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Abstract

Low Regularity Solutions of Korteweg-de Vries and Chern-Simons-Schrodinger Equations
by
Baoping Liu
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Daniel Tataru, Chair

The aim of this thesis is to understand the locall wellposedness theory for some nonlinear
dispersive equations at low regularity.

The Korteweg-de Vries equation has sharp wellposedness at H -1 if we are concerned
about the Lipschitz dependence of solutions on the initial data. For lower regularity, one
might still have a weaker form of wellposedness only with continuous dependence on data.
Here we prove that the smooth solutions satisfy a-priori local in time H* bound in terms of
the H?® size of the initial data for s > —%. Together with the bounds we obtained on the
nonlinearity, the result here ensures that the equation is satisfied in the sense of distributions
even for weak limits.

The Chern-Simons-Schrodinger equation is a planar gauged Schrodinger equation which
has some similarity to the derivative formulation of the Schrodinger map problem. We work
on to prove local wellposedness in the full subcritical range H*(R?),s > 0.

One important idea in working on these problems is to find a suitable space to characterize
the solution. We use X*? spaces introduced by Bourgain, and U?, V2 spaces introduced by
Koch and Tataru. For the Chern-Simons-Schrodinger equation, we also need to fix a suitable
gauge to make the problem well-posed. The heat gauge is a variation of Coulomb gauge,
and it serves as a good candidate for this problem.



I would like to dedicate this thesis to my family.



Contents

Contents

1 Background and Preliminary Tools
1.1 Littlewood-Paley decomposition . . . . . . . . . . . ... .. ... ...

1.2 Dispersive equations
1.3 Spacetime estimates

LA X0 Spaces . . . . . .,
1.5 UP,VPSpaces . . . . . o o v i e e e
2 A-priori bounds for KdV equation below H -1
2.1 Introduction . . . . . . . ...
2.2 Function spaces . . . . . . . ..
2.3 Linear and bilinear estimate . . . . . . . . .. ... ... ... ...
2.4 Estimating the nonlinearity . . . . . . . . .. .. ... ... ..
2.5 Emergy conservation . . . . .. ... Lo
2.6 Local energy decay . . . . . . . . ...
2.7 Finishing the proof . . . . . . . . ...
3 Local wellposedness of Chern-Simons-Schrodinger
3.1 Introduction . . . . . . . . . ..
3.2 Gauge selection . . . . ...
3.3 Reductions with heat gauge . . . . . . ... .. ... oL
3.4 Function spaces . . . . . . . . Lo
3.5 Linear and Bilinear estimates . . . . . . . .. ... ... ... ...

3.6 Perturbative analysis
3.7 Quadrilinear bounds
3.8 Sextilinear bounds .
3.9 Lipschitz dependence

Bibliography

i

60
60
61
63
64
67
74
79
83
89

90



il

Acknowledgments

I would like to express my deep gratitude to my advisor Daniel Tataru for leading me
through my graduate study, for suggesting to me many interesting problems, for sharing
with me his mathematical insights, and for his encouragement along the way. His influence
is evident on every page.

I am greatly indebted to Mihai Tohaneanu, Boris Ettinger, Sebastian Herr and Tobias
Schottdorf. Thanks for the mathematical discussions, for our great lunch group and for all
the fun we enjoyed together. The time spent with them has been the best part of my life in
graduate school.

I would like to thank my collaborator Paul Smith. All our discussions really helped me
learn a lot, and made the process of research more pleasant.

Many thanks to Professor Herbert Koch and Michael Christ for reading my paper care-
fully and writing my recommendation letters; To Professor Maciej Zworski and Lawrence
Craig Evans for their interesting classes and causual talks; And to Ioan Bejenaru, Jeremy
Louis Marzuola and Jason Metcalfe for being good brothers in my mathematical family.

[ am grateful to all my friends, Sobhan Seyfaddini, Diogo Oliveira e Silva, Dario Beraldo,
Amit Kumar Gupta, Ivan Ventura, Jiangang Yao, Yi Liu, An Huang, Junjie Zhou, Yuhao
Huang, Ivan Matic, Qin Li, Jian Ding, Ying Xu, Jue Chen, Boaz Haberman, Ben Harrop-
Griffiths, Lifeng Zhao, Tak Kwong Wong... It’s hard to list all the names, but I am so
thankful for their company.

Lastly, there are never enough thanks to my family, especially my brother Xianghu Feng,
for their constant support. Without them, I could have never made it through these days.



Chapter 1

Background and Preliminary Tools

In this chapter, we introduce some basic tools that are commonly used for dispersive
equations. Precisely, we will introduce Littlewood-Paley decomposition which serves as the
main technique to handle problems in this thesis. We also define X** and UP, V? spaces
that are well suited for each equation.

1.1 Littlewood-Paley decomposition

We define the Fourier Transform F on Schwartz space S, (R™)

Fi =1 = [

The definition of Fourier Transform varies slightly in different settings in the literature: the
constant in front of the integral might be taken differently and e=2"¢ may be used instead
of e here.

The Fourier transform gives an automorphism on the Schwartz space, moreover, it can
be extended to wider function spaces, such as tempered distributions [30].

Let ¢ : R — [0, 1] be a smooth even function compactly supported in [—2,2] and equal
to 1 on [—1,1]. For dyadic integers N = 2% k € Z+, set

on@=0(S) (), frvz2 wd w©=vl) 0D

So ty is a smooth function supported in region {¢ € R, & <|¢] < 2N} when N > 1.
For each such N > 1 dyadic, define the Littlewood-Paley projection operator Py as the
Fourier multiplier with symbol ¥ y.

Prf(€) == vn () f(£). (1.2)

PSNZZ Z PM, PZN = ZPM

1<M<N M>N

(z)e ™ de,

Moreover, let
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Pyy<.<ay = P<yi, — Py

All summations are taken over dyadic numbers. We set uy = Pyu for short, similar for
other notations u<y, usy-.

The Littlewood-Paley decomposition helps us to decompose a function, on the frequency
side, to pieces that have almost disjoint frequency supports. Now low frequency compo-
nents are slowly varying and have higher regularity while the high frequency parts oscillate
rapidly and have low regularity. Thus when we are proving estimates, especially when we
are handling bilinear and multilinear interactions of functions, we can identify the worst case
scenario.

Now we recall the following Bernstein inequalities and Littlewood-Paley inequality, which
helps to turn our heuristics above into rigorous analysis.

Lemma 1.1.1. (Berstein’s inequality)[56] For s > 0 and 1 < p < q < o0, the following
imequalities hold true.

|l 2@y Spam N2 70 | vl zzgen)
VI fallz@ny ~psm NN Fnll oo ny

HszHLZ(R") /Sp,sm NﬁsH ’v|sf2N”L§Z(R")

n

| f<vllig@n) Span N2l fnllrzcen)

IV fenlle@ny ~pisn No| f<n |l oo @ny-

Lemma 1.1.2. (Littlewood-Paley Inequality)[52] When 1 < p < oo, we have the following

estimate.
1AW 2y ~pan 1O 32z eny-
N

1.2 Dispersive equations
A constant-coefficient linear dispersive PDE generally takes the form
Owu(t, ) = Lu(t, z); u(0,z) = up(x) (1.3)

where u : R x R" — H takes value in a finite dimenstional Hilbert Space H, and L is a
skew-adjoing constant coefficient differential operator, taking the form

Lu(x) := Z caO0gu(x)

|| <k

where ¢, are constant coefficients, k € Z+ is the order of the differential operator, a =
(a1,---,aq) € Z7 ranges over all multi-indices with |af := a1 + -+ 4 ay,.
0 0

Oy = (5)™ ()™
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(Classically, this operator is only defined on k times continuously differentiable functions, but
we can extend it to distributions and thus talk about both classical and weak distributional
solutions to (1.3).

Not let us write L = ih(D), where D is the frequency operator

and

h(&, - &) = Z jlal=te g0 gon,

|a|<k

Since we assume L is skew-adjoint, we can verify that h is real-valued polynomial. We call
h the dispersion relation of equation (1.3).

We define the free evolution operator e'*

)= [ O (1.4

The operator is initially defined for Schwartz functions, but can of course be extended to
other spaces, i.e. tempered distributions.

The fundamental solution K, can be viewed as the propagator e'* applied to delta func-
tion.

Ki(z) = / @ EHE) e (1.5)

The integral here is not absolutely convergent, but it can be interpreted as the limit of

1 i(x-E+th(€)) ,—elé]?
Ky(z) 113% e e dé.
in the sense of distribution.
And we have the solution of (1.3) as a convolution of initial data with fundamental
solution.

u(t, ) = uo(z) * K(z) = / uo(z — y) Ky (y)dy. (1.6)

n

The representation (1.6), together with
U(t, l‘) = etLu0<'r)7

help us to understand the solution from different aspects. They are both useful for the proof
of spacetime estimate in the next section.

We notice that for fixed frequency & € R™, the plane wave e**)+% golyes the equation
(1.3). Thus the solution (1.4) is a superposition of plane waves, and each of them travels at
velocity —Vh(€), which is called group velocity. So different frequencies in this equation will
tend to propagate at different velocities, thus dispersing the solution over time.

Now let us write down the important examples in this thesis.
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Example 1.2.1. (The free Schrédinger Equation)

Ou — iAu = 0. (1.7)
Here u: R xR" — H is a vector field taking value in Hilbert space H, and A = Z?Zl 8‘% 18
the Laplacian. The dispersion relation is h(€) = —|£]? and group velocity is —2€.
Example 1.2.2. (The Airy Equation)

Oyu + O3u = 0. (1.8)

Here v : R x R — R is a real scalar function. The dispersion relation is h(£) = & and group
velocity is 3€2.

1.3 Spacetime estimates

In this section, we collect some useful estimates that are crucial to control the size of the
solutions. Here we will specify our dispersive equations to be the free Schrodinger equation
(1.7) and the Airy equation (1.8).

From the fundamental solution and the method of stationary phase, we get the dispersive
inequalities.

e ug(2) || zeerny S 2 ||uo(@) || 1 @en)- (1.9)

_1
e ug(@) | 5=y S 5 o () |- (1.10)

Notice that the L2 mass of the solution is conserved, so we can apply interpolation and get
the following dispersive estimates.

Lemma 1.3.1. (Dispersive estimate)

. (i1

e uo(@) gy S 7" o (2] e (1.11)
3 _2¢1_1

e o ()] 1y gy S 2572 o (@) ] 2 sy (1.12)

1 1 _

Combining the above dispersive estimates with some duality argument, we obtain the
well-known Strichartz estimates.

Theorem 1.3.2. (Strichartz estimates for Schrodinger Equation) [23, 60, 39] Let (q,7) be
any admissible exponents, i.e. §+§ = 2 and (q,m,n) # (2,00,2). Then we have the

2
homogeneous Strichartz estimate

1" Fll gz ey S N fllz2eey. (1.13)
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Theorem 1.3.3. (Strichartz estimates for Airy Equation) [43, 56] Let (q,r) be Strichartz

pair
2 1 1
-+ —-== 4<qg< 0. 1.14
. to=5 4sgso (1.14)
Then we have )
3 41
€% fll parr ey S D177 fllr2w)- (1.15)

Also, we have the local smoothing and maximal function estimates. For a unit vector
e € S"!, we denote by H, its orthogonal complement in R™ with the induced measure.
Define the lateral spaces LE9 with norms

1 llze = [jﬁ {/; R|f<xe~+:ﬂ,tnqu%ﬁ}q dx] ,

with the usual modifications when p = oo or ¢ = cc.

Define the operator Py e by the Fourier multiplier & — x5 (€ - €), where ¢y is the same
function we used to define frequency projection Py in section 1.

Now we can state the local smoothing and maximal function estimates for Schrodinger
Equation.

3=

Theorem 1.3.4. [31, 32| Let f € L*(R"), N € 22, N > 1, and e € S*~'. Then we have the
local smoothing estimate 4
€2 P o fllpeee S N72 | fll e (1.16)

In addition, if n > 3, we have the maximal function estimate
. n—1
"2 Py fllpzee S N2 || £l 12 (1.17)

Remark 1.3.5. In dimension 2, the maximal function estimate fails, but only with a loga-
rithmic loss.

We have similar estimates for Airy Equation.

Theorem 1.3.6. [43, 56] The following estimates hold true.
100¢® flligerz S 11122 (118)

1
10: 2% fllparee S IIf]Iz2- (1.19)
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1.4 X*’ spaces

If we take spacetime Fourier transform on equation (1.3), we get
ira(r,§) = ih(§)u(T,§)
and thus we get
(7 = h(§))u(r,§) = 0.

So u(T,£) is supported in the hypersurface {(7,&) : 7 = h(§)}.
Now we are working on solutions in local time interval, and also nonlinear dispersive
equation

Ou = Lu+ N (u), (1.20)

The solution does not lie in the characteristic hypersurface anymore, but we can still expect

o~

n(t)u concentrates near the hypersurface. This motivates the definition of X*° spaces.

Let us define the modulation o = |7 — h(£)|. As in our definition for frequency projection
(1.2), we can also define the modulation projection operator Q5; by localizing the modulation
to dyadic region M.

Quif(w,t) = Yur(r — h(E)) f (7, €).

Now we can define the X** spaces introduced by Bourgain[5, 6].

Definition 1.4.1. The space Xf_ﬁh(g) (R x R") or sometimes abbreviated by X*? is defined
as the closure of Schwartz functions S; (R x R") under the norm.

s, = [ ORQ+ P+ I = )P s
= ) N®MP|PxQuuljz .
N,Me2z+ ’

Remark 1.4.2. The spaces are only adapted to local in time solutions.

Here, we list some interesting properties of X*? spaces. The proof can be found in
standard literature [56, 25].

1.Nesting and Duality
We have the trivial nesting X** C X whenever s’ < 5,0/ < b. And by Parseval’s
identity and Cauchy-Schwarz we have the duality

s,b * _ —s,—b
<XT:h(g)> =X " hie (1.21)
Also notice the following fact

(1.22)

lall e = lullxse,

2.The free solution lies in X*" locally
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Proposition 1.4.3. Let f € H3(R™) for some s € R, then for any Schwartz cutoff, n(t) €
SR), we have

In(t)e™ fll e

< S n
(&) RXR™) ~m:b 1 1| a2 (-

3.Any estimate for free solution would extends to functions in X%, b > %

Proposition 1.4.4. Suppose that b > % 5, and let' Y be a Banach space on R x R", for which
the following estimate holds

le"™ e flly < 1flmaee)

for all f € H}(R™) and any s,7o € R. Then we have
< s :
[ully <o Hu”ijh(g)(Ran)

4.X°° is stable with regard to time localization.

Proposition 1.4.5. Let n(t) be a Schwartz time cutoff. Then we have

[In(t)ul

X3P, o (RxR7) S llul Xt

Zhie) (RxR™)*

=h(€)
5.Energy estimate holds true for functions in X*°.

Proposition 1.4.6. For the linear equation
Ou=Lu+f (1.23)

suppose u 1s a smooth solution, then we have the following energy estimate holds true for
any s € R, b > % and any Schwartz time cutoff n(t).

In(t)ullx

s < S
2, S0 1@ Oz + [ e

Remark 1.4.7. The above Propositions 1.4.4 and 1.4.6 fails at endpoint b = % logarithmically

in certain regions, in which case, we should seek for alternatives. Two of the candidates are
1 1

the X*2'! and X*2* spaces defined via norms

2 2s o %
|u|\ml—z( / oy ORI h<s>|dsdf>

e’

and

ol = U 21E1* |7 — h(&)| dEd
il = ([l ORI~ 1)l

A better candidate is the U?, V2 spaces defined in the next section.
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1.5 U?, VP spaces

In this section we discuss the function spaces of UP, V? type, which were first introduced
by Tataru in unpublished work on wave map problem. It has been used to obtain critical
results in different problems [45, 29, 27, 28] as a useful replacement of X*° spaces in limiting
cases.

Throughout this section let H be a separable Hilbert space over C. Let Z be the set
of finite partitions —oco < tg < t; < ... < tg < oo of the real line. If tx = oo and
v : R — H, then we adopt the convention that v(tx) := 0. Let x; : R — R denote the
(sharp) characteristic function of a set I C R.

Definition 1.5.1. Let 1 < p < oco. For any {#;}X, € Z and {¢y}iy C H with
Z;{;{:_ol k|| = 1, we call the function a : R — H defined by

K
a= Z X[tk—latk)(bk_l
k=1

a UP-atom. We define the atomic space UP(R, H) as the set of all functions v : R — H
admitting a representation

u= Z Nja; for UP-atoms aj, {)\;} € !
j=1
and endow it with the norm
|ul|gr := inf {Z Al u= Zx\jaj, A €C,oaja Up—atom} . (1.24)
j=1 =1

Remark 1.5.2. The spaces UP(R, H) are Banach spaces and we observe that UP(R, H) —
L>*(R; H). Every u € UP(R, H) is right-continuous and u tends to 0 as t — —o0.

Definition 1.5.3. Let 1 < p < o0.

1. We define VP(R, H) as the space of all functions v : R — H such that v(co) :=
limy 00 v(t) = 0 and v(—o0) exists and for which the norm

[ollvr == sup (lev(tk)—v(%—l)H%) (1.25)

{te}ico€2 \ k=1
is finite.

2. Likewise, let VP(R, H) denote the closed subspace of all right-continuous functions
v: R — H such that lim,, - v(t) =0.
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Remark 1.5.4. The spaces VP(R, H), VP(R, H) are Banach spaces and the space V2 (R, H)
inherits its norm from VP(R, H). The requirement of functions being right continuous in
VP (R, H) guarantees that we can identify functions as distributions.

We now introduce U?, VP-type spaces that are adapted to our equation (1.3).

Definition 1.5.5. For s € R, let UPH (resp. V' H) be the space of all functions u: R — H
such that t — e~"Fu(t) is in UP(R, H) (resp. V?(R, H)), with respective norms

lulloper = e ullvem, — llullvea = lle™ ullvege,m- (1.26)
The same definition also extends to Vri L H.
We simplify our notation by omitting H unless necessary.

As we did for X*® spaces, we also list some of the key features for UP, V? spaces.

1.Duality and Embedding

As in [27, Proposition 2. 10] we define the following paring Take u e UP,ve VY, with

(p,p') dual exponent, i.e. % ; = 1. And a partition t = {t,}+—,} € Z, we deﬁne

Z (th—1),v(te) —v(te-1)) g

k=1

Then there is an unique extension B(u,v) : U? x VP : (u,v) — B(u,v), such that for all
€ > 0, we can find a partition t € Z, such that any finer partition t C t’

|B(u,v) — By (u,v)| <e€
And
| B(u, v)| < [[ullve[[o]ly»

It was further shown that B(u,v) takes the following representation for functions u €
UrveVP 1<p<oo

B(u,v) = —/ (u'(t),v(t)) dt
R
Proposition 1.5.6. [27] Let 1 < p < oo, we have the duality
) =v"
under the pairing B(u,v), in the sense that T : V¥ — (UP)*, T'(v) := B(,v) is an isometric
1somorphism.

Hence we also get duality

uny =vy
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Proposition 1.5.7. [45] We have the following embedding among the UP, V? spaces.
UP(R,H) = VE(R,H) = UYR,H) — L®(R; H),1 <p < g< oo

Same is true if we replace UP, V.E by U?, VTJZL

Proposition 1.5.8. [45, 27] We have the following embedding connects U?, V;?cL spaces with
refined X*° spaces. o o
X*2t cU; C V2, C X5 (1.27)

T

It is worth observing that for functions at fixed modulation, the U? and V7 norms are
equivalent from this lemma.

2.The free solution lies in U? spaces and UP, VP are stable with time trunca-
tion.

The first claim follows immediately from the atomic structure of UP, and the fact that
each atom is a piecewise free solution.

The second one is from the fact that time truncation does not increase the norm for
atoms in UP space, and reduces variation for V? functions.

3.The estimates for free solution extend to functions in UP.

We recall the following lemma, which is in the same spirit as Proposition 1.4.4. Notice
here we can not take any arbitrary Banach space Y, we need the space satisfy triangle
inequality with respect to time truncation.

