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Power consumption is a critical aspect in today’s mobile environment, while higher 

performance remains a major design goal. In recent mobile devices, the signal processing 

applications are power-consuming due to the frequent use of arithmetic computations; hence 

they have a large impact on the overall power dissipation. Specifically, a sum-of-products is a 

frequently used arithmetic operation in signal processing applications. Conventional designs 

use separate multipliers and adders in implementing sum-of-products. In this dissertation, we 

focus on developing a low-power arithmetic unit to perform a sum-of-products operation. The 

objective of this research is to investigate the algorithmic and architectural approaches for 

low-power and high-performance design of a sum-of-products with multi-functional 

computing ability, SIMD and approximate operations, and to demonstrate its capabilities in 

representative signal processing applications. The key distinguishing features of our approach 

is to develop a sum-of-products systematically from two aspects: internal efforts considering 

the arithmetic architecture and external efforts considering input data characteristics. We 

evaluate the power, delay and area of our solutions, and then compare our designs with similar 
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arithmetic schemes. The benchmark evaluations are used to identify benefits and limitations of 

our solutions in signal processing applications. 
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Chapter 1 Introduction 

Power consumption has become a critical concern in recent mobile system design, while 

maximizing performance and minimizing area remain two major design goals. Multiplication is 

a fundamental arithmetic operation in most signal processing applications, but a multiplier has a 

large area, long latency and consumes considerable power. Previous works have focused on 

developing low-power multipliers and have not considered composite arithmetic operations, 

such as sum-of-products, in reducing power consumption. However, signal processing 

applications often require many numerical calculations, which may take a large number of 

clock cycles using a conventional multiplier even when they include a low-latency multiplier. 

This poses an interesting problem in power optimization of arithmetic operations: what can be 

gained by using composite arithmetic, i.e., by fusing several basic operations? We propose to 

investigate power optimization of a well-known composite operation, sum-of-products, which 

often appears, for example, in computing inner product and Finite Impulse Response (FIR) 

filtering. In this chapter, we address motivation, define the main research problem, discuss 

related works and outline our research approach. 

1.1 The Main Research Problem 

The sum-of-products is found in many digital signal processing and multimedia applications 

such as a FIR filter, a high pass filter and an inner product. This computation is implemented 

using a summation of two products. It can be described by 
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                    (1-1) 

The inner-product is usually computed by repeatedly using a sum-of-products. 

                                        (1-2) 

Previous research has mainly focused on designs for low-power multipliers, but recent 

studies have shown that a conventional multiplier design cannot efficiently support increasing 

high-throughput and low-power requirements [1]. However, the sum-of-products unit can offer 

an opportunity to satisfy these requirements. 

Many Digital Signal Processors (DSPs) and Graphics Processing Units (GPUs) provide 

multiply and/or Multiply-and-ACcumulate (MAC) instructions because of the frequent use of 

multiplication and related arithmetic calculations in signal processing applications. To execute 

sum-of-products operations, they use an existing multiplier or a MAC unit. Conventional 

processors take more clock cycles when using a single multiplier or a MAC unit to perform 

sum-of-products. Clearly, by including a sum-of-products operation, one expects that fewer 

cycles are needed. We want to show that the energy-delay product is also reduced. 

Consider a typical FIR filter: 
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 (1-3) 

This equation can be implemented in two ways in a high-level language, such as C. One way 

to do so is as follows:  

 for (k = 0; k < N; k++)  

     { 

         y[n] = y[n] + c[k] × x[n - k] 

     } 

(1-4) 

The last line corresponds to a MAC operation: x = x + y × z. This equation can be translated 

into a single MAC instruction. 

The FIR filter can also be implemented in C in the following way: 

 for (k = 0; k < N; k+=2)  

     { 

         y[n] = y[n] + c[k] × x[n - k] + c[k + 1] × x[n – k + 1];  

      } 

(1-5) 
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The last line corresponds to an accumulated sum-of-products: x = x + y0 × z0 + y1 × z1. This 

equation can be translated into a single instruction using the sum-of-products design. This 

approach is to reduce the total number of clock cycles by half. 

Consider another example: matrix multiplication.  

   
       

   
       

     

       

   
       

      

         

   
         

  (1-6) 

where the number of columns in A equals the number of rows in B.  

 

This matrix multiplication can be implemented in two ways by using multiplications and 

sum-of-products operations. One way to use multiplications is as follows: 

for (i = 0; i < n; i++) { 

for (j = 0; j < p; j++) { 

for (k = 0; k < m; k++) { 

AB[i][j] += A[i][k] × B[k][j] 

} 

} 

} 

(1-7) 

The expression (1-7) corresponds to the multiply-add operation which could be executed as 

a single instruction. Matrix multiplication can be also implemented as 
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for (i = 0; i < n; i++) { 

for (j = 0; j < p; j++) { 

for (k = 0; k < m; k+=2) { 

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j] 

} 

       } 

} 

(1-8) 

The last line corresponds to an accumulated sum-of-products operation. In the best case 

scenario, the sum-of-products operations require only half the number of clock cycles using 

sum-of-products hardware compared to using a single multiplier, as shown in the example 

above. 

1.2 Motivation 

There is a fundamental technological shift taking place in the electronics industry. It is 

moving from the wired era driven by the Personal Computer (PC) to the wireless era driven by 

portable devices. As the scale of integration keeps growing, more sophisticated signal 

processing algorithms are being implemented on mobile Very Large Scale Integration (VLSI) 

chips [1][3][4]. These signal processing applications not only demand great computation 

capacity but also consume considerable amounts of power. With a growing number of mobile 

devices, minimizing the power consumption has become of great importance in today’s VLSI 

system design while performance and area remain the other two major design goals. According 

to the 2012 International Technology Roadmap for Semiconductors (ITRS), the power demands 
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are far outstripping the power requirements of typically used designs. Thus, further research in 

low-power designs is needed to help close this gap [5]. 

 Low-power systems have several advantages over those that do not employ power-saving 

strategies. Portable systems require the use of low-power design because such a design allows 

the use of lighter batteries and directly leads a prolonged operation time. Reducing power 

consumption is also important for high-performance systems that do not need to be portable. 

High-power dissipation requires the use of more complex cooling and packaging techniques, 

which are costly to build, operate and maintain. In addition, digital circuits tend to become much 

less reliable at high operating temperatures; thus low-power technology can directly improve 

the robustness of Complementary Metal Oxide Semiconductor (CMOS) circuits [6].  

Multiplication and MAC operations are frequently executed arithmetic operations in 

conventional signal processing applications. However, signal processing applications often take 

many clock cycles using a conventional multiplier even when they include a high-performance 

parallel multiplier. This is the critical problem for the arithmetic operations in recent signal 

processing applications which require heavy numerical calculations. Moreover, studies on 

power dissipation in DSPs and GPUs indicate that a multiplier is one of the most power-hungry 

components on these chips [7]. Therefore, research on new arithmetic units is needed to satisfy 

low-power and high-throughput requirements in mobile systems. A great deal of effort has been 

expended in recent years on the development of techniques to reduce power dissipation while 

minimizing the throughput degradation. Parallel organization mitigates such throughput 

degradation [8]. This dissertation proposes a new design for a combined arithmetic unit based 

on sum-of-products operation for signal processing applications and develops a scheme to 

achieve power savings in the sum-of-products operation by utilizing parallel organization. 

There have been extensive works on multipliers, which are core components of 

sum-of-products, at all levels from technology through algorithm level. However, low-level 
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techniques such as circuit or technology-level are not unique to specific structures, and they are 

generally applicable to all structures. However, the characteristics of arithmetic computation are 

not considered well at low levels. The power and performance of arithmetic computations are 

generally determined by specific algorithm and architecture. Moreover, power consumption is 

directly related to data switching patterns. However, it is difficult to consider 

application-specific data characteristics in low-level optimization. Therefore, this dissertation 

addresses high-level optimization techniques for a low-power sum-of-products. High-level 

techniques refer to algorithm, architecture and logic level techniques that consider arithmetic 

features and input data characteristics. The main research hypothesis of this dissertation is that 

high-level optimization of sum-of-products designs produces low-power solutions while 

maintaining overall throughput. Specifically, we consider how to optimize the internal 

algorithm and architecture of sum-of-products and how to control active internal resources to 

match external data characteristics. The primary objective is power reduction without a 

significant delay overhead. The tradeoff between power, area and delay is also considered in 

several cases. 

1.3 Power Optimization 

Power is defined as the rate at which work is performed, whereas energy is a measure of the 

total amount of power dissipated. Strictly speaking, developing a low-power design is a slightly 

different goal from creating a low-energy design, even though they are closely related [9][10]. 

Power is a primary problem when heat dissipation and thermal management are concerns. The 

peak power is often used for power and ground wiring design, signal noise margin and 

reliability analysis. Energy is a metric of the energy efficiency of systems, especially in the 

domain of maximizing battery lifetime.  
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The total power consumed by CMOS circuits is composed of two main components: 

dynamic and static power [10][11][12][13]. Dynamic power represents the power consumed by 

the intended work of the circuit to switch states and thus execute logic functions. Dynamic 

power is primarily composed of :1) the power dissipation associated with the charging or 

discharging of the capacitance of the switching nodes and 2) the power dissipation due to short 

circuit current. The other component is static power dissipation. In a CMOS circuit, either 

reverse biased PN junction current or sub-threshold channel conduction current is the only 

source of unintended static current. The total power consumption is summarized in the 

following equations [10]: 

                                                    

                       
         

                                         

                       

(1-9) 

(1-10) 

(1-11) 

(1-12) 

Pdynamic in equation (1-2) represents the dynamic power dissipation because of the charging 

and discharging of a circuit and wire capacitance loads, where CL is the load capacitance, VDD is 

the power supply voltage, fp is the clock frequency, and N is the switching activity, which is 

defined as the sum of the 0 → 1 transition probabilities of the node switching in one clock 

period. Pscc in equation (1-3) is the power dissipation due to short circuit current, where Ipeak is 

the peak current, and tr and tf are the rising and falling time of short circuit current, respectively. 

The peak current is determined by the saturation current of the devices and thus is directly 
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proportional to the number of the transistors. Pstatic in equation (1-4) is the static power 

dissipation, where Istaticis the static current. This static power dissipation is primarily determined 

by fabrication technology considerations. 

Dynamic power dissipation is the dominant factor in the total power consumption of CMOS 

circuits [6]. Static power dissipation is usually several orders of magnitude smaller than the 

dynamic power dissipation. Furthermore, many researchers assert that optimizing dynamic 

power has definitely become more important than optimizing static power because optimizing 

dynamic power is actually more difficult than static power and optimizing static power is 

conceptually straightforward. Optimizing static power heavily depends on circuit or 

technology-level techniques such as dual Vt partitioning and multi-threshold CMOS [14]. Thus, 

a consideration of static power is neglected. Also, we consider optimizing short circuit power 

along with optimizing dynamic power. The parameters of Pscc in equation (1-3) are remarkably 

consistent with those of Pdynamic in equation (1-2). Thus, reducing dynamic power will decrease 

the short circuit power consumption as well. Furthermore, the power consumed by the short 

circuit currents is typically less than 10% of the total dynamic power. Even though dynamic 

power dissipation is the dominant source of total power consumption, the effect of static power 

dissipation increases significantly and the static power dissipation will dominate as VLSI 

manufacturing technology shrinks. Current technology trends indicate that the contribution of 

static power dissipation will increase rapidly. However, dynamic power optimization of 

arithmetic unit will still be critical in the future, because dynamic power optimization 

techniques consider arithmetic computation features and specific input data characteristics. 

However, the static power is proportional to the leakage current which flows regardless of gate 

switching. It is difficult to consider specific data characteristics of arithmetic computations in 

static power optimization. Therefore, we will consider only dynamic power reduction. 
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The designs to reduce dynamic power dissipation of CMOS circuits can be explored at five 

levels: technology, circuit, logic, architecture and algorithm levels. Power optimization has 

been studied at different abstract levels [10][11][12][15]. At the lowest technology level, 

power reduction can be achieved by improving manufacturing process technology such as 

small feature size, copper interconnects and insulators with low dielectric constants [12][16]. 

With the technology support of multiple supply voltages, the lowest supply voltage can be 

applied on non-critical modules. Wire capacitance and delay imbalances can be reduced 

during the layout process [17][18]. At circuit level, transistor sizing, transistor restructuring 

and different circuit logic styles can reduce the power dissipation. At gate level, several 

techniques have been proposed. Cell sizing and composition, equivalent pin swapping and 

buffer insertion can achieve power reduction with slight area increase using the Synopsys 

Power Compiler [19][20]. Gate-level techniques also include signal gating [21][22][23], delay 

balancing [24], input synchronization [25] and signal polarity optimization [9]. Combinational 

or sequential blocks not used can be disabled using the clock gating technique during a 

particular period [26][27][28]. The register bank can be disabled using the Synopsys Power 

Compiler [29]. To stop propagation of spurious transitions, the retiming technique makes 

repositions of registers in sequential circuits [20]. At architecture level, there is a large amount 

of freedom in power optimization. Parallelism and pipeline are two main techniques to achieve 

high throughput and then trade clock frequency for supply voltage reduction [11]. 

Synchronous design has prevailed because of its ease of design, tractability of analysis and 

predictability of performance. However, in terms of a low-power design, the increasing 

overhead from the clock distribution network essential in synchronous design is posing more 

and more challenges. The higher speed of modern digital circuits sets the limits in distributing 

the clock signal to all the required points. Thus, asynchronous systems are investigated to 

avoid a global clock distribution network and reduce useless signal transitions [30][31][32]. In 

event-driven systems, components are disabled when they are in idle states [26][33]. 
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Although power optimization can be achieved at all levels, the high-level techniques at 

algorithm and architecture levels are more efficient than techniques at the middle and the 

lowest technology levels. At algorithm and architecture level, the optimization affects all four 

factors, but the middle-level optimization usually affects one or two factors in a limited way. 

Technology level optimization also affects three important factors: load capacitance, power 

supply voltage and clock frequency. Not much research has been conducted at high level, even 

though such optimization achieves the greatest potential power savings. Thus, most designers 

struggle with an apparent conflict between fast decision-making and accuracy at high level 

[34]. Furthermore, a sum-of-products operation has many computational features. These 

features have not been considered well at circuit and technology levels. It is also difficult to 

consider input data characteristics in low-level power optimization. Therefore, it is desirable to 

develop algorithm, architecture and gate level power optimization techniques that consider the 

sum-of-products arithmetic features and operands’ characteristics. Therefore, this dissertation 

reflects the concepts at algorithm, architecture and logic design level. Circuit and technology 

level designs are outside the scope of this dissertation. 

As mentioned above, the goal of this dissertation is dynamic power optimization of a 

sum-of-products design at algorithm, architecture and logic levels. Based on the equation for 

dynamic power dissipation in CMOS digital circuits, reduced dynamic power can be achieved 

by decreasing one or more factors. The dynamic power consumption can be reduced by 

minimizing the capacitance of circuit nodes wherever possible. The parasitic capacitance in 

CMOS digital circuits can be reduced by using fewer and smaller devices as well as sparser 

and shorter interconnection. However, the capacitance of CMOS circuits is determined by the 

characteristics of the CMOS technology used to fabricate the circuit, which are outside the 

scope of our research. We do not consider the techniques intended to reduce capacitance. The 

equation also indicates the power supply voltage has the largest impact on the power 
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dissipation due to its squared term factor. Unfortunately, lowering power supply voltage 

causes speed penalties. A great deal of effort has been expended in recent years on the 

development of techniques to utilize a smaller supply voltage while minimizing performance 

degradation. Using voltage islands is one way to mitigate such performance degradation by 

architectural changes of the circuit [35]. Lowering the power supply voltage is a highly 

effective method for a low-power design. Unfortunately, reducing clock frequency decreases 

the performance as well as power dissipation. Thus, it might not be expected to meet 

performance in case of a given performance requirement and increase power-delay product. 

However, the implementation of composite operations such as a sum-of-products can be used 

to achieve high throughput while reducing power dissipation by lowering power supply 

voltage because they provide internal parallelism. In this dissertation, we apply both the 

design sensitivity and power-delay curve [36][37], and compare our designs with separate 

recent multipliers. The power consumption also depends on the switching activity of circuits. 

Techniques to reduce switching activity are effective because 1) they cover many layers of 

design methodologies from the logic and the architectural levels up to the algorithm, and 2) 

unnecessary spurious transitions consume in excess of 30% of total energy [38]. Therefore, we 

also focus on the minimization of switching activities. In summary, this dissertation focuses 

on reducing power supply voltage and switching activity and demonstrating power-delay 

optimization. 

1.4 Low-Power Multiplier Design 

The sum-of-products hardware consists of two multipliers and a single adder. The 

multipliers consume much more power than the adders; thus, a low-power multiplier designs 

are critical. In this section, we examine a prior work in algorithm, architecture and gate-level 

techniques to reduce multiplier power.  
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There are two main types of multipliers: serial (sequential) and parallel (combinational) 

multipliers. We consider only parallel multipliers because of their potential for 

high-performance and prevalent use in digital systems. Parallel multipliers consist of three 

parts: 1) Partial Products Generators (PPGs), 2) Partial Products Reduction (PPR) and 3) the 

Carry-Propagate Adder (CPA) [39][40][41].  

At the algorithm level, multiplication algorithms differ in the design of PPG, PPR and CPA 

parts. For PPG, radix-2 digit-vector multiplication is the simplest form because the Partial 

Products (PPs) are generated by a set of AND gates. To reduce the number of PPs and 

consequently reduce the area and delay of PP reduction, a higher radix such as 4, 8 or 16 is 

considered [41][42]. A most popular approach is to reduce the standard radix-4 digit set {0, 1, 

2, 3} to a signed-digit set {-2. -1. 0, 1, 2} known as Booth recoding. Radix-4 multipliers 

require parallel recoders for a tree reduction and multiplexors (MUXs) to form PPs. A potential 

disadvantage is that they may use long wires and high fan-out required for implementation. It is 

hard to ensure that signals arrive at the same time; thus, PPGs may generate many glitches, 

which propagate through the whole multiplier. Higher radix multipliers require sign extension 

of the partial products. The effects of sign extension techniques and recoder design on energy 

dissipation were analyzed in [43][44]. The number of sign extension bits can be significantly 

compressed using the Modified Sign Generate (MSG) algorithm; thus, the number of 

unnecessary adders used to compress the sign extension bits can be reduced. Another approach 

to minimize the switching activity in the Most Significant Bit (MSB) is to use a sign magnitude 

representation [45][46][47]. In the sign magnitude representation, only one bit is allocated for 

the sign and the rest for the magnitude. In this case, only one bit toggles when the sign is 

changed. The lack of implementation-specific information limits the optimization of power 

consumption at the algorithm level. More accurate results can be obtained at the architecture 

level once the data path and interconnections are fully defined. There are several approaches at 
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architecture level. For the PPR step, two alternatives exist [41]: reduction by rows performed by 

an array of adders [48], and reduction by columns performed by an array of counters [49]. In 

reduction by rows, there are two extreme classes: tree and linear array. The tree structure is a 

better solution to construct the high-speed multiplier for large operands because the critical path 

delay of the tree array is proportional to the logarithm of the number of bits in the multiplier 

[48][49]. Moreover, it has the advantage of lower power dissipation. However, its physical 

design is rather complicated, due to its complex interconnections. The linear array multiplier 

has a regular structure and a local interconnection. This translates into a small and dense layout 

in actual VLSI implementation. However, it cannot achieve high performance because the delay 

of a linear array is linearly proportional to the operand precision size. Also, this multiplier 

consumes more power since unbalanced paths exist [50]. However, power and delay can be 

reduced by using a split array structure [51]. Compared to a non-split Left-to-Right (LR) array 

multiplier, a 2-level split LR array multiplier consumes approximately 20% less power and has 

a 15% delay with similar area. Parallelism and pipelining are main techniques to achieve a 

higher operating frequency at a given supply voltage or, alternatively, a lower supply voltage for 

a desired throughput [12][52]. Such properties come at the expense of a large area. To exploit 

parallelism with a scaled power supply voltage, the clustering/partitioning technique was 

proposed in [53][54]. The cluster width is defined as the distance between the first and the last 

nonzero bits. Ignoring the positions outside the cluster and performing multiplication with a 

collection of smaller multipliers in parallel with scaled supply voltages while maintaining given 

throughput can achieve significant power savings. The scheme to use an ensemble of 

multipliers with different widths was also proposed in [55]. Only one multiplier is adaptively 

enabled according to input precision. The power aware multipliers allow the users to select the 

operational policy: for example, users can select between higher quality and longer battery life. 

Despite flexibility, the major drawback is the large area overhead. To reduce switching 

activities, a dynamic range determination unit was proposed in [56][57][58]. Before 
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computation, the input operand data with the smaller range is used as a recoded multiplier, so 

the probability of PPs being zero can be increased. The pipelining also reduces the power 

dissipation [52]. Compared to non-pipelined schemes, the pipelined technique can achieve a 

higher operating frequency at a given supply voltage or, alternatively, a lower supply voltage for 

a desired throughput. These low-power schemes for parallel multipliers, however, have larger 

areas. 

At gate level, a number of different techniques such as signal gating and signal bypassing 

have been proposed. Gate level techniques are more efficient than other techniques because 

signal gating and bypassing cannot be used at architecture level. The 2-Dimensional (2D) 

signal gating techniques can achieve power savings for low-precision input data with large 

dynamic range [31][59][60]. Using a typically large fraction of zero and small valued input, a 

signal gating approach can achieve power savings by deactivating slices. Compared to previous 

work, a 2D signal gating reduces the power dissipation by up to 35% [60]. The multiplier 

divided into several slices detects parts of operands with zero values. Low-power sign extension 

schemes and self-timed design with bypassing logic for zero PPs in radix-4 multipliers have 

been proposed in [17]. Another technique is bypassing, which disables the operations in some 

rows (or columns) [61][62][63]. If the bits of a multiplier (or multiplicand) are zero, the 

multiplier need not perform the summation of zero PPs, and thus can bypass inputs to outputs. 

This can save power dissipation with little area penalty. Experimental results show that a 

bypassing scheme saves 10% of power with 20% area increase [63]. The other technique is 

signal balancing [24][64][65]. The imbalance of signal delays is reduced by inserting auxiliary 

logic such as latches and buffers [65]. 
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1.5 Research Approach 

The research approach followed in this dissertation is briefly described next. Our research 

goal is to develop a sum-of-products design that allows the optimization of power dissipation 

and performance and allows flexible tradeoffs in practical implementations.  

First, we identify important factors that affect dynamic power consumption at the algorithm, 

architecture and gate levels. These factors include internal architectures of a sum-of-products 

and external data characteristics. Specially, we consider 1) how to control hardware resources to 

match external data characteristics and 2) how to optimize the internal algorithm and 

architecture of the sum-of-products unit. 

Second, the primary objective is power optimization with reduced area and delay overhead. 

By using new algorithms or architectures, it is even possible to achieve both power reduction 

and area/delay reduction. We consider the optimal points between power and delay, and provide 

comparisons with other designs. This dissertation shows our approaches are superior to other 

recent designs. 

Third, we consider an approximate design with tunable error characteristics for round-off 

error-tolerant applications as well as an accurate design for error-intolerant applications. 

Recent mobile systems can tolerate a reasonable amount of computation errors. Thus, we 

consider the design to allow for error-tolerant operation as well as for correct operation for 

error-intolerant applications. After conducting statistical error analysis, we design our modules 

using error-tolerant techniques. 

Fourth, we implement the proposed and related previous approaches in technology 

independent structural Verilog descriptions. The designs are verified using Cadence 

NC-Verilog and synthesized using the Synopsys Design Compiler and Power Compiler in a 

Samsung 65 nanometer CMOS standard cell low-power library. Placement and routing process 
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is performed to obtain more precise results using Synopsys IC Compiler. Interconnect 

parameters are extracted and back-annotated into Synopsys for more precise delay and power 

calculation. Delay is obtained from Synopsys PrimeTime, and power is obtained from the 

Samsung in-house tool CubicWare. Experimental results with comparisons of different 

schemes are finally presented and analyzed. 

1.6 Organization of Dissertation 

This dissertation is organized as follows. Chapter 2 presents optimization techniques of 

reduction structure for array. To reduce power dissipation without performance degradation 

compared to recent multipliers, structure optimization techniques for PP reduction in LR array 

multipliers are used here. These techniques include [4:2] adder for PP reduction, 4-level 

Upper/Lower (UL) split structure and voltage islands. Experiment results show that both power 

and delay are improved considerably with these techniques. 

Chapter 3 proposes a high-performance and low-power CPA. This chapter addresses the 

problem of adding four carry-save vectors (each two carry-save vectors of two arrays). To 

improve the speed, reduction structure optimization techniques (see Chapter 2) are combined to 

develop a high-performance lower-power sum-of-products unit. We present a specific design to 

match arrival time profiles generated by two arrays, and propose a high-performance and 

low-power final CPA. Experiments indicate that the sum-of-products with the proposed CPA 

has less area and power than optimized structures with a conventional fast CPA while keeping 

the same delay.  

Chapter 4 proposes a new arithmetic architecture model for signal processing applications 

and develops a scheme to reduce power dissipation of a sum-of-products unit by utilizing a 

parallel organization. This proposed design is compared with an existing high-performance 



- 18 - 

 

multiplier and the ARM multiplier. With a proposed sum-of-products design, the effects of a 

parallel organization versus a solution with a single multiplier are experimentally investigated. 

The direct implementation of the sum-of-products increases power dissipation and latency 

because the multipliers are the main cause of power dissipation and the adder contributes 

significantly to the overall delay in a sum-of-products unit. We address these components in 

Chapter 2 and Chapter 3, respectively. 

Chapter 5 proposes the design for a sum-of-products unit that supports multiplication, 

multiply-add, square, sum-of-squares and add-multiply operations based on an input control 

signal. Most DSPs and GPUs include separate dedicated arithmetic units for supporting these 

arithmetic operations. Such an implementation is less suitable for these chips, in which the 

frequency of arithmetic operations is application dependent. Thus, we focus on developing the 

sum-of-products unit capable of supporting multiple arithmetic operations using essentially the 

same hardware. Compared to a conventional sum-of-products, the proposed multi-functional 

unit has a modest increase in power, area and delay, but allows several multiplication-related 

arithmetic computations to be performed on the same hardware.  

Chapter 6 presents an approximate and Single Instruction Multiple Data (SIMD) 

sum-of-products unit capable of supporting several arithmetic operations with multiple 

precisions. To further reduce power dissipation in a sum-of-products with large-dynamic-range 

input data, multiple-precision and SIMD and approximate operation techniques are proposed. 

This unit can perform multiple-precision sum-of-products and multiplication for SIMD, 

approximate and accurate versions using essentially the same hardware as a sum-of-products 

with only a small increase in delay compared to a conventional sum-of-products. This technique 

does not change the basic structure of a sum-of-products. Instead, the fundamental components 

-multipliers and adders- are partitioned and ancillary logic gates are inserted along the gating 



- 19 - 

 

boundaries. For input data with a large dynamic range, significant power reduction can be 

achieved in the experiments. 

Chapter 7 summarizes the contributions of this research, discusses conclusions and 

proposes future directions. 

