
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A Scalable SystemC Model of a Checkerboard Grid of Processing Cells

Permalink
https://escholarship.org/uc/item/4d91p7pr

Author
Wang, Yutong

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4d91p7pr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A Scalable SystemC Model of a Checkerboard Grid of Processing Cells

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical Engineering and Computer Science

by

Yutong Wang

Thesis Committee:
Professor Rainer Dömer, Chair

Assistant Professor Quoc-Viet Dang
Professor Brian Demsky

2022

© 2022 Yutong Wang

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE THESIS x

1 Introduction 1
1.1 Related Work . 1
1.2 Background . 3

2 Checkerboard Grid of Processing Cells Architecture 4
2.1 Example Checkerboard 4x4 Model Explained 4
2.2 Core-Memory Communication and Checkerboard Address Space 16
2.3 Features and Functionalities of Checkerboard Model 23

3 The Mandelbrot Set and Mandelbrot Visualization Application 27
3.1 Definition of the Mandelbrot Set . 27
3.2 Base Model of Mandelbrot Set Visualization 28

3.2.1 The Base Model of Mandelbrot Set Visualization Explained 29
3.2.2 Functionalities of the Base Model of Mandelbrot Set Visualization . . 36
3.2.3 Limitations of the Base Model . 39

3.3 Version 1.0 of Mandelbrot Set Visualization 40
3.3.1 1.0 Model of Mandelbrot Set Visualization Explained 41
3.3.2 Functionalities of the 1.0 Model of Mandelbrot Set Visualization . . . 44
3.3.3 Scalability and Timing of the 1.0 Model of Mandelbrot Set Visualization 46

4 Mapping of Mandelbrot Set Visualization onto Checkerboard Model 48
4.1 Example Mandelbrot on Checkerboard 4x4 Explained 49
4.2 Functionalities of Scalable GPC Mandelbrot Model 55

ii

5 Experimental Results 59
5.1 Experimental Setups . 59
5.2 Data Collected . 60

6 Conclusion and Future Work 69

Bibliography 70

iii

LIST OF FIGURES

Page

2.1 High-level Schematic of Checkerboard Model [1] 5
2.2 Legend for Schematic of Checkerboard Model [1] 6
2.3 High-level Schematic of a Generic Multi-Type Cell Inside Checkerboard with

Core & Core Demux on Left and Memory & Mem Mux on Right, figure
modified from [1] . 9

2.4 High-level Schematic of a Generic Multi-Type Cell Inside Checkerboard with
Core & Core Demux on Right and Memory & Mem Mux on Left, figure
modified from [1] . 10

2.5 High-level Schematic of Corner Cell03 Inside Checkerboard without Adjacent
Core on Top and Right, figure modified from [1] 11

2.6 Example Addressing for 4x4 Checkerboard 17
2.7 Example Addressing for Generic Checkerboard 19

3.1 Examples of customizable parameters . 29
3.2 Parallelism parameters . 30
3.3 High Level Schematic of Base Model of Mandelbrot Set Visualization 30
3.4 Custom Data Structure for Coordinates . 31
3.5 Schematic of DUT module of Base Model of Mandelbrot Set Visualization . 33
3.6 Example of 640 * 512 Mandelbrot with 16 Parallel Slices 34
3.7 Custom Data Structure for Images . 34
3.8 16 Colors Available to be Mapped . 36
3.9 High Level Schematic of 1.0 Mandelbrot Set Visualization 42
3.10 DUT schematic of 1.0 Mandelbrot Set Visualization 43

4.1 High-level Schematic of Mandelbrot on Checkerboard 4x4 Model, figure mod-
ified from [1] . 50

4.2 Logic Schematic of Mandelbrot on Checkerboard 4x4 Model 51
4.3 Mandelbrot Slices assigned to GPC Cores 52
4.4 Example Dataflow per Column of Cells of Mandelbrot on Checkerboard 4x4 53

5.1 Mandelbrot Set Visualization 1.0 Model Computation Unit Time vs. Number
of Parallel Units . 61

5.2 Mandelbrot Set Visualization 1.0 Model Communication Unit Time vs. Num-
ber of Parallel Units . 62

iv

5.3 Mandelbrot on Checkerboard Model Computation Unit Time vs. Number of
Parallel Units . 65

5.4 Mandelbrot on Checkerboard Model Communication Unit Time vs. Number
of Parallel Units . 66

5.5 Mandelbrot on Checkerboard Model Communication Unit Time vs. Checker-
board Layout . 67

5.6 Computation Unit Time vs. Number of Parallel Units Comparison 67
5.7 Communication Unit Time vs. Number of Parallel Units Comparison 68

v

LIST OF TABLES

Page

5.1 Experimental Results for Mandelbrot Set Visualization 1.0 Model 61
5.2 Experimental Results for Mandelbrot on Checkerboard Model 64

vi

ACKNOWLEDGMENTS

I thank Professor Rainer Dömer (University of California, Irvine) for guiding me with the
research topic, having useful discussions and providing very constructive feedbacks in the
course of developing Grid of Processing Cells architecture. I thank my lab-mate Vivek
Govindasamy (University of California, Irvine) for constructive discussions and providing
helpful feedbacks and improvements in the development and testing stages of the GPC
architecture. I thank my lab-mate Arya Daroui (University of California, Irvine) for helpful
discussions and providing helpful feedbacks, images and diagrams used in this paper.

vii

VITA

Yutong Wang

EDUCATION

Bachelor of Science in Computer Engineering 2020
University of California, Irvine Irvine, California

RESEARCH EXPERIENCE

Graduate Student 2020–current
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2021–current
University of California, Irvine Irvine, California

viii

Technical Reports

A Tool to Flatten Multi-File SystemC Models for the
RISC compiler

CECS TR 21-01

SOFTWARE

Flatten Tool for RISC compiler
A Tool to Flatten Multi-File SystemC Models for the RISC compiler

Grid of Processing Cells, Checkerboard Model
A SystemC model for Checkerboard architecture

Mandelbrot TLM-2 Model
A Mandelbrot Set Visualization model programmed with TLM-2.0 SystemC standard.

Mandelbrot on Checkerboard
Mandelbrot Set Visualization mapped onto Checkerboard model.

ix

ABSTRACT OF THE THESIS

A Scalable SystemC Model of a Checkerboard Grid of Processing Cells

By

Yutong Wang

Master of Science in Electrical Engineering and Computer Science

University of California, Irvine, 2022

Professor Rainer Dömer, Chair

Ever since the introduction of embedded computers, embedded computing systems have had

a great impact on our daily life and changed the way the whole society operates. Embedded

computers today have gained many functionalities and massive amount of computing power.

Further more, embedded computing systems can be integrated into System-on-Chip (SoC)

which usually contains many processing cores and some of them capable of rendering graphics

for high resolution screen. As SoCs get more and more complex, scalability becomes a series

issue: it is harder and harder to fit more computing units, memories and other component

in a single chip while maintaining scalable performance.

In this thesis, we introduce the “Checkerboard” Grid of Processing Cells (GPC) architecture

model, which is designed to be a scalable and stable platform without sacrificing scalable

performance. This work simulates and evaluates the scalability of Checkerboard SystemC

model with a Mandelbrot Set Visualization application – an embarrassingly parallel program

that calculates and visualizes the Mandelbrot set with given parameters.

x

Chapter 1

Introduction

The “Checkerboard”, Grid of Processing Cells (GPC) model in this paper is a on-

going System-on-Chip design developed with SystemC [2] release 2.3.3. Checkerboard is one

of the many designs of Grid of Processing Cells [3] and is the model designed and evaluated in

SystemC TLM-2.0 in this thesis. Checkerboard is designed with scalability and ease-of-use in

mind. In order to properly analyze the scalability of Checkerboard architecture, the software

chosen to be mapped onto it is the Visualization of Mandelbrot Set [4]. This program is

introduced in Section 2. Mandelbrot on Checkerboard model is compared with an ideal

SystemC model (Mandelbrot Set Visualization 1.0 model) with near perfect scalability to

show that the Checkerboard model, when mapped with a scalable software, is also scalable.

1.1 Related Work

Many computer architectures have been proposed and used throughout the years. The classic

von-Neumann computer architecture [5] has one memory bus between memory and central

processing unit (CPU). The original Harvard architecture [6] and its modern implementation,

1

the modified Harvard architecture [7], all use single shared bus to a main memory. While

modern computers typically organized as symmetric multiprocessors (SMPs) [8], there is

only a single shared memory connected via a bus interface. Having a single memory with a

shared bus for CPU(s) limits the scalability of these architectures.

Knowing that the architectures with single memory bus has limited scalability, other ar-

chitectures have been proposed with better scalability. The Raw architecture [9] is a 4x4

tiled architecture designed with scalability in mind. It allows application-specific resource

allocation and data flow within the chip. The tiled architecture of Raw also allows it to

scale with increasing silicon density [9]. Another scalable architecture is the Tile Processor

[10][11]. The Tile Processor’s implementations, TILE64 processor and TILEPro64 processor,

are both manufactured by Tilera. Both processors show the scalability of the Tiled archi-

tecture. With each tile contains a general purpose processor, cache, and a router, TILE64

and TILEPro64 tiles are able to communicate with each other and other input/output in-

terfaces on a very large 8x8 scale [12][13][14]. Intel’s Teraflops Research Chip (codenamed

Polaris), with a network-on-chip architecture, is another scalable manycore design [15]. Po-

laris consists of a 10x8 2D mesh network (80 Cores) with a sustained performance of 1.28

teraFLOPS, demonstrating very good scalability of the Polaris’ architecture [16]. Intel’s

Single-Chip Cloud Computer (SCC) is another tiled architecture that communicate through

architecture similar to a cloud computer in data center. The chip contains tiles in a 4x6

2D-mesh with 2 P54C Pentium cores and a router in each tile. Intel hopes to make SCC

scale to 100+ cores by having each chip communicate to another chip [17][18]. KiloCore

processor array, which contains 1000 independent processors and 12 memory modules on a

single chip, is another scalable tiled-like architecture [19]. Their data indicates that under

most conditions, the processor array has a near-optimal proportional scaling of power dissi-

pation. The Checkerboard GPC architecture, like Raw, Tilera, Polaris, SCC and KiloCore,

is also a scalable architecture. The Checkerboard SystemC model, which supports varying

layout from 1x1 all the way up to 16x16, adds flexibility on the prior works. There are two

2

more GPC variants proposed, which are hierarchical GPC, and 3D GPC [3]. In this work,

only the Checkerboard GPC will be introduced.

1.2 Background

A scalable architecture, according to definition, is an architecture that can linearly scale up

to meet increased work loads. In other words, if the work load is increased to exceed the

current work capacity of the system, a scalable system should be able to scale up the system

to match the increased work load. As the system gets scaled up by a factor of x times, if the

system can also process x times the amount of the original work load, then this machine is

said to have “linear scalability”.

Linear scalability, however, is not usually the case when it comes to computer systems. One

cannot simply double the amount of processing units and expect the system to work twice

as fast to handle double the load. Very often there is overhead when system scales up. The

scalability of that system depends on how much overhead there exist in both software and

hardware. If a hardware is designed perfectly to scale linearly but the software application

does not scale at all, the system then would still have no scalability.

In this thesis, to test out the scalability of Checkerboard architecture, which is a hardware

design, the software must be scalable. In other words, when the hardware scales up, the

software mapped can properly reflect the effect of different sizes of the Checkerboard archi-

tecture. Therefore, on the software side, the Mandelbrot Set Visualization application was

chosen as a benchmark that gets mapped on to Checkerboard platform in order to show the

scalability of the architecture.

3

Chapter 2

Checkerboard Grid of Processing

Cells Architecture

In this chapter, Checkerboard Grid of Processing Cells model (Checkerboard for short) is

explained in detail with a top-down approach. The Grid of Processing Cells is proposed

by Rainer Dömer [20]and discussed with Arya Daroui, Vivek Govindasamy, Yutong Wang,

and Rainer Dömer at University of California, Irvine [21]. Although Checkerboard model

goes through many versions, only the latest version of the Checkerboard model will be

used to explain the functionalities of the Checkerboard model. The latest Checkerboard

git repository can be downloaded at http://www.eecs.uci.edu/~yutongw5/checkerboard

[22].