Lemma 1.5.9. [27, Proposition 2.19] Let T : H x --- x H = Y = LYY be an n-linear
operator. Y is Banach space of functions on R". Assume the following bound is true for free
solutions

T 1, e o)y ST N0illn
=1

Then we can extend T to functions in UY and get

m
HT(uh e ,Um)HY 5 H HUZHUf
i=1

Remark 1.5.10. In the practical problems, we have Y = LYL4(RxR"™) or Y = L(R; Lf@/ (Rx
R"71)). In fact we have better extension: we can extend the operator T to functions on U7,

r = min(p, q).
4.The linear estimate

Lemma 1.5.11. For the equation

Owu=Lu+ f; wu(x,0)=u,
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we have the linear estimate

T
lalor < lu(e, 0l +  sup | / (F0) ]
0

/
veVl ||l =1
vi

Proof. we write down the solution in the Duhamel form

t
u(t,z) = eug +/ eI f(s)ds
0

Now let’s apply a time cutoff 1oy to both side, notice that linear solution is controlled in
U? norm, we get

t
Jult, 2)lluz o) S llulz, 0)[[m + Hl[o,T)/ eI f(s)ds|up o,
0

For Z(f) = 1pm) fot et f(s)ds, we can extend it continuously by fOT eT=9)L f(s)ds, hence

by duality, we get

2o < s [ @ TE)dr< s [ (fet),
eV Joll,p eV Jlofl
Just replace e’ v with another © € V7, the claim follows. ]

5.Modulation projections
Let us list the estimates concerning modulation projection.

Proposition 1.5.12. [27, Corollary 2.18] We specify H = L*(R™) here, hence u : Ry — R™.
We have

1
||QMUHL2(R><R") SM 2||UHVL2

_1
”QEMUHLQ(RXR”) SM 2HU”VL2
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Chapter 2

A-priori bgounds for KAV equation
below H 1

2.1 Introduction

In this chapter, we consider the Korteweg-de Vries (KdV) equation,

(2.1)

ou+ Bu+9,(u?) =0, u:Rx[0,T] =R,
u(0) = up € H*(R).

The equation is invariant respect to the scaling law
u(t, z) = Nu(\3t, \x),

which implies the scale invariance for initial data in H—2 (R). It has been shown to be locally
well-posed (LWP) in H* for s > —2 by Kenig, Ponce and Vega [40] using a bilinear estimate.
They constructed solution on a time interval [0, 6], with § depending on ||ugl|s=®). Later,
the result was extended to global well-posedness (GWP) for s > —% by Colliander, Keel,
Staffilani, Takaoka and Tao [13] using the I-method and almost conserved quantities. See
also the references [4], [11], [38], [22], [43], [6], [42] for earlier results, and [10], [26], [44] for
local and global results at the endpoint s = —%.

In [51], Nakanishi, Takaoka and Tsutsumi showed that the essential bilinear estimate
fails if s < —3. In fact, Christ, Colliander and Tao [10] proved a weak form of illposedness
of the R-valued KdV equation for s < —%. Precisely, they showed that the solution map
fails to be uniformly continuous. See [41] for the corresponding result for the C-valued KdV
equation.

On the other hand, the same question was posed in the periodic setting (u : T x [0,T] —
R), where for s > —1/2, we have the results of LWP[40] and GWP|[13]. Also, Kappeler
and Topalov [36], using the inverse scattering method [21], proved GWP for inital data in

HP(T),3 > —1 in the sense that the solution map is C° globally in time. Their proof
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depends heavily on the complete integrability of the KdV equation. Interested readers are
also referred to the work of Lax and Levermore [47], Deift and Zhou [14], [15]. There they
used inverse scattering and Riemann-Hilbert methods to study the semiclassical limit of the
completely integrable equations.

Concerning the KdV problem with initial data in H~!(R), there has been several results
recently. In [49], Molinet showed that the solution map can not be continuously extended in
H?*(R) when s < —1. In [37], Kappeler, Perry, Shubin and Topalov showed that given certain
assumptions on the initial data uy € H~! , there exists a global weak solution to the KdV
equation. Buckmaster and Koch [8] proved the existence of weak solutions to KdV equation
with H~! initial data. The approach in [37] and [8] both use the Miura transformation to
link the KdV equation to the mKdV equation, and the proofs involve the study of Muria
map, and the existence of weak L? solutions to mKdV or mKdV around a soliton.

In addition, there is an interesting result by Molinet and Ribaud [50] on the initial-value
problem for KdV-Burgers equation.

{atu+@§u+8x(u2)—8§u:0, teRy, €Ror T, (2.2)

u(0) = ug € H*(R).

They showed that (2.2) is GWP in the space H*(R) for s > —1, and ill-posed when s < —1
in the sense that the corresponding solution map is not C2. This is a bit surprising since the
initial-value problem for the Burgers equation

uw(0) = uy € H(R). (2.3)

{ Ou+ 0, (u?) —Pu=0, teR,, z€R,
is known to be LWP in the space H*(R) for s > —1, and is ill-posed in H*(R) for s < —1, see
references [2] and [17]. Notice that the critical result for Burgers equation (2.3) agrees with
prediction from usual scaling arguments. While KdV-Burgers equation(2.2) has no scaling
invariance, the sharp result by Molinet and Ribaud s = —1 is lower than s = —% for KdV,
and s = —% for Burgers equation.

From all the results mentioned before, it seems reasonable to conjecture well-posedness
of KdV equation (2.1) in H*(R), in the range —1 < s < —2, with some continuous but not
uniform continuous dependence on the initial data.

Another related topic is one dimensional cubic Nonlinear Schrédinger equation (NLS)

. 2 2 _ .
{zatu+3muﬂ:|u|u—07 u:Rx[0,T] = C, (2.4)

u(0) = up € H(R).

The NLS has scaling invariance for initial data in H _%(R). It has GWP for initial data
in uy € L? and locally in time the solution has a uniform Lipschitz dependence on the
initial data in balls. But below this scale, it has been shown that uniform dependence
fails [10],[41]. Koch and Tataru [46] proved an a-priori local-in-time bounds for initial data
in H*, s > —7%. Similar results were previously obtained by Koch and Tataru [45] for s > —2,
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and by Colliander, Christ and Tao [9] for s > —1—12. These a-priori estimates ensure that the
equation is satisfied in the sense of distributions even for weak limits, and hence they also
obtain existence of global weak solutions without uniqueness.

Inspired by the results above, we look at the KdV equation with initial data in H® when
s < —%, and prove that the solution satisfies a-prori local in time H*® bounds in terms of the
H? size of the initial data, for s > —%. The advantage here is that we performed detailed
analysis about the interactions in the nonlinearity, which gives us better understanding of
the real obstruction towards establishing wellposedness result in low regularity.

Our main result is as follows:

Theorem 2.1.1. (A-priori bound) Let s > —%. For any M > 0 there exists time T and

constant C', so that for any initial data in H -1 satisfying

||U0| s < M,
there ezists a solution u € C([0,T], H_%) to the KdV equation which satisfies
[ul| e e < Clluo| - (2.5)

Using the uniform bound (2.5), together with the uniform bound on nonlinearity

||X[—T,T]U| xenxg T ||X[7T,T]8x(u2)| XsNXp, S luoll ms,

which come as a byproduct of our analysis in the previous theorem, one may also prove the
existence of weak solution following a similar argument as in [9].

Theorem 2.1.2. (Existence of weak solution) Let s > —%. For any M > 0 there exists time
T and constant C', so that for any initial data in H® satisfying

Huo’ Hs < M,

there exists a weak solution v € C([0,T], H*)N(X*NX}) to the KdV equation which satisfies

HS.

ull o rrs + Xyl xonxs, + [IX—1.0102 (W) xonxs, < Cllugl

Remark 2.1.3. We can always rescale the initial data and hence just need to prove the
theorems in case M < 1.

We recall the Littlewood-Paley frequency projection Py defined in chapter 1 (1.1). For
each \ we also use a spatial partition of unity on the \**5 scale

1= x)(z), x}@)=x(\"*"z—j),
JEZ

with x(x) € C§°(—1,1).
In order to prove the theorem, we need Banach spaces
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e X* and X; to measure the regularity of the solution w. The first one measures dyadic
pieces of the solution on a frequency dependent timescale, and the second one measures
the spatially localized size of the solution on unit time scale. They are similar to the
ones used by Koch and Tataru in [46].

e The corresponding Y* and Y;? to measure the regularity of the nonlinear term.

e Energy spaces

||U||12§Lg°Hs = Z )‘QSHUAH%goLg»

A>1

and a local energy space

2 _ —25-5 A 2
Hu”lil;OL?H*S*% N ; A sgp I1x; axu’\HLi,t'

With the spaces above, we will prove the following three propositions.
The first one is about the linear equation.
Proposition 2.1.4. The following energy estimates hold for (2.1):

lull s < Mulliz g s + 1135 + 03)ully+, (2.6)

lullxz, S Nl g o gyt + 10+ O )ully (2.7)

le

The second one controls the nonlinearity.
Proposition 2.1.5. Let s > —1 and v € X* N X}, be a solution to equation (2.1), then
10x (w?))]

Finally, to close the argument we need to propagate the energy norms.

venyy S Hu”%(smxlse + ”UH?(szfe- (2.8)

Proposition 2.1.6. Let s > —% and u be a solution to the (2.1) with
[wlliz Lo s < 1.

Then we have the bound for energy norm

6

e+ llul

k=3

el e e S ol (S (2.9)

and respectively the local energy norm

6
[l ot S ol + 3 el (2.10)
k=3
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We organize our paper as follows: In section 2.2, we will define the spaces X*, X},
respectively Y* Y7, and establish the linear mapping properties in Proposition 2.1.4. In
section 2.3 we discuss the linear and bilinear Strichartz estimates for free solutions, and
collect some useful estimates related to our spaces. In section 2.4 we control the nonlinearity
as in Proposition 2.1.5. In sections 2.5, 2.6 we use a variation of the I-method to construct
a quasi-conserved energy functional and compute its behavior along the flow, thus proving
Proposition 2.1.6.

Now we end this section by showing that the three propositions imply Theorem 2.1.1.

Proof. Since ug € H ’%, we can solve the equation iteratively to get a solution up to time 1,
which implies that u € [3L°H*® and also that u € X* N X}, because the space we use has
the nesting property X' C X2 s; < 8o, same for [3L°H® and Xj.

Then we use a continuity argument. Suppose € is a small constant and |||

Take a small §, so that ¢ < § < 1, denote

A={T €0,1]; Hu|’l§L§0HS([0,T]xR) <20, ||ul

xsnxg (0.7)xR) < 20}

and we just need to prove A = [0,1]. Clearly A is not empty and 0 € A. We need to prove
that it is closed and open.

From definition in the next section, we can see that the norms used in A are continuous
with respect to T, so A is closed.

Secondly, if T € A, we have by proposition 2.1.6

||u||l§L§°Hs([o,T]xR) Se+d°,

and by proposition 2.1.4 and 2.1.5, we have

I X5nXg (0.T)xR) S €+ 62 4 65

So by taking € and ¢ sufficiently small, we can conclude that

||UHZ§L;>OHS([0,T]xR) <0, |[lul X5NX5,([0,T]xR) < J.

Since the norms are continuous with respect to 7', it follows that a neighborhood of T is in
A. Hence we proved Theorem 2.1.1. O

2.2 Function spaces

The idea here follows the work of Koch and Tataru [45][46]. We begin with some heuristic
argument: If the initial data in (2.1) has norm [jugl|, s < 1, then the equation can be solved
iteratively up to time 1. Now when taking the same problem with initial data ug € H®,s <
—3 localized at frequency A, the initial data will have norm Jull -3 < A1, Now if we

rescale it to have H~1 norm 1, we see that the evolution will still be described by linear
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dynamics on time intervals of size A**3. So we decompose our solution into frequency pieces

u =Y ,5; uy and measure each piece uniformly in size A**3 time intervals.

Another important idea is to look at waves of frequency A travelling with speed A2, so
for time \*73, it travels in spatial region of size A**°. So we also decompose the space into
a grid of size A**° by using the partition of unity

1= ZX;@).

Xg\(x) is defined as before, and it’s easy to see that the spatial scales increase with A.
Denote n;(t) as sharp time cutoff with respect to any time interval I. Let I, be a time
interval of size A***3, then we use 1,(t) or 7, as a simplified notation for 7, (£). And x*(x)
is the smooth space cutoff with respect to spatial intervals of size A***5 as before.
Define |D|* to be the multiplier operator with Fourier multiplier [£|%. We use the con-
vention that f € |D|7*X & ||f]|? = Y. A*||fall% < oo in our definitions.

Definition 2.2.1. The spaces we use contain the following elements:

(i) Given an interval I = [to,t1], we define the space

16l 0zy = llo(to) Iz + 1110 + 02) Bl 72,
16151 = D A loallkor -
A

X1[I] is used to control the low modulation part of the solution in a classical space,
which is extendable on the real line.

(ii) We use sums of spaces, i.e. ||ul|larp = inf{||ui||a + ||ue|l B, u = w1 + u2} to define

r=¢3 =

Z = (X2 | DIPP2X L) 0| DILY

el

Z will always be used for very high modulations (> |£[®), i.e. in what are called the
elliptic region.

(iii) The space S is defined by putting high and low modulation in different spaces.
31
ualls = A3T2s T2 1@, yarguallcz, + ||QA4+%§UST10)\3U)\HX;:S’;3+S + 1Qx 1 ysunllz.

The good thing here is space S is stable with respect to sharp time truncations, the L?
structure deals with the tails when multiplying by a time-interval cutoff.
In particular, we have

[ma()ualls S flualls-
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(iv) Let X,[I] = X![I]+S[I]. Now we can define X* norm in a time interval I by measuring
the dyadic parts of u on small frequency-dependent time scales

%o = Z sup [0y (t)uall, o

1 |J‘:A4s+37Jcl

i

X, measures the spatially localized size of the solution on the unit time scale

N =2osw Y IG@muliy

A>1 7 | gj=atsts g

[l

(v) Correspondingly, we have the space Y* and Y}?

lalfay = sup [lns(Oualldy ),

> |J[=EXsT ICT

Ve = _swp Y G @ns@ually, .

A>1 7 =t gcr

lul

Here )
YAlI] = |D,|~5|I|"2 L* + DS[I],

DS ={f = (0; + 9>)u; u € S} with the induced norm and DS[I| = {f|;, f € DS}.
Through our paper, we will mostly drop the interval I in the notation if I = [0, 1].

Remark 2.2.2. We look at each of the spaces in detail.

1. X'[I] is not stable with respect to sharp time truncation as it would cause jumps at
both ends. Also in order to talk about modulation, we need to extend functions so
that they are defined on the real line. To fix the problem, we define

161B0n = No(to) 122 + 171112, + )63 .

91 = 3 310 .
)
Now take any function u € X'[I], denote ug = 6(t)u, where u is the extension of
u by free solutions with matching data at both ends and 6(t) is a smooth cutoff on
a neighborhood of I. Clearly, |lul|x1;) = [[up[/x1, and when we talk about function
u € X[I], we always mean ug.
While S[I] is stable with sharp time cutoff, DS[I] is not. We can extend functions

in S[I] by 0 outside the interval. And from the definition, functions in DS[I] always
come from interval restriction of functions in DS, which are defined on the real line.
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2. The space X'[I] is compatible with solutions to the homogeneous equation. Namely
for any smooth time cutoff n(t), we can prove

||77(t)€taguo|\xl[1] S ol s,

It is also compatible with energy estimates
[wll oo () S Nullxr-

3. We will ignore the subscript notation 7 = £ in the Xfﬁgg space except for the special

curve 7 = }L§3 which arises when two high frequency wave interact and generate an
almost equally high frequency.

4. Since we are using sums of spaces, it is interesting to compare the norms of these
spaces. We note the following facts by Bernstein inequality.

[l x, ) = luallxriz, when |7 — &3] < A+ta,

~ _1g3] « 143
luxllz ~ HuA|]|D|72572X%;%1§30‘D|L%, when |7 — ;£ < 5A%,
-1

urllz =~ HUAHX—3—4S’25+2ﬂ|D|L§fx ~ ||upl|x-s1+s, when |7 — &3 ~ 1—10)\3.

The X' and S norm balance at modulation |7 — &3] ~ A*2:, which is also where we
split S into the L* structure and X !5 Hence whenever we split into an X' and
an S part, we always assume the S part have modulation larger than Mo (which is
larger than A2). The same applies for |D|~*|1|"2L* and DS.

The third equality is because when modulation is around %/\3, the Z norm is in fact
X 73742542 0 | D|Lys,. Using Bernstein, we can see that it matches with X515,

Now let us prove Proposition 2.1.4.

Proof. 1t suffices to prove the Proposition for a fixed dyadic frequency A. We restrict our
attention to time interval J = [a, b] with size A\**™3 and we need to prove that

luallx, i S luallzgens + [[fallvar, (0 + 03)un = fa. (2.11)
We now split f) into two components
fr=fir+ fon, fin€L%  fop € DS.

Pick vy such that (0, + 32)vx = fo, || forllps = |[valls. (or (v%)5° with [[vils — || f2llps-)
Then we have (9; + 02)(uy — v)) = fix.
Notice the fact that, for any function ¢ and time interval I = [to, ;]

sip1—1 o171l
loallxrn = N2 @allz i + A0+ 7)ol 2 -
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So we get

lux = vallxry + [oallsp

lurllxan S

_1
S N2 lux —oallzz, g + Ll
<

|D|=#|1]~ 2 L2[J]

HUAHL?OHS + ”fl’/\H\D|’S\I|_%L2[J]
Here we used the fact )
N2 oallzz, 1 S lloallsis
which can be checked easily.

For the second estimate about local energy space, we can still localize to fixed frequency,
and need to show that

|J‘:)\4s+3 |J| )\4s+3
sup Y Il S Sup Y ATl g T I AR (212)
J JcI JcI

To prove the estimate, let us consider the inhomogeneous problem on interval J = [a, b] of
size |J| = \15+3)
(0 + R)uk = Poxqpfr, ui(a) = xquoa

and prove that
. —N /\s _1
IXGudllxan S G = k) T2 Ixaudllcz, + I Allvan)- (2.13)

When j = k, it is essentially the same as (2.11). Notice in the process of proving (2.11), we
get

luallxai < X112 uallg o + Al

When |j — k| > 1, it follows from the rapid decay estimate on the kernel Kj; of X/\ t0; p XA
Kz, y)| SN G =k, ] <A

Since uy = >, u¥, so we sum up k in (2.13), and get

X (x uA||XAm<Z 7= BN IR sl ) + I @) i),

which is equivalent to (2.12). O



CHAPTER 2. A-PRIORI BOUNDS FOR KDV EQUATION BELOW H1 21

2.3 Linear and bilinear estimate

In this section, we look at solutions to the Airy equation (1.8), which satisfy the Strichartz,
local smoothing and maximal function estimates, see theorem 1.3.3 1.3.6.
Once we have estimates for linear equation, we can extend it to X1

Corollary 2.3.1. Let (q,r) be a Strichartz pair as in relation (1.14). Then we have

_1_g
Hﬁl(t)UAHLgL; S AT Jual x s (2.14)

Also, the following smoothing estimate and mazimal function estimate hold

Inr@uallzers S A llullxom, (2.15)

1 s
[nr()unllzace S AT |lunllxm, (2.16)

Proof. The results follow by expanding u, via Duhamel’s formula.
If (0; + 02)uy = f, then

t
wy = e Py (to) + / e_(t_s)agf(s)ds.
to
From Strichartz estimate, and its dual form - the inhomogeneous Strichartz estimate, see

Theorem 2.3 in Tao [56] section 2.3, and we get

493 _1
Ins(t)e™ %= ur(to)l pory + A" llnr () flloire

Inr(®)ullzor, S
< 1

T luallxn-

We can prove the local smoothing and maximal estimate in the same way. O
We will also need the bilinear estimate as in [24].

Proposition 2.3.2. Let I3 be defined by its Fourier transform in the space variable:

FLL(f. 9)(€) = / 60 = &J° F(E)3(E2)de.

§1+62=¢

Assume u,v be two solutions to the Airy equation with initial data ug,vy. Then we have the
bilinear estimate

1 1
212w, )12, S lluollzz f[voll 2 (2.17)
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Proof. For a solution to the Airy equation, we can write down its Fourier transform,
ﬂ: (5(7’-63)&0, @/25(7—53)@0

Then

217 (u,0)(7,€) = /

&1+&2=

EKr+&ﬁ&r—@ﬁ%®0%@ﬂ&7—ﬁ—f@d&-

Let us make change of variable & + & =&, 7 — & — & = .

With 7, £ fixed, we have
1

T 3l6 + &ll6 - &

d£1 dnv

hence we get

e~

131 (u,0)(7,€) !

R

1o (&1)00(&2)-

Now &7, & are solutions to
LG+&=¢ §+&=rT,

So we have

drdé = 3|&; — &3]d& &,

and it follows 11
V2 )z, S Mooz ol

Tt ™

22

]

Remark 2.3.3. Propostion 2.3.2 gives us the usual L? estimate on product of two free solutions

whenever they have frequency separation, i.e. |£; + &| # 0, & € suppt, & € supp .

