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ABSTRACT OF THE DISSERTATION

Motion Capture Based Animation
for Virtual Human Demonstrators:

Modeling, Parameterization and Planning
by

Yazhou Huang
Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2012
Professor Marcelo Kallmannn, Chair

A huge collection of character animation techniques has been developed to date
and impressive results have been achieved in the recent years. The main pursued ap-
proaches can be categorized as physics-based, algorithmic-based or data-based. High-
quality animation today is still largely data-based and achieved through motion cap-
ture technologies. While great realism is achieved, current solutions still suffer from
limited character control, limited ability to address cluttered environments, and discon-
nection from higher-level constraints and task-oriented specifications. This dissertation
addresses these limitations and achieves an autonomous character that is able to demon-
strate, instruct and deliver information to observers in a realistic and human-like way.

The first part of this thesis addresses motion synthesis with a simple example-based
motion parameterization algorithm for satisfying generic spatial constraints at interac-
tive frame rates. The approach directly optimizes blending weights for a consistent set
of example motions, until the specified constraints are best met. An in-depth analysis
is presented to compare the proposed approach with three other popular blending tech-
niques, and the pros and cons of each method are uncovered. The algorithm has also
been integrated in an immersive motion modeling platform, which enables program-
ming of generic actions by direct demonstration of example motions.

In order to address actions in cluttered environments and maintain the realism of
motion capture examples, the concept of exploring the blending space of example mo-
tions in then introduced. A bidirectional time-synchronized sampling-based planner
with lazy collision evaluation is proposed for planning motion variations around ob-
stacles while maintaining the original quality of the example motions. Coupled with a
locomotion planner, it generates realistic whole-body motion in cluttered environments.

Finally, high-level specifications for demonstrative actions are addressed with the
proposed whole-body PLACE planner. It is based on coordination models extracted
from behavioral studies, where participants performed demonstrations involving loco-
motion and pointing in varied conditions. The planner achieves coordinated body posi-
tioning, locomotion, action execution and gaze synthesis, in order to engage observers
in demonstrative scenarios.
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CHAPTER 1

Introduction

1.1 Background

The notion of animation, or specifically keyframing, dates back to more than a thousand
years ago when ancient Chinese zoetrope-type device was first invented to produce the
illusion of motion from a rapid succession of static pictures. We are all familiar with
the various forms of animation, from the traditional hand-drawn picture frames in the
form of a flip book, to the technology of stop motion or claymation. It has not changed
much over all this time, until the introduction of Computer Graphics came along.

Computer Graphics in general refers to the modeling and rendering of 3D objects,
including the sub-field of methods for digitally synthesizing the animation of objects.
There has been a huge increase in the interest and development in computer graphics,
which had, and is still having, profound impact on many types of media around us. It
has truly revolutionized the traditional movie, animation and the video game industry
by bringing virtual objects to life. It has evolved from the simple 2D scenes in the early
arcade games, to the complex 3D structures which redefine our perception for photore-
alism. A major part of the animation we have seen is, not surprisingly, about ourselves,
known as the character animation. It has already been widely applied in many fields,
such as computer-aided design (CAD) with ergonomic human factors [Sie80], social
networking [Lin03], virtual training in sports [Mot98], oil & gas industry [EON09],
medical applications [For98], and so on.

The notion of character animation can be largely divided into skeletal animation
(particularly for vertebrates) and geometry deformation animation (blend shape, Free-
Form Deformation (FFD) and so on). Skeletal animation relies on the representation
of character’s skin mesh binded onto a bone hierarchy underneath, known as skeleton
or rig. Movement of the skeleton translates into the movement of skin mesh vertices.
For blend shape animation, a neutral mesh shape is first created, based on which a
series of target blend shapes are pre-deformed. The interpolation between neutral and
target shapes generates new shapes. This technique has been widely used for cloth and
facial expression. And for the FFD modifier, the geometry is surrounded with a lattice,
and by adjusting the control points of the lattice, the enclosed geometry is deformed
accordingly. This dissertation is focused only on skeletal animation.

To date, there are mainly three popular categories of character animation. First cat-
egory is digital key-framing and hand driven, a process similar to the original animation
creation but with the help of 3D modeling tools. It is still a very labor-intensive task
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that requires artistic talent and training.

The second category is data driven with motion capture. The technology of motion
capture emerged in the 1980s. It provides the ability to record the performance of a
human actor/actress in 3D space, and then map onto virtual characters without losing
the fidelity. In the past decades, motion capture has gone from magnetic field sensing
[Asc91] and exoskeleton [Ani97], to optical marker tracking [Vic95] and inertia sensing
[Xse07], and to marker-less tracking that are either video camera based [AST08, Org]
or depth camera based [Mic10] designed for game consoles, making this technology
more popular and readily available than ever before.

The third category is algorithmic and model-driven approaches. One example is
the dynamic physics-based model, like reverse pendulum, contact frictions and joint
torque control, to list a few. Great achievements has been made, such as rag doll sim-
ulation [Nat05], however the complexity of human structures is a huge obstacle in the
development of fully dynamic motion synthesis.

1.2 Problem Statement

People in computer graphics and robotics are familiar with the uncanny valley phe-
nomenon. There is an important view [Goe03] on the “uncanny valley” [Mor70] I very
much agree with, which says that in essence what triggers the brain to react is when the
human-like appearance of the android and its robotic motion “mismatch”. For example,
cumbersome movement from ASIMO [Hon00] and BigDog [Bos05] are well perceived
by the public because what’s behind such movement are their matching robotic appear-
ances. However, this is not the case for computer graphics. The biggest challenge is that
the substantial advances in modeling and rendering, with the improvement on modern
graphics hardware at exponential rate [Moo65], has created a “mismatch” between the
physical appearance of a simulated character (skin, hair, etc) verses the animation as-
pects (body, facial expression, lip syncing, etc), evidently causing perceptual conflicts
and pushing the industry further into the uncanny valley.

Motion capture has been widely used in the movie and game industry to achieve
maximum realism and fidelity and is seen as the Holy Grail in modern character an-
imation, even though it usually requires intensive man power for clean up and post-
processing. Recent research and development has targeted automating and reducing
the humans factors from the loop. However this process is not as straightforward as
it sounds. The problem, I believe, is that the characteristics of what is perceived as
human-like can not be easily translated into computer algorithms and program codes.
As an example, different styles of locomotion exist from one person to another, yet
they are all perceived as human-like. Clearly the criterion for naturalness of character
motion synthesis is not a closed-form solution like the minimal energy consumption
(otherwise only one optimal solution exists), but rather involves the aspects of aesthet-
ics, elegance and individual styles, all of which are constituents of the “realism”. Even
though this work is focused on skeletal animation, the realism in this context refers to
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Figure 1.1: According to Mori, the uncanny valley is the region of negative emotional
response towards robots that seem “almost human”. Image taken from a recent reprint
[MMK12] of his original work [Mor70]. Also according to Goetz [Goe03], movement
amplifies this emotional response, so does the “mismatch”.

the naturalness and humanlikeness of the overall synthesis result including aspects of
skinning, rendering, motion dataset which may came from motion retargeting, locomo-
tion and action synthesis, whole-body coordination, behavior modeling, etc.

My experience working on the animation pipeline with a small art team at ICT
makes me believe that motion capture is certainly not going away anytime soon. How-
ever, this is not to say that high quality animations must rely on motion capture and
animation artists. In fact, over the past years many advances based on motion capture
have been made, concerning slight but precise modifications of an original motion or
the parameterization of large motion databases. And I agree with Michael Gleicher,
creator of the original motion graph, that the future of technology for animated char-
acters in interactive systems lies as a hybrid of synthesis-by-example and algorithmic
approaches [Gle08]. However it still poses great challenges in achieving realistic syn-
thesis with interactive motion control.

So the problem being addressed in this dissertation can be summarized as how to
achieve a character animation system that combines realism, flexibility, precise control
and ability to adapt to the cluttered environments. Additionally, the system needs to
be connected to higher-level constraints with task-oriented specifications, and needs to
produce real-time synthesis within interactive applications.
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1.3 Objectives and Approaches

This dissertation aims at creating an autonomous human-like character that is able to
demonstrate, instruct and deliver training information in a virtual environment. The
motion synthesis and interaction models are carefully developed according to the fol-
lowing objectives:

• precise parametrization for specified constraints;

• rely on motion capture data for high-fidelity synthesis;

• employ real-time algorithms for fast responsiveness;

• target at training applications on an interactive platform;

• employ randomized planner for adaptability to unknown environments;

• behavior modeling, use real observations as ground truth;

• easy motion retargeting for arbitrary character models.

The approaches presented in this dissertation to achieve these objectives are briefly
summarized as follows. The first part of this thesis addresses motion synthesis with a
simple example-based motion parameterization algorithm for satisfying generic spatial
constraints at interactive frame rates.

The proposed motion parametrization approach is to blend a set of consistent time-
aligned example motion sequences. To achieve precise motion control, blending weights
are directly optimized until the specified constraints are best met. For example, to
synthesize a pointing gesture for the character to pin-point at given target object, the
algorithm finds the best set of bending weights so that the end-effector (finger tip) pre-
cisely touches the object at certain stroke times. This process in general takes a few
milliseconds depending on the dataset and the complexity of the character’s joint hi-
erarchy, suitable for real-time applications. Also since motion blending is known for
preserving the humanlikeness aspects from the example motions, it meets the objective
for high-fidelity.

This motion parametrization approach has been integrated on an interactive motion
modeling platform. The experts could easily build the training motion dataset via direct
demonstration inside the virtual environment, based on which the new motions could
be synthesized for teaching and training purposes for novel users, effectively facilitates
the virtual training applications. A wearable motion capture vest is also described as a
low-cost motion recording device and also part of the immersive training platform.

In order to generate collision-free actions motions in a cluttered environment, the
motion parametrization approach is integrated with randomized planning. Humanlike-
ness is hard to achieve with the traditional sampling-based approaches inside the con-
figuration space. For this reason, a bi-directional time-synchronized sampling-based
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planner is proposed that explores the weight-time blending space of example motions.
This allows the final synthesis to have the flexibility going around obstacles while main-
taining the original quality of the example motions. Coupled with a locomotion plan-
ner, it generates whole-body motions in cluttered environments, with the realism from
motion capture examples and flexibilities from sampling-based planning.

Further more, based on the data collected from human participants, we proposed
a whole-body planner that attempts to address high-level coordinations for demonstra-
tive tasks. The planner breaks down the overall planning problem into coordinated
body positioning, locomotion, action execution and gaze synthesis, each solved with a
sub-module. Certain parameters are modeled using data collected from human partici-
pants. The final goal is to achieve autonomous virtual agents engage and demonstrate
to observers in various scenarios.

Finally to enable easy transfer of motion datasets onto arbitrary character mod-
els with different joint names and hierarchies, we describe a motion retargeting solu-
tion that uses heuristics to find symmetries and key joint names in character skeletons,
achieving automatic joint name matching that requires little to none human input.

1.4 Structure of dissertation

This dissertation presents several motion synthesis approaches in the topic of skeletal
character animation, organized as four parts.

Part I is dedicated to motion capture based motion parametrization. Chapter 3
presents a real-time motion synthesis algorithm Inverse Blending designed for meet-
ing generic spatial constraints at certain frames or stroke points. Chapter 4 is a detailed
analysis over 4 motion synthesis algorithms, which measures their performance to bet-
ter understand the advantage of each method. Chapter 5 presents an immersive 3D
motion modeling platform designed to easily program generic gestures and actions for
virtual agents via direct demonstration.

In an attempt to achieve human-like motion planning, Part II (Chapter 6) introduces
a novel concept of Blending Space, and presents a planner solution that combines In-
verse Blending with bi-directional randomized search to quickly explore collision-free
natural-looking postures in the workspace.

Part III (Chapter 7) focuses on simulating interactions between a demonstrator and
observers inside the virtual demonstrative scenarios. A behavior-level planner PLACE
is proposed that takes into account relevant aspects including body-positioning, loco-
motion, action, coordination and gaze in an unified way.

To complete the character animation pipeline, a wearable motion capture setup Ges-
tureVest for data acquisition is presented in Chapter 9 as an addition to the on-line mo-
tion modeling platform. And to facilitate the motion data transfer, a fully automated
motion retargeting approach is described in Chapter 8, which handles various com-
monly seen skeleton joint hierarchies and naming conventions.
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CHAPTER 2

Literature Review

This chapter reviews the state of the art in skeletal character animation related re-
searches. Topics include kinematic and physics models, motion blending and parametriza-
tion, motion planning, and behavior modeling.

2.1 Kinematic-based Models

In general, kinematics is defined as the branch of classical mechanics that describes the
motion of points and groups of objects. In computer graphics, it refers to simulating the
movement of the skeleton and rigid bodies that attached to it, without using dynamic
models.

2.1.1 General Kinematic-based Approaches

There have been many published works using kinematic models to generate upper-body
motions or locomotion sequences based on a set of controllers primarily driven through
various procedurally-based algorithms. For example, Kallmann [Kal08] presented a
whole-body analytical inverse kinematics (IK) method integrating collision avoidance
and customizable body control for animating reaching tasks, with a new simple search
method for achieving postures avoiding joint limits and collisions. Sun et al. [SM01]
addressed the problem of gait generation with three modular components, including
a low-level gait generator based on sagittal elevation angle control, an inverse motion
synthesis method based on barycentric interpolation to handle uneven terrains, and a
path following module. While these methods are fast, accurate, simple to implement,
and in many cases hard to find other alternatives, they may appear robotic as certain
human-like characteristics are missing.

On the other hand, kinematic-based models play an important role in post process-
ing motion capture data to impose minor modifications and constraints. One large class
of related work involves retargeting motion capture data onto characters with different
sizes. [HRE08] introduces a novel way to record animations in a morphology inde-
pendent form, preserving both structural relationships and its stylistic information. At
runtime the system uses a robust IK solver to animate characters with highly varying
skeleton morphologies completely unknown when the animation was created. [HKT10]
introduced the interaction mesh, a structure to represent implicit spatial relationships
between body parts and surrounding objects. Inter-penetrations were reduced by mini-
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mizing the local mesh deformations within animation frames, and the algorithm can be
applied in real-time to motions with various kinds of close interactions.

Other popular approaches include using IK to match end-effector goals specified
from the raw capture. [LS99] combines a hierarchical multilevel B-spline fitting with
analytical IK that aims at solving the animation problems formulated as space-time con-
straints. The fitted curve is used to interpolate the joint displacements that are smoothly
propagated to neighboring frames, then IK adjustments are done to meet the constraints
in each frame. To fix the foot-skating problem commonly seen in motion retargeting,
a simple but efficient foot-skate cleanup method [KSG02] was proposed using a modi-
fied single-limb IK algorithm. A combination of knee-damping and ankle-to-hip length
adjustment is applied to fix the “knee pop” and generate smooth result without toe-floor
penetration.

2.1.2 Motion Blending

As the technology for motion capture becomes more readily available, a great amount
of research has been conducted on how to re-use the captured data, without introduc-
ing too much changes or modifications, to generate new motion sequences. Kovar et
al. [KGP02] pioneered the work of motion graph, which is an auto-constructed inter-
connected graph consisting both the pieces of original motion and automatically gen-
erated transitions. New motion sequences, such as certain styles of locomotion along
arbitrary paths, are generated piece-by-piece by simply “walk” along the graph nodes
and select those with minimal errors. Improvements were made in [HG07] by introduc-
ing the new data structure of parametric motion graph, which is capable of dynamically
generating the transitions in real-time. The graph is structured according to particular
motion types. Accurate streams of high-fidelity controllable sequences were generated
through blending-based parametric synthesis.

To address the problem of spatial constraints with motion graph, [SH07] introduced
the interpolation of two time-scaled paths in the graph. It was coupled with A∗ search
to find global near-optimal solutions consisting a variety of concatenated behaviors
with more flexibilities, however the search space is still non-continuous. The Inverse
Branch Kinematics (IBK) method introduced in [MK11] aims at deforming the 2D
graph branch with Cyclic Coordinate Descent (CCD) solver, so that the branch end
reaches the goal with much better precision, offering more flexibility and parameteriza-
tion to motion graphs without degrading synthesis quality. However, even with the IBK
correction, it remains difficult for Motion Graph based methods to enforce higher DOF
constraints, for example, to have the character arrive precise at certain 2D position with
certain exact body orientation as specified (a total of 3-DOFs constraints).

Motion graphs could easily become bigger by including variations of motion types
and styles. In order to handle large motion capture datasets with redundancies, [KG04]
provided a “match web” metric for identifying similarities in large datasets, and then
use them to build a continuous parameterization space through dense sampling and
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Figure 2.1: An example showing a typical problematic solution from traditional motion
graph on left where the character could not arrive exactly at target position (marked red)
and had to do a zig-zag. IBK method [MK11] on right better solves this problem.

k-nearest-neighbors (KNN) interpolations. [ZNK09] proposed an iterative sub-graph
algorithm to better build motion graphs that are small, fast, and with good connectiv-
ity as well as smooth transitions. The algorithm efficiently finds optimal solutions by
searching for a minimal-sized subgraph within the larger graph. While these motion
graph related methods excel in maintaining the originality by imposing less modifi-
cation to the original motion, they lack the flexibility of parametrization, especially
towards constraints with higher Degrees of Freedom (DOFs).

2.1.3 Motion Parametrization

This section is focused on the topic of continuous motion parametrization, which is the
first main topic of this dissertation. The reviews include motion capture based methods
that incorporate higher-level characteristics with user defined parametrizations.

A number of earlier studies have found it beneficial to look into the frequency space.
Unuma et al. [UAT95] uses Fourier analysis to interpolates, extrapolates motion data
as well as to alter their styles. Bruderlin and Williams [BW95] apply a number of
different signal processing techniques to motion data, including motion filtering, multi-
target motion interpolation and waveshaping (set “soft” joint limit), to facilitate the
reuse and adaptation of existing motion data on various parametrization levels. [WH97]
proposed stochastic re-sampling inside the parameter space, providing an efficient way
to expand the range of possible motions by “mixing” them to the exact specifications.
Lee and Shin [LS01] developed a multi-resolution analysis method for motion editing.
The data is represented as a hierarchy of coefficients that store the global pattern all the
way to details at finer resolutions, which helps coordinating the invariance for motion
smoothing, blending, and stitching. Based on the motion correlations of articulated
figures, [PB02] allows the creation of animations through texturing, i.e. sketching a
small number of keyframes on a low-DOF space, which is then predicted and enhanced
with motion capture data. The method relies on frequency analysis to segment the
data, searches for paths that maximize the use of consecutive fragments, then joins
them with smoothing. The limitation of these approaches is that they do not aim at
creating a completely automatic method, but rather as an additional tool for animators
to incorporate the motion capture data into their own creations.
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As a different approach aside from signal processing techniques, Rose et al. [RBC98]
proposed the motion interpolation scheme combining the Radial Basis Function (RBF)
with polynomial terms, and used it to generate new synthesis with examples charac-
terized by emotional expressiveness or control behaviors. The result tends to degrade
when the desired input gets further from the original data because the synthesis would
rely more on the linear approximation terms.

More generically, spatial properties such as end-effector placement and feet sliding
are better addressed by Mukai et al. [MK05] with a geostatistic model. It optimizes the
interpolation kernels to estimate the correlations inside the parametric space, thus pre-
dicts motions with more accuracy and less undesirable artifacts, alleviating the problem
of spatial inconsistencies. Another approach for improving the maintenance of spatial
constraints is to adaptively add pseudo-examples, as shown in [RSC01, KG04]. As an
extension to automatically correct the non-linearities [RSC01], pseudo-examples were
derived from the artist-designed initial interpolation space and then used to produce
smooth and more accurate results. However the error between the end-effector and
specified target still exists.

Below is an illustration of (a) the original RBF interpolation, (b) improved RBF
with pseudo-examples, and (c) geostatistic interpolation. Although geostatistic model
achieves better precision at the character’s end-effector compared to RBF interpolation,
errors still cannot be eliminated.

Figure 2.2: (a): the original RBF interpolation [RBC98]; (b): improved RBF with
pseudo-examples [RSC01].

Although potentially the pseudo-examples could better cover the continuous space
of the constraint, these random sampling approaches however requires significant com-
putation and storage in order to meet constraints accurately, and it would be difficult to
handling several constraints at one time. In these previous methods, spatial constraints
are only handled as part of the motion parametrization approach employed. Typically,
examples motion that are close to the desired constraints are chosen, then used in an ab-
stract interpolation space to obtain motion variations as well as to satisfy the constraints.
Another possible technique sometimes employed is to apply IK solvers in addition to
blending [RSC01, CHP07], however risking to penalize the obtained realism.
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Other statistical methods were also applied in the animation researches. For ex-
ample, [BH00] applied Hidden Markov Models (HMM) in learning motion patterns
from highly varied motion sequences. After the common choreographic elements were
identified, new choreography can be synthesized in many styles, such as converting a
novice ballet into graceful modern dancing. Principal Component Analysis (PCA) is
another popular statistical method that can be found in several works. In [BLC02], a
PCA-based technique was presented to track the motion from traditionally animated
cartoons and retarget it onto 3-D models and 2-D figurers, producing expressive and
exaggerated new sequences. [EMM04] created new idle motions using a PCA-based
animation approach to combine layers of posture variations and balance changes, ef-
fectively avoiding unnatural repetitions in the results. [SHP04] uses PCA to find a low-
dimensional space that captures the properties of the desired behavior, and then solves
optimization problems within this subspace. The challenge is that postures mapped
from the low-dimensional space consists only the joint angles (translations are usually
discarded for PCA analysis) and thus may not handle very well the positional aspects
of the animations. Also the jitters in-between postures are hard to eliminates after
remapping onto the original space, due to the loss of high frequency information in the
dimension reduction process.

Since the introduction of Gaussian process latent variable model (GPLVM) by
Lawrence et al. [Law03], it has gained popularity in the animation community and
has been used in several research works. This is a probabilistic model for principal
component analysis (PCA) that could map from a latent space to the observed data-
space using a particular Gaussian process. [GMH04] extends this original model by
introducing the Scaled-GPLVM model that is trained using human poses with various
styles. This model was used to build an IK system capable of producing the most
likely poses satisfying given constraints, but prefers the poses that are most similar to
the space of poses in the training data. Similarly, [LWH12] presents a technique that
interactively animates characters performing user-specified tasks with constraints on a
low-dimensional latent space.

Due to the nature of the Gaussian process, these statistical models could generate
smooth postures when mapping back into the original data space. It is also a plus to
be able to better extrapolate the data with less requirements on the dataset consistency.
However, the higher computational cost in the training process imposes limitations on
applications that involve on-line appending or refining of the dataset. Also it remains
challenging to address constraints with higher DOFs using these methods, especially
considering the computational complexity of solving optimization problems formulated
based on IK.

2.1.4 Motion Planning

Motion planning is a well studied topic in the robotics domain. It provides an effec-
tive way to explore the unknown environment and solve complex tasks. Manipula-
tion planning was applied to computer animation as early as [KKK94] to computes
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the collision-free arm trajectories for manipulating movable objects and re-grasping
them. Traditional motion planning methods [Lat90, Lau98, LaV06] are based on the
systematic search of configuration spaces. Among the several techniques, sampling-
based methods [KSL96, LaV98, KL00b] have become extremely popular for planning
in continuous configuration spaces. Such methods are also popular for planning hu-
manoid motions, in particular for planning footsteps [KNK03, CLC05, CNK07] and
reaching motions [KKK94, KKN03, BKD06, DN06, DK08].

[YKH04] combines path planning with the domain knowledge in synthesizing full-
body motions. A path planner searches for a motion with the corresponding poses
satisfy geometric, kinematic, and posture constraints. A constraint-based IK solver re-
solves the redundancies and generates solutions toward natural-looking poses extracted
from captures. The path is then converted to motion trajectories using velocity pro-
file, to create the object manipulation sequences. Generally speaking, the complexity
of these kinematic models of the characters or humanoid robots used in the planning
algorithms may lead to longer planning times. Additionally the results generally look
robotic and lack of naturalness, even after the smoothing process.

In contrast, methods originated from the computer animation domain focus on
achieving humanlike results using motion capture data, without much importance given
to searching for collision-free motions in complex environments. Probably the most
popular approach for computing realistic full-body motions is to extract motions from
a motion graph structure. Motion graphs are built by connecting the frames of high
similarity in a database of motion capture examples [KGP02, AF02, LCR02, PB02,
LWS02, Saf06]. More reviews covering this topic is presented in the previous section.
The main drawback of motion graphs is that, as the motion variations needed to satisfy
many constraints go up, such as around obstacles and addressing precise placements
of end-effectors, the size of the graph structure would grow exponentially, which poses
great challenges in the storage as well as maintenance.

Planning methods have been integrated with motion capture data in many ways.
For instance, Lau and Kuffner [LK05] plan over a behavior-based finite state machine
(FSM) of motions [LK06], Choi et al. [CL03] combines probabilistic path planning
with hierarchical displacement mapping. A roadmap is constructed from randomly
sampled valid footholds, with graph edges being motion clips. The roadmap guides the
locomotion and generates motion sequences, and finally adapts the sequence to con-
straints specified by the footprints. Aiming at planning natural-looking locomotion,
many other planning methods have been proposed for synthesizing full-body motions
among obstacles [KAA03, EAP06a, KL00a, LK06, PZL10]. However, less attention
has been given to planning generic upper-body actions in a continuous space in coor-
dination with locomotion. The continuous space is specifically mentioned here for its
ability to search and compute more complex solutions.

Traditional planning algorithms have also been coupled with dynamic models for
more natural-looking simulations. As an example, [KNK03] adapt existing randomized
path planner by imposing balance constraints on incremental search motions to main-
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tain dynamic stability of the final path. This was done by constraining the zero moment
point (ZMP) trajectory and transforming statically stable paths into dynamically stable
ones. More review of the physics-based models and their limitations are presented in
the next section.

