
UCLA
UCLA Electronic Theses and Dissertations

Title
Power Optimization of Sum-of-Products Design for Signal Processing Applications

Permalink
https://escholarship.org/uc/item/4d77m8h6

Author
Heo, Seok Won

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4d77m8h6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Power Optimization of Sum-of-Products Design

for Signal Processing Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Seok Won Heo

2014

© Copyright by

Seok Won Heo

2014

ii

ABSTRACT OF THE DISSERTATION

Power Optimization of Sum-of-Products Design

for Signal Processing Applications

by

Seok Won Heo

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Miloš D. Ercegovac, Chair

Power consumption is a critical aspect in today’s mobile environment, while higher

performance remains a major design goal. In recent mobile devices, the signal processing

applications are power-consuming due to the frequent use of arithmetic computations; hence

they have a large impact on the overall power dissipation. Specifically, a sum-of-products is a

frequently used arithmetic operation in signal processing applications. Conventional designs

use separate multipliers and adders in implementing sum-of-products. In this dissertation, we

focus on developing a low-power arithmetic unit to perform a sum-of-products operation. The

objective of this research is to investigate the algorithmic and architectural approaches for

low-power and high-performance design of a sum-of-products with multi-functional

computing ability, SIMD and approximate operations, and to demonstrate its capabilities in

representative signal processing applications. The key distinguishing features of our approach

is to develop a sum-of-products systematically from two aspects: internal efforts considering

the arithmetic architecture and external efforts considering input data characteristics. We

evaluate the power, delay and area of our solutions, and then compare our designs with similar

iii

arithmetic schemes. The benchmark evaluations are used to identify benefits and limitations of

our solutions in signal processing applications.

iv

The dissertation of Seok Won Heo is approved.

Jingsheng Jason Cong

Yuval Tamir

Dejan Marković

Miloš D. Ercegovac, Committee Chair

University of California, Los Angeles

2014

v

To my parents, brother and wife

vi

Table of Contents

Chapter 1 Introduction ... - 1 -

1.1 The Main Research Problem ... - 1 -

1.2 Motivation ... - 5 -

1.3 Power Optimization .. - 7 -

1.4 Low-Power Multiplier Design .. - 12 -

1.5 Research Approach ... - 16 -

1.6 Organization of Dissertation ... - 17 -

Chapter 2 Power Optimization of an Array Multiplier.. - 20 -

2.1 Introduction ... - 21 -

2.2 Related Work .. - 23 -

2.3 The Left-to-Right Array Multiplier .. - 24 -

2.4 Structure Optimization .. - 25 -

2.4.1 Partial Product Generation with Radix-4 Recoding - 28 -

2.4.2 The [4:2] Adder for PP Reduction .. - 29 -

2.4.3 The Split Array: Even/Odd and Upper/Lower .. - 32 -

2.4.4 Voltage Islands.. - 40 -

2.5 Experimental Evaluation ... - 42 -

2.5.1 Results for Split Array Multipliers ... - 42 -

2.5.2 Results for Voltage Islands Technique ... - 44 -

2.6 Summary ... - 48 -

Chapter 3 Power and Delay Optimization of the Carry-Propagate Adder - 50 -

3.1 Introduction ... - 50 -

vii

3.2 Problem and Related Work ... - 51 -

3.2.1 Problem ... - 51 -

3.2.2 Related Work .. - 51 -

3.3 Baseline Design .. - 57 -

3.3.1 Preliminaries ... - 57 -

3.3.2 Basic Schemes and Architecture of the CSELA ... - 61 -

3.4 The Proposed Design .. - 65 -

3.4.1 Modified Schemes and Architecture of the CSELA - 65 -

3.4.2 Optimal Group Distribution .. - 74 -

3.4.3 The Structure Optimization... - 74 -

3.5 Experimental Evaluation ... - 83 -

3.5.1 Results for Split Array Multipliers ... - 83 -

3.6 Summary ... - 86 -

Chapter 4 Low-Power Sum-of-Products Unit for Signal Processing Applications - 87 -

4.1 Introduction ... - 87 -

4.2 Sum-of-Products Design ... - 89 -

4.2.1 The Proposed Design .. - 89 -

4.3 Experimental Results .. - 92 -

4.3.1 ARM Multiplier Results ... - 94 -

4.3.2 The Design Characteristics of the Proposed Sum-of-Products Units - 103 -

4.4 Summary ... - 109 -

Chapter 5 Multi-functional Arithmetic Unit based on Sum-of-Products - 111 -

5.1 Introduction ... - 111 -

5.2 MAU-SoP Structure .. - 112 -

5.2.1 The Opcode Decoder .. - 113 -

viii

5.2.2 The Heterogeneous Sum-of-products Unit ... - 115 -

5.3 Arithmetic Operations ... - 116 -

5.3.1 Sum-of-products ... - 116 -

5.3.2 Multiplication .. - 116 -

5.3.3 Multiply-add ... - 118 -

5.3.4 Sum-of-squares ... - 119 -

5.3.5 Square ... - 120 -

5.3.6 Add-multiply ... - 127 -

5.3.7 Overall Execution ... - 129 -

5.4 Experimental Evaluation ... - 133 -

5.5 Summary ... - 137 -

Chapter 6 SIMD and Approximate Arithmetic Unit based on Sum-of-Products - 138 -

6.1 Introduction ... - 138 -

6.2 Related Work .. - 140 -

6.3 The Proposed Arithmetic Unit .. - 142 -

6.3.1 The SAAU-SoP Structure ... - 142 -

6.3.2 The Proposed Operations .. - 144 -

6.4 Basic Components .. - 155 -

6.4.1 Dynamic Range Detector and Main Controller .. - 155 -

6.4.2 The Radix-4 Recoder and the PPG ... - 159 -

6.4.3 The PPR Array .. - 160 -

6.4.4 The Final CPA .. - 165 -

6.4.5 Overall Execution ... - 167 -

6.5 Experimental Evaluation ... - 169 -

6.6 Summary ... - 173 -

ix

Chapter 7 Conclusion and Future Work .. - 175 -

7.1 Research Contributions ... - 175 -

7.2 Future Works .. - 177 -

7.2.1 Other Composite Arithmetic Operations .. - 178 -

7.2.2 64-bit Floating-Point Arithmetic Operations .. - 179 -

Appendix A Design and Experimental Methodology ... - 181 -

A.1 Logic Style .. - 181 -

A.2 Library... - 182 -

A.3 Design and Verification .. - 182 -

A.3.1 Algorithm Development and Verification using Software - 182 -

A.3.2 Hardware Design and Verification using RTL ... - 183 -

A.3.3 Cycle-level Simulation.. - 184 -

A.3.4 RTL Synthesis and Analysis ... - 184 -

A.4 Power, Delay and Area Estimation ... - 185 -

A.4.1 Data Set ... - 185 -

A.4.2 Estimation and Comparisons .. - 185 -

Appendix B Abbreviations .. - 187 -

References ... - 192 -

x

List of Figures

Figure 2.1: Bit Matrix for LR Multiplication Example (radix-2, n = 8) - 26 -

Figure 2.2: LR Array Multiplier Based on a [3:2] Adder (radix-2, n = 8) - 27 -

Figure 2.3: [4:2] Adder Structure.. - 30 -

Figure 2.4: LR Array Reduction Using [4:2] Adder (radix-2, n = 8) - 30 -

Figure 2.5: LR Array Multiplier Based on a [4:2] Adder (radix-2, n = 8) - 31 -

Figure 2.6: Split Array Multiplier ... - 36 -

Figure 2.7: UL LR Array Reduction Using a [4:2] Adder (radix-2, n = 16) - 37 -

Figure 2.8: Portion of a 4-level UL LR Array Structure for Uppermost PPs (radix-2, n = 32) .

... - 38 -

Figure 2.9: High-level 4-level UL Split LR Array Reduction Algorithm - 39 -

Figure 2.10: The Example of Non-uniform Arrival Time for a 32 × 32 Multiplier - 41 -

Figure 2.11: Partition of the PPR Array for Voltage Islands ... - 41 -

Figure 2.12: Input Arrival Profiles of the PPR Array with High Supply Voltages and Voltage

Islands in a 32 × 32-bit LR Array Multiplier .. - 46 -

Figure 2.13: Adder Input Profiles of the PPR Array in a 32 × 32-bit 4-level UL Split LR Array

Multiplier .. - 48 -

Figure 3.1: Block Diagram of a Carry-Select Adder .. - 53 -

Figure 3.2: Block Diagram of a Carry-Select Adder based on CLG4 - 55 -

Figure 3.3: A Conditional Carry Adder ... - 56 -

Figure 3.4: The Implementation of XOR and MUX ... - 59 -

Figure 3.5: Designs of a FA .. - 60 -

Figure 3.6: A Conventional CSELA with Variable Block Size ... - 63 -

Figure 3.7: Delay Evaluation of Conventional CSELA (group2) - 64 -

Figure 3.8: A Half Adder and a Modified Half Adder .. - 65 -

Figure 3.9: The Implementation of a 4-bit Add-one Circuit ... - 66 -

Figure 3.10: Block Diagram of the Components within the Proposed CSELA Required for

MUX Operation .. - 67 -

Figure 3.11: The Modified CSELA Using CRA and an Add-one Circuitwith Variable Block

Size (Block sizes of 2−10−10−9−9−8−8−8)... - 68 -

Figure 3.12: Delay Evaluation of the Modified CSELA Using CRA and an Add-one Circuit

(group2)... - 69 -

Figure 3.13: Delay Evaluation of the Modified CSELA Using CCA and an Add-one Circuit

(group2)... - 72 -

Figure 3.14: The Modified CSELA Using a CRA and an Add-one Circuit with Variable Block

Size (block sizes of 12−10−9−9−8−8−8) ... - 79 -

xi

Figure 3.15: Delay Evaluation of the Modified CSELA Using CLA4 and an Add-one Circuit

(group7)... - 80 -

Figure 3.16: The Modified CSELA Using a CRA, a CLA and an Add-one Circuit with

Variable Block Size (block sizes of 12−10−9−9−8−8−8) ... - 81 -

Figure 3.17: Delay Evaluation of the Modified CSELA Using CLA2 and an Add-one Circuit

(group7)... - 82 -

Figure 4.1: Sum-of-products Unit Design .. - 91 -

Figure 4.2: Inner-product Unit Design .. - 91 -

Figure 4.3: Comparison of Energy Ratio with Execution Time Ratio in Benchmarks - 101 -

Figure 4.4: Energy-delay Product Comparison between the ARM7TDMI-S Multiplier and a

Sum-of-products Unit in Benchmarks .. - 101 -

Figure 4.5: Comparison of Energy Ratio with Execution Time Ratio in Benchmarks - 108 -

Figure 4.6: Energy-delay Product Comparison between 4-level UL Split LR Multipliers and

Sum-of-products Units .. - 108 -

Figure 5.1: The Proposed MAU-SoP Structure .. - 114 -

Figure 5.2: Sum-of-products Operation .. - 117 -

Figure 5.3: Multiplication Operation .. - 117 -

Figure 5.4: Multiply-add Operation .. - 118 -

Figure 5.5: 8-bit Two’s Complement Signed Matrix Example for Multiplication and

Sum-of-squares ... - 123 -

Figure 5.6: 8-bit Two’s Complement Signed Matrix Example for Square Operation - 126 -

Figure 5.7: Sum-of-squares Operation .. - 127 -

Figure 5.8: Add-multiply Operation ... - 129 -

Figure 5.9: Area and Delay Comparison between the Original and the Proposed Operations

... - 133 -

Figure 5.10: Power, Delay and Power-delay Product Comparison between the Original and

the Proposed Operations ... - 136 -

Figure 6.1: The Proposed SAAU-SoP Structure ... - 142 -

Figure 6.2: The Example of a Signed Radix-2 8-bit LR Multiplier Bit Matrix for 4-point

Ensemble ... - 144 -

Figure 6.3: The Example of an 8-bit LR Multiplier Bit Matrix Using 4-bit Low-precision

Operation... - 148 -

Figure 6.4: The Example of an 8-bit LR Multiplier Bit Matrix Using 4-bit SIMD Operation

... - 149 -

Figure 6.5: The Radix-4 Recoding (Standard and SIMD Multiplications) - 150 -

Figure 6.6: Approximate Sum-of-products Operation .. - 154 -

xii

Figure 6.7: Approximate Sum-of-products Operation for 16 × 16_error Method - 155 -

Figure 6.8: Functional Blocks of the Dynamic Range Detector - 158 -

Figure 6.9: Functional Blocks of the Radix-4 Recoder and PPGs - 160 -

Figure 6.10: The Added Modules for SIMD Operation .. - 162 -

Figure 6.11: The Modified Modules for Signal Gating in PPR Array - 163 -

Figure 6.12: Gating Lines for SIMD Operation .. - 164 -

Figure 6.13: Functional Blocks of the Final CPA ... - 166 -

xiii

List of Tables

Table 2.1: Power Distribution in a Parallel Multiplier .. - 23 -

Table 2.2: Power, Delay and Area for LR Array Multipliers .. - 44 -

Table 2.3: Results for Partition ... - 47 -

Table 2.4: Power, Delay and Area Comparisons of the Array in a Non-split LR 32 × 32-bit

Multiplier Utilizing High Supply Voltage and Voltage Islands .. - 47 -

Table 3.1: Delay and Area Count of the Basic Blocks of CSELA - 60 -

Table 3.2: Delay and Area of Conventional and Modified CSELAs - 73 -

Table 3.3: Delay and Area Comparisons of Modified CSELAswith Variable Block Sizes for a

4-level UL LR Structure ... - 77 -

Table 3.4: Delay and Area Comparisons of Modified CSELA with Variable Block Sizes for a

PPR Array Using Voltage Islands ... - 78 -

Table 3.5: Power, Delay and Area Comparisons of Adders for a 4-level UL LR Structure - 85 -

Table 3.6: Power and Delay Comparisons of the MCSELA_12_CRA_2 with Different Supply

Voltage .. - 85 -

Table 4.1: Clock Cycles for Benchmark Programs ... - 97 -

Table 4.2: Power, Delay and Area of the ARM7TDMI-S Multiplier and a Sum-of-products

Hardware ... - 98 -

Table 4.3: Execution Time, Energy and Energy-delay Product of the ARM7TDMI-S

Multiplier and a Sum-of-products Hardware for Benchmarks ... - 102 -

Table 4.4: Power, Delay and Area Comparison for LR Array Multipliers Utilizing Split

Structure and Modified CPA (1.32 V)... - 104 -

Table 4.5: Power, Delay and Area for Sum-of-products (1.32 V) - 105 -

Table 4.6: Power, Delay and Area of the Proposed Multiplier and Sum-of-products Unit

... - 106 -

Table 4.7: Execution Time, Energy and Energy-delay Product of The Proposed Multiplier and

Sum-of-products Hardware for Benchmarks .. - 107 -

Table 5.1: Operation Mode ... - 113 -

Table 5.2: Control Selection of the Design ... - 114 -

Table 5.3: Operating Units Based on Arithmetic Operations ... - 116 -

Table 5.4: Area and Delay Increase of Added Modules ... - 130 -

Table 5.5: Area and Delay in Each Operation .. - 131 -

xiv

Table 5.6: Area and Delay Comparison Between the Original and the Proposed Operations

... - 132 -

Table 5.7: Power, Delay and Area for the Original and the Proposed Sum-of-products Units ...

... - 134 -

Table 5.8: Power, Delay and Area for the Proposed Sum-of-products Unit - 135 -

Table 5.9: Power, Delay and Area for Each Operation ... - 135 -

Table 6.1: Used PPR Modules for a 32 × 32_low_error and a 32 × 32_high_error Methods

based on Input Operand Size .. - 153 -

Table 6.2: Power, Delay and Area Comparison Between 16 × 16-bit and 32 × 32-bit

Multipliers ... - 154 -

Table 6.3: Function Table of Dynamic Range Detector .. - 157 -

Table 6.4: Delay and Area Increase of Added Modules (Radix-2) - 168 -

Table 6.5: Delay and Area Comparison between the Original and the Proposed Operations......

... - 169 -

Table 6.6: Power, Delay and Area for the Original and the Proposed Sum-of-products Units ...

... - 170 -

Table 6.7: Power, Delay and Area for Each Operation in One Multiplier - 170 -

Table 6.8: Clock Cycles for Benchmark Programs ... - 171 -

Table 6.9: Execution Time for Benchmark Programs ... - 172 -

Table 6.10: Power, Delay and Area for Approximate Sum-of-products Operations - 173 -

xv

Acknowledgements

After a long formal education journey, I finally have a chance to thank everyone who

taught me, helped me, and shared their friendship with me during my Ph.D. program. This

dissertation cannot be completed without support from them. Here I am trying to express my

gratitude to everyone although these words are never enough.

First of all, I would like to thank my advisor, Miloš D. Ercegovac, for being such a

wonderful advisor. His passion during CS252A and CS259 helped me find what I want to

study for my Ph.D. He invited me to join his research group when I did not have enough

background in the computer architecture field. Through his invaluable guidance, advice and

encouragement, he has transformed a struggling graduate student into an experienced

researcher. His insight and ideas formed the foundation of my dissertation as much as mine

did, and his guidance and care helped me get over a lot of hurdles during my graduate years.

He gave me the opportunity to participate in amazing research and inspired me to actively

investigate many interesting and challenging problems in computer architecture technologies.

When I had a hard time making good research, he always helped me to choose the best path.

His advice, support and encouragement helped me to finish this dissertation. I would also like

to thank my other dissertation committee, Jason Cong, Yuval Tamir and Dejan Marković. I

was fortunate to have them as committee. Their inspiring advice and research guidance made

my dissertation more thorough. I wish to thank Professors Yong Surk Lee, Hong-Goo Kang

and Jae Won Kim for their inspirational advises.

Second, this work would not have been possible without the support and interest of

many individuals at UCLA and Samsung. I thank every member of our group at UCLA. I

have felt lucky to be a member of such a wonderful research group. Especially, I thank Seung

Hyun Pan for providing a cheerful office environment. I would also like to thank everyone at

Samsung for their valuable discussion and suggestions. Especially, I would also like to thank

the senior members of Samsung, Chil-Hee Chung. I was lucky to have the opportunity to

work with him. More importantly, I am always inspired by his passion for insights. I would

like to thank Jin-Hyuck Choi for giving me a chance to work with him at Samsung. He

invited me to join his team when I did not have enough background in the IC design field.

And then, he encouraged me to solve important and difficult problems after building a strong

background. Kyu-hyun Shim gave me good advice and wonderful suggestions for my paper

drafts, which eventually became parts of my dissertation. His guidance helped me to define

the scope of this research. I also thank Min-Soo Kang and Tae-Keun Jeon for useful

discussions and many different kinds of support including system-level simulation.

Especially I thank Soong-Man Shim and Dong-Ryul Lee for always being helpful in not only

xvi

RTL-level technical support but also helping me with various kinds of compile and synthesis

errors. These comments made my dissertation much better, and I learned a lot from their

comments.

I would also like to thank the UCLA computer science graduate students for their

valuable comments and contribution: Soon Young Oh, Wooseong Kim, Jonathan Park,

EunKyu Lee, Sungwon Yang, Seongwon Han, Jihyoung Kim and Jae-Han Lim. My Ph.D.

life would have been very different without them. Especially Soon Young, Wooseong and

EunKyu had always open to strong technical discussions and showed me how to write strong

papers. I thank Sungwon, Seongwon, Jihyoung and Jae-Han for many productive and joyful

coffee meetings especially during several years of graduate school. I would also like to thank

the UCLA memebers: Moonsoo, Eun-Taek, Jong Jin and Yool. They always gave me kindly

advice and great help. I would also like to thank high school friends: Jin Kuk, Minchul, Ho

Kwon, Jong Uk and Hyun Jun and many others for their encouragement, friendship and

support. Especially, Jin Kuk gave me insightful suggestions whenever I made a decision, and

showed me how to write strong papers. He has been my role model in life. In my first year, I

stayed with Jong Uk very closely, and I learned how to live as an international student. I also

thank Minchul for his comments and suggestions, and Ho Kwon for accompanying me in

several trips in California and helping my father health care. Thanks also to the many friends

who made it all worthwhile LG internship members: Deuk, Mi Hye and Yonsei Processor

Lab. Members: Woo Kyung, Do kyun, Inpyo, Yongjoo and Jin Woo.

I learned a lot during my internships in industry. Mark, Ryan and Vipul were my

mentors when I was an intern at Broadcom. They also provided stimulating environment

during the internship. I especially thank Mark giving me a chance to intern with his group.

Ryan immediately solved problems whenever I was faced with a difficult question. Hwisung

walked me through the first steps of being a low-power engineer. Thanks also to the many

friends: Seunghwan, Abraham, Stephan and Woojoo. They provided valuable comments on

my research and life. I was very fortunate to meet such great people outside of UCLA.

Special thanks to my uncle, aunt, cousin: Jim Song, Jacqueline Chiu and Angel, Shashi for

educating me in the ways of the American culture, and for being a good friend.

Finally, I wish to express my most sincere gratitude and appreciation to my parents

who always had faith in me and gave me endless love and support, my younger brother who

always encouraged me and gave me insightful suggestion. My parents firmly believe that I

can be a great scholar, and whenever I am in doubt, they constantly remind me of their

confidence. Thinking back, it must have been a difficult decision for them to send their first

son over thirty years old to a foreign country, and I am grateful for their selfless decision. My

younger brother, Seok-Joong, always encouraged me to solve important and difficult

problems and guided me to model our design at system level. This dissertation became much

stronger and clearer with his contributions. Most importantly, throughout my Ph.D., my wife,

xvii

Soh Youn, encouraged me at all times with her love, patience, and understanding. Frankly, it

is quite tough to be the fiancé of a graduate student who lives far away from family and her,

but she went through the last 4 years without many complaints. I hope that I will be able to

give her as much support as I got during my graduate study. All my friends, many UCLA and

Samsung folks and many other friends helped me directly or indirectly during my Ph.D.

studies. Once again, I gratefully thank everybody and thank my parents, brother and wife.

One day I hope that our family and friends will live somewhere nearby and we will all have a

peaceful life together.

Seok Won Heo

May 2014

Los Angeles, California

xviii

Vita

2002 B.S. in Electrical Engineering and Computer Science

 Hanyang University, Korea

2004 M.S. in Electrical and Electronic Engineering

 Yonsei University, Korea

2012 M.S. in Computer Science

 University of California, Los Angeles

xix

Publications

S. W. Heo, S. J. Huh and M. D. Ercegovac, "Power optimization of sum-of-products design for

signal processing applications, in Proc. ASAP, Jun. 2013, pp. 192–197.

S. W. Heo, S. J. Huh, and M. D. Ercegovac, "Power optimization ina parallel multiplier using

voltage islands," in Proc. ISCAS, May 2013, pp. 345–348.

S. Yu, M. Kim, S. W. Heo, J. Song and Y. S. Lee, "An Efficient Scalable and Hybrid Arithmetic

Unit for Public Key Cryptographic Applications," IEICE Electronics Express, vol. 4, no. 14, pp.

461–466, Jun. 2007.

S. W. Heo, Y. S. Lee, "An Optimal RSA Crypto-processor Design Based on Montgomery

Algorithm," in Proc. ISOCC, Oct. 2006, pp. 279–282

S. W. Heo, M. Kim, Y. S. Lee, "Study of Optimized Adder Selection", in Proc. ASIC, Oct, 2003,

pp.1265–1268.

- 1 -

Chapter 1 Introduction

Power consumption has become a critical concern in recent mobile system design, while

maximizing performance and minimizing area remain two major design goals. Multiplication is

a fundamental arithmetic operation in most signal processing applications, but a multiplier has a

large area, long latency and consumes considerable power. Previous works have focused on

developing low-power multipliers and have not considered composite arithmetic operations,

such as sum-of-products, in reducing power consumption. However, signal processing

applications often require many numerical calculations, which may take a large number of

clock cycles using a conventional multiplier even when they include a low-latency multiplier.

This poses an interesting problem in power optimization of arithmetic operations: what can be

gained by using composite arithmetic, i.e., by fusing several basic operations? We propose to

investigate power optimization of a well-known composite operation, sum-of-products, which

often appears, for example, in computing inner product and Finite Impulse Response (FIR)

filtering. In this chapter, we address motivation, define the main research problem, discuss

related works and outline our research approach.

1.1 The Main Research Problem

The sum-of-products is found in many digital signal processing and multimedia applications

such as a FIR filter, a high pass filter and an inner product. This computation is implemented

using a summation of two products. It can be described by

- 2 -

 (1-1)

The inner-product is usually computed by repeatedly using a sum-of-products.

 (1-2)

Previous research has mainly focused on designs for low-power multipliers, but recent

studies have shown that a conventional multiplier design cannot efficiently support increasing

high-throughput and low-power requirements [1]. However, the sum-of-products unit can offer

an opportunity to satisfy these requirements.

Many Digital Signal Processors (DSPs) and Graphics Processing Units (GPUs) provide

multiply and/or Multiply-and-ACcumulate (MAC) instructions because of the frequent use of

multiplication and related arithmetic calculations in signal processing applications. To execute

sum-of-products operations, they use an existing multiplier or a MAC unit. Conventional

processors take more clock cycles when using a single multiplier or a MAC unit to perform

sum-of-products. Clearly, by including a sum-of-products operation, one expects that fewer

cycles are needed. We want to show that the energy-delay product is also reduced.

Consider a typical FIR filter:

- 3 -

 (1-3)

This equation can be implemented in two ways in a high-level language, such as C. One way

to do so is as follows:

 for (k = 0; k < N; k++)

 {

 y[n] = y[n] + c[k] × x[n - k]

 }

(1-4)

The last line corresponds to a MAC operation: x = x + y × z. This equation can be translated

into a single MAC instruction.

The FIR filter can also be implemented in C in the following way:

 for (k = 0; k < N; k+=2)

 {

 y[n] = y[n] + c[k] × x[n - k] + c[k + 1] × x[n – k + 1];

 }

(1-5)

- 4 -

The last line corresponds to an accumulated sum-of-products: x = x + y0 × z0 + y1 × z1. This

equation can be translated into a single instruction using the sum-of-products design. This

approach is to reduce the total number of clock cycles by half.

Consider another example: matrix multiplication.

 (1-6)

where the number of columns in A equals the number of rows in B.

This matrix multiplication can be implemented in two ways by using multiplications and

sum-of-products operations. One way to use multiplications is as follows:

for (i = 0; i < n; i++) {

for (j = 0; j < p; j++) {

for (k = 0; k < m; k++) {

AB[i][j] += A[i][k] × B[k][j]

}

}

}

(1-7)

The expression (1-7) corresponds to the multiply-add operation which could be executed as

a single instruction. Matrix multiplication can be also implemented as

- 5 -

for (i = 0; i < n; i++) {

for (j = 0; j < p; j++) {

for (k = 0; k < m; k+=2) {

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j]

}

 }

}

(1-8)

The last line corresponds to an accumulated sum-of-products operation. In the best case

scenario, the sum-of-products operations require only half the number of clock cycles using

sum-of-products hardware compared to using a single multiplier, as shown in the example

above.

1.2 Motivation

There is a fundamental technological shift taking place in the electronics industry. It is

moving from the wired era driven by the Personal Computer (PC) to the wireless era driven by

portable devices. As the scale of integration keeps growing, more sophisticated signal

processing algorithms are being implemented on mobile Very Large Scale Integration (VLSI)

chips [1][3][4]. These signal processing applications not only demand great computation

capacity but also consume considerable amounts of power. With a growing number of mobile

devices, minimizing the power consumption has become of great importance in today’s VLSI

system design while performance and area remain the other two major design goals. According

to the 2012 International Technology Roadmap for Semiconductors (ITRS), the power demands

- 6 -

are far outstripping the power requirements of typically used designs. Thus, further research in

low-power designs is needed to help close this gap [5].

 Low-power systems have several advantages over those that do not employ power-saving

strategies. Portable systems require the use of low-power design because such a design allows

the use of lighter batteries and directly leads a prolonged operation time. Reducing power

consumption is also important for high-performance systems that do not need to be portable.

High-power dissipation requires the use of more complex cooling and packaging techniques,

which are costly to build, operate and maintain. In addition, digital circuits tend to become much

less reliable at high operating temperatures; thus low-power technology can directly improve

the robustness of Complementary Metal Oxide Semiconductor (CMOS) circuits [6].

Multiplication and MAC operations are frequently executed arithmetic operations in

conventional signal processing applications. However, signal processing applications often take

many clock cycles using a conventional multiplier even when they include a high-performance

parallel multiplier. This is the critical problem for the arithmetic operations in recent signal

processing applications which require heavy numerical calculations. Moreover, studies on

power dissipation in DSPs and GPUs indicate that a multiplier is one of the most power-hungry

components on these chips [7]. Therefore, research on new arithmetic units is needed to satisfy

low-power and high-throughput requirements in mobile systems. A great deal of effort has been

expended in recent years on the development of techniques to reduce power dissipation while

minimizing the throughput degradation. Parallel organization mitigates such throughput

degradation [8]. This dissertation proposes a new design for a combined arithmetic unit based

on sum-of-products operation for signal processing applications and develops a scheme to

achieve power savings in the sum-of-products operation by utilizing parallel organization.

There have been extensive works on multipliers, which are core components of

sum-of-products, at all levels from technology through algorithm level. However, low-level

- 7 -

techniques such as circuit or technology-level are not unique to specific structures, and they are

generally applicable to all structures. However, the characteristics of arithmetic computation are

not considered well at low levels. The power and performance of arithmetic computations are

generally determined by specific algorithm and architecture. Moreover, power consumption is

directly related to data switching patterns. However, it is difficult to consider

application-specific data characteristics in low-level optimization. Therefore, this dissertation

addresses high-level optimization techniques for a low-power sum-of-products. High-level

techniques refer to algorithm, architecture and logic level techniques that consider arithmetic

features and input data characteristics. The main research hypothesis of this dissertation is that

high-level optimization of sum-of-products designs produces low-power solutions while

maintaining overall throughput. Specifically, we consider how to optimize the internal

algorithm and architecture of sum-of-products and how to control active internal resources to

match external data characteristics. The primary objective is power reduction without a

significant delay overhead. The tradeoff between power, area and delay is also considered in

several cases.

1.3 Power Optimization

Power is defined as the rate at which work is performed, whereas energy is a measure of the

total amount of power dissipated. Strictly speaking, developing a low-power design is a slightly

different goal from creating a low-energy design, even though they are closely related [9][10].

Power is a primary problem when heat dissipation and thermal management are concerns. The

peak power is often used for power and ground wiring design, signal noise margin and

reliability analysis. Energy is a metric of the energy efficiency of systems, especially in the

domain of maximizing battery lifetime.

- 8 -

The total power consumed by CMOS circuits is composed of two main components:

dynamic and static power [10][11][12][13]. Dynamic power represents the power consumed by

the intended work of the circuit to switch states and thus execute logic functions. Dynamic

power is primarily composed of :1) the power dissipation associated with the charging or

discharging of the capacitance of the switching nodes and 2) the power dissipation due to short

circuit current. The other component is static power dissipation. In a CMOS circuit, either

reverse biased PN junction current or sub-threshold channel conduction current is the only

source of unintended static current. The total power consumption is summarized in the

following equations [10]:

(1-9)

(1-10)

(1-11)

(1-12)

Pdynamic in equation (1-2) represents the dynamic power dissipation because of the charging

and discharging of a circuit and wire capacitance loads, where CL is the load capacitance, VDD is

the power supply voltage, fp is the clock frequency, and N is the switching activity, which is

defined as the sum of the 0 → 1 transition probabilities of the node switching in one clock

period. Pscc in equation (1-3) is the power dissipation due to short circuit current, where Ipeak is

the peak current, and tr and tf are the rising and falling time of short circuit current, respectively.

The peak current is determined by the saturation current of the devices and thus is directly

- 9 -

proportional to the number of the transistors. Pstatic in equation (1-4) is the static power

dissipation, where Istaticis the static current. This static power dissipation is primarily determined

by fabrication technology considerations.