It is very useful especially when we localize the solutions into dyadic frequency pieces,
then the operators /3 can be simply replaced by scaler multiplication. We have the following

cases:
When [£1] & p, |&2] = A, 1> A, then we get

luvllze, < 1" luoll callvol|ze-

(2.18)

When [£;| = || = A, and &, & have opposite sign, so the output has frequency | +&a| ~

a < A, then we get

1 1
Juvl[rz, S A72a72 |[ugllz2([voll 2

(2.19)

In case |§] = |&] &~ A, but &, & have same sign, the output lies close to a new curve

T = 1&. Following the idea in [40], we have the following Proposition.
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Proposition 2.3.4. Assume u,v are two smooth solutions to the Airy equation with initial
data ug, vy, localized at frequencies about the comparable size and also the same sign, and I
be an interval of size less than 1, then we have the following estimate

[l (£)uv]| S lluollzz l[voll 2 (2.20)

11
X
Proof. The proof is essentially the same as Proposition 2.3.2. There we first take two fre-
quency really close, but have small separation, i.e. [§; — &| > €, so that all the calculation

are still true, and we get the estimate (2.17). Notice that
L+&=¢ +&=T1

So we solve for &, & and get |(7 %ﬁ?’)&]% = 3|(& + &) (& — &)|, which is exactly the

1
1

1
multiplier we have in the space X* Then we take the limit as ¢ — 0, and the norm

T:iéﬁ'
converges as long as we are considering smooth functions. So we get

S lluoll ez ([voll 2. (2.21)
53

lwol .
X

T=

U

To pass to nonhomogeneous space, notice the following estimate

1
lnr@) iz, S ez S A o

T:%ES
The last inequality is by Sobolev embedding. [

In Proposition 2.3.6, we will extend these estimates (2.18) (2.19) from free solutions to
functions in X*.
Now we list some L? estimates, which are mostly straightforward.

Proposition 2.3.5. When —1 < s < —3, we have the following estimates.

Ve,
e (OQotusllzz, S o A1 72 flua||x, (2.22)
1Q,08 o, ctalliz, S A0 |uy | xmsate A2 |-, (2.23)
1Q e+ 2 < cpatiallzze, S AT Hluallx-ses, (2.24)
huallzg, S ATl et (2.25)

r=1¢3
1@zrsurllzz, S A7 lun|[x-s-te2002, (2.26)

_4(s+2)
HQZ)\SU)\HL;IWC < ) — ||UA||X*3*4S’25+20|D\L;’f’I7 2<q<np, (2.27)
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HQZAWAHLigx S )\_%(SH)_%HU,\HZ, (2.28)

_2(sq1)al
1Qzsuallzg, S ATFEFTS lus . (2.29)

Proof. The proofs are mostly simple. (2.22) is by definition combined with the size of the in-
terval. (2.23) (2.24)(2.26) are consequences of Bernstein inequality. (2.27) is by interpolating
the L? estimate with LP.

The only nontrivial one is (2.25), Similar to [57], we look at the operator S(o) defined by

multiplier e”QF(a)m, where I'(0) is the complex valued Gamma-function. We claim
4

that
SO +iy)Py: L, — L2,
3
5(2 +iy)Py: Ly, — LS.
Let us prove the second one by computing its Fourier inversion,

NG

(1 — L¢3 £40)3+ = F N (r£i0) F_l[eA(f)CST:%&]-

0,(&) is some smooth bump function around { = A\, which we used to define P,.
From direct computation, we have

i3
JeG DS i) P £i0) T o S22,

and by stationary phase we get

17055 gllm = || [ 6a(©e 4" dgl e 5 (1)
Combining them together, we get
HS( +iy) Py, e S A7z,

Also notice the trivial bound

150 +iy)Pallzz, —r2, S C.

z,t T

We interpolate to get
IS5 + iRy
x,t
S S
(r—Ledti0)a
TT* argument [58] [56], we have [[TPl|z2 z2, S

Hence we get

Define the operator T" by multiplier , and
<\

luallzs, S A5 w



CHAPTER 2. A-PRIORI BOUNDS FOR KDV EQUATION BELOW H1 25

If we take ¢ = 3 in (2.27), combining with (2.25) we get (2.28).
If we take ¢ = 6 in (2.27), also compare with

1 _9g_91 1
Qumsstiallzg, S () lualls, S X2 lunll ), g
T

=1¢3

=

we get (2.29). From Remark 2.2.2(4), we only put pieces in |D|7%~ 2X4’ ¢ TOM when it

lies close to the special curve, and in that case its modulation is close to )\3 O
Also, let us collect some bilinear estimates that will be very useful in the next section.

Proposition 2.3.6. For u > \ > «, as before ny(t) is the sharp cutoff on time interval I,
of size |I| = M3, We have the following estimates:

1 upoallce, S 07 7N luglxelloallxen, (2.30)
sy—1
19 (8) Pex (o) 122 S 1722 A2 gl Lo loa Lo 7, (2.31)

Ima (B usvallzz, S max{A™572 20767 A7 = [lsiay [va L0 (2.32)

Proof. For (2.30) and (2.31), we expand u, v via Duhamel’s formula, and apply the bilinear
estimates (2.18) (2.19) repeatedly. See [12] Lemma 3.4 for a similar proof.
For (2.32), we still break ux by the size of modulation, and see that the worst estimate

comes when uy € |D|725~ 2X“’ N |[D|L{S,. Then we use L for uy, and L for v,.

1£3

_9g_ 1_
Imusvallzz, S Imvuallzz IMavallrg, S A7 a2 ™2 (lunl| x-s-ss2s2pry) [Jval x1(20);

—25—2
Imwrvallzz, S lmwalleg, Inavalles, S A5 %a” SIIUAH|D|,2S,2X§;%{§3m”Ua||X1ua}-
—1

By comparing the coefficients in the estimates above, we get
1 9g 9 _1_
I (unvallz, S A7 7275 Jun| zizy l[vall x1(14)- (2.33)
If we also consider the case of uy € X ~5!*5

_9_ 1_
Imusvallze, S mvuallzz Inavallrg, S A2 a2 lunllx-sasspy lvall x1iy (2.34)

and compare the coefficients, we get (2.32). [
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Remark 2.3.7. We don’t have a good L? estimate on the product of two pieces both in S.
But we will still list here some of the cases, which are manageable.

—s,14+s : 2 : 0o
When uy,v, € X , bound uy in Ly, and v, in L.

||77)\U)\’Ua HL%;,; 5 )\_2_sa_28_1 Hu/\fos,Hs[IA] Hva HX73,1+S[IQ]. (235)
When uy, v, € Z, bound uy in L3, and v, in L5, we get
%(s+1)_%a_%(5+1)+%||U/\||Z[IA]HUa||Z[Ia]' (2.36)

[m@)wrvallzz, S A”

When uy € Z,v, € X %' bound u, in L3, and v, in L° which comes from Bernstein
together with L? bound, we get

A (1)1 o1 _B_og
Invurvallzz, S A3CTY78 max {a™* ", a3 Hlua |z [vall x s+ pra)- (2.37)
The above three inequalities imply that
_d(gy1)_1 _2 1
a8 unvallzz, S A5 757505 luy |51y | 0a 517 (2.38)

is true except for the case uy € X ~*1*% v, € Z, which corresponds to case the high-frequency

low modulation interacting with low-frequency high modulation.
To estimate the case uy € X %% v, € Z, use L* on uy, L™ on v,, and we get

Imausvallzz S llmvuallzz, Inavallce, (2.39)

S AP aflunllx-erepn vall 21z

The bound here is worse than the one in (2.38).

2.4 Estimating the nonlinearity

The goal of this part is to estimate the nonlinearity as in Proposition 2.1.5. Since func-
tions in X* N X, have different piece measured differently, we show that the estimate

10z (wv)| XsnX;, (2.40)

Yeny; S lul XsnXg, vl

is almost true except for one special case.
Let us expand the estimate (2.40), the energy norm takes the form

Z sup | H77J(t)P,\(8x(UU))||%[J}

ST 1JI=At 8, IClo1

S Z sup 75 (£)A Z Py (urva) I3, 1

=7 71=xast3 o]

aA
+ Z sup ||77J(t)/\zPA(UMUM)H%/A[J]-
ST 7=+, C[0,] s
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We can do same expansion for the local energy norm.
In the case of high-low frequency interaction, our goal would be to prove

[ () Pa(urva) [va1) S Clluallxapnllvall xax)- (2.41)

Here C = C()\,a) <1, and K is a time interval with size a***3, so that J C K.
Now given (2.41), we get bound for energy norm in the case of high-low interaction

> sup Ins (DA Pa(urva) I3

o1 1I=XE (0,1 —_
S D20l sw i Y vl
o1 |J|=A4s+3 7 C[0,1] _
S lul

~Y

2
Xs

2
X+

vl

2
Xs

And we can prove a spatial localized version of (2.41) in exactly the same way.

106 ()05 (8) Pa(uxva) vy S ClIXG (@)uallx, o1 [val x, - (2.42)

Then we also get bound for local energy norm in the case of high-low interaction

Z sup Z ||X;‘(~"C)77J(t))\ Z PA(UAUa)”%[J]

A>1 7 =t Jc0,1] a
S Y CaPsup > @l Y vl
A>1 T )=+, (0,1 aA
Sl ol

One remark here is that we secretly turn the summation of o from [* to [ summation, which
is not true in general. Luckily, in our proof for (2.41), the bound C(\, &) mostly involves
negative power of o or A, which makes the summation valid. The only case worth attention
is case 1.1(b), where we illuminate the av summation in detail.

In the case of high-high frequency interaction, we need to measure each u, on smaller
time interval I, C J, of size |[,| = p**3.

We will prove the estimate

1Ans Pr(vn)llvan S € 80P [l im0l o, (2.43)

uC

and its corresponding spatial localized version

A0 () Pa(uv) Iy S € IS%I?IHXZ(]'),UNHXH[IM} Ul xonxg, - (2.44)
m

Here X’,:(j)(a:) is a chosen spatial cutoff so that x}(z) < X’Z(j)(x) (we might need two adjacent
spatial cutoffs), C'= C(\, u) < 1.
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Given (2.43), we get the bound for energy norm in the case of high-high interaction

|J|:)\4S+3 9
Z sup || An, (1) Z Pr ()l 1
A>1 JC[o,1] LA
< 2 |Iu|:ll4s+3 2 2
~ Z C(A 1) Z sup HuuHX‘L[l‘L] Z ||UuHxszlse
A>1 pox Luclod] P2
S Ml ol ieonxg

And with (2.44), we can bound the local energy norm in the case of high-high interaction

Zsup Z ||X}\($)77J(t))‘zPA(“#”#)”%&[J]

A>1 7 =8 gc0,1] )
S Z C(\ p)? Z Sup Z HXZ(J‘)("E)U;AH%(H[IN] Z lch g(Sane
A>1 uzA RO 1= s+ 1, c[0,1) )

S lwallxg ol Xonx -

In both of the estimates, we need change the order of A\, 4 summation. Luckily the bound
C'(A, p) in (2.43) (2.44) will help us to perform the A summation.

Since the proofs for (2.42) (2.44) are essentially the same as (2.41) (2.43). We will discard
the spatial cutoff in our proofs unless needed.

Remark 2.4.1. To be more precise, for spatial localization, instead of writing a function as
uy =3, X} (x)uy, we need to decompose each function as

Uy = ZUA,]‘7 uy; = Pa(xjun)-
J

In this way, we preserve the frequency localization while blurring the spatial localization.
But thanks to the fast decay property of the kernel of x7(x)Pyx} (), we have

gl S k=TI Guallerz, k=gl > 1

So the difference of the two decompositions is really negligible. Similar reasoning applies
when we interchange the modulation localization and time localization.

Before getting into detail, notice that uv(r,§) = u(m, &) * (79, &), so we have

T=T1+7, {=§+&,

and the resonance identity

T=8=(n-&)+(n-§&) - 3. (2.45)
Also, the following high modulation relation is quite useful in our proof.
o = max(|7 — &, | = &, | — &) 2 [€€1&]- (2.46)

This relation forces high modulation either on the input or on output, which gives a gain.
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Estimate for X! x X!

When u,v € X!, we break them into dyadic pieces and discuss the problem in different
cases. As pointed out in Remark 2.2.2(1), for function uy € X'[I,], |I,| = A*T3, we think
of it as its extension uy g, which is defined on the whole real time line and still supported
on neighborhood of 1.

Case 1.1: High-Low frequency interaction. Suppose A > «, then the output frequency is
A. From (2.46), let M = \%a, then

AAUQUN = Z A Q1 [Q2uaQ3v)].

Qie{Q>n Qem}

Clearly in each term, at least one of ); must be Q> ;.
Case 1.1(a): When high modulation comes from input, simply bound that piece in L? and
the other in L*>°. Combining with Bernstein inequality, we get

||An)\Q1[Q2an3UA]||Y>\[I/\] 5 H/\TIAQl[QWQQ:sUA]H

|DI=#[11= 2 12(1,]
S Ao M aE 4 AR fual g loallxe

< A2 uallxogllvallxo -

For s > —1 we can sum up with respect to o then .

Case 1.1(b): If none of @2, Q3 have high modulation, this forces @1 = Q~p. Depends on

the size of M, we bound the output in different spaces (|D|~*|I|~2L2 or X~*¢). Using the
bilinear estimate (2.30), we have

Ly-1-s_ —s
IMQ i [Qeuta@ata] iy S AT ILEAT 0 Juall o ol

<
S uallxipralloallxzg,

MA@y oy 5 [QeuaQsun] iy S AT MIAT a7 Juallxasag oallxiiny
S Muallxrpalloallxy)-

Remark 2.4.2. We need to be careful with o summation in above estimates. For the first
one we use factor a® to turn /' summation to (?. A careful way of doing the second one is to
write the modulation as a multiple of A?cr, and use the [> summability of modulation.

12D amQueap(wva)lyy, S O I AnQpeas(urva) || ps)”

a0 0 a
S DO IMQuzaye(uava) )/}

0 akA
S D0 lulZapyllvalfip) Y

a

0
s\ 1
S Qo) luallpylll
0

2
Xs-
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In second inequality, since the modulation is different, we do have the [? summation.

Case 1.2: High-High frequency interaction with low frequency output, A < p. Here we
need to cut the interval I into finer scale so that u, is measured on smaller intervals I,.

wy =Y ul, ul, € X'[I}), UI =1,
i
Then the output has the expression

AUV, = Z Z AQq [Q2UZQ3U2]‘

i Qje{Qz)\u2aQ<<)\#2}

Case 1.2(a): When Q1 = @>,,2, we place the output in DZ[I,], by using (2.31)

. . 1 1
Q2w Qavpllez, S A2 072 > gl gy vl

and the almost orthogonality of the product AQ,(uf,v},) with AQ(u/v7,), we get

o - Loy, .
1) AQozne [Qau},Qavr | x-s-ssenrry S N 45(02,\M2)25+1|I—#]2HuLvLHLtz,x
[

S sup w3 lloal%--
IZLCIA

The DZ norm also has the LP component. Here because the modulation is high, we can
interchange interval and modulation cutoff and have [P summation of the intervals. Using
Strichartz estimates (2.14) and Bernstein inequality on the product, we get

1> AQoznie [ Qeup Qs llie-p iz, 1)
A

S sup [|AQozan[Qau, Q3] lip,— b3l 73]
1

S S}lip)\—ﬂgHWHL?"L%Uﬁ]

m

Uullzeore [13)]

(s+1)

sup |||l x1iz,)l|val
I,CIy

S X5
Because of the summation on A here, we have only s > —1 in Proposition 2.1.5, but not at
the endpoint s = —1.
Case 1.2(b): When input has high modulation, we use the local energy space to get good
control of the interval summation.

Before that, let us state a useful lemma:
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Lemma 2.4.3. Suppose —1 < s < —%, 0<k< then we have

1
27

|Qozxs fall Dz S sup NG 1Qo Al 2 )
O-N

3 _
I£xllyaima S sup A 250~ 1Qo full 22 1y
o

31

Proof. From the definition of Y)[/,], we just need to bound different modulation in suitable
spaces, and compare the bounds with the ones in our lemma. The DZ norm also has L?

component, we use Bernstein to turn L? into L? norm.

]

Remark 2.4.4. These estimates are very crude. When applying on the nonlinearity, we might
need to do modulation analysis, or use better interval summation in some cases, e.g. case
1.2(a). But when one of the inputs has high modulation, a simple L? estimate saves us from

tedious case by case calculation.

Let us first bound the spatial localized output in L2

1A (2)Qa D (@21l Qs )]||L2 NN

)

S ol (@ )[Z(Q»muu)(st M7z r2
<A UZHXJ Q>)\u2uu”L [zz]ZHX] Qs"U ||LooL2[1z]
< Mo M|Sup||><j( JLOFSWEA P Stj}pzIIX?(x)ngLIIigoLg[m
S ooXET T S}lp HXZ(j)(x)u/tH%@[Iu]'
p

To get same estimate without the spatial localization, we need to sum up j

Z A (@) QoD (Qznew) (Qavi )]s i,

i

UZ“X] Q>Au2%||L2 1] SUPZHXJ )Qsv; ||L°°L2[P]

N

S >\2U|E\ sup [[OZSWELTA P Sup Z 15 () Q30,7 21
K3

NP S T sup gl e g ol -
©

By Lemma 2.4.3 k = %, we have the following estimate with or without spatial localization.

M Qanet,Qavplllvaing S AP0l
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We can sum up frequency A and g when —1 < s < —%.

Remark 2.4.5. The estimates above demonstrate how we can use local energy norm to get
good interval summations, especially in the case when time truncation blur the output
modulation too much.

Case 1.3: High-High frequency interaction giving out the output of the same size. Now
high modulation (2.46) means \3.

AAUAUN = > A Q1 [Q2urQ3v,].
Qie{QZ)\L’t 7Q<<)\3}

Case 1.3(a): When high modulation comes from input, we estimate the output in | D|~*||~2 L2

1
I @uQuzrsur@aolll 1o S NI IQuzas (mywa)llaz, lmwoa oz
< AT 0w xap oAl xt -

Case 1.3(b): When inputs have low modulation, this forces the output to have modulation
approximately A3. In fact, the output has Fourier support lying closer to another curve
T = }153. To give a good bound in this case, we want to prove

”)\P)\(UAUA)|||8t+8g|_1|D|_23_2X%,%{63 S luallxrpglloallx - (2.47)
T=7

To do this, let us use the space X 31 defined in remark 1.4.7 and claim the embedding
inequality

||u>\| Xs,%,l S ||u>\||X1[I>\]7 (248)

which is proved by looking at the extension uy g, and definitions of both norms.

Now for functions in X*2!, we use foliation. The idea is same as in Chapter 2.6 Lemma
2.9 in Tao [56]. From Fourier inversion, we have

un(t,z) = @ / / fia (7, )€ e

Then if we write 70 = 7 — &3, we will have the foliation

1 .
up(t, x) = oy /e“fmewgﬁO dro,

where

3 ]. o i 3 ix
O fry = 5 [ Eam+ €,
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and f,, has frequency about size A, modulation about size 7.
Similarly we write down vy = uy(t,x) = % i et gt0; gr dTp.
Now using (2.21) and Minkowski inequality

)\2s+3 s X
||)\P>\(U/\U>\)H\(at+ad)‘ 1|D|—2s— 2X21£211 5 / ||€t8 fTO t(’?ngO” 21121{ dTg dTé
= 411{3 TO,TO 7——%53
5 )\25 Z// ||fTo||L2”g7—0||L2 dTO dTO
7'0,7'0
N HUA‘XS b

With the time cutoff we can pass to nonhomogeneous space, as in Proposition 2.3.4. Com-
bining with the embedding (2.48), we proved (2.47).

Estimate for S x S.

When u,v € S, we still need to consider different frequency interaction. Notice that
because of Remark 2.2.2(4), we only consider pieces that have relatively high modulation:
T — €| 2 €]

Case 2.1: High low frequency interaction. The nonlinearity look like Am\uyva, A > a. As
discussed in Remark 2.3.7, we don’t have a good bilinear estimate, but (2.38) breaks down
only for one case.

Case 2.1.1: If uy, vy € X755 or uy € Z,v, € X5 or uy,v, € Z, we can still use the
L? estimate (2.38) and Lemma 2.4.3 with k£ = 0 to get

/\35—}—2/\1—— s+1)—§a—3(s+1)+

IR NN 3|lun |z lvall zi1.)