Finally, Appendix A gives a detailed description of the design and experimental 

methodologies used in our research, and Appendix B defines abbreviations. 
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Chapter 2 Power Optimization of an Array 

Multiplier 

In this dissertation, we propose a new design for a sum-of-products unit suitable for signal 

processing applications and present an approach to reducing power dissipation in the design of 

sum-of-products operation by utilizing two multiplier arrays and CPA. The optimization of the 

PPR array and the final CPAs is necessary because they are core components. Chapter 2 and 

Chapter 3 present optimization techniques for the PPR array and the CPA, respectively. 

Chapter 4 experimentally investigates the effects of a parallel organization with the optimized 

multiplier array and CPA versus a solution with a single multiplier.  

This chapter considers how to optimize the core component, a multiplier for a low-power 

design. Our goal is to reduce the power consumption without significant increase in the latency 

and the complexities of multipliers. We present different methods for the multiplier power 

savings. The following structure optimization techniques are considered: radix-4 recoding 

scheme, split structure, [4:2] adder and voltage islands. These techniques reduce the power of 

multiplier arrays significantly without large delay, area overhead and increase in design 

complexity. When exploring these power optimization techniques, we consider only LR array 

multipliers with the final CPA. The previous studies demonstrate that LR array multipliers 

have the potential of saving power and delay, because glitches in LR array multipliers are 

fewer than in the conventional RL array multipliers, especially for data with a large dynamic 

range. We will consider the delay optimized final CPA in Chapter 3 on a high-performance 

low-power sum-of-products. For simplicity, we consider a 32 × 32-bit multiplier. All of these 

methods can be easily extended to deal with other types of fixed-point operands. 
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2.1 Introduction 

To meet the application's performance requirements, the parallel multipliers are commonly 

used in high-performance signal processing applications [42][48][49][66]. The parallel 

multipliers require a large amount of logic, but can compute a product much more quickly than 

the serial method of shifting and adding that was typical of earlier computers. The parallel 

multipliers consist of three main computational blocks: a PPG, a PPR array and a CPA. The first 

stage is the generation of the PPs. The simplest way of PP generation is that the multiplicand 

and the multiplier are multiplied bit by bit to generate the PPs, and implemented using two-input 

AND gates. The advanced approach for high-speed is the radix-4 algorithm, which has been 

used to reduce the number of PPs at the expense of more complex radix-4 recoders and PPG 

circuitry [42]. The next stage is the PP reduction. In this stage, two-bit vectors are added up 

repeatedly until bit vectors (carry, sum) are obtained. Two reduction approaches are common in 

current implementations: trees and linear arrays. The tree structure is the best solution to 

construct the high-speed multiplier for large operands because critical path delays are 

proportional to the logarithm of the number of bits in the multiplier [48][49]. It adds the PPs in 

parallel using redundant adders. Moreover, the tree structure has a low probability of 

occurrence of glitches because most inputs to Full Adders (FAs) at each stage are naturally 

synchronized. The linear array structure, however, has a high probability of occurrence of 

spurious transitions because all FAs start computation at the same time without waiting for the 

propagation of sum and carry signals from the previous stage [24]. Most input signals of the 

adder in the tree structure arrive simultaneously; hence a tree structure includes inherently more 

balanced delay paths in a PPR module. However, its physical design is rather complicated, due 

to its complex interconnections; thus, the tree structure occupies more area than a corresponding 

array structure. Because of its high wiring density, its area increases. Specifically, this problem 

becomes critical in deep sub-micron designs. In contrast, the array structure has a regular and 
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local interconnection in the reduction array. This regularity translates into a small and dense 

layout in VLSI implementation. Moreover, as the interconnection becomes critical in deep 

sub-micron designs, an architecture with regular and local interconnection is highly desirable. 

However, the array structure has an architectural disadvantage in terms of power dissipation. It 

has more unbalanced delay paths in a PPR module and thus introduces many glitches [67][89]. 

Large latency and high-power dissipation limit its use in applications with large size operands.  

Among three main components, the PPR module determines the overall multiplier power. 

The effect of the radix-4 recoder on the overall power dissipation is not obvious because it is 

additionally implemented and introduces a large number of spurious transitions, while a large 

amount of arrays implemented can be reduced. For accurate results, we first implemented two 

types of 32 × 32-bit multipliers: trees and arrays with/without the radix-4 recoder. Power has 

been measured using only random test data. The results are shown in Table 2.1. The power 

dissipation introduced by the PPR module is about 60% of the total power dissipation in parallel 

multipliers; hence, power savings in the PPR modules will result in major enhancement of the 

power reduction of the parallel multiplier. The power consumption of the PPG circuitry and the 

radix-4 recoding logic are also critical. Although they consume less than 20% of the total power 

dissipation, these modules affect the power dissipation in subsequent PPR and CPA 

significantly. They are the first stage on the long path in parallel multipliers; hence, they 

introduce extra unbalanced signal propagation, due to the additional delay on the path from 

operand to the product. In this chapter, we focus on reducing the power of the PPG and PPR 

parts.  
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TABLE 2.1: POWER DISTRIBUTION IN A PARALLEL MULTIPLIER 

(A) POWER DISSIPATION OF TREE MULTIPLIER COMPONENTS 

Components  Power Distribution (%) 

PPG, Radix-4 recoder 18.68 

PPR Tree (Wallace, [3:2]Adder) 58.47 

CPA (Carry-Select Adder) 22.85 

 

 

(B) POWER DISSIPATION OF ARRAY MULTIPLIER COMPONENTS 

Components  Power Distribution (%) 

PPG (Radix-2) 4.54 

PPR Array ([4:2]Adder) 68.88 

CPA (Carry-Select Adder) 26.58 

 

2.2 Related Work 

Various approaches have been proposed to reduce the power consumption of multipliers 

from the algorithm level to the gate level. Recently, LR array multipliers have been proposed 

and developed. LR array multiplication provides a competitive alternative to the conventional 

Right-to-Left (RL) array multiplication as LR computation has the potential of saving power 

and delay. It was discovered that glitches in LR computation are fewer than in the conventional 

RL computation, especially for data with a large dynamic range. In [68], the power consumption 

in the LR PPR array for radix-4 recoded multiplication is studied in detail for DSP applications. 

A low-power LR array multiplier without final CPA is designed using strategically placed (3,2), 

(5,3) and (7,4) counters [69] and the modified on-the-fly converter [70]. An asynchronous array 

multiplier with split RL upper array and LR lower array is proposed to make the computation 

time faster with relatively lower power consumption [32]. The previous studies demonstrate 
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that the LR linear array multipliers that integrate an array splitting technique are better than tree 

multipliers in terms of power while keeping similar delay and area for up to 32 bits [51][87][88]. 

Therefore, we focus on developing a multiplier based on the split LR array structure. 

2.3 The Left-to-Right Array Multiplier 

In conventional RL array multipliers, the PPs are added sequentially from the rightmost 

multiplier bit. In contrast, in LR array multipliers, the PPs are added in series starting from bn-1A, 

as shown in Figure 2.1 [71]. Of the two designs, LR array multipliers have the potential of 

saving power and delay because the carry signals propagate through fewer stages, which 

reduces the power consumption in the Most Significant (MS) region. LR array multipliers are 

superior for data with large range because PPs corresponding to sign bits with low switching 

activities are located in the upper region of the array [72]. Figure 2.2 shows the implementation 

of an 8 × 8 LR array multiplier [72]. The black dots correspond to the bit matrix in Figure 2.1, 

obtained with two-input AND gates. Each "3" symbol is a FA and each "2" symbol is a Half 

Adder (HA). The numbers associated with wires are signal arrival times assuming a unit delay 

model. For theoretical analysis, the delay of a 2-input XOR gate, TXOR2, is used as the base unit 

delay. The brown cells on the left are used to add three bits each column from the array into two 

bits. The gray cells in the last row comprise a Carry-Ripple Adder (CRA) which generates the 

Least Significant (LS) half of the final product and carry-in of the final CPA. There is no delay 

penalty due to the use of CRA, as the arrival times of these carry and sum bits match the 

computation direction and speed of the CRA. The final CPA generates the MS half of the final 

product. Using a fast CPA, final addition is conducted, and thus the delay can be reduced. 
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2.4 Structure Optimization 

Several power reduction techniques have been originally proposed for RL multiplication. 

Recently, these low-power techniques which followed the tradition in RL multiplication have 

also been proposed for LR array multiplication. It was obvious that the use of these techniques 

in a LR array multiplier was also efficient in power [51][72]. However, it is unknown if there are 

other better candidates from the perspective of low power. Detailed studies are desirable to 

explore the potential advantages of LR array multipliers. In this section, we present several 

structure optimization techniques for low-power LR array multipliers. 
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FIGURE 2.1: BIT MATRIX FOR LR MULTIPLICATION EXAMPLE (RADIX-2, N = 8) 
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FIGURE 2.2: LR ARRAY MULTIPLIER BASED ON A [3:2] ADDER (RADIX-2, N = 8) 

(ADAPTED FROM [72]) 
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2.4.1 Partial Product Generation with Radix-4 Recoding 

We present here several different methods for generating PPs. The simplest method to 

produce n PPs is to use two-input AND gates, where n is the length of the input operands. 

However, another recoding scheme introduced by Booth [42] reduces the number of PPs. 

Among several Booth algorithms, radix-4 recoder with digit set {-2, -1, 0, 1, 2} and radix-8 

recoder with digit set {-4, -3, -2, -1, 0, 1, 2, 3, 4} are commonly used in parallel multipliers. 

Radix-4 and radix-8 algorithms generate n/2 and n/3 PPs, respectively. Intuitively, the 

radix-4 and radix-8 recoding scheme may reduce the power consumption, hardware cost and 

improve performance because the amount of power, area and delay depends on the number of 

PPs to be added. Specifically, if the number of PPs is reduced in the array multiplier, glitches 

can be significantly reduced because the lower portion is polluted by frequent switches in the 

upper portion. However, the PP reduction is obtained at the expense of the extra recoding logic 

and a more complex PPG circuitry. Moreover, radix-4 (or radix-8) recoding and PPG modules 

are the first stage on the long path in multipliers, and thus they introduce extra unbalanced signal 

propagation due to the additional delay on the path from operand to the product. Therefore, 

radix-4 (or radix-8) recoding and PPG modules affect the power dissipation in subsequent PPR 

array and CPA significantly, even though they consume only a small portion of the total power.  

We want to determine which recoding method is efficient for a low-power multiplier. We 

first study the characteristics of the most common algorithms: radix-4 and radix-8 algorithms. In 

the radix-4 recoding, only the multiples +1/–1 and +2/–2 of the multiplicand will be required, all 

of which are efficiently generated through simple shifts and negation. This simple requirement 

to generate PPs leads to significant delay savings. On the other hand, the radix-8 recoding 

scheme can further reduce the number of PPs, but requires a time-consuming extra addition to 

generate the +3/–3 of the multiplicand. This requirement leads to a large delay penalty, on the 

order of 15% ~ 20%, as compared with a radix-4 recoding . The extra addition stage of the 



- 29 - 

 

radix-8 recoder introduces more unbalanced signals. Specifically, as a recoder and PPG 

circuitry are the first stage on the long path, glitches are significantly increased as signals 

propagate through the path. This is a significantly negative factor for power and delay. 

Therefore, we will apply the radix-4 modified Booth algorithm. 

2.4.2 The [4:2] Adder for PP Reduction 

A [4:2] adder has been widely used in parallel multipliers. Figure 2.3 illustrates [4:2] adder 

structure. It has the same gate complexity as two cascaded [3:2] adders, but is faster than its 

counterpart because it has 3 × TXOR2 delay while each single [3:2] adder has 2 × TXOR2 delay. 

Thus, by using the [4:2] adder, the PPR delay is reduced by about 25% without area penalties. 

The delay reduction is useful for power savings as less switching activities can be generated 

when signals propagate fewer stages. Moreover, compared to two cascaded [3:2] adders, a [4:2] 

adder has a more balanced structure and regular interconnection. It reduces the physical 

complexity. At gate level, the area of the [4:2] adder is very close to that of the [3:2] adder, but 

will become smaller after placement and routing, due to regular structures. 

Figure 2.4 illustrates an 8 × 8-bit LR array reduction using a [4:2] adder. Dark dots are PP 

bits. Gray dots are carry/sum vectors from adders. Figure 2.5 shows an 8 × 8-bit LR array 

multiplier using a [4:2] adder. Blue rectangles are [4:2] adders, and each "+" symbol is an inner 

FA of the [4:2] adder. The first [4:2] adder row accepts four PPs and generates two carry-save 

vectors. Each subsequent [4:2] adder row accepts two previous carry-save vectors and two new 

PPs, and then generates two current carry-save vectors. In a LR array multiplier using a [4:2] 

adder, the CRA is no longer suitable to add the right half carry/sum vectors from the reduction 

array because the vector bits arrive faster than the CRA computation. To avoid becoming the 

critical path, CRA should be replaced by a faster CPA. For vectors from the left part of the 

reduction array, the brown cells on the left which comprise adders are still needed because about 
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half of the cells on the left have three bits. The previous research demonstrated that a 32 × 

32-bit LR linear array multipliers using a [4:2] adder are better than using a [3:2] adder in terms 

of power and delay [51]; thus, we will utilize a [4:2] adder here. 

 

FIGURE 2.3: [4:2] ADDER STRUCTURE 

 

 

FIGURE 2.4: LR ARRAY REDUCTION USING [4:2] ADDER (RADIX-2, N = 8) 
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FIGURE 2.5: LR ARRAY MULTIPLIER BASED ON A [4:2] ADDER (RADIX-2, N = 8)  
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2.4.3 The Split Array: Even/Odd and Upper/Lower 

The main reason for large power consumption in an array multiplier is unbalanced signal 

arrival change in the adders. Unbalanced arrival of the signals at the adder is just a 

consequence of the above. In any case, adder is not the main reason for large power 

consumption. All FAs in array start computing at the same time without waiting for the 

propagation of sum and carry signals from the previous stage. This results in many glitches 

and consumes large power. Carry and sum inputs arrive at different times; thus, this structure 

introduces a large number of glitches. Specifically, the lower rows consume much more power 

than the upper rows in the PPR array because glitches cause a snow ball effect as signals 

propagate through the array [24]. Therefore, if the length of the array could be reduced, there 

would be power savings. The way to reduce the length of the array is to split the PPR array into 

several parts and reduce each part in parallel. The final vectors from each part are reduced to 

two vectors using a [4:2] adder. The previous studies have mainly focused on developing 

2-level split array designs. These techniques split the PPR array into two parts with each part 

having half as many rows. Potentially, there would be greater power and delay savings if each 

part were split further because a shorter length of array reduces the number of glitch transitions. 

However, it is still unknown how much would be gained by further splitting. Thus, theoretical 

analysis and experimental results are desirable in order to explore the potential advantages of 

multi-level split array design. Considering a 32 × 32-bit multiplier, we predict that a 4-level split 

array structure will be a good example. In the case of 8-level splitting, each part has only one 

row. It is obvious we avoid further splitting here. There are two types of split array structures: 

Even/Odd (EO) and UL structures. In the EO split array structure, the array is broken into two 

parts: even rows in one part and odd rows in another part, as shown in Figure 2.6(a) [74]. The 

other possibility is to separate the array into upper and lower parts, as shown in Figure 2.6(b). 

Among two existing split structures, the 2-level UL split array multiplier presents the less power 
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consumption result compared to its 2-level EO counterpart [72]. Furthermore, the UL split 

structure allows simpler interconnection; thus, the physical regularity of array multipliers will 

also be maintained by interleaved placement and routing. It will still be a good choice for 4-level 

array splitting. Thus, we will use the UL structure for a 4-level array structure here. All designs 

analyzed here assume 32-bit integer operands and a [4:2] adder are used in all multiplier designs. 

A [4:2] adder has the same gate complexity as two cascaded [3:2] adders, and it has 3 × TXOR2 

delay.The estimates do not include buffers. 

The total cell area and delay of the baseline radix-2 non-split array structure is estimated as 

Area = 480 × A[4:2]ADDER + ACPA 

Delay = 45 × TXOR2 +TCPA 
(2-1) 

In a 32 × 32 radix-2 non-split array structure, a linear array has 30 rows because the first 

adder row accepts three PPs, and subsequent adder row accepts one PP. This array has 15 [4:2] 

adder, and each [4:2] adder has 3 × TXOR2 delay. We estimate the cell area and delay of radix-2 

2-level and 4-level UL split array structures based on Figure 2.7.  

The total cell area and delay of the radix-2 2-level UL split array structure is also estimated 

as 
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Area = 524 × A[4:2]ADDER + ACPA 

Delay = 24 × TXOR2 +TCPA 
(2-2) 

In a 32 × 32 radix-2 2-level UL split array structure, each array has 14 rows because the first 

adder row accepts three PPs and subsequent adder row accepts one PP. The total delay is 

calculated by 7 × [4:2] adder delay + 1 × additional [4:2] delay. 

Compared to the radix-2 non-split array structure, the delay of the radix-2 2-level UL split 

array structure (LR_42_Split2) is reduced about 40% with about 10% area penalties, due to a 

shorter critical path in the PPR array and extra summation stage. 

The total cell area and delay of the radix-2 4-level UL split array structure (LR_42_Split4) is 

also estimated as 

Area = 576 × A[4:2]ADDER + ACPA 

Delay = 16 × TXOR2 +TCPA 
(2-3) 

Compared with a 2-level, a 4-level UL split array structure has two main advantages. Each 

part has only 8 PPs instead of 16. It reduces glitches significantly, due to the shorter array length. 

Also, 4-level splitting reduces the critical path delay. The critical path of one part of the PPR 

array in a LR_42_Split4 is about 10 × TXOR2 due to two [4:2] and two CRA stages, while that in 

a LR_42_Split2 is 21 × TXOR2 due to seven [4:2] stages. This delay reduction is positive for 

power savings, as a lower supply voltage is used in conjunction with lower clock frequencies to 
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minimize power consumption. On the other hand, a LR_42_Split4 has one more [4:2] addition 

stage. This addition leads to only an additional 3 × TXOR2. 

The other way to reduce the length of the PPR array is to use the radix-4 Booth recoding 

scheme. It can decrease the power dissipation of a multiplier by reducing the number of PPs 

generated. The total cell area and delay of the radix-4 2-level UL split array structure 

(LR_42_Split2_ Radix4) is estimated as 

Area = 442 × A[4:2]ADDER + ACPA 

Delay = 14 × TXOR2 +TCPA 
(2-4) 

Additionally, consider the power dissipation of each structure. Based on the equation for 

dynamic power dissipation in CMOS digital circuits in Chapter 1, reduced dynamic power can 

be achieved by decreasing one or more of these factors: the load capacitance, the power supply 

voltage, the clock frequency and the switching activity. We assume that all designs were 

executed with the same supply voltages. Dynamic power is proportional to the amount of 

hardware used to implement the design. Furthermore, the delay reduction is effective for power 

savings. With regard to switching activities, a 4-level split design eliminates significant glitches, 

but the radix-4 Booth recoder may introduce a lot of glitches to subsequent modules. All things 

considered, the radix-2 4-level split or the radix-4 2-level split structures will be the best 

power-saving structures. 

A 16 × 16-bit 2-level and 4-level UL LR array reduction using a [4:2] adder is illustrated in 

Figure 2.7. Dark dots are PPs. Gold, gray and pink dots are carry and sum vectors from [4:2] 

adders. A portion of a LR_42_Split4 for uppermost PPs is illustrated in Figure 2.8. A high-level 

description of a 4-level UL LR array reduction scheme is given in Figure 2.9. 
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(A) EO SPLIT ARRAY STRUCTURE (ADAPTED FROM [24]) 

 

 

 

(B) UL SPLIT ARRAY STRUCTURE (ADAPTED FROM [72]) 

FIGURE 2.6: SPLIT ARRAY MULTIPLIER 
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(A) 2-LEVEL SPLIT STRUCTURE (ADAPTED FROM [51]) 

 

(B) 4-LEVEL SPLIT STRUCTURE 

FIGURE 2.7: UL LR ARRAY REDUCTION USING A [4:2] ADDER (RADIX-2, N = 16) 
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FIGURE 2.8: PORTION OF A 4-LEVEL UL LR ARRAY STRUCTURE FOR UPPERMOST PPS 

(RADIX-2, N = 32) 
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FIGURE 2.9: HIGH-LEVEL 4-LEVEL UL SPLIT LR ARRAY REDUCTION ALGORITHM 
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2.4.4 Voltage Islands 

The dynamic power equation indicates that the power supply voltage has the largest impact 

on the dynamic power dissipation due to its squared term factor. Unfortunately, the lowering 

power supply voltage causes speed penalties. A great deal of effort has been expended in recent 

years to develop techniques to utilize the low power supply voltage while minimizing the 

performance degradation. Using voltage islands is one way to mitigate such performance 

degradation by architectural changes of the circuit [35]. 

The problem of constructing the final adder when all input bits arrive at the same time has 

been well studied [75][76]. However, starting with the input bits for Least Significant Bit (LSB), 

the delays first increase with the bit numbers and then decrease, as can be seen from Figure 2.10. 

This non-uniform arrival of inputs to the adder produced by the PPR array has been used in 

reducing the power of the multiplier by decomposing it into several parts. 

We investigate the non-uniform arrival time profiles of the array multiplier to achieve power 

savings with minimal performance degradation. Specifically, we apply the voltage islands 

technique to the regions of non-uniform input generated by the PPR array [77]. That is, adders 

are partitioned into blocks that operate with different power supply voltages. A voltage island 

occupies a contiguous physical space and operates at one supply voltage. Such voltage island 

techniques are applied to the array multiplier so that the units of the multiplier get different 

levels of voltage support, as profiled by their performance requirements. The slowest region of 

the array multiplier is the middle region at which the arrival time is large and constant. It 

requires a higher supply voltage level in order to maximize the element’s performance. On the 

other hand, the other regions may run at a lower level of the supply voltage because they are not 

on the critical path. These regions are 1) the LS part at which arrival time increases from the 

LSB toward the middle region and 2) the MS part where arrival time decreases from the middle 
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region toward the MSB. An example of a partition into Low-High-Low islands is shown in 

Figure 2.11. 

 

 

FIGURE 2.10: THE EXAMPLE OF NON-UNIFORM ARRIVAL TIME FOR A 32 × 32 

MULTIPLIER 

 

 

FIGURE 2.11: PARTITION OF THE PPR ARRAY FOR VOLTAGE ISLANDS 
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In order to get more uniform signal arrival profiles, the PPR array need to be partitioned into 

more blocks that operate with different power supply voltages. The signal arrival profiles can be 

finely controlled by more supply voltages. However, the voltage level shifters are needed 

whenever circuits convert a source of the supply voltage from one voltage to another; thus, more 

uniform signal arrival profiles might increase area and power dissipation due to additional 

voltage level shifters.  

2.5 Experimental Evaluation 

We have implemented 32 × 32-bit LR array multipliers with different structure optimization 

techniques. The design and simulation methodologies are described in Appendix B. As our 

major focus is on the PP reduction step, the final CPAs presented in this chapter are not 

optimized for different input arrival scenarios. Fortunately, the CPAs are the final modules in all 

multipliers, and the results on PPG and PPR array modules are not affected. Therefore, the 

non-optimized final CPAs will not significantly affect the relative difference of actual measured 

values, although they may affect absolute power consumption values. A Carry Skip Adder 

(CSK) is used for the final CPA in all designs. These adders have good topological regularity 

and layout simplicity which are considered a good compromise in terms of area and 

performance. This adder presented in this chapter is not in the final design; thus, we will exploit 

fast adder design when inputs to the adder will arrive simultaneously in Chapter 3. 

2.5.1 Results for Split Array Multipliers 

Five schemes with different structure optimization techniques are implemented. For radix-2 

multipliers, four schemes are implemented: 1) a LR using the default [3:2] adder (LR_32), 2) a 

LR using a [4:2] adder (LR_42), 3) a 2-level UL split array multiplier using a [4:2] adder 
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(LR_42_Split2) and 4) a 4-level UL split array multiplier using a [4:2] adder (LR_42_Split4). 

For radix-4 array multipliers, only a radix-4 modified Booth 2-level UL split array multiplier 

using a [4:2] adder (LR_42_Split2_ Radix4) is implemented. Different from the radix-2 LR 

array multiplier, radix-4 4-level splitting will not be used here because each part accepts 4 PPs 

and only 1 row using a [4:2] adder in a 32 × 32-bit linear array multiplier, but it can easily be 

used if a longer fixed-point result is needed. 

The comparison results of power, delay and area estimates are shown in Table 2.2. The 

smallest value of each characteristic is highlighted in boldface. The baseline structure is a 

LR_32. Compared to a LR_32, a LR_42 achieves 14% less power, 18% less delay and 7% less 

area, as we expected. This is because the [4:2] adder has a shorter critical path and more regular 

structures than the [3:2] adder. For the UL split structure, a LR_42_Split2 dissipates 9% less 

power and 35% less delay with 5% area increase compared to a LR_42. The LR_42_Split4 

achieves 10% less power and 26% less delay, but has a 7% area increase compared to the 

LR_42_Split2. This result well matches our theoretical analysis in Section 2.4.3. The power 

savings are mainly because the signal propagation paths are shorter. This result implies that we 

can achieve more power reduction with a slight area increase if each part is split further with 

larger operand size. The area increase is due to an additional [4:2] stage. The most interesting 

result is from the LR_42_Split4 which reduces the power by 12% compared to a 

LR_42_Split2_Radix4. The delay and area of a LR_42_Split4 are close to those of a 

LR_42_Split2_Radix4. However, the experimental results indicate that the radix-4 Booth 

recoder has a negative effect on power dissipation, as it is the first stage on the long path in 

multipliers and thus provides subsequent modules a number of glitches. The LR_42_Split4 has 

a similar area as the LR_42_Split2_Radix4. These results imply that the increased area in the 

Booth recoder is roughly the same as the reduced area in the PPR array. Among all schemes, a 

LR_42_Split4 presents the lowest power consumption and power-delay product results under 
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experiment. These results indicate that a multi-level split structure is a useful power-saving 

technique in LR array multipliers. 

 

TABLE 2.2: POWER, DELAY AND AREA FOR LR ARRAY MULTIPLIERS 

Multiplier Power (μW) Delay (ns) Area (μm
2
) 

Power-Delay 

Product (pJ) 

LR_32 6898 1.00 11.20 1.00 13501 1.00 77.26 1.00 

LR_42 5932 0.86 9.18 0.82 12559 0.93 54.46 0.70 

LR_42_Split2 5381 0.78 6.05 0.54 13231 0.98 32.55 0.42 

LR_42_Split4 4829 0.70 4.43 0.40 14177 1.05 21.39 0.27 

LR_42_Split2_Radix4 5450 0.79 4.38 0.39 13772 1.02 23.87 0.31 

 

2.5.2 Results for Voltage Islands Technique 

We implemented conventional and the proposed LR linear array multipliers using Verilog 

and a top-down methodology. The proposed designs were synthesized with two supply voltages 

1.20V, 1.32V and three supply voltages 1.08V, 1.20V, 1.32V supported by technology. The 

voltage level shifters are needed whenever circuits convert a source of the supply voltage from 

one voltage to another. In recent years, the voltage level shifters can be automatically inserted to 

support voltage islands by the Synopsys Power Compiler. Figure 2.12 shows the non-uniform 

arrival time profiles generated by the PPR array with high supply voltage and voltage islands in 

a 32 × 32-bit multiplier. To partition the PPR array, we analyzed the slopes of arrival time of 

signals. For the LS region, the delay between two consecutive bits starting at the LSB toward 

the MSB is linearly increasing. For the middle region, delay is constant and large. For the MS 

region, the slope of the signal delay profile is negative.  
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Table 2.3 shows the simulation results for partition in three regions of multipliers. The LS 

and MS regions may not require higher supply voltage; thus, the power can be significantly 

reduced in the PPR array. Table 2.4 summarizes the results for the proposed and conventional 

multipliers. This result includes the power, delay and area of additional implementation for 

voltage islands. Compared to conventional multipliers, the proposed multipliers dissipate 

between 20% and 30% less power with between 8% and 11% increase in delay. Furthermore, 

our designs are better than conventional multipliers in terms of power-delay product. 

