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Abstract

Finitely-Generated Projective Modules over θ-deformed Spheres

by

Mira Alexander Peterka

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Marc A. Rieffel, Chair

Abstract: We investigate the “θ-deformed spheres” C(S3
θ ) and C(S4

θ ) for the case θ an
irrational number. We show that all finitely-generated projective modules over C(S3

θ ) are
free, and that C(S4

θ ) has the cancellation property. We classify and construct all finitely-
generated projective modules over C(S4

θ ) up to isomorphism. An interesting feature is that
there are nontrivial “rank-1” modules over C(S4

θ ). Every finitely-generated projective module
over C(S4

θ ) is a sum of rank-1 modules. This is because the group of path-components of
the invertible elements of C(S3

θ ) is Z and maps isomorphically onto K1(C(S3
θ )) under the

natural map.
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Introduction

Abstract: We investigate the “θ-deformed spheres” C(S3
θ ) and C(S4

θ ) for the case θ an
irrational number. We show that all finitely-generated projective modules over C(S3

θ ) are
free, and that C(S4

θ ) has the cancellation property. We construct and classify all finitely-
generated projective modules over C(S4

θ ) up to isomorphism. An interesting feature is that
there are nontrivial “rank-1” modules over C(S4

θ ). Every finitely-generated projective mod-
ule over C(S4

θ ) is a sum of rank-1 modules. This is because the group of path-components
of the invertible elements of C(S3

θ ) is Z and maps isomorphically onto K1(C(S3
θ )) under the

natural map.

The noncommutative geometry of Connes [7] generalizes topological and geometric struc-
tures to situations in which either a classical topological or geometric space fails to exist, or
in which a classical space does exist but certain geometric aspects of the situation are un-
detected by purely classical techniques (e.g. in transverse geometry) . The noncommutative
n-tori C(T nθ ) are the most studied examples of “noncommutative differential manifolds” (i.e.
spectral triples satisfying the axioms given in [8]), and have been found to to arise naturally
in a number of contexts in mathematics and string theory (see [7], [9], [15]). Particularly
interesting connections exist between string theory and gauge theory on noncommutative
spaces (see [28]). In turn, there is a transformation between gauge theory on noncommuta-
tive spaces and that of their classical limiting cases (see [41]). Classical gauge theory was first
formulated on spheres, and numerous quantum analogs of spheres have been discovered (e.g.
[50], [30], [47], [32], [5], [14]). Of these, the so-called θ-deformed spheres C(Snθ ) of Connes
and Landi [12] most closely resemble the noncommutative tori. There has been interest in
calculating a Yang-Mills theory for C(S4

θ ), and much has already been done in this regard
[6]. However, a complete classification and construction of the “vector bundles” over C(S4

θ )
has not yet appeared. Such a classification and construction is the main result of the present
work.

Given a space X with homotopy type that of a CW-complex, there are various approaches
(classifying spaces, clutching constructions, etc.) one can use to determine the vector bundles
over X. These methods are only superficially different; In any case, the problem is purely
homotopy-theoretic in nature, and reduces to calculating the homotopy classes of maps from
one space to another. These calculations involve analyzing the cell-structures of both source
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and target spaces and using the techniques of obstruction theory as one adds cells to the
skeleta of a given level. This typically is very difficult, even using all the tools of homotopy
theory at one’s disposal (e.g. spectral sequences), though at least one knows how to proceed
in principle.

By Swan’s theorem, the problem of classifying the vector bundles over a space gener-
alizes to that of classifying the finitely-generated projective modules over a unital ring. In
the context of C*-algebras, this has been done for relatively few examples (see [42], [49]),
presumably in part due to a lack of general techniques. Rieffel [37] classified the modules
over C(T nθ ), for all n and all non-rational choices of θ. Because the noncommutative tori
are simple for generic choices of θ, the noncommutative tori cannot be thought of as having
any sort of “cell-structure” and thus the local homotopy-theoretic methods of vector bundle
theory are of little use. Rieffel resorted to entirely different techniques, many of which rely
on very specific aspects of the structure of the C(T nθ ).

For irrational θ, we are able to classify and construct the finitely-generated projective
modules over C(S4

θ ) by combining essentially classical techniques with data concerning the
path-classes of the group of invertible elements in the noncommutative tori. Specifically, we
proceed as follows: First we show that all finitely-generated projective modules over C(S3

θ )
are free by using a clutching construction to equate the isomorphism classes of the modules
with “GLn(C(T 2

θ ))-cocycle classes”. Next we investigate the algebra TC(S3
θ ) of continuous

functions from the circle into the algebra C(S3
θ ). We calculate the isomorphism classes

of finitely-generated projective modules over TC(S3
θ ) in terms of “GLn(TC(T 2

θ ))-cocycles”.
This allows us to completely determine the path-classes of elements of GLn(C(S3

θ )). As
C(S4

θ ) is isomorphic to a pullback of two copies of the θ-deformed 4-ball C(D4
θ) over C(S3

θ ),
this information suffices to classify and construct the finitely-generated projective modules
over C(S4

θ ) using a clutching construction.
We find that for irrational θ, the semigroup V (C(S4

θ )) of isomorphism classes of finitely-
generated projective-modules over C(S4

θ ) is {0} ∪ (N × Z). For each (n, s) ∈ N × Z, we
construct a C(S4

θ )-module N(n, s). The two parameters can be thought of as “rank” and “in-
dex”. Finitely-generated free C(S4

θ )-modules have the form N(n, 0). From the isomorphism
N(n, s) ∼= N(1, s)⊕N(n−1, 0), we see that every finitely-generated projective C(S4

θ )-module
splits as a direct sum of a rank-1 module and a free module. In particular, the noncom-
mutative “instanton bundle of charge -1” e of Connes and Landi [12] must be isomorphic
to N(2, 1), and so splits as N(1, 1) ⊕ C(S4

θ ). However, the K0-class of Connes and Landi’s
e, together with the class of the rank-1 free C(S4

θ )-module, does generate K0(C(S4
θ )). The

module p(n) of Landi and Van Suijlekom [20] is isomorphic to N(n+ 1, (1/6)n(n+ 1)(n+ 2))
for n ≥ 1. This contrasts somewhat with the situation for the commutative algebra C(S4).
There are no nontrivial complex line bundles over S4, since π3(U(1)) ∼= 0. However, for each
n ≥ 2, there are Z-many complex rank-n vector bundles over S4, up to isomorphism. These
isomorphism classes of bundles are classified by the integral of their second Chern-classes
(“charge”) or, equivalently, by the index of any associated clutching function for the bundle.
The K-group K0(S4) is generated by the classes of the trivial line bundle and the rank-2
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“instanton bundle” of charge -1.
The results we obtain regarding the finitely-generated projective modules over C(S4

θ )
reflect the fact that, if θ is irrational, then the group of path-components π0(GLn(C(S3

θ )))
of GLn(C(S3

θ )) turns out to be isomorphic to Z, for all n ≥ 1,. The group π0(GLn(C(S3
θ )))

is isomorphic to K1(C(S3
θ ))
∼= Z under the natural map. We show that, if |θ| < 1, then the

generator of π0(GLn(C(S3
θ ))) is X := exp(2πit)p+1−p, where p is a Reiffel projection of trace

|θ|. This contrasts with the classical situation. Indeed, the group π0(GL1(C(S3))) ∼= π3(S
1)

is trivial. The natural map π0(GLn(C(S3)))→ K1(C(S3)) ∼= Z is an isomorphism, however,

for n ≥ 2. The group K1(C(S3)) is generated by the matrix

(
z1 z2
−z∗2 z∗1

)
. One can show that

K1(C(S3
θ )) is generated by the matrix

(
z1 z2
−λz∗2 z∗1

)
. From this it follows that

(
X 0
0 1

)
must

be homotopic through a path in GL2(C(S3
θ )) to

(
z1 z2
−λz∗2 z∗1

)
.
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Chapter 1

Preliminary Material

Before continuing, we remark that since we will mostly be working with noncommutative
algebras, we must make a distinction between left and right modules. We will always use
right modules in this work, and will generally drop the term “right”. Our doing so is not
intended to imply that a given right module has an (A,A)-bimodule structure. Also, if A
is a normed algebra, and Y is a compact space, we will use the notation Y A to denote the
algebra of continuous functions from Y into A with the supremum norm. Thus TA denotes
the continuous maps from the circle T into A, the notation T 2A denotes the continuous maps
from the 2-torus T 2 into A etc.

1.1 The θ-deformed Spheres C(S3
θ ) and C(S4

θ )

In this section we describe the θ-deformed spheres C(S3
θ ) and C(S4

θ ).

The θ-deformed 3-sphere C(S3
θ ) can be obtained in several equivalent ways:

1) As a noncommutative analog of the genus-1 Heegaard splitting of S3 into two solid tori.
2) As the universal C*-algebra generated by a particular solution of certain homological
equations studied by Connes and Landi.
3) As the result of the “θ-deformation” procedure of Connes and Landi on S3.
4) As an example of Rieffel’s general deformation quantization by actions of Rn.
5) As a certain fixed-point subalgebra.

The θ-deformed 4-sphere C(S4
θ ) also has descriptions in terms of 2)-5) above.

We will only use descriptions 1) and 5) in obtaining the results in this work, but we will
now provide the reader with at least a very brief account of these different descriptions in
order to motivate the interest in the example. We also use this section to fix some of the
terminology and notation that we will use.
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1) Matsumoto [24] introduced C(S3
θ ) as a deformed version of the well-known genus-1

Heegaard splitting of S3 into two solid tori [40]. We briefly review this splitting: The 3-sphere
embeds into C2 as the subspace

S3 = {(z1, z2) ∈ C× C : |z1|2 + |z2|2 = 1}.

For each t ∈ [0, 1] consider the subspace

Tt := {(z1, z2) ∈ S3 : |z1|2 = t}.

The space Tt is a 2-torus if t ∈ (0, 1), and is a circle if t ∈ {0, 1}. The spaces Tt are mutually
disjoint and their union is all of S3. The 3-sphere S3 thus splits into two solid tori ∪t≤1/2Tt
and ∪t≥1/2Tt with common boundary T1/2.

Recall that a base-pointed loop α on the boundary of a solid torus is called a meridian
if it is contractible in the solid torus. A base-pointed loop β on the boundary of a solid
torus is called a longitude if it generates the fundamental group of the solid torus. For
the genus-1 Heegaard splitting of S3, choosing the base-point to be (1/

√
2, 1/
√

2), say, the
loop α = {(1/

√
2, z2) ∈ T1/2} is a meridian for the solid torus ∪t≤1/2Tt, but a longitude for

∪t≥1/2Tt. The loop β = {(z1, 1/
√

2) ∈ T1/2} is a longitude for the solid torus ∪t≤1/2Tt, but a
meridian for the solid torus ∪t≥1/2Tt.

We would like to express the Heegaard splitting more abstractly: Take a solid torus
F 2
v = D2 × S1 in which some loop α is a meridian and some loop β is a longitude. Take

a second solid torus F 2
h = S1 × D2 in which some loop β′ is a meridian and some loop α′

is a longitude. The 3-sphere S3 is then homeomorphic to the splitting F 2
v ∪f F 2

h , where
f : ∂F 2

v → ∂F 2
h is any homeomorphism that identifies the meridian α with the longitude α′,

and identifies the longitude β with the meridian β′. We note that the concrete Heegaard
splitting given above makes the assignments:

F 2
v = ∪t≤1/2Tt, F 2

h = ∪t≥1/2Tt

α = α′ = {(1/
√

2, z2) ∈ T1/2}, β = β′ = {(z1, 1/
√

2) ∈ T1/2}, f = id.

Matsumoto noted that by using the duality between compact Hausdorff spaces and the
algebras of continuous functions on them, an abstract description of the genus-1 Heegaard
splitting can be expressed at the level of C*-algebras as the isomorphism

C(S3) ∼= {(a, b) ∈ C(F 2
v )⊕ C(F 2

h ) : πv(a) = f ∗(πh(b))},

where (πv(a), πh(b)) = (a � (S1 × S1), b � (S1 × S1)). Matsumoto deformed this splitting
by deforming the commutative function algebras C(F 2

v ) and C(F 2
h ) into (noncommutative)

crossed products.
Let θ be an arbitrary real number. Let αθ be the automorphism of C(D2) induced by

rotating points of the 2-disk D2 by the angle 2πθ.
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Definition 1.1.1. The noncommutative solid torus C(F 2
θ ) (called Dθ by Matsumoto) is the

crossed product C(D2)×θ Z of C(D2) by the action of Z that comes from αθ.

Since the dual group of Z is S1, we recover that C(F 2
0 ) ∼= C(D2 × S1) by the Fourier

transform.
Matsumoto observed that C(F 2

θ ) is isomorphic to the universal C*-algebra generated by
y and v, satisfying the relations

yy∗ = y∗y, ‖y‖ = 1, vv∗ = v∗v = 1, vy = λyv,

where λ = exp(2πiθ). Note C∗(y, 1) ∼= C(D2) and C∗(v) ∼= C(S1).

Definition 1.1.2. The noncommutative 2-torus C(T 2
θ ) is the universal C*-algebra generated

by U, V satisfying the relations

UU∗ = U∗U = 1, V V ∗ = V ∗V = 1, V U = λUV ,

where λ = exp(2πiθ).

There is an evident surjection πθ : C(F 2
θ ) → C(T 2

θ ), with πθ(v) = V and πθ(y) = U .
Now take C(F 2

−θ) generated by x, u such that xx∗ = x∗x, uu∗ = u∗u = 1, ‖x‖ = 1,
with commutation relation ux = λ̄xu. There is a corresponding surjection π−θ : C(F 2

−θ) →
C(T 2

−θ), with π−θ(x) = U ′ and π−θ(u) = V ′, where V ′U ′ = λ̄U ′V ′, and U ′, V ′ are unitary
generators of C(T 2

−θ). Now define the isomorphism f ∗θ : C(T 2
−θ)→ C(T 2

θ ) by the assignments

f ∗θ (U ′) = V, f ∗θ (V ′) = U.