Dynamic power dissipation is the dominant factor in the total power consumption of CMOS

circuits [6]. Static power dissipation is usually several orders of magnitude smaller than the

dynamic power dissipation. Furthermore, many researchers assert that optimizing dynamic

power has definitely become more important than optimizing static power because optimizing

dynamic power is actually more difficult than static power and optimizing static power is

conceptually straightforward. Optimizing static power heavily depends on circuit or

technology-level techniques such as dual Vt partitioning and multi-threshold CMOS [14]. Thus,

a consideration of static power is neglected. Also, we consider optimizing short circuit power

along with optimizing dynamic power. The parameters of Pscc in equation (1-3) are remarkably

consistent with those of Pdynamic in equation (1-2). Thus, reducing dynamic power will decrease

the short circuit power consumption as well. Furthermore, the power consumed by the short

circuit currents is typically less than 10% of the total dynamic power. Even though dynamic

power dissipation is the dominant source of total power consumption, the effect of static power

dissipation increases significantly and the static power dissipation will dominate as VLSI

manufacturing technology shrinks. Current technology trends indicate that the contribution of

static power dissipation will increase rapidly. However, dynamic power optimization of

arithmetic unit will still be critical in the future, because dynamic power optimization

techniques consider arithmetic computation features and specific input data characteristics.

However, the static power is proportional to the leakage current which flows regardless of gate

switching. It is difficult to consider specific data characteristics of arithmetic computations in

static power optimization. Therefore, we will consider only dynamic power reduction.

- 10 -

The designs to reduce dynamic power dissipation of CMOS circuits can be explored at five

levels: technology, circuit, logic, architecture and algorithm levels. Power optimization has

been studied at different abstract levels [10][11][12][15]. At the lowest technology level,

power reduction can be achieved by improving manufacturing process technology such as

small feature size, copper interconnects and insulators with low dielectric constants [12][16].

With the technology support of multiple supply voltages, the lowest supply voltage can be

applied on non-critical modules. Wire capacitance and delay imbalances can be reduced

during the layout process [17][18]. At circuit level, transistor sizing, transistor restructuring

and different circuit logic styles can reduce the power dissipation. At gate level, several

techniques have been proposed. Cell sizing and composition, equivalent pin swapping and

buffer insertion can achieve power reduction with slight area increase using the Synopsys

Power Compiler [19][20]. Gate-level techniques also include signal gating [21][22][23], delay

balancing [24], input synchronization [25] and signal polarity optimization [9]. Combinational

or sequential blocks not used can be disabled using the clock gating technique during a

particular period [26][27][28]. The register bank can be disabled using the Synopsys Power

Compiler [29]. To stop propagation of spurious transitions, the retiming technique makes

repositions of registers in sequential circuits [20]. At architecture level, there is a large amount

of freedom in power optimization. Parallelism and pipeline are two main techniques to achieve

high throughput and then trade clock frequency for supply voltage reduction [11].

Synchronous design has prevailed because of its ease of design, tractability of analysis and

predictability of performance. However, in terms of a low-power design, the increasing

overhead from the clock distribution network essential in synchronous design is posing more

and more challenges. The higher speed of modern digital circuits sets the limits in distributing

the clock signal to all the required points. Thus, asynchronous systems are investigated to

avoid a global clock distribution network and reduce useless signal transitions [30][31][32]. In

event-driven systems, components are disabled when they are in idle states [26][33].

- 11 -

Although power optimization can be achieved at all levels, the high-level techniques at

algorithm and architecture levels are more efficient than techniques at the middle and the

lowest technology levels. At algorithm and architecture level, the optimization affects all four

factors, but the middle-level optimization usually affects one or two factors in a limited way.

Technology level optimization also affects three important factors: load capacitance, power

supply voltage and clock frequency. Not much research has been conducted at high level, even

though such optimization achieves the greatest potential power savings. Thus, most designers

struggle with an apparent conflict between fast decision-making and accuracy at high level

[34]. Furthermore, a sum-of-products operation has many computational features. These

features have not been considered well at circuit and technology levels. It is also difficult to

consider input data characteristics in low-level power optimization. Therefore, it is desirable to

develop algorithm, architecture and gate level power optimization techniques that consider the

sum-of-products arithmetic features and operands’ characteristics. Therefore, this dissertation

reflects the concepts at algorithm, architecture and logic design level. Circuit and technology

level designs are outside the scope of this dissertation.

As mentioned above, the goal of this dissertation is dynamic power optimization of a

sum-of-products design at algorithm, architecture and logic levels. Based on the equation for

dynamic power dissipation in CMOS digital circuits, reduced dynamic power can be achieved

by decreasing one or more factors. The dynamic power consumption can be reduced by

minimizing the capacitance of circuit nodes wherever possible. The parasitic capacitance in

CMOS digital circuits can be reduced by using fewer and smaller devices as well as sparser

and shorter interconnection. However, the capacitance of CMOS circuits is determined by the

characteristics of the CMOS technology used to fabricate the circuit, which are outside the

scope of our research. We do not consider the techniques intended to reduce capacitance. The

equation also indicates the power supply voltage has the largest impact on the power

- 12 -

dissipation due to its squared term factor. Unfortunately, lowering power supply voltage

causes speed penalties. A great deal of effort has been expended in recent years on the

development of techniques to utilize a smaller supply voltage while minimizing performance

degradation. Using voltage islands is one way to mitigate such performance degradation by

architectural changes of the circuit [35]. Lowering the power supply voltage is a highly

effective method for a low-power design. Unfortunately, reducing clock frequency decreases

the performance as well as power dissipation. Thus, it might not be expected to meet

performance in case of a given performance requirement and increase power-delay product.

However, the implementation of composite operations such as a sum-of-products can be used

to achieve high throughput while reducing power dissipation by lowering power supply

voltage because they provide internal parallelism. In this dissertation, we apply both the

design sensitivity and power-delay curve [36][37], and compare our designs with separate

recent multipliers. The power consumption also depends on the switching activity of circuits.

Techniques to reduce switching activity are effective because 1) they cover many layers of

design methodologies from the logic and the architectural levels up to the algorithm, and 2)

unnecessary spurious transitions consume in excess of 30% of total energy [38]. Therefore, we

also focus on the minimization of switching activities. In summary, this dissertation focuses

on reducing power supply voltage and switching activity and demonstrating power-delay

optimization.

1.4 Low-Power Multiplier Design

The sum-of-products hardware consists of two multipliers and a single adder. The

multipliers consume much more power than the adders; thus, a low-power multiplier designs

are critical. In this section, we examine a prior work in algorithm, architecture and gate-level

techniques to reduce multiplier power.

- 13 -

There are two main types of multipliers: serial (sequential) and parallel (combinational)

multipliers. We consider only parallel multipliers because of their potential for

high-performance and prevalent use in digital systems. Parallel multipliers consist of three

parts: 1) Partial Products Generators (PPGs), 2) Partial Products Reduction (PPR) and 3) the

Carry-Propagate Adder (CPA) [39][40][41].

At the algorithm level, multiplication algorithms differ in the design of PPG, PPR and CPA

parts. For PPG, radix-2 digit-vector multiplication is the simplest form because the Partial

Products (PPs) are generated by a set of AND gates. To reduce the number of PPs and

consequently reduce the area and delay of PP reduction, a higher radix such as 4, 8 or 16 is

considered [41][42]. A most popular approach is to reduce the standard radix-4 digit set {0, 1,

2, 3} to a signed-digit set {-2. -1. 0, 1, 2} known as Booth recoding. Radix-4 multipliers

require parallel recoders for a tree reduction and multiplexors (MUXs) to form PPs. A potential

disadvantage is that they may use long wires and high fan-out required for implementation. It is

hard to ensure that signals arrive at the same time; thus, PPGs may generate many glitches,

which propagate through the whole multiplier. Higher radix multipliers require sign extension

of the partial products. The effects of sign extension techniques and recoder design on energy

dissipation were analyzed in [43][44]. The number of sign extension bits can be significantly

compressed using the Modified Sign Generate (MSG) algorithm; thus, the number of

unnecessary adders used to compress the sign extension bits can be reduced. Another approach

to minimize the switching activity in the Most Significant Bit (MSB) is to use a sign magnitude

representation [45][46][47]. In the sign magnitude representation, only one bit is allocated for

the sign and the rest for the magnitude. In this case, only one bit toggles when the sign is

changed. The lack of implementation-specific information limits the optimization of power

consumption at the algorithm level. More accurate results can be obtained at the architecture

level once the data path and interconnections are fully defined. There are several approaches at

- 14 -

architecture level. For the PPR step, two alternatives exist [41]: reduction by rows performed by

an array of adders [48], and reduction by columns performed by an array of counters [49]. In

reduction by rows, there are two extreme classes: tree and linear array. The tree structure is a

better solution to construct the high-speed multiplier for large operands because the critical path

delay of the tree array is proportional to the logarithm of the number of bits in the multiplier

[48][49]. Moreover, it has the advantage of lower power dissipation. However, its physical

design is rather complicated, due to its complex interconnections. The linear array multiplier

has a regular structure and a local interconnection. This translates into a small and dense layout

in actual VLSI implementation. However, it cannot achieve high performance because the delay

of a linear array is linearly proportional to the operand precision size. Also, this multiplier

consumes more power since unbalanced paths exist [50]. However, power and delay can be

reduced by using a split array structure [51]. Compared to a non-split Left-to-Right (LR) array

multiplier, a 2-level split LR array multiplier consumes approximately 20% less power and has

a 15% delay with similar area. Parallelism and pipelining are main techniques to achieve a

higher operating frequency at a given supply voltage or, alternatively, a lower supply voltage for

a desired throughput [12][52]. Such properties come at the expense of a large area. To exploit

parallelism with a scaled power supply voltage, the clustering/partitioning technique was

proposed in [53][54]. The cluster width is defined as the distance between the first and the last

nonzero bits. Ignoring the positions outside the cluster and performing multiplication with a

collection of smaller multipliers in parallel with scaled supply voltages while maintaining given

throughput can achieve significant power savings. The scheme to use an ensemble of

multipliers with different widths was also proposed in [55]. Only one multiplier is adaptively

enabled according to input precision. The power aware multipliers allow the users to select the

operational policy: for example, users can select between higher quality and longer battery life.

Despite flexibility, the major drawback is the large area overhead. To reduce switching

activities, a dynamic range determination unit was proposed in [56][57][58]. Before

- 15 -

computation, the input operand data with the smaller range is used as a recoded multiplier, so

the probability of PPs being zero can be increased. The pipelining also reduces the power

dissipation [52]. Compared to non-pipelined schemes, the pipelined technique can achieve a

higher operating frequency at a given supply voltage or, alternatively, a lower supply voltage for

a desired throughput. These low-power schemes for parallel multipliers, however, have larger

areas.

At gate level, a number of different techniques such as signal gating and signal bypassing

have been proposed. Gate level techniques are more efficient than other techniques because

signal gating and bypassing cannot be used at architecture level. The 2-Dimensional (2D)

signal gating techniques can achieve power savings for low-precision input data with large

dynamic range [31][59][60]. Using a typically large fraction of zero and small valued input, a

signal gating approach can achieve power savings by deactivating slices. Compared to previous

work, a 2D signal gating reduces the power dissipation by up to 35% [60]. The multiplier

divided into several slices detects parts of operands with zero values. Low-power sign extension

schemes and self-timed design with bypassing logic for zero PPs in radix-4 multipliers have

been proposed in [17]. Another technique is bypassing, which disables the operations in some

rows (or columns) [61][62][63]. If the bits of a multiplier (or multiplicand) are zero, the

multiplier need not perform the summation of zero PPs, and thus can bypass inputs to outputs.

This can save power dissipation with little area penalty. Experimental results show that a

bypassing scheme saves 10% of power with 20% area increase [63]. The other technique is

signal balancing [24][64][65]. The imbalance of signal delays is reduced by inserting auxiliary

logic such as latches and buffers [65].

- 16 -

1.5 Research Approach

The research approach followed in this dissertation is briefly described next. Our research

goal is to develop a sum-of-products design that allows the optimization of power dissipation

and performance and allows flexible tradeoffs in practical implementations.

First, we identify important factors that affect dynamic power consumption at the algorithm,

architecture and gate levels. These factors include internal architectures of a sum-of-products

and external data characteristics. Specially, we consider 1) how to control hardware resources to

match external data characteristics and 2) how to optimize the internal algorithm and

architecture of the sum-of-products unit.

Second, the primary objective is power optimization with reduced area and delay overhead.

By using new algorithms or architectures, it is even possible to achieve both power reduction

and area/delay reduction. We consider the optimal points between power and delay, and provide

comparisons with other designs. This dissertation shows our approaches are superior to other

recent designs.

Third, we consider an approximate design with tunable error characteristics for round-off

error-tolerant applications as well as an accurate design for error-intolerant applications.

Recent mobile systems can tolerate a reasonable amount of computation errors. Thus, we

consider the design to allow for error-tolerant operation as well as for correct operation for

error-intolerant applications. After conducting statistical error analysis, we design our modules

using error-tolerant techniques.

Fourth, we implement the proposed and related previous approaches in technology

independent structural Verilog descriptions. The designs are verified using Cadence

NC-Verilog and synthesized using the Synopsys Design Compiler and Power Compiler in a

Samsung 65 nanometer CMOS standard cell low-power library. Placement and routing process

- 17 -

is performed to obtain more precise results using Synopsys IC Compiler. Interconnect

parameters are extracted and back-annotated into Synopsys for more precise delay and power

calculation. Delay is obtained from Synopsys PrimeTime, and power is obtained from the

Samsung in-house tool CubicWare. Experimental results with comparisons of different

schemes are finally presented and analyzed.

1.6 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 presents optimization techniques of

reduction structure for array. To reduce power dissipation without performance degradation

compared to recent multipliers, structure optimization techniques for PP reduction in LR array

multipliers are used here. These techniques include [4:2] adder for PP reduction, 4-level

Upper/Lower (UL) split structure and voltage islands. Experiment results show that both power

and delay are improved considerably with these techniques.

Chapter 3 proposes a high-performance and low-power CPA. This chapter addresses the

problem of adding four carry-save vectors (each two carry-save vectors of two arrays). To

improve the speed, reduction structure optimization techniques (see Chapter 2) are combined to

develop a high-performance lower-power sum-of-products unit. We present a specific design to

match arrival time profiles generated by two arrays, and propose a high-performance and

low-power final CPA. Experiments indicate that the sum-of-products with the proposed CPA

has less area and power than optimized structures with a conventional fast CPA while keeping

the same delay.

Chapter 4 proposes a new arithmetic architecture model for signal processing applications

and develops a scheme to reduce power dissipation of a sum-of-products unit by utilizing a

parallel organization. This proposed design is compared with an existing high-performance

- 18 -

multiplier and the ARM multiplier. With a proposed sum-of-products design, the effects of a

parallel organization versus a solution with a single multiplier are experimentally investigated.

The direct implementation of the sum-of-products increases power dissipation and latency

because the multipliers are the main cause of power dissipation and the adder contributes

significantly to the overall delay in a sum-of-products unit. We address these components in

Chapter 2 and Chapter 3, respectively.

Chapter 5 proposes the design for a sum-of-products unit that supports multiplication,

multiply-add, square, sum-of-squares and add-multiply operations based on an input control

signal. Most DSPs and GPUs include separate dedicated arithmetic units for supporting these

arithmetic operations. Such an implementation is less suitable for these chips, in which the

frequency of arithmetic operations is application dependent. Thus, we focus on developing the

sum-of-products unit capable of supporting multiple arithmetic operations using essentially the

same hardware. Compared to a conventional sum-of-products, the proposed multi-functional

unit has a modest increase in power, area and delay, but allows several multiplication-related

arithmetic computations to be performed on the same hardware.

Chapter 6 presents an approximate and Single Instruction Multiple Data (SIMD)

sum-of-products unit capable of supporting several arithmetic operations with multiple

precisions. To further reduce power dissipation in a sum-of-products with large-dynamic-range

input data, multiple-precision and SIMD and approximate operation techniques are proposed.

This unit can perform multiple-precision sum-of-products and multiplication for SIMD,

approximate and accurate versions using essentially the same hardware as a sum-of-products

with only a small increase in delay compared to a conventional sum-of-products. This technique

does not change the basic structure of a sum-of-products. Instead, the fundamental components

-multipliers and adders- are partitioned and ancillary logic gates are inserted along the gating

- 19 -

boundaries. For input data with a large dynamic range, significant power reduction can be

achieved in the experiments.

Chapter 7 summarizes the contributions of this research, discusses conclusions and

proposes future directions.

Finally, Appendix A gives a detailed description of the design and experimental

methodologies used in our research, and Appendix B defines abbreviations.

- 20 -

Chapter 2 Power Optimization of an Array

Multiplier

In this dissertation, we propose a new design for a sum-of-products unit suitable for signal

processing applications and present an approach to reducing power dissipation in the design of

sum-of-products operation by utilizing two multiplier arrays and CPA. The optimization of the

PPR array and the final CPAs is necessary because they are core components. Chapter 2 and

Chapter 3 present optimization techniques for the PPR array and the CPA, respectively.

Chapter 4 experimentally investigates the effects of a parallel organization with the optimized

multiplier array and CPA versus a solution with a single multiplier.

This chapter considers how to optimize the core component, a multiplier for a low-power

design. Our goal is to reduce the power consumption without significant increase in the latency

and the complexities of multipliers. We present different methods for the multiplier power

savings. The following structure optimization techniques are considered: radix-4 recoding

scheme, split structure, [4:2] adder and voltage islands. These techniques reduce the power of

multiplier arrays significantly without large delay, area overhead and increase in design

complexity. When exploring these power optimization techniques, we consider only LR array

multipliers with the final CPA. The previous studies demonstrate that LR array multipliers

have the potential of saving power and delay, because glitches in LR array multipliers are

fewer than in the conventional RL array multipliers, especially for data with a large dynamic

range. We will consider the delay optimized final CPA in Chapter 3 on a high-performance

low-power sum-of-products. For simplicity, we consider a 32 × 32-bit multiplier. All of these

methods can be easily extended to deal with other types of fixed-point operands.

- 21 -

2.1 Introduction

To meet the application's performance requirements, the parallel multipliers are commonly

used in high-performance signal processing applications [42][48][49][66]. The parallel

multipliers require a large amount of logic, but can compute a product much more quickly than

the serial method of shifting and adding that was typical of earlier computers. The parallel

multipliers consist of three main computational blocks: a PPG, a PPR array and a CPA. The first

stage is the generation of the PPs. The simplest way of PP generation is that the multiplicand

and the multiplier are multiplied bit by bit to generate the PPs, and implemented using two-input

AND gates. The advanced approach for high-speed is the radix-4 algorithm, which has been

used to reduce the number of PPs at the expense of more complex radix-4 recoders and PPG

circuitry [42]. The next stage is the PP reduction. In this stage, two-bit vectors are added up

repeatedly until bit vectors (carry, sum) are obtained. Two reduction approaches are common in

current implementations: trees and linear arrays. The tree structure is the best solution to

construct the high-speed multiplier for large operands because critical path delays are

proportional to the logarithm of the number of bits in the multiplier [48][49]. It adds the PPs in

parallel using redundant adders. Moreover, the tree structure has a low probability of

occurrence of glitches because most inputs to Full Adders (FAs) at each stage are naturally

synchronized. The linear array structure, however, has a high probability of occurrence of

spurious transitions because all FAs start computation at the same time without waiting for the

propagation of sum and carry signals from the previous stage [24]. Most input signals of the

adder in the tree structure arrive simultaneously; hence a tree structure includes inherently more

balanced delay paths in a PPR module. However, its physical design is rather complicated, due

to its complex interconnections; thus, the tree structure occupies more area than a corresponding

array structure. Because of its high wiring density, its area increases. Specifically, this problem

becomes critical in deep sub-micron designs. In contrast, the array structure has a regular and

- 22 -

local interconnection in the reduction array. This regularity translates into a small and dense

layout in VLSI implementation. Moreover, as the interconnection becomes critical in deep

sub-micron designs, an architecture with regular and local interconnection is highly desirable.

However, the array structure has an architectural disadvantage in terms of power dissipation. It

has more unbalanced delay paths in a PPR module and thus introduces many glitches [67][89].

Large latency and high-power dissipation limit its use in applications with large size operands.

Among three main components, the PPR module determines the overall multiplier power.

The effect of the radix-4 recoder on the overall power dissipation is not obvious because it is

additionally implemented and introduces a large number of spurious transitions, while a large

amount of arrays implemented can be reduced. For accurate results, we first implemented two

types of 32 × 32-bit multipliers: trees and arrays with/without the radix-4 recoder. Power has

been measured using only random test data. The results are shown in Table 2.1. The power

dissipation introduced by the PPR module is about 60% of the total power dissipation in parallel

multipliers; hence, power savings in the PPR modules will result in major enhancement of the

power reduction of the parallel multiplier. The power consumption of the PPG circuitry and the

radix-4 recoding logic are also critical. Although they consume less than 20% of the total power

dissipation, these modules affect the power dissipation in subsequent PPR and CPA

significantly. They are the first stage on the long path in parallel multipliers; hence, they

introduce extra unbalanced signal propagation, due to the additional delay on the path from

operand to the product. In this chapter, we focus on reducing the power of the PPG and PPR

parts.

- 23 -

TABLE 2.1: POWER DISTRIBUTION IN A PARALLEL MULTIPLIER

(A) POWER DISSIPATION OF TREE MULTIPLIER COMPONENTS

Components Power Distribution (%)

PPG, Radix-4 recoder 18.68

PPR Tree (Wallace, [3:2]Adder) 58.47

CPA (Carry-Select Adder) 22.85

(B) POWER DISSIPATION OF ARRAY MULTIPLIER COMPONENTS

Components Power Distribution (%)

PPG (Radix-2) 4.54

PPR Array ([4:2]Adder) 68.88

CPA (Carry-Select Adder) 26.58

2.2 Related Work

Various approaches have been proposed to reduce the power consumption of multipliers

from the algorithm level to the gate level. Recently, LR array multipliers have been proposed

and developed. LR array multiplication provides a competitive alternative to the conventional

Right-to-Left (RL) array multiplication as LR computation has the potential of saving power

and delay. It was discovered that glitches in LR computation are fewer than in the conventional

RL computation, especially for data with a large dynamic range. In [68], the power consumption

in the LR PPR array for radix-4 recoded multiplication is studied in detail for DSP applications.

A low-power LR array multiplier without final CPA is designed using strategically placed (3,2),

(5,3) and (7,4) counters [69] and the modified on-the-fly converter [70]. An asynchronous array

multiplier with split RL upper array and LR lower array is proposed to make the computation

time faster with relatively lower power consumption [32]. The previous studies demonstrate

- 24 -

that the LR linear array multipliers that integrate an array splitting technique are better than tree

multipliers in terms of power while keeping similar delay and area for up to 32 bits [51][87][88].

Therefore, we focus on developing a multiplier based on the split LR array structure.

2.3 The Left-to-Right Array Multiplier

In conventional RL array multipliers, the PPs are added sequentially from the rightmost

multiplier bit. In contrast, in LR array multipliers, the PPs are added in series starting from bn-1A,

as shown in Figure 2.1 [71]. Of the two designs, LR array multipliers have the potential of

saving power and delay because the carry signals propagate through fewer stages, which

reduces the power consumption in the Most Significant (MS) region. LR array multipliers are

superior for data with large range because PPs corresponding to sign bits with low switching

activities are located in the upper region of the array [72]. Figure 2.2 shows the implementation

of an 8 × 8 LR array multiplier [72]. The black dots correspond to the bit matrix in Figure 2.1,

obtained with two-input AND gates. Each "3" symbol is a FA and each "2" symbol is a Half

Adder (HA). The numbers associated with wires are signal arrival times assuming a unit delay

model. For theoretical analysis, the delay of a 2-input XOR gate, TXOR2, is used as the base unit

delay. The brown cells on the left are used to add three bits each column from the array into two

bits. The gray cells in the last row comprise a Carry-Ripple Adder (CRA) which generates the

Least Significant (LS) half of the final product and carry-in of the final CPA. There is no delay

penalty due to the use of CRA, as the arrival times of these carry and sum bits match the

computation direction and speed of the CRA. The final CPA generates the MS half of the final

product. Using a fast CPA, final addition is conducted, and thus the delay can be reduced.

- 25 -

2.4 Structure Optimization

Several power reduction techniques have been originally proposed for RL multiplication.

Recently, these low-power techniques which followed the tradition in RL multiplication have

also been proposed for LR array multiplication. It was obvious that the use of these techniques

in a LR array multiplier was also efficient in power [51][72]. However, it is unknown if there are

other better candidates from the perspective of low power. Detailed studies are desirable to

explore the potential advantages of LR array multipliers. In this section, we present several

structure optimization techniques for low-power LR array multipliers.

- 26 -

FIGURE 2.1: BIT MATRIX FOR LR MULTIPLICATION EXAMPLE (RADIX-2, N = 8)

- 27 -

FIGURE 2.2: LR ARRAY MULTIPLIER BASED ON A [3:2] ADDER (RADIX-2, N = 8)

(ADAPTED FROM [72])

- 28 -

2.4.1 Partial Product Generation with Radix-4 Recoding

We present here several different methods for generating PPs. The simplest method to

produce n PPs is to use two-input AND gates, where n is the length of the input operands.

However, another recoding scheme introduced by Booth [42] reduces the number of PPs.

Among several Booth algorithms, radix-4 recoder with digit set {-2, -1, 0, 1, 2} and radix-8

recoder with digit set {-4, -3, -2, -1, 0, 1, 2, 3, 4} are commonly used in parallel multipliers.

Radix-4 and radix-8 algorithms generate n/2 and n/3 PPs, respectively. Intuitively, the

radix-4 and radix-8 recoding scheme may reduce the power consumption, hardware cost and

improve performance because the amount of power, area and delay depends on the number of

PPs to be added. Specifically, if the number of PPs is reduced in the array multiplier, glitches

can be significantly reduced because the lower portion is polluted by frequent switches in the

upper portion. However, the PP reduction is obtained at the expense of the extra recoding logic

and a more complex PPG circuitry. Moreover, radix-4 (or radix-8) recoding and PPG modules

are the first stage on the long path in multipliers, and thus they introduce extra unbalanced signal

propagation due to the additional delay on the path from operand to the product. Therefore,

radix-4 (or radix-8) recoding and PPG modules affect the power dissipation in subsequent PPR

array and CPA significantly, even though they consume only a small portion of the total power.

We want to determine which recoding method is efficient for a low-power multiplier. We

first study the characteristics of the most common algorithms: radix-4 and radix-8 algorithms. In

the radix-4 recoding, only the multiples +1/–1 and +2/–2 of the multiplicand will be required, all

of which are efficiently generated through simple shifts and negation. This simple requirement

to generate PPs leads to significant delay savings. On the other hand, the radix-8 recoding

scheme can further reduce the number of PPs, but requires a time-consuming extra addition to

generate the +3/–3 of the multiplicand. This requirement leads to a large delay penalty, on the

order of 15% ~ 20%, as compared with a radix-4 recoding . The extra addition stage of the

- 29 -

radix-8 recoder introduces more unbalanced signals. Specifically, as a recoder and PPG

circuitry are the first stage on the long path, glitches are significantly increased as signals

propagate through the path. This is a significantly negative factor for power and delay.

Therefore, we will apply the radix-4 modified Booth algorithm.

2.4.2 The [4:2] Adder for PP Reduction

A [4:2] adder has been widely used in parallel multipliers. Figure 2.3 illustrates [4:2] adder

structure. It has the same gate complexity as two cascaded [3:2] adders, but is faster than its

counterpart because it has 3 × TXOR2 delay while each single [3:2] adder has 2 × TXOR2 delay.

Thus, by using the [4:2] adder, the PPR delay is reduced by about 25% without area penalties.

The delay reduction is useful for power savings as less switching activities can be generated

when signals propagate fewer stages. Moreover, compared to two cascaded [3:2] adders, a [4:2]

adder has a more balanced structure and regular interconnection. It reduces the physical

complexity. At gate level, the area of the [4:2] adder is very close to that of the [3:2] adder, but

will become smaller after placement and routing, due to regular structures.

Figure 2.4 illustrates an 8 × 8-bit LR array reduction using a [4:2] adder. Dark dots are PP

bits. Gray dots are carry/sum vectors from adders. Figure 2.5 shows an 8 × 8-bit LR array

multiplier using a [4:2] adder. Blue rectangles are [4:2] adders, and each "+" symbol is an inner

FA of the [4:2] adder. The first [4:2] adder row accepts four PPs and generates two carry-save

vectors. Each subsequent [4:2] adder row accepts two previous carry-save vectors and two new

PPs, and then generates two current carry-save vectors. In a LR array multiplier using a [4:2]

adder, the CRA is no longer suitable to add the right half carry/sum vectors from the reduction

array because the vector bits arrive faster than the CRA computation. To avoid becoming the

critical path, CRA should be replaced by a faster CPA. For vectors from the left part of the

reduction array, the brown cells on the left which comprise adders are still needed because about

- 30 -

half of the cells on the left have three bits. The previous research demonstrated that a 32 ×

32-bit LR linear array multipliers using a [4:2] adder are better than using a [3:2] adder in terms

of power and delay [51]; thus, we will utilize a [4:2] adder here.

FIGURE 2.3: [4:2] ADDER STRUCTURE

FIGURE 2.4: LR ARRAY REDUCTION USING [4:2] ADDER (RADIX-2, N = 8)

- 31 -

FIGURE 2.5: LR ARRAY MULTIPLIER BASED ON A [4:2] ADDER (RADIX-2, N = 8)

- 32 -

2.4.3 The Split Array: Even/Odd and Upper/Lower

The main reason for large power consumption in an array multiplier is unbalanced signal

arrival change in the adders. Unbalanced arrival of the signals at the adder is just a

consequence of the above. In any case, adder is not the main reason for large power

consumption. All FAs in array start computing at the same time without waiting for the

propagation of sum and carry signals from the previous stage. This results in many glitches

and consumes large power. Carry and sum inputs arrive at different times; thus, this structure

introduces a large number of glitches. Specifically, the lower rows consume much more power

than the upper rows in the PPR array because glitches cause a snow ball effect as signals

propagate through the array [24]. Therefore, if the length of the array could be reduced, there

would be power savings. The way to reduce the length of the array is to split the PPR array into

several parts and reduce each part in parallel. The final vectors from each part are reduced to

two vectors using a [4:2] adder. The previous studies have mainly focused on developing

2-level split array designs. These techniques split the PPR array into two parts with each part

having half as many rows. Potentially, there would be greater power and delay savings if each

part were split further because a shorter length of array reduces the number of glitch transitions.

However, it is still unknown how much would be gained by further splitting. Thus, theoretical

analysis and experimental results are desirable in order to explore the potential advantages of

multi-level split array design. Considering a 32 × 32-bit multiplier, we predict that a 4-level split

array structure will be a good example. In the case of 8-level splitting, each part has only one

row. It is obvious we avoid further splitting here. There are two types of split array structures:

Even/Odd (EO) and UL structures. In the EO split array structure, the array is broken into two

parts: even rows in one part and odd rows in another part, as shown in Figure 2.6(a) [74]. The

other possibility is to separate the array into upper and lower parts, as shown in Figure 2.6(b).

Among two existing split structures, the 2-level UL split array multiplier presents the less power

- 33 -

consumption result compared to its 2-level EO counterpart [72]. Furthermore, the UL split

structure allows simpler interconnection; thus, the physical regularity of array multipliers will

also be maintained by interleaved placement and routing. It will still be a good choice for 4-level

array splitting. Thus, we will use the UL structure for a 4-level array structure here. All designs

analyzed here assume 32-bit integer operands and a [4:2] adder are used in all multiplier designs.

A [4:2] adder has the same gate complexity as two cascaded [3:2] adders, and it has 3 × TXOR2

delay.The estimates do not include buffers.

The total cell area and delay of the baseline radix-2 non-split array structure is estimated as

Area = 480 × A[4:2]ADDER + ACPA

Delay = 45 × TXOR2 +TCPA
(2-1)

In a 32 × 32 radix-2 non-split array structure, a linear array has 30 rows because the first

adder row accepts three PPs, and subsequent adder row accepts one PP. This array has 15 [4:2]

adder, and each [4:2] adder has 3 × TXOR2 delay. We estimate the cell area and delay of radix-2

2-level and 4-level UL split array structures based on Figure 2.7.