<
5 /\%+S+§(S+1)a_§(8+l +3 ||u,\ ||Z[I,\] ||Ua HZ[IQL

Notice that the exponents add up to —% — s < 0, we can still sum up frequencies.
Case 2.1.2: Now if uy € X% v, € Z, where (2.38) failed. We use L? on uy and L} L
on v,, still by Bernstein,

1 1 4 1
1AQs (yurva)llzz . S Aasas A2 72a™5CHD75 uy || x—savspry) |vall 21z,
so we from Lemma 2.4.3, we get

3 _4
MUl 1) S AT 20730 uy | 200 ][ Va | x—o1 s 1a)-

Y

And we can still sum up the frequencies.
Case 2.2: High-high frequency interaction giving out equal or lower frequency, A < p.

~Y

When A < i, we cut up intervals as in case (1.2). When \ & p, this procedure degenerate.

AUV, = Z)\uu vy, uu,vu e X [IZ]
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Here we don’t have a good L? bound on the product, so we need to do modulation analysis
again to get better control. Also, all the estimates here have the corresponding version with
spatial localization, the proofs are exactly the same.

Case 2.2.1: X ~%'*° x X~ both u,v}, have modulation e < o < B we use
Berstein inequality for frequency on product, for modulation on any one of input. And we
have [? summation of the small intervals.

1Dy N
HE MQow vl S ML swp [(Qow)v iz, i)
1 i
1.1 1 ; 1
S /\1+S|IA||IM| 2/\202Sup||uL||L§7m||UL||Lg,z
A

g >\5s+ :U’

m

Case 2.2.2: X ' x Z, suppose v, has modulation o,, > 3. By modulation analysis
(2.46), this forces another high modulation on the output.

)\77)\’&“?}“ Z AQMTm Qam ,u)]

We comment that when o, ~ p*, there is chance high modulation can also fall on w,. But
in that case, from Prop 2.2.2(4), the norm Z and X %% match with each other. So it is
essentially the same as in the following case 2.2.3.

We use L? (2.23) on u, , and L? for v, together with Bernstein.

I Z AQo, [, (Q V)] [l x50 20011

S A 2— 4s 2s+1|I |2 SupHU (Qam M)||L2 1]

12
Iy 1
< A2 2s+1|l ’ ()\O'm)P sup”u HLz [p]HQam H)HLP (7]
w
oo 1.1 4543
< ATETRT A Sp [t sz |0+

w

We also need to bound the LP component, here we exchange the interval cutoff with modu-
lation factor and have [” summation.

HZAQM(ULQU Wl pi—pgipiLss 1)

AN

o SupHu 252, 1Qovpll e

AN

o psup [Jug, || x s 1)l pizes )

5 M—QS—B

n
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In both case, we can sum up frequency when —1 < s < —%.
Case 2.2.3: Z x Z. When u,,, v, both have high modulation, we put them in L? (2.28).
We begin with the L? estimate

) <
||Z/\Qa ez S AAo)s ||ZQJ L2 )

S A(AU)EII—MlgsupIIUZIILgaz[I;]
SN T

Uyl

o

Here notice we used /2 summation of the intervals.
From Lemma 2.4.3, we get

o 1, 17(s+1) 16
1Y Ml S A2 s et S}lpHuuHZ[mHUuHXS-
% W
To see we can sum up frequency, notice exponent for u is negative and all the exponents add
up to —3 +3(s +1) <0.

Estimate for X! x S.

Suppose u € X!, v € S. This includes the most dedicate case, i.e. low frequency high
modulation piece interact with high frequency low modulation, where we can not prove the
bilinear estimate (2.40). Instead we have to reiterate the equation and turn the bilinear
estimate to trilinear. Let us work on high-high frequency interaction first.

Case 3.1: High-high frequency interaction giving out equal or lower frequency, A < p. Same
as before, we need to cut into smaller intervals if A < pu, and this procedure degenerate if
AR .

Case 3.1.1: X! x X% by (2.46) we must have modulation o 2 Au? in some term.

M)AV, = Z Z AQ1[(Qau,)(Qsv),)].
i QiE{@x,2:Qenp2}

Case 3.1.1(a): When high modulation is on output, i.e. Q1 = Q,>x,2. Using L°L2 on uz,
L7, on v}, together with Bernstein on the product, we get,

i i sy 1 i
||)\ZQU[(Q2UM)(Q3%)]HL2 INEDS )\2|I—|2SUPH%HL$L5[I;}

m

illzz, i)

S )\28+3M—4S— z

n

Using the fact that output has high modulation and Lemma 2.4.3 with k = %, we get

4s®
||/\ZQU>A,L vllpziy S AT T2 sup [Jug i,

un
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Case 3.1.1(b): High modulation on u,, Q2 = @>,,2. We put them both in L7,
| Z AQo(Qzrl) Qs 1221,

S )\O’ : H Z QU’ QRAMQuu>Q3vu]HLtI’x[I)\]

AN

AN H ’SUPHQ»M%HL%[[};] QSULHL%%[I;]

S mX‘S*w 7 sup g Lo ol
n

hence we have

. . 13 g, 17
1D A@zrieu))Qsvpllvaing S A2 %72 sup Lz ol e
A

I

Case 3.1.1(c): High modulation comes from input @3 = @>,,2. We use local smoothing
(2.15) on uy, and L7, on v,.

I Z )\QU[QWL(QRAMWZ)] HLgxm

l . .
S Aoz Z Qo Qo (Qzpu2vy)ll L2 11y
S Ao P lup I Qaubl sz Qe s
I
SJ 0_5)\334-3“—63— sup ||up||X1
I

o

Hence we have

1Y - AQaul (@i iy < A ™l g vl stz

Case 3.1.2: X! x Z. This forces high modulation o,, = p?® also on the output.
ANAU Uy = Z AQxo [14y,(Qo,, 1))

We still bound the output in L? by using L° on w,, L* (2.28) on v,.
H Z )‘QU QUm u)]”Lix[A}

< A!TH\”‘;?PHuLHL?@m Qo viullzg ,irz

NP s fTactan s s {Cusbin 3supHu Ix1gllv; HSP
_ 2

S AR sup

In
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From Lemma 2.4.3 with k = %, we get

S —5s—1l42(s
132 AQen Qa2 S A sp g

©w

Case 3.2: High low frequency interaction. u, € X', vy € S, A > «. The bilinear estimate
(2.32) is not good enough, so we have to break into more cases.
Case 3.2.1: u, € X', vy € X *!75. Because of high modulation relation (2.46), we have

A\ULUN = Z AQ1[(Q2uq) (Q3vy)].

Qi€{Qs120.Qcr20)
Case 3.2.1(a): High modulation on u,. Q2 = Q,>x24. Put u, in L?, vy in L™ (2.24).
[AMQ1[(Qozr2atia) (Q3v2)]ll 22 1) S A5 07 | g [0a | x—e00 1y
so from Lemma 2.4.3, we get
A [(Qozazatta) (Qav)]lIvaing S AT 2a™ 7 [lual xazg loall x—s+spry).
Case 3.2.1(b): High modulation on vy. Q3 = Qo>x2¢. Put u, in L, vy in L2
[AMQ1[(Q2ta)(Qozrzava )|z 1) S A0 2 g o sl x-s e,
so we get
M [(Q2t10)(Qozacat;) v iny S A2 207272 fJug 1z sl x-s102(1,)-
Case 3.2.1(c): When none of u,,v, have high modulation, this forces the output to be
approximately Aa. Q1 = Quan2a, put u, in L, vy in L2

7. 3
When AM2a < A3 ie. a < A2 we have

’|)\77)\Q0'%A2&[(Q2u04) (Q?)U)\)] H ‘D|7S|I‘7%L2

1 1_ 9
NP2z N2 ua | xr g loallx—s 411y

<
~Y
< a%_S)\szr%HuaHX%]]|U)\||st71+s[h]7

. 1_ 1 3 S .
notice we have a2 *A\**T2 < \is, which is good for summation.
3
When Mo > X2 we have

A Qonrza(Qatia) (Q302)] || x s

1_ _9_
N0z TN g || s oall x —sassry

IZANRYA

1. _
a2 A |ug | x1 o [[oal x40,
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Case 3.2.2: u, € X', vy € Z. Here the bilinear estimate (2.33) is good enough.

1
BEREN N\ ol

1
IDI=s[I|72L2[1N] ™

1. _1 94 9 _1_
S ANTILEATSTE T Jua |l 2y [[va | xa )
1, _1_
S AT Jual| 2y [l x ) -
Case 3.3: High low frequency interaction. uy € X!, v, € S, A > a.
Case 3.3.1: uy € X!, v, € X~>5. Without going into modulation analysis, we use L°L?
on uy, and L2L%¥ on v,, together with Bernstein and notice the modulation on v, is small.

1
||)‘77A“Wa||\p|fs|1r%m S NFILE oAl e 2 1Vall L2 L)

1. _1_ _3_
NN a7 27 lup || xr g lval | x —savspr

ol

IZANRIA

3 _3_
NP2 27 |un | x| va | x-sass ra)-

Case 3.3.2: uy, € X' v, € Z. Here we can not prove any bilinear estimate if high
modulation fall on v,, so we need the following lemma to reiterate the equation.

Lemma 2.4.6. (Reiterate the equation) Let w be a solution to KdV equation (2.1). Then
we can write its high modulation part as

QaZa?’wa = M, + M, + R,
where My, My, R are as follows:

o My s the output of two higher frequency-low modulation interaction,
My= > (048 aPaQo(wsws,), ws,, ws, € X'
aspfirpBe
where wg,, wg, all have very low modulation |7 — &*| < €[4

o My is the output of the high frequency-low modulation piece interact with low frequency-
high modulation piece.

My= > (040 aPuQo(wsw,), wse X' w, € Z.
ozad YL Bra
wg has modulation |T — €3] < |E|** %, w,, has high modulation |t — €3] 2 |€]?.
e R is the remainder, which comes from interaction of all other cases
R = Z (0, + 02) taP.Q, (wsw.,).
o2ad,By

For R, we have the estimate

1 Rall g 1 S 0l ) (2.49)
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The decomposition above is true modulo + sign on each term.

Proof. : 1f we apply frequency and modulation projection on the equation, we get
(0 + O PuQow = — PyQ,0,(w?).

Hence modulo 4 sign we have
P,Qow = (0, + 02) taPyQq(w?).

Here we decompose w into dyadic pieces, P,Q,w = (0; + 92)'aP,Q,(wsw,). Now we
first break each w), into sum of functions supported on time scale |A\|[**™3. Next, for each
wy € XN X3 [1,], let us decompose it as wy = wy; + wr2, wa; € X', wyo € S. Then we
can just take ug, v, to represent wg;, w,j, i,j € {1,2}.

We will prove that except for the two cases in M; and M,, we have the estimate (2.49).
We list the estimates of all cases below, which are similar to what we have done before.
Notice the modulation is always larger than o in the summation.

Case 1: f=a> 1.
(1) ug,v, € X', use Bernstein and bilinear estimate (2.30)

a2s+g )

oy Jua | x 1oy | x )

”nOé Z(at + ai)ilaPaQU(ua’U'Y)"a2s+%L§Lct>o 5

(e

1
o2
S oy luallxepallos ).
(2) uq € X', v, € S we only deal with v, € X~51*5_ And leave v, € Z term into M,. Notice
here u, must have high modulation ¢ (2.46). Put L? on u,, L™ on v,

10 D (0 + 0) 0 PaQo (Qotta) 03| 2o o o

o
5 _1 _ N —28—
o* 207207 L T2ty T Jua || xrprag oy | x—s s

s

<
~
5 a_ _%7—28—1Hua||X1[1a]Hv,yux—s,l#»s[f,y}.

(3) uq € S,v, € X', use the bilinear estimate (2.32)

||7704 Z(at + ai)_laPaQo'(uav')/)||a2s+%L%Ltoo

g

5 _1 _1_ 94 _1_ _9_ 1_
a®* 2o 2 max {a 5 2T a0 Jua | s [|vs x

-2 ls s

S
4 -1 _1_
S max {a73y757%, @ Y T Hlua | sl | x ).

(4) uq,vy € S, we consider several cases:
If ug, vy € X514 0ru, € Z,v, € X% or u,, v, € Z, then we have the bilinear estimate
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(2.38). So we have

7 S0+ 0) 0 Pa Qo (Quta) o)l s 1

(e

23+§
RPN TCES DR S

3’)/3

a

N

1
R U [EER A [ PR RS

N[

o
2 _2 1
g (e 3+ (S+1)f>/ 3(3+1)+3 Hua|’X_s’1+S[Ia]HU'Y||X_S’1+S[I"/}'

Notice the exponents add up to —1.
If u, € X %1% v € Z, use L? on u,, L? on v,

1776, Z(at + ag>_1aPaQ0(uocvv>HJ#%LEL?

g

5 4 1
a25+20' 10‘20{ 2—s 1||U’Oc||X s,1+s Ia ||U’y||ZI—Y

<
~Y
S @ luallx-sarepza oL x s

The exponents add up to s < 0.

Case 2:  ~ v 2 «. This part is every similar to the estimates in Case 1.2, 2.2 and 3.1.
We still need to decompose ug into sums of functions that are supported on the p*3 time
scale. ug = Y, uf, ujy € Xg[I}]

(1) ug,vg € X', when one of input e.g. wug has high modulation @>.s2, estimate ug in
L? and vg in LLL?. Here because we want to use Bernstein, but also want to have better
summation of time intervals. So we need to use local energy space X}, similarly as in case

1.2(b).
lex] Z(3t+33) ' aPaQo(Qons)vs) I areg
< Za4s+5“Xj ZP Qo ( Qomuﬁ)vﬁ)“L?Llua]
S Za4s+5!|><] )QotipllZzz (7,115 (@)v8l| 7 211,

48+5ZHX; Qamu/3||L2 L3 SUPZHXJ UBH%OOL?[I"]
z HtlTg

AN

< o) ﬁls,upnczamuﬁnL 89 3 X5 @) e
Iy

N 0485%57125712HUﬁHXB[Iﬂ}HU,B‘_2><;e-

Remark 2.4.7. In these estimates, we need to sum up all the modulations larger than o?. It
is fine as long as there is a negative factor of o through the estimate. But in the one above,
we need be more careful. Split the problem into ¢ ~ o2, and o > «.
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When o ~ o?, we can sum up modulation easily.

When o > o®, we prove (9, + 92)~' : L2L; — L2L® is bounded operator which is done
by looking at the symbol =z = - + T(f_sé) ~ L And 9;': L2L} — L2L{ is bounded if it
acts on functions which vanish at oo.

(2) ug € X', v5 € S, we also split it into two cases:
(a) When ug € X', v5 € X 5. Now if the output modulation o > «f3? use L™ on ug,
and L? on vg,

17 Z (0 +3) ' Z Pa@a(ugvé)HJH%LgLr
o> a2 %

a2s+g I 11 .
|22 787 sup [[uj |z,

S ™ ug ks

AN

Ué fosyws[zg]

vgl| x

And if 0 < aff?, we use LL? on ug, L? on vs. We still play the trick: using local energy
space to get [? summation of the intervals.

1776 Z (0 +07) " Z PaQa(uiBU%)HJH%L%L?

a<<0652
5 I 1l 1-s,p-2— ] '
< a25+3|1—a!25 1-s 32 SsupHulﬁ”Xl[Ié]H,UZBHXLSe
ﬁ 1

45—&—45—45—

9
S a 2[Jugl| xs lvallx; -

The point here is we can sum up the modulation o® < o < /3%, which give us at most

log 5 loss. But we are fine because of the negative power on 5. We will do a similar thing

whenever we want to be careful with modulation summation, hence we will ignore it.

(b) When ug € X', v € Z. This force high modulation o, 2 8% on ug, or on output.
When o,, is on ug, use L? on ug, L™ on vg.

||TIOC Z(at + a:i)_la Z PQQU<U%U%)||Q25+%L§L?O

[

5
a23+§

AN

UZ ||Z[1g}

1 Lo -1 —L s i )
pn 0-2|£|20-m 115|728 BSIZ}I)HUBHXI[I;}

5 a4s+%6—5s—5 HU/:?HXS

U/BHXS‘
When o,, is on output, simply put L on ug, and L* on vg.

1770 Z(at + 8;:0))_104 Z PaQU(u%’Qomvg)||a2s+%L%L?o

(o
s T T 1 »
HI2E 5440 s

N

7 )
o Vg ||Z[I;3]

a4s+%ﬁ—5s—5—§(s+1) ”uﬁ ||X5

N

UBHXS.
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(3) ug, vz € S. We still break into cases.
(a) ug,vg € X 5 use L? on both, and [* summation of interval is good enough.

||T/a Z(at + (‘)i’)_la Z PaQU (U%Ué) |‘o¢25+%L%Lt°°
25+3|I_04
1

p | Sll}p HU%HL%@[%]

S a UEHLMI;R]
S a® BT g sl | s

(b) ug € X 55 vg € Z, L* on ug, L* on vg, with a [' summation of interval.

[

vallez, i)

2s+3+1 1 1a ' '
S @™o E sup ujlse iy

65+L§B778777%+§(5+1)|

S [ugl|xs[lvg | xs-

(c) ug,vs € Z, Here we are a bit careful about interval cut off, using the I3 summation.

o

< 253+ -1 ZP i

S @ 2760 3” i aQo(Uﬁ’Uﬁ)HLt%’I[IQ}

< 2543+l —%I_ag % v .
~ ¢ o lIﬁl Sgp \ UﬁHngu[g} ’% ’ng[zé]
5 a2s+1+ss—;8ﬁf%(s+l)nu6’ P UBHXS~

Now we use this lemma to finish our estimate of Case 3.3, uy € X', v, € Z.
AUAUQ = )\u/\(Mla + MQa + Ra)-
Step 1: Let us do R, first, using the estimate for R, in the lemma.

5
IAmusBall oyt e S NP2 Inauall e 2 lmaRall 22 L

5. 1. o3
< ABTR Tl 2||?7AUA||X1HWRC“HOF”%L%L?”
«

93
s ) 272 luallxsqry [l

Step 2: Feed M; into the bilinear term, we divide it into two terms.

)\’LL)\ Z (at + 82)_1aPaQazo¢ﬁ2 (Uﬁvﬁ) + )\U)\ Z (@t + ai)_laPaQo—zaBQ (1)51)5)

o~af?,asB<K o~af?,aSA<B

2
Xsnx;,
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The first term, we will bilinear estimate for ugvy, also here for fixed 5, P,Q.s2(vgvg) is
almost althogonal to each other, so we can sum up «

||)\77,\U)\ Z (at + ai)ilaPaQazaLﬂ (1)5’05) H|D\*S|I\_%L2

oxaf?,aSBKA

5 1
< NIt Z @HT]AU)\PaQaﬁ?(UBUB)HL?,z
aSp<A
5 1
< AF Z EHU/\UAUBHL?,IHT]/\UﬁHL??z
aSB<A
5 T T
S NTE 3D ATt sy sl sl
aSB<A

A\9ss3
S (3)2+2||u>\||XS[I,\]||U/5’||XS[15]||U,3||XS[15]'

Here we actually used the fact that, when fix «, the two vg’s can be decomposed to functions
with g supported on size « interval, so we used bernstein to get

1
lvgllLes, < a2llvpllogers-

So for s < —%, we can sum up .

For the second term, we will use at least {* interval summation (or better if we use local
energy space). The good thing is that for § fixed, then P,Q.s2(vsvg) are almost orthogonal
to each other in both space and time, so we can sum up « and then ignore it. Also because
ug is measured on the smallest time scale, we still need to cut the interval.