Definition 1.1.3. The noncommutative 3-sphere C(S3
θ ) is the pullback

{(a, b) ∈ C(F 2
θ )⊕ C(F 2

−θ) : πθ(a) = f ∗θ (π−θ(b))}.

In this definition, the algebra C(F 2
θ ) corresponds to the solid torus F 2

v . The algebra
C(F 2

−θ) corresponds to F 2
h . The unitary U corresponds to the meridian α and the unitary

V corresponds to the longitude β. The unitary U ′ corresponds to the meridian β′ and the
unitary V ′ corresponds to the longitude α′. The proof of Proposition 2.1.3 will give these
last statements further sense.

Matsumoto and Tomiyama proved the following theorem:

Theorem 1.1.4. (Theorem 7.6 of [26]).The following C*-algebras are isomorphic:
(1) Matsumoto’s algebra C(S3

θ ).
(2) The universal C*-algebra generated by the relations

SS∗ = S∗S, TT ∗ = T ∗T, TS = λST, (1− T ∗T )(1− S∗S) = 0, ‖ S ‖=‖ T ‖= 1.

(3) The universal C*-algebra generated by the relations

z1z
∗
1 = z∗1z1, z2z

∗
2 = z∗2z2, z2z1 = λz1z2, z∗1z1 + z∗2z2 = 1.
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If θ = 0, the equations in (3) give exactly the relationships holding between the coor-
dinate functions z1 and z2 for S3, and so C(S3

0) = C(S3). This fact and the equivalence
of (1) and (3) supports thinking of C(S3

θ ) as truely being a sort of deformation of S3 that
preserves the Heegaard splitting. The subsequent realization of C(S3

θ ) as an example of
a θ-deformation in Connes and Landi’s sense [12] (and in turn as an example of Rieffel’s
deformation quantization by actions of Rn [38]) gives this statement a precise meaning.

Matsumoto also showed that C(S3
θ ) can be viewed as a continuous field of C*-algebras

over the unit interval [0, 1]. This mirrors the identification of S3 with a fibered space over
[0, 1]. Specifically, there is an obvious action of the 2-torus T 2 on S3 given by

(exp(2πiφ1), exp(2πiφ2)) · (z1, z2) = (exp(2πiφ1)z1, exp(2πiφ2)z2).

The orbit space of S3 for this action is the unit interval [0, 1]. The fiber over t := |z1|2 ∈ [0, 1]
is simply the space Tt from the Heegaard splitting, i.e. a torus with generating circles of
radii

√
t and

√
1− t, respectively. Thus, there are degenerate circles over the endpoints of

the interval, and S3 is not locally-trivial as a fibered space over the interval. Since the fiber
over t is the space Tt from the Heegaard splitting, the restrictions of the fibered space to the
intervals [0, 1/2] and [1/2, 1] are homeomorphic to the solid tori ∪t≤1/2Tt and ∪t≥1/2Tt.

At the level of function algebras, if V is the coordinate function of the degenerate circle
over the point 0 and U is the coordinate function of the degenerate circle over the point 1,
we may identify the generating circle of radius

√
t over t with the circle

√
tU , and we may

identify the generating circle of radius
√

1− t with
√

1− tV. Viewing z1 and z2 as coordinate
functions in C(S3), we see that z1 corresponds to the map t 7→

√
tU , and z2 corresponds

to the map t 7→
√

1− tV . So C(S3) is a continuous field of C*-algebras over [0, 1]. The
following theorem generalizes this to to the case where θ is any real number.

Theorem 1.1.5. (Proposition 2 of [25]). The noncommutative solid torus C(F 2
θ ) is a contin-

uous field of C*-algebras over [0, 1/2]. The fibers over each point in (0, 1/2] are isomorphic
to C(T 2

θ ). The fiber over 0 is isomorphic to C∗(V ). The field is locally constant except
over 0. The noncommutative 3-sphere C(S3

θ ) is a continuous field of C*-algebras over [0,1].
Each fiber is isomorphic to C(T 2

θ ), except over the endpoints {0, 1}, over which the fibers
are respectively C∗(V ), C∗(U). The field is locally constant except over the end points. The
generator z1 corresponds to the map t 7→

√
tU under this isomorphism, and the generator z2

corresponds to the map t 7→
√

1− tV .

Matsumoto also calculated the K-theory of C(S3
θ ).

Theorem 1.1.6. (Proposition 5.2 of [24]). K0(C(S3
θ ))
∼= Z, K1(C(S3

θ ))
∼= Z.

This was proved by using the Mayer-Vietoris sequence for K-theory. We remark that the
result also follows from [39] by noting that C(S3

θ ) is a deformation of C(S3) by an action
of R2. Matsumoto did not, however, explicitly describe the generator of K1(C(S3

θ )). We
explicitly give the generator of the K1-group in the case that |θ| < 1 is irrational in our
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Theorem 2.4.4.

We now introduce the θ-deformed 4-sphere C(S4
θ ).

2) Looking for examples of “noncommutative differentiable manifolds” in the sense of
[8], Connes and Landi [12] investigated the solutions of certain homological equations. More
precisely, for each n (thought of as dimension), Connes and Landi associated a set of equa-
tions. These were chosen so that any solution of the equations for dimension n would have
homology closely resembling that of the n-sphere Sn. Specifically, let e be any matrix pro-
jection with entries from any ∗-algebra. The matrix e satisfies Connes and Landi’s equations
for the case n = 2k if the components chj(e) of it’s Chern character in (algebraic) cyclic
homology [22] vanish (as chains in the complex for cyclic homology) for j < k, and if also
chk(e) is nontrivial (as a cyclic cycle). These conditions entail that chk(e) is in fact a nontriv-
ial Hochschild cycle. The possible sizes of the matrix projections that satisfy the equations
turns out to be controlled by n. Satisfying the equations forces relations between the entries
of the matrix projection e. One may consider the polynomial ∗-algebra A generated by the
entries of e and subject to the relations imposed by e being a projection and a solution to
Connes and Landi’s equations for n = 2k. The algebra A generates a C*-algebra in the usual
way. For the case n = 2, the function algebra C(S2) is the only solution. For n = 4, Connes
and Landi considered projections of the form

e :=
1

2


1 + x 0 z1 z2

0 1 + x −λz∗2 z∗1
z∗1 −λ̄z2 1− x 0
z∗2 z1 0 1− x

 ,

where λ = exp(2πiθ). The matrix e is a projection and satisfies Connes and Landi’s equations
if the relations imposed on the entries of e are

ziz
∗
i = z∗i zi, x = x∗, xz1 = z1x, xz2 = z2x, z2z1 = λ, z1z2, z1z

∗
1 + z2z

∗
2 + x2 = 1.

Definition 1.1.7. The polynomial ∗-algebra generated by z1, z2, x subject to the relations

ziz
∗
i = z∗i zi, x = x∗, xz1 = z1x, xz2 = z2x, z2z1 = λ, z1z2, z1z

∗
1 + z2z

∗
2 + x2 = 1,

is denoted Calg(S
4
θ ). The universal C*-algebra generated by Calg(S

4
θ ) is denoted C(S4

θ ).

If θ = 0, so λ = 1, the module e(C(S4)4) is the space of sections of a rank-2 complex
vector bundle over S4 with “topological charge” (integral over S4 of it’s second Chern class
in DeRham cohomology), or “index”, equal to -1. The vector bundle supports an anti-self-
dual connection, or “instanton”, satisfying the SU(2)-Yang-Mills equations [3]. Connes and
Landi calculated that for arbitrary θ, the index pairing between the Chern character of e
in cyclic homology with the Chern character of an appropriate Fredholm module in cyclic
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cohomology is 1. The pairing is a noncommutative generalization of Atiyah’s index pairing
[2] between the K-theory and K-homology of spaces. Connes and Landi also show that
the associated Levi-Civita connection ede is anti-self-dual for an appropriate “θ-deformed”
algebra of differential forms and Hodge ∗-operation. Furthermore, the partial trace of e is 2
(By definition, the partial trace of e is the sum in C(S4

θ ) of the diagonal entries of e). So if
tr is a normalized trace for C(S4

θ ), then tr(e)=2. As discussed further in the section “Trace
and Dimension”, this means that e can be thought of as having “rank” equal to 2. Putting
together these considerations, it is appropriate to think of e as a noncommutative rank-2
“instanton bundle” over C(S4

θ ) of charge -1.
Subsequent work by Landi and Van Suijlekom [20] exhibits C(S4

θ )-modules of rank n+1 ≥
2 and index (1/6)n(n + 1)(n + 2) with corresponding anti-self-dual connections. Brain and
Landi [6] have obtained a substantial amount of information concerning the moduli spaces
of some solutions of a Yang-Mills theory for C(S4

θ ), though this is still very much a theory
in development.

We remark that one might suspect that e will be a basic module for C(S4
θ ), as in the case

θ = 0, in that e won’t split as a direct sum of nonzero C(S4
θ )-modules. However, the example

of the noncommutative tori shows that the semigroup V (A) for a noncommutative space A
need not resemble that of a corresponding classical case very closely at all, as any nonzero
finitely-generated projective C(T 2

θ )-module in V (C(T 2
θ )) can be split into a nontrivial direct

sum (see [37]). For θ irrational, we will see that e is special in that it splits into a direct sum
of two modules that cannot be further split and together generate K0(C(S4

θ )).
For the case n = 2k + 1, Connes and Landi’s equations instead take a unitary matrix

U as argument, and the requirement is that the components ch j
2
(U) vanish (again at the

chain level) for j < k, while ch k
2
(U) is required to be nontrivial. For the case n = 3, Connes

and Landi considered matrices of the form U :=

(
z1 z2
−λz∗2 z∗1

)
. The relations imposed on the

entries of U by the condition that U be unitary and satisfy Connes and Landi’s equations
are

z1z
∗
1 = z∗1z1, z2z

∗
2 = z∗2z2, z2z1 = λz1z2, z∗1z1 + z∗2z2 = 1.

Thus the universal C*-algebra generated by the entries of U subject to these relations is iso-
morphic to Matsumoto’s algebra C(S3

θ ). We thus denote the polynomial ∗-algebra generated
by the entries of U subject to the above relations Calg(S

3
θ ).

If θ = 0, so λ = 1, viewing z1 and z2 as coordinates, the corresponding unitary matrix
U is simply the homeomorphism from S3 onto SU(2), and therefore is also the generator of
K1(S3) ∼= π3(SU(2)) ∼= π3(S

3) ∼= Z. The complex vector bundle over S4 obtained from the
clutching construction by using U to glue together rank-2 trivial bundles over the northern
and southern hemisphere is the instanton bundle of charge -1.

Later Connes and Dubois-Violette found all solutions of Connes and Landi’s equations
for n = 3 as a three parameter family of algebras. Connes and Dubois-Violette describe
the moduli space of solutions in [11]. For certain values in the moduli space of solutions,
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one obtains algebras that are isomorphic to the C(S3
θ ). In the generic case, one recovers the

algebras of Sklyanin [45]. This is very interesting, as it is a link between operator-algebraic
noncommutative geometry and algebraic geometry.

3) In showing that the algebras C(S4
θ ) satisfy the axioms of a “noncommutative differen-

tiable manifold” [8], Connes and Landi showed that they can be constructed through a type
of deformation procedure they call θ-deformation. These deformations were introduced in
the setting in which a spin-C manifold M (equipped with it’s usual charge-conjugation and
Dirac operator) has an abelian isometry group of rank n ≥ 2. In that case, the correspond-
ing spectral triple can be deformed by an action of the 2-torus without deforming the Dirac
operator (“isospectral deformation”). The resulting spectral triple satisfies the axioms of a
noncommutative differentiable manifold. As the charge-conjugation and Dirac operator for
M play no role in the deformation of the algebra of smooth functions C∞(M) itself, we will
ignore their role in deforming the spectral triple, and instead refer the reader to [12].

Let M be a compact Riemannian manifold with an isometric action of the 2-torus T 2.
Then any element of C∞(M) can be written as a series whose terms are indexed by the
spectral subspaces for the induced action of T 2 on C∞(M). The series converges rapidly in
the usual Freéchet topology on C∞(M). The spectral subspaces will be indexed by the space
of characters of T 2 i.e. Z2.

Definition 1.1.8. Let θ be any real number. Define a product on the vector space C∞(M)
by fr×θ gs := exp(−2πiθr1s2)frgs, where fr and gs are in the rth and sth spectral subspaces
respectively. The θ-deformed algebra C∞(Mθ) is defined to be the C∞(M) together with
the product ×θ.

For the case where m is the 4-sphere

S4 = {(z1, z2, x) ∈ C× C× R : z1z
∗
1 + z2z

∗
2 + x2 = 1},

we use the action of T 2 given by

(exp(2πiφ1), exp(2πiφ2)) · (z1, z2, x) = (exp(2πiφ1)z1), exp(2πiφ2)z2), x).

Notice that the original involution of complex conjugation of functions in C∞(M) is not
an involution for the product ×θ. However, as was quickly pointed out independently by
Várilly [48] and Sitarz [44], one can define a product ×J on the vector space of functions
C∞(M) so as to obtain an algebra that is isomorphic to C∞(Mθ), but for which the com-
plex conjugation of functions is still an involution. First, one observes that if the rank of
the isometry group of M is n ≥ 2, one can generalize the θ-deformation to a deformation
by the action of the n-torus. In that case, the spectral subspaces for the action will be
indexed by Zn, and if one replaces the real number θ with an n×n matrix (θ)ij, the formula
fr ×θ gs := exp(−2πiΣi≤jriθijsj)frgs will generalize the definition given for the product for
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the case of an action of the 2-torus. But the 2-cocycle ρ(r, s) := exp(−2πiΣi≤jθijrisj) is
cohomologous to the skew-symmetrized 2-cocycle σ(r, s) := exp(−πiΣi=jriθijsj), and thus,
as explained in [37], replacing ρ with σ in the formula for the product results in an iso-
morphic algebra on the underlying set C∞(M). If the matrix (θ)ij is skew-symmetric, then
complex conjugation of functions will be an involution for this new product. One completes
to a C*-algebra C(Mθ) by taking the largest possible C*-norm on the vector space C∞(M)
endowed with the product from σ and with complex conjugation as the involution.