To better addresses the whole-body motion planning problem, it was a natural so-
lution to model the upper-body gesture and action motions independent of the stepping
motions, which are needed for achieving precise locomotion around the target objects
being demonstrated or manipulated. This is known as the concept of planning with
motor primitives, an important topic in motion planning. The basis of this approach is
that complex motions can be achieved through a combination of simpler primitive mo-
tion skills [Arb81], which is supported by evidence found in cognitive studies [TS00].
Many works in the robotic domain have studied the problem of planning with motion
primitives, such as [HBH08, LaV06, KHB10]. In recent years it also gained popularity
in character animation [PKL08]. To investigate the problem of humanoid agents reach-
ing to arbitrary targets in an environments with obstacles, [DKM04] tests the popular
algorithms for single-arm reaching, i.e. randomized motion planning or constructing
uninformed trajectories in operational space. The efficiency of the reaching algorithms
are analyzed in both static and dynamic environments.

Figure 2.3: An illustration of motion primitives developed for a humanoid robot
[HBH08]: climb ladder and stairs.

To alleviate the bottle-neck of randomized planning algorithms, [LK06] proposed
to pre-compute search trees of motion clips for arbitrary environments. Then, solution
paths and motion sequences are efficiently extracted using a lookup table. For dis-
tant goals, rough path of intermediate sub-goals are generated to guide further lookups.
Similarly [JK07] proposed an attractor guided planner that extracts significant attractor
points from successful paths, and reuse them as guiding landmarks that can effectively
avoid planning from scratch and unnecessary re-planning. In an attempt to speed-up
the planning with primitives, [CCL10] proposed using basic (small) motion primitives
as atomic actions, and coupled with fast-to-compute heuristics and an Anytime Re-
pairing A∗ (ARA∗) search. It was shown in the experimental analysis that the planner
could generate consistent, low-cost motions faster with guarantees on completeness and
bounds on sub-optimality. However the downside of planning with motion primitive it
that, without an overall coordination of the primitives, the synthesis results may still
appear robotic and less humanlike.

12



2.2 Physics-based Models

We all live in this physical world and all of our movements are subject to the physics
laws. Hence it is a natural strategy to apply these physics laws onto animated characters.

Shapiro and Faloutsos [SPF03] proposed the DANCE framework for animating in-
teractive characters by combining kinematic animation with physical simulation. Tran-
sition methods between kinematic control and dynamic control were developed to lever-
age the advantages of both techniques in a unified framework. In [YLP07], control
strategies SIMBICON were created from motion capture with a small number of pa-
rameters, and the system is capable of generating various gaits and styles in real-time
including walking, running, skipping and hopping. However, fully dynamic control of
an articulated character still remains a very difficult problem.

Figure 2.4: Kinematically controlled kick and dynamically controlled reaction and
interaction [SPF03].

More recently, motion capture data was coupled with physics-based approaches to
achieve better realism. Zordan et al. [ZH02] proposed synthesizing reactive human mo-
tions by combining dynamic simulation and motion capture data. The system tracks the
trajectories to follow motion capture data, maintains character’s balance, while mod-
ifies sequences from a motion library to accomplish specified tasks like punching or
racket swinging. Similar approaches have been used to help determine the best plau-
sible re-entry into motion library playback following unexpected impacts and changes
towards the character [ZMC05], or to track multiple trajectories in parallel and blend or
transition between different path controllers at arbitrary times for locomotion synthesis
[MPP11].

Physics models are also used for gesture synthesis because dynamics has a lot to
offer in facilitating the subtleties found in the gesture motions. Neff et al. [NF02] intro-
duced tension and relaxation into the posture based animation by separating stiffness
control from position control, thus achieving better control in posture interpolation and
dynamics efficiently.

In recent years, more attentions have been given to optimizing complex physics-
based models and control loops. As an example, [MZS09] presented a hybrid in-
verse/forward dynamics algorithm that determines joint torques to track a reference mo-
tion while responding to external perturbations through an optimization routine. Also
in [JYL09], a physics-based approach is presented to solves a constrained optimization
problem formulated at every time step. Active control strategies are specified using
intuitive kinematic goals, enabling the synthesis of virtual characters interacting with
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dynamic environments.

To summarize, in general it still remains difficult to generate a wide variety of re-
alistic motor behaviors using purely physics-based methods alone. Good results were
achieved by incorporating captured datasets as references. However, without motion
capture in the loop, the result of dynamic simulation still has a hint of rigidness and
robot-like.

2.3 Behavior Modeling

In general, behaviors refer to the range of actions made as the response of the system
or organism toward various stimuli or inputs in conjunction with the environment, such
as conversation, social reactions with other parties, emotions, changes in position, ori-
entation or relations of persons, etc. In my opinion, similar to what was proposed in
[Dil98], the behavior modeling can be largely divided into two major categories: im-
plicit modeling and explicit modeling. Implicit modeling is primarily a black-box with
rules that are less intuitive, and output is an inductive process of the stimulations taken
in, “doing what you know”; whereas explicit modeling is essentially a deductive pro-
cess, patterns or perceptions are perceived and are then put into practice, “know what
you are doing”. Both processes could generate effective simulations, the difference is
that the perceived patterns or perceptions need to be explicitly modeled in the later case.

There have been a great amount of attention on the gesture modeling researches.
For implicit behavior models, [LKT10] presents an optimal-policy gesture controller
that schedules gesture animations in real time based on acoustic features in the user’s
speech. This process is done through an inference layer that learn the hidden associa-
tions between body language style and speech acoustic features, and also a control layer
that uses reinforcement learning to select the optimal motion accordingly. To animate
an avatar in real-time with a large repertoire of behaviors, [LCR02] presents a frame-
work that first construct a graph structure identifying plausible transitions between mo-
tion segments, then allows the user to control the avatar with a low-dimensional input
device.

For explicit behavior modeling, [KKM06] describes Behavior Markup Language
(BML) within a framework to unify a multi-modal behavior generation. As an efficient
way for motion synthesis, BML stores sync points, conditions, behavior elements and
entries for gesture, face, gaze and speech elements. SmartBody [TMM08] is the open-
source modular framework referred here for animating embodied conversational agents,
through a flexible combination of real-time animation approaches.

[KNK07] presents an algorithm that exploits the concept of gesture units to make
gestures produced by the nonverbal behavior a continuous flow of movements. A data-
driven approach synthesizes the hand and arm gestures by recreating gestural behavior
in the style of a human performer. Similarly, [LK05] explores a behavior planning
approach for automatic motion generations. Motion clips are abstracted as high-level
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Figure 2.5: A quick BML reference table for the modular animation framework Smart-
Body.

behaviors and associated with a behavior FSM that defines its capabilities. At runtime,
motion is generated by planning on the FSM with global search of behavior sequences
with heuristic cost functions, to reach user-designated goal positions. [NKA08] pro-
duces full-body gesture animation for given input text in the style of a particular per-
former. A video of a person’s particular gesturing style is first annotated and tagged
with theme, rheme and focus. Then a statistical model creates the gesture script spec-
ifying stream of continuous gestures coordinated with speech, enhancing the gesture
descriptions with additional details.

Apart from gesture oriented behavior modeling, crowd simulation represents an
important aspect of group behavior modeling. Thalmann et al. [TMK99] identifies the
essential mechanisms for implementing virtual crowd, and introduces the autonomy
distribution among agents, groups and objects. An abstraction for specific behavior
were used to simulate large crowds in complex environment involving human agents,
groups of agents, and interactive objects. [ST05] integrates motor, perceptual, behav-
ioral, and cognitive components into a model of pedestrians as individuals, and demon-
strates scenarios in a large urban environment. Inside the agents could plan their actions
either on local scales or global ones. While various behaviors are simulated in crowd
simulation such as following and fleeing, detailed agent-agent interactions are typically
not modeled.

Throughout the literature of behavior modeling, much less attentions have been
given to the territorial modeling, i.e. the science of territoriality. Interestingly, the
concept of human territories has been proposed much before the formation of modern
computer graphics, by Scheflen and Ashcraft [SA76], Adam Kendon [KHK75], and
Allan Pease [PK81]. The book of Scheflen et al. [SA76] defines territoriality as the
a way of looking at human behavior, and the study of human territoriality is the study
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of human behavior. It gives us a thorough illustration of human territories, the many
units of space-time people form and use. Two important concepts were introduced in
the book, 1) orientational field, an inter-dependent configuration in space and time con-
sisting of all of the simultaneous and sequential orientation relations that occur within
all the relationships that make up that human activity or event. For example, orienta-
tional field between a group of people conducting a conversation refers to the mutual
body orientation: between hands, between speech and listening, and between gazes. 2)
territorial field, a customary, ordered pattern of positions, relationships, and clusters.
including element (a row or arc persons holding a common orientation), face formation
(the spatial patterns formed during face-to-face interactions), gathering (cluster of mul-
tiple elements and face formations), hub (two or three concentric rows of people who
face a common nucleus of people facing them) and intersected formation (an array of
people subdivided into separate formations).

Although these territoriality concept were proposed several decades ago, close-up
behavior modeling between smaller social groups such as scenarios in [Ken76, Ken90a]
has been given less attentions in the literature of character animation. The following
work were specifically designed to simulate these scenarios with explicit behavior mod-
els. Pedica and Vilhjálmsson incorporated artificial intelligence (AI) rules [PV08] and
behavior trees for modeling the human territorial behaviors within social interactions,
such as conversation, gatherings, standing in line, etc. The model monitors the sur-
rounding and signals social and spatial reactions. Combined with steering, the system
was able to simulate group dynamics during social interactions with high efficiency. As
an extension, [PV09] addressed the human territorial behaviors during social interac-
tions with AI models, bringing the module of territoriality which often gets separated
from simulation under the social setting. [CGV11] examined the case where people
select seating places inside café and restaurant. A model for specific behavioral pattern
was implemented, and notable effectiveness was observed in the simulated behavior of
individuals and groups. However, without detailed motion planning, coordination and
synthesizing, these systems still cannot simulate close interactions between agents with
desired fidelity and capability.

Figure 2.6: Modeling the Territorial behaviors. Left [PV09]: agent joins a conversation
group then leaves. Right [CGV11]: seating behavior in public places.

As for modeling the close encounters between two agents during locomotion, Pettré
et al. [POO09] investigated the interactions between two humans walking along con-
verging paths and avoid colliding into one another. A model elaborated from experi-
mental data handles such cases for virtual agents, which was calibrated with real data.
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Even though this work is only focused on collision avoidance for agent locomotion,
it could be seen as one step ahead in better simulating agent-agent reactions in close
proximity.

In face-to-face communications such as conversations, the speaker continuously
checks if the listener is engaged by monitoring the eye-gaze behaviors. As a critical
embodiment for conversational engagement [NI10], gaze behavior has been intensively
studied through a large body of research. Some of this neurological research focuses
on the nature of eye movements, including saccades (ballistic eye movements in a vi-
sual scene) [PPU88, VSC08]. Some studies [LBR92] closely examine vestibulo-ocular
reflex (VOR) in saccadic and slow phase components of gaze shifts. Additional stud-
ies [CHB04, GG92] involve fine-grained analysis of small and large gaze shifts where
classic feedback loops are used to model the coupling and dynamics of eye and head-
orienting movements. Gaze has been used in computer graphics from gaze-contingent
real-time level of detail (LOD) rendering [MDT09] to the modeling of movement for
eyes balls, eye lids and related facial expressions [DLN05]. Gaze direction in particu-
lar is known to help with basic two-way communication because it can help a speaker
direct attention and disambiguate for a listener [Ken90b]. Gaze direction has also
been shown to help human listeners better memorize and recall information in inter-
actions, including robot storytellers [MHF06] or narrative virtual agents [BWA10]. In
[TLM09, LM07], emotion models were introduced with body posture control to make
synthesized gaze emotionally expressive. These systems typically use pre-recorded
voice coupled with simulated gaze to interact with the listener. The simulated agent in
general remains at the same spot facing the audience, without the need for locomotion.
Less attention has been given in modeling the higher-level gaze and gaze related behav-
iors such as body positioning, coordination with body gestures, etc, with the purpose
of delivering information to a human observer at various locations.

Finally, to revisit the “mismatch” aspects that caused the uncanny valley effect men-
tioned in the introduction section, research [EMO10] shows that humans are more sen-
sitive to visual desynchronization of body motions, than to mismatches between the
characters’ gestures and their voices. Furthermore, the interactions modeled between
conversational agents (talker and listener) contributes more to the realism of the syn-
thesis, surpassing the body motion desynchronization or mismatched audio. This again
proves that in order to generate more natural and humanlike character motions, many
aspects of the synthesis must be taken into account, including motion retargeting, lo-
comotion and action synthesis, whole-body coordination, behavior modeling, etc. And
by incorporating the advantages of various algorithms and approaches covered in this
literature review, this dissertation aims to achieve a character animation system that
combines realism, flexibility, precise control and environment adaptability with higher-
level constraints and task-oriented specifications.
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CHAPTER 3

Motion Parametrization

Motion blending is a popular motion synthesis technique which interpolates similar
motion examples according to blending weighs parameterizing high-level characteris-
tics of interest. We present in this chapter an optimization framework for determining
blending weights that are able to produce motions precisely satisfying multiple given
spatial constraints. Our proposed method is simpler than previous approaches, and yet it
can quickly achieve locally optimal solutions without pre-processing of basis functions.
The effectiveness of our method is demonstrated in solving two classes of problems: 1)
for precise control of end-effectors during the execution of diverse upper-body actions,
and 2) for walk animation synthesis with precise feet placements, demonstrating the
ability to simultaneously meet multiple constraints and at different frames. Our several
experimental results demonstrate that the proposed optimization approach is simple to
implement and effectively achieves realistic results with precise motion control.

3.1 Motion Parametrization with Inverse Blending

Keyframe animation and motion capture represent popular approaches for achieving
high-quality character animation in interactive applications such as in 3D computer
games and virtual reality systems. In particular, motion blending techniques [RBC98,
RSC01, MK05] provide powerful interpolation approaches for the parameterization of
pre-defined example animations according to high-level characteristics. While direct
blending of motions is able to produce fast and realistic motions, it remains difficult to
achieve blendings and parameterizations able to precisely satisfy generic spatial con-
straints. This chapter shows that with an optimization approach, the algorithm is able
to always solve spatial constraints when possible, and usually less example motions are
required to cover the spatial variations of interest.

Our method models each spatial constraint as an objective function whose error is
to be minimized. The overall multi-objective inverse blending problem is solved by
optimizing the blending weights until a locally optimal solution is reached. Solutions
can be found in few milliseconds and no pre-computation of basis functions is needed.
The method is therefore suitable for interactive applications and several results running
in real-time are presented.

While previous work has addressed the maintenance of spatial properties in a single
motion interpolation step [RSC01, MK05, KG04], the proposed algorithm is focused
on optimizing blending weights until best meeting multiple spatial constraints. This
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approach has the additional flexibility of modeling spatial constraints with objective
functions which are independent of the abstract space used by the motion blending.
Generic spatial constraints can be handled and Inverse Kinematics problems can also
be solved based on motion blending. While other work has explored the problem in
solving blending weight [YKH04], our contribution is its evaluation for the skeletal
animation problem. This approach has recently been integrated in particular to an in-
teractive virtual reality training platform [CHK10, HCK12], and the obtained results
were very effective.

Figure 3.1: The images show hand trajectories of 16 reaching motions to different loca-
tions around the character. The center image shows the result of a standard K-Nearest
Neighbors (KNN) interpolation of the highlighted 5 closest motions, with blending
weights computed in respect to the distances to the target location (center of tri-axes
manipulator) using RBF kernel functions. The right-most image shows the accurate
target being reached using Inverse Blending.

This chapter demonstrates our methods in three scenarios: pointing to objects,
pouring water and character locomotion. The spatial constraints of inverse blending
are modeled differently for each scenario. As a result, our interactive motion model-
ing framework allows animators to easily build a repertoire of realistic parametrized
human-like motions (gestures, actions, locomotion, etc) from examples which can be
designed by hand or collected with motion capture devices.

3.2 Related Work in Motion Parametrization

Several approaches to motion interpolation have been proposed involving different
techniques such as: parameterization using Fourier coefficients [UAT95], hierarchical
filtering [BW95], stochastic sampling [WH97], and interpolation based on radial basis
functions (RBFs) [RBC98]. Our motion blending framework is closely related to an
extension of the verbs and adverbs system which performs RBF interpolation to solve
the Inverse Kinematics (IK) problem [RSC01]. RBFs can smoothly interpolate given
motion examples and the types and shapes of the basis functions are optimized in order
to better satisfy the constraint of reaching a given position with the hand.

More generically, spatial properties such as feet sliding or hand placements are well
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addressed by the geostatistical interpolation method [MK05], which computes optimal
interpolation kernels in accordance with statistical observations correlating the control
parameters and the motion samples. Another approach for improving the maintenance
of spatial constraints is to adaptively add pseudo-examples [RSC01, KG04] in order to
better cover the continuous space of the constraint. This random sampling approach
however requires significant computation and storage in order to meet constraints ac-
curately and is not suited for handling several constraints.

In all these previous methods spatial constraints are only handled as part of the mo-
tion blending technique employed, i.e., by choosing sample motions which are close
to the desired constraints and then using the abstract interpolation space to obtain
motion variations which should then satisfy the constraints. Another possible tech-
nique sometimes employed is to apply Inverse Kinematics solvers in addition to blend-
ing [RSC01, CHP07], however risking to penalize the obtained realism.

The work on mesh-based IK [SZG05] does address the optimization of blending
weights for the problem of blending example meshes. However, although our approach
is simple and intuitive, no specific previous work has specifically analyzed and reported
results applied to skeletal motion, and in particular also simultaneously solving multiple
constraints and at different frames.

The Scaled Gaussian Process Latent Variable Model (SGPLVM)[GMH04] provides
a more specific framework targeting the IK problem which optimizes interpolation ker-
nels specifically for generating plausible poses from constrained curves such as posi-
tional trajectories of end-effectors. The approach however focuses on maintaining con-
straints described by the optimized latent spaces. Although good results are obtained,
constraints cannot be guaranteed to be precisely met.

The presented approach can be seen as a post-processing step for optimizing a given
set of blending weights, which can be initially computed by any motion blending tech-
nique. This chapter demonstrates that such optimization framework is able to address
any kind of constraints without even the need of specifying an abstract parameterization
space explicitly. Only error functions for the spatial constraints are necessary in order
to optimize the blending weights using a given motion interpolation scheme.

This method has also been applied for locomotion parameterization, which is a
key problem in character animation. Many methods have been previously proposed
for finding optimal solutions for path following [KS05, KGP02], for reaching specified
locomotion targets [SH07, HG07], or also for allowing interactive user control [TLP07,
KS05, ALP04]. Most of these works combine motion blending techniques with motion
graphs [KGP02, AF02, AFO03, GSK03, SH07] and can then generate different styles
of locomotion and actions. Different than these methods, specific attentions were given
to precisely meet specified foot placements. The geostatistical interpolation method
[MK05] reduces foot sliding problems but still cannot guarantee to eliminate them.
Other precise feet placement techniques [KSG02, CBY08] are available, however not
based on a generic motion blending approach.

In conclusion, diverse techniques based on motion blending are available and sev-
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eral of these methods are already extensively used in commercial animation pipelines
for different purposes. Our work presents valuable experimental results demonstrating
the flexibility and efficiency of a simple optimization framework for solving inverse
blending problems involving multiple spatial constraints. Our approach is effective
and easy to implement, and was first described in [CHK10], where it was applied to
an interactive virtual reality training application. The formulation is again described
here for completeness purposes, and then several extensions and new results are pre-
sented to effectively model diverse parametrized upper-body actions, and also to model
parametrized walking animations with precise footstep placements.

3.3 Inverse Blending

Given a set of similar and time-aligned motion examples, a traditional RBF motion
interpolation scheme was first employed to compute an initial set of blending weights.
These weights are then optimized to meet a given constraint C.

Each motion M being interpolated is represented as a sequence of poses with a
discrete time (or frame) parameterization t. A pose is a vector which encodes the root
joint position and the rotations of all the joints of the character. Rotations are encoded
with exponential maps but other representations for rotations (as quaternions) can also
be used. Each constraint C is modeled with a function e = f(M ), which returns the
error evaluation e quantifying how far away the given motion is from satisfying con-
straint C. k number of motions are first selected, which are the ones best satisfying
the constraints being solved. For example, in a typical reaching task, the k motion
examples having the hand joint closest to the target will be selected. The k initial mo-
tions are therefore the ones with minimal error evaluations. The initial set of blending
weights wj , j = {1, . . . , k}, are then initialized with a RBF kernel output of the input
ej = f(Mj). The weights have been constrained to be in interval [0, 1] in order to
stay in a meaningful interpolation range, and also normalized to sum to 1. Any kernel
function can be used, as for example kernels in the form of exp−‖e‖

2/σ2 . We chose to
use RBF kernel for the property of smoothness, i.e. reducing jitters and jumps of the
result postures when C is being continuously changed, see Chapter 4 for details. For
this method, it is not necessary to optimize kernel functions in respect to the constraints
as in [RBC98, MK05], instead the blending weights are optimized independently of the
interpolation method. Our interpolation scheme computes a blended motion with:

M (w) =
k∑
j=1

wjMj, w = {w1, . . . , wk}.

In order to enforce the given constraint C, our goal is to find the optimal set of
blending weights w, which will produce the minimum error e∗ as measured by the
constraint error function f :
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e∗ = minwj∈[0,1] f

(
k∑
j=1

wjMj

)
.

The presented formulation can easily account for multiple constraints by combining
the error metric of the given constraints in a single weighted summation. To do so, two
more coefficients are introduced for each constraint Ci, i = {1, . . . , n}: a normaliza-
tion coefficient ni and a prioritization coefficient ci. The goal of ni is to balance the
magnitude of the different constraint errors. For example, positional constraints depend
on the used units and in general have much larger values than angular values in radians,
which are typically used by orientation errors. Once the normalization coefficients are
set, coefficients ci ∈ [0, 1] can be interactively controlled by the user in order to vary
the influence (or priority) of one constraint over the other.

The result is essentially a multi-objective optimization problem, with the goal being
to minimize a new error metric composed of the weighted sum of all constraints’ errors:

f(M(w)) =
n∑
i=1

(ci ni fi (M (w))) .

Independent of the number of constraints being addressed, when constraints are
fully satisfied, e∗ → 0.

3.4 Action Parameterization with Inverse Blending

Figure 3.2 presents several examples obtained for parameterizing upper-body actions.
Different types of spatial constraints were used. Constraint Cpos is a 3-DOF positional
constraint which requires the end-effector (hand, finger tip, etc) to precisely reach a
given target location. Constraint Cline is a 2-DOF positional constraint for aligning the
hand joint with a given straight line in 3D space. Constraint Cori is a 1 to 3 DOFs rota-
tional constraint which requires the hand to comply to a certain given orientation. Note
that all these constraints are only enforced at one given frame of the motion. Constraints
can also be combined in order to allow additional ways of parameterizing motions. For
example by combining Cline and Cori, precise grasping targets can be achieved (Fig-
ure 3.2-d), and different hand orientations can be obtained when pin-pointing buttons
(Figure 3.2-b). Fig. 3.3 shows another example for a collection of pointing actions with
subtle variations obtained by combining different spatial constraints.
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Figure 3.2: This figure presents several results obtained by inverse blending. A Cline
constraint is used for precisely pointing to distant objects in (a) and for pouring exactly
above the teapot in (c). Positional Cpos and rotational Cori constraints are used for
pin-pointing a button on the dialpad (b). Note that the finger tip precisely reaches the
button, and the hand orientation matches that of the shown x-axis. Constraints Cpos and
Cori are also used for achieving precise grasping motions in (d).
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Figure 3.3: Each column illustrates a pointing action with subtle variations achieved
by combining different spatial constraints. From left to right, the constraints used in
each column are as follows: 0.54Cline + 0.46Cori, 0.61Cline + 0.39Cpos, and
0.45Cline + 0.35Cpos + 0.20Cori. The three images in each column are the same action
but from different perspectives. The tri-axes manipulator is used to specify the pointing
target location Cpos and the preferred hand orientation Cori. The magenta line specifies
the preferred pointing direction, i.e. Caxis. The orange line is traced from the pointing
finger showing the actual pointing direction.
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3.5 parametrized Character Locomotion with Inverse Blending

This section demonstrates our inverse blending framework for generating parametrized
walking motions with precise control of feet placements for character navigation.

First, two sets of motion examples are prepared with clips obtained from motion
capture. The first set Rm consists of right foot stepping motions. Each example motion
Mr ∈ Rm represents one full step forward with the right foot while the left foot remains
in contact with floor as the support foot, see Figure 3.4-a. The second set of example
motions Lm is prepared in the same way but containing stepping examples for left foot.
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Figure 3.4: (a) shows snapshots of one right foot stepping motion from Rm example
set. (b) is a top-down footprint view of several left foot stepping motions used in Lm

example set. The footprints are from diverse walk segments and do not need to be
aligned. (c) shows the constraints for computing step i: θe is the rotational constraint
for the support foot (with lock icon), vs and ve are positional constraints for the stepping
foot at the start and end of the motion respectively. (d) shows the constraints for step
i+ 1, which immediately follows step i.

The motions in both sets contain many variations, e.g. step length, step direction,
body orientation, velocity, root joint position, etc. These should well span the variations
of interest, which are to be precisely parametrized by inverse blending. Figure 3.4-b
illustrates how some of the motions in our database look like. No alignment of the
motions is needed and the variations will actually be explored by the inverse blending
optimization in order to reach any needed alignments on-line. The example motions
were also mirrored in both sets in order to guarantee the same number of examples
(and variations) are available in each set.

As we are interested in precisely controlling each footstep location during walking,
the length and direction of each step is parametrized while the support foot contact
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on the floor is maintained. Let θe be the orientation of the support foot at the start-
ing frame of one stepping motion example (rotational constraint). Let vs and ve be
vectors encoding the position of the stepping foot in respect to the support foot at the
start and at the end frames respectively (positional constraints). Figure 3.4-c illustrates
these parameters for one left step. Each stepping motion of interest is then specified
as a function of these parameters with M(vs, ve, θe), which will be obtained by inverse
blending procedures based only on the stepping examples available in the Rm and Lm

motion sets.