”)\UAUA Z (at + ag)_laPaQazaﬁ2 (Uﬁvﬁ) H|D|*S|I|_%L2

o~af?,aSASA

s 1
5 )\38+2||77)\U>\||L§Lg°”n>\ Z EPaQa,m('UﬂUﬁ)HL?L%
aSASB
5.1
< NI Il D Y PaQape (v5vs)| 112
A<B asA
9 I)\ 1
< )\25+4Hu,\\XsZ|E‘4||nB(UBUﬁ)HL§L§

ASB

< AT |y

I)\ 1
XY |71 lnsvsll s ralinsvsll s s

as P
< A 3s+3 2
S (5) [l xs lvsllxs
So we combine the two cases together and get
s 3 Miall gyt S sl e

a A
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Step 3: Now we feed in the term M,, We want to use local energy norm, so let us cut up
the space using x§(z).

o 3\—1
P @ S @+ )7 aPa@olbavs)l oty

y<aSho2ad

5 8]
< A Z ;||7’])\U)\||L30L?||nAX?(CL’)PaQU(UaUW)HL%L,?O
yashozad
5.4 [0
S Tl Y ;me;’(x)PaQa(UaUv)HL%L;”
y<ashozad
S Y R ullxeao man (@)val i I (@)oo

yalhoZad

SJ Z >\2s+%as+30_17Hu,\|

yal\ozal

< AQH%O&H%HUAHXS

Xs X?(fff)va\|xl[la]||vv| Xs

X5 (@) vallxr a0l x
We can also square sum up the spatial cutoff in the estimate above, and get

<

|’>‘77/\UAM2H‘D|7S|I‘*%L2 ~

[[uallx[[v] ?XWX?@'

In the proof we used the estimate
3
I35 (@)vallzree S IXG @) zallmxG ()vallare S @ 2 l|uallxiz,)-

Actually we also have L2L{° maximal function estimate [43] on small time interval.
We end this section with two bilinear estimates, as a companion to Proposition 2.3.6.
The proof is essentially repeating what we did preivously.

Proposition 2.4.8. For A > a we have the following estimates

_3s_5
Imur(Qozasva)llcz, S AT 72 luallxangllvllxenxs (2.50)

_1— _ _9¢_5
Imuaval gz, € max (A a7, A772) lua || xenxg (lollxsnxg + 10l5enx; ) (2.51)

3.5
A (Qozreun)oallrz, S A P72 Juallxsnxe loallxsnxs - (2.52)
Proof. For (2.50), we reiterate the equation, and notice in all the proofs we did, we are
. ) . . . 3542
proving a L~ estimate of the product, with weight \>*"z2.
For (2.51), we compare the estimate in the following cases

If uy, ve € X1, we have (2.30); If uy € S,v, € X!, we have (2.32).
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If uy € X' v, € S, we have (2.50) and

—1-s —9s-3
Insusvallzz, < lInauallzgonz Imavallzzge S A 0™ 72 Juall iy [vallx—s1ts(z,)-

If uy,v, € S, we have (2.38) except for uy € X *'7* v, € Z. But notice that the
estimate (2.39) is larger than \™'~5a 7.

Hence we can sum up the estimates to get (2.51).
The proof of (2.52) is carried out in the same way as all the detailed analysis before. We
discuss cases of uy € X! or X~*'** or Z, and be a bit careful when Q,>ysuy € X5 or

11
—2s—2 4°4
D772 X . O

2.5 Energy conservation

In this section, we aim to study the conservation of H® energy, this part of calculation
follows similar as in [13] and [45].
Given a positive multiplier a, we set

Es(u) =< a(D)u,u > .

We want to take the symbol a(¢) = (1 + £%)*, but as in [45], [46],we will allow a slightly
larger class of symbols.

Definition 2.5.1. a) Let s € R, e > 0. Then S? is the class of spherically symmetric symbols
with the following properties:
(i) symbol regularity,

[0%a(€)] S al§)(1+€%)73.

(i) decay at infinity,
Ina(é) In a ()

— 2 —el —— 227 K .
8_ln(1—|—§2)_s+€’ S 6_1n(1+§2)_8+6

b) If a satisfies (i) and (ii) then we say that d is dominated by a, written as d € S(a), if
0%d| S a(€)(1+€%)%,
with constant depending only on a.

Definition 2.5.2. (a) A k-multiplier generates a k-linear functional or k-form acting on k
functions wuy, - -« , u

Apms g, ) =/E+ e ()Tl
14 E,=
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We will write Agx(m) for Ag(m;u,--- u).
(b) The symmetrization of a k-multiplier m is the multiplier

i@ =~ 3 mlo(€))

oES}

We have the following computation [13].

Proposition 2.5.3. Suppose u satisfies the KdV equation (2.1) and m is a symmetric k-
multiplier. Then

d

S An(m) = AlmAR) — i Aa (G, -+ Eor, G Eua) 6o+ Einr)),

where
Ap=i(&+---+ &)

Symbol calculation of modified energy

Here we construct modified energy, following the calculation in [13].
We first compute the derivative of E5 along the flow

d
aEQ(u) = N3(M3).

Easy to see that My = ¢ 327 (a(&)&), we will ignore the constant.
Now we form modified energy

Es(u) = Es(u) + As(o3),

and we aim to choose the symmetric 3-multiplier o3 to achieve a cancellation.

d

©Bau) = As(My) + As(0389) + Aa(—i205(61,E0,E + E0) (65 + £4).

So if we take

we get

d 3

EE:a(u) = Ay(My), My = —25[03(517 2,8+ &) (&5 + &) sym-

Similarly, we can define By (u) = Es(u) + Ay(04), o4 = —]X—;‘,
d

£E4(U) = A5(Ms),
then we have
Ms = —2i[o4(&1, €2, 83,84 + &) (Ea 4 &5)]sym-

This process can be continued to have further corrections, but we will stop here, since higher
corrections are harder to estimate.
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Bounds for multipliers

In order to estimate the derivative of modified energy, we need to have good bounds
for M; and o;. Also now M; is defined only on the diagonal & + --- & = 0, but in order
to separate variables, we want to extend it off diagonal, this is useful when we prove local
energy decay later on.

Proposition 2.5.4. Assume that a € S? and d € S(a), then there exist functions b and c
such that

D al&) =b(6,6.6)(E + 8 +8) + (6, &.8)(E + o+ &).

i=1

And on each dyadic region {{ ~ «, & ~ A, & ~ p, « < X < u}, we have the regularity
conditions
O71052052b(&1, &0, &) S ala) N o AT LT,

afl 852 agsc<£l, 52’ 53) ,S CL(OJ))\il/LOéisl 2 quss, )
Proof. Since

E4+E+E =306+ (E+6EFE)E+E+E — & — L& — &&).

Let’s construct

- > al&)
31628

c= b +& + & — &i& — L& — &)
Notice that a(x)z is a decreasing function for x, then the estimates are straightforward. [
Bound for M3 and o3
We have M3 = Z?:1 a(&);, o3 = ]X—s modulo a constant.
Proposition 2.5.5. On the set
Q={G+&L+&G=0N{&G~a&~GRrRA>a)b

we have
| M3(&1, &2, &3)| S ala)a,

a6, .60 5 2.
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Proof. If @ &~ X, no need to do any proof. In case a < A, using the fact a is spherical

symimetric,
3

D a(&)é = alé)é — a(&)é — a(&)é + alés)és

i=1
and we have |a(&3)& — a(&)&| < |d(€3)61&5] S Ja(€3)€1]. So the estimate for Mz become
obvious. Using the fact that Az = 3£,£:&3 on set €2, we get bounds for o;. O]

From this we can prove that F3(u) is bounded by Es(u).
Proposition 2.5.6. We have the fact that
[As(03)] < [Ea(u)]

Proof. We can expand the trilinear expression in dyadic frequency band {\, A\, & < A}. Then
using the estimate for o3, we can bound |A3z(o3)| by

Njw

(2.53)

_ o 1
a(a)A 2/u,\u>\uadx < ala)A 2oz?||u>\||L2||u,\||L2||ua||Lz

< (a(@)a)z (a(MA2) T By(uy) Ba(ua)?.

~Y

N =

We can sum up the frequencies and get (2.53). O

Bound for M, and oy

Recall that

M, = _ig[US(&» 2,8+ €4) (&3 + &u)lsym

We adopt the calculation done in [13] (Notice, our a(£) corresponds to m?(&) , Ay, corresponds
to ay in their paper), we have the following formula for M,

Mal€i,6a.060) = s 7o 0060 4 -+ + a(60) — al€in) — aléi) — aléin)] (259
1 a(&) a(é4)
Ty T )

Here we used the notation &, = &; + &, and

Ay =8+ +8 + & =3(668 + 668 + &858 + &88) = 3&éiséu. (2.55)
Proposition 2.5.7. We have the estimate for M,

Aga(min(|&], |€x1))

Ml <
IMil = |€160E3E4]

(2.56)
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Proof. The proof repeats the argument of Lemma 4.4 in [13]. We can also deduce it from
our next proposition. O

We have bounds on o4 immediately from Proposition 2.5.7. But in order to do correction,
we need improve it slightly.

Proposition 2.5.8.

< a(min(|&|, [§x])
o3l % £1628384]

Proof. We look at Ay(04), expand it into dyadic frequency components, since §; are symmet-
ric, we can assume & > & > &3 > &y
( ) {61 £2a§3a§4} = {u7M7A7)\}’/*L > A. Then we have mln(g,”g”) = gl? 5 A and

los| < /\5122). In this case, we can bound A4(o4) by

[Aa(o)| < [Ea(u)|*. (2.57)

a(&) N2 / WU uNUNdT

S (&) €aal A gl ol 22 [Jua [ 22 [[ua 22
<
~Y

a(&12) 12l (a(p)1®) " (a(N)X*) ™ Ba(u,) Ba(uy).

Here notice that a(z)x is bounded and we can sum up the frequencies.

(2) {&1,&2,85, 64} = {p i, A, a}, p > A > . In this case, we have min(&;, §;;) = &, but
we need attention with the estimate here. In fact, with the expression for M,(2.54), we can
separate the expression of g4 into two parts.

One term looks like

1 1 1 a(&) | a(&)
—@m[a(&) + a(&) — a(&is) — a(&a)] + 36A4[ 3 + 5 ]

and it is bounded by = a/\u
And the other term looks like(if we ignore the constant —

108 )’

a(§3) +a(és) —al&2) 1 [a(f?,) n a(§4)]

§1628384 §12613614 &3 &4

a(&3)€36a&12 + a(€3)616263 + a(4)E38uéie + a(€a)61628 — a(&12)612613614
§1£28384812613814

So it is bounded by ;5—;@ Now we can bound A4(c4) by

ala)\"2u /uuuuuAuadx
a(a)A™ 2)‘2042||uu||L2||uu||L2||u/\||L2||ua||L2

<a<a>a>%<a<A>A3> 2 (a(p) i) " By () Ba(un) Ea(ua) 2.

AR AN
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(3) {&1,62,&5, 84} = {m, 1, po, A}, > A Here min(¢;, &) = A, we can do same estimate
as in previous case and get |oy| < © ( ) we need bound the expression

a(A)M_4/u“uuuMuAdac

N
a(A)p A2 i (w2 w2 sl 22 [ ua | 2
(1

|
(a(N)N)2 (a() i) (a(p)i®) "2 Ea(u,) 2 Ea(uy)?.

( ) {gla §2a 537 54} {Ma Hy lu}a min(&, gzg) = 51] For convenience, suppose 1t 1s 5127 then
we have |oy| < © &2) And we can bound A4(oy4) by

ANRIA

a(§1z)M_4/uuuuuuUudx < a(é12) &2l (alp)p?) "> Ba(uy)?.

In all the cases above, we can sum up the frequency and get (2.57). O

Remark 2.5.9. From the estimate in the proof, we see that actually we have slightly better
bound for M, than Proposition 2.5.7 in the following two cases

1 {&,6,8, 4 = {u, N, al,a < X< p, [My] S @

2. {5175%53’54} = {lunuvlua )‘}7)\ < Fes |M4| ’g a(lj\)'

Proposition 2.5.10. We have the error estimate when s > —z

[P

1
| / A(M)dt] S Nl (14 [

xenxg, + (v %(smxlse)

Proof. As before, we expand the error term A4(My) in the dyadic frequency component

and discuss in each cases. Since u € X° N X}, we still decompose each piece as uy =

uy1 + unz2, uxg € X[, ure € S[I)]. We abuse the notation and still use u, to represent
any of them. We assume & > & > &5 > &4.
One thing to notice the the high modulation relation. Since

1
/ A4<M4>dt = / M4ﬂ1ﬁ2ﬂ3ﬂ4 df dr.
0 ¥

Y={4{+&+E+ 6 =01+ 1+ 13+ 7 =0}

We have

(m—&)+ (e —8&) + (13— &) + (14 — &) = —Ay = —3E12613614. (2.58)
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Hence we get the high modulation
on = max {|n — &, [z — &1, 7 — &, |1 — &} 2 [&2€38ual- (2.59)

(1) {&,&, & &} = {p, 1, A, A}, p > A Then we have min(§;, &) = &2 S A and [My|
e (&2)512 |, also notice function a(z)x is bounded. Let us use the crude bilinear estimate (2.51),
and also we need cut the time interval [0, 1] into smaller scale of size p***3.

/0 LAY

a(§12)612 sy — _3 -
< |T|(max T T })2 13 eorxg, ( |ullxsnxg, + llul %(SOXZSG)Q
S max {7 AT TN | g{smxlse Z [l I;{sz;e-

k=2

It is summable when s > —‘—51.

(2) {&1,&,8, &4 = {u, N al,p > A > a. [My| < a(/\a). We estimate it in exactly the
same way as (1).

/ AL (M)t
a(a)

5

S X max {luflfs)\fs’ luf?)sfg} max {qulfsoéfs’ /,673575 }M74573
Xl A2Xsz156< |ullxeonx;, + llul g{sz;ﬁ)?

By computing the exponents, we can sum up the frequencies when when s > —2.

5
(3) {517527 637£4} = {/Lhua I, A}?N > )‘? here mln(fl?élj) = )\7 Om 2 /Jlg'
Case 1 When at least one of u, have high modulation, here we cut the interval to size
and use bilinear on (Q,,, u,)u, (2.52) and u,u,, we see that we get the bound

//33

T’u 2 max( -1 AT 72)ﬂ74873HuM‘ _?;(SQXZSE(

—10s— 9” |
;L

4s+3

wy ), uundrdt

AN

Jull xsnx, + [[ullXsnx;)

S ow XémXS( |l xsnxs + ||U|anxs>-

So it is summable for s > —1%
Case 2 When the high modulation fall on wuy, this is the hard case, we use the L? on Q,,, uy,

and L? on the product u,u,u,.

343 _
ImQozusurllzz, S A2 0 Junllx, 1 (2.60)
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Hn)\chZ,u?’u)\HLf@ < )\3+4SM_6S_6||U)\||X73745,2s+2[h], (2.61)

e (2.62)

1
H’?/ﬁuuuuuuHLf,m S 72wyl

The third one is proved by discussing u,, € X' or S, and notice that none of them has high
modulation. Then we get

/ / uMuMuMQJ>M3u>\dtdx

_37 )\3+4SM_6S_6}M_%_3SN_4S_3||uu||§(sz;'e

S |

X*NX},

And we can sum up frequencies when s > —g—é.

(4) {&1,8&2, 83, &}y = {p i, i1, 1} here we need to discuss the size of ;.
§i2 + &3 + & = 26

so at least one of them is of size
Case 1: When &;; 2 41, then we have |My| S a(:), and we have the high modulation factor

om 2 13, so we use bilinear on (Q,,,u,)u,, and L? for each of u,u,,.
Notice the (8,4) is Strichartz pair and using the size of interval we get

1
Inuwullez, < 2= ulx - (2.63)
From (2.32) we have
39
Hnuuuuu”Lf’w NV 2 ||uu||X}L[IM]||uu||S[IM]- (2-64)
From (2.38) and (2.39) we get

Iz, S 07 Nwllsia llwall s, (2.65)

[1%

—M 2[/[/2
I

< alp) 0wy

U, uuuuuﬂdaﬁdt

N

M s 3||uu| Xs

so it is summable when s > —1.
Case 2: When two of &;; is big, one is small, let’s assume &3 < g, &12,&14 2 11, we have
|My| < |%| Then we can easily calculate that

(61— &)+ (& — &) — (& + &) =26
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since 13 < p, we must have at least one of & — & or & — & be of size p, with out loss of
generality, we assume |§; — &| 2 i, so we have separation of frequency, i.e

61— &l =, 6+ &f &~ p
and we can also prove that
&+ &l =16+ & = p, |6 — &l =16+ & — (& + &) = p
Now we have the bilinear estimate of two u,’s which have frequency separation.
Imuupunllz, < 072wl xa- (2.66)

Together with (2.64) and (2.65), we get

1
/ /|—a(§122)€12|uuuuuuuudxdt
0o JR 1%

a(&2)&2,, 1952 —as
et [ (7R o T ([T

2
NL

AN

so we can sum up for s > —1.
Case 3: When one of &; is big, the other two small. We can assume &5 < &13 < 1, €14 2 f1-
In this case, we don’t have frequency separation. |My| < |%|

But we still have (2.31), so together with (2.64) and (2.65), we get

1
/ /R|—a<§12)§12§13|uuuuuuuudxdt

< a(§12)612613
u3
R 52

XS

(€l |
S

1
so it is summable when s > —

oow
L]

2.6 Local energy decay

Let x(z) be a positive, rapidly decaying function, with Fourier transform supported in
[-1, 1]. Let a be as in the previous section. We define the indefinite quadratic form

Byw) = 3 % / (6ra(D) + a(D)by)uyunde. (2.67)
A
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Here ¢, is an odd smooth function whose derivative has the form ¢} (z) = ¥y (z)?, ¥s(z) =
A‘Qs_%x(/\ﬁﬂ). We will abuse the notation a bit, and (2.67)

~ 1
Es(u) = 5 /(¢a(D) + a(D)¢)uudz, (2.68)
with the understanding that it is really defined on each dyadic pieces, and ¢ = ¢, on each
piece.
Then we have the calculation
d ~ . 5
%Eg(u) = Ry(u) + Rs(u), (2.69)
where

R2(u) = ((a(D) ¢ + ¢ra(D))tig, uz) + ((a(D)Prze + Przza(D))u, u),
Ry(u) = cRe((a(D)¢ + ¢a(D))u, (u°).).

We will see in the following propositions that R, can be used to measure local energy.
Proposition 2.6.1. Let a € S?, ¢ defined as above, then we have the fized time bound
B (u)| S Ea(u),

[((a(D)¢zae + Gazaa(D))u, u)| S Ea(u).

Proof. Since ¢ and ¢,,, are bounded and its fourier transform has compact support,
[{a(D)u,u)| = [((a(D)¢a(D)""*)a(D)"*u, a(D)?u)| < Ea(u).

Other terms are proved similarly. O]
Proposition 2.6.2. We can use Ry to bound the local energy

|Ya(D)?Dulljs S Ro(u) + cBalu). (2.70)

Proof.
((a(D)¢s + dpa(D))u, us) = 2|(a(D)2D)ull2s + (r*(z, D)u, u).

Here
r(z, D) = [a(D)"/?, [a(D)"*, 4],

so its symbol r satisfy the estimate
020¢r(2,€) < (&) N1+ 2a(9).

Hence
[(r(z, D)u,u)| S Fa(u).

Combine with previous proposition and the formula for R,, we get estimate (2.70). O
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Integrating (2.69) and (2.70) on time interval [0, 1], together with Proposition 2.6.1 we
get

1 i 1 _
| 1Dy Dl < el +1 [ Pt 2.11)

Next, we can rewrite R5 in the Fourier space. Notice that original definition of (2.67) is
on dyadic pieces, so R3 takes the following form

Ra(u) = 2 / o(z)ei" / (@€ — &) + alE)X(E) (€) )i €2)a(E) dededrr,

Pe={&+ &+ 6 =¢

Here ¢ is actually ¢y, x(§) is the multiplier used to define projection Pj.
Now we can symmetrize it, using the notation A(&;) = (a(§ — &) + a(&))x (&)

Ry(u) = /R ola)e s /P (3" A€)€i(6n) i) (€ dEidéda

& =1

= [otwe [ (S aeenteniie dsdsds

¢ i=1
To better estimate it, we use proposition 2.5.4, and rewrite

3

Z A(E)E = B(&1,6,8)(E + 6 + &) + O(6,6,8) (& + & + &). (2.72)

=1

So we split R into 3 . ~
RB(“) = Rgood,B + Rbad,37

where Rgood’g and Rbadg, take the following form,

Ryoots = [ o)™ / (3" A6) - O al6)alEn)ilEs)dededs,

Rbad,3 = - /R ¢(5U)€ix£/P (B(fl,fmfs)(f? + 53 + fg))ﬁ(fl)ﬁ(fz)ﬁ(fz)dfidfd9ﬁ-
3

Proposition 2.6.3. Let a, ¢ as before, then we have the estimate

1
[ Bt < 3 Tl

k=3,4
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Proof. As in proposition 2.5.4, we have

A(&)Si
= _%@% + 8+ 8 — && — 68— 6E).
Let’s look at one term of > A(¢) — C,
A
A& + 35(22)2 (& + & +6 — 66— 016 — &)
. 3), (61 + &+ &)% — 361 (& + & + &) + 367
38283

So on P, we have

D A -0
YA =3 A(E)EE + 350 A(G)E)
3818283 .