The total cell area and delay of the radix-2 2-level UL split array structure is also estimated

as

- 34 -

Area = 524 × A[4:2]ADDER + ACPA

Delay = 24 × TXOR2 +TCPA
(2-2)

In a 32 × 32 radix-2 2-level UL split array structure, each array has 14 rows because the first

adder row accepts three PPs and subsequent adder row accepts one PP. The total delay is

calculated by 7 × [4:2] adder delay + 1 × additional [4:2] delay.

Compared to the radix-2 non-split array structure, the delay of the radix-2 2-level UL split

array structure (LR_42_Split2) is reduced about 40% with about 10% area penalties, due to a

shorter critical path in the PPR array and extra summation stage.

The total cell area and delay of the radix-2 4-level UL split array structure (LR_42_Split4) is

also estimated as

Area = 576 × A[4:2]ADDER + ACPA

Delay = 16 × TXOR2 +TCPA
(2-3)

Compared with a 2-level, a 4-level UL split array structure has two main advantages. Each

part has only 8 PPs instead of 16. It reduces glitches significantly, due to the shorter array length.

Also, 4-level splitting reduces the critical path delay. The critical path of one part of the PPR

array in a LR_42_Split4 is about 10 × TXOR2 due to two [4:2] and two CRA stages, while that in

a LR_42_Split2 is 21 × TXOR2 due to seven [4:2] stages. This delay reduction is positive for

power savings, as a lower supply voltage is used in conjunction with lower clock frequencies to

- 35 -

minimize power consumption. On the other hand, a LR_42_Split4 has one more [4:2] addition

stage. This addition leads to only an additional 3 × TXOR2.

The other way to reduce the length of the PPR array is to use the radix-4 Booth recoding

scheme. It can decrease the power dissipation of a multiplier by reducing the number of PPs

generated. The total cell area and delay of the radix-4 2-level UL split array structure

(LR_42_Split2_ Radix4) is estimated as

Area = 442 × A[4:2]ADDER + ACPA

Delay = 14 × TXOR2 +TCPA
(2-4)

Additionally, consider the power dissipation of each structure. Based on the equation for

dynamic power dissipation in CMOS digital circuits in Chapter 1, reduced dynamic power can

be achieved by decreasing one or more of these factors: the load capacitance, the power supply

voltage, the clock frequency and the switching activity. We assume that all designs were

executed with the same supply voltages. Dynamic power is proportional to the amount of

hardware used to implement the design. Furthermore, the delay reduction is effective for power

savings. With regard to switching activities, a 4-level split design eliminates significant glitches,

but the radix-4 Booth recoder may introduce a lot of glitches to subsequent modules. All things

considered, the radix-2 4-level split or the radix-4 2-level split structures will be the best

power-saving structures.

A 16 × 16-bit 2-level and 4-level UL LR array reduction using a [4:2] adder is illustrated in

Figure 2.7. Dark dots are PPs. Gold, gray and pink dots are carry and sum vectors from [4:2]

adders. A portion of a LR_42_Split4 for uppermost PPs is illustrated in Figure 2.8. A high-level

description of a 4-level UL LR array reduction scheme is given in Figure 2.9.

- 36 -

(A) EO SPLIT ARRAY STRUCTURE (ADAPTED FROM [24])

(B) UL SPLIT ARRAY STRUCTURE (ADAPTED FROM [72])

FIGURE 2.6: SPLIT ARRAY MULTIPLIER

- 37 -

(A) 2-LEVEL SPLIT STRUCTURE (ADAPTED FROM [51])

(B) 4-LEVEL SPLIT STRUCTURE

FIGURE 2.7: UL LR ARRAY REDUCTION USING A [4:2] ADDER (RADIX-2, N = 16)

- 38 -

FIGURE 2.8: PORTION OF A 4-LEVEL UL LR ARRAY STRUCTURE FOR UPPERMOST PPS

(RADIX-2, N = 32)

- 39 -

FIGURE 2.9: HIGH-LEVEL 4-LEVEL UL SPLIT LR ARRAY REDUCTION ALGORITHM

- 40 -

2.4.4 Voltage Islands

The dynamic power equation indicates that the power supply voltage has the largest impact

on the dynamic power dissipation due to its squared term factor. Unfortunately, the lowering

power supply voltage causes speed penalties. A great deal of effort has been expended in recent

years to develop techniques to utilize the low power supply voltage while minimizing the

performance degradation. Using voltage islands is one way to mitigate such performance

degradation by architectural changes of the circuit [35].

The problem of constructing the final adder when all input bits arrive at the same time has

been well studied [75][76]. However, starting with the input bits for Least Significant Bit (LSB),

the delays first increase with the bit numbers and then decrease, as can be seen from Figure 2.10.

This non-uniform arrival of inputs to the adder produced by the PPR array has been used in

reducing the power of the multiplier by decomposing it into several parts.

We investigate the non-uniform arrival time profiles of the array multiplier to achieve power

savings with minimal performance degradation. Specifically, we apply the voltage islands

technique to the regions of non-uniform input generated by the PPR array [77]. That is, adders

are partitioned into blocks that operate with different power supply voltages. A voltage island

occupies a contiguous physical space and operates at one supply voltage. Such voltage island

techniques are applied to the array multiplier so that the units of the multiplier get different

levels of voltage support, as profiled by their performance requirements. The slowest region of

the array multiplier is the middle region at which the arrival time is large and constant. It

requires a higher supply voltage level in order to maximize the element’s performance. On the

other hand, the other regions may run at a lower level of the supply voltage because they are not

on the critical path. These regions are 1) the LS part at which arrival time increases from the

LSB toward the middle region and 2) the MS part where arrival time decreases from the middle

- 41 -

region toward the MSB. An example of a partition into Low-High-Low islands is shown in

Figure 2.11.

FIGURE 2.10: THE EXAMPLE OF NON-UNIFORM ARRIVAL TIME FOR A 32 × 32

MULTIPLIER

FIGURE 2.11: PARTITION OF THE PPR ARRAY FOR VOLTAGE ISLANDS

- 42 -

In order to get more uniform signal arrival profiles, the PPR array need to be partitioned into

more blocks that operate with different power supply voltages. The signal arrival profiles can be

finely controlled by more supply voltages. However, the voltage level shifters are needed

whenever circuits convert a source of the supply voltage from one voltage to another; thus, more

uniform signal arrival profiles might increase area and power dissipation due to additional

voltage level shifters.

2.5 Experimental Evaluation

We have implemented 32 × 32-bit LR array multipliers with different structure optimization

techniques. The design and simulation methodologies are described in Appendix B. As our

major focus is on the PP reduction step, the final CPAs presented in this chapter are not

optimized for different input arrival scenarios. Fortunately, the CPAs are the final modules in all

multipliers, and the results on PPG and PPR array modules are not affected. Therefore, the

non-optimized final CPAs will not significantly affect the relative difference of actual measured

values, although they may affect absolute power consumption values. A Carry Skip Adder

(CSK) is used for the final CPA in all designs. These adders have good topological regularity

and layout simplicity which are considered a good compromise in terms of area and

performance. This adder presented in this chapter is not in the final design; thus, we will exploit

fast adder design when inputs to the adder will arrive simultaneously in Chapter 3.

2.5.1 Results for Split Array Multipliers

Five schemes with different structure optimization techniques are implemented. For radix-2

multipliers, four schemes are implemented: 1) a LR using the default [3:2] adder (LR_32), 2) a

LR using a [4:2] adder (LR_42), 3) a 2-level UL split array multiplier using a [4:2] adder

- 43 -

(LR_42_Split2) and 4) a 4-level UL split array multiplier using a [4:2] adder (LR_42_Split4).

For radix-4 array multipliers, only a radix-4 modified Booth 2-level UL split array multiplier

using a [4:2] adder (LR_42_Split2_ Radix4) is implemented. Different from the radix-2 LR

array multiplier, radix-4 4-level splitting will not be used here because each part accepts 4 PPs

and only 1 row using a [4:2] adder in a 32 × 32-bit linear array multiplier, but it can easily be

used if a longer fixed-point result is needed.

The comparison results of power, delay and area estimates are shown in Table 2.2. The

smallest value of each characteristic is highlighted in boldface. The baseline structure is a

LR_32. Compared to a LR_32, a LR_42 achieves 14% less power, 18% less delay and 7% less

area, as we expected. This is because the [4:2] adder has a shorter critical path and more regular

structures than the [3:2] adder. For the UL split structure, a LR_42_Split2 dissipates 9% less

power and 35% less delay with 5% area increase compared to a LR_42. The LR_42_Split4

achieves 10% less power and 26% less delay, but has a 7% area increase compared to the

LR_42_Split2. This result well matches our theoretical analysis in Section 2.4.3. The power

savings are mainly because the signal propagation paths are shorter. This result implies that we

can achieve more power reduction with a slight area increase if each part is split further with

larger operand size. The area increase is due to an additional [4:2] stage. The most interesting

result is from the LR_42_Split4 which reduces the power by 12% compared to a

LR_42_Split2_Radix4. The delay and area of a LR_42_Split4 are close to those of a

LR_42_Split2_Radix4. However, the experimental results indicate that the radix-4 Booth

recoder has a negative effect on power dissipation, as it is the first stage on the long path in

multipliers and thus provides subsequent modules a number of glitches. The LR_42_Split4 has

a similar area as the LR_42_Split2_Radix4. These results imply that the increased area in the

Booth recoder is roughly the same as the reduced area in the PPR array. Among all schemes, a

LR_42_Split4 presents the lowest power consumption and power-delay product results under

- 44 -

experiment. These results indicate that a multi-level split structure is a useful power-saving

technique in LR array multipliers.

TABLE 2.2: POWER, DELAY AND AREA FOR LR ARRAY MULTIPLIERS

Multiplier Power (μW) Delay (ns) Area (μm
2
)

Power-Delay

Product (pJ)

LR_32 6898 1.00 11.20 1.00 13501 1.00 77.26 1.00

LR_42 5932 0.86 9.18 0.82 12559 0.93 54.46 0.70

LR_42_Split2 5381 0.78 6.05 0.54 13231 0.98 32.55 0.42

LR_42_Split4 4829 0.70 4.43 0.40 14177 1.05 21.39 0.27

LR_42_Split2_Radix4 5450 0.79 4.38 0.39 13772 1.02 23.87 0.31

2.5.2 Results for Voltage Islands Technique

We implemented conventional and the proposed LR linear array multipliers using Verilog

and a top-down methodology. The proposed designs were synthesized with two supply voltages

1.20V, 1.32V and three supply voltages 1.08V, 1.20V, 1.32V supported by technology. The

voltage level shifters are needed whenever circuits convert a source of the supply voltage from

one voltage to another. In recent years, the voltage level shifters can be automatically inserted to

support voltage islands by the Synopsys Power Compiler. Figure 2.12 shows the non-uniform

arrival time profiles generated by the PPR array with high supply voltage and voltage islands in

a 32 × 32-bit multiplier. To partition the PPR array, we analyzed the slopes of arrival time of

signals. For the LS region, the delay between two consecutive bits starting at the LSB toward

the MSB is linearly increasing. For the middle region, delay is constant and large. For the MS

region, the slope of the signal delay profile is negative.

- 45 -

Table 2.3 shows the simulation results for partition in three regions of multipliers. The LS

and MS regions may not require higher supply voltage; thus, the power can be significantly

reduced in the PPR array. Table 2.4 summarizes the results for the proposed and conventional

multipliers. This result includes the power, delay and area of additional implementation for

voltage islands. Compared to conventional multipliers, the proposed multipliers dissipate

between 20% and 30% less power with between 8% and 11% increase in delay. Furthermore,

our designs are better than conventional multipliers in terms of power-delay product.

Unfortunately, the voltage islands technique does not match the split array structure, which

has very narrow MS and LS regions compared to non-split array structure, as shown in Figure

2.13. Therefore, in the split array structure, the negative effect due to the extra cost of the power

dissipation of level shifters will be more dominating than the positive effect due to power

reduction in MS and LS regions. Furthermore, as the operand size increases in the split array

multiplier, the relative reduction in power dissipation will decrease because the rate of the

middle region of the PPR array which requires a higher supply voltage level increases. Thus, the

voltage islands technique cannot be applied efficiently to a split array multiplier, but it is still

useful to apply a non-split array multiplier for power reduction. The overall results indicate that

the proposed design approach has a good potential for power savings while maintaining the

multiplier latency.

- 46 -

(A) TWO VOLTAGE LEVELS

(B) THREE VOLTAGE LEVELS

FIGURE 2.12: INPUT ARRIVAL PROFILES OF THE PPR ARRAY WITH HIGH SUPPLY

VOLTAGES AND VOLTAGE ISLANDS IN A 32 × 32-BIT LR ARRAY MULTIPLIER

- 47 -

TABLE 2.3: RESULTS FOR PARTITION

Region
Two Voltage Levels Three Voltage Levels

Characteristics
Bit Rate Bit Rate

LS 0 ~ 27 0.44 0 ~ 8 0.14 Linear increase

Middle 28 ~ 38 0.17 9 ~ 59 0.80 Constant / Large

MS 39 ~ 63 0.39 60 ~ 63 0.06 Rapid decrease

TABLE 2.4: POWER, DELAY AND AREA COMPARISONS OF THE ARRAY IN A NON-SPLIT

LR 32 × 32-BIT MULTIPLIER UTILIZING HIGH SUPPLY VOLTAGE AND VOLTAGE

ISLANDS

Size Multiplier

Power (µW)

Conventional (only 1.32V) 5932 1.30

Voltage Islands (1.20, 1.32V) 4926 1.08

Voltage Islands (1.08, 1.20, 1.32V) 4564 1.00

Delay (ns)

Conventional (only 1.32V) 9.18 1.00

Voltage Islands (1.20, 1.32V) 9.90 1.08

Voltage Islands (1.08, 1.20, 1.32V) 10.19 1.11

Area (μm
2
)

Conventional (only 1.32V) 11881 1.00

Voltage Islands (1.20, 1.32V) 12288 1.03

Voltage Islands (1.08, 1.20, 1.32V) 12355 1.04

Power-Delay

Product (pJ)

Conventional (only 1.32V) 54.46 1.17

Voltage Islands (1.20, 1.32V) 48.77 1.05

Voltage Islands (1.08, 1.20, 1.32V) 46.50 1.00

- 48 -

FIGURE 2.13: ADDER INPUT PROFILES OF THE PPR ARRAY IN A 32 × 32-BIT 4-LEVEL UL

SPLIT LR ARRAY MULTIPLIER

2.6 Summary

In this chapter, we have proposed a multiplier used for a major component of a low-power

sum-of-products in Chapter 4. We have presented several power reduction structure

optimization techniques for radix-2 and radix-4 LR linear array multipliers. These techniques

include a [4:2] adder for PP reduction, a 4-level UL split structure and voltage islands. A

LR_42_Split4 provides a more powerful alternative to the conventional LR_42_Split2 as this

structure has the potential of saving power and delay. Detailed experimental results are given to

compare the power, delay and area characteristics of each 32 × 32-bit LR multiplication scheme.

Among different optimization techniques for LR array multipliers, the 4-level UL split structure

is a primary choice if power is the critical concern. The LR_42_Split4 achieves the least power

consumption in most cases with relatively small delay. When a small area is the main goal, the

simpler LR_42 is a better candidate.

- 49 -

For real-world comparison, we introduce other multipliers used in mobile chips. The ARM

core is used to perform real-time digital signal processing in most mobile systems and the

ARM7TDMI includes an enhanced 32 × 8 single tree multiplier with a radix-4 modified

Booth’s algorithm and supports the 64-bit results multiply and MAC instructions. We cannot

directly compare the power dissipation and delay of two structures with different structure, due

to the difference of features and the problem caused by lack of information. However, the

previous studies demonstrate that a 2-level UL LR array multiplier is less power than tree

multipliers without delay and area overhead with a maximum of 32-bit [51]. In this chapter, we

also find that a 4-level UL split array multiplier using a [4:2] adder has less power consumption

and smaller delay than a 2-level counterpart. Therefore, if we replace a tree multiplier in the

ARM7 core with the proposed multiplier, a modified ARM processor will consume less power

than a conventional one without delay overhead.

In addition, our proposed designs scale well in terms of power reduction and thus use

suitably less power when applied to high precision. It probably would gain a similar power

reduction in 64 × 64-bit or larger precision. The techniques presented in this chapter can also be

applied to other arithmetic units with unbalanced structures.

- 50 -

Chapter 3 Power and Delay Optimization of the

Carry-Propagate Adder

In Chapter 2 we have shown that power reduction could come from array structure

optimizations at the algorithm and architecture levels. In this chapter we address the problem of

adding two carry-save vectors obtained by two PPR arrays. We present a design strategy

specific to arrival time profiles generated by two PPR arrays, and propose the power- and delay-

optimal final CPA. Finally, we show that our design consume less power over another fast

adders with a little delay increase. The proposed adder can achieve performance gains with

small power increase when supply voltage is increased.

3.1 Introduction

The sum-of-products unit can be largely divided into three parts: 1) the PPG, 2) the PPR

array and 3) the [4:2] adder and the CPA. PPs are created in parallel by the PPG, and the PPR

array reduces the number of PPs to be added into two carry-save vectors. The [4:2] adders

reduce 4 bit-vectors to 2 bit-vectors, and the final CPA produces the result. The total

delay is generally determined by the carry-propagate addition, and thus reducing latency in the

final CPA will decrease the total delay of a sum-of-products unit.

We combine structure optimization techniques in Chapter 2 and propose an optimal final

CPA. Many studies have focused on reducing a latency of fast adders [40][41]. In this chapter,

we focus on reduce the power consumption of fast adders. Lower latency can be achieved

using reduced power dissipation when supply voltage is increased. Consequently, we can

reduce a delay of the final CPA.

- 51 -

3.2 Problem and Related Work

In Chapter 2, we have found that the 4-level UL LR split array structure and the array

structure utilizing voltage islands have the least power consumption with relatively small delay.

It is not clear what are good adders and how to design an optimal adder under condition of

signal arrival time generated from the proposed reduction structure. This section addresses these

problems and related research.

3.2.1 Problem

In previous chapter, we have proposed a multiplier array used for a major component of a

low-power sum-of-products. The 4-level UL split array structure with [4:2] adder achieves the

least power consumption. The delay of a 4-level UL split array structure is decreased in the

middle region while maintaining the delays in the LS and MS regions compared to that of a

non-split array structure. Thus, non-uniform input arrival time to the CPA is transformed into

mostly uniform input arrival time. This chapter examines the design of the CPA under the

condition of uniform (but not perfectly constant) input signals arrival.

3.2.2 Related Work

Previous work on the final CPA focused on the hybrid CPA. The hybrid CPA has been

optimized to match the non-uniform input arrival profiles [75][76]. It was obvious that the use

of these techniques in multipliers is an efficient in delay. However, the hybrid adder would not

be efficient for a sum-of-products unit, when we use a 4-level split array structure or a structure

utilizing voltage islands because most input arrival bits to the CPA arrive at the same time.

We consider fast adders under the condition of uniform input signals arrival. One of fast

adders is a Carry-SELect Adder (CSELA). The idea of the CSELA is to compute in parallel

- 52 -

two conditional sums: one for a 0-carry and the other for 1-carry, and then select one sum

when the carry is available. The basic principle is to divide the adder into groups of m-bit and

to compute for each group two conditional sums and carry outs. A generic group in which we

label the bit from 0 to (m-1)-bit is as below.

(c
0

m, S
0
) = ADD (X, Y, c0 = 0)

(c
1

m, S
1
) = ADD (X, Y, c0 = 1)

(3-1)

(3-2)

where, X, Y and S are m-bit vectors

Then, we can select from these two forms when the carry-in of the group is known.

 (cm, S) = (c
0

m, S
0
) if c0 = 0

 (c
1

m, S
1
) if c0 = 1

(3-3)

We use a module that has as input the two m-bit operands and produces two (m+1)-bit

result because two m-bit adders for the same group can share components, as shown in Figure

3.3 [41].

- 53 -

(A) CARRY-SELECT ADDER

(B) CONDITIONAL ADDER

FIGURE 3.1: BLOCK DIAGRAM OF A CARRY-SELECT ADDER (ADAPTED FROM [41])

- 54 -

We can use several types of adders such as CRA, Carry-Lookahead Adder (CLA), the

Conditional-Carry Adder (CCA) in a conditional adder. The basic idea of CLA is to compute

several carries simultaneously. Ideally, all carries can be computed at the same time, but it is

not practical because the implementation has the large number of gates with large number of

inputs for large size [41]. The CLA consists of three computation parts: 1) the computation of

pi, gi and ai, 2) the computation of the carries in the Carry-Lookahead Generator (CLG) and

the computation of sums, as shown in Figure 3.3. In CCA, instead of generating conditional

sums, one can obtain only conditional carries using a simple group design, because the sum

outputs are worthless for the carry selection [78][79]. To reduce the gates, the MUXs for sum

selection are discarded, and only selected carry bits are generated. We know all the carries

once controlling carries are determined. One extra XOR level produces the final sums.

We can use the variable block size of each block. When designing these types of adders, it

is important that delays of groups and carry generation are balanced. The idea of varying block

sizes can further reduce adder delay.

(A) CONDITIONAL ADDER BASED ON CLA4

- 55 -

(B) Carry-Lookahead Adder module (CLA-4)

(C) 4-BIT CLG GENERATOR (CLG-4)

FIGURE 3.2: BLOCK DIAGRAM OF A CARRY-SELECT ADDER BASED ON CLG4

(ADAPTED FROM [41])

- 56 -

FIGURE 3.3: A CONDITIONAL CARRY ADDER (ADAPTED FROM [79])

- 57 -

3.3 Baseline Design

We design here the fast adder under the assumption of uniform arrivals. We focus on power

optimization techniques of fast adders because lower latency of adders can be achieved when

supply voltage is increased. The CSELA is one of the fast adders, but the duplicated adder

results in high power consumption. However, the recent implementations of the CSELA have

been proposed in [81][82][83]. This adder can be implemented by using a single CRA and a

MUX-based add-one circuit instead of another CRA with a carry input. The number of

connections can be also reduced. We can use several adders as a conditional adder of CSELAs.

We first focus on a CRA structure because the input arrival time to the final CPA is not

perfectly constant. In a 4-level UL LR split structure, delay is increased from LSB through

7-bit, and in an array structure with voltage islands technique, delay is increased from LSB

through 8-bit. In the positive slope region, a CRA would be appropriate because this need not

wait for the incoming input from reduction array, while any fast adder would need to wait for

higher bits from PPR arrays. Another structure is to use a CLA structure as a conditional adder

of a CSELA. The CLA has been widely used in CSELA, due to a fast structure. The CLA

calculates several carries simultaneously, and thus reduces the wait time to calculate the result

of the larger bits. However, this has a large number of gates with a large number of inputs and

long interconnection. Thus we consider here only a simple one-level CLA. The other is to use

a CCA as a conditional adder of a CSELA. The CCA is only used for the carry output

selections of every bit and the sum bits can be produced by a CSELA.

3.3.1 Preliminaries

To evaluate the effectiveness of our proposed design, we provide a theoretical analysis and

conduct experiments. The delay and area evaluation methodology considers a XOR and a MUX

- 58 -

to be made up of basic digital logic gates, shown in Figure 3.4. Based on this approach, the

CSELA made up of 2:1 MUXs, HAs, and FAs are evaluated and listed in Table 3.1. The delay

of one basic logic gate such as NOR2, NAND2 is 0.5 × TXOR2, and a MUX21 gate has the same

delay as a XOR2 gate. The area is evaluated by counting the total number of gates required for

module. These delay and area characteristics are true in Samsung 65nm standard cell library.

Numeric suffixes with gates specify the number of input and output. e.g., AND2 gate means

2-input AND gate, and a MUX21 gate means a 2-input MUX gate with a single output. For

theoretical analysis, we assume that 1) basic logic gates such as AND2, OR2, and inverter gates

have the same gate delay and 2) positive logic gates such as AND, OR could be optimized to be

negative logic NAND, NOR without delay and area penalty, and thus there is no difference

between positive and negative logic gates in actual implementation. 3) One additional input for

a given gate increases 50% area and 20% delay, and 4) this delay figures exclude sum buffering

delays, which depend on the particular application. Figure 3.5 shows two popular FA structures.

Figure 3.5(a) is a NAND2-based structure, Figure 3.5(b) and is a MUX-based structure. For

the worst-case delays and area, a MUX-based structure is better. Furthermore, a

NAND2-based structure has complex interconnection. We will focus on a MUX-based

structure here.

- 59 -

NAND2-based structure

Area: (3 × AND2 + OR3 + 2 ×XOR2) = 3.35 × AXOR2

Delay: 2 × TXOR

MUX-based structure

Area: (MUX21 + 2 × XOR2) = 3 × AXOR2

Delay: 2 × TXOR

(A) XOR GATE

(B) 2:1 MUX GATE

FIGURE 3.4: THE IMPLEMENTATION OF XOR AND MUX

- 60 -

TABLE 3.1: DELAY AND AREA COUNT OF THE BASIC BLOCKS OF CSELA

Module Delay Area

XOR2, MUX21 TXOR2 AXOR2

XOR3 1.2 × TXOR2 1.2 × AXOR2

XOR4 1.4 × TXOR2 1.4 × AXOR2

NAND2, NOR2, AND2, OR2 0.5 × TXOR2 0.3 × AXOR2

NAND3, NOR3, AND3, OR3 0.6 × TXOR2 0.45 × AXOR2

NAND4, NOR4, AND4, OR4 0.7 × TXOR2 0.6 × AXOR2

INV 0.3 × TXOR2 0.3 × AXOR2

HA TXOR2 1.3 × AXOR2

FA 2 × TXOR2 3 × AXOR2

(A) NAND2-BASED STRUCTURE

(B) MUX-BASED STRUCTURE

FIGURE 3.5: DESIGNS OF A FA

- 61 -

3.3.2 Basic Schemes and Architecture of the CSELA

In this section we follow the idea of the modified CSELA with an add-one circuit. Previous

studies have mainly focused on area and power optimizations and have not considered well

input signal arrival characteristics. Thus we develop an improved version for the modified

CSELA design for corresponding 4-level UL LR array structure. The structure of the 64-bit

conventional CSELA is shown in Figure 3.6. The numbers within gates () and wires [] specify

gate delay and signal arrival times, respectively, assuming a unit delay model. e.g., a FA

requires 2 unit delays. The delay of the longest path is the sum of all the gate delays. Because

carry-in is known at the beginning of computation, a carry-select block is not needed for the first

group1. The delay evaluation of group2 is shown in Figure 3.7. The one set of an 8-bit CRA

with Cin = 0 has 7 FAs and a 1 HA, and the other set of an 8-bit CRA with Cin = 1 has 7 FAs and

a 1 modified HA, as shown in Figure 3.8. The arrival time of data outputs from a CRA with Cin

= 1 is the same as the arrival time of data output from a CRA with Cin = 0. Based on the

consideration of delay values of Table 3.1, the arrival time of data output (s0(t) = 2 × TXOR ~ s7(t)

= 14 × TXOR) from a CRA with Cin = 0 and a CRA with Cin = 1 is earlier than or equal to the

arrival time of selection input (Cin(t) = 15 × TXOR) of a MUX. Thus, the final sum output from s0

to s7 in group2 is summation (s0(t) ~ s7(t) = 16 × TXOR) of the arrival time of MUX selection

input (Cin(t) = 15 × TXOR) and MUX gate delay (TMUX = 1 × TXOR). In order to avoid waiting for

the data input, we adjust the group size from group3 to group8, and hence the arrival time of

MUX selection input is always greater than or equal to the arrival time of data outputs from

CRAs. The total delay of group3 to group8 is estimated as the sum of the arrival time of MUX

selection input and MUX gate delay.

Based on the gate count of Table 3.1, the area of group2 is determined as follows:

- 62 -

Group 2 → (8-bit CRA with Cin = 0) + (8-bit CRA with Cin = 1) + (18:9 MUX) = 53.6 × AXOR2

8-bit CRA with Cin = 0 → 7 × FA + HA = 22.3 × AXOR2

8-bit CRA with Cin = 1 → 7 × FA + HA = 22.3 × AXOR2

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2

Similarly, the delay and area of the other groups in the conventional CSELA are estimated.

- 63 -

FIGURE 3.6: A CONVENTIONAL CSELA WITH VARIABLE BLOCK SIZE

- 64 -

FIGURE 3.7: DELAY EVALUATION OF CONVENTIONAL CSELA (GROUP2)

- 65 -

FIGURE 3.8: A HALF ADDER AND A MODIFIED HALF ADDER

3.4 The Proposed Design

In this section, we show how to construct the final adder for uniform signal arrival profiles

derived from the proposed array structure.

3.4.1 Modified Schemes and Architecture of the CSELA

To reduce area and power dissipation of a conventional CSELA, the n + 1-bit add-one circuit

is required to replace the n-bit adder with Cin = 1. The Boolean expression of a 4-bit add-one

circuit is shown as below.

s
1

0 = ~ s
0
0

s
1

1 = s
0
1 s

0
0

s
1

2 = s
0
2 (s

0
1 ● s

0
0)

c
1

 = c
0

 (s
0
2 ● s

0
1 ● s

0
0)

- 66 -

As shown in Figure 3.9, a 4-bit add-one circuit can be implemented directly from Boolean

expression.

FIGURE 3.9: THE IMPLEMENTATION OF A 4-BIT ADD-ONE CIRCUIT (ADAPTED FROM

[83])

Figure 3.10 illustrates CSELA operation using an add-one circuit. This module produces two

partial results and the MUX is used to select either an adder with cin = 0 or an add-one circuit

output according to the control signal, cin. In case of the multiplexer the output of the n-bit adder

with cin = 0 is chosen when 0 is asserted at cin and the output of an add-one circuit, which is the

same as the output of an adder with cin = 1 is chosen, with the assertion of 1 at cin.

- 67 -

FIGURE 3.10: BLOCK DIAGRAM OF THE COMPONENTS WITHIN THE PROPOSED CSELA

REQUIRED FOR MUX OPERATION

The structure of the modified CSELA using a CRA and an add-one circuit is shown in

Figure 3.11. This adder has also 8 groups of different size of a pair of CRAs and add-one circuits.

The delay evaluation of group2 is shown in Figure 3.12. The one set of an 8-bit CRA has 7 FAs

and a 1 HA for no carry input, and the other set of a 9-bit add-one circuit has 9 × XOR2, 8 ×

AND2 and 1 × INV gates for carry input. The arrival time of data outputs from an add-one

circuit is 1.5 × TXOR greater than the arrival time of data output from a CRA with cin = 0.

- 68 -

FIGURE 3.11: THE MODIFIED CSELA USING CRA AND AN ADD-ONE CIRCUITWITH

VARIABLE BLOCK SIZE (BLOCK SIZES OF 2−10−10−9−9−8−8−8)

- 69 -

FIGURE 3.12: DELAY EVALUATION OF THE MODIFIED CSELA USING CRA AND AN

ADD-ONE CIRCUIT (GROUP2)

- 70 -

The estimated delay of this adder is evaluated. The arrival time of data output (s
1
0(t) = 1.3 ×

TXOR ~ s
1
6 (t) = 14 × TXOR) from an add-one circuit is earlier than the arrival time of selection

input (cin(t) = 15 × TXOR) of a MUX. Thus, the final sum output from s0 to s6 in group2 is

summation (s0(t) ~ s6(t) = 16) of the arrival time of MUX selection input (cin(t) = 15 × TXOR)

and MUX gate delay (TMUX = 1 × TXOR). However, for the highest sum output (s7) and carry

out (cout) in group2, the arrival time of data outputs from an add-one circuit (s
1
7(t) = 16 × TXOR,

c
1
(t) = 16.5 × TXOR) is later than the arrival time of MUX selection input (cin(t) = 15 × TXOR).

Thus, the delays are the sum (s7(t) = 17 × TXOR, cout(t) = 17.5 × TXOR) of the arrival time of data

outputs from an add-one circuit (s
1
7(t) = 16 × TXOR, c

1
(t) = 16.5 × TXOR) and MUX gate delay

(TMUX = 1 × TXOR). For the remaining groups, the arrival time of MUX selection input is always

greater than the arrival time of data inputs from an add-one circuit. Thus, the delay depends on

the arrival time of MUX selection input and its gate delay.

