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ABSTRACT OF THE DISSERTATION 

 

Investigating the Wavelength Dependence of Weak Lensing Measurement  

from a Space Telescope using a Simple Model 

and Estimating the Reduced Shear at the Hubble Frontier Parallel Fields 

 

by 

 

Nathan Tung 

Doctor of Philosophy in Physics 

University of California, Los Angeles, 2019 

Professor Edward L. Wright, Chair 

 

Ignoring redshift dependence, the statistical performance of a weak lensing survey is set by 

two numbers: the effective shape noise of the sources, which includes the intrinsic ellipticity 

dispersion and the measurement noise, and the density of sources that are useful for weak lensing 

measurements. We provide some general guidance for weak lensing shear measurements from a 

“generic” space telescope using the galaxy flux signal-to-noise ratio (S/N), ellipticity 

measurement variance, and effective galaxy number per square degree as metrics to evaluate 

weak lensing measurement performance across wavelength. Galaxy data are collected from both 

the ULTRAVISTA field and the Hubble Space Telescope (HST) Frontier Parallel Fields (FPFs) 

and fitted to radially symmetric Sersic galaxy light profiles. The Sersic galaxy profiles are then 

stretched to impose an artificial weak lensing shear, and then convolved with a pure Airy Disk 
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PSF to simulate imaging of weak gravitationally lensed galaxies from a hypothetical diffraction-

limited space telescope. Our results consistently show that weak lensing measurements are 

optimized for the longest wavelengths available in the survey, until thermal background from the 

telescope or interplanetary dust reduces the sensitivity. We also perform a crude measurement of 

galaxy ellipticities in the HST FPFs using Source Extractor (SExtractor) software (Bertin & 

Arnouts, 1996) in order to estimate a reduced shear at the location of the parallel fields. The 

average ellipticity among a significantly large density of distant galaxy images is directly related 

to reduced gravitational shear signal, which we approximate with our simplifying assumptions 

and use to estimate the primary FF galaxy cluster masses to illustrate that shear measurements at 

long NIR wavelengths are completely reasonable. 
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1. Introduction 

Weak gravitational lensing has become a powerful tool for dark matter studies since 

lensing distortions depend on the total matter distribution, light plus dark. Many cosmic shear 

measurements have been done by ground-based telescopes, such as CFHTLS (Heymans, et al., 

2012), VST-KIDS (VLT Survey Telescope – Kilo-Degree Survey) (Baxter, et al., 2013), Pan-

STARRS (Kaiser, 2007), LSST (LSST-Science-Collaboration, et al., 2009) and DES (Baxter, et 

al., 2018). However, such results have their limitations. Weak lensing requires high image 

quality for the shear measurements, near-infrared imaging capabilities to measure photometric 

redshifts for galaxies at redshifts z > 1, a very high degree of system stability to minimize 

systematic effects, and the ability to survey large sectors of the extragalactic sky.  This 

combination of requirements is hard to meet from the ground and demands a wide field 

Visible/NIR space mission (Refregier, et al., 2010). Of particular interest is the future launch of 

two space telescopes: the 1.2 meter Euclid space telescope, currently under development by the 

European Space Agency (ESA), and NASA’s 2.4 meter Wide Field Infrared Survey Telescope-

Astrophysics Focused Telescope Assets (WFIRST).  

The Euclid space telescope will consist of a 1.2 meter diameter primary mirror, an 

imaging instrument consisting of a CCD-based visible optical channel and a Near IR 

Spectrometer and Imaging Photometer (NISP). The visible channel will allow for measurement 

of the shapes of galaxies for weak lensing with a resolution of 0.18 arcseconds (PSF FWHM) 

with 0.1 arcsecond pixels in a wide red band (R+I+Z). The NISP instrument images in the 0.9-

2.0 micron range (Y, J, H bands) with 0.3 arcsecond pixels (Racca, et al., 2016). The launch date 

of the Euclid spacecraft is currently planned for 2020.  
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NASA’s 2.4 meter WFIRST has a tentative launch date of 2024. The imaging capability 

of WFIRST will have a field of view of 0.281 square degrees with a pixel scale of 0.11 

arcseconds per pixel over a wavelength range of 0.76 μm – 2.0 μm. The point spread function 

(PSF) encircled energy at 50% ranges from 0.11 arcseconds to 0.14 arcseconds over this 

wavelength range (Spergel, et al., 2015). Both space telescopes are expected to provide 

unprecedented measurements for weak lensing studies. 

While real-life measurements of cosmic shear must account for a variety of complicating 

factors including galaxy structure, telescope seeing, and sources of noise, in this research we 

present a simplistic model calculation for the ellipticity measurement noise with a goal of 

locating the optimum wavelength band for cosmic shear measurements to be performed from a 

hypothetical diffraction-limited space telescope. Our calculation assumes a pure airy disk PSF 

for a fully illuminated circular aperture, galaxy light intensity profiles modeled by Sersic’s 

equation (Sersic, 1963), and sky-dominated noise. Sersic galaxy light profiles are radially 

symmetric, so we introduce gravitational shear in our model as a small perturbation on the radial 

symmetry of the light profiles given by Sersic’s equation, and then calculate the error of the 

shape measurement after telescope diffraction constrained to the assumptions stated above. We 

also calculate an effective galaxy number per square degree across different wavelength bands, 

taking into account the density of sources that are useful for weak lensing measurements and the 

effective shape noise of sources. From the data collected in this paper across galaxy sets from 

both the UltraVISTA Ks-selected and R-selected catalogs (Muzzin, et al., 2013), and the HST 

FPFs, we find that the longest wavelength available in the survey gives the minimum average 

ellipticity measurement variance, the maximum average galaxy flux S/N, and the maximum 

effective galaxy number counts.  
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We also perform a crude measurement of galaxy ellipticities in the HST FPFs using Source 

Extractor (SExtractor) software (Bertin & Arnouts, 1996) in order to estimate a reduced shear at 

the location of the parallel fields using the H-band, the longest wavelengths available in the HST 

FF data. In an effort to simplify the procedure, we assume a purely symmetric Gaussian PSF. 

While this choice is unrealistic and unrepresentative of the HST, it makes deconvolution of the 

PSF simple and allows for relatively easy extraction of an approximate galaxy source ellipticity 

signal. The average ellipticity among a significantly large density of distant galaxy images is 

directly related to reduced gravitational shear signal, which we approximate with our simplifying 

assumptions and calibrate to more strictly accurate values reported elsewhere in the literature to 

obtain an estimated encircled mass which we expect to correlate with the primary cluster masses 

of the FFs. 

This paper is organized as follows. In Chapter 2 we review the standard cosmological model 

that forms the background of gravitational lensing theory. In Chapter 3 we provide a brief 

summary of weak gravitational lensing and measurement considerations and motivate our work. 

Chapter 4 describes the methodology of our analysis, including details of our model diffraction-

limited telescope and Sersic galaxy profiles, equations and calculations for the flux SNR, shape 

measurement uncertainty, and effective galaxy number per square degree which we use to 

evaluate weak lensing measurement across wavelengths. This chapter also outlines the procedure 

and assumptions used to estimate the average reduced shear signal in the HST FPFs. In Chapter 

5 we describe the galaxy data collected from the UltraVISTA and FPFs and the creation of the 

galaxy catalogs used in this study. In Chapter 6 we present the results of our calculations, 

including plots of the flux SNR and galaxy shape uncertainty vs. wavelength, and of the effective 

galaxy number per square degree vs. integration time across wavelength bands, and our results 
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for average ellipticity measurements on the FPFs to obtain estimates of the reduced shear and 

encircled mass. We draw our conclusions in Section 7. Methodology, Data and Results sections 

for the UltraVISTA fields heavily reference the author’s previous publication (Tung & Wright, 

2017).  

2. The Standard Cosmological Model  

In this Chapter, we review aspects of the standard cosmological model which have relevance 

for further discussion of weak gravitational lensing. This model is consistent with a description 

of a cosmological background which is a homogeneous and isotropic solution of the field 

equations of General Relativity, and is the standard cosmological model covered in most General 

Relativity text books; see for example, (Carroll, 2004). 

2.1. Robertson-Walker Metric 

General Relativity describes space-time as a four-dimensional manifold whose metric tensor 

𝑔𝑔𝛼𝛼𝛼𝛼 is considered as a dynamic field. The dynamics of the metric are governed by Einstein’s 

field equations, which relate the Einstein tensor to the stress-energy tensor of the matter 

contained in space-time. Two events in space-time with coordinates differing by 𝑑𝑑𝑥𝑥𝛼𝛼 are 

separated by 𝑑𝑑𝑑𝑑, with 𝑑𝑑𝑑𝑑2 = 𝑔𝑔𝛼𝛼𝛼𝛼𝑑𝑑𝑥𝑥𝛼𝛼𝑑𝑑𝑥𝑥𝛼𝛼 (Einstein summation convention implied). The 

eigentime, or proper time, of an observer who travels by 𝑑𝑑𝑑𝑑 changes by 𝑐𝑐−1𝑑𝑑𝑑𝑑, where 𝑐𝑐 is the 

speed of light. We use the convention that Greek indices run over 0…3 denoting coordinates of 

four-dimensional space-time while Latin indices run over the spatial indices 1…3 only. The sign 

convention (+,−,−,−) shall be used throughout. 

The standard cosmological model stems from two postulates motivated by modern 

observational cosmology: 1) When averaged over sufficiently large scales, the universe is 

isotropic. 2) When averaged over sufficiently large scales, the universe is homogeneous.  
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Isotropy applies at some specific point in the manifold, and states that space looks the same 

in any direction. Homogeneity is the statement that the metric is the same throughout the 

manifold. In general, there is no necessary relationship between isotropy and homogeneity; a 

manifold can be homogeneous but nowhere isotropic, or it can be isotropic at a point but not 

homogenous. However, if space is isotropic everywhere, then it is guaranteed to be homogenous, 

and if space is isotropic around a point and also homogenous, then it will be isotopic around 

every point. 

Isotropy in the universe implies that clocks can be synchronized such that the space-time 

components of the metric tensor vanish, 𝑔𝑔0𝑖𝑖 = 0. In other words, no particular direction in space-

time can be singled out as special. The space and time components of the metric can thus be 

separated and the universe can be foliated into space-like slices such that each three-dimensional 

slice is isotropic and homogeneous. We can therefore consider space-time to be ℝ × Σ, where ℝ 

represents the time direction and Σ is a isotropic and homogeneous three-manifold. The space-

time metric can then generally be written in the form 

 𝑑𝑑𝑑𝑑2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 + 𝑔𝑔𝑖𝑖𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 [1] 

where 𝑔𝑔𝑖𝑖𝑖𝑖 is the metric of spatial hypersurfaces.  

In order to not violate isotropy and homogeneity, the spatial metric can only be allowed 

to isotropically contract or expand with a scale function 𝑎𝑎(𝑡𝑡) which must be only a function of 

time. The scale function cannot be allowed to vary with space, otherwise the expansion would be 

allowed to differ at different locations in the universe, violating the postulate of homogeneity. 

With all of this, the metric can further be simplified to 

 𝑑𝑑𝑑𝑑2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑎𝑎2(𝑡𝑡)𝑑𝑑𝜎𝜎2 [2] 
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where 𝑑𝑑𝜎𝜎 is the line element of the three-space Σ and 𝑑𝑑𝜎𝜎2 gives the three-dimensional space 

metric on Σ,  

 𝑑𝑑𝜎𝜎2 = 𝛾𝛾𝑖𝑖𝑖𝑖𝑑𝑑𝑢𝑢𝑖𝑖𝑑𝑑𝑢𝑢𝑖𝑖 [3] 

A special case of the metric [2] is the Minkowski metric of Special Relativity, for which 𝑑𝑑𝜎𝜎 is 

the Euclidian line element and 𝑎𝑎(𝑡𝑡) is constant. Homogeneity also implies that all quantities 

describing the matter content of the Universe, e.g., density and pressure, can only be functions of 

time. The scale factor in [2] tells us how big the space-like slice of Σ is at the moment 𝑡𝑡.  

The coordinates used here, in which the metric is free of cross terms 𝑑𝑑𝑡𝑡 𝑑𝑑𝑢𝑢𝑖𝑖 and the 

coefficient of 𝑑𝑑𝑡𝑡2 is independent of the 𝑢𝑢𝑖𝑖, are known as comoving coordinates. Only a 

comoving observer will perceive an isotropic universe. Non-comoving observers will see regions 

of the sky systematically blue-shifted or red-shifted, and in fact, Earth is not quite comoving, and 

as a result we see a dipole anisotropy in the cosmic microwave background as a result of the 

conventional Doppler effect. The comoving time coordinate is the elapsed time since the Big 

Bang according to a clock of a comoving observer, and is a measure of cosmological time. Space 

in comoving coordinates is usually referred to as being “static”, as most bodies on the scale of 

galaxies or larger are approximately comoving, and comoving bodies have static, unchanging 

comoving coordinates. So for a pair of comoving galaxies, while the proper distance between 

them would have been smaller in the past and become larger in the future due to the expansion of 

space, the comoving distance between them remains constant at all times. 

The spatial hypersurface Σ can either be flat or curved. Isotropy only requires them to be 

spherically symmetric; i.e., spatial surfaces of constant distance from an arbitrary point need to 

be two-spheres. Homogeneity permits us to choose an arbitrary point as a coordinate origin. We 

can then introduce two angles 𝜃𝜃,𝜙𝜙 which uniquely identify positions on the unit sphere around 
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the origin, and a radial coordinate 𝜒𝜒. The most general admissible form for the spatial line 

element is then  

 𝑑𝑑𝜎𝜎2 = 𝑑𝑑𝜒𝜒2 + 𝑓𝑓𝐾𝐾2(𝜒𝜒)(𝑑𝑑𝜙𝜙2 + sin2 𝜃𝜃 𝑑𝑑𝜃𝜃2) ≡ 𝑑𝑑𝜒𝜒2 + 𝑓𝑓𝐾𝐾2(𝜒𝜒)𝑑𝑑Ω2 [4] 

Homogeneity then requires that the radial function 𝑓𝑓𝐾𝐾
2 (𝜒𝜒) is either a trigonometric, linear, or 

hyperbolic function of 𝜒𝜒, depending on whether the curvature 𝐾𝐾 is positive, zero, or negative. 

Specifically, 

 𝑓𝑓𝐾𝐾(𝑤𝑤) = �
𝐾𝐾−1/2 sin�𝐾𝐾−1/2𝜒𝜒�

𝜒𝜒
�−𝐾𝐾−1/2� sinh��−𝐾𝐾−1/2�𝜒𝜒�

        
(𝐾𝐾 > 0)
(𝐾𝐾 = 0)
(𝐾𝐾 < 0)

 [5] 

Here, 𝑓𝑓𝐾𝐾(𝜒𝜒), and thus |𝐾𝐾|−1/2 has the dimension of a length. If we define the radius 𝑟𝑟 of the two-

spheres by 𝑓𝑓𝐾𝐾(𝜒𝜒) ≡ 𝑟𝑟, the metric 𝑑𝑑𝜎𝜎2 takes the alternative form 

 𝑑𝑑𝜎𝜎2 =
𝑑𝑑𝑟𝑟2

1 − 𝐾𝐾𝑟𝑟2
+ 𝑟𝑟2𝑑𝑑Ω2 [6] 

where  

 𝑑𝑑𝜒𝜒2 =
𝑑𝑑𝑟𝑟2

1 −𝐾𝐾𝑟𝑟2
 [7] 

The value of 𝐾𝐾 in [6] sets the curvature, and therefore the size, of the spatial surfaces. It 

is common to normalize 𝐾𝐾 so that 𝐾𝐾 ∈ {−1,0,1} and absorbed the physical size of the manifold 

into the scale factor 𝑎𝑎(𝑡𝑡). Then, the 𝐾𝐾 = −1 case corresponds to constant negative curvature on 

Σ, and is sometimes called open; the 𝐾𝐾 = 0 case corresponds to no curvature, and is called flat; 

the 𝐾𝐾 = +1 case corresponds to positive constant positive curvature on Σ, and is sometimes 

called closed.  

For the flat case 𝐾𝐾 = 0, the metric on Σ becomes Euclidean: 
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𝑑𝑑𝜎𝜎2 = 𝑑𝑑𝜒𝜒2 + 𝜒𝜒2𝑑𝑑Ω2 

= 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 
[8] 

Globally, it could describe ℝ3 or a more complicated manifold, such as a three-torus  

𝑆𝑆1 × 𝑆𝑆1 × 𝑆𝑆1. 

 For the closed case 𝐾𝐾 = +1 we have  

 𝑑𝑑𝜎𝜎2 = 𝑑𝑑𝜒𝜒2 + sin2 𝜒𝜒 𝑑𝑑Ω2 [9] 

which is the metric of a three-sphere 𝑆𝑆3. In this case the only possible global structure is the 

complete three-sphere (except for the nonorientable manifold obtained by identifying antipodal 

points on 𝑆𝑆3). 

