in order to prevent

prefix hijacking where an attacker has a partial or full control of the named prefix. While

this problem is less serious in CCN because requests (interests) will be routed to all replicas

and a denial of services cannot be achieved, it is still possible that malicious users can launch

update flooding attacks.

In PCN, a prefix announcement is augmented to include signature that certifies the

prefix ownership. Further, we implement the ownership delegation such that an owner

certifies that a named user is allowed to announce the named prefix by issuing a prefix

certificate. For instance, Alice can issue a certificate to Bob that Bob can announce the

prefix “/Alice/my doc/proj/.” Intermediate nodes can verify that the certificate is valid, and

the prefix announcement is actually originating from Bob (similar to data packet validation).

As long as Bob is permitted, Bob can update the local replica of Alice’s file, and the update

will be automatically propagated. Note that it is possible for the attackers to perform the

replay attack where a CCN speaker replays a prefix which it has previously heard. This

problem can be mitigated by adding an expiration timer as in S-BGP [KLS00].

6.5.3 Content centric access control

Access control in personal devices is mostly host centric. In identity based access control

(IBAC) [SS94], a user first logs into the system (authentication) and then accesses files based
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on the permissions in the access matrix (authorization). SPKI/SDSI supports role based

access control (RBAC) where permissions in the access matrix are tied to roles [CEE01].

SPKI/SDSI is also host centric as it basically assumes trusted servers and insecure chan-

nels; i.e., an individual must first set up a secure channel (using SSL) to prevent man-

in-the-middle-attack, and the server checks whether a requester’s key is on the role-based

ACL [BCD02]. In PCN, nodes store/transfer data properly and yet do not keep data confi-

dential, and thus, host centric access control is not suitable.

For personal content networking, we need content centric access control ; i.e., access

control of content is self-contained and is not tied to a host. A simple solution is to encrypt

the content using the receiver’s public key and to define a specific name of the encrypted data

meaningful to the receiver. The encrypted content can be placed in the untrusted servers

as others cannot decrypt the content. If a file needs to be shared with multiple people, a

common key is used for file encryption, and this key is encrypted using each user’s public

key [GSM03]. The encrypted keys are then included in the meta-data of an encrypted file,

and the entire content (meta-data + encrypted file) is published. However, this approach

has several limitations. Supporting expressive access control is difficult as it only uses a

single file encryption key. If multiple keys are used, the size of metadata linearly increases

with the number of users/groups. More importantly, once the content is published, the

owner cannot give access to the other users—the owner must republish the original file by

including additional users.

In PCN, we solve this problem by using ciphertext-policy attribute based encryption

(CP-ABE) that permits secure sharing of content within a group across multiple untrusted

servers [BSW07]. ABE is the key enabler for attribute based access control (ABAC) where

access decision is based on the attributes associated with individuals. Each user first gen-

erates an ABE public key (PK) and an ABE master key (MK). A user can define a set of

attributes (e.g., college friends, CS219 team, family members) and an access policy using

Boolean formula on attributes. This allows a user to perform fine-grained, expressive access

control. The user assigns a set of attributes to each user and then issues a secret key corre-

sponding to the attribute set; i.e., Secret Key Generation(MK, S) where MK is the master
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Read-access Policy Write-access Policy

Write-Verify Key
EncABEWRITE-ACCESS POLICY

(Write-Sign Key)

(1) (2)

(3) (4)

EncABEREAD-ACCESS POLICY(Data)(5)

SignWRITE-SIGN KEY(SHA-1(EncABEREAD-ACCESS POLICY(Data)))(6)

Figure 6.1: PCN’s file data structure for secure content centric access control

key, and S is a set of attributes assigned to a user. A file can be encrypted using the public

key, and the access policy; i.e., Encrypt(PK, M, A) where PK is the public key, M is a

message, and A is an access policy. Here, any user can encrypt the file using the public key.

Further, any user who has a secret key with attributes that satisfy the policy can decrypt

the content; i.e., Decrypt(PK,CT, SK) where PK is the public key, CT is the cipher-text,

and SK is the secret key. In ABE, the metadata only contains the access policy information

whose size scales with the number of attributes (not with the number of users). Even though

the content is published, the owner can still issue attribute keys to the other users without

republishing the content.

Suppose Alice would like to selectively share her music collection, “/Alice/my music/rock.”

This content is digitally signed using Alice’s CCN publisher key and is published under that

namespace. For access control, “Red hot chili peppers” is encrypted with the attribute “col-

lege friends.” “Incubus” is encrypted with “college friends” and “CS219 team” attributes

because Alice discussed Incubus with her teammates and wants to share the songs with them

only. Bob is Alice’s college friend, and Alice issues a secret key for the attribute “college

friends”; Cathy is Alice’s CS219 team mate, and Alice issues secret keys for the attributes

of “college friends” and “CS219 team.” Bob can decrypt “Red Hot Chili Peppers,” while

Cathy can decrypt both “Red Hot Chili Peppers” and “Incubus.”

In PCN, an owner of a file can set access permissions of read and write using separate

access policies (used in ABE). The resulting access modes in PCN are read-only and read-

write; write-only mode is not suitable for personal content networking. Access modes can

be also used to directory files in order to limit access of directory listing. As shown in

Figure 6.1, PCN payload contains the following fields: (1) read-access policy, (2) write-
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access policy, (3) write-verify key (public key), (4) write-sign key encrypted using ABE with

write-access policy, (5) actual data encrypted using ABE with read-access policy, and (6)

write signature (optional). For write access control, a file owner issues a private-public key

pair that is located at fields (3) and (4). The write-sign key is only accessible to those who

have write permission as we encrypt the write-sign key using ABE with the write-access

policy. Whenever a file is updated, the file is encrypted using ABE with the read-access

policy. This legitimate modifier then reads the write-sign key through which he generates

the signature of the updated content, which is finally placed in the field (6). This update

event is then notified to all the nodes that replicate the content via prefix announcement

with a modification mark. The replica nodes will then fetch the updated content and verify

whether it is modified by the legitimate users who satisfy the write-access policy. Note that

in our prototype implementation, we use symmetric encryption to reduce the overhead of

encrypting/decrypting the content; i.e., the content is encrypted using AES, and ABE is

used to encrypt AES key.

So far we assume that each file has its own access policy, but setting access policy for

each file is a laborious task. To mitigate this problem, PCN allows users to maintain a set of

access policies in their own namespaces. For instance, Alice has two access policies that she

set up for content sharing; (1) college friends : “/Alice/Policy/p1 ” and (2) college friends and

CS219 team: “/Alice/Policy/p2.” Associated write-sign/verify keys can be stored as well:

“/Alice/Policy/p1.key” and “/Alice/Policy/p2.key.” Then, these links are simply embedded

into the aforementioned fields (1) to (4). As in the original CCN, when a PCN user downloads

a file for the first time, associated access control files need to be fetched to access the file.

Note that when a file owner updates a read/write-access policy, PCN generates a new write-

sign key, and an updated file version will then be propagated through the network. Replica

nodes should immediately fetch the up-to-date policy information. In PCN, nodes with up-

to-date keys will simply reject any updates that are signed with old keys due to security

reasons (which could happen while synchronization is in progress).
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6.5.4 Key revocation

PCN mainly uses the following keys, namely a personal public-private key pair, group public-

private key pairs, and ABE keys. Secure key distribution can be assured as PCN uses

the secure identity exchange mechanism and relies on SPKI/SDSI style web of trust. Any

intermediate nodes will be able to correctly acquire public keys which will then be used to

validate the secure binding between name and data, which is one of the core concepts of

CCN. While we can leverage CCN for secure key distribution, we should be able to properly

handle key revocation scenarios: a public-private key pair and an ABE attribute secret key.

If a user’s public-private key pair is compromised, the existing key pair can be revoked

through the prefix announcement with a revocation mark that is similar to a suicide note in

PGP [Riv98]. Recall that in CCN, we add two additional prefix types, namely modification

(for update notification) and revocation (for revocation notification). The user will then

generate a new key pair and distribute the public key via the secure identity introduction

process which guarantees that the attacker cannot impersonate the victim. Note that the

same procedure can be used to handle the case where a group’s public-private key pair is

compromised.

If an ABE attribute secret key is compromised or the owner wants to revoke a specific

attribute, the owner must revoke the master key and public key because CP-ABE does

not provide a mechanism for revoking an individual attribute. While CP-ABE has a single

attribute revocation by adding a timer attribute for each attribute, this approach is less

practical because it makes the overall system quite complicated: (1) the owner must peri-

odically issue keys, and all the files must be re-encrypted with new attribute sets, and (2) a

tamper-proof clock is required to ensure the security guarantee.

Whenever the master key and public key are revoked, the owner must re-encrypt all

the files. However, this process is very expensive. To reduce the overhead, we employ a

lazy revocation scheme proposed by Kallahalla et al. [KRS03]. Unlike the compromise of a

public-private key pair, that of an ABE attribute secret key is less serious, as long as the

revoked user (or the attacker) has only a read-only access right—the revoked user cannot
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remove or update the files. In this scenario, we can generally assume that the revoked user

has read and copied all the files, and it is still acceptable for the user to read unmodified

or cached files. Yet, the lazy revocation ensures that the revoked users are not able to read

updated files ; i.e., updated files will be re-encrypted with the new ABE public key.

Note that it is also possible for users to immediately revoke all the keys and re-encrypt

all the files. In this case, the user must undergo a series of steps: (1) re-generating a new

ABE key set, (2) invalidating all the cached files via prefix announcement, (3) removing the

replicas over multiple devices, and (4) re-encrypting all the files and re-distributing replicas.

6.5.5 Naming

The current generation of personal devices use rigid and weak naming of the form “host-

name:path.” The key problem is that content is tied to a host, making personal content

management non-trivial, particularly when a user interacts with a number of devices (e.g.,

laptop, desktop, smartphone, ipad) and storage services (e.g., dropbox). A user has to track

what files are in each of these devices/services and to decide how to migrate/replicate/update

content.