Unfortunately, the voltage islands technique does not match the split array structure, which 

has very narrow MS and LS regions compared to non-split array structure, as shown in Figure 

2.13. Therefore, in the split array structure, the negative effect due to the extra cost of the power 

dissipation of level shifters will be more dominating than the positive effect due to power 

reduction in MS and LS regions. Furthermore, as the operand size increases in the split array 

multiplier, the relative reduction in power dissipation will decrease because the rate of the 

middle region of the PPR array which requires a higher supply voltage level increases. Thus, the 

voltage islands technique cannot be applied efficiently to a split array multiplier, but it is still 

useful to apply a non-split array multiplier for power reduction. The overall results indicate that 

the proposed design approach has a good potential for power savings while maintaining the 

multiplier latency. 

 



- 46 - 

 

 

(A) TWO VOLTAGE LEVELS 

 

(B) THREE VOLTAGE LEVELS 

FIGURE 2.12: INPUT ARRIVAL PROFILES OF THE PPR ARRAY WITH HIGH SUPPLY 

VOLTAGES AND VOLTAGE ISLANDS IN A 32 × 32-BIT LR ARRAY MULTIPLIER 
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TABLE 2.3: RESULTS FOR PARTITION 

Region 
Two Voltage Levels Three Voltage Levels 

Characteristics 
Bit Rate Bit Rate 

LS 0 ~ 27 0.44 0 ~ 8 0.14 Linear increase 

Middle 28 ~ 38 0.17 9 ~ 59 0.80 Constant / Large 

MS 39 ~ 63 0.39 60 ~ 63 0.06 Rapid decrease 

 

 

TABLE 2.4: POWER, DELAY AND AREA COMPARISONS OF THE ARRAY IN A NON-SPLIT 

LR 32 × 32-BIT MULTIPLIER UTILIZING HIGH SUPPLY VOLTAGE AND VOLTAGE 

ISLANDS 

Size Multiplier 

Power (µW) 

Conventional (only 1.32V) 5932 1.30 

Voltage Islands (1.20, 1.32V) 4926 1.08 

Voltage Islands (1.08, 1.20, 1.32V) 4564 1.00 

Delay (ns) 

Conventional (only 1.32V) 9.18 1.00 

Voltage Islands (1.20, 1.32V) 9.90 1.08 

Voltage Islands (1.08, 1.20, 1.32V) 10.19 1.11 

Area (μm
2
) 

Conventional (only 1.32V) 11881 1.00 

Voltage Islands (1.20, 1.32V) 12288 1.03 

Voltage Islands (1.08, 1.20, 1.32V) 12355 1.04 

Power-Delay 

Product (pJ) 

Conventional (only 1.32V) 54.46 1.17 

Voltage Islands (1.20, 1.32V) 48.77 1.05 

Voltage Islands (1.08, 1.20, 1.32V) 46.50 1.00 
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FIGURE 2.13: ADDER INPUT PROFILES OF THE PPR ARRAY IN A 32 × 32-BIT 4-LEVEL UL 

SPLIT LR ARRAY MULTIPLIER 

2.6 Summary 

In this chapter, we have proposed a multiplier used for a major component of a low-power 

sum-of-products in Chapter 4. We have presented several power reduction structure 

optimization techniques for radix-2 and radix-4 LR linear array multipliers. These techniques 

include a [4:2] adder for PP reduction, a 4-level UL split structure and voltage islands. A 

LR_42_Split4 provides a more powerful alternative to the conventional LR_42_Split2 as this 

structure has the potential of saving power and delay. Detailed experimental results are given to 

compare the power, delay and area characteristics of each 32 × 32-bit LR multiplication scheme. 

Among different optimization techniques for LR array multipliers, the 4-level UL split structure 

is a primary choice if power is the critical concern. The LR_42_Split4 achieves the least power 

consumption in most cases with relatively small delay. When a small area is the main goal, the 

simpler LR_42 is a better candidate.  
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For real-world comparison, we introduce other multipliers used in mobile chips. The ARM 

core is used to perform real-time digital signal processing in most mobile systems and the 

ARM7TDMI includes an enhanced 32 × 8 single tree multiplier with a radix-4 modified 

Booth’s algorithm and supports the 64-bit results multiply and MAC instructions. We cannot 

directly compare the power dissipation and delay of two structures with different structure, due 

to the difference of features and the problem caused by lack of information. However, the 

previous studies demonstrate that a 2-level UL LR array multiplier is less power than tree 

multipliers without delay and area overhead with a maximum of 32-bit [51]. In this chapter, we 

also find that a 4-level UL split array multiplier using a [4:2] adder has less power consumption 

and smaller delay than a 2-level counterpart. Therefore, if we replace a tree multiplier in the 

ARM7 core with the proposed multiplier, a modified ARM processor will consume less power 

than a conventional one without delay overhead. 

In addition, our proposed designs scale well in terms of power reduction and thus use 

suitably less power when applied to high precision. It probably would gain a similar power 

reduction in 64 × 64-bit or larger precision. The techniques presented in this chapter can also be 

applied to other arithmetic units with unbalanced structures. 
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Chapter 3 Power and Delay Optimization of the 

Carry-Propagate Adder 

In Chapter 2 we have shown that power reduction could come from array structure 

optimizations at the algorithm and architecture levels. In this chapter we address the problem of 

adding two carry-save vectors obtained by two PPR arrays. We present a design strategy 

specific to arrival time profiles generated by two PPR arrays, and propose the power- and delay- 

optimal final CPA. Finally, we show that our design consume less power over another fast 

adders with a little delay increase. The proposed adder can achieve performance gains with 

small power increase when supply voltage is increased.  

3.1 Introduction 

The sum-of-products unit can be largely divided into three parts: 1) the PPG, 2) the PPR 

array and 3) the [4:2] adder and the CPA. PPs are created in parallel by the PPG, and the PPR 

array reduces the number of PPs to be added into two carry-save vectors. The [4:2] adders 

reduce 4 bit-vectors to 2 bit-vectors, and the final CPA produces the result. The total 

delay is generally determined by the carry-propagate addition, and thus reducing latency in the 

final CPA will decrease the total delay of a sum-of-products unit. 

We combine structure optimization techniques in Chapter 2 and propose an optimal final 

CPA. Many studies have focused on reducing a latency of fast adders [40][41]. In this chapter, 

we focus on reduce the power consumption of fast adders. Lower latency can be achieved 

using reduced power dissipation when supply voltage is increased. Consequently, we can 

reduce a delay of the final CPA. 
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3.2 Problem and Related Work 

In Chapter 2, we have found that the 4-level UL LR split array structure and the array 

structure utilizing voltage islands have the least power consumption with relatively small delay. 

It is not clear what are good adders and how to design an optimal adder under condition of 

signal arrival time generated from the proposed reduction structure. This section addresses these 

problems and related research. 

3.2.1 Problem 

In previous chapter, we have proposed a multiplier array used for a major component of a 

low-power sum-of-products. The 4-level UL split array structure with [4:2] adder achieves the 

least power consumption. The delay of a 4-level UL split array structure is decreased in the 

middle region while maintaining the delays in the LS and MS regions compared to that of a 

non-split array structure. Thus, non-uniform input arrival time to the CPA is transformed into 

mostly uniform input arrival time. This chapter examines the design of the CPA under the 

condition of uniform (but not perfectly constant) input signals arrival. 

3.2.2 Related Work 

Previous work on the final CPA focused on the hybrid CPA. The hybrid CPA has been 

optimized to match the non-uniform input arrival profiles [75][76]. It was obvious that the use 

of these techniques in multipliers is an efficient in delay. However, the hybrid adder would not 

be efficient for a sum-of-products unit, when we use a 4-level split array structure or a structure 

utilizing voltage islands because most input arrival bits to the CPA arrive at the same time.  

We consider fast adders under the condition of uniform input signals arrival. One of fast 

adders is a Carry-SELect Adder (CSELA). The idea of the CSELA is to compute in parallel 
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two conditional sums: one for a 0-carry and the other for 1-carry, and then select one sum 

when the carry is available. The basic principle is to divide the adder into groups of m-bit and 

to compute for each group two conditional sums and carry outs. A generic group in which we 

label the bit from 0 to (m-1)-bit is as below. 

(c
0

m, S
0
) = ADD (X, Y, c0 = 0) 

(c
1

m, S
1
) = ADD (X, Y, c0 = 1) 

(3-1) 

(3-2) 

where, X, Y and S are m-bit vectors 

Then, we can select from these two forms when the carry-in of the group is known. 

               (cm, S) =   (c
0

m, S
0
)  if c0 = 0 

  (c
1

m, S
1
)  if c0 = 1 

(3-3) 

We use a module that has as input the two m-bit operands and produces two (m+1)-bit 

result because two m-bit adders for the same group can share components, as shown in Figure 

3.3 [41]. 



- 53 - 

 

 

(A) CARRY-SELECT ADDER  

 

 

(B) CONDITIONAL ADDER 

FIGURE 3.1: BLOCK DIAGRAM OF A CARRY-SELECT ADDER (ADAPTED FROM [41]) 
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We can use several types of adders such as CRA, Carry-Lookahead Adder (CLA), the 

Conditional-Carry Adder (CCA) in a conditional adder. The basic idea of CLA is to compute 

several carries simultaneously. Ideally, all carries can be computed at the same time, but it is 

not practical because the implementation has the large number of gates with large number of 

inputs for large size [41]. The CLA consists of three computation parts: 1) the computation of 

pi, gi and ai, 2) the computation of the carries in the Carry-Lookahead Generator (CLG) and 

the computation of sums, as shown in Figure 3.3. In CCA, instead of generating conditional 

sums, one can obtain only conditional carries using a simple group design, because the sum 

outputs are worthless for the carry selection [78][79]. To reduce the gates, the MUXs for sum 

selection are discarded, and only selected carry bits are generated. We know all the carries 

once controlling carries are determined. One extra XOR level produces the final sums. 

We can use the variable block size of each block. When designing these types of adders, it 

is important that delays of groups and carry generation are balanced. The idea of varying block 

sizes can further reduce adder delay. 

 

 

(A) CONDITIONAL ADDER BASED ON CLA4 
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(B) Carry-Lookahead Adder module (CLA-4)  

 

(C) 4-BIT CLG GENERATOR (CLG-4) 

FIGURE 3.2: BLOCK DIAGRAM OF A CARRY-SELECT ADDER BASED ON CLG4 

(ADAPTED FROM [41]) 
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FIGURE 3.3: A CONDITIONAL CARRY ADDER (ADAPTED FROM [79]) 
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3.3 Baseline Design 

We design here the fast adder under the assumption of uniform arrivals. We focus on power 

optimization techniques of fast adders because lower latency of adders can be achieved when 

supply voltage is increased. The CSELA is one of the fast adders, but the duplicated adder 

results in high power consumption. However, the recent implementations of the CSELA have 

been proposed in [81][82][83]. This adder can be implemented by using a single CRA and a 

MUX-based add-one circuit instead of another CRA with a carry input. The number of 

connections can be also reduced. We can use several adders as a conditional adder of CSELAs. 

We first focus on a CRA structure because the input arrival time to the final CPA is not 

perfectly constant. In a 4-level UL LR split structure, delay is increased from LSB through 

7-bit, and in an array structure with voltage islands technique, delay is increased from LSB 

through 8-bit. In the positive slope region, a CRA would be appropriate because this need not 

wait for the incoming input from reduction array, while any fast adder would need to wait for 

higher bits from PPR arrays. Another structure is to use a CLA structure as a conditional adder 

of a CSELA. The CLA has been widely used in CSELA, due to a fast structure. The CLA 

calculates several carries simultaneously, and thus reduces the wait time to calculate the result 

of the larger bits. However, this has a large number of gates with a large number of inputs and 

long interconnection. Thus we consider here only a simple one-level CLA. The other is to use 

a CCA as a conditional adder of a CSELA. The CCA is only used for the carry output 

selections of every bit and the sum bits can be produced by a CSELA.  

3.3.1 Preliminaries 

To evaluate the effectiveness of our proposed design, we provide a theoretical analysis and 

conduct experiments. The delay and area evaluation methodology considers a XOR and a MUX 
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to be made up of basic digital logic gates, shown in Figure 3.4. Based on this approach, the 

CSELA made up of 2:1 MUXs, HAs, and FAs are evaluated and listed in Table 3.1. The delay 

of one basic logic gate such as NOR2, NAND2 is 0.5 × TXOR2, and a MUX21 gate has the same 

delay as a XOR2 gate. The area is evaluated by counting the total number of gates required for 

module. These delay and area characteristics are true in Samsung 65nm standard cell library. 

Numeric suffixes with gates specify the number of input and output. e.g., AND2 gate means 

2-input AND gate, and a MUX21 gate means a 2-input MUX gate with a single output. For 

theoretical analysis, we assume that 1) basic logic gates such as AND2, OR2, and inverter gates 

have the same gate delay and 2) positive logic gates such as AND, OR could be optimized to be 

negative logic NAND, NOR without delay and area penalty, and thus there is no difference 

between positive and negative logic gates in actual implementation. 3) One additional input for 

a given gate increases 50% area and 20% delay, and 4) this delay figures exclude sum buffering 

delays, which depend on the particular application. Figure 3.5 shows two popular FA structures. 

Figure 3.5(a) is a NAND2-based structure, Figure 3.5(b) and is a MUX-based structure. For 

the worst-case delays and area, a MUX-based structure is better. Furthermore, a 

NAND2-based structure has complex interconnection. We will focus on a MUX-based 

structure here. 
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NAND2-based structure 

Area: (3 × AND2 + OR3 + 2 ×XOR2) = 3.35 × AXOR2 

Delay: 2 × TXOR 

MUX-based structure 

Area: (MUX21 + 2 × XOR2) = 3 × AXOR2 

Delay: 2 × TXOR 

 

 

(A) XOR GATE 

 

(B) 2:1 MUX GATE 

FIGURE 3.4: THE IMPLEMENTATION OF XOR AND MUX 
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TABLE 3.1: DELAY AND AREA COUNT OF THE BASIC BLOCKS OF CSELA 

Module Delay Area 

XOR2, MUX21 TXOR2 AXOR2 

XOR3 1.2 × TXOR2 1.2 × AXOR2 

XOR4 1.4 × TXOR2 1.4 × AXOR2 

NAND2, NOR2, AND2, OR2 0.5 × TXOR2 0.3 × AXOR2 

NAND3, NOR3, AND3, OR3 0.6 × TXOR2 0.45 × AXOR2 

NAND4, NOR4, AND4, OR4 0.7 × TXOR2 0.6 × AXOR2 

INV 0.3 × TXOR2 0.3 × AXOR2 

HA TXOR2 1.3 × AXOR2 

FA 2 × TXOR2 3 × AXOR2 

 

 

(A) NAND2-BASED STRUCTURE 

 

(B) MUX-BASED STRUCTURE 

FIGURE 3.5: DESIGNS OF A FA 
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3.3.2 Basic Schemes and Architecture of the CSELA 

In this section we follow the idea of the modified CSELA with an add-one circuit. Previous 

studies have mainly focused on area and power optimizations and have not considered well 

input signal arrival characteristics. Thus we develop an improved version for the modified 

CSELA design for corresponding 4-level UL LR array structure. The structure of the 64-bit 

conventional CSELA is shown in Figure 3.6. The numbers within gates ( ) and wires [ ] specify 

gate delay and signal arrival times, respectively, assuming a unit delay model. e.g., a FA 

requires 2 unit delays. The delay of the longest path is the sum of all the gate delays. Because 

carry-in is known at the beginning of computation, a carry-select block is not needed for the first 

group1. The delay evaluation of group2 is shown in Figure 3.7. The one set of an 8-bit CRA 

with Cin = 0 has 7 FAs and a 1 HA, and the other set of an 8-bit CRA with Cin = 1 has 7 FAs and 

a 1 modified HA, as shown in Figure 3.8. The arrival time of data outputs from a CRA with Cin 

= 1 is the same as the arrival time of data output from a CRA with Cin = 0. Based on the 

consideration of delay values of Table 3.1, the arrival time of data output (s0(t) = 2 × TXOR ~ s7(t) 

= 14 × TXOR) from a CRA with Cin = 0 and a CRA with Cin = 1 is earlier than or equal to the 

arrival time of selection input (Cin(t) = 15 × TXOR) of a MUX. Thus, the final sum output from s0 

to s7 in group2 is summation (s0(t) ~ s7(t) = 16 × TXOR) of the arrival time of MUX selection 

input (Cin(t) = 15 × TXOR) and MUX gate delay (TMUX  = 1 × TXOR). In order to avoid waiting for 

the data input, we adjust the group size from group3 to group8, and hence the arrival time of 

MUX selection input is always greater than or equal to the arrival time of data outputs from 

CRAs. The total delay of group3 to group8 is estimated as the sum of the arrival time of MUX 

selection input and MUX gate delay. 

Based on the gate count of Table 3.1, the area of group2 is determined as follows:  
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Group 2 → (8-bit CRA with Cin = 0) + (8-bit CRA with Cin = 1) + (18:9 MUX) = 53.6 × AXOR2 

 

8-bit CRA with Cin = 0 → 7 × FA + HA = 22.3 × AXOR2 

8-bit CRA with Cin = 1 → 7 × FA + HA = 22.3 × AXOR2 

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2 

Similarly, the delay and area of the other groups in the conventional CSELA are estimated. 
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FIGURE 3.6: A CONVENTIONAL CSELA WITH VARIABLE BLOCK SIZE 



- 64 - 

 

 

FIGURE 3.7: DELAY EVALUATION OF CONVENTIONAL CSELA (GROUP2) 
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FIGURE 3.8: A HALF ADDER AND A MODIFIED HALF ADDER 

 

3.4 The Proposed Design 

In this section, we show how to construct the final adder for uniform signal arrival profiles 

derived from the proposed array structure.  

3.4.1 Modified Schemes and Architecture of the CSELA 

To reduce area and power dissipation of a conventional CSELA, the n + 1-bit add-one circuit 

is required to replace the n-bit adder with Cin = 1. The Boolean expression of a 4-bit add-one 

circuit is shown as below. 

 

s
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0 = ~ s
0
0 

s
1

1 = s
0
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0
0 

s
1

2 = s
0
2  (s
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As shown in Figure 3.9, a 4-bit add-one circuit can be implemented directly from Boolean 

expression. 

 

FIGURE 3.9: THE IMPLEMENTATION OF A 4-BIT ADD-ONE CIRCUIT (ADAPTED FROM 

[83]) 

 

Figure 3.10 illustrates CSELA operation using an add-one circuit. This module produces two 

partial results and the MUX is used to select either an adder with cin = 0 or an add-one circuit 

output according to the control signal, cin. In case of the multiplexer the output of the n-bit adder 

with cin = 0 is chosen when 0 is asserted at cin and the output of an add-one circuit, which is the 

same as the output of an adder with cin = 1 is chosen, with the assertion of 1 at cin. 
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FIGURE 3.10: BLOCK DIAGRAM OF THE COMPONENTS WITHIN THE PROPOSED CSELA 

REQUIRED FOR MUX OPERATION 

 

The structure of the modified CSELA using a CRA and an add-one circuit is shown in 

Figure 3.11. This adder has also 8 groups of different size of a pair of CRAs and add-one circuits. 

The delay evaluation of group2 is shown in Figure 3.12. The one set of an 8-bit CRA has 7 FAs 

and a 1 HA for no carry input, and the other set of a 9-bit add-one circuit has 9 × XOR2, 8 × 

AND2 and 1 × INV gates for carry input. The arrival time of data outputs from an add-one 

circuit is 1.5 × TXOR greater than the arrival time of data output from a CRA with cin = 0.
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FIGURE 3.11: THE MODIFIED CSELA USING CRA AND AN ADD-ONE CIRCUITWITH 

VARIABLE BLOCK SIZE (BLOCK SIZES OF 2−10−10−9−9−8−8−8) 
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FIGURE 3.12: DELAY EVALUATION OF THE MODIFIED CSELA USING CRA AND AN 

ADD-ONE CIRCUIT (GROUP2) 
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The estimated delay of this adder is evaluated. The arrival time of data output (s
1
0(t) = 1.3 × 

TXOR ~ s
1
6 (t) = 14 × TXOR) from an add-one circuit is earlier than the arrival time of selection 

input (cin(t) = 15 × TXOR) of a MUX. Thus, the final sum output from s0 to s6 in group2 is 

summation (s0(t) ~ s6(t) = 16) of the arrival time of MUX selection input (cin(t) = 15 × TXOR) 

and MUX gate delay (TMUX  = 1 × TXOR). However, for the highest sum output (s7) and carry 

out (cout) in group2, the arrival time of data outputs from an add-one circuit (s
1
7(t) = 16 × TXOR, 

c
1
(t) = 16.5 × TXOR) is later than the arrival time of MUX selection input (cin(t) = 15 × TXOR). 

Thus, the delays are the sum (s7(t) = 17 × TXOR, cout(t) = 17.5 × TXOR) of the arrival time of data 

outputs from an add-one circuit (s
1
7(t) = 16 × TXOR, c

1
(t) = 16.5 × TXOR) and MUX gate delay 

(TMUX  = 1 × TXOR). For the remaining groups, the arrival time of MUX selection input is always 

greater than the arrival time of data inputs from an add-one circuit. Thus, the delay depends on 

the arrival time of MUX selection input and its gate delay. 

Based on the gate count of Table 3.1, the total number of gates in group2 is determined as 

follows: 

Group 2 → (8-bit CRA with Cin= 0) + (9-bit add-one circuit) + (18:9 MUX)= 43 × AXOR2 

 

8-bit CRA with Cin = 0 → 7 × FA + HA = 22.3 × AXOR2 

9-bit add-one circuit → 9 × XOR2 + 8 × AND2 + INV = 11.7 × AXOR 

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2 

Similarly, the delay and area of the other groups are estimated.  
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As shown in Figure 3.13, in the structure of the modified CSELA using a CCA and an 

add-one circuit, the arrival time of data output (s
1
0(t) = 1.3 × TXOR ~ s

1
2(t) = 3.5 × TXOR) from 

an add-one circuit is earlier than the arrival time of selection input (cin(t) = 4.3 × TXOR) of a 

MUX. Thus, the final sum output from s0 to s2 in group2 is summation (s0(t) ~ s2(t) = 5.3) of 

the arrival time of MUX selection input (cin(t) = 4.3 × TXOR) and MUX gate delay (TMUX  = 1 × 

TXOR). However, for the higher sum output (from s3 to s7) and carry out (cout) in group2, the 

arrival time of data outputs from an add-one circuit (s
1
3(t) = 4.5 × TXOR, ··· , s

1
7(t) = 7.5 × TXOR, 

c
1
(t) = 8 × TXOR) is later than the arrival time of MUX selection input (cin(t) = 4.3 × TXOR). Thus, 

the delays are the sum (s7(t) = 8.5 × TXOR, cout(t) = 9 × TXOR) of the arrival time of data outputs 

from an add-one circuit (s
1
7(t) = 7.5 × TXOR, c

1
(t) = 8 × TXOR) and MUX gate delay (TMUX  = 1 × 

TXOR). For the remaining groups, the arrival time of MUX selection input is always greater than 

the arrival time of data inputs from an add-one circuit. Thus, the delay depends on the arrival 

time of MUX selection input and its gate delay. 

Based on the gate count of Table 3.1, the total number of gates in group 2 is determined as 

follows: 

Group 2 → (8-bit CCA with cin = 0) + (9-bit add-one circuit) + (18:9 MUX)= 51.6 × AXOR2 

 

8-bit CCA with cin = 0 → = 30.9 × AXOR2 

9-bit add-one circuit → 9 × XOR2 + 8 × AND2 + INV = 11.7 × AXOR 

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2 
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FIGURE 3.13: DELAY EVALUATION OF THE MODIFIED CSELA USING CCA AND AN 

ADD-ONE CIRCUIT (GROUP2) 
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The estimated delay and area of the all groups of the conventional and modified CSELAs are 

evaluated and listed in Table 3.2. The delay and area numbers are accumulated value - e.g., the 

area of group 2 is summation of group 1 and 2 areas. Theoretically, as to delay, the Modified 

CSELA based on a CLA is the best followed by the Modified CSELA based on a CCA. In terms of 

area, the Modified CSELA based on a CRA is the best followed by the Modified CSELA based on a 

CLA. It is clear that the modified CSELA based on a CRA has less area than a conventional one. 

The power dissipation can be also reduced, as it is proportional to the amount of hardware used 

to implement the design. The modified CSELA based on a CLA has less area and delay and the 

modified CSELA based on CCA has less delay with slight delay increase. 

Table 3.2: Delay and Area of Conventional and Modified CSELAs 

Group 
Conventional CSELA Modified CSELA (CRA) 

Delay Area Delay Area 

Group 1 15 1.00 22.3 1.00 15 1.00 22.3 1.00 

Group 2 16 1.00 75.9 1.00 17.5 1.10 65.3 0.86 

Group 3 17 1.00 127.8 1.00 18.5 1.09 108.3 0.85 

Group 4 18 1.00 188.4 1.00 19.5 1.08 156.6 0.83 

Group 5 19 1.00 249.0 1.00 20.5 1.08 204.9 0.82 

Group 6 20 1.00 316.6 1.00 21.5 1.08 258.5 0.82 

Group 7 21 1.00 384.2 1.00 22.5 1.07 312.1 0.81 

Group 8 22 1.00 395.8 1.00 23.5 1.06 323.3 0.81 

 

Group 
Modified CSELA (CLA) Modified CSELA (CCA) 

Delay Area Delay Area 

Group 1 4.2 0.28 25.7 1.15 5.5 0.37 30.9 1.39 

Group 2 6.7 0.40 73.9 0.97 9 0.56 91.5 1.21 

Group 3 7.7 0.45 125.6 0.98 10 0.59 164.1 1.28 

Group 4 8.7 0.48 180.8 0.96 11 0.61 232.2 1.23 

Group 5 9.7 0.51 239.5 0.96 12 0.63 305.8 1.23 

Group 6 10.7 0.54 301.7 0.95 13 0.65 384.9 1.22 

Group 7 11.7 0.56 353.4 0.92 14 0.67 455.5 1.19 
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3.4.2 Optimal Group Distribution 

Another problem is to find the optimal block sizes which minimize the total worst case delay 

of an adder for a corresponding reduction array. Total delay can be reduced by dividing the 

adder into variable sized blocks that balance the delay of inputs to the carry chain. In a 4-level 

UL LR split structure, delay is increased from LSB through 7-bit. Considering the structure of 

CLG and CCA, 2
n
-bit size is efficient to design an 64-bit adder, thus we use an 8-bit adder as a 

basic block in group 1. Considering additional MUX delay, the adder with optimal variable size 

can be created when the input delay through the adder with cin = 0 is less than or equal to the 

delay of the previous stage carry because the final adder need not the wait for input from PPR 

array. Using this delay calculation, two types of adders with variable block sizes can be created 

because the size of the last block is less than one of basic block size. If we combine the last two 

groups into one single group, it would make the computation time slower because the size of 

the last module is longer than those of other group. The CSELA based on CRA with block 

size of 2−10−10−9−9−8−8−8 is called MCSELA_10_2_CRA and block size of 

12−10−9−9−8−8−8 is called MCSELA_12_CRA.  