 For the open case 𝐾𝐾 = −1, we obtain 

 𝑑𝑑𝜎𝜎2 = 𝑑𝑑𝜒𝜒2 + sinh2 𝜒𝜒 𝑑𝑑Ω2 [10] 

This is the metric for a three-dimensional space of constant negative curvature. Globally such a 

space could extend forever, which is the origin of the word “open”, but it could technically also 

describe a nonsimply-connected compact space (so “open” is not really the most accurate label). 

The metric on space-time describes one of these hypersurfaces evolving in size, and can 

be written 

 𝑑𝑑𝑑𝑑2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑎𝑎2(𝑡𝑡) �
𝑑𝑑𝑟𝑟2

1 − 𝐾𝐾𝑟𝑟2
+ 𝑟𝑟2𝑑𝑑Ω2� [11] 

This is the Robertson-Walker metric. 

2.2. The Scale Factor and Redshift 

Due to the expansion of space, photons are redshifted as they propagate from a source to an 

observer. Consider a comoving source emitting a light signal at 𝑡𝑡𝑒𝑒𝑒𝑒 which reaches a comoving 

observer at the coordinate origin 𝑤𝑤 = 0 at some time 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜. Since 𝑑𝑑𝑑𝑑 = 0 for light, a backward-
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directed radial light ray propagates according to |𝑐𝑐𝑑𝑑𝑡𝑡| = 𝑎𝑎(𝑡𝑡)𝑑𝑑𝜒𝜒, from the metric. The comoving 

coordinate distance between source and observer is constant by definition, 

 𝑑𝑑𝜒𝜒𝑒𝑒𝑒𝑒−𝑜𝑜𝑜𝑜𝑜𝑜 = � 𝑑𝑑𝜒𝜒
𝑒𝑒𝑒𝑒

𝑜𝑜𝑜𝑜𝑜𝑜
= �

𝑐𝑐 𝑑𝑑𝑡𝑡
𝑎𝑎

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡𝑒𝑒𝑒𝑒)

𝑡𝑡𝑒𝑒𝑒𝑒
= constant [12] 

Since this is constant, the derivative of 𝜒𝜒𝑒𝑒𝑒𝑒−𝑜𝑜𝑜𝑜𝑜𝑜 with respect to 𝑡𝑡𝑜𝑜 is zero. It then follows that 

 
𝑑𝑑𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑡𝑡𝑒𝑒𝑒𝑒

=
𝑎𝑎(𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)
𝑎𝑎(𝑡𝑡𝑒𝑒𝑒𝑒) [13] 

Identifying the inverse time intervals �𝑑𝑑𝑡𝑡𝑒𝑒𝑒𝑒,𝑜𝑜𝑜𝑜𝑜𝑜�
−1

 with the source emitted and the observed 

light frequencies 𝜈𝜈𝑜𝑜,𝑜𝑜, and denoting the wavelength of light by 𝜆𝜆, we can write 

 
𝑑𝑑𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑡𝑡𝑒𝑒𝑒𝑒

=
𝜈𝜈𝑒𝑒𝑒𝑒
𝜈𝜈𝑜𝑜𝑜𝑜𝑜𝑜

=
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜
𝜆𝜆𝑒𝑒𝑒𝑒

 [14] 

Since the redshift 𝑧𝑧 is defined as the relative change in wavelength, or 1 + 𝑧𝑧 = 𝜆𝜆𝑜𝑜𝑜𝑜𝑑𝑑𝜆𝜆𝑒𝑒𝑒𝑒
−1, we find 

that 

 1 + 𝑧𝑧 =
𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜
𝜆𝜆𝑒𝑒𝑒𝑒

=
𝑎𝑎(𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜)
𝑎𝑎(𝑡𝑡𝑒𝑒𝑒𝑒) [15] 

This shows that light is redshifted by the amount by which the Universe has expanded between 

emission and observation. If the observation takes place today, we typically take  

𝑎𝑎(𝑡𝑡𝑜𝑜) = 𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎0 = 1 and can write 

 𝑎𝑎𝑒𝑒𝑒𝑒 =
1

1 + 𝑧𝑧
 [16] 

 

2.3. Evolution of the Scale Factor 

To complete the description of space-time, we need to know how the scale function 𝑎𝑎(𝑡𝑡) 

depends on time, and how the curvature 𝐾𝐾 depends on the matter which fills space-time. In 
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General Relativity, the dynamics of space-time are determined by Einstein’s field equations 

relating the Einstein tensor 𝐺𝐺𝛼𝛼𝛼𝛼 to the stress-energy tensor 𝑇𝑇𝛼𝛼𝛼𝛼 of the matter, 

 𝐺𝐺𝛼𝛼𝛼𝛼 =
8𝜋𝜋𝐺𝐺
𝑐𝑐2

𝑇𝑇𝛼𝛼𝛼𝛼 + Λ𝑔𝑔𝛼𝛼𝛼𝛼 [17] 

The second term proportional to the metric tensor 𝑔𝑔𝛼𝛼𝛼𝛼 is the cosmological constant, originally 

introduced by Einstein to allow for a static Universe. For the highly symmetric form of the 

Robertson-Walker metric, Einstein’s equations imply that 𝑇𝑇𝛼𝛼𝛼𝛼 has to have the form of the stress-

energy tensor of a homogeneous perfect fluid, which is characterized by its density 𝜌𝜌(𝑡𝑡) and its 

pressure 𝑝𝑝(𝑡𝑡). Homogeneity requires the density and pressure depend only on time. The field 

equations then simplify to the two independent equations 

 �
�̇�𝑎
𝑎𝑎
�
2

=
8𝜋𝜋𝐺𝐺

3
𝜌𝜌 −

𝐾𝐾𝑐𝑐2

𝑎𝑎2
+
Λ
3

 [18] 

and  

 �
�̈�𝑎
𝑎𝑎
�
2

= −
4𝜋𝜋
3
𝐺𝐺 �𝜌𝜌 +

3𝑝𝑝
𝑐𝑐2
� +

Λ
3

 [19] 

Together these are known as the Friedmann equations, and metrics of the form of equations [2], 

[3], and [4] are called Friedmann-Robertson-Walker (FRW) metrics.  

The scale factor 𝑎𝑎(𝑡𝑡) is determined once its value at one instant of time is fixed. We choose 

𝑎𝑎 = 1 at the present epoch 𝑡𝑡0. The two equations [18] and [19] can be combined to yield the 

adiabatic equation 

 𝑑𝑑
𝑑𝑑𝑡𝑡

[𝑎𝑎3(𝑡𝑡)𝜌𝜌(𝑡𝑡)𝑐𝑐2] + 𝑝𝑝(𝑡𝑡)
𝑑𝑑𝑎𝑎3(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 0 [20] 

The first term 𝑎𝑎3𝜌𝜌 is proportional to the energy contained in a fixed comoving volume, and 

hence the equation states that the change in “internal” energy equals the pressure times the 
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change in proper volume. Equation [20] is thus a statement of the first law of thermodynamics in 

the cosmological context. 

2.4. Cosmological Parameters 

The rate of expansion is characterized by the Hubble Parameter, defined as  

 𝐻𝐻 ≡
�̇�𝑎
𝑎𝑎

 [21] 

The value of the Hubble parameter at the present epoch 𝑡𝑡 = 𝑡𝑡0 is the Hubble Constant  

 𝐻𝐻(𝑡𝑡0) = 𝐻𝐻0 [22] 

Current measurements roughly fall into the range of  

  𝐻𝐻0 = 100ℎ km sec−1 Mpc−1 [23] 

with ℎ = (0.5 − 0.8). This has measurements of inverse time, hence,  

 𝐻𝐻0 ≈ 3.2 × 10−18ℎ sec−1 ≈ 1.0 × 10−10ℎ yr−1 [24] 

The time scale for the expansion of the Universe is the inverse Hubble constant, or  

 𝐻𝐻0−1 ≈ 1.0 × 1010ℎ−1 yr [25] 

The Hubble distance is defined as 

 𝑑𝑑𝐻𝐻 =
𝑐𝑐
𝐻𝐻0

 [26] 

The combination  

 3𝐻𝐻02

8π𝐺𝐺
= 𝜌𝜌𝑐𝑐𝑐𝑐 ≈ 1.9 × 10−29ℎ2 g cm−3 [27] 

is the critical density of the Universe, and the density 𝜌𝜌0 in units of 𝜌𝜌𝑐𝑐𝑐𝑐 is the density parameter 

Ω0, 

 Ω0 =
𝜌𝜌0
𝜌𝜌𝑐𝑐𝑐𝑐

=
8π𝐺𝐺
3𝐻𝐻02

𝜌𝜌0 [28] 
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This quantity, which will generally change with time, is called the “critical” density because the 

Friedmann equation [18] can be written 

 Ω0 − 1 =
𝐾𝐾

𝐻𝐻2𝑎𝑎2
 [29] 

The sign of 𝐾𝐾 is thus determined by whether Ω0 is greater than, equal to, or less than, unity: 

𝜌𝜌0 < 𝜌𝜌𝑐𝑐𝑐𝑐     ↔     Ω0 < 1    ↔     𝐾𝐾 < 0    ↔     open 

𝜌𝜌0 = 𝜌𝜌𝑐𝑐𝑐𝑐     ↔     Ω0 = 1    ↔     𝐾𝐾 = 0    ↔     flat 

𝜌𝜌0 > 𝜌𝜌𝑐𝑐𝑐𝑐     ↔     Ω0 > 1    ↔     𝐾𝐾 > 0    ↔     closed 

The density parameter then tells us which of the three Robertson-Walker geometries describes 

our Universe. Recent measurements of the cosmic microwave background anisotropy lead us to 

believe that Ω0 is very close to unity. 
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Figure 1 – The overall geometry of the universe is determined by whether the Omega 

cosmological parameter is less than, equal to or greater than 1. Shown from top to bottom are a 

closed universe with positive curvature, a hyperbolic universe with negative curvature and a flat 

universe with zero curvature. 

Source: https://wmap.gsfc.nasa.gov/media/990006/index.html (NASA, 2011) 

We further define 

 ΩΛ ≡
Λ

3𝐻𝐻02
 [30] 

as the cosmological-constant energy density, which represents the vacuum or dark energy 

density of the universe in absence of all other forms of matter or radiation. 

 

2.5. Matter Models 

A complete description of the expansion of the Universe requires an equation of state,  

https://wmap.gsfc.nasa.gov/media/990006/index.html


14 
 

𝑝𝑝 = 𝑝𝑝(𝜌𝜌), relating the pressure to the energy density of the matter. Ordinary matter, which is 

frequently called dust in this context, has 𝑝𝑝 ≪ 𝜌𝜌𝑐𝑐2, while radiation or other forms of relativistic 

matter have 𝑝𝑝 = 𝜌𝜌𝑐𝑐2/3. Plugging these into the adiabatic equation [20], we find 

 𝜌𝜌(𝑡𝑡) = 𝑎𝑎−𝑛𝑛(𝑡𝑡)𝜌𝜌0 [31] 

with  

 𝑛𝑛 = �
3    for dust, 𝑝𝑝 = 0

4    for relativistic matter,𝑝𝑝 = 𝜌𝜌𝑐𝑐2/3
 [32] 

The energy density of relativistic matter therefore drops more rapidly with time than that of 

ordinary matter. 

2.6. Distance Measures 

The meaning of “distance” is no longer unique in a curved space-time. The instantaneous 

physical distance is a convenient construct, but not itself observable, since observations always 

refer to events on our past light cone, not our current spatial hypersurface. In Euclidean space 

there are a number of different ways to infer the distance of an object; we could compare its 

apparent brightness to its intrinsic luminosity, or its apparent angular velocity to its intrinsic 

transverse speed, or its apparent angular size to its physical extent. For each of these cases, we 

can define a different kind of distance that we would infer if space were Euclidean and the 

Universe were not expanding. Since the local spatial geometry is Euclidean, we want these 

definitions of “distance” in cosmology to coincide with the common notion of distance at low 

redshift. 

Distance measures relate an emission event and an observation event on two separate 

geodesic lines which fall on a common light cone, either the forward light cone of the source or 

the backward light cone of the observer. They are therefore characterized by the times 𝑡𝑡𝑒𝑒𝑒𝑒 and 
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𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 of the emission and observation respectively, and by the structure of the light cone. These 

times can uniquely be expressed by the values 𝑎𝑎𝑒𝑒𝑒𝑒 = 𝑎𝑎(𝑡𝑡𝑒𝑒𝑒𝑒) and 𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎(𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜), or by their 

corresponding redshifts 𝑧𝑧 = 𝑧𝑧𝑒𝑒𝑒𝑒 and 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜. Since redshifts are directly observable, we choose the 

latter parametrization. Furthermore, if we are the observer at the current epoch, we can take 

𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 = 1, 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜 = 0, and 𝑧𝑧 = 𝑧𝑧𝑒𝑒𝑒𝑒. 

The evolution of the Hubble parameter, as a function of redshift and density parameters, can 

be written as 

 𝐻𝐻(𝑧𝑧) = 𝐻𝐻0𝐸𝐸(𝑧𝑧) [33] 

where  

 𝐸𝐸(𝑧𝑧) = �Ω𝑐𝑐(1 + 𝑧𝑧)4 + Ω𝑒𝑒(1 + 𝑧𝑧)3 + Ω𝑘𝑘(1 + 𝑧𝑧)2 + ΩΛ [34] 

Here, Ω𝑟𝑟 is the total radiation energy density, Ω𝑒𝑒 is the total matter density, ΩΛ is the dark energy 

density, and Ω𝑘𝑘 = 1 − Ω𝑒𝑒 − ΩΛ represents the curvature. To compute distance to an object from 

its redshift, the above equation must be integrated. In general, and for our Universe, only 

numerical solutions of such integration is possible, and closed analytical forms only exist for 

special limited choices of the parameters. 

The comoving distance is defined to be the distance between two points measured along a 

path defined at the present cosmological time. The comoving distance from an observer to a 

distant object (e.g., a galaxy) can be computed by  

 𝑑𝑑𝐶𝐶(𝑧𝑧) = 𝑑𝑑𝐻𝐻 �
𝑑𝑑𝑧𝑧′

𝐸𝐸(𝑧𝑧′)

𝑧𝑧

0
 [35] 

where 𝑑𝑑𝐻𝐻 is the Hubble distance defined by [26]. The comoving distance between fundamental 

observers, i.e., observers that are both moving with the Hubble flow, does not change with time, 

as comoving distance accounts for the expansion of the Universe. In contrast, the proper distance 

𝑑𝑑𝑃𝑃, roughly corresponds to where a distant object would be at a specific moment of cosmological 
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time, which can change over time due to the expansion of the Universe. Comoving distance 

factors out the expansion of the universe, giving a notion of distance that does not change in time 

due to spatial expansion, 𝑑𝑑𝑃𝑃(𝑡𝑡) = 𝑎𝑎(𝑡𝑡)𝑑𝑑𝐶𝐶(𝑡𝑡). Locally (infinitesimal redshift separation), or at the 

same present time, the two distances are the same. 