4) The above observation is the main insight in Várilly and Sitarz’s recognition that θ-
deformations can be seen as special instances of Rieffel’s deformation quantization in which
the action of the vector group V = Rn on C∞(M) factors through the action of the compact
abelian group T n.

The analysis involved in Rieffel’s very general procedure for deforming a C*-algebra A
by an action of the group V = Rn is quite technical. The reader is referred to Rieffel’s
monograph [38] (which we follow closely) for more detail.

Let α be an action of V on A, and let J be any skew-symmetric matrix in Mn(R). Let A∞

be the space of vectors in A that are smooth for the action α (i.e. the set of a ∈ A such that
the map v 7→ αv(a) is C∞ for the norm on A). The vector space A∞ is in fact necessarily a
dense ∗-subalgebra of A. Introduce a new product on A∞ by the twisted Fourier transform

a×J b :=

∫∫
V×V

αJ ·u(a)αv(b)exp(2πiu · v)dudv.

Here the integral must be taken as an oscillatory integral in order to make sense. Because
J is skew-symmetric, the original involution on A is still an involution for the product ×J .
A C*-norm for the product ×J can be placed on A∞, by first introducing SA, the right
A-module of A-valued Schwartz functions on V . The A-valued inner product

< f, g >A=

∫
f(x)∗g(x)dx

is placed on SA. For a ∈ A∞, define an operator La on SA by the formula

(Laf)(x) =

∫∫
V×V

αx+J ·u(a)f(x+ v)exp(2πiu · v)dudv.

One checks that L is a ∗-homomorphism from A∞ with the product ×J into the algebra of
operators on SA. Rieffel showed that the operators La are in fact bounded for the A-valued
inner product on SA. The C*-norm ‖a‖ := ‖La‖B(SA) is defined on A∞. The algebra A∞ is
completed in this norm to a C*-algebra AJ .

The construction is functorial in that if A and B are C*-algebras equipped with actions of
V , and φ : A→ B is a homomorphism that intertwines the actions of V , then the restriction
φ : A∞ → B∞ extends to a homomorphism φJ : AJ → BJ . A fundamental result of Rieffel’s
that we will need is:
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Theorem 1.1.9. Given an α-invariant ideal I of A and an equivariant short exact sequence

0→ I → A→ B → 0,

the induced sequence
0→ IJ → AJ → BJ → 0

is also exact.

If the V -action α on A factors through an action of a compact abelian group G, then for
each character s of G, there is a spectral subspace

Ar = {a ∈ A : αv(a) = exp(2πir · v)a for all a ∈ V }.

The direct sum of these spectral subspaces is dense in A. Rieffel calculates in proposition
2.22 of [38] that in this case a ×J b = exp(−2πir · Js)ab for a ∈ Ar, b ∈ As. Thus, if G is
the n-torus, and A is C(M), taking J to be the skew-symmetric matrix (θ)ij/2, we recover
the product formula for the θ-deformation. One can show that the norm ‖ · ‖J is the largest
C*-norm on C∞(Mθ).

5) Connes and Dubois-Violette [10] give an equivalent description of the algebras C∞(Mθ)
as a fixed-point subalgebra. The fixed-point description is in terms of the smooth manifold
M and the noncommutative torus. Specifically, following [10], suppose that σ is a smooth
action of the torus T n on M . We use σ to also denote the induced action of T n on the Fréchet
algebra C∞(M). Let τ be the natural action of T n on C(T nθ ), and let C∞(T nθ ) be the set
of smooth vectors for the action τ . Define a Fréchet topology on C∞(T nθ ) as the locally-
convex topology generated by the seminorms |a|r = supr1+···+rn≤r‖Xr1

1 . . . Xrn
n (a)‖, where

the Xk are the infinitesimal generators of the action of T n on C(T nθ ), and ‖ ·‖ is the norm on
C(T nθ ). Form the projective tensor product of C∞(M) and C∞(T nθ ), and take it’s completion
C∞(M)⊗̂C∞(T nθ ). Note that C∞(T nθ ) is nuclear in the sense of Grothendieck [16]. Since the
actions σ and τ are continuous for the respective Fréchet topologies on C∞(M) and C∞(T nθ ),
the fixed-point subalgebra (C∞(M)⊗̂C∞(T nθ ))σ×τ

−1
is a Fréchet space. The Fréchet algebra

C∞(Mθ) is then isomorphic to (C∞(M)⊗̂C∞(T nθ ))σ×τ
−1

. The universal C*-algebra generated
by (C∞(M)⊗̂C∞(T nθ ))σ×τ

−1
is the C*-completion of (C(M)⊗alg C(T nθ ))σ×τ

−1
.

By using similar constructions in terms of fixed-point algebras, Connes and Dubois-
Violette [10] provide deformed versions of differential forms and various matrix groups. It
should be noted that C(S3

θ ) cannot be viewed as a deformation of the group structure of
SU(2). Várilly [48] showed that θ-deformed spheres can, however, be viewed as “quantum
homogeneous spaces” for actions of θ-deformed special orthogonal groups. Using the fixed-
point description of θ-deformed spaces, Connes and Dubois-Violette show that they preserve
Hochschild dimension, in that the highest nonvanishing Hochschild homology group occurs
at the same level for all θ-deformations of an algebra. Indeed the impetus for θ-deformations
was to find noncommutative manifolds whose cohomology agrees with that of their classical
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versions as closely as possible. The homology of algebras resulting from other types of
deformation procedures may not resemble that of the deformed classical space. For example,
Masuda, Nakagami, and Watanabe’s[23] calculation of the cyclic homology of the coordinate
ring A(SLq(2)) shows that the Hochschild dimension of A(SLq(2)) is one. In fact, for a
general deformation of a manifold by R2, it can happen that all Hochschild homology groups
above level zero collapse [10].

Hanfeng Li [21] showed that θ-deformed compact metric spaces are compact quantum
metric spaces in Rieffel’s sense.

1.2 Non-stable K-theory

Definition 1.2.1. A commutative semigroup S is said to be cancellative if for all x, y, z ∈ S,
if x+ z = y + z, then x = y.

A commutative semigroup S generates a Grothendieck or universal abelian enveloping
group G = K(S). Perhaps the most straightforward way to construct G is to consider the
quotient of the semigroup S × S by the equivalence relation (x1, y1) ∼ (x2, y2) if and only if
there is a z ∈ S so that x1 + y2 + z = x2 + y2 + z. It is easy to check that the addition in
S×S descends to a well-defined associative and commutative addition on G. For any x, the
equivalence class [(x, x)] of (x, x) is the identity element of G, and the inverse of [(x, y)] is
[(y, x)]. Intuitively, one may think of [(x, y)] ∈ G as x− y in a formal group of differences of
S. Indeed, applying the enveloping construction to the semigroup of natural numbers results
in the group of integers.

There is a canonical semigroup homomorphism from S into G given by x 7→ [(x+ x, x)].
It is very easy to verify that this homomorphism is injective if and only if S is cancellative.
The image of S in G under this mapping is a cancellative semigroup and is often referred
to as the positive cone of G. Identifying (x + x, x) with the difference x − 0 we regard the
image of x in the positive cone as “x up to stabilization”.

The construction is universal in that any semigroup homomorphism from S into any
abelian group factors through G, and is unique in the appropriate sense. The process of
taking Grothendieck groups is a covariant functor from the category of commutative semi-
groups to abelian groups, and in many cases of interest, forms a (extraordinary) homology
theory. As a consequence of this, the group K(S) can often be computed without detailed
information about S, or without information about how the positive cone of S is embedded
in K(S). However, if S is not cancellative, it is possible for K(S) to provide little, or even
no information about S, as we will see below. The investigation of S rather than K(S) is
called non-stable K-theory. See [36] for a list of interesting questions of non-stable K-theory
appropriate for C*-algebras.
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Example 1.2.2. For F = R or C, the isomorphism classes V (X) of F-vector bundles over a
compact space X form a commutative semigroup (with identity element the class of the zero
bundle over X) under the direct (Whitney) sum operation. In this setting, the group K(V )
is denoted K0(X). Given a map X → Y between compact spaces X and Y , and a vector
bundle E over Y , the pullback f ∗(E) is a vector bundle over X. Since homotopic maps yield
isomorphic pullbacks, taking K0 gives a contravariant functor from the category of compact
spaces to the category of abelian groups. This is the topological K-theory of Atiyah [1], [19].

If R is a (not necessarily commutative) unital ring, then the set V (R) of isomorphism
classes of right finitely-generated projective R-modules forms a commutative semigroup un-
der direct sum. The Grothendieck group of V (R) is denoted K0(R) and is called the (al-
gebraic) K0-group of R. By Swan’s theorem, in the case of the algebra C(X) of contin-
uous complex-valued functions on a compact space X, each finitely-generated projective
right C(X)-module is the space of continuous sections of some complex vector bundle over
X, and the space of continuous sections of any complex vector bundle over X is a right
finitely-generated projective C(X)-module. The correspondence is in fact an equivalence
of categories, and an analogous statement also holds between the smooth subcategories.
This justifies using the notation V (R) to denote the semigroup of isomorphism classes of
right finitely-generated projective R-modules. Thus V (C(X)) identifies with V (X), and
K0(C(X)) identifies with K0(X) .

Definition 1.2.3. Let R be a unital ring. If the semigroup V (R) is cancellative, we say that
R is K-cancellative.

Thus R is K-cancellative if and only if V (R) injects onto it’s positive cone in K0(R).

Example 1.2.4. The tangent bundle T∗(S
n) consists of all tangent vectors to the n-sphere

Sn. The tangent vectors to a point x ∈ Sn are the vectors in Rn+1 based at x that are
orthogonal to Sn at x. However, T∗(S

2) is not isomorphic to the real rank-2 trivial bundle
S2 × R2 because if it were, then any constant nonzero section of the trivial bundle could be
pulled back to the tangent bundle to give a nonzero vector field on S2, which famously cannot
exist by a classical theorem of algebraic topology. In fact, T∗(S

n) is trivial if and only if
n = 1, 3, 7, by a theorem of Adams.

The normal bundle to Sn in Rn+1 consists of vectors based on the n-sphere that are
perpendicular to the tangent bundle, so the normal bundle consists of elements of the form
(x, tx), t ∈ R. The normal bundle of Sn is thus a trivial line bundle over Sn via the isomor-
phism (x, tx) 7→ (x, t). The sum T∗(S

n) ⊕ N(Sn) is isomorphic to X × Rn+1 via the map
(x, v)+(x, tx) 7→ (x, v+tx). Thus T∗(S

n) is stably trivial, and the semigroup of isomorphism
classes of real vector bundles over Sn is not cancellative in the case n 6= 1, 3, 7, and so the
real K0-group of Sn does not detect the tangent bundle over Sn if n 6= 1, 3, 7 (or rather, we
might say it believes that the tangent bundle is trivial).
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The 5-sphere S5 is an example of a compact space for which it’s semigroup of complex
vector bundles fails cancellation. By the clutching construction, there is a bijection between
the the set of isomorphism classes of complex rank-k vector bundles over Sn and the homo-
topy group πn−1(U(k)). As π4(U(k)) ∼= 0 for k 6= 2, the 5-sphere has no nontrivial complex
vector bundles of rank k 6= 2. But since π4(U(2)) ∼= π4(SU(2)) ∼= π4(S

3) ∼= Z2, there is
exactly one nontrivial complex vector bundle over S5, up to isomorphism. It’s direct sum
with a trivial line bundle must be trivial, and so S5 is not K-cancellative. Indeed, by Bott
periodicity, one has that K0(S5) ∼= Z.

In a positive direction, it can be shown using only very elementary results from homotopy
theory that if X is an n-dimensional CW-complex, and if E ⊕ F ∼= E ′ ⊕ F where E is a
complex bundle over X of rank k ≥ n/2, and E ′, F are arbitrary complex bundles over X,
then E ∼= E ′ (see [18]). Thus cancellation automatically holds for vector bundles of high
enough rank compared to the dimension of the base space. One can also show that any
vector bundle of sufficiently high rank can be decomposed into the sum of a bundle of lower
rank and a trivial bundle. Using these results along with a by-hand examination of the
direct sums of lower rank bundles, it may be possible to fully understand the structure of
the semigroup of vector bundles over a CW-complex of sufficiently low dimension.

Rieffel [34] introduced the notion of topological stable rank (tsr) for Banach algebras as
a generalization of the complex dimension of a topological space. Rieffel also introduced the
related notions of connected stable rank (csr) and general stable rank (gsr). These bear
upon the nonstable K-theory of a Banach algebra in various ways (see [36]). We mention
that statements can be made about cancelling modules of high enough rank in comparison
to the topological stable rank of the endomorphism ring of the module (e.g. theorem 3 of
[36]). The topological stable rank of a C*-algebra was shown to agree with it’s algebraic
Bass stable rank as a ring by Herman and Vaserstein [17]. If the topological stable rank of a
unital C*-algebra A is 1, then A is K-cancellative. Putnam [31] showed that the topological
stable rank of any simple noncommutative 2-torus is equal to 1. The topological stable
rank of any non-simple noncommutative torus is 2, for θ any skew-symmetric matrix with
at least one irrational entry. However, these results were only obtained after Rieffel first
fully described the nonstable K-theory of the noncommutative tori (he did, however, use
upper bounds on topological stable ranks to obtain some of his results). In general it is not
very easy to calculate the topological stable rank of a C*-algebra, and some questions of
nonstable K-theory require more information then the tsr, gsr, and csr of relevant algebras
for their solution. We will be able to give easy proofs that tsr(C(S3

θ )) ≤ 2 (Sudo [46] has
shown that tsr(C(S3

θ )) = 2) and csr(C(S3
θ )) = 2.
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1.3 Clutching Construction

Throughout this section we work in the category of unital rings.
Our classification of the right finitely-generated projective C(S3

θ ) and C(S4
θ )-modules relies

on a generalization of the familiar clutching construction (theorem 3.1 of [19]) of vector
bundle theory to the setting of unital rings. We follow Milnor [27]:

Given M a right R-module, a unital ring homomorphism f : R → S induces a right
S-module M ⊗R S denoted f#M . There is a canonical R-linear map f∗ : M → f#M defined
by f∗(m) := m⊗R 1.