Relationship among users in personal content networking is considered to be flat, and it

is sufficient to use the public key as identity. Nonetheless there are cases where hierarchical

naming is useful; e.g., a group of users has a set of sub-groups. In SPKI/SDSI, a user can

define a local namespace as a sequence of length two consisting of her key K followed by a

single identifier (that is distinct within the local namespace). For instance, Alice with key

Ka makes her own name as “Ka Alice.” A study group with key Kg can name its sub-groups

as “Kg sub1” and “Kg sub2.” If a sub-group has multiple smaller groups inside, that group

can name those groups similarly; e.g., sub1’s two internal groups (ssg1 and ssg2) can be

named as “Kg sub1 ssg1” and “Kg sub1 ssg2.” Note that a local name is globally unique

because the name contains a public key of the user. Moreover, each user can make signed

statements of these local names, which allows anyone to certify a key via a web of trust (see

the following section).
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6.5.6 Device Initialization and Trust Management

As shown above, each PCN user has a private-public key pair which defines the user’s name.

When a new device is purchased, this information must be securely installed to initialize

a PCN service. Moreover, for content sharing with others, a user must establish trust

relationship by securely exchanging the public keys (e.g., how does Bob make sure that a

key belongs to Alice?). For both problems (i.e., device initialization and trust establishment)

secure key distribution is the main issue. Users can use USB sticks or can use local/wide

area networks for key exchanges. The latter is less secure than the former, because it is

vulnerable to the man-in-the-middle-attack—an attacker eavesdrops the channel and makes

independent connections with the victims and relays messages between them, making them

believe that they are talking directly to each other over a private connection, when in fact

the entire conversation is controlled by the attacker.

6.5.7 Content Centric Access Control

We use attribute based encryption (ABE) with the goals of securely sharing content within a

group across multiple untrusted servers and caches and yet of preventing collusion [BSW07].

ABE is the key enabler for attribute based access control (ABAC) that supports fine-grained

access policies. Each user first generates an ABE public key and an ABE master key. A

user can define a set of attributes (e.g., college friends, CS219 team, family members) and

an access policy using Boolean formula on attributes. This allows a user to perform fine

grained access control: the user assigns attributes to each peer and then issues a secret

key corresponding to the assigned attribute to the peer (using the master key). The user

encrypts the file once based on the access policy, and any peer can decrypt the file if he has

attributes that satisfy the policy.

6.5.8 Secure Replica Management

PCN allows users to replicate any files over multiple devices. Users can also browse the files

scattered over multiple devices. Any files can be updated as long as a user has a right to
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update the content. Further, users can manage any files located in remote machines with

“device-to-device communications” over CCN.

6.5.8.1 Synchronization

If a file is updated, a new version is created (with a new timestamp). To alert this event

to the rest of nodes with the content, the node that makes the update will re-announce the

corresponding prefix with a modification mark, which is a special type of prefix announce-

ment for update notification. Each node will fetch the directory entries from the nodes that

replicate the named prefix. From this, nodes can discover which files have updated and can

perform file level synchronization.

Consistency : It is possible that a node may not be available at the time of an update

announcement. In PCN, we support “eventual consistency” in which all replicas eventually

converge to the same version given enough messages exchanged among participating devices

(i.e., a file with the freshest timestamp) [PSY04, SKK90, RHR04]. Eventual consistency is

one of the widely used consistency models in disruption-prone mobile environments.

A node should be able to synchronize the files as long as it is connected to the overlay

network. When a node re-joins the overlay network after disruption, it first checks its

neighbors to find any missing prefix announcements. This allows the node to search for the

updates of the files located in its local storage. If the node finds a prefix with a modification

mark, it performs file synchronization as illustrated earlier.

PCN’s two-phase process for synchronization is less efficient than the schemes in tradi-

tional distributed file systems. The notification via prefix re-announcement does not tell us

where the update is originating from; it only hints that it is from one of multiple replicas. As

a result, each node must probe all replica nodes (under the named prefix) to discover which

file has updated, and then must fetch the updated file for synchronization. One simple solu-

tion that can mitigate this problem is to add an extra field in the prefix announcement that

lists updated files and their version information (or a locator to the file that lists updated

files with version information).
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Conflict resolution: Due to disconnected operations, PCN should deal with conflicts

where multiple devices modify the same file without knowing other devices’ modification. If

all the updates are properly applied in the order of modification time, we can simply perform

an automatic merging process using the UNIX diff algorithm. However, automatic merging

may fail under disconnected operations. In this case, PCN notifies the user that a conflict

has detected. The user will be presented with a revision history including authors, dates,

and versioned content. It is up to the user to resolve the conflicts and mark the content as

merged.

6.5.8.2 Update access control

PCN basically assumes that a namespace owner can manipulate the file as he wishes (e.g.,

as in Microsoft Windows). We can also implement a more sophisticated access control

mechanism, e.g., UNIX like access control with read-only or read-write access rights. To this

end, we maintain an ACL file in each directory that details access rights on files therein (say

“.acl”), which is signed by the owner. The ACL file can be replicated as a regular file and

can be securely distributed over the network. Replica nodes can then use this ACL file to

decide whether to permit an update. The ACL file can be encrypted to protect an owner’s

privacy (e.g., using ABE). It is up to the user how to set up one’s own personal content

networking system.

6.5.8.3 Replica management

A user may want to know what files are stored where and wish to replicate files to remote

devices. Regular content browsing like UNIX command ls does not tell users in which device

the files are located. For replica management, PCN reserves a special file located in each

replicated directory, namely “.replica” that contains the information about the replicated

files in the named directory and the information about the device. In PCN, we reserve a

special directory for devices, namely the “/dev” directory through which a user can freely

name personal devices. For instance, Alice’s iPad can be named as “/Alice/dev/iPad.”
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Further, each device announces this device name prefix, which will enable device-to-device

communications over CCN.

A user can list the files and their replication status over the remote devices by simply

collecting “.replica” files. This procedure is very similar to content browsing except that

we are retrieving all the “.replica” files within the named prefix. For instance, Alice can

check the replication status of her music files by fetching “/Alice/my music/.replica.” If the

directory contains sub-directories, the user needs to recursively retrieve sub-directories to

know replication status. Note that a user may not wish to reveal the replication status to

other people as it may be considered personal. In this case, the user can encrypt “.replica”

files using ABE and assign attributes like “personal items” to ensure that he can only know

the replication status.
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CHAPTER 7

Evaluation II: Decentralized Content Confidential and

Authorization

We now describe the implementation and evaluation of our confidential and authorized access

personal content network prototype.

7.1 Prototype Implementation

We implemented a PCN prototype in Linux and the Android platform. Since the current

CCNx codebase only supports manually configured, static network topology, we implemented

an overlay network client (called ccn-overlay) that builds and maintains an overlay network

based on social relationship. Whenever network topology changes, an overlay client uses

external commands to re-configure the local CCND. The prefix announcement will be dis-

seminated through the overlay clients because the current CCNx codebase does not fully

support the prefix announcement feature. Each client periodically exchanges ping messages

to check whether its neighboring nodes are alive. Recall that we have three types of prefix

announcements, namely regular prefix, modification, and key revocation announcements.

Besides device initialization, users can establish a trust relationship using a tool called pcn-

intro, which is based on UIA’s device management UI tool [FSL06].

For ABE support, we used the CP-ABE toolkit [cpa12]. A file published in the local

repository can be encrypted using pcn-abe-enc. This tool communicates with the local CCN

repo daemon, encrypts the named file, and re-publishes the file into the repository. ABE keys

will be stored in a user’s local keystore (e.g., .ccnx at home). If a file is encrypted, the ccn-

fuse tool automatically decrypts the file and returns the plaintext to the reader. It accesses
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MK setup SK: 5 SK: 10 SK: 15

Laptop 166(±0.2) 531(±0.4) 913(±0.2) 1343(±1.9)

Mobile 354(±0.9) 2068(±0.5) 3981(±0.5) 5947(±0.3)

Table 7.1: CP-ABE performance of Laptop (L) and Nexus One (M) in milliseconds: master

key (MK) setup and secret key (SK) generation with k number of attributes

1KB 10KB 100KB 1MB 10MB 100MB

[D2L] CCNx retrieve 1152 (±0.4) 1225.8(±1.0) 1410(±2.5) 2102.2(±2.3) 11085.4(±16.3) 80593.8(±139.1)

Local ABE pri-key 8.2(±0.1) 10.2(±0.1) 9.8(±0.) 9.4(±0.2) 13.6(±0.1) 16.6(±0.1)

Remote ABE pub-key 358(±0.1) 343.6(±0.1) 346(±0.2) 348.6(±0.2) 346.4(±0.2) 348.4(±0.1)

AES key decrypt 37.8(±0.3) 37.7(±0.2) 37.8(±0.4) 36.8(±0.9) 37.3(±0.5) 37.1(±0.5)

Content decrypt 1.0(±0.1) 1.0(±0.1) 3.2(±0.1) 35.0(±0.2) 380.2(±1.6) 3946.7(±0.8)

[L2M] CCNx retrieve 784.8(±0.5) 973.6(±0.9) 1157.8(±0.5) 2273.2(±4.3) 10751(±18.5) 106752.6(±154.6)

Local ABE pri-key 37.6(±0.1) 39.6(±0.1) 38.6(±0.0) 37.6(±0.1) 39(±0.0) 39.4(±0.1)

Remote ABE pub-key 527(±0.5) 533(±0.2) 532.2(±0.2) 536.4(±0.2) 538.8(±0.1) 539(±0.1)

AES key decrypt 425.8(±0.4) 428.6(±0.3) 428.1(±0.8) 427.1(±1.3) 425.6(±3.3) 433.6(±6.1)

Content decrypt 2.1(±0.1) 19.9(±0.3) 120.0(±0.2) 402.0(±1.1) 3414.9(±2.3) 20713.4(±5.3)

[D2M] CCNx retrieve 706.4(±0.1) 914.2(±0.6) 1146.2(±0.3) 2096.2(±1.1) 10259.4(±26.6) 96724.2(±218.5)

Local ABE pri-key 35(±0.1) 36.2(±0.1) 37.6(±0.1) 38.6(±0.1) 39.2(±0.1) 39.6(±0.1)

Remote ABE pub-key 532.4(±0.1) 425.8(±0.1) 433(±0.1) 432.4(±0.1) 431.8(±0.1) 431.4(±0.1)

AES key decrypt 427.1(±5.3) 419.6(±7.1) 429.7(±7.3) 435.1(±10.1) 429.3(±6.1) 435.8(±11.3)

Content decrypt 2.4(±0.1) 18.1(±0.4) 128.0(±0.1) 387.1(±1.3) 3371.1(±2.5) 21001.4(±4.1)

Table 7.2: Breakdown of retrieval time (in milliseconds) of a file. D2L: Desktop to Laptop,

L2M: Laptop to Nexus One, D2M: Desktop to Nexus One. Each result is the mean of 5

trials with a 95% confidence interval. Each trial was run by setting the CCN cache size to

0 (CCND CAP=0) and restarting the CCND in between each run to reset the local cache.

the user’s local keystore for decryption. We ported the CP-ABE toolkit to the Android

platform via cross-compilation. Since CCNx codebase supports the Android platform, we

integrated the basic PCN tools to the mobile platform.