 The proper motion distance, or transverse comoving distance, 𝑑𝑑𝑀𝑀 is the distance inferred 

from the intrinsic and observed motion of a distance source, 

 𝑑𝑑𝑀𝑀 =
𝑢𝑢
�̇�𝜃

 [36] 

where 𝑢𝑢 is the proper transverse velocity, and �̇�𝜃 is the observed angular velocity. This depends 

on whether the Universe has positive, flat, or negative curvature: 

 𝑑𝑑𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝐻𝐻
�Ω𝑘𝑘

sinh��Ω𝑘𝑘𝑑𝑑𝐶𝐶(𝑧𝑧)/𝑑𝑑𝐻𝐻�,    for Ω𝑘𝑘 > 0

𝑑𝑑𝐶𝐶(𝑧𝑧),                                          for Ω𝑘𝑘 = 0
𝑑𝑑𝐻𝐻
�Ω𝑘𝑘

sinh��Ω𝑘𝑘𝑑𝑑𝐶𝐶(𝑧𝑧)/𝑑𝑑𝐻𝐻� ,    for Ω𝑘𝑘 < 0

 [37] 

 The angular diameter distance 𝑑𝑑𝐴𝐴 is the distance inferred from the intrinsic size 𝑥𝑥 and the 

observed size of the source 𝜃𝜃, 

 𝑑𝑑𝐴𝐴 =
𝑥𝑥
𝜃𝜃

 [38] 

In terms of the transverse comoving distance, it can be written as 

 𝑑𝑑𝐴𝐴(𝑧𝑧) =
𝑑𝑑𝑀𝑀(𝑧𝑧)
1 + 𝑧𝑧

 [39] 

 The luminosity distance 𝑑𝑑𝐿𝐿 is defined from the relationship between the absolute 

luminosity of a source 𝐿𝐿 and the observed flux of the object 𝐹𝐹 (the energy per unit time per unit 

area of the same detector), 
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 𝐹𝐹 =
𝐿𝐿

4𝜋𝜋𝑑𝑑𝐿𝐿2
    ⟹     𝑑𝑑𝐿𝐿 = � 𝐿𝐿

4𝜋𝜋𝐹𝐹
 [40] 

This definition comes from the fact that in flat space, for a source at distance 𝑑𝑑 the flux over the 

luminosity is just one over the area of a sphere centered around the source,  

𝐹𝐹/𝐿𝐿 = 1/𝐴𝐴(𝑑𝑑) = 1/4𝜋𝜋𝑑𝑑2. In a FRW universe, however, the flux will be diluted. Conservation 

of photons tells us that all of the photons emitted by the source will eventually pass through a 

sphere at comoving distance 𝜒𝜒 from the emitter, but the flux is also diluted by two additional 

effects: 1) the individual photons redshift by a factor (1 + 𝑧𝑧), and 2) the photons hit the sphere 

less frequently, since two photons emitted a time 𝛿𝛿𝑡𝑡 apart will be measured at a time (1 + 𝑧𝑧)𝛿𝛿𝑡𝑡 

apart. Therefore, we have  

 
𝐹𝐹
𝐿𝐿

=
1

(1 + 𝑧𝑧)2𝐴𝐴
 [41] 

The area 𝐴𝐴 of a sphere at comoving distance 𝜒𝜒 can be derived from 𝑑𝑑Ω2 in the Robertson-Walker 

metric [11], and depends on whether the curvature of the Universe is positive, flat, or negative. 

Fortunately, the dependence on all of the cosmological parameters is common to all the distance 

measures, and one can simply write: 

 

 𝑑𝑑𝐿𝐿(𝑧𝑧) = (1 + 𝑧𝑧)𝑑𝑑𝑀𝑀 = (1 + 𝑧𝑧)2𝑑𝑑𝐴𝐴 [42] 

So having measured any one such distance, it can easily be converted to any other. On the other 

hand, different independent measurements of different distances can be compared to test the 

consistency of the Robertson-Walker metric. 
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3. Weak Gravitational Lensing  

Here we provide a brief overview of weak lensing theory and measurement and motivate our 

investigation of the wavelength dependence of weak lensing shape measurement. Gravitational 

lensing is discussed in general at first, including some distinctions between strong lensing and 

weak lensing. We then turn our attention to some practical considerations of weak lensing 

measurements. The chapter concludes with the motivation and statement of our scientific 

objective. 

3.1. Gravitational Lensing: Strong vs. Weak 

General Relativity dictates that light rays passing near a massive body are deflected. The 

effect is similar to that of an optical lens, hence the term “gravitational lensing”. Moreover, 

gravitational light deflection is independent of the nature and the state of the matter which causes 

the deflection. Since gravitational lensing is sensitive to the total matter distribution, light plus 

dark, it has become a valuable tool for investigating dark matter distributions. 

 In extreme examples of gravitational lensing, cosmic bodies of sufficient mass and 

density are capable of bending light rays from a single background source so that multiple rays 

can reach the observer. The result is an image in the direction of each ray, producing multiple 

images. If the source is aligned with lens and observer, then the symmetric deflection of rays 

towards the observer can result in a ring-like distortion of the source. Such images are aptly 

named Einstein rings, or Einstein arcs in the more typical case of close but non-perfect 

alignment, resulting in images smeared into incomplete rings, or circular arcs.  
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Figure 2 – The picture shows a famous cosmic mirage known as the Einstein Cross, and is a 

direct visual confirmation of the theory of general relativity. The core galaxy, UZC 

J224030.2+032131 is lensing multiple images of a distant quasar located in the background of 

the galaxy.   

“Seeing quadruple” ESA/Hubble & NASA 2012. (NASA, 2012) 
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Figure 3 –  Examples of Einstein rings taken with the HST. The images were taken between 

August 2004 and March 2005 by the Hubble telescope's Advanced Camera for Surveys. (NASA, 

2005) 

The extreme phenomena mentioned above are examples of “strong gravitational lensing”. 

For them, the lensing phenomenon is readily detectable in individual sources. In general, tidal 

gravitational fields lead to differential deflection of light bundles, and the size and shape of their 

cross sections are therefore changed. Since photons are neither emitted nor absorbed in the 

process of gravitational light deflection, surface brightness of sources remains unchanged. 

However, changing the cross section of a light bundle does change the flux observed from a 

source, and the different images in a multiple-image system generally will have different fluxes.  

“Weak gravitational lensing” is characterized by weak distortions and small 

magnifications. For example, an extended circular source may be weakly distorted into an 

elliptical image. If all galaxies were circular, these small distortions could be measured on 



21 
 

individual images as well. However, background galaxy sources are not circular and the intrinsic 

ellipticity of galaxies is typically unknown and usually much greater than the gravitational shear 

distortion. Thus, weakly lensed images are useful in a statistical sense averaging over a large 

ensemble of background galaxy sources whose intrinsic orientation is largely random. The weak 

gravitational distortion will impose a coherent alignment of the images which is measureable, 

provided the distortion is larger than ~𝜎𝜎𝜖𝜖/√𝑁𝑁, where 𝜎𝜎𝜖𝜖 is the intrinsic rms ellipticity of the 

background galaxies, and 𝑁𝑁 is the number of images from which their shear is measured. The 

accuracy with which the average distortion over a small solid angle can be measured therefore 

depends on the number density of sources for which the shape measurement can be carried out.  
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Figure 4 – Distortions of the type produced by weak lensing, acting on circles and a distribution 

of ellipses more similar to that of real galaxies. The distortion shown here is greatly exaggerated 

relative to real astronomical systems. Without shape noise, the lensed shapes of galaxies (upper 

right) would immediately yield knowledge of the gravitational shear. More realistically, galaxies 

come pre-equipped with intrinsic elliptical shapes. In this latter case, the lensed shapes of 

individual galaxies (lower right) cannot be used to determine the gravitational shear when the 

original galaxy shapes are unknown. 

“Shapenoise” © TallJimbo 2008. From Wikimedia Commons. 

Copyleft: This is a free work, you can copy, distribute, and modify it under the terms of the Free 

Art License. 

 

https://commons.wikimedia.org/wiki/File:Shapenoise.svg
http://artlibre.org/licence/lal/en/
http://artlibre.org/licence/lal/en/
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Figure 5 – The effects of foreground galaxy cluster mass on background galaxy shapes. The 

upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in 

yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right 

panel shows this same scenario, but includes the effects of lensing. The middle panel shows a 3-d 

representation of the positions of cluster and source galaxies, relative to the observer. Note that 

the background galaxies appear stretched tangentially around the cluster. 

“Gravitational-lensing-3d” © Sachs, Michael 2008. From Wikimedia Commons. 

Copyleft: This is a free work, you can copy, distribute, and modify it under the terms of the Free 

Art License. 

 

3.2. Applications of Weak Lensing 

Gravitational lensing has developed into a versatile tool for observational cosmology for 

two primary purposes: 1) to investigate the nature and distribution of dark matter in the universe, 

and 2) as a probe of the geometry of the Universe. 

https://commons.wikimedia.org/wiki/File:Gravitational-lensing-3d.png
http://artlibre.org/licence/lal/en/
http://artlibre.org/licence/lal/en/


24 
 

Concerning non-relativistic matter, the gravitational field depends on neither the nature of 

matter nor on its physical state. Light deflection probes the total matter density without 

distinguishing between ordinary baryonic or dark matter. Gravitational lensing is therefore a 

powerful probe for dark matter distributions in the Universe. While lensing measurements on 

their own cannot determine the origin or nature of dark matter, it can be useful for deducing the 

geometry of dark matter distributions in the Universe, which can be tested against other dark 

matter theories. As an extreme example, we are confident that compact dark-matter objects, such 

as black holes or brown dwarfs, cannot be overly abundant in the Universe as they would lead to 

unobserved lensing effects.  

Weak lensing can be readily observed in the vicinity of strong lensing, since around a 

strong lensing sample the gravitational distortion will eventually become “weak”, or in a blank 

field of distant galaxies, where weak lensing is caused by a cosmological shear signal owed to 

the geometry of the Universe. In order to obtain three-dimensional geometry from lensing 

measurements, accurate information about the shear signal as a function of redshift is required. 

On the theoretical side, the large-scale geometry of the Universe is determined by gravitational 

theory and the cosmological model. Large scale lensing observations can provide observational 

tests and constraints for such models. 

We offer a brief list some other applications of weak lensing below. For a more complete 

review of lensing applications, see for example (Matthias Bartelmann, 2001).  

• Distortion of image shapes can be used to determine the local tidal gravitational 

field of a cluster. This information can be used to construct 2-D projected mass 

maps of clusters. 
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• Statistical mass distributions of galaxies can be obtained from galaxy-galaxy 

lensing 

• Larger-scale mass distributions in the Universe affects observations of galaxy 

shapes and clusters of background sources, as well as the statistical properties of 

the CMB 

• WL can be used to construct a mass-selected sample of clusters of galaxies, 

making use only of their tidal gravitational field which leaves an imprint on the 

image shapes of background galaxies. 

• Redshift distribution of these faint and distant galaxies can be derived from 

lensing itself, well beyond the magnitude limit which is currently available 

through spectroscopy 

 

3.3. Weak Lensing Theory 

A typical situation considered in gravitational lensing is sketched in Figure 8, where light 

is deflected by a single mass distribution at redshift 𝑧𝑧𝑑𝑑, or angular diameter distance 𝐷𝐷𝑑𝑑, 

distorting the light rays coming from a source at redshift 𝑧𝑧𝑜𝑜, or angular diameter distance 𝐷𝐷𝑜𝑜 to 

be seen at position 𝜃𝜃. Without the intervening mass distribution, the source would be seen at an 

angular position 𝛽𝛽. If there are no other deflectors close to the line-of-sight, and if the size of the 

deflecting mass is small compared to both the distance from source to deflector and the deflector 

to the observer, then the actual light rays which are in reality smoothly curved in the region near 

the deflector can be replaced to by straight light rays with a sharp “kink” near the deflector. This 

kink is described the deflection angle �⃗�𝛼�. 
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Figure 6 – Angles involved in a thin gravitational lens system (where the distances between the 

source, lens, and observer are much larger than the size of the lens). In the figure, 𝐷𝐷𝑑𝑑𝑜𝑜 is the 

angular diameter distance from the lens to the source, 𝐷𝐷𝑜𝑜 is the angular diameter distance from 

the observer to the source, and 𝐷𝐷𝑑𝑑 is the angular diameter distance from the observer to the lens. 

“Gravitational Lensing Angles” © Sachs, Michael 2008. From Wikimedia Commons. 

Copyleft: This is a free work, you can copy, distribute, and modify it under the terms of the Free 

Art License. 

 

https://commons.wikimedia.org/wiki/File:Gravitational-lensing-angles.png
http://artlibre.org/licence/lal/en/
http://artlibre.org/licence/lal/en/
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In the simplest case of deflection by a point mass 𝑀𝑀, assuming the light ray does not 

propagate through the strong gravitational field close the event horizon of the point mass, 

General Relativity predicts that the deflection angle 𝛼𝛼� is 

 𝛼𝛼� =
4𝐺𝐺𝑀𝑀
𝑐𝑐2𝜉𝜉

 [43] 

This is twice the value obtained in Newtonian gravity, and under the condition that 𝜉𝜉 ≫ 𝑅𝑅𝑆𝑆, 

where 𝑅𝑅𝑆𝑆 is the Schwarzschild radius of the lens, the deflection angle will be small, 𝛼𝛼� ≪ 1. 

 Under the condition of weak gravitational fields, the field equations of General Relativity 

can be linearized and the deflection angle of a distribution of mass is then the vectorial sum of 

the deflections due to individual masses. Consider a three-dimensional mass distribution with 

volume density 𝜌𝜌(𝑟𝑟) = 𝑑𝑑𝑒𝑒/𝑑𝑑𝑑𝑑, and let a light ray propagating along the 𝑧𝑧-direction pass this 

mass distribution whose spatial trajectory we describe by (𝜉𝜉1, 𝜉𝜉2, 𝑧𝑧). The actual light ray is 

deflected, but if the deflection angle is small, it can be approximated as a straight line in the 

vicinity of the deflecting mass. This corresponds to the Born approximation in atomic and 

nuclear physics. The impact vector of the light ray relative to the mass element 𝑑𝑑𝑒𝑒 at a location 

𝑟𝑟 = (𝜉𝜉1′ , 𝜉𝜉2′ , 𝑧𝑧′) is just 𝜉𝜉 − 𝜉𝜉′, where 𝜉𝜉 = (𝜉𝜉1, 𝜉𝜉2) is just a two-dimensional vector, independent of 

𝑧𝑧. The total deflection angle is then 

 �⃗�𝛼��𝜉𝜉� =
4𝐺𝐺
𝑐𝑐2

�𝑑𝑑𝑒𝑒(𝜉𝜉1′ , 𝜉𝜉2′ , 𝑧𝑧′)
𝜉𝜉 − 𝜉𝜉′

�𝜉𝜉 − 𝜉𝜉′�
2 [44] 

Which is also a two-dimensional vector. Since 𝑑𝑑𝑒𝑒 = 𝜌𝜌(𝑟𝑟)𝑑𝑑𝑑𝑑 = 𝜌𝜌(𝑟𝑟)𝑑𝑑2𝜉𝜉′𝑑𝑑𝑧𝑧′, we can write this 

as 
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 �⃗�𝛼��𝜉𝜉� =
4𝐺𝐺
𝑐𝑐2

�𝑑𝑑2𝜉𝜉′ �𝑑𝑑𝑧𝑧′ 𝜌𝜌(𝜉𝜉1′ , 𝜉𝜉2′ , 𝑧𝑧′)
𝜉𝜉 − 𝜉𝜉′

�𝜉𝜉 − 𝜉𝜉′�
2 [45] 

Since 𝜉𝜉 − 𝜉𝜉′, and thus the last factor in equation [45], is independent of 𝑧𝑧′, the 𝑧𝑧′ integration can 

be carried by defining the surface mass density 

 Σ�𝜉𝜉� = �𝑑𝑑𝑧𝑧 𝜌𝜌(𝜉𝜉1, 𝜉𝜉2, 𝑧𝑧) [46] 

Which is the mass density projected onto a plane perpendicular to the incoming light ray. The 

deflection angle then becomes 

 �⃗�𝛼��𝜉𝜉� =
4𝐺𝐺
𝑐𝑐2

�𝑑𝑑2𝜉𝜉′ Σ�𝜉𝜉′�
𝜉𝜉 − 𝜉𝜉′

�𝜉𝜉 − 𝜉𝜉′�
2 [47] 

To reiterate, this expression is valid as long as the deviation of the actual light ray from a straight 

undeflected line within the region of the mass distribution is small compared to the scale on 

which the mass distribution changes significantly. This condition is satisfied in most 

astrophysically relevant situations (i.e., lensing by galaxies and clusters of galaxies), unless the 

deflecting mass extends all the way from the source to the observer. 