Consider the pullback diagram

R

i2
��

i1 // R1

j1
��

R2 j2
// S.

Now suppose P1 is a projective right R1-module, P2 is a projective right R2-module, and
that h : j1#P1 → j2#P2 is an isomorphism.

Definition 1.3.1. The right R-module M(P1, P2, h) is defined to be the additive group

{(p1, p2) ∈ P1 × P2 : hj1∗(p1) = j2∗(p2)}

together with an R-module structure given by (p1, p2) · r = (p1 · i1(r), p2 · i2(r)).

Assume also that at least one of the jk is surjective. The following three theorems are
found in Milnor [27]:

Theorem 1.3.2. (Theorem 2.1 of [27]). The module M(P1, P2, h) is projective over R. If
P1 and P2 are finitely-generated over R1 and R2 respectively, then M(P1, P2, h) is finitely-
generated over R.

Theorem 1.3.3. (Theorem 2.2 of [27]). Any projective R-module M is isomorphic to
M(P1, P2, h) for some P1, P2 and h.

Theorem 1.3.4. (Theorem 2.3 of [27]). The modules P1 and P2 are canonically isomorphic
to i1#M and i2#M respectively.

We note that an immediate consequence of Theorem 1.3.2, Theorem 1.3.3, and Theorem
1.3.4 is that any projective R-module M is isomorphic to M(i1#M, i2#M, f), where f is the
canonical isomorphism

f(e⊗R 1⊗R1 1) = e⊗R 1⊗R2 1, e ∈M.

This is the algebraic analog of the fact that the restrictions of any vector bundle over a space
X to two intersecting subspaces of X can be viewed as glued together over the intersection
by the identity map.
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We also need a slight extension of the well-known result (theorem 3.4 of [19]) that the
rank-n complex vector bundles over a compact space X are in bijective correspondence with
the set of so-called “GLn-cocycle classes of X”. Of course that result itself is just another
version of the clutching construction.

Specifically, if both maps jk are surjective, and if i1#M and i2#M are free modules over
R1 and R2, respectively, such that i1#M ∼= Rn

1 and i2#M ∼= Rn
2 , we will then associate to

M ∼= M(i1#M, i2#M, f) an element g ∈ GLn(S) so that, viewing g as a map, we have that
M ∼= M(Rn

1 , R
n
2 , g). The matrix g will be unique up to the following notion of equivalence:

Definition 1.3.5. We write g ∼ g′ if there exist g1 ∈ GLn(R1) and g2 ∈ GLn(R2) such that
g′ = j2∗(g2) · g · j1∗(g−11 ). We then say that g and g′ are in the same GLn(S)-cocycle class g.

It is trivial to verify that∼ is an equivalence relation. We now describe how to construct g:
Let ψk : Rn

k →
∼= ik#M be trivializations for ik#M , k = 1, 2. Let eRk,i denote the i-th element

(0, ..., 1Rk , ..., 0) of the standard ordered basis for Rn
k . Define maps jk∗(ψk) : Sn → jk#ik#M

by the formula
jk∗(ψk)(eS,i) = jk∗(ψk(eRk,i)).

We have the following diagram:

i1#M

��

Rn
1

ψ1

∼=
oo

��
j1#i1#M

f

��

Sn
j1∗(ψ1)

∼=
oo

g

��
j2#i2#M Sn

j2∗(ψ2)

∼=
oo

i2#M

OO

Rn
2 ,

ψ2

∼=
oo

OO

where the map Rn
k → Sn takes eRk,i to (eS,i), and the map f is the canonical isomorphism

defined by f(m ⊗R 1 ⊗R1 1) = m ⊗R 1 ⊗R2 1. Requiring that the diagram commutes forces
the definition

g := j2∗(ψ
−1
2 ) ◦ f ◦ j1∗(ψ1),

where j2∗(ψ
−1
2 ) is defined to be (j2∗(ψ2))

−1. Given our choice of the standard ordered basis
for Sn, the map g identifies uniquely with an element of GLn(S), which by abuse of notation
we also refer to as g.

Proposition 1.3.6. The cocycle class of g ∈ GLn(S) obtained from the above construction
is independent of the choice of trivializations ψk : Rn

k →
∼= ik#M .
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Proof. Suppose φk : Rn
k →

∼= ik#M are trivializations for which the above construction yields
the map g′. Define gk as the isomorphism φ−1k ◦ ψk. Then

j2∗(g2) ◦ g ◦ j1∗(g−11 ) = j2∗(φ
−1
2 ◦ ψ2) ◦ j2∗(ψ−12 ) ◦ f ◦ j1∗(ψ1) ◦ j1∗(ψ−11 ◦ φ1)

= j2∗(φ
−1
2 ) ◦ f ◦ j1∗(φ1) = g′,

by commutativity of the diagram. Expressing this calculation in terms of the matrices that
represent the maps jk∗(gk), g, and g′ in the basis {eS,i}i≤n gives the result.

Proposition 1.3.7. If g ∼ g′, then the R-modules M(Rn
1 , R

n
2 , g) and M(Rn

1 , R
n
2 , g

′) are
isomorphic.

Proof. If g′ = j2∗(g2)◦g◦j1∗(g−11 ), then viewing g and g′ as maps, we see that M(Rn
1 , R

n
2 , g) ∼=

M(Rn
1 , R

n
2 , g

′) via the map (p1, p2) 7→ (g1p1, g2p2), where (p1, p2) ∈M(Rn
1 , R

n
2 , g).

Thus we have shown how to obtain a GLn(S)-cocycle class from a R-module N for which
i1#N ∼= Rn

1 and i2#N ∼= Rn
2 . Conversely, we can construct an R-module M by using the

clutching map corresponding to any representative of a GLn(S)-cocycle class. We need
to verify that these are inverse processes up to cocycle equivalence on the one hand, and
isomorphism of R-modules on the other.

Proposition 1.3.8. If g is the result of applying the construction immediately preceding
Proposition 1.3.6 to an R-module N for which i1#N ∼= Rn

1 and i2#N ∼= Rn
2 , then N ∼=

M(Rn
1 , R

n
2 , g).

Proof. By the construction, the following diagram commutes:

i1#N

��

Rn
1

ψ1

∼=
oo

��
j1#i1#N

f
��

Sn
j1∗(ψ1)

∼=
oo

g

��
j2#i2#N Sn

j2∗(ψ2)

∼=
oo

i2#N

OO

Rn
2 .

ψ2

∼=
oo

OO

Hence if (i1∗e, i2∗e) ∈ N , then (ψ−11 (i1∗e), ψ
−1
2 (i2∗e)) ∈ M(Rn

1 , R
n
2 , g). This correspon-

dence is an isomorphism.

Conversely, we have:
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Proposition 1.3.9. Applying the construction immediately preceding Proposition 1.3.6 to
the R-module M := M(Rn

1 , R
n
2 , g) yields a matrix g′ in the same cocycle class as the matrix

g.

Proof. By Theorem 1.3.4, we have the commutative diagram

i1#M

��

Rn
1∼=

oo

��
j1#i1#M

f

��

Sn∼=
oo

g

��
j2#i2#M Sn∼=

oo

i2#M

OO

Rn
2 .∼=

oo

OO

Now, in constructing g′, if we choose the canonical maps from Theorem 1.3.4 as our
trivializations of the modules ik#(M), we then obtain exactly the same commutative diagram,
only with g′ replacing g. So the constructed g′ is precisely g in this case. So by Proposition
1.3.6, any other choices of trivializations would result in different elements of GLn(S) all in
the same cocycle class.

Proposition 1.3.10. There is a bijective correspondence between the set of those isomor-
phism classes of finitely-generated projective R-modules that contain a representative M for
which i1#M ∼= Rn

1 and i2#M ∼= Rn
2 , and the set of equivalence classes of GLn(S)-cocycles.

Proof. Immediate from Propositions 1.3.8 and 1.3.9.

Definition 1.3.11. A unital ring R has the invariance of dimension property if for each
free R-module F , every basis for F has the same cardinality.

Invariance of dimension is equivalent to the condition that for any n andm, theR-modules
Rn and Rm are isomorphic if and only if n = m. It is easy to see that if S has the invariance
of dimension property, and j : R → S is an epimorphism, then R has the invariance of
dimension property. Any unital commutative ring has the invariance of dimension property.

Theorem 1.3.12. Consider the pullback of unital rings

R

i2
��

i1 // R1

j1
��

R2 j2
// S,
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where the maps j1, j2 are surjective. Suppose R1, R2 and S have the invariance of dimen-
sion property. Suppose in addition that whenever P1 and P2 are finitely-generated projective
R1 and R2-modules respectively, such that the induced S-modules j1#P1 and j2#P2 are iso-
morphic, then P1 and P2 must be free modules over R1 and R2 respectively. Then, there
is a bijective correspondence between the isomorphism classes of finitely-generated projective
R-modules, and the set of all cocycles-classes {g | g ∈ GLn(S) some n}.

Proof. This follows from Proposition 1.3.10, Theorems 1.3.3 and 1.3.4, and the fact that if
M is a finitely-generated projective R-module, then, by our hypotheses, i1#M ∼= Rn

1 for a
unique n and also i2#M ∼= Rn

2 for only this same n.

We remark that the results from this section can be generalized to some extent in certain
directions in a manner resembling sheaf cohomology, but doing so is unnecessary for our
present purposes.

1.4 Trace and Dimension

In this section, we review the well-known generalization of the concept of the dimension
of the fibers of a vector bundle to finitely-generated projective modules over unital Banach
algebras that carry a trace. We do this so as to later give a clear meaning to the statement
that for θ any irrational number, every finitely-generated projective C(S4

θ )-module not only
has a well-defined integral “rank”, but moreover, splits (up to isomorphism) into a direct
sum of a “rank-1” C(S4

θ )-module and a free C(S4
θ )-module.

Definition 1.4.1. A trace on an algebra A is a positive C-valued linear functional on A.

Thus for us a trace on A necessarily takes finite values everywhere on A by definition.
This differs from uses of the term that do not require a trace to take on finite values on all
of A.

Let R be a unital ring. Let P be any idempotent in Mn(R) for any n. If one identifies
P with it’s image in each matrix ring Mk(R), for all k ≥ n, then one obtains the well-
known semigroup isomorphism between the isomorphism classes of right finitely-generated
projective R-modules, and similarity classes of the idempotent elements of the direct limit of
all the Mn(R) (See section 1.7.1 of [4]). Now if tr is a trace on a algebra A, then it extends
to a trace on each Mn(A), and so also to the direct limit of all the Mn(A). In particular, if
M is a right finitely-generated projective module over an algebra A, and if tr is a trace on
A, then the induced trace on the direct limit of all the Mn(A) will be equal for all choices of
P that represent M . Thus tr gives rise to a (usually incomplete) isomorphism invariant tr∗
for the right finitely-generated projective modules over A.

If A is the Banach algebra C(X) of continuous complex valued-functions on a compact
space X, then any finitely-generated projective C(X)-module M is the space of continuous
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sections of some complex vector bundle E over X, by Swan’s theorem. View elements of
M ∼= PC(X)n as elements of C(X,Mn(C)). If we then evaluate at any point x, we obtain a
vector space PxCn that is isomorphic to the fiber Ex. The usual matrix trace of Px ∈Mn(C)
is the dimension of the fiber Ex. Thus, if X is connected, evaluation at any point x gives a
trace on C(X) whose induced trace on any right finitely-generated projective C(X)-module
gives the rank of the corresponding complex vector bundle.

Definition 1.4.2. Let A be a unital Banach algebra with a trace tr. Let M be a right
finitely-generated projective A-module. The value tr∗(M) will be called the tr-rank of M .

If a unital algebra A supports a trace that is nonzero on the identity element of A, then
A has the invariance of dimension property. The tr-rank of any free module M over A agrees
with the usual notion (cardinality of any basis for M) of the rank of M if and only if tr is a
normalized trace.

The noncommutative n-torus C(T nθ ) has a canonical faithful normalized trace Tr if θ is
irrational. It is the unique trace on C(T nθ ) that is invariant under the action of T n on C(T nθ ).
The trace takes any homogeneous polynomial in the generators of C(T nθ ) that is not a scalar
multiple of the identity to zero. Interestingly, if |θ| < 1 is irrational, there are projections
of trace |θ| in the algebra C(T 2

θ ) itself (see [33]). Any finitely-generated projective C(T 2
θ )-

module can be split as a nontrivial direct sum of C(T 2
θ )-modules. Thus, the notion of rank

need not be rational.
Suppose A is any unital C*-algebra that surjects onto a unital C*-algebra B via a unital

map j. Suppose also that tr is a normalized trace on B. We can then define a normalized
trace trAB,j on A by tr ◦ j. We note that if j has a nontrivial kernel, the trace trAB,j will
not be faithful. The definition of trAB,j is rigged so that (trAj )∗(M) = tr∗(j#(M)) for any
finitely-generated projective A-module M . Moreover, given a trace tr on an algebra C and
a surjection from A to C that factors through a surjection from B to C, the construction
gives compatible traces in the obvious sense.

Let θ be irrational and let A be any of the θ-deformed algebras

C(S3
θ ), C(F 2

θ ), TC(S3
θ ), TC(F 2

θ ), TC(T 2
θ ), C(S4

θ ), C((D4)1)θ)

defined in this work, with their corresponding surjections onto B = C(T 2
θ ). We can then

define a normalized trace TrAB,j on A by Tr ◦ j, where Tr is the unique normalized trace on
C(T 2

θ ). In particular, we have:

Proposition 1.4.3. The C*-algebras C(T 2
θ ), C(F 2

θ ), C(S3
θ ) have the invariance of dimension

property.