7.2 Evaluation

We present our preliminary system evaluation answering the following questions: (1) What

is the overhead of ABE? (2) What is the detailed performance of each component used in

PCN? (3) Given realistic user traces, what is the overhead of PCN (e.g., routing table size,

update overhead)?
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To provide secure personal sharing, we have designed our implementation to incur min-

imal overhead to the existing CCNx codebase. While a complete evaluation of the CCNx

method traces are outside the scope of this paper, our experience shows that the CCNx

performance is improving with every release. We analyzed the performance of providing

security using ABE in three major areas, namely (1) key setup and generation, (2) encrypt-

ing and storing content, and (3) retrieving and decrypting content. To model user behavior

we measured the performance using a mobile device the Android Nexus One (Qualcomm

Snapdragon 1GHz, 512MB of RAM), a laptop (Dell Inspirion 9400 with Intel dual core

2Ghz CPU, 2GB of RAM, and Intel WiFi Link 5300 that runs Ubuntu 10.10 with Linux

2.6.35), and a desktop (Apple iMac with Intel i5-2500s 2.7Ghz CPU and Broadcom Gigabit

Ethernet that runs Ubuntu 10.10 with Linux 2.6.35). The measured device-to-device TCP

performance using Iperf is given as follows (average of 10 trials with 95% confidence interval):

Nexus One to Laptop over Wi-Fi: 8.21Mbps (±0.02), Laptop to Nexus One over Wi-Fi: 8.00

Mbps (±0.01), Desktop to Laptop (Laptop Wi-Fi and desktop wired): 10.34 Mbps (±0.02).

Table 7.1 shows the master key setup delay and the secret key generation delay as a

function of the number of attributes. The results show that the delay almost linearly increases

with the number of attributes. The master key setup is independent of the number of

attributes, and that of a laptop and Nexus one is given as 166ms and 354ms, respectively.

We then measure the performance of remote content retrieval (single hop). Retriev-

ing/decrypting involves with a number of steps: (1) FUSE open/read call (in a laptop only),

(2) CCN data retrieval over a remote node, (3) ABE local repository key look-up, (4) ABE

public key retrieval from a remote node, (5) CP-ABE decryption of an AES key, and (6)

content decryption with AES-256. The most time consuming operations are CCN retrieval

and CP-ABE decryption, and the delay linearly increases with the file size (see Table 7.2).

The cost of FUSE operations took less than few milliseconds, and we did not report the

delay in the table.

All of our results give an indication that the performance of generating private keys,

encrypting content, and decrypting content tends to grow linearly with the size of the file.

The ABE private key lookup and retrieval consumes only fractions of milliseconds, and
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Naming DTN Topology Replication Unit Update Trust Access Control Secure Binding

Ficus SP+H Yes P2P File/Dir Yes - ACL -

BlueFS/EnsemBlue SP+H Yes C/S File Yes - ACL -

UIA/Eyo DP+H Yes P2P - - - ACL -

PersonalRAID SP+H Yes P2P Volume Yes - - -

Footloose SP-F Yes P2P File Yes - - -

DisCFS SP-H No C/S Volume Yes KeyNote Certs -

Bayou SQL Yes P2P Volume Yes PKI Certs -

Plutus/SiRiUS SP-H No C/S - - PKI Certs/Enc-PKC -

PAST SP-F No P2P File Yes PKI Certs/Enc-PKC -

CCN SP-H Yes P2P File No PKI Certs/Enc-PKC Yes

PCN SP-H Yes P2P File/Dir Yes SPKI Certs/Enc-ABE Yes

Table 7.3: Feature comparison: DTN (Delay Tolerant Networking), SP/DP (Single Persis-

tent or Device Persistent), F/H (Flat/Hierarchical), PKC (Public-Key Cryptography)

retrieving the ABE public key as content from CCN takes only a couple hundred milliseconds.

7.3 Discussion

Security attacks: PCN shares the security benefits of CCN as it is a pull-based content

retrieval and uses secure binding, thereby effectively thwarting a distributed denial of service

attack, a request flooding attack, and a man-in-the-middle-attack [JST09b]. While PCN

introduces new features like extra prefix announcements (modification and revocation) and

content updates, PCN’s explicit prefix protection restricts that only authorized users can

replicate a named prefix. Moreover, PCN limits that replicated content can be updated

by the individual with explicit write-permissions. Thus, a user can neither request content

replication nor inject an update without explicit permissions from the content owner, as

illegitimate requests are automatically discarded by the intermediate PCN nodes.

Energy efficiency: The PCN system includes battery powered personal devices. Bat-

tery limited devices need to constantly listen to the announcement messages which prevents

them from switching to a sleep mode for power saving. Recall that whenever there are up-

dates, PCN broadcasts the messages to the k-hop neighbors in the overlay network. One

solution to this problem is to introduce a proxy server in an AC powered device (e.g., desk-

top or laptop). A mobile device can re-configure the underlying overlay network topology
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such that messages always travel through the local proxy server. The local proxy buffers all

the incoming announcements. Then, the mobile client periodically wakes up and pulls the

aggregated announcements.

Interest-based push for synchronization: In our prototype implementation, we used

the prefix announcement to notify content updates to the replica nodes. An alternative to

this approach is to use interest solicitation as suggested in the NDN proposal [Zha10]. A

node that updated the content will send an interest solicitation packet to the replica nodes

who are interested in receiving the updated content. Those interested replica nodes will then

send an interest packet requesting this updated content. For efficient synchronization, the

interest solicitation packet includes detailed information about the updated content as we

augmented the prefix announcement.

Private PCN: For security reasons, a user could have two different namespaces: one for

private access and the other for shared access. The private PCN is not visible to the other

users, and thus, a user can simplify the access control; e.g., just setting a single attribute for

content encryption. Given that a large fraction of content is personal use only, we expect

that a private PCN network can possibly lower the burden of content management.

Offline devices: If devices are offline, a user cannot browse the content stored in the

devices. To help content retrieval from off-line devices, PCN can take a similar approach

used in Eyo [SLP09]. Each device periodically pulls the content lists of the other devices

and stores them in its local repository. Given this information, PCN nodes can tell which

device has a file, and thus, a user can access the file from the off-line devices.
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CHAPTER 8

Preliminaries III: Privacy

An open vehicular data testbed composed of detailed driver behaviors and real-world statis-

tics would provide a greater understanding and help mitigate the number of self-driving

vehicle accidents due to driver behavior misunderstandings. Ideally, such data should be

gathered and aggregated into an open vehicular data testbed where manufacturers and reg-

ulators are able to test and validate vehicle safety standards. However, such a vehicle data

testbed composed of detailed statistics should respect driver’s privacy expectations.

Suppose that most drivers in the future will allow their medical providers to monitor their

vital signs via LTE while they are driving. The driver does not mind sharing their iden-

tification (with authentication) and accurate medical sensor data with their own provider.

However, unless he/she expects to be rescued by the Medical Provider Paramedics in case

of collapse ( say heart attack or diabetic crises), they would like to protect their location

privacy.

The provider uses the data for various purposes. One purpose could be to study the

ability of patient to drive safely with certain physical conditions. This monitoring would

possibly be required if an independent study showed that brain cancer patients of certain

stage,say, are unsafe drivers. The provider wants to monitor driving behavior of its own

patients to verify the claim and possibly get disclaimers from unsafe patients so it does not

get sued. The collection of such personal information should be uploaded privately and the

data should be privatized yet maintain utility.

Next, suppose that academic analysts want to access this data for their research correlat-

ing accidents, safe driving and driver medical conditions. A single provider will not release

the data, albeit anonymized, for fear to be blamed that its patients are the unsafest or the
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physically least fit drivers.

To overcome this problem, the providers get together to generate a privatized decentral-

ized database from which it is impossible to tell who is the driver and which provider the

driver belongs to. This shows the need to use a decentralized solution. In fact, a centralized

solution would not work for the following reasons: the centralized analyst would not be able

to authenticate the drivers without learning their IDs, violating anonymity (in our decen-

tralized scheme, providers guarantee authenticity). Furthermore, in the centralized scheme

the analyst would probably be able to infer location, in spite of privatization attempts, by

colluding with LTE provider and then track the driver (while with decentralized provider

indirection the driver is protected).

In the remainder of this section we provide background information on differential privacy,

which is the gold standard for privacy mechanism. We then provide an overview of the GPS

daemon which runs on the majority of GPS enabled devices providing location updates.

Finally, we discuss how data owners are able to create non-attributable writes to a distributed

database without the database operator learning which data owner wrote a particular value.

8.1 Differential Privacy

Roughly speaking, differential privacy says that the ability of an adversary to inflict harm

should be essentially independent of whether any individual opts in to or out of, the dataset [Dwo11].

Thus, a data owner may safely utilize differential privacy techniques when sharing their per-

sonal data, as it enables them control insight into their personal information.