2.1 Example Checkerboard 4x4 Model Explained

This section includes a high-level schematic of an example of Checkerboard Grid of Processing

Cells model with a 4 by 4 setup and detailed top-down explanation of the Checkerboard

4

http://www.eecs.uci.edu/~yutongw5/checkerboard

Top

Stimulus

Monitor

Memory

off-chip, 1

Memory

off-chip, 2

Memory

off-chip, 3

Memory

off-chip, 0

Checkerboard

Mux

M
ux

M
ux

Mux

Cell

1, 0

Memory

on-chip

Core

DemuxMux

Cell

0, 0

Memory

on-chip

Demux Mux

Cell

1, 1

Memory

on-chip

Core

DemuxMux

Cell

0, 1

Memory

on-chip

Demux Mux

Cell

1, 2

Memory

on-chip

Core

DemuxMux

Cell

0, 2

Memory

on-chip

Demux Mux

Cell

1, 3

Memory

on-chip

Core

DemuxMux

Cell

0, 3

Memory

on-chip

Demux Mux

Cell

3, 0

Memory

on-chip

Core

DemuxMux

Cell

2, 0

Memory

on-chip

Demux Mux

Cell

3, 1

Memory

on-chip

Core

DemuxMux

Cell

2, 1

Memory

on-chip

Demux Mux

Cell

3, 2

Memory

on-chip

Core

DemuxMux

Cell

2, 2

Memory

on-chip

Demux Mux

Cell

3, 3

Memory

on-chip

Core

DemuxMux

Cell

2, 3

Memory

on-chip

Demux Mux

Core Core Core Core

Core Core Core Core

Figure 2.1: High-level Schematic of Checkerboard Model [1]

model. There are other configurations for the Checkerboard model such as 3x3 and 2x4

because the scalability of the Checkerboard model. For time and space constraints, only the

4x4 Checkerboard example will be explained in detail in this section. Some sections involve

SystemC knowledge and cannot be explained in detail in this paper. All SystemC related

5

documents can be found on SystemC official reference page at http://www.systemc.org

[2].

External input-output

Processor core

Memory

Memory controller

Transaction binding

Event signal

Figure 2.2: Legend for Schematic of Checkerboard Model [1]

Starting from the largest model, which is named “Top” in figure 2.1. Module Top contains

every other model in the Checkerboard model, including user defined Stimulus and Monitor,

off-chip memories, multiplexers (mux) for off-chip memories and the Checkerboard module

itself. Inside checkerboard, there are more modules including Cores, on-chip memories,

demultiplexers (demux) for Cores and multiplexers for on-chip memories. Each module is

connected with TLM-2.0 style sockets which is the same socket pair introduced in section

3.3.1

The next group of modules just below the Top model are Stimulus, Monitor, off-chip memo-

ries, multiplexers for off-chip memories and the checkerboard module. All these modules can

be configured in user file, the user have full control on what type of off-chip memory they

can use and the number of sockets a memory can have. Same rules apply for the off-chip

memory multiplexers that routes the memory read and write requests from the border units

inside checkerboard. If the user does not provide their customized off-chip memory, a default

6

http://www.systemc.org

one-port memory is provided with all sockets connected. A alternative way to connect the

Stimulus and Monitor other than routing their requests through the off-chip multiplexers is

to add another target socket to the provided off-chip memory and connect the Stimulus and

Monitor. The files in Checkerboard repository does not include Stimulus and Monitor code.

The user is responsible for designing and implementing these two modules.

The Stimulus and Monitor module’s functionalities are completely up to the user to im-

plement, just like the Stimulus and Monitor in section 3.2 and section 3.3. As mentioned

above, this 4x4 setup is only an example, the user of the Checkerboard model can connect

the Stimulus and Monitor in anyway they want, or the user can choose to completely not

use these two modules and work with a bare-bones version of the Checkerboard model.

The multiplexers on the outskirts between off-chip memories and the checkerboard module

is also a configurable component in the user file, the configuration is done automatically in

the Python code generator (which is introduced in Section 2.3). Each multiplexers can have

multiple input sockets connected to the border cells inside checkerboard module (shown as

the purple trapezoid on the outside of Checkerboard module in Figure 2.1). For example,

the off-chip multiplexer on top would have 4 target sockets connected to 4 border cells on

top inside checkerboard module and 1 extra target socket connected to the Stimulus. There

is also one initiator socket connected to the target socket in the off-chip memory modules.

The purpose of these off-chip multiplexers is to route incoming read and write requests from

the connected cells to the connected off-chip memory (memories). The off-chip multiplexers

are created with C++ template and therefore can have different number of sockets during

initialization phase:

template <int Number_of_Sockets>

class DRAM_MemMux_N: public sc_module{

...

7

}

....

class TOP: public sc_module{

public:

DRAM_MemMux_N<4> dram_memmux_up,dram_memmux_down;

DRAM_MemMux_N<2> dram_memmux_left,dram_memmux_right;

...

}

In this case, because there are 4 sockets on the top and down off-chip muxes and 2 sockets

on the left and right off-chip muxes, the number 4 and 2 are used here.

All four off-chip memories are TLM-2.0 style single socket memories with basic read and

write functionalities, shown as blue rectangles on the outside of Checkerboard module in

Figure 2.1. The user can specify their own off-chip memories and even memory buses in

the checkerboard user file if they wish. The example 1 socket memories are provided with

minimum functionalities. Replacement of these default off-chip memories can be easily done

by the user, but this process will not be explained in detail here, please go check the user

manual of the Checkerboard Model. Each off-chip memory can be configured with a different

size (this size must be smaller than the maximum size allowed for off-chip memories), also

different read and write delays:

#ifndef OFF_CHIP_MEMORY_SIZE

#define OFF_CHIP_MEMORY_SIZE OFF_CHIP_MEMORY_SIZE_MAX

#endif

#ifndef OFF_CHIP_MEM_READ_ACCESS_DELAY

#define OFF_CHIP_MEM_READ_ACCESS_DELAY sc_time(0, SC_NS)

8

#endif

#ifndef OFF_CHIP_MEM_WRITE_ACCESS_DELAY

#define OFF_CHIP_MEM_WRITE_ACCESS_DELAY sc_time(0, SC_NS)

#endif

The maximum value of off-chip memory size is set to be 0x20000000 because of the way how

Checkerboard’s address mapping works.

As mentioned above, almost every component under module Top is configurable, the mul-

tiplexers, off-chip memory, and of course, the checkerboard module itself. The user can

choose the dimensions of the checkerboard module shown in the middle of figure 2.1. In

this example, the dimensions are set to be 4 cells wide and 4 cells high. Every connection

inside the Checkerboard module is done automatically once given the proper parameters

during compilation stage. Details on how that is done is explained in later sections. The

connections to the off-chip memory will also change automatically according to the height

and width of the checkerboard module.

Cell_Multi_Type

Memory

on-chip

Demux Mux

Core

Figure 2.3: High-level Schematic of a Generic Multi-Type Cell Inside Checkerboard with
Core & Core Demux on Left and Memory & Mem Mux on Right, figure modified from [1]

9

Cell_Multi_Type

Memory

on-chip

Core

DemuxMux

Figure 2.4: High-level Schematic of a Generic Multi-Type Cell Inside Checkerboard with
Core & Core Demux on Right and Memory & Mem Mux on Left, figure modified from [1]

Each cell, marked as transparent box with green and red borders in Figure 2.1, contains 1

core module, 1 core demultiplexer (demux), 1 memory module, and 1 memory multiplexer

(mux) as shown in Figure 2.3, . The structure Cell does not have any actual functionalities,

its sole purpose it to serve as a container for the core and core demux, memory and memory

mux. Having the Cell module keeps the Checkerboard clean on a hierarchal level and makes

the code easer to read. Generally, the Checkerboard contains 2 high-level types of cell:

one type have the Core module and Core Demux on the left side and Memory and Mem

Mux on the right side, as shown in Figure 2.3; The other type have Core module and Core

Demux on the right side and Memory and Mem Mux on the left side, shown in Figure 2.4.

Having 2 types of major cell layouts allows each core have access to 4 adjacent memories

without crossing wires (the adjacent memories include off-chip memories on the outside of

Checkerboard module). It is possible to use only 1 layout (either Core left Mem right or Core

right Mem left) to ensure that each core have access to 4 adjacent memories. However, it

would require the wires to be crossed inside cell or between cells. This is another topic that

can be researched, but it would not be included in this paper. Every connection inside the

10

cell is done in TLM-2.0 style SystemC initiator and target socket as mentioned in previous

chapters.

Inside each cell, there are always 1 Core, 1 Memory, 1 Core Demux, 1 MemMux. Each Core

will always have access to four memories, either that memory is inside another neighboring

cell or the off-chip memory. Within that four memories that a Core have access to, one of

them is local to that core, that is, that local memory is inside the same cell as that Core.

It is unspecified at this point if a local core should have higher access speed for reading and

writing because Cells exists for only hierarchical purpose and does not reflect actual physical

property (for example distance and latency between cells). Regardless if a Cell have its Core

and Core Demux on the left or right side, as mentioned before, a Core always have access to

four memories, and that is done via the Core Demux. A core with only 1 socket is connected

to a Core Demux, the Core Demux then takes the request from that core and forward it

to different connected memories based on the address of the Core and the address of the

payload. The detailed memory addressing will be explained in detail in later section.

Cell

0, 3

Memory

on-chip

Demux Mux

Core

Figure 2.5: High-level Schematic of Corner Cell03 Inside Checkerboard without Adjacent
Core on Top and Right, figure modified from [1]

11

While the Core will always have access to 4 memories, each on-chip Memory does not nec-

essarily have 4 connected Cores. Each on-chip memory has one socket connected to the

memory Mux and in generic cases there would be 4 connections from both inside and out-

side the memory. For example, if a cell is in the middle of Checkerboard, then inside that

Cell, the on-chip Memory will have 1 connection from its local Core and 3 other connection

from its neighboring Cores. If that Cell is on the outer border of the Checkerboard, then

depends on the location of that Cell and the location of on-chip Memory (whether it’s on

the left or right side of the Cell), some Memories will have less than 4 connected Cores. For

example the Cell03 inside this 4x4 example checkerboard will be missing incoming connec-

tions from the top and the right because that on-chip Memory does not have adjacent Core

from top and right, as shown in Figure 2.5.

In addition to the missing connections going inside Cells, each border Cells would have

outgoing connections to different off-chip Memory Muxes. This is tedious and error prone if

done by hand. Therefore the Checkerboard architecture code takes care of the connectivity

completely for both inside and outside of a Cell. Checkerboard program will automatically

instantiate needed sockets for the Core Demuxes and Memory Muxes and bind them depends

on the x and y ID and the size of the Checkerboard. The user will only need to specify the

Height and Width of the Checkerboard and everything will automatically connect on the

architecture side:

#ifndef GRID_HEIGHT

#define GRID_HEIGHT 4

#endif

#ifndef GRID_WIDTH

#define GRID_WIDTH 4

#endif

12

If no parameters are provided during compile time, then the program will default to a 4x4

Checkerboard. The maximum width and height that is supported by the Checkerboard

Model is 16x16 due to current constraints in address space. This will be explained in detail

in a later section. Single row cases are special because Cores then have access to both

the top off-chip memory and bottom off-chip memory. In the case of a single Core (1x1

Checkerboard), that one Core has access to top, left and bottom off-chip memories. Both

mentioned special cases are taken care of in the Checkerboard program and are fully tested.

From the user’s perspective, each Core inside a Cell should have its own functionalities,

whether it is a complex algorithm or just simply passes value from its left neighbor to its

right neighbor. Inside the user file, each Core with it unique ID is extended from a universal

Core class that allows every user Core have a different main (and also other functions).

Before Checkerboard Version 1.3, this process of creating user Cores and passing id and

signals have to be done manually by the user. This is again, very repetitive work, especially

when the dimensions of the Checkerboard model grow. In version 1.3 of Checkerboard model,

an auto code generator for the user file is introduced to take care of the creation of each

User Core and passing the parameters during instantiation. Details on the code generator

follow in Section 2.3. An example User Core is shown here:

class Core00: public Core{

public:

void main(void);

Core00(sc_module_name n,

int _y,

int _x,

sc_event &_S_UP,

sc_event &_S_LEFT,

13

sc_event &_S_RIGHT,

sc_event &_S_DOWN)

: Core(n,_y,_x,_S_UP,_S_LEFT,_S_RIGHT,_S_DOWN){

SC_THREAD(main);

}

};

....

void Core00::main(){

//Your code here

}

y and x representing the location of that Core (in this case, location (0, 0) in Checkerboard);

the sc events used to listen to its connected memories so when there is a need to pass

message to other Cores, there is a way to notify other Cores. On top of that, each User Core

comes with a main function that is completely up to the user to fill. The user can of course

add other functions to each Core to make it more sophisticated. The main function is first

declared inside a User Core class and defined later so if the user choose to, they can relocate

the main functions of each User Core to a different file, which will give the user file better

readability.