When we feed it to the integral, we can do integration by parts to trade £ for derivative of ¢

B i A 1)8% & N ~
s = =i [ duntrpe [ SLES G e e
we [ TAGE
N R A o O

Ty /R ule)e || S e UG

Let’s decompose the region into dyadic region {a, A\,A\}, & < X\ and we can estimate the
symbols, using the fact a € S?, the the proof is similar to proposition 2.5.5.

36168 A2 3668 Y a 3668 'Y a

The three terms in Rgood’g are similar, so we only do the third term, since that has the worst
bound. Denote it as 111

1 1
|/ 17| < M/ /qﬁx(x)uAuAuadxdt.
0 @ Jo Jr

Case 1. a < A, put L? on one of uy, and bilinear estimate on uyu, (2.51) , also notice
¢, is fast decaying on spatial scale \***3, so we can use local energy norm to avoid interval
summation. ( Based on our computation below, we can even perform interval summation
with no difficulty.)




CHAPTER 2. A-PRIORI BOUNDS FOR KDV EQUATION BELOW H™1 o7

! M)A
|/ 111 < MZ/ /gbx(x)u,\u,\uada:dt
0 o T /nJr

a(AA |4
S O3 s g, I @,
I

CL()\))\_4S_4
(6]

A

< )

xo o+ [

3 s — s—é —1l—s —s
AR max{A 5% A0~ 7 o @, (lul
I

< AT max{a‘l, )\25+%a_1_5}\]u,\| xs + ||ul

Xe)-

Case 2. a ~ )\, notice we have high modulation o,, = A3. Then bound (Q,,, uy)uy in L?
(2.52), and the other one in L.

JRZIERT) oy jy KRR

a()\>>\,3s,g)\%+s>\,4s,5 ™

/\—45—6 HUA |

X (Il

3
E s
X*NXp,

3
X NX;,
[]

For the part Rbad,g we can not estimate it directly, so we will add some correction as we
did before. Take

Es(u) = Ea(u) + Ap(u),

An(u) = —i /R s [ Ble & &)ie)G)IE)ddsds

3
Notice (2.72), then we have

d ~ ~ ~ ~
EES (u) = R2 (U) + Rgood73 + R4(’LL)

Here

Ry(u) = —/Rczﬁ(@@”g/P [B(E1, 82, €34)E3a) sym 6(81) 0(E2) U(€3) U(&a) dEdE .

Here we need to do two things, show |Es(u)| < E2% (u), which is same as proposition 2.6.1
and 2.5.6 and 2.6.2 . And estimate the error, which repeats the proof of proposition 2.5.10
using the fact that ¢ is bounded, $ has compact support, so they does no change to the
proof, in fact, since we have the spatial localization, we have the privilege of omitting the
interval summation by control them in local energy space.
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Proposition 2.6.4. With a, ¢ as before, when s > —%, we have the error estimate

%{SﬁX;@(l + [Jullxonxg, + [ul %(smxlse)-

1
| / Ra(u)dt] < |lul
0

Combining all the propositions in this section, we get the local energy bound.

Lemma 2.6.5. The solution to the KdV equation (2.1) satisfy the following bound

Y AT sup [ dhualliz
A J ’

s (14 Ju(t)]

ue) + lul

S sup f[u(t)] onxp + ullxsnxy (1 + lullxenxg, + llullXonxg)-

2.7 Finishing the proof

To finish the whole argument, we need to pick suitable symbol a(§) in the previous two
sections. As in [45], we pick slow varying sequence.

o _ Aluoall7

By =
P o]

)

2
HS
—£|log A—log u| R0
:E 5|log S i
o

These () satisfy the following property

(1) A*[Juoll72 < Balluol

2
Hs»
(ii) 228 <1,

(iii) S is slow varying in the sense that

€
| log, Bx — log, ﬁu’ N 5‘ logy A — log, N‘- (2-73)

Now if we take ay = A\* max(1, ﬁ/\’(}Z_E‘ logz A=logz Jol) "and correspondingly we take
a(f) Ay, ’6‘ ~ A

Then from the slow varying property (2.73), we get

2
Hs-

> anlluoallza DA [luoall7s + 27 A0 0IN B gy |17, S luol
A A
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Assume that [|ul|;2 Loy < 1, which implies sup, Fa(u(t)) < 1. Recall that

d
7 (Ex(u) + Aa(03)) = Aa(M),

so from Proposition 2.5.6 and 2.5.10, we get

1
(> aM ur®)122)3 S lollrs + Ml derxe (1 + ull g, + 1l )-
A
At fixed frequency A = )y, we get
1
sup Ag [ua (22 < 55, (lluoll - + [lu] Yonxs (1 lullxnxg + lullfsnx; ))-

From the property of 5y, we can sum up Ao, and get (2.9).
Together with the previous section, we can prove the local energy bound in exactly the
same way, so we conclude the proof of proposition 2.1.6.
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Chapter 3

Local wellposedness of
Chern-Simons-Schrodinger

3.1 Introduction

We consider the initial value problem for Chern-Simons-Schrodinger system

D¢ = iDy Dy + ig|o[*¢

oA — 0 A = —IIT1_(<5D2¢) (3.1)
0 Ay — Ay = Im(¢D19)

DA — A = —1|o

Here ¢ is a complex-valued function and the connection coefficients A, are real-valued func-
tions. The covariant derivatives D, are defined in terms of the gauge potential A, via

D, =0, +iA,. (3.2)

Regarding indices, we use o = 0 for the time variable t and a = 1, 2 for the spatial variables
x1,T2. When we wish to exclude the time variable in a certain expression, we switch from
Greek indices to Roman. Repeated indices are assumed to be summed. We will discuss
initial conditions in §3.2.

The System (3.1) is a basic model of Chern-Simons dynamics [33, 18, 19, 34]. For further
physical motivation for studying (3.1), see [35, 48, 59].

Local wellposedness in H? is established in [3]. Also given are conditions ensuring finite-
time blowup. With a regularization argument, [3] demonstrates global existence in H! for
small L? data.

The system (3.1) is Galilean-invariant and has conserved charge

M(¢) = | |¢fdx
R2
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and energy
B0) = [ Dol - Lioliar
R2
Notice that the scaling symmetry

preserves the charge of the initial data M (¢), L? is the critical space for equation (3.1).
We use J; to denote B

By expanding the first equation in (3.1) using (3.2), we have the following nonlinear
Schrodinger equation for ¢:

(0 + D) = —i0p(Aeg) — i ADed + (Ar + A2)¢ — glo|*0. (3.3)

We establish local wellposedness for (3.1) in spaces in the full subcritical range.

3.2 (Gauge selection

The Chern-Simons-Schrodinger system exhibits gauge freedom in that (3.1) is invariant
with respect to the transformations

& — e A, — A, + 0,0

for real-valued functions (¢, z). Therefore in order for (3.1) to be well-posed, a gauge must
be selected.

A classical choice is the Coulomb gauge, which is derived by imposing the constraint
V-A, = 0. In low dimension, however, the Coulomb gauge has unfavorable high x high — low
interactions, leading us to search for a suitable replacement. In the d = 2 setting of wave
maps into hyperbolic space, where a similar difficulty arises, Tao [54] introduced the caloric
gauge as an alternative to the Coulomb gauge. See [55] for an application of the caloric gauge
to wave maps (d = 2, large data) and [1] for an application to Schrédinger maps (d > 2, small
data). We refer the reader to [56, Chapter 6] for a lengthier discussion and a comparison of
various gauges. Both wave maps and Schrodinger maps are geometric evolution equations,
and in such settings the function ¢ takes values not in C, but rather more generally in some
(suitable) manifold M. A gauge system arises when considering evolution equations at the
level of the tangent bundle ¢*T'M, where ¢* denotes the pullback, and the caloric gauge
construction is closely tied to the presence of this underlying manifold M.

In this article we adopt from [16] a different variation of the Coulomb gauge called the
parabolic gauge. We shall also refer to it as the heat gauge. The defining condition of the
heat gauge is

VA, = A (3.4)
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Differentiating in the x; and x5 directions the second and third equations (respectively) in
(3.1) yields

QAL — 07 A, = —0Im(¢Dagp)
0,00 Ay — 02A, = D5Im(dD, ).

Adding these, we get
(V- A,) —AA, = —01Jy + 0o 1,

which, in view of the heat gauge condition (3.4), implies that A; evolves according to the
nonlinear heat equation

((9t — A)At = —81J2 + 82J1. (35)

Similarly, we obtain (coupled) parabolic evolution equations for A; and Ay:

{(at —NA, = —Jy — L0u]0)?

3.6
(0 — M)Ay = Jy + 101|¢]> (3.6)

It remains to determine initial conditions for (3.5), (3.56). Since the heat gauge is dy-
namic, we have an additional degree of freedom. We impose A,(0) = V - A,(0) = 0. To
see that such a choice is consistent with (3.1), observe that V - A,(0) = 0 coupled with the
fourth equation of (3.1) yields the system

O1As(t = 0) — 0o Ay (t = 0) = 1| |?, '
which in turn implies
AA(t=0) =1 2
AA(t=0) = —581|¢0| :

Substituting (3.8) into (3.56) yields

O A (t=0) = —Im(pDyoh)
0, As(t =0) =Im(¢D,¢),

which is exactly what we obtain directly from the second and third equations of (3.1) at
t = 0 with the choice A;(t =0) =0.

So having imposed an additional equation in order to fix a gauge, we study the initial
value problem for the system

(Do = iDyDyp + ig|d 2o
O A1 — 0 A = —Im(¢Dyo)
0 Ay — 0h Ay = Im(¢D0) (3.9)
014 — 0 A1 = _%|¢|2
A, =V-A,
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with initial data

60,2) = dola)

A(0,2) =0

A(0,2) = LA 105/go2(x) (3.10)
Ay (0, ) :—%A_181\¢0]2(:U).

Our main result is the following.

Theorem 3.2.1. For initial data ¢y € H*(R?),s > 0, there is a positive time T de-
pending only on |[¢o||gs such that (3.9) with initial data (3.10) has a unique solution
o(t,x) € C([0,T], H*(R?)). In addition, ¢9 — ¢ is Lipschitz continuous from H*(R?) to
C([0,7), Ho(R?)).

3.3 Reductions with heat gauge

Let us define H~! as Fourier multiplier operator

H'f = / ﬁei@””@ f(r, &)drde. (3.11)

When we apply it on initial data, which is functions with only spatial variable, we have

HY(f(2)8—0) = 1s0e™ f(2).

We also define H~2 in the same way

N[

—% — ; i(tr+z-€) F
Hzf: /(27’—1—|§|2) e f(r,&)drdg. (3.12)

Here we use principal square root of the complex function i7 + |£]|* by taking the positive
real axis as the branch cut.

All these operators apply only to functions on positive time intervals.
Using (3.5), we can rewrite A; as

A= —H((Qu2(¢,9))) — H (01(A26]")) + H ™ (0a(As|6])), (3.13)
where Q12(¢, @ = Im(81¢a2<2_5 - 82¢8195).

Similarly, by (3.56) and initial condition (3.8), we can rewrite A, as follows:

Ay = H'A(0) — H ' [Re(¢020) + Im(6020)] — H ™' (As|¢]?)

Ay = H™' A5(0) + H'[Re(6016) + Tm(6019)] + H"(Ai|[*). (3.14)

Here ] .
Ay(0) = §A7182|¢0|27 Ay(0) = _§A7181’¢0|2~
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Now we rewrite (3.3) as
(10, + D)§ = —2i Ay — 10 A + Ard + A% — g0,

Using (3.13), (3.14), we can conclude the following schematic representations of the nonlinear
terms.

(1) For A;(0;¢), we have
(H'Q12) (9,0, 0) + H ' (A1|¢[*) 020 — H™(As|6]*) 010 + I
where (H™'Q12)(, ¢,¢) = H'($010)02¢ — H ' ($020)016.

Here I; comes from initial data with the following form.
I = H ' A (0)0:¢ = (H A7 |¢o|*02p — H'AT'0s||*019))
(2) For (9;4,)¢ and A,¢:
H™H(Qua(, 0))d + H ™ (0:(Aul0*)) 0
(3) For A2¢:
H™H(¢0,0)H ™ (¢0,0)¢ + H™(00:0) H ™ (Aul¢|*)p + H ™ (Au| o) H (Aul*) b + L
Iy = [HH(¢0,0) H ' Ay (0) + H™H (AL |¢)) H A, (0) + H A (0) H 1 A, (0)]o.

3.4 Function spaces

In this section we define the function spaces we need for our problem. The starting point is
the U3 H*(R?), VZH*(R?) as define in chapter 1. But it is not good enough due to large log
loss when we try to estimate a product of two functions with separated frequencies.

So we make two modifications for the U?,V? spaces: first, weaken norm for the high
modulation part; second, apply U,V norm to functions localized at cubes on dyadic shell.

For functions at frequency A, we introduce a minor variation of the UZ and V2 spaces,
which we respectively denote by U2, V2. We define these spaces in terms of the following
norms:

haalZe = 1QoewlZe + S u®vs@@sewl,
[T|=A=2,[J|=A—1x A1

luxllfe = 1Qex2uxllf; + > X1 ()X (2)Qzzur |-
T]=A—2,| J|=A—1xA—1

Here x;(t), xs(z) denote sharp time and spatial cutoffs. These modifications, first introduced
in [45], allow us to replace a logarithm of the high frequency by a logarithm of the low
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frequency in bilinear estimates on products of UZ, V2 functions. This gain is essential for
our argument.

For each lattice point 2z € Z2, let C, denote the cube C, := z + [0,1)% The collection
of all such cubes yields a disjoint partition of R?: U,cz2C, = R2. Define P, as the Fourier
multiplier with symbol x¢., where x, denotes the characteristic function of C,. So Pg uy
means further localize a function u, with frequency support contained in the A dyadic shell
to a cube within that shell.

Now we are ready to define the basic function spaces we shall need in this chapter.

Definition 3.4.1. Let s € R be given.

1. Define X* as the space of all functions u : R — H*(R?) such that Po uy € UZ(R, H*(R?))
for every z € Z? and

[l

xo = (Z > IPeu

3
2
’Uf(]R,Hs)) < +00.
A>1 zez4

2. Define Y* as the space of all functions u : R — H*(R?) such that Po,uy € VZ(R, H*(R?))
for every z € Z? and

[[ul

1
2
ys = (Z Z ||PCZU)‘||%/>\2(R,HS)> < +OO

A>1 z€72

As usual, for a time interval I C R, we also consider the restriction spaces X*(I), etc.
The following corollary shows that the X* and Y spaces are well adapted to localizations
finer than the usual dyadic one.

Corollary 3.4.2. Let {S;} be a partition of R into measurable sets Sy with the property
sup #{k: C, NS}, # 0} < +oo.

2€74

Then

2
Xs-

> 1Ps,unllfzgre < llul
k

The same holds if we replace U by V2, and X° by Y.

We will still show the following two facts as we care for most function spaces:
1. Linear solution lies in the space

Proposition 3.4.3. Let s > 0, 0 < T < oo and ¢ € H*(R?). Then, for the linear solution
u(t) := e ¢, we have for t > 0 that u € X*([0,T)) and

i ory) < N0l (3.15)
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2. Linear estimate for the Duhamel term

Let f € L, .([0,00); L*(R?)) and define

loc

T(f)(t) = /Ote“”mf(s)ds t>0, (3.16)

as well as Z(f)(t) := 0 for t < 0. We have the following linear estimate for the Duhamel
term.

Proposition 3.4.4. Let s > 0 and T > 0. For f € L'([0,T); H*(R?)) we have Z(f) €
X5([0,T)) and

T —_—
NZ(F) | xs0,m)) < Sllp/0 /Mf(t,x)v(t,a:)da:dt,

where the supremum is taken over all v € Y5([0,T)) with ||v||y-s = 1.

We also record a useful interpolation property of the spaces UP and V? (resp. UX, VX)
(cf. [27, Proposition 2.20]).

Lemma 3.4.1. Let q1,q2 > 2, E' be a Banach space and
T:U" xU” - F

a bounded bilinear operator with ||7(uy,us)||r < CH§:1 |wj||re; . In addition, assume that

there exists Cy € (0,C] such that the estimate || T (uy,us)||r < Co H§:1 ||w;|l2 holds true.
Then T satisfies the estimate

2
C ,
1T (ur, us)|[p S 02(11152 + 1 [T lusllve, wy e V2, j=1,2.
j=1
Proof. The proof is the same as that in [28, Lemma 2.4]. For fixed uq, let Tyu := T'(u, us).
Then we have that
[Tvulle < Dillullys and  [|Tyullp < Diflullv2.

Here Dl = O”UQHUqQ,D/l = C2Hu2”U2-
From the fact that ||us||ys < ||ua||p2 and [27, Proposition 2.20], we obtain

C
1T (uy, u2)||e = [|Thus ||z S 02(1H5 + D)|ur ||y ||uz[ g2 (3.17)
2

Then we can repeat the argument by fixing u;, using estimate (3.17), and

2
1T (s, u2) |2 < C ] usllos < Cllunllvellugllys-

Jj=1
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Remark 3.4.2. In our analysis, we usually have the bilinear estimate proved by finer technics,
and also by L*-Strichartz estimate, which we can interpolate to get a log loss for product of
functions in U3, V2. Unfortunately, sometimes this log loss is too big. That’s where U3, and
V2 come into play, see lemma 3.5.4.

3.5 Linear and Bilinear estimates

Linear estimate

From chapter 1, we have the Strichartz (1.13) and local smoothing estimate (1.16) for
free Schrodinger equation. Using [27, Proposition 2.19], we can extend the local smoothing
estimate and Strichartz estimates to general UX functions:

i _1
e Py e fll oz S N 72| flluz (3.18)

1€ Fll oy ey S I flloz- (3.19)

Here (¢, ) is any admissible pair of exponents and p := min (g, r).

Bilinear Estimates for free waves

We introduce an improved bilinear Strichartz estimate that is a slight generalization of
that first shown in [7, Lemma 111].

Lemma 3.5.1 (Improved bilinear Strichartz). Let u(x,t) = e®®ug(x),v(z,t) = e ug(z),
where ug,vg € L*(R?). Let Q; denote the support of ig(&1), € the support of 9o(&;), and
set 0 = Q1 x Qy. Assume that € and 2 are open and separated by some positive distance.
Then

1/2

Supe, | e=e1-6, Xo(&1, &2)dH (61, &)

~ < 7—:|§1|2_|f2‘2 3.20
sz, 5 e Moollsllenliz (320

where dH' denotes 1-dimensional Hausdorff measure (on R*) and xq (&1, &2) the characteristic
function of €.

Proof. To control |[ut| .2 , we are led by duality to estimating

/ﬁ 916 & |6~ 6 Jin(E0) i (€2 dErds

We apply Cauchy-Schwarz and reduce the problem to bounding

G = / ’9(51 — &y, ’£1|2 - 152’2)\20[516[52-
(£1,62)€Q
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Let f : R — R be given by R? x B2 3 (£,6) — (& — &, |6 — [&]2) = (6,7) € R? x R.
The differential corresponding to this change of coordinates is

1 0 -1 0
dfF=1| 0 1 0 ~1
26V 26 —2¢f) —2¢

The size |J5f| of the 3-dimensional Jacobian of f is defined to be the square root of the sum
of the squares of the determinants of the 3 x 3 minors of the differential df:

9o f1 = 2V (1€ = 602 + (6 — €0+ (6 — 22+ (60 - ) .

Hence
| Jsf] = Cl&a — &i| = Cdist(Qq, Q). (3.21)

By the coarea formula (see [20, §3]),

G = 9(&1 = &, 1G] — &) P& dE,

(£1,62)€Q

/ /(? §2 ye: — &, Gl = 1L P IsfI N &, &)dH (&, &)dédr
=[&|2— |52\2

’9 §T ’ /5162 e Usf‘ 1(51752)657‘[ (fbe)dde
¢ e

; ’9(577)’2615617"Sglp/(&,&)eﬂz ’J3f’71(51752)d7{1(51,52)- (3.22)

§=81—&2

=[¢12—|&2|?

In view of (3.21), the right hand side of (3.22) is bounded (up to a constant) by

2 . —1
[gl|72 - dist (€21, 22) Sgl}_? E=t1—£
UV r=6]P—|ge)?

Xa(&1, E2)dH' (&1, ).