Based on the gate count of Table 3.1, the total number of gates in group2 is determined as

follows:

Group 2 → (8-bit CRA with Cin= 0) + (9-bit add-one circuit) + (18:9 MUX)= 43 × AXOR2

8-bit CRA with Cin = 0 → 7 × FA + HA = 22.3 × AXOR2

9-bit add-one circuit → 9 × XOR2 + 8 × AND2 + INV = 11.7 × AXOR

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2

Similarly, the delay and area of the other groups are estimated.

- 71 -

As shown in Figure 3.13, in the structure of the modified CSELA using a CCA and an

add-one circuit, the arrival time of data output (s
1
0(t) = 1.3 × TXOR ~ s

1
2(t) = 3.5 × TXOR) from

an add-one circuit is earlier than the arrival time of selection input (cin(t) = 4.3 × TXOR) of a

MUX. Thus, the final sum output from s0 to s2 in group2 is summation (s0(t) ~ s2(t) = 5.3) of

the arrival time of MUX selection input (cin(t) = 4.3 × TXOR) and MUX gate delay (TMUX = 1 ×

TXOR). However, for the higher sum output (from s3 to s7) and carry out (cout) in group2, the

arrival time of data outputs from an add-one circuit (s
1
3(t) = 4.5 × TXOR, ··· , s

1
7(t) = 7.5 × TXOR,

c
1
(t) = 8 × TXOR) is later than the arrival time of MUX selection input (cin(t) = 4.3 × TXOR). Thus,

the delays are the sum (s7(t) = 8.5 × TXOR, cout(t) = 9 × TXOR) of the arrival time of data outputs

from an add-one circuit (s
1
7(t) = 7.5 × TXOR, c

1
(t) = 8 × TXOR) and MUX gate delay (TMUX = 1 ×

TXOR). For the remaining groups, the arrival time of MUX selection input is always greater than

the arrival time of data inputs from an add-one circuit. Thus, the delay depends on the arrival

time of MUX selection input and its gate delay.

Based on the gate count of Table 3.1, the total number of gates in group 2 is determined as

follows:

Group 2 → (8-bit CCA with cin = 0) + (9-bit add-one circuit) + (18:9 MUX)= 51.6 × AXOR2

8-bit CCA with cin = 0 → = 30.9 × AXOR2

9-bit add-one circuit → 9 × XOR2 + 8 × AND2 + INV = 11.7 × AXOR

18:9 MUX → 9 × 2:1 MUX = 9 × AXOR2

- 72 -

FIGURE 3.13: DELAY EVALUATION OF THE MODIFIED CSELA USING CCA AND AN

ADD-ONE CIRCUIT (GROUP2)

- 73 -

The estimated delay and area of the all groups of the conventional and modified CSELAs are

evaluated and listed in Table 3.2. The delay and area numbers are accumulated value - e.g., the

area of group 2 is summation of group 1 and 2 areas. Theoretically, as to delay, the Modified

CSELA based on a CLA is the best followed by the Modified CSELA based on a CCA. In terms of

area, the Modified CSELA based on a CRA is the best followed by the Modified CSELA based on a

CLA. It is clear that the modified CSELA based on a CRA has less area than a conventional one.

The power dissipation can be also reduced, as it is proportional to the amount of hardware used

to implement the design. The modified CSELA based on a CLA has less area and delay and the

modified CSELA based on CCA has less delay with slight delay increase.

Table 3.2: Delay and Area of Conventional and Modified CSELAs

Group
Conventional CSELA Modified CSELA (CRA)

Delay Area Delay Area

Group 1 15 1.00 22.3 1.00 15 1.00 22.3 1.00

Group 2 16 1.00 75.9 1.00 17.5 1.10 65.3 0.86

Group 3 17 1.00 127.8 1.00 18.5 1.09 108.3 0.85

Group 4 18 1.00 188.4 1.00 19.5 1.08 156.6 0.83

Group 5 19 1.00 249.0 1.00 20.5 1.08 204.9 0.82

Group 6 20 1.00 316.6 1.00 21.5 1.08 258.5 0.82

Group 7 21 1.00 384.2 1.00 22.5 1.07 312.1 0.81

Group 8 22 1.00 395.8 1.00 23.5 1.06 323.3 0.81

Group
Modified CSELA (CLA) Modified CSELA (CCA)

Delay Area Delay Area

Group 1 4.2 0.28 25.7 1.15 5.5 0.37 30.9 1.39

Group 2 6.7 0.40 73.9 0.97 9 0.56 91.5 1.21

Group 3 7.7 0.45 125.6 0.98 10 0.59 164.1 1.28

Group 4 8.7 0.48 180.8 0.96 11 0.61 232.2 1.23

Group 5 9.7 0.51 239.5 0.96 12 0.63 305.8 1.23

Group 6 10.7 0.54 301.7 0.95 13 0.65 384.9 1.22

Group 7 11.7 0.56 353.4 0.92 14 0.67 455.5 1.19

- 74 -

3.4.2 Optimal Group Distribution

Another problem is to find the optimal block sizes which minimize the total worst case delay

of an adder for a corresponding reduction array. Total delay can be reduced by dividing the

adder into variable sized blocks that balance the delay of inputs to the carry chain. In a 4-level

UL LR split structure, delay is increased from LSB through 7-bit. Considering the structure of

CLG and CCA, 2
n
-bit size is efficient to design an 64-bit adder, thus we use an 8-bit adder as a

basic block in group 1. Considering additional MUX delay, the adder with optimal variable size

can be created when the input delay through the adder with cin = 0 is less than or equal to the

delay of the previous stage carry because the final adder need not the wait for input from PPR

array. Using this delay calculation, two types of adders with variable block sizes can be created

because the size of the last block is less than one of basic block size. If we combine the last two

groups into one single group, it would make the computation time slower because the size of

the last module is longer than those of other group. The CSELA based on CRA with block

size of 2−10−10−9−9−8−8−8 is called MCSELA_10_2_CRA and block size of

12−10−9−9−8−8−8 is called MCSELA_12_CRA.

3.4.3 The Structure Optimization

In modified CSELA based on CRA, a CRA is slow because each FA must wait for the carry

bit to be calculated by the previous FA. For example, the 12-bit last group of the

MCSELA_12_CRA can only start operation until the output from the 12-bit CRA is ready

because the arrival time of data output (s
1
(t) = 24.5 × TXOR) from CRAs is greater than the arrival

time of selection input (cin(t) = 21.5 × TXOR) of a MUX. Therefore, we use a fast CLA instead of

a slow CRA as the last group of the MCSELA_12_CRA. The CLA can avoid the wait time to

calculate the final result. The proposed final adder is comprised of one group of CLA and six

- 75 -

groups of CRA. We consider here only a simple one-level CLA, and divide the CLA into

several small groups. Thus, for less complex implementation the 12-bit input vectors are

divided into 3 groups of 4-bit or 6 groups of 2-bit and the groups are connected as in a CRA.

These schemes are called MCSELA_12_CLA4 and MCSELA_12_CLA2, respectively.

Based on the consideration of delay values of Table 3.1, the arrival time of data output

(4-bit: s
1
0(t) = 1.3 × TXOR ~ cout(t) = 8.9 × TXOR, 2-bit: s

1
0(t) = 1.3 × TXOR ~ cout(t) = 9.5 × TXOR)

from two CLAs based on 4-bit and 2-bit is earlier than the arrival time of selection input (cin(t)

= 21.5 × TXOR) of a MUX. Thus, the final sum output in group7 is summation (s0(t) ~ s6(t) =

22.5 × TXOR) of the arrival time of MUX selection input (cin(t) = 21.5 × TXOR) and MUX gate

delay (TMUX = 1 × TXOR), and two adders have the same delay. Comparing the proposed

adders, these adders have approximately 12% and 4% faster than the MCSELA_12_CRA and

the MCSELA_10-2_CRA, respectively.

Based on the gate count of Table 3.1, the total number of gates in group7 is determined as

follows:

Group 7 → (12-bit one-level CLA with each 4-bit group) + (13-bit add-one circuit) + (26:13 MUX)

= 61.4 × AXOR2

12-bit one-level CLA with each 4-bit group→ 3 × (8 × AND2 + 5 × OR2 + 3 × AND3 +

OR3 + 2 × AND4 + 1 × OR4 + 4 × XOR2) = 31.5 × AXOR2

13-bit add-one circuit → 13 × XOR2 + 12 × AND2 + INV = 16.9 × AXOR2

26:13 MUX → 13 × AXOR2

- 76 -

Group 7 → (12-bit one-level CLA with each 2-bit group) + (13-bit add-one circuit) + (26:13 MUX)

= 54.5 × AXOR2

12-bit one-level CLA with each 2-bit group→ 6 × (4 × AND2 + 3 × OR2 + 2 × XOR2) =

24.6 × AXOR

13-bit add-one circuit → 13 × XOR2 + 12 × AND2 + INV = 16.9 × AXOR2

26:13 MUX → 13 × AXOR2

Two adders have the same delay while the CLA based on 2-bit group is smaller than 4-bit

group because it is derived based on a simpler arithmetic expression. MCSELA_CLA4 and

MCSELA_CCA have internal fast block, and thus it is not necessary to replace with fast

adders. Table 3.3 shows delay and area estimates. MCSELA_CLA4 is the fastest followed by

MCSELA_CCA. However, they are not optimized for non-uniform LS region, and thus would

probably increase delay. In terms of area, the MCSELA_12_CLA2 is the best because this

adder uses less XOR2, which are relatively large gates, than the other adders. MCSELA_CCA

is the largest because this adder uses many MUX21 gates, which are relatively larger in size.

Because smaller area usually leads to less switching capacitance, the results could provide a

rough estimation of relative power consumptions in different schemes. Thus the

MCSELA_12_CLA2 would consume the smallest power, due to the lowest gate count.

- 77 -

TABLE 3.3: DELAY AND AREA COMPARISONS OF MODIFIED CSELASWITH VARIABLE

BLOCK SIZES FOR A 4-LEVEL UL LR STRUCTURE

Adder Delay (ns) Area (NAND2)

Conventional CSELA

(2−10−10−9−9−8−8−8)
23.0 × TXOR 1.00 409.4 1.00

MCSELA_10_2_CRA

(2−10−10−9−9−8−8−8_CRA)
23.5 × TXOR 1.02 323.3 0.79

MCSELA_12_CRA

(12−10−9−9−8−8−8_CRA)
25.5 × TXOR 1.11 323.7 0.79

MCSELA_12_CRA_CLA4

(12−10−9−9−8−8−8_CLA4)
22.5 × TXOR 0.98 323.9 0.79

MCSELA_12_ CRA_CLA2

(12−10−9−9−8−8−8_CLA2)
22.5 × TXOR 0.98 314.0 0.76

MCSELA_CLA4

(10−11−10−9−8−8−8_CLA4)
11.7 × TXOR 0.51 353.4 0.86

MCSELA_CCA

(10−11−10−9−8−8−8_CCA)
14 × TXOR 0.61 455.5 1.11

Similarly, the delay and area of the adder for corresponding array structure with voltage

islands are estimated. The delay and area estimates are shown in Table 3.4. In terms of delay, the

MCSELA_CLA4 and MCSELA_17_CLA2 are the fastest, and the MCSELA_17_CLA2 is the

best candidate only when small area is the main goal.

- 78 -

TABLE 3.4: DELAY AND AREA COMPARISONS OF MODIFIED CSELA WITH VARIABLE

BLOCK SIZES FOR A PPR ARRAY USING VOLTAGE ISLANDS

Adder Delay (ns) Area (NAND2)

Conventional CSELA

(6−11−10−10−9−9−9)
24.0 × TXOR 1.00 406.1 1.00

MCSELA_11_6_CRA

(6−11−10−10−9−9−9_CRA)
24.5 × TXOR 1.02 320.4 0.79

MCSELA_17_CRA

(17−10−10−9−9−9_CRA)
35.5 × TXOR 1.48 319.8 0.79

MCSELA_17_CLA4

(17−10−10−9−9−9_ CLA4)
23.5 × TXOR 0.98 318.1 0.78

MCSELA_17_CLA2

(17−10−10−9−9−9_ CLA2)
23.5 × TXOR 0.98 304.9 0.75

MCSELA_CLA

(10−11−10−9−8−8−8_CLA)
12.7 × TXOR 0.53 350.5 0.86

MCSELA_CCA

(10−11−10−9−8−8−8_CCA)
15 × TXOR 0.63 452.6 1.11

Figure 3.14 and Figure 3.16 show the modified CSELA using a CRA and an add-one circuit

with variable block size. Figure 3.15 and Figure 3.17 show delay evaluation of the modified

CSELA using a CRA and an add-one circuit with fixed 2-bit block (group 7).

- 79 -

FIGURE 3.14: THE MODIFIED CSELA USING A CRA AND AN ADD-ONE CIRCUIT WITH

VARIABLE BLOCK SIZE (BLOCK SIZES OF 12−10−9−9−8−8−8)

- 80 -

FIGURE 3.15: DELAY EVALUATION OF THE MODIFIED CSELA USING CLA4 AND AN

ADD-ONE CIRCUIT (GROUP7)

- 81 -

FIGURE 3.16: THE MODIFIED CSELA USING A CRA, A CLA AND AN ADD-ONE CIRCUIT

WITH VARIABLE BLOCK SIZE (BLOCK SIZES OF 12−10−9−9−8−8−8)

- 82 -

FIGURE 3.17: DELAY EVALUATION OF THE MODIFIED CSELA USING CLA2 AND AN

ADD-ONE CIRCUIT (GROUP7)

- 83 -

3.5 Experimental Evaluation

We have implemented 64-bit adders with different structure optimizations. The design and

simulation methodologies are described in Appendix A. As our major focus is on the final

addition step, the array structures proposed in Chapter 2 are reused for the PPR arrays in our

designs. Fortunately, as array structures are already optimized, they would not significantly

affect the relative difference of actual measured values for the final CPA although they may

affect absolute values. We only provide the combined results of reduction array and the CPA

to consider the input signal profiles to the final CPA.

3.5.1 Results for Split Array Multipliers

Seven schemes with different structure optimization techniques are implemented. Table 3.5

summarizes the results for the proposed and conventional adders with a 4-level UL LR array

structure. The smallest value of each characteristic is highlighted in boldface. The baseline

structure is a conventional CSELA. Compared to a 4-level UL LR array structure with a

conventional CSELA, a 4-level UL LR array structure with the modified CSELA based on

CRA achieves between 12% and 16% less power, between 14% and 17% less area with

between 1% and 10% delay overhead. The modified CSELA approach increases delay

because the extra 1-bit add-one circuit should be executed after the carry output of a CRA with

Cin = 0. The area and power reduction is because it is implemented by using a single CRA and

a multiplexer-based add-one circuit instead of two CRAs. The interesting results are that all

adders have similar delay, a 4-level UL LR array structure with MCSELA_CLA and

MCSELA_CCA have slight delay decrease, but it is not enough large than we expect because

this adder need to wait for higher input bit in LS region. They have slight decrease power

- 84 -

reduction (MCSELA_CLA) and power increase (MCSELA_CCA). One reason is they have

more switching activities due to internal complex structure compared to CRA structure. A

4-level UL LR array structure with MCSELA_10_2_CRA dissipates 9% less delay compared

to a MCSELA_12_CRA because the MS 2-bit is executed with the other group simultaneously,

but the MS 2-bit of a MCSELA_12_CRA must wait for the carry bit to be calculated from the

lower bit. The power and area of a 4-level UL LR array structure with MCSELA_10_2_CRA

are close to those of a MCSELA_12_CRA. The good results are from a 4-level UL LR array

structure with a MCSELA_12_CRA_CLA2 which reduce the power and area by

approximately 15% without delay overhead. Because the area of CLAs is much larger than

that of CRAs, the area and power overhead for CLAs are more evident. However, our

theoretical and experimental conclusions here conflict with the previous work where only

CRAs were used. Specifically a MCSELA_12_CRA_CLA2 slightly reduce the power, area as

well as delay compared to a MCSELA_12_CRA_CLA4. The reason is that the number of

gates required for the group size of 2-bit is smaller than those of 4-bit for implementation. In

terms of area and power-delay product, a 4-level UL LR array structure with

MCSELA_12_CRA_CLA2 is the best. AMCSELA_CLA presents the fast followed by a

MCSELA_CCA. Table 3.6 shows delay and power comparisons of MCSELA_12_

CRA_CLA2 with two supply voltages. MCSELA_12_ CRA_CLA2 is the fastest when supply

voltage is increased.

- 85 -

TABLE 3.5: POWER, DELAY AND AREA COMPARISONS OF ADDERS FOR A 4-LEVEL UL

LR STRUCTURE

Adder Power (µW) Delay (ns) Area (μm
2
)

Power-Delay

Product (pJ)

4-level UL LR array structure

with a conventional CSELA
5172 1.00 6.88 1.00 15779 1.00 35.53 1.00

4-level UL LR array structure

with MCSELA_10_2_CRA
4396 0.85 6.95 1.01 13571 0.86 30.55 0.86

4-level UL LR array structure

with MCSELA_12_CRA
4345 0.84 7.47 1.10 13096 0.85 32.46 0.92

4-level UL LR array structure

with MCSELA_12_CRA_CLA4
4551 0.88 6.91 1.02 13503 0.85 31.45 0.89

4-level UL LR array structure

with MCSELA_12_ CRA_CLA2
4348 0.84 6.88 1.00 13536 0.83 29.87 0.84

4-level UL LR array structure

with MCSELA_CLA
4914 0.95 6.54 0.95 14517 0.92 30.42 0.86

4-level UL LR array structure

with MCSELA_CCA
6102 1.18 6.61 0.96 17672 1.12 40.33 1.14

TABLE 3.6: POWER AND DELAY COMPARISONS OF THE MCSELA_12_CRA_2 WITH

DIFFERENT SUPPLY VOLTAGE

Adder Power (µW) Delay (ns)
Power-Delay

Product (pJ)

4-level UL LR array structure

with MCSELA_12_ CRA_CLA2

at 1.08V
1

4348 1.00 6.88 1.00 29.87 1.00

4-level UL LR array structure

with MCSELA_12_ CRA_CLA2

at 1.32V
2

5044 1.16 5.99 0.87 30.21 1.01

1
Array structure: 1.08V, CPA: 1.08V

2
Array structure: 1.08V, CPA: 1.32V

- 86 -

3.6 Summary

In Chapter 2, we have proposed the structure optimization of PPR arrays. In this chapter, we

have studied the signal arrival profiles of the corresponding structures and have presented

several delay reduction techniques. The problem is uniform signal input profile to the CPA, but

it is not perfectly flat. Detailed experimental results are given to compare the power, delay and

area characteristics of each final CPA. Among different optimization techniques for the final

CPA, the 4-level UL LR array structure with MCSELA_12_CRAis a primary choice if power

is the critical concern. Compared to a 4-level UL LR array structure with a conventional

CSELA, this structure reduces the power by approximately 16% with 10% delay overhead.

When a small delay is the main goal, the 4-level UL LR array structure with MCSELA_CLA is

the best candidate. Compared to a 4-level UL LR array structure with a conventional CSELA,

this achieves 5% less power and 5% less delay. In terms of power-delay product, a 4-level UL

LR array structure with MCSELA_12_CRA_CLA2 is the best.

- 87 -

Chapter 4 Low-Power Sum-of-Products Unit for

Signal Processing Applications

Power dissipation is a critical aspect in today’s mobile environment, while high throughput

remains a major design goal. To satisfy both requirements, parallelism in the organization of

arithmetic units has been employed. Parallel organization can reduce execution time and run at

a lower supply voltage, which can reduce power consumption for dynamic power compared to

a single multiplier solution.

The previous two chapters presented optimization techniques for the multiplier array and

the CPA, respectively. In this chapter, we propose a new design for a sum-of-products unit

suitable for signal processing application and present an approach to reducing power dissipation

in the design of a sum-of-products operation by utilizing two optimized multipliers while

maintaining high throughput. We show that our design outperforms schemes using a single

multiplier.

4.1 Introduction

With an increasing complexity of circuits used in mobile devices and increased demand for

digital signal processing applications, minimizing power consumption in digital CMOS circuits

has become of great importance while performance and area remain the other two major design

goals. Most DPSs and GPUs use an existing multiplier or a MAC unit to perform various

arithmetic operation [84][85][86]. The multiplier and MAC unit are frequently used but

power-demanding components of the DSPs and GPUs. However, traditional DSPs and GPUs

require many clock cycles for signal processing applications even when they include

high-performance parallel multipliers and/or a MAC unit. This is the critical problem that we

- 88 -

are facing in the recent signal processing applications which require intensive multiplications.

Therefore, research on a new arithmetic design is needed to satisfy low-power and

high-throughput requirements for signal processing applications in mobile systems.

The proposed sum-of-products designs have advantages over a single multiplier in that they

use two multiplications to be performed in parallel and thus reduce execution time. We discuss

several key advantages of the proposed arithmetic unit, compare it to other competing

arithmetic units and demonstrate its superiority over other arithmetic units. Of course, our

design increases the area and power compared to a single multiplier. However, the proposed

design can reduce the execution time significantly. We discuss how the energy is reduced

(shorter execution time) in typical signal processing applications. Our goal is to reduce the

power consumption without increasing the latency and the complexities of arithmetic units.

In this chapter, we focus on describing the overall organization of sum-of-products design

and showing competitive advantage. This chapter does not consider how to further optimize the

core components for a sum-of-products design: PPR arrays and the final CPA. The previous

two chapters presented the optimization of these components. In Chapter 2, we presented

several power and delay reduction techniques of PPR arrays. In Chapter 3, we combined these

optimization techniques with the structure optimization techniques of the final CPA. This

chapter is organized as follows. Section 4.2 addresses the problem of conventional arithmetic

units and proposes the sum-of-products unit. Section 4.3 shows the experimental results. We

provide energy and execution time estimates for the sum-of-products design and compare them

to the estimates for a conventional ARM7 multiplier and the proposed LR array multipliers

[51][88]. In Section 4.4, we discuss current problems in our designs, and give a summary. The

designs presented in this chapter assume 32-bit integer operands, but they can easily be

extended to longer fixed-point operands.

- 89 -

4.2 Sum-of-Products Design

Several power optimization techniques have been proposed in the literature for multipliers

and adders. It was obvious that the use of these power optimization techniques in multipliers

and adders has been beneficial. However, it is not known if these techniques are suitable for

sum-of-products units. Detailed studies are desirable to explore the potential power saving of a

sum-of-products unit. In this section, we present the problems of the current arithmetic design

and describe a new arithmetic design for solving these problems.

4.2.1 The Proposed Design

The sum-of-products baseline model consists of two multipliers and a single adder. There are

two types of structures. One way to design the sum-of-products is to use two PPR arrays and

[4:2] adders followed by a single final CPA. The other way is to use two complete multipliers

and then add two products to produce the final result. This structure has two PPR arrays and two

CPAs followed by a single CPA. The first structure would be a better solution because it has one

less carry-propagate addition; thus, the power dissipation and delay are better than those of its

counterpart. The sum-of-products can be extended to the inner-product operation.

Inner-products consists of two PPR arrays, [6:2] adders and latches for accumulation and a

single CPA. The [6:2] adders accumulate four inputs with the previous partial sums and carries.

Figure 4.1 shows the baseline models of a sum-of-products, and Figure 4.2 shows the structure

of an inner-product arithmetic unit [1].

Our goal is to reduce the power consumption without a significant increase in delay. The

PPR arrays and the final CPA are two major components of a sum-of-products unit. Thus, the

two main components should be optimized to minimize power and delay from an overall

structure prospective. The power dissipation introduced by the PPR array is relatively large

- 90 -

compared to the final CPA because of a large number of gates implemented. We focus on

developing low-power PPR arrays based on the LR array multipliers discussed in [51][88], and

have proposed new power optimization techniques for LR array structures. These optimization

techniques include the 4-level UL LR splitting. We have described detailed optimization

techniques of reduction structures for arrays in Chapter 2. On the other hand, the carry

propagation path is the critical path in sum-of-products design, and thus the final CPA requires

the fastest adder. Following the direction from Chapter 2, we have combined this structure

optimization technique with the final adder with signal flow optimization. In Chapter 3, we

have discussed a design strategy specific to input arrival time generated by the proposed arrays,

and proposed the high-performance, low-power CPA where the input arrival times are not the

same as those of conventional multipliers.

(A) TWO PPR ARRAYS, [4:2] ADDER AND A SINGLE CPA

- 91 -

(B) TWO COMPLETE MULTIPLIERS AND A SINGLE CPA (TWO PPR ARRAYSAND THREE

CPAS)

FIGURE 4.1: SUM-OF-PRODUCTS UNIT DESIGN

FIGURE 4.2: INNER-PRODUCT UNIT DESIGN

- 92 -

4.3 Experimental Results

The objective of these experiments is to compare the number of cycles and execution time

between a parallel organization and a solution with a single multiplier. In these experiments,

we use two types of multipliers and sum-of-products with different structure optimization

techniques: ARM7 multiplier and a 4-level UL LR split array multiplier with modified CSELA.

As our major focus is on overall structure, we use the optimized modules for our experiments. A

detailed description of experimental methodologies is given in Appendix B. We also consider

the approach to avoid the overflow. Finite length implementation implies maximum

representable number. Whenever the results exceed this value, overflow occurs. We assume

the input operands are 32-bit integers. Input random variables less than or equal to 32-bit were

automatically generated by Cadence tool, so all the input operands avoid the overflow.

However, it is possible that the result overflow can occur. To avoid result overflow, we need

to increase the number of bits to the output. We can prevent overflow by increasing 1 bit in

result data. This prevents a possible overflow.

To compare our results, we select four benchmark programs: a FIR filter, a high pass filter,

a matrix multiplication and an Euclidean distance. They are representative signal processing

applications using sum-of-products operations. Their mathematical expressions are as below.

- 93 -

FIR filter (We consider 4-tap in this experiment.)

High pass filter

Matrix multiplication

Euclidean distance

- 94 -

4.3.1 ARM Multiplier Results

The effective approach to comparing relative power dissipation (or energy) and performance

is to use the power-delay (or energy-delay) product. For our experiment, it might be more

appropriate to use energy because power is the rate at which energy is consumed, while energy

is the amount of power consumed. To calculate energy, the total execution time of programs is

needed. The execution time required for a program can be written as [90]

Execution time for a program

= Clock cycles for a program × Clock cycle time

= Instructions for a program × Clock cycles per instruction × Clock cycle time

(4-1)

We need to limit our simulations to the specific compiler, Instruction Set Architecture (ISA)

and micro architecture for accurate results. We consider the ARM’s architecture because it has

been dominant in mobile devices. All ARM processors have included hardware support for

integer multiplication and used two styles of multiplier [91]. The ARM with an M in its name

(for example the ARM7DM) has a high-performance multiplier and supports the 64-bit results

by using multiply and MAC instructions. This multiplier employs a radix-4 algorithm to

produce 2-bit PPs. The carry save array has four layers of adders, each handling two multiplier

bits, so the array can multiply 8-bit per clock cycle. The array is cycled up to four times, and the

partial sums and carries are combined 32-bit at a time and written back into the register. We

consider only high-performance multipliers of the ARM processor in this work because the

multiplication performance is critical in signal processing applications. Our experimental

design is the ARM7TDMI-S processor which includes an enhanced 32 × 8 single multiplier

with a radix-4 algorithm. It is a synthesizable version of the ARM7TDMI core and thus can

- 95 -

provide an accurate and efficient method when trying to measure the cycle counts for an

application executed on the ARM multiplier with the cycle-level simulator. The ARM7

processor supports two different ISAs: the 32-bit ARM and the 16-bit Thumb with a T in its

name. The Thumb ISA allows for code to be smaller, and can potentially be faster if cache

memory to store code cannot be accessed fast but MAC operations are not supported. Therefore,

we only consider the ARM ISA when exploring our design. Unfortunately, the ARM7TDMI-S

does not include a sum-of-products hardware, but an enhanced single multiplier, and thus,

cannot support a single-cycle sum-of-products instruction. The ARM compiler usually avoids

generating the sum-of-products instructions, and hence we cannot directly measure the total

clock cycles with sum-of-products using cycle-level simulation with compiled assembly code.

We have to regenerate the ARM assembly code including sum-of-products manually after

analyzing the compiled original ARM assembly code. Suppose we have the modified

implementation of ARM7TDMI-S ISA. We note that two consecutive multiply operations are

replaced with a sum-of-products operation. Actually, the sum-of-products instruction can

execute two multiplications simultaneously, and then two products are added in a CPA to obtain

their sum. The ARM7 multiplication finishes in at most 4 cycles and thus a sum-of-products

operation takes up to 5 clock cycles due to an additional single cycle final addition. To recreate

the modified ARM assembly code, we use the ARM technical reference manual after compiling

the original C code [92]. The reference manual defines all instructions and their cycle counts.

The clock cycles of the ARM multiplier for benchmark programs can be measured by

running a cycle-level simulation tool using the ARM7TDMI-S Verilog code and the compiled

ARM assembly code. The Mentor Graphics hardware/software co-simulation tool such as

Questa Codelink profiles clock cycles for programs. The comparison results of clock cycle

estimates are shown in Table 4.1. We address the benchmark simulation results from three

aspects. First, the cycle reduction is smaller than we expected. Based on an analysis of clock

- 96 -

cycles, the clock cycles of sum-of-products are between 13% and 48% less than those of

multiplication only for benchmark programs. In an ideal situation, the sum-of-products would

be expected to have 50% reduction in total clock cycles for benchmark programs. Unfortunately,

however, the sum-of-products requires more clock cycles to execute the initialization code, and

thus this ideal situation does not occur in practice. When the ARM assembly code is generated,

the execution environment such as entry point and register initialization should be set up before

the main function starts. All the registers have to be initialized to zero, and the counter is also

loaded before the execution of the program enters the main function. Unfortunately, the

sum-of-products spends a lot of time initializing code compared to a multiplier because it needs

more register initialization. Thus, the total number of cycles in sum-of-products is over 50% of

those in multiplier, even though the main function of sum-of-products takes approximately half

the number of clock cycles. Second, the ratio of the total number of clock cycles for multiplier

to sum-of-products would coverage to 50% when the number of iterations increases because the

number of cycles in initial functions is fixed regardless of the number of loop iterations, while

those for the main code depend upon the number of iterations. When the number of iteration

increases, the portion of initialization code becomes smaller. Thus, the initialization portion of

sum-of-products becomes relatively smaller. Third, the ratio of the total number of clock

cycles for multiplier to sum-of-products in matrix multiplication (67% ~ 87%) and Euclidean

distance (62% ~ 76%) are relatively higher than that in other benchmarks (FIR filter: 58% ~

63%, high pass filter: 52% ~ 55%). This is because the main code of matrix multiplication

using sum-of-products operations includes many more three-cycle load instructions than that

in other benchmark programs. Also the Euclidean Distance includes additional square root

instruction. The ARM7TDMI-S has no square root instructions, so this instruction is generated

by the combination of ADD, SUB and MOV instructions. Thus, the square root instruction is

handled in approximate 100 clock cycles to complete. It would increase the total number of

clock cycles, and lead to longer execution time. They might affect larger energy-delay product.

- 97 -

Consequently, the matrix multiplication and Euclidean distance take many more clock cycles

compared to other benchmark programs.

TABLE 4.1: CLOCK CYCLES FOR BENCHMARK PROGRAMS

Clock cycles
FIR Filter

(length = 10)

High Pass Filter

(length = 10)

Matrix

Multiplication

(2 × 2)

Euclidean

Distance

(length = 10)

Multiplication 155 1.00 177 1.00 168 1.00 236 1.00

Sum-of-products 97 0.63 98 0.55 146 0.87 179 0.76

Clock cycles
FIR Filter

(length = 100)

High Pass Filter

(length = 100)

Matrix

Multiplication

(5 × 5)

Euclidean

Distance

(length = 100)

Multiplication 1415 1.00 1617 1.00 2528 1.00 1586 1.00

Sum-of-products 817 0.58 845 0.52 1686 0.67 989 0.62

We can directly measure the power and latency of the ARM multiplier using the Synopsys

Design Compiler because ARM7TDMI-S is a synthesizable core. Then we can estimate those

of the sum-of-products hardware. We assume the sum-of-products hardware consists of two

identical ARM7TDMI-S multipliers and Arithmetic Logic Unit (ALU). Table 4.2 shows the

power, delay and area of a multiplier and a sum-of-products hardware.