With the given constraints vs, ve, θe described above, the process for obtaining
M(vs, ve, θe) is composed of 4 phases, as described in the next paragraphs.

Phase 1: the set of blending weights ws is computed by inverse blending such
that the stepping foot respects the positional constraint vs at the start frame ts. As
these weights are computed to meet constraints vs, we use the notation ws(vs) for the
obtained blending weights.

Phase 2: a new inverse blending problem is solved for determining the blending
weights we at the end frame te in order to meet two constraints: the positional constraint
ve for the stepping foot and the rotational constraint θe for the support foot. Therefore
the obtained weights we(ve, θe) produce an end posture with the stepping foot reaching
location ve, while the support foot respects the orientation specified by θe.

Phase 3: the average lengths lavg of the example motions in phase 1 and 2 is used
to time-align the blended motions. The blending weights used to produce the required
stepping motion is finally obtained as a function of the frame time t, such that w(t)
=interp(ws(vs),we(ve, θe), t), t ∈ [0, lavg]. The interpolation function interp employs
a smooth in and out sine curve and each of the motions are time warped to lavg in order
to cope with variations of step lengths and speeds in the used motion set. The final
parametrized stepping motion is then obtained with M(vs, ve, θe) = w(t)Σk

i=1Mi .
This process is illustrated in Figure 3.5.

Phase 4: this phase consists of a velocity profile correction [YKH04] in order to
maximally preserve the overall quality of the original motions since several blending
operations have been performed at this point. To do so, the algorithm extracts the
root joint velocity profile from the motion example that gives the most contribution
in the inverse blending procedures (i.e. example with the largest weight). The time
parameterization of w(t) is then adapted on the fly in order to obtain a motion with the
root joint velocity profile matching the selected reference profile. Figure 3.5 bottom-
right exemplifies the root increment against frames during a two-step walking sequence
showing how root velocity changes over time. This has been proven to well preserve
the quality of the obtained results.

The procedure described above is applied each time a stepping motion has to be
generated. For producing stepping motions for the right foot,MR(vs, ve, θe) is obtained
by using the example motions from Rm. Left foot stepping motions ML(vs, ve, θe) are
similarly obtained using examples from Lm. As a result a walking sequence achieving
precise feet placements at each step can be obtained with the following concatenation
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Figure 3.5: The motion examples selected by the inverse blending M i(i = 1 ∼ k)
are blended with interpolated weights w(t) which ensure spatial constraints both at the
start and end frame of the motions. Velocity profiles are adapted on-line to preserve the
original quality and realism.

of alternating steps: ML(vs1, v
e
1, θ

e
1), MR(vs2, v

e
2, θ

e
2), ML(vs3, v

e
3, θ

e
3), · · · .

During each stepping motion in the sequence above, the character is translated at
every frame to make sure the support foot does not slide on the floor (i.e. its location and
orientation are maintained), this will essentially make the character walk forward. At
the end of each stepping, the support foot changes, and its location and orientation are
updated, ready for the following step. With this, the common problem of feet-sliding is
here eliminated.

When computing each stepping motion, constraint vsi+1 is set equal to−vei from the
previous step (see Figure 3.4-c and 3.4-d), for smooth transition between step i and step
i + 1. The negation appears because the support foot and stepping foot are swapped
from step i to i+ 1.

Figure 3.6 shows the end posture P e
L (thick red line) of the left step ML(vsi , v

e
i , θ

e
i )

and the start posture P s
R (thick green line) of the right step MR(vsi+1, v

e
i+1, θ

e
i+1). With

vsi+1 = −vei , inverse blending generates postures P e
L and P s

R matching the constraints
and with body postures which are very close to each other. The small difference in the
body posture is handled by smoothly concatenating the stepping motions with a brief
ease-in blending period from ML going into MR, achieving a smooth overall transition.
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In the examples presented in this chapter, only six stepping motion examples have
been used in each motion set, and yet the described inverse blending procedure can
precisely control each foot placement within a reasonable range. If larger databases
are used, a wider range for the constraints can be specified. Figure 3.7 shows several
results obtained by our real-time walking control application.
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Figure 3.6: This figure illustrates the generation of ML(vn), and the concatenation of
ML(vn) and MR(vn+1) for achieving the final walking synthesis.

3.6 Results and Discussion

With suitable example motions in a given cluster, inverse blending can produce motions
exactly satisfying given spatial constraints and fast enough for real-time applications.
Several of the figures in this section illustrate the many experiments successfully con-
ducted in different scenarios. To evaluate the performance of our method, a reaching
task was designed to measure the errors produced by our method against a single RBF
interpolation, with the 16 reaching motion database from Mukai et.al [MK05]. A to-
tal of 144 reaching targets (shown as yellow dots in Fig 3.10, each specifying a 3-DOF
Cpos constraint) were placed evenly on a spherical surface within reach of the character.
The end locations of the hand trajectory in 16 example motions are shown as gray dots.

For each reaching target we first applied standard RBF interpolation alone to gen-
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Figure 3.7: The figure presents several snapshots of obtained walking motions where
each step precisely meets the given feet targets (a and c). The targets for each step
can be adjusted on the fly achieving a controllable locomotion generator with precise
feet placements. The generation of the stepping motions is illustrated in the lower-left
image (b), where the gray skeleton shows the inverse blending solution for the left foot,
prior to concatenation.

erate a reaching motion and record the final hand position where the character actually
reaches. These 144 final positions were used to construct a mesh grid, which is shown
in Fig 3.10-a. Each triangle on the mesh is colored in respect to the average errors
from its vertices, representing the distance error between the final hand positions and
their corresponding reaching targets. Next, inverse blending optimization was used to
perform the same tasks, and the constructed mesh is shown in Fig 3.10-b. The reaching
motions generated by inverse blending can precisely reach most of the targets. Errors
measured are practically zero across most of the mesh, and increase only at the bound-
ary of the surface. In this specific task, the radius of the spherical surface was set to
80cm, and both methods used eight example motions from the database (k = 8) for
computing each reaching task. Fig. 3.8 shows the error evaluation without the spa-
tial information. The XY plane corresponds to the 2D grid containing 144 samples in
the constraint space. Distance errors are plotted on the vertical Z-axis, in centimeters.
Inverse Blending achieved fairly good precisions over most of the grid region, with
distance errors under 5 to 10 millimeters for given 3-DOFs positional constraints. By
contrast, RBF interpolation produced much larger errors over the same grid, with errors
reaching 3 to 15 centimeters.
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Figure 3.8: Error evaluation without the spatial information. Left image plots the
errors measured from RBF interpolation, right side plots errors from our method.
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15 1.286 1.153

30 2.287 1.743

10 1.126 1.065

15 1.135 1.065
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Figure 3.9: The table shows average computation times (in milliseconds) in solving
5000 inverse blending tasks, within three scenarios: pointing, pouring and walking.
Comparison is made between two of the optimization procedures implemented: steep-
est descent and gradient descent. k denotes the number of blended motions used in
each task. Total number of motion examples in each dataset: 35 pointing motions, 16
pouring motions, and 6 stepping motions.

Additional experiments were performed by varying the radius of the spherical sur-
face to be 65, 70, 75, 80, 85 and 90cm. Again a total of 144 reaching targets were
generated on the spherical surfaces, covering a large volume of the workspace. These
spherical surfaces are shown in Figures 3.10-c and 3.10-d. The constructed meshes
by inverse blending are shown in Fig 3.10-d, and the results obtained with the RBF
interpolation are shown in Fig 3.10-c. It is possible to note that the inverse blending
optimization produces a smooth mesh very well approximating the yellow dots, and the
errors produced by our method are clearly much lower, with most areas in pure blue.

Using standard optimization techniques [PTV07] our inverse blending problems
could be solved under 1.16 ms of computation time on average, with worse cases tak-
ing 2.29 ms (with non-optimized code running on Core 2 Duo 2.13 GHz single core).
Three scenarios (character performing pointing, pouring water and walking with pre-
cise feet placements) were used for this evaluation, with each scenario solving 5000
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inverse blending problems towards random placements. Details of the measurements
are summarized in Fig. 3.9. Note that for each step in the walking synthesis task, 2
inverse blending problems are being solved: one at the beginning of the step, and the
other one at the end of that same step.

The approach is therefore suitable for real-time applications, and in addition, it
does not require pre-processing of the motion database, making it suitable for systems
interactively updating the motion database (as in [CHK10]).

In terms of limitations, two main aspects have to be observed. First, the ability of
enforcing constraints greatly depends on the existing variations among the motion ex-
amples being blended. The number of needed example motions also depends on the
size of the target volume space. For example, our walk generator can produce good re-
sults with only 6 stepping example motions (6 for left foot stepping ranging from −10◦

to 65◦) and mirrored to become 12 for both turning directions, due to great variations
available in the motions. However more example motions are typically needed to well
cover a large reaching or pointing volume, in certain cases 35 example motions were
used. In extreme cases, the motion examples needed to enforce specified constraints is
exponential to the number of DOFs. For example, adding one extra DOF constraint to
an existing dataset for 3-DOFs positional constraint synthesis may require doubling the
size of the dataset. In practice however, it is less demanding on the quantity of new mo-
tions to add when introducing additional constrains. For example, to synthesis reaching
motions with a 3-DOFs positional constraint typically requires a dataset of 16 to 35 ex-
amples that well cover the reachable space. Adding one extra rotational constraint in
practice would normally requires an additional 8 to 15 carefully chosen examples that
cover the extremities. The second limitation, which is related to the first, is that the
computational time required for finding solutions will also depend on the quality and
number of motion examples (the k value). However, as shown in our several exam-
ples, these limitations are easy to address by appropriately modeling example motions,
and balancing the coverage versus efficiency trade-off specifically for each action being
modeled.

To conclude, this chapter presents an optimization framework for satisfying spatial
constraints with motion blending. Our approach is simple and can handle any type of
spatial constraints. Several different actions (pointing, grasping, pouring, and walking)
were successfully modeled and parametrized with precise placement of end-effectors.
Our inverse blending framework has therefore shown to be a simple and powerful tool
for achieving several useful motion parameterizations. We believe this overall frame-
work can significantly improve the process of modeling full-body motions for interac-
tive characters.
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(a)

(b)

(c)

(d)

Figure 3.10: Error evaluations. The meshes constructed by a standard RBF interpola-
tion (a and c) result in much larger errors than by our inverse blending optimization (b
and d), which most often produces no error.
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CHAPTER 4

An Analysis of Motion Blending Techniques

Motion blending is a widely used technique for character animation. The main idea is
to blend similar motion examples according to blending weights, in order to synthe-
size new motions parameterizing high level characteristics of interest. We present in
this chapter an in-depth analysis and comparison of four motion blending techniques:
Barycentric interpolation, Radial Basis Function, K-Nearest Neighbors and Inverse
Blending optimization. Comparison metrics were designed to measure the performance
across different motion categories on criteria including smoothness, parametric error
and computation time. The blending methods have been implemented in the character
animation platform SmartBody, and several visualization renderings are presented here
to provide a window for gleaning insights into the underlying pros and cons of each
method in an intuitive way.

4.1 Introduction

Motion blending, also known as motion interpolation, is widely used in interactive ap-
plications such as in 3D computer games and virtual reality systems. It relies on a
set of example motions built either by key-framing animation or motion capture, and
represents a popular approach for modifying and controlling high level characteristics
in the motions. In essence, similar motion examples are blended according to blend-
ing weights, achieving parameterizations able to generate new motions similar to the
existing examples and providing control of high level characteristics of interest to the
user.

Although several different methods have been proposed in previous works, there
is yet to be a one-solves-all method that works best in all scenario. Each method has
its own advantages and disadvantages. The preferred motion parameterization for an
application highly depends on the application type and required constraints. For lo-
comotion animation, it is more important to ensure the weights vary smoothly as the
parameterization generates them, in order to ensure visually pleasing results. On the
other hand, a reaching motion forms a non-linear parameter space and requires precise
goal-attainment for grasping. Therefore methods with less parametric error are pre-
ferred for accuracy. The goal of this work is to thoroughly analyze several existing
methods for motion parameterization and to provide both visual and numerical metrics
for discriminating different methods.

This chapter presents an detailed analysis among 4 popular motion blending meth-
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ods implemented on the character animation platform SmartBody [TMM08, USC12],
including Barycentric interpolation, Radial Basis Function (RBF) interpolation, K-
Nearest Neighbors (KNN) interpolation, and Inverse Blending (InvBld) optimization
[HK10]. The goal is to include methods that are fast and straightforward to implement,
without heavy computations normally found in the machine learning-based methods.

A motion capture dataset was carefully built containing 5 different type of motions,
and comparison metrics were designed to measure the performance on different motion
categories using criteria including parametrization accuracy of constraint enforcement,
computation time and smoothness of the final synthesis. Comparison results are intu-
itively visualized through dense sampling inside the parametrization (blending) space,
which is formulated using the corresponding motion parameters. These results provide
valuable insights into the underlying advantages and disadvantages of each blending
method.

4.2 Related Work in Motion Blending

Motion blending is a powerful technique to generate variations of existing motions. It
can be used to synthesize locomotion animation to steer a virtual character [PSS02,
PL06], produce reaching and grasping motions that satisfy spatial constraints [AN99],
or generate motions of different styles [RBC98].

Several blending methods have been proposed in the literature to produce flexi-
ble character animation from motion examples. Different approaches have been ex-
plored, such as: parameterization using Fourier coefficients [UAT95], hierarchical fil-
tering [BW95] and stochastic sampling [WH97]. The use of Radial Basis Functions
(RBFs) for building parameterized motions was pioneered by Rose et al. [RBC98]
in the Verbs and Adverbs system, and follow-up improvements have been proposed
[RSC01, PSS02]. RBFs can smoothly interpolate given motion examples, and the types
and shapes of the basis functions can be fine tuned to better satisfy constraints for differ-
ent dataset. The method assigns a function for each blending weight that is the sum of a
linear polynomial and a set of radial basis functions, with one radial basis function for
each example. If the requested parameters are far from the examples, blending weights
will largely rely on the linear polynomial term, which undermines the accuracy of the
final result. Verbs and Adverbs formulation has been selected as the RBF interpolation
method used in the presented comparisons.

Another method for interpolating poses and motions is KNN interpolation. It relies
on interpolating the k nearest examples measured in the parametrization space. The mo-
tion synthesis quality can be further improved by adaptively adding pseudo-examples
in order to better cover the continuous space of the constraint [KG04]. This random
sampling approach however requires significant computation and storage in order to
well meet constraints in terms of accuracy, and can require too many examples to well
handle problems with multiple constraints.
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In all these blending methods spatial constraints are only handled as part of the
employed motion blending scheme. One way to solve the blending problem with the
objective to well satisfy spatial constraints is to use an Inverse Blending optimization
procedure [HK10], which directly optimizes the blending weights until the constraints
are best satisfied. However, a series of smooth variation inside the parametrization
space may generate non-smooth variations in the weight space, which lead to undesired
jitter artifacts in the final synthesis. Another possible technique sometimes employed is
to apply Inverse Kinematics solvers in addition to blending [CHP07], however risking
to penalize the obtained realism.

Spatial properties such as hand placements or feet sliding still pose challenges to
the previously mentioned blending methods. Such problems are better addressed by
the geo-statistical interpolation method [MK05], which computes optimal interpolation
kernels in accordance with statistical observations correlating the control parameters
and the motion samples. When applied to locomotion systems, this method reduces
feet sliding problems but still cannot guarantee to eliminate them. The scaled Gaussian
Process Latent Variable Model (sGPLVM)[GMH04] provides a more specific frame-
work targeting similar problems with optimization of interpolation kernels specifically
for generating plausible poses from constrained curves such as hand trajectories. The
approach however focuses on maintaining constraints described by the optimized latent
spaces. Although good results were demonstrated with both methods, they remain less
seen in animation systems partly because they are less straightforward to implement.

The analysis also includes the performance of selected blending methods for loco-
motion parametrization, which is a key problem in character animation. Many blending-
based methods have been proposed in the literature for locomotion [KS05, KGP02,
Joh09], for interactive navigations with user input [KS05, ALP04], for reaching speci-
fied targets or dodging obstacles during locomotion [SH07, HG07], and also for space-
time constraints [KHK09, SKF07, LLK11]. Here in this chapter the performance of the
selected blending methods are investigated on the synthesis of locomotion sequences.

In conclusion, diverse techniques based on motion blending are available and sev-
eral of these methods are already extensively used in commercial animation pipelines
for different purposes. In this chapter valuable experimental results are presented to un-
cover the advantages and disadvantages of four motion blending techniques. The rest
of this chapter is organized as follows: In Chapter 4.3 and 4.4 each blending method
is briefly reviewed, then the setup of the experiments and selected analysis metrics are
described. Chapter 4.5 present detailed comparison results, and Chapter 4.6 presents
the conclusions.

4.3 Motion Parameterization Methods

In general, a motion parameterization method works as a black box that maps desired
motion parameters to blending weights for motion interpolation. We have selected four
methods (Barycentric, RBF, KNN, and InvBld) for our analysis. This work focuses on
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comparing the methods that are most widely used in practice due to their simplicity
in implementation, and other methods like [GMH04] and [MK05] are not included.
Below is a brief review of the 4 methods selected. Each motion Mi being blended is
represented as a sequence of poses with a discrete time (or frame) parameterization t.
A pose is a vector which encodes the root joint position and the rotations of all the
joints of the character. Rotations are encoded as quaternions but other representations
for rotations can also be used. Our interpolation scheme computes the final blended
motion M(w) =

∑k
i=1wiMi, with w = {w1, . . . , wk} being the blending weights

generated by each of the methods.

4.3.1 Linear and Barycentric Interpolation

Linear and Barycentric interpolation is the most basic form for motion parameteri-
zation. It assumes that motion parametrization can be linearly mapped to blending
weights. While the assumption may not hold for all cases, in many situations this sim-
ple approximation does achieve good results. Without loss of generality, we assume
a 3D motion parameter space with a set of example motions Mi (i = 1 . . . n). As
the dimension of parametric space goes from 1D to n-D, linear interpolation becomes
Barycentric interpolation. Specifically for a 3D parametric space, the tetrahedralization
V = {T1, T2, . . . Tv} is constructed to connect these motion examples Mi in space,
which can be done either manually or automatically using Delaunay triangulation.
Therefore, given a new motion parameter p′ in 3D space, the algorithm can search for
a tetrahedron Tj that encloses p′. The motion blending weights w = {w1, w2, w3, w4}
are given as the barycentric coordinates of p′ inside Tj . Similar formulations can be
derived for 2-D and n-D cases by replacing a tetrahedron with a triangle or a n-D sim-
plex respectively. The motion parameterization p′ is not limited to a 3D workspace but
can also be defined in other abstract parameterization spaces, with limited ability for
extrapolation outside the convex hull.

4.3.2 Radial Basis Function (RBF)

RBF is widely used for data interpolation since first introduced in [RBC98]. In this
chapter the method is implemented by placing a set of basis functions in parameter
space to approximate the desired parameter function f(p) = w for generating the
blend weights. Specifically, given a set of parameter examples p1, p2, . . . pn, f(p) =
w1, w2, . . . wn is defined as sum of a linear approximation g(p) =

∑d
l=0 alAl(p) and a

weighted combination of radial basis function R(p). The function for generating the
weight wi is defined as :

wi(p) =
n∑
j=1

ri,jRj(p) +
d∑
l=0

ai,lAl(p)
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where Rj(p) = φ(‖p − pj‖) is the radial basis function, and Al(p) is the linear basis.
Here the linear coefficients ai,l are obtained by fitting a hyperplane in parameter space
where gi(pj) = δi,j is one at i-th parameter point and zero at other parameter points.
The RBF coefficients ri,j are then obtained by solving the following linear equation
from linear approximation to fit the residue error ei,j = δi,j − gi(pj). R1(p1) R1(p2) . . .

R2(p1) . . . . . .
... . . . . . .

 r = e

RBF can generally interpolate the example data smoothly, though it usually requires
some tuning in the types and shapes of basis function to achieve good results for a spe-
cific data set. The parameterization space could also be defined on an abstract space
like motion styles [RBC98], with the ability to extrapolate outside the convex hull of
example dataset. However the motion quality from such extrapolation may not be guar-
anteed, especially when p travels further outside the convex hull.

4.3.3 K-Nearest Neighbors (KNN)

KNN interpolation finds the k-closest examples from an input parameter point and
computes the blending weights based on the distance between the parameter point and
nearby examples. Specifically, given a set of parameter examples p1, p2, . . . pn and a
parameter point p′, the method first finds example points pn1 , pn2 , . . . pnk

that are closest
to p′. Then the i-th blending weight for pni

are computed as :

wi =
1

‖p− pni
‖
− 1

‖p− pnk
‖

The blending weights are then normalized so that w1 + w2 + · · · + wk = 1. The KNN
method is easy to implement and works well with a dense set of examples in parameter
space. However, the result may be inaccurate when the example points are sparse.
To alleviate this problem, pseudo-examples are usually generated to fill up the gap
in parameter space [KG04]. A pseudo-example is basically a weighted combination of
existing examples and can be generated by randomly sampling the blend weights space.
Once a dense set of pseudo-examples are generated, a k-D tree can be constructed for
fast proximity query at run-time. In our implementation for a dataset containing 20
examples, pseudo-examples on the scale of 500 to 2000 are generated.

4.3.4 Inverse Blending (InvBld)

InvBld was designed for precise enforcement of user-specified constraints in the workspace
[HK10]. Each constraint C is modeled with function e = fC(M ), which returns the
error evaluation e quantifying how far away the given motion is from satisfying con-
straintC under the given motion parametrization p′. First, the k motions {M1, . . . ,Mk}
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best satisfying the constraints being solved are selected from the dataset, for example,
in a typical reaching task, the k motion examples having the hand joint closest to the
target will be selected. An initial set of blending weights wj (j = {1, . . . , k}) are then
initialized with a radial basis kernel output of the input ej = fC(Mj). Any kernel
function that guarantee smoothness can be used, as for example kernels in the form of
exp−‖e‖

2/σ2 . Weights are constrained inside [0, 1] in order to stay in a meaningful in-
terpolation range, they are also normalized to sum to 1. The initial weights w are then
optimized with the goal to minimize the error associated with constraint C:

e∗ = minwj∈[0,1]f
C

(
k∑
j=1

wjMj

)
.

Multiple constraints can be accounted by introducing two coefficients ni and ci for
each constraint Ci, i = {1, . . . , n}, and then solve the multi-objective optimization
problem that minimizes a new error metric composed of the weighted sum of all con-
straints’ errors: f(M (w)) =

∑n
i=1

(
ci ni f

Ci (M (w))
)

, where ci is used to prioritize
Ci, and ni to balance the magnitude of the different errors. Details of the InvBld are
provided in Chapter 3.

4.4 Experiments Setup

4.4.1 Dataset Overview

To compare and test these motion parameterization methods, five categories of motion
examples have been captured, including the following actions: reach, jump, punch kick
and locomotion. Corresponding features are formulated for each motion category to
define a parameterization space. Also, three metrics are defined for the evaluation:
computation time, parameterization accuracy (or parametric error) and smoothness.

Reach: 24 example motions of a character pointing his arm to various points around
him. A typical reach motion makes use of the character’s full body movements, includ-
ing bending down or turning around in order to reach for target points on the ground or
behind the character. The parameterization is defined as the 3D position p = (x, y, z)
of the wrist joint when character’s hand is on the target.

Punch: 20 example punch motions, with the character starting in a fighting stance
and then hitting various points in space while remaining feet contact. Since it would
be awkward to perform punch at a target in the back without moving the feet and turn,
the punch is restricted to hit targets mostly in front of the actor. We defined the motion
parameterization as the target hit point p = (x, y, z) in space.

Kick: Kick motions are organized in a similar manner to the punch motions. 20 ex-
amples are captured where the character starts from a fighting stance, performs straight
kicks at various targets in the air, and then returns to the fighting stance. What’s dif-
ferent from the punching is that kicking motions usually cover a larger area in the
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workspace since the character can perform back kicks without turning to the back. The
parameterization is defined as the 3D position p = (x, y, z) of the ankle joint at the kick
apex point.

Jump: 20 jumping motions to various target locations. Targets are on the floor
plane to various distances and directions, and also with varied heights during the flight
phase to a same target point. The parameterization is defined as p = (d, θ, h), where d
is the jumping distance, θ is the jumping direction, and h is the maximum flight stage
height.

Locomotion: 20 example motions in the locomotion set. Each example animation
contains two walking or running cycles of moving straight, sideways, or turning around
at various speeds. The parameterization is defined as p = (vf , ω, vs), where vf is the
forward speed, ω is the turning rate, and vs is the speed of walking sideways.

The table and figures in Fig 4.1 gives an overview of the datasets.

4.4.2 Performance Metrics

The main application of motion parameterization is to synthesize new motions interac-
tively based on input parameters. In order to numerically compare the methods, three
metrics are defined: computation time, parametrization accuracy and smoothness.

Parametrization Accuracy: While each motion parameterization method can gen-
erate a unique set of blending weights given some input parameters, there is no guar-
antee that the blended motion will satisfy the input parameters. The parametric error
is defined as the squared difference between the desired input parameter and the ac-
tual motion parameter derived from the blended motion. Depending on the type of
applications, this error may be of less importance: for application that requires pre-
cise end-effector control such as reaching, punching and kicking a given target, the
parameter error would directly determine whether the result is valid for a given task;
for abstract motion parameterization space such as emotion (happy walk v.s. sad walk)
or style (walk forward v.s. walk sideways) control, only qualitative aspects of motion
are of interest.