Proof. If θ is irrational, then the noncommutative torus C(T 2
θ ) has a unique normalized trace

Tr. Composing Tr with the surjections from C(F 2
θ ) and C(S3

θ ) show that C(F 2
θ ) and C(S3

θ )
also have normalized traces.
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In this work, we will construct modules N(n, s) over A = C(S4
θ ), for θ irrational, by

clutching together rank-n free modules over two copies of C(D4
θ). In this very intuitive

sense, the “rank” of such a N(n, s) should be n. The TrAB,j-rank of N(n, s) is trivially n for
the map j from C(S4

θ ) to B = C(T 2
θ ) that factors through C(S3

θ ). We will thus define the
“rank” of an C(S4

θ )-module to be it’s TrAB,j-rank. We will show that up to isomorphism,
every finitely-generated projective C(S4

θ ) module is isomorphic to one of the N(n, s). But
also N(n, s) will be isomorphic to N(1, s)⊕ C(S4

θ )
n−1. Thus, for θ irrational, every finitely-

generated projective C(S4
θ )-module splits as a direct sum of a “rank-1” module and a free

module. Interestingly, the “instanton projection” e of Connes and Landi trivially has TrAB,j-
rank equal to 2. Thus it automatically splits as N(1, s) ⊕ C(S4

θ ) for some s (in fact, for
s = 1).
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Chapter 2

Finitely-Generated Projective
Modules over the θ-deformed Spheres

2.1 Finitely-Generated Projective Modules over C(S3
θ )

We assume that θ is irrational throughout this section. We prove that for θ irrational, all
right finitely-generated projective C(S3

θ )-modules are free, and V (C(S3
θ ))
∼= N. Our strategy

is to use our clutching Theorem 1.3.12. Towards this, we first need some information con-
cerning the group π0(GLn(C(T 2

θ ))) of path-classes of n×n invertible C(T 2
θ )-valued matrices.

Theorem 2.1.1. (Theorem 3.3 of [35]).

πk(GLn(C(Tmθ ))) ∼=
{
K1(C(Tmθ )) for k even
K0(C(Tmθ )) for k odd

∼= Z2m−1

for all k ≥ 0, n ≥ 1, for C(Tmθ ) a noncommutative m-torus with not all entries of θ rational.

We note that the isomorphism is given by composing the natural map

πk(GLn(C(Tmθ )))→ πk(GL∞(C(Tmθ )))

induced by the usual embedding of GLn(C(Tmθ )) into GL∞(C(Tmθ )) with Bott periodicity.

Corollary 2.1.2. Let θ be irrational. Then the group π0(GLn(C(T 2
θ ))) of path-components

of GLn(C(T 2
θ )) is generated by the path-classes of the images of U and V in GLn(C(T 2

θ )),
where U and V are the generators of C(T 2

θ ) given in Definition 1.1.2.

Proof. Pimsner and Voiculescu show in corollary 2.5 of [29] that K1(C(T 2
θ )) is generated by

the K1-classes of U, V . Combining this with Theorem 2.1.1 shows that π0(GLn(C(T 2
θ ))) is

generated by the path-classes of the images of U, V in GLn(C(T 2
θ )).
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Notice that Theorem 2.1.1 is false in the commutative case θ = 0 for m ≥ 3, since
π0(U1(A0)) ∼= [Tm, U(1)] ∼= H1(Tm;Z) ∼= Zm. In another direction, one can show using
Postnikov approximation that π0(GL2(T

2C(T 2
0 ))) ∼= [T 4, U(2)] ∼= Z8 ⊕ Z2.

We still need two small propositions before we can apply Theorem 1.3.12 to see that, if
θ is irrational, then all finitely-generated projective C(S3

θ )-modules are free.

Proposition 2.1.3. For all real θ, all right finitely-generated projective C(F 2
θ )-modules are

free.

Proof. Recall that homomorphisms of Banach algebras φ, ψ : A → B are said to be ho-
motopic (denoted φ ∼h ψ) if there is a homomorphism γ : A → C([0, 1], B) such that
ε0 ◦ γ = φ and ε1 ◦ γ = ψ, where εt : C([0, 1], B) → B is evaluation at t ∈ [0, 1]. A homo-
morphism φ : A → B is a homotopy equivalence if there is a morphism ψ : B → A such
that ψ ◦ φ ∼h idA and φ ◦ ψ ∼h idB. If additionally, φ ◦ ψ = idB, then φ is said to be a
deformation retraction of A onto B. These are the dual notions of the familiar definitions
for continuous maps between topological spaces. We observe that C(F 2

θ ) deformation re-
tracts onto the commutative C*-subalgebra C∗(v) ∼= C(S1): First define the epimorphism
j : C(F 2

θ ) → C(S1) by the assignments j(v) = v and j(y) = 0. Define the homomorphism
` : C(S1)→ C(F 2

θ ) by `(v) = v. Since j` = idC(S1), we need only see that `j ∼h idC(F 2
θ )

. To

this end, define γ : C(F 2
θ )→ C([0, 1], C(F 2

θ )) as

(γ(v))(t) = γt(v) = v

(γ(y))(t) = γt(y) = ty

for t ∈ [0, 1].
As γ0 = `j and γ1 = idC(F 2

θ )
, the map j is a deformation retraction of C(F 2

θ ) onto C(S1).

But as j : C(F 2
θ )→ C(S1) is a homotopy equivalence of Banach algebras, the induced map

j∗ : V (C(F 2
θ ))→ V (C(S1)) is a semigroup isomorphism, by the homotopy invariance of the

functor V . Thus, since all finitely-generated projective modules over C(S1) are free, the
same is true for for all finitely generated projective modules over C(F 2

θ ).

Proposition 2.1.4. Suppose

R

i2
��

i1 // R1

j1
��

R2 j2
// S

is a pullback in the category of unital Banach algebras, and that g0 and g1 are path-connected
in GLn(S). Then M(Rn

1 , R
n
2 , g0)

∼= M(Rn
1 , R

n
2 , g1).

Proof. Suppose {gt} is a path from g0 to g1. Then {gt} may be regarded as an element of
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GLn(C(I, S)). Form the pullback diagram

C(I, R)

i2
��

i1 // C(I, R1)

j1
��

C(I, R2) j2
// C(I, S)

and consider the C(I, R)-module E=M(C(I, R1)
n, C(I, R2)

n, {gt}). By homotopy invariance
of the functor V , we have ε0∗ = ε1∗ : V (C(I, R)) → V (R), where εt : C(I, R) → R is
evaluation at t. So ε0∗(E) ∼= ε1∗(E). But simply by inspecting their definitions, we see that
ε0∗(E) ∼= M(Rn

1 , R
n
2 , g0) and ε1∗(E) ∼= M(Rn

1 , R
n
2 , g1).

Theorem 2.1.5. If θ is irrational, then all right finitely-generated projective C(S3
θ )-modules

are free. The free C(S3
θ )-modules C(S3

θ )
n are mutually non-isomorphic.

Proof. As given in Definition 1.1.3, the C*-algebra C(S3
θ ) is the pullback

C(S3
θ )

i2
��

i1 // C(F 2
θ )

j1
��

C(F 2
−θ) j2

// C(T 2
θ ),

where i1(a1, a2) = a1, i2(a1, a2) = a2, j1 = πθ, j2 = f ∗θ ◦ π−θ.
All finitely-generated projective modules over C(F 2

θ ) or C(F 2
−θ) are free by Proposition

2.1.3. Thus, by Proposition 1.4.3 and Theorem 1.3.12, each finitely-generated projective
module over C(S3

θ ) is of the form M(C(F 2
θ )n, C(F 2

−θ)
n, g) where g ∈ GLn(C(T 2

θ )). But, by
Corollary 2.1.2, if we identify UkV l with it’s image in GLn(C(T 2

θ )), it must be that g is
path-connected in GLn(C(T 2

θ )) to some UkV l. But also UkV l =j2∗(u
k) · 1n · j1∗(((v−1)l)−1),

so UkV l and 1n are in the same cocycle class in GLn(C(T 2
θ )). Therefore, by Proposition

2.1.4,

M(C(F 2
θ )n, C(F 2

−θ)
n, g) ∼= M(C(F 2

θ )n, C(F 2
−θ)

n, UkV l)
∼= M(C(F 2

θ )n, C(F 2
−θ)

n, 1n) ∼= C(S3
θ )
n.

By Proposition 1.4.3, the free C(S3
θ )-modules C(S3

θ )
n are mutually non-isomorphic.

We note that the above proof also is valid in the case that θ = 0, since π0(C(T 2)) ∼=
K1(T 2) is generated by U and V , and we have only used the condition that θ is irrational in
this section for Theorem 2.1.1 and Corollary 2.1.2. We thus obtain a proof of the classical
result that all complex vector bundles over S3 are trivial.
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2.2 Finitely-Generated Projective Modules over TC(S3
θ )

We assume that |θ| < 1 is irrational in this section. We do this because we will crucially
use the fact that under this assumption there is a projection in C(T 2

θ ) of trace Tr = |θ|
(see [33]) inorder to explicitly find a formula for the generator X given in Proposition 2.2.6.
However, none of the results of this section depend upon actually knowing a formula for X,
so the condition that |θ| < 1 could be dropped (we do use that θ is irrational). In any event,
we lose little by imposing this condition, as the commutation relations given in Definition
1.1.2 show that C(T 2

θ ) depends only on the value θmod1.

In this section we classify the finitely-generated projective modules over TC(S3
θ ) where

|θ| < 1 is irrational. We do not do this for it’s own sake, but because the classification
will allow us to conclude that the natural map π0(GL1(C(S3

θ ))) → K1(C(S3
θ ))
∼= Z is an

isomorphism. That fact will be essential to classifying the finitely-generated C(S4
θ )-modules.

We will view the C*-algebra TC(S3
θ ) as the pullback

TC(S3
θ )

i2
��

i1 // TC(F 2
θ )

j1
��

TC(F 2
−θ) j2

// TC(T 2
θ ),

and form the finitely-generated projective TC(S3
θ )-modules by gluing together TC(F 2

θ ) and
TC(F 2

−θ)-modules over TC(T 2
θ ). Not all finitely-generated projective modules over these later

algebras are free, but we will see that only free modules over them can be glued together
over TC(T 2

θ ) to obtain finitely-generated projective TC(S3
θ )-modules. This greatly simplifies

the analysis.

Theorem 2.2.1. If P1 and P2 are respectively finitely-generated projective TC(F 2
θ ) and

TC(F 2
−θ)-modules such that j1#(P1) ∼= j2#(P2), then both P1 and P2 are free modules.

Proof. We will need a few lemmas and independent propositions to prove Theorem 2.2.1.
First, given a unital C*-algebra A, we would like to characterize the finitely-generated TA-
modules in terms of the finitely-generated A-modules. We use a construction which is itself
a form of clutching.

Definition 2.2.2. Let A be a unital C*-algebra. Let M be an A-module, and let h be an
automorphism of M . We let X(h) denote the TA-module

X(h) := {f : I →M : f(1) = hf(0), h ∈ AutA(M), f continuous},

Lemma 2.2.3. (Theorem 8.4 of [37]) Suppose A is a unital C*-algebra. Then, any finitely-
generated projective TA-module is isomorphic to one of the form X(h) defined in Definition
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2.2.2, where M is a finitely-generated projective A-module. Lemma 8.10 of [37] shows that
if X(h1) ∼= X(h2), where h1 and h2 ∈ AutA(M), then there is a g ∈ AutA(M) with h2 and
gh1g

−1 path-connected in AutA(M). Also, if h1 and h2 are path-connected in AutA(M), then
X(h1) ∼= X(h2).

By noticing that TC(F 2
θ ) retracts to TC∗(v) ∼= C(T 2), and likewise TC(F 2

−θ) retracts to
TC∗(u) ∼= C(T 2), for the purposes of classification we may regard the projective modules
over each as projective modules over C(T 2). The consequence is a lemma that we state after
a preliminary definition.

Definition 2.2.4. We denote by X(vk, n) the TC(F 2
θ )-module

X(vk, n) := {f : I → C(F 2
θ )n : f(1) = vkf(0), f continuous},

where vk is the image in GLn(C(F 2
θ )) of the k-th power of the generator v ∈ C(F 2

θ ).

Lemma 2.2.5. Every finitely-generated projective TC(F 2
θ )-module is isomorphic to a module

of the form X(vk, n) given in Definition 2.2.4.

Proof. Recall from the proof of Proposition 2.1.3 that C(F 2
θ ) deformation retracts onto

C∗(v) ∼= C(S1), which has only free finitely-generated projective modules over it. Now
π0(GL1(C

∗(v))) ∼= π1(GL1(C)) ∼= π1(S
1) ∼= Z is generated by v. Furthermore, the natural

map π0(GL1(C
∗(v)))→ K1(C

∗(v)) is an isomorphism. So, by Lemma 2.2.3, taking the image
of vk in GLn(C(F 2

θ )), each finitely-generated projective module over TC(F 2
θ ) is isomorphic

to a unique module X(vk, n) := X(vk). The module X(vk, n) corresponds to the well-known
complex rank-n vector bundle over T 2 of “twist” (integral of the first Chern class), −k. Since(
z 0
0 w

)
is homotopic through invertibles to

(
zw 0
0 1

)
if z and w are invertible (proposition

3.4.1 of [4]), we see that the bijection [X(vk, n)] 7→ (k, n) gives a semigroup isomorphism
from V (TC(F 2

θ )) onto {0} ∪ (Z× N).
Of course similar remarks apply for TC(F 2

−θ), so there is a bijection between the isomor-
phism classes of finitely-generated projective modules over TC(F 2

−θ) and finitely-generated
projective modules of the form X(ul,m), with the definition of the X(ul,m) paralleling
that of the X(vk, n), but now employing the generator u and a rank-m free module over
C(F 2

−θ).

For the next lemma, we will need to know the generators of π0(GLn(TC(T 2
θ ))).