There is one more element on Figure 2.1 left untouched and that is the yellow lines that

goes across Cells. As the legends for the schematic indicate, these yellow lines are the

event signals used to notify cores that a nearby memory has been accessed. All events are

SystemC standard class named sc event and detailed information can be found on official

SystemC reference page. Events for on-chip memories inside Cells are instantiated under

Checkerboard module level and therefore able to pass through multiple cells (think of each

14

event as a interrupt signal). Events for the off-chip memories are instantiated under module

TOP and therefore can be passed to module Checkerboard and then Cells and Cores. As

mentioned above, each User Core, when instantiating, need multiple parameters (as shown

below in the constructor for Core):

Core(sc_module_name n,

int _y,

int _x,

sc_event &_S_UP,

sc_event &_S_LEFT,

sc_event &_S_RIGHT,

sc_event &_S_DOWN);

the four events “S UP, S LEFT, S RIGHT, S DOWN” are for memories that each Core

has access to. Recall that every Core, does not matter where that Core is in Checkerboard,

has access to 4 memories, therefore 4 signals representing all 4 memories. An example for

this 4x4 example Checkerboard would be when Core11 writes a message to its local memory

(memory 11), Core11 will also notify that event for memory11. Because that event is passed

to the neighbors of Core11, Core01 (top neighbor), Core10 (left neighbor), Core11 (self),

Core21 (bottom neighbor), all will be notified by that event.

There are alternative ways to notify other Cores when reading and writing data to a memory.

One common approach is to have every Core listen to every event. However, that method

will require each Core having 16 parameters in the constructor and listening to 16 events

for only a 4x4 Checkerboard. That number will soon increase to a unmanageable amount

when the width and height of Checkerboard increases. Besides that, having every Core also

listening to every event is also inaccurate in terms of actual hardware, a Core on the top left

corner in a large Checkerboard grid should not have access to signals from across the chip.

15

Cores on the outer border of Checkerboard will also listen to events from the off-chip mem-

ories. The only difference is that the events for on-chip memories can be signaled by only

the neighbors of that Memory while the events for off-chip memories can be signaled from

every core that have access to that off-chip memory (they do not need to be neighbors).

Before version 1.3 of Checkerboard model, this event mapping is done manually by the user,

after version 1.3, this is done automatically with the code generator (details in Section 2.3.

This memory-event system allows each Core to read/write to every memory it has access

to and also notify all other Core that have access to that specific memory, thus making

communication between different Cores across Checkerboard possible.

2.2 Core-Memory Communication and Checkerboard

Address Space

As described in section 2.1 that when a Core sends read or write request to a specific memory

address, the payload (request) will first get sent to the Core Demultiplexer (Core Demux).

It is up to the Core Demux to forward the payload to the correct memory based on the

requested address. Once the memory receives request from a Core, the memory will respond

to that request, whether it is a read or write. When a Core is initialization a request, a

helper function called MemAccess is used:

void Core::MemAccess(

tlm::tlm_command cmd,

tlm::tlm_initiator_socket<> &s,

sc_dt::uint64 addr,

void *data,

unsigned int len){

16

..... (check for OK response, add delay...)

}

This helper function is a nice indication of the basic component of a payload: tlm command,

tlm initiator socket, an address, pointer to data, and the length of the data. After calling

this MemAccess function and everything is filled, this payload is first send to the Core’s

connected Core Demux for forwarding. Once the payload is received by Core Demux, it will

first be masked to only 32 bit (the current Checkerboard model is using 32 bit address space,

but TLM2 payload is 64bit) with this:

sc_dt::uint64 adr = trans.get_address();

// (reference: SystemC_Part3.pdf, slide 31)

adr = adr & 0xFFFFFFFF; //make sure address is 32 bits

This masking process is necessary because when a 32 bit address is assigned to this 64 bit

payload and the most significant bit is a 1, the address will get sign extended with 1s, which

then breaks the forwarding logic without masking it to 32 bit.

The following image shows the addressing for a 4x4 Checkerboard used in previous section:

As shown in Figure 2.6, the address for both on-chip and off-chip memories are 32 bit wide.

0

31 30 29 28 27 26 25 24 23 0

1

row col

pos rest of address

Bit

On-chip memory

Off-chip memory

...

rest of address

Figure 2.6: Example Addressing for 4x4 Checkerboard

Starting with off-chip memory. The most significant bit (the 31st) bit will always be 1, this is

to differentiate the on-chip and off-chip memories. When the most significant bit is a 1 from

17

the payload, the Core Demux know to send that payload to one of the off-chip memories.

Because there are always 4 off-chip memories on the outside of Checkerboard module (can be

configured to have different numbers of off-chip memories by user), 2 extra bits are needed to

identify each off-chip memory. The 2 bits used will be the 30th and 29th bit in the address

since 2 bits are enough to represent 4 unique addresses. Top off-chip memory is 00, left

off-chip memory is 01, right off-chip memory is 10, and bottom off-chip memory is 11.

if(adr>>31){//global

switch (adr>>29) {

case 0b100:

trans.set_address(adr & 0x1FFFFFFF);

out_up->b_transport(trans,delay);

break;

case 0b101:

trans.set_address(adr & 0x1FFFFFFF);

out_left->b_transport(trans,delay);

break;

case 0b110:

trans.set_address(adr & 0x1FFFFFFF);

out_right->b_transport(trans,delay);

break;

case 0b111:

trans.set_address(adr & 0x1FFFFFFF);

out_down->b_transport(trans,delay);

break;

}

}else{//local

18

......

The partial code from the Core Demux shows that it will first check the most significant bit,

and then route the payload to the off-chip memory depends on the address bits (30th and

29th) bit. The payload address will also need to be masked to get rid of the top 3 bits used

only by the routing, the memories do not see these bits. Because the left most 3 bits are

used for every off-chip memory, the maximum memory size for off-chip memories is limited

to 0x20000000 with 29 bits available for data entires. The user can set their own memory

sizes but if that size is larger than the maximum size, the program will report an error.

On-chip memories on the other hand is more complicated because the numbers of on-chip

memories changes depending on the Height and Width of the Checkerboard. The 4x4 exam-

ple on-chip memory addresses displayed in figure 2.6 has one bit to distinguish on-chip and

off-chip memories, 4 more bits for the x and y ID of the memory – 2 bits for row number and

2 bits for column number. Because there are 4 Cells per row and 4 rows in this 4x4 example,

2 bits are needed for the x and y memory ID. Similar to the off-chip memories, because the

left most 5 bits are used to identify each on-chip memory, the maximum memory size of then

limited to 0x08000000 with 27bits available for data entires. The user can also set their own

memory size for on-chip memory but if that size is larger than the maximum size allowed,

the program will report an error. For generic Checkerboard that have Width and Height

0

31

row col

Bit

On-chip memory rest of address

Address
bits

Address
bits

31 - 2xAddress bits

Figure 2.7: Example Addressing for Generic Checkerboard

defined by the user (maximum width and height is 16x16), this 5-bit scheme will not work.

If the Checkerboard is 4x5 then there will be 1 column of on-chip memories without address

19

and can never be accessed. In version1.2 and later Checkerboard model, instead of asking

the user to edit the forwarding logic and addresses for on-chip memories, a variable called

“Address Bits” is used to automate on-chip memory addressing and payload forwarding in

Core Demux. The Address Bits are set in a series of C++ preprocessor macros:

#if GRID_WIDTH > 8 || GRID_HEIGHT > 8

#define ADDRESS_BITS 4

#define ON_CHIP_MEMORY_SIZE_MAX 0x00800000 // 23bits available

#elif GRID_WIDTH > 4 || GRID_HEIGHT > 4

#define ADDRESS_BITS 3

#define ON_CHIP_MEMORY_SIZE_MAX 0x02000000 // 25bits available

#elif GRID_WIDTH > 2 || GRID_HEIGHT > 2

#define ADDRESS_BITS 2

#define ON_CHIP_MEMORY_SIZE_MAX 0x08000000 // 27bits available

#else

#define ADDRESS_BITS 1

#define ON_CHIP_MEMORY_SIZE_MAX 0x20000000 // 29bits available

#endif

Basically the preprocessor macros ensures that there are enough bits to represent all on-chip

memories. If there is more bits needed for the width than height or vise versa, the other

address bits simply matches the one with more bits needed. For example, in the case of a

2x10 Checkerboard (2 row x 10 columns), to represent all 10 columns, 4 bits for the x ID are

needed while only 1 bit is needed to represent 2 rows, the Checkerboard program simply set

address bits to 4 for both x and y ID for the memory. Keeping the address bits same across

the x and y IDs does decrease the maximum size of the on-chip memory as some of the bits

might not be used, but it also avoid confusion and keeps the forwarding logic clean.

20

Once payload has arrives at Core Demux, the module will first check the most significant

bit of the target address, if 1 then off-chip memory, if 0 then on-chip memory. In the case of

on-chip memory payload, an address bit mask is created to get the y and x ID of the target

address:

int addr_bits_mask = 0b11111 >> (5 - ADDRESS_BITS);

int addr_mask = 0x7FFFFFFF >> (2 * ADDRESS_BITS);

int addr_y = (adr>>(31 - ADDRESS_BITS)) & addr_bits_mask;

int addr_x = (adr>>(31 - 2*ADDRESS_BITS)) & addr_bits_mask;

Then Core Demux will forward the payload to either the top, left, right, or bottom neigh-

boring memory of the Core depending on the x and y location of that Core and the x and

y location of the target address of that payload. Right before the payload gets forwarded,

the address is masked with the “addr mask” shown in the code above to make sure that

the bits used only for routing is filtered out. If the address is unreachable by that Core or

the address is out of range, then Core Demux will stop the simulation and report an error

message. Below is an example reading/writing to all nearby memories from a Core:

--LOCAL MEMORY ACCESS TESTS FOR CORE 00--

TIME 0 s: 0:

D0=------------

M00=------------ M01=------------ M02=------------ M03=------------

D1=------------ M10=------------ M11=------------ M12=------------ M13=------------ D2=------------

M20=------------ M21=------------ M22=------------ M23=------------

M30=------------ M31=------------ M32=------------ M33=------------

D3=------------

00 Writing to 0x00000000 (here): HELLO 00!

00 Read from 0x00000000 (here): HELLO 00!

TIME 0 s: 2:

D0=------------

M00=HELLO 00! M01=------------ M02=------------ M03=------------

D1=------------ M10=------------ M11=------------ M12=------------ M13=------------ D2=------------

21

M20=------------ M21=------------ M22=------------ M23=------------

M30=------------ M31=------------ M32=------------ M33=------------

D3=------------

00 Writing to 0x80000000 (DRAM0): Above 00!

00 Read from 0x80000000 (DRAM0): Above 00!

TIME 0 s: 4:

D0=Above 00!

M00=HELLO 00! M01=------------ M02=------------ M03=------------

D1=------------ M10=------------ M11=------------ M12=------------ M13=------------ D2=------------

M20=------------ M21=------------ M22=------------ M23=------------

M30=------------ M31=------------ M32=------------ M33=------------

D3=------------

00 Writing to 0xA0000000 (DRAM1): Left 00!

00 Read from 0xA0000000 (DRAM1): Left 00!

TIME 0 s: 6:

D0=Above 00!

M00=HELLO 00! M01=------------ M02=------------ M03=------------

D1=Left 00! M10=------------ M11=------------ M12=------------ M13=------------ D2=------------

M20=------------ M21=------------ M22=------------ M23=------------

M30=------------ M31=------------ M32=------------ M33=------------

D3=------------

00 Writing to 0x20000000 (below): Below 00!

00 Read from 0x20000000 (below): Below 00!

TIME 0 s: 8:

D0=Above 00!

M00=HELLO 00! M01=------------ M02=------------ M03=------------

D1=Left 00! M10=Below 00! M11=------------ M12=------------ M13=------------ D2=------------

M20=------------ M21=------------ M22=------------ M23=------------

M30=------------ M31=------------ M32=------------ M33=------------

D3=------------

The test for Core00 in a 4x4 Checkerboard setting above shows that the read and write

requests from a Core can indeed be routed to the correct memory. In version 1.3 Checker-

board model, this test is performed in every Core to make sure that there are no payload

forwarding bugs in other Checkerboard configurations. To get the correct address from the

22

ID of a memory, a function called “id to memAddress” is provided to translate the y and

x ID value to 32bit address. To get the address of off-chip memories, simply type x and y

values 1 outside the border. In the case shown above, id -10 (off-chip memory above Core00)

returns 0x80000000 and id 10 (on-chip memory below Core00) returns 0x20000000. This

helper function will work for any width and height value within the 16x16 limit because it

also utilizes the “Address Bits” variable mentioned above.