Computation Time is divided into pre-computation phase and run-time computa-
tion phase. Pre-computation time is the amount of time taken for a method to build the
necessary structures and required information to be used in the run-time phase. While
this may usually be negligible for Inverse Blending or Barycentric, it may require sig-
nificant amount of time for KNN and RBF depending on the number of pseudo ex-
amples or size of the dataset. A method require little to no pre-computation is more
flexible in changing the example data on-the-fly, which can be beneficial for applica-
tions that require on-line building and adjusting motion examples [CHK10]. Run-time
computation phase is the time required for the method to compute the blending weights
based on given input parameters, which reflects the real-time performance.

Smoothness determines whether the blending weights would change smoothly when
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category
number of 

examples
parametrization

joint 

paramtrized
note

Reach 24 p=(x,y,z) wrist full body reaching  with bending down and turning around

Punch 20 p=(x,y,z) wrist start and end with fighting stance; targets are mostly in front

Kick 20 p=(x,y,z) ankle start and end with fighting stance; p  is ankle position at kick apex

Jump 20 p=(d, θ,h) base d: jump distance; θ: jump direction; h: max height during jump

Locomotion 20 p=(v f ,ω,v s ) base v f : walk forward speed; ω: turning rate; v s : walk sideways speed

Figure 4.1: An overview of the motion capture dataset used for our analysis. Top row
from left to right: reach, punch and kick. Trajectories of character’s end-effector are
plotted. Bottom row: jump and locomotion. Trajectories of the root joint are plotted.

motion parametrization varies. This metric is of more importance when parameters are
changed frequently during motion synthesis. Specifically speaking, smoothness may
be less required for motions like reach, kick and punch where parametrization usually
stays constant during each action execution. However it is critical for other motion
parametrization such as locomotion where parameters may need to be changed con-
tinuously even within each locomotion gait. And for such applications, jitter artifacts
would occur and degrade the quality of synthesized motions if smoothness cannot be
guaranteed. The smoothness of the blending weights is numerically defined as the cur-
vature of the blending weights wx,y over a m×m surface grid G.

G = {p = (x, y)|(0 ≤ x ≤ m, 0 ≤ y ≤ m)}
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Figure 4.2: Parametric space for reaching dataset.

For a given G, the curvature κx,y is computed at each grid vertex p = (x, y) as :

κx,y =
1

8
‖

1∑
a=−1

1∑
b=−1

(wx,y − wx+a,y+b)‖

This curvature is computed over several grids to uniformly sample the volume within
the 3D parametric space and use the average curvature κ̄ as the smoothness metric.

Motion Vector Flow: This chapter also proposes visualizing the smoothness (vi-
sual quality) of the final synthesis with motion vector flows: each vector denotes the
absolute movement of a particular skeleton joint (or pseudo-joints filling in the gap
of longer bones) as it traverses the 3D workspace between two consecutive motion
frames. Distinguishable colors are assigned to the vectors representing sudden change
in vector length compared against local average of the length computed with a slid-
ing window, thus highlighting the abnormal speed-ups (warm color) and slowdowns
(cool color) caused by jitters and such. Fig 4.5 shows the motion vector flow from
150-frame locomotion sequences generated by 4 blending methods, each showing a
character transitioning from slow walk to jogging over the same course of variations
inside parametrization space. Motion frames are selectively plotted with stick figures
on top of the vector flow.

4.5 Results and Discussions

For each method, we uniformly sampled inside the parametric space and measured
the obtained errors. Since the parametric space for reach, punch and kick naturally
coincides with the 3D workspace, the parameter point p = (x, y, z) was sampled over
a spherical surface and compute the error as the euclidean distance between the target
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p and where the wrist/ankle actually reaches, see Fig 4.2. For jump and locomotion
where the parametric space represents abstract values such as turning angle and speed,
the parameter point was sampled on a rectangular grid.

4.5.1 Parametric Error Comparison

The parametrization accuracy visualizations for each method are shown in Fig 4.3. The
first 3 rows showing the result for reach, punch and kick respectively, and the surface
used to sample p is to fix parameter z (distance from the character) in mid-range of
the dataset coverage. Similarly for jump and locomotion (row 4 and 5), jump height h
and sideways speed vs (see Chapter 4.4) are chosen respectively in mid-range. InvBld
by comparison tends to be the most accurate as it relies on numerical optimization to
find blend weights that yield minimal errors. KNN also performs relatively well as
it populates the gap in parametric space with pseudo examples to effectively reduce
the error. Thus for applications that require high parametrization accuracy such as
reaching synthesis, it is preferred to apply either InvBld or KNN with dense data. On
the other hand Barycentric and RBF numerically tend to generate less accurate results,
however this does not necessarily mean the motions generated are of poor quality. In
fact, as human eyes are more sensitive to high frequency changes than to low frequency
errors, Barycentric and RBF are able to produce reasonable motions for locomotion and
jumping, which are parameterized in the abstract space. The table and chart in Fig 4.6
(left side) lists the average parametric error using results from a more densely sampled
parametrization space (60× 60× 5 samples on average).

4.5.2 Smoothness Comparison

Although InvBld outperforms in parametrization accuracy, it falls behind in terms of
smoothness, which can be observed both visually (Fig 4.4) and numerically (Fig 4.6
right side). By comparing the error and smoothness maps with other methods, it can
be observed that there are several semi-structural regions with both high errors and
discontinuity in smoothness. Depending on the initial condition, InvBld optimization
procedure may get trapped in local minimal at certain regions in parametric space,
which results in high error and discontinuous regions shown in column 3 of Fig 4.4 and
4.3. KNN also suffers from similar smoothness problems (Fig 4.4 column 2), and since
KNN requires a dense set of pseudo examples to reduce parametric errors, the result-
ing parametric space tends to be noisier than others. Moreover, for KNN and InvBld,
there can be sudden jumps in blending weights due to changes in the nearest neigh-
bors as the parametrization changes, leading to the irregular patterns in the smoothness
visualizations (Fig 4.4).

Barycentric produces a smoother parameterization as the blending weights only
change linearly within one tetrahedron at any given time. However obvious disconti-
nuities occur when moving across the boundaries between adjacent tetrahedra. Note
that although both KNN and Barycentric interpolation have similar numerical smooth-
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Figure 4.3: Parametrization accuracy visualizations for 4 blending methods on differ-
ent motion dataset. From top row to bottom are reach, punch, kick, jump and locomo-
tion; from left column to right are: Barycentric, KNN, InvBld and RBF.
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Figure 4.4: Smoothness visualizations for 4 blending methods on different motion
dataset. From top row to bottom are reach, punch, kick, jump and locomotion; from
left column to right are: Barycentric, KNN, InvBld and RBF.
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ness in certain cases, the resulting motions from Barycentric usually look more visu-
ally pleasing. This is because the weight discontinuity is only visible when moving
between different tetrahedra for Barycentric, while for KNN the irregular blending
weights could cause constant jitters in the resulting motions. Finally, RBF tends to
generate the smoothest result visually and numerically, which may be a desirable trade-
off for its high parametric error in certain applications. Low performance in numerical
smoothness corresponds to low visual quality of the final synthesis, as shown in Fig 4.5
and also the accompanied video where more jitters and discontinuities can be observed.

Figure 4.5: Motion vector flow visualization of a 150-frame locomotion sequence
transitioning from slow walk to jogging. Color segments indicates jitters and unnatural
movements during the sequence. By comparison results from InvBld and KNN (top
row) contain more jitters than Barycentric and RBF (bottom row).

4.5.3 Computation Time Comparison

KNN requires more pre-computation time than other methods for populating the para-
metric space with pseudo-examples as well as constructing a k-D tree to accelerate
run-time efficiency. Moreover, whenever a new motion example is added, it needs to
re-build both pseudo examples and k-D tree since it is difficult to incrementally update
the structures. This makes KNN less desirable for applications that require on-line re-
construction of new parametric space when new motion examples are added. RBF on
the other hand can usually be efficient in dealing with a small number of examples,
however the cost of solving linear equations increases as dataset gets larger. Barycen-
tric requires the tetrahedra to be either manually pre-specified or automatically com-
puted, and may become less flexible for high dimension parametric space. InvBld by
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comparison is more flexible since it requires very little pre-computation by moving the
computational cost to run-time.

Reach Punch Kick Jump Locomotion Reach Punch Kick Jump Locomotion

Barycentric 0.2060188 0.2351264 0.4723036 0.3499212 1.3287728 0.0377356 0.0248206 0.0224772 0.0157104 0.0212154 0.625 ms

KNN 0.1676776 0.177986 0.3386378 0.1629752 1.0714436 0.0376208 0.0318934 0.0291025 0.0241884 0.0182888 0.221 ms

InvBld 0.1511574 0.17205 0.3217224 0.0756766 1.2572206 0.0698706 0.0785622 0.0801812 0.0609856 0.0602558 4.394 ms*

RBF 0.241626 0.325049 0.5883928 0.3816458 1.7279502 0.0035818 0.0023684 0.0021972 0.001998 0.0012648 0.228 ms
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Figure 4.6: Parametrization accuracy (unit: centimeters) and smoothness comparison
chart across four blending methods on different motion sets. ∗ Computation time (unit:
milliseconds) measured on a machine with Quad Core 3.2GHz running on single core.
InvBld can expect 2 ∼ 3X speed-up with optimized code on kinematic chain updates
[HK10].
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Figure 4.7: Performance overview across four blending methods. Note that the mea-
surements in this figure are not to scale.

For run-time performance, all methods can perform at interactive rate, see last col-
umn of the table in Fig 4.6. However, InvBld is significantly more expensive than other
methods as it requires many numerical iterations with kinematic chain updates to obtain
optimal results. Also, the computation time greatly depends on the initial estimation of
the blending weight and therefore may have large variations across different optimiza-
tion sessions, posing big challenges on its real-time performance for multi-characters
simulations. The other methods require only a fixed number of operations (well under
1 millisecond) and are much more efficient for real-time applications.
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The overall performance for each blending method is summarized in Figure 4.7.
In terms of parametric error and smoothness, InvBld has the most precise results but
is poor in smoothness. On the opposite end, RBF produces the smoothest parametric
space but is the least accurate method as a trade-off. KNN and Barycentric fall in be-
tween with KNN being slightly more accurate and less smooth than Barycentric. In
terms of computation time, KNN requires the most pre-computation while InvBld re-
quires none. RBF and Barycentric require some pre-computation and may also require
user input to setup tetrahedra connectivity or fine tune the radial basis kernel. Therefore
InvBld is most suitable for on-line update of motion examples, with the trade-off being
most expensive for run-time computation while the other methods are all very efficient
at run-time.

These performance results suggest that there is no method that works well for all
metrics. To gain advantages in some metrics, a method would need to compromise in
other metrics. InvBld and RBF show a good example of such compromise that are in
the opposite ends of the spectrum. Overall, for applications that do not require high
accuracy in parametric errors, RBF is usually a good choice since it is mostly smooth,
easy to implement, and relatively efficient both at pre-computation and run-time. On
the other hand, if parametric accuracy is very important for the application, InvBld
provides the best accuracy at the cost of smoothness in parametric space. KNN and
Barycentric fall in-between the two ends, with Barycentric being smoother and KNN
being more accurate. Note that KNN may require much more pre-computation time
than other methods depending on how dense the pseudo-examples are generated, which
may hurt its applicability in certain interactive applications.

4.6 Conclusion

This chapter presents an in-depth analysis of four different motion blending methods.
The results show that there is no one-solves-all method for all the applications and com-
promises need to be made between accuracy and smoothness. This analysis provides
a high level guidance for developers and researchers in choosing suitable methods for
character animation applications. The metrics defined in this chapter would also be use-
ful for testing and validating new blending methods. A new motion blending method
that satisfy or make better compromise at both parametric error and smoothness would
be desirable for a wide range of applications.

As future work, we would attempt to include methods such as geostatistical inter-
polation [MK05] for the completeness of this comparison. We expect it to perform in
a more balanced way between accuracy and smoothness, however with the sacrifice of
computation time both in pre-processing and at run time.
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CHAPTER 5

An Immersive Platform for Motion Modeling

Virtual humans are widely used in interactive training, education and therapeutic appli-
cations. However, building animations which are both realistic and with parameterized
variations in respect to a given scenario remains a complex and time consuming task.
In certain situations, only experts in a given training subject may be able to demon-
strate how specific motions have to be performed. Intuitive user interfaces for motion
modeling via direct demonstration are therefore useful as they allow users to easily
demonstrate and parameterize motions inside given scenarios.

This chapter presents a motion modeling platform that is based on the interactive
construction of motion databases that can be parameterized for later use in training
applications. Based on low-cost wearable motion sensors, or any other suitable motion
tracking devices, the platform allows the creation of new motion demonstrations on-
the-fly, playback, as well as motion editing and parameterization. Together with tools
providing different forms of visual exploration of database coverage, it could assist in
refining the coverage of the current set of motions inside the virtual environment. This
framework has been designed for use in immersive visualization systems, achieving a
powerful and intuitive approach for programming generic parameterized motions by
demonstration.

5.1 Introduction and Related Work

The motivation of building this platform is to facilitate the process of programming
virtual agents in order to achieve effective virtual assistants that can learn, train and
assist people in interactive applications. Due to the great need of variations and precise
control of actions and gestures in many scenarios, modeling and parameterization of re-
alistic motions for virtual agents become key problems in a wide range of applications.
Common solutions rely on either hand-crafted motions [TMM08, GKK03, SDO04]
with commercial modeling tools, or gesture synthesis with algorithmic procedures such
as Inverse Kinematics [KW04, Kal08]. However it remains difficult to achieve both
controllable and realistic results, and every attempt to solve the problem purely algo-
rithmically will require specific adaptations and models for every action and situation
being modeled. On the other hand, motion blending techniques with motion capture
data [RBC98, RSC01, KG04, MK05] provide powerful interpolation approaches for
parameterizing pre-defined example animations according to high-level characteris-
tics. While intensive research has been dedicated to find suitable interpolation schemes
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and/or motion style controls, less attention has been given to the development of tech-
niques to enable intuitive interfaces for building suitable motion databases, that can
well cover the simulated workspace with dedicated blending and parameterization pro-
cedures. This is especially important for tasks that require parameterizations in respect
to spatial constraints within the environment. For instance, the interactive construction
of real-time motion controllers has been proposed before [CHP07], but without the in-
clusion of immersive interfaces for interactive editing and visualization of the obtained
models.

Our immersive modeling solution has been recently introduced in [CHK10], which
allows interactive motion modeling approach via direct demonstration implemented on
an immersive multi-tile stereo visualization facility, shown in Fig 5.2. The system can
be operated in two distinct phases: in the modeling phase the expert, who has the spe-
cialized knowledge of how to correctly perform the required motions, will demonstrate
the needed motions to our system interactively. Later, in the training phase, by rely-
ing on the database of motions previously collected from the expert, the virtual human
trainer is then able to reproduce the motions in interactive sessions with apprentice
users learning the training subject, with the ability to reproduce the motions in respect
to arbitrary target locations inside the environment.

While this approach has proven to be effective, achieving an interactive modeling
interface that is useful in concrete applications still remains a critical problem. In par-
ticular for the motion modeling phase, intuitive interfaces are important to allow expert
trainers to focus on the motions being demonstrated rather than on irrelevant details. A
good set of tools for inspection, parameterization and testing is also very important in
order for users to effectively build suitable motion databases. Existing motion capture
interfaces hardly offer any of these features, and in most cases the user is required to
work tedious hours in front of a computer using the keyboard and mouse to perform
post-processing operations after the capture session.

This chapter presents a solution to improve the modeling phase of our existing mo-
tion modeling framework. Our previous framework targets at the interactive capture of
scenario-specific motion examples. With the new platform, users not only can easily
playback the demonstrated motions inside the virtual scenario for inspection of cap-
tured data, but also perform key editing functions needed for populating parameterized
databases (or motion clusters). Furthermore, tools are provided to visualize the spa-
tial coverage of each motion cluster inside a simulated workspace, guiding the on-line
programming of scenario-specific examples.

5.2 System Overview

The motion modeling phase of our system is designed as follows. While the user
demonstrates new motions on-the-fly, the user can also immediately playback and edit
each captured segment of motion. The user can then quickly observe the coverage of
the database inside the virtual environment with different visualization tools, allow-
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ing the user to improve the database coverage as needed. The coverage of a database
here refers to how well parameterized motions interpolated from the discrete motion
examples in the current database are able to satisfy precise spatial constraints in the
environment. Figure 5.1 outlines the main modules of our system.

Motion 

Database
User Virtual 

Agent

GestureVest interface

Immersive Visualization and Editing

Figure 5.1: The pipeline for the modeling phase of our platform.

The platform models each parameterized gesture or action of interest with a clus-
ter of example motions of the same type, but with variations in respect to the spatial
parameterization to be considered. For example, a gesture cluster for a certain way of
pointing will typically consist of several examples of similar pointing gestures, but with
each pointing motion pointing to a different location.

Figure 5.1 shows one example scenario where the expert is modeling a pouring
motion cluster on the platform. For the illustrated pouring action the spatial param-
eterization is the target container, which can be placed anywhere on the table in the
scenario. By providing a few pouring actions for key locations on the table, example
motions are interpolated to reach arbitrary targets on the table. This technique is used to
parameterize a captured motion cluster so that blended motions can meet given spatial
constraints, such as target locations for the end-effector of the character to reach, point,
pour, etc. This offers precise control of end-effectors during the execution of diverse
upper-body actions, which is crucial for demonstrative gestures and actions as the arbi-
trary positions and specific targets need to be referred to as part of the information to
be delivered.
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Figure 5.2: Example scenario (parameterized water pouring motions) of our motion
modeling phase running on the UC Merced PowerWall system. Motions are captured
on-line with GestureVest.

5.3 Interface Description

5.3.1 On-line Motion Capture

The platform targets at the situation where the user, normally an expert in the train-
ing subject, is able to model the needed actions and gestures via direct demonstration,
who might not have previous experience with the system. We mainly focus on captur-
ing upper-body gestures and actions performed with single arm/hand. The GestureVest
[HK09b] is used for this capture process, which was specifically developed for this pur-
pose. It contains a set of low cost wearable motion sensors, a data glove for capturing
finger movements, and a WiiMote controller used to remotely operate the capture ap-
plication. The vest captures 13 Degrees of Fredom (DOFs) of upper-body (single-arm)
movements and the employed data glove captures 14 DOFs finger movements. De-
tails are provided in Chapter 9. Note that other motion tracking devices could also be
used here, such as Vicon, Microsoft Kinect and Sony Move. Fig 5.6 shows an example
where Vicon tracking system is used to tracking user’s movements.

We focus on modeling motions for interactive training applications that require ges-
tures and actions to be reproduced realistically and with precise parameterizations in
respect to spatial constraints in the environment. This setup enables the interactive cus-
tomization of gestures needed for programming interactive virtual demonstrators for a
broad range of applications. The definition of clusters for collecting example motions
is an important concept of the system. It is necessary for specifying each parameterized
action or gesture. When the user chooses to start a new cluster, every recorded mo-
tion becomes associated with that cluster. Motions in the same cluster will be blended
together during the training phase and therefore they must be consistent yet able to
represent the variations within the motion type. For instance, a pointing cluster con-
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tains several pointings of the same type but each pointing to a different location in the
environment. The capture process is very straightforward. The user first initializes a
new motion cluster, and then holds down the record button on the WiiMote to begin
capturing, and release the button when the performing is done. Motions are captured at
60 frames per second, and stored in memory for later editing.

5.3.2 Playback and Editing Mode

Using a WiiMote controller, the user can instantly switch from on-line capture mode
to playback/editing mode, scroll through the already captured motions, delete unsatis-
factory clips from memory, mark the start and end of each motion segment to crop out
unnecessary parts, and most importantly mark the stroke frames (stroke times) for each
segment before populating them into the database.

Since great variations can be found among different gestures and actions, the expert
who performs the demonstrations needs an easy way to go through each motion cluster
and to quickly crop lead-in/lead-out frames and annotate the motion strokes. For that
purpose, buttons on the WiiMote are used to select captured motions and perform the
editing functions. We define an editing interaction mode where the trajectory of the
user’s hand is captured with the vest and mapped into a linear horizontal movement
in real time, and the movement is then mapped directly to the motion playback slider.
This enables the user to intuitively scroll through the motion playback with a simple
horizontal hand movement, allowing the user to remain inside the captured area and
conveniently validate and edit the motion cluster (instead of operating interfaces based
on keyboard and mouse in front of a far away computer), and this has shown to be
important for maintaining consistency of the capture quality. Figure 5.3 shows several
snapshots of the playback interface being used to analyze a recently captured pointing
motion.

Figure 5.3: Our interface allows the user to easily scroll through captured motions,
crop out unwanted frames, and most importantly mark stroke frames to be parameter-
ized. This image shows the user inspecting one motion segment controlled by hand
movement.

Note that the stroke time [TMM08] is in particular addressed here due to its main
importance for parameterizing demonstrative gestures and actions, as each motion seg-
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ment forming a cluster will be time-warped such that all motions have their strokes
time-aligned in order to achieve a meaningful interpolation of the example motions.
Automatic procedures are also included to assist the user. For example, the stroke
frame for a pointing gesture is often the zero-crossing of the velocity vector of the
finger tip motion. Several other phases can also be marked for time alignment in or-
der to guarantee better blending results. For complex motions, multiple stroke frames
may be annotated for each motion inside the cluster in order for them to be correctly
parameterized.

5.3.3 Motion Parameterization

The Inverse Blending technique [HK10] is used to parameterize the motion database
created during the previous motion modeling step in order to meet desired spatial con-
straint parameterization C. This technique offers precise control of constraints such as
end-effector positions, joint orientations or a combination of different constraint types
during the execution of diverse upper body actions.

When new motions need to be synthesized, the system first selects a subset of k
example motions which are closer to the given constraints. The used distance metric
(or error metric) will vary according to the type of constraint. Based on the distance
values from each of the selected k example motions initial weights for motion inter-
polation are assigned. Then the inverse blending procedure will optimize the weights
until an optimal set of blending weights with respect to C is determined and is used
to synthesize the final motion best satisfying the given constraints. Multiple C can be
combined and enforced at the same time, allowing additional ways of motion param-
eterizations. Details are provided in Chapter 3, and an in-depth analysis of 4 motion
blending algorithms is also provided in Chapter 4.

5.3.4 Database Spatial Coverage Visualization

The ability to enforce constraints using inverse blending greatly depends on the existing
variations among the example motions being interpolated. In general, the size of motion
database is proportional to the volume of the workspace.

In order to produce quality motions satisfying many possible constraints spanning
the whole workspace, it is important to determine which example motions to capture
during the capture process. This will ensure that a well-built cluster of motions is
formed, with good coverage of the regions of interest (ROIs) inside the workspace.

On the other hand, defining an overly fine subdivision of the constraint space with
too many examples is inefficient and impractical as it requires capturing too many ex-
ample motions to populate a database. Not only the database would be redundant, this
would also impose a huge workload on the user. Instead, since similar examples can
often be interpolated to produce valid new motions with good quality, a small num-
ber of carefully selected example motions is better in providing good coverage for the
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ROIs in the workspace. Achieving an efficient database is also key to ensure lag-free
interactivity of the system.

The approach of using a palette of colors inside the workspace as visual guidance
for ergonomic design was proven to be informative in previous work [YSA08, RPB03,
ZHH10]. We propose two specific visualization methods rendering a palette of col-
ors [YSA08, RPB03, ZHH10] inside the workspace to intuitively guide the user dur-
ing the process of adding new motions to refine the database for improved coverage:
Workspace Volume Visualization (WV) and Local Coverage Visualization (LV).

5.3.4.1 Workspace Volume Visualization

WV conducts a coarse uniform sampling of the workspace and presents the overall
spatial coverage with colored cubes for the entire workspace without the need to define
an overly fine subdivision of the constraint space. Each cube represents a reaching
target (spatial constraint), and a motion synthesized towards each cube is measured
by reaching precision (error e∗) using a constraint evaluation function, and the value
e∗/emax(∈ [0, 1]) is mapped onto a hue color space then assigned to each cube. For
a reasonably sized database WV takes a few seconds to generate, then the user can
immediately spot areas with low coverage by the color of the cubes (red or orange),
and add additional motion towards these areas.

Figure 5.4: Workspace Volume Visualization mode gives an overview of database
coverage. The sampling density and error threshold can be adjusted for clear viewing.
User intuitively adjusts the viewing angle by moving his head.
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5.3.4.2 Local Coverage Visualization

In certain cases, the global error-based volume visualization is not needed when the
user is fine tuning the coverage of a small region, or when only a small local region
is of interest. In addition, the pre-computation time can impose undesirable lags when
editing large motion sets. These can be solved with LV.

LV renders a transparent colored mesh geometry covering a small ROI, delimiting
the coverage evaluation within its volume. It focuses on the local coverage visualization
taking only milliseconds to be computed, and it is suitable for fine tuning coverage of
smaller volumes when only small local regions are of interest. LV uses the same color
mapping as WV, and error ratio is assigned to the corresponding vertex. Color on the
mesh surface comes from Barycentric color interpolation with Gouraud shading.

LV follows the movement of the user’s hand, its size, shape and resolution can be
iteratively changed with the WiiMote controller for either fast sweeping over large ROIs
(a table surface) or for carefully checking small ROIs (buttons, etc). LV is also able to
utilize motions dynamically added to the database in real-time applications without any
pre-computation lag. Please refer [HK10] and Chapter 3 for details on motion synthesis
and error evaluation with spatial constraints.

Figure 5.5: Local Coverage Visualization mode. The rendered surface follows the
movement of user’s hand, ideal for checking small ROIs like dials and buttons.
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5.4 Conclusion

The proposed platform has been experimented with several scenarios and the overall
approach constitutes a powerful approach for programming virtual agents. The Ges-
tureVest enables the user to easily capture motion clusters and perform motion editing
functions while immersed in the target virtual scenario. The coverage visualization
tools effectively allow the user to observe the database coverage immersively within
the workspace and during the on-line collection of example motions. The interactive
visualization is able to guide the user to concentrate on capturing motions where they
are needed, in regions with less coverage. The user can thus intuitively construct suit-
able databases for parameterized actions or gestures with guaranteed coverage within
the specified precision. The platform could adapted different hardware configurations.
For instance, Figure 5.6 illustrates the local coverage visualizer following the move-
ment of a WiiMote controller tracked by a fixed optical tracking system.