A popular technique which satisfies differential privacy is the randomized response mech-

anism, originally proposed in the 1960s [War65, FT86]. Randomized response has been

shown to be optimal in the local privacy model [] and is used by many companies today

(e.g., Apple, Google [EPK14]) due to its simplicity while satisfying the differential privacy

guarantee.

However, a drawback to the randomized response mechanism is poor scalability, i.e., the
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error in the estimate quickly increases with the population size due to the underlying truthful

distribution distortion. We elaborate further in Section 9.3.2.

Some protocols which leverage the randomized response mechanism have made assump-

tions that the majority of the underlying truthful population truthfully responds “Yes” (e.g.,

the percentage is greater than 2/3 or 3/4) in order to preserve accuracy. However, it’s not

clear what privacy guarantees can be provided this way since any adversary is able to suc-

cessfully guess with greater than 50% probability the value of any data owner in such a

population. For example, suppose our query is how many home owners reside within 15

blocks from the beach, yet we ask only those home owners within 20 blocks from the beach.

We would have a pretty good guess of where the “yes” respondents reside.

The Laplace mechanism was introduced as a way to add privacy noise independent of the

database size [DMN06] by drawing privacy noise from the Laplace distribution. The Laplace

mechanism is calibrated to the max difference between any two rows in the database. That is,

the noise is sufficient to protect the max leakage that any particular data owner induces. For

example, first a service aggregates all the data owners truthful responses. Then, the service

draws from the Laplace distribution by calibrating the variance according to the desired

privacy strength. Drawing from other distributions such as Gaussian also satisfies differential

privacy, though the Laplace mechanism is preferred as it’s mathematically cleaner [DR14].

However, there is a drawback to the Laplace mechanism in graph datasets such as social

networks [GLP11, GHL12] or vehicle commuting patterns. Even if a particular data owner

does not participate, their friends that do participate leak information that can be used to

deprivatize the targeted data owner (e.g., shadow profiles). For example, it is possible to

learn political beliefs or sexual orientation even if a particular individual does not participate

and maintain an active profile in an online social network. An adversary simply needs to

analyze the similarity metrics amongst the social circles that a data owner participates in to

understand politics beliefs or sexual orientation [SGS14, HHH12, Gay09, KSG13, JM09].

Furthermore, if the graph structures of a social network are eventually anonymized and

released, an adversary simply needs to participate and influence the graph structure (e.g., by
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joining a social network) to learn and influence the actual social graph before it’s privatized

and released. Thus, there needs to be a mechanism which also perturbs the underlying

structure of the data itself and preserves accuracy as the underlying distribution structure

becomes distorted.

Sampling whereby responses are randomly discarded reduces the the graph dependencies

leaked by a targeted individuals connections. Severing connections reduces the social circle

size and makes it challenging for the adversary to make similarity inferences from reduced

social circles alone. Thus, it has been shown that the strength of privacy mechanisms is

increased by applying sampling and reducing the privacy leakage [NRS07, KLN08, GHL12].

To guarantee data owner privacy upon the release of data, various mechanisms have

been proposed [MGK06, Swe02, LLV07, Dwo06, DMN06]. Differential privacy has emerged

as the strongest of these privacy mechanisms [Dwo06, DMN06]. The core idea of differential

privacy is to provide strong bounds and guarantees on the privacy leakage when multiple

aggregate analytics are run despite the presence or absence of a single data owner from the

dataset. This privacy mechanism is provided by adding differentially private noise to the

aggregrate answer. As opposed to the originally proposed differentially private mechanism

which first collects data in a centralize database and then privatizes the release of the data,

LocationSafe immediately privatizes the data at the data source (sensor) in real-time.

Randomized response operates in the distributed model (local privacy) and is used by

many companies today (e.g., Apple, Google [EPK14]) due to its simplicity while satisfying the

differential privacy guarantee. However, a drawback to the randomized response mechanism

is poor scalability, i.e., the error in the estimate quickly increases with the population size due

to the underlying truthful distribution distortion. These protocols, such as Rappor [EPK14],

require an inordinate amount of samples, yet still lack strong utility.

Some protocols which leverage the randomized response mechanism have made assump-

tions that the majority of the underlying truthful population truthfully responds “Yes” (e.g.,

the percentage is greater than 2/3 or 3/4) in order to preserve accuracy. However, it’s not

clear what privacy guarantees can be provided this way since any adversary is able to suc-
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cessfully guess with greater than 50% probability the value of any data owner in such a

population. For example, suppose our query is how many home owners reside within 15

blocks from the beach, yet we ask only those home owners within 20 blocks from the beach.

We would have a pretty good guess of where the “yes” respondents reside.

Zero-knowledge privacy [GLP11] is a cryptographically influenced privacy definition that

is strictly stronger than differential privacy. Crowd-blending privacy [GHL12] is weaker than

differential privacy; however, with a pre-sampling step, satisfies both differential privacy and

zero-knowledge privacy. However, these mechanisms are suited for the centralized system

model and rely on aggressive sampling, which significantly degrades the accuracy estimations.

Differential privacy [DMN06] has been proposed as a privacy definition such that anything

that can be learned if a particular data owner is added to the database could have also been

learned before the data owner was added. A data owner is thus “safe” to participate as

statistical inferences amongst the aggregate are learned yet specific information regarding

the individual is not learned.

Distributional privacy [BLR13] is a privacy mechanism which says that the released

aggregate information only reveals the underlying ground truth distribution and nothing

more. Each data owner is protected by the randomness of the other randomly selected data

owners rather than by adding explicit privacy noise to the output. The indistinguishability

from the underlying distribution protects individual data owners and is strictly stronger than

differential privacy. However, it is computationally inefficient though can work over a large

class of queries known as Vapnik-Chervonenkis (VC) dimension.

Sampling. Sampling whereby a centralized aggregator randomly discards responses has

been previously formulated as a mechanism to amplify privacy [CM06, NRS07, KLN08,

GHL12]. The intuition is that when sampling approximates the original aggregate infor-

mation, an attacker is unable to distinguish when sampling is performed and which data

owners are sampled. These privacy mechanisms range from sampling without a sanitization

mechanism, sampling to amplify a differentially private mechanism, sampling that tolerates a
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bias, and even sampling a weaker privacy notion such as k-anonymity to amplify the privacy

guarantees.

However, sampling alone has several issues. First, data owners are not protected by

plausible deniability as data owners do not respond “No”. Second, the estimation of the

underlying truthful “Yes” responses quickly degrades as we increase the population that

truthfully responds “No”.

Multi-party Computation. Multi-party computation (MPC) is a secure computation

model whereby parties jointly compute a function of the data such that each party only

learns the aggregate output and nothing more. However, MPC mechanisms that release the

exact answer have no strong privacy guarantees against active privacy attacks, particularly

when the data is publicly published. A participant that does not perturb their responses and

provides their exact answer is easily attacked by an adversary that knows the values of n−1

participants. For example, an adversary first runs a counting query that includes all n data

owners and then runs a second counting query over n−1 data owners (the targeted data owner

is the excluded row). Subtracting the two results reveals the value of the targeted data owner.

In contrast, the differential privacy model assumes a strong adversary that knows the n− 1

data owner values. In this paper we combine MPC and differential privacy by introducing a

sampling-based privacy mechanism that maintains constant error and show a performance

optimization for a new cryptographic primitive named Function Secret Sharing [BGI15].

8.1.1 Randomized Response Privacy Guarantee

8.1.1.1 Privacy Guarantee of Randomized Response

The randomized response mechanism achieves ε-differential privacy, where:

ε = max

(
ln
(Pr[Resp=‘Yes’ |‘Yes’]

Pr[Resp=‘Yes’ |‘No’]

)
, ln
( Pr[Resp=‘Yes’ |‘No’]

Pr[Resp=‘Yes’ |‘Yes’]

))

More specifically, the randomized response mechanism [FT86] achieves ε-differential pri-
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vacy, where:

ε = ln
(π1 + (1− π1)× π2

(1− π1)× π2

)
(8.1)

That is, if a data owner has the sensitive attribute A, then the randomized answer will

be “Yes” with the probability of ‘π1 + (1 − π1) × π2’. Else, if a data owner does not have

the sensitive attribute, then the randomized answer will become “Yes” with the probability

of ‘(1− π1)× π2’.

8.2 GPSD

GPSD is a daemon that network enables the GPS sensor on the majority of mobile embedded

systems including Android, iOS, Windows Mobile, UAVs, and driverless cars [GPS]. On

smartphones the network access is limited to localhost applications only (as opposed to

remote applications). GPSD enables unfettered access to location data and does not enable

or provide any privacy guarantees. LocationSafe provides a privacy module that provides

uniform private access across all platforms.

Mobile device permission systems has received attention in the past. Human interac-

tion studies which seek to enhance reader comprehension have been proposed and evalu-

ated [FHE12, FEW12]. Such systems lack strong and enforacable privacy guarantees. Static

analysis tools have been proposed [YYZ13]. Though such systems serve only to notify the

data owner of privacy breaches and are unable to enforce any privacy runtime guarantees.

However, these solutions modify the underlying OS thus making them specific to a single

OS or device [ZZJ11, XPr]. Furthermore, these solutions are unable to balance the privacy

and utility tradeoff, ultimately resulting a binary approach to privacy.

8.3 Non-Attributable Writes

Consider a data owner that would like to write into a distributed database without any of

the database operators learning which row we wrote into. Knowledge of the row and thus

data uploaded by the owner would allow the operator to track the owner over subsequent
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Figure 8.1: Each data owner uniformly at random selects a slot to write their

location ID. The aggregators are unable to determine which data owner wrote

to a particular slot, as long as there is one honest aggregator who does not

collude. The aggregate count of each location ID is computed as the final step.

epochs even if the data is privatized.

We assume a distributed database setting such that, so long as one database operator

remains honest and does not collude with other database operators, it is not possible to

learn which database row was written into (as long as there are at least two data owners

participating). The data owner should continuously re-select a new database row at random

every epoch.
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(Two Party) Let us first consider two operators and two databases. The protocol proceeds

as follows.