2.3 Features and Functionalities of Checkerboard

Model

This section includes the basic features and functionalities of the Checkerboard model and the

options that the user have at compile time. This section also include the usage and options

that the user have if the user decides to use the automatic code generator for Checkerboard

user file. Notice that without the user filling in codes in each Core, the Checkerboard itself

does not have any functionality and will not have any output. There will be a demo function

included (also a flag for the code generator) that allows quick testing for Checkerboard’s

setup and connectivity. Details are included later this section.

To Compile the Checkerboard program manually without the help of codegen, the user will

first have to set the system environment variable (this can be done either inside or outside

makefile): If edit makefile variable:

SYSTEMC_HOME = path_to_systemc-2.3.3_pt

If set system variable in Linux (must comment out makefile SYSTEMC HOME):

setenv SYSTEMC_HOME path_to_systemc-2.3.3_pt

23

After setting the path to SystemC library. The makefile commands can function normally.

Use “make help” to display help messages.

> make help

"make width=[] height=[] checkerboard" to compile

"make checkerboard" to compile default 4x4

use codegen -h for codegen help

Without any additional arguments,“make checkerboard” would compile a standard 4x4

Checkerboard with just the provided file.

> make checkerboard

g++ -g -Wall -c checkerboard_user.cpp -o checkerboard_user.o \

-I/opt/pkg/systemc-2.3.3_pt/include -DGRID_HEIGHT=4 -DGRID_WIDTH=4

g++ -g -Wall -c checkerboard_arch.cpp -o checkerboard_arch.o \

-I/opt/pkg/systemc-2.3.3_pt/include -DGRID_HEIGHT=4 -DGRID_WIDTH=4

g++ -g -Wall checkerboard_user.o checkerboard_arch.o -o checkerboard \

-I/opt/pkg/systemc-2.3.3_pt/include -L/opt/pkg/systemc-2.3.3_pt/lib-linux64 \

-Xlinker -R -Xlinker /opt/pkg/systemc-2.3.3_pt/lib-linux64 -lsystemc

Use “make height=[1-16] width=[1-16] checkerboard” will compile Checkerboard

model with user defined width and height. This approach requires the user to provide their

own checkerboard user.cpp file with all the connectivities mentioned in previous section. If

the provided height and width does not match with the user file, the model will still likely

to compile but will not execute properly. An example is shown here:

> make height=3 width=3 checkerboard

g++ -g -Wall -c checkerboard_user.cpp -o checkerboard_user.o \

24

-I/opt/pkg/systemc-2.3.3_pt/include -DGRID_HEIGHT=3 -DGRID_WIDTH=3

g++ -g -Wall -c checkerboard_arch.cpp -o checkerboard_arch.o \

-I/opt/pkg/systemc-2.3.3_pt/include -DGRID_HEIGHT=3 -DGRID_WIDTH=3

g++ -g -Wall checkerboard_user.o checkerboard_arch.o -o checkerboard \

-I/opt/pkg/systemc-2.3.3_pt/include -L/opt/pkg/systemc-2.3.3_pt/lib-linux64 \

-Xlinker -R -Xlinker /opt/pkg/systemc-2.3.3_pt/lib-linux64 -lsystemc

Version 1.3 Checkerboard introduced user code generator “codegen.py”. The code generator

does automatic code generation for the aforementioned “checkerboard user.cpp” file. User

can type “codegen.py -h” to get help with the code generator, as shown below:

> codegen.py -h

usage: codegen.py [-h] [-d] [-o filename] [-c | -lc] [-r] height width

Code generator for checkerboard_user file

positional arguments:

height int value for the height of checkerboard in range of

1...16

width int value for the width of checkerboard in range of

1...16

optional arguments:

-h, --help show this help message and exit

-d, --demo add demo codes to generated file

-o filename, --output filename

output filename, by default

codegen_chekcerboard_user[h]x[w].cpp

25

-c, --compile compile the checkerboard

-lc, --onlycompile only compile codegen_checkerboard without printing

code

-r, --run run the executable after compile

26

Chapter 3

The Mandelbrot Set and Mandelbrot

Visualization Application

In this work, we choose the computation of the Mandelbrot Set as benchmark to evaluate

the Checkerboard platform model.

3.1 Definition of the Mandelbrot Set

The Mandelbrot set was first defined in 1978 by Robert W. Brooks and Peter Matelski [4],

then later on visualized with higher quality by Benoit Mandelbrot at IBM [23]. Mathemat-

ically, according to the original document, the Mandelbrot set defined as a set of complex

numbers c for which the function fc(zn+1)) = z2n + c does not diverge to infinity where iter-

ated from z = 0 [4]. To visualize the Mandelbrot Set, a program needs to treat the real and

imaginary parts of c as image coordinates on the complex plane, the number of iterations

each point takes to break the boundary can then be used to color the pixel that represent

a dot on the complex plane. For detailed definition and other mathematical experiments of

27

the Mandelbrot Set, please refer to the original documentation [4].

3.2 Base Model of Mandelbrot Set Visualization

The base model of Mandelbrot Set Visualization program is one of the many Mandelbrot

Visualization examples introduced in The Recoding Infrastructure for SystemC (RISC) [24]

[25]. The Mandelbrot Set Visualization SystemC model was developed by Professor Rainer

Doemer, Guantao Liu, Center for Embedded and Cyber-physical Systems (CECS) as a

demonstration for the various functionalities of RISC. As mentioned in section 1.2, this

Mandelbrot Set Visualization program is chosen to be mapped onto Checkerboard architec-

ture because of its outstanding scalability. This program allows the user to choose between

1 to 256 (must be the power of 2) active parallel units to calculate the Mandelbrot Set, as

shown in Figure 3.2. In addition, this program also offers many customizable parameters us-

ing preprocessor conditional definitions, for example, the maximum number of iterations, the

width and height of the generated images, the zoom factor, number of images, etc. (Figure

3.1).

This model, although with many customizable parameters and many more features, cannot

be used directly as the model to map onto the Checkerboard model. In addition, because the

goal of this project is to show the scalability of the Checkerboard architecture, many features

are left out unused from this base model. For example, the option to choose between linear

motion, faster motion and slower motion is completely irrelevant to this project and therefore

was simply kept in the 1.0 version of this model (explained in Section 3.3), there also exist a

cleaned-up version of the 1.0 model without these features for easier manipulation. Because

omitted features are relatively irrelevant to this project, details to these features in the base

model will not be included in this section.1

1More information can be found in the RISC git repository at http://www.cecs.uci.edu/~doemer/risc
[26].

28

http://www.cecs.uci.edu/~doemer/risc

#ifndef WIDTH // size of the image in pixels

#define WIDTH 640

#endif

#ifndef HEIGHT

#define HEIGHT 512

#endif

#ifndef MAX_ITER // depth of calculation

//#define MAX_ITER 1024

//#define MAX_ITER 2048

//#define MAX_ITER 3072

#define MAX_ITER 4096

#endif

#ifndef TARGET_ZOOM // zoom factor per step towards the target

#define TARGET_ZOOM 0.7

#endif

#ifndef NUM_IMAGES // number of images produced

#define NUM_IMAGES 20

#endif

#ifndef MAX_IMAGE_FILES // number of image files kept

#define MAX_IMAGE_FILES 0

#endif

#define LINEAR_MOTION // move in equidistant steps (constant speed)

//#define FASTER_MOTION // move in logarithmic steps (slow, then faster and faster)

//#define SLOWER_MOTION // move in logarithmic steps (fast, then slower and slower)

...

Figure 3.1: Examples of customizable parameters

3.2.1 The Base Model of Mandelbrot Set Visualization Explained

This subsection includes a high-level schematic and detailed top-down explanation of the

base model. Some module’s explanation involve SystemC knowledge, the specifics of which

can be found on SystemC official reference page at http://www.systemc.org [2].

A image of the high level schematic of this model is included here to show the structure

(Figure 3.3). Starting from the top level, the module that contains all submodules is named

TOP. In the schematic, TOP is the largest box that encloses every other module in this base

model.

29

http://www.systemc.org

#ifndef PAR // number of parallel units instantiated

//#define PAR 1

//#define PAR 2

//#define PAR 4

#define PAR 8

//#define PAR 16

//#define PAR 32

//#define PAR 64

//#define PAR 128

//#define PAR 256

#endif

...

#define M(n) MANDELBROT(n, (HEIGHT/PAR*(n-1)), (HEIGHT/PAR*n))

M(1)

#if PAR > 1

M(2)

#endif

#if PAR > 2

M(3) M(4)

#endif

...

Figure 3.2: Parallelism parameters

TOP

monitor

Platform

coords_channel image_channel

Data In Data Out

coords_channel image_channel

DUT

2x threads for mandelbrot

Data Structures (coordinates and images)

events

Stimulus

sc_port
sc_port

sc_port x2sc_port x2

Figure 3.3: High Level Schematic of Base Model of Mandelbrot Set Visualization

30

The next group of modules includes stimulus, platform and monitor. Stimulus is in charge

of creating the coordinates used for the Mandelbrot algorithm. The coordinates have a

custom data structure with 4 floating point numbers which represent the top, left, right and

bottom bound, as displayed in Figure 3.4. The coordinates are given as macro definitions

and can be edited either by changing the code or adding definitions during compile time.

The number of coordinates generated depends on the parameter “NUM IMAGES”, which

stands for number of images generated. Since each image would require a coordinate, the

number of coordinates generated from stimulus depends on the number of image parameter.

If the user is asking for more than 1 image, then each coordinate generated after the first one

will be zoomed in compared to the previous generated coordinate based on a zoom factor.

The zoom factor is also given as a macro definition and can be edited just like the starting

coordinates mentioned above. For example, the default zoom factor is set to 0.7 which means

each image will be zoomed into a 70% area of its previous image (accomplished by zooming

in the coordinates).

typedef struct Coordinates

{

float_t l; // left bound, e.g. -2.5

float_t r; // right bound, e.g. 1.0

float_t b; // bottom bound, e.g. -1.0

float_t t; // top bound, e.g. 1.0

friend ostream& operator<<(ostream& os, const Coordinates& co);

} COORDS;

Figure 3.4: Custom Data Structure for Coordinates

Once a coordinate is created in module Stimulus, it needs to be passed to module named

Platform, which is the container for module Data In, Data Out, and DUT. The module

in charge of communication between Stimulus and Platform, named “coords channel”, is a

SystemC specific class called “Channels”. Since the class is rather complex, only the basics

will be explained in this paper. The minor details will not be included here in this paper,all

31

the detailed information about SystemC Channels can be found on SystemC official reference

page at http://www.systemc.org [2]. SystemC Channels, in short, are communication

classes between 2 modules. Channels are used for Transaction-level Modeling (TLM) and

generally used in TLM-1.0 SystemC modeling, the differences between TLM-1.0 and TLM-

2.0 (which is used in later models including Checkerboard) are explained in detail in Section

3.2.3. The channels used to communicate between Stimulus and Platform are user-defined

first-in-first-out (FIFO) channel that sends coordinates from Stimulus to Platform. The other

channels (marked with yellow color in Figure 3.3) are also user-defined FIFO channels but

used for communicating different data/data structures. In addition to Channels being used

for inter-module communication, each module also have ports thats connected to channels in

order to successfully transfer data. Port(s) inside each module are marked as yellow semi-oval

in Figure 3.3.

When coordinate reaches Platform, they first get fed into the module “Data In” as shown

in Figure 3.3. The module “Data In” is a infinite loop of sending coordinate right after

receiving the coordinate from Stimulus. Similarly, the module “Data Out” is also a infinite

loop of sending images through the image channel (marked yellow in Figure 3.3) right after

receiving images from DUT. The purpose of “Data In” and “Data Out” is to keep a clear

boundary between the clean SystemC hardware model and the “dirty” C++ software code

in Stimulus and Monitor. Same as every other component in this model, both “Data In”

and “Data Out” have sc port to communicate with SystemC Channel in order to send and

receive data from other modules.

32

http://www.systemc.org

DUTsc_port sc_port

.......

thread

1

thread

2

thread

3

thread

4

thread

5

thread

6

thread

n-2

thread

n-1

thread

n

Coordinates

Image

Figure 3.5: Schematic of DUT module of Base Model of Mandelbrot Set Visualization

Once “Data In” sends coordinates to Design Under Test (DUT) module, the Mandelbrot

parallel units, as shown in Figure 3.5, would start. As mentioned above, the number of

parallel units “n” used is a preprocessor macro defined at either the beginning of the C++

file or during compile time. The number of parallel units can only be power of 2, such as 1,

2, 4, 8, etc., the maximum number of parallel units is 256. Using the power of 2 numbers of

parallel units (SystemC threads) is to avoid indivisible numbers since each thread is taking

a equal number of rows in the image. For example, if the image width is 640 and height is

512, using 16 units means each unit will get (512/16) = 32 rows of pixels. If using 15 units,

each thread would have (512/15) rows, which is not a whole number. Given using n number

of units, the x-th unit will compute and draw row HEIGHT
n

∗ (x− 1) to row HEIGHT
n

∗ (x). For

example, if using 16 units, or n = 16, with image size 640 ∗ 512, the 1st unit will computer

33

and draw row 0 to row 32, as illustrated in Figure 3.6.