Let Iy denote the frequency annulus {£ € R? : A\/2 < |¢] < 2A}.
A straightforward application of Lemma 3.5.1 yields

Corollary 3.5.1 (Bourgain’s improved bilinear Strichartz estimate [7]). Let u, A be dyadic
frequencies, p < X. Let ¢,y denote free waves respectively localized in frequency to I, and

I,. Then
1/2

[ERENFZRS %H%(O)II@H%(O)H@- (3.23)
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Remark 3.5.2. If ¢,,, 1, are further localized into boxes of size o x o, we have better estimate

_ all?

16,allz2 S 572 100 ()22 192 (0)l 2. (3.24)
As a Corollary of the proof of Lemma 3.5.1, we obtain the following.

Corollary 3.5.2. Let u(z,t) = e®ug(x),v(x,s) = e“vy(x), where ug, vy € L*(R?). Let

Q4 denote the support of ug(&1), Qo the support of 09(&s). Assume that for all & € Qp and

& € Qs we have

1§10 A\ &a| ~ B.

Then
< B2 o[ 2 ||vol| z2- (3.25)

|ud]| 2

s,t,x

Proof. As in the proof of Lemma 3.5.1, we use a duality argument. The key is to bound
[l - slaPlePldade
(61,62)€Q

in L?. In this setting, the proof is simpler because the change of variables f is given by
R? X R? 5 (§1,&) = (& — &,1&[% |&f*) € R2 x R x R so that f : R* — R* and |df| ~
[SHAXSTE O

In order to achieve a gain at matched frequencies, we localize the output in both frequency
and modulation, seeking to bound P,Q,(éx) in L?. That Lemma 3.5.1 may be used
efficiently, we introduce an adapted frequency-space decomposition of annuli 7, C R? that
depends upon both the output frequency and modulation cutoff scales p and v.

Definition 3.5.3 (Frequency decomposition). Suppose pu, v, A are dyadic frequencies satis-
fying 1 < A and v < pA. We define a partition of I, into curved boxes defined as follows.
First, partition Iy into A\?/v annuli of equal thickness. Next, uniformly partition the annuli
into A/ sectors of equal angle. The resulting set of curved boxes we call @ = Q(u, v, ).

We make a few remarks regarding this decomposition. The curved sides of the boxes in
Q have length ~ u, whereas the straight sides of the boxes have length ~ v/\. By adapting
a suitable partition of unity to the decomposition, we have

F=> "> Paf

HKA REQ(p,v,\)
v<pA

Note that we may extend Q(u, v, \) to all smaller dyadic scales A’ < A in the following
way: take the partition Q(u,v,\') and cut the annuli into A/\ smaller annuli of equal
thickness. In this way we can impose a finer scale on low frequencies.
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Corollary 3.5.4. Let u,v, A be dyadic frequencies satisfying p < A and v < pX. Let ¢y, ¥y
be free waves with frequency support contained in I. Then

/2

1 P.Qu (10312 S WH%HL;H%HL;- (3.26)

Proof. The frequency restriction P, applied to ProPri)y restricts us to looking at the
subcollection of boxes R, R’ € Q separated by a distance ~ u. This subcollection is further
restricted by the modulation multiplier Q),. Let & € R, & € R, == & — &. We call &
the output frequency and sometimes denote it by Freq,,. The modulation of the product
PR&)\PR’w)\ is giVGIl by
&1* — &l — |6 — &f? = 26 - €,

which we call Modyy for output modulation. As & € R, & € R/, it holds that |§;| ~ A,
i = 1,2; because we apply P,, we also have |{| = |Freq,,| ~ p. Hence Modou ~ 2\ cos®,
where 6 is the angle between & and £. Applying @, restricts Mod,y, so that |Modgy| ~ v,
which in turn implies |cos 0] ~ v/(uA).

These restrictions motivate defining the set of interacting pairs P = P(u,v, A) as the
collection of all pairs (R, R') € Q x Q (where Q = Q(u, v, A) as in Definition 3.5.3) for which
(et -6 (66) M nd e {612 =16l (€,&) € R x R} satisfy [¢] ~ p and
= I~ v

Note that, for R € Q(u, v, \) fixed, the number p of interacting pairs P € P(u,v, \)
containing R is O(1) uniformly in p, v, A. This is a consequence of the restrictions |cos | ~
v/(pA) and || ~ p: they jointly enforce at most O(1) translations of a distance ~ v/,
which is precisely the scale of the short sides of the boxes. In other words, if one box in a
pair is taken as fixed, then the positional uncertainty in frequency space of the remaining
box induced by the cutoffs coincides with the dimensions of the box.

It remains only to show that for (R, R') € P we have

v
SUP/ fty—¢ Xr(§)xr (&)dH (61,6) S < (3.27)
f,T —<1 2 A
T=l&1]2~ &2/
Fix £ € R% 7 € R, £ # 0, and consider the constraint equations
§ =& —2 ) , (3.28)
T =& — &l
These determine a line in R?%:

Suppose this line intersects R. The angle p that it forms with the long side length of R
satisfies |cos p| ~ v/(u\) due to the modulation constraint (note that at the scale of these
boxes, the effects of curvature can be neglected). Since the long side of R has length ~ p
and the short side length ~ v/, it follows that the total intersection length is O(v/\). O
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Corollary 3.5.5. Let u,v, A be dyadic frequencies satisfying p < A and v < pX. Let ¢y, ¥y
be free waves with frequency support contained in I. Then

1PQuGstn)lli= S EZll0allzz il 2.
Proof. In view of the proof of Corollary 3.5.4 and the L?-orthogonality of the partition, it
suffices to prove the corollary for ¢ and v localized to boxes R, R’ € P(u,v,\) (see the
proof of Corollary 3.5.4 for the definition of P (i, v, \)). Denote these localizations by ¢z
and ¥ g, respectively.
By Bernstein, Cauchy-Schwarz, and energy conservation,

_ 152
[orVR Lo S T||¢R@/)R’||L§OL;E

o
N T||¢R||L§°L5||¢R'||L§°Lg

p
= T||¢R||L§||¢R/||Lg-

Extensions to U3.

We make frequent use of the proof of [27, Proposition 19], which extends L?L? bilinear
estimates for free waves to analogous estimates for UX functions by reducing from UZ func-
tions to UX atoms, commuting the spatial norms with the time cutoffs, and using Holder’s
inequality. The proof of [27, Proposition| also extends to local smoothing spaces.

Our first application of this proposition is in observing that (3.23) of Corollary 3.5.1
extends to U3 functions.

Corollary 3.5.6. Let ¢, 1\ € U3 be respectively localized in frequency to I, and Iy, p < .

Then L
m /

lowallee S S lldullzll¥alloz. (3.29)

We may similarly conclude the following.

Corollary 3.5.7. Let u,v € UX be respectively localized in frequency to Qi and s, where
01,09 C 1. Assume that for all & € Q1 and & € 29 we have

&1 A & ~ B.
Then

luvllsz, , S B~ |lulluz |ollvs- (3.30)

s,t,x

Our next corollary is an extension of Corollary 3.5.4 to UX functions.
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Corollary 3.5.8. Let p,v, A be dyadic frequencies satisfying i < A and v < p\. Let ¢y,
¥y € U} have frequency support contained in Iy. Then

/2

1P.Qu(dxta) |12 S W“Qb/\HUwa)\HUE' (3.31)

Proof. We decompose the functions into low and high modulation pieces, writing ¢, =

Q<v®r + Q>0 and similarly for 1,.
We first consider the low-low modulation interactions. The output modulation is given

by
Modgy =71 — T2 — |€1 - §2|2~

Due to the projections Q«,, we also have |1; — |§;]?| < v for j = 1,2. Therefore

Modout = [&1]* — |&]? — |6 — &P + O(v).

Since Modg,; ~ v, we conclude

G2 = & — & — &P ~

Consequently, we may localize ¢, and v, to boxes lying in U,/., Q(u, V', \). Having localized
the inputs ¢y, ¥ in frequency, to, say boxes R, R', we drop the frequency and modulation
localizations:

1P.Qu(ProrPrips) |2 < | ProxPral 2
We now may invoke [27, Proposition 19] and the proof of Corollary 3.5.4 to conclude

1/2

_ v _
| PROAPR M |12 S W||PR¢A||U§||PR’¢A||U§,

which, by L?-orthogonality of the partition, is enough to conclude

- J1/2
1 PuQu(Qer0rQ<u¥r) |2 S W||Q<<V¢A||U§HQ<<V¢A||U§-
Suppose that at least one of the functions is localized to high modulations. Without loss
of generality, we place the multiplier on ¢, and proceed to bound @>,%, in L? and ¢, in
L33

1PaQu (2@l S () 2] a Qa2
S (@) )16l oo [ Qzooall
S (a) P AT gu |z [l
ol/2
N W”QbAHUwaAHUf'

Since Fourier projections are bounded on L2, it follows that in the above argument ¢, may
be replaced by Q>,¢x (or Q< dy). O
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Lemma 3.5.3. Let Q1,Q2 € {Q<y,, Quys Q51,1 1 11,10, v3 dyadic}. Let ¢, ¢ € UX have
respective frequency supports contained in o boxes lying in I, and Iy, where pn < A. Then

al/?

1910, - Q¥allze S S5 1 Vallvzll¥allos- (3.32)

Proof. First consider the case where ()1 = 1 and (s is of the form Q<,. As ), is a Fourier
multiplier with (Schwartz) symbol

b(&,7) == x((1 = [€]*)/v),
we have

Quin(z,t) = (b n) (x,1) = / by, s)a(x — .t — s)dyds,

and so it follows that the left hand side of (3.32) admits the representation

[64(2.0) [ By s)na = .t = s)dydslz,.
Suppose we freeze y, s and consider

6w (., t) (= y,t = 5)l2 .

By replacing ¢, and the translated v, with atoms, we obtain by Lemma 3.5.1 and the fact
that the U spaces are translation invariant that

- al/?
16, )oa (2 =y, t = 5)llz, S g ¥l llalloz-

Since B(ﬂ?, t) is integrable with bound independent of v, (3.32) follows in this special case.
This argument clearly generalizes to Q1, Q2 € {Q<y,, Quy, 1 : 11,15 dyadic}. In order to
accommodate ()>,, we apply the above argument to 1 —()>, and use the triangle inequality.
[

Bilinear estimate on product of U3, V2.

By using the L* Strichartz estimate (1.13), we obtain the bound

[Px0pllzz, S oAl Pulles

which, together with 3.5.6 (which holds true for U3 functions) and Lemma 3.4.1, implies
(/2
[0x3bullzz, S iz 108 Moalluz |9ullvz,

which is not sufficient to close our bootstrap. We therefore use the augmented counterparts
of UX, VZ, namely U3, V.
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Lemma 3.5.4. Let ;4 < A. Then
1/2

1
19rdullz2onxme) S Sz 1og mlldalluglldnllvz. (3.33)

Proof. The proof here imitates [45, Proposition 3.7]. We split the V2 function into low and
high modulation components:

Qbu = Q§u2¢>\ + Q2;42¢u-

For the low modulation part, we apply (3.29) and use the observation that U% and V32 are
equivalent on each dyadic region. Thanks to the time truncation, we have O(u)-many dyadic
regions, leading to the log i loss in the estimate.

For the high modulation component, we localize further to rectangles R of size p=2 x
pu~ ! x p~t. By using Bernstein, we have

1Q22ullz= S 12l llve

And by using the size of interval and local smoothing estimate, we have

oallzcmy S 12N 2 a2

So we get

lordull ooy S > It () xs(x)oall 72 Sup 1 () x5 (%) Pl T
[ =p=, T |=p x !

< sl li
]

Remark 3.5.5. When we have the high frequency term ¢, € V2 paired with a low frequency
term ¢, € U, 3, we apply a Galilean transform to swap the frequencies. This allows us to
then use the same proof as above.

Remark 3.5.6. The same method holds when we want to have product of two functions
supported at small box.

3.6 Perturbative analysis

In this section we decompose the various terms of the nonlinearity into main terms and
error terms. At the end of this section, we show how to dispense with the error terms. In
the next sections, we look at the more challenging main terms.
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Reductions

In section 3.3, we listed all schematic representation of the nonlinearity. To estimate it,
we pair up the nonlinear terms with ¢, and bound the them in L; ,.
Before doing that we recall A;(0;¢)1 has the representation

(H7'Qu2) (9, ¢, 0)p + H ' (A1|¢|*) 020 — H ™ (Az|@]*) 1) + Iy

We take one more step in the last two terms, putting H ~! on 0,41 and expanding A,
again using (3.14). Thus A;(0;¢)1 admits the following schematic representation:

(H™'Qu) (6,6, 8)0 + H (0, 6)H (30:0)|0[* + H ™ (00,0)H " (As ) 0]
T (WO H A0l + I

Together with other schematic representation we get for (9;A;)¢th, A;ph and A2¢4¢ in
section 3.3.
We therefore seek to control in L;, the fourth-order terms

Main4,1 = (H71Q12)<é7 ¢7 (b)&?
Maings := H(Q12(6, 6))9, (3.:34)
Mainy 3 := [¢]*¢9),

the sixth-order terms

Maing; = H™ Y (¢0,0)H *(10,0)|0]?,

Maing, = H(30,6) H~ (30,6)00, (33
and the error terms.
Err, .= H ' (40,¢0)H (A{|¢|2)|¢|2a
Erry := H(0:(A:|9]*)) 90, )
Errg := H™'(A,]¢” ) (Az\¢!2)¢w
Brry = H (§0,0)H " A,(0)|6P (3.36)
Errs == (H 1A~ 1(91|€Z50| D2 — H " AT105| o | 9) 0

Errg := (H '(¢0,¢0)H A, (0) + H ' (A4|¢|*)H A, (0)+
H™ AL (0)H™1A,(0)) 6.

Estimates for the initial data

For initial data ¢y € H*,s > 0, we have |@g|> € W51
Now let us split the initial data into low and high frequency parts.

0ol = fi+ fo,  fr=Pileol®, fo= Pui|gol?
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For the high frequency part, we use Bernstein’s inequality.

1
_ _ _ )2
HH 'A 1ajf2”L;{x[0,T) 5 ZHG A Xf?,/\HL;{m[O,T)
A>1
_o\1l,_
S DT fonlls
A>1
S D Mol
A>1
S YA fanllwes S N follwes
A>1

Similarly, we have

1
_ . _ )2
|E AT fell 2oy £ D lle™ S heallzop

A>1

< Y T OT)EATINTE foulle
A>1

S [l fallwer.

For the low frequency part,

&
€17

Here ¥(&) is the same bump function used to define the Littlewood-Payley projection P;.
For Kj(x), notice the following two facts:
(1) |Kj(x)| < 1. This is because

AT = Kj(x) * |dol?, Kj(x) = FL(p(|€])25)

i\L @ r)dr
K@) S [ otebiedel s [ virar

(2) Kj(z) ~ ‘% as x — oo. In radial coordinates, (§1,&) = (rcos@,rsinf), and we can

assume &; to be {;. We write

2w )
Kj (ZE) _ / / 77Z}(T)T2COS 0 eir(xl cos f+x2 sin H)Tdrdﬁ
o Jo r

o > ] z T .
B / / (1) cos BTG oSO+ T 0) g ).
o Jo

Ty

By the method of stationary phase, we get the asymptotic [z
With this, we have

1A 0 fillzs S NEG @) zall fullze S ALy
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1A7 9 fillze S MK @z illes S 1filles.

[ull gz = [/ {/ | f(ze +x’)|qu’} ’ dx] ,
R He

Here

and we use the fact that |K(z)| < (x - e)% (z-et) 3 as 2 = 0o,

On a finite time interval, the symbol of H~! is bounded, and so we get H *A~'9;f;, €
L;,10,T) and L2°[0, 7).

To summarize, we proved H'A(0) € L; ,[0,T) N L2°[0,T).
Showing that A, is equal to H '(¢0¢) up to a small error

The main purpose here is to get a space-time bound for H~!(¢0d¢). The space Lim would
be a candidate; however, H ' (¢d¢) in general fails to belong to this space, leading us to
search for a suitable replacement.

Lemma 3.6.1. In the representation
Ay = H ' Au(0) + H™'(¢0:0) + H ™ (Ad|0]"),
we have the following bounds for the main term H~!(¢0,¢):

IH Py (63,003l S Il [l for A~ Ao > Ag
I Pra(@n003)l e S 160z [0nallog for A ~ max(hs, Ao)

And H™'(A,|¢[?) in H=2L2,[0,T).
Remark 3.6.2. Notice the following Sobolev embeddings hold:

HY(L28%) e H™2 12, (3.37)
H:L?, < LY, (3.38)
H 312, — LS. (3.39)

So H™Y(A,|¢|?) € L, N I25.

Proof. In the high x high — low case, H '(¢0,¢) has the form AH P, (¢xpy), a < A.

For ¢, supported on the annuli 7, we cut the annuli into 8 equal pieces, and decompose
each ¢y as ¢\ = 22:1 gb&k), where gf)g\k) has Fourier support in one of the eight pieces of the
annulus. Now for any two gbf\k), (Aj), we can take a direction e so that angle between any +£
in the union of the supports and e is bounded from below by some uniform constant. Hence

we can apply the local smoothing estimate (3.18) to obtain

k _1 k
[P ] Pl
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The same holds for ¢U) by our choice of e.
So we get

INPa(@ 69 et S 168 102 169 M1z

and hence by Sobolev embedding that NH 1P, (¢x¢y) € L33.

We now consider the case where the output frequency is comparable to the input, e.g.,
high x low — high. In this case, H'(40,¢) takes the form aH ' Py(¢ro ) or o ~* Py(drda ),
a < A, depending upon where the derivative lies. We apply Strichartz estimate (3.19) to
obtain

N Pu(6rda)llzz, S Idallus I9alles, S Ioallus Idallos. (3.40)

The desired bound for H~1(¢d¢) is then obtained by using the embedding Uz — UX.
Finally, in order to estimate H~'(A,|6[?), set

Bl = Hil(Agygﬁ’Q) and BQ = H71<A1‘¢|2).
Using (3.14), we may rewrite this as

By = H™\(Bolo|”) + H™' (HH(¢0h9)|0]") + H' (H ' A>(0)[6]%)
By = —H '(Bi|¢|*) — H™" (H™(¢0:0)|6[")) + H ™" (H™ A1 (0)|¢]") .

From our previous discussion, H™(¢d¢) € L or H 2L2,, and so by embeddings

x,t?

(3.38) and (3.39) we can conclude that it also lies in L33 or Li; N L*5. Also by virtue of
the Strichartz estimate (3.19), we have ¢ € L} ,. By Sobolev embedding, we conclude

H™ (H Y (p0h0)|¢l?) € HEL2,.
Similarly, because H'A4,(0) € L;,[0,T), we have
H™ (H'A,(0)|9f) € H2L2,[0,T).

We can therefore apply a fixed point argument to (By, By) in H_%Lit[(), T)x H_%Li’t[o, T)
for T" small. O

Controlling the “error” terms of equation (3.3)

Let us look at Errs term first, which needs a bit care
/ [HT' AT 010?020 - 0 — HT'AT' 0,0 0100 - 0] -

By applying integration by parts, we can move the H~'9, onto d,¢). Hence we we can
modulo signs rewrite the integrand as

H (02001 — 0100500) A~ (o). (3.41)
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Let us denote the respective frequencies on ¢, 1, || by &1, &, £3. Then we have & +&+&3 =
0.

Now if & ~ & = &, suppose &1,& ~ A, & ~ a. Then the symbol of H710, and A~!
gives 13. Using L™ on ¢ together with Bernstein inequality, and L' on |¢g|?, we get the
bound ;—2 for Errs in this case. B

If& =~ &~ A & ~a, A > a. We assume the modulation is on ¢ is v. Because we can
break the support of ¢, into o X « size boxes, the null form give us >\2%. So by applying
L> bound on ¢4 (a version of Cor 3.5.5 for U2, V? function), and L;,. We get

Now based upon the preceding discussion of A,, we can bound the other error terms
(3.36) in L;t.

We can control Err; because H ' (¢9,¢) € L% or L1, H ' (A,|0]*) € H_%Lfc?t —
Li,NL2% and ¢ € L7 ,.

Control on Erry follows from H™'(0.(A;|¢]*)) € L2, and ¢, € L ,.

Control on Errs comes from H™'(A;|¢]?), ¢, € Ly ,.

Control on Erry comes from H™'(4d,¢) € LZ* or Li,, H'A(0) € Li, N L2 and
¢ € Ly,

Control on Errg comes from H~'(A,|¢|?), ¢, € L, , H Y(¢0,¢) € LZ® or L*

x,t x,t) and
H71A(0) € L1, N L2S,

3.7 Quadrilinear bounds

In this section, we focus on controlling the main quadrilinear terms of the nonlinearity.
Initially we assume that each input function is a free wave. After proving the desired bounds
under this assumption, we then go on to show how to extend these bounds to general UX
functions.