Figure 5.6: The platform integrated with Vicon tracking device with viewer-dependent
rendering to provide truly immersive motion modeling experience.

This platform could significantly improve the process of programming interactive
virtual humans for inside immersive training scenarios. Figure 5.7 shows a sequence
of snapshots during a on-line modeling process. First, the user quickly examine the
workspace coverage with the Local Coverage Visualization tool. The control panel re-
gion happened to be of low coverage (red color), and as a result, a pointing motion
towards the target location (specified by the yellow cone) cannot be precisely synthe-
sized. The user switched back to modeling mode and demonstrated a few new exam-
ples, without the need to sit down and operate conventional input devices like keyboard
and mouse. Immediately the new examples became part of the database without any
pre-computations. And several synthesis afterwards confirms that the spatial coverage
for the ROI in particular has been greatly improved (showing blue color). As future
work, we plan to integrate a better GUI system and apply this platform on a concrete
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Figure 5.7: The sequence demonstrates the process of on-line modeling and dataset
refining. Top row: user spotted ROI with low coverage, note the red color shown by
the LCV tool. Middle row: user teaches agent new motions towards the low coverage
region via direct demonstration; Bottom row: coverage is improved for this ROI, as a
result the agent could better synthesize pointing motions towards this ROI. Note the
color shown by the LCV tool turned into blue, indicating improved local coverage.

modeling application, physical therapy as an example. Human participants would then
be invited to evaluate the usability of the system.
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CHAPTER 6

Human-like motion planning in Blending Spaces

This chapter introduces an approach for enabling sampling-based planners to compute
motions with humanlike appearance. The proposed method is based on a space of
blendable example motions collected by motion capture. This space is explored by a
sampling-based planner that is able to produce motions around obstacles while keeping
solutions similar to the original examples. The results therefore largely maintain the
humanlike characteristics observed in the example motions. The method is applied to
generic upper-body actions and is complemented by a locomotion planner that searches
for suitable body placements for executing upper-body actions successfully. As a result,
our overall multi-modal planning method is able to automatically coordinate whole-
body motions for action execution among obstacles, and the produced motions remain
similar to example motions given as input to the system.

6.1 Introduction

Despite several successes in the motion planning domain, achieving whole-body hu-
manoid motions with humanlike characteristics remains a challenge. One main diffi-
culty that emerges from this problem is to strike the right balance between how much to
explore solutions during motion planning and how much to constrain the search space
in order to obtain solutions with humanlike characteristics.

Our proposed method starts by decomposing the problem into a multi-modal plan-
ning problem, where basic skills are planned individually and also coordinated with
each other. This approach facilitates addressing the specific needs of each skill, and is
inspired by how humans may solve real motion planning problems. This chapter ad-
dresses the case of planning motions composed of two skills, locomotion and generic
upper-body actions, and example motions from motion capture are used as a way to
build search spaces with humanlike characteristics.

For example, consider the simple scenario where a character walks toward a light
switch and turns it on, as shown in Fig. 6.1 and 6.10. Solving this problem requires
a locomotion planner able to place the character in a suitable location near the switch,
and then an upper-body action is required for reaching and pushing the light switch.
Our overall method solves such class of full-body motion problems.

Upper-body actions are synthesized with a novel motion planner that searches for
solutions in a space of blendings between example motions. The method produces

58



Figure 6.1: Our overall planning approach achieves precise end-effector placement for
action execution among obstacles and produces humanlike results in coordination with
locomotion.

collision-free motions to precise targets and achieves solutions with humanlike char-
acteristics similar to the ones observed in the original example motions. The planner
is therefore limited to explore the variations embedded in the example motions, and a
suitable body placement is essential for enabling the upper-body planner to be success-
ful.

The upper-body planner is thus complemented with a standard locomotion planner
based on a motion graph. The locomotion planner will search for suitable body place-
ments in coordination with the upper-body planner until an overall whole-body motion
for performing the target upper-body action is found.

As a result, our combined approach is able to automatically coordinate locomo-
tion with generic actions, and the produced motions are realistic, collision-free, and
can precisely interact with the environment. Our overall method is able to address a
broad range of real-life tasks and is therefore useful to a number of applications in
ergonomics, training, education, entertainment, and also humanoid robotics.
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6.2 Related Work in Motion Planning

Traditional motion planning methods [Lat90, Lau98, LaV06] are based on the sys-
tematic search of configuration spaces. Among the several techniques, sampling-based
methods [KSL96, LaV98, KL00b] have become extremely popular for planning in con-
tinuous configuration spaces. Such methods are also popular for planning humanoid
motions, in particular for planning footsteps [KNK03, CLC05, CNK07] and reaching
motions [KKK94, KKN03, BKD06, DN06, DK08].

Multi-modal planning has recently emerged for humanoids and has been developed
for locomotion and climbing in difficult terrains [Bre06, HBL05, HBH06], and also to
sequentially coordinate walking and pushing [HNG07]. With a focus on locomotion,
extensions to the basic PRM method for handling multi-modal problems have been
proposed [HBH08], and generic multi-skill planners have been developed [KHB10].
However, no previous work in motion planning has addressed the computation of mo-
tions with humanlike characteristics.

In contrast, methods originated from the computer animation area focus on achiev-
ing humanlike results from motion capture, without much importance given to search-
ing for collision-free motions in complex environments. Probably the most popular
approach for computing realistic full-body motions is to extract motions from a motion
graph structure. Motion graphs are built by connecting the frames of high similar-
ity in a database of motion capture examples [KGP02, AF02, LCR02, PB02, LWS02,
Saf06]. Once the motion graph is available, a graph search is performed in order to
extract motions with desired properties. The main drawback of motion graphs is that
a prohibitively large structure would be needed in order to produce motions satisfy-
ing many constraints, such as around obstacles and addressing precise placements of
end-effectors.

Planning methods have been integrated with motion capture data in many ways.
For instance, Lau and Kuffner [LK05] plan over a behavior-based finite state machine
of motions [LK06], Choi et al. [CL03] combine motion capture with probabilistic
roadmaps, and many other planning methods have been proposed for synthesizing full-
body motions among obstacles [KAA03, EAP06a, KL00a, LK06, PZL10]. However,
none of these methods have proposed a solution for planning generic upper-body ac-
tions in a continuous space and in coordination with locomotion. The ability to search
in a continuous action space allows planners to compute much more complex solu-
tions. Our proposed method represents the first approach for solving this problem with
humanlike results, and is based on a novel sampling-based search defined on a space of
motion blendings.

6.3 Locomotion Planner

It can be observed that correct body positioning is essential for the execution of human-
like upper-body actions. A locomotion planner is therefore needed to explore suitable
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body placements nearby the action target location. Any locomotion planner could be
integrated in the overall approach in solving this problem. A motion graph based loco-
motion planner is chosen in this section.

The planner starts with construction of the locomotion graph in a similar fashion to
Kovar et al. [KGP02], but with a more efficient segmentation procedure that relies on
feature-based rules for walking cycles detections and segmentations. This procedure is
similar to that employed in [MRC05]. A foot-crossing binary test is done for all the
motion frames from the capture database. It looks for whether the right ankle joint is
behind or in front of the plane formed by the left hip, right hip and the left ankle joints.
Frames that triggers a flip in the test result are marked as transition candidates for con-
structing the final locomotion graph. Next step is to perform a pair-wise test between
the candidate transitions, specifically only between the initial and final frames of each
segmented clip in order to determine the acceptable transitions. The same distance
metric for aligning the frame-frame transformation is used as in the original motion
graph [KGP02]. However the overall graph construction is sped up dramatically with
our segmentation method compared with the traditional pair-wise comparison among
all pairs of frames. No drawbacks were detected visually for employing the simplified
segmentation procedure.

Let qi represent the initial full-body posture of the character. The task of the overall
planning problem is to find a full-body motion composed of two parts: locomotion for
body positioning, and then upper-body action execution satisfying a given end-effector
goal location qg. The goal location may be a position target to point to, a 4 degrees of
freedom (DOFs) vector encoding position and orientation of a precise hand placement
for grasping, etc. The set Qg denotes all possible body postures satisfying the action
goal point qg.

The task of the locomotion planner is to explore suitable body placements for en-
abling the action planner to reach a posture in Qg. Once the locomotion graph is avail-
able, an A* search for unrolling the graph is employed with the cost-to-go heuristic
attracting the search towards qg, and only allowing collision-free motions to be ex-
panded. Figure 6.2 illustrates several expansions obtained with the unrolling of the
motion graph.

As shown in Figure 6.3-(1), Whenever the locomotion search expansion (blue solid
branches) generates a character posture qa that is close enough to Qg, qa is then con-
sidered as a transition point to the upper body action and qa becomes the initial posture
for the upper-body action planner, which will in turn launch a bidirectional search at-
tempting to reach a posture in Qg. The upper-body planner is described in Chapter 6.4.

If the upper-body planner (red dashed branches) is not successful after a fixed num-
ber of iterations, the locomotion planner continues to expand towards additional candi-
date body placements until the action can be executed or until a maximum time limit
is reached, in which case the overall planner returns failure. Figure 6.3-(2) illustrates a
final successful planning result.
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Figure 6.2: The images illustrate planner expansions obtained by unrolling the lo-
comotion graph. Left: several possible expansions were generated near the obstacles,
which will be later considered for upper-body action execution. If a long locomotion is
being planned, the unrolling can be constrained to only allow expansions close to the
2D path planned on the floor plan (center), otherwise too many unnecessary expansions
may occur (right).

6.4 Upper-Body Action Planner

Every time one branch of the locomotion graph expansion reaches a character pose qa
that is close enough to the action target, qa becomes a candidate initial pose for initial-
izing the action planner. Selecting a suitable proximity threshold is action-dependent.
For example, for reaching motions a suitable distance will be related to the length of
the character’s arm, while for pointing actions larger values can be used for enabling
pointing to targets from a certain distance.

The upper-body action is specified with a database of similar and time-aligned ex-
ample motions, which are realistic upper-body action instances collected from motion
capture. Let a motion M (t) be represented as a sequence of poses with a discrete
time (or frame) parameterization t. With the character at pose qa, an Inverse Blending
optimization procedure (see Chapter 3) is employed in order to obtain a set of blend-
ing weights wg creating an upper-body action motion M(wg) precisely reaching the
action target qg: M(wg) =

∑k
j=1wjMj , wg = {w1, . . . , wk}, where k is a fixed

parameter specifying the number of example motions from the database to be consid-
ered for blending. For a given qg the k example actions that reach locations closest
to qg are selected. Figure 6.4 illustrates one database of example motions used in our
experiments.

In our experiments wg can be determined by inverse blending optimization under
2 milliseconds of computation. The routine returns when the error (proximity to target
qg) reaches zero or cannot be further minimized, in which case failure is returned and
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Figure 6.3: The locomotion planner unrolls motion capture locomotion clips (blue
solid branches). Each candidate becomes an initial action posture qa, from which a bidi-
rectional upper-body action planning is performed (red dashed branches). As shown in
(1) that qa was not able to generate a solution within certain iterations of action planning
to reach Qg. In (2), a new body placement q′a finally lead to successful planning.

qa is discarded as a candidate body placement.

Whenever wg is successfully computed from the inverse blending procedure, mo-
tion M(wg) provides a realistic humanlike upper-body action precisely meeting the
action goal qg. Motion M(wg) is then tested with several discrete collision checks
over its time parameterization interval [ta, tg]. If no collisions are detected the overall
planning problem is solved. Such tests are shown in Fig. 6.3 as blue dashed lines.

6.4.1 The Planner

When motion M(wg) collides with the environment, all the non-valid frames are re-
moved and the motion is split in two pieces: the first piece contains the adjacent valid
frames starting from time ta, and the second piece contains the adjacent valid frames
leading to the frame at time tg. These motion pieces will define two initial trees T1 and
T2 to initialize the bidirectional action planner. A few frames equally spaced in time are
taken from each motion piece to define the initial nodes of the trees. The upper-body
planner is only initialized if posture qg at time tg is a valid posture, therefore trees T1

and T2 can be always initialized since posture qa at time ta is a valid posture determined
by the locomotion planner.

With the initial search trees defined a bidirectional search procedure is repetitively
called until a collision-free motion can be found to reconnect the two trees. The state
space of the search is a weight-temporal space. The nodes stored in trees T1 and T2 will
each contain a pair (w, t) where the blending weight vector w specifies the posture (by
direct blending) associated with the node, and the time t indicates at which time that
posture is specified along the motion being planned. In other words, each node (w, t)
specifies a posture q(w, t) that is the frame of M(w) at time t. Fig 6.7 illustrates the
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Figure 6.4: The images show the trajectories of the character’s hand from a database
of 36 pointing examples. The character’s pose shows the final posture of the motion ob-
tained by blending the 10 examples with the trajectories in red (k = 10). The blending
weights were obtained by inverse blending optimization. The blended pointing motion
successfully reaches the action target qg, which is represented by the gray sphere.

bidirectional search procedure.

The strategy of searching in the weight-temporal space is the key element of the
proposed planner: it enables a search procedure that explores the motion variations
available in the set of example action motions. The planner will never synthesize new
motions from scratch but instead will search for combinations of existing motion vari-
ations. The solution plan is a sequence of time parameterized blending weights that are
afterwards interpolated to achieve a smooth solution motion with varying contributions
from the example actions. See Figure 6.5,6.6 as an example.

The bidirectional search routine performs successive search expansions until trees
T1 and T2 are connected, or until a maximum of Nmax iterations pass, in which case
failure is returned. The expansion routine of the action planner is detailed in Algo-
rithm 1. At each expansion the algorithm tries to connect the trees, and if not possible
it tries to grow each tree in the direction of the random time sample trand by a time
interval t∆. The details of the algorithm are explained in the paragraphs below.

6.4.2 Sampling the Weight-time Space

In line 3 of the algorithm a (wrand, trand) pair is sampled. Time trand is randomly
sampled in interval [ta + ta∆, tg − tb∆]. The ta,b∆ parameters concentrate the sampling on
the parts of the environment where collisions are most often found, since the extremities
of the original motion M(wg) are always valid.

A more specific strategy for sampling the weight space is required for the algorithm
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Figure 6.5: The top sequence illustrates the invalid frames in M(wg) due to collisions
(marked out in red), and the bottom sequence shows the final solution motion obtained
by the action planner. The images also show the nodes and expansions on the search
trees T1 and T2. The thicker edges represent the initial branches that were used to
initialize the trees. The search was performed in the weight-time space and the position
of the wrist joint was used to plot the edges of the search trees.

to better explore the motion variations embedded in the example actions being blended.
We first sample one example motion indexmrand among the full set of example motions
in the database. We also bias the index sampling to select more samples outside of the
k motions used by the initial inverse blending solution in order to favor variations and
avoid duplication of blended motions. Then a relatively large blending weight wrand is
sampled (in interval [0.5, 1.0]) and associated to the motion with index mrand. The new
weight wrand is incorporated to the overall weight vector wrand and the other weights
are lowered by uniform scaling such that wrand is re-normalized to 1 and the influence
from example motion mrand remains higher than the other influences. Our experiments
have showed that this procedure generates more collision-free samples and yields a
better overall planning performance than a simplistic uniform sampling over the overall
weight space.

6.4.3 Node Expansion

After a node (wrand, trand) is sampled, the algorithm will then select on each tree the
nodes (w1, t1) and (w2, t2) that are closest in time to trand, respecting the monotone
time condition t1 < trand < t2, and then attempt to connect the two nodes (line 6 in the
algorithm). If a connection is found the algorithm successfully terminates, otherwise
the two trees are expanded.

Routine try to expand() in lines 9 and 10 of the algorithm will try to grow each
tree in the direction of (wrand, trand) by a time step t∆. This procedure yields a new
node (w′1, t

′
1) to be connected to (w1, t1) on T1. Weight vector w′1 is an interpolation

between w1 and wrand at time t′1, where t′1 = t1 + t∆, adjusted such that t′1 ≤ trand.
A discrete collision test is performed for q(w′1, t

′
1) and it is added to T1 only if no

collisions are detected. An equivalent expansion procedure is performed to add node
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Figure 6.6: The two sequences illustrate the same scenario shown in Fig 6.5 but from
a perspective viewing angle. The top one shows the original wrist trajectory with col-
lision part discarded, and the bottom shows the final solution obtained by the action
planner, with the search tree expansions plotted.

(w′2, t
′
2) to tree T2.

6.4.4 Lazy Collision Tests

The algorithm postpones fine resolution of collision tests along tree edges until the
trees are connected, in order to promote fast exploration of the search space. When
the trees connect, discrete collision tests are performed over the segments composing
the solution path that have not yet been tested for collision, and a solution is found
if no collisions are detected. If collisions are found, the connection between the trees
is broken at the invalid edge and the expansion iterations re-start in search of new
connections. When a solution is found, the solution motion is generated by smoothly
interpolating (with ease-in and ease-out interpolators) each pair of motions generated
by adjacent weight vectors in the solution plan. Such interpolated concatenation of
motion pieces is illustrated in Figure 6.8.

6.4.5 Extensions

Improvements have been obtained with the popular strategy of sampling nearby obsta-
cles. We identify the nodes that, after a few iterations, could not connect to samples
due collisions. These nodes indicate proximity to obstacles. The algorithm can then
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Algorithm 1 Action Planner Expansion Routine
Expand Bidirectional Search ( qa, wg )

1. T1 ← tree starting at qa
2. T2 ← tree reaching qg
3. (wrand, trand)← sample in weight-time space
4. (w1, t1)← T1 node closest to trand, t1 < trand
5. (w2, t2)← T2 node closest to trand, trand < t2
6. if ( connection (w1, t1) to (w2, t2) is valid ) then
7. return CONNECTION FOUND
8. else
9. try to expand ( (w1, t1), (wrand, trand), t∆ )

10. try to expand ( (w2, t2), (wrand, trand), t∆ )
11. return NOT YET FOUND
12. end if

prioritize the sampling (temporally) near these nodes, within a window of ±t∆, so that
the success rate of finding collision-free nodes around these locations is improved.

Several other extensions have been integrated in our framework, in particular, the
gaze of the character can be independently controlled to fixate the action target and
the obstacles. The velocity profile of the end-effector in each solution motion obtained
is also smoothed as a final post-processing operation in order to maintain the final
motion with a velocity profile close to the velocity profile of the most similar motion
(in duration) in the database.

6.5 Results and Discussion

Several animations have been produced for demonstrating the results of our overall
method. See Figure 6.1, 6.9 and 6.11 for examples. The accompanying video also
presents several obtained results. The locomotion planner quickly expands several body
placements nearby the action targets, providing the upper-body planner several options
for planning the upper-body action. The overall full-body planner therefore evaluates
different body placements until a suitable, valid and collision-free action is found.

The decoupling between locomotion and upper-body actions avoids several prob-
lems related to large motion graphs including both locomotion and upper-body actions.
The weight-time space of action blendings provides a continuous space for planning
where only the humanlike strategies encoded in the example actions are explored. The
action planner uses a relatively large t∆ in order to quickly explore the space around
the obstacles, such that the action planner can quickly return to the locomotion planner
in case of failure, and it also minimizes jerky variations in found solutions. In practice
the planner showed to always produce smooth motions with the only post-processing
operation being the tuning of the final velocity profile for the end-effector. No other
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Figure 6.7: Illustration of the bidirectional expansion procedure.

post-processing smoothing procedures were required. The solution motion always re-
sembles the given examples in the action database and “no surprises” in the final motion
will appear.

The performance of the planner largely depends on the considered example motions
and on the number of triangles considered for collision detection. In the example in
Figure 6.9 a database of 36 motions (shown in Figure 6.4) was used and 5K triangles
were considered for collision detection. A 10000-trial benchmarking test of the action
planner with random obstacle and target locations found solutions in 78% of the cases,
with each bidirectional search taking in average 4.92 milliseconds. For the remaining
cases the planner returned failure after hitting the limit of 500 expansions within an
average of 12.76 milliseconds of computation. However, we found our planner does
take much longer on the collision checking after the bidirectional search is done, a
bottleneck of the overall planning procedure. These times demonstrate that an extensive
overall search composed of both locomotion and action planning can be executed in less
than one second in reasonably complex environments.
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Figure 6.8: Nodes (wi, ti) along a tree branch are concatenated with smooth transitions
to form the corresponding motion M(w).

6.6 Conclusions

This chapter describes a multi-skill motion planning approach that integrates discrete
search in a locomotion graph with a systematic bidirectional expansion in a novel
weight-time action search space. The search spaces are based on motion capture data,
ensuring the achievement of humanlike results. The approach for the upper-body action
planning represents the first sampling-based search algorithm defined on a continuous
space based on humanlike motion capture examples. The overall approach is able to
automatically coordinate locomotion with generic actions among obstacles, and the
produced motions are realistic, collision-free, and precisely meeting given targets in
the environment. Since actions are modeled from motion capture examples, any upper
body actions can be planned, from pointing and reaching motions to generic gestures.

One drawback of the planner is that it just finds the first solution that is feasible,
without taking into account aspects that may be imposed by other higher-lever goals.
Improvements could be made by introducing behavior modeling, to determine for ex-
ample if the body placement is suitable in the given environment, or in the case of
planning demonstrative actions towards certain observer, whether the motion is visible
to the observer. The next chapter attempts to address these issues.
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Figure 6.9: The top sequence shows the initial motion computed by inverse blending.
The initial motion collides with the environment and it is therefore used to initialize
the action planner (Algorithm 1). The bottom sequence illustrates the collision-free
solution obtained with the planner. Since the planner is restricted to search in a blending
space of example actions, the particular strategy obtained in the solution also exists in
the database of example actions. The solution of “pointing over obstacles” can therefore
be considered to be a humanlike solution.

Figure 6.10: Another overall planning result that combines walking straight and side-
ways, and then turn on the light switch.
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Figure 6.11: Example of pouring water toward a distant location on a table, among ob-
stacles, and coordinated with locomotion. The behavior of the left arm goes backwards
in order to assist with balance, which completely comes from the example motions
being blended by the action planner.
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CHAPTER 7

Whole-body Motion Planning with Body Coordination

In order to deliver information effectively, virtual human demonstrators must be able to
well replicate interaction patterns observed during human-human interactions in real-
world settings. Multiple levels of coordinations need to be addressed, from suitable
body positioning to performing upper-body actions synchronized with meaningful gaze
behaviors, and so on. This chapter introduces a whole-body motion planning system
capable of synthesizing demonstrative tasks exhibiting complex coordination patterns
in humanlike ways. Given a target object to be demonstrated to an observer, our planner
synthesizes a complete full-body motion solution with coordinated locomotion, action
execution and gaze behaviors. Human-likeness is achieved by respecting coordination
rules extracted from human-human interactions through experiments with human sub-
jects. Realistic motion results are generated using data-based synthesis techniques. A
novel collision avoidance procedure in the blending space is employed for the action
synthesis, and all planning stages produce realistic collision-free motions among ob-
stacles. As a result, the planner is proposed with a complete framework for effective
modeling and solving complex demonstrative tasks involving whole-body motion syn-
thesis in realistic environments.

7.1 Introduction of Motion Planning and Coordination

Virtual humans and embodied conversational agents are promising in the realm of
human-computer interaction applications, with a central goal of developing virtual as-
sistants that can effectively interact, learn, train, and assist people in a wide variety of
tasks. Consider the case where a virtual agent performs a demonstrative task specifi-
cally towards a near-by observer inside an everyday-like environment: the agent walks
from a starting location, avoiding furniture and other obstacles along the way, stops
at an appropriate location close to the target object, with a clear view of the observer,
interacts with the object (e.g. demonstrates how to operate the device), while visually
engaging with the observer, making sure effective delivery of this demonstrative infor-
mation with gesticulatation. It may seem trivial and effortless for any of us to carry
out such task, but it is essentially an orchestration of movements with high level of
complexity. It consists of multiple levels of coordinations from locomotion to body po-
sitioning and then to the combination of gesture with eye contacts, and all must appear
smooth and seamless.

This chapter attempts to dive into these harmonious, multi-level combinations of
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actions and behaviors, analyze and model the underlying coordinations, and build a
planner capable of generating natural-looking whole-body motion sequences for virtual
agents in similar settings.

In order to model the overall problem of synthesizing humanlike demonstrations,
several experiments were conducted with human subjects. The experiments consist of
object demonstration tasks. Human subjects were asked to freely approach the tar-
get object and position themselves with respect to an observer that stands at various
locations. These experiments provide ground truth for modeling the overall planning
problem, specifically the coordination rules and models which are extracted from these
motion data.

The result is a whole-body motion planning system capable of synthesizing hu-
manlike motions for virtual agents executing demonstrative actions and tasks effec-
tively. The proposed planner consists of five main aspects: 1) planning for optimal
body positioning with respect to the target object and observer at arbitrary locations; 2)
collision-free locomotion planner from starting location to the body placement planned;
3) collision-free, humanlike upper-body action planning; 4) coordination module that
smoothly concatenates action motions with locomotion sequences; 5) engagement plan-
ner that models the gaze and gaze-related behaviors which governs the eye contacts of
the virtual agent with the observer as well as the target object. Among those, 1) 4) and
5) are based on data captured from human subjects to ensure the realism of the final
synthesis. These five aspects are integrated together, each represents an essential part
of the overall task, in an attempt to mimic how humans solve similar tasks in resembling
setups.

The main contribution of the proposed planner is the definition, modeling and ef-
fective solution of complex demonstrative tasks involving mobile action execution re-
specting humanlike patterns. The overall problem has not been addressed before and
the proposed solutions take into account all relevant aspects in an unified way.

In addition, several new techniques are proposed, including a locomotion planner
that is capable of generating walk sequences along a pre-defined path with precise start-
ing/arriving positions and facing direction, which is key to achieve the overall planning
problem. This chapter also proposes a novel upper-body action planner capable of
generating collision-free motions with precise spatial constraint enforcement at stroke
point(s), which is also an important aspect within the overall problem. Our system is
able to produce coordinated whole-body synthesis under a fraction of a second with
reasonably-sized motion capture databases.