Figure 3.6: Example of 640 * 512 Mandelbrot with 16 Parallel Slices

typedef struct Image

{

unsigned char R[HEIGHT][WIDTH];

unsigned char G[HEIGHT][WIDTH];

unsigned char B[HEIGHT][WIDTH];

......

} IMAGE;

Figure 3.7: Custom Data Structure for Images

All parallel unit will be working on 1 instance of a custom data strucutre named “Image”

as shown in Figure 3.7. The data structure “Image” consists of three conflict-free 2-D array

34

of characters to store a pixel’s Red, Green and Blue value. Each color value ranges from 0

to 255, therefore arrays of characters are used to represent RGB values of pixels (in C++,

characters are 1byte in size, which ranges from 0 to 255). The size of each 2-D array is

defined by the user, which is HEIGHT * WIDTH, the height value by default is 512 and

width by default is 640. Inside each thread, the function fc(zn+1)) = z2n + c will be executed

in a while loop to determine the number of iterations each pixel takes to breach the threshold.

The while loop will also break if the number of iterations reaches the maximum number of

iterations defined by the user (set to 4096 by default). After getting the iteration number

for a pixel, that iteration number is modulated and mapped to a color to be displayed on a

image. There are 16 available colors as shown in Figure 3.8, this is also shown in Figure 3.6.

Once the color (R,G,B values) are assigned to that pixel, the program will update the pixel

value on Simple DirectMedia Layer (SDL), which reflects on user’s display. After calculating

and displaying all assigned pixels of that image, thread will pause and wait for the next

coordinate to start the next image. If the entire image is filled, DUT will sent the image

to module “Data Out” via custom channels like the channel between “Data In” and DUT.

When an image is sent, DUT reads the next available coordinate from “coords channel”

and begins the next image. This cycle is inside an infinite while loop, in other words, DUT

will always read coordinate, calculate and draw pixels, it does not end the program. The

module “Monitor” is in charge of ending the program when it receives the expected number

of images.

The module “Monitor”, like “Stimulus”, is not part of the Platform or Design Under Test

(DUT), therefore it contains dirty code that is not SystemC and does not follow SystemC

standard. As the name suggest, the module “Monitor” receives and observes the output of

the DUT. In addition to receiving the image from DUT, module “Monitor” carries other

functionalities. If the user decides to save the displayed Mandelbrot image, the user can edit

the preprocessor directive “MAX IMAGE FILES” to more than 0 to keep the generated

image. Images saved will be in PPM format, if the user add “-JPEG” flag during compila-

35

const unsigned char palette[NCOLORS][3] = {

// r g b

{ 0, 0, 0 }, // 0, black

{ 127, 0, 0 }, // 1, brown

{ 255, 0, 0 }, // 2, red

{ 255, 127, 0 }, // 3, orange

{ 255, 255, 0 }, // 4, yellow

{ 127, 255, 0 }, // 5, light green

{ 0, 255, 0 }, // 6, green

{ 0, 255, 127 }, // 7, blue green

{ 0, 255, 255 }, // 8, turquoise

{ 127, 255, 255 }, // 9, light blue

{ 255, 255, 255 }, // 10, white

{ 255, 127, 255 }, // 11, pink

{ 255, 0, 255 }, // 12, light pink

{ 127, 0, 255 }, // 13, purple

{ 0, 0, 255 }, // 14, blue

{ 0, 0, 127 }}; // 15, dark blue

Figure 3.8: 16 Colors Available to be Mapped

tion of the program, “Monitor” will keep the image in both PPM format and JPG format

(there is no difference between JPG and JPEG format). Another important functionality

of “Monitor” is to terminate the program when the number of images are generated and

sent to “Monitor”. Because the modules inside “Platform” are running forever (just like real

hardware would), module “Monitor” is needed to terminate the SystemC simulation when

there is no more work to be done by the system.

3.2.2 Functionalities of the Base Model of Mandelbrot Set Visu-

alization

This subsection will include the basic functionalities of this base model and detailed expla-

nation of how they work. Some of the explanations will involve SystemC knowledge, the

specifics of which can be found on their official reference page at http://www.systemc.org

[2]. As mentioned above, some features of this base model will not be introduced in detail

36

http://www.systemc.org

in this session. These omitted features are listed here:

• Use -DBLACKWHITE to display black and white images instead of colored ones.

• Use -DVECTORIZE to use OpenMP SIMP vectorization with Intel compiler.

• Use -DFASTER MOTION and -DSLOWER MOTION to use logarithmic steps to

speed up or slow down the motion.

• Use -DUSE SC THREAD option to use SystemC Method instead of SystemC Thread.

The listed features are simply kept untouched in later versions of the Mandelbrot set visual-

ization program but is not mapped onto Checkerboard. There exist a variation of the version

1.0 Mandelbrot set visualization program without the code of the listed features, which allows

for easier understanding and code manipulation. The cleaned up version can also be found

in this project’s git repository at http://www.cecs.uci.edu/~yutongw5/mandelbrot_GPC

[27].

When downloading and compiling files, both the mandelbrot.cpp file and the SDL files

(sdlsysc.c, sdlsysc.h) are needed. The SDL files are a modified version of the original SDL

library to fit for the SystemC libraries. Using the provided Makefile, user can compile the

program with default settings. Before running the make command, user must set the correct

system environment, the recommended system environment setting is as follows (SystemC

2.3.1 is also recommended, using other versions might cause problems):

setenv SYSTEMC_HOME path_to_/systemc-2.3.1_pt

An example complication process is as follows:

> make mandelbrotX_seq

g++ sdlsysc.c -c -O2 ‘sdl-config --cflags‘ -o sdlsysc.o

37

http://www.cecs.uci.edu/~yutongw5/mandelbrot_GPC

g++ mandelbrot.cpp \

-I${SYSTEMC_HOME}/include \

-L${SYSTEMC_HOME}/lib-linux64 \

-Xlinker -R -Xlinker ${SYSTEMC_HOME}/lib-linux64 \

-O2 -DPAR=32 -DDISPLAY -DWIDTH=640 -DHEIGHT=512 -DMAX_ITER=4096 -DNUM_IMAGES=5

-DMAX_IMAGE_FILES=0 sdlsysc.o ‘sdl-config --libs‘ -lX11 \

-lsystemc -o mandelbrotX_seq

Simply type make mandelbrotX seq will compile the program with basic default arguments

for the Mandelbrot Visualization program. If the user decides to manually compile with

different arguments, the available arguments are:

1. Use -DPAR = (integer) to changing the number of working units: this argument deter-

mines the number of working units in threads (or SystemC methods) of the Mandelbrot

Visualization program. More units working means the image will be divided into more

blocks and each unit will get smaller blocks, given that the image size stay the same.

In the example given above, setting 32 working units with -DPAR=32 means each unit

will work on 512/32 = 16 rows, each row have 640 pixels.

2. Use -DDISPLAY = (integer) to toggle display option: The -DDISPLAY will turn on

the X11 display window for this program and allows the user to see the image getting

formed, the user need to have X11 enabled to see the display window. This is among

one of the omitted features in the mapped model so no detailed information will be

provided here. This feature is kept in version 1.0 Mandelbrot Set Visualization model.

3. Use -DWIDTH = (integer) and -DHEIGHT = (integer) to change the size of image

being calculated and produced: by default the image size is 640 pixels in width and 512

pixels in height. Changing these parameters will directly result in different simulated

time and simulator runtime. If the width and height of a image is too large, it may

38

result in extra long simulator runtime.

4. Use -DMAX ITER = (integer) to change the number of iterations required to stop

calculating a pixel: as explained in section 3.2.1, this model uses the Mandelbrot

function fc(zn+1)) = z2n + c in a while loop and the MAX ITER is the terminating

condition. Getting a smaller max iteration number will result in a different image.

If the MAX ITER is set to a higher number than default, which is 4096, then the

simulator run time and simulated time will be longer and vise versa.

5. Use -DNUM IMAGES = (integer) to change the number of generated images: this

argument determines the number of coordinates sent to module DUT and the number

of images calculated and displayed on X11 window. By default there will be 5 images,

changing this to a larger number will result in longer simulator run time and simulated

time and vise versa.

6. Use -DMAX IMAGE FILES = (integer) to change the number of generated image

kept (in folder): this argument determines the number of generated images kept on

the machine. By default, this is set to 0, which means all images generated on the

machine will be deleted. This argument is changed to -DSAVEIMAGE later in the

mapped version of Mandelbrot Set Visualization, but the functionality remains the

same. User can also use -DJPEG to save images to JPG format. Without -DJPEG

argument, all the images are in .ppm format.

3.2.3 Limitations of the Base Model

The major reason why this version of the Mandelbrot Visualization program is not directly

used is that this SystemC model is programmed with TLM-1. According to the official IEEE

Std 1666-2011 Chapter 10.1 [28], TLM-1 standard “has three shortcomings with respect to

the modeling of memory-mapped buses and other on-chip communication networks.” These

39

shortcomings include: TLM-1 has no standard transaction class and TLM-2.0 uses generic

payload to address this issue. TLM-1 has no explicit support for timing annotation, no

standardized way of communicating timing information between models. TLM-2.0 added

timing annotation function arguments to the transport interface. TLM-1 interfaces require

all transaction data to be passed by value or constant reference (which may slow down

simulation) and TLM-2 passes transaction object by non-constant references, which is faster

for modeling memory-mapped buses.

In addition to the lack of TLM-2.0 features, the base model is also not memory-accurate.

As shown in Figure 3.5, the module DUT contains all the working units, the coordinate and

the image. This is not an accurate representation of the actual hardware, data should be

separated from the working units in a different module. In other words, coordinates and

images cannot be stored in a “CPU”, they should be stored in a memory. Because of this

lack of memory and communication between memory and processor, the simulated time of

the base model would not be accurate. On top of the inaccuracy of simulated time, the

base model also cannot properly simulate memory space: this model have essentially infinite

memory for coordinates and images, which is not accurate at all. Since memory management

is essential for any hardware designs, having memories represented in this model and taking

memory-processor communication are necessary. Also, because the “checkerboard” model

will be memory accurate and implemented with SystemC TLM-2.0, a TLM-2.0 base model

is needed for comparing their timing data.

3.3 Version 1.0 of Mandelbrot Set Visualization

The version 1.0 Mandelbrot Set Visualization model overcomes the limitations within the

base model and kept all the features (detailed in section 3.2) that are not relevant to

this project. The 1.0 model is implemented with SystemC TLM-2.0 features and there-

40

fore contains standard transaction class have support for detailed timing annotation with-

out sacrificing the speed of the simulator. Because the 1.0 model does contain memories

and have the correct behavior of the actual hardware, this model will be used to mapped

onto Checkerboard model and also work as a reference for ideal model with perfect scal-

ability. Detailed information on the differences between the base model and 1.0 model

is included in this section. The source code is also available on CECS official website at

http://www.cecs.uci.edu/~yutongw5/mandelbrot_GPC [27].

3.3.1 1.0 Model of Mandelbrot Set Visualization Explained

This subsection will include a high-level schematic of the 1.0 model of Mandelbrot Set Vi-

sualization and detailed top-down explanation the different module compared to the base

model. Some sections will involve SystemC knowledge, the specifics of which can be found

on SystemC official reference page at http://www.systemc.org [2].

A image of the high level schematic of this model is included here to show the structure

and conntectivity of the model (Figure 3.3). Starting from the top level, similar to the base

model, the module that contains all submodules is named TOP, the largest box that encloses

every other module in this model.

All updates from the base model to 1.0 model are within the Platform module. Module

Stimulus, Monitor, coords channel and image channel all remain the same, because they are

not part of design under test and can have non-TLM-2.0 modules or “dirty” code.