Now, referring again to Figure 8, let �⃗�𝜂 denote the two-dimensional position of the source 

on the source plane. Then, recalling the definition of angular diameter distance,  

 �⃗�𝜂 = 𝐷𝐷𝑜𝑜�⃗�𝜃 − 𝐷𝐷𝑑𝑑𝑜𝑜�⃗�𝛼��𝜉𝜉� [48] 

We can also write that �⃗�𝜂 = 𝐷𝐷𝑜𝑜𝛽𝛽 and 𝜉𝜉 = 𝐷𝐷𝑑𝑑�⃗�𝜃. Rearranging equation [48] in terms of 𝛽𝛽, we get 

 𝛽𝛽 = �⃗�𝜃 −
𝐷𝐷𝑑𝑑𝑜𝑜
𝐷𝐷𝑜𝑜

�⃗�𝛼��𝐷𝐷𝑑𝑑�⃗�𝜃� [49] 

Defining the scaled deflection angle as  
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 �⃗�𝛼��⃗�𝜃� =
𝐷𝐷𝑑𝑑𝑜𝑜
𝐷𝐷𝑜𝑜

�⃗�𝛼��𝐷𝐷𝑑𝑑�⃗�𝜃� [50] 

we can now write 

 𝛽𝛽 = �⃗�𝜃 − �⃗�𝛼��⃗�𝜃� [51] 

The interpretation of the lens equation [51] is that a source with true position 𝛽𝛽 can be 

seen by an observer at angular position �⃗�𝜃 satisfying [51]. The scaled deflection angle �⃗�𝛼(𝜃𝜃) 

depends on the observed angular position 𝜃𝜃�⃗  of the light ray, and on the mass distribution 

according to [47] and [50]. All of these distances are to be interpreted as angular-diameter 

distances, and they depend, for a given source and lens redshift, on the cosmological model. If 

[51] has more than one solution for fixed 𝛽𝛽, a source at 𝛽𝛽 has images at several positions on the 

sky and the lens produces multiple images. For this to happens, the lens must be “strong” in the 

sense that the surface mass density [46] is larger than a “critical mass density” 

 Σ𝑐𝑐𝑐𝑐 =
𝑐𝑐2

4𝜋𝜋𝐺𝐺
𝐷𝐷𝑜𝑜

𝐷𝐷𝑑𝑑𝐷𝐷𝑑𝑑𝑜𝑜
 [52] 

If a mass distribution has Σ ≥ Σ𝑐𝑐𝑐𝑐, then it produces multiple images, and thus Σ𝑐𝑐𝑐𝑐 acts as a 

characteristic value for the surface mass density to distinguish between “weak” and “strong” 

lenses. With Σ𝑐𝑐𝑐𝑐, we also define the dimensionless surface mass density 

  𝜅𝜅�𝜃𝜃� =
Σ�𝐷𝐷𝑑𝑑𝜃𝜃�
Σ𝑐𝑐𝑐𝑐

 [53] 

In terms of 𝜅𝜅, a strong lens is characterized by 𝜅𝜅 ≥ 1, and the scaled deflection angle can be 

written as 



30 
 

 �⃗�𝛼��⃗�𝜃� =
1
𝜋𝜋
�𝑑𝑑2𝜃𝜃 𝜅𝜅��⃗�𝜃′�

�⃗�𝜃 − �⃗�𝜃′

��⃗�𝜃 − �⃗�𝜃′�
2 [54] 

 Equation [54] implies that �⃗�𝛼 is a conservative vector field in that it can written as the 

gradient of a scalar deflection potential, 

 𝜓𝜓��⃗�𝜃� =
1
𝜋𝜋
�𝑑𝑑2𝜃𝜃 𝜅𝜅��⃗�𝜃′� ln��⃗�𝜃 − �⃗�𝜃′� [55] 

as �⃗�𝛼 = ∇𝜓𝜓. The potential function 𝜓𝜓��⃗�𝜃� can be viewed as a two-dimensional analogue of the 

Newtonian gravitational potential and satisfies the Poisson equation with the two-dimensional 

surface mass density, ∇2𝜓𝜓 = 2𝜅𝜅��⃗�𝜃�. 

The solutions �⃗�𝜃 of the lens equation [51] yield the angular positions of the images of a 

source at 𝛽𝛽. Because light bundles are deflected differentially, the shapes of the images will be 

distorted form that of the source. An extreme example of this distortion is the occurrence of giant 

luminous arcs in strong lensing galaxy clusters. Since photons are neither emitted nor absorbed 

in gravitational light deflection, lensing distortions conserve surface brightness. Hence, if 𝐼𝐼(𝑜𝑜)�𝛽𝛽� 

is the source surface brightness distribution in the source plane, then the observed surface 

brightness distribution in the lens plane as a function of the observable position of the image �⃗�𝜃 is 

 𝐼𝐼��⃗�𝜃� = 𝐼𝐼(𝑜𝑜)�𝛽𝛽��⃗�𝜃�� [56] 

In general, the shape of the images must be determined by solving the lens equation for 

all points within an extended source, but the situation simplifies somewhat in the case of weak 

lensing. If the size of the source is much smaller than the characteristic angular scale of the 

deflector, one can locally linearize the lens mapping. The first order image distortion is then 

described by the Jacobian of the lens equation 
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 𝒜𝒜��⃗�𝜃� =
𝜕𝜕𝛽𝛽
𝜕𝜕�⃗�𝜃

= �𝛿𝛿𝑖𝑖𝑖𝑖 −
𝜕𝜕2𝜓𝜓��⃗�𝜃�
𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑖𝑖

� = �1 − 𝜅𝜅 − 𝛾𝛾1 −𝛾𝛾2
−𝛾𝛾2 1 − 𝜅𝜅 + 𝛾𝛾1

� [57] 

where 𝜅𝜅 is the dimensionless surface mass density [53], related to 𝜓𝜓 through Poisson’s equation, 

and we have introduced the components of the shear 𝛾𝛾 as 

 𝛾𝛾1 =
1
2
�𝜓𝜓,11 − 𝜓𝜓,22�, 𝛾𝛾2 = 𝜓𝜓,12 [58] 

The shear is to be defined as a complex quantity with the components 𝛾𝛾𝑖𝑖 as the real and 

imaginary parts of 𝛾𝛾: 𝛾𝛾 ≡ 𝛾𝛾1 + 𝑖𝑖𝛾𝛾2 = |𝛾𝛾|𝑒𝑒2𝑖𝑖𝑖𝑖. Thus, if �⃗�𝜃𝑜𝑜 is a point within an image, 

corresponding to the point 𝛽𝛽𝑜𝑜 = 𝛽𝛽��⃗�𝜃𝑜𝑜� within the source, we find from [56] that to first linear 

order, the distortion of the image surface brightness distribution is 

 𝐼𝐼��⃗�𝜃� = 𝐼𝐼(𝑜𝑜)�𝛽𝛽𝑜𝑜 + 𝒜𝒜��⃗�𝜃𝑜𝑜� ∙ ��⃗�𝜃 − �⃗�𝜃𝑜𝑜�� [59] 

 According to this mapping, the shapes of circular sources are mapped to elliptical images. 

The ratios of the semi-axes of such an ellipse to the radius of the original circular source are 

given by the inverse of the eigenvalues of the Jacobian matrix, which are 1 − 𝜅𝜅 ± |𝛾𝛾|. The fluxes 

observed from the image and from the unlensed source are given by integrals over the brightness 

distributions 𝐼𝐼��⃗�𝜃� and 𝐼𝐼(𝑜𝑜)�𝛽𝛽�, respectively. The ratio of the fluxes is defined as the 

magnification 𝜇𝜇�𝜃𝜃�⃗ 𝑜𝑜�. From [59], the magnification is then just the ratio of the solid angles 

subtended by an image and the unlensed source, which is given by the inverse of the determinant 

of 𝒜𝒜, 

 𝜇𝜇 =
1

det𝒜𝒜
=

1
(1 − 𝜅𝜅)2 − |𝛾𝛾|2 [60] 

Giant arcs are obtained at places where one of the eigenvalues of 𝒜𝒜 is close to zero, i.e., where 

𝜇𝜇 ≫ 1.   
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The images are thus distorted in shape and size by the Jacobian 𝒜𝒜. The shape distortion 

is due to the tidal gravitational field, described by the shear 𝛾𝛾, whereas the magnification 

described by 𝜇𝜇 is caused by both isotropic focusing caused by the local matter density and 

anisotropic focusing caused by shear. 

The Jacobian matrix of the lens equation can be further reduced in terms of more 

measureable quantities in form  

 𝒜𝒜��⃗�𝜃� = (1 − 𝜅𝜅) �1 − 𝑔𝑔1 −𝑔𝑔2
−𝑔𝑔2 1 + 𝑔𝑔1

� [61] 

In this version of 𝒜𝒜, the shape distortion of images is described solely by the (complex) reduced 

shear, defined as  

 𝑔𝑔 =
𝛾𝛾

1 − 𝜅𝜅
, 𝑔𝑔 = 𝑔𝑔1 + 𝑖𝑖𝑔𝑔2 = |𝑔𝑔|𝑒𝑒2𝑖𝑖𝑖𝑖 [62] 

The amplitude of 𝑔𝑔 describes the degree of distortion, whereas its phase 𝜑𝜑 yields the direction of 

distortion. The factor of “2” is present in the phase to account for the fact that an ellipse 

transforms into itself after a rotation by 180o. The pre-factor (1 − 𝜅𝜅) only affects the size, but the 

not the shape of the images. 

3.4. Weak Lensing Strategy 

If an ensemble of faint and distant galaxies are observed through the gravitational lens of 

deflector, the appearance of said galaxies are changed. The tidal shear components of the 

gravitational field distort the shapes of galaxies, and the magnification associated with 

gravitational light deflection changes their apparent brightness. If all galaxies were intrinsically 

circular, the measured ellipticity of galaxy images would immediately yield information on the 

local tidal gravitational field. However, galaxies are not intrinsically circular and the intrinsic 

ellipticity of distant galaxies is generally unknown, making the extraction of significant 
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information from individual galaxies impossible, expect perhaps for giant luminous arcs whose 

distortion is so extreme that gravitation field information can still be easily determined. 

The strategy nevertheless, is to assume that galaxies are intrinsically randomly oriented 

so that the strength of the tidal gravitational field can be inferred from a sample of galaxy 

images, provided the average ellipticity signal of the sample is larger than the Poisson noise 

caused by the finite number of galaxy images in the sample and by the intrinsic ellipticity 

distribution. The average intrinsic ellipticity over a large enough sample can then be assumed to 

go to zero, since we expect no direction to be singled out in the Universe,  

 〈𝜖𝜖𝑖𝑖𝑛𝑛𝑡𝑡〉 = 0 [63] 

The Poisson shape noise due to intrinsic ellipticity dispersion reduces as 𝜎𝜎𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑 ∝
𝜎𝜎𝜖𝜖
𝑁𝑁

, where 𝑁𝑁 is 

the size of the sample, and the average measured ellipticity over a sufficiently large sample then 

serves as a good estimate of the average shear signal, 

 〈𝜖𝜖𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜〉 = 〈𝜖𝜖𝑜𝑜ℎ𝑒𝑒𝑚𝑚𝑐𝑐〉  for large 𝑁𝑁   [64] 

The weak lensing measurement problem then reduces to finding an estimation of the 

average measured ellipticity of an ensemble of galaxies. If a galaxy had elliptical isophotes, its 

shape and size could simply be defined in terms of the axis ratio and area enclosed by a boundary 

isophotes. However, the shapes of faint galaxies can be irregular and not well approximated by 

ellipses. Additionally, galaxy images are given in terms of pixel brightness on CCDs. What is 

required then is a definition of size and shape which accounts for the irregularity of images, and 

which is well adapted to observational data. 
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Let 𝐼𝐼��⃗�𝜃� be the surface brightness of a galaxy image at angular position �⃗�𝜃. Let us assume 

the galaxy is isolated, so that 𝐼𝐼 can be measured to large angular separations from the center of 

the image, �̅⃗�𝜃, which we define by 

 �̅⃗�𝜃 =
∫𝑑𝑑2𝜃𝜃 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃���⃗�𝜃

∫ 𝑑𝑑2𝜃𝜃 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃��
   [65] 

where 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃�� is a suitably chosen weight function. For example, if 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃�� = 𝐼𝐼, then �̅⃗�𝜃 

represents the “center of light”, in the same way the center of mass is defined in a mass 

distribution. Alternatively, if 𝑞𝑞𝐼𝐼 = 𝐼𝐼(𝜃𝜃)𝐻𝐻(𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ), where 𝐻𝐻 is the Heaviside step function and 

𝐼𝐼𝑡𝑡ℎ is some threshold intensity, then �̅⃗�𝜃 is the center of the area enclosed by a limiting isophote 

with 𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ. For a given choice of 𝑞𝑞𝐼𝐼(𝐼𝐼), the tensor of second brightness moments is defined by, 

 𝑄𝑄𝑖𝑖𝑖𝑖 =
∫𝑑𝑑2𝜃𝜃 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃���𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖��𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖�

∫ 𝑑𝑑2𝜃𝜃 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃��
, 𝑖𝑖, 𝑖𝑖 ∈ {1,2} [66] 

In defining equation [65] and [66], the weight function 𝑞𝑞𝐼𝐼(𝐼𝐼) is presumably chosen so that the 

integrals converge. For an image with circular isophotes, 𝑄𝑄11 = 𝑄𝑄22, and 𝑄𝑄12 = 0. The trace of 

𝑄𝑄 describes the size of the image, and the traceless part of 𝑄𝑄𝑖𝑖𝑖𝑖 contains information about the 

ellipticity of the image. For example, the size can be defined by 

 𝜔𝜔 ≡ (𝑄𝑄11𝑄𝑄22 − 𝑄𝑄122 )1/2 [67] 

The shape of the image can be quantified by two complex ellipticities,  

 𝜒𝜒 =
𝑄𝑄11 − 𝑄𝑄22 + 2𝑖𝑖𝑄𝑄12

𝑄𝑄11 + 𝑄𝑄22
, 𝜖𝜖 ≡

𝑄𝑄11 − 𝑄𝑄22 + 2𝑖𝑖𝑄𝑄12
𝑄𝑄11 + 𝑄𝑄22 + 2(𝑄𝑄11𝑄𝑄22 − 𝑄𝑄122 )1/2 [68] 

Both of these ellipticities have the same phase (because of the same numerator), but different 

absolute value. For an image with elliptical isophotes of axis ratio 𝑟𝑟 ≤ 1, one obtains 
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 |𝜒𝜒| =
1 − 𝑟𝑟2

1 + 𝑟𝑟2
, |𝜖𝜖| =

1 − 𝑟𝑟
1 + 𝑟𝑟

 [69] 

Depending on the context, 𝜒𝜒 or 𝜖𝜖 may be the more convenient ellipticity to consider. The two 

ellipticities are related to each other via the transformations, 

 𝜖𝜖 =
𝜒𝜒

1 + (1 − |𝜒𝜒|2)1/2 , 𝜒𝜒 =
2𝜖𝜖

1 + |𝜖𝜖|2 [70] 

If we define the center of a source �̅�𝛽 as,  

 �̅�𝛽 =
∫𝑑𝑑2𝛽𝛽 𝑞𝑞𝐼𝐼�𝐼𝐼�𝛽𝛽��𝛽𝛽

∫𝑑𝑑2𝛽𝛽 𝑞𝑞𝐼𝐼�𝐼𝐼�𝛽𝛽��
   [71] 

then in total analogy, for the shape of a galaxy source we define the second-moment brightness 

tensor 𝑄𝑄𝑖𝑖𝑖𝑖
(𝑜𝑜) and source ellipticity 𝜖𝜖(𝑜𝑜), 

 𝑄𝑄𝑖𝑖𝑖𝑖
(𝑜𝑜) =

∫𝑑𝑑2𝛽𝛽 𝑞𝑞𝐼𝐼�𝐼𝐼�𝛽𝛽���𝛽𝛽𝑖𝑖 − �̅�𝛽𝑖𝑖��𝛽𝛽𝑖𝑖 − �̅�𝛽𝑖𝑖�

∫ 𝑑𝑑2𝛽𝛽 𝑞𝑞𝐼𝐼�𝐼𝐼�𝛽𝛽��
, 𝑖𝑖, 𝑖𝑖 ∈ {1,2} [72] 

and  

𝜖𝜖(𝑜𝑜) ≡
𝑄𝑄11

(𝑜𝑜) − 𝑄𝑄22
(𝑜𝑜) + 2𝑖𝑖𝑄𝑄12

(𝑜𝑜)

𝑄𝑄11
(𝑜𝑜) + 𝑄𝑄22

(𝑜𝑜) + 2 �𝑄𝑄11
(𝑜𝑜)𝑄𝑄22

(𝑜𝑜) − 𝑄𝑄12
(𝑜𝑜)2�

1/2 [73] 

The lens equation relates the tensors 𝑄𝑄𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑖𝑖𝑖𝑖
(𝑜𝑜) by 

𝑄𝑄(𝑜𝑜) = 𝒜𝒜𝑄𝑄𝒜𝒜𝑇𝑇 = 𝒜𝒜𝑄𝑄𝒜𝒜 [74] 

where 𝒜𝒜 ≡ 𝒜𝒜 �𝜃𝜃��⃗�� is the Jacobian matrix of the lens equation at position �̅⃗�𝜃. The size of a galaxy 

image, defined by equation [67], relative to the size of the corresponding source is related by 

𝜔𝜔 = 𝜇𝜇��⃗�𝜃�𝜔𝜔(𝑜𝑜) [75] 

The complex ellipticities of source relative to image then transform as 
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𝜖𝜖(𝑜𝑜) =

⎩
⎪
⎨

⎪
⎧
𝜖𝜖 − 𝑔𝑔

1 − 𝑔𝑔∗𝜖𝜖
, if |𝑔𝑔| ≤ 1

1 − 𝑔𝑔∗𝜖𝜖
𝜖𝜖∗ − 𝑔𝑔∗

, if |𝑔𝑔| > 1

 [76] 

where the asterisk denotes complex conjugation, and 𝑔𝑔 is the reduced shear defined by equation 

[62]. The inverse transformations are obtained by interchanging source and image ellipticities, 

and 𝑔𝑔 → −𝑔𝑔 in [76]. 

 For the case of weak lensing, 𝜅𝜅 ≪ 1, 𝛾𝛾 ≪ 1, and thus so too is the reduced shear 𝑔𝑔 ≪ 1. 