Assume the database is represented by n rows. Each data owner uploads a message of size

m bits, in a randomly chosen row. Without loss of generality, for our example we describe

now we assume m is one bit. Thus the database is a bitstring. Extending to a message size

of more than one bit would only require a larger finite field (instead of finite field size 2 we

could choose a prime number larger than the desired message size in bits).

Each data owner begins with a bitstring of length n (the size of the database). The

data owner uniformly at random selects an index of the bitstring and sets its message value

(assume it is to 1). Every other index is set to 0.

Next, the data owner creates a key by generating a random bitstring of length n.

The data owner then XORs the randomly generated bitstring key with the bitstring

containing the message (that has only one index set) to produce the encrypted bitstring.

The data owner then transmits the encrypted bitstring to one database operator and the

key bitstring to the other database operator. The data owner may randomly decide which

database operator to send the encrypted and key bitstrings.

The same process repeats for each data owner. That is, a second data owner repeats the

process of uniformly at random selecting an index of the bitstring to set to 1, generating a

key bitstring, and encrypting the bitstring.

As the database operators receive each bitstring (either encrypted or key bitstring), each

database operator cumulatively XORs the bitstrings.

Finally, at the end of an agreed epoch, the database operators share the cumulatively

XORed bitstrings with each other. By doing so, they are able to reconstruct a database

consisting of each data owners message at their specified indexes. The privacy guarantee is

that the database operators are unable to determine which data owner wrote to which index,

as long as there are at least two participating data owners and there is at least one database

operator that does not collude with any other. (There is also an assumption that the data

owners do not write to the same index, though collisions can be probabilistically avoided by
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sizing the database large enough to minimize the likelihood of collisions).

(Key Size) The issue is that the key size is the length of the database n. Suppose the

number of data owners is on the order of millions and the database row size is several

hundred bits. The bitstring size will be of the order of several hundred MBs, which is

prohibitively expensive for mobile devices and edge networks continually uploading every

few minutes.

We could compress each of the key bitstrings by using a pseudorandom generator (PRG)

for the Z-1 keys. However, we somehow must compress the bitstring containing the message

(that has only one index set). Unfortunately, by definition of a PRG, it is computationally

difficult to generate a PRG seed that expands to the desired bitstring. We must utilize a

more sophisticated approached to enable cryptographic compression of the bitstring. We

utilize a new primitive named Function Secret Sharing (FSS) [BGI15] that achieves a square

root size reduction in the key size. Our contribution to the function secret sharing primitive

is an order of magnitude scalability enhancement.

Private Data Upload. Wang et al. [WYG17] employed and extended the function secret

sharing primitive to enable efficient private information retrieval operations that protect the

data owner’s queries from being learned by the database operators. They proposed an opti-

mization by using the Matyas-Meyer-Oseas one-way compression function as an alternative

to the heavy AES operations for the two party case. Wang et al. achieves a 2.5x speedup

by utilizing one-way compression functions. Our K Privacy demonstrates an order of mag-

nitude improvement by a square root reduction of the.number of AES initializations for the

multi-party function secret sharing protocol.

8.3.1 Share Verification

We now describe the MPC protocol [BGI16] run amongst the aggregator parties to verify

all data owner shares. The protocol does not violate data owner privacy and is extremely
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efficient as it does not utilize any publick-key primitives and relies solely on finite field

operations.

We first describe the MPC protocol in detail and then provide an example.

MPC Protocol Let p represent the number of parties participating in the protocol.

Let n represent the unit vector length (e.g., length of the bit string or number of database

slots).

Let m represent the number of bits of the message M . Let M ∈ FZ where Z is a relatively

large prime number.

Given FZ a finite field of characteristic Z where Z is a relatively large prime, let R be a

blinding (randomization) matrix where the the values in the first row are chosen uniformly

at random over 0, ..., Z − 1.

This is a particular randomization matrix such that elements of each row is raised to the

power of the first row, where the power is equivalent to the row number. There will be a

total of p rows, one for each party. That is,

R =


r1 r2 ... rn

r21 r22 ... r2n

... ... ... ...

rp1 rp2 ... rpn

 (8.2)

We wish to secretly share a unit vector and verify that the shares correctly sum to the

unit vector.

For example,

û =


0

M

...

0

 (8.3)
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The value can be m bits taking on a value from the finite field of character of characteristic

p where p is a relatively large prime.

To share û, the user can randomly generate a total p vectors Vi

Vi =


vi,1

vi,2

...

vi,n

 (8.4)

such that

p∑
i=1

Vi = û (8.5)

We then blind these values such that

p∑
i=1

R ·Vi = R · û (8.6)

Let’s describe an example where n = 2 and p = 3.

We know that sum of the vectors should equal the unit vector.v1,1
v1,2

+

v2,1
v2,2

+

v3,1
v3,2

 = û (8.7)

We now apply the randomization (blinding) matrix.
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

r1 r2

r21 r22

r31 r32


·

v1,1
v1,2

+



r1 r2

r21 r22

r31 r32


·

v2,1
v2,2

+


r1 r2

r21 r22

r31 r32

 ·
v3,1
v3,2

 = R · û

(8.8)



r1 · v1,1 + r2 · v1,2

r21 · v1,1 + r22 · v1,2

r31 · v1,1 + r32 · v1,2


+



r1 · v2,1 + r2 · v2,2

r21 · v2,1 + r22 · v2,2

r31 · v2,1 + r32 · v2,2


+


r1 · v3,1 + r2 · v3,2

r21 · v3,1 + r22 · v3,2

r31 · v3,1 + r32 · v3,2

 = R · û

(8.9)



r1 (v1,1 + v2,1 + v3,1) + r2 (v1,2 + v2,2 + v3,2)

r21 (v1,1 + v2,1 + v3,1) + r22 (v1,2 + v2,2 + v3,2)

r31 (v1,1 + v2,1 + v3,1) + r32 (v1,2 + v2,2 + v3,2)


= R · û (8.10)

Since the summation of the elements of a unit vector should sum to zero, we can denote

the value as follows


a+ b

a2 + b2

a3 + b3

 = R · û (8.11)

86



From Equation 8.7 that the sum of the vectors is the unit vector. Thus, we then know

that if the shares are properly formed that a and b should represent either all zeros or the

blinded message. Thus, (a+ b)2 − (a2 + b2) = 0 and (a+ b)3 − (a3 + b3) = 0.

If a and b are both zero then the terms fall out.

In the case of only a or b being the blinded message the terms fall out.

If both a and b are non-zero then the difference will be a non-zero value. These shares

are invalid and should be discarded.

8.3.1.1 Alternate Algorithms

There are two alternate algorithms for the “square” algorithm described above, which were

also presented in [BGI16]. The same process is used, but the structure of the blidning matrix

is different, as well as the final check of R · û. The first algorithm is the “product” algorithm

where

R =


r1,1 r2,1 ... rn,1

r1,2 r2,2 ... rn,2

... ... ... ...

r1,p r2,p ... rn,p

 (8.12)

such that

∀i
p−1∏
j=1

ri,j = ri,p (8.13)

Then, we can apply the bliding matrix to our vectors Vi, to achieve the final result:


a1 + b1

a2 + b2

a3 + b3

 = R · û (8.14)
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where

p−1∏
i=1

(ai + bi) = ap + bp (8.15)

An Alternative scheme is the “inverse” algorithm, which has a blinding matrix of

R =


r1,1 r2,1 ... rn,1

r1,2 r2,2 ... rn,2

... ... ... ...

r1,p r2,p ... rn,p

 (8.16)

such that

∀i
p∏
j=1

ri,j = 1 (8.17)

Then,


a1 + b1

a2 + b2

a3 + b3

 = R · û (8.18)

where

p∏
i=1

(ai + bi) = 1 (8.19)

8.3.1.2 Share Verification Analysis

Here we analyze the protocol to ensure that data owners’ responses are correctly formed unit

vectors where all indexes are zero except for only one index.

Correctness The protocol outputs whether the final answer is a unit vector (i.e., all the

indexes are zero except for one location). If the vector is all zeroes then the sum will be
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zero. If the answer is a unit vector then the blinded message terms fall out leaving zero. If

the vector is not a unit vector, the sum will be non-zero and we can discard this share.

Privacy All parties only view their own input and the final output. The blinding mech-

anism effectively masks the data owners true value.

Fairness All parties which participate will all view the same final answer as the shares

sum to the same value.
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CHAPTER 9

Scalable Privacy

9.1 LocationSafe

Today, mobile data owners lack consent and control over the release and utilization of their

location data. Third party applications continuously process and access location data with-

out data owners granular control and without knowledge of how location data is being used.

The proliferation of IoT devices will lead to larger scale abuses of trust.

In this dissertation we present the first design and implementation of a privacy module

built into the GPSD daemon. The GPSD daemon is a low-level GPS interface that runs

on GPS enabled devices. The integration of the privacy module ensures that data owners

have granular control over the release of their GPS location. We describe the design of our

privacy module and then evaluate the performance of private GPS release and demonstrate

that strong privacy guarantees can be built into the GPSD daemon itself with minimal to

no overhead.

Today data owners’ personal mobile devices are constantly being tracked and monitored

by third party applications without data owners granular consent and control. Data owners’

trust is being continuously violated [Fac].

Data owners have a desire to occasionally share their location data, though desire granular

control and approved consent. Third party analysts seek to track data owners continuously.

Unfortunately today this tension has resulted in disproportionate control being in favor of

the third party analysts.

Recent research has tried to improve user behavior in recognizing permission issues

[FHE12], user-defined runtime constraints [NKZ10], or tools to help developers identify least-
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Figure 9.1: Privatization occurs before data is released to the client application.

privilege [VCC11].