Starting from module Data In, the difference is shown in Figure 3.9 as the triangle

pointing outwards of the Data In module. Replacing the sc port in that position, a

simple initiator socket is used for communication between TLM-2.0 modules (simple

initiator socket is under tlm utils name space, detailed can be found on SystemC reference

41

http://www.cecs.uci.edu/~yutongw5/mandelbrot_GPC
http://www.systemc.org

TOP

Stimulus monitor

Platform

coords_channel image_channel

Data In Data Out

DUT

2x threads for mandelbrot (0<x<9)

Memory 4p

 initiator
socket

target
socket

target
socket initiator

socket

target
socket

target
socket

 initiator
socket

 initiator
socket

Figure 3.9: High Level Schematic of 1.0 Mandelbrot Set Visualization

page). To put it in a simpler way, initiator sockets start the communication process and

sends a payload toward target sockets, when target sockets receive a request, it loads the

data pointer based on the requested address in the payload sent by the initiator socket. In

the 1.0 model, all TLM-2.0 modules are connected via initiator sockets and target sock-

ets, which will have generic payload and have explicit support for timing annotation. Each

initiator socket is and must connect to target socket. In the case of the initiator socket

in Data In, the initiator socket is connected to a target socket in module Memory 4p (4p

stands for 4 ports). The same type of initiator socket and target socket pair is also used for

communication between module Data Out and Memory 4p.

Another difference between version 1.0 model and the base model of Mandelbrot Set Visual-

ization is the addition of memory unit. Because the inclusion of memory, 1.0 model is more

memory accurate compared to the base model: all the data structures and variables are

stored inside DUT in the base model whereas in 1.0 model, key data structures are stored in

42

DUT

.......

thread

1

thread

2

thread

3

thread

4

thread

5

thread

6

thread

n-2

thread

n-1

thread

n

Memory 4p

target
socket

target
socket

target
socket

target
socket

 initiator
socket

 initiator
socket

M bytes

Coordinates

Image

Coordinates

Image

Counters

Figure 3.10: DUT schematic of 1.0 Mandelbrot Set Visualization

memory. Since the 1.0 model is not a total accurate representation of the hardware and is a

high-level model, not all data will be stored in memory, as shown in Figure 3.10, there are

local copies of coordinates and images. Although the model is not 100% memory accurate,

module DUT still need to read coordinates from memory and write Image into memory with

proper timing. The added counters in the memory and DUT was needed to prevent the

lost of events and to synchronize between producer modules and consumer modules (losing

43

events is a SystemC issue and will not be introduced in detail).

Besides the addition of memory module and change of means of communication between

different modules, there is no significant change in the calculation for each pixel from the

Mandelbrot function in module DUT. There is also no change to module Stimulus and

Monitor, therefore there is no change to how the coordinates are produced or how each pixel

is updated and displayed in SDL window.

3.3.2 Functionalities of the 1.0 Model of Mandelbrot Set Visual-

ization

The functionalities of the 1.0 Model of Mandelbrot Set Visualization are the same as base

model with only few additions. The overlapping features will be listed below and will not

be explained in detail. The output images (given the same parameters) of the 1.0 model

is exactly the same as the base model as well. There are new functions added to calculate

simulated time and will be explained in this session in detail. To use the model, system

environment settings and compilation process is similar to the base model. This is an example

to setup system environment and compile with the provided Makefile:

setenv SYSTEMC_HOME path_to_/systemc-2.3.1_pt

>make mandelbrotX_TLM2

g++ sdlsysc.c -c -O2 ‘sdl-config --cflags‘ -o sdlsysc.o

g++ mandelbrot_TLM2.cpp \

-I${SYSTEMC_HOME}/include \

-L${SYSTEMC_HOME}/lib-linux64 \

-Xlinker -R -Xlinker ${SYSTEMC_HOME}/lib-linux64 \

44

-O2 -DPAR=32 -DDISPLAY -DWIDTH=640 -DHEIGHT=512 -DMAX_ITER=4096 -DNUM_IMAGES=5

-DMAX_IMAGE_FILES=0 sdlsysc.o ‘sdl-config --libs‘ -lX11 \

-lsystemc -o mandelbrotX_TLM2

If the user decides to compile manually, these are the available arguments, the overlapped

arguments are listed here details can be found in section 3.2.2.

• Use -DBLACKWHITE to display black and white images instead of colored ones.

• Use -DVECTORIZE to use OpenMP SIMP vectorization with Intel compiler.

• Use -DFASTER MOTION and -DSLOWER MOTION to use logarithmic steps to

speed up or slow down the motion.

• Use -DUSE SC THREAD option to use SystemC Method instead of SystemC Thread.

• Use -DPAR = (integer) to changing the number of working units.

• Use -DDISPLAY to toggle display option.

• Use -DWIDTH = (integer) and -DHEIGHT = (integer) to change the size of image

being calculated and produced.

• Use -DMAX ITER = (integer) to change the number of iterations required to stop

calculating a pixel.

• Use -DNUM IMAGES = (integer) to change the number of generated images.

• Use -DMAX IMAGE FILES = (integer) to change the number of generated image kept

in folder.

The added functionalities are listed here:

45

• Use -DCALC TIMING to display simulated time for calculation: add this argument

during compilation makes the program display the total unit time all calculation units

spend on calculating the pixels for the Mandelbrot Set. Each iteration spent on the

Mandelbrot equation will add 1 to the total number of calculation time. This argument

should not be used with -DMEM TIMING because both timings are calculated in unit

time and cannot be distinguished between one another.

• Use -DMEM TIMING to display simulated time for communication: add this argument

during compilation makes the program display the total unit time the memory unit

spend on responding to all reading and writing requests from other components in the

model. Each word read and write will add 1 to the total number of communication

time. This argument should not be used with -DCALC TIMING because both timings

are calculated in unit time and cannot be distinguished between one another.

The timing arguments will be used to get the simulated calculation and communication time

of the 1.0 Mandelbrot Set Visualization model. The obtained timing data will be used to

compare with timing data from the mapped GPC version of the Mandelbrot Set Visualization

in later sections in this paper.

3.3.3 Scalability and Timing of the 1.0 Model of Mandelbrot Set

Visualization

As mentioned in section 3.3.1 and section 3.3.2, the 1.0 model is more memory accurate

relative to the base model. In terms of the memory accuracy of the model, it is still far off

from the actual hardware. The 1.0 model’s DUT in Figure 3.10 is designed to have perfect

scalability, because each calculating unit has uncontested access to coordinate and image.

There is no contention between the single coordinate instance (or image instance) and the

presumably hundreds of working units. This is equivalent to a hardware having an infinite

46

speed data bus that allows instant transfer from the memory to each working unit. Therefore

the simulated communication time only includes the delay caused by the memory itself and

nothing between the memory and working units. Even though the simulated communication

time is only approximate, this is still valuable data. Because the mapped checkerboard model

will have a more realistic communication timing, timing data from the 1.0 model (which is

perfectly scalable) can be used to compare against the more realist model to prove that the

checkerboard model can scale up or down without being that much slower than the ideal

model.

47

Chapter 4

Mapping of Mandelbrot Set

Visualization onto Checkerboard

Model

This chapter includes a detailed explanation of an example mapping of a Mandelbrot Set

Visualization application on a 4x4 Checkerboard model (the same example model used in the

previous chapter). This mapping had many variations and has gone through multiple versions

and stages. In the features and schematic sections, only the latest version of the Mandelbrot

on Checkerboard model will be used. The latest Mandelbrot on Checkerboard model git

repository can be downloaded at http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC

[27] .

48

http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC

4.1 Example Mandelbrot on Checkerboard 4x4 Ex-

plained

This section includes a high-level schematic of the Mandelbrot on Checkerboard model with

an example 4x4 layout Checkerboard base model (the same layout used in previous chapter)

as well as a schematic detailing how this mapping works on a logic level. Given that the

simulated hardware of the Checkerboard model does not change, there is no need to explain

everything about the Checkerboard again. Additionally, the Mandelbrot Set Visualization

program also remains very similar to the Model 1.0 Mandelbrot Set Visualization program

in Chapter 3, only the few differences between the mapped model and the 1.0 Mandelbrot

model will be included here.

As shown in Figure 4.1, the overall structure of the mapped model is very similar to the

Checkerboard structure in Figure 2.1 in the previous chapter. The only difference between

the two models is how the Stimulus and Monitor are connected to the off-chip memories on

top and bottom outside of the center Checkerboard. The top and bottom off-chip memories,

different from the default off-chip memories which have one socket and are only connected

to the off-chip memory Mux, have two target sockets. One of the two sockets is used for

the off-chip memory Mux and the Checkerboard, the other socket is connected directly to

Stimulus and Monitor. This direct connection from Stimulus/Monitor to off-chip memory

sockets avoids the additional contention introduced to the off-chip memory Mux compared

to the other method.

Since the hardware schematic does not help much with the understanding of the actual

mapping, another schematic is needed. The logic schematic, displayed in Figure 4.2, shows

the separation and distribution of a Mandelbrot image. Similar to the base Mandelbrot Set

Visualization model and the later versions, every image is divided into different slices (shown

in Figure 3.6). Each Core in the mapped Checkerboard model is in charge of one slice of

49

Top

Stimulus

Monitor

Memory

off-chip, 1

Memory

off-chip, 2

Memory

off-chip, 3

Memory

off-chip, 0

Checkerboard

Mux

M
ux

M
ux

Mux

Cell

1, 0

Memory

on-chip

Core

DemuxMux

Cell

0, 0

Memory

on-chip

Demux Mux

Cell

1, 1

Memory

on-chip

Core

DemuxMux

Cell

0, 1

Memory

on-chip

Demux Mux

Cell

1, 2

Memory

on-chip

Core

DemuxMux

Cell

0, 2

Memory

on-chip

Demux Mux

Cell

1, 3

Memory

on-chip

Core

DemuxMux

Cell

0, 3

Memory

on-chip

Demux Mux

Cell

3, 0

Memory

on-chip

Core

DemuxMux

Cell

2, 0

Memory

on-chip

Demux Mux

Cell

3, 1

Memory

on-chip

Core

DemuxMux

Cell

2, 1

Memory

on-chip

Demux Mux

Cell

3, 2

Memory

on-chip

Core

DemuxMux

Cell

2, 2

Memory

on-chip

Demux Mux

Cell

3, 3

Memory

on-chip

Core

DemuxMux

Cell

2, 3

Memory

on-chip

Demux Mux

Core Core Core Core

Core Core Core Core

Figure 4.1: High-level Schematic of Mandelbrot on Checkerboard 4x4 Model, figure modified
from [1]

the image as illustrated in Figure 4.3. However, dividing the image among many cores and

combining all slices into one image at the bottom off-chip memory is no trivial task, many

more steps are needed to map the Mandelbrot Set Visualization Application. To put it in a

simple way, each black line in Figure 4.2 represents a flow of 4 slices of the complete image.

50

Slice0

Slice2

Slice3

Slice4

Slice5

Slice6

Slice7

Slice8

Slice9

Slice10

Slice11

Slice12

Slice13

Slice14

Slice15

Slice16

Stimulus

Image

Coordinates

Monitor

Figure 4.2: Logic Schematic of Mandelbrot on Checkerboard 4x4 Model

Because the Checkerboard model in this example has a 4x4 layout, every column would

produce 4 slices. In a 3x3 Checkerboard layout, the Mandelbrot on Checkerboard Model will

then have 9 slices, which also makes each column of Cells produce 3 slices.

In Figure 4.4, the simplified dataflow of a single column of Mandelbrot on Checkerboard

4x4 is shown. The red block represents the Core and the blue block represents the memory.

There are 4 columns of Cells in this example 4x4 Checkerboard and therefore 4 black lines

shown in Figure 4.2 (the logic schematic of Mandelbrot on Checkerboard 4x4). Starting from

the very first row (Cells with a id y=0), each Core needs to fetch the current Coordinates

(the same Coordinates in Mandelbrot Base model and later variants) from the memory above

51

Figure 4.3: Mandelbrot Slices assigned to GPC Cores

that Core. The function PopCoord() distinguishes if the Core is the first row, in the case of

first row Cores, PopCoords() takes the generated Coordinate from the top off-chip memory

and writes a counter for the Stimulus to keep track. If the Core is not in the first row,

then PopCoords() will simply take the Coordinates from the on-chip memory of its neighbor

above and write a counter to keep track of the number of Coordinates.

The next function, PushCoords(), as the name suggest, pushes the Coordinates to the local

memory of that Core. This function is rather simple and straightforward, with the only

exception being Cores in the last row. Because there is no more Core below the last row,

there is no need for the Cores in last row to forward more Coordinates for other Cores, and

52

PopCoord();

PushCoord();

mandelbrot(...)

PushSlice();

PopCoord();

PushCoord();

mandelbrot(...)

PushSlice();

PopSlice();

PushSlice();

PopCoord();

PushCoord();

mandelbrot(...)