- 98 -

TABLE 4.2: POWER, DELAY AND AREA OF THE ARM7TDMI-S MULTIPLIER AND A

SUM-OF-PRODUCTS HARDWARE

Supply Voltage Hardware Power (mW) Delay (ns) Area (μm
2
)

1.32 V

Multiplier* 1.68 0.99 1384

Sum-of-products** 3.46 1.02 2941

1.2 V

Multiplier* 1.25 1.15 1316

Sum-of-products** 2.58 1.19 2788

1.08 V

Multiplier* 0.94 1.42 1364

Sum-of-products** 1.94 1.48 2896

* measured value ** estimated value

The amount of energy used depends on the power dissipation and the time for which it is

used, and can be written as

Energy (Joules) = Power (Watts) × Time (Seconds) (4-2)

The easiest and most accurate way to calculate the execution time for benchmark programs is

to use the equation (4-9) with measured clock cycles for programs and clock rate. We calculate

the energy based on the execution time calculated from the equation (4-9) and the amount of

power dissipation measured in Table 4.2. Table 4.3 summarizes the energy, execution time and

energy-delay product. The power-delay product and energy-delay product are commonly used

- 99 -

to compare the superiority of designs [93]. In a sense, this is a misnomer as power × delay =

(energy / delay) × delay = energy [9]. Instead, the energy-delay product should be used

because it involves two independent measures of circuit. The sum-of-products unit dissipates

23% more energy than a single multiplier with a 40% decrease in execution time for a FIR filter

program and 12% more energy with a 46% decrease in execution time for a high pass filter.

Also, the sum-of-products unit dissipates 42% and 33% more energy than a single multiplier

with a 31% and 35% decrease in execution time for a matrix multiplication and Euclidean

distance, respectively. The sum-of-products units are better than multipliers only in terms of

energy-delay product in the considered benchmarks.

If a single multiplier which operates at higher supply voltage is replaced by a

sum-of-products which operates at low supply voltage, the energy can be reduced. This is

because the clock cycles per program with a sum-of-products are reduced by approximately half

compared to those with the multiplier while reducing supply voltage increases the clock cycle

time slightly. For example, if we replace the ARM multiplier at 1.32V with the sum-of-products

at 1.08V for a high pass filter program, 22% in execution time and 10% in energy can be

decreased. For a FIR filter program, sum-of-products has 14% less execution time while

keeping the same energy. As a result, the total energy demanded by the design can be reduced if

we use parallel hardware at lower supply voltage.

The multiplier and sum-of-products are characterized in the execution time ratio versus

energy ratio in Figure 4.3. Solid lines indicate the measured value and dashed lines indicate the

expected value based on trend lines. Energy ratio is decreased as execution time ratio is

increased. The sum-of-products unit consumes more energy as the difference of execution time

between a sum-of-products and a multiplier is increased, but the energy ratio is expected to be

less than 1 if their execution time is the same. This means the sum-of-products unit consumes

less energy than a multiplier only when the execution time is the same. The FIR filter, high pass

- 100 -

filter and Euclidean distance programs would be energy-efficient when a single multiplier is

replaced with a sum-of-products hardware, but the matrix multiplication program would have

the same energy. This is because the difference of clock cycles between sum-of-products and a

multiplier only is relatively small. Figure 4.4 shows the energy-delay product comparison

between the ARM7TDMI-S multiplier and sum-of-products unit. The experiment shows that

the sum-of-products design is better than a single multiplier approach in terms of energy-delay

product in all benchmarks.

- 101 -

FIGURE 4.3: COMPARISON OF ENERGY RATIO WITH EXECUTION TIME RATIO IN

BENCHMARKS

FIGURE 4.4: ENERGY-DELAY PRODUCT COMPARISON BETWEEN THE ARM7TDMI-S

MULTIPLIER AND A SUM-OF-PRODUCTS UNIT IN BENCHMARKS

- 102 -

TABLE 4.3: EXECUTION TIME, ENERGY AND ENERGY-DELAY PRODUCT OF THE

ARM7TDMI-S MULTIPLIER AND A SUM-OF-PRODUCTS HARDWARE FOR BENCHMARKS

Benchmark

Programs

Supply

Voltage
Hardware

Execution

Time (µs)
Energy (µJ)

Energy-

Delay

Product

FIR Filter

(length = 100)

1.32 V
ARM7TDMI-S Multiplier* 1.40 1.00 2.35 1.00 3.29 1.00

Sum-of-products** 0.83 0.59 2.88 1.23 2.40 0.73

1.2 V
ARM7TDMI-S Multiplier 1.63 1.00 2.03 1.00 3.30 1.00

Sum-of-products 0.97 0.60 2.50 1.23 2.43 0.74

1.08 V
ARM7TDMI-S Multiplier 2.01 1.00 1.89 1.00 3.80 1.00

Sum-of-products 1.21 0.60 2.35 1.24 2.84 0.75

High Pass

Filter

(length = 100)

1.32 V
ARM7TDMI-S Multiplier 1.60 1.00 2.69 1.00 4.30 1.00

Sum-of-products 0.86 0.54 2.98 1.11 2.56 0.60

1.2 V
ARM7TDMI-S Multiplier 1.86 1.00 2.32 1.00 4.31 1.00

Sum-of-products 1.00 0.54 2.59 1.12 2.60 0.60

1.08 V
ARM7TDMI-S Multiplier 2.30 1.00 2.16 1.00 4.96 1.00

Sum-of-products 1.25 0.55 2.43 1.12 3.04 0.61

Matrix

Multiplication

(5 × 5)

1.32 V
ARM7TDMI-S Multiplier* 2.50 1.00 4.20 1.00 10.52 1.00

Sum-of-products** 1.72 0.68 5.95 1.42 10.23 0.97

1.2 V
ARM7TDMI-S Multiplier 2.91 1.00 3.63 1.00 10.56 1.00

Sum-of-products 2.01 0.69 5.18 1.42 10.39 0.98

1.08 V
ARM7TDMI-S Multiplier 3.59 1.00 3.37 1.00 12.11 1.00

Sum-of-products 2.50 0.70 4.84 1.43 12.08 0.99

Euclidean

Distance

(length = 100)

1.32 V
ARM7TDMI-S Multiplier 1.57 1.00 2.64 1.00 4.14 1.00

Sum-of-products 1.00 0.64 3.49 1.32 3.52 0.85

1.2 V
ARM7TDMI-S Multiplier 1.82 1.00 2.28 1.00 4.16 1.00

Sum-of-products 1.18 0.65 3.04 1.33 3.57 0.86

1.08 V
ARM7TDMI-S Multiplier 2.25 1.00 2.12 1.00 4.77 1.00

Sum-of-products 1.46 0.65 2.84 1.34 4.16 0.87

- 103 -

4.3.2 The Design Characteristics of the Proposed

Sum-of-Products Units

To verify our results and to determine the implications of the proposed organization, we

conducted another experiment. In this experiment, we use the proposed multipliers and

sum-of-products instead of ARM7 multipliers. We assume the proposed multipliers and

sum-of-products units are replaced with embedded ARM7 multipliers, and the clock cycles for

benchmark programs are the same as those in ARM7TDMI-S test environments. We implement

the proposed sum-of-products unit using Verilog and a top-down methodology. The proposed

designs are synthesized with three supply voltages 1.08V, 1.20V and 1.32V supported by

technology. Five schemes with different split array structures and CPA optimization techniques,

discussed in detail in Chapter 2 and Chapter 3,are implemented and evaluated: 1) a non-split

LR array structure using a [3:2] adder with a conventional CSELA, 2) a 2-level UL LR array

structure using a [4:2] adder with a conventional CSELA, 3) a 4-level UL LR array structure

using a [4:2] adder with a conventional CSELA, 4) a 4-level UL LR array structure using a [4:2]

adder with MCSELA_12_CLA2, which was proposed in Chapter 3. Chapter 2 and Chapter 3

gave a detailed description of organization, design and implementation. The comparison results

of power, delay and area estimates are shown in Table 4.4. The smallest value of each

characteristic is highlighted in boldface. The baseline structure is a non-split LR array structure

using a [3:2] adder with a conventional CSELA. Compared to a non-split array structure, a

2-level structure achieves 24% less power and 45% less delay, while a 4-level structure

achieves between 34% and 42% less power and between 58% and 59% less delay with

negligible area increase. This result implies more power savings can be achieved if each part is

split further. Among all schemes, a 4-level UL LR array structure using a [4:2] adder with

MCSELA_12_CLA2 presents the lowest power, the smallest delay and the lowest power-delay

- 104 -

product results in this experiment. These results indicate that a 4-level split structure with a

modified CSELA is a useful power- and delay-saving technique in sum-of-products design.

TABLE 4.4: POWER, DELAY AND AREA COMPARISON FOR LR ARRAY MULTIPLIERS

UTILIZING SPLIT STRUCTURE AND MODIFIED CPA (1.32 V)

Sum-of-Products
Power

(mW)
Delay (ns) Area (μm

2
)

Power-Delay

Product (pJ)

Non-split LR array structure

using a [3:2] adder

with a conventional CSELA

6.98 1.00 9.48 1.00 11221 1.00 66.17 1.00

2-level UL LR array structure

using a [4:2] adder

with a conventional CSELA

5.31 0.76 5.21 0.55 11109 0.99 27.66 0.42

4-level UL LR array structure

using a [4:2] adder

with a conventional CSELA

4.61 0.66 3.98 0.42 11671 1.04 18.34 0.28

4-level UL LR array structure

using a [4:2] adder

with MCSELA_12_CLA2*

4.05 0.58 3.89 0.41 11445 1.02 15.74 0.24

*MCSELA_12_CLA2: Modified CSELA with variable block size (block size of 8-8-8-9-10-12)

In this experiment, we consider only split LR array multipliers with the modified CPA. Table

4.5 shows power, delay and area estimates for the proposed sum-of-products design. Synthesis

results indicate that the PPR arrays have the most power and area of the sum-of-products design,

but the final CPA has a longer latency than PPR arrays because PPR arrays have a 4-level split

structure using a [4:2] adder. The delay of a 4-level split structure is 50% less than that of a

non-split structure.

- 105 -

TABLE 4.5: POWER, DELAY AND AREA FOR SUM-OF-PRODUCTS (1.32 V)

Hardware Power (mW) Delay (ns) Area (μm
2
)

Sum-of-products 8.49 1.00 6.85 1.00 25850 1.00

LR_4ULS_42* 4.14 0.48 2.10 0.31 12314 0.48

[4:2] adder + MCSELA_12_CLA2 0.21 0.04 4.75 0.69 1222 0.04

* LR_4ULS_42: 4-Level UL Split LR Multiplier using a [4:2] adder

Table 4.6 shows the power, delay and area of the proposed multiplier and sum-of-products

hardware, and Table 4.7 summarizes the energy and execution time. The multiplier delays

between two experiments are different. The proposed multipliers dissipate more power, delay

and area than ARM7 multipliers. The ARM7TDMI-S processor has a single 32 × 8 tree

multiplier, while the proposed multiplier is a 4-level split array multiplier. The proposed

multiplier has an additional two summation stage using a [4:2] adder, and so has a longer delay

and larger area compared to the ARM multiplier. Furthermore, our proposed designs were not

optimized with regard to the power, delay and area compared to ARM’s design.

The sum-of-products unit dissipates 18% ~ 42% and 7% ~ 29% more energy than a single

multiplier while 29% ~ 39% and 36% ~ 45% decrease in execution time and 1% ~ 28% and

19% ~ 41% less in energy-delay product for a FIR filter and high pass filter programs,

respectively. The results are from the matrix multiplication program which reduces the

execution time by 23% while increasing the energy by 51% and the energy-delay product by

17%. This is because the ratio of the execution time for multiplier to sum-of-products in this

program (77%) is much larger than that in other benchmark programs (FIR filter: between 61%

and 71%, high pass filter: between 55% and 64%). The sum-of-products is better than the

multiplier only solution in terms of energy-delay product with 1.08V supply voltage for

Euclidean distance, but with 1.32V and 1.20V supply voltage, the sum-of-products hardware

has a slightly larger energy-delay product than the multiplier. This relative difference in

- 106 -

energy-delay product between the proposed multiplier and the sum-of-products hardware is

negligible.

TABLE 4.6: POWER, DELAY AND AREA OF THE PROPOSED MULTIPLIER AND

SUM-OF-PRODUCTS UNIT

Supply Voltage Hardware Power (mW) Delay (ns) Area (μm
2
)

1.32 V
LR_4ULS_42 4.35 5.90 13536

Sum-of-products 8.49 6.85 25850

1.2 V
LR_4ULS_42 3.32 6.58 12458

Sum-of-products 6.48 7.68 23991

1.08 V
LR_4ULS_42 2.40 7.78 12590

Sum-of-products 4.69 9.04 24143

Figure 4.5 shows the comparison of energy ratio with execution time ratio in benchmarks.

When the execution time is the same, sum-of-products consumes less energy than a single

multiplier. However, the matrix multiplication program would be not energy-efficient when a

multiplier is replaced with a sum-of-products hardware. Figure 4.6 shows the energy-delay

product comparison. The experiment shows that the sum-of-products design is better than a

single multiplier in terms of energy-delay product in most benchmark programs.

- 107 -

TABLE 4.7: EXECUTION TIME, ENERGY AND ENERGY-DELAY PRODUCT OF THE

PROPOSED MULTIPLIER AND SUM-OF-PRODUCTS HARDWARE FOR BENCHMARKS

Benchmark

Programs

Supply

Voltage
Hardware

Execution Time

(µs)
Energy (µJ)

Energy-Delay

Product

FIR Filter

(length = 100)

1.32 V
LR_4ULS_42 8.07 1.00 33.39 1.00 269.32 1.00

Sum-of-products 5.60 0.69 47.51 1.42 265.91 0.99

1.2 V
LR_4ULS_42 8.89 1.00 29.50 1.00 262.16 1.00

Sum-of-products 6.27 0.71 40.66 1.38 255.12 0.97

1.08 V
LR_4ULS_42 12.20 1.00 29.27 1.00 357.06 1.00

Sum-of-products 7.39 0.61 34.64 1.18 255.83 0.72

High Pass

Filter

(length = 100)

1.32 V
LR_4ULS_42 9.22 1.00 38.16 1.00 351.70 1.00

Sum-of-products 5.79 0.63 49.14 1.29 284.45 0.81

1.2 V
LR_4ULS_42 10.15 1.00 33.71 1.00 342.36 1.00

Sum-of-products 6.49 0.64 42.05 1.25 272.90 0.80

1.08 V
LR_4ULS_42 13.94 1.00 33.45 1.00 466.28 1.00

Sum-of-products 7.64 0.55 35.83 1.07 273.67 0.59

Matrix

Multiplication

(5 × 5)

1.32 V
LR_4ULS_42 14.92 1.00 64.88 1.00 967.71 1.00

Sum-of-products 11.55 0.77 98.05 1.51 1132.41 1.17

1.2 V
LR_4ULS_42 16.63 1.00 55.23 1.00 986.37 1.00

Sum-of-products 12.95 0.78 83.91 1.52 1086.45 1.18

1.08 V
LR_4ULS_42 19.67 1.00 47.20 1.00 928.38 1.00

Sum-of-products 15.24 0.77 71.48 1.51 1089.50 1.17

Euclidean

Distance

(length = 100)

1.32 V
LR_4ULS_42 9.04 1.00 37.43 1.00 338.34 1.00

Sum-of-products 6.77 0.75 57.52 1.54 389.66 1.15

1.2 V
LR_4ULS_42 9.96 1.00 33.07 1.00 329.35 1.00

Sum-of-products 7.60 0.76 49.22 1.49 373.84 1.14

1.08 V
LR_4ULS_42 13.67 1.00 32.81 1.00 448.57 1.00

Sum-of-products 8.94 0.65 41.93 1.28 374.88 0.84

- 108 -

FIGURE 4.5: COMPARISON OF ENERGY RATIO WITH EXECUTION TIME RATIO IN

BENCHMARKS

FIGURE 4.6: ENERGY-DELAY PRODUCT COMPARISON BETWEEN 4-LEVEL UL SPLIT LR

MULTIPLIERS AND SUM-OF-PRODUCTS UNITS

- 109 -

4.4 Summary

In this chapter, we discussed a new sum-of-products arithmetic unit and presented

experimental results about its performance and power. We have utilized parallelism in

organization of multipliers. Compared to the ARM7TDMI-S multiplier, the sum-of-products

can reduce execution time by approximately 40% with 25% of energy increase in benchmark

applications. The proposed designs were synthesized with three supply voltages 1.08, 1.20 and

1.32V supported by Samsung 65nm process technology, and then we measured power and

delay of a multiplier and a sum-of-products unit. The clock cycles for benchmark programs

were measured by running cycle-level simulation tool using the ARM7TDMI-S Verilog code

and compiled ARM assembly code. We calculated energy and execution time in four

benchmark programs: FIR filter, high pass filter and Euclidean distance programs. The

sum-of-products unit would consume less energy than a single multiplier if the execution time

of a sum-of-products unit is the same as that of a single multiplier. Parallel organization can

reduce execution time and run at a lower supply voltage, which can reduce power

consumption for dynamic power compared to a single solution.

We have demonstrated that the proposed sum-of-products design reduces energy compared

with a single multiplier when computing sum-of-products. The point of this design is to

compare execution time and energy between parallelism in organization of two multipliers and

a single solution with a multiplier. However, we have only compared arithmetic components,

not complete processors. Using a sum-of-products arithmetic unit instead of a single multiplier

would require register files with four output ports (or five output ports in case of a solution with

an accumulator). This would increase the fan-out of the register files and add delays in the

registers address decoding if four (or five) operands instead of two are fetched at each clock

cycle. The proposed arithmetic components would probably slow down the complete processor

and all other parts of the applications. The analysis of complete processor architecture would

- 110 -

provide more accurate results. The implementation and analysis of complete processor

architecture are left to future work. Also, four signal processing applications might not be

enough to justify the advantage of sum-of-products designs. We have considered a few

common applications such as filters (FIR and high-pass), matrix multiplication and Euclidean

distance. It is likely that other applications, such as Fast Fourier transform (FFT), polynomial

evaluation and Lower Upper (LU) decomposition would benefit from the proposed

sum-of-products unit.

- 111 -

Chapter 5 Multi-functional Arithmetic Unit based

on Sum-of-Products

Recent digital signal processing applications require many arithmetic operations; as a result

modern DSPs and GPUs include separate arithmetic units for supporting each arithmetic

operation. This implementation leads to large power and area overhead. Thus, we need to

develop a sum-of-products unit capable of supporting several arithmetic operations using

essentially the same hardware with input controls.

This chapter presents designs for a Multi-functional Arithmetic Unit based on

Sum-of-Products (MAU-SoP) that implements a variety of arithmetic operations. The

MAU-SoP can perform a sum-of-products, a multiplication, a multiply-add, a square, a

sum-of-squares or an add-multiply computation based on an input control signal. Compared to a

conventional sum-of-products unit, the proposed unit has a modest increase in area and delay,

due to a modest amount of additional control logic, but allows multiplication-related arithmetic

operations to be performed efficiently. The experimental results indicate that a MAU-SoP for

32-bit two’s complement operands is implemented with approximately 8% more power, 6%

more area and nearly the same worst case delay as the sum-of-products unit proposed in

Chapter 4.

5.1 Introduction

Multiplication and related arithmetic operations are found in many digital signal processing

applications including filtering, pattern recognition and vector computation. Previous studies on

arithmetic operations have mainly focused on designs for dedicated arithmetic hardware, which

compute only a single arithmetic operation. These dedicated arithmetic units work well for

- 112 -

nonprogrammable DSP designs in which the relative frequency of each arithmetic operation is

known in advance. However they are less suitable for recent programmable DSP, in which the

frequency of arithmetic operations is application dependent. For applications that do not

frequently perform the specific arithmetic operations, the extra arithmetic units needed for

dedicated arithmetic operations goes unused if separate arithmetic units are implemented for

supporting each arithmetic operation. Therefore, we need to design a multi-functional

arithmetic unit to provide flexibility.

In this chapter, we design a sum-of-products unit capable of supporting several arithmetic

operations using essentially the same hardware. Specifically, the use of a sum-of-products

operation can allow a general operation to more easily transform the other operations by

changing parameters. The remainder of this paper is organized as follows. Section 5.2 presents

the overall structure of the MAU-SoP. Section 5.3 describes designs for a MAU-SoP that

executes each operation based on a sum-of-products unit. Section 5.4 provides power, delay and

area results for the MAU-SoP and compares them to estimates for a conventional

sum-of-products unit. Section 5.5 gives conclusions. The designs presented in this chapter are

based on the sum-of-products unit proposed in Chapter 4. We assume the input operands are

32-bit integer operands, but they can easily be extended to other types of fixed-point operands.

5.2 MAU-SoP Structure

We describe here how to support several arithmetic operations using the same hardware.

Note that the sum-of-products operation s = a × b + x × y is a baseline operation. This

corresponds to several different arithmetic operations by setting variables accordingly. Table

5.1 summarizes arithmetic operations with corresponding conditions.

- 113 -

TABLE 5.1: OPERATION MODE

Opcode Operation Mode Expression Condition

SOP Sum-of-products a × b + x × y Baseline

M Multiplication a × b (x = 0) or (y = 0)

MA Multiply-add a × b + x y = 1

SS Sum-of-squares a
2
 + x

2
 (a = b) and (x = y)

S Square a
2
 (a = b) and ((x = 0) or (y = 0))

AM Add-multiply a × (b + y) a = x

5.2.1 The Opcode Decoder

The sum-of-products operation is executed by using two multiplier arrays, [4:2] adders and

the final CPA, but the other operations can be executed using less hardware where operations

are known in advance. To use less hardware, we need to add an opcode decoder and a MUX,

and modify multiplier arrays.

The decoder can detect all operands and then determine the operation mode. Once operation

is determined, it can disable blocks unused using signal gating. The gated signals are generated

based on the control signals and are combined with an AND gate in parallel. Finally it selects

appropriate value for the final result. Figure 5.1 shows the proposed sum-of-products with the

opcode decoder and the MUX. All opcodes and control signals are summarized in Table 5.2.

- 114 -

FIGURE 5.1: THE PROPOSED MAU-SOP STRUCTURE

TABLE 5.2: CONTROL SELECTION OF THE DESIGN

Input Output

Operation Mode Turn-on Modules Turn-off Modules MUX Selection

Sum-of-products
Two multiplier arrays,

[4:2] adder, CPA
None [4:2] adder

Multiplication
One multiplier array,

CPA

One multiplier array,

[4:2] adder

Turn-on multiplier

array

Multiply-add
One multiplier array,

[4:2] adder, CPA
One multiplier array [4:2] adder

Sum-of-squares
One multiplier array,

CPA

One multiplier array,

[4:2] adder

Turn-on multiplier

array

Square
One multiplier array,

CPA

One multiplier array,

[4:2] adder

Turn-on multiplier

array

Add-multiply
One multiplier array,

CPA

One multiplier array,

[4:2] adder

Turn-on multiplier

array

- 115 -

5.2.2 The Heterogeneous Sum-of-products Unit

Multiplication and multiply-add operations are the most frequently used arithmetic operation;

thus, such operations should have higher performance and lower power compared with other

operations. The other arithmetic operations are not relatively frequently used, so they should

have flexible structures for effective sharing of structure.

We determine the optimal partition, which is a critical problem in low-power design because

most operations do not use all modules of a sum-of-products unit. The sum-of-products unit

includes two multiplier arrays: a main multiplier array and an auxiliary multiplier array. We use

two multiplier arrays independently. Because multiplication and multiply-add operations use

only a single multiplier array, we would not add extra gates. This is effective for high speed and

low power due to the relatively simpler structure. This is called a main multiplier array. On the

other hand, the other operations can be executed by using the modified array. The extra gates

are inserted for effective sharing of structure. This modified multiplier array is called an

auxiliary multiplier array. This structure is relatively slower, but square, sum-of-squares and

add-multiply operations can be executed using less hardware. Compared to the delay of the

sum-of-products unit proposed in, Chapter 4, the delay of the proposed sum-of-products

operation will be increased because the delay of an auxiliary multiplier array is increased. Table

5.3 describes operating units depending on arithmetic operation.

- 116 -

TABLE 5.3: OPERATING UNITS BASED ON ARITHMETIC OPERATIONS

Operation Components used in operation

Sum-of-products Main multiplier array, Auxiliary multiplier array, [4:2] adder, CPA

Multiplication Main multiplier array, CPA

Multiply-add Main multiplier array, [4:2] adder, CPA

Sum-of-squares Auxiliary multiplier array, CPA

Square Auxiliary multiplier array, CPA

Add-multiply Auxiliary multiplier array, CPA

5.3 Arithmetic Operations

In this section, we present each arithmetic operation. All designs are theoretically analyzed.

For theoretical analysis, the delay of a 2-input XOR gate, TXOR2, is used as the base unit delay.

We assume all estimates do not include buffers. The area of inverting logic is not also included

as we assume logic polarities are optimized in the actual implementations. Multiplier arrays

analyzed here assume the radix-2 non-split LR array. We use area and delay estimates of this

structure which have been already analyzed in Chapter 2.

5.3.1 Sum-of-products

When the opcode is SOP (sum-of-products), a sum-of-products is executed by using two

multiplier arrays, [4:2] adders and the CPA, as shown in Figure 5.2.

5.3.2 Multiplication

When the opcode is M (multiplication), a multiplication is performed by using a main

multiplier array and the CPA, as shown in Figure 5.3. The auxiliary multiplier array and [4:2]

adders are turned off using signal gating techniques. The final results are selected by using

multiplexers controlled by the opcode decoder.

- 117 -

FIGURE 5.2: SUM-OF-PRODUCTS OPERATION

FIGURE 5.3: MULTIPLICATION OPERATION

- 118 -

5.3.3 Multiply-add

When the opcode is MA (multiply-add operation), a main multiplier array, [4:2] adders and

the final adder are used while an auxiliary multiplier is deactivated. Two carry-save redundant

outputs from one multiplier and one input bypassed are summed using [4:2] adder and values

are selected by using multiplexers controlled by the opcode decoder. Finally, the CPA generates

the final product. This multiply-add operation has less power dissipation than the baseline

sum-of-products because it avoids the execution of one multiplication. One example is

multiply-add operation as shown in Figure 5.4.

FIGURE 5.4: MULTIPLY-ADD OPERATION

- 119 -

5.3.4 Sum-of-squares

Fundamentally, a sum-of-squares operation is executed using two multiplier arrays, [4:2]

adders and the final CPA. However, this design is not efficient in power, area and delay. An

efficient way to compute a sum-of-squares is to use the CMSSU technique [94]. A

sum-of-squares operation can be executed using a single modified multiplier array and a CPA.

First, we examine the difference between sum-of-squares and multiplication matrices. As

shown in Figure 5.5, the sum-of-squares matrix has an additional row with 32 × XOR2 gates. It

is also shifted left by one bit position relative to the multiplication matrix. Each PP bit aibj above

the anti-diagonal in multiplication matrix is replaced by aiaj in the sum-of-squares matrix. Each

PP bit ajbi below the anti-diagonal in the multiplication matrix is replaced by bjbi in the

sum-of-squares matrix. Multiplication and sum-of-squares matrices can be combined based on

these observations. To merge the multiplication and sum-of-squares array, several extra gates

are inserted into the original multiplier array. The area and delay increase of extra gates is

estimated as

Area = 64 × AMUX21 + 32 × (AXOR2 + AAND2 + AFA) + AMUX6432

Delay = TXOR2

Compared to a single original multiplier matrix, the combined structure has a slight increase

in area and delay. However, compared to the fundamental schemes using two multiplier arrays,

[4:2] adders and the final CPA, the combined structure can achieve significant power and delay

savings. Considering unused modules, the area and delay savings are estimated as

- 120 -

Area = APPG + 960 × AFA + 480 × A[4:2]ADDER – 64 × AMUX21 –32 × (AXOR2 + AAND2 + AFA) – AMUX6432

Delay = TXOR2

The combined unit performs either multiplication or sum-of-squares operations using

essentially the same hardware, a single modified multiplier array, based on input control signals.

One example is the sum-of-squares operation as shown in Figure 5.10.

5.3.5 Square

The standard multiplier can be used for computing square operation. However it is not an

efficient way to compute a square operation because all the hardware resources are used for the

square operation. A different method is to use a dedicated implementation for square [40][41].

A matrix for square consists of the diagonal with entries aiai = ai and two regions: A below the

diagonal and B above the diagonal, as shown in Figure 5.6(c). This matrix can be considerably

simplified before performing multi-operand addition. We can obtain this matrix for square

using the matrix for sum-of-squares. Only one region (A below the diagonal or B above the

diagonal) of the matrix for sum-of-squares is used to compute square, while the other region is

deactivated. The sum-of-squares matrix requires additional XOR gates and FAs. For square

computation, the XOR gates should be removed; then multiplicand bits (a0, a1, a2, a3, ···, a31)

are directly connected to the inputs of FAs. ‘1’s in the MSB and 16-bit are shifted right by one

bit position relative to the sum-of-squares matrix. The area and delay increase are very small

because of the shared structure. Compared to the sum-of-squares matrix, the square matrix has

an approximately 50% decrease in delay and area used because it uses only one region of the

two regions that make up a sum-of-squares matrix. To merge the multiplication and square

- 121 -

array, several extra gates are inserted into the original multiplier array. The area increase of

extra gates is estimated as

Area = 64 × AMUX21 + 32 × (AAND2 + AFA) + AMUX6432

Compared to a single original multiplier matrix, the combined structure has a slight increase

in area. However, compared to the fundamental schemes using two multiplier arrays, [4:2]

adders and the final CPA, the combined structure can achieve significant power and delay

savings. Considering unused modules, the area saving is estimated as

Area = APPG + 720 × AFA + 480 × A[4:2]ADDER – 64 × AMUX21 –32 × (AAND2 + AFA) –AMUX6432

- 122 -

(A) MULTIPLICATION MATRIX

- 123 -

(B) MATRIX FOR SUM-OF-SQUARES

FIGURE 5.5: 8-BIT TWO’S COMPLEMENT SIGNED MATRIX EXAMPLE FOR

MULTIPLICATION AND SUM-OF-SQUARES (ADAPTED FROM [94])

- 124 -

(A) MATRIX FOR SQUARE (A
2
)

- 125 -

(B) MATRIX FOR SQUARE (B
2
)

- 126 -

(C) MATRIX FOR SQUARE BASED ON SUM-OF-SQUARES (A
2
+ B

2
)

FIGURE 5.6: 8-BIT TWO’S COMPLEMENT SIGNED MATRIX EXAMPLE FOR SQUARE

OPERATION

- 127 -

FIGURE 5.7: SUM-OF-SQUARES OPERATION

5.3.6 Add-multiply

Fundamentally, an add-multiply operation is executed using two multiplier arrays, [4:2]

adders and the final CPA. However, it can be executed by a single modified multiplier array and

the final CPA if an extra adder is inserted into a sum-of-products unit. First, we examine the

mathematical property. The sum-of-products of the forms s = a × b + x × y can be transformed to

add-multiply of the form s = a × (b + y), where a = x. Basically PPG modules have two-input

AND gates for representing the PP bit. If we perform arithmetic addition before generating PP

bits, an add-multiply operation can be executed by using a single modified multiplier array and

the final CPA instead of using all the hardware resources of a sum-of-products unit. This adder

is called a PPG adder. When an add-multiply operation is selected, the PPG adder is activated,

and then the output of the PPG adder is connected with the inputs of the AND gates in PPG

modules. In this case, one PPG and one multiplier array unused are deactivated. When other

operations are selected, the PPG adder is deactivated, and remaining modules are activated.