Additionally, permission managers (e.g., Android and iOS) offer binary permissions to

disable or enable location services. However, while this allows data owners to disable location

services for applications that do not require location (e.g., Flashlight application) [Fla], fine

grained granularity is still missing. An Android modification called CynagonMod has a

module called XPrivacy [XPr]. XPrivacy enables data owners to configure random or a

static location, empty cell ID, blocks geofences from being set, prevents sending NMEA data
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to application, prevents cell tower updates from being sent to an application, prevents aGPS,

returns empty Wi-Fi scans, and disables activity recognition. Ultimately, this provides the

data owner control at the application layer.

User applications requesting data of users is a binary permission, either I share my data

or I don’t. However, sensitive data such as location needs finer control on how accurate

and how often the location information is released. Users should be able to control the

granularity of their personal data that is released. Users require freedom and control over

their own personal data.

However, these approaches discards several important facts: 1) these privacy mechanisms

protect at the application layer only and the underlying operating system still has access to

all system location APIs 2) granular privacy permission solutions (e.g., XPrivacy) are only

for rooted Android phones 3) there is no compromise between third party analyzers and

data owners. The expected proliferation of IoT devices will further exacerbate these privacy

issues.

In this dissertation, we present the first (to our knowledge) implementation of a privacy

module to GPSD. Figure 9.1 shows an overview of the flow of queries and responses and

demonstrates that the privatization occurs before releasing the data back to the application.

The privacy module ensures that all GPS data is released according to the data owner’s

consent and choice. We demonstrate that appropriate methodologies can be placed which

provides strong location privacy guarantees, yet enable analyzers access to privatized location

data.

1. A privacy module that integrates into the GPSD software (runs on every GPS enabled

device)

2. A granular privacy interface and control to manage location privacy settings (e.g.,

location coarseness and release frequency)

3. A performant privacy module with minimal overhead

We first describe the architecture and flow of GPSD, we then describe our privatization
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algorithms, then we describe our integration with GPSD, and finally we evaluate our scheme.

9.1.1 System Goals

There should be well defined and enforced constraints regarding third party application’s

(apps) access to location data. The data owner should be able to specify the constraints

such as how accurate location information should be disclosed and how frequent the location

data should be disclosed.

Apps only have access to the privatized data and are unable to directly access GPSD

daemon and data. All location data released must be approved by the data owner.

The system should support applications that need real-time access to location data. The

privacy policy defines how frequently the application is allowed to receive updates (express

in epochs), how accurate the location data may be, and geographical regions as to where the

application is allowed to receive location data from.

We use a social network messaging application as an example. The application may want

to know which city an individual is in, though pinpoint location information within meter

accuracy is not required. The data owner is allowed to define both the radius (e.g., city)

that is allowed to be returned as well as the frequency (e.g., say at most every hour).

Ultimately the data owner has final say over how location data and the tradeoff between

privacy and utility. The utility has benefits for third party analysts interesting in learning

aggregate behavior.

9.1.2 Performance Goals

The system should scale gracefully as the number of applications connecting to the GPSD

daemon increases. Location data will be released within the defined epochs.
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9.1.3 Threat Model

Mobile devices (e.g., smartphones, tablets, wearables) are under the data owner’s control.

Kernel and underlying OS is vetted and verified (signatures and trusted sources). Focus is

not on low level system threats. We assume that the operating system itself is not malicious

and provides a mechanism to provide a privacy policy settings manager accessible to the

data owner. Secure micro kernels such as seL4 address these issues and are out of scope for

this dissertation. Applications do not have a system exploit (e.g., rootkit) to circumvent the

system.

Applications may try to request data more frequently than the defined epoch. Loca-

tionSafe will deny such aggressive requests and ensure that data is only released within

the defined epoch.

Applications may act as sybils and send false application IDs in order to confuse the

GPSD daemon. LocationSafe will treat sybil applications accordingly using data owner

defined defaults. Thus, sybil applications may either be receive location data using default

privacy configurations or not at all.

9.1.4 Privacy Goals

Data owners should be able to limit how frequently an application access location data. Data

owners should also be able to define fine-grained access to location data. Applications for

which the data owner feels the application does not meter level accuracy, the data owner

should be allowed to define a radius from which the location value can be returned from.

Additionally, for scenarios where fine-grained location is required, the data owner can define

a grid system from which potential locations can be returned from.

GPS sensor data is only accessible via GPSD.
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Accept new client connections

Accept client subscriptions

GPS Reports for clients

Figure 9.2: GPSD event loop. Privatization occurs when reporting GPS data to the client.

9.1.5 Architecture

Figure 9.2 depicts the main components GPSD event loop: accepting new client connections,

accepting new client subscriptions, and GPS reporting to all subscribed clients. Each client

connecting passes in an application identifier which is mapped to a privacy configuration

managed by the system. The privacy configuration contains the epoch (how often data

is released in milliseconds), differential private ε, privatization radius in meters, and the
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Figure 9.3: In the grid privatization a single location may randomize to one or many lo-

cations. In the example above two locations are returned. However, in the aggregate the

analyst is able to estimate the underlying population value without violating individual

privacy.

randomized response coin flips. Clients are allowed to pass in a recommended set of privacy

parameters, though these are checked against user settings and are not allowed to exceed

the privacy threshold defined by the user. In such cases user settings are adhered to.

9.1.6 Privatization

LocationSafe currently supports two modes of privatization: radius privacy and grid

privacy via differential privacy.

The first mechanism is via radius privacy whereby the data owner can specify a radius

cover wherein a random point within the defined range is chosen. This approach favors

strong privacy at the expense of utility. That is a larger radius grants more privacy though

limits the location accuracy.

The second privacy mechanism represents the location space as a grid. The grid can

be sized according to the data owner’s specification. The current location is placed within

the grid. Then leveraging the randomized response method one or many grid locations are
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returned as seen in Figure 9.3.

Randomized response [War65] was originally created by social scientists as a mechanism

to perform a population study over sensitive attributes (such as drug use or certain ethical

behaviors). Randomized response allows data owners to locally randomize their truthful

answer to analyts’ sensitive queries and respond only with the privatized (locally randomized)

answer. We utilize randomized response as our privacy mechanism as randomized response

satisfies the differential privacy guarantee for individual data owners, it provides the optimal

sample complexity for local differential privacy mechanisms [DWJ13], and it easily suitable

for the location grid type answers we provide.

9.1.6.1 Mechanism Description

We will now describe how each data owner privatizes their response utilizing the randomized

response mechanism. Suppose each data owner has two independently biased coins. Let the

first coin flip heads with probability p, and the second coin flip heads with probability q.

Without loss of generality, in this dissertation, heads is represented as “yes” (i.e., 1), and

tails is represented as “no” (i.e., 0).

Each data owner flips the first coin. If it comes up heads, the data owner responds

truthfully; otherwise, the data owner flips the second coin and reports the result of this

second coin flip.

Suppose there are N data owners participating in the population study. Let Ŷ represent

the total aggregate of “yes“ randomized answers. The estimated population with the sensitive

attribute YA can be computed as:

YA =
Ŷ − (1− p)× q ×N

p
(9.1)

The intuition behind randomized response is that it provides “plausible deniability”, i.e.,

any truthful answer can produce a response either “yes” or “no”, and data owners retain

strong deniability for any answers they respond. If the first coin always comes up heads,

there is high utility yet no privacy. Conversely, if the first coin is always tails, there is low

97



utility though strong privacy. It has been shown that by carefully controlling the bias of the

two coin flips, one can strike a balance between utility and privacy ( Table 4 in [FT86] and

Table I in [JRG16]).

9.1.6.2 Multiple Sensitive Attributes

While randomized response is an intuitive privacy mechanism for a single location, naturally

the question becomes how does one deal with multiple locations, i.e., a grid representation?

A host of ”polychotomous” mechanisms have been studied and surveyed in the literature

[FT86] using multiple randomizing mechanisms or maximum likelihood estimators [Tam81].

However, it turns out that simply repeating an application of [FT86] for each grid location

turns out to be an “optimal” [Tam81] approach.

Thus, LocationSafe repeats the randomized response mechanism for each grid location.

For example, if a traffic analyst wishes to understand the traffic flow of a few key locations,

the traffic analyst issues a query that is a Boolean bit-vector asking each data owner to

indicate the location they are at. Then, each data owner performs randomized response for

each location and replies with a Boolean bit-vector. The traffic analyst then aggregates and

sums the bit-vectors to calculate the number of vehicles at each location.

9.2 Non-Attributable Writes

We now describe our order of magnitude scalability enhancement for the Function Secret

Sharing (FSS) [BGI15] primitiv over the default implementation. Function secret sharing

privacy properties hold as long as there is, among multiple (decentralized) database opera-

tors, at least an honest one that does not collude.

9.2.1 Optimization

Function Secret Sharing (FSS) relies on symmetric cryptography. Thus, we utilize AES in

counter mode for the pseudorandom generator.
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Our main observation is that the default FSS evaluation algorithm repeatedly evaluates

the same seeds multiple times. The difference for each evaluation is the randomized bits

position for the seed expansion. Thus, we can simply evaluate each seed once and iterate

over the expanded seed randomized bits.

Our optimization is for the share evaluation as shown in Algorithm 2 and Algorithm 3.

The share generation in Algorithm 1 is the same as the default implementation [BGI15].

The default implementation share evaluation performs 2n PRG seed initializations. How-

ever, the full PRG evaluation is the same for each value of γ′. Thus, we need to perform ν

PRG seed initializations instead of repeating the same PRG evaluation. We do one evaluate

per δ, which means that we can reuse the same evaluated output and just take different

partitions for varying γ. The default FSS version evaluates δ times the same seeds in order

to extract the differing γ sections.

Algorithm 1 Genpi(1λ, x, y)

1: Let G : {0,1}λ −→ {0,1}mµ be a PRG

2: Let µ ← d2n/2 × 2p−1/2e. Let ν ← d2n/µe

3: Use the higher and lower bits of the input x as a pair x = (γ′, δ′), γ′ ∈ dνe δ′ ∈ dµe

4: Choose ν arrays A1, ..., Aν s.t. Aγ ∈R Op and Aγ′ ∈R Ep for all γ′ 6= γ

5: Choose 2p−1 random strings cw1, ..., cw2p−1 ∈ 0, 1mµ s.t.
⊕2p−1

j=1 (cwj ⊕G(sγ,j)) = eδ · b

6: Set σi,γ′ ← (sγ′,1 ·Aγ′[i, 1]) ‖ ... ‖ (sγ′,2p−1 ·Aγ′[i, 2p−1]) for all 1 ≤ i ≤ p, 1 ≤ γ′ ≤ ν.