3.4.3 The Structure Optimization 

In modified CSELA based on CRA, a CRA is slow because each FA must wait for the carry 

bit to be calculated by the previous FA. For example, the 12-bit last group of the 

MCSELA_12_CRA can only start operation until the output from the 12-bit CRA is ready 

because the arrival time of data output (s
1
(t) = 24.5 × TXOR) from CRAs is greater than the arrival 

time of selection input (cin(t) = 21.5 × TXOR) of a MUX. Therefore, we use a fast CLA instead of 

a slow CRA as the last group of the MCSELA_12_CRA. The CLA can avoid the wait time to 

calculate the final result. The proposed final adder is comprised of one group of CLA and six 
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groups of CRA. We consider here only a simple one-level CLA, and divide the CLA into 

several small groups. Thus, for less complex implementation the 12-bit input vectors are 

divided into 3 groups of 4-bit or 6 groups of 2-bit and the groups are connected as in a CRA. 

These schemes are called MCSELA_12_CLA4 and MCSELA_12_CLA2, respectively. 

Based on the consideration of delay values of Table 3.1, the arrival time of data output 

(4-bit: s
1
0(t) = 1.3 × TXOR ~ cout(t) = 8.9 × TXOR, 2-bit: s

1
0(t) = 1.3 × TXOR ~ cout(t) = 9.5 × TXOR) 

from two CLAs based on 4-bit and 2-bit is earlier than the arrival time of selection input (cin(t) 

= 21.5 × TXOR) of a MUX. Thus, the final sum output in group7 is summation (s0(t) ~ s6(t) = 

22.5 × TXOR) of the arrival time of MUX selection input (cin(t) = 21.5 × TXOR) and MUX gate 

delay (TMUX  = 1 × TXOR), and two adders have the same delay. Comparing the proposed 

adders, these adders have approximately 12% and 4% faster than the MCSELA_12_CRA and 

the MCSELA_10-2_CRA, respectively. 

Based on the gate count of Table 3.1, the total number of gates in group7 is determined as 

follows: 

Group 7 → (12-bit one-level CLA with each 4-bit group) + (13-bit add-one circuit) + (26:13 MUX) 

= 61.4 × AXOR2 

 

12-bit one-level CLA with each 4-bit group→ 3 × (8 × AND2 + 5 × OR2 + 3 × AND3 + 

OR3 + 2 × AND4 + 1 × OR4 + 4 × XOR2) = 31.5 × AXOR2 

13-bit add-one circuit → 13 × XOR2 + 12 × AND2 + INV = 16.9 × AXOR2 

26:13 MUX → 13 × AXOR2 
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Group 7 → (12-bit one-level CLA with each 2-bit group) + (13-bit add-one circuit) + (26:13 MUX) 

= 54.5 × AXOR2 

 

12-bit one-level CLA with each 2-bit group→ 6 × (4 × AND2 + 3 × OR2 + 2 × XOR2) = 

24.6 × AXOR 

13-bit add-one circuit → 13 × XOR2 + 12 × AND2 + INV = 16.9 × AXOR2 

26:13 MUX → 13 × AXOR2 

Two adders have the same delay while the CLA based on 2-bit group is smaller than 4-bit 

group because it is derived based on a simpler arithmetic expression. MCSELA_CLA4 and 

MCSELA_CCA have internal fast block, and thus it is not necessary to replace with fast 

adders. Table 3.3 shows delay and area estimates. MCSELA_CLA4 is the fastest followed by 

MCSELA_CCA. However, they are not optimized for non-uniform LS region, and thus would 

probably increase delay. In terms of area, the MCSELA_12_CLA2 is the best because this 

adder uses less XOR2, which are relatively large gates, than the other adders. MCSELA_CCA 

is the largest because this adder uses many MUX21 gates, which are relatively larger in size. 

Because smaller area usually leads to less switching capacitance, the results could provide a 

rough estimation of relative power consumptions in different schemes. Thus the 

MCSELA_12_CLA2 would consume the smallest power, due to the lowest gate count. 
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TABLE 3.3: DELAY AND AREA COMPARISONS OF MODIFIED CSELASWITH VARIABLE 

BLOCK SIZES FOR A 4-LEVEL UL LR STRUCTURE 

Adder Delay (ns) Area (NAND2) 

Conventional CSELA 

(2−10−10−9−9−8−8−8) 
23.0 × TXOR 1.00 409.4 1.00 

MCSELA_10_2_CRA  

(2−10−10−9−9−8−8−8_CRA) 
23.5 × TXOR 1.02 323.3 0.79 

MCSELA_12_CRA  

(12−10−9−9−8−8−8_CRA)  
25.5 × TXOR 1.11 323.7 0.79 

MCSELA_12_CRA_CLA4  

(12−10−9−9−8−8−8_CLA4)  
22.5 × TXOR 0.98 323.9 0.79 

MCSELA_12_ CRA_CLA2 

(12−10−9−9−8−8−8_CLA2) 
22.5 × TXOR 0.98 314.0 0.76 

MCSELA_CLA4 

(10−11−10−9−8−8−8_CLA4) 
11.7 × TXOR 0.51 353.4 0.86 

MCSELA_CCA 

(10−11−10−9−8−8−8_CCA) 
14 × TXOR 0.61 455.5 1.11 

 

Similarly, the delay and area of the adder for corresponding array structure with voltage 

islands are estimated. The delay and area estimates are shown in Table 3.4. In terms of delay, the 

MCSELA_CLA4 and MCSELA_17_CLA2 are the fastest, and the MCSELA_17_CLA2 is the 

best candidate only when small area is the main goal.  
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TABLE 3.4: DELAY AND AREA COMPARISONS OF MODIFIED CSELA WITH VARIABLE 

BLOCK SIZES FOR A PPR ARRAY USING VOLTAGE ISLANDS 

Adder Delay (ns) Area (NAND2) 

Conventional CSELA 

(6−11−10−10−9−9−9) 
24.0 × TXOR 1.00 406.1 1.00 

MCSELA_11_6_CRA  

(6−11−10−10−9−9−9_CRA)  
24.5 × TXOR 1.02 320.4 0.79 

MCSELA_17_CRA  

(17−10−10−9−9−9_CRA)  
35.5 × TXOR 1.48 319.8 0.79 

MCSELA_17_CLA4  

(17−10−10−9−9−9_ CLA4)  
23.5 × TXOR 0.98 318.1 0.78 

MCSELA_17_CLA2 

(17−10−10−9−9−9_ CLA2) 
23.5 × TXOR 0.98 304.9 0.75 

MCSELA_CLA 

(10−11−10−9−8−8−8_CLA) 
12.7 × TXOR 0.53 350.5 0.86 

MCSELA_CCA 

(10−11−10−9−8−8−8_CCA) 
15 × TXOR 0.63 452.6 1.11 

 

Figure 3.14 and Figure 3.16 show the modified CSELA using a CRA and an add-one circuit 

with variable block size. Figure 3.15 and Figure 3.17 show delay evaluation of the modified 

CSELA using a CRA and an add-one circuit with fixed 2-bit block (group 7). 
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FIGURE 3.14: THE MODIFIED CSELA USING A CRA AND AN ADD-ONE CIRCUIT WITH 

VARIABLE BLOCK SIZE (BLOCK SIZES OF 12−10−9−9−8−8−8) 
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FIGURE 3.15: DELAY EVALUATION OF THE MODIFIED CSELA USING CLA4 AND AN 

ADD-ONE CIRCUIT (GROUP7) 
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FIGURE 3.16: THE MODIFIED CSELA USING A CRA, A CLA AND AN ADD-ONE CIRCUIT 

WITH VARIABLE BLOCK SIZE (BLOCK SIZES OF 12−10−9−9−8−8−8) 
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FIGURE 3.17: DELAY EVALUATION OF THE MODIFIED CSELA USING CLA2 AND AN 

ADD-ONE CIRCUIT (GROUP7)
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3.5 Experimental Evaluation 

We have implemented 64-bit adders with different structure optimizations. The design and 

simulation methodologies are described in Appendix A. As our major focus is on the final 

addition step, the array structures proposed in Chapter 2 are reused for the PPR arrays in our 

designs. Fortunately, as array structures are already optimized, they would not significantly 

affect the relative difference of actual measured values for the final CPA although they may 

affect absolute values. We only provide the combined results of reduction array and the CPA 

to consider the input signal profiles to the final CPA. 

3.5.1 Results for Split Array Multipliers 

Seven schemes with different structure optimization techniques are implemented. Table 3.5 

summarizes the results for the proposed and conventional adders with a 4-level UL LR array 

structure. The smallest value of each characteristic is highlighted in boldface. The baseline 

structure is a conventional CSELA. Compared to a 4-level UL LR array structure with a 

conventional CSELA, a 4-level UL LR array structure with the modified CSELA based on 

CRA achieves between 12% and 16% less power, between 14% and 17% less area with 

between 1% and 10% delay overhead. The modified CSELA approach increases delay 

because the extra 1-bit add-one circuit should be executed after the carry output of a CRA with 

Cin = 0. The area and power reduction is because it is implemented by using a single CRA and 

a multiplexer-based add-one circuit instead of two CRAs. The interesting results are that all 

adders have similar delay, a 4-level UL LR array structure with MCSELA_CLA and 

MCSELA_CCA have slight delay decrease, but it is not enough large than we expect because 

this adder need to wait for higher input bit in LS region. They have slight decrease power 
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reduction (MCSELA_CLA) and power increase (MCSELA_CCA). One reason is they have 

more switching activities due to internal complex structure compared to CRA structure. A 

4-level UL LR array structure with MCSELA_10_2_CRA dissipates 9% less delay compared 

to a MCSELA_12_CRA because the MS 2-bit is executed with the other group simultaneously, 

but the MS 2-bit of a MCSELA_12_CRA must wait for the carry bit to be calculated from the 

lower bit. The power and area of a 4-level UL LR array structure with MCSELA_10_2_CRA 

are close to those of a MCSELA_12_CRA. The good results are from a 4-level UL LR array 

structure with a MCSELA_12_CRA_CLA2 which reduce the power and area by 

approximately 15% without delay overhead. Because the area of CLAs is much larger than 

that of CRAs, the area and power overhead for CLAs are more evident. However, our 

theoretical and experimental conclusions here conflict with the previous work where only 

CRAs were used. Specifically a MCSELA_12_CRA_CLA2 slightly reduce the power, area as 

well as delay compared to a MCSELA_12_CRA_CLA4. The reason is that the number of 

gates required for the group size of 2-bit is smaller than those of 4-bit for implementation. In 

terms of area and power-delay product, a 4-level UL LR array structure with 

MCSELA_12_CRA_CLA2 is the best. AMCSELA_CLA presents the fast followed by a 

MCSELA_CCA. Table 3.6 shows delay and power comparisons of MCSELA_12_ 

CRA_CLA2 with two supply voltages. MCSELA_12_ CRA_CLA2 is the fastest when supply 

voltage is increased.  
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TABLE 3.5: POWER, DELAY AND AREA COMPARISONS OF ADDERS FOR A 4-LEVEL UL 

LR STRUCTURE 

Adder Power (µW) Delay (ns) Area (μm
2
) 

Power-Delay 

Product (pJ) 

4-level UL LR array structure 

with a conventional CSELA 
5172 1.00 6.88 1.00 15779 1.00 35.53 1.00 

4-level UL LR array structure 

with MCSELA_10_2_CRA  
4396 0.85 6.95 1.01 13571 0.86 30.55 0.86 

4-level UL LR array structure 

with MCSELA_12_CRA  
4345 0.84 7.47 1.10 13096 0.85 32.46 0.92 

4-level UL LR array structure 

with MCSELA_12_CRA_CLA4 
4551 0.88 6.91 1.02 13503 0.85 31.45 0.89 

4-level UL LR array structure 

with MCSELA_12_ CRA_CLA2 
4348 0.84 6.88 1.00 13536 0.83 29.87 0.84 

4-level UL LR array structure 

with MCSELA_CLA 
4914 0.95 6.54 0.95 14517 0.92 30.42 0.86 

4-level UL LR array structure 

with MCSELA_CCA 
6102 1.18 6.61 0.96 17672 1.12 40.33 1.14 

 

 

TABLE 3.6: POWER AND DELAY COMPARISONS OF THE MCSELA_12_CRA_2 WITH 

DIFFERENT SUPPLY VOLTAGE 

Adder Power (µW) Delay (ns) 
Power-Delay 

Product (pJ) 

4-level UL LR array structure 

with MCSELA_12_ CRA_CLA2  

at 1.08V 
1
 

4348 1.00 6.88 1.00 29.87 1.00 

4-level UL LR array structure 

with MCSELA_12_ CRA_CLA2  

at 1.32V 
2
 

5044 1.16 5.99 0.87 30.21 1.01 

1
Array structure: 1.08V,   CPA: 1.08V 

2 
Array structure: 1.08V,   CPA: 1.32V 
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3.6 Summary 

In Chapter 2, we have proposed the structure optimization of PPR arrays. In this chapter, we 

have studied the signal arrival profiles of the corresponding structures and have presented 

several delay reduction techniques. The problem is uniform signal input profile to the CPA, but 

it is not perfectly flat. Detailed experimental results are given to compare the power, delay and 

area characteristics of each final CPA. Among different optimization techniques for the final 

CPA, the 4-level UL LR array structure with MCSELA_12_CRAis a primary choice if power 

is the critical concern. Compared to a 4-level UL LR array structure with a conventional 

CSELA, this structure reduces the power by approximately 16% with 10% delay overhead. 

When a small delay is the main goal, the 4-level UL LR array structure with MCSELA_CLA is 

the best candidate. Compared to a 4-level UL LR array structure with a conventional CSELA, 

this achieves 5% less power and 5% less delay. In terms of power-delay product, a 4-level UL 

LR array structure with MCSELA_12_CRA_CLA2 is the best. 
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Chapter 4 Low-Power Sum-of-Products Unit for 

Signal Processing Applications 

Power dissipation is a critical aspect in today’s mobile environment, while high throughput 

remains a major design goal. To satisfy both requirements, parallelism in the organization of 

arithmetic units has been employed. Parallel organization can reduce execution time and run at 

a lower supply voltage, which can reduce power consumption for dynamic power compared to 

a single multiplier solution.  

The previous two chapters presented optimization techniques for the multiplier array and 

the CPA, respectively. In this chapter, we propose a new design for a sum-of-products unit 

suitable for signal processing application and present an approach to reducing power dissipation 

in the design of a sum-of-products operation by utilizing two optimized multipliers while 

maintaining high throughput. We show that our design outperforms schemes using a single 

multiplier. 

4.1 Introduction 

With an increasing complexity of circuits used in mobile devices and increased demand for 

digital signal processing applications, minimizing power consumption in digital CMOS circuits 

has become of great importance while performance and area remain the other two major design 

goals. Most DPSs and GPUs use an existing multiplier or a MAC unit to perform various 

arithmetic operation [84][85][86]. The multiplier and MAC unit are frequently used but 

power-demanding components of the DSPs and GPUs. However, traditional DSPs and GPUs 

require many clock cycles for signal processing applications even when they include 

high-performance parallel multipliers and/or a MAC unit. This is the critical problem that we 
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are facing in the recent signal processing applications which require intensive multiplications. 

Therefore, research on a new arithmetic design is needed to satisfy low-power and 

high-throughput requirements for signal processing applications in mobile systems. 

The proposed sum-of-products designs have advantages over a single multiplier in that they 

use two multiplications to be performed in parallel and thus reduce execution time. We discuss 

several key advantages of the proposed arithmetic unit, compare it to other competing 

arithmetic units and demonstrate its superiority over other arithmetic units. Of course, our 

design increases the area and power compared to a single multiplier. However, the proposed 

design can reduce the execution time significantly. We discuss how the energy is reduced 

(shorter execution time) in typical signal processing applications. Our goal is to reduce the 

power consumption without increasing the latency and the complexities of arithmetic units.  

In this chapter, we focus on describing the overall organization of sum-of-products design 

and showing competitive advantage. This chapter does not consider how to further optimize the 

core components for a sum-of-products design: PPR arrays and the final CPA. The previous 

two chapters presented the optimization of these components. In Chapter 2, we presented 

several power and delay reduction techniques of PPR arrays. In Chapter 3, we combined these 

optimization techniques with the structure optimization techniques of the final CPA. This 

chapter is organized as follows. Section 4.2 addresses the problem of conventional arithmetic 

units and proposes the sum-of-products unit. Section 4.3 shows the experimental results. We 

provide energy and execution time estimates for the sum-of-products design and compare them 

to the estimates for a conventional ARM7 multiplier and the proposed LR array multipliers 

[51][88]. In Section 4.4, we discuss current problems in our designs, and give a summary. The 

designs presented in this chapter assume 32-bit integer operands, but they can easily be 

extended to longer fixed-point operands. 
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4.2 Sum-of-Products Design 

Several power optimization techniques have been proposed in the literature for multipliers 

and adders. It was obvious that the use of these power optimization techniques in multipliers 

and adders has been beneficial. However, it is not known if these techniques are suitable for 

sum-of-products units. Detailed studies are desirable to explore the potential power saving of a 

sum-of-products unit. In this section, we present the problems of the current arithmetic design 

and describe a new arithmetic design for solving these problems. 

4.2.1 The Proposed Design 

The sum-of-products baseline model consists of two multipliers and a single adder. There are 

two types of structures. One way to design the sum-of-products is to use two PPR arrays and 

[4:2] adders followed by a single final CPA. The other way is to use two complete multipliers 

and then add two products to produce the final result. This structure has two PPR arrays and two 

CPAs followed by a single CPA. The first structure would be a better solution because it has one 

less carry-propagate addition; thus, the power dissipation and delay are better than those of its 

counterpart. The sum-of-products can be extended to the inner-product operation. 

Inner-products consists of two PPR arrays, [6:2] adders and latches for accumulation and a 

single CPA. The [6:2] adders accumulate four inputs with the previous partial sums and carries. 

Figure 4.1 shows the baseline models of a sum-of-products, and Figure 4.2 shows the structure 

of an inner-product arithmetic unit [1]. 

Our goal is to reduce the power consumption without a significant increase in delay. The 

PPR arrays and the final CPA are two major components of a sum-of-products unit. Thus, the 

two main components should be optimized to minimize power and delay from an overall 

structure prospective. The power dissipation introduced by the PPR array is relatively large 
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compared to the final CPA because of a large number of gates implemented. We focus on 

developing low-power PPR arrays based on the LR array multipliers discussed in [51][88], and 

have proposed new power optimization techniques for LR array structures. These optimization 

techniques include the 4-level UL LR splitting. We have described detailed optimization 

techniques of reduction structures for arrays in Chapter 2. On the other hand, the carry 

propagation path is the critical path in sum-of-products design, and thus the final CPA requires 

the fastest adder. Following the direction from Chapter 2, we have combined this structure 

optimization technique with the final adder with signal flow optimization. In Chapter 3, we 

have discussed a design strategy specific to input arrival time generated by the proposed arrays, 

and proposed the high-performance, low-power CPA where the input arrival times are not the 

same as those of conventional multipliers. 

 

(A) TWO PPR ARRAYS, [4:2] ADDER AND A SINGLE CPA 
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(B) TWO COMPLETE MULTIPLIERS AND A SINGLE CPA (TWO PPR ARRAYSAND THREE 

CPAS) 

FIGURE 4.1: SUM-OF-PRODUCTS UNIT DESIGN 

 

FIGURE 4.2: INNER-PRODUCT UNIT DESIGN 
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4.3 Experimental Results 

The objective of these experiments is to compare the number of cycles and execution time 

between a parallel organization and a solution with a single multiplier. In these experiments, 

we use two types of multipliers and sum-of-products with different structure optimization 

techniques: ARM7 multiplier and a 4-level UL LR split array multiplier with modified CSELA. 

As our major focus is on overall structure, we use the optimized modules for our experiments. A 

detailed description of experimental methodologies is given in Appendix B. We also consider 

the approach to avoid the overflow. Finite length implementation implies maximum 

representable number. Whenever the results exceed this value, overflow occurs. We assume 

the input operands are 32-bit integers. Input random variables less than or equal to 32-bit were 

automatically generated by Cadence tool, so all the input operands avoid the overflow. 

However, it is possible that the result overflow can occur. To avoid result overflow, we need 

to increase the number of bits to the output. We can prevent overflow by increasing 1 bit in 

result data. This prevents a possible overflow. 

To compare our results, we select four benchmark programs: a FIR filter, a high pass filter, 

a matrix multiplication and an Euclidean distance. They are representative signal processing 

applications using sum-of-products operations. Their mathematical expressions are as below.  
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FIR filter (We consider 4-tap in this experiment.) 

                  

 

    

 

High pass filter 

                                 

 

   

 

Matrix multiplication 

   
       

   
       

     

       

   
       

      

         

   
         

  

Euclidean distance 
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4.3.1 ARM Multiplier Results 

The effective approach to comparing relative power dissipation (or energy) and performance 

is to use the power-delay (or energy-delay) product. For our experiment, it might be more 

appropriate to use energy because power is the rate at which energy is consumed, while energy 

is the amount of power consumed. To calculate energy, the total execution time of programs is 

needed. The execution time required for a program can be written as [90] 

Execution time for a program 

= Clock cycles for a program × Clock cycle time 

= Instructions for a program × Clock cycles per instruction × Clock cycle time 

(4-1) 

We need to limit our simulations to the specific compiler, Instruction Set Architecture (ISA) 

and micro architecture for accurate results. We consider the ARM’s architecture because it has 

been dominant in mobile devices. All ARM processors have included hardware support for 

integer multiplication and used two styles of multiplier [91]. The ARM with an M in its name 

(for example the ARM7DM) has a high-performance multiplier and supports the 64-bit results 

by using multiply and MAC instructions. This multiplier employs a radix-4 algorithm to 

produce 2-bit PPs. The carry save array has four layers of adders, each handling two multiplier 

bits, so the array can multiply 8-bit per clock cycle. The array is cycled up to four times, and the 

partial sums and carries are combined 32-bit at a time and written back into the register. We 

consider only high-performance multipliers of the ARM processor in this work because the 

multiplication performance is critical in signal processing applications. Our experimental 

design is the ARM7TDMI-S processor which includes an enhanced 32 × 8 single multiplier 

with a radix-4 algorithm. It is a synthesizable version of the ARM7TDMI core and thus can 
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provide an accurate and efficient method when trying to measure the cycle counts for an 

application executed on the ARM multiplier with the cycle-level simulator. The ARM7 

processor supports two different ISAs: the 32-bit ARM and the 16-bit Thumb with a T in its 

name. The Thumb ISA allows for code to be smaller, and can potentially be faster if cache 

memory to store code cannot be accessed fast but MAC operations are not supported. Therefore, 

we only consider the ARM ISA when exploring our design. Unfortunately, the ARM7TDMI-S 

does not include a sum-of-products hardware, but an enhanced single multiplier, and thus, 

cannot support a single-cycle sum-of-products instruction. The ARM compiler usually avoids 

generating the sum-of-products instructions, and hence we cannot directly measure the total 

clock cycles with sum-of-products using cycle-level simulation with compiled assembly code. 

We have to regenerate the ARM assembly code including sum-of-products manually after 

analyzing the compiled original ARM assembly code. Suppose we have the modified 

implementation of ARM7TDMI-S ISA. We note that two consecutive multiply operations are 

replaced with a sum-of-products operation. Actually, the sum-of-products instruction can 

execute two multiplications simultaneously, and then two products are added in a CPA to obtain 

their sum. The ARM7 multiplication finishes in at most 4 cycles and thus a sum-of-products 

operation takes up to 5 clock cycles due to an additional single cycle final addition. To recreate 

the modified ARM assembly code, we use the ARM technical reference manual after compiling 

the original C code [92]. The reference manual defines all instructions and their cycle counts.   

The clock cycles of the ARM multiplier for benchmark programs can be measured by 

running a cycle-level simulation tool using the ARM7TDMI-S Verilog code and the compiled 

ARM assembly code. The Mentor Graphics hardware/software co-simulation tool such as 

Questa Codelink profiles clock cycles for programs. The comparison results of clock cycle 

estimates are shown in Table 4.1. We address the benchmark simulation results from three 

aspects. First, the cycle reduction is smaller than we expected. Based on an analysis of clock 
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cycles, the clock cycles of sum-of-products are between 13% and 48% less than those of 

multiplication only for benchmark programs. In an ideal situation, the sum-of-products would 

be expected to have 50% reduction in total clock cycles for benchmark programs. Unfortunately, 

however, the sum-of-products requires more clock cycles to execute the initialization code, and 

thus this ideal situation does not occur in practice. When the ARM assembly code is generated, 

the execution environment such as entry point and register initialization should be set up before 

the main function starts. All the registers have to be initialized to zero, and the counter is also 

loaded before the execution of the program enters the main function. Unfortunately, the 

sum-of-products spends a lot of time initializing code compared to a multiplier because it needs 

more register initialization. Thus, the total number of cycles in sum-of-products is over 50% of 

those in multiplier, even though the main function of sum-of-products takes approximately half 

the number of clock cycles. Second, the ratio of the total number of clock cycles for multiplier 

to sum-of-products would coverage to 50% when the number of iterations increases because the 

number of cycles in initial functions is fixed regardless of the number of loop iterations, while 

those for the main code depend upon the number of iterations. When the number of iteration 

increases, the portion of initialization code becomes smaller. Thus, the initialization portion of 

sum-of-products becomes relatively smaller. Third, the ratio of the total number of clock 

cycles for multiplier to sum-of-products in matrix multiplication (67% ~ 87%) and Euclidean 

distance (62% ~ 76%) are relatively higher than that in other benchmarks (FIR filter: 58% ~ 

63%, high pass filter: 52% ~ 55%). This is because the main code of matrix multiplication 

using sum-of-products operations includes many more three-cycle load instructions than that 

in other benchmark programs. Also the Euclidean Distance includes additional square root 

instruction. The ARM7TDMI-S has no square root instructions, so this instruction is generated 

by the combination of ADD, SUB and MOV instructions. Thus, the square root instruction is 

handled in approximate 100 clock cycles to complete. It would increase the total number of 

clock cycles, and lead to longer execution time. They might affect larger energy-delay product. 
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Consequently, the matrix multiplication and Euclidean distance take many more clock cycles 

compared to other benchmark programs. 