PushSlice();

PopSlice();

PushSlice();

PopSlice();

PushSlice();

PopCoord();

mandelbrot(...)

PushSlice();

PopSlice();

PushSlice();

PopSlice();

PushSlice();

PopSlice();

PushSlice();

Figure 4.4: Example Dataflow per Column of Cells of Mandelbrot on Checkerboard 4x4

thus there is no PushCoords() in the last pink block in Figure 4.4

After a Core acquires a Coordinate for the Mandelbrot calculation function with PopCoord()

and passes that Coordinate to the next Core with PushCoord() (with the exception of last

53

row), that Core can start its Mandelbrot calculation function. The Mandelbrot function in

each Core can be simplified to the following:

void Core::mandelbrot(int rowStart, int rowEnd, SLICE& slice){

for(int row = rowStart; row < rowEnd; row++){

for(int col = 0; col < WIDTH; col++)

{

[mandelbrot calculation]

}

#ifdef DISPLAY

[update slice in X11 window]

#endif

}

The Mandelbrot function takes the starting row location, the end row location and the

address to the slice data structure. The parameter “rowStart” and “rowEnd” is determined

based on the x id and y id of the Core.

Once each pixel in a slice is calculated, the Core needs to write that slice to a memory.

Depending on the position of the Core, a non-last row Core will push the slice into its

local on-chip memory while the last row Core will push the slice directly onto the bottom

off-chip memory. The PushSlice() function checks if the Core is in the last row and make

adjustments to the place where the slices are pushed into. Besides the last-row special case,

the PushSlice() function also checks if the local memory is on the left or the right of the Core

and notifying the right memory signal. Similar to the PushCoord() function, the PushSlice()

function also notifies the event of the memory that it wrote into, letting other Cores know

that a Slice has been pushed.

Slices in the on-chip memories cannot magically get to the bottom off-chip memory and

54

therefore the Cores will also have to forward slices from their neighbors once they are done

calculating their own Mandelbrot slice. The PopSlice() function, when used with the Push-

Slice() function, allows each Core to transfer a Slice of the Mandelbrot image from the above

neighboring memory to its local on-chip memory. As shown in Figure 4.4, the first row Cores

do not need PopSlice(), this is simply because they do not have a neighbor Core on top of

them to produce a Slice. For other Cores that are not in the first row, the number of Pushing

and Popping Slice depends on the id y of that Core. For example, the Core in 3rd row will

need to Push its own Slice, Pop Slice from second row, Push it, then Pop Slice from first row,

then Push it again, so total of 3 Pushes and 3 Pops. Similar to the PushSlice() function,

PopSlice() also notifies the event of the memory that it reads from, letting the writer Core

knew that the Slice was popped from the queue.

When a Slice gets pushed to the bottom off-chip memory, module Monitor, which listens

to the event of the bottom off-chip memory, gets notified that a Slice has been written to

the off-chip memory. Monitor waits till every slice of that image is filled and then displays

a message that an image has been formed. Once the images received matches the number

of images specified by the user, Monitor will stop the simulation. The Monitor module

also has other functionalities such as display the received image on a X-11 window with the

-DMONITOR flag during compilation and writing the image to a ppm/jpeg file.

4.2 Functionalities of Scalable GPC Mandelbrot

Model

This section includes the basic features and functionalities of the Mandelbrot on Checker-

board model. This section also includes the usage and options that the user has if the

user decides to use the automatic code generator for Mandelbrot on Checkerboard user files.

55

Notice that the Mandelbrot Set Visualization program and its image calculation methods

remains the same across the base model of Mandelbrot Set Visualization, its later variants

and this mapped Mandelbrot on Checkerboard model.

To compile the Mandelbrot on Checkerboard model manually without the help of code

generator, the user will first have to set the system environment variable either inside the

Makefile or in linux terminal. If edit the Makefile variable:

SYSTEMC_HOME = path_to_systemc-2.3.3_pt

If set system variable in Linux (must comment out makefile SYSTEMC HOME):

setenv SYSTEMC_HOME path_to_systemc-2.3.3_pt

After setting the path to systemC library. The makefile can compile properly. Use “make

help” to display help messages.

> make help

use "make mandelbrotX_GPC" to compile base version 4x4 layout

use "make width=[] height=[] mandelbrotX_GPC" to compile with custom user file

use "codegen -h" to get help info for codegen

These makefile commands have exactly the same functionalities as introduced in Section 2.3.

Please refer to previous chapter for detailed information on basic compilation options. Be-

sides the basic compilation rules, Mandelbrot on Checkerboard also offers other compilation

options. Some options are different from the Mandelbrot 1.0 model, here are some of the

similar options:

• Use -DWIDTH = (integer) and -DHEIGHT = (integer) to change the size of image

being calculated and produced.

56

• Use -DMAX ITER = (integer) to change the number of iterations required to stop

calculating a pixel.

• Use -DNUM IMAGES = (integer) to change the number of generated images.

The additional/different functionalities are listed here:

• Use -DSAVE IMAGE to write and save image in the working directory. A reference

image can be found in Appendix.

• Use -DJEPG to also save the image as .jpg format. A reference image can be found in

Appendix.

• Use -DDISPLAY to enable display window for views inside the working Checkerboard

Cores as the pixels are calculated.

• Use -DMONITOR to enable display window for views inside the bottom off-chip mem-

ory as the Monitor detects incoming Slices of the image.

• Use -DCALC TIMING to display simulated time for calculation: add this argument

during compilation makes the program display the total unit time all calculation units

spend on calculating the pixels for the Mandelbrot Set. Each iteration spent on the

Mandelbrot equation will add 1 to the total number of calculation time. This argument

should not be used with -DMEM TIMING because both timings are calculated in unit

time and cannot be distinguished between one another.

• Use -DMEM TIMING to display simulated time for communication: add this argument

during compilation makes the program display the total unit time the memory unit

spend on responding to all reading and writing requests from other components in the

model. Each word read and write will add 1 to the total number of communication

time. This argument should not be used with -DCALC TIMING because both timings

are calculated in unit time and cannot be distinguished between one another.

57

Version 1.5 Mandelbrot on Checkerboard introduced a user code generator “code-

gen mandelbrot.py”. This code generator is built on top of the existing code generator

for the Checkerboard model with the additional functions and scalable Core codes needed

for the Mandelbrot on Checkerboard model. User can type “codegen mandelbrot.py -h”

to get help with the code generator, as shown below:

> codegen_mandelbrot.py -h

usage: codegen_mandelbrot.py [-h] [-o filename] [-c | -lc] [-r] height width

Code generator for checkerboard_user_mandelbrot file

positional arguments:

height int value for the height of checkerboard in range of

1...16

width int value for the width of checkerboard in range of

1...16

optional arguments:

-h, --help show this help message and exit

-o filename, --output filename

output filename, by default

codegen_chekcerboard_user[h]x[w].cpp

-c, --compile compile the checkerboard

-lc, --onlycompile only compile codegen_checkerboard_mandelbrot without

printing code

-r, --run run the executable after compile

58

Chapter 5

Experimental Results

This chapter introduces our experimental setup and testing methodology for Mandelbrot

Set Visualization 1.0 Model and Mandelbrot on Checkerboard. All models used in the

experiment are the latest version and can be accessed directly from the git repository at

http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC [27]. All recorded results are in

unit time since the actual data for components, such as on-chip memory, off-chip memory,

multiplexers and demultiplexers requires in-depth research and cannot be done with the time

constraints.

5.1 Experimental Setups

All experiments for Mandelbrot Set Visualization share the same parameters with the only

difference being the amount of parallel units. The parallel unit parameter for Mandelbrot

1.0 Model is set by changing the -DPAR= (integer) flag and the amount of parallel working

Cores for Mandelbrot on Checkerboard Model is set by changing the GRID WIDTH and

GRID HEIGHT parameter. Then user code can be generated with the code generator. All

59

http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC

experiments run on the same machine ‘delta’ with fixed frequency at 3.4Ghz. All experiments

also have display turned off and no images saved at the end. This is done to avoid delays

introduced from the network. The calculation unit time is obtained by adding only the

-CALC TIMING flag for both models. The communication unit time is obtained by having

both the -CALC TIMING and -MEM TIMING flag, then subtract the calculation unit time.

The detailed information of the timing flags are included in Chapter 2 and Chapter 4.

Experiments for Mandelbrot Set Visualization 1.0 Model and Mandelbrot on Checkerboard

both use the following parameters:

-DWIDTH=640 -DHEIGHT=576 -DMAX_ITER=4096

-DNUM_IMAGES=5 -DMAX_IMAGE_FILES=0

5.2 Data Collected

Table 5.1 show experimental results for Mandelbrot Set Visualization 1.0 Model. Due to

spacial constants, some acronyms are used in the table: “PU” stands for number of Parallel

Units used in Mandelbrot set calculation. “Calc UT” stands for Computation Unit Time,

which is the simulated time for only computation. “Comm UT” stands for Communication

Unit Time, which is the simulated time for only communication. “SRT” stands for Simulator

Run Time (in seconds), which is measured in real time. “IF” stands for Improvement

Factor, which is calculated from dividing the current Calculation Unit Time by the previous

Calculation Unit Time.

60

PU Calc UT Comm UT SRT (sec) IF

1 4075078882 1658988 18.45

2 2543059511 1658988 18.85 1.602

4 1471609768 1658988 19.06 1.728

8 764406229 1658988 19.49 1.925

16 389276159 1658988 19.83 1.963

32 196793623 1658988 19.89 1.978

64 98881005 1658988 20.24 1.990

Table 5.1: Experimental Results for Mandelbrot Set Visualization 1.0 Model

0

500000000

1E+09
1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09
4E+09

4.5E+09

1 2 4 8 16 32 64

Co
m
pu

ta
tio

n
U
ni
t T

im
e

Number of Parallel Units

Computation Unit Time vs. Number of Parallel Units

Figure 5.1: Mandelbrot Set Visualization 1.0 Model Computation Unit Time vs. Number of
Parallel Units

The computation unit time vs. number parallel units graph shown in Figure 5.1 reflects the

fact that for the Mandelbrot 1.0 Model, with almost perfect scalability, doubling the amount

of calculating units cuts the computation time in half. It is normal when parallel units go

from 1 to 2 to 4 the computation time did not go down by a half, the reason being that

the Mandelbrot Image is more computationally expensive to calculate in the middle rows

61

than to calculate on the edge rows. As the number of parallel units increase, each core has

a smaller number of rows to calculate, thus the difference between heavy load rows in the

middle and light load rows on the edge is smaller. This is why as the parallel unit number

goes up, the improvement factor stays close to 2x.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 4 8 16 32 64

C
o
m
m
u
n
ic
at
io
n
 U
n
it
 T
im

e

Number of Parallel Units

Communication Unit Time vs. Number of Parallel Units

Figure 5.2: Mandelbrot Set Visualization 1.0 Model Communication Unit Time vs. Number
of Parallel Units

Because the Mandelbrot Set Visualization 1.0 Model writes the whole image after all the

calculation is done, the communication unit time vs. number of parallel units is straightfor-

ward. The communication unit time is just the number of words written to and read from

the memory. Even though both timings are recorded in unit time, the communication unit

time spent is not on the same magnitude as the computation unit time since Mandelbrot

Set Visualization is very computation heavy.

Table below show experimental results for Mandelbrot on Checkerboard Model. Due to

spacial constants, some acronyms are used in the table: “PU” stands for number of Par-

allel Units used in Mandelbrot set calculation. “Layout” is the Height and Width of the

62

Checkerboard model. “Calc UT” stands for Computation Unit Time, which is the simulated

time for only computation. “Comm UT” stands for Communication Unit Time, which is the

simulated time for only communication. “SRT” stands for Simulator Run Time (in seconds),

which is measured in real time. “IF” stands for Improvement Factor, which is calculated

from dividing the current Calculation Unit Time by the previous Calculation Unit Time.