The rest of this chapter is organized as follows: after literature review, our experi-
ment settings are presented in Chapter 7.3), then the planner sub-modules are described
in Section 7.5 through 7.9. Section 7.10 shows the results and summaries the conclu-
sions.
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7.2 Related Work

The immediate goal of our work is to generate humanlike full-body motions that are
effective for display and demonstration of physical target objects and devices to human
observers by means of a virtual agent. In our approach, the agent needs to position itself
at the best suitable location for the demonstrative task at hand, taken into account the
spatial locations of the target object, human observer and surrounding obstacles, which
is in particular important to guarantee that the demonstrative action delivered is visible
to the observer. Also as important is that the agent should perform these gestures and
actions with clarity and precision in order to appropriately reference the target objects
without ambiguity [HHK11b, HNS04]. Human observers are highly attuned to subtle
differences in motor behavior, including minor shifts in velocity and pointing velocity
related to the size of an object, as in Fitts’ Law [SM04].

In this chapter we attempt to analyze and model the whole-body motion for such
virtual demonstrator identifying and delivering information about target objects to a
human observer at varied locations. In an attempt to mimic how humans solve tasks
of similar kind, we intuitively propose to break this planning problem into five parts:
body-positioning, action/gesture modeling, locomotion planning, coordination between
locomotion and action, and visual engagement between the agent and observer. Below
is a brief review for some of these aspects.

Throughout the literature on motion synthesis for autonomous virtual agents and
motion planning for humanoid robots, there has been many works that focus on upper-
body gesture and action modeling, including stroke-phase blending [TMM08], action
synthesis with varied spatial constraint(s) [SZG05, HK10, MK05], and motion style
control [RBC98, GMH04]. There have also been many works on goal-directed walk
gait and locomotion synthesis, with or without explicit path planning and path follow-
ing, such as [HG07, KGP02, TLP07].

The planning problem becomes more interesting when these two aspects are jointed
together, such as [EAP06b, SKF07] that combine arm planning (reaching or grasping)
on top of locomotion, however in many cases the arm movement were merely super-
posed onto the walk sequence without explicit model for the coordination. Although
algorithms from the robotics domain [HL09, KHB10, HN10] tend to plan individual
“primitives” such as arm motion with RRT- or PRM-like probabilistic sampling ex-
tending the idea of multi-modal planning framework, others in computer animation
share similar framework but prefer data-driven synthesis with motion capture data
[FXS12, PZL10] or a hybrid method [HMK11].

When it comes to jointing upper- and lower-body motions together for whole-body
motion synthesis, there are in general two categories of the existing researches: space-
time constraint enforcement (e.g. with Gaussian process estimators [IAF09]), and
smoothly jointing decoupled motions together [HKG06]. Finally with the user-study
on blending window length and just-noticeable-difference in blending artifacts [WB04]
which gave us insights on how to achieve better ease-in and ease-out blending transi-
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tions.

All these works are a source of inspiration for our planner. The motivation is that all
existing works in general failed to address the planning problem with a third-party per-
son as the audience observing the planned motion sequence. This is crucial in demon-
strative tasks with inter-person interactions, because not only this visual contact in the
form of gaze behaviors add to the human-likeness of the overall synthesis, but it has also
been proven to greatly improve the amount of information the audience memorizes and
recalls, boosting the amount of information delivered as shown in the study of robot sto-
rytellers [MHF06] and narrative virtual agent in a CAVE system [BWA10]. Although
many work in computer graphics and cognitive science have focused on modeling these
gaze behaviors (e.g. eye-ball movement, etc) with great details, few has given attention
to modeling body positioning and body placement in association with actions/gestures
and locomotions, which is a very much neglected aspect in modeling such behaviors.

[SA76] is one of the pioneering works to introduce the concept of “Territoriality”
for human-human interactions with many illustrations, however it lacks detailed com-
putational models. More recently [POO09] proposed the modeling of interactions be-
tween virtual walkers based on experimental data, but only applies to scenarios involve
multi-agent locomotion collision avoidance. Our main contribution is a much more de-
tailed coordination model that handles the simulation of body positioning, locomotion,
gaze and upper-body action. Here, a whole-body planning system is presented that
affects many aspects of the overall planning problem: the virtual demonstrator must
know how to position itself, and also how to visually engages with the observer, for
better delivery of information. Details are provided in Chapter 7.3 through 7.9. In the
current line of work, we focus on the problem of modeling motions for interactive train-
ing applications that demand complex gestures and actions that can be reproduced in a
human-like way. In particular, we are interested in modeling natural and realistic gaze
behaviors and natural body positions in the context of performing demonstrative tasks.
Special interests have been put in factors related to these behaviors and also the virtual
environment, including target objects that are being referenced and the observers to
whom the demonstrative tasks are addressed.

7.3 Modeling Demonstrative Motions from Human Subjects

We started to model the overall problem of performing humanlike demonstrations with
the help of experiments performed with human subjects. Four human participants were
recruited to perform a variety of basic pointing tasks with full-body motion capture
without eye tracking. Six small target objects T were placed on a horizontal coarse
mesh grid inside the 8x12 sqft capture area. Participants were asked to perform point-
ing actions towards each T specifically for a human observer O standing at various
positions OP1 though OP5 (creating different perspectives), see Fig 7.1 and 7.3. Small-
sized targets were in particular chosen to reduce the possible side-effects that the size
of T might have on the behaviors captured.
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Figure 7.1: Left: experiment setup. Right: illustration of one reconstructed motion.
The observer location is represented with the green character and the maximum head
orientation performed in the direction of the observer is shown with the orange plane.

The captured pointing motions was segmented into trials, each containing one full
pointing action with locomotion and associated behaviors: the participant (1) stands
about 4 feet away from the mesh grid, (2) walks towards the grid, (3) points to one of
the targets T , (4) either names or briefly describes T , (5) direct the attention of O by
gazing back and forth at the O and T , then finally (6) steps back to the starting position
and prepares for the next trial. Each capture session includes 30 trials: O maintains
the observing position OPi until all 6 T s had been addressed, then moves to the next
OPi+1. The sequence of target selections was random.

Fine-grained manual annotations were conducted for each trial and marked out the
occurrences and timing of all key events for gaze and related behaviors. The key events
can largely be summarized into 3 categories: locomotion (step towards table and back),
gaze (at floor, target and observer) and action phases (start/stroke/end). Please see
[HKM11] and Chapter 7.9 for details on the experiment, annotation and gaze modeling.

7.4 PLACE Planner Overview

Given the observed experiments and annotations, it became clear to brake down the
multi-modal planning problem into 5 main aspects summarized as PLACE: body-
Positioning, Locomotion, Action, Coordination and Engagement planner. Specifically
speaking, it relies on the following steps to solve the overall planning problem:

1) solve the optimal body positioning: given a target object T to be demonstrated
by virtual agent A with action towards an observer O at an arbitrary position Opx, the
planner determines the best body placement P for the agent A. For the gesticulation
to be effective and ambiguity-free, A should stand within reachable distance from T
[HHK11a], such that the demonstrative action (e.g. pinpointing, grasping, etc) can be
executed. It must ensure successful reachability of P with a locomotion sequence, as
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Figure 7.2: In the top two scenarios the computed demonstrations reasonably face the
observer, while in the bottom two cases a visual occluder (the house plant) leads to
solutions with non-trivial placements. The orange and blue lines respectively represent
the head and the eye gaze orientations, at the demonstration action stroke point. The
resulting gaze always reaches eye contact with the observer.

well as successful action execution towards T , and also respecting visibility constraints
between A and O.

2) solve the locomotion sequence: after P is determined in step 1, a collision-free
locomotion sequence is computed so that A is able to walk from its current location
to the suitable body placement configuration P with specific stop location and facing
direction.

3) solve the upper-body action delivering the demonstrative information at the end
of the locomotion synthesis: the action must appear human-like, must be able to en-
force precise spatial constraints for end-effector placement, and must be capable of
accommodating fast obstacle avoidance without losing the realism.

4) solve the coordination in-between locomotion and action: smoothly transitions
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from the end of locomotion into the beginning of action by adapting patterns extracted
from human participants.

5) solve for the visual engagement aspects: controls the gaze and related behaviors
in coordination with rest of the body movements by maintaining natural agent-observer
eye contacts during the demonstration.

The proposed PLACE planner targets specifically at the following scenario: given a
virtual environment of the workspace with obstacles and the location of a target (goal of
the action, 3D coordinates only), a virtual agent demonstrates the target object towards
an observer inside the same environment, for example by pinpointing a location on a
map, or shows how certain device works. Figure 7.2, 7.16 and 7.17 present several
results generated under different environment settings.

7.5 Optimal Body-Positioning Module

Given a virtual environment of the workspace with obstacles and the 3D location of
a specified target object T (i.e. goal of the action), a virtual agent A demonstrates
T specifically towards an observer O close by. A model is defined to determine the
optimal body positions for A carrying out the gesticulation specifically towards O in
a virtual setting, which includes the following 3 aspects shown in Fig 7.3-right: (1)
standing location at the end of locomotion that includes a comfortable distance between
A and T for action executing, and relative direction β for A to stand by T . (2) A’s
body facing direction θ. (3) maximum head rotation for the gaze behavior during the
demonstration towards O.

Op1

L R
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Op4

Op5

T

human participant

table

L
R
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agent body 
orientation



table
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reference axis 
of local frame

Figure 7.3: An illustration of the body positioning model. Left: top-down view of the
experiment setup. Right side shows the parameter definition: α is the relative location
of O; β is the relative location of the virtual agent A being modeled; θ: body orienta-
tion when agent stops to execute the action towards O; φ denotes the maximum head
rotation for the gaze-shift plane when A visually engages with O.
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Figure 7.4: A series of raw trajectories (left) and ending positions of participant’s root
joint (right) from one particular trial. Both plots use the world coordinate frame.

To derive this model, full-body motion capture sessions were conducted with human
participants recruited to perform a variety of basic pointing tasks (without eye tracking).
6 small target objects were placed on a horizontal coarse mesh grid simulating a table.
Each participant’s action was observed by a human observer O standing at different
locations (Op1 ∼ Op5), see Fig 7.3-left. For each capture trial, the participant (1) stands
4 feet away from the mesh grid, (2) walks towards the table grid, (3) points to one of
the T s specified by O, (4) verbally and visually engages with O by saying the name
and function of T , (5) direct the attention of O as needed by naturally gaze back and
forth at O and T while pointing and talking, and lastly (6) steps back to the starting
position and prepares for the next trial. Each capture session includes 30 trials where O
maintains its observing position Opi until all 6 targets have been addressed, then moves
on to the next location Opi+1. This is repeated until all targets are named and described
5 times. The whole capture was annotated manually with our annotation tool to mark
out and extract the occurrence and timing of a series key events within each trial.

Local coordinate frame of target T was chosen to measure the angular parameters
α, β, θ and φ. The vertical line in Fig 7.3-right is the reference axis of T ’s local
frame. The reason to use local frame is that these angular parameters are of great
correlations with the location of T . Fig 7.4 plots a series of raw trajectories (on left)
and end positions (on right) of A’s root joint within one particular capture trial using
world coordinate frame. 5 distinct colors represent different observer’s locationsOp1 ∼
Op5, each color corresponds to the plotting of 6 trials towards the same T while O
holds its location. Note that major overlaps can be seen from the plots. However
when using local coordinate frame of T , plots of the same session form nicely into
clusters, as shown in Fig 7.5. An intuitive explanation is that since the actions were
performed specifically towards T , making T as the center of the action, similar to the
“axis” concept [SA76] to describe interactional connections. Hence we choose to use
the local frame of T as the reference frame for measuring the angular parameters.

The next step is simply estimating β, θ and φ values for any given α with non-
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Figure 7.5: Model the body positioning with non-linear regression on filtered data
points. X axis is α value; Y axis from top to bottom represents β, θ, φ respectively.

linear regressions. After smoothing the raw measurements with Savitzky-Golay filter,
quadratic and cubic polynomial curves were fitted for β, θ and φ, shown in Fig 7.5.
Details of the fitting parameters and goodness of fit are shown in Appendix 11.1.

The PLACE planning procedure are described as the follows steps. First within the
body positioning module:

1. Queries the upper-body action planner (Chapter 7.7) for comfort zone, which de-
termines the best range (in terms of euclidean distance) for A to stand away from
T . When A is inside the zone, action planner is more likely to find solutions
(i.e. A’s end-effector precisely reaching T ). For unreachable T , a distant point-
ing motion would be generated. The computation of comfort zone relies on the
location (or height) of T , style of action synthesized (choosing a particular style
within the action example database), and also the size of the table when T is not
reachable.

2. Determines an initial orientation for the reference frame (see Fig 7.1-right), either
perpendicular to table’s edge, or directly facing the observer (T is in-between A
and O, making O at the center of A’s field of view). Second case is favored as it
generally yields better visibility among A, O and T .

3. The planner searches for a better orientation of the reference frame by discretely
sampling around T (e.g. in 5◦ increment). For each sample, the parameters β,
θ, φ are computed and A is placed accordingly. Samples that cause A to collide
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Figure 7.6: Sampling of the body positioning around T in search for the optimal
candidate, i.e. the collision-free candidate that is solvable by the locomotion planner
and with the best “visual clearance”.

with obstacles in the environment are rejected, leaving the valid ones to later
query the locomotion planner, and finally pushes those with feasible collision-
free locomotion solutions into a queue of the body-positioning candidates.

4. All body-positioning candidates are ranked in descending order of “visual clear-
ance” to penalize those with visibility blocked or partially blocked. Visibility
is computed simply by measuring how much A’s gaze plane intersects with ob-
stacles in between A and O. Candidates with the best visibilities are picked to
proceed, and those with zero visibility are rejected, shown in Fig 7.6. Note that
visibility is measured with a continuous number in [0, 1], i.e. seeing through a
house plant may yield 0.5 (partial blockage). Here only agent-observer visibility
constraint is enforced, and the planner assumes agent-target and observer-target
visibilities always exist. The planner favors solutions with better visibility, mean-
ing that A might need to turn its head 180◦ to gaze at O standing behind. This
is because uncomfortable body positioning/gaze-shift is still better than bad visi-
bility, since A must be able to have visual contact with O.

Following the successful planning of body positioning, the locomotion module
(Chapter 7.6) synthesizes the walk sequence, then the action planner (Chapter 7.7) gen-
erates the needed action motion, and finally the coordination module (Chapter 7.8)
joints the two sequences with smooth transition plus gaze related behaviors (Chap-
ter 7.8).

7.6 Locomotion Synthesis

A path following-based locomotion planner is integrated in our system. The goal of the
proposed planner is three-fold:
(A) it quickly checks for locomotion solvability when queried by body poisoning mod-
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ule of Section 7.5 and reject samples with no feasible paths. Each check must be fast,
ideally on a scale of a few milliseconds.
(B) it navigates the agent through narrow passages with precise starting and ending
body configurations.
(C) the overall locomotion must resemble the captured trial motions from human par-
ticipants, i.e. sharp body turnings occur at the starting and the end of the locomotion
sequences with very small turning radius.

For (A) the query is based on an algorithm for computing shortest paths from trian-
gulated mesh that are constructed from a polygonal representation of the virtual envi-
ronment [Kal10] with built-in local clearance info. It allows fast query of high quality
collision-free polygonal path with arbitrary clearance distance away from obstacles for
the agent to pass through. The path query takes under a few milliseconds of computa-
tion time for scenarios similar to Figure 7.2.

As discussed in Chapter 2, due to the nature of discrete search, it remains challeng-
ing for motion graph-based locomotion planners (such as what’s proposed in Chap-
ter 6) to enforce higher DOF constraints, i.e. to have the character arrive precisely
at any specified 2D goal location facing precisely at any specified body orientation, a
total of 3-DOFs constraints as described in (B). with the additional requirement (C)
to specifically model the locomotion patterns observed from the trials, we propose an
unique locomotion planner solution tailored to solve this particular problem. However,
the trade-off is that with the focus in meeting the three requirements, the quality of our
final synthesis may not be as good as the motion graph-based proposed in the previous
chapter.

With human-like quality synthesis in mind, three specific types of locomotion se-
quences have been collected: 1) starting steps from rest posture to walk towards various
directions 2) arriving steps from the ending walk cycles to stopping at rest posture fac-
ing various directions, and 3) a normal straight walk cycle. 2) is especially tricky to
model as it usually contains sharp turnings in very tight spaces, which is a main reason
for us to choose data-driven synthesis, see left most image in Figure 7.7. The walk
cycles in these captures are segmented manually.

The locomotion sequence is synthesized with the following steps: After the path
is queried, the starting and arriving clips that best fit the path are picked and placed at
the exact starting and ending body positioning. Next the cyclic walk clip is repeatedly
applied onto A and concatenated following the starting clip along the path. Finally to
smoothly transition from the cyclic walk into the arriving clip, inverse blending is used
here to generate one single transition step by best matching the feet placement and body
orientation, see Chapter 3.5 for details. After a seamless transition is generated, the last
arriving clip is appended. Figure 7.7 shows the final result of the locomotion result,
which typically takes roughly 50 milliseconds to generate the whole sequence. Any
existing locomotion planner that meets the requirements of both (A), (B) and (C) could
be integrated to replace our solution, however such planner is less seen in the literature.
Additional results are provided in Figure 7.15, 7.16 and 7.17.
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Figure 7.7: Images showing one particular locomotion planning result from different
perspectives. The top two images show the arriving step database and whole planed
walk sequence illustrated using skeleton trails. The bottom figures are rendered with a
skinned character as the final result.

7.7 Upper-body Action Synthesis

The upper-body action and gesture (e.g. pointing) motions are computed with Inverse
Blending (InvBld, see Chapter 3.3) with an extension to handle collision avoidance us-
ing potential fields. This algorithm is referred as PF-InvBld. The original InvBld is able
to compute motion sequences with the end-effector precisely meeting specified spa-
tial constraints, i.e. the end-effector of the agent would precisely reach/grasp/interact
with the target at the stroke point within the action. It relies on a collection of similar
and time-aligned example motions, which are realistic upper-body action instances ei-
ther from motion capture or keyframe animations. With the agent at pose qa, InvBld
optimization procedure is employed to obtain an upper-body action motion precisely
reaching the action target at pose qg of the goal configuration. An error (e) evalua-
tion function measures how well the specified constraints are enforced. Fig 7.8-left
illustrates one database of example motions used in our experiments. InvBld can be
computed under 2 milliseconds measured on a 2GHz quad core CPU. The routine ter-
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minates when e reaches 0 or cannot be further minimized. If e is unacceptable, qa would
be discarded as candidate for body placement. Note that the optimal body positioning
module queries InvBld for comfortable zone, the optimal distance between A and T for
action execution, see Chapter 7.5 for details.

Figure 7.8: Left: result of the original InvBld. Agent’s pose is a blending of 10
examples (in red) out of 36 examples with the optimal blending weights to meet the
given spatial constraint, as a result the end-effector precisely reaches the target (blue
ball). Right: one frame of the final planning result generated by PF-InvBld algorithm.
The gradient of Pc guides the weight optimization in order to avoid collisions with the
obstacles.

In our recent work [HMK11] Inverse Blending was coupled with bi-directional
RRT to randomly sample the weight-time blending space in an attempt to explore the
workspace and plan collision-free motion sequences (see Chapter 6). While this allows
rapid exploration with human-like random posture samples, the random exploration in-
side the blend space may take 500 to 1000 milliseconds to finish in many cases, which
would become the bottle neck if employed in the PLACE planner. The approach of
force fields for reactive planning has been proposed, such as [ZLM09] where smooth
vector fields are computed over cell decompositions for feedback motion planning. In
this section a new algorithm is proposed named Potential Field Inverse Blending (PF-
InvBld). It extends the original InvBld by incorporating the “potential of collision” (Pc)
generated from obstacles inside the workspace, used to guide the weight optimization
process, reactively avoid the obstacles and quickly synthesize collision-free motions.
As a result, the new method is about twice faster than the blend space planner. Details
of the planning process are described as follows.

InvBld is used to first compute a set of initial weights wg that meet given spatial
constraints at qg, and the result motion M (t) is checked for collision at every frame.
If it collides, PF-InvBld algorithm is started to find a collision-free solution. First,
dummy spheres are generated inside workspace filling up the bounding volume of each
obstacle, see Fig 7.8-Right. Next, M (t) is discretized into small segments, all colliding
segments are discarded and only two valid segments are kept (Fig 7.9-top): one segment
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Figure 7.9: An illustration of the PF-InvBld procedure for generating collision-free
upper-body actions.

starts at rest posture qa from ta to t′a; the other segment from t′b to tb that ends qg. If
collision happens at qa or qg, PF-InvBld terminates as no solution can be found.

Then PF-InvBld attempts to shift each colliding nodes Ni(wi, ti) out of collision
along the direction of Pc towards lower potential (Fig 7.9-middle). This optimization
process starts with the initial weights wi (wi = wg) and stops at new weights w′

i as
in N ′i(w

′
i, ti) without any collisions. Note that each Ni(wi, ti) corresponds to a pose

generated by blending poses from the example motions at time ti with wi.

There is no need to pre-compute the vector field for each discretized cell in the
workspace (or volumetric cell in 3D). Instead, inside the weight optimization loop, PF-
InvBld queries Pc which is the sum of all potentials (

∑
pc) generated by each dummy

towards Ni. A Gaussian kernel is used to compute pc for each N by transforming the
Euclidean distance between the dummy and the end-effector location for that specific
pose at N . The gradient of Pc effectively guides the weight optimization that in turn
generates new poses N ′i(w

′
i, ti) with the end-effector further away from obstacles. In

environment like Fig 7.8, this process typically takes 25 to 60 iterations to converge.
This process is done for each Ni on the colliding segments, and terminates when all
segments become valid without collisions, see Fig 7.9-bottom. Since the number of
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Top two rows: original InvBld result without collision correction.

Bottom two rows: collision avoidance with PF-InvBld planner.

Figure 7.10: Action synthesis corrected by force fields in blending space. The top two
rows (side view and top view respectively) show an action that produced collisions with
obstacles; and bottom two rows show a collision avoidance solution (following the blue
trajectory) for removing the collision.
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Ni is typically less than 10, bringing the total integrations to 600 or less. Experiments
show that even with the overhead of potential fields computation, PF-InvBld planner
generally takes less than 300 milliseconds to plan the action motion, roughly half of the
computation time or less than the blending space planner proposed in Chapter 6. More
over, the planner provides more control on the overall computation time compared to
the randomized sampling method, and it also reduces the collision checking overhead
which is a bottleneck in our planner implementation. Final synthesis is the smooth
concatenation of a series new motion segments each generated by smooth blending
from N ′i to N ′i+1. Figure 7.10 shows the PF-InvBld results compared against original
InvBld without collision correction.

Note that certain obstacle configurations may be unfavorable and unsuitable for the
reactive planning nature of PF-InvBld, as the optimization procedure could get stuck in
local minima regions within the potential fields. Complex environment poses greater
challenges for PF-InvBld compared to our blending space planner, because the config-
uration space being explored by PF-InvBld is smaller. Similar to the blending space
planner, in cases when no action solution can be found, the planner would restart with
the next best body-positioning candidate. Our goal is to avoid generating difficult,
unlikely and unnatural solutions, but favor starting over from a different initial body
position that may lead to more human-like solutions.

7.8 Coordination Planner Module

The motion sequence of walk-then-action is ubiquitous in daily tasks and may seem
trivial and effortless. However it is orchestrated with high level of complexity and
coordination, and serves as a vital part of the PLACE planner. This section is focused
on modeling the transition period between locomotion and action, which consists of 3
aspects:

(A) length of the blending window for transitions: the action motion is temporally
aligned with the end of the locomotion based on the arm swing patterns as explained
above. If adjustments are made to the blending window, we make sure it remains
between 1/3 to 4/3 seconds, following the observations from the user study on blending
artifacts and just-noticeable differences [WB04].

(B) starting time and length of the transition: please refer Section 7.9 and Fig 7.12.

(C) arm swing patterns modeling dur transition: there are two arm swings within
the transition period of walk-then-action (See Fig 7.11): locomotion arm swing (Sl,
blue) at the end of walk sequence, and action arm swing (Sa, red) at the beginning of
upper-body action. Based on observations of motion capture from human subjects, Sl
naturally transitions into Sa following specific patterns. As an example, it is assumed
that upper-body action is executed using the right arm.

In Fig 7.11-(a), Sa naturally carries on the swing of Sl, which yields desired hu-
manlike result. The case illustrated in Fig 7.11-(b) is not humanlike because Sl and Sa
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Figure 7.11: An illustration of the arm swing patterns within the transition period as
part of the coordination model. The goal is to smooth the arm swing transition from
end of locomotion Sl into beginning of upper-body action Sa, by either delay the arm
from returning to neutral position as shown in (c), or delay crossing the neutral position
shown in (d).
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are in opposite directions. Instead, the natural transition lies in one of the following two
options in order to avoid sudden changes of arm swing direction:
(1) Sl is shortened and blended into Sa without the right arm returning to neutral posi-
tion, shown in Fig 7.11-(c).
(2) Sl is extended from the previous swing cycle and overrides the current swing cycle,
then blended into Sa, shown in Fig 7.11-(d).

Within the transition, the planner smoothly blends the whole-body motion from
locomotion into action, taking into account the blending parameters described in (A)
and (B). Inverse Kinematics is applied to fix both feet on the floor while movements on
the hips joint are allowed by the action in case the character needs to bend the knees
to reach targets close to the floor, generating a final coherent whole-body action (this is
due to our action motion is also full-body). Arm swings are handled as described in (C),
and unnatural swings shown in Fig 7.11-(b) is corrected with either (c) or (d) depending
on the duration of the final walk cycles. As a result, the transition appears smooth
and human-like, with better visual quality than simple full-body blending between two
sequences. More results of the smooth transition are presented in Figure 7.16 and 7.17.