 

TABLE 4.1: CLOCK CYCLES FOR BENCHMARK PROGRAMS 

Clock cycles 
FIR Filter  

(length = 10) 

High Pass Filter 

(length = 10) 

Matrix 

Multiplication 

(2 × 2) 

Euclidean 

Distance 

(length = 10) 

Multiplication 155 1.00 177 1.00 168 1.00 236 1.00 

Sum-of-products 97 0.63 98 0.55 146 0.87 179 0.76 

 

Clock cycles 
FIR Filter  

(length = 100) 

High Pass Filter 

(length = 100) 

Matrix 

Multiplication 

(5 × 5) 

Euclidean 

Distance 

(length = 100) 

Multiplication 1415 1.00 1617 1.00 2528 1.00 1586 1.00 

Sum-of-products 817 0.58 845 0.52 1686 0.67 989 0.62 

 

We can directly measure the power and latency of the ARM multiplier using the Synopsys 

Design Compiler because ARM7TDMI-S is a synthesizable core. Then we can estimate those 

of the sum-of-products hardware. We assume the sum-of-products hardware consists of two 

identical ARM7TDMI-S multipliers and Arithmetic Logic Unit (ALU). Table 4.2 shows the 

power, delay and area of a multiplier and a sum-of-products hardware.  
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TABLE 4.2: POWER, DELAY AND AREA OF THE ARM7TDMI-S MULTIPLIER AND A 

SUM-OF-PRODUCTS HARDWARE 

Supply Voltage Hardware Power (mW) Delay (ns) Area (μm
2
) 

1.32 V 

Multiplier* 1.68 0.99 1384 

Sum-of-products** 3.46 1.02 2941 

1.2 V 

Multiplier* 1.25 1.15 1316 

Sum-of-products** 2.58 1.19 2788 

1.08 V 

Multiplier* 0.94 1.42 1364 

Sum-of-products** 1.94 1.48 2896 

* measured value    ** estimated value 

 

The amount of energy used depends on the power dissipation and the time for which it is 

used, and can be written as 

Energy (Joules) = Power (Watts) × Time (Seconds) (4-2) 

 

The easiest and most accurate way to calculate the execution time for benchmark programs is 

to use the equation (4-9) with measured clock cycles for programs and clock rate. We calculate 

the energy based on the execution time calculated from the equation (4-9) and the amount of 

power dissipation measured in Table 4.2. Table 4.3 summarizes the energy, execution time and 

energy-delay product. The power-delay product and energy-delay product are commonly used 
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to compare the superiority of designs [93]. In a sense, this is a misnomer as power × delay = 

(energy / delay) × delay = energy [9]. Instead, the energy-delay product should be used 

because it involves two independent measures of circuit. The sum-of-products unit dissipates 

23% more energy than a single multiplier with a 40% decrease in execution time for a FIR filter 

program and 12% more energy with a 46% decrease in execution time for a high pass filter. 

Also, the sum-of-products unit dissipates 42% and 33% more energy than a single multiplier 

with a 31% and 35% decrease in execution time for a matrix multiplication and Euclidean 

distance, respectively. The sum-of-products units are better than multipliers only in terms of 

energy-delay product in the considered benchmarks. 

If a single multiplier which operates at higher supply voltage is replaced by a 

sum-of-products which operates at low supply voltage, the energy can be reduced. This is 

because the clock cycles per program with a sum-of-products are reduced by approximately half 

compared to those with the multiplier while reducing supply voltage increases the clock cycle 

time slightly. For example, if we replace the ARM multiplier at 1.32V with the sum-of-products 

at 1.08V for a high pass filter program, 22% in execution time and 10% in energy can be 

decreased. For a FIR filter program, sum-of-products has 14% less execution time while 

keeping the same energy. As a result, the total energy demanded by the design can be reduced if 

we use parallel hardware at lower supply voltage. 

The multiplier and sum-of-products are characterized in the execution time ratio versus 

energy ratio in Figure 4.3. Solid lines indicate the measured value and dashed lines indicate the 

expected value based on trend lines. Energy ratio is decreased as execution time ratio is 

increased. The sum-of-products unit consumes more energy as the difference of execution time 

between a sum-of-products and a multiplier is increased, but the energy ratio is expected to be 

less than 1 if their execution time is the same. This means the sum-of-products unit consumes 

less energy than a multiplier only when the execution time is the same. The FIR filter, high pass 



- 100 - 

 

filter and Euclidean distance programs would be energy-efficient when a single multiplier is 

replaced with a sum-of-products hardware, but the matrix multiplication program would have 

the same energy. This is because the difference of clock cycles between sum-of-products and a 

multiplier only is relatively small. Figure 4.4 shows the energy-delay product comparison 

between the ARM7TDMI-S multiplier and sum-of-products unit. The experiment shows that 

the sum-of-products design is better than a single multiplier approach in terms of energy-delay 

product in all benchmarks. 
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FIGURE 4.3: COMPARISON OF ENERGY RATIO WITH EXECUTION TIME RATIO IN 

BENCHMARKS 

 

FIGURE 4.4: ENERGY-DELAY PRODUCT COMPARISON BETWEEN THE ARM7TDMI-S 

MULTIPLIER AND A SUM-OF-PRODUCTS UNIT IN BENCHMARKS 
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TABLE 4.3: EXECUTION TIME, ENERGY AND ENERGY-DELAY PRODUCT OF THE 

ARM7TDMI-S MULTIPLIER AND A SUM-OF-PRODUCTS HARDWARE FOR BENCHMARKS 

Benchmark 

Programs 

Supply 

Voltage 
Hardware 

Execution 

Time (µs) 
Energy (µJ) 

Energy- 

Delay 

Product  

FIR Filter 

(length = 100) 

1.32 V 
ARM7TDMI-S Multiplier* 1.40 1.00 2.35 1.00 3.29 1.00 

Sum-of-products**  0.83 0.59 2.88 1.23 2.40 0.73 

1.2 V 
ARM7TDMI-S Multiplier 1.63 1.00 2.03 1.00 3.30 1.00 

Sum-of-products  0.97 0.60 2.50 1.23 2.43 0.74 

1.08 V 
ARM7TDMI-S Multiplier 2.01 1.00 1.89 1.00 3.80 1.00 

Sum-of-products  1.21 0.60 2.35 1.24 2.84 0.75 

High Pass 

Filter  

(length = 100) 

1.32 V 
ARM7TDMI-S Multiplier 1.60 1.00 2.69 1.00 4.30 1.00 

Sum-of-products  0.86 0.54 2.98 1.11 2.56 0.60 

1.2 V 
ARM7TDMI-S Multiplier 1.86 1.00 2.32 1.00 4.31 1.00 

Sum-of-products  1.00 0.54 2.59 1.12 2.60 0.60 

1.08 V 
ARM7TDMI-S Multiplier 2.30 1.00 2.16 1.00 4.96 1.00 

Sum-of-products  1.25 0.55 2.43 1.12 3.04 0.61 

Matrix 

Multiplication 

(5 × 5) 

1.32 V 
ARM7TDMI-S Multiplier* 2.50 1.00 4.20 1.00 10.52 1.00 

Sum-of-products**  1.72 0.68 5.95 1.42 10.23 0.97 

1.2 V 
ARM7TDMI-S Multiplier 2.91 1.00 3.63 1.00 10.56 1.00 

Sum-of-products  2.01 0.69 5.18 1.42 10.39 0.98 

1.08 V 
ARM7TDMI-S Multiplier 3.59 1.00 3.37 1.00 12.11 1.00 

Sum-of-products  2.50 0.70 4.84 1.43 12.08 0.99 

Euclidean 

Distance 

(length = 100) 

1.32 V 
ARM7TDMI-S Multiplier 1.57 1.00 2.64 1.00 4.14 1.00 

Sum-of-products  1.00 0.64 3.49 1.32 3.52 0.85 

1.2 V 
ARM7TDMI-S Multiplier 1.82 1.00 2.28 1.00 4.16 1.00 

Sum-of-products  1.18 0.65 3.04 1.33 3.57 0.86 

1.08 V 
ARM7TDMI-S Multiplier 2.25 1.00 2.12 1.00 4.77 1.00 

Sum-of-products  1.46 0.65 2.84 1.34 4.16 0.87 
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4.3.2 The Design Characteristics of the Proposed 

Sum-of-Products Units 

To verify our results and to determine the implications of the proposed organization, we 

conducted another experiment. In this experiment, we use the proposed multipliers and 

sum-of-products instead of ARM7 multipliers. We assume the proposed multipliers and 

sum-of-products units are replaced with embedded ARM7 multipliers, and the clock cycles for 

benchmark programs are the same as those in ARM7TDMI-S test environments. We implement 

the proposed sum-of-products unit using Verilog and a top-down methodology. The proposed 

designs are synthesized with three supply voltages 1.08V, 1.20V and 1.32V supported by 

technology. Five schemes with different split array structures and CPA optimization techniques, 

discussed in detail in Chapter 2 and Chapter 3,are implemented and evaluated: 1) a non-split 

LR array structure using a [3:2] adder with a conventional CSELA, 2) a 2-level UL LR array 

structure using a [4:2] adder with a conventional CSELA, 3) a 4-level UL LR array structure 

using a [4:2] adder with a conventional CSELA, 4) a 4-level UL LR array structure using a [4:2] 

adder with MCSELA_12_CLA2, which was proposed in Chapter 3. Chapter 2 and Chapter 3 

gave a detailed description of organization, design and implementation. The comparison results 

of power, delay and area estimates are shown in Table 4.4. The smallest value of each 

characteristic is highlighted in boldface. The baseline structure is a non-split LR array structure 

using a [3:2] adder with a conventional CSELA. Compared to a non-split array structure, a 

2-level structure achieves 24% less power and 45% less delay, while a 4-level structure 

achieves between 34% and 42% less power and between 58% and 59% less delay with 

negligible area increase. This result implies more power savings can be achieved if each part is 

split further. Among all schemes, a 4-level UL LR array structure using a [4:2] adder with 

MCSELA_12_CLA2 presents the lowest power, the smallest delay and the lowest power-delay 
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product results in this experiment. These results indicate that a 4-level split structure with a 

modified CSELA is a useful power- and delay-saving technique in sum-of-products design. 

 

TABLE 4.4: POWER, DELAY AND AREA COMPARISON FOR LR ARRAY MULTIPLIERS 

UTILIZING SPLIT STRUCTURE AND MODIFIED CPA (1.32 V) 

Sum-of-Products 
Power 

(mW) 
Delay (ns) Area (μm

2
) 

Power-Delay 

Product (pJ) 

Non-split LR array structure  

using a [3:2] adder 

with a conventional CSELA 

6.98 1.00 9.48 1.00 11221 1.00 66.17 1.00 

2-level UL LR array structure  

using a [4:2] adder 

with a conventional CSELA 

5.31 0.76 5.21 0.55 11109 0.99 27.66 0.42 

4-level UL LR array structure  

using a [4:2] adder 

with a conventional CSELA 

4.61 0.66 3.98 0.42 11671 1.04 18.34 0.28 

4-level UL LR array structure  

using a [4:2] adder 

with MCSELA_12_CLA2* 

4.05 0.58 3.89 0.41 11445 1.02 15.74 0.24 

*MCSELA_12_CLA2: Modified CSELA with variable block size (block size of 8-8-8-9-10-12) 

 

In this experiment, we consider only split LR array multipliers with the modified CPA. Table 

4.5 shows power, delay and area estimates for the proposed sum-of-products design. Synthesis 

results indicate that the PPR arrays have the most power and area of the sum-of-products design, 

but the final CPA has a longer latency than PPR arrays because PPR arrays have a 4-level split 

structure using a [4:2] adder. The delay of a 4-level split structure is 50% less than that of a 

non-split structure.  
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TABLE 4.5: POWER, DELAY AND AREA FOR SUM-OF-PRODUCTS (1.32 V) 

Hardware Power (mW) Delay (ns) Area (μm
2
) 

Sum-of-products 8.49 1.00 6.85 1.00 25850 1.00 

LR_4ULS_42* 4.14 0.48 2.10 0.31 12314 0.48 

[4:2] adder + MCSELA_12_CLA2 0.21 0.04 4.75 0.69 1222 0.04 

* LR_4ULS_42: 4-Level UL Split LR Multiplier using a [4:2] adder 

 

Table 4.6 shows the power, delay and area of the proposed multiplier and sum-of-products 

hardware, and Table 4.7 summarizes the energy and execution time. The multiplier delays 

between two experiments are different. The proposed multipliers dissipate more power, delay 

and area than ARM7 multipliers. The ARM7TDMI-S processor has a single 32 × 8 tree 

multiplier, while the proposed multiplier is a 4-level split array multiplier. The proposed 

multiplier has an additional two summation stage using a [4:2] adder, and so has a longer delay 

and larger area compared to the ARM multiplier. Furthermore, our proposed designs were not 

optimized with regard to the power, delay and area compared to ARM’s design. 

The sum-of-products unit dissipates 18% ~ 42% and 7% ~ 29% more energy than a single 

multiplier while 29% ~ 39% and 36% ~ 45% decrease in execution time and 1% ~ 28% and 

19% ~ 41% less in energy-delay product for a FIR filter and high pass filter programs, 

respectively. The results are from the matrix multiplication program which reduces the 

execution time by 23% while increasing the energy by 51% and the energy-delay product by 

17%. This is because the ratio of the execution time for multiplier to sum-of-products in this 

program (77%) is much larger than that in other benchmark programs (FIR filter: between 61% 

and 71%, high pass filter: between 55% and 64%). The sum-of-products is better than the 

multiplier only solution in terms of energy-delay product with 1.08V supply voltage for 

Euclidean distance, but with 1.32V and 1.20V supply voltage, the sum-of-products hardware 

has a slightly larger energy-delay product than the multiplier. This relative difference in 
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energy-delay product between the proposed multiplier and the sum-of-products hardware is 

negligible. 

 

TABLE 4.6: POWER, DELAY AND AREA OF THE PROPOSED MULTIPLIER AND 

SUM-OF-PRODUCTS UNIT 

Supply Voltage Hardware Power (mW) Delay (ns) Area (μm
2
) 

1.32 V 
LR_4ULS_42 4.35 5.90 13536 

Sum-of-products 8.49 6.85 25850 

1.2 V 
LR_4ULS_42 3.32 6.58 12458 

Sum-of-products 6.48 7.68 23991 

1.08 V 
LR_4ULS_42 2.40 7.78 12590 

Sum-of-products 4.69 9.04 24143 

 

Figure 4.5 shows the comparison of energy ratio with execution time ratio in benchmarks. 

When the execution time is the same, sum-of-products consumes less energy than a single 

multiplier. However, the matrix multiplication program would be not energy-efficient when a 

multiplier is replaced with a sum-of-products hardware. Figure 4.6 shows the energy-delay 

product comparison. The experiment shows that the sum-of-products design is better than a 

single multiplier in terms of energy-delay product in most benchmark programs. 
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TABLE 4.7: EXECUTION TIME, ENERGY AND ENERGY-DELAY PRODUCT OF THE 

PROPOSED MULTIPLIER AND SUM-OF-PRODUCTS HARDWARE FOR BENCHMARKS 

Benchmark 

Programs 

Supply 

Voltage 
Hardware 

Execution Time 

(µs) 
Energy (µJ) 

Energy-Delay 

Product  

FIR Filter 

(length = 100) 

1.32 V 
LR_4ULS_42 8.07 1.00 33.39 1.00 269.32 1.00 

Sum-of-products 5.60 0.69 47.51 1.42 265.91 0.99 

1.2 V 
LR_4ULS_42 8.89 1.00 29.50 1.00 262.16 1.00 

Sum-of-products 6.27 0.71 40.66 1.38 255.12 0.97 

1.08 V 
LR_4ULS_42 12.20 1.00 29.27 1.00 357.06 1.00 

Sum-of-products 7.39 0.61 34.64 1.18 255.83 0.72 

High Pass 

Filter  

(length = 100) 

1.32 V 
LR_4ULS_42 9.22 1.00 38.16 1.00 351.70 1.00 

Sum-of-products 5.79 0.63 49.14 1.29 284.45 0.81 

1.2 V 
LR_4ULS_42 10.15 1.00 33.71 1.00 342.36 1.00 

Sum-of-products 6.49 0.64 42.05 1.25 272.90 0.80 

1.08 V 
LR_4ULS_42 13.94 1.00 33.45 1.00 466.28 1.00 

Sum-of-products 7.64 0.55 35.83 1.07 273.67 0.59 

Matrix 

Multiplication 

(5 × 5) 

1.32 V 
LR_4ULS_42 14.92 1.00 64.88 1.00 967.71 1.00 

Sum-of-products 11.55 0.77 98.05 1.51 1132.41 1.17 

1.2 V 
LR_4ULS_42 16.63 1.00 55.23 1.00 986.37 1.00 

Sum-of-products 12.95 0.78 83.91 1.52 1086.45 1.18 

1.08 V 
LR_4ULS_42 19.67 1.00 47.20 1.00 928.38 1.00 

Sum-of-products 15.24 0.77 71.48 1.51 1089.50 1.17 

Euclidean 

Distance 

(length = 100) 

1.32 V 
LR_4ULS_42 9.04 1.00 37.43 1.00 338.34 1.00 

Sum-of-products 6.77 0.75 57.52 1.54 389.66 1.15 

1.2 V 
LR_4ULS_42 9.96 1.00 33.07 1.00 329.35 1.00 

Sum-of-products 7.60 0.76 49.22 1.49 373.84 1.14 

1.08 V 
LR_4ULS_42 13.67 1.00 32.81 1.00 448.57 1.00 

Sum-of-products 8.94 0.65 41.93 1.28 374.88 0.84 
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FIGURE 4.5: COMPARISON OF ENERGY RATIO WITH EXECUTION TIME RATIO IN 

BENCHMARKS 

 

 

FIGURE 4.6: ENERGY-DELAY PRODUCT COMPARISON BETWEEN 4-LEVEL UL SPLIT LR 

MULTIPLIERS AND SUM-OF-PRODUCTS UNITS 
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4.4 Summary 

In this chapter, we discussed a new sum-of-products arithmetic unit and presented 

experimental results about its performance and power. We have utilized parallelism in 

organization of multipliers. Compared to the ARM7TDMI-S multiplier, the sum-of-products 

can reduce execution time by approximately 40% with 25% of energy increase in benchmark 

applications. The proposed designs were synthesized with three supply voltages 1.08, 1.20 and 

1.32V supported by Samsung 65nm process technology, and then we measured power and 

delay of a multiplier and a sum-of-products unit. The clock cycles for benchmark programs 

were measured by running cycle-level simulation tool using the ARM7TDMI-S Verilog code 

and compiled ARM assembly code. We calculated energy and execution time in four 

benchmark programs: FIR filter, high pass filter and Euclidean distance programs. The 

sum-of-products unit would consume less energy than a single multiplier if the execution time 

of a sum-of-products unit is the same as that of a single multiplier. Parallel organization can 

reduce execution time and run at a lower supply voltage, which can reduce power 

consumption for dynamic power compared to a single solution.    

We have demonstrated that the proposed sum-of-products design reduces energy compared 

with a single multiplier when computing sum-of-products. The point of this design is to 

compare execution time and energy between parallelism in organization of two multipliers and 

a single solution with a multiplier. However, we have only compared arithmetic components, 

not complete processors. Using a sum-of-products arithmetic unit instead of a single multiplier 

would require register files with four output ports (or five output ports in case of a solution with 

an accumulator). This would increase the fan-out of the register files and add delays in the 

registers address decoding if four (or five) operands instead of two are fetched at each clock 

cycle. The proposed arithmetic components would probably slow down the complete processor 

and all other parts of the applications. The analysis of complete processor architecture would 
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provide more accurate results. The implementation and analysis of complete processor 

architecture are left to future work. Also, four signal processing applications might not be 

enough to justify the advantage of sum-of-products designs. We have considered a few 

common applications such as filters (FIR and high-pass), matrix multiplication and Euclidean 

distance. It is likely that other applications, such as Fast Fourier transform (FFT), polynomial 

evaluation and Lower Upper (LU) decomposition would benefit from the proposed 

sum-of-products unit. 
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Chapter 5 Multi-functional Arithmetic Unit based 

on Sum-of-Products  

Recent digital signal processing applications require many arithmetic operations; as a result 

modern DSPs and GPUs include separate arithmetic units for supporting each arithmetic 

operation. This implementation leads to large power and area overhead. Thus, we need to 

develop a sum-of-products unit capable of supporting several arithmetic operations using 

essentially the same hardware with input controls.  

This chapter presents designs for a Multi-functional Arithmetic Unit based on 

Sum-of-Products (MAU-SoP) that implements a variety of arithmetic operations. The 

MAU-SoP can perform a sum-of-products, a multiplication, a multiply-add, a square, a 

sum-of-squares or an add-multiply computation based on an input control signal. Compared to a 

conventional sum-of-products unit, the proposed unit has a modest increase in area and delay, 

due to a modest amount of additional control logic, but allows multiplication-related arithmetic 

operations to be performed efficiently. The experimental results indicate that a MAU-SoP for 

32-bit two’s complement operands is implemented with approximately 8% more power, 6% 

more area and nearly the same worst case delay as the sum-of-products unit proposed in 

Chapter 4. 

5.1 Introduction 

Multiplication and related arithmetic operations are found in many digital signal processing 

applications including filtering, pattern recognition and vector computation. Previous studies on 

arithmetic operations have mainly focused on designs for dedicated arithmetic hardware, which 

compute only a single arithmetic operation. These dedicated arithmetic units work well for 
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nonprogrammable DSP designs in which the relative frequency of each arithmetic operation is 

known in advance. However they are less suitable for recent programmable DSP, in which the 

frequency of arithmetic operations is application dependent. For applications that do not 

frequently perform the specific arithmetic operations, the extra arithmetic units needed for 

dedicated arithmetic operations goes unused if separate arithmetic units are implemented for 

supporting each arithmetic operation. Therefore, we need to design a multi-functional 

arithmetic unit to provide flexibility. 

In this chapter, we design a sum-of-products unit capable of supporting several arithmetic 

operations using essentially the same hardware. Specifically, the use of a sum-of-products 

operation can allow a general operation to more easily transform the other operations by 

changing parameters. The remainder of this paper is organized as follows. Section 5.2 presents 

the overall structure of the MAU-SoP. Section 5.3 describes designs for a MAU-SoP that 

executes each operation based on a sum-of-products unit. Section 5.4 provides power, delay and 

area results for the MAU-SoP and compares them to estimates for a conventional 

sum-of-products unit. Section 5.5 gives conclusions. The designs presented in this chapter are 

based on the sum-of-products unit proposed in Chapter 4. We assume the input operands are 

32-bit integer operands, but they can easily be extended to other types of fixed-point operands. 

5.2 MAU-SoP Structure 

We describe here how to support several arithmetic operations using the same hardware. 

Note that the sum-of-products operation s = a × b + x × y is a baseline operation. This 

corresponds to several different arithmetic operations by setting variables accordingly. Table 

5.1 summarizes arithmetic operations with corresponding conditions. 
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TABLE 5.1: OPERATION MODE 

Opcode Operation Mode Expression Condition 

SOP Sum-of-products a ×  b + x × y Baseline 

M Multiplication a × b (x = 0) or (y = 0) 

MA Multiply-add a × b + x y = 1 

SS Sum-of-squares a
2
 + x

2
 (a = b) and (x = y) 

S Square a
2
 (a = b) and ((x = 0) or (y = 0)) 

AM Add-multiply a × (b + y) a = x 

 

5.2.1 The Opcode Decoder 

The sum-of-products operation is executed by using two multiplier arrays, [4:2] adders and 

the final CPA, but the other operations can be executed using less hardware where operations 

are known in advance. To use less hardware, we need to add an opcode decoder and a MUX, 

and modify multiplier arrays.  

The decoder can detect all operands and then determine the operation mode. Once operation 

is determined, it can disable blocks unused using signal gating. The gated signals are generated 

based on the control signals and are combined with an AND gate in parallel. Finally it selects 

appropriate value for the final result. Figure 5.1 shows the proposed sum-of-products with the 

opcode decoder and the MUX. All opcodes and control signals are summarized in Table 5.2. 
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FIGURE 5.1: THE PROPOSED MAU-SOP STRUCTURE 

 

TABLE 5.2: CONTROL SELECTION OF THE DESIGN 

Input Output 

Operation Mode Turn-on Modules Turn-off Modules MUX Selection 

Sum-of-products 
Two multiplier arrays, 

[4:2] adder, CPA 
None [4:2] adder 

Multiplication 
One multiplier array,  

CPA 

One multiplier array, 

[4:2] adder 

Turn-on multiplier 

array 

Multiply-add 
One multiplier array, 

[4:2] adder, CPA 
One multiplier array [4:2] adder 

Sum-of-squares 
One multiplier array,  

CPA 

One multiplier array, 

[4:2] adder 

Turn-on multiplier 

array 

Square 
One multiplier array,  

CPA 

One multiplier array, 

[4:2] adder 

Turn-on multiplier 

array 

Add-multiply 
One multiplier array, 

CPA 

One multiplier array, 

[4:2] adder 

Turn-on multiplier 

array 



- 115 - 

 

5.2.2 The Heterogeneous Sum-of-products Unit 

Multiplication and multiply-add operations are the most frequently used arithmetic operation; 

thus, such operations should have higher performance and lower power compared with other 

operations. The other arithmetic operations are not relatively frequently used, so they should 

have flexible structures for effective sharing of structure.    

We determine the optimal partition, which is a critical problem in low-power design because 

most operations do not use all modules of a sum-of-products unit. The sum-of-products unit 

includes two multiplier arrays: a main multiplier array and an auxiliary multiplier array. We use 

two multiplier arrays independently. Because multiplication and multiply-add operations use 

only a single multiplier array, we would not add extra gates. This is effective for high speed and 

low power due to the relatively simpler structure. This is called a main multiplier array. On the 

other hand, the other operations can be executed by using the modified array. The extra gates 

are inserted for effective sharing of structure. This modified multiplier array is called an 

auxiliary multiplier array. This structure is relatively slower, but square, sum-of-squares and 

add-multiply operations can be executed using less hardware. Compared to the delay of the 

sum-of-products unit proposed in, Chapter 4, the delay of the proposed sum-of-products 

operation will be increased because the delay of an auxiliary multiplier array is increased. Table 

5.3 describes operating units depending on arithmetic operation. 
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TABLE 5.3: OPERATING UNITS BASED ON ARITHMETIC OPERATIONS 

Operation Components used in operation 

Sum-of-products Main multiplier array, Auxiliary multiplier array, [4:2] adder, CPA 

Multiplication Main multiplier array, CPA 

Multiply-add Main multiplier array, [4:2] adder, CPA 

Sum-of-squares Auxiliary multiplier array, CPA 

Square Auxiliary multiplier array, CPA 

Add-multiply Auxiliary multiplier array, CPA 

5.3 Arithmetic Operations 

In this section, we present each arithmetic operation. All designs are theoretically analyzed. 

For theoretical analysis, the delay of a 2-input XOR gate, TXOR2, is used as the base unit delay. 

We assume all estimates do not include buffers. The area of inverting logic is not also included 

as we assume logic polarities are optimized in the actual implementations. Multiplier arrays 

analyzed here assume the radix-2 non-split LR array. We use area and delay estimates of this 

structure which have been already analyzed in Chapter 2. 

5.3.1 Sum-of-products 

When the opcode is SOP (sum-of-products), a sum-of-products is executed by using two 

multiplier arrays, [4:2] adders and the CPA, as shown in Figure 5.2. 