7: Set σi = σi,1 ‖ ... ‖ ...σi,ν for 1 ≤ i ≤ p

8: Let ki = (σi ‖ cw1 ‖ ... ‖ cw2p−1) for 1 ≤ i ≤ p

9: Return (ki, ..., kp)
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Algorithm 2 EvaluateSharepi(ki)

1: Let µ ← d2n/2 × 2p−1/2e. Let ν ← d2n/µe

2: Use the higher and lower bits of the input x as a pair x = (γ′, δ′), γ′ ∈ dνe δ′ ∈ dµe

3: for j = 1, ..., ν do

4: yj ← Eval(j, ki)

5: Let resultj ← (yj [1] ‖ ... ‖ yj [µ])

6: end for

7: Return (result1, ..., resultν)

Algorithm 3 Evalpi(ν′, ki)
1: Let G : {0,1}λ −→ {0,1}mµ be a PRG

2: Parse ki as ki = (σi, cwi, ..., cw2p−1)

3: Parse σi as σi = s1,1 ‖ ... ‖ s1,2p−1 ‖ ... ‖ sν,2p−1

4: Let yi ←
⊕

1≤j≤2p−1(cwj ⊕G(sγ′,j)) where sγ′,j 6= 0

5: Return yi

9.3 Mechanism

9.3.1 Discretization

We illustrate the scheme using location coordinate data, although the discretization scheme

can be employed for all real valued data. Suppose a data owner currently on London Bridge

participates in the protocol. First, the location is discretized to a location identifier (ID) as

seen in Figure 9.4. For example, using a 16 bit identifier provides 65,536 possible locations,

which covers a 64 x 64 mile square with 0.25 mile sections for a total of 4,096 square miles.

For comparison Paris is 41 square miles, London is 607 square miles, New York City is 305

square miles [Lis17]. In Figure 9.4, London Bridge corresponds to location ID 8.
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Figure 9.4: Location Discretization. Each location (latitude,longitude) is discretized to a

location identifier which corresponds to a 0.25 square mile block. London Bridge corresponds

to location ID 8.

9.3.2 Sampling Error

We now introduce our K Privacy mechanism that improves in privacy strength via query

expansion yet preserving utility. We first examine how the Randomized Response [War65,

FT86] mechanism grows in error as the Nopop increases. We formally describe the Ran-

domized Response mechanism and then describe how the sampling error increases with the

population.

(Randomized Response) We use two independent and biased coins. Let π1 and π2 refer

to the heads probabilities of the first and second biased coin toss respectively. The coin toss

parameters are published publicly while the number of data owners is private and needs to
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be estimated.

Privatized V alueY es =


1 with probability

π1 + (1− π1)× π2

0 otherwise

(9.2)

That is, the Y espop subpopulation responds “Yes” with probability π1 + (1 − π1) × π2.

Otherwise they respond “No”.

Privatized V alueNo =


1 with probability

(1− π1)× π2

0 otherwise

(9.3)

That is, the Nopop subpopulation responds “Yes” with probability (1−π1)×π2. Otherwise

they respond “No”.

(Expected Value) We now formulate the expected value in order to carry out the estimation

of the underlying population. The expected value of those that respond ‘1’ (i.e., privatized

“Yes”) is the sum of the binomial distribution of each subpopulation.

E[1] = π1 × Y espop + (1 − π1) × π2 × (Y espop + Nopop) (9.4)

(Estimator) We solve for Y espop by the following. Let the aggregated privatized count E[1]

defined in Equation 9.4 be denoted as Private Sum.

Y espop =
Private Sum− (1− π1)× π2 × (Y espop +Nopop)

π1
(9.5)

That is, we first subtract from Private Sum of the “privacy noise”. We then divide by

the first flip π1 which is the sampling parameter which determines how frequently a data

owner truthfully responds “Yes” from the Y espop subpopulation.
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(Sampling Error) Suppose published parameters of the coin tosses are configured inde-

pendently with π1 = 0.85, π2 = 0.3 and 100 data owners. We estimate the underlying “Yes”

truthful population using Equation 9.5 by aggregating the privatized responses from all data

owners, subtracting the expected value of (1− 0.85)× 0.3× 100 and dividing by 0.8 1.

However, a drawback to the randomized response mechanism is that the estimation error

quickly increases with the population size due to the underlying truthful distribution dis-

tortion. For example, say we are interested in how many vehicles are at a popular stretch

of the highway. Say we configure π1 = 0.85 and π2 = 0.3. We query 10,000 vehicles asking

for their current location and only 100 vehicles are at the particular area we are interested

in (i.e., 1% of the population truthfully responds “Yes”). The standard deviation due to

the privacy noise will be 21 2 which is slightly tolerable. However, a query over one million

vehicles (now only 0.01% of the population truthfully responds “Yes”) will incur a standard

deviation of 212. The estimate of the ground truth (100) will incur a large absolute error

when the aggregated privatized responses are two or even three standard deviations (i.e.,

95% or 99% of the time) away from the expected value, as the mechanism subtracts only

the expected value of the noise.

We desire better calibration over the privacy mechanism and a mechanism which main-

tains constant error as the Nopop population scales up. We introduce the K Privacy mecha-

nism in the next section. Though first, we examine how to ensure that data owners are able

to privately upload their responses.

9.3.3 K Privacy Mechanism

We now describe our K Privacy mechanism that achieves constant error even where the

population which does not truthfully respond “Yes” (Nopop) increases. We illustrate the

1For instance with a 60% truthful population, the answer to the first toss is 0.6 × 0.85 = 0.51 and the
answer to the second toss is (1− 0.85)× 0.3 = 0.045

2(
√

(1− 0.85)× 0.3× 10, 000)
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scheme using location coordinate data, although the scheme can be employed for all real

valued data.

Illustration. To illustrate and demonstrate the K Privacy mechanism, we employ the

following example. Suppose we are interested in the distribution of vehicles across London.

We query every vehicle in London asking for their location coordinates. Each data owner

responds to a binary version of the binary query such as “Are you at the London Bridge?”.

The mechanism has two rounds and proceeds as follows.

Suppose a particular data owner is at London Bridge. First, the location is discretized

to a location identifier (ID) as described in Section 9.3.1. In this case the location ID is 8 as

shown in Figure 9.4.

Next, the data owner tosses a multi-sided die. One side samples whether the data owner

should respond truthfully for their location ID. The remaining sides selects a location ID for

the data owner to respond.

Suppose in the first round the data owner is sampled and selected. The data owner

should respond “Yes” (they are at London Bridge).

In the second round the sampled data owner participates to maintain the crowd size

though writes a nil value.

A privatized sum is computed by aggregating the “Yes” counts in each round.

Finally, estimation occurs by subtracting the privatized sum in round one from round

two and dividing by the sampling parameter.

The following three privacy observations are made. First, a majority of the population

provides privacy noise by randomly responding either “Yes” or “No” regardless of their truth-

ful response. Second, plausible deniability is provided as each data owner probabilistically

responds opposite of their truthful response. Finally, every data owner acts as a potential

candidate for the truthful population. Our assumption is that every data owner is active in

both rounds and only the aggregate counts are released.
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9.3.3.1 Binary Value

We now formally introduce the binary value K Privacy mechanism whereby a data owner

responds either “No” or “Yes”, either 0 or 1 respectively.

(Round One) In the first round each data owner tosses a three sided die with probabilities

πs, πY es, and πNo. Let πs be the probability that a data owner truthfully responds. Oth-

erwise, regardless of their truthful response let πY es be the probability that a data owner

randomly responds “Yes” and πNo be the probability that a data owner randomly responds

“No”.

Round OneY es =


1 with probability πs

1 with probability πY es

0 with probability πNo

(9.6)

Round OneNo =


1 with probability πY es

0 with probability πs

0 with probability πNo

(9.7)

At this point, privacy noise has been added and thus the underlying truthful distribution

is becoming distorted as the number of non-truthful data owners participate. The distortion

makes it difficult to estimate the the underlying truthful distribution as we have one equation

and two variables (number of truthful and non-truthful data owners).

Thus, we execute a second round while fixing the two variables enabling us to solve for

the truthful population estimate.

(Round Two) In the second round only the data owner which was selected and sampled

with probability πs writes a nil value, though participates to maintain the crowd size. The
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remaining data owners stay with the responses from round one.

Round Two =


∅ with probability πs

1 with probability πY es

0 with probability πNo

(9.8)

Now combining the second round with the first round we obtain accurate estimations as

we see below.

(Expected Values) We now formulate the expected values as follows. The subscript refers

to the round number. That is, 11 refers to output 1 and round 1. The first round of expected

values are:

E[11] = πY es × TOTALpop + πs × Yespop

E[01] = πNo × TOTALpop + πs × Nopop

(9.9)

That is, both the Y espop and Nopop contribute both “Yes” and “No” responses while a

small subpopulation responds truthfully.

The second round of expected values are:

E[12] = πY es × TOTALpop

E[02] = πNo × TOTALpop

(9.10)

That is, the small subpopulation from round 1 samples out and does not participate.

The remaining data owners randomly respond “Yes” or “No” while remaining at their round

one responses.

(Estimator) We solve for the Y espop population by subtracting round one by round two as

follows. Let Private Sum“Y es”,1 refer to the aggregated privatized counts for output space

“Yes” and round 1.
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Y espop =
Private Sum“Y es”,1 − Private Sum“Y es”,2

πs
(9.11)

That is, we subtract the privatized sum of output space “Yes” round 1 from the output

space “Yes” of round 2. The result is the sampled “Yes” aggregate. We then obtain the

estimation by dividing by the sampling parameter.