7.9 Engagement Planner Module

The visual engagement (i.e. gaze behaviors) was modeled as part of the overall planning
result and applied on top of the whole-body synthesis. Realistic engagement modeling
contributes greatly to the human-likeness of the final synthesis due to its ability to aid
with basic two-way communications by directing attention, and also to disambiguate
for listeners [Ken90b]. In the experimental settings, higher-level gaze behaviors are
analyzed and the synchronized with the stroke point of the actions addressing specified
target object in the workspace. It could be observed that each trial typically consists of
a series of largely consistent gaze and gaze-related events, as listed below:

Δt

gaze- 

floor
gaze-

floorgaze-T gaze-O gaze-O
gaze- 

irrelevant
gaze-T ...

locomotion locomotionupper-body action

stroke
point

gaze-O
start

trial 
start

trial 
end

t

if applicable

gaze enents:

action enents:

Figure 7.12: This figure illustrates a typical serious of events occurred in one captured
trial. Drawing is not to scale.

1. gaze-floor: participant gazes at the floor when walking towards T ;

2. gaze-T : participant gazes at T while gesticulatating;

3. stroke point of the action (here we only focus on the first stroke);
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Figure 7.13: Temporal delay ∆t dictates if the start of gaze-O occurs before (∆t < 0)
or after (∆t > 0) the action stroke point: (a) box plot of ∆t across all trials. (b) box
plot of ∆t for only out-of-FoV observer positions OP1 and OP5. (c) box plot of ∆t for
only inside-FoV observer positions OP2, OP3 and OP4.

Figure 7.14: The velocity profile for participant’s head rotations observed from cap-
tured gaze behavior (unfiltered). The lower brown line logs the angular accelerations of
the head rotations. The upper bell-shaped blue line (filtered) reflects the head rotation
angle pattern used to simulate the natural gaze behavior. Along the time line: t1 is start
of gaze-O; t2 is the apex of gaze-O; t3 shows a gaze-T during target demonstration;
t4 is the end of gaze-O; t5 is the start of another gaze-T .

4. gaze-O: participant gazes at O while describing T ;

5. gaze-T : participant again gazes at T during action, if applicable;

6. gaze-O: participant again gazes at O during action, if applicable;

7. gaze-irrelevant: participant gazes at additional locations, if applicable;

8. gaze-floor: participant gazes at the floor when stepping back to initial location.

The temporal parameters for gaze behavior modeling have been specifically studied
mainly in three aspects. First aspect is the temporal delay (∆t) between the action
stroke point and the start of gaze-O event, see Figure 7.12. Annotation results show
that when O is positioned within participant’s field-of-view (FoV) (i.e. OP2, OP3, OP4

in Fig 7.3-left), gaze-O immediately follows the stroke point, resulting in ∆t > 0. By
contrast, when O is outside of FoV (i.e. OP1 and OP5), due to the large gaze-shift
required to visually engage with O, gaze-O starts ahead of the stroke point, and in this
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case ∆t < 0. This temporal delay extracted from the trials (measured in seconds) is
plotted in Figure 7.13. The second aspect is from our pioneering study of the gaze
durations for repeated upper-body actions. It was observed that the gaze durations tend
to decline over time, and they tend to follow certain surge-then-decline patterns each
time the observer switches to a new location. One possible cause for such patterns is the
familiarity established over time between the human subjects and the observer, please
refer [HKM11] for details.

Lastly, to simulate humanlike head rotations for the gaze, a velocity profile similar
to [YKH04] is extracted from captured data and used to dictate the head rotations for
the virtual agent, see Figure 7.14. The bell-shaped blue line reflects the angular pattern
of smooth filtered head rotations, which is used to simulate the natural gaze behavior.

These temporal parameters (refer [HKM11] for details)) are used to schedule gaze
behaviors to add on top of the full-body motion generated by the other modules. The
maximum gaze-shift angle φ is computed with the body positioning module from Chap-
ter 7.5. Together with the bell curve extracted from motion capture for synthesis of the
actual head rotations, our engagement module is able to generated human-like gaze
behaviors closely resemble those observed from the real captures.

7.10 Results and Discussion

This chapter presents the PLACE planner, a novel whole-body motion planner for
demonstrative agents that incorporates five aspects: 1) optimal body positioning, 2)
locomotion, 3) upper-body action planning, 4) transition/coordination between loco-
motion and action, 5) visual engagement modeling. The proposed planner is original
in the sense that it offers a solution to tackle the whole-body planning tasks that in-
volve all five aspects with high-level coordinations. Results from the overall planning
are presented in Figure 7.16 and 7.17. The main contribution is that, to the best of
our knowledge, our work is the first whole-body planner to incorporate precise body
positioning models in agent-agent interactions, and also the first to simulate transitions
and coordinations between locomotion and action sequences. The overall task is bro-
ken down into individual parts, each solved by a sub-module of the planner. Certain
modules are derived and modeled using experimental data collected from human sub-
jects. As a result, behaviors of the human participants are correctly simulated in similar
virtual settings with the ability to produce high-fidelity motion synthesis. The proposed
planner is capable of synthesizing the whole sequence with the computation time range
from 100 to 400 milliseconds depending on the complexity of the environment (100 ms
when no upper-body collision occurs, and about 400 ms when PF-InvBld is involved in
the planning process), ideal for interactive training and simulation applications.

Due to the nature of the problem modeled, there are several limitations of the pro-
posed planner:

(1) the visibility constraint between observer and target is not modeled as it is the

91



observer’s responsibility to maintain such visibility, so is agent-target visibility due to
the proximity of the two;

(2) the planner assumes the agent is able to interact with the target from all direc-
tions when searching for optimal body positioning described in Section 7.5;

(3) the experimental data is collected in one-on-one interaction scenarios only,
hence at this point we do not attempt to extend this model to address audience with
multiple observers, but it certainly is an interesting direction for future work.
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Figure 7.15: Sequenceof a long-range locomotion planning. First row shows the
beginning of the walk with a very sharp turning, and the last two rows focuses on
the transition into arriving steps.
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Figure 7.16: Example of a solution produced by PLACE. The top-left image shows the
planning scenario and the solution placement for execution of the demonstration. The
following sequence of snapshots shows the arrival locomotion seamlessly transitioning
into the demonstration action pointing at the fax machine with coordinated gaze towards
the observer. Second row shows the arriving steps with coordinated arm swing blended
into the beginning of the upper-body action.
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Figure 7.17: This solution shows a short-range locomotion towards a placement suit-
able for pointing and describing the blue bottle. Bottom three rows are taken from top
view.
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CHAPTER 8

Automatic Retargeting

Humanoid 3D models can be easily acquired through various sources, including online.
The use of such models within a game or simulation environment requires human input
and intervention in order to associate such a model with a relevant set of motions and
control mechanisms. This chapter demonstrates a pipeline where humanoid 3D models
can be incorporated within seconds into an animation system, and infused with a wide
range of capabilities, such as locomotion, object manipulation, gazing, speech synthesis
and lip syncing. A set of heuristics are offered to associate arbitrary joint names with
canonical ones, and describe a fast retargeting algorithm that enables us to instill a set
of behaviors onto an arbitrary humanoid skeleton. We believe that such a system will
vastly increase the use of 3D interactive characters due to the ease that new models can
be animated.

8.1 Motivation

3D characters are commonly seen in video games, feature films, mobile phone appli-
cations and web sites. The generation of an expressive 3D characters requires a series
of stages, including the generation of a character model, specifying a skeleton for that
model, deforming the model according to the movement of the skeleton, applying mo-
tion and control algorithms under a framework, and finally instructing the character to
perform. Each of these processes requires a different skillset. For example, 3D models
are generated by digital modelers or through hardware-based acquisition, while anima-
tors create or apply motion to the characters.

Thus, while many high quality assets such as humanoid models or motion capture
data can be readily and inexpensively acquired, the integration of such assets into a
working 3D character is not automated and requires expert intervention. For example,
after motion capture data is acquired, it then needs to be retargeted onto a specific
skeleton. An acquired 3D humanoid model needs a skeleton that satisfies the constraints
of a real-time game system, and so forth. Modern game engines provide a means to
visualize and animate a 3D character, but require assembly by a programmer or game
designer. The complexity of animating 3D virtual characters presents an obstacle for the
end user, who cannot easily control a 3D character without the assistance of specialists,
despite the broad availability of the models, assets and simulation environments.

This chapter presents a system to address this problem, which facilitates the rapid
incorporation of high-fidelity humanoid 3D models into a simulation. Characters intro-
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duced to our system (SmartBody [USC12]) are capable of executing a wide range of
common human-like behaviors. Unlike a traditional pipeline, SmartBody requires no
intervention from artists or programmers to incorporate such characters after the assets
have been generated. Our pipeline relies upon two key automated processes:

1) An automated skeleton matching process; skeletons are examined to find a match
between the new skeleton, and one recognized by the simulation. Such a process looks
for similarly named joints, as well as relies on expected topology of humanoid in order
to recognize similarly functioning body parts.

2) A retargeting process that can transfer high quality motion sets onto a new char-
acter without user intervention.

In addition, the virtual character’s capabilities are generally based on two different
sources:

A) A set of controllers that can generate motion by means of rules, learned models,
or procedurally-based methods, and

B) A set of behaviors generated from animation data that can be parameterized
across various dimensions, such as running speed for locomotion, or reaching location
for interaction with other 3D objects.

8.2 Related Work in Motion Retargeting

The first stage of SmartBody utilizes an automated mapping process which uses a set of
heuristics for mapping an arbitrarily named humanoid skeleton onto a common skele-
ton with familiar names. To our knowledge, no such algorithm has been previously
published. Many other methods for registering skeletons require matching names or
manual annotations [MAF11]. At the time of this writing, [Uni12] demonstrates a pro-
cess by which a skeleton can be automatically registered, but no technical details are
provided regarding underlying algorithms and robustness. In addition, systems such as
[AI11] attempt to automate the acquisition of motion and models, but have not seen any
details regarding the skeleton rig recognition step.

The second stage of SmartBody utilizes a fast, but offline retargeting system to gen-
erate animations appropriate for a particular skeleton. Retargeting has been an area
of much research in the animation community since Gleicher [Gle98]’s work which
uses optimization and low-pass filtering to retarget motion. Many other retargeting al-
gorithms use various approaches: Kulpa [KMA05] retargets motion by using angular
trajectories, and then solve several body areas, Less [LS99] uses a hierarchical ap-
proach to retargeting, Mozani [MBB00] uses an intermediate skeleton and IK to handle
retargeting between skeletons with different topologies. Kulpa [KMA05] retargets mo-
tion through a morphology-independent representation by using angular trajectories,
and then solving several body areas. Ho et al. [HKT10] uses spatial relationships for
motion adaptation which can handle many contact-based motion retargeting problems.
Zordan [ZV03] retargets optical data directly onto a skeleton via a dynamics-based
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method. Shin [SLS01] uses an online retargeting method via an analytical IK method
that prefers the preservation of end effector values. Choi [CK99] uses a Jacobian-based
IK method for online retargeting.

Our retargeting system attempts to find footplants in order to better retarget move-
ment. An online footplant detection and enforcement method is presented in Glardon’s
work[GBT06]. By contrast our retargeting method enforces footplants offline, and
doesn’t modify the length of limbs as in [KSG02] so as to be compatible with many
game and simulation skeleton formats. Similar to our goals, the work in [HRE08] is fo-
cused on retargeting to creatures with a varying morphology, such as differing number
of legs, tails or the absence of arms. The system described in that work relies heavily
on inverse kinematics in performing online retargeting based on semantic descriptions
of movement. By contrast, what SmartBody needed is offline but relatively fast retar-
geting of high quality motions onto humanoid characters that cannot be achieved via
simple walk cycles and reaching constraints. [MAF11] develops a system to automat-
ically assemble a best-fitting rig for a skeleton. By contrast, SmartBody assumes the
skeleton and model have already been connected, and focus on the use of such skeleton
in real time simulations.

The characters in SmartBody can be instructed to perform certain behaviors us-
ing the Behavioral Markup Language (BML) [KKM06]. BML provides a high-level
XML-based description of a set of tasks that can be synchronized with each other.
Many systems have been developed to utilize BML, such as EMBR [HK09a], Elcker-
lyc [WRR10], Beat [CVB01] and Greta [NBM09] in addition to SmartBody [TMM08,
Sha11]. However, to our knowledge, no other BML-based systems besides our own
have implemented extensive character locomotion capabilities or generic capabilities
such as object manipulation [FXS12] which are associated with large sets of behaviors.
Since the BML specification emphasizes speech, head movements and gestures, most
BML-compatible systems emphasize only those features.

8.3 Automatic Skeleton Joint Mapping

One of the challenges of using an off-the-shelf character model is that the user has to
first set up a joint mapping table to comply with the skeletal system and motion data
used for the target system/application. This step is critical for many motion parame-
terization procedures like retargeting, and although being a trivial task, it is commonly
done by hand. Existing commercial tools and applications (e.g. MotionBuilder [Aut])
have incorporated “automatic mapping” features where such mapping is estimated for
skeletons not following MotionBuilder naming conventions, providing a starting point
for manual While the underlying mechanism for this MotionBuilder automatic map-
ping is unknown, it is believed that from the generated mapping result it could be base
on joint name searching, similar to Animeeple [AI11] which uses regular expression
joint name searching.

In this chapter a heuristic-based automatic skeleton joint mapping has been pro-
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Figure 8.1: A set of characters from many different sources are automatically retar-
geted and registered into SmartBody. The characters can now perform a number of
tests with controllers and parameterized motions in order to insure that the behavior
has been properly transferred: gazing, object manipulation, locomotion, head nodding,
etc.

posed. This method utilizes the skeleton hierarchy structure and symmetries, combined
with keyword searching to help determine certain key joints in the hierarchy. The auto-
matic mapping method has been successfully validated using character skeletons from
various popular sources (mixamo.com, rocketbox-libraries.com, turbosquid.com, axyz-
design.com, 3DSMax, MotionBuilder), results shown in Fig 8.1, 8.6.

The goal is to map a list of arbitrary joints from any user-defined biped skeleton
to the set of canonical joints on the target skeleton inside our character animation sys-
tem. Fig 8.2 shows the final mapping result to be achieved from left side mapped to
the right side. Left side as an example follows MotionBuilder[Aut] standard skeleton
joint naming convention, and right side is the corresponding names in the SmartBody
standard skeleton. SmartBody does not intend to map all the joints, and in many cases
not all joints can be mapped easily. Only a basic set of joints are mapped which would
enable most of our controllers to drive user-defined characters for behaviors like gaze,
reaching and locomotion.

Algorithm 4 Search routine for arm joint-chain.
1. J ← acromioclavicular (AC)
2. while J ← J.child() do
3. if J has 5 children then
4. MAP(wrist, J)
5. else if J.num children() = 0 then
6. J ← J.parent()
7. MAP(wrist, J)
8. end if
9. end while
10. if not wrist.mapped() then
11. return WRIST NOT FOUND
12. end if
13. J1 ← shoulder ; J2 ← wrist

14. switch (J2.depth− J1.depth)
15. case 2:
16. uparm← shoulder
17. MAP(uparm);MAP(elbow)
18. case 3:
19. MAP(uparm);MAP(elbow)
20. case 4:
21. MAP(uparm);MAP(elbow)

if forearm then MAP(forearm)
22. case 5:
23. MAP(uparm);MAP(elbow);

MAP(forearm)
24. end switch
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Reference
Hips
Spine
Spine1
Spine2
Spine3∗

Neck
Head
LeftEye

LeftShoulder
LeftArm
LeftArmTwist∗

LeftForeArm
LeftForeArmTwist∗

LeftHand
LeftHandThumb1∼4
LeftHandIndex1∼4
LeftHandMiddle1∼4
LeftHandRing1∼4
LeftHandPinky1∼4

LeftUpLeg
LeftLeg
LeftFoot
LeftToeBase
LeftToeBase2
LeftToeBase3∗

...[right side joints] ...

base
spine1
spine2
spine3
spine4
spine5
skullbase
eyeball left

l acromioclavicular
l shoulder
l elbow
l forearm
l wrist
l thumb1∼4
l index1∼4
l middle1∼4
l ring1∼4
l pinky1∼4

l hip
l knee
l ankle
l forefoot
l toe

...[right side joints] ...

Figure 8.2: Final mapping result achieved by SmartBody, left side is given as an
example following MotionBuilder naming convention, right side is the corresponding
joint names in SmartBody. ∗ denotes joint (if exists) is skipped as it’s not handled by
SmartBody.

The mapping is largely based on heuristics and is specifically adapted to our system.
The first step is to find the character’s base joint. The situation is considered only where
the input skeleton is biped, in which case the base is usually defined as the parent of
spine and two legs. Fig 8.3 generalizes some of the variations found in our testing skele-
tons, and the routine is partially outlined in Algorithm 2. Once the base joint is found,
our algorithm tries to map the remaining key joints based on the symmetry/hierarchy of
the canonical target skeleton and the assumption that source skeleton will have similar
properties. A portion of this procedure is shown in this chapter due to the redundancies
in Fig 8.3, Algorithm 3 and 4 outline part of the search routines for spine/chest and arm
joint-chain respectively, however more complicated cases are also handled. As an ex-
ample, if two joints are found sharing the same parent joint (chest), both have the same
depth also the same number of children joints, the algorithm will assume they are either
acromioclavicular or shoulder, and then determine left/right using their joint names.
Another example is that based on the depth of shoulder and wrist in the hierarchy, the
heuristic determines if twist joints are present in-between and estimates the mapping
accordingly. In certain cases the heuristics may rely on keyword search inside joint
names to determine the best mapping, but switches to purely hierarchy-based mapping
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case 3 

r_shoulder 
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r_shoulder 

r_AC 

Joint search for arm Joint-chain 
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case 1 

r_shoulder 

r_elbow 

r_AC 

r_wrist 

r_shoulder 

r_elbow 

r_AC 

r_uparmTwist 

r_forearm 

(not mapped) 

case 3 

r_wrist 

r_shoulder 

r_elbow 

r_AC 

r_uparmTwist 

r_forearm 

case 2 

(not mapped) 

Joint to search Search keyword Alternatives 
skullbase head skull 
l_wrist hand wrist wrist 
l_ankle ankle foot 
l_thumb thumb finger0 pollex 
l_index index finger1 pointer, forefinger 
l_middle middle, mid, finger2 medius 
l_ring ring finger3 fourth 
l_pinky pinky finger4 little 
eyeball_left eye  (but not lid, brow, lash) 

Keywords used in joint search 

Figure 8.3: An illustration of various configurations generalized from testing skeletons
for certain key joints and joint-chain mapping using heuristics.

when not successful. Characters with uncommon hierarchy/joint names may break the
heuristics, such as with the presence of extra joints (wings, tails, etc) or asymmetrical
hierarchy, in which case the user needs to manually complete the mapping starting with
the partial mapping table generated by the algorithm.

8.4 Retargeting

The motion retargeting process works by transferring an example motion set from our
canonical skeleton to a custom skeleton provided by the user. The retargeting process
can be separated into two stages. The first stage is to convert the joint angles encoded
in a motion from our canonical skeleton to the custom skeleton. The second stage is to
enforce various positional constraints such as foot positions to remove motion artifacts
such as foot sliding.
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Algorithm 2 Search routine for base joint.
1. while i ≤ max search depth do
2. J ← skeleton.joint(i)
3. switch (J .num children())
4. case 2:
5. if J has 2 symmetrical children then
6. return MAP(base, J)
7. end if
8. case 3:
9. if J has 2 symmetrical children then
10. return MAP(base, J); MAP(spine)
11. end if
12. end switch
13. end while
14. return BASE NOT FOUND

Algorithm 3 Search routine for spine,
chest, acromioclavicular and head joints.
1. J ← base
2. while J ← J.child() do
3. if J.num children() ≥ 2 then
4. MAP(Spine4, J) {chest joint}
5. break
6. else
7. MAP(spine#, J)
8. end if
9. end while
10. if J has 2 symmetrical children then
11. MAP(AC, J.child())
12. end if
13. if J.child().name() = ”Head” then
14. MAP(skellbase, J.child())
15. end if

8.4.1 Motion Data Transfer

The goal of this stage is to transfer the motion data such as joint angles from a source
skeleton to a target skeleton. Joint values can be directly copied over for skeletons with
aligned local frames and initial T-poses. However in most cases, a skeleton provided
by the user tends to have different setup and default pose from our canonical skeleton.
Therefore the procedure first needs to align the default pose between the target skeleton
and our canonical skeleton. This is done by recursively rotating each bone segment
in target skeleton to match the global direction of that segment in source skeleton at
default pose (Fig 8.4 left) so that the target skeleton is adjusted to have the same default
pose as the source skeleton.

Target Skeleton 
After Alignment 

Source Skeleton 

r_shoulder 

Target Skeleton 
Before Alignment 

r_shoulder 

Before Local Frame Alignment  After Local Frame Alignment  

Figure 8.4: Left side shows alignment of a bone segment between two skeletons so that
target skeleton matches the pose of source skeleton. Right side shows re-orientation of
joint local frames so that they align with the canonical world frame, which enables
straightforward transfer of motion data from source to target skeleton.

Once the default pose is matched, the method addresses the discrepancy between
their local frames by adding suitable pre-rotation and post-rotation at each joint in target
skeleton. Specifically, given a joint bi, with its global rotation RG and initial local
rotation qinit when in default T-pose, its local frame is re-oriented as

q′ = qinit RG−1
q RG
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, where q′ is the actual local rotation after re-orientation, and q is the standard rotation
that complies with the default global frame. In other words, the original local frame of
bi is re-oriented to align with the default canonical global frame as shown in Fig 8.4
right, e.g. a left 30◦ turn around Y-axis in Y-Up global frame simply means setting
q = quat((vec(0, 1, 0), 30) without considering the initial rotation of bi. Since our
canonical skeleton already has all of its joint local frames aligned with the global frame,
this in turn aligns joints in both skeletons into the same local frames. Therefore the
motion data transfer can now be done trivially by copying the joint rotations to the
target skeleton. Similarly, the root translation pr can also be transferred to the target
skeleton by scaling it according to the length of legs between two skeletons. The scale
factor sr is computed as sr = lt

ls
, where lt is the leg length of target skeleton and ls is that

of source skeleton. For motions created specifically for skeletons with non-canonical
alignments, the re-orientation process is reversed as

q = RG qinit
−1
q′ RG−1

to make these motions become aligned with default global frame, which can be directly
applied to any skeleton after realignment in a very straightforward fashion.

8.4.2 Constraint Enforcement

Once motion data is transferred, they would serve as a rough approximation to enable
the target skeleton with various behaviors such as locomotion. However the transferred
motion may not work perfectly on the target skeleton due to different limb lengths,
which may result in foot sliding artifacts, etc. This problem could be seen in many
kinds of motions after naive data transfer but is mostly visible among locomotion sets.
In order to alleviate these artifacts, inverse kinematics is applied to enforce the foot
plant constraint in the transferred motions. The inverse kinematic method used in the
system is based on Jacobian pseudo-inverse,

∆Θ = J+∆x + (I − J+J)∆z

, where J+ = JT (JJT )−1 is the pseudo-inverse of Jacobian matrix J , ∆x is the offset
from current end effector coordinates to target coordinates xr, and ∆z is the desired
joint angle increments toward target pose z = Θ̃. The above IK method deforms an
input pose to satisfy the end effector constraint, while maintaining the target pose z as
much as possible. This IK method is applied at each motion frame in the locomotion
sequences to ensure the foot joint is in the same position during the foot plant stage.

Previous methods exist for detecting and fixing foot sliding [KSG02, GBT06]. They
mostly work by finding a time range over which the foot plant occurs, and enforce the
foot plan during that period. Additional smoothing is usually required to ensure that
the constraint enforcement does not create popping artifacts in the motion. Experiments
show that it is difficult to robustly detect foot plant range across different type of mo-
tions. Also, without careful consideration, smoothing may create more motion artifacts
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if foot plant is not correctly found. Since the original motion is assumed to be smooth
and free of feet-sliding, we chose to warp the original motion trajectory and enforce
constraints over the whole trajectory. Let ps(t), pd(t) be the foot position trajectory for
source and target skeleton. A new trajectory is created for target skeleton by warping
the original trajectory using the following equation,

p′d(0) = pd(0)

p′d(t+ δt) = p′d(t) + sr(ps(t+ δt)− ps(t))

, where p′d is the new target trajectory, and sr is the scaling factor based on leg length
from the previous section. The above equation warps the foot trajectory from original
skeleton based on the scale of target skeleton. This was proven to work well during our
experiments on various skeletons with different limb lengths and proportions. Good
robustness was shown on different motion styles with no additional smoothing needed.

8.5 Discussion and Conclusion

The pipeline described in this chapter is designed for incorporating high-quality hu-
manoid assets into a virtual character and quickly infuse that character with a broad
set of behaviors that are common to many games and simulations. We believe that by
automating the incorporation of models, we are lowering the barrier to entry for end
users and potentially increasing the number and complexity of simulations that can be
generated.

Our skeleton mapping algorithm is limited to humanoid or mostly humanoid forms.
It assumes that characters have human-like structure: two arms, two legs, shoulders,
elbows, knees and so forth. In addition, many controller-based behaviors require a
minimum configuration of joints in order to be fully-realized. For example, the gaze
control requires a number of joints, stretching from the lower back to the eyes in order
to gaze while engaging several body parts at once. Also, the behavior sets that rely
on single or parameterized motion sets require a reasonable match between the origi-
nal motion subject on which the data was captured, and the targeted skeleton. If the
skeleton topology or bone proportions fall too far outside of normal human limits, the
appearance quality of the behavior will be deteriorated.

By providing an automated means to transfer a set of motions, and potentially, a
set of behaviors, onto a character, we envision the widespread development of behavior
libraries separate from a particular game or simulation. As digital artists create libraries
of models for generic use, so too can motion developers capture or design a library of
animations for generic use as well. Thus, experts in crafting motion can create both
stylized or context-specific motion sets. Game or simulation designers can then choose
from a set of motions in the same way that they can choose from a set of models. By
loosening the bond between the motion and the model, the use and reuse of digital
assets can thus be greatly increased.
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Figure 8.5: In the figures above, a set of 20 motion captured locomotion animations
are mapped to drive an arbitrary character. The motion captured locomotion data set is
of much higher visual quality than can be generated via procedural techniques such as
through the use of IK or footstep models.