- 128 -

To minimize the delay of an add-multiply operation, we assume that the fastest adder is

implemented for the PPG adder. Here we use a CLA as the PPG adder. To avoid a large number

of gates with a large number of inputs, we select a one-level CLA. The area and delay increase

of a 32-bit one-level CLA based on a 4-bit adder block is estimated as

Area = 8 × (8 × AAND2 + 5 × AOR2 + 3 × AAND3 + 2 × AAND4 + 2 × AOR4)

Delay= TAND2 + 8 × (TAND2 + TOR2) + TXOR2

We simplify these estimates using Table 3.1

Area = 61.2 × AXOR2

Delay= 9.5 × TXOR2

Compared to the original multiplier array, the proposed structure has a slight increase in

delay and area. However, compared to the basic add-multiply operation using two multiplier

arrays, [4:2] adders and the final CPA, the proposed operation can achieve significant area

saving with slight delay penalty. Considering all modules unused and inserted, the area saving

and delay increase are estimated as

Area = APPG + 1088 × AFA – 61.2 × AXOR2 (decrease)

Delay= 6.5 × tXOR2 (increase)

The total area used is decreased because the area of one PPG module, one array and [4:2]

adders unused is larger than that of a PPG adder inserted. The total delay increase is because

- 129 -

the delay increase of the PPG adder is larger than the delay reduction of [4:2] adders. However,

the PPG adder would probably affect the power dissipation in the subsequent array and CPA. It

is at the first stage on the long path in a sum-of-products unit; hence, it would probably

introduce extra unbalanced signal transitions. Additional buffers would also be needed to

handle the large fan-out for practical designs.

FIGURE 5.8: ADD-MULTIPLY OPERATION

5.3.7 Overall Execution

The combined structure has the original sum-of-products unit with additional gates. The

area and delay increases to be estimated are shown in Table 5.4. Based on these observations,

the critical path delay would increase by approximately 10 unit delays and the additional

- 130 -

buffering delay. Gates inserted would probably increase the total wire delay because routing

becomes more complex.

TABLE 5.4: AREA AND DELAY INCREASE OF ADDED MODULES

Operation Area Delay

Sum-of-squares 64 × AMUX21 + 32 × (AXOR2 + AAND21 + AFA) + AMUX6432 TXOR2

Square 64 × AMUX21 + 32 × (AAND21 + AFA) + AMUX6432 0

Add-multiply 61.2 × AXOR2 9.5 × TXOR2

Total 128 × AMUX21 + 93.2 × AXOR2 + 64 × (AAND21 + AFA) + 2 × AMUX6432 10.5 × TXOR2

In a conventional structure, all operations are executed by using all resources of a

sum-of-products hardware, because no operands are detected. However, the proposed unit can

deactivate several modules when operands meet specific conditions. An area and logic delay

comparison between a conventional structure and the proposed one to be estimated is shown in

Table 5.5.

- 131 -

TABLE 5.5: AREA AND DELAY IN EACH OPERATION

Operation
The original operations

Area Delay

All operations 2 × APPG + 2048 × AFA + ACPA TAND2 + 48 × TXOR2 + TCPA

Operation
The proposed operations

Area Delay

Multiply ADCT + APPG + 960 × AFA + 2 × AMUX6432 + ACPA
TDCT + TAND2

+ 45 × TXOR2 + TMUX21 + TCPA

Multiply-add ADCT + APPG + 1088 × AFA + 2 × AMUX6432 + ACPA
TDCT + TAND2 + 48 × TXOR2 +

TMUX21 + TCPA

Sum-of-squares
ADCT + APPG + 960 × AFA + 64 × AMUX21

+ 32 × (AXOR21 + AAND21 + AFA) + 3 × AMUX6432 + ACPA

TDCT + TAND2

+ 46 × TXOR2 + TMUX21 + TCPA

Square
ADCT + APPG + 480 × AFA + 64 × AMUX21

+ 32 × (AAND21 + AFA) + 3 × AMUX6432 + ACPA

TDCT + TAND2

+ 45 × TXOR2 + TMUX21 + TCPA

Add-multiply
ADCT + APPG + 61.2 × AXOR2 + 960 × AFA

+ 2 × AMUX6432 + ACPA

TDCT + TAND2 + 54.5 × TXOR2

+ TMUX21 + TCPA

Sum-of-products ADCT + 2 × APPG + 2048 × AFA + 2 × AMUX6432 + ACPA
TDCT + TAND2 + 48 × TXOR2

+ TMUX21 + TCPA

Array: radix-2 non-split LR array

1. Multiply: (original operation) two PPGs + two multiplier arrays + CPA

(proposed operation) a detector + a single PPG + a main multiplier array + MUX + CPA

2. Multiply-add: (original operation) two PPGs + two multiplier arrays + CPA

 (proposed operation) a detector + a single PPG + a main multiplier array + [4:2] adder + MUX + CPA

3. Square: (original operation) two PPGs + two multiplier arrays + CPA

 (proposed operation) a detector + a single PPG + an auxiliary multiplier array + MUX + CPA

4. Sum-of-squares: (original operation) two PPGs + two multiplier arrays + CPA

 (proposed operation) a detector + a single PPG + an auxiliary multiplier array + MUX + CPA

5. Add-multiply: (original operation) two PPGs + two multiplier arrays + CPA

(proposed operation) a detector + a single PPG + the first adder + a main multiplier array+ MUX + CPA

6. Sum-of-products: (original operation) two PPGs + two multiplier arrays + CPA

(proposed operation) a detector + two PPGs + two multiplier arrays + MUX + CPA

- 132 -

The cell areas are measured in the NAND2 gate based on the Samsung standard cell library.

We assume a Detector (DCT) consists of 4 × 63 (= 32 + 16 + 8 + 4 + 2 + 1) XOR2 gates, a PPG

consists of 32 × 32 AND2 gates and MUX6432 consists of 32 × MUX21 gates. The delay of

DCT, PPG and MUX6432 is estimated roughly as equivalent to 4 × TXOR2, TAND2 and TMUX21,

respectively. We use the delay and area estimates of the final CPA that have already been

analyzed in Chapter 3. The delay of the final CPA is estimated roughly as equivalent 23 × TXOR2.

A comparison of the delay and area estimates is shown in Table 5.6 and Figure 5.9. Area

indicates the amount of gate used. The multiplication operation has 45% less area used with 7%

more delay, the multiply-add operation has 40% less area used with 12% more delay, and the

sum-of-squares operation has 47% less area used with 9% more delay than the baseline

sum-of-products structure. The square operation has 60% less area used with 7% more delay.

The delay increase of an add-multiply operation is the largest, due to the delay of a PPG adder.

The sum-of-products operation with the proposed structure increase area and delay because an

opcode decoder and MUXs are inserted into the original sum-of-products unit. It is not easy to

estimate the current power reduction of the proposed structure. However, the proposed design

can eliminate significant switching activities because several modules are deactivated. All

things considered, the proposed structure would consume less power.

TABLE 5.6: AREA AND DELAY COMPARISON BETWEEN THE ORIGINAL AND THE

PROPOSED OPERATIONS

Operation
The original operations The proposed operations

Used Area (NAND2) Delay (TXOR) Used Area (NAND2) Delay (TXOR)

Multiply

11870 1.00 68.3 1.00

6529 0.55 73.3 1.07

Multiply-add 7122 0.60 76.3 1.12

Sum-of-squares 6292 0.53 74.3 1.09

Square 4820 0.40 73.3 1.07

Add-multiply 6528 0.55 82.8 1.21

Sum-of-products 12344 1.04 76.3 1.12

- 133 -

FIGURE 5.9: AREA AND DELAY COMPARISON BETWEEN THE ORIGINAL AND THE

PROPOSED OPERATIONS

5.4 Experimental Evaluation

To obtain power, area and delay results, we have implemented structural Verilog models for

MAU-SoP, given an operand size of 32-bit, and operand type of two’s complement. When

comparing the relative benefits of different designs, the structural model reduces the changes

made by the synthesis tool. The detailed design and simulation methodologies are described in

Appendix A. As our major focus is on the overall structure, we have reused the detailed modules

- 134 -

proposed in Chapter 2 and Chapter 3, and they have not been optimized for different low-power

techniques. They have been synthesized using the Synopsys Design Compiler with Samsung

65nm CMOS standard cell low-power library. The designs have been optimized for area with a

maximum fan-out of four. The simulation results used an operating voltage of 1.08 volts and a

temperature of 125 degrees centigrade. Table 5.7 shows the comparison of power, delay and

area estimates for two sum-of-products units. One is proposed in Chapter 4. This does not

include the opcode decoder, MUX and extra gates for supporting multi-function. The other is

proposed in this chapter. To facilitate comparisons, the percent increase and decrease in power,

delay and area between the original and the proposed designs for a given operand size are also

shown. Based on these estimates, the delay of the proposed structure is close to that of the

original one. This result implies that adding extra gates for multi-functional arithmetic

operations doesn't seem to have much effect on delay. Based on a theoretical analysis of the

worst case delay paths, we expect the worst case delay of the proposed sum-of-products unit to

be about 12% more than that of the original one. The experimental results have 9% less delay

than we expected because the ability of the Synopsys synthesis tool makes tradeoffs between

area and delay automatically. However, the proposed design has 9% power and 6% area

increase. The power increase is slightly larger than the area increase due to more glitches from

the PPG adder.

TABLE 5.7: POWER, DELAY AND AREA FOR THE ORIGINAL AND THE PROPOSED

SUM-OF-PRODUCTS UNITS

Multiplier Power (mW) Delay (ns) Area (μm
2
)

Original sum-of-products 12.07 1.00 13.36 1.00 23415 1.00

Proposed sum-of-products 13.12 1.09 13.78 1.03 24754 1.06

In Table 5.8, detailed experimental results are given to compare the power, area, and delay

characteristics of each component. Because an auxiliary multiplier array includes extra gates, it

has more power, delay and area than a main multiplier array.

- 135 -

TABLE 5.8: POWER, DELAY AND AREA FOR THE PROPOSED SUM-OF-PRODUCTS UNIT

Components Power (mW) Delay (ns) Area (μm
2
)

Sum-of-Products (MAU-SoP) 13.12 1.00 13.78 1.00 24754 1.00

Opcode Decoder 0.43 0.03 0.36 0.03 3348 0.13

First Adder 0.21 0.02 1.08 0.08 870 0.04

 Main Multiplier 5.78 0.44 7.33 0.53 9308 0.38

Auxiliary Multiplier 6.12 0.47 7.62 0.55 9982 0.40

MUX 0.23 0.02 0.25 0.02 192 0.01

 [4:2] adder, CPA 0.35 0.03 4.47 0.32 1054 0.04

Table 5.9 shows power, delay and area estimates for each operation. The multiplication has

37% less power and 31% less power-delay with 9% delay increase. The multiply-add operation

has 32% less power, and 22% less power-delay product with 15% delay increase. The

sum-of-squares operation has 42% power and 34% power-delay product reduction with 14%

delay increase. The square operation has 52% power and 46% power-delay product reduction

with 13% delay increase, and the add-multiply operation has 35% power and 15% power-delay

decrease with 30% delay increase. Compared to the original structure, the sum-of-products

operations have 10% power and 18% delay increase. Compared to the theoretical models, the

experimental results demonstrated a greater area increase because theoretical results do not

include buffering and conditionally inverting some bits.

TABLE 5.9: POWER, DELAY AND AREA FOR EACH OPERATION

Operation Power (mW) Delay (ns)
Power-Delay Product

(nJ)

Original operation 12.07 1.00 13.56 1.00 163.67 1.00

Proposed

operation

Multiply 7.60 0.63 14.78 1.09 112.39 0.69

Multiply-add 8.21 0.68 15.60 1.15 127.99 0.78

Sum-of-squares 7.00 0.58 15.46 1.14 108.22 0.66

Square 5.79 0.48 15.32 1.13 88.72 0.54

Add-multiply 7.85 0.65 17.63 1.30 138.30 0.85

Sum-of-products 13.28 1.10 16.01 1.18 212.44 1.30

- 136 -

FIGURE 5.10: POWER, DELAY AND POWER-DELAY PRODUCT COMPARISON BETWEEN

THE ORIGINAL AND THE PROPOSED OPERATIONS

- 137 -

5.5 Summary

In this chapter, we presented a sum-of-products unit capable of supporting several arithmetic

operations using essentially the same hardware. The proposed arithmetic unit is useful in digital

signal processing and multimedia applications, since they allow several multiplication-related

operations to be performed on shared hardware, which has roughly the same delay as the

original design. To achieve higher power savings, we have the control of the turn on/off

mechanisms using signal gating techniques. Detailed experimental estimates have been given

to compare the power, delay and area characteristics of each operation.

As the number of bit in the input operands increases, the increase rate in delay and area

between the original and the proposed sum-of-products structure will be constant because the

amount of additional gates is proportional to the operand size. Thus, our proposed structure will

be efficient when applied to high-precision.

- 138 -

Chapter 6 SIMD and Approximate Arithmetic

Unit based on Sum-of-Products

This chapter presents a fixed-point sum-of-products unit capable of supporting SIMD and

approximate arithmetic operations with multiple-precisions. The proposed arithmetic unit can

perform these operations using essentially the same hardware. Our goal is to reduce the power

consumption without significantly increasing the delay, area and error rate of final results. To

reduce the overall power dissipation, we use the SIMD for low-precision input data and

approximate operations for high-precision input data. To execute these operations, the

mode-dependent multiplexing is inserted into the PPG modules and the mode-dependent kills

in the carry chain are inserted into the PPR array and the final CPA. The SIMD technique

enables us to reduce a power by executing two 16 × 16-bit operations in parallel. It requires

additional INVs, MUXs, AND gates and adders. The SIMD operation has approximately 45%

less power, 15% less delay and 50% less execution time. This result indicates that the SIMD

operation has almost double throughput increase compared to the standard operation. The

approximate operation is to use 1) only a single multiplication when one result is significantly

larger than the other result or 2) 16 × 16-bit multipliers instead of 32 × 32-bit multipliers. The

approximate operation achieves between 40% and 73% power savings and between 42% delay

decrease and 2% increase with between 0.6% and 2.8% mean error.

6.1 Introduction

We are currently facing problems brought about by the change of data characteristics for

recent signal processing applications. In the existing signal processing applications, real data is

generally limited to small range in most cases, and the case of maximum range rarely occurs

[95][96]. However, recent signal processing applications are characterized by wide range with

- 139 -

high-precision [97]. Previous research of low-power design utilizing low-precision cannot be

used for recent signal processing applications. Therefore, research on a new low-power

approach is needed to satisfy low-power and high-throughput requirements for high-precision

data.

A low-power design is highly desirable for recent signal processing, while high performance

remains a major design goal. Generally, the requirements of low power and high performance

are conflicting because increased performance can typically be achieved with a corresponding

increase in power consumption due to increased frequency, increased hardware resources, or a

combination of these two factors. To satisfy both requirements, the SIMD and approximate

operations have been employed. The SIMD operation can reduce execution time using

data-level parallelism, and run at a lower supply voltage, which can reduce dynamic power

consumption compared to a standard operation. Likewise, minimizing power consumption

with approximate results has become an area of great importance. Although the mobile devices

with limited screen size can tolerate a reasonable amount of computation errors because a more

sophisticated image could be designed, this might be difficult given the limited screen space

and resolution.

In this chapter, we propose a SIMD and Approximate Arithmetic Unit based on

Sum-of-Products (SAAU-SoP) operation. This arithmetic unit uses essentially the same

hardware. We use a SIMD operation for throughput increase and power decrease using

low-precision data and use an approximate operation for power savings using high-precision

data. This chapter is organized as follows. First, we introduce problems and related works in

Section 6.2. In Section 6.3, the basic structure of the sum-of-products will be presented, and

then the details of each part of the sum-of-products will be described along with the required

modifications necessary to support the SIMD and approximate arithmetic operations. This is

followed by a description of how the SIMD and approximate techniques can be applied to each

- 140 -

module in a sum-of-products unit in Section 6.4. The experimental setup and the results will be

presented in Section 6.5. Finally, the chapter will be concluded in Section 6.6.

6.2 Related Work

A SIMD describes multiple processing units that perform the same operation on multiple

data simultaneously. This is usually used for signal processing applications [98][99][100].

Recent DSPs and GPUs are implementing wide SIMD, which allows arithmetic operations on

128 or 256-bit at the same time. They allow for the easy parallelization commonly involved in

signal processing data. For example, operations to change the brightness of an image can be

performed efficiently with the use of a SIMD. Each pixel of an image consists of three values

for the brightness of red, green and blue. To change the brightness, all three values are read from

memory, a specific value is added or subtracted from them, and the resulting values are written

back out to memory. SIMD can maximize the throughput of such types of operations by using

data-level parallelism. A recent advancement by mobile Application Processors (APs) is the

production of an SIMD processor [101][102]. Specifically, ARM NEON technology is a

128-bit SIMD extension for APs that provides powerful performance acceleration for

multimedia applications.

In order to reduce power dissipation, we can utilize imperfect human characteristics. For

instance, we cannot recognize the slight difference of the final image and voice, even though the

device processes data less accurately. Specifically, mobile devices with limited screen size can

tolerate a reasonable amount of computation errors because more sophisticated image could be

designed but this might be difficult given the limited screen space and resolution. Furthermore

the eye is easily fooled, especially when the image is moving. Thus signal processing

application in mobile systems can process their data less accurately. Recently, approximate

- 141 -

operations have become popular [103]. Arithmetic circuits that returned approximate results

would require much less power dissipation than those in conventional arithmetic units. Previous

studies which trade power dissipation for quality are typically at the algorithm level, where the

parameters of quantized levels and the precision of coefficients are traded for the quality of the

final solution. Applying sufficient statistical analysis, we can use for the average case rather

than the worst case, and achieve significant power and delay savings. They include algorithmic

noise tolerance [104][105][106], significance driven computation [107][108][109] and voltage

over scaling [110]. All these techniques are based on the voltage over scaling with extra

correction modules or limitation of the final results. Several studies on approximate arithmetic

have also been conducted. An error-tolerant adder has been proposed in [111]. It operates by

splitting the operands into accurate and approximate parts. The approach for logic complexity

reduction in adders has been proposed in [112]. Imprecise but simple the mirror adders have

been developed. They reduce power dissipation over conventional adder design. Truncated

multipliers have been introduced [113][114]. These multipliers keep only the n MS bits of the

final result and dispose of the n LS bits after perfuming rounding. Constructing a part of the

multiplication matrix would reduce the complexity, but this might incur potentially large errors.

Inaccurate multipliers using a 2 × 2 multiplier block resulting from logic complexity reduction

have been proposed in [115][116]. Most previous studies have focused on the separate

arithmetic unit for SIMD and approximate operations, and studies of composite arithmetic have

not been conducted. In this chapter, we consider how to design and further optimize the

sum-of-products structure covering these problems.

- 142 -

6.3 The Proposed Arithmetic Unit

Our goal is to reduce power consumption without a significant increase in the complexities

of modules and interconnects. In this chapter, we consider the structure optimization techniques

for SIMD and approximate operation. Some of these techniques have been used in multipliers,

and they are investigated to describe how they perform in a sum-of-products unit.

6.3.1 The SAAU-SoP Structure

We have considered only the sum-of-products unit based on LR array structures proposed in

Chapter 4. We here add a main controller and a dynamic range detector into the proposed

structure, as shown in Figure 6.1. The designs presented in this chapter assume they are limited

to a 32-bit operand size, but they can easily scale to a wide range of fixed-point operand sizes.

FIGURE 6.1: THE PROPOSED SAAU-SOP STRUCTURE

- 143 -

6.3.1.1 Operation Strategy

We can perform diverse operations based on dynamic input precision. If all input operands

are smaller than 16 bits, a SIMD arithmetic operation can be performed. If at least one input

operand is wider than 16 bits, a SIMD operation cannot be performed, but approximate

operations can be performed by utilizing an approximation. The approximate sum-of-products

computes the approximate results based on 64-bit results generated from the result of two 32 ×

32-bit multiplications.

Based on these operations, we propose a new control strategy. The dynamic range detector

can detect operand precision and generate the control signals to support effective SIMD and

approximate operations. These control signals are based on the types of applications (or users)

setting information and input operand precision. This information stored in the built-in memory

of the system is read out. The detector can be aware of the range of input operands. The detector

generates two types of signals: SIGN and MAGN. A 4-bit SIGN signal indicates four operands

have positive or negative values. A 4-bit MAGN signal indicates the precision of the input

operands. These two signals are then forwarded to a main controller that generates two control

signals: SIMD and APPR. A 1-bit SIMD signal controls SIMD operation, and a 1-bit APPR

signal controls the approximate operation. These control signals determine which modules are

executed for the corresponding operations.

6.3.1.2 Signal Gating

As power dissipation is directly related to switching activities, reducing the switching

activities would lead to lower power consumption. The proposed design can deactivate signals

in unused parts using a signal gating technique; thus, switching activities occurring in the

unused parts can be minimized. The general behavior of signal gating is as follows. The gated

- 144 -

signals are generated based on two control signals: SIMD and APPR. These two control signals

are combined with AND gates. The signal gating logics are initially inserted at predetermined

positions to identify the input control signals. If the SIMD or the APPR signal is set to 1, the

gating logic is activated. Depending on these control signals, the PPGs adjust the number of PPs

generated, and select appropriate PPR arrays and CPAs for a given operation. The details of the

implementation will be covered in the following sections.

6.3.2 The Proposed Operations

We describe here how to support SIMD and approximate operations. We propose to use an

ensemble of several small modules. The ensemble of small modules is selected so as to cover

the required operation. Figure 6.2 shows an ensemble of four designs with low-precision: A[3:0]

× B[3:0] shown in yellow (region A), A[7:4] × B[3:0] shown in violet (region B), A[3:0] × B[7:4]

shown in blue (region C) and A[7:4] × B[7:4] shown in green (region D).

FIGURE 6.2: THE EXAMPLE OF A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX

FOR 4-POINT ENSEMBLE

- 145 -

6.3.2.1 SIMD Operation

We first present a SIMD technique. This technique enables power reduction by executing

two operations in parallel. Clearly, by including a SIMD operation, one expects that fewer

cycles are needed.

Consider another example: matrix multiplication.

 (6-1)

where the number of columns in A equals the number of rows in B.

We assume that all input data have value not larger than 2
16

 - 1. This matrix multiplication

can be implemented in two ways by using a single 32 × 32 or two 16 × 16 SIMD

sum-of-products operations. One way to use a standard sum-of-products operation is as

follows:

for (i = 0; i < n; i++) {

for (j = 0; j < p; j++) {

for (k = 0; k < m; k+=2) {

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j]

}

 }

}

(6-2)

- 146 -

The expression (6-2) corresponds to a single sum-of-products operation which could be

executed as a single instruction. The last line corresponds to an accumulated sum-of-products

operation. Matrix multiplication can be also implemented as

for (i = 0; i < n; i++) {

for (j = 0; j < p; j++) {

for (k = 0; k < m; k+=4) {

AB[i][j] += A[i][k] × B[k][j] + A[i][k+1] × B[k+1][j]

 + A[i][k+2] × B[k+2][j] + A[i][k+3] × B[k+3][j]}

 }

}

(6-3)

The expression (6-3) corresponds to 4-Dimensional (4D) sum-of-products operations. The

last line corresponds to two sum-of-products operations that can be executed simultaneously.

Ideally, the SIMD operation requires only half the number of clock cycles compared to using a

standard sum-of-products operation. The SIMD operation can reduce the clock cycles, which

has an impact on reducing the execution time. The SIMD structure can run at a lower supply

voltage, which can reduce power consumption for dynamic power compared to a single

solution.

Figure 6.3 shows the example of an 8-bit LR multiplier bit matrix using 4-bit low-precision

operation. Used bit of operands is shown in yellow, and unused bit is shown in gray. When the

precision of the operand is smaller than the multiplier we intend to use, a number of PPs contain

a sign extension bit. Furthermore, the summation of the MS part of a PP array also contains a

meaningless sign extension bit. In order to take advantage of low-precision data, signal gating

can be applied to deactivate the unused parts of the PPR array to match data precision, thereby

- 147 -

avoiding unnecessary switching activities in the operation. One observes that the positions

between b4A and b7A in Figure 6.3(a) and between e2A and e3A in Figure 6.3(b) are not used;

thus, these parts are available for another multiplication. Figure 6.4 shows the example of a

signed 8-bit multiplication, where the first 4-bit multiplication, shown in yellow, is computed in

parallel with the second 4-bit multiplication, shown in green. Compared to the original matrix,

several modifications are needed to compute the 4-bit multiplications. In Figure 6.4, red text

indicates the modified bits. In Figure 6.4(a), the uppermost low (b3A) except for the MSB (a3b3)

is the opposite in the LS part; thus, all PPs except for the MSB need to be negated. Also, the

MSBs (a3b0, a3b1, a3b2) of each row need to be negated to get the correct result. Finally the sign

bit (1) is needed in the uppermost (b3A) low. This means there is a need for extra inputs, which

requires several extra adders and MUXs. In the LS part of radix-4 multiplier bit matrix, the

MSBs (a3e0, a3e1) of each row need to be negated, and 1s are added. In the MS part, two

compensation bits (c2, c3) and 1 are needed to prevent the sign extension. The carry chain in the

adder at the boundary position should be disconnected; hence, the power dissipation can be

reduced by removing unnecessary switching activities of unused gates, shown in gray,

compared to normal operation.

- 148 -

(A) A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX

(B) A SIGNED RADIX-4 8-BIT LR MULTIPLIER BIT MATRIX

FIGURE 6.3: THE EXAMPLE OF AN 8-BIT LR MULTIPLIER BIT MATRIX USING 4-BIT

LOW-PRECISION OPERATION

- 149 -

(A) A SIGNED RADIX-2 8-BIT LR MULTIPLIER BIT MATRIX

(B) A SIGNED RADIX-4 8-BIT LR MULTIPLIER BIT MATRIX

FIGURE 6.4: THE EXAMPLE OF AN 8-BIT LR MULTIPLIER BIT MATRIX USING 4-BIT SIMD

OPERATION

 Also, we can apply this SIMD technique to a radix-4 multiplication. In 16 × 16 SIMD

multiplication, the radix-4 recoder with digit set {-2, -1, 0, 1,2} is the same as that used for the

16 × 16 standard multiplication except that multiplier operand (B) changes. In 16 × 16 standard

multiplication, the first PP is generated by assuming B[-1] = 0. In SIMD multiplication, 0 needs

to be inserted at the element boundary for the first PP of the MS part. These are the extra 0 bit.

For example, in the 16 × 16 SIMD multiplication, the ninth PP uses the bit triplet {B[17], B[16],

- 150 -

0} instead of {B[17], B[16], B[15]} as used in the 16 × 16 normal multiplication, as shown in

Figure 6.5.

FIGURE 6.5: THE RADIX-4 RECODING (STANDARD AND SIMD MULTIPLICATIONS)

We need to modify the final CPA to support SIMD operation. The ensemble of small

adders is selected so as to cover the required operations. The carry input bit from each adder is

set to zero, and the carry out bit from each adder cannot be passed into the carry input of the

next adder. The MUXs are also added to correctly select the value. To design the final CPA

that performs either the standard or SIMD computation, an input control signal s is introduced,

where s is set to 1 for SIMD and 0 for standard computation. Consequently, the

implementation of the signed SIMD multiplication does not make significant changes to PPGs

and PPR arrays, and it is possible to execute two 16 × 16-bit sum-of-products operations or

four 16 × 16-bit multiplications simultaneously if all input operands are smaller than 16-bit.

6.3.2.2 Approximate Operation

Previous works have focused on developing approximate multipliers and have not

considered composite arithmetic operations, such as sum-of-products, in reducing power

consumption. We propose to investigate power optimization of a sum-of-products unit for

approximate operation. If the applications do not have strict quality constraints, we can use the

- 151 -

approximate sum-of-products operation. More power saving can be achieved at the risk of

losing more data by choosing a higher level of approximation.

There are two approaches for approximation. One approach is to use only a single

multiplication when one result is significantly larger than the other result. This is an easy way

of executing the approximate sum-of-products operation by omitting a single multiplication.

We use a static analysis based on the prior knowledge for application-specific precision. This

method determines reduced precisions with guaranteed error bounds. There are two methods.

One way is to use the significant difference between two results, a × b and x × y. If both

operands a, b have more than 16 bits, and both operands x, y have less than 16 bits, it is obvious

that one result, a × b, would be much larger than the other result, x × y. In this case, the smaller

multiplication, x × y, can be omitted. This scheme is called 32 × 32_low_error. In other cases,

two multiplication results are maintained. The other method is to achieve more power saving

with higher error. If both operands a, b have more than 16 bits, and either operands x or y has

less than 16 bits, the result, a × b, would be larger than the other result, x × y. In these cases, the

smaller multiplication, x × y, can be omitted. This scheme is called 32 × 32_high_error. This

operation is summarized in Table 6.1. These 32 × 32_low_error and 32 × 32_high_error

operations have a small and easily computable error probability of 12.5% and 62.5% with a

max error magnitude of 50%, respectively. The results in Table 6.1 show that the max-possible

error magnitude remains constant at 50% (maximum error occurs when two multipliers have

the maximum values, but one multiplication is omitted), while the min-possible error

magnitude remains constant at 0% (minimum error occurs when one multiplier has the

minimum values (0), then this multiplication is omitted). The error models assume a uniform

distribution of input vectors; hence, the results have the continuous uniform error distribution.

The mean error has less than 0.0015% because the LS 16-bit cannot affect the final results. We

can use the proposed approach for certain types of signal processing applications which are

- 152 -

inherently capable of absorbing error in arithmetic operations. Specifically, mobile devices

with small screen size can tolerate a reasonable amount of computation errors because more

sophisticated image cannot be difficult given the physical size. Figure 6.6 shows the

architecture level schematic of a sum-of-products unit. The second approach for approximation

is to use only 16 × 16-bit multipliers instead of 32 × 32-bit multipliers. This scheme is called

16 × 16_error. By using the small multiplier, even higher power savings will be possible. The

difference between power dissipation of two multipliers with different size provides

significant power savings. Table 6.2 shows power, delay and area comparison between 16 ×

16-bit and 32 × 32-bit multipliers. Based on these estimates, the 16 × 16-bit multiplier has 81%

less power, 41% less delay, and 73% less area than the 32 × 32-bit counterparts. The basic

idea is to detect the precision of the input operands using a leading zeroes and ones detection

circuit and then route them to suitable multiplier. By moving the window, we can obtain more

accurate results. The 16-bit window for calculating multiplication is moved into from the

leading one bit for positive numbers (zero bit for negative numbers) through the next 16-bit. A

leading one/zero detector is provided for using the input operands to detect the leading one bit

position for positive numbers (zero bit position for negative numbers). All 32 bits of the input

operand is routed into 32 inputs of MUXs. A leading one bit for a positive value (zero bit for a

negative value) is mapped to the MSB of a 16-bit window, the next bit is mapped to the

second bit position, and the next 16-bit is mapped to the LSB of a 16-bit window. With the

MUX, the MSB of the 32-bit operand is chosen when 31 is asserted at selection signal and the

LSB of the 32-bit adder is chosen with the assertion of 0 at the selection signal. The 16 bits of

the 32-bit input operand for calculating multiplication are then selected with the multiplexer

once the position of the leading one (zero) bit is known. Finally, the 16-bit window takes

16-bit from the leading one (zero) bit through the next 16-bit of the operand. We assume the

MUX321 gate consists of five stages of 31 × MUX21 (= 16 + 8 + 4 + 2 + 1). MUX321 gates

- 153 -

enable a reduced latency by executing MUX gates in the same stage in parallel. The estimated

delay and area of additional MUX are estimated roughly as below

 Area: 2 × 16 × MUX321 = 2 × 16 × 31 × MUX21 = 992 × MUX21

 Delay: MUX321 = 5 × MUX21

TABLE 6.1: USED PPR MODULES FOR A 32 × 32_LOW_ERROR AND A 32 ×

32_HIGH_ERROR METHODS BASED ON INPUT OPERAND PRECISION

Operand Precision Used Modules

a b X Y Accurate Mode
Approximate Mode

(32 × 32_low_error)

Approximate Mode

(32 × 32_high_error)

< 16 < 16 < 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

< 16 < 16 < 16 > 16 a × b + x × y a × b + x × y Accurate x × y Appr.

< 16 < 16 > 16 < 16 a × b + x × y a × b + x × y Accurate x × y Appr.

< 16 < 16 > 16 > 16 a × b + x × y x × y Appr. x × y Appr.

< 16 > 16 < 16 < 16 a × b + x × y a × b + x × y Accurate x × y Appr.

< 16 > 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

< 16 > 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

< 16 > 16 > 16 > 16 a × b + x × y a × b + x × y Accurate x × y Appr.