Then, [76] simply becomes  

𝜖𝜖(𝑜𝑜) ≈ �

𝜖𝜖 − 𝑔𝑔, if |𝑔𝑔| ≤ 1

1
𝜖𝜖∗ − 𝑔𝑔∗

, if |𝑔𝑔| > 1
 [77] 

or, inverting, 

𝜖𝜖 ≈

⎩
⎨

⎧ 𝜖𝜖(𝑜𝑜) + 𝑔𝑔, if |𝑔𝑔| ≤ 1

1
𝜖𝜖(𝑜𝑜)∗ + 𝑔𝑔∗

, if  |𝑔𝑔| > 1
 [78] 

Given the assumption that the intrinsic orientation of galaxies is random, the expectation 

values of the source ellipticity vanishes, 

〈𝜖𝜖(𝑜𝑜)〉 = 0 [79] 

This assumption is not generally challenged since the faint galaxies used for weak lensing 

typically come from a large range of redshifts, and so most of them are not physically related and 

their ellipticities are not expected to be correlated. This then implies that the expectation value of 

the image ellipticity 𝜖𝜖, obtained by averaging the transformation law [78] over the intrinsic 

source orientation, is then 
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〈𝜖𝜖〉 ≈ �

𝑔𝑔, if |𝑔𝑔| ≤ 1

1
𝑔𝑔∗

, if  |𝑔𝑔| > 1
 [80] 

 This is the seminal result of all the theoretical work discussed in this section. It shows 

that the image ellipticity provides an unbiased estimate of the local shear, albeit a noisy one. The 

noise is determined by the intrinsic dispersion 

in the sense that when averaging over an ensemble of 𝑁𝑁 galaxy images all distorted by the same 

reduced shear, the 1-𝜎𝜎 deviation of the mean ellipticity from the true shear is 𝜎𝜎𝜖𝜖/𝑁𝑁. The strategy 

of weak lensing measurement then, is to beat down this noise by averaging over many galaxy 

images. Of course, the physical region in the Universe over which the shear can be considered 

roughly constant is limited, so the averaging over galaxy images is always related to smoothing 

of the shear. The accuracy of a shear estimate thus depends on the local number density of 

galaxies for which a shape can be measured. In order to obtain high number density, deep 

imaging observations are required. 

3.5. Tangential and Cross Components of the Shear 

The shear components 𝛾𝛾1 and 𝛾𝛾2 in equation [57] are defined relative to a Cartesian 

coordinate reference frame. However, it is often useful to consider the shear components in a 

rotated reference frame. For example, arcs in a galaxy cluster will be tangentially aligned, and so 

their ellipticity angle will be oriented tangent to the radial vector in the cluster. We thus define 

the tangential and cross components of the shear as follows: 

Let 𝜙𝜙 specify a direction. Then the tangential and cross components of shear relative to 

this direction are defined as 

𝜎𝜎𝜖𝜖 = �〈𝜖𝜖(𝑜𝑜)𝜖𝜖(𝑜𝑜)∗〉 [81] 
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For example, in the case of a circularly-symmetric matter distribution, the shear at any point will 

be oriented tangent to the radial direction pointing towards the center of symmetry. If 𝜙𝜙 

represents the polar angle of a point, 𝛾𝛾× = 0. Tangential and cross components of ellipticity, 𝜖𝜖𝑡𝑡 

and 𝜖𝜖×, are defined in complete analogy to the components of the shear. A positive tangential 

ellipticity value implies that the image is oriented in the tangent direction; i.e., the major axis is 

aligned tangentially. A negative tangential ellipticity value implies that the image is oriented in 

the radial direction; i.e., the minor axis is aligned tangentially. 

 In the case of an axisymmetric mass distribution, the tangential shear is related to the 

dimensionless surface mass density 𝜅𝜅(𝜃𝜃) at a radius 𝜃𝜃 and the mean surface mass density �̅�𝜅(𝜃𝜃) 

inside the radius 𝜃𝜃 by 𝛾𝛾𝑡𝑡 = �̅�𝜅 −  𝜅𝜅 (Schneider, 1999). For more general matter distributions, a 

remarkably similar expression holds: 

where 〈𝜅𝜅(𝜃𝜃)〉 and 〈𝛾𝛾𝑡𝑡(𝜃𝜃)〉 denote the mean surface mass density and mean tangential shear on 

the circle of radius 𝜃𝜃. Thus, the mean tangential shear at some radial distance 𝜃𝜃 relative to a 

point is equal to the mean enclosed surface mass density at 𝜃𝜃. 

 As a reminder, the dimensionless surface mass density is defined by equation [53]. 

Restoring the units, the normal mean surface mass density Σ inside a radius 𝜃𝜃 is thus gotten by 

where Σ𝑐𝑐𝑐𝑐 is the critical surface mass density defined in equation [52]. The encircled mass is 

obtained from this density by multiplying through by circular area, 𝐴𝐴 = 𝜋𝜋𝑟𝑟2 = 𝜋𝜋(𝐷𝐷𝑑𝑑𝜃𝜃)2: 

𝛾𝛾𝑡𝑡 = −𝑅𝑅𝑒𝑒�𝛾𝛾𝑒𝑒−2𝑖𝑖𝑖𝑖�, 𝛾𝛾× = −𝐼𝐼𝑒𝑒�𝛾𝛾𝑒𝑒−2𝑖𝑖𝑖𝑖� [82] 

〈𝛾𝛾𝑡𝑡〉 = �̅�𝜅 − 〈𝜅𝜅〉 [83] 

〈Σ(𝜃𝜃)〉 = Σ𝑐𝑐𝑐𝑐〈𝜅𝜅(𝜃𝜃)〉 =
𝑐𝑐2

4𝜋𝜋𝐺𝐺
𝐷𝐷𝑜𝑜

𝐷𝐷𝑑𝑑𝐷𝐷𝑑𝑑𝑜𝑜
〈𝛾𝛾𝑡𝑡〉 [84] 
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3.6. Weak Lensing Measurement 

Real astronomical data used for weak lensing are supplied by charge-coupled device 

(CCD) images from modern telescopes. The steps from CCD frames to a set of galaxy images 

with measured shapes can broadly grouped into four categories: data reduction, image detection, 

shape determination, and corrections for the point-spread function. The data-reduction process is 

fairly well standardized and involves de-biasing, flat-fielding, and removal of cosmic rays and 

bad pixels (Bartelmann & Schneider, 1999). For our project, galaxy data is collected from 

publicly available scientific UltraVISTA catalogs and dithered HST images. As such, the data 

reduction has already been performed by the groups that release said data.  

To detect galaxies and measure their shapes, care must be taken to avoid overlapped 

images. Since weak lensing observations require large number densities, overlapping galaxy 

images are a legitimate concern. Whether a detected object is a single galaxy or a merged galaxy 

pair will greatly impact the shape measurement. In addition, images are noisy owing to a finite 

number of photons per pixel and to the intrinsic noise in the CCD electronics. Thus, a local 

enhancement of counts needs to be classified as a statistically significant source detection, and a 

conservative signal-to-noise threshold reduces the number of galaxy images. Stars also need to 

identified and distinguished from galaxy images. The measured shape of stars, treated as point 

source objects, reflect the shape profile of the PSF and should not be counted in the average 

ellipticity signal that used to estimate the reduced shear. If the field to be studied is far from the 

Galactic plane, however, the number density of stars will be correspondingly small. 

Several data-analysis software packages exist for the detection and measurement of 

galaxy images, for example, the popular Source Extractor (SExtractor) software (Bertin & 

𝑀𝑀(< 𝐷𝐷𝑑𝑑𝜃𝜃) =
𝑐𝑐2

4𝐺𝐺
𝐷𝐷𝑑𝑑𝐷𝐷𝑜𝑜
𝐷𝐷𝑑𝑑𝑜𝑜

〈𝛾𝛾𝑡𝑡〉𝜃𝜃2 [85] 
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Arnouts, 1996). SExtractor provides automated routines to detect, deblend, measure and classify 

sources from astronomical images. Star and galaxy separation are handled by the software using 

a neural network trained with simulated images. Given SExtractor’s ability to deal with large 

digital images (up to 60,000 × 60,000 pixels), and to deal with a wide variety of object shapes 

and magnitudes, the software is well suited for the analysis of large extragalactic surveys such as 

the HST Frontier Fields that will be considered in this study.  

Once an object is identified, the quadrupole moments can be obtained from equation [66]. 

The weight function 𝑞𝑞𝐼𝐼 in [66] should ideally be chosen so that it vanishes for surface 

brightnesses close to and smaller than the sky brightness, otherwise one risks sampling too much 

noise. If, on the other hand, 𝑞𝑞𝐼𝐼 is cut off at too bright values of 𝐼𝐼, the area within the measured 

quadrupole moments are at risk of being too small and the effects of seeing can become 

overwhelming. Too conservative of a cut-off will also decrease the measured galaxy counts.  

SExtractor uses a weight in form of 𝑞𝑞𝐼𝐼 = 𝐼𝐼(𝜃𝜃)𝐻𝐻(𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ) for the measurement of object 

centroids and multipole moments, where 𝐼𝐼𝑡𝑡ℎ is some threshold intensity to be input by the user, 

ideally close to but a few 𝜎𝜎𝑛𝑛𝑜𝑜𝑖𝑖𝑜𝑜𝑒𝑒 above the sky background. The quadrupole moments SExtractor 

outputs are then measured inside the resulting limiting isophote. However, we note that while 

this scheme is automated by SExtractor and requires minimal human intervention, the limiting 

isophote being close to the sky background necessarily results in a shape that is affected by sky 

noise. This implies that the measured quadrupole moments and the ellipticities calculated thereof 

will depend non-linearly on the CCD brightness, and the effect of noise will enter these values in 

a non-linear fashion.  

A more robust measurement of the multipole moments, favored by the lensing 

community, is a weight function of the form 𝑞𝑞𝐼𝐼�𝐼𝐼��⃗�𝜃�� = 𝐼𝐼��⃗�𝜃�𝑊𝑊��⃗�𝜃�, where 𝑊𝑊��⃗�𝜃� explicitly 
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depends on �⃗�𝜃. This allows more control over the shape measurement, for example, by tuning 

𝑊𝑊��⃗�𝜃� to the scale on which the object was detected at highest significance. The tradeoff is that 

the use of an angle dependent weight function results in quadrupole moments that do not obey 

the linear transformation law [74]. Equation [80] then no longer holds and the expectation value 

of the ellipticity 〈𝜖𝜖〉 will necessarily be different from the reduced shear 𝑔𝑔. The actual relation 

between the mean ellipticity and reduced shear will depend on the choice of 𝑊𝑊��⃗�𝜃�. Detailed 

simulations can be performed to calibrate an approximate correction factor 𝑓𝑓 to fit an 

approximate relation 𝑔𝑔 ≈ 𝑓𝑓〈𝜖𝜖〉 for some given choice of 𝑊𝑊��⃗�𝜃�. However, relying on simulated 

images to calibrate the new relation is not fully satisfactory since the results will necessarily 

depend on the assumptions underlying the simulation (Bartelmann & Schneider, 1999). 

In either case, in order to obtain an estimate of the reduced shear from observed galaxy 

shapes, one must also deal with the telescope PSF, which mathematically can be described as a 

convolution of the source intensity profile and a function 𝑃𝑃�𝜃𝜃�: 

where 𝑃𝑃�𝜃𝜃� is the PSF describing the brightness distribution of a point source on the CCD, 

normalized to unity and centered at 0�⃗ . The characteristic width of the PSF is called the size of the 

seeing disc and the smaller it is, the less smeared the images are. Weak lensing studies require a 

high number density of galaxy images, which requires observations to be extended to faint 

magnitudes. This puts a strong requirement on the telescopes that are suitable for weak lensing 

observations, which require a seeing well below 1 arcsecond (Bartelmann & Schneider, 1999). 

Ideally, the telescope should have a small and temporally stable PSF, and the shape of 𝑃𝑃�𝜃𝜃� 

𝐼𝐼(𝑜𝑜𝑜𝑜𝑜𝑜)��⃗�𝜃� = �𝑑𝑑2𝜙𝜙𝐼𝐼��⃗�𝜃�𝑃𝑃��⃗�𝜃 − 𝜙𝜙�⃗ � [86] 



42 
 

needs to be known to a high degree of detail in order to accurately extract the shape of source 

galaxies from observed galaxy images. 

 The PSF includes effects of atmosphere as well as pointing errors of the telescope. 

Therefore, the PSF can be slightly anisotropic. The isotropic part of the PSF will cause small 

elliptical images to become rounder, thereby diluting the ellipticity signal. The anisotropic part 

of the PSF introduces a systematic, spurious image ellipticity. Generally, the PSF may vary 

across the FoV of the detector. If the number density of stars is large enough, the PSF variation 

across the field can be estimated by their images since the shapes of stars, which serve as point 

sources, reflects the PSF. However, the PSF as measured by the images of stars is not necessarily 

the same as the PSF which applies to galaxies, due to their different spectra and the chromaticity 

of the PSF. Nevertheless, it is usually assumed that the PSF measured from stellar images 

adequately represents the PSF for galaxies. 

In the idealized case where the quadrupole moments are defined with the weight function 

𝑞𝑞𝐼𝐼(𝐼𝐼) = 𝐼𝐼, the effect of the PSF on the observed image ellipticities is fairly straightforward. A 

quadrupole tensor 𝑃𝑃𝑖𝑖𝑖𝑖 can be defined for the PSF in complete analogy to [66] for the quadrupole 

tensor of a galaxy intensity profile. Then, the observed quadrupole moments 𝑄𝑄𝑖𝑖𝑖𝑖
(𝑜𝑜𝑜𝑜𝑜𝑜) are related to 

the source 𝑄𝑄𝑖𝑖𝑖𝑖 by (Bartelmann & Schneider, 1999) 

The galaxy source ellipticity 𝜒𝜒 then transforms as 

where 

𝑄𝑄𝑖𝑖𝑖𝑖
(𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖𝑖𝑖 [87] 

𝜒𝜒(𝑜𝑜𝑜𝑜𝑜𝑜) =
𝜒𝜒 + 𝑇𝑇𝜒𝜒(𝑃𝑃𝑆𝑆𝑃𝑃)

1 + 𝑇𝑇
 [88] 
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and  

The quantity 𝑇𝑇 thus represents the ratio of the PSF size to the image size before convolution, and 

𝜒𝜒(𝑃𝑃𝑆𝑆𝑃𝑃) is the PSF ellipticity defined in complete analogy to equation [68]. The smaller 𝑇𝑇, the 

closer 𝜒𝜒(𝑜𝑜𝑜𝑜𝑜𝑜) is to 𝜒𝜒. In the limit of very large 𝑇𝑇, 𝜒𝜒(𝑜𝑜𝑜𝑜𝑜𝑜) approaches the PSF ellipticity. If the PSF 

is purely isotropic, then 𝜒𝜒(𝑃𝑃𝑆𝑆𝑃𝑃) = 0. Equation [88] can be inverted to obtain 𝜒𝜒 from 𝜒𝜒(𝑜𝑜𝑜𝑜𝑜𝑜), but 

this inversion is unstable unless 𝑇𝑇 is sufficiently small, in the sense that the noise affecting the 

measurement of 𝜒𝜒(𝑜𝑜𝑜𝑜𝑜𝑜) is amplified by the inversion process. Stated another way, if the PSF, and 

thus also 𝑇𝑇, is too large, the image can become unresolved after convolution with the PSF and 

information about the source ellipticity 𝜒𝜒 is lost. It should also be noted that strictly speaking, 

these transformation laws only apply for the specific choice of the weight function. For other 

weighting schemes, such as 𝑞𝑞𝐼𝐼(𝐼𝐼) = 𝐼𝐼𝑊𝑊(𝜃𝜃) as mentioned above, the resulting transformation 

becomes much more complicated (Bartelmann & Schneider, 1999), but we won’t go into all of 

the details here. 

3.7. Our Objective 

To summarize the observational requirements for an efficient weak lensing study: 

1) The number density of objects for which a shape can be reliable measured should be 

as high as possible; 

𝑇𝑇 =
𝑃𝑃11 + 𝑃𝑃22
𝑄𝑄11 + 𝑄𝑄22

 [89] 

𝜒𝜒(𝑃𝑃𝑆𝑆𝑃𝑃) =
𝑃𝑃11 + 𝑃𝑃22 + 2𝑖𝑖𝑃𝑃12

𝑃𝑃11 + 𝑃𝑃22
 [90] 
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2) the mean redshift of the source population should be high to put a large fraction of 

them into the background of the lenses, and to average out local intrinsic ellipticity 

correlations; 

3) the source population should be as round as possible to reduce the intrinsic ellipticity 

dispersion; 

4) the ratio of the size of the telescope PSF and that of the source should be as small as 

possible; 

5) the PSF anisotropy should be as small as possible; 

6) the PSF must be controllable, to allow corrections for it;  

7) for most applications, the field-of-view should be large to enhance the statistical 

significance of the results; 

8) the background electromagnetic noise should be as low as possible. 