5.3.2 Multiplication 

When the opcode is M (multiplication), a multiplication is performed by using a main 

multiplier array and the CPA, as shown in Figure 5.3. The auxiliary multiplier array and [4:2] 

adders are turned off using signal gating techniques. The final results are selected by using 

multiplexers controlled by the opcode decoder. 
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FIGURE 5.2: SUM-OF-PRODUCTS OPERATION 

 

FIGURE 5.3: MULTIPLICATION OPERATION 
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5.3.3 Multiply-add 

When the opcode is MA (multiply-add operation), a main multiplier array, [4:2] adders and 

the final adder are used while an auxiliary multiplier is deactivated. Two carry-save redundant 

outputs from one multiplier and one input bypassed are summed using [4:2] adder and values 

are selected by using multiplexers controlled by the opcode decoder. Finally, the CPA generates 

the final product. This multiply-add operation has less power dissipation than the baseline 

sum-of-products because it avoids the execution of one multiplication. One example is 

multiply-add operation as shown in Figure 5.4. 

 

FIGURE 5.4: MULTIPLY-ADD OPERATION 
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5.3.4 Sum-of-squares 

Fundamentally, a sum-of-squares operation is executed using two multiplier arrays, [4:2] 

adders and the final CPA. However, this design is not efficient in power, area and delay. An 

efficient way to compute a sum-of-squares is to use the CMSSU technique [94]. A 

sum-of-squares operation can be executed using a single modified multiplier array and a CPA. 

First, we examine the difference between sum-of-squares and multiplication matrices. As 

shown in Figure 5.5, the sum-of-squares matrix has an additional row with 32 × XOR2 gates. It 

is also shifted left by one bit position relative to the multiplication matrix. Each PP bit aibj above 

the anti-diagonal in multiplication matrix is replaced by aiaj in the sum-of-squares matrix. Each 

PP bit ajbi below the anti-diagonal in the multiplication matrix is replaced by bjbi in the 

sum-of-squares matrix. Multiplication and sum-of-squares matrices can be combined based on 

these observations. To merge the multiplication and sum-of-squares array, several extra gates 

are inserted into the original multiplier array. The area and delay increase of extra gates is 

estimated as 

Area = 64 × AMUX21 + 32 × (AXOR2 + AAND2 + AFA) + AMUX6432 

Delay = TXOR2 

Compared to a single original multiplier matrix, the combined structure has a slight increase 

in area and delay. However, compared to the fundamental schemes using two multiplier arrays, 

[4:2] adders and the final CPA, the combined structure can achieve significant power and delay 

savings. Considering unused modules, the area and delay savings are estimated as 
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Area = APPG + 960 × AFA + 480 × A[4:2]ADDER – 64 × AMUX21 –32 × (AXOR2 + AAND2 + AFA) – AMUX6432 

Delay = TXOR2 

The combined unit performs either multiplication or sum-of-squares operations using 

essentially the same hardware, a single modified multiplier array, based on input control signals. 

One example is the sum-of-squares operation as shown in Figure 5.10. 

5.3.5 Square 

The standard multiplier can be used for computing square operation. However it is not an 

efficient way to compute a square operation because all the hardware resources are used for the 

square operation. A different method is to use a dedicated implementation for square [40][41]. 

A matrix for square consists of the diagonal with entries aiai = ai and two regions: A below the 

diagonal and B above the diagonal, as shown in Figure 5.6(c). This matrix can be considerably 

simplified before performing multi-operand addition. We can obtain this matrix for square 

using the matrix for sum-of-squares. Only one region (A below the diagonal or B above the 

diagonal) of the matrix for sum-of-squares is used to compute square, while the other region is 

deactivated. The sum-of-squares matrix requires additional XOR gates and FAs. For square 

computation, the XOR gates should be removed; then multiplicand bits (a0, a1, a2, a3, ···, a31) 

are directly connected to the inputs of FAs. ‘1’s in the MSB and 16-bit are shifted right by one 

bit position relative to the sum-of-squares matrix. The area and delay increase are very small 

because of the shared structure. Compared to the sum-of-squares matrix, the square matrix has 

an approximately 50% decrease in delay and area used because it uses only one region of the 

two regions that make up a sum-of-squares matrix. To merge the multiplication and square 
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array, several extra gates are inserted into the original multiplier array. The area increase of 

extra gates is estimated as 

Area = 64 × AMUX21 + 32 × (AAND2 + AFA) + AMUX6432 

Compared to a single original multiplier matrix, the combined structure has a slight increase 

in area. However, compared to the fundamental schemes using two multiplier arrays, [4:2] 

adders and the final CPA, the combined structure can achieve significant power and delay 

savings. Considering unused modules, the area saving is estimated as 

Area = APPG + 720 × AFA + 480 × A[4:2]ADDER – 64 × AMUX21 –32 × (AAND2 + AFA) –AMUX6432 
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(A) MULTIPLICATION MATRIX 
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(B) MATRIX FOR SUM-OF-SQUARES 

FIGURE 5.5: 8-BIT TWO’S COMPLEMENT SIGNED MATRIX EXAMPLE FOR 

MULTIPLICATION AND SUM-OF-SQUARES (ADAPTED FROM [94]) 
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(A) MATRIX FOR SQUARE (A
2
) 
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(B) MATRIX FOR SQUARE (B
2
) 
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(C) MATRIX FOR SQUARE BASED ON SUM-OF-SQUARES (A
2 
+ B

2
) 

FIGURE 5.6: 8-BIT TWO’S COMPLEMENT SIGNED MATRIX EXAMPLE FOR SQUARE 

OPERATION 
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FIGURE 5.7: SUM-OF-SQUARES OPERATION 

5.3.6 Add-multiply 

Fundamentally, an add-multiply operation is executed using two multiplier arrays, [4:2] 

adders and the final CPA. However, it can be executed by a single modified multiplier array and 

the final CPA if an extra adder is inserted into a sum-of-products unit. First, we examine the 

mathematical property. The sum-of-products of the forms s = a × b + x × y can be transformed to 

add-multiply of the form s = a × (b + y), where a = x. Basically PPG modules have two-input 

AND gates for representing the PP bit. If we perform arithmetic addition before generating PP 

bits, an add-multiply operation can be executed by using a single modified multiplier array and 

the final CPA instead of using all the hardware resources of a sum-of-products unit. This adder 

is called a PPG adder. When an add-multiply operation is selected, the PPG adder is activated, 

and then the output of the PPG adder is connected with the inputs of the AND gates in PPG 

modules. In this case, one PPG and one multiplier array unused are deactivated. When other 

operations are selected, the PPG adder is deactivated, and remaining modules are activated. 
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To minimize the delay of an add-multiply operation, we assume that the fastest adder is 

implemented for the PPG adder. Here we use a CLA as the PPG adder. To avoid a large number 

of gates with a large number of inputs, we select a one-level CLA. The area and delay increase 

of a 32-bit one-level CLA based on a 4-bit adder block is estimated as 

Area = 8 × (8 × AAND2 + 5 × AOR2 + 3 × AAND3 + 2 × AAND4 + 2 × AOR4) 

Delay= TAND2 + 8 × (TAND2 + TOR2) + TXOR2 

We simplify these estimates using Table 3.1 

Area = 61.2 × AXOR2 

Delay= 9.5 × TXOR2 

Compared to the original multiplier array, the proposed structure has a slight increase in 

delay and area. However, compared to the basic add-multiply operation using two multiplier 

arrays, [4:2] adders and the final CPA, the proposed operation can achieve significant area 

saving with slight delay penalty. Considering all modules unused and inserted, the area saving 

and delay increase are estimated as 

Area = APPG + 1088 × AFA – 61.2 × AXOR2 (decrease) 

Delay= 6.5 × tXOR2 (increase) 

The total area used is decreased because the area of one PPG module, one array and [4:2] 

adders unused is larger than that of a PPG adder inserted. The total delay increase is because 
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the delay increase of the PPG adder is larger than the delay reduction of [4:2] adders. However, 

the PPG adder would probably affect the power dissipation in the subsequent array and CPA. It 

is at the first stage on the long path in a sum-of-products unit; hence, it would probably 

introduce extra unbalanced signal transitions. Additional buffers would also be needed to 

handle the large fan-out for practical designs. 

 

FIGURE 5.8: ADD-MULTIPLY OPERATION 

 

5.3.7 Overall Execution 

The combined structure has the original sum-of-products unit with additional gates. The 

area and delay increases to be estimated are shown in Table 5.4. Based on these observations, 

the critical path delay would increase by approximately 10 unit delays and the additional 
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buffering delay. Gates inserted would probably increase the total wire delay because routing 

becomes more complex.   

 

TABLE 5.4: AREA AND DELAY INCREASE OF ADDED MODULES 

Operation Area Delay 

Sum-of-squares 64 × AMUX21 + 32 × (AXOR2 + AAND21 + AFA) + AMUX6432 TXOR2 

Square 64 × AMUX21 + 32 × (AAND21 + AFA) + AMUX6432 0 

Add-multiply 61.2 × AXOR2 9.5 × TXOR2 

Total 128 × AMUX21 + 93.2 × AXOR2 + 64 × (AAND21 + AFA) + 2 × AMUX6432 10.5 × TXOR2 

 

In a conventional structure, all operations are executed by using all resources of a 

sum-of-products hardware, because no operands are detected. However, the proposed unit can 

deactivate several modules when operands meet specific conditions. An area and logic delay 

comparison between a conventional structure and the proposed one to be estimated is shown in 

Table 5.5. 
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TABLE 5.5: AREA AND DELAY IN EACH OPERATION 

Operation 
The original operations 

Area Delay 

All operations 2 × APPG + 2048 × AFA + ACPA TAND2 + 48 × TXOR2 + TCPA 

 

Operation 
The proposed operations 

Area Delay 

Multiply ADCT + APPG + 960 × AFA + 2 × AMUX6432 + ACPA 
TDCT + TAND2 

+ 45 × TXOR2 + TMUX21 + TCPA 

Multiply-add ADCT + APPG + 1088 × AFA + 2 × AMUX6432 + ACPA 
TDCT + TAND2 + 48 × TXOR2 + 

TMUX21 + TCPA 

Sum-of-squares 
ADCT + APPG + 960 × AFA + 64 × AMUX21 

+ 32 × (AXOR21 + AAND21 + AFA) + 3 × AMUX6432 + ACPA 

TDCT + TAND2 

+ 46 × TXOR2 + TMUX21 + TCPA 

Square 
ADCT + APPG + 480 × AFA + 64 × AMUX21 

+ 32 × (AAND21 + AFA) + 3 × AMUX6432 + ACPA 

TDCT + TAND2 

+ 45 × TXOR2 + TMUX21 + TCPA 

Add-multiply 
ADCT + APPG + 61.2 × AXOR2 + 960 × AFA 

+ 2 × AMUX6432 + ACPA 

TDCT + TAND2 + 54.5 × TXOR2 

+ TMUX21 + TCPA 

Sum-of-products ADCT + 2 × APPG + 2048 × AFA + 2 × AMUX6432 + ACPA 
TDCT + TAND2 + 48 × TXOR2 

+ TMUX21 + TCPA 

Array: radix-2 non-split LR array 

1. Multiply: (original operation) two PPGs + two multiplier arrays + CPA 

(proposed operation) a detector + a single PPG + a main multiplier array + MUX + CPA 

2. Multiply-add: (original operation) two PPGs + two multiplier arrays + CPA 

 (proposed operation) a detector + a single PPG + a main multiplier array + [4:2] adder + MUX + CPA 

3. Square: (original operation) two PPGs + two multiplier arrays + CPA 

 (proposed operation) a detector + a single PPG + an auxiliary multiplier array + MUX + CPA 

4. Sum-of-squares: (original operation) two PPGs + two multiplier arrays + CPA 

 (proposed operation) a detector + a single PPG + an auxiliary multiplier array + MUX + CPA 

5. Add-multiply: (original operation) two PPGs + two multiplier arrays + CPA 

(proposed operation) a detector + a single PPG + the first adder + a main multiplier array+ MUX + CPA 

6. Sum-of-products: (original operation) two PPGs + two multiplier arrays + CPA 

(proposed operation) a detector + two PPGs + two multiplier arrays + MUX + CPA 
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The cell areas are measured in the NAND2 gate based on the Samsung standard cell library. 

We assume a Detector (DCT) consists of 4 × 63 (= 32 + 16 + 8 + 4 + 2 + 1) XOR2 gates, a PPG 

consists of 32 × 32 AND2 gates and MUX6432 consists of 32 × MUX21 gates. The delay of 

DCT, PPG and MUX6432 is estimated roughly as equivalent to 4 × TXOR2, TAND2 and TMUX21, 

respectively. We use the delay and area estimates of the final CPA that have already been 

analyzed in Chapter 3. The delay of the final CPA is estimated roughly as equivalent 23 × TXOR2. 

A comparison of the delay and area estimates is shown in Table 5.6 and Figure 5.9. Area 

indicates the amount of gate used. The multiplication operation has 45% less area used with 7% 

more delay, the multiply-add operation has 40% less area used with 12% more delay, and the 

sum-of-squares operation has 47% less area used with 9% more delay than the baseline 

sum-of-products structure. The square operation has 60% less area used with 7% more delay. 

The delay increase of an add-multiply operation is the largest, due to the delay of a PPG adder. 

The sum-of-products operation with the proposed structure increase area and delay because an 

opcode decoder and MUXs are inserted into the original sum-of-products unit. It is not easy to 

estimate the current power reduction of the proposed structure. However, the proposed design 

can eliminate significant switching activities because several modules are deactivated. All 

things considered, the proposed structure would consume less power. 

TABLE 5.6: AREA AND DELAY COMPARISON BETWEEN THE ORIGINAL AND THE 

PROPOSED OPERATIONS 

Operation 
The original operations The proposed operations 

Used Area (NAND2) Delay (TXOR) Used Area (NAND2) Delay (TXOR) 

Multiply 

11870 1.00 68.3 1.00 

6529 0.55 73.3 1.07 

Multiply-add 7122 0.60 76.3 1.12 

Sum-of-squares 6292 0.53 74.3 1.09 

Square 4820 0.40 73.3 1.07 

Add-multiply 6528 0.55 82.8 1.21 

Sum-of-products 12344 1.04 76.3 1.12 
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FIGURE 5.9: AREA AND DELAY COMPARISON BETWEEN THE ORIGINAL AND THE 

PROPOSED OPERATIONS 

5.4 Experimental Evaluation 

To obtain power, area and delay results, we have implemented structural Verilog models for 

MAU-SoP, given an operand size of 32-bit, and operand type of two’s complement. When 

comparing the relative benefits of different designs, the structural model reduces the changes 

made by the synthesis tool. The detailed design and simulation methodologies are described in 

Appendix A. As our major focus is on the overall structure, we have reused the detailed modules 
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proposed in Chapter 2 and Chapter 3, and they have not been optimized for different low-power 

techniques. They have been synthesized using the Synopsys Design Compiler with Samsung 

65nm CMOS standard cell low-power library. The designs have been optimized for area with a 

maximum fan-out of four. The simulation results used an operating voltage of 1.08 volts and a 

temperature of 125 degrees centigrade. Table 5.7 shows the comparison of power, delay and 

area estimates for two sum-of-products units. One is proposed in Chapter 4. This does not 

include the opcode decoder, MUX and extra gates for supporting multi-function. The other is 

proposed in this chapter. To facilitate comparisons, the percent increase and decrease in power, 

delay and area between the original and the proposed designs for a given operand size are also 

shown. Based on these estimates, the delay of the proposed structure is close to that of the 

original one. This result implies that adding extra gates for multi-functional arithmetic 

operations doesn't seem to have much effect on delay. Based on a theoretical analysis of the 

worst case delay paths, we expect the worst case delay of the proposed sum-of-products unit to 

be about 12% more than that of the original one. The experimental results have 9% less delay 

than we expected because the ability of the Synopsys synthesis tool makes tradeoffs between 

area and delay automatically. However, the proposed design has 9% power and 6% area 

increase. The power increase is slightly larger than the area increase due to more glitches from 

the PPG adder.  

TABLE 5.7: POWER, DELAY AND AREA FOR THE ORIGINAL AND THE PROPOSED 

SUM-OF-PRODUCTS UNITS 

Multiplier Power (mW) Delay (ns) Area (μm
2
) 

Original sum-of-products 12.07 1.00 13.36 1.00 23415 1.00 

Proposed sum-of-products 13.12 1.09 13.78 1.03 24754 1.06 

In Table 5.8, detailed experimental results are given to compare the power, area, and delay 

characteristics of each component. Because an auxiliary multiplier array includes extra gates, it 

has more power, delay and area than a main multiplier array. 
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TABLE 5.8: POWER, DELAY AND AREA FOR THE PROPOSED SUM-OF-PRODUCTS UNIT 

Components Power (mW) Delay (ns) Area (μm
2
) 

Sum-of-Products (MAU-SoP) 13.12 1.00 13.78 1.00 24754 1.00 

Opcode Decoder 0.43 0.03 0.36 0.03 3348 0.13 

First Adder 0.21 0.02 1.08 0.08 870 0.04 

  Main Multiplier  5.78 0.44 7.33 0.53 9308 0.38 

Auxiliary Multiplier  6.12 0.47 7.62 0.55 9982 0.40 

MUX 0.23 0.02 0.25 0.02 192 0.01 

  [4:2] adder, CPA 0.35 0.03 4.47 0.32 1054 0.04 

 

Table 5.9 shows power, delay and area estimates for each operation. The multiplication has 

37% less power and 31% less power-delay with 9% delay increase. The multiply-add operation 

has 32% less power, and 22% less power-delay product with 15% delay increase. The 

sum-of-squares operation has 42% power and 34% power-delay product reduction with 14% 

delay increase. The square operation has 52% power and 46% power-delay product reduction 

with 13% delay increase, and the add-multiply operation has 35% power and 15% power-delay 

decrease with 30% delay increase. Compared to the original structure, the sum-of-products 

operations have 10% power and 18% delay increase. Compared to the theoretical models, the 

experimental results demonstrated a greater area increase because theoretical results do not 

include buffering and conditionally inverting some bits. 

TABLE 5.9: POWER, DELAY AND AREA FOR EACH OPERATION 

Operation Power (mW) Delay (ns) 
Power-Delay Product 

(nJ) 

Original operation 12.07 1.00 13.56 1.00 163.67 1.00 

Proposed 

operation 

Multiply 7.60 0.63 14.78 1.09 112.39 0.69 

Multiply-add 8.21 0.68 15.60 1.15 127.99 0.78 

Sum-of-squares 7.00 0.58 15.46 1.14 108.22 0.66 

Square 5.79 0.48 15.32 1.13 88.72 0.54 

Add-multiply 7.85 0.65 17.63 1.30 138.30 0.85 

Sum-of-products 13.28 1.10 16.01 1.18 212.44 1.30 
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FIGURE 5.10: POWER, DELAY AND POWER-DELAY PRODUCT COMPARISON BETWEEN 

THE ORIGINAL AND THE PROPOSED OPERATIONS 
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5.5 Summary 

In this chapter, we presented a sum-of-products unit capable of supporting several arithmetic 

operations using essentially the same hardware. The proposed arithmetic unit is useful in digital 

signal processing and multimedia applications, since they allow several multiplication-related 

operations to be performed on shared hardware, which has roughly the same delay as the 

original design. To achieve higher power savings, we have the control of the turn on/off 

mechanisms using signal gating techniques. Detailed experimental estimates have been given 

to compare the power, delay and area characteristics of each operation.  

As the number of bit in the input operands increases, the increase rate in delay and area 

between the original and the proposed sum-of-products structure will be constant because the 

amount of additional gates is proportional to the operand size. Thus, our proposed structure will 

be efficient when applied to high-precision. 
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Chapter 6 SIMD and Approximate Arithmetic 

Unit based on Sum-of-Products  

This chapter presents a fixed-point sum-of-products unit capable of supporting SIMD and 

approximate arithmetic operations with multiple-precisions. The proposed arithmetic unit can 

perform these operations using essentially the same hardware. Our goal is to reduce the power 

consumption without significantly increasing the delay, area and error rate of final results. To 

reduce the overall power dissipation, we use the SIMD for low-precision input data and 

approximate operations for high-precision input data. To execute these operations, the 

mode-dependent multiplexing is inserted into the PPG modules and the mode-dependent kills 

in the carry chain are inserted into the PPR array and the final CPA. The SIMD technique 

enables us to reduce a power by executing two 16 × 16-bit operations in parallel. It requires 

additional INVs, MUXs, AND gates and adders. The SIMD operation has approximately 45% 

less power, 15% less delay and 50% less execution time. This result indicates that the SIMD 

operation has almost double throughput increase compared to the standard operation. The 

approximate operation is to use 1) only a single multiplication when one result is significantly 

larger than the other result or 2) 16 × 16-bit multipliers instead of 32 × 32-bit multipliers. The 

approximate operation achieves between 40% and 73% power savings and between 42% delay 

decrease and 2% increase with between 0.6% and 2.8% mean error. 

6.1 Introduction 

We are currently facing problems brought about by the change of data characteristics for 

recent signal processing applications. In the existing signal processing applications, real data is 

generally limited to small range in most cases, and the case of maximum range rarely occurs 

[95][96]. However, recent signal processing applications are characterized by wide range with 
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high-precision [97]. Previous research of low-power design utilizing low-precision cannot be 

used for recent signal processing applications. Therefore, research on a new low-power 

approach is needed to satisfy low-power and high-throughput requirements for high-precision 

data. 

A low-power design is highly desirable for recent signal processing, while high performance 

remains a major design goal. Generally, the requirements of low power and high performance 

are conflicting because increased performance can typically be achieved with a corresponding 

increase in power consumption due to increased frequency, increased hardware resources, or a 

combination of these two factors. To satisfy both requirements, the SIMD and approximate 

operations have been employed. The SIMD operation can reduce execution time using 

data-level parallelism, and run at a lower supply voltage, which can reduce dynamic power 

consumption compared to a standard operation. Likewise, minimizing power consumption 

with approximate results has become an area of great importance. Although the mobile devices 

with limited screen size can tolerate a reasonable amount of computation errors because a more 

sophisticated image could be designed, this might be difficult given the limited screen space 

and resolution.  

In this chapter, we propose a SIMD and Approximate Arithmetic Unit based on 

Sum-of-Products (SAAU-SoP) operation. This arithmetic unit uses essentially the same 

hardware. We use a SIMD operation for throughput increase and power decrease using 

low-precision data and use an approximate operation for power savings using high-precision 

data. This chapter is organized as follows. First, we introduce problems and related works in 

Section 6.2. In Section 6.3, the basic structure of the sum-of-products will be presented, and 

then the details of each part of the sum-of-products will be described along with the required 

modifications necessary to support the SIMD and approximate arithmetic operations. This is 

followed by a description of how the SIMD and approximate techniques can be applied to each 
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module in a sum-of-products unit in Section 6.4. The experimental setup and the results will be 

presented in Section 6.5. Finally, the chapter will be concluded in Section 6.6. 

6.2 Related Work 

A SIMD describes multiple processing units that perform the same operation on multiple 

data simultaneously. This is usually used for signal processing applications [98][99][100]. 

Recent DSPs and GPUs are implementing wide SIMD, which allows arithmetic operations on 

128 or 256-bit at the same time. They allow for the easy parallelization commonly involved in 

signal processing data. For example, operations to change the brightness of an image can be 

performed efficiently with the use of a SIMD. Each pixel of an image consists of three values 

for the brightness of red, green and blue. To change the brightness, all three values are read from 

memory, a specific value is added or subtracted from them, and the resulting values are written 

back out to memory. SIMD can maximize the throughput of such types of operations by using 

data-level parallelism. A recent advancement by mobile Application Processors (APs) is the 

production of an SIMD processor [101][102]. Specifically, ARM NEON technology is a 

128-bit SIMD extension for APs that provides powerful performance acceleration for 

multimedia applications.  

In order to reduce power dissipation, we can utilize imperfect human characteristics. For 

instance, we cannot recognize the slight difference of the final image and voice, even though the 

device processes data less accurately. Specifically, mobile devices with limited screen size can 

tolerate a reasonable amount of computation errors because more sophisticated image could be 

designed but this might be difficult given the limited screen space and resolution. Furthermore 

the eye is easily fooled, especially when the image is moving. Thus signal processing 

application in mobile systems can process their data less accurately. Recently, approximate 
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operations have become popular [103]. Arithmetic circuits that returned approximate results 

would require much less power dissipation than those in conventional arithmetic units. Previous 

studies which trade power dissipation for quality are typically at the algorithm level, where the 

parameters of quantized levels and the precision of coefficients are traded for the quality of the 

final solution. Applying sufficient statistical analysis, we can use for the average case rather 

than the worst case, and achieve significant power and delay savings. They include algorithmic 

noise tolerance [104][105][106], significance driven computation [107][108][109] and voltage 

over scaling [110]. All these techniques are based on the voltage over scaling with extra 

correction modules or limitation of the final results. Several studies on approximate arithmetic 

have also been conducted. An error-tolerant adder has been proposed in [111]. It operates by 

splitting the operands into accurate and approximate parts. The approach for logic complexity 

reduction in adders has been proposed in [112]. Imprecise but simple the mirror adders have 

been developed. They reduce power dissipation over conventional adder design. Truncated 

multipliers have been introduced [113][114]. These multipliers keep only the n MS bits of the 

final result and dispose of the n LS bits after perfuming rounding. Constructing a part of the 

multiplication matrix would reduce the complexity, but this might incur potentially large errors. 

Inaccurate multipliers using a 2 × 2 multiplier block resulting from logic complexity reduction 

have been proposed in [115][116]. Most previous studies have focused on the separate 

arithmetic unit for SIMD and approximate operations, and studies of composite arithmetic have 

not been conducted. In this chapter, we consider how to design and further optimize the 

sum-of-products structure covering these problems.  
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6.3 The Proposed Arithmetic Unit 

Our goal is to reduce power consumption without a significant increase in the complexities 

of modules and interconnects. In this chapter, we consider the structure optimization techniques 

for SIMD and approximate operation. Some of these techniques have been used in multipliers, 

and they are investigated to describe how they perform in a sum-of-products unit.  

6.3.1 The SAAU-SoP Structure 

We have considered only the sum-of-products unit based on LR array structures proposed in 

Chapter 4. We here add a main controller and a dynamic range detector into the proposed 

structure, as shown in Figure 6.1. The designs presented in this chapter assume they are limited 

to a 32-bit operand size, but they can easily scale to a wide range of fixed-point operand sizes.  

 

FIGURE 6.1: THE PROPOSED SAAU-SOP STRUCTURE 
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6.3.1.1 Operation Strategy 

We can perform diverse operations based on dynamic input precision. If all input operands 

are smaller than 16 bits, a SIMD arithmetic operation can be performed. If at least one input 

operand is wider than 16 bits, a SIMD operation cannot be performed, but approximate 

operations can be performed by utilizing an approximation. The approximate sum-of-products 

computes the approximate results based on 64-bit results generated from the result of two 32 × 

32-bit multiplications. 

Based on these operations, we propose a new control strategy. The dynamic range detector 

can detect operand precision and generate the control signals to support effective SIMD and 

approximate operations. These control signals are based on the types of applications (or users) 

setting information and input operand precision. This information stored in the built-in memory 

of the system is read out. The detector can be aware of the range of input operands. The detector 

generates two types of signals: SIGN and MAGN. A 4-bit SIGN signal indicates four operands 

have positive or negative values. A 4-bit MAGN signal indicates the precision of the input 

operands. These two signals are then forwarded to a main controller that generates two control 

signals: SIMD and APPR. A 1-bit SIMD signal controls SIMD operation, and a 1-bit APPR 

signal controls the approximate operation. These control signals determine which modules are 

executed for the corresponding operations.  