> 16 < 16 < 16 < 16 a × b + x × y a × b + x × y Accurate a × b Appr.

> 16 < 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

> 16 < 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

> 16 < 16 > 16 > 16 a × b + x × y a × b + x × y Accurate a × b Appr.

> 16 > 16 < 16 < 16 a × b + x × y a × b Appr. a × b Appr.

> 16 > 16 < 16 > 16 a × b + x × y a × b + x × y Accurate a × b Appr.

> 16 > 16 > 16 < 16 a × b + x × y a × b + x × y Accurate a × b Appr.

> 16 > 16 > 16 > 16 a × b + x × y a × b + x × y Accurate a × b + x × y accurate

Operation Mode Max. Error (%) Min. Error (%) Error Probability (%)

32 × 32_low_error 50.00 0 12.50

32 × 32_high_error 50.00 0 62.50

- 154 -

FIGURE 6.6: APPROXIMATE SUM-OF-PRODUCTS OPERATION

TABLE 6.2: POWER, DELAY AND AREA COMPARISON BETWEEN 16 × 16-BIT AND 32 ×

32-BIT MULTIPLIERS

 Power (μW) Delay (ns) Area (μm
2
)

16 × 16-bit LR multiplier 1127 0.19 5.42 0.59 3265 0.26

32 × 32-bit LR multiplier 5932 1.00 9.18 1.00 12559 1.00

- 155 -

(A) APPROXIMATE OPERATION USING 16 × 16-BIT MULTIPLICATION

(B) MAPPING USING 16 × 16-BIT WINDOWS

FIGURE 6.7: APPROXIMATE SUM-OF-PRODUCTS OPERATION FOR 16 × 16_ERROR

METHOD

6.4 Basic Components

In this section, we consider how to design the approximate sum-of-products and how to

further optimize the structure.

6.4.1 Dynamic Range Detector and Main Controller

The dynamic range detector detects the signs and effective dynamic ranges of all input data,

and then generates the control signals: SIGN and MAGN. These control signals are used to

- 156 -

disconnect carry chains and deactivate unused parts of the PPR array and the final CPA. The

detector consists of several OR and MUX gates. Table 6.3 shows the function table, and Figure

6.8 shows the functional blocks of the dynamic range detector. The sign detector consists of

simple NOR2, AND2 and INV gates. In the magnitude detector, the OR15 gate is used to detect

positive numbers and the NAND15 gate is used to detect negative numbers. The OR15 gate

asserts the output to be high if any of the inputs is 1, and the NAND15 gate asserts the output to

be high (1) if any of the inputs is 0. Using the combination of simple gates, we can detect the

sign and magnitude of operands. Both the 32-bit multiplier and multiplicand operands are

divided into two parts, where the detection is completed for 32 and 16-bit ranges. The output of

a dynamic range detector are grouped into 4-bit SIGN and 4-bit MAGN signals, where the MS

bit of the SIGN signal is set to high (1) if both inputs are positive numbers, the second bit is set

to high (1) if input A is positive, but input B is negative, the third bit is set to high (1) if input A is

negative, but input B is positive number, and the LS bit is set to high (1) if both inputs are

negative. The MS bit of the MAGN signal is set to high (1) if the magnitudes of both inputs are

larger than 16-bit, the second bit is set to high (1) if the magnitudes of input A is larger than

16-bit, but the magnitudes of input B is not larger than 16-bit, the third bit is set to high (1) if the

magnitudes of input A is not larger than 16-bit, but the magnitudes of input B is larger than

16-bit, and the LS bit is set to high (1) if the magnitudes of both inputs are not larger than 16-bit.

The main controller generates the SIMD signal indicating the SIMD operation and the APPR

signal indicating error-tolerant operation based on the users (or application) information and

operand sizes. The enable signals for carry-kill, which are inputs of signal gating modules, are

generated from the main controller.

- 157 -

TABLE 6.3: FUNCTION TABLE OF DYNAMIC RANGE DETECTOR

Operand Output

a (x) b (y) SIGN [3] SIGN [2] SIGN [1] SIGN [0]

+ + 1 0 0 0

+ - 0 1 0 0

- + 0 0 1 0

- - 0 0 0 1

Operand Precision Output

a (x) b (y) MAGN [3] MAGN [2] MAGN [1] MAGN [0]

> 16 > 16 1 0 0 0

> 16 ≤ 16 0 1 0 0

≤ 16 > 16 0 0 1 0

≤ 16 ≤ 16 0 0 0 1

- 158 -

(A) A SIGN DETECTOR

(B) A MAGNITUDE DETECTOR

FIGURE 6.8: FUNCTIONAL BLOCKS OF THE DYNAMIC RANGE DETECTOR

- 159 -

6.4.2 The Radix-4 Recoder and the PPG

The PPGs use radix-4 recoding which reduces the number of PPs from n to n/2 for an n ×

n-bit multiplication [42]. The block diagram for the radix-4 recoder and PPG modules are

shown in Figure 6.9. This is identical to standard PPG modules except for additional AND2

gates for masking. The PPGs are able to generate the appropriate PPs for each of the supported

operation modes. A 32 × 16-bit or 16 × 16-bit multiplication (MAGN[3:0] = 0100 or 0001)

requires only the first eight PPs; thus, the first eight PPGs are activated while the next eight

PPGs are deactivated. However, the SIMD 16 × 16-bit multiplication requires all sixteen PPs,

so all sixteen PPGs are activated. If the magnitude of the multiplier is larger than 16-bit

(MAGN[3:0] = 1000 or 0010), all sixteen radix-4 recoders are activated. Because all radix-4

recoders are activated, the control signals for deactivating radix-4 recoders are not necessary.

The radix-4 recoder can generate five possible values of -2, -1, 0, 1, and 2 times the input data.

The control signals are generated depending on the 3-bit recording scheme. The radix-4 recoder

is used to generate three control signals: SHIFT, COMP and ZERO, which are used in the PPG.

The SHIFT signal is used to shift the multiplicand operand left by one-bit, the COMP signal

inverts the input multiplicand operands, and the ZERO signal is used to output zeros as output

of that PP.

- 160 -

FIGURE 6.9: FUNCTIONAL BLOCKS OF THE RADIX-4 RECODER AND PPGS

6.4.3 The PPR Array

As mentioned in Section6.3.2, the standard PPR array and SIMD PPR array reveal minor

differences between two multiplication bit matrices. To unify two PPR arrays, it is necessary to

insert several gates at each mode element boundary. Figure 6.10 shows the added modules for

SIMD operation. We define an input control signal based on the operation mode, which is set to

high (1) for a SIMD computation, and low (0) for a standard operation. In order to support the

- 161 -

SIMD operation, we have to disconnect the carry chain in the adder at the boundary position.

The bit positions of the boundaries depend on the operation mode. The killing of carries can be

achieved by inserting a 2-input AND gate at each element boundary to mask the carry-in input

of each corresponding FA. The carry-kill AND gates can be incorporated into the existing FA

design such that they will not significantly increase delay through the array as shown in Figure

6.11. The Boolean equations with the carry-in kill term are given in the following equation.

KILL_carry_v_SIMD=(MAGN[1] OR MAGN[0]) AND SIMD

KILL_sum_v_SIMD= (MAGN[1] OR MAGN[0]) AND SIMD

KILL_carry_h_SIMD= (MAGN[2] OR MAGN[0]) AND SIMD

KILL_sum_h_SIMD= (MAGN[2] OR MAGN[0]) AND SIMD

(6-4)

Our gating approach provides gating lines for SIMD operations, as shown in Figure 6.12.

This method is efficient because it does not add significant delay to the critical path and does not

require much extra hardware.

Compared to a 32-bit radix-2 standard PPR array, a 32-bit radix-2 PPR array for SIMD

operation requires an additional 31 × INV (to compute inverted PPs at the uppermost low (b15A)

and at the MSB at the all row except for the uppermost low (a15b0, a15b1, ···, a15b13, a15b14) and 1

in the part), and 31 × MUX21 (to select one of two results). Compared to a 32-bit radix-4

standard PPR array, a 32-bit radix-4 PPR array for SIMD operation requires an additional 14 ×

HA and 1 × FA (to add inverted PPs and 1s in the lower adder), and 9 × HA (to add

compensation bits and 1s in the higher adder). SIMD operation also requires a 32-bit signal

gating with the carry-kill signals used as the enable signals for the signal gating circuit. It

requires additional 65 × AND2 gates to mask carry signals.

- 162 -

(A) FOR RADIX-2

(B) FOR RADIX-4

FIGURE 6.10: THE ADDED MODULES FOR SIMD OPERATION

- 163 -

FIGURE 6.11: THE MODIFIED MODULES FOR SIGNAL GATING IN PPR ARRAY

- 164 -

FIGURE 6.12: GATING LINES FOR SIMD OPERATION

- 165 -

6.4.4 The Final CPA

The final CPA consists of two 16-bit and one 32-bit adders, where the "MAGN" signals

indicating the multiplication size determines the selection order of these structures for final

addition. In order to minimize the switching activities, we design the final CPA using signal

gating with carry control signals, which enable the cout from the lower adder to be passed into

the cin of the next adders, as shown in Figure 6.13. The unused blocks of the final CPA are

disabled to avoid switching activities. If a 16 × 16-bit SIMD operation is selected, the cout from

the lower 32-bit adder cannot be passed into the cin of the next adder; thus, the MS 32-bit adder

accepts the carry input as zero. The 48-bit output of the 32 × 16-bit (or 16 × 32-bit)

multiplication is distributed between the two adder structures. The cout from the LS 32-bit adder

is passed into the cin of the middle 16-bit adder. The cout from the middle 16-bit adder cannot be

passed into the cin of next 16-bit adder. In the 32 × 32-bit operation, the cout from the LS 32-bit

adder is passed into the cin of the middle 16-bit CLA and then passed into the cin of the MS

16-bit adder. The MUX of the final CPA selects the 64-, lower 48-, 32-bit for accurate operation

or higher 32-bit for approximate operation to yield the final result. The gating method involves

killing the carries which cross the element boundaries that are determined by the operation

mode selected and operand size. This is similar to the method used in the reduction array. The

extra 2-input AND gate can be combined into the adder blocks without significantly additional

delay. The Boolean equations with the carry-in kill term are

KILL_cin0 = (SIMD AND MAGN[0])

KILL_cin1 = (SIMD OR MAGN[3])′

(6-5)

- 166 -

FIGURE 6.13: FUNCTIONAL BLOCKS OF THE FINAL CPA

- 167 -

6.4.5 Overall Execution

In order to combine the conventional sum-of-products unit with all the proposed schemes,

several modules are inserted into the original multiplier matrix. The area and delay increases to

be estimated are shown in Table 6.4. We estimate the area and delay based on the detailed

design in the previous section and the Samsung library and we estimate dynamic power

dissipation based on the proposed structure and equation (1-10). The extra carry-kill AND

signal gating operation can be executed in parallel with inversion terms; thus, additional

inverters will not increase the total delay. Based on these observations, the critical path delay

would increase by approximately 40 × AND2 delay (20 × unit delay) and the additional

buffering delay. Adding gates would also increase the total wire delay due to more complex

routing. Our proposed arithmetic unit can deactivate several modules unused when SIMD and

approximate operations are performed. The area and logic delay comparison to be estimated is

shown in Table 6.5 .The cell areas are measured in the NAND2 gate based on the Samsung

standard cell library. The delays and areas of the PPR array and the CPA have been analyzed in

Chapter 2 and Chapter 3and thus we reuse them. Compared to a 32 × 32-bit standard

sum-of-products operation, a 16 × 16-bit SIMD operation has 42% less used area and 35% less

delay, and an APPR operation has 39% less used area with a 2% delay increase. The delay

decrease of a SIMD operation is because two small operations can be executed in parallel, and

the delay increase of APPR operation arises from the extra gates to mask carry signals. The

used area decrease of SIMD and APPR operations is due to unused segmentations in the PPR

array. Compared to a sum-of-products operation using two 32 × 32-bit multiplications, the

proposed operation using only one 32 × 32-bit multiplication with one neglected 32 × 32-bit

multiplication has approximately 40% less used area, and one using two 16 × 16-bit

multiplication has approximately 65% less used area and 35% less delay. The decrease in area

and delay is because one multiplication is neglected and small multiplication is performed. It

- 168 -

is not easy to estimate the current power reduction of the proposed structure. Based on the

equation for dynamic power dissipation, reduced power can be achieved by decreasing these

factors: capacitance, supply voltage, frequency, and switching activities. The proposed design

can eliminate significant switching activities because several modules are deactivated; thus, the

proposed structure would consume less power.

TABLE 6.4: DELAY AND AREA INCREASE OF ADDED MODULES (RADIX-2)

(A) DYNAMIC RANGE DETECTOR AND MAIN CONTROLLER

Module Delay Area

Dynamic Range

Detector

SIGN

 TAND2 + TINV

MAGN

 TAND15 + TXOR2 + TAND2

SIGN

 3 × AAND2 + 2 × AINV + AOR2

MAGN

 AOR15 + AAND15 + 4 × (AXOR2 + AOR2)

+ 12 × AAND2

Main Controller

SIMD

 PPG: TOR2 + TAND2

Common

 Array: TOR2 + TAND2

 CPA: 2 × TOR3 + TAND2

SIMD

 PPG: AOR2 + AAND2 +AINV

 Array: 2 × (AOR2 + AAND2)

APPR

 Array: AOR3 + AAND2

Common

 CPA: AOR2 + 2 × (AOR3 + AAND2)

Total
TAND15 + TXOR2 + TINV + 5 × TAND2 +2 ×

(TOR2 +TOR3)

AOR15 + AAND15 + 4 × AXOR2 + 9 × (AOR2 +

AAND2) + 3 × (AINV + AOR3)

(B) SIGNAL GATING MODULE

Module Delay Area

PPG
SIMD

 TAND2 + TINV

SIMD

 15 × (AAND2 + AINV)

Array

SIMD

 32 × TAND2

APPR

 31 × TAND2

SIMD

 65 × (AAND2 + AINV)

APPR

 31 × (AAND2 + AINV)

CPA
Common

 2 × TAND2

Common

 2 × (AAND2 + AINV)

Total 35 × AAND2 + TINV 113 × (AAND2 + AINV)

- 169 -

TABLE 6.5: DELAY AND AREA COMPARISON BETWEEN THE ORIGINAL AND THE

PROPOSED OPERATIONS

Operation
The original operations (32 × 32-bit) The proposed operations (32 × 32-bit)

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2)

SIMD 68.3 11870 11870 6884 45.8 0.67 45.8 0.67

Operation
The original operations (two 32 × 32-bit) The proposed operations (one 32 × 32-bit)

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2)

APPR 113.8 1.00 28488 1.00 115.0 1.01 17093 0.60

Operation
The original operations (two 32 × 32-bit) The proposed operations (two 16 × 16-bit)

Delay (TXOR) Used Area (NAND2) Delay (TXOR) Used Area (NAND2)

APPR 113.8 1.00 28488 1.00 74.4 0.65 10108 0.35

6.5 Experimental Evaluation

The sum-of-products presented in this chapter was implemented in Verilog at a structural

level. Because our main concern is power savings at the architecture level, we have reused the

detailed designs proposed in the previous chapter, and they have not been further optimized for

different low-power techniques. Several modules such as AND2 gates for supporting SIMD

operation and masking carry signals have been inserted to a sum-of-products unit. We used

Synopsys Design Compiler for synthesis and IC Compiler for the placement and routing. We

used PrimeTime to measure delay, and Samsung CubicWare to measure power dissipation.

The designs were optimized for area with a maximum fan-out of four. The simulation results

used an operating voltage of 1.08 volts and a temperature of 125 degrees centigrade. The

detailed description of simulation methodologies are described in Appendix A. Table 6.6 shows

the comparison of power, delay and area estimates for the original and the proposed

- 170 -

sum-of-products unit. To facilitate comparisons of these estimates, the relative change (percent

increase and decrease) in power, delay and area between the original and proposed units is also

shown. Based on these estimates, the power, delay and area of the proposed structure is similar

to that of the original one. This result implies that adding gates for SIMD and approximate

operations does not seem to have a significant effect on power, delay and area.

TABLE 6.6: POWER, DELAY AND AREA FOR THE ORIGINAL AND THE PROPOSED

SUM-OF-PRODUCTS UNITS

Multiplier Power (mW) Delay (ns) Area (μm
2
)

Original sum-of-products 12.07 1.00 13.36 1.00 23415 1.00

Proposed sum-of-products 12.55 1.04 14.02 1.05 24117 1.03

Table 6.7 shows power, delay and power-delay estimates for each operation. The SIMD

operation (two 16 × 16-bit sum-of-products) has 47% less power, 15% less delay and 55% less

power-delay.

TABLE 6.7: POWER, DELAY AND AREA FOR EACH OPERATION IN ONE MULTIPLIER

Operation Power (mW) Delay (ns)
Power-Delay

Product (nJ)

Original operation

(32 × 32 sum-of-products)
12.07 1.00 13.56 1.00 163.67 1.00

SIMD operation

(two 16 × 16 sum-of-products)
6.40 0.53 11.49 0.85 73.54 0.45

In order to compare relative throughput of the original and the SIMD operation, the most

effective approach is to use execution time for a program to compare relative power dissipation

(or energy) and performance. The execution time required for a program can be written as

- 171 -

Execution time for a program

= Clock cycles for a program × Clock cycle time

= Instructions for a program × Clock cycles per instruction × Clock cycle time

[90]

(6-6)

We reused the ARM’s architecture, benchmark programs and simulation tools presented in

Chapter 4, and we assumed that all input data have value smaller than 16-bit. The comparison

results of clock cycle estimates are shown in Table 6.8. In an ideal situation, the SIMD

operation would be expected to have a 50% reduction in total clock cycles for benchmark

programs. Unfortunately, however, the original and the SIMD operation have the same clock

cycles to execute the initialization code; hence, the SIMD operation has between 30% and 47%

reduction.

TABLE 6.8: CLOCK CYCLES FOR BENCHMARK PROGRAMS

Clock cycles
FIR Filter

(length = 10)

High Pass Filter

(length = 10)

Matrix

Multiplication

(2 × 2)

Euclidean

Distance

(length = 10)

Sum-of-products

(Original)
97 1.00 98 1.00 146 1.00 179 1.00

Sum-of-products

(SIMD)
54 0.56 52 0.53 102 0.70 108 0.60

- 172 -

We can measure the execution time based on Table 6.7 and Table 6.8. Compared to the

original operation, the SIMD operation has between 41% and 55% execution time decrease.

Because the SIMD operation can be executed simultaneously and the delay of a unit for

supporting a SIMD operation is smaller than that for supporting a standard operation, the

SIMD operation has a significant reduction in execution time. Throughput is measured in jobs

/ time unit, so the SIMD operation has an almost double throughput increase.

TABLE 6.9: EXECUTION TIME FOR BENCHMARK PROGRAMS

Execution time

(µs)

FIR Filter

(length = 10)

High Pass Filter

(length = 10)

Matrix

Multiplication

(2 × 2)

Euclidean

Distance

(length = 10)

Sum-of-products

(Original)
1.32 1.00 1.32 1.00 1.98 1.00 2.43 1.00

Sum-of-products

(SIMD)
0.62 0.47 0.60 0.45 1.17 0.59 1.24 0.51

To measure accuracy, the program was written in Verilog, but our program generates a

small number of values less than 16-bit, so we cannot efficiently measure error rate. We also

extract values from real image, Lena, which is a representative image for testing, but all data

are less than 16-bit. Finally, we created a list of random numbers in a spread sheet program to

compute the error probabilities and mean error, and then measure values for 10 iterations.

Table 6.10 shows power, delay and error rate for each operation. The possible error probability

is close to 100% because errors do not occur when one multiplication results are equal to 0 for

32 × 32_low_error and 32 × 32_high_error or two operands have more than 16 bits for 16 ×

16_error. We define mean error is calculated by the average value of (correct value –

approximate value) / correct value. The mean error has less than 3% because the smaller value

- 173 -

and LS 16-bit cannot affect the final results under our strategy. The error probability

introduced by 16 × 16_error is slightly smaller than other methods. This method provides the

largest power savings with the largest mean error among all approximation methods.

TABLE 6.10: POWER, DELAY AND AREA FOR APPROXIMATE SUM-OF-PRODUCTS

OPERATIONS

Operation Power (mW) Delay (ns)
Error

Probability (%)

Mean

Error (%)

Original operation (two 32 × 32) 12.07 1.00 13.56 1.00 ─ ─

Proposed

operation

32 × 32_low_error 7.24 0.60 13.84 1.02 100 0.6

32 × 32_high_error 7.24 0.60 13.84 1.02 100 1.1

16 × 16_error 3.26 0.27 7.86 0.58 98 2.8

6.6 Summary

In this chapter, we presented a sum-of-products unit capable of supporting SIMD and

approximate operations using essentially the same hardware. The SIMD operation can be used

to improve the performance of compact input data, and then trade frequency for supply

voltage reduction. The arithmetic units that return approximate results consume less power

with inaccurate results. The proposed arithmetic unit allows these operations to be performed

as an input control based on input operand size and application setting information, which has

roughly the same delay as the original structure. Thus the proposed arithmetic unit is useful in

digital signal processing applications having diverse input patterns. Detailed experimental

results were given to compare the power, delay and area characteristics of each operation.

In this chapter, we considered only the static precision method. This method can be easily

used for the error tolerant design, but it is impossible to determine a safe reduced operating

- 174 -

precision for the error tolerant design without prior knowledge. On the other hand, the dynamic

precision selection method ensures that arithmetic operations will give a result whose precision

can be determined by the results of tests on the initial samples of applications. This technique

provides more accurate results, but requires a first sampling period with the initial input for

precision determination. This method has one remaining issue that will not concern us formally

in this study but which is of some importance. The problem is how to efficiently design the

sampling buffer, which is used for determining the cut-off value. A simple sampling buffer

holds several random values, and determines the cut-off size based on maximum, minimum and

average values. Although it is simple, this method is relatively inefficient, in that it monitors

several random values in fixed amount of space. In some cases, data in some entries have

extremely small or large values. They represent magnitude in all input data, but do not reflect all

data value similarly. This leads to ineffective truncation when the sampling buffer is eventually

accessed. More advanced methods use tables to record history information related to several

initial data. This history information read from the table is used for predicting cut-off size.

Although a single multiplier is ignored, the error can be made small enough to be acceptable

by appropriately selecting the value of the correction value. A method for selecting the

correction value which minimizes the average error will also be left for future work. The

proposed sum-of-products unit leads to a simpler implementation, but introduce a large amount

of error only because it does not include the correction method. Given certain hardware and

error constraints, the appropriate number required for error correction can be readily

determined.

- 175 -

Chapter 7 Conclusion and Future Work

In this Chapter we evaluate the research contribution of this dissertation. Also, we provide a

critique of the existing research and suggest directions for future research investigations.

7.1 Research Contributions

In this dissertation, we have investigated high-level optimization techniques for a low-power

sum-of-products design. We have addressed the low-power design problem from two aspects:

internal efforts considering a sum-of-products unit and external efforts considering input data

characteristics. For internal efforts, we considered the structure optimization of PPR arrays and

the final CPA. For external efforts, we considered SIMD and approximate operations to

deactivate some portions of a sum-of-products unit. We have also considered a multi-functional

sum-of-products operation using input data characteristics. We performed placement and

routing experiments to evaluate all the optimization techniques studied and work toward

obtaining more precise results. The main contributions are as follows:

 To reduce power dissipation compared to recent multiplier designs, we proposed several

optimization techniques of the reduction structure for the array to utilize the low-power

features of a LR array. Experiment results have shown that both power and delay are

improved considerably with these techniques. Among different optimization techniques

for LR array multipliers, a 4-level UL split structure and a voltage islands technique are

the primary choices when power is the main concern.

- 176 -

 The low-power array structure optimization techniques mentioned in Chapter 2 were

combined with the high-performance CPA optimization techniques. The high-performance

CPA is necessary to improve the performance of a sum-of-products unit while maintaining

the power dissipation of the array structure. We presented the problem of adding four

carry-save vectors (each two carry-save vectors of two arrays) from two PPR arrays and a

design strategy specific to arrival time profiles generated by two PPR arrays. We have

shown that the proposed design reduces the power dissipation as well as overall latency.

 The sum-of-products operation is frequently used for many digital signal processing

applications. However, many DSPs and GPUs use an existing multiplier or a MAC unit to

execute sum-of-products operations, and thus take more clock cycles. To reduce the number

of clock cycles, we proposed a sum-of-products unit. This sum-of-products unit is designed

based on two parallel PPR arrays, [4:2] adders and the final CPAs. We compared with an

existing high-performance parallel multiplier and the ARM multiplier. The sum-of-products

unit has 46% less execution time with about 12% energy penalty compared to the

ARM7TDMI-S multipliers in four different benchmark programs. Also, it consumes less

power than a multiplier only when the execution time is the same.

 Most processors include separate dedicated arithmetic units to support each arithmetic

operation. This design is less suitable for current DPSs and GPUs because the frequency of

arithmetic operations is application-dependent. We have proposed a sum-of-products unit

capable of supporting multiple arithmetic operations: multiplication, multiply-add, square,

sum-of-squares, and add-multiply computations using essentially the same hardware based

on input control signals. Compared to a conventional sum-of-products unit, the MAU-SoP

increases power, area and delay slightly of the proposed sum-of-products unit, but allows

- 177 -

several multiplication-related arithmetic computations to be performed as a single

operation. Combining several similar operations to execute on the same hardware reduces

the area and power compared to separate implementations.

 To further reduce power consumption in a sum-of-products unit with large-dynamic-range

input data, we proposed a sum-of-products unit capable of supporting SIMD and

approximate operation. The proposed arithmetic unit can perform multiple-precision

sum-of-products for accurate and inaccurate results. The proposed techniques have not

changed the basic structure of a sum-of-products unit. Instead, the fundamental

components are partitioned and ancillary logic gates have been inserted along the gating

boundaries. For input data with a large dynamic range, significant power reduction has

been shown to be much better than that of the baseline sum-of-products unit in the

experiments.

7.2 Future Works

As an attempt to develop several optimization techniques for a low-power sum-of-products

unit, the research presented in this dissertation has achieved good experimental results and

demonstrated the efficiency of optimization techniques. However, there are some limitations in

our research and several future research directions are possible. In this section, we discuss the

remaining design issues.

- 178 -

7.2.1 Other Composite Arithmetic Operations

For potential applications which meet the increasing demand for pervasive secure and

multimedia information, one direction is to develop other composite arithmetic operations:

polynomials and four-dimensional sum-of-products.

The use of mobile computing technology has changed the way people communicate with

each other. However, modern mobile devices are vulnerable to various attacks, even though

most personal computers are surely protected by antivirus software [117]. Therefore, mobile

processors guarantee confidentiality and integrity of data, as well as ensuring reliable data

transfer using cryptography hardware [118]. However, cryptography hardware makes intensive

use of arithmetic operations; and thus consumes an enormous amount of power. Currently, most

cryptography algorithms have no consideration for low-power dissipation even though they are

frequently used in mobile devices. Therefore, cryptography issues should be explored in

conjunction with low-power solutions. In particular, polynomials, which are mathematical

expressions consisting of a sum of terms, each term including constants, variables or exponents,

are used for many cryptography applications such as Elliptic Curve Cryptography (ECC). Thus

the design of low-power composite arithmetic operations for polynomials is necessary for

low-power cryptography hardware design.

The other potential application is 3-Dimensional (3D) graphics, which have become the

most popular application dominated by arithmetic operations. Recent GPUs have integrated

shaders, which are programmable cores, for their numerical calculations [119][120]. Shaders

are used for vertex and pixel processing. Most 3D graphics hardware has 4-way SIMD units to

execute an operation of the 4D attribute simultaneously [121][122][123][124][125] because

vertex and pixel attributes such as color, vertex, and texture coordinates are represented with 4D

vectors in a 3D graphics processor. Thus the 4D sum-of-products operation is the most

- 179 -

frequently used in 3D graphics applications. We need to develop algorithms and

implementations of arithmetic units for a 4D sum-of-products, that computes Z = A × B + C × D

+ E × F + G × H. It will likely reduce the overall power dissipation of the entire 3D graphics

system by various techniques to merge the proposed techniques. We need to develop additional

composite arithmetic units for applications that frequently use these operations, and compare

them with discrete arithmetic units containing normal multipliers and adders.

7.2.2 64-bit Floating-Point Arithmetic Operations

Recently introduced ARMv8 architectures add support for 64-bit floating-point arithmetic

operations [126]. In this dissertation, we have considered only a 32 × 32-bit fixed-point

sum-of-products unit for simplicity. We have assumed that the proposed methods will be all

easily extended to deal with other floating-point representations of operands. Thus the next step

of our research is to develop a 64 × 64-bit sum-of-products unit and to determine which

techniques presented can be applied for a 64 × 64-bit hardware design. For example, our studies

have mainly focused on developing 4-level split array designs, and the length of each array

varies significantly with the input data size. It is the perfect candidate to be easily converted into

a 64-bit hardware. Specifically, the lower rows consume much more power than the upper rows,

and there would be significant power savings if the length could be further reduced. Considering

a 32 × 32-bit, an 8-level splitting was not a good example because each part has only four PPs;

thus, we avoided an 8-level splitting, due to this short length. However, in the case of a 64 ×

64-bit, it would be a good choice because each part has eight PPs. The voltage islands

techniques would also be a valuable technique for a 64-bit hardware. We have proposed to

exploit the non-uniform arrival time profiles to achieve power savings with minimal

performance degradation, and we applied the voltage islands technique to the regions of

- 180 -

non-uniform input generated by the 32-bit array. Since a 64-bit array has similar non-uniform

input arrival time, the voltage islands technique can be applied for a 64-bit array.

The 64-bit operation could be more appropriate to be performed using a floating-point

arithmetic. Floating-point arithmetic operations are widely used for advanced applications

such as 3D graphics and complex signal processing applications, which require a wide

dynamic range of arithmetic operation. However, they require additional complex processes

such as alignment, normalization and rounding, and thus suffer from more complex

implementation, which significantly increase the area, power consumption and latency. We

plan to develop low-power schemes for a floating-point sum-of-products unit.

- 181 -

Appendix A Design and Experimental Methodology

In this Appendix we explain the design and simulation methodologies that have been used to

obtain the experimental results in this dissertation. There are many choices for logic styles,

design descriptions, and simulation methods. Our choices and the reasons are described below.

A.1 Logic Style

There is several logic styles used today. The CMOS and Transistor Transistor Logic (TTL)

technologies are attractive for fabricating VLSI circuits. CMOS is a classification of digital

circuits that uses Field Effect Transistors (FET) in the design and TTL is also another

classification of digital circuits built from Bipolar Junction Transistors (BJT) and resistors.

CMOS is the primary technology choice in the semiconductor industry because of its many

good features such as small area, low power, relatively simple fabrication process [13]. The

advantage of CMOS to TTL is in the greater density of logic gates within the same material. A

single logic gate in a CMOS can consist of as little as two FETs while a logic gate in a TTL

can consist of a substantial number of parts as extra components are needed. Also, CMOS

logic style is robust with respect to voltage scaling and transistor sizing. It has the advantages of

generality and ease-of-use as standard cell based technology libraries and logic synthesis

techniques are well developed. CMOS logic style is a good choice in most cases if low power

and small power-delay product are of major concern, because CMOS circuits do not draw as

much power as TTL circuits [127]. For these reasons, we have chosen CMOS standard cell

logic style.

- 182 -

A.2 Library

The CMOS standard cell library we have used is Samsung 65nm standard low-power library.

As our primary goal is low-power design, we choose low-power library as the underlying

technology. The area, delay and power characteristics of basic cells are simplified and shown in

Table 3.1. The values in this table are listed only for high-level estimation purpose. Samsung

standard cell library also provides some synthesis optimized arithmetic cells, such as a 1-bit FA,

but we have not used the arithmetic cells provided because the optimization of the structures of

basic cells is one of our research objectives.