Points 1), 4), and 8) are each necessarily wavelength dependent. There is a higher density of 

sources useful for weak lensing measurement at high redshift around NIR wavelengths, but the 

FWHM of telescope PSFs are also larger at long wavelengths. These factors tend to compete 

with one another, and one would expect a sort of balancing act that ultimately determines which 

wavelengths are long enough to maximize number density for the statistical performance of 

weak lensing, but not too long to where the PSF produces unresolved images that compromise 

the ability to perform accurate shape measurement. On top of all this, accurate shape 

measurements of the small, faint distant galaxy images will favor the strongest source signal and 

the lowest background noise. The background electromagnetic noise will itself be wavelength 

dependent with its own color profile. 
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Current weak lensing surveys are typically done by ground-based telescopes and mostly rely 

on background galaxy shape measurements at optical wavelengths. However, seeing through 

Earth’s atmosphere complicates matters and limits the accuracy of said measurements. The 

telescope PSFs of ground-based telescopes are complicated by wind, weather, and other 

terrestrial factors.  Equally important, or perhaps even more so, atmospheric absorption and 

emission of electromagnetic radiation limits the wavelength spectrum available for accurate 

shape measurement of background galaxies at long wavelengths for ground based surveys. The 

OH airglow of Earth’s atmosphere at red and NIR wavelengths makes observations of very faint 

sources from the ground undesirable at these long wavelengths. Therefore, to expand the 

available wavelength spectrum available for weak lensing measurement, a weak lensing space 

mission is desired.  

In the work that follows, we set out to identify the optimal wavelength bands to maximize 

weak lensing measurement performance in general. We approach this problem by performing 

calculations on simple galaxy and telescope models while accounting for the basic wavelength 

dependence of the factors mentioned above.  To address point 3), we will model galaxies with 

circularly symmetric Sersic light profiles. To address points 5) and 6), will use a pure airy disk 

PSF to model an “ideal” diffraction-limited space telescope. And to address point 8) will 

consider our telescope in space with background noise dominated by the zodiacal light. More 

details on our methods and calculations follow in Chapter 4. We will also derive analytical 

Gaussian equations for the flux SNR and shape measurement variance under the assumption of 

Gaussian PSFs and Gaussian galaxy light profiles.  

Finally, we perform a crude measurement of galaxy ellipticities in the six HST FPFs using 

Source Extractor (SExtractor) software (Bertin & Arnouts, 1996) in order to estimate a reduced 
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shear at the location of the parallel fields using the longest wavelength available in the HST FF 

data. In an effort to simplify the procedure, we assume a purely symmetric Gaussian PSF. While 

this choice is unrealistic and unrepresentative of the HST, it makes deconvolution of the PSF 

simple and allows for relatively easy extraction of an approximate galaxy source ellipticity 

signal. The average ellipticity among a significantly large density of distant galaxy images is 

directly related to reduced gravitational shear signal, which we approximate with our simplifying 

assumptions and use to estimate the primary FF galaxy cluster masses to illustrate that shear 

measurements at long NIR wavelengths are completely reasonable. 

4. Methodology 

In this chapter we outline the basic models for background galaxy shapes and a diffraction-

limited space telescope to investigate the wavelength dependence of weak lensing shape 

measurements. We keep intact the wavelength dependence of background source signals, 

telescope PSF diffraction, and background noise assuming sky dominated noise from a 

diffraction-limited space telescope.  

Real galaxy data is collected from existing surveys of the UltraVISTA field and Frontier 

Fields to construct reasonable collections of simple shaped galaxies assumed to be described 

completely by Sersic galaxy light profiles of Sersic index one or four. The telescope PSF is 

assumed to be perfectly described by an airy disk and convolved with the Sersic galaxy profiles 

to simulate collections of galaxy images. We then calculate the galaxy flux S/N, the shape 

measurement error, and the effective number density of sources from these collections as 

functions of wavelength. 

We also perform a crude measurement of galaxy ellipticities in the HST FPFs using Source 

Extractor (SExtractor) software (Bertin & Arnouts, 1996) in order to estimate a reduced shear at 
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the location of the parallel fields. In an effort to simplify the procedure, we assume a purely 

symmetric Gaussian PSF. While this choice is unrealistic and unrepresentative of the HST, it 

makes deconvolution of the PSF simple and allows for relatively easy extraction of an 

approximate galaxy source ellipticity signal. The average ellipticity among a significantly large 

density of distant galaxy images is directly related to reduced gravitational shear signal, which 

we approximate with our simplifying assumptions and compare to other more strictly accurate 

values reported elsewhere in the literature. 

4.1. Simple galaxy profile models 

Sersic’s equation gives the light intensity profile at an angular distance 𝜃𝜃 from the center 

of the galaxy as 

 𝐼𝐼(𝜃𝜃) = 𝐼𝐼𝑒𝑒 𝑒𝑒𝑥𝑥𝑝𝑝 �−𝑜𝑜𝑛𝑛 ��
𝜃𝜃
𝜃𝜃𝑒𝑒
�
1
𝑛𝑛
− 1�� [91] 

 where 𝐼𝐼𝑒𝑒 is the intensity at the effective angular radius 𝜃𝜃𝑒𝑒 that encloses half of the total light for 

the model. The constant 𝑜𝑜𝑛𝑛 is defined in terms of the Sersic index n which describes the “shape” 

of the light profile.  

Setting 𝑛𝑛 = 4  in Sersic’s equation gives the de Vaucouleurs profile: 𝐼𝐼(𝑅𝑅) ∝ 𝑒𝑒−𝑘𝑘𝜃𝜃1/4 , 

which is a good description of elliptical galaxies. Setting 𝑛𝑛 = 1 gives the exponential 

profile: 𝐼𝐼(𝑅𝑅) ∝ 𝑒𝑒−𝑘𝑘𝜃𝜃, which is a good description of spiral galaxies. An index of 𝑛𝑛 = 1
2
 produces 

a Gaussian distribution. In general, larger values of the index n correlate to higher degrees of 

central light concentration. The constant 𝑜𝑜𝑛𝑛 in equation [132] can be solved in terms of n using 

complete and incomplete gamma functions such that 

 𝛤𝛤(2𝑛𝑛) = 2𝛾𝛾(2𝑛𝑛, 𝑜𝑜𝑛𝑛) [92] 
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but an approximate analytical expression for 0.5 < 𝑛𝑛 < 10 was be given by Graham & Driver 

(2005):  

 𝑜𝑜𝑛𝑛 = 1.9992𝑛𝑛 − 0.3271 [93] 

In the form of equation [132], the Sersic light intensity profile depends on the effective 

intensity 𝐼𝐼𝑒𝑒 at the half-light radius. It is a simple matter to rewrite Sersic’s equation in terms of 

the total flux of the galaxy instead. The total flux over an infinite projected area is obtained by 

integrating [132] over area out to infinite radius, 𝜃𝜃 → ∞: 

 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡 = � 𝐼𝐼(𝜃𝜃)2𝜋𝜋𝜃𝜃𝑑𝑑𝜃𝜃
∞

0

 [94] 

This integral can be straight-forwardly solved with the substitution 𝑥𝑥 = 𝑜𝑜𝑛𝑛 �
𝜃𝜃
𝜃𝜃𝑒𝑒
�
1
𝑛𝑛, yielding 

 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡 = 𝜋𝜋𝐼𝐼𝑒𝑒𝜃𝜃𝑒𝑒2
𝑒𝑒𝑜𝑜𝑛𝑛

(𝑜𝑜𝑛𝑛)2𝑛𝑛 𝛤𝛤
(2𝑛𝑛 + 1)  

Using the property of the gamma function, 𝛤𝛤(𝑥𝑥) = (𝑥𝑥 − 1)! for positive integers, the total flux 

becomes, 

 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡 = 𝜋𝜋𝐼𝐼𝑒𝑒𝜃𝜃𝑒𝑒2
𝑒𝑒𝑜𝑜𝑛𝑛

(𝑜𝑜𝑛𝑛)2𝑛𝑛
(2𝑛𝑛)! [95] 

Inverting equation [95] to solve for the intensity at the half-light radius, Ie, in terms of the total 

flux 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡, we find 

 𝐼𝐼𝑒𝑒 =
(𝑜𝑜𝑛𝑛)2𝑛𝑛

𝜋𝜋𝑒𝑒𝑜𝑜𝑛𝑛𝜃𝜃𝑒𝑒2(2𝑛𝑛)!
𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡 [96] 

The Sersic light intensity profile in terms of 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡 can then be obtained by plugging equation 

[96] for 𝐼𝐼𝑒𝑒 back into equation [132]: 
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 𝐼𝐼(𝜃𝜃) = �
(𝑜𝑜𝑛𝑛)2𝑛𝑛

𝜋𝜋𝑒𝑒𝑜𝑜𝑛𝑛𝜃𝜃𝑒𝑒2(2𝑛𝑛)!
𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡� 𝑒𝑒𝑥𝑥𝑝𝑝 �−𝑜𝑜𝑛𝑛 ��

𝜃𝜃
𝜃𝜃𝑒𝑒
�
1
𝑛𝑛
− 1�� [97] 

This is the Sersic light intensity equation expressed in terms of the total galaxy flux. Using 

equation [97], data from each galaxy referenced from our two UltraVISTA data sets were 

modeled by radially symmetric Sersic galaxy light profiles by plugging in the total flux 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡(𝜆𝜆) 

at wavelength 𝜆𝜆, the half-light radius 𝜃𝜃𝑒𝑒, and galaxy morphology type from the catalogs.  

For the UltraVISTA data sets, galaxy photometric types from the “Photometric Redshift 

Catalog Fall 2008” (Ilbert, et al., 2009) have been converted to common Sersic indices where 

ellipticals have been assigned Sersic index 𝑛𝑛 = 4, and spiral and irregular galaxy shapes have 

been assigned an index of 𝑛𝑛 = 1. We thereby obtain two independent data sets from our Ks 

catalog and R catalog of radially symmetric Sersic galaxy light profiles with reasonable physical 

parameters modeled after those found in the real universe. 

4.2. A simple space telescope model 

The observed intensity function, I,  of a galaxy image obtained from a telescope is given by 

the convolution of the galaxy object light intensity function, O, and the PSF, P, of the telescope. 

This produces the well-known imaging equation, 

 𝐼𝐼 = 𝑂𝑂 ⋆ 𝑃𝑃 [98] 

In our model calculation, we assume a diffraction-limited space telescope with a pure Airy 

disk PSF given by 

 𝑃𝑃(𝜃𝜃) =
𝜋𝜋𝐷𝐷2

4𝜆𝜆2
�
2𝐽𝐽1(𝜋𝜋𝐷𝐷𝜃𝜃/𝜆𝜆)

(𝜋𝜋𝐷𝐷𝜃𝜃/𝜆𝜆) �
2

 [99] 

where 𝑃𝑃(𝜃𝜃) is the intensity in the focal plane of the telescope as a function of angular coordinate 

𝜃𝜃, 𝜆𝜆 is the wavelength of light, 𝐷𝐷 is the diameter of the telescope aperture, and 𝐽𝐽1(𝑥𝑥) is the 
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Bessel function of the first kind of order one. Implicitly, we assume in equation [99] that the PSF 

is an image of a star of unit intensity, so that the integral of the PSF over 𝜃𝜃 is unity.  The imaging 

equation then preserves the total flux of an astronomical object, only distributing it differently.  

We also assume the PSF is uniform across the whole of the field of view.  

We model the light intensity profile of the galaxy object using Sersic’s equation in terms 

of the total flux as derived in the previous section in equation [97]. Normalized plots of Sersic 

intensity profiles for 𝑛𝑛 = �4, 1, 1
2
� and the Airy disk PSF and its Gaussian approximation are 

shown in Figure 9 and Figure 10. Note that the airy disk pattern drops to 50% power at a radius 

of 0.514 𝜆𝜆/𝐷𝐷, so its FWHM is 1.028 𝜆𝜆/𝐷𝐷. 

   

Figure 7 – Normalized Sersic galaxy light profile plots for Sersic indices 𝑛𝑛 = �4, 1, 1
2
�, where 𝜃𝜃𝑒𝑒 

is the effective half-light radius and 𝐼𝐼𝑒𝑒 is the intensity at the effective radius 𝜃𝜃𝑒𝑒. 
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Figure 8 – Normalized airy disk PSF superimposed with its Gaussian approximation (dashed red 

line). 

 Unfortunately, the convolution integral of equations [97] and [99] in the imaging 

equation [98] is not analytically solvable in closed form. Moreover, real-life space telescopes 

don’t measure continuous images, but rather the images are pixelized. Thus, in our calculations, 

we take the object function 𝑂𝑂(𝜃𝜃) = 𝑂𝑂�𝜃𝜃𝑥𝑥 ,𝜃𝜃𝑦𝑦� and the PSF 𝑃𝑃(𝜃𝜃) = 𝑃𝑃�𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦� and discretely 

sample the functions using Mathematica software over a 2D array of pixels. In this paper, the 

light profiles of each galaxy and the airy disk PSFs are sampled from −7′′ ≤ 𝜃𝜃𝑥𝑥,𝑦𝑦 ≤ +7′′ with a 

resolution of 0.02′′ per pixel. Additionally, Sersic profiles with Sersic index n = 4 have the 

center of the intensity profile falling off rather steeply, so to minimize the potential loss of 

information when discretely sampling over the rapidly varying central regions of the light 

profiles, the functions were all also super-sampled over a square grid of ±0.1′′ around the center 

of the profile, �⃗�𝜃 = (0,0), with a “super-resolution” of 0.001′′ per pixel. Once the functions were 

discretely sampled, a discrete convolution was performed by Mathematica software to produce a 

2D array of pixel values representing 2D galaxy image-intensity profiles from a hypothetical 

diffraction-limited space telescope. Samples of these plots are shown in Figure 11 and Figure 12. 
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Figure 9 – Discrete Normalized Sersic 

Intensity Profile plotted in Mathematica 

(Sersic index 𝑛𝑛 = 1 shown above). Black 

indicates high intensity; white indicates low 

intensity. 

Figure 10 – Discrete normalized airy disk PSF 

plotted in Mathematica. Black indicates high 

intensity; white indicates low intensity. The 

grayscale intensities have been adjusted to 

enhance the brightness of the outer rings of the 

airy pattern in this plot. 

4.3. Calculating Galaxy Flux S/N 

Assuming sky-dominated noise for a source intensity profile 𝐼𝐼𝜈𝜈(𝛺𝛺) = 𝐹𝐹𝜈𝜈𝜙𝜙(𝛺𝛺), where 𝐹𝐹𝜈𝜈 is 

the total flux at frequency ν, and 𝜙𝜙(𝛺𝛺) is the luminosity profile, observed against a background 

intensity 𝐵𝐵𝜈𝜈 over solid angle 𝑑𝑑𝛺𝛺 in a bandwidth dν with central intensity ν by a telescope of area 

𝐴𝐴, efficiency 𝜖𝜖, and integration time 𝑡𝑡, the signal-to-noise ratio (S/N) is given by (Wright, 1985), 

 𝑆𝑆𝑁𝑁𝑅𝑅 = �
𝑑𝑑𝑑𝑑
𝜈𝜈
𝐴𝐴𝜖𝜖𝑡𝑡
ℎ

𝐹𝐹𝜈𝜈2

𝐵𝐵𝜈𝜈𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒
�
1/2

 [100] 

where ℎ is Planck’s constant. The noise-effective solid angle 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 in equation [100] is defined 

by (Wright, 1985): 
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 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 =
[∫𝜙𝜙(𝛺𝛺)𝑑𝑑𝛺𝛺]2

∫𝜙𝜙(𝛺𝛺)2 𝑑𝑑𝛺𝛺
 [101] 

In the discrete case, integration becomes a summation over discrete pixels and we then define the 

effective number of noise pixels as  

 𝑁𝑁𝑃𝑃 =
(∑𝜙𝜙)2

∑(𝜙𝜙2) [102] 

The noise-effective solid angle 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 in equation [101] is then just the number of noise pixels 𝑁𝑁𝑃𝑃 

times the pixel-solid-angle ∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡 specifying the solid angle per pixel, �∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡� = �𝑆𝑆𝑜𝑜𝑡𝑡𝑖𝑖𝑑𝑑 𝐴𝐴𝑛𝑛𝐴𝐴𝑡𝑡𝑒𝑒
𝑃𝑃𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡

�: 

 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑁𝑁𝑃𝑃 ∙ ∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡 [103] 

The discrete sky noise-dominated S/N can then be written as 

 𝑆𝑆𝑁𝑁𝑅𝑅 = �
𝑑𝑑𝑑𝑑
𝜈𝜈
𝐴𝐴𝜖𝜖𝑡𝑡
ℎ

𝐹𝐹𝜈𝜈2

𝐵𝐵𝜈𝜈𝑁𝑁𝑃𝑃∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡
�
1/2

= �𝑑𝑑𝑑𝑑
𝜈𝜈
𝐴𝐴𝜖𝜖𝑡𝑡
ℎ

𝐹𝐹𝜈𝜈2

𝐵𝐵𝜈𝜈∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡
�
(∑𝜙𝜙)2

∑𝜙𝜙2 �
−1

 [104] 

In our calculations of the S/N for our generic space telescope, we take the bandwidth over 

central frequency to be 𝑑𝑑𝜈𝜈
𝜈𝜈

= 1/5, the quantum efficiency to be 50%, and the integration time to 

be 1000 seconds. We run calculations for telescope diameters of 1.2 m and 2.4 m inspired by the 

Euclid and WFIRST space telescopes. Sky background intensities are calculated from a fairly 

elaborate physical model of the zodiacal light at latitude 90o described in (Wright, 1998), which 

are summarized in Table 1. For confidence in this sky model, we note that the Hubble Space 

Telescope (HST) table of high sky background from the Wide Field Camera 3 Instrument 

Handbook for Cycle 24 (Dressel, 2016) is in good agreement with the zodiacal light from the 

model at latitude 0o. We also assume our telescopes to be cold enough so that their thermal 

emission is much less than the zodiacal background. This implies a telescope temperature 𝑇𝑇 <

132 𝐾𝐾 so that the blackbody radiation intensity is less than the sky background intensity at the L 
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band around 3.6 μm. In the Results section, we will plot the S/N vs. wavelength from equation 

[104] to determine the wavelength bands with the best signal. 