Proposition 2.2.6. Let U and V be as given in Definition 1.1.2. Let W := exp(2πit) · 1
and X := exp(2πit) · p + 1 − p, where p ∈ C(T 2

θ ) is a projection of trace |θ| < 1 irrational.
Then, for any n ≥ 1, the group π0(GLn(TC(T 2

θ ))) ∼= Z4 is generated by the path-classes of
the images of U, V, W, X in GLn(TC(T 2

θ )). So the image of each monomial U lV kW rXs in
GLn(TC(T 2

θ )) is in a distinct path-class.
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Proof. From the split-exact sequence

0→ SC(T 2
θ )→ TC(T 2

θ )→ C(T 2
θ )→ 0,

we observe that K1(TC(T 2
θ )) ∼= K1(C(T 2

θ ))⊕K1(SC(T 2
θ )). The invertibles U and V generate

K1(C(T 2
θ )) ∼= Z2, by Corollary 2.5 of [29]. Recall that for A any Banach algebra, the

assignment e 7→ exp(2πit) ·e+1−e, where e is an idempotent in any matrix algebra Mn(A),
induces the Bott map K0(A) ∼= K1(SA) (see section 9.1 of [4]). Now for A = C(T 2

θ ), this
assignment takes 1 to W and p to X, by definition. But the Ko-classes of 1 and p generate
K0(C(T 2

θ )) (see page 116 of [29]). Thus U , V , W , and X generate K1(TC(T 2
θ )). So the

proposition follows by Theorem 2.1.1.

We remark that Proposition 2.2.6 can also be proved by using the Mayer-Vietoris sequence
of K-theory, but the proof is more complicated.

We still need a small proposition which is a generalization of the fact that vector bundles
over connected spaces have isomorphic fibers.

Proposition 2.2.7. Let Y be any path-connected space, and let A be any unital Banach
algebra. Let Y A denote the Banach algebra of continuous functions from Y into A. Let
M and N be isomorphic finitely-generated projective Y A-module. Then each fiber of M is
isomorphic to each fiber of N as A-modules.

Proof. Since the fiber of M over y is (εy)#(M) , and the fiber of N over y is (εy)#(N), the
fiber of M over y and the fiber of N over y must be isomorphic by functoriality of the induced
module construction. So we only need to show that for any points y1 and y2 in Y , the fiber
of M over y1 is isomorphic to the fiber over y2. So suppose y1 and y2 are connected by a
path γt. The evaluation map εy : Y A → A induces maps (εy1)∗, (εy2)∗ : V (Y A) → V (A).
But εy1 ∼h εy2 via εγt . So, by homotopy invariance of the functor V , the maps (εy1)∗ and
(εy2)∗ are identical.

Lemma 2.2.8. The TC(T 2
θ )-modules j1#X(vk, n) and j2#X(ul,m) are isomorphic if and

only if m = n and k = l = 0.

Proof. Since j1 : TC(F 2
θ )→ TC(T 2

θ ) is surjective, any element of

j1#X(vk, n) := X(vk, n)⊗TC(F 2
θ )
TC(T 2

θ )

can be written as an elementary tensor g ⊗ 1. Viewing g as in C([0, 1], C(F 2
θ )n) and j1 as

mapping C([0, 1], C(F 2
θ )n) onto C([0, 1], C(T 2

θ )n), it is easily verified that the map g ⊗ 1 7→
j1(g) restricts to a well-defined isomorphism from j1#X(vk, n) onto X(V k, n). Repeating
this argument for TC(F 2

−θ) gives j2#X(ul,m) ∼= X(U l,m).
Now suppose that X(V k, n) ∼= X(U l,m). Then, firstly, by Proposition 2.2.7, any fiber of

X(V k, n) over any point of T must be isomorphic to any fiber of X(U l,m) over any point
of T . But since these fibers are C(T 2

θ )n and C(T 2
θ )m respectively, and since C(T 2

θ ) has the
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invariance of dimension property, this is possible only if n = m. Now, by Lemma 2.2.3,

if X(V k, n) ∼= X(U l, n), then

(
V k 0
0 1n−1

)
must be path-connected in GLn(TC(T 2

θ )) to

g

(
U l 0
0 1n−1

)
g−1 for some g ∈ GLn(TC(T 2

θ )). But since π0(GLn(TC(T 2
θ ))) ∼= Z4 is abelian,

this is equivalent to

(
V k 0
0 1n−1

)
being path-connected to

(
U l 0
0 1n−1

)
in GLn(TC(T 2

θ )) .

But that is the case only if k = l = 0, by Proposition 2.2.6.

Theorem 2.2.1 follows immediately by Lemmas 2.2.5 and 2.2.8.

Corollary 2.2.9. Every finitely-generated projective TC(S3
θ )-module is (up to isomorphism)

of the form M((TC(F 2
θ ))n, (TC(F 2

−θ))
n, U lV kW rXs), for the pullback diagram

TC(S3
θ )

i2
��

i1 // TC(F 2
θ )

j1
��

TC(F 2
−θ) j2

// TC(T 2
θ ),

where U , V , W , X are the images in GLn(TC(T 2
θ )) of the generators of π0(GLn(TC(T 2

θ ))) ∼=
K1(TC(T 2

θ )) defined in Proposition 2.2.6.

Proof. Immediate from Theorem 2.2.1, Proposition 2.2.6, and Theorem 1.3.3.

We are now in position to prove the following theorem, after introducing some notation.

Definition 2.2.10. We denote the TC(S3
θ )-module M((TC(F 2

θ ))n, (TC(F 2
−θ))

n, Xs) by the
notation M(n, s).

Theorem 2.2.11. Every finitely-generated projective TC(S3
θ )-module is (up to isomorphism)

of the form M(n, s) for some (n, s). Every choice of pair (n, s) results in a distinct isomor-
phism class of TC(S3

θ )-modules.

Proof. We need two lemmas.

Lemma 2.2.12. Fix n and s. Then for all l, k, and r

M((TC(F 2
θ ))n, (TC(F 2

−θ))
n, U lV kW rXs) ∼= M(n, s)

as TC(S3
θ )-modules.

Proof. By Theorem 1.3.12, it suffices to see that U lV kW rXs and Xs are in the same cocycle
class of GLn(TC(T 2

θ )). Clearly, U lV kW rXs and U lXsV kW r are homotopic (they are equal
up to multiplication by a phase factor in S1), and hence in the same cocycle class. But of
course U lXsV kW r = j2∗(u

l)Xsj1∗(((v
kwr)−1)−1), so U lXsV kW r ∼ Xs.
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Lemma 2.2.13. The TC(S3
θ )-modules M((TC(F 2

θ ))n, (TC(F 2
−θ))

n, Xs) are mutually non-
isomorphic for different choices of s.

Proof. The statement follows from Theorem 1.3.12, after observing that Xs1 , Xs2 are in dif-
ferent cocycle classes if s1 6= s2. To see this, suppose thatXs1 ∼ Xs2 . As π0(GLn(TC(T 2

θ ))) ∼=
Z4 is abelian, this is equivalent to the formula Xs1 = j2∗(g2)j1∗(g

−1
1 )Xs2 for some g1 ∈

GLn(TC(F 2
θ )) and g2 ∈ GLn(TC(F 2

−θ)). Hence Xs = j2∗(g2)j1∗(g
−1
1 ) for s = s1 − s2. But

π0(GLn(TC(F 2
θ )) ∼= Z2 is generated by w and v and π0(GLn(TC(F 2

−θ)))
∼= Z2 is generated

by z and u. So j2∗(g2)j1∗(g
−1
1 ) must be homotopic in GLn(TC(T 2

θ )) to an invertible of the
form W rUkV l, for some r, k, l, since j1∗(w) = W, j1∗(v) = V and j2∗(z) = W, j2∗(u) = U .
But by Proposition 2.2.6, the invertible Xs cannot be homotopic to such an element, unless
r = k = l = s = 0.

Theorem 2.2.11 is now immediate from Corollary 2.2.9, and Lemmas 2.2.12 and 2.2.13.

Corollary 2.2.14. V (TC(S3
θ ))
∼= {0} ∪ (Z×N) is a cancellative semigroup. It is generated

by the isomorphism classes of the modules M(1, s) and the zero module {0}.

Proof. Since

(
Xs 0
0 X t

)
is homotopic through invertibles to

(
Xs+t 0

0 1

)
, we have an isomor-

phism M(m+ n, s+ t) ∼= M(m, s)⊕M(n, t).
Suppose now that M1 ⊕N ∼= M2 ⊕N , where M1

∼= M(k, s1) and M2
∼= M(l, s2). Since

N is projective, there is an N ′ so that N ⊕ N ′ ∼= (TC(S3))n ∼= M(n, 0) for some n. So
we must merely see that when M(k, s1) ⊕ M(n, 0) ∼= M(k + n, s1 + 0) is isomorphic to
M(l, s2)⊕M(n, 0) ∼= M(l + n, s2 + 0), then M(k, s1) must be isomorphic to M(k, s2). But
M(k+n, s1) can be isomorphic to M(l+n, s2) only if k+n = l+n and s1 = s2, by Theorem
2.2.11. So M1

∼= M2, and V (TC(S3
θ )) is cancellative.

Let us pause to note that the classical case is a bit different. Since π0(GL1(C(S3))) ∼=
π3(GL1(C)) ∼= π3(S

1) ∼= 0, and the only complex line bundle over S3 is the trivial one, the
only complex line bundle over T×S3 is the trivial one. On the other hand, π0(GLn(C(S3))) ∼=
π3(GLn(C)) ∼= π3(SU2(C)) ∼= π3(S

3) ∼= Z for n = 2. This, together with the fact that all
complex vector bundles over C(S3) are trivial, means that there are exactly Z-many complex
vector bundles of rank-n over T × S3 for n = 2. These bundles are indexed by their ranks
and second Chern classes, and one can easily calculate that the complex rank-2 bundle with

charge c2 = −1 is precisely the bundle X(y), where y =

(
z1 z2
−z̄2 z̄1

)
is the generator of

π3(SU2(C)). Every bundle over T ×S3 other than the trivial line bundle must be of the form

X(

(
yk 0
0 1n−2

)
, n) for some n = 2, and some k. By way of contrast, if θ is irrational, we

have just shown that there are Z-many “line bundles” M(1, s) = M(TC(F 2
θ ), TC(F 2

−θ), X
s)

over the (nonexistent) noncommutative space T × S3
θ . Moreover, our work shows that all
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“vector bundles” over this noncommutative space are obtained by adding trivial bundles to
one of these nonncommutative line bundles.

2.3 The Group π0(GL1(C(S
3
θ )))
∼= Z

In this section we show that if θ is irrational, then π0(GL1(C(S3
θ )))
∼= Z, and the natural

map
π0(GL1(C(S3

θ )))→ K1(C(S3
θ ))

is an isomorphism. We will assume also that |θ| < 1, since we will use the description of the
generator X from Lemma 2.2.6. But as we will note later, we could obtain the results of
this section without assuming |θ| < 1.

By Lemma 2.2.3, the TC(S3
θ )-module M(1, 1) := M(TC(F 2

θ ), TC(F 2
−θ), X

s) is isomorphic
to a module of the form

X(u, V ) := {f : I → V : f(1) = uf(0), u ∈ AutA(V ), f continuous},

where V is some C(S3
θ )-module, and u is an automorphism of V . We claim that V ∼= C(S3

θ )
and that u can then be represented as an element of GL1(C(S3

θ )). Of course the invertible u
will not be path-connected to the identity through GL1(C(S3

θ )), since M(1, 1) is not a free
TC(S3

θ )-module. In fact, we will show in Theorem 2.3.3 that π0(GL1(C(S3
θ )))
∼= Z.

Theorem 2.3.1. The projective TC(S3
θ )-module M(1, 1) := M(TC(F 2

θ ), TC(F 2
−θ), X

s) is
isomorphic to X(u,C(S3

θ )) for some invertible u ∈ C(S3
θ ).

Proof. The proof will use theorem 3.2 of [13] as a technical lemma:

Lemma 2.3.2. (Theorem 3.2 of [13]). Suppose R is a pullback

R

i2
��

i1 // R1

j1
��

R2 j2
// S

of unital rings with j1 surjective, and suppose that E1 and E2 are free rank-n modules over
respectively R1 and R2. Then M(E1, E2, g) ∼= P (R)2n, where the idempotent P ∈M2n(R) is
given by (

(1, c(2− dc)d) (0, c(2− dc)(1− dc))
(0, (1− dc)d) (0, (1− dc)2),

)
for c a lift of g to Mn(R1), and d a lift of g−1 to Mn(R1).

Proof. The formula for P is not at all obvious, but the derivation in [13] consists of simple
calculations based on the proof of Theorem 1.3.3 given in [27]).
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Returning to the proof of Theorem 2.3.1, we first apply Lemma 2.3.2 to find an idempotent
2 × 2 matrix P ∈ M2(TC(S3

θ )) with M(1, 1) := M(TC(F 2
θ ), TC(F 2

−θ), X) ∼= P (TC(S3
θ ))

2.
To lift X = exp(2πit) · p + 1 − p to c ∈ TC(F 2

θ ), first lift the projection p ∈ C(T 2
θ ) to a

self-adjoint (but not idempotent) element q ∈ C(F 2
θ ). Take c = exp(2πit) · q + 1− q. Since

X−1 = exp(−2πit)·p+1−p, we can take d to be exp(−2πit)·q+1−q. Of course then d = c∗,
and c is normal (though not invertible). Regarding P, c, d as functions on the interval [0,1],

we have c(0) = c(1) = d(0) = d(1) = 1 ∈ C(F 2
θ ), and P (0) = P (1) =

(
1 0
0 0

)
∈M2(C(S3

θ )).

Let us review the argument that every projective module M over TA for A a C∗-algebra
is isomorphic to one of the form X(u, V ), where V is some projective A-module and u is
some automorphism of V . We follow lemma 8.11 of [37]: Since M is finitely-generated and
projective, there is an idempotent P in some Mn(TA), so that M ∼= P (TA)n. But P can
be considered a path of idempotents in Mn(A) with P (0) = P (1). Take V = P (0)An.