A.3 Design and Verification

We have chosen Cadence verification environment including NC-Verilog, Synopsys design

environment including Design Compiler, Power Compiler, PrimeTime, IC Compiler, Mentor

Graphics hardware/software co-simulation tool, Questa Codelink and Samsung in-house tool,

CubicWare. Design Compiler analyzes HDL designs, optimizes and maps HDL designs into

netlist using Samsung standard cell library. With given test data, NC-Verilog collects switching

activity information by dynamic timing simulation. In our experiments, we have used

CubicWare as a power estimation tool based on switching and capacitance information.

Detailed evaluation of designs consists of the following steps.

A.3.1 Algorithm Development and Verification using Software

The first step is to create a functional software version of algorithms implemented in

hardware. Algorithm verification provides us with the following.

- 183 -

 Analysis of arithmetic algorithms: By writing the pseudo code and seeing how it runs

beforehand, we gain full understanding of every algorithm. This allows better insight

into the overall algorithm, helps identify bottlenecks, and also is helpful in designing

the actual hardware.

 Algorithm verification: Before designing arithmetic units and writing HDL code, it is

a simpler and faster way to verify the correctness of the algorithms using software.

Note is that not all parts of the algorithm need to be verified because some parts

already covered in previous work are fully verified and debugged.

A.3.2 Hardware Design and Verification using RTL

Once the overall algorithm is fully developed and verified, we develop hardware models.

Hardware models refer to the identification of physical components and their interrelationships.

This description allows us to understand how their components communicate with each other.

Register Transfer Level (RTL) is a design abstraction which models a digital circuit in terms

of the flow of signals between hardware registers, and the logical operations performed on those

signals. RTL abstraction is used in HDL to create high level representations of digital circuits,

from which actual wiring and registers can be derived. We have implemented all proposed

models in technology-independent structural Verilog descriptions. To obtain power, delay and

area, we have implemented Verilog models, an operand type, two's complement, and an

operand size, 32-bit.

After designing RTL modules using HDL codes, the designs have been verified using RTL

verification tool. Verilog simulation is conducted to verify the correctness of each design.

Verilog codes are usable for the cycle-based simulation phase. Cycle-based simulation

evaluates logic functions across clock cycle boundaries. The purpose of this simulation is to

- 184 -

evaluate input stimuli as rapidly as possible. We have verified logic functions and timing. The

verification is performed with random data and some special boundary data tests. The random

data set used in the proposed arithmetic unit might not hit corner cases. Thus, we have checked

whether test cases include corner cases or not after the tool generates test cases. Cadence tool

internally uses the Tcl script language to run simulations on benchmark files, and therefore by

writing custom scripts file we have automated the simulation process.

A.3.3 Cycle-level Simulation

The clock cycles of the proposed arithmetic units for benchmark programs could be

measured by running cycle-level simulation tool with Verilog and compiled ARM assembly

code. The Mentor Graphics hardware/software co-simulation tool such as Questa Codelink

profiles clock cycles for programs.

A.3.4 RTL Synthesis and Analysis

All proposed arithmetic units are fully synthesizable. The HDL description could be directly

translated and optimized to an equivalent netlist for ASIC implementation. Because synthesized

results vary according to the constraints, we have used the same constraints to reduce the effects

of Synopsys Design Compiler. Because RTL designs determined the delay range, aggressive

delay minimization probably leads to much larger area and power. The synthesis mapping

objective has been set to minimize area because smaller area generally helps power saving is for

a given design. Buffers have been inserted automatically by Synopsys Design Compiler. There

are two main ways to estimate interconnect effects in power, delay and area characteristics. One

is to extract interconnect information from the actual placement and routing tool for accurate

estimation. The other is to use wire load models, which are provided based on statistical

information specific to their processes. The use of wire load models in estimation provides a fast

- 185 -

process with less accuracy. To obtain more precise delay and power calculation, we have

performed placement and routing processes. Interconnect parameters have been extracted and

back-annotated into Synopsys tool. Delays have been obtained from Synopsys PrimeTime, and

powers have been obtained from Samsung in-house power estimation tool, CubicWare. Areas

have been obtained from Synopsys Design Compiler and IC Compiler.

A.4 Power, Delay and Area Estimation

A.4.1 Data Set

Power dissipation is directly related to input data characteristics. One scheme may consume

less power for certain data patterns but consume more power for other data patterns. Therefore,

we have prepared random data sets in order to capture power features in recent applications for

independent variables in a random environment. Test data set consists of 32-bit pseudo-random

data. The static probability of each bit being 1 in random is 0.5 and the toggle rate of each bit is

0.25.

A.4.2 Estimation and Comparisons

The best way to compare different schemes is to fabricate each design and measure the

power, delay and area characteristics of actual chips. However, the fabrication is a rather

expensive and time consuming process, which makes it impractical to explore many design

alternatives. With the advancement of CAD tools, power, delay and area estimations with

back-annotated information can achieve the accuracy. Because the primary concern is the

relative difference, we have compared different schemes under the same experimental setting

and the absolute errors probably tend to go in the same direction and thus have little effect on

- 186 -

the relative comparison. Experimental results with comparisons of the other schemes have been

finally presented. For area analysis, we often found that there are not less consistent results

obtained from placement and routing tool because there is no consistency in size of white

space, which is automatically allocated by tool. The results obtained from synthesis rather than

those from placement and routing often have better relations with the power because of the

effects of placement and routing tool. In this case, we have provided the synthesis results. We

have used a power-delay curve commonly used to assess the merits of designs in digital CMOS

design. The feedback from these actual experiments has been used to further refine and modify

the solutions to make them achieve much lower power and higher performance in signal

processing applications.

- 187 -

Appendix B Abbreviations

ALU Arithmetic Logic Unit

AP Application Processor

BJT Bipolar Junction Transistors

CCA Conditional-Carry Adder

CLA Carry-Lookahead Adder

CLG Carry-Lookahead Generator

CMOS Complementary Metal Oxide Semiconductor

CPA Carry-Propagate Adder

CRA Carry-Ripple Adder

CSELA Carry-Select Adder

CSK Carry-Skip Adder

DCT Detector

DSP Digital Signal Processor

ECC Elliptic Curve Cryptography

EO Even/Odd

FA Full Adder

FET Field Effect Transistors

FFT Fast Fourier Transform

FIR Finite Impulse Response

- 188 -

HA Half Adder

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors

GPU Graphics Processing Unit

LR Left-to-Right

LS Least Significant

LSB Least Significant Bit

LU decomposition Lower Upper decomposition

MAC Multiply-and-Accumulate

MS Most Significant

MSB Most Significant Bit

MSG Modified Sign Generate

PC Personal Computer

PP Partial Product

PPG Partial Products Generator

PPR Partial Products Reduction

PPRT Partial Products Reduction Tree

RL Right-to-Left

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

TTL Transistor Transistor Logic

- 189 -

UL Upper/Lower

VLSI Very Large Scale Integration

2D 2-Dimensional

3D 3-Dimensional

4D 4-Dimensional

- 190 -

LR_32 Radix-2 LR using the default [3:2] adder

LR_42 Radix-2 LR using [4:2] adder

LR_42_Split2 Radix-2 2-level UL split array multiplier using [4:2] adder

LR_42_Split4 Radix-2 4-level UL split array multiplier using [4:2] adder

LR_42_Split2_ Radix4 Radix-4 2-level UL split array multiplier using [4:2] adder

MCSELA_11_6_CRA

Modified CSELA made up of CRAs with block sizes of 9−9−9−10−10−11−6

MCSELA_17_CRA

Modified CSELA made up of CRAs with block sizes of 9−9−9−10−10−17

MCSELA_17_CLA4

Modified CSELA comprised of the last group of a one-level 17-bit CLA divided

into 4 groups of 4- and 5-bit and remaining five groups of CRAs with block sizes of

9−9−9−10−10−17

MCSELA_17_CLA2

Modified CSELA comprised of the last group of a one-level 17-bit CLA divided

into 8 groups of 2- and 3-bit and remaining five groups of CRAs with block sizes of

9−9−9−10−10−17

MCSELA_10_2_CRA

Modified CSELA made up of CRAs with block sizes of 8−8−8−9−9−10−10−2

MCSELA_12_CRA

Modified CSELA made up of CRAs with block sizes of 8−8−8−9−9−10−12

MCSELA_12_CLA4

Modified CSELA comprised of the last group of a one-level 12-bit CLA divided

into 3 groups of 4-bit and six groups of CRAs with block sizes of

8−8−8−9−9−10−12

MCSELA_12_CLA2

Modified CSELA comprised of the last group of a one-level 12-bit CLA divided

into 6 groups of 2-bit and six groups of CRAs with block sizes of

8−8−8−9−9−10−12

- 191 -

MAU-SoP Multi-functional arithmetic unit based on sum-of-products

SAAU-SoP SIMD and approximate arithmetic unit based on sum-of-products

- 192 -

References

[1] S. W. Heo, S. J. Huh and M. D. Ercegovac, "Power optimization of sum-of-products

design for signal processing applications, in Proc. ASAP, Jun. 2013, pp. 192–197.

[2] A. Abnoufs and J. Rabaey, "Ultra-low-power domain-specific multimedia processors," in

Proc. IEEE Workshop on VLSI Signal Processing, IX, Oct.–Nov. 1996, pp. 461–470.

[3] F. Catthoor, Unified low-power design flow for data-dominated multimedia and telecom

applications, Kluwer Academic Publishers, 2000.

[4] C. Chien, Digital radio systems on a chip: a systems approach, Kluwer Academic

Publishers, 2001.

[5] ITRS, "International technology roadmap for semiconductors," 2012.

[Online] http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf

[6] J. M. Rabaey, Low power design essentials, Springer, 2009.

[7] W. Suntiamorntut, Energy efficient functional unit for a parallel asynchronous DSP,

Ph.D. dissertation, University of Manchester, 2005.

[8] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a

hardware/software approach, Morgan Kaufmann Publishers, 1998.

[9] P. C. H. Meier, Analysis and design of low power digital multipliers, Ph.D. dissertation,

Carnegie Mellon University, 1999.

[10] G. K. Yeap, Practical low power digital VLSI design, Kluwer Academic Publishers, 1997.

[11] A. P. Chandrakasan and R.W. Brodersen, "Minimizing power consumption in digital

CMOS circuits," in Proc. IEEE, vol. 83, no. 4, pp. 498–523, Apr. 1995.

[12] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, "Low power CMOS digital design,”

IEEE J.Solid-State Circuits, vol. 27, no. 4, pp. 473–484, Apr. 1992.

[13] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital integrated circuits:a

designperspective, 2nd ed., Prentice Hall, 2003.

[14] J. Kao, S. Narendra, and A. Chandrakasan, "Subthreshold leakage modeling and

reduction techniques," in Proc. ICCAD, Nov. 2002, pp.141–148.

[15] A. Bellaouar and M. Elmasry, Low-power digital VLSI design: circuits and systems,

Kluwer Academic Publishers, 2012

[16] J. Frenkil, "A multi-level approach to low-power IC design,"IEEE Spectrum Magazine,

pp.54–60, Feb. 1998.

[17] E. de Angel, Low power digital multiplication, Ph.D. dissertation, University of Texas at

Austin, 1996.

- 193 -

[18] P. C. H. Meier, R. Rutenbar, and L. Carley, "Exploring multiplier architecture and layout

for low power," in Proc. CICC, May 1996, pp.513–516

[19] B. Chen and I. Nedelchev, "Power compiler: a gate-level power optimization and

synthesis system," in Proc. ICCD, Oct. 1997, pp.74–79.

[20] Power Compiler Reference Manual, Synopsys Inc., Nov. 2012.

[21] T. Lang, E. Musoll, and J. Cortadella, "Individual flip-flops with gated clocks for low

power datapaths,"IEEE Trans. Circuits and Systems – II: Analog and Digital Signal

Processing, vol. 44, no. 6, pp. 507–516, Jun. 1997.

[22] V. Tiwari, S. Malik, and P. Ashar, "Guarded evaluation: pushing power management to

logic synthesis/design,"IEEE Trans. Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, no. 10, pp.1051–1060, Oct. 1998.

[23] A.G.M. Strollo, E. Napoli, and D. De Caro, "New clock-gating techniques for low-power

flip-flops," in Proc. ISLPED, Jul. 2000, pp.114–119.

[24] T. Sakuta, W. Lee, and P.T. Balsara, "Delay balanced multipliers for low power/low

voltage DSP core," in Proc. ISLPED, Oct. 1995, pp.36–37.

[25] C.A. Fabian and M.D. Ercegovac, "Input synchronization in low power CMOS

arithmetic circuit design," in Proc. ACSSC, Nov. 1997, pp.172–176.

[26] M. K. Gowan, L.L. Biro, and D.B. Jackson, "Power considerations in the design of the

Alpha 21264 microprocessor," in Proc. DAC, Jun. 1998, pp.726–731.

[27] T. Xanthopoulos and A.P. Chandrakasan, "A low-power IDCT macrocell for MPEG-2

MP@ML exploiting data distribution properties for minimal activity,"IEEE J.

Solid-State Circuits, vol. 34, No. 5, pp. 693–703, May 1999.

[28] Wu Ye and M.J. Irwin, "Power analysis of gated pipeline registers," in Proc. IEEE Int.

ASIC/SOC Conf., Sep. 1999, pp.281–285.

[29] J. Monteiro, S. Devadas, and A. Ghosh, "Retiming sequential circuits for low power," in

Proc. ICCAD, Nov. 1993, pp.398–402.

[30] M. J. G. Lewis, Low power asynchronous digital signal processing, Ph.D. dissertation,

University of Manchester, Oct. 2000.

[31] K. Kim, P.A. Beerel, and Y. Hong, "An asynchronous matrix-vector multiplier for

discrete cosine transform," in Proc. ISLPED, Jul. 2000, pp.256–261.

[32] C. Park, B. Choi, S. Kim, E. Jung and D. Lee, "Asynchronous array multiplier with an

asymmetric parallel array structure," in Proc. Conf.on Advanced Research in VLSI, Mar.

2001, pp.202–212.

[33] G. Gerosa, S. Gary, C. Dietz, D. Pham, K. Hoover, J. Alvarez, H. Sanchez, P. Ippolito,

T. Ngo, S. Litch, J. Eno, J. Golab, N. Vanderschaaf and J. Kahle, "A 2.2W, 80MHz

- 194 -

superscalar RISC microprocessor,"IEEE J. Solid-State Circuits, vol.29, no.12,

pp.1440–1454, Dec. 1994.

[34] R. Goering, "Low power Design,"Special technology report, SCD source, Sep. 2008.

[35] D. E. Lackey, P. S. Znchowski, T. R. Eednar, D. W. Stout, S. W. Gould, and J. M. Cobn,

"Managing power and performance for system-on-chip designs using voltage islands, "

in Proc. ICCAD, Nov. 2002, pp. 195–202.

[36] R. W. Brodersen, M. A. Horowitz, D. Markovic, B. Nikolic, and V. Stojanovic,

"Methods for true power minimization," in Proc. ICCAD, Nov. 2002, pp.35–42.

[37] D. Markovic, V. Stojanovic, B. Nikolic, M. A. Horowitz, and R. W. Brodersen,

"Methods for true energy-performance optimization," IEEE J.Solid-State Circuits, vol.

39, no. 8, pp. 1282–1293, Aug. 2004.

[38] U. Ko, P. T. Balsara, and W. Lee, "A self-timed method to minimize spurious transitions

in low power CMOS circuits," in Proc. ISLPED, Oct. 1994, pp. 62–63.

[39] I. Koren, Computer arithmetic algorithms, 2nd ed., A. K. Peters, Natick, MA, 2001.

[40] B. Parhami, Computer arithmetic: algorithms and hardware designs, 2nd ed., Oxford

University Press, USA, 2009.

[41] M. D. Ercegovac and T. Lang, Digital arithmetic, Morgan Kaufmann Publishers,

Elsevier Science Ltd., 2003.

[42] A. D. Booth, "A signed binary multiplication technique,"The Quarterly J. of Mechanics

and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951.

[43] E. de Angel and E. E. Swartzlander, Jr., "Low power parallel multipliers," in Proc. IEEE

Workshop on VLSI Signal Processing, IX, Oct.-Nov. 1996, pp. 199–208.

[44] R. Fried, "Minimizing energy dissipation in high-speed multipliers," in Proc. ISLPED,

Aug. 1997, pp. 214–219.

[45] A. P. Chandrakasan, R. Allmon, A. Stratakos, and R. W. Brodersen, "Design of portable

systems," in Proc. CICC, May 1994, pp. 259–266.

[46] Z. Huang and M. D. Ercegovac, "Number representation optimization for low-power

multiplier design," in Proc. SPIE on Advanced Signal Processing Algorithms,

Architectures, and Implementations, vol. 4791, Jul. 2002, pp. 345–356.

[47] D. Crookes and M. Jiang, "Using signed digit arithmetic for low-power

multiplication,"Electron. Lett., vol. 43, no. 11, pp. 613–614, May 2007.

[48] C. S. Wallace, "A suggestion for a fast multiplier", IEEE Trans. Comput., vol. 13, no. 2,

pp. 14-17, Feb. 1964.

[49] L. Dadda, "Some schemes for parallel multipliers", Alta Frequenza, vol. 34, pp. 349-356,

Mar. 1965.

- 195 -

[50] C. R. Baugh and B. A. Wooley, "A two’s complement parallel array multiplication

algorithm,"IEEE Trans. Comput., vol. C-22, no. 2, pp. 1045–1047, Dec. 1973.

[51] Z. Huang, High-level optimization techniques for low power multiplier design, Ph.D.

dissertation, University of California at Los Angeles, 2004.

[52] J. Di and J. S. Yuan, "Power-aware pipelined multiplier design based on 2-dimensional

pipeline gating," in Proc. GLSVLSI, Apr. 2003, pp. 64–67.

[53] S. Hong, S. Kim, M. C. Papaefthymiou, and W. E. Stark, "Low power parallel multiplier

design for circuit techniques for CMOS low-power high-performance multipliers DSP

applications through coefficient optimization," in Proc. IEEE Int. ASIC/SOC Conf., Sep.

1999, pp. 286–290.

[54] A. A. Fayed and M. A. Bayoumi, "A novel architecture for low-power design on parallel

multipliers," in Proc. IEEE Comput. Soc. Workshop on VLSI, Apr. 2001, pp. 149–154.

[55] M. Bhardwaj, R. Min, and A. P. Chandrakasan, "Power-aware systems," in Proc.

ACSSC, vol. 2, Oct. 2000, pp. 1695–1701.

[56] N.-Y. Shen and O. T.-C.Chen, "Low-power multipliers by minimizing switching

activities of partial products," in Proc. ISCAS, vol. 4, May 2002, pp.93–96.

[57] O. T.-C. Chen, S. Wang, and Y.-W. Wu, "Minimization of switching activities of partial

products for designing low-power multipliers," IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 11, no. 3, pp. 418–433, Jun. 2003.

[58] S.-R. Kuang and J.-P. Wang, "Design of power-efficient configurable booth multiplier,"

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 568–580, Mar. 2010.

[59] J. Choi, J. Jeon, and K. Choi, "Power minimization of functional units by partially

guarded computation," in Proc. ISLPED, Jul. 2000, pp. 131–136.

[60] Z. Huang and M. D. Ercegovac, "Two-dimensional signal gating for low-power array

multiplier design," in Proc. ISCAS, vol. 1, Aug. 2002, pp. 489–492.

[61] G. Economakos and K. Anagnostopoulos, "Bit level architectural exploration technique

for the design of low power multipliers," in Proc. ISCAS, May 2006, pp. 1483–1486.

[62] J.-N. Ohban, V. G. Moshnyaga, and K. Inoue, "Multiplier energy reduction through

bypassing of partial products," in Proc. APCCAS, vol. 2, Oct. 2002, pp. 13–17.

[63] M.-C. Wen, S.-J. Wang, and Y.-N. Lin, "Low power parallel multiplier with column

bypassing," in Proc. ISCAS, May 2005, pp. 1638–1641.

[64] C. Lemonds and S. S. Mahant-Shetti, "A low power 16 by 16 multiplier using transition

reduction circuitry, " in Proc. Int. Workshop on Low Power Design, Apr. 1994, pp.

139–140.

- 196 -

[65] S. S. Mahant-Shetti, P. T. Balsara, and C. Lemonds, "High performance low power array

multiplier using temporal tiling," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.

7, no. 1, pp. 121–124, Mar. 1999.

[66] Q. L. Macsorley, "High Speed Arithmetic in Binary Computers", in Proc. IRE, vol. 49,

pp. 67-91, Jan. 1961.

[67] T. K. Callaway and E. E. Swartzlander Jr., "Power-delay characteristics of CMOS

multipliers," in Proc. ARITH, Jul. 1997, pp. 26–32.

[68] Z. Yu, L. Wasserman, and A.N. Willson, Jr. "A painless way to reduce power dissipation

by over 18% in Booth-encoded carry-save array multipliers for DSP," in Proc. IEEE

Workshop on Signal Processing Syst., Oct. 2000, pp.571–580.

[69] A. Goldovsky, B. Patel, M. J. Schulte, R.Kolagotla, H. Srinivas, and G. Burns, "Design

and implementation of a 16 by 16 low-power two’s complement multiplier," in Proc.

ISCAS, vol.5, May 2000, pp.345–348.

[70] L. Ciminiera and P. Montuschi, "Carry-save multiplication schemes without final

addition,"IEEE Trans.Comput., vol.45, no.9, pp.1050–1055, Sep. 1996.

[71] M. D. Ercegovac and T. Lang, "Fast multiplication without carry-propagate addition,"

IEEE Trans. Comput., vol. 39, no. 11, pp. 1385–1390, Nov. 1990.

[72] Z. Huang and M.D. Ercegovac, "Low power array multiplier design by topology

optimization," in Proc. SPIE Advanced Signal Processing Algorithms, Architectures, and

Implementations XII, vol. 4791, Jul.2002, pp. 424–435.

[73] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The landscape of

parallel computing research: a view from Berkeley," Technical report, no.

UCB/EECS-2006-183, EECS, U.C. Berkeley.

[74] J. Iwamura, S. Kazuoa, K. Minorua, and S. Taguchi, "A CMOS/SOS multiplier,” in

Proc. ISSCC, Feb. 1984, pp. 92–93.

[75] P. F. Stelling and V. G. Oklobdzija, "Design strategies for optimal hybrid final adders in

a parallel multiplier", Journal of VLSI Signal Processing, vol. 14, no. 3, pp.321–31, Dec.

1996.

[76] P. F. Stelling and V. G. Oklobdzija, "Design strategies for the final adder in a parallel

multiplier", in Proc. Asilomar Conf. Signals, Syst. and Comput., vol. 1, Oct–Nov. 1995,

pp. 591–595.

[77] S. W. Heo, S. J. Huh, and M. D. Ercegovac, "Power optimization ina parallel multiplier

using voltage islands," in Proc. ISCAS,May 2013., pp. 345–348.

- 197 -

[78] J. Lo, "A fast binary adder with conditional carry generation", IEEE Trans. Comput.,

vol. 46, no. 2, pp. 248-253, Feb. 1997.

[79] S. Cheng, "64-bit pipeline conditional carry adder with MTCMOS TSPC logic", in

Proc.MWSCAS,Aug. 2007, pp. 879–882.

[80] V. G. Oklobdzija, "Design and analysis of fast carry-propagate adder under non-equal

input signal arrival profile", in Proc. Asilomar Conf. Signals, Syst. and Comput., vol. 1,

Nov. 1994, pp. 1398–1401.

[81] T. Y. Chang and M. J. Hsiao, "Carry-select adder using single ripple-carry

adder,"Electron. Lett., vol. 34, no. 22, pp. 2101–2103, Oct. 1998.

[82] Y. Kim and L. Kim, "64-bit carry-select adder with reduced area,"Electron. Lett., vol. 37,

no. 10, pp. 614–615, May 2001.

[83] B. Ramkumar and H. M. Kittur, "Low-power and area-efficient carry select adder"IEEE

Trans.VLSI Syst., vol. 20, no. 2, pp. 371–375, Feb. 2012.

[84] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSPprocessor fundamentals:

architectures and features, IEEE Press, 1997.

[85] Analog Devices, DSP-218x DSP Instruction Set Reference, Feb. 2001

[86] Texas Instruments, TMS320C55x DSP Mnemonic Instruction Set Reference Guide, Oct.

2002.

[87] Z. Huang and M. D. Ercegovac, "High-performance low-power left-to-right array

multiplier design," IEEE Trans. Comput., vol. 54, no. 3, pp. 272–283, Mar. 2005.

[88] Z. Huang and M. D. Ercegovac, "High-performance left-to-right array multiplier design",

in Proc. ARITH, Jun. 2003, pp. 4–11.

[89] J. Leijten, J. van Meerbergen, and Jochen Jess, "Analysis and reduction of glitches in

synchronous networks," in Proc. EDTC, Mar. 1995, pp. 398-403.

[90] J. L. Hennessey and D. A. Patterson,Computer organization and design: the

hardware/software interface, Morgan Kaufman, 2005.

[91] S. Furber, ARM system architecture, Addison-Wesley, 1996.

[92] ARM, ARM7TDMI™ technical reference manual.

[93] R. Gonzales and M. Horowitz, "Energy dissipation in general purpose microprocessors,"

IEEE J. Solid-State Circuits, vol. 31, no. 9, Sep. 1996

- 198 -

[94] M. J. Schulte, L. Marquette, S. Krithivasan, E. G. Walters, and J. Glossner, "Combined

multiplication and sum-of-squares units," in Proc. ASAP, Jun. 2003, pp. 204-214.

[95] R. Hegde and N. R. Shanbhag, "Soft digital signal processing," IEEE Trans. VLSI Syst.,

vol. 9, no. 6, pp. 813–823, Dec. 2001.

[96] D. Brooks and M. Martonosi, "Value-based clock gating and operation packing: dynamic

strategies for improving processor power and performance," ACM Trans. Comput. Syst.,

vol. 18, no.2, pp.89–126, May 2000.

[97] Khronos Group, OpenGL-ES 2.0. [Online] http://www.khronos.org

[98] P. Ranganathan, S. Adve, and N. Jouppi, "Performance of image and video processing

with general-purpose processors and media ISA extensions," in Proc. ISCA, vol. 27, May

1999, pp. 124-135.

[99] S.K. Raman, V. Pentkovski, and J. Keshava, "Implementing streaming SIMD extensions

on the pentium III processor,"IEEE Micro, vol. 20, pp. 47-57, Jul. 2000.

[100] H. Nguyen and L.K. John, "Exploiting SIMD parallelism in DSP and multimedia

algorithms using the AltiVec technology,"in Proc. ICS, pp. 11-20, Jun. 1999.

[101] ZiiLabs Corporate Website. [Online]. Available:

 https://secure.ziilabs.com/products/processors/zms05.aspx

[102] ARM Corperate Website. [Online]. Available:

 http://www.arm.com/products/processors/technologies/dsp-simd.php

[103] MIT Websiet. The surprising usefulness of sloppy arithmetic, MIT news, January 3,

2011

[Online]. Available: http://web.mit.edu/newsoffice/2010/fuzzy-logic-0103.html

[104] R. Hegde and N. Shanbhag, "Energy-efficient signal processing via algorithmic

noise-tolerance," in Proc. ISLPED, Aug. 1999, pp. 30–35.

[105] B. Shim, S. Sridhara, and N. Shanbhag, "Reliable low-power digital signal processing

via reduced precision redundancy" IEEE Trans. VLSI Syst., vol. 12, no. 5, pp. 497 – 510,

May 2004.

[106] G. Varatkar and N. Shanbhag, "Energy-efficient motion estimation using

error-tolerance," in Proc.ISLPED, Oct. 2006, pp. 113–118.

[107] D. Mohapatra, G. Karakonstantis, and K. Roy, "Significance driven computation: A

voltage-scalable, variation-aware, quality-tuning motion estimator," in Proc. ISLPED,

Aug. 2009, pp. 195–200.

- 199 -

[108] N. Banerjee, G. Karakonstantis, and K. Roy, "Process variation tolerant low power dct

architecture," in Proc. DATE, Apr. 2007, pp. 1 – 6.

[109] G. Karakonstantis, D. Mohapatra, and K. Roy, "System level dsp synthesis using

voltage overscaling, unequal error protection and adaptive quality tuning," in Proc. IEEE

Workshop on Signal Processing Systems, Oct. 2009, pp. 133 – 138.

[110] L. N. Chakrapani, K. K. Muntimadugu, L. Avinash, J. George, and K. V. Palem,

"Highly energy and performance efficient embedded computing through approximately

correct arithmetic: a mathematical foundation and preliminary experimental validation,"

in Proc. CASES, Aug. 2008, pp. 187–196.

[111] N. Zhu, W. L. Goh, and K. S. Yeo, "An enhanced low-power high-speed adder for

error-tolerant application," in Proc. ISIC, Dec. 2009, pp. 69 –72.

[112] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT:

IMPrecise adders for low-power Approximate Computing," in Proc. ISLPED, Aug. 2011,

pp. 409–414.

[113] M. J. Schulte and E. E. Swartzlander, Jr., "Truncated multiplication with correction

constant," in Proc. VLSI Signal Processing, VI, pp. 388–396, Oct. 1993.

[114] M. J. Schulte, J. E. Stine, and J. G. Jansen, "Reduced power dissipation through

truncated multiplication," in Proc. IEEE Alessandro Volta Memorial Workshop on

Low-Power Design, Mar. 1999, pp. 61–69.

[115] P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading accuracy for power with an

underdesigned multiplier architecture," in Proc. VLSID, Jan. 2011, pp. 346 –351.

[116] P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading accuracy for power in a multiplier

architecture," J. Low Power Electron., vol. 7, pp. 482–489, Dec. 2011.

[117] N. J. Rubenkin, "You need a smartphone security suite,"PC Mag., Sep. 2010.

[118] P. Kornerup, P. Montuschi, J.-M. Muller, and E. Schwarz, "Guest editor’s introduction:

Special section on computer arithmetic,"IEEE Trans. Comput., vol. 58, no. 2, pp.

145–147, Feb. 2009.

[119] E. Lindholm, M. J. Kilgard, and H. Moreton, "A user-programmable vertex engine," in

Proc. SIGGRAPH, Aug. 2001, pp. 149–158.

[120] D. Blythe, "The direct3D 10 system,"ACM Trans. Graphics, vol. 25, no. 3, pp.

724–734, Jul. 2006.

[121] D. Kim, K. Chung, C.-H. Yu, C.-H. Kim, I. Lee, J. Bae, Y.-J. Kim, J.-H. Park, S. Kim,

Y.-H. Park, N.-H. Seong, J.-A. Lee, J. Park, S. Oh, S.-W. Jeong, and L.-S. Kim, "An

- 200 -

SoC with 1.3 Gtexels/sec 3-D graphics full pipeline engine for consumer

applications,"IEEE J. Solid-State Circuits, vol 41, no. 1, pp. 71–84, Jan. 2006.

[122] C. -H. Yu, K. Chung, D. Kim, and L. -S. Kim, "A 120Mvertices/s multi-threaded

VLIW vertex processor for mobile multimedia applications," in Proc. ISSCC, Feb. 2006,

pp. 1606–1615.

[123] C. -H. Yu, K. Chung, D. Kim, and L. -S. Kim, "A 186Mvertices/s 161mW

floating-Point vertex processor for mobile graphics systems," in Proc. CICC, Sep. 2007,

pp. 579–582.

[124] S. -H. Kim, J. -S. Yoon, C. -H. Yu, D. Kim, K. Chung, H. S. Lim, H. -W. Park, and L.

-S. Kim, "A 36 fps SXGA 3D display processor with a programmable 3D graphics

rendering engine,"IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1247–1259, May 2008.

[125] S. M. Mueller, C. Jacobi, H. -J. Oh, K. D. Tran, S. R. Cottier, B. W. Michael, H.

Nishikawa, Y. Totsuka, T. Namatame, N. Yano, T. Machida, and S.H. Dhong, "The

vector floating-point unit in a synergistic processor element of a Cell processor," in Proc.

ARITH, Jun. 2005, pp. 59–67.

[126] ARM, ARM discloses technical details of the next version of the ARM architecture,

Oct. 2011.

http://www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-next-versio

n-of-the-arm-architecture.php

[127] R. Zimmermann and W. Fichtner, "Low-power logic styles: CMOS versuspass

-transistor logic,”IEEE J. Solid-State Circuits, vol.32, no.7, pp.1079-1090, Jul. 1997.