Quadrilinear terms

Without loss of generality, we work only with the most difficult quadrilinear term to
control, namely

/ (H(5016)$026 — H™(3020)5016) .

as analogous arguments can be used to bound all of the other quadrilinear terms. The
integrand is the same as the first term appearing in (3.34).

Suppose that each ¢ is a free wave, and that the four respective input frequencies are
Aj, J =1,2,3,4. We distinguish two cases according to whether the two input frequencies
of H=! are balanced or unbalanced. We say that a pair Prg;_1Pxo; 18 balanced if Aoj_1 ~ Agj
and unbalanced otherwise.
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The frequencies of the four interacting free solutions must satisfy

g-g+8-8 -0 52
G—&L+8&—-&G =0
Factoring the first equation in (3.42), we get
(G —&) (G +&)+ (6 —&) (&+&) =0
Making substitutions from the second equation in (3.42), we obtain
(E1—&) (G +&—&—8&) =0 (3.43)
(€ —&) (& —&+&+8&) =0

Using in (3.43) the second equation in (3.42), we obtain the (not all independent) constraints

(61—&) (&a—&) =0

(&1 — &) (61— &)

(&~ 6) - (6 - &) (34
(&3—¢&1)-(&—&) =0.

In particular, the restrictions (3.44) imply that (&, &2, &3, &) must form a rectangle.
Let (u1,A1) denote one pair of input frequencies and (ug, A2) the other. We assume
without loss of generality that p; < A;, j = 1,2. Because of the second equation in (3.42),

A/2 <& — &l = [€3 — &l < 2),

which implies Ay = A;. By symmetry A\; ~ Ay. So without loss of generality we can replace
>\1 and )\2 with .
We make two general remarks. The first concerns pairs of frequencies (p;, \).

Remark 3.7.1. If the output frequency is comparable to the input frequencies, then refined
bilinear estimates are not necessary, and it suffices to place the corresponding waves in L;{x.
For the sake of exposition we explicitly treat the cases where the output frequency is much
lower than the input frequencies.

The second concerns modulation cutoffs.

Remark 3.7.2. If v < p?, then throughout we replace @, by Q2. For the sake of exposition,
we do not explicitly point out each time this is done.

Unbalanced case
It suffices to consider the case where the derivatives fall on the higher frequency A terms.
The goal is to control

‘/Hl(¢ulal¢k>¢u282¢k . (345)
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Without loss of generality, we suppose that each wave is normalized to 1 in L2. To each pair
qgujqﬁ,\ we apply bilinear estimate (3.23), obtaining a combined bound of (p112)*2/X. The
two derivatives in (3.45) are multipliers whose contribution is bounded by A\?, while H~! is a
multiplier controlled here by A2, Therefore (3.45) is bounded by O(j, /2 1/ ?/)), which we
sum in p; over p1; << A to obtain a bound of O(1).

Balanced case

Here we suppose that one pair of inputs is at frequency ~ A and that the other is at ~ pu.
Without loss of generality, we can always assume that H~! takes the A-frequency inputs.
Our aim is to control

’ / H7' (PaQu(620102)) $py 0oy, — / H™' (PaQu(620201)) ¢y 010y, | - (3.46)

We use the orthogonal partition Q(c,v,A) of Iy and I,. Let Ry, Ry, R3, Ry be boxes
belonging to this partition, where R;, Ry are a-separated at frequency A\ and R3, Ry are
a-separated at frequency u. By the L?-orthogonality of the partition, it suffices to estimate

'/H_1(¢Rla1¢R2)¢R352¢R4 —/H_l(¢R152¢R2)¢R331¢R4 : (3.47)

We may normalize so that each ¢p, has an L2 norm of 1.
We now split into two subcases.
Subcase I:
Suppose that there is 8 2 a\ such that [&s A &| ~ ( for all & € Ry and & € Ry.
Let b(y, s) denote kernel of P,Q, so that b(&,7) = x(£/a)x((T — €2)/v).

Our goal is to control

\ [ 6 G dr6m) = ot = 5) e ) 5.
—0(y, 5)H " (¢r, D20, ) (& — y,t — 5)Pr, 010k, (x, t)dsdtdrdy| .

This is bounded by

t,s,x

/HH1(¢31 81¢Rz)$3382¢34 (¢R1 82¢R2)¢R381¢R4 HLl sup ’b<y7 5)|dy-

The first term is translation invariant, and so we may obtain a bound on
HHil (Q;Rl al (sz)(Z_SRS 82¢R4 - Hil(&]‘h 82¢R2)(5R381¢R4 ”Ltl,s,z (348>

uniform in y. In particular, we have a contribution of order O(r~!) from H !, a contribution
of B from the null form, and from two applications of (3.25), a contribution of 3~1. Taking the
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L? normalizations into account, we have that (3.48) is O(v~!). Finally, with the observation
that

[ suwlbty.s)ldy < v

we conclude that (3.47) is O(1) in this subcase.

Subcase 11I:

Suppose now that [& A &| < al for all & € Ry and & € Ry. Together H~! and the
null form contribute aA/v, and so we can apply (3.26) twice to conclude that term (3.47) is

0(1).

Extending quadrilinear bounds to U? functions.

We split into two principal cases. Throughout we take advantage of the fact that we can
always renormalize functions to 1 in UX.

Unbalanced case

Here our goal is to control

‘/Hl<¢ulal¢)\1>¢u282¢)\2 :

We conclude A\; ~ Ag as in the free case since the second equation of (3.42) holds for any
four interacting frequencies. Therefore we need only replicate the free-wave bound on (3.45).
This, however, is achieved simply by repeating the argument in the free case, but replacing
(3.23) with (3.29).

Balanced case

We assume without loss of generality that pu; ~ Ay 2 A2 and ps < Ag. Without loss of

generality, we may always place the Fourier multipliers on the two large balanced frequencies.
Relabeling frequencies, we therefore have as our goal to control

‘/H_l (PaQu(02010)) Gy 02y, — /H_l (PaQy(020202)) Gy 01, | - (3.49)

As in the proof of Corollary 3.5.8, we decompose each function ¢ into low and high modu-
lation pieces, writing ¢ = Q«, ¢ + Q> 5.

Balanced low modulation inputs

We suppose that both ¢, terms are restricted in modulation via (Q«,. Following the
proof of Corollary 3.5.8, we conclude that each ¢, is localized to a pair of boxes Ry, Ry lying
in Uy, Q(a, v/, N). Since & — & + & — & = 0, we likewise conclude that for fixed Ry, Ry,
we may restrict &5 and &, to boxes in U,/ Q(«, V', \) at frequency pq ~ po (if pq and po are
not comparable, then there is no output to control).

There are two subcases: v < aX and v 2 a.

When v < a\, we proceed as in the free balanced case up to the point of the L? estimates,
where we invoke (3.29), (3.30), and (3.31) as opposed to (3.23), (3.25), and (3.26).
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If v 2 aX and p < A, then we apply bilinear estimates (3.29). The derivatives and null
form are then O(uA/v) while from (3.29) we have a contribution of O(a)). Therefore (3.49)
is O(ap/v), where au/v < 1.

Suppose now that instead it is ¢, and ¢,, that are restricted in modulation via Q«,.
We can then shift the Fourier multipliers in (3.49) onto these terms and again proceed as in
the proof of Corollary 3.5.8 to localize in frequency. Here, however, we use the finer partition
U Q(a, v/, A) at all scales under consideration. Once we localize to boxes in this partition,
we can carry out the same argument as above.

Alternating high modulation inputs

Here we suppose that at least one of the ¢, terms and at least one of the ¢, terms are
restricted in modulation by @>,.

We localize in frequency to boxes R;, j = 1,2,3,4, of order o x « in size.

The two high modulation factors can be used to localize to a v~! time interval. Once
this is done we discard the modulation information. Then we simply reduce to the free case
by first reducing to atoms.

Remark 3.7.3. We remark here that in our argument we use bilinear estimates of U3 and V2
functions. If they are at different frequencies, then we get a log loss in the lower frequency.
If these two are at same frequency, then we apply bilinear estimates if all of the terms are at
same frequency and cross bilinear estimates (with a log loss on lower frequency) otherwise.

3.8 Sextilinear bounds

In this section, we focus on controlling the main sextilinear terms of the nonlinearity.
Initially we assume that each input function is a free wave. After proving desired bounds
under this assumption, we then go on to show how to extend the bounds to general UX
functions.

Sextilinear terms
The basic expression is

/ HY(606) H(606) (6), (3.50)

with integrand as in (3.35).
Here we are thinking of each ¢ as denoting a free wave. As in the quadrilinear case, we
localize each ¢ to a frequency annulus:

/ H™ (63, 065,) H ™ (63,002, (635 Bo)

Throughout, Remarks 3.7.1 and 3.7.2 are assumed to be in forcer.
The possible inputs are summarized as follows, in nondecreasing order of difficulty.
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A1, Ao A3, A\ A5, Ao
unbalanced unbalanced either
balanced  unbalanced either
unbalanced  balanced either
balanced balanced  unbalanced
balanced balanced balanced

Unbalanced-unbalanced-either

First consider the unbalanced-unbalanced-either case. Lemma 3.6.1, Sobolev embedding
(3.38), and the (¢,7) = (4,4) Strichartz estimate (1.13) allow us to put each of the three
terms in L*.

Balanced-unbalanced-either; unbalanced-balanced-either

Second, consider the balanced-unbalanced-either case or its symmetric counterpart unbalanced-
balanced-either. Here we put the labeled balanced term in L33, the labeled unbalanced term
in L2 and the remaining ¢ term in L?. This we can achieve thanks to Lemma 3.6.1, Sobolev
embedding (3.39), and the (q,r) = (4,4) Strichartz estimate (1.13).

Preparation for the remaining cases

In the third and fourth cases we are led to further refining our frequency and modulation
restrictions. We do so by applying frequency and modulation cutoffs on pairs of interacting
waves. Note that in both the third and fourth cases the first two pairs of waves are balanced,
meaning A\; ~ Xy and A3 ~ )\4; for the purposes of estimates it suffices to treat these
comparable frequencies as though they were equal. Relabeling accordingly, we consider

/[—I1 [Plu QVI (¢/\18¢)\1>] Hil [P,U«ZQV2 (¢>\28¢>\2)] PMgng (¢A3$}\4)'

Here the last two frequencies do not share a label because we admit the possibility that they
are unbalanced.
Note that
p + p2 + pz = 0. (3.51)

As a consequence,
|l ~ | 2 Ll (3.52)

for some permutation (i, 7, k) of (1,2,3). We denote the larger magnitude scale by uy; and
the smaller one by .

Next we address the modulation constraints. A priori, 0 is the lower bound on each v;.
However, the smallest scale that we actually need to consider is p?. The reason for this
is twofold. Firstly, at lower modulations the symbol of H~! is dominated by the j; term
and not the v; term. Secondly, by dyadic summation, the bilinear estimates from §3.5 at
modulation Q<u? are controlled by those at modulation ng. Therefore in the following we
assume that each v; is dyadic, satisfies u? < /2, and that any of the following estimates that
hold with a multiplier Qu? also hold with that multiplier replaced by Q) u2-

A convenient consequence of the modulation constraints

i < (3.53)
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is that the two largest modulations are comparable in size. To see that this is so, let
= &> — &) — |& — &J? and similarly for ng, n3, so that |n;| = v; for each i. Arrange
each set in increasing order. Of course, Vmin = |Mmin|, Ymid = |Pmid|; Ymax = |[Pmax|. We have

Nmin + Mmid + Mmax = _,U% - ,Ug - ,Ug (354)

Hence
2
‘nmin + Nmid + 7/Lrnax| ~ Mpi-

Suppose now that vy, ~ pf;. As a consequence of (3.53) and (3.52), we have that 12, < viia.
Therefore (2 < Vimid S Vimax ~ 35, which implies vy ~ Vmiq. Suppose now on the other
hand that vyax > pf;. Then the fact that the left hand side of (3.54) is O(ug;) combined
with the trivial bound v, < Vmiq forces Vimax ~ Vmid-

We therefore let v ~ Viax ~ Vmid and Yo ~ Vpin-

A simple consequence of (3.53) is pu?, < .

Balanced-balanced-unbalanced

Now we are ready to analyze the balanced-balanced-unbalanced case.

Suppose that @, is paired with an H~'; without loss of generality, let |v5| ~ 14,. Then
we apply the L* bound to this term and use (3.23) on the remaining pairs to obtain an
upper bound of

A1 Az figlio [ohi < M <1
Vhi Vio )\2 max{)\l,)\g,)\4} ~ Uhi

Suppose now on the other hand that @Q,,_ is not paired with an H~!. Then we apply L>
to one of the terms inside H~! and use (3.23) on the remaining terms:
)\1;\2 Hnilhi Hhi < ,u_ﬁl <1
Vi A2 max{A, Az, At ™ v

Balanced-balanced-balanced
What remains is the balanced-balanced-balanced case. Again relabeling, we have only to
consider

- [PMQVl (¢A18¢A1>] H! [PﬂZQVQ (¢A28¢A2)] PMSQVS (¢A3(5>\3)'

The following combinations of multipliers are exhaustive:

b Mhl Qllhl ,uflo QVIO ? /J'thVhl

¢ P Quyi, H Py Quyys iy Qo
* P Quis H™ Py Quag Py Qg
J P Qus, H Py Quyys By Qun,
¢ P Quiy, H Py Quyys Py Q-
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In addition to the above, we should also be cognizant of the following possible relation-
ships between the input frequencies:

® Amin < Amid € Aax
® Ain ~ Amid < Amax
® Min < Amid ~ Amax
® \in ~ Amid ~ Amax-

The matched cases: P, paired with @,
Suppose that the multipliers H~ 1, P, ,Q,, appear together so that they are applied to
the same pair of inputs, i.e., we have the combination

,“hl Ql’hl Nlo QV107 Hni thl

If 1, appears inside an H~!, then we apply L* to that term and L? estimates on the
remaining terms. Without loss of generality, we suppose that vy = 11,.

>\1 )\2 H1oV1o Vhj lulo < 1.
Uni Vo A2 pmimax{A;, Az} S i

Note that here in applying (3.23) we pick up the smaller of the two p’s and the larger of
the two \’s.

If we can’t use (3.23) (when A; ~ A3), then we apply bilinear estimates inside each H~!.
(Cross-bilinear gives us a better estimate, but we do not need it.)

Now suppose that we have the combination

/‘th thl )u‘hl Ql/hl Hlo leo

First suppose that A3 # Apin. Then we apply L™ to the v, term:

A1 A2 [ioVo Uhi < Mo Mo

Vﬁi A3 [ni maX{)\l,/\z} Hhi Vni

Next suppose that A3 = Apin- If Amia ~ Amin, then the same strategy as above works. So we
need only consider A3 = Apin < Amia- In this case we apply the L™ estimate to the Ajyay (or
Amid) term and use (3.23) on the remaining:

>\1)\2 Hhilhi Hilo < Mo Mhi < 1.
I/h1 )\max )\mld Vhi

The mismatched cases: P, paired with @,
It therefore only remains to consider the cases where v, pairs with uy;. That is, we only
have the following combinations left to consider:
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b H 1PHh1 QVhi ) ll‘hl Ql’lo ) MIOQVhl
1

b H PN}HQVhi ? ,ulo thl Hhi QVIO
1

b H P)uhl QVIO’ )U‘IDQVhl /J'thVhl

The next lemma encapsulates a simple observation that will prove helpful in all of the
remaining cases.

Lemma 3.8.1. Suppose that @),,, does not pair with P, Then
fiy, < iy S Vio < Vi (3.55)

Proof. Tf o ~ ppi, then necessarily v, pairs with ., and hence p, < py;. Similarly, if
Vo ~ Ui, then again we effectively have v, pairing with . Hence Vo K Vhi.

Note that by assumption it is always the case that 1/10 2 ,ul However, if v, does not
pair with i, then it pairs with gy, which implies v, > p O]

We may therefore assume throughout the remainder of this subsection that we are in the
regime dictated by (3.55).

We split into two principal cases.

iy inputs are at widely separated frequency scales

Subcase I:

Suppose first that the we have to consider H 'P, Q,,.. Suppose its input is Ay and that
A1 and A3 are widely separated. Then we put L™ on that term (the p, term) and get

A1 A2 oV Hni < Hioftni <1
vnive Ao max{A;, A3} ¥ 1,

by (3.55).

This eliminates cases

uhl QVhl H N/lOQVlH Uhl QVIO
'U'hl QV]O H ulo QVhl Mu QVhl

(except when A ~ A3).
Subcase 11I:
So suppose now that we are in case

:u'hl QVhl ? Mhl QVIO )~ Mlo QV})]

If A3 2 min{A;, A2}, then we apply L to the py, term to get

AL A2 Hlothi Fhi < HloHhi

< <1
Uhi Vo A3 maX{/\l,/\2} Yo

~Y
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So suppose A3 = Apin < Amia- Then we apply L™ to the 1, term:

ﬁﬁﬂhiylo Hlo < Hlo thi < 1.
Vhilo A2 A1 7 Ui

Therefore we may assume that the two puy,; terms have comparable input frequencies.

iy inputs are at comparable frequency scales

We assume A\; ~ A3. If A; and )\, are widely separated, then we apply L* to the v, term
and apply cross-bilinear to get

)\1)\2 Hhillo Hlo < 1
Vhille A1 maX{>\17>\2}N '

Therefore we have reduced to the case where A\; ~ Ay ~ A3, i.e., all frequencies are
comparable to a single frequency .

To to summarize, we have reduced to the case where all input frequencies are of size ~ A
and where a P, is paired with @), . Recall we are in the regime given by (3.55).

The following are the possible configurations:

1
b H Pﬂhl thi ? ,“hl Ql’lo ) )LLIOthl
1
b H P/»th Ql/hi ? ,u‘lo thl )+ Hhi QVIO
1
b H Pﬂthylo’ )U‘IDQUhl ? /J'thVhl
The derivative and modulation contributions together will be
A2 A2
or -
Whillo Vi

Once these are taken into account, we may place the three outputs P, Q... , P, Quni> P Qo
on equal footing. We cut everything down to the finer scale using the orthogonahty of the

three functions coming from product, so that everything is localized to size ), X = X v,.
In this case, we can use (3.23) on each term, together with Bernstein from L> to L2 We

obtain
: ! : b b
A ( Vlo ) ( Vhi ) ( Vhi ) <V10M10> < Hio <1
Vhillo \ PniA HioA HniA A IS

Extending sextilinear bounds to U} functions.

Notice that in our argument, we basically used L? and L> estimate on product of free
solutions. Thanks to 3.5.6 and 3.5.8, we can extend these estimates to U3 functions.

We only need to be careful about extending estimate to a product of Ui Vi functions
with certain logarithmical loss.

Similarly to Remark 3.7.3 at the end of previous section, we remark here that all of our
estimates in this section immediately generalize from free solutions to U functions.
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3.9 Lipschitz dependence

Now let us look at the difference of two solutions ¢, ¢’ corresponding to data ¢g, ¢, and
prove the following lemma.

Lemma 3.9.1. Let ¢ € X*, N is defined as the nonliearity in the right hand side of equation
(8.3). Assume ||¢]|xs < a <1, then

IV]

nga?’

Also assume the same holds for ¢, and N/’ defined in the same manner. Set b = ||¢ — ¢/|
2@, c = ”¢0 — ¢6HH9, then

xs <

IN = N|lxs < a®b+ a’e

Proof. The first estimate on A is basically what we have proved before. To do the second
one, we basically need to bound ||A, — A.|| in terms of ¢ — ¢’ and ¢y — ¢f. (This is the
different part than Coulomb gauge, where we don’t need the difference of initial data. )

{@ — M)A =~y — J0ulof (3.56)

(0 — A)Ay = .J + Lay|g)
So we can write down the difference equation for A, which roughly looks like
0= A)A=A) = (0 =)o+ ¢ (0 —¢) + (A= Ao + Al(d— ¢)o+ ¢ (¢ — ¢)]
(A= A(0) = (¢o — ¢6) o + Po(Po — ¢0)

Because ¢, ¢’ satisfy the same linear estimates, so we can conclude all our estimate for ¢, A,
would just apply to the difference equation. Hence we get

IV = N'|

xs S a’b+ a’e.

O

From this lemma, we apply fixed point argument for equation (3.3) in X*[0,7) for T
small enough, to get unique solution with Lipschitz dependence on the initial data.
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