One can construct a path U := {U(t)} through GLn(A) with U(0) =

(
1 0
0 1

)
and P (t) =

U(t)−1P (0)U(t) (see, for instance, proposition 4.3.3 of [4]). Now P (1) = P (0), so P (0)
commutes with U(1), and u := P (0)U(1) is an automorphism of V . The assignment φ(t) =
U(t)f(t) supplies an isomorphism P (TA)n ∼= X(u, V ), here regarding f ∈ P (TA)n as a
function from T into An.

For M(1, 1) ∼= P (TC(S3
θ ))

2, we have that V = P (0)(C(S3
θ ))

2 ∼= C(S3
θ ) as a C(S3

θ )-

module, via the identification

(
1 0
0 0

)(
x
y

)
↔ x. Thus we may identify u with some element

of GL1(C(S3
θ )). Indeed, using that P (0) = P (1) =

(
1 0
0 0

)
and P (1) = U(1)−1P (0)U(1),

we notice that U(1) must be a diagonal matrix

(
u11 0
0 u22

)
with u11 and u22 necessarily

invertible in C(S3
θ ). It is u11 that we identify with u.

Although we won’t need this fact, we note that u22 is path-connected to u−111 inGL1(C(S3
θ )).

This is because

(
1 0
0 1

)
∼h
(
u11 0
0 u22

)
∼h
(
u11u22 0

0 1

)
, and the natural map

π0(GL1(C(S3
θ )))→ K1(C(S3

θ ))
∼= Z

is injective (moreover, an isomorphism, see discussion below).

We remark that although a concrete procedure for constructing the path U(t) is well-
known (see the proof of proposition 4.3.3 of [4]), doing so involves estimating norms in
Mn(TA) and then splitting the interval into an appropriate number of subintervals to insure
an inequality. One then multiplies together a number of matrix elements for each of these
subintervals to produce U(t). We could attempt to do this in our case to obtain an explicit
formula for u1. However, we will instead later guess a generator for π0(GL1(C(S3

θ )). This
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generator must be homotopic through invertibles in GL1(C(S3
θ )) to either u or u−1. However,

even without an explicit formula for u we may at this point already easily prove the following
theorem:

Theorem 2.3.3. The natural map π0(GL1(C(S3
θ )))→ K1(C(S3

θ ))
∼= Z is an isomorphism.

Proof. Theorem 2.2.11 shows that each TC(S3
θ )-module is isomorphic to exactly one of the

M(n, s) = M((TC(F 2
θ ))n, (TC(F 2

−θ))
n, Xs). Using Lemma 2.3.2, we obtain an idempotent

P ∈ M2n(TC(S3
θ )) so that M(n, s) ∼= P (TC(S3

θ ))
2n. By Lemma 2.2.3, we write M(n, s) ∼=

X(v, V ), where V = P (0)(C(S3
θ ))

2n. Since P (0) = P (1) =

(
1n 0
0 0

)
, we have that V ∼=

C(S3
θ )
n, and so v can be identified with some element of GLn(C(S3

θ )). Since C(S3
θ ) and

TC(S3
θ ) are both cancellative, the natural map

π0(GLk(C(S3
θ )))→ K1(C(S3

θ ))

is injective, for all k ≥ 0, by theorem 8.4 of [37]. Theorem 2.3.1 shows that M(1, 1) ∼=
X(u,C(S3

θ )), for some u ∈ GL1(C(S3
θ )). But u �h 1 in GL1(C(S3

θ )), since M(1, 1) is not a
free TC(S3

θ )-module, so π0(GL1(C(S3
θ ))) is not the trivial group. Thus π0(GL1(C(S3

θ )))
∼= Z,

since the map π0(GL1(C(S3
θ )))→ K1(C(S3

θ ))
∼= Z is injective. We must prove that the map

is onto: Let v1 be an arbitrary member of GLn(C(S3
θ )) for n ≥ 2. Let V = C(S3

θ )
n and form

the TC(S3
θ )-module X(v1, V ). As a TC(S3

θ )-module, X(v1, V ) is isomorphic to some M(k, s)
for a unique pair (k, s). But applying Lemma 2.3.2 to find an idempotent P so that M(k, s) ∼=
P (TC(S3

θ ))
2k ∼= X(v2, P (0)C(S3

θ )
2k) ∼= X(v2, C(S3

θ )
k), for some v2 ∈ Aut(P (0)C(S3

θ )
2k), we

see that k must be n, because isomorphic TC(S3
θ )-modules must have isomorphic fibers over

each point of T , by Proposition 2.2.7. (Although we don’t need this fact, we remark that
we can conclude that v1 ∼h v2 in GLn(C(S3

θ )). Also, M(n, s) ∼= M(1, s) ⊕ (TC(S3
θ ))

n−1,
by Corollary 2.2.14. Now M(1, s) is itself isomorphic to a module X(v′, C(S3

θ )) for some
v′ ∈ GL1(C(S3

θ )), and (TC(S3
θ ))

n−1 is isomorphic to X(1n−1, C(S3
θ )
n−1) as a TC(S3

θ )-module.

Thus X(v1, C(S3
θ )
n) ∼= X(

(
v′ 0
0 1n−1

)
, C(S3

θ )
n), and v1 and

(
v′ 0
0 1n−1

)
are path-connected

in GLn(C(S3
θ )), by Lemma 2.2.3. Since π0(GLn(C(S3

θ )))
∼= Z is abelian, we conclude that

v1 ∼h
(
v′ 0
0 1n−1

)
in GLn(C(S3

θ )), so the map π0(GL1(C(S3
θ ))) → π0(GLn(C(S3

θ ))) is onto

for all n ≥ 2.

We remark that a similar proof of Theorem 2.3.3 can be given by considerations of
compatability of Tr-ranks, without invoking Lemma 2.3.2. Such an approach is simpler and
also does not require an explicit formula for the generator X. Thus such an approach does
not require the restriction that |θ| < 1. The proof we give, however, has the advantage of
being somewhat more constructive.

We pause to remark that by Proposition 1.4.3 and Theorem 2.1.5, it must be that the
general stable rank (or gsr) of C(S3

θ ) is equal to 1. Therefore, for irrational θ, we conclude
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that the connected stable rank (or csr) of C(S3
θ) equals 2, by proposition 2.6 of [35], since

GL1(C(S3
θ )) is not connected. Moreover, by proposition 8.2 of [37] and proposition 2.6 of

[35], we conclude that csr(TC(S3
θ )) = 2. However, I suspect that π0(GL1(TC(S3

θ ))
∼= Z4,

while we have just shown that π0(GLn(TC(S3
θ ))
∼= K1(TC(S3

θ ))
∼= Z2, for all n ≥ 2, so

T 2(C(S3
θ )) would fail cancellation. I can show that this would imply that C(S5

θ ) also fails
cancellation, but in contrast to the commutative case, C(S5

θ ) would then have nontrivial
“noncommutative line bundles”, which when added together in any combination always
result in free modules. Furthermore, the algebra C(S5

θ ) would not support any nontrivial
finitely-generated projective modules of “rank” 2 or higher.

Proposition 2.3.4. Let θ be irrational. Then tsr(C(S3
θ )) ≤ 2.

Proof. Consider the short exact sequence

0→ Cone(C(T 2
θ ))→ C([0, 1], C(T 2

θ ))→ C(T 2
θ )→ 0.

Putnam [31] proved that tsr(C(T 2
θ )) = 1. So tsr(C([0, 1], C(T 2

θ )) ≤ 2, by corollary 7.2 of
[34]. But then tsr(Cone(C(T 2

θ ))) ≤ 2, by theorem 4.4 of [34].
We deduce the short exact sequence

0→ Cone(C(T 2
θ ))→ C(D2)×θ Z → C(S1)→ 0

from Theorem 1.1.5. As tsr(C(S1)) = 1, we conclude that tsr(C(D2)×θZ) ≤ 2, by corollary
4.12 of [34]. Finally, since C(S3

θ ) is a pullback of the C*-algebras C(F 2
θ ) = C(D2)×θ Z and

C(F 2
−θ) = C(D2)×−θ Z, it must be that tsr(C(S3

θ )) ≤ 2, by corollary 3.16 of [43].

I have discovered that Sudo [46] has already given a proof that tsr(C(S3
θ )) = 2, but the

proof is less elementary.

2.4 The Generator of π0(GL1(C(S
3
θ )))

In this section, we explicity describe the generator of π0(GL1(C(S3
θ )))
∼= Z for the case

|θ| < 1 is irrational.
Let |θ| < 1 be irrational. Recall from the proof of Proposition 2.2.6 that W := exp(2πit)·1

and X := exp(2πit)p + 1 − p generate K1(SC(T 2
θ ))) ∼= Z2, where p ∈ C(T 2

θ ) is a Rieffel
projection of trace θ. We will observe that the unitisation of SC(T 2

θ ) is contained in C(S3
θ ).

(In fact SC(T 2) is an ideal of C(S3
θ )). This suggests that X might generate π0(GL1(C(S3

θ ))
∼=

Z. Indeed, this is the content of Theorem 2.4.4, towards which we first obtain some lemmas.

Lemma 2.4.1. The suspension SC(T 2
θ ) is an ideal of C(S3

θ ).

Proof. The C*-algebra C(S3
θ ) is isomorphic to the algebra

{f ∈ C([0, 1], C(T 2
θ )) : f(0) ∈ C∗(V ), f(1) ∈ C∗(U)}

by Theorem 1.1.5. The suspension SC(T 2
θ ) is obviously an ideal of the later algebra.
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Lemma 2.4.2. The induced map i∗ : K1(SC(T 2
θ ))→ K1(C(S3

θ )) is surjective.

Proof. That we have the short exact sequence

0→ SC(T 2
θ )

i−→ C(S3
θ )

q−→ C∗(V )⊕ C∗(U)→ 0

follows from Lemma 2.4.1. The standard six-term exact sequence of Banach algebra K-theory
(theorem 9.3.1 of [4]) becomes:

K0(SC(T 2
θ ))

i∗ // K0(C(S3
θ ))

q∗ // K0(C
∗(V ))⊕K0(C

∗(U))

∂
��

K1(C
∗(V ))⊕K1(C

∗(U))

∂

OO

K1(C(S3
θ ))

q∗oo K1(SC(T 2
θ ))

i∗oo

or,

Z⊕ Z i∗ // Z
q∗ // Z⊕ Z

∂
��

Z⊕ Z
∂

OO

Z
q∗oo Z⊕ Z.i∗oo

The above values of the K-groups, the condition of exactness, and the fact that the map
q∗ : K0(C(S3

θ ))→ K0(C
∗(V ))⊕K0(C

∗(U)) is injective (established below), jointly suffice to
completely determine the images and kernels (at least up to isomorphism as abstract discrete
groups) of all of the other maps in the six-term sequence.

Indeed, from the Grothendeick construction, the map

q∗ : K0(C(S3
θ ))→ K0(C

∗(V ))⊕K0(C
∗(U))

is induced by the semigroup homomorphism q∗ : V (C(S3
θ )) → V (C∗(V )) ⊕ V (C∗(U)). The

algebras C(S3
θ ), C

∗(V ), and C∗(U) are all K-cancellative, and every finitely-generated pro-
jective module over one of these algebras is free. Thus, identifying the rank of a free module
over one of these algebras with the isomorphism class of that free module, it is clear both
that the map q∗ : V (C(S3

θ ))→ V (C∗(V ))⊕V (C∗(U)) is simply [k] 7→ ([k], [k]), for k any non-
negative integer, and, moreover, it’s extension q∗ : K0(C(S3

θ )) → K0(C
∗(V )) ⊕ K0(C

∗(U))
is [n] 7→ ([n], [n]), for n any integer. Therefore, by exactness, the map i∗ : K0(SC(T 2

θ )) →
K0(C(S3

θ )) is the zero map, and the index map ∂ : K1(C
∗(V ))⊕K1(C

∗(U))→ K0(SC(T 2
θ ))

is surjective. But given exactness and the values (as abstract discrete groups) of the K-
groups in the six-term sequence, the index map cannot be surjective unless the map q∗ :
K1(C(S3

θ )) → K1(C
∗(V )) ⊕K1(C

∗(U)) is the zero map. So i∗ : K1(SC(T 2
θ )) → K1(C(S3

θ ))
is surjective.

The inclusion map i : SC(T 2
θ )→ C(S3

θ ) from Lemma 2.4.1 extends to an inclusion of the
unitisation of SC(T 2

θ ) into C(S3
θ ). We will abuse notation and refer to this map as i as well.
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Lemma 2.4.3. The image i(W ) is path-connected through GL1(C(S3
θ )) to the identity ele-

ment.

Proof. Viewing C(S3
θ ) as the continuous field of C*-algebras given in Theorem 1.1.5, it is

evident that i(W ) = exp(2π
√
−1z1z

∗
1).

Theorem 2.4.4. The image i(X) generates π0(GL1(C(S3
θ )))
∼= Z.

Proof. Immediate by Theorem 2.3.3, Lemma 2.4.2, and Lemma 2.4.3.

2.5 Finitely-Generated Projective Modules over C(S4
θ )

In this section, we classify and construct all finitely-generated projective modules over
C(S4

θ ), where θ is irrational. In order to obtain an explict formula for the generator X of
π0(GL1(C(S3

θ ))) we need to impose the condition that |θ| < 1.

The 4-sphere embeds into C2 × R as the subspace

S4 = {(z1, z2, x) ∈ C× C× R : |z1|2 + |z2|2 + x2 = 1}.

We define the northern hemisphere of S4 to be the subspace

D4
1 = {(z1, z2, x) ∈ S4 : x ≥ 0}

and the southern hemisphere to be the subspace

D4
1 = {(z1, z2, x) ∈ S4 : x ≤ 0}.

We recall that there is an action of T 2 on S4 that trivially extends the action of T 2 on S3.
Explicitly it is given by

(exp(2πiφ1), exp(2πiφ2)) · (z1, z2, x) = (exp(2πiφ1)z1, exp(2πiφ2)z2, x).