 

Wavelength (microns) Sky Background Intensity (kJy/Sr) 

0.7 93 

0.9 109 

1.25 106 

1.6 91 

2.2 68 

3.5 58 

Table 1 – Table of sample sky background intensities at ecliptic latitude 90o calculated from the 

physical model described in (Wright, 1998) and used in this paper. 

 

4.4. Introducing Shear and Calculating Ellipticity measurement variance 

The images obtained directly from the image equation [98] with Sersic galaxy objects and 

airy disk PSFs are completely radially symmetric; i.e., the galaxy images are circular on a 

projected 2D plane. To simulate weak gravitational lensing on distant galaxies, we introduce a 

shear transformation on the object intensity 𝑂𝑂(𝜃𝜃) by a linear rescaling of the radial (angular) 

coordinate parameter 𝜃𝜃 = ��⃗�𝜃� in the Sersic pattern,  

 �⃗�𝜃 = �
𝑥𝑥
𝑦𝑦�     ⟶     �⃗�𝜃′ = 𝒜𝒜 ∙ �⃗�𝜃 [105] 

where 𝒜𝒜 is the Jacobian matrix describing the distortion of images by weak gravitational 

lensing.  If the size of the source is much smaller than the characteristic angular scale of the 
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deflector, we can locally linearize the gravitational lens mapping, which is then described by the 

Jacobian of the weak gravitational thin lens equation, 

 𝒜𝒜 = (1 − 𝜅𝜅) �1 − 𝑔𝑔1 −𝑔𝑔2
−𝑔𝑔2 1 + 𝑔𝑔1

� [106] 

where 𝑔𝑔𝑖𝑖, 𝑖𝑖 = 1,2 are the components of the reduced shear, and 𝜅𝜅 is the convergence in 

gravitational lensing theory (Schneider, 1999).   

 

 < 𝟎𝟎 > 𝟎𝟎 

𝛋𝛋 

  

𝐠𝐠𝟏𝟏 

  

𝐠𝐠𝟐𝟐 

  

Figure 11 – Effects of the convergence 𝜅𝜅 and the components of shear 𝑔𝑔1 and 𝑔𝑔2 are shown. The 

green circle represents an unstretched circular image where all lensing parameters are presumed 

to be zero. The transformation on the initial circle depends on whether these parameters are 

positively or negatively valued.  

  

As we are only interested in the effect of shear in the present analysis, we ignore the 

convergence, taking (𝜅𝜅 − 1) → 1 in the transformation equation.  Additionally, the ability to 

measure the shear component g1 is directly related to the ability to measure 𝑔𝑔2, so we need only 
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concern ourselves with one of the components of the reduced shear �⃗�𝑔.  For simplicity, we focus 

on 𝑔𝑔1 and simply set 𝑔𝑔2 = 0 and 𝑔𝑔1 = 𝑔𝑔.  The transformation on coordinates then simplifies to  

 �⃗�𝜃 = �
𝑥𝑥
𝑦𝑦�     ⟶     �⃗�𝜃′ = �𝑥𝑥

′

𝑦𝑦′ � = �1 − 𝑔𝑔 0
0 1 + 𝑔𝑔� ∙ �

𝑥𝑥
𝑦𝑦� = �

(1 − 𝑔𝑔)𝑥𝑥
(1 + 𝑔𝑔)𝑦𝑦� [107] 

When 𝑔𝑔 > 0, a circle under this transformation is stretched in the 𝑥𝑥-direction and when 𝑔𝑔 < 0, a 

circle is stretched in the 𝑦𝑦-direction. If 𝑔𝑔 = 0, then the image is unstretched. 

 The stretch obtained by the introduction of weak lensing shear is applied only to the 

Sersic galaxy object intensity, 𝑂𝑂(𝜃𝜃) → 𝑂𝑂𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′ (𝜃𝜃′). Gravitational shear does not affect the PSF 

of the telescope. The stretched image intensity 𝐼𝐼′ obtained from the imaging equation is now just 

𝐼𝐼′ = 𝑂𝑂𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′ ⋆ 𝑃𝑃 

To first order, we can Taylor expand the stretched image intensity 𝐼𝐼′ as 

 𝐼𝐼′ = 𝐼𝐼 + ∆𝐼𝐼 = 𝐼𝐼 + 𝑔𝑔 �
𝜕𝜕𝐼𝐼′

𝜕𝜕𝑔𝑔
��

𝐴𝐴=0
 [108] 

where 𝐼𝐼 is the galaxy image obtained by convolution before introducing shear, and 𝐼𝐼′ represents 

the stretched galaxy image. Note that �𝜕𝜕𝐼𝐼
′

𝜕𝜕𝐴𝐴
��
𝐴𝐴=0

 has a quadrupole shape like that seen in Figure 

14. From this transformation equation [108], a least squares estimate of 𝑔𝑔 gives 

 𝑔𝑔 =
∫ 𝐼𝐼′ �𝜕𝜕𝐼𝐼

′

𝜕𝜕𝑔𝑔�𝐴𝐴=0
�𝑑𝑑𝛺𝛺

∫�𝜕𝜕𝐼𝐼
′

𝜕𝜕𝑔𝑔�𝐴𝐴=0
�
2

𝑑𝑑𝛺𝛺
 [109] 

where the variance of 𝑔𝑔 is then  

 
𝜎𝜎2(𝑔𝑔) =

𝜎𝜎2(𝐼𝐼′)

∫�𝜕𝜕𝐼𝐼
′

𝜕𝜕𝑔𝑔�𝐴𝐴=0
�
2

𝑑𝑑𝛺𝛺
 

[110] 
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Assuming sky-dominated noise uniformly distributed across the telescope with a 

background intensity 𝐵𝐵𝜈𝜈 over solid angle 𝑑𝑑𝛺𝛺, and where 𝑁𝑁𝑜𝑜𝑘𝑘𝑦𝑦 represents the electron count of 

sky noise in one pixel, the numerator of [110] is just 

 𝜎𝜎2(𝐼𝐼′) = 𝜎𝜎𝑜𝑜𝑘𝑘𝑦𝑦2 (𝐼𝐼′) = 𝑁𝑁𝑜𝑜𝑘𝑘𝑦𝑦 = �
𝐴𝐴𝜖𝜖𝑡𝑡𝑑𝑑𝜈𝜈
ℎ𝜈𝜈

∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡� 𝐵𝐵𝑣𝑣 [111] 

On the denominator of equation [110], we again convert the continuous calculus into 

discrete sums and differences to be calculated over pixels. Thus,  

 ��
𝜕𝜕𝐼𝐼′

𝜕𝜕𝑔𝑔
�
𝐴𝐴=0

�
2

𝑑𝑑𝛺𝛺    ⟶     ��
∆𝐼𝐼′
∆𝑔𝑔
�
𝐴𝐴=0

�
2

∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡 [112] 

Here in the discrete case, we take ∆𝐼𝐼′ to be the difference of an x-streched intensity image 

subtracted from a 𝑦𝑦-streched intensity image. Recall that the difference between a shear in the 𝑥𝑥-

direction and 𝑦𝑦-direction is a matter of whether the reduced shear parameter 𝑔𝑔 is positive or 

negative, respectively. Thus, 

 ∆𝐼𝐼′ = 𝐼𝐼𝑥𝑥−𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′ − 𝐼𝐼𝑦𝑦−𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′ = 𝐼𝐼′(𝑔𝑔) − 𝐼𝐼′(−𝑔𝑔) [113] 

For our calculations, we let |𝑔𝑔| = 0.1, which corresponds a 10% stretch. A plot of  

∆𝐼𝐼′ = 𝐼𝐼𝑥𝑥−𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′ − 𝐼𝐼𝑦𝑦−𝑜𝑜𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝑐𝑐ℎ′   produces a “four-leaf clover” quadrupole-like image as shown in 

Figure 14 plotted in Mathematica. 
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Figure 12 – Normalized density plot of  ∆𝐼𝐼
′

𝐼𝐼𝑜𝑜
=

𝐼𝐼𝑥𝑥−𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠ℎ
′ −𝐼𝐼𝑦𝑦−𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠ℎ

′

𝐼𝐼𝑜𝑜
, where 𝐼𝐼𝑜𝑜 = 𝐼𝐼(0,0) is the peak 

intensity of the original galaxy image, made in Mathematica. This image is obtained by taking 

the difference of a Sersic galaxy light intensity stretched in the 𝑥𝑥-direction and the galaxy light 

intensity stretched in the 𝑦𝑦-direction. Black represents high intensity; white represents low 

intensity.  

 

To convert the units of ∆𝐼𝐼′ in equation [113] into electron counts, denoted by ∆𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒, 

the unit conversion is 

 ∆𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒 = �
𝐴𝐴𝜖𝜖𝑡𝑡𝑑𝑑𝜈𝜈
ℎ𝜈𝜈

∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡� ∆𝐼𝐼 [114]  

Thus, the full equation for the variance of the shear calculated over pixels from equation [110] 

can be written as 

 𝜎𝜎2(𝑔𝑔) =
𝑁𝑁𝑜𝑜𝑘𝑘𝑦𝑦

∑ �∆𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒∆𝑔𝑔 �
2 =

𝐵𝐵𝑣𝑣
𝑑𝑑𝜈𝜈
𝜈𝜈
𝐴𝐴𝜖𝜖𝑡𝑡
ℎ ∆𝛺𝛺𝑝𝑝𝑖𝑖𝑥𝑥𝑒𝑒𝑡𝑡

���
∆𝐼𝐼
∆𝑔𝑔
�
2

�
−1

 [115] 
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Of course, weakly lensed galaxies observed in the real universe are not intrinsically 

circular, and the only thing that can actually be measured is the observed galaxy ellipticity, 

which includes the measured intrinsic ellipticity of the galaxy plus the measured gravitational 

shear. The uncertainty in the shear, 𝜎𝜎𝐴𝐴, arises from a combination of unavoidable intrinsic shape 

noise, 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2 =< 𝜖𝜖𝑖𝑖𝑛𝑛𝑡𝑡2 >, and the measurement error of galaxy shapes, 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜2 (𝜖𝜖): 

 𝜎𝜎𝐴𝐴2 = 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜2 (𝜖𝜖) [116] 

Here, included in the measurement noise 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜2 (𝜖𝜖) is the uncertainty contributions from the 

telescope measurement and shape measurement methods. Studies have shown the intrinsic shape 

noise is typically on the order of 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡 ~ 0.26, and varies little from 𝑧𝑧 = 0 to 𝑧𝑧 = 3 (Leauthaud, et 

al., 2007), so actually equation [115] is the ellipticity measurement variance, 𝜎𝜎𝑒𝑒2 , rather than the 

shear variance 𝜎𝜎𝐴𝐴2.  

4.5. Analytical Gaussian Calculations 

The procedure summarized above for the calculation of the ellipticity measurement 

variance is manageable by a computer because we have discretized the continuous equations 

across a finite 2D array of discrete pixels. The continuous integral equation for the shear variance 

in Equation [110] is not analytically tractable, primarily due to the inability to solve the 

convolution integral of Sersic’s equation with the Airy disk PSF. However, the integrals become 

manageable if we resort to a Gaussian approximation of the light intensity profile and PSF. The 

tradeoff, of course, is that in reality galaxies and PSFs are not purely Gaussian. Nevertheless, the 

analytical results obtained from a Gaussian approximation can be compared with the discrete 

calculations modeled in Mathematica for consistency checks, and some general behavior of how 

the shear varies with wavelength may still be desirable from the analytic Gaussian results. 
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The central lobe of the Airy disk PSF may be approximated with a Gaussian profile such 

that 

 𝑃𝑃(𝜃𝜃) ≈ 𝐼𝐼𝑜𝑜𝑝𝑝𝑒𝑒
− 𝜃𝜃

2

2𝜎𝜎𝑃𝑃
2 

[117] 

where 𝐼𝐼𝑜𝑜𝑝𝑝 = �𝜋𝜋𝐷𝐷
2

4𝜆𝜆2
� is the central intensity of the PSF, and we take 𝜎𝜎𝑃𝑃 ≈ 0.42 �𝜆𝜆

𝐷𝐷
� to preserve the 

peak amplitude of the Airy pattern. The Gaussian approximation of the Airy disk pattern is 

shown in Figure 10. 

The Sersic profile equation becomes a Gaussian distribution when the Sersic index is set 

to 𝑛𝑛 = 1
2
. A plot of the 𝑛𝑛 = 1

2
 Sersic profile is shown in Figure 9. The Sersic object intensity in 

equation [97] then becomes 

 𝑂𝑂��⃗�𝜃� = 𝐼𝐼𝑒𝑒𝑒𝑒𝑜𝑜1/2 𝑒𝑒𝑥𝑥𝑝𝑝 �−�
𝜃𝜃

𝜃𝜃𝑒𝑒�𝑜𝑜1/2�
−1/2�

2

� [118] 

Let us rewrite this as 

 𝑂𝑂��⃗�𝜃� = 𝐼𝐼𝑜𝑜𝑆𝑆𝑒𝑒
− 𝜃𝜃

2

2𝜎𝜎𝑆𝑆
2 [119] 

where 𝐼𝐼𝑜𝑜𝑆𝑆 = 𝐼𝐼𝑒𝑒𝑒𝑒𝑜𝑜1/2 is the central intensity of the Sersic profile with 𝐼𝐼𝑒𝑒 = 𝑜𝑜1/2

𝜋𝜋𝑒𝑒𝑜𝑜1/2𝜃𝜃𝑒𝑒2
𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑡𝑡, and 

𝜎𝜎𝑆𝑆2 = 1
2
𝜃𝜃𝑒𝑒2�𝑜𝑜1/2�

−1
. 

 The convolution integral in the imaging equation can now be analytically computed in 

this Gaussian approximation as 

 𝐼𝐼 = 𝑂𝑂 ⋆ 𝑃𝑃 =
√2𝜋𝜋𝐼𝐼𝑜𝑜𝑝𝑝𝐼𝐼𝑜𝑜𝑆𝑆

1
𝜎𝜎𝑃𝑃2

+ 1
𝜎𝜎𝑆𝑆2

𝑒𝑒
− 𝑥𝑥2+𝑦𝑦2

2(𝜎𝜎𝑃𝑃
2+𝜎𝜎𝑆𝑆

2) ≡ 𝐼𝐼𝑜𝑜(𝑆𝑆⋆𝑃𝑃)𝑒𝑒
− 𝑥𝑥

2+𝑦𝑦2

2𝜎𝜎(𝑆𝑆⋆𝑃𝑃)
2

 [120] 
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where we have defined 𝐼𝐼𝑜𝑜(𝑆𝑆⋆𝑃𝑃) =
√2𝜋𝜋𝐼𝐼𝑜𝑜𝑝𝑝𝐼𝐼𝑜𝑜𝑆𝑆

1
𝜎𝜎𝑃𝑃
2+

1
𝜎𝜎𝑆𝑆
2

  to be the central intensity of the convolved image 

profile; and 𝜎𝜎(𝑆𝑆⋆𝑃𝑃)
2 = 𝜎𝜎𝑃𝑃2 + 𝜎𝜎𝑆𝑆2 to represent the standard deviation of the image Gaussian 

distribution after convolution; and θ = �θ�⃗ � = �x2 + y2. As one would expect, the image profile 

produced by convolution of the two Gaussian distributions is also Gaussian. Because Gaussian 

distributions are easily integrated, we can obtain analytic expressions for the galaxy flux S/N and 

shear variance of a Gaussian image by calculating the integrals in equations [101] and [110].  