63

PU Layout Calc UT Comm UT SRT IF

1 1x1 4075078982 1659029 18.61

2 1x2 2543059611 829598 18.72 1.602

3 1x3 1799580598 553130 19.22

4 2x2 1471609868 1106205 19.30 1.728

6 2x3 1001359981 553151 19.40

8 2x4 748676317 553270 19.69 1.965

9 3x3 677227735 430285 19.87

12 3x4 513788640 530309 19.96

16 4x4 388649106 484295 20.26 1.926

20 5x4 304283538 430599 20.00

24 6x4 260990624 461403 20.19

28 7x4 218037155 423066 19.75

32 8x4 196733139 415443 20.07 1.975

36 9x4 174894521 398790 20.19

40 10x4 153292084 417555 19.88

44 11x4 142358440 400279 20.23

48 12x4 131401723 404199 20.52

52 13x4 120450230 391782 20.17

56 14x4 109542155 394545 20.34

60 15x4 98877301 416078 19.75

64 16x4 98877301 381393 20.36 1.989

Table 5.2: Experimental Results for Mandelbrot on Checkerboard Model

64

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

1 2 4 8 16 32 64

C
o
m
p
u
ta
ti
o
n
 U
n
it
 T
im

e

Number of Parallel Units

Computation Unit Time vs. Number of Parallel Units

Figure 5.3: Mandelbrot on Checkerboard Model Computation Unit Time vs. Number of
Parallel Units

The computation unit time vs. number of parallel units graph in Figure 5.3 shows a very

similar curve to the Mandelbrot 1.0 model’s result. The improvement factor in Table 5.2

also displays very similar calculation unit time improvements when the number of parallel

units double. Similar to the Mandelbrot 1.0 Model, when the number of parallel units is

low, the Cores with heavier load (middle rows in the image) will take longer to execute,

which leaves the other Cores with lighter weight jobs waiting after they finish. Therefore the

improvement factor is lower than 2x when parallel units double when PU is a small number.

When PU increases, this difference in work load reduce, which then result in a improvement

factor a lot closer to 2x when doubling the number of parallel units.

One outstanding point is that the Calculation Unit Time does not change when going from

60 parallel units (15x4 layout) to 64 parallel units (16x4) while other data suggest that

increasing the number of calculation units decreases the calculation unit time. However, this

is to be expected because each Core is in charge of calculating only a few rows of the pixels of

65

the Mandelbrot Set image. Because the image height is set to 576, when there are 60 units,

576/60 = 9.6 resulting each Core to calculate 9 rows of pixels (only the last row calculate

more). In the case of 64 calculating units, 576/64 = 9, meaning each Core also calculate 9

rows which results in the same calculation unit time.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 4 8 16 32 64

C
o
m
m
u
n
ic
at
io
n
 U
n
it
 T
im

e

Number of Parallel Units

Communication Unit Time vs. Number of Parallel Units

Figure 5.4: Mandelbrot on Checkerboard Model Communication Unit Time vs. Number of
Parallel Units

Unlike the Mandelbrot 1.0 model which writes the entire image to memory after every

parallel unit finishes their job, Mandelbrot on Checkerboard has multiple Cores pushing

and popping images from different on-chip memories across the columns. Expanding the

width and height of the Checkerboard also increases the amount of memories, allowing more

reading and writing to occur at the same time. One unusual data point occurs at 4 parallel

units with a 2x2 layout, because the mapping method used Mandelbrot on Checkerboard,

the 1x3 layout model has one more column than the 2x2 layout. As shown in Figure 5.5,

even though 2x2 layout has one more calculation unit, it has a longer pipeline for the image

to go through from the top off-chip memory to bottom off-chip memory.

66

Width=1

Width=2

Width=3

Width=4

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Communication Unit Time vs. Checkerboard Layout (Width x Height)

Figure 5.5: Mandelbrot on Checkerboard Model Communication Unit Time vs. Checker-
board Layout

Figure 5.6 and Figure 5.7 displays data from both the 1.0 Mandelbrot model and Mandelbrot

on GPC model for comparison.

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

4.5E+09

1 2 4 8 16 32 64

C
o
m
p
u
ta
ti
o
n
 U
n
it
 T
im

e

Number of Parallel Units

Computation Unit Time vs. Number of Parallel Units

Checkerboard

1.0 Model

Figure 5.6: Computation Unit Time vs. Number of Parallel Units Comparison

67

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 4 8 16 32 64

C
o
m
m
u
n
ic
at
io
n
 U
n
it
 T
im

e

Number of Parallel Units

Communication Unit Time vs. Number of Parallel Units

Checkerboard

1.0 Model

Figure 5.7: Communication Unit Time vs. Number of Parallel Units Comparison

Comparing both graphs reveals that the computation unit time curve of both models are

almost identical proving that the Mandelbrot on Checkerboard model is able to match with

the scaling of the Mandelbrot Set Visualization 1.0 Model with ideal scalability. The com-

munication unit time of the Mandelbrot on Checkerboard model is able to out-perform the

Mandelbrot Set Visualization 1.0 Model, showing that the Checkerboard architecture is in-

deed scalable.

68

Chapter 6

Conclusion and Future Work

The Checkerboard model, while a high-level abstract software model, is a good starting

point for more complex and accurate SystemC models for a scalable Checkerboard Grid of

Processing Cells architecture. This Checkerboard project at its current state, has the ability

to automatically generate models with varying layout from 1 by 1 all the way up to 16 by

16. It is also shown to be stable in other mapping projects, i.e. a APNG encoder [29] and

a JPEG encoder [1]. With such versatility and stability, the Checkerboard model offers a

stable and flexible platform for more simulations and enables further explorations on the

viability of the Checkerboard architecture.

Although the architecture at this stage is rather complex with many cores and many more

memories, the experimental result from the mapped Mandelbrot on Checkerboard show that

the Checkerboard architecture is indeed scalable.

In the future, we plan to design a custom compiler that can perform the mapping of any

given software automatically.

69

Bibliography

[1] Arya Daroui. A loosely timed TLM 2.0 Model of a JEPG encoder on a Checkerboard
GPC. March 2022.

[2] Open SystemC Initiative, http://www.systemc.org. Functional Specification for Sys-
temC 2.0, 2000.

[3] Rainer Dömer. A Grid of Processing Cells (GPC) with Local Memories. Technical Re-
port Technical Report 22-01, UCI, Center for Embedded and Cyber-Physical Systems,
April 2022.

[4] Robert Brooks and Peter Matelski. The dynamics of 2-generator subgroups of psl(2,c).
Irwin Kra (ed.), 1978.

[5] John von Neumann. First draft of a report on the EDVAC. Technical report, University
of Pennsylvania, June 1945.

[6] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Amsterdam, 5 edition, 2012.

[7] Wikipedia contributors. Modified harvard architecture — Wikipedia, the free encyclo-
pedia, 2022. [Online; accessed 22-May-2022].

[8] David A. Patterson and John L. Hennessy. Computer Organization and Design, Revised
Fourth Edition, Fourth Edition: The Hardware/Software Interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 4th edition, 2011.

[9] Michael Bedford Taylor, Jason Sungtae Kim, Jason E. Miller, Fae Ghodrat, Ben Green-
wald, Paul R. Johnson, Walter Lee, Albert Ma, Nathan R. Shnidman, David Wentzlaff,
Matthew I. Frank, Saman P. Amarasinghe, and Anant Agarwal. The raw processor: A
composeable 32-bit fabric for embedded and general purpose computing. 2001.

[10] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl
Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal.
On-chip interconnection architecture of the tile processor. IEEE Micro, 27(5):15–31,
2007.

[11] Charlie Demerjian. A look at the 100-core Tilera Gx. https://www.semiaccurate.

com/2009/10/29/look-100-core-tilera-gx/, 10 2009. [Online; accessed 30-May-
2022].

70

http://www.systemc.org
https://www.semiaccurate.com/2009/10/29/look-100-core-tilera-gx/
https://www.semiaccurate.com/2009/10/29/look-100-core-tilera-gx/

[12] Tilera. Manycore without Boundaries: TILE64 Processor. http://www.tilera.com/

products/processors/TILE64. [Online; accessed 30-May-2022].

[13] Tilera. Manycore without Boundaries: TILEPro64 Processor. http://www.tilera.

com/products/processors/TILEPRO64. [Online; accessed 30-May-2022].

[14] The tile processor™ architecture: Embedded multicore for networking and digital mul-
timedia. In 2007 IEEE Hot Chips 19 Symposium (HCS), pages 1–12, 2007.

[15] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James
Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, Shailendra Jain, Sriram
Venkataraman, Yatin Hoskote, and Nitin Borkar. An 80-tile 1.28tflops network-on-chip
in 65nm cmos. In 2007 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, pages 98–589, 2007.

[16] Li-Shiuan Peh, Stephen W. Keckler, and Sriram Vangal. On-Chip Networks for Multi-
core Systems, pages 35–71. Springer US, Boston, MA, 2009.

[17] Jim Held. “single-chip cloud computer”, an ia tera-scale research processor. In Mario R.
Guarracino, Frédéric Vivien, Jesper Larsson Träff, Mario Cannatoro, Marco Danelutto,
Anders Hast, Francesca Perla, Andreas Knüpfer, Beniamino Di Martino, and Michael
Alexander, editors, Euro-Par 2010 Parallel Processing Workshops, pages 85–85, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[18] Intel Labs. Introducing the Single-chip Cloud Computer. https://simplecore.

intel.com/newsroom-en-eu/wp-content/uploads/sites/13/2010/05/Intel_SCC_

whitepaper_4302010.pdf. [Online; accessed 30-May-2022].

[19] Brent Bohnenstiehl, Aaron Stillmaker, Jon J. Pimentel, Timothy Andreas, Bin Liu,
Anh T. Tran, Emmanuel Adeagbo, and Bevan M. Baas. Kilocore: A 32-nm 1000-
processor computational array. IEEE Journal of Solid-State Circuits, 52(4):891–902,
2017.

[20] Rainer Dömer. Grid of processing cells (GPC). Personal communication, March 5 2021.

[21] Arya Daroui, Vivek Govindasamy, Yutong Wang, and Rainer Dömer. Modeling of a
4-by-4 checkerboard GPC in SystemC. Personal communication, October 7 2021.

[22] Checkerboard open source. http://www.eecs.uci.edu/~yutongw5/checkerboard.

[23] Benoit B. Mandelbrot and Benoit B. Mandelbrot. The fractal geometry of nature /
Benoit B. Mandelbrot. W.H. Freeman New York, updated and augmented [ed.] edition,
1983.

[24] Z. Cheng D. Mendoza R. Dömer G. Liu, T. Schmidt. Risc compiler and simulator,
release v0.6.0: Out-of-Order Parallel Simulatable SystemC Subset. Technical report.

[25] Raka Jovanovic and Milan Tuba. A new visualization algorithm for the mandelbrot set.
01 2009.

71

http://www.tilera.com/products/processors/TILE64
http://www.tilera.com/products/processors/TILE64
http://www.tilera.com/products/processors/TILEPRO64
http://www.tilera.com/products/processors/TILEPRO64
https://simplecore.intel.com/newsroom-en-eu/wp-content/uploads/sites/13/2010/05/Intel_SCC_whitepaper_4302010.pdf
https://simplecore.intel.com/newsroom-en-eu/wp-content/uploads/sites/13/2010/05/Intel_SCC_whitepaper_4302010.pdf
https://simplecore.intel.com/newsroom-en-eu/wp-content/uploads/sites/13/2010/05/Intel_SCC_whitepaper_4302010.pdf
http://www.eecs.uci.edu/~yutongw5/checkerboard

[26] RISC open source. http://www.cecs.uci.edu/~doemer/risc.html.

[27] Mandelbrot GPC open source. http://www.eecs.uci.edu/~yutongw5/mandelbrot_

GPC.

[28] Ieee standard for standard systemc language reference manual. IEEE Std 1666-2011
(Revision of IEEE Std 1666-2005), pages 1–638, 2012.

[29] Vivek Bala Govindasamy. A TLM 2.0 Model of a PNG encoder on a Checkerboard
GPC. March 2022.

72

http://www.cecs.uci.edu/~doemer/risc.html
http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC
http://www.eecs.uci.edu/~yutongw5/mandelbrot_GPC

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Thesis
	Introduction
	Related Work
	Background

	Checkerboard Grid of Processing Cells Architecture
	Example Checkerboard 4x4 Model Explained
	Core-Memory Communication and Checkerboard Address Space
	Features and Functionalities of Checkerboard Model

	The Mandelbrot Set and Mandelbrot Visualization Application
	Definition of the Mandelbrot Set
	Base Model of Mandelbrot Set Visualization
	The Base Model of Mandelbrot Set Visualization Explained
	Functionalities of the Base Model of Mandelbrot Set Visualization
	Limitations of the Base Model

	Version 1.0 of Mandelbrot Set Visualization
	1.0 Model of Mandelbrot Set Visualization Explained
	Functionalities of the 1.0 Model of Mandelbrot Set Visualization
	Scalability and Timing of the 1.0 Model of Mandelbrot Set Visualization

	Mapping of Mandelbrot Set Visualization onto Checkerboard Model
	Example Mandelbrot on Checkerboard 4x4 Explained
	Functionalities of Scalable GPC Mandelbrot Model

	Experimental Results
	Experimental Setups
	Data Collected

	Conclusion and Future Work
	Bibliography