 

6.3.1.2 Signal Gating 

As power dissipation is directly related to switching activities, reducing the switching 

activities would lead to lower power consumption. The proposed design can deactivate signals 

in unused parts using a signal gating technique; thus, switching activities occurring in the 

unused parts can be minimized. The general behavior of signal gating is as follows. The gated 
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signals are generated based on two control signals: SIMD and APPR. These two control signals 

are combined with AND gates. The signal gating logics are initially inserted at predetermined 

positions to identify the input control signals. If the SIMD or the APPR signal is set to 1, the 

gating logic is activated. Depending on these control signals, the PPGs adjust the number of PPs 

generated, and select appropriate PPR arrays and CPAs for a given operation. The details of the 

implementation will be covered in the following sections. 

6.3.2 The Proposed Operations 

We describe here how to support SIMD and approximate operations. We propose to use an 

ensemble of several small modules. The ensemble of small modules is selected so as to cover 

the required operation. Figure 6.2 shows an ensemble of four designs with low-precision: A[3:0] 

× B[3:0] shown in yellow (region A), A[7:4] × B[3:0] shown in violet (region B), A[3:0] × B[7:4] 

shown in blue (region C) and A[7:4] × B[7:4] shown in green (region D).  

 

FIGURE 6.2: THE EXAMPLE OF A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX 

FOR 4-POINT ENSEMBLE 
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6.3.2.1 SIMD Operation 

We first present a SIMD technique. This technique enables power reduction by executing 

two operations in parallel. Clearly, by including a SIMD operation, one expects that fewer 

cycles are needed.  

Consider another example: matrix multiplication.  

   
       

   
       

     

       

   
       

      

         

   
         

  (6-1) 

where the number of columns in A equals the number of rows in B.  

We assume that all input data have value not larger than 2
16

 - 1. This matrix multiplication 

can be implemented in two ways by using a single 32 × 32 or two 16 × 16 SIMD 

sum-of-products operations. One way to use a standard sum-of-products operation is as 

follows: 

for (i = 0; i < n; i++) { 

for (j = 0; j < p; j++) { 

for (k = 0; k < m; k+=2) { 

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j] 

} 

       } 

} 

(6-2) 
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The expression (6-2) corresponds to a single sum-of-products operation which could be 

executed as a single instruction. The last line corresponds to an accumulated sum-of-products 

operation. Matrix multiplication can be also implemented as 

for (i = 0; i < n; i++) { 

for (j = 0; j < p; j++) { 

for (k = 0; k < m; k+=4) { 

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j] 

     + A[i][k+2] × B[k+2][j] + A[i][k+3] × B[k+3][j]} 

       } 

} 

(6-3) 

The expression (6-3) corresponds to 4-Dimensional (4D) sum-of-products operations. The 

last line corresponds to two sum-of-products operations that can be executed simultaneously. 

Ideally, the SIMD operation requires only half the number of clock cycles compared to using a 

standard sum-of-products operation. The SIMD operation can reduce the clock cycles, which 

has an impact on reducing the execution time. The SIMD structure can run at a lower supply 

voltage, which can reduce power consumption for dynamic power compared to a single 

solution.    

Figure 6.3 shows the example of an 8-bit LR multiplier bit matrix using 4-bit low-precision 

operation. Used bit of operands is shown in yellow, and unused bit is shown in gray. When the 

precision of the operand is smaller than the multiplier we intend to use, a number of PPs contain 

a sign extension bit. Furthermore, the summation of the MS part of a PP array also contains a 

meaningless sign extension bit. In order to take advantage of low-precision data, signal gating 

can be applied to deactivate the unused parts of the PPR array to match data precision, thereby 
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avoiding unnecessary switching activities in the operation. One observes that the positions 

between b4A and b7A in Figure 6.3(a) and between e2A and e3A in Figure 6.3(b) are not used; 

thus, these parts are available for another multiplication. Figure 6.4 shows the example of a 

signed 8-bit multiplication, where the first 4-bit multiplication, shown in yellow, is computed in 

parallel with the second 4-bit multiplication, shown in green. Compared to the original matrix, 

several modifications are needed to compute the 4-bit multiplications. In Figure 6.4, red text 

indicates the modified bits. In Figure 6.4(a), the uppermost low (b3A) except for the MSB (a3b3) 

is the opposite in the LS part; thus, all PPs except for the MSB need to be negated. Also, the 

MSBs (a3b0, a3b1, a3b2) of each row need to be negated to get the correct result. Finally the sign 

bit (1) is needed in the uppermost (b3A) low. This means there is a need for extra inputs, which 

requires several extra adders and MUXs. In the LS part of radix-4 multiplier bit matrix, the 

MSBs (a3e0, a3e1) of each row need to be negated, and 1s are added. In the MS part, two 

compensation bits (c2, c3) and 1 are needed to prevent the sign extension. The carry chain in the 

adder at the boundary position should be disconnected; hence, the power dissipation can be 

reduced by removing unnecessary switching activities of unused gates, shown in gray, 

compared to normal operation.  
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(A) A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX 

 

 

 

(B) A SIGNED RADIX-4 8-BIT LR MULTIPLIER BIT MATRIX 

FIGURE 6.3: THE EXAMPLE OF AN 8-BIT LR MULTIPLIER BIT MATRIX USING 4-BIT 

LOW-PRECISION OPERATION 
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(A) A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX 

 

 

(B) A SIGNED RADIX-4 8-BIT LR MULTIPLIER BIT MATRIX 

FIGURE 6.4: THE EXAMPLE OF AN 8-BIT LR MULTIPLIER BIT MATRIX USING 4-BIT SIMD 

OPERATION 

 

 Also, we can apply this SIMD technique to a radix-4 multiplication. In 16 × 16 SIMD 

multiplication, the radix-4 recoder with digit set {-2, -1, 0, 1,2} is the same as that used for the 

16 × 16 standard multiplication except that multiplier operand (B) changes. In 16 × 16 standard 

multiplication, the first PP is generated by assuming B[-1] = 0. In SIMD multiplication, 0 needs 

to be inserted at the element boundary for the first PP of the MS part. These are the extra 0 bit. 

For example, in the 16 × 16 SIMD multiplication, the ninth PP uses the bit triplet {B[17], B[16], 
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0} instead of {B[17], B[16], B[15]} as used in the 16 × 16 normal multiplication, as shown in 

Figure 6.5. 

 

FIGURE 6.5: THE RADIX-4 RECODING (STANDARD AND SIMD MULTIPLICATIONS) 

 

We need to modify the final CPA to support SIMD operation. The ensemble of small 

adders is selected so as to cover the required operations. The carry input bit from each adder is 

set to zero, and the carry out bit from each adder cannot be passed into the carry input of the 

next adder. The MUXs are also added to correctly select the value. To design the final CPA 

that performs either the standard or SIMD computation, an input control signal s is introduced, 

where s is set to 1 for SIMD and 0 for standard computation. Consequently, the 

implementation of the signed SIMD multiplication does not make significant changes to PPGs 

and PPR arrays, and it is possible to execute two 16 × 16-bit sum-of-products operations or 

four 16 × 16-bit multiplications simultaneously if all input operands are smaller than 16-bit.  

 

6.3.2.2 Approximate Operation 

Previous works have focused on developing approximate multipliers and have not 

considered composite arithmetic operations, such as sum-of-products, in reducing power 

consumption. We propose to investigate power optimization of a sum-of-products unit for 

approximate operation. If the applications do not have strict quality constraints, we can use the 
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approximate sum-of-products operation. More power saving can be achieved at the risk of 

losing more data by choosing a higher level of approximation.  

There are two approaches for approximation. One approach is to use only a single 

multiplication when one result is significantly larger than the other result. This is an easy way 

of executing the approximate sum-of-products operation by omitting a single multiplication. 

We use a static analysis based on the prior knowledge for application-specific precision. This 

method determines reduced precisions with guaranteed error bounds. There are two methods. 

One way is to use the significant difference between two results, a × b and x × y. If both 

operands a, b have more than 16 bits, and both operands x, y have less than 16 bits, it is obvious 

that one result, a × b, would be much larger than the other result, x × y. In this case, the smaller 

multiplication, x × y, can be omitted. This scheme is called 32 × 32_low_error. In other cases, 

two multiplication results are maintained. The other method is to achieve more power saving 

with higher error. If both operands a, b have more than 16 bits, and either operands x or y has 

less than 16 bits, the result, a × b, would be larger than the other result, x × y. In these cases, the 

smaller multiplication, x × y, can be omitted. This scheme is called 32 × 32_high_error. This 

operation is summarized in Table 6.1. These 32 × 32_low_error and 32 × 32_high_error 

operations have a small and easily computable error probability of 12.5% and 62.5% with a 

max error magnitude of 50%, respectively. The results in Table 6.1 show that the max-possible 

error magnitude remains constant at 50% (maximum error occurs when two multipliers have 

the maximum values, but one multiplication is omitted), while the min-possible error 

magnitude remains constant at 0% (minimum error occurs when one multiplier has the 

minimum values (0), then this multiplication is omitted). The error models assume a uniform 

distribution of input vectors; hence, the results have the continuous uniform error distribution. 

The mean error has less than 0.0015% because the LS 16-bit cannot affect the final results. We 

can use the proposed approach for certain types of signal processing applications which are 
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inherently capable of absorbing error in arithmetic operations. Specifically, mobile devices 

with small screen size can tolerate a reasonable amount of computation errors because more 

sophisticated image cannot be difficult given the physical size. Figure 6.6 shows the 

architecture level schematic of a sum-of-products unit. The second approach for approximation 

is to use only 16 × 16-bit multipliers instead of 32 × 32-bit multipliers. This scheme is called 

16 × 16_error. By using the small multiplier, even higher power savings will be possible. The 

difference between power dissipation of two multipliers with different size provides 

significant power savings. Table 6.2 shows power, delay and area comparison between 16 × 

16-bit and 32 × 32-bit multipliers. Based on these estimates, the 16 × 16-bit multiplier has 81% 

less power, 41% less delay, and 73% less area than the 32 × 32-bit counterparts. The basic 

idea is to detect the precision of the input operands using a leading zeroes and ones detection 

circuit and then route them to suitable multiplier. By moving the window, we can obtain more 

accurate results. The 16-bit window for calculating multiplication is moved into from the 

leading one bit for positive numbers (zero bit for negative numbers) through the next 16-bit. A 

leading one/zero detector is provided for using the input operands to detect the leading one bit 

position for positive numbers (zero bit position for negative numbers). All 32 bits of the input 

operand is routed into 32 inputs of MUXs. A leading one bit for a positive value (zero bit for a 

negative value) is mapped to the MSB of a 16-bit window, the next bit is mapped to the 

second bit position, and the next 16-bit is mapped to the LSB of a 16-bit window. With the 

MUX, the MSB of the 32-bit operand is chosen when 31 is asserted at selection signal and the 

LSB of the 32-bit adder is chosen with the assertion of 0 at the selection signal. The 16 bits of 

the 32-bit input operand for calculating multiplication are then selected with the multiplexer 

once the position of the leading one (zero) bit is known. Finally, the 16-bit window takes 

16-bit from the leading one (zero) bit through the next 16-bit of the operand. We assume the 

MUX321 gate consists of five stages of 31 × MUX21 (= 16 + 8 + 4 + 2 + 1). MUX321 gates 
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enable a reduced latency by executing MUX gates in the same stage in parallel. The estimated 

delay and area of additional MUX are estimated roughly as below 

 

       Area: 2 × 16 × MUX321 = 2 × 16 × 31 × MUX21 = 992 × MUX21 

       Delay: MUX321 = 5 × MUX21 

 

TABLE 6.1: USED PPR MODULES FOR A 32 × 32_LOW_ERROR AND A 32 × 

32_HIGH_ERROR METHODS BASED ON INPUT OPERAND PRECISION 

Operand Precision Used Modules 

a b X Y Accurate Mode 
Approximate Mode    

(32 × 32_low_error) 

Approximate Mode  

(32 × 32_high_error) 

< 16 < 16 < 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

< 16 < 16 < 16 > 16 a × b + x × y a × b + x × y Accurate x × y Appr. 

< 16 < 16 > 16 < 16 a × b + x × y a × b + x × y Accurate x × y Appr. 

< 16 < 16 > 16 > 16 a × b + x × y x × y Appr. x × y Appr. 

< 16 > 16 < 16 < 16 a × b + x × y a × b + x × y Accurate x × y Appr. 

< 16 > 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

< 16 > 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

< 16 > 16 > 16 > 16 a × b + x × y a × b + x × y Accurate x × y Appr. 

> 16 < 16 < 16 < 16 a × b + x × y a × b + x × y Accurate a × b Appr. 

> 16 < 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

> 16 < 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

> 16 < 16 > 16 > 16 a × b + x × y a × b + x × y Accurate a × b Appr. 

> 16 > 16 < 16 < 16 a × b + x × y a × b Appr. a × b Appr. 

> 16 > 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b Appr. 

> 16 > 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b Appr. 

> 16 > 16 > 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate 

 

Operation Mode Max. Error (%) Min. Error (%) Error Probability (%) 

32 × 32_low_error 50.00 0 12.50 

32 × 32_high_error 50.00 0 62.50 
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FIGURE 6.6: APPROXIMATE SUM-OF-PRODUCTS OPERATION 

 

 

TABLE 6.2: POWER, DELAY AND AREA COMPARISON BETWEEN 16 × 16-BIT AND 32 × 

32-BIT MULTIPLIERS 

 Power (μW) Delay (ns) Area (μm
2
) 

16 × 16-bit LR multiplier 1127 0.19 5.42 0.59 3265 0.26 

32 × 32-bit LR multiplier 5932 1.00 9.18 1.00 12559 1.00 
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(A) APPROXIMATE OPERATION USING 16 × 16-BIT MULTIPLICATION 

 

 

(B) MAPPING USING 16 × 16-BIT WINDOWS 

FIGURE 6.7: APPROXIMATE SUM-OF-PRODUCTS OPERATION FOR 16 × 16_ERROR 

METHOD 

6.4 Basic Components 

In this section, we consider how to design the approximate sum-of-products and how to 

further optimize the structure. 

6.4.1 Dynamic Range Detector and Main Controller 

The dynamic range detector detects the signs and effective dynamic ranges of all input data, 

and then generates the control signals: SIGN and MAGN. These control signals are used to 
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disconnect carry chains and deactivate unused parts of the PPR array and the final CPA. The 

detector consists of several OR and MUX gates. Table 6.3 shows the function table, and Figure 

6.8 shows the functional blocks of the dynamic range detector. The sign detector consists of 

simple NOR2, AND2 and INV gates. In the magnitude detector, the OR15 gate is used to detect 

positive numbers and the NAND15 gate is used to detect negative numbers. The OR15 gate 

asserts the output to be high if any of the inputs is 1, and the NAND15 gate asserts the output to 

be high (1) if any of the inputs is 0. Using the combination of simple gates, we can detect the 

sign and magnitude of operands. Both the 32-bit multiplier and multiplicand operands are 

divided into two parts, where the detection is completed for 32 and 16-bit ranges. The output of 

a dynamic range detector are grouped into 4-bit SIGN and 4-bit MAGN signals, where the MS 

bit of the SIGN signal is set to high (1) if both inputs are positive numbers, the second bit is set 

to high (1) if input A is positive, but input B is negative, the third bit is set to high (1) if input A is 

negative, but input B is positive number, and the LS bit is set to high (1) if both inputs are 

negative. The MS bit of the MAGN signal is set to high (1) if the magnitudes of both inputs are 

larger than 16-bit, the second bit is set to high (1) if the magnitudes of input A is larger than 

16-bit, but the magnitudes of input B is not larger than 16-bit, the third bit is set to high (1) if the 

magnitudes of input A is not larger than 16-bit, but the magnitudes of input B is larger than 

16-bit, and the LS bit is set to high (1) if the magnitudes of both inputs are not larger than 16-bit. 

The main controller generates the SIMD signal indicating the SIMD operation and the APPR 

signal indicating error-tolerant operation based on the users (or application) information and 

operand sizes. The enable signals for carry-kill, which are inputs of signal gating modules, are 

generated from the main controller. 
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TABLE 6.3: FUNCTION TABLE OF DYNAMIC RANGE DETECTOR 

Operand Output 

a (x) b (y) SIGN [3] SIGN [2] SIGN [1] SIGN [0] 

+ + 1 0 0 0 

+ - 0 1 0 0 

- + 0 0 1 0 

- - 0 0 0 1 

 

 

Operand Precision Output 

a (x) b (y) MAGN [3] MAGN [2] MAGN [1] MAGN [0] 

> 16 > 16 1 0 0 0 

> 16 ≤ 16 0 1 0 0 

≤ 16 > 16 0 0 1 0 

≤ 16 ≤ 16 0 0 0 1 
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(A) A SIGN DETECTOR 

 

(B) A MAGNITUDE DETECTOR 

FIGURE 6.8: FUNCTIONAL BLOCKS OF THE DYNAMIC RANGE DETECTOR 
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6.4.2 The Radix-4 Recoder and the PPG 

The PPGs use radix-4 recoding which reduces the number of PPs from n to n/2 for an n × 

n-bit multiplication [42]. The block diagram for the radix-4 recoder and PPG modules are 

shown in Figure 6.9. This is identical to standard PPG modules except for additional AND2 

gates for masking. The PPGs are able to generate the appropriate PPs for each of the supported 

operation modes. A 32 × 16-bit or 16 × 16-bit multiplication (MAGN[3:0] = 0100 or 0001) 

requires only the first eight PPs; thus, the first eight PPGs are activated while the next eight 

PPGs are deactivated. However, the SIMD 16 × 16-bit multiplication requires all sixteen PPs, 

so all sixteen PPGs are activated. If the magnitude of the multiplier is larger than 16-bit 

(MAGN[3:0] = 1000 or 0010), all sixteen radix-4 recoders are activated. Because all radix-4 

recoders are activated, the control signals for deactivating radix-4 recoders are not necessary. 

The radix-4 recoder can generate five possible values of -2, -1, 0, 1, and 2 times the input data. 

The control signals are generated depending on the 3-bit recording scheme. The radix-4 recoder 

is used to generate three control signals: SHIFT, COMP and ZERO, which are used in the PPG. 

The SHIFT signal is used to shift the multiplicand operand left by one-bit, the COMP signal 

inverts the input multiplicand operands, and the ZERO signal is used to output zeros as output 

of that PP.  
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FIGURE 6.9: FUNCTIONAL BLOCKS OF THE RADIX-4 RECODER AND PPGS 

 

6.4.3 The PPR Array 

As mentioned in Section6.3.2, the standard PPR array and SIMD PPR array reveal minor 

differences between two multiplication bit matrices. To unify two PPR arrays, it is necessary to 

insert several gates at each mode element boundary. Figure 6.10 shows the added modules for 

SIMD operation. We define an input control signal based on the operation mode, which is set to 

high (1) for a SIMD computation, and low (0) for a standard operation. In order to support the 
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SIMD operation, we have to disconnect the carry chain in the adder at the boundary position. 

The bit positions of the boundaries depend on the operation mode. The killing of carries can be 

achieved by inserting a 2-input AND gate at each element boundary to mask the carry-in input 

of each corresponding FA. The carry-kill AND gates can be incorporated into the existing FA 

design such that they will not significantly increase delay through the array as shown in Figure 

6.11. The Boolean equations with the carry-in kill term are given in the following equation. 

KILL_carry_v_SIMD=(MAGN[1]  OR  MAGN[0])  AND  SIMD 

KILL_sum_v_SIMD= (MAGN[1]  OR  MAGN[0])  AND  SIMD 

KILL_carry_h_SIMD= (MAGN[2]  OR  MAGN[0])  AND  SIMD 

KILL_sum_h_SIMD= (MAGN[2]  OR  MAGN[0])  AND  SIMD 

(6-4) 

Our gating approach provides gating lines for SIMD operations, as shown in Figure 6.12. 

This method is efficient because it does not add significant delay to the critical path and does not 

require much extra hardware. 

Compared to a 32-bit radix-2 standard PPR array, a 32-bit radix-2 PPR array for SIMD 

operation requires an additional 31 × INV (to compute inverted PPs at the uppermost low (b15A) 

and at the MSB at the all row except for the uppermost low (a15b0, a15b1, ···, a15b13, a15b14) and 1 

in the part), and 31 × MUX21 (to select one of two results). Compared to a 32-bit radix-4 

standard PPR array, a 32-bit radix-4 PPR array for SIMD operation requires an additional 14 × 

HA and 1 × FA (to add inverted PPs and 1s in the lower adder), and 9 × HA (to add 

compensation bits and 1s in the higher adder). SIMD operation also requires a 32-bit signal 

gating with the carry-kill signals used as the enable signals for the signal gating circuit. It 

requires additional 65 × AND2 gates to mask carry signals. 
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(A) FOR RADIX-2 

 

 

(B) FOR RADIX-4 

FIGURE 6.10: THE ADDED MODULES FOR SIMD OPERATION 
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FIGURE 6.11: THE MODIFIED MODULES FOR SIGNAL GATING IN PPR ARRAY 
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FIGURE 6.12: GATING LINES FOR SIMD OPERATION 
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6.4.4 The Final CPA 

The final CPA consists of two 16-bit and one 32-bit adders, where the "MAGN" signals 

indicating the multiplication size determines the selection order of these structures for final 

addition. In order to minimize the switching activities, we design the final CPA using signal 

gating with carry control signals, which enable the cout from the lower adder to be passed into 

the cin of the next adders, as shown in Figure 6.13. The unused blocks of the final CPA are 

disabled to avoid switching activities. If a 16 × 16-bit SIMD operation is selected, the cout from 

the lower 32-bit adder cannot be passed into the cin of the next adder; thus, the MS 32-bit adder 

accepts the carry input as zero. The 48-bit output of the 32 × 16-bit (or 16 × 32-bit) 

multiplication is distributed between the two adder structures. The cout from the LS 32-bit adder 

is passed into the cin of the middle 16-bit adder. The cout from the middle 16-bit adder cannot be 

passed into the cin of next 16-bit adder. In the 32 × 32-bit operation, the cout from the LS 32-bit 

adder is passed into the cin of the middle 16-bit CLA and then passed into the cin of the MS 

16-bit adder. The MUX of the final CPA selects the 64-, lower 48-, 32-bit for accurate operation 

or higher 32-bit for approximate operation to yield the final result. The gating method involves 

killing the carries which cross the element boundaries that are determined by the operation 

mode selected and operand size. This is similar to the method used in the reduction array. The 

extra 2-input AND gate can be combined into the adder blocks without significantly additional 

delay. The Boolean equations with the carry-in kill term are 

KILL_cin0 = ( SIMD  AND   MAGN[0])  

KILL_cin1 = (SIMD  OR  MAGN[3])′ 

(6-5) 
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FIGURE 6.13: FUNCTIONAL BLOCKS OF THE FINAL CPA 
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6.4.5 Overall Execution 

In order to combine the conventional sum-of-products unit with all the proposed schemes, 

several modules are inserted into the original multiplier matrix. The area and delay increases to 

be estimated are shown in Table 6.4. We estimate the area and delay based on the detailed 

design in the previous section and the Samsung library and we estimate dynamic power 

dissipation based on the proposed structure and equation (1-10). The extra carry-kill AND 

signal gating operation can be executed in parallel with inversion terms; thus, additional 

inverters will not increase the total delay. Based on these observations, the critical path delay 

would increase by approximately 40 × AND2 delay (20 × unit delay) and the additional 

buffering delay. Adding gates would also increase the total wire delay due to more complex 

routing. Our proposed arithmetic unit can deactivate several modules unused when SIMD and 

approximate operations are performed. The area and logic delay comparison to be estimated is 

shown in Table 6.5 .The cell areas are measured in the NAND2 gate based on the Samsung 

standard cell library. The delays and areas of the PPR array and the CPA have been analyzed in 

Chapter 2 and Chapter 3and thus we reuse them. Compared to a 32 × 32-bit standard 

sum-of-products operation, a 16 × 16-bit SIMD operation has 42% less used area and 35% less 

delay, and an APPR operation has 39% less used area with a 2% delay increase. The delay 

decrease of a SIMD operation is because two small operations can be executed in parallel, and 

the delay increase of APPR operation arises from the extra gates to mask carry signals. The 

used area decrease of SIMD and APPR operations is due to unused segmentations in the PPR 

array. Compared to a sum-of-products operation using two 32 × 32-bit multiplications, the 

proposed operation using only one 32 × 32-bit multiplication with one neglected 32 × 32-bit 

multiplication has approximately 40% less used area, and one using two 16 × 16-bit 

multiplication has approximately 65% less used area and 35% less delay. The decrease in area 

and delay is because one multiplication is neglected and small multiplication is performed. It 
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is not easy to estimate the current power reduction of the proposed structure. Based on the 

equation for dynamic power dissipation, reduced power can be achieved by decreasing these 

factors: capacitance, supply voltage, frequency, and switching activities. The proposed design 

can eliminate significant switching activities because several modules are deactivated; thus, the 

proposed structure would consume less power. 

TABLE 6.4: DELAY AND AREA INCREASE OF ADDED MODULES (RADIX-2) 

(A) DYNAMIC RANGE DETECTOR AND MAIN CONTROLLER 

Module Delay Area 

Dynamic Range 

Detector 

SIGN 

     TAND2 + TINV 

MAGN 

     TAND15 + TXOR2 + TAND2 

SIGN 

    3 × AAND2 + 2 × AINV + AOR2 

MAGN 

    AOR15 + AAND15 + 4 × (AXOR2 + AOR2) 

+ 12 × AAND2 

Main Controller 

SIMD  

     PPG: TOR2 + TAND2 

Common 

     Array: TOR2 + TAND2 

     CPA: 2 × TOR3 + TAND2 

SIMD  

    PPG: AOR2 + AAND2 +AINV 

    Array: 2 × (AOR2 + AAND2) 

APPR 

    Array: AOR3 + AAND2 

Common 

    CPA: AOR2 + 2 × (AOR3 + AAND2) 

Total 
TAND15 + TXOR2 + TINV + 5 × TAND2 +2 × 

(TOR2 +TOR3) 

AOR15 + AAND15 + 4 × AXOR2 + 9 × (AOR2 + 

AAND2 ) + 3 × (AINV  + AOR3) 

(B) SIGNAL GATING MODULE 

Module Delay Area 

PPG 
SIMD 

   TAND2 + TINV 

SIMD 

     15 × (AAND2 + AINV) 

Array 

SIMD 

   32 × TAND2 

APPR 

   31 × TAND2 

SIMD 

     65 × (AAND2 + AINV) 

APPR 

     31 × (AAND2 + AINV) 

CPA 
Common 

   2 × TAND2 

Common 

     2 × (AAND2 + AINV) 

Total 35 × AAND2 + TINV 113 × (AAND2 + AINV) 
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TABLE 6.5: DELAY AND AREA COMPARISON BETWEEN THE ORIGINAL AND THE 

PROPOSED OPERATIONS 

 

Operation 
The original operations (32 × 32-bit) The proposed operations (32 × 32-bit) 

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2) 

SIMD 68.3 11870 11870 6884 45.8 0.67 45.8 0.67 

 

Operation 
The original operations (two 32 × 32-bit) The proposed operations (one 32 × 32-bit) 

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2) 

APPR 113.8 1.00 28488 1.00 115.0 1.01 17093 0.60 

 

Operation 
The original operations (two 32 × 32-bit) The proposed operations (two 16 × 16-bit) 

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2) 

APPR 113.8 1.00 28488 1.00 74.4 0.65 10108 0.35 

 

6.5 Experimental Evaluation 

The sum-of-products presented in this chapter was implemented in Verilog at a structural 

level. Because our main concern is power savings at the architecture level, we have reused the 

detailed designs proposed in the previous chapter, and they have not been further optimized for 

different low-power techniques. Several modules such as AND2 gates for supporting SIMD 

operation and masking carry signals have been inserted to a sum-of-products unit. We used 

Synopsys Design Compiler for synthesis and IC Compiler for the placement and routing. We 

used PrimeTime to measure delay, and Samsung CubicWare to measure power dissipation. 