Figure 8.6: More result showing the automatic retargeting on different character mod-
els from various sources.
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CHAPTER 9

GestureVest - A Portable Motion Capture Solution

9.1 Motivation and Background

One of the key problems for achieving real-time motion modeling platforms is that
most of the animation systems are mainly based on pre-defined motion dataset. Build-
ing such database required for given scenarios, for example inside a specific training
environment, remains a complex and time consuming work. It is usually done by skilled
animators specifically for each scenario, and needs to be re-built when switching to a
new environment. In order to improve this situation, this chapter describes a wearable
low-cost motion capture device GestureVect. This vest, along with the framework de-
scribed in Chapter 5, could capture the advantages of both approaches. A real-time
motion blending techniques has been proposed [HK10] in Chapter 3 in order to achieve
realistic motion synthesis that can be adapted and parameterized. Also taken into ac-
count is the on-line motion demonstrations for the interactive modeling of new ges-
tures and action motions. Together as a framework, it presents a new gesture modeling
paradigm based on interactive motion demonstrations. Our framework can be seen as
an imitation-based approach [BBG05, SIB03] and is especially relevant for controlling
and programming tasks for humanoid agents [SYK08, ONL05, NM03, RM02, BM01].
It also represents a natural approach to human-computer interaction by analogy to the
way humans naturally interact with each other. This Chapter describes our results to-
wards achieving an intuitive interface based on low-cost wearable motion sensors for
programming and customizing demonstrative gestures and actions. Figure 9.1 shows
the user captures a pouring action wearing the vest on our motion modeling platform.

Figure 9.1: This image shows the user captures a pouring action on our motion mod-
eling platform wearing the GestureVect.
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9.2 System Overview

Our framework models each demonstrative gesture with a cluster of example gestures
of the same type but with variations for the different locations being demonstrated.
In the pointing gestures modeled in this work the different locations are the locations
being pointed at. For example a gesture cluster for a certain way of pointing consists of
several examples of similar pointing gestures but each pointing to a different location.
Gestures in a cluster are time-aligned in order to allow correct blendings and Inverse
Kinematics corrections to be performed for computing a final gesture motion able to
achieve given specific target pointing locations. This process is referred here as Inverse
Blending.

We have developed for our system a GestureVest for achieving a mocap-based
human-computer interface for on-line motion demonstrations. Example motions can be
demonstrated interactively and converted to new examples to be added in the database,
in order to enable the interactive customization of gestures. This interactive interface
allows seamless user interactions for programming gestures. A concrete example uti-
lizes the vest is described in Chapter 5 as a motion modeling platform.

The system maintains a gesture database on-the-fly by storing selected demonstra-
tions from the GestureVest. The database can also be initialized with basic gestures.

The virtual character can then reuse the demonstrated motions in order to point to
any desired location and the resulted motion will exhibit the same characteristics of
the demonstrated examples. If suitable candidate example motions are not available in
the database, or if the user is not satisfied with the aspect of the output motion, new
demonstrations can be interactively given by the user via the vest. The system can
therefore learn user-specific (e.g. pointing) tasks in different scenarios through on-line
demonstrations, and at the same time preserve the characteristics of the demonstrated
motions as much as possible.

9.3 Wearable Motion Capture GestureVest

We have built a wearable motion capture vest for achieving a suitable human computer
interface for our system. The interface uses five InnaLabs AHRS sensors [Inn08] to
capture the orientation changes of performer’s spine, head and a full arm. In addition,
a 5DT data glove is used to capture hand shapes, and a Nintendo WiiMote controller
is used for providing basic instructions (record, play, delete, etc) during demonstration
of new example gesture motions. As illustrated in Figure 9.2-right, the sensors are at-
tached on a detachable sleeve, in the form of an easy-to-wear GestureVest. The vest
is connected to a computer via wired USB-RS 485 converters, optionally connected
to a wireless USB hub. For specifications of the miniAHRS sensor, please refer Ap-
pendix 11.2.

Each sensor measures its orientation in global coordinates based on tri-axial gyro,

107



Figure 9.2: Left: miniAHRS m2 sensor used in our system. Right: Our GestureVest,
with a data glove and 5 miniAHRS sensors placed on spine, head, right upper-arm,
right forearm and right hand. The locations are highlighted with yellow rings.

accelerometer and magnetometer. Each measured rotation qreading is represented in
quaternion form in respect to sensor’s canonical reference frame with X axis pointing
South, Y axis pointing East, and Z axis pointing upwards, as shown in Figure 9.2-left.
The maximum update rate is 120 Hz in quaternion mode. These commercially-available
sensors provide good results but different sensors and technologies can also be used,
such as ultrasonic triangulation [VAV07] and accelerometer-based [SH08].

Although it is possible to infer and reconstruct whole-body motions with only a lim-
ited number of sensors through models trained on full-range motion capture database
[MLC10, SH08], the focus of the vest is to capture high quality gesture motions with
enough sensors covering the joints of interest, just like the commercially available sys-
tems [Xse07] but more cost-effective.

9.3.1 Calibration

The sensors use magnetometers to acquire absolute orientation based on the earth’s
magnetic field. We perform an initial orientation calibration by standing in a T-pose
facing North to match the zero-rotation of the sensor with the negative X pointing
North, as shown in Figure 9.3-(2). Since the sensors are mounted at slightly different
positions every time the performer puts on the vest, a calibration is needed before each
new capture session. In the calibration process, a reference rotation qcalib is record for
each sensor.

9.3.2 Skeleton Mapping

In order to map the sensed rotations to our skeleton representing the character to be
animated we have to transform the rotations to suitable frames in local coordinates.
First we transform qreading to a Z-up coordinate system, producing a rotation compati-
ble with the sensor’s native coordinate system (Z-up, see Fig 9.2-left). In this way, for
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example, a rotation qreading along South axis will produce the corresponding quaternion
rotation qz−up along X axis after applying the calibration quaternion. Rotation qz−up is
obtained with:

qz−up = qreading · q−1
calib

The virtual character used follows a Y -up coordinate system as shown in Fig 9.3-
(1). In order to drive our character, we use pre-rotations and post-rotations that trans-
form the rotation from miniAHRS Z-up coordinate to our Y -up coordinate:

qy−up = qpreRot · qz−up · qpostRot,

where qpreRot is 120◦ rotation along axis (-1, 1, 1) in quaternion form that rotates
the character from the Y -up frame to the Z-up frame, see Fig 9.3. Rotation qpostRot
produces the opposite rotation which is −120◦ rotation along the same axis of (-1, 1,
1).

Figure 9.3: This image shows two different coordinate systems: (1) is the default
coordinate system used by the AHRS sensor and (2) is the standard Y -up coordinate
system used in our setup.

Before applying qy−up to the corresponding joint, it has to be first transformed to
the local coordinates frame of that joint. Every time the character skeleton is updated
with sensors’ readings, the rotation of each joint in global coordinates is computed by
Forward Kinematics, i. e. by recursively multiplying the local rotations of all parent
joints, starting from the root joint. Global rotations can then be transformed to the local
coordinates frame with:

qlocal = q−1
parent · qy−up,

where qlocal is the final rotation to be sent to the joint being mapped, and qparent is
the rotation of the parent joint in global coordinates.
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9.3.3 Quality Evaluation

We have compared the results achieved by our GestureVest against results recorded
with the Vicon optical-based motion capture system, which captures positions in global
coordinates with precision generally better than 4 millimeters. Motions were captured
simultaneously with the two systems, wearing the vest underneath the Vicon suit with
the reflective markers placed following the Vicon system manual.

Figure 9.4: Reconstruction quality comparison between our system and Vicon. Top:
one captured posture from the analysis. Left: our reconstruction. Right: Vicon’s recon-
struction.

The sensor readings of the vest were acquired at a rate of 30 frames per second
and were directly mapped to our skeleton. Vicon Blade software was used to fit the
same skeleton used by our system to the optical markers. Both systems initialized the
reconstruction process with identical initial T-poses. The global reference frame of Vi-
con’s reconstruction was also transformed to be the same as in our system, i.e. at the
root joint of the character. Since our vest does not capture lower body motions, the
performer tried to maintain the waist at the initial position to avoid unnecessary varia-
tions of the magnetic field after initial calibration which might affect the reconstruction
quality of our system. Although neither reconstruction is 100% precise, Vicon matches
the original motions visibly better and is considered the industry standard for motion
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capture, thus we treat it as ground truth in our comparison analysis. Evaluation is done
by comparing the rotations in-between corresponding joint pairs on both skeletons.

Figure 9.5: Trajectories of the right hand joint with our reconstruction (in red) and Vi-
con’s (in blue) over certain duration where the arm reached extremities towards various
directions. The two images are different views of same result, and the small plot within
each image shows the same comparison with a skinned character. The entire arm is
marked in red on the skeletons/characters with our reconstruction.

Figure 9.4 shows one frame of the reconstruction from the analysis, which consists
85-seconds range-of-motion captured with the right arm covering most of the reach-
able space of a normal human-being. The reconstruction of the vest is shown on the
left (with entire arm marked in red color), and Vicon’s result is shown on the right.
Figure 9.5 shows the trajectories of the right hand joint traversed over certain period
of the captured motion where the arm reached extremities towards various directions,
with our reconstruction’s trajectory in red and Vicon’s in blue. Two plots are showing
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different views of the same result. Vicon’s reconstruction matches the original motion
slightly better as it captures more joints than our vest, though our vest is able to better
reconstruct subtle motions such as slight wrist flicks and more precise head orientation
as shown in Fig 9.4-left. Note that our vest does not capture the left arm, hence the left
arm maintains its initial orientation throughout the reconstruction.

Figure 9.7 Euler angle plots for a set of 3-DOF joints (neck, right shoulder, spine
and right hand) over 50 seconds of reconstruction result from both systems. The top
three rows in each plot visualize the decomposed Euler angles (along X, Y and Z axis
respectively) of each joint measured by the vest (dash red lines) and by Vicon (solid
black lines). The bottom row in each plot shows the rotational difference between our
reconstruction and that of the Vicon system. The rotational difference is computed
using the orientation distance [Han05] between pairs of corresponding joints from the
two systems measured in quaternion, defined as θ = arccos(q1 · q2).

As can be seen in Fig 9.6, the rotational differences are generally below 10 ∼ 20◦.
Joint rotations from our mocap system could mostly follow that of Vicon, except for
certain periods where the rotational difference slightly increases, particularly when an-
gular acceleration of the motion greatly increases or decreases, and in extreme cases
such difference could briefly reach 50◦, see Fig9.7. This is due to the characteristics
of the miniAHRS sensor that the orientation sensing relies more on gyroscope and ac-
celerometer to achieve fast responses when angular acceleration increases, and depends
more on magnetometer when movement becomes slower for fairly accurate measure-
ment.
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Figure 9.6: Top: orientation distance between corresponding one pair of shoulder
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It is worth noting that two years after the material in this chapter was published,
Cockcroft presented an in-depth evaluation and analysis of the inertial motion capture
technology in his thesis work [Coc11].
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Figure 9.7: Euler angle plots for a set of 3-DOF joints (spine, shoulder, hand and
neck) over 50 seconds of reconstruction result from both systems. The top three rows
in each plot illustrate the Euler angles (along X, Y and Z axes) reconstructed by the vest
(dash red lines) and by Vicon (solid black lines). The bottom row in each plot shows
the orientation difference between the two reconstructions from the joint pair. Due to
the nature of the miniAHRS sensor, such difference may briefly reach 50◦ in extreme
cases.

9.4 Discussion

Our GestureVest system is specifically built for on-line motion acquisition with fairly
good results. Our single-arm configuration for capturing single arm gestures with 5
sensors provides enough flexibility for on-line motion demonstration of demonstrative
gestures, where example motions will be demonstrated interactively and converted to
new gesture examples to populate clusters in the database. After a few demonstrations
are performed, object targets to point to can be given in any scenario. Whenever a new
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target in the scene is selected, the appropriate cluster is identified and new motions are
synthesized by the inverse blending algorithm. The mocap system is robust, easy to
wear, intuitive to use, and also relatively cheap in cost.

The motion stream produced by the sensors is continuously monitored during per-
formances and annotated by simple commands given by the user through the WiiMote
controller (Fig 9.8) such as: create new example motion, refine existing motion, replace
current candidate motion and delete from database. These simple commands achieve
a seamless and intuitive human-computer interface for informing how to interactively
segment, classify and cluster the input motion into meaningful gesture segments.

Figure 9.8: The mirroring feature is enabled and the left arm is mirroring the movement
of the right arm which is captured with 3 miniAHRS sensors. This frees up the left hand
to hold a WiiMote as system controller. Two images on the right show that the vest is
being used with a data glove capturing the finger movements. This minimal setup is
ideal for capturing gestures and simple upper-body actions.

The system automatically segments and organizes the collected gestures into ges-
ture database to be used by the Inverse Blending. For our current experiments with
pointing gestures, segmentation is implemented in a straightforward way simply by
observing the zero crossing of the velocity vector of the hand. This works well as
pointings often have a unique maximal stroke point before returning to a rest posture.
Sliding-window filters are applied to eliminate false detections so that the segmentation
is immune to jitters and noises in the captured motions. Parameters of the filters are fine
tuned by hand. Auto time-alignment of the segments is applied before storing the new
segments in the database.

We have also implemented mirroring of gestures from the captured arm to the other
arm. This enables the capturing of symmetric full-torso gestures as in several two-
handed gestures used in speeches, conversations and in sign languages [XQM02]. The
mirroring is done by negating both the x and w components of the original quater-
nion. Also a data glove can be added to capture the movement of the fingers. The vest
presents an ideal solution for low-cost motion capture systems that target at gestures
and simple upper-body action modeling and so on. These two features are shown in
Figure 9.8.
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9.5 Conclusion

We have presented a low-cost wearable motion capture solution that designed for real-
time immersive motion modeling systems. This setup has been integrated with our
motion modeling platform described in Chapter 5. Figure 9.1 as an example shows the
user interactively teach virtual agents in generic training scenarios all in real-time with
the portable vest solution.

The vest has also been used for several of our experimental research recordings.
Figure 9.9 shows a scenario where pointing motions from human subjects were col-
lected in one of our pioneering studies [HHK11a]. It was easy to use and calibrate,
not affected by problems like occlusion, all made it perfect to handle a large group of
human subjects.

Figure 9.9: The vest was used in an experiment on pointing gestures, where the setup
does not allow optical motion capture solutions due to occlusions.
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CHAPTER 10

Final Conclusions

Throughout this dissertation we have developed whole-body motion planning approaches
for the real-time synthesis of coordinated behaviors specifically for demonstrative set-
tings. In this final chapter we will discuss some of the key points of our work with
concluding remarks.

The main goal of this dissertation is to achieve an autonomous character animation
system that combines realism, flexibility, precise control and ability to adapt to the clut-
tered environments. Additionally, the system is connected to higher-level constraints
with task-oriented specifications, and produces real-time synthesis within interactive
applications like virtual demonstrator system.

10.1 Summary of Contributions

The approach we have taken can be largely summarized as a combination of three parts:
(1) motion capture based motion parametrization, (2) randomized human-like motion
planning in blending spaces, and (3) coordinated behavior modeling in demonstrative
scenarios.

10.1.1 Motion Parametrization

We have addressed the motion synthesis problem with an example-based motion pa-
rameterization algorithm Inverse Blending specifically designed to achieve satisfying
generic spatial constraints at interactive frame rates. The proposed approach is based
on blending of a set of consistent time-aligned example motion sequences. The example
motions are carefully built for the consistency. They could be collected immersively in-
side the environment. To achieve precise motion control, blending weights are directly
optimized until the specified constraints are best met. This process in general takes a
few milliseconds depending on the dataset and the complexity of the character’s joint
hierarchy.

Inverse Blending has been analyzed and evaluated against three existing motion
blending techniques, and the result reflects what we have claimed as contributions. The
analysis shows that, while our approach might be less smooth than RBF interpolation
only when the high-level constraints are continuously changed, it excels in accuracy
with practically no pre-computation time. In situations where constraints are only en-
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forced at certain key times, the synthesis results are smooth and closely resemble the
original example motions, which is considered humanlike.

Our approach has been integrated on an immersive motion modeling platform. The
user easily built training motion dataset via direct demonstration inside the virtual en-
vironment. New motions were interactively generated for teaching and demonstrative
purposes in real-time as an effective way to facilitate the virtual training applications.

10.1.2 Planning in Blending Spaces

We have investigated in the topic of motion planning in an attempt to plan collision-free
natural-looking action motions inside cluttered environment. Humanlikeness is hard to
achieve with traditional sampling-based approaches inside the configuration space. For
this reason, we have introduced Blending Space as a novel search space for human-like
motions that in a sense integrates Inverse Blending with randomized planning. What
we have achieved is a bi-directional time-synchronized sampling-based planner capable
of exploring the weight-time blending space of example motions. The randomized
planning allows the final synthesis to have the flexibility going around obstacles, while
sampling inside the weight-time blending space gives the benefit of maintaining the
original quality of the example motions. The planner is coupled with a motion graph
based locomotion planner, and this bi-modal system could plan for realistic whole-body
sequences inside cluttered environments.

While the randomized sampling generates natural-looking results, it only explores
inside the blending space representing a subset of the full configuration space. De-
pending on the size of example motions in the dataset, it may take longer time to find
solutions in a cluttered environment. In such cases, the locomotion planner continues to
expand towards additional body placement candidates until the action can be planned
and executed, or returns failure until a maximum time limit is reached, a trade-off be-
tween humanlikeness and solvability.

10.1.3 Coordinated Behavior Modeling

We have also proposed a whole-body planner that addresses the high-level coordina-
tions specifically for demonstrative tasks. The planner breaks down the overall planning
problem into body positioning, locomotion, action execution and gaze synthesis, each
solved with a sub-module. The motion coordinations have been addressed in the over-
all synthesis. Human participants were invited to perform pointing tasks, and the data
collected was used to fine tune the parameters of several sub-modules. As a result, an
autonomous virtual agent planner is achieved that can engage and demonstrate towards
observers in various scenarios.

Due to the nature of the problem modeled, the proposed planner aims to simulate
only one demonstrative agent towards one observer at a given time. Certain visibility
constraints such as observer-target and agent-target are not addressed in this model.
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10.2 Future Research

The whole-body coordinated planning for demonstrative virtual agents remains a com-
plex and challenging problem. The motion capture-based motion planning and synthe-
sis methods presented in this dissertation demonstrated the ability in solving several
aspects of the problem modeled, however this only covers part of the various possi-
ble demonstrative settings, and there still is room for improvement in the following
directions.

10.2.1 Motion Synthesis with Dynamics

While fully dynamic control of an articulated character still remains a very difficult
problem, the benefit of introducing dynamic models can already be seen in many of the
recent works. A typical solution is to track motion capture data with physics for added
responsiveness to exterior disturbance. Similar approaches have been used to help de-
termine the best plausible re-entry into motion library play-back following unexpected
impacts.

The integration of dynamic models into proposed motion parametrization approach
would open up many possibilities. For example, if the character is carrying a heavy
object, the added impact on the body posture could be easily handled by the dynamics,
without the need to capture a set of example motions specifically for carrying heavy
objects. Similar cases include collision among the body, the object with obstacles, or
the object has been dropped or picked up, enabling the simulation of various scenarios
with limited motion capture examples.

10.2.2 Making the Planning Faster

Longer planning time is the bottle-neck of randomized planning algorithms. As future
work, to maximize the possibility of solution finding, the algorithm could adapt to
the environment by automatically switching to the best sampling strategy. Another
improvement is that the search trees of motion clips could be pre-computed for arbitrary
environment and saved for later reuse, avoid planning from scratch each time. Other
learning mechanisms could also be introduced to potentially speed up the planning
process.

10.2.3 Expanding the Behavior Models and Evaluations

What we have presented is a very specific behavior model for simulating demonstra-
tive agents in a dyadic setting, i.e. one demonstrator with one observer. There are
many possibilities as future work. For example, the body positioning module could
be expanded to allow the demonstrator performing toward multiple observers, or to
demonstrate in front of a vertical screen such as a white board or a projection screen.
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In essence, our model helps the demonstrator gain more attention from the observers.
However, the reversal of such model could also be used where the agent tries to avoid
attentions, for example finding the least attention-grabbing way to enter an on-going
presentation without disturbing the audience and the speaker. Additional models could
be integrated to address other social activities and interactions among multiple agents,
such as conversations and seat selections in a public place.

Due to the importance and difficulty of evaluating the quality of the result, we also
plan to evaluate and analysis the overall planning results by comparing simulated syn-
thesis against real captures. Environment mimicking the simulated planning problems
would be set up and new captures would be collected from human participants in the
form of either motion capture or videotaping. Our synthesis results would be presented
side by side with the new captures in the form of an online survey and rated on the
similarities between our synthesis and the ground truth.
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CHAPTER 11

Appendix

11.1 Body-positioning Model Fitting Parameters and Goodness of
Fit

Details of fitting parameters and goodness of fit for the body-positioning model in-
troduced in Chapter 7 Section 7.5. Polynomial (cubic and quadratic) functions were
chosen over other types of fitting functions such as Gaussian and Fourier, for the ability
to extrapolate at both ends (α > 150 and α < −150), and also for the lower computa-
tional cost at run-time.

β = f(α) = p1α
3 + p2α

2 + p3α + p4

Coefficients (with 95% confidence bounds)
p1 = 2.392e−006(−6.74e−006, 1.152e−005)
p2 = 0.0003056(−0.0004444, 0.001056)
p3 = 0.1145(−0.04067, 0.2697)
p4 = −6.062(−15.42, 3.294)
Goodness of fit:
SSE = 5386
R2 = 0.6156
AdjustedR2 = 0.5713
RMSE = 14.39

θ = f(α) = p1α
2 + p2α + p3

Coefficients (with 95% confidence bounds)
p1 = 0.0006228(0.000262, 0.0009837)
p2 = 0.3267(0.2991, 0.3542)
p3 = 11.29(6.564, 16.02)
Goodness of fit:
SSE = 1441
R2 = 0.9635
AdjustedR2 = 0.9608
RMSE = 7.304

φ = f(α) = p1α
2 + p2α + p3

Coefficients (with 95% confidence bounds):
p1 = 0.0006673(0.0001145, 0.00122)
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p2 = 0.6736(0.6315, 0.7158)
p3 = 2.073(−5.167, 9.312)
Goodness of fit:
SSE : 3381
R2 : 0.9785
AdjustedR2 : 0.9769
RMSE : 11.19

11.2 Specifications of miniAHRS sensor in GestureVest

This table lists the specifications of the miniAHRS tri-axial orientation sensor used in
our GestureVest described in Chapter 9.
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SPECIFICATIONS

Parameter Unit Value
Update Rate Hz 1…..100 (user settable)
Start-up Time sec < 1
Full Accuracy Data (Warm-up Time) sec < 60
Heading
Range deg 0 to 360
Static Accuracy at Normal Conditions (Tc=25°C) deg RMS 0.25 (1)

Static Accuracy in Temperature Range (Tc=-40°C to +70°C) deg RMS 0.4 (1)

Dynamic Accuracy deg RMS 0.7 (2)

Noise (at 100Hz output) deg RMS 0.03
Resolution deg 0.01
Attitude
Range: Pitch, Roll deg ±90, ±180
Static Accuracy at Normal Conditions (Tc=25°C) deg RMS 0.04
Static Accuracy in Temperature Range (Tc=-40°C to +70°C) deg RMS 0.1
Dynamic Accuracy deg RMS 0.4 (2)

Noise (at 100Hz output) deg RMS 0.02
Resolution deg 0.01
Angular Rate
Input Range: Yaw, Pitch, Roll deg/sec ±300
Bias deg/sec RMS 0.02
Scale Factor Accuracy % 0.2
Non-Linearity % FS 0.1
Random Walk deg/sqrt(hr) 6
Resolution deg/sec 0.01
Bandwidth Hz 40
Linear acceleration
Input Range: X/Y/Z g ±2
Bias mg RMS 0.3
Scale Factor Accuracy % < 0.1
Non-Linearity % FS 0.2
Random Walk m/s/sqrt(hour) 0.06
Resolution mg < 10
Bandwidth Hz 40
Environment
Operating Temperature deg C –40 to +70
Non-Operating Temperature deg C –55 to +85
Electrical
Input Voltage VDC +5.5 to +6.5
Input Current mA < 110
Power Consumption W 0.66 (at 6V powering)
Digital Output Format RS-232
Physical

Size mm
109 x 31 x 29 (case)

127 x 31 x 29 (with mounting
lugs and connector)

Weight kg 0.19 / 0.16 (3)

Connector 5-Pin Binder 719 (Male)
(1) root mean square error (1 sigma) in homogeneous magnetic environment, for latitude up to ±65 deg;
(2) may depend on type of motion;
(3) depends on material of the AHRS case.
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Learning: Instructive Demonstration, Generalization and Practice.” In Pro-
ceedings of the 2nd International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), Melbourne, Australia, 2003.

134



[ONL05] A. Olenderski, M. Nicolescu, and S Louis. “Robot Learning by Demon-
stration Using Forward Models of Schema-Based Behaviors.” In Proceed-
ings, International Conference on Informatics in Control, Automation and
Robotics, pp. 14–17, Barcelona, Spain, September 2005.

[Org] Organic Motion. “OpenStage marker-less motion capture system.”.

[PB02] Katherine Pullen and Christoph Bregler. “Motion Capture Assisted Anima-
tion: Texturing and Synthesis.” Proceedings of SIGGRAPH, pp. 501–508,
2002.

[PK81] Alan Pease and Jacqueline Kent. Body Language: How to Read Others’
Thoughts by Their Gestures. Camel Pub., 1981.
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