The sampling error affects only the Y espop as seen in Equation 9.9. Thus we are able

to scale the Nopop yet retain constant error. Plausible deniability is provided as each data

owner may respond to either output space based on the coin toss parameters.

9.3.3.2 Differential Privacy Guarantee

K Privacy satisfies differential privacy as we show in this section. We first examine the

binary value mechanism and then the multiple value mechanism.

(Binary Value) The differential privacy leakage is measured as the maximum ratio of the

binary output space given the underlying truthful answer is “Yes” and “No” respectively.

In round one, the output space “Yes” is slightly more likely as the truthful response is

sampled in addition to being responded randomly. In round two, there is no privacy leakage

as both output space “Yes” and “No” are both equally likely and indistinguishable given the

truthful answer is either “Yes” or “No” respectively.

Thus, we are interested in the privacy leakage of output 1 round 1 (11) as follows:

max

(
ln

(
Pr[Response = Y es|“Y es”]

Pr[Response = Y es|“No”]

)
, ln

(
Pr[Response = No|“No”]

Pr[Response = No|“Y es”]

))
(9.12)

εDP = max

(
ln

(
Pr[11|“Y es”]

Pr[11|“No”]

)
, ln

(
Pr[11|“No”]

Pr[11|“Y es”]

))
(9.13)

Pr[11|“Y es”]

Pr[11|“No”]
=
πV ′ + πs
πV ′

(9.14)
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Pr[11|“No”]

Pr[11|“Y es”]
=

πV ′

πV ′ + πs
(9.15)

εDP = max

(
ln

(
πV ′ + πs
πV ′

)
, ln

(
πV ′

πV ′ + πs

))
(9.16)
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CHAPTER 10

Evaluation II: Scalable Privacy

10.1 LocationSafe

To evaluate the overhead of the addition of the privacy module to GPSD, we run 25 and 64

clients connecting to GPSD with varying epochs of 5,10,15 seconds as seen in Table 10.1.

The evaluation was run on a laptop running Archlinux release 2016.06.01 kernel 4.5.4 with

two i5 physical cores (four logical) and 12gb ram. GPSD by default has a limit of 64 clients

so we stay within this bound.

The results show that minimal overhead is incurred by the privacy module and that

clients are able to reasonably receive location updates within the allotted epoch. Even as

more clients connect the performance guarantees do not degrade.

Epoch (seconds)

5 10 15

# Clients
25 7 12 16

64 6 11 14

Table 10.1: Scaling performance of clients receiving a response in specified epoch. Values

are averaged across ten iterations.
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Figure 10.1: (Vehicle counts) K Privacy Each vehicle reports it’s current location.

1 2 3 4 5 6 7 8
Group

0

50

100

150

#
A

ffl
ic

te
d

4

19 18

32
35

51

40

104

8

28 27

44
48

66

53

126

15

31 30

45
48

65

53

121

Ground Truth

K Privacy

Randomized Response
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Figure 10.5: (Vehicle Speed Distribution) Lane 2 speed distribution.
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112



1 2 3 4 5 6 7 8 9 10
Speed Group

0

25

50

75

100

#
V

eh
ic

le
s

10

14
17

9

15 15

19

13

2 3

16

22

26

15

23 23

28

20

5
6

73

77
80

72

78 78

82

76

65 66

Ground Truth

K Privacy

Randomized Response

Figure 10.7: (Vehicle Speed Distribution) Lane 1 speed distribution over 10,000 vehicles

(only 354 are currently amongst the queried 3 lanes).

10.2 K Privacy Mechanism

10.2.1 Accuracy

(PeMS Data) We evaluate the Haystack mechanism over a real dataset rather than with

arbitrary distributions. We utilize the California Transportation Dataset from magnetic

pavement sensors[Cal17a] collected in LA\Ventura California freeways [Cal17b]. There are

a total of 3,865 stations and 999,359 vehicles total. We assign virtual identities to each

vehicle. Each vehicle announces the station it is currently at. We select a single popular

highway station. Every vehicle at the station reports “Yes” while every other vehicle in the

population truthfully reports “No”. We evaluate over a 24 hour time period. K Privacy 1

has a sampling parameter of 45% and K Privacy 2 has a sampling parameter of 25%. The

randomized response mechanism has π1 = 0.8 and π2 = 0.2.

Figure 10.1 compares the K Privacy mechanism with the Randomized Response mech-
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Figure 10.8: (Vehicle Speed Distribution) Lane 2 speed distribution over 10,000 vehicles

(only 354 are currently amongst the queried 3 lanes).

anism. K Privacy is able to maintain constant error even at 1 million vehicles, while the

Randomized Response quickly incurs error. Upper bounds are shown with a 95% confidence

interval.

We next examine the vehicle speed distribution across the freeways at evening rush

hour. Figures 10.4, 10.5, 10.6 are with the population at the specific stretch of the freeway.

Figures 10.7, 10.8, 10.9 expand the query population to 10,000 vehicles (9,646) are not at the

particular freeway stretch being monitored. The figures show the speed distribution whereby

there are 10 groups for the following speeds “1 − 10” is group 1, “11 − 20” is group 2, etc.

Upper bounds are shown with a 95% confidence interval.

(Heart Data) We next evaluate over medical data. We utilize the UCI open data reposi-

tory [Lic13] for heart related data. Figure 10.2 and Figure 10.3 show the number of afflicted

data owners with a particular type of chest pain. The four types of chest pain are typical

angina, atypical angina, non-anginal pain, and asymptomatic. Each group corresponds to a
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Figure 10.9: (Vehicle Speed Distribution) Lane 3 speed distribution over 10,000 vehicles

(only 354 are currently amongst the queried 3 lanes).

particular chest pain and gender for a total of eight groups. Figure 10.3 scales the population

to 10,000 whereby 303 are the original dataset and the remaining 9,697 data owners provide

chaff. The K Privacy mechanism maintains constant error and the randomized response

quickly incurs error. Upper bounds are shown with a 95% confidence interval.

Figure 10.13 evaluates the privacy leakage comparing K Privacy and the Randomized

Response mechanism. K Privacy uses the equation defined in 9.3.3.2 to measure the pri-

vacy leakage. The Randomized Response mechanism privacy leakage is defined in the Ap-

pendix 8.1.1.

The coin toss parameters used in Figure 10.13 has Randomized Response flip1 = 0.8

and flip2 = 0.2. K Privacy has a sampling parameter of 0.45. We could increase the value

of the randomized response flip2 though the absolute error would grow even larger than

show in Figure 10.1.
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Figure 10.10: (FSS Microbenchmark) FSS Microbenchmark. The red circle indicates the

default parameter for the number of AES initializations.

10.3 Non-Attributable Writes

FSS Optimization We evaluate the FSS optimizations on Amazon EC2 with c4.2xlarge

instances which costs 0.398 per Hour. Figure 10.10 shows a microbenchmark of adjusting the

the length of the output. Figure 10.11 shows the effect of the FSS optimization on the time

to generate shares. The optimization is a trade-off that incurs a cost to the share generation

to a speedup of the evaluation of the share. Figure 10.12 shows the effect of applying the

FSS optimization for the evaluation of the shares as described in Section 9.2.1.

Running the 3 party protocol for a cluster of size 3 yields 25.77 writes per second. We

would need 83 such clusters at a cost of less then $2 dollars a minute.

Share Verification. We now discuss the evaluation of our implementation of the FSS

share verification [BGI16]. We microbenchmark the share blinding operations as they are

the most expensive operation performed by the data owner. The three algorithms for creat-
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ing the blinding structure are “square”, “product”, and “inverse” (see Section 8.3.1 for more

details). Figure 10.15 shows the scalability of the blinding operations. “Product” is slightly

faster than “square” as “product” must only do(p− 1) multiplications, while “square” does

(p − 1) exponent operations. “Inverse” is the slowest as it performs (p − 1) multiplications

and then a finite field inverse, where p is the number of parties. The MPC verification per-

formed by the aggregation servers is on the order of a couple hundred milliseconds and is

extremely efficient.
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CHAPTER 11

Conclusion and Future Work

In this dissertation we examined resiliency and privacy concerns in the Internet of Vehi-

cles (IOV). The Internet of Vehicles, composed of self-driving vehicles, either isolated or in

platoons, is poised to become the most prominent realization of mobile ad-hoc networks.

Mobile vehicle clouds must effectively manage the wireless medium as well as protect data

from privacy attacks.

To address the communication resiliency concerns, we introduced the concept of Cache

Coding that is resilient to pollution attacks in Chapter 3. By leveraging coded caches

mobile nodes are able to increase their file delivery throughput despite disruptive wireless

communication. However, there is an energy cost associated with Cache Coding due to

the increased computation complexity, as compared to no coding. Thus, we introduced an

energy efficient solution to reduce energy consumption for energy constrained devices (e.g.,

smartphones).

We then presented our mobile architecture to achieve decentralized content confidential-

ity and authorization without depending on centralized always available infrastructure in

Chapter 6. Role-based access control is cryptographically enforced by Attribute-Based En-

cryption in the content alone without requiring mobile nodes to reach back to infrastructure

to verify access.

Finally, we presented a privacy mechanism that improves the privacy strength while

preserving utility in Chapter 9. We implemented this privacy technique as a privacy module

for the GPS daemon that runs in the majority of GPS enabled devices. We also have deployed

this privacy system in the UCLA campus under the name “CrowdZen”. The system is in daily

use by thousands of students. In addition, we provided an order of magnitude improvement
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over the default implementation for the cryptographic primitive Function Secret Sharing

(FSS). FSS enables data owners to perform non-attributable writes to a distributed set of

databases without the database operator learning which data owner wrote a particular value,

as long as there is at least one honest database operator.

For future work, we are continuing to enhance our scalable privacy mechanism. There

is still more to explore regarding the underlying definition of privacy and how to enhance

privacy guarantees and strength.

In addition, the emergence of the Internet of Vehicles demands more efficient utilization

of the communication channels. There will be more opportunities to leverage Cache Coding

techniques to facilitate platoon style communications for large data dissemination.
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