The designs were optimized for area with a maximum fan-out of four. The simulation results 

used an operating voltage of 1.08 volts and a temperature of 125 degrees centigrade. The 

detailed description of simulation methodologies are described in Appendix A. Table 6.6 shows 

the comparison of power, delay and area estimates for the original and the proposed 
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sum-of-products unit. To facilitate comparisons of these estimates, the relative change (percent 

increase and decrease) in power, delay and area between the original and proposed units is also 

shown. Based on these estimates, the power, delay and area of the proposed structure is similar 

to that of the original one. This result implies that adding gates for SIMD and approximate 

operations does not seem to have a significant effect on power, delay and area.  

 

TABLE 6.6: POWER, DELAY AND AREA FOR THE ORIGINAL AND THE PROPOSED 

SUM-OF-PRODUCTS UNITS 

Multiplier Power (mW) Delay (ns) Area (μm
2
) 

Original sum-of-products 12.07 1.00 13.36 1.00 23415 1.00 

Proposed sum-of-products 12.55 1.04 14.02 1.05 24117 1.03 

 

Table 6.7 shows power, delay and power-delay estimates for each operation. The SIMD 

operation (two 16 × 16-bit sum-of-products) has 47% less power, 15% less delay and 55% less 

power-delay.  

 

TABLE 6.7: POWER, DELAY AND AREA FOR EACH OPERATION IN ONE MULTIPLIER 

Operation Power (mW) Delay (ns) 
Power-Delay 

Product (nJ) 

Original operation 

(32 × 32 sum-of-products) 
12.07 1.00 13.56 1.00 163.67 1.00 

SIMD operation           

(two 16 × 16 sum-of-products) 
6.40 0.53 11.49 0.85 73.54 0.45 

 

In order to compare relative throughput of the original and the SIMD operation, the most 

effective approach is to use execution time for a program to compare relative power dissipation 

(or energy) and performance. The execution time required for a program can be written as 
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Execution time for a program 

= Clock cycles for a program × Clock cycle time 

= Instructions for a program × Clock cycles per instruction × Clock cycle time 

[90] 

(6-6) 

 

We reused the ARM’s architecture, benchmark programs and simulation tools presented in 

Chapter 4, and we assumed that all input data have value smaller than 16-bit. The comparison 

results of clock cycle estimates are shown in Table 6.8. In an ideal situation, the SIMD 

operation would be expected to have a 50% reduction in total clock cycles for benchmark 

programs. Unfortunately, however, the original and the SIMD operation have the same clock 

cycles to execute the initialization code; hence, the SIMD operation has between 30% and 47% 

reduction. 

 

TABLE 6.8: CLOCK CYCLES FOR BENCHMARK PROGRAMS 

Clock cycles 
FIR Filter  

(length = 10) 

High Pass Filter 

(length = 10) 

Matrix 

Multiplication 

(2 × 2) 

Euclidean 

Distance 

(length = 10) 

Sum-of-products 

(Original) 
97 1.00 98 1.00 146 1.00 179 1.00 

Sum-of-products 

(SIMD) 
54 0.56 52 0.53 102 0.70 108 0.60 
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We can measure the execution time based on Table 6.7 and Table 6.8. Compared to the 

original operation, the SIMD operation has between 41% and 55% execution time decrease. 

Because the SIMD operation can be executed simultaneously and the delay of a unit for 

supporting a SIMD operation is smaller than that for supporting a standard operation, the 

SIMD operation has a significant reduction in execution time. Throughput is measured in jobs 

/ time unit, so the SIMD operation has an almost double throughput increase. 

 

TABLE 6.9: EXECUTION TIME FOR BENCHMARK PROGRAMS 

Execution time 

(µs) 

FIR Filter  

(length = 10) 

High Pass Filter 

(length = 10) 

Matrix 

Multiplication 

(2 × 2) 

Euclidean 

Distance 

(length = 10) 

Sum-of-products 

(Original) 
1.32 1.00 1.32 1.00 1.98 1.00 2.43 1.00 

Sum-of-products 

(SIMD) 
0.62 0.47 0.60 0.45 1.17 0.59 1.24 0.51 

 

To measure accuracy, the program was written in Verilog, but our program generates a 

small number of values less than 16-bit, so we cannot efficiently measure error rate. We also 

extract values from real image, Lena, which is a representative image for testing, but all data 

are less than 16-bit. Finally, we created a list of random numbers in a spread sheet program to 

compute the error probabilities and mean error, and then measure values for 10 iterations. 

Table 6.10 shows power, delay and error rate for each operation. The possible error probability 

is close to 100% because errors do not occur when one multiplication results are equal to 0 for 

32 × 32_low_error and 32 × 32_high_error or two operands have more than 16 bits for 16 × 

16_error. We define mean error is calculated by the average value of (correct value – 

approximate value) / correct value. The mean error has less than 3% because the smaller value 
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and LS 16-bit cannot affect the final results under our strategy. The error probability 

introduced by 16 × 16_error is slightly smaller than other methods. This method provides the 

largest power savings with the largest mean error among all approximation methods.  

 

TABLE 6.10: POWER, DELAY AND AREA FOR APPROXIMATE SUM-OF-PRODUCTS 

OPERATIONS 

Operation Power (mW) Delay (ns) 
Error 

Probability (%) 

Mean 

Error (%) 

Original operation (two 32 × 32) 12.07 1.00 13.56 1.00 ─ ─ 

Proposed 

operation 

32 × 32_low_error 7.24 0.60 13.84 1.02 100 0.6 

32 × 32_high_error 7.24 0.60 13.84 1.02 100 1.1 

16 × 16_error 3.26 0.27 7.86 0.58 98 2.8 

 

6.6 Summary 

In this chapter, we presented a sum-of-products unit capable of supporting SIMD and 

approximate operations using essentially the same hardware. The SIMD operation can be used 

to improve the performance of compact input data, and then trade frequency for supply 

voltage reduction. The arithmetic units that return approximate results consume less power 

with inaccurate results. The proposed arithmetic unit allows these operations to be performed 

as an input control based on input operand size and application setting information, which has 

roughly the same delay as the original structure. Thus the proposed arithmetic unit is useful in 

digital signal processing applications having diverse input patterns. Detailed experimental 

results were given to compare the power, delay and area characteristics of each operation.  

In this chapter, we considered only the static precision method. This method can be easily 

used for the error tolerant design, but it is impossible to determine a safe reduced operating 
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precision for the error tolerant design without prior knowledge. On the other hand, the dynamic 

precision selection method ensures that arithmetic operations will give a result whose precision 

can be determined by the results of tests on the initial samples of applications. This technique 

provides more accurate results, but requires a first sampling period with the initial input for 

precision determination. This method has one remaining issue that will not concern us formally 

in this study but which is of some importance. The problem is how to efficiently design the 

sampling buffer, which is used for determining the cut-off value. A simple sampling buffer 

holds several random values, and determines the cut-off size based on maximum, minimum and 

average values. Although it is simple, this method is relatively inefficient, in that it monitors 

several random values in fixed amount of space. In some cases, data in some entries have 

extremely small or large values. They represent magnitude in all input data, but do not reflect all 

data value similarly. This leads to ineffective truncation when the sampling buffer is eventually 

accessed. More advanced methods use tables to record history information related to several 

initial data. This history information read from the table is used for predicting cut-off size.   

Although a single multiplier is ignored, the error can be made small enough to be acceptable 

by appropriately selecting the value of the correction value. A method for selecting the 

correction value which minimizes the average error will also be left for future work. The 

proposed sum-of-products unit leads to a simpler implementation, but introduce a large amount 

of error only because it does not include the correction method. Given certain hardware and 

error constraints, the appropriate number required for error correction can be readily 

determined. 
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Chapter 7 Conclusion and Future Work 

In this Chapter we evaluate the research contribution of this dissertation. Also, we provide a 

critique of the existing research and suggest directions for future research investigations. 

7.1 Research Contributions 

In this dissertation, we have investigated high-level optimization techniques for a low-power 

sum-of-products design. We have addressed the low-power design problem from two aspects: 

internal efforts considering a sum-of-products unit and external efforts considering input data 

characteristics. For internal efforts, we considered the structure optimization of PPR arrays and 

the final CPA. For external efforts, we considered SIMD and approximate operations to 

deactivate some portions of a sum-of-products unit. We have also considered a multi-functional 

sum-of-products operation using input data characteristics. We performed placement and 

routing experiments to evaluate all the optimization techniques studied and work toward 

obtaining more precise results. The main contributions are as follows: 

 

 To reduce power dissipation compared to recent multiplier designs, we proposed several 

optimization techniques of the reduction structure for the array to utilize the low-power 

features of a LR array. Experiment results have shown that both power and delay are 

improved considerably with these techniques. Among different optimization techniques 

for LR array multipliers, a 4-level UL split structure and a voltage islands technique are 

the primary choices when power is the main concern. 
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 The low-power array structure optimization techniques mentioned in Chapter 2 were 

combined with the high-performance CPA optimization techniques. The high-performance 

CPA is necessary to improve the performance of a sum-of-products unit while maintaining 

the power dissipation of the array structure. We presented the problem of adding four 

carry-save vectors (each two carry-save vectors of two arrays) from two PPR arrays and a 

design strategy specific to arrival time profiles generated by two PPR arrays. We have 

shown that the proposed design reduces the power dissipation as well as overall latency. 

 

 The sum-of-products operation is frequently used for many digital signal processing 

applications. However, many DSPs and GPUs use an existing multiplier or a MAC unit to 

execute sum-of-products operations, and thus take more clock cycles. To reduce the number 

of clock cycles, we proposed a sum-of-products unit. This sum-of-products unit is designed 

based on two parallel PPR arrays, [4:2] adders and the final CPAs. We compared with an 

existing high-performance parallel multiplier and the ARM multiplier. The sum-of-products 

unit has 46% less execution time with about 12% energy penalty compared to the 

ARM7TDMI-S multipliers in four different benchmark programs. Also, it consumes less 

power than a multiplier only when the execution time is the same. 

 

 Most processors include separate dedicated arithmetic units to support each arithmetic 

operation. This design is less suitable for current DPSs and GPUs because the frequency of 

arithmetic operations is application-dependent. We have proposed a sum-of-products unit 

capable of supporting multiple arithmetic operations: multiplication, multiply-add, square, 

sum-of-squares, and add-multiply computations using essentially the same hardware based 

on input control signals. Compared to a conventional sum-of-products unit, the MAU-SoP 

increases power, area and delay slightly of the proposed sum-of-products unit, but allows 
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several multiplication-related arithmetic computations to be performed as a single 

operation. Combining several similar operations to execute on the same hardware reduces 

the area and power compared to separate implementations.  

 

 To further reduce power consumption in a sum-of-products unit with large-dynamic-range 

input data, we proposed a sum-of-products unit capable of supporting SIMD and 

approximate operation. The proposed arithmetic unit can perform multiple-precision 

sum-of-products for accurate and inaccurate results. The proposed techniques have not 

changed the basic structure of a sum-of-products unit. Instead, the fundamental 

components are partitioned and ancillary logic gates have been inserted along the gating 

boundaries. For input data with a large dynamic range, significant power reduction has 

been shown to be much better than that of the baseline sum-of-products unit in the 

experiments. 

7.2 Future Works 

As an attempt to develop several optimization techniques for a low-power sum-of-products 

unit, the research presented in this dissertation has achieved good experimental results and 

demonstrated the efficiency of optimization techniques. However, there are some limitations in 

our research and several future research directions are possible. In this section, we discuss the 

remaining design issues. 
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7.2.1 Other Composite Arithmetic Operations 

For potential applications which meet the increasing demand for pervasive secure and 

multimedia information, one direction is to develop other composite arithmetic operations: 

polynomials and four-dimensional sum-of-products. 

The use of mobile computing technology has changed the way people communicate with 

each other. However, modern mobile devices are vulnerable to various attacks, even though 

most personal computers are surely protected by antivirus software [117]. Therefore, mobile 

processors guarantee confidentiality and integrity of data, as well as ensuring reliable data 

transfer using cryptography hardware [118]. However, cryptography hardware makes intensive 

use of arithmetic operations; and thus consumes an enormous amount of power. Currently, most 

cryptography algorithms have no consideration for low-power dissipation even though they are 

frequently used in mobile devices. Therefore, cryptography issues should be explored in 

conjunction with low-power solutions. In particular, polynomials, which are mathematical 

expressions consisting of a sum of terms, each term including constants, variables or exponents, 

are used for many cryptography applications such as Elliptic Curve Cryptography (ECC). Thus 

the design of low-power composite arithmetic operations for polynomials is necessary for 

low-power cryptography hardware design.  

The other potential application is 3-Dimensional (3D) graphics, which have become the 

most popular application dominated by arithmetic operations. Recent GPUs have integrated 

shaders, which are programmable cores, for their numerical calculations [119][120]. Shaders 

are used for vertex and pixel processing. Most 3D graphics hardware has 4-way SIMD units to 

execute an operation of the 4D attribute simultaneously [121][122][123][124][125] because 

vertex and pixel attributes such as color, vertex, and texture coordinates are represented with 4D 

vectors in a 3D graphics processor. Thus the 4D sum-of-products operation is the most 
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frequently used in 3D graphics applications. We need to develop algorithms and 

implementations of arithmetic units for a 4D sum-of-products, that computes Z = A × B + C × D 

+ E × F + G × H. It will likely reduce the overall power dissipation of the entire 3D graphics 

system by various techniques to merge the proposed techniques. We need to develop additional 

composite arithmetic units for applications that frequently use these operations, and compare 

them with discrete arithmetic units containing normal multipliers and adders. 

 

7.2.2 64-bit Floating-Point Arithmetic Operations 

Recently introduced ARMv8 architectures add support for 64-bit floating-point arithmetic 

operations [126]. In this dissertation, we have considered only a 32 × 32-bit fixed-point 

sum-of-products unit for simplicity. We have assumed that the proposed methods will be all 

easily extended to deal with other floating-point representations of operands. Thus the next step 

of our research is to develop a 64 × 64-bit sum-of-products unit and to determine which 

techniques presented can be applied for a 64 × 64-bit hardware design. For example, our studies 

have mainly focused on developing 4-level split array designs, and the length of each array 

varies significantly with the input data size. It is the perfect candidate to be easily converted into 

a 64-bit hardware. Specifically, the lower rows consume much more power than the upper rows, 

and there would be significant power savings if the length could be further reduced. Considering 

a 32 × 32-bit, an 8-level splitting was not a good example because each part has only four PPs; 

thus, we avoided an 8-level splitting, due to this short length. However, in the case of a 64 × 

64-bit, it would be a good choice because each part has eight PPs. The voltage islands 

techniques would also be a valuable technique for a 64-bit hardware. We have proposed to 

exploit the non-uniform arrival time profiles to achieve power savings with minimal 

performance degradation, and we applied the voltage islands technique to the regions of 
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non-uniform input generated by the 32-bit array. Since a 64-bit array has similar non-uniform 

input arrival time, the voltage islands technique can be applied for a 64-bit array.  

The 64-bit operation could be more appropriate to be performed using a floating-point 

arithmetic. Floating-point arithmetic operations are widely used for advanced applications 

such as 3D graphics and complex signal processing applications, which require a wide 

dynamic range of arithmetic operation. However, they require additional complex processes 

such as alignment, normalization and rounding, and thus suffer from more complex 

implementation, which significantly increase the area, power consumption and latency. We 

plan to develop low-power schemes for a floating-point sum-of-products unit.  
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Appendix A Design and Experimental Methodology 

In this Appendix we explain the design and simulation methodologies that have been used to 

obtain the experimental results in this dissertation. There are many choices for logic styles, 

design descriptions, and simulation methods. Our choices and the reasons are described below. 

A.1 Logic Style 

There is several logic styles used today. The CMOS and Transistor Transistor Logic (TTL) 

technologies are attractive for fabricating VLSI circuits. CMOS is a classification of digital 

circuits that uses Field Effect Transistors (FET) in the design and TTL is also another 

classification of digital circuits built from Bipolar Junction Transistors (BJT) and resistors. 

CMOS is the primary technology choice in the semiconductor industry because of its many 

good features such as small area, low power, relatively simple fabrication process [13]. The 

advantage of CMOS to TTL is in the greater density of logic gates within the same material. A 

single logic gate in a CMOS can consist of as little as two FETs while a logic gate in a TTL 

can consist of a substantial number of parts as extra components are needed. Also, CMOS 

logic style is robust with respect to voltage scaling and transistor sizing. It has the advantages of 

generality and ease-of-use as standard cell based technology libraries and logic synthesis 

techniques are well developed. CMOS logic style is a good choice in most cases if low power 

and small power-delay product are of major concern, because CMOS circuits do not draw as 

much power as TTL circuits [127]. For these reasons, we have chosen CMOS standard cell 

logic style. 
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A.2 Library 

The CMOS standard cell library we have used is Samsung 65nm standard low-power library. 

As our primary goal is low-power design, we choose low-power library as the underlying 

technology. The area, delay and power characteristics of basic cells are simplified and shown in 

Table 3.1. The values in this table are listed only for high-level estimation purpose. Samsung 

standard cell library also provides some synthesis optimized arithmetic cells, such as a 1-bit FA, 

but we have not used the arithmetic cells provided because the optimization of the structures of 

basic cells is one of our research objectives. 

A.3 Design and Verification 

We have chosen Cadence verification environment including NC-Verilog, Synopsys design 

environment including Design Compiler, Power Compiler, PrimeTime, IC Compiler, Mentor 

Graphics hardware/software co-simulation tool, Questa Codelink and Samsung in-house tool, 

CubicWare. Design Compiler analyzes HDL designs, optimizes and maps HDL designs into 

netlist using Samsung standard cell library. With given test data, NC-Verilog collects switching 

activity information by dynamic timing simulation. In our experiments, we have used 

CubicWare as a power estimation tool based on switching and capacitance information. 

Detailed evaluation of designs consists of the following steps. 

A.3.1 Algorithm Development and Verification using Software 

The first step is to create a functional software version of algorithms implemented in 

hardware. Algorithm verification provides us with the following. 
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 Analysis of arithmetic algorithms: By writing the pseudo code and seeing how it runs 

beforehand, we gain full understanding of every algorithm. This allows better insight 

into the overall algorithm, helps identify bottlenecks, and also is helpful in designing 

the actual hardware. 

 Algorithm verification: Before designing arithmetic units and writing HDL code, it is 

a simpler and faster way to verify the correctness of the algorithms using software. 

Note is that not all parts of the algorithm need to be verified because some parts 

already covered in previous work are fully verified and debugged.  

 

A.3.2 Hardware Design and Verification using RTL 

Once the overall algorithm is fully developed and verified, we develop hardware models. 

Hardware models refer to the identification of physical components and their interrelationships. 

This description allows us to understand how their components communicate with each other. 

Register Transfer Level (RTL) is a design abstraction which models a digital circuit in terms 

of the flow of signals between hardware registers, and the logical operations performed on those 

signals. RTL abstraction is used in HDL to create high level representations of digital circuits, 

from which actual wiring and registers can be derived. We have implemented all proposed 

models in technology-independent structural Verilog descriptions. To obtain power, delay and 

area, we have implemented Verilog models, an operand type, two's complement, and an 

operand size, 32-bit. 

After designing RTL modules using HDL codes, the designs have been verified using RTL 

verification tool. Verilog simulation is conducted to verify the correctness of each design. 

Verilog codes are usable for the cycle-based simulation phase. Cycle-based simulation 

evaluates logic functions across clock cycle boundaries. The purpose of this simulation is to 
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evaluate input stimuli as rapidly as possible. We have verified logic functions and timing. The 

verification is performed with random data and some special boundary data tests. The random 

data set used in the proposed arithmetic unit might not hit corner cases. Thus, we have checked 

whether test cases include corner cases or not after the tool generates test cases. Cadence tool 

internally uses the Tcl script language to run simulations on benchmark files, and therefore by 

writing custom scripts file we have automated the simulation process.  

A.3.3 Cycle-level Simulation 

The clock cycles of the proposed arithmetic units for benchmark programs could be 

measured by running cycle-level simulation tool with Verilog and compiled ARM assembly 

code. The Mentor Graphics hardware/software co-simulation tool such as Questa Codelink 

profiles clock cycles for programs. 

A.3.4 RTL Synthesis and Analysis 

All proposed arithmetic units are fully synthesizable. The HDL description could be directly 

translated and optimized to an equivalent netlist for ASIC implementation. Because synthesized 

results vary according to the constraints, we have used the same constraints to reduce the effects 

of Synopsys Design Compiler. Because RTL designs determined the delay range, aggressive 

delay minimization probably leads to much larger area and power. The synthesis mapping 

objective has been set to minimize area because smaller area generally helps power saving is for 

a given design. Buffers have been inserted automatically by Synopsys Design Compiler. There 

are two main ways to estimate interconnect effects in power, delay and area characteristics. One 

is to extract interconnect information from the actual placement and routing tool for accurate 

estimation. The other is to use wire load models, which are provided based on statistical 

information specific to their processes. The use of wire load models in estimation provides a fast 
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process with less accuracy. To obtain more precise delay and power calculation, we have 

performed placement and routing processes. Interconnect parameters have been extracted and 

back-annotated into Synopsys tool. Delays have been obtained from Synopsys PrimeTime, and 

powers have been obtained from Samsung in-house power estimation tool, CubicWare. Areas 

have been obtained from Synopsys Design Compiler and IC Compiler. 

A.4 Power, Delay and Area Estimation 

A.4.1 Data Set 

Power dissipation is directly related to input data characteristics. One scheme may consume 

less power for certain data patterns but consume more power for other data patterns. Therefore, 

we have prepared random data sets in order to capture power features in recent applications for 

independent variables in a random environment. Test data set consists of 32-bit pseudo-random 

data. The static probability of each bit being 1 in random is 0.5 and the toggle rate of each bit is 

0.25. 

A.4.2 Estimation and Comparisons 

The best way to compare different schemes is to fabricate each design and measure the 

power, delay and area characteristics of actual chips. However, the fabrication is a rather 

expensive and time consuming process, which makes it impractical to explore many design 

alternatives. With the advancement of CAD tools, power, delay and area estimations with 

back-annotated information can achieve the accuracy. Because the primary concern is the 

relative difference, we have compared different schemes under the same experimental setting 

and the absolute errors probably tend to go in the same direction and thus have little effect on 
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the relative comparison. Experimental results with comparisons of the other schemes have been 

finally presented. For area analysis, we often found that there are not less consistent results 

obtained from placement and routing tool because there is no consistency in size of white 

space, which is automatically allocated by tool. The results obtained from synthesis rather than 

those from placement and routing often have better relations with the power because of the 

effects of placement and routing tool. In this case, we have provided the synthesis results. We 

have used a power-delay curve commonly used to assess the merits of designs in digital CMOS 

design. The feedback from these actual experiments has been used to further refine and modify 

the solutions to make them achieve much lower power and higher performance in signal 

processing applications.  

  



- 187 - 

 

Appendix B Abbreviations 

 

ALU    Arithmetic Logic Unit 

AP     Application Processor   

BJT    Bipolar Junction Transistors     

CCA    Conditional-Carry Adder 

CLA    Carry-Lookahead Adder      

CLG    Carry-Lookahead Generator    

CMOS    Complementary Metal Oxide Semiconductor  

CPA    Carry-Propagate Adder      

CRA    Carry-Ripple Adder       

CSELA    Carry-Select Adder       

CSK    Carry-Skip Adder       

DCT    Detector      

DSP     Digital Signal Processor   

ECC    Elliptic Curve Cryptography    

EO    Even/Odd    

FA    Full Adder      

FET    Field Effect Transistors     

FFT    Fast Fourier Transform    

FIR    Finite Impulse Response    
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HA    Half Adder      

ISA     Instruction Set Architecture   

ITRS    International Technology Roadmap for Semiconductors  

GPU     Graphics Processing Unit      

LR     Left-to-Right        

LS    Least Significant        

LSB    Least Significant Bit       

LU decomposition Lower Upper decomposition     

MAC    Multiply-and-Accumulate     

MS    Most Significant        

MSB    Most Significant Bit       

MSG    Modified Sign Generate      

PC    Personal Computer       

PP    Partial Product       

PPG    Partial Products Generator     

PPR    Partial Products Reduction      

PPRT    Partial Products Reduction Tree     

RL     Right-to-Left        

RTL    Register Transfer Level      

SIMD   Single Instruction Multiple Data   

TTL    Transistor Transistor Logic   
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UL     Upper/Lower        

VLSI    Very Large Scale Integration    

2D    2-Dimensional       

3D    3-Dimensional       

4D    4-Dimensional       
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LR_32    Radix-2 LR using the default [3:2] adder      

LR_42    Radix-2 LR using [4:2] adder       

LR_42_Split2   Radix-2 2-level UL split array multiplier using [4:2] adder   

LR_42_Split4   Radix-2 4-level UL split array multiplier using [4:2] adder 

LR_42_Split2_ Radix4  Radix-4 2-level UL split array multiplier using [4:2] adder  

MCSELA_11_6_CRA    

Modified CSELA made up of CRAs with block sizes of 9−9−9−10−10−11−6  

MCSELA_17_CRA 

Modified CSELA made up of CRAs with block sizes of 9−9−9−10−10−17  

MCSELA_17_CLA4 

Modified CSELA comprised of the last group of a one-level 17-bit CLA divided 

into 4 groups of 4- and 5-bit and remaining five groups of CRAs with block sizes of 

9−9−9−10−10−17  

MCSELA_17_CLA2 

Modified CSELA comprised of the last group of a one-level 17-bit CLA divided 

into 8 groups of 2- and 3-bit and remaining five groups of CRAs with block sizes of 

9−9−9−10−10−17  

MCSELA_10_2_CRA 

Modified CSELA made up of CRAs with block sizes of 8−8−8−9−9−10−10−2  

MCSELA_12_CRA 

Modified CSELA made up of CRAs with block sizes of 8−8−8−9−9−10−12  

MCSELA_12_CLA4 

Modified CSELA comprised of the last group of a one-level 12-bit CLA divided 

into 3 groups of 4-bit and six groups of CRAs with block sizes of 

8−8−8−9−9−10−12  

MCSELA_12_CLA2 

Modified CSELA comprised of the last group of a one-level 12-bit CLA divided 

into 6 groups of 2-bit and six groups of CRAs with block sizes of 

8−8−8−9−9−10−12  
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MAU-SoP   Multi-functional arithmetic unit based on sum-of-products   

SAAU-SoP  SIMD and approximate arithmetic unit based on sum-of-products  
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