The action of T 2 restricts to actions on D4
1 and D4

2 and further restricts to the subspace
{(z1, z2, 0) ∈ S4} ≈ S3. In other words, we have a pullback diagram

C(S4)

i2
��

i1 // C(D4
1)

j1
��

C(D4
2) j2

// C(S3),

where the maps ik, jk are equivariant for the T 2-actions.
We claim that the θ-deformation process respects the pullback structure. This is an

easy consequence of the fact that the θ-deformed spaces are special instances of Rieffel’s
deformation quantization by actions of V = Rn.
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Proposition 2.5.1. Suppose that

A

i2
��

i1 // A1

j1
��

A2 j2
// B

is a pullback diagram of C*-algebras carrying V -actions for which the ∗-homomorphisms
ik, jk, k = 1, 2, are equivariant. Let J be any skew-symmetric matrix. There is then an
induced pullback diagram

AJ

(i2)J
��

(i1)J // (A1)J

(j1)J
��

(A2)J
(j2)J

// BJ .

If the maps jk are surjective, then so are the maps (jk)J .

Proof. Suppose a ∈ A∞. Then ik(a) ∈ A∞k , so (ik)J(a) = ik(a), and

(j1)J((i1)J(a)) = j1(i1(a)) = j2(i2(a)) = (j2)J((i2)J(a)).

So the homomorphisms (j1)J ◦ (i1)J : AJ → BJ and (j2)J ◦ (i2)J : AJ → BJ agree on A∞,
and hence on all of AJ , since A∞ is dense in AJ .

We also note that equivariant homotopies between C*-algebras equipped with V -actions
induce homotopies on their deformations:

Proposition 2.5.2. Suppose A and B are C*-algebras carrying V -actions αA and αB, re-
spectively, and that φ, ψ : A → B are ∗-homomorphisms. Suppose that φ ∼h ψ via a map
γ : A→ C([0, 1]), B). Let α be the V -action on C([0, 1]), B) defined by (α · f)(t) = αB · f(t).
Suppose additionally that γ(αA · a) = α · (γ(a)), and that J is any skew-symmetric matrix.
Then φJ ∼h ψJ via a map AJ → C([0, 1]), BJ) that identifies with γJ under the isomorphism
C([0, 1], B)J ∼= C([0, 1], BJ).

Proof. Let I = [0, 1]. The evaluation map ε : C(I, B) → B is equivariant for the actions
α, αB. So φ and ψ are equivariant (of course it would have been natural and harmless to
have assumed this as hypotheses anyway) since γ is. Thus, the maps φJ , ψJ , γJ and εJ all
exist. By hypothesis, ε0 · γ = ψ on A and ε1 · γ = φ on A, and so in particular on the dense
subalgebra A∞. Since each of the homomorphisms involved in these equations map smooth
elements to smooth elements, and since A∞ is dense in AJ , we obtain (ε0)J · (γ)J = (ψ)J
and (ε1)J · (γ)J = (φ)J on AJ . We now need only observe that C(I, B)J ∼= C(I, BJ), and
that (εt)J corresponds to the evaluation map C(I, BJ)→ BJ under this isomorphism.

Under the isomorphism C(I, B) ∼= C(I) ⊗ B, the action α is trivial on the subalgebra
C(I) ⊗ C ∼= C(I). The action α also restricts to the action 1 ⊗ αB on C ⊗ B ∼= B. Thus
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(C(I) ⊗ B)J contains C(I) and BJ as subalgebras. Moreover, the copies of C(I) and BJ

generate (C(I)⊗B)J , since the later algebra is generated by C(I)⊗algB∞. The subalgebras
C(I) ⊗ C and C ⊗ BJ meet only on C ⊗ C. Also, since all elements of C(I) ⊗ C are fixed
points for the action α, the product in (C(I) ⊗ B)J of any element of C(I) ⊗ C with any
element of C⊗B∞ is just their original undeformed product in C(I)⊗algB. So the copies of
C(I) and BJ in (C(I)⊗B)J commute with each other. So (C(I)⊗B)J ∼= C(I)⊗BJ . That
(εt)J corresponds to the evaluation map C(I, BJ) → BJ under this isomorphism is clear,
since (εt)J restricted to the dense subalgebra C(I)⊗B∞ of (C(I)⊗B)J is evaluation.

Since idJ : AJ → AJ is the identity map from AJ to itself, and is trivially equivariant
for any action on A, an equivariant homotopy that is a homotopy equivalence or deforma-
tion retraction between A and B will be a homotopy equivalence or deformation retraction
between AJ and BJ .

The dual statement to the fact that D4
1 is contractible, is the fact that the function

algebra C(D4
1) deformation retracts onto it’s subalgebra of scalar multiples of the identity

element. Explicitly, a retraction is given by the map

Ft(z1) = (1− t)z1
Ft(z2) = (1− t)z2

Ft(x) =
√

1− (1− t)2(z1z∗1 + z2z∗2)

where z1, z2, and x are the coordinate functions for C(D4
1). This retraction is clearly equiv-

ariant for the action of T 2 on C(D4
1) that by the restriction of the action of T 2 on S4 to

D4
1.

Proposition 2.5.3. All finitely-generated projective C((D4
1)θ)-modules are free.

Proof. The algebra C((D4
1)θ) deformation retracts onto C · 1 by Proposition 2.5.2.

Of course the same is true for C((D4
2)θ), since it is obviously isomorphic to C((D4

1)θ).

Definition 2.5.4. We define N(n, s) to be the finitely-generated projective C(S4
θ )-module

M(C((D4
1)θ)

n, C((D4
2)θ)

n, Xs), where Xs is the image of the sth-power of X = exp(2πit)p+
1− p in GLn(C(S3

θ )).

Theorem 2.5.5. There is a semigroup isomorphism

V (C(S4
θ ))
∼= {0} ∪ (N×K1(C(S3

θ )))
∼= {0} ∪ (N× Z).

The module N(n, s) is a representative for the element (n,s) of V (C(S4
θ )).

Proof. We have just observed that all finitely-generated projective C((D4
k)θ)-modules are

free. So by Theorem 1.3.3, every finitely-generated projective C(S4
θ )-module is isomorphic

to one of the form M(P1, P2, h), where P1 and P2 are free C((D4
1)θ) and C((D4

2)θ)-modules
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respectively. But since the free C(S3
θ )-modules j1#P1 and j2#P2 are assumed isomorphic,

and since C(S3
θ ) has the invariance of dimension property, the free modules P1 and P2 must

have the same rank, say n, and we may identify h with an element of GLn(C(S3
θ )). But, by

Theorems 2.3.3 and 2.4.4, each h is path-connected in GLn(C(S3
θ )) to

(
Xs 0
0 1n−1

)
, for some

unique integer s. Thus each projective C(S4
θ )-module is isomorphic to one of the modules

N(n, s) by Proposition 2.1.4. Suppose that N(n1, s1) is isomorphic to N(n2, s2). Then, by
Theorem 1.3.4, it must be that

C((D4
1)θ)

n1 ∼= i1#N(n1, s1) ∼= i1#N(n2, s2) ∼= C((D4
1)θ)

n2

as free C((D4
1)θ)-modules. But C((D4

1)θ) has the invariance of dimension property, since it
has a normalized trace. Thus n1 = n2. Suppose N(n, s1) is isomorphic to N(n, s2). Then,
by Theorem 2.5.5, the matrix(

Xs1 0
0 1n−1

)
= j2∗(g2)

(
Xs2 0

0 1n−1

)
j1∗(g

−1
1 ),

for some g1, g2 ∈ GLn(C(D4
θ)). But GLn(C(D4

θ)) is path-connected, so j2∗(g2), j1∗(g
−1
1 ) are

both path-connected in GLn(C(S3
θ )) to the identity matrix. But this means that(

Xs1 0
0 1n−1

)
= j2∗(g2)

(
Xs2 0

0 1n−1

)
j1∗(g

−1
1 ) ∼h

(
Xs2 0

0 1n−1

)
,

which is possible only if s1 = s2, by Theorems 2.4.4 and 2.3.3. Finally, since

(
Xs1 0

0 Xs2

)
is

homotopic through invertibles to

(
Xs1Xs2 0

0 1

)
, we see that:

N(n1, s1)⊕N(n2, s2) ∼= N(n1 + n2, s1 + s2) ∼= N(1, s1 + s2)⊕ (C(S4
θ ))

n1+n2−1.

Thus we have completely characterized the set of isomorphism classes of finitely-generated
projective C(S4

θ )-modules as a semigroup.

We immediately obtain:

Corollary 2.5.6. The algebra C(S4
θ ) is K-cancellative.

We note that the noncommutative instanton bundle e of Connes and Landi trivially has

Tr
C(S4

θ )

C(S3
θ )

-rank equal to 2, and thus is isomorphic to some N(2, s). One can show that the

matrix U :=

(
z1 z2
−λz∗2 z∗1

)
generates K1(C(S3

θ )), and that correspondingly the index s must

be 1 or −1. The modules P(n) constructed by Landi and Van Suijlekom [20] must then be of
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the form N(n + 1, (1/6)n(n + 1)(n + 2)), where n ≥ 1. Thus e and the rank-1 free module
generate K0(C(S4

θ ). Yet e is not really the most basic nontrivial C(S4
θ )-module, since e is

isomorphic to N(1, 1) ∼= C(S4
θ ).

We end this work by observing that the finitely-generated projective modules over C(S4
θ )

are in bijective correspondence with their restrictions as C(S2)-modules, for a certain sub-
algebra of C(S4

θ ) that is isomorphic to C(S2). We first need the following proposition:

Proposition 2.5.7. C((D4
1)θ) is isomorphic to the unitisation of Cone(C(S3

θ )).

Proof. We work in the context of Theorem 2.5.2. Let A = C(S3), and write AJ for C(S3
θ ),

with similarly write C(D4
1)J for C((D4

1)θ). Recall that Cone(A) is defined as C0((0, 1], A).
Let IA denote C([0, 1], A). We have the short exact sequence

0→ Cone(AJ)→ I(AJ)→ AJ → 0.

Since Cone(A) is an equivarient ideal of IA for the action of T 2 on A, we have the short
exact sequence

0→ Cone(A)J → (IA)J → AJ → 0

by Theorem 1.1.9. But I(AJ) ∼= (IA)J , by the proof of Proposition 2.5.2. Combining these
exact sequences we obtain the diagram

0 // Cone(AJ)

��

// I(AJ) //

∼=
��

AJ

∼=
��

// 0

0 // Cone(A)J // (IA)J // AJ // 0,

where the map Cone(AJ)→ Cone(A)J is given by the restriction of the map I(AJ)→ (IA)J
to the ideal Cone(AJ). Thus, the map Cone(AJ) → Cone(A)J is an isomorphism, by the
5-lemma of algebra. Consider the north-pole N := (0, 0, 1) ∈ D4

1. We have an isomorphism
C(D4

1)
∼= C(A)⊕ C(N) ∼= C(A)⊕ C. The action of T 2 on D4

1 acts trivially on the point N .
Thus C(D4

1)J
∼= (Cone(A)⊕ C)J ∼= Cone(A)J ⊕ C ∼= Cone(AJ)⊕ C.

For each N(1, s), we can use Lemma 2.3.2 to find an idempotent matrix P ∈M2(C(S4
θ ))

such that N(1, s) ∼= PC(S4
θ )

2. Consider the element X = exp(2πit)p+ 1−p in C(S3
θ ). Lift p

to a self-adjoint element q in C((D4
1)θ) (for example q = t⊗p ∈ C0((0, 1])⊗C(S3

θ ) ⊂ C((D4
1)θ),

this containment by Proposition 2.5.7). Let c = exp(2πit)q+ 1− q, which is then a lift of X
to C((D4

1)θ). Then d = c∗ will be a lift of X−1 and cs will be a lift of Xs. Also, the element
c is normal. Now N(1, s) ∼= PsC(S4

θ )
2, where the idempotent Ps ∈M2(C(S4

θ )) is given by(
(1, cs(2− dscs)ds) (0, cs(2− dscs)(1− dscs)
(0, (1− dscs)ds) (0, (1− dscs)2)

)
.

The module N(n, s) is then isomorphic to PC(S4)2n, where P =

(
Ps 0
0 12n−2

)
.
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Now, since p is a projection, the spectrum σ(X) is the full circle S1. If we take q = t⊗ p
as suggested, then σ(q) = [0, 1]. For each fixed s, the spectrum of exp(2πis)p + 1 − p will
be the chord in the unit disk in the complex plane that connects the point 1 to the point
exp(2πis), so σ(c) = D2. Similarly, we lift p to a self-adjoint element q′ in C((D4)2)θ) such
that σ(q′) = [0, 1], and define c′ = exp(2πit)q′ + 1 − q′), which also has spectrum D2. Now
consider the pullback P of the algebras C∗(c, 1) and C∗(c′, 1) over C∗(X, 1). By the above
remarks, the pullback P is clearly isomorphic to C(S2) and is a C*-subalgebra of C(S4

θ ). Now

each entry of Ps ∈M2(C(S4
θ )) is in P , so we can consider the P-module

(
Ps 0
0 12n−2

)
P2n ∼=

M(C∗(c, 1)n, C∗(c′, 1)n, Xs), where here Xs is viewed as in GLn(C∗(X, 1)). But under the
isomorphism C∗(X, 1) ∼= C(S1), multiplication by Xs corresponds to multiplication of a
function in C(S1) by the function zs given by z = exp(2πit) 7→ zs = exp(2πist). So under the
isomorphism P ∼= C(S2), the module M(C∗(c, 1)n, C∗(c′, 1)n, Xs) is M(C(D2)n, C(D2)n, zs)
(here zs is viewed as in GLn(C(S1))). But the later module is the space of continuous sections
of the complex rank-n vector bundle over S2 of index or charge (integral of the first Chern
class) equal to−s, since that bundle is formed by clutching rank-n trivial bundles over the two
hemispheres of S2 via the map zs. Thus, since each module over C(S4

θ ) is of the form N(n, s),
the inclusion i : C(S2) ∼= P ↪→ C(S4) induces an isomorphism i∗ : V (C(S2)) ∼= V (C(S4

θ ))
given by M(C(D2)n, C(D2)n, zs) 7→ N(n, s). Speaking heuristically, every complex vector
bundle over the noncommutative space S4

θ is the pullback of a complex vector bundle over
S2.
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