Substitution of equation [120] into 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 in equation [101] provides an analytical result 

for the effective Gaussian solid angle 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒: 

 𝛺𝛺𝑒𝑒𝑒𝑒𝑒𝑒 =
[∫𝜙𝜙(𝛺𝛺)𝑑𝑑𝛺𝛺]2

∫𝜙𝜙(𝛺𝛺)2 𝑑𝑑𝛺𝛺
= 4𝜋𝜋(𝜎𝜎𝑃𝑃2 + 𝜎𝜎𝑆𝑆2) = 4𝜋𝜋 �

𝜃𝜃𝑒𝑒2

2𝑜𝑜1/2
+

0.2025𝜆𝜆2

𝐷𝐷2 � [121] 

 Recall, the Sersic constant 𝑜𝑜𝑛𝑛 is given by equation [92] or reasonably well approximated 

by equation [93]. For a Gaussian Sersic index 𝑛𝑛 = 1
2
, the value of this constant can be solved 

exactly from [92] which gives, 𝑜𝑜1/2 = 𝑙𝑙𝑛𝑛 2 = 0.693. Equation [93] approximates the value to be 

𝑜𝑜1/2 ≈ 0.673. Substituting [121] into equation [100] for the general flux SNR, the Gaussian flux 

SNR becomes  

 𝑆𝑆𝑁𝑁𝑅𝑅 = �
𝑑𝑑𝑑𝑑
𝜈𝜈
𝐴𝐴𝜖𝜖𝑡𝑡
ℎ
𝐹𝐹𝜈𝜈2

𝐵𝐵𝜈𝜈
�4𝜋𝜋�

𝜃𝜃𝑒𝑒2

2𝑜𝑜1
2

+
0.2025𝜆𝜆2

𝐷𝐷2 ��

−1

�

1/2

 [122] 

 To obtain a Gaussian approximation of the shear variance, we must first introduce the 

effects of weak gravitational shear to break radial symmetry by imposing the same linear 

transformation as in equation [107]. The result of this transformation on the Gaussian Sersic 

function is that  
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 𝑂𝑂��⃗�𝜃�     ⟶     𝑂𝑂′��⃗�𝜃′� = 𝐼𝐼𝑜𝑜𝑆𝑆𝑒𝑒
− 
�𝑥𝑥′�2+�𝑦𝑦′ �2

2𝜎𝜎𝑆𝑆
2 = 𝐼𝐼𝑜𝑜𝑆𝑆𝑒𝑒

− [(1−𝐴𝐴)𝑥𝑥]2+[(1+𝐴𝐴)𝑦𝑦]2

2𝜎𝜎𝑆𝑆
2  

[123

] 

where we have again introduced the reduced shear g to simulate weak lensing distortions on the 

galaxy light profile shape. The convolution of this stretched Gaussian Sersic profile with the 

Gaussian approximation of the Airy disk PSF via the imaging equation then yields 

 
𝐼𝐼′ =

2𝜋𝜋𝐼𝐼𝑜𝑜𝑝𝑝𝐼𝐼𝑜𝑜𝑆𝑆

� 1
𝜎𝜎𝑃𝑃2

+ (1 + 𝑔𝑔)2
𝜎𝜎𝑜𝑜2

� 1
𝜎𝜎𝑃𝑃2

+ (−1 + 𝑔𝑔)2
𝜎𝜎𝑜𝑜2

𝑒𝑒𝑥𝑥𝑝𝑝 �−
(1 − 𝑔𝑔)2𝑥𝑥2

2[(−1 + 𝑔𝑔)2𝜎𝜎𝑃𝑃2 + 𝜎𝜎𝑆𝑆2] −
(1 + 𝑔𝑔)2𝑦𝑦2

2[(1 + 𝑔𝑔)2𝜎𝜎𝑃𝑃2 + 𝜎𝜎𝑆𝑆2]� [124] 

Again, only the Sersic galaxy image is stretched while the PSF remains unaffected by the shear. 

The value of the shear parameter g and its variance 𝜎𝜎2(𝑔𝑔) are given by equations [109] and 

[110]. Assuming sky dominated noise uniformly distributed across the telescope with a 

background intensity 𝐵𝐵𝜈𝜈 over solid angle 𝑑𝑑𝛺𝛺, the numerator in the variance equation [110] is 

just: 

 𝜎𝜎2(𝐼𝐼) = 𝜎𝜎𝑜𝑜𝑘𝑘𝑦𝑦2 (𝐼𝐼) =
𝐴𝐴𝜖𝜖𝑡𝑡𝑑𝑑𝜈𝜈
ℎ𝜈𝜈

𝐵𝐵𝑣𝑣 [125] 

The integral in the denominator of [110] can now be computed analytically in this Gaussian 

approximation as 

 ��
𝜕𝜕𝐼𝐼′

𝜕𝜕𝑔𝑔
�
𝐴𝐴=0

�
2

𝑑𝑑𝛺𝛺 = 4𝜋𝜋3𝐼𝐼𝑜𝑜𝑝𝑝
2 𝐼𝐼𝑜𝑜𝑆𝑆

2 𝜎𝜎𝑃𝑃4𝜎𝜎𝑜𝑜8

(𝜎𝜎𝑃𝑃2 + 𝜎𝜎𝑆𝑆2)3 [126] 

Plugging in all the definitions for the Gaussian variables and rewriting [126] in terms of the 

galaxy and telescope parameters, we have 

 ��
𝜕𝜕𝐼𝐼′

𝜕𝜕𝑔𝑔
�
𝐴𝐴=0

�
2

𝑑𝑑𝛺𝛺 =
0.01518𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡2 𝜃𝜃𝑒𝑒4

𝑜𝑜1/2
2 � 𝜃𝜃𝑒𝑒2

2𝑜𝑜1/2
+ 0.1764𝜆𝜆2

𝐷𝐷2 �
3 [127] 

The full shear variance equation after proper unit conversion is then  
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 𝜎𝜎2(𝑔𝑔) = 𝐵𝐵𝑣𝑣

⎣
⎢
⎢
⎢
⎡
�
𝐴𝐴𝜖𝜖𝑡𝑡𝑑𝑑𝜈𝜈
ℎ𝜈𝜈

�
0.0151𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡2 𝜃𝜃𝑒𝑒4

𝑜𝑜1/2
2 � 𝜃𝜃𝑒𝑒2

2𝑜𝑜1/2
+ 0.1764𝜆𝜆2

𝐷𝐷2 �
3

⎦
⎥
⎥
⎥
⎤
−1

 

 

[128] 

4.6. Calculating an Effective Galaxy Number for Weak Lensing Shape Measurement  

 The number of galaxies that have measurable shapes per solid angle in a given band 

depends on the number of counts of galaxies, 𝑛𝑛(𝑒𝑒), where m is the magnitude. Ultimately, we 

will sort our galaxy data in the Ks- and R- selected UltraVISTA catalogs into half-magnitude 

bins, using the Ks- and R-band total flux for the bin selections in each catalog, respectively. 

Counts are then weighted by how well we measure the galaxy shapes using the intrinsic 

ellipticity variance as a floor and counting only those galaxies that lie above an S/N threshold, 

which we choose to be S/N > 10, as is typical of weak lensing surveys (Kacprzak, et al., 2012). 

Because all galaxies are sorted by their Ks (or R) band flux, and assuming the total galaxy flux is 

proportional to the square of the effective half-light radius, we rescale the galaxy flux and half-

radii data in each half-magnitude bin to extrapolate the catalog to fainter magnitudes via 

 

⎩
⎪
⎨

⎪
⎧𝑟𝑟𝑒𝑒 → 𝑟𝑟𝑒𝑒 �

𝐹𝐹𝑜𝑜𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
𝐹𝐹𝑒𝑒

�
−1/2

𝐹𝐹𝜈𝜈 → 𝐹𝐹𝜈𝜈 �
𝐹𝐹𝑒𝑒

𝐹𝐹𝑜𝑜𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛
�

 [129] 

where, 𝐹𝐹𝜈𝜈 is the total galaxy flux in a given band, 𝐹𝐹𝑜𝑜𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 is total flux in the Ks- or R-band for 

respective catalog, and 𝐹𝐹𝑒𝑒 is the flux in the middle of a given half-magnitude bin selected in the 

Ks-band or R-band for the respective catalog. 

Computing re-scaled values of the flux S/N and ellipticity measurement variance using 

the substitutions in Equation [129], we then calculate an effective number of galaxies per square 

degree in a given half-magnitude bin via 
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 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒, 𝜆𝜆, 𝑡𝑡) =
𝑁𝑁𝑆𝑆𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒
𝑁𝑁𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚

� �
𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2

(𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑2 )�𝑖𝑖
 [130] 

   

The factor in front the summation takes the source galaxy counts per square degree, 𝑁𝑁𝑆𝑆𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒, 

over the number of sample galaxies , 𝑁𝑁𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚, in a given half-magnitude bin selected from our 

catalog of galaxy data. The summation over 𝑖𝑖 is taken over all sample galaxies in a given 

wavelength band above an S/N threshold of 10. We take 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡 =  0.26 (see Section 4.4 for 

justification). Because the flux S/N and shear variance depend on the telescope integration time, 

𝑡𝑡, the effective number density also depends on 𝑡𝑡. 

 For 𝑁𝑁𝑆𝑆𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒, we fit the source galaxy counts per square degree from (Madau & Pozzetti, 

2000) to the equation 

 𝑙𝑙𝑜𝑜𝑔𝑔 �
𝑑𝑑𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒
𝑑𝑑𝑒𝑒

� = 𝐹𝐹 +  0.6 ∗ [𝐾𝐾𝐴𝐴𝐴𝐴 − 15] − 𝐵𝐵𝑦𝑦 [131] 

with 𝑦𝑦 = 𝑤𝑤 ��(1 + 𝑥𝑥2) − 1�, 𝑥𝑥 = 𝑒𝑒𝑎𝑎𝑥𝑥[0, [𝐾𝐾𝐴𝐴𝐴𝐴 − 𝐴𝐴]/𝑤𝑤] and 𝐹𝐹 = 0.77, 𝐾𝐾𝐴𝐴𝐴𝐴(𝑜𝑜𝑟𝑟𝑒𝑒𝑎𝑎𝑘𝑘) = 𝐴𝐴 =

18.98, 𝑑𝑑(𝑑𝑑𝑙𝑙𝑜𝑜𝑝𝑝𝑒𝑒) = 𝐵𝐵 = 0.34, 𝑤𝑤𝑖𝑖𝑑𝑑𝑡𝑡ℎ = 𝑤𝑤 = 0.7.  The By term reduces the slope, and flattens 

the counts for really faint sources and avoids Olbers' paradox.  With 𝑑𝑑𝑒𝑒 = 0.5 for half-

magnitude bins, we have the number of source galaxies from the fit as  

 𝑁𝑁𝑆𝑆𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒 = 0.5 × 10𝑃𝑃+0.6[𝐾𝐾𝐴𝐴𝐴𝐴−15]−𝐴𝐴∙𝑦𝑦 [132] 

A plot of this fitting equation is displayed in Figure 15, along with the galaxy counts we get from 

our sample data for the Ks and R catalogs, respectively. 
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Figure 13 – Plot of galaxy source counts per square degree sampled in half-magnitude bins 

(black) superimposed with the galaxy counts in half-magnitude bins we get from our R catalog 

(green) and our Ks catalog (red). The black curve shows the model from equation [133] for the 

K-band counts. The R counts (green) are plotted as function of R-band AB magnitude and the K 

counts (red) are plotted as function of K-band AB magnitude.  

 

Equation [130] gives the effective number of galaxies in a given half-magnitude bin. To 

find the total number of effective galaxies per square degree, we must sum equation [130] over 

all half-magnitude bins: 

 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆, 𝑡𝑡) = � 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒

= � �
𝑁𝑁𝑆𝑆𝑜𝑜𝑠𝑠𝑐𝑐𝑐𝑐𝑒𝑒
𝑁𝑁𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚

� �
𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2

(𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑2 )�𝑖𝑖
�

𝑒𝑒
 [133] 

4.7. Ellipticity Measurement on the Frontier Parallel Fields  

We perform a crude measurement of galaxy ellipticities in the six HST FPFs using Source 

Extractor (SExtractor) software (Bertin & Arnouts, 1996) in order to estimate a reduced shear 
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signal at the location of the parallel fields. The first order moment of an object is defined in 

SExtractor by 

 �̅�𝑥 =
∑ 𝐼𝐼𝑖𝑖𝑥𝑥𝑖𝑖
∑ 𝐼𝐼𝑖𝑖

 [134] 

 𝑦𝑦� =
∑𝐼𝐼𝑖𝑖𝑦𝑦𝑖𝑖
∑ 𝐼𝐼𝑖𝑖

 [135] 

All of the 𝑥𝑥𝑖𝑖 and 𝐼𝐼𝑖𝑖 values in these formulae are the values from the pixels identified in the 

segmentation map as belonging to the object, and are thus influenced by detection thresholds and 

segmentation settings in SExtractor. The second order quadrupole moments are calculated by the 

software via 

 𝑄𝑄𝑖𝑖𝑖𝑖 =
∑ ∑ 𝐼𝐼𝑖𝑖�𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖��𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖�𝑖𝑖𝑖𝑖

∑ 𝐼𝐼𝑖𝑖𝑖𝑖
 [136] 

This is essentially equation [66] computed over discrete pixels with a weight factor 𝑞𝑞𝐼𝐼 = 𝐼𝐼, or 

rather, 𝑞𝑞𝐼𝐼 = 𝐼𝐼𝐻𝐻(𝐼𝐼 − 𝐼𝐼𝑡𝑡ℎ), where 𝐻𝐻 is the Heaviside function with 𝐼𝐼𝑡𝑡ℎ being a threshold intensity 

that SExtractor uses for the detection and identification of an object since in principle a galaxy’s 

light profile extends to infinity while SExtractor only computes the summations in [136] over the 

pixels for which an object has been detected. We use these SExtractor moments to calculate the 

observed complex ellipticities defined by equation [68] for galaxies in the HST FPFs.  

Accounting for the HST PSF is nontrivial, and utilities such as TinyTim allow for a fairly 

accurate models of the HST PSF. In an effort to further simplify the procedure however, we will 

simply assume a purely symmetric Gaussian PSF in the form of equation [117]. While this 

choice is unrealistic and unrepresentative of the real HST PSF, it makes deconvolution of the 

PSF simple and allows for relatively easy extraction of an approximate galaxy source ellipticity 

signal.  
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The average source ellipticity among a significantly large density of distant galaxy images is 

directly related to reduced gravitational shear signal (see equation [80]). We assume equations 

[88] and [89] hold and use these to correct for the PSF, and note that by assuming a symmetric 

Gaussian, the PSF ellipticity 𝜒𝜒𝑃𝑃𝑆𝑆𝑃𝑃 in [90] simply vanishes. We calculate weighted average 

ellipticity using the same weight used for the effective galaxy number calculation in equation 

[130] of Chapter 4.6 scaled by the intrinsic galaxy shape , namely, 

 〈𝜖𝜖𝑖𝑖〉𝑚𝑚𝑣𝑣𝑒𝑒 =
∑ 𝑤𝑤𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
, with       𝑤𝑤𝑖𝑖 =

𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2

(𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡2 + 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑2 ) [137] 

where 𝑖𝑖 = 1,2 gives the two components of the complex shear, 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡 =  0.26 is the intrinsic 

galaxy shape noise and 𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑2  is the measured galaxy shape noise. We approximate 

𝜎𝜎𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑2  using the Gaussian approximation given in equation  [127] that we derived in Section 

4.5. The magnitude of the average ellipticity is then gotten by 

 〈|𝜖𝜖|〉𝑚𝑚𝑣𝑣𝑒𝑒 = �〈𝜖𝜖1〉𝑚𝑚𝑣𝑣𝑒𝑒2 + 〈𝜖𝜖2〉𝑚𝑚𝑣𝑣𝑒𝑒2  [138] 

The average angle is gotten by  

 〈𝜙𝜙〉𝑚𝑚𝑣𝑣𝑒𝑒 =
1
2

Arg(〈𝜖𝜖1〉𝑚𝑚𝑣𝑣𝑒𝑒 + 𝑖𝑖〈𝑔𝑔2〉𝑚𝑚𝑣𝑣𝑒𝑒) =
1
2

Arg(〈𝜖𝜖〉𝑚𝑚𝑣𝑣𝑒𝑒) [139] 

The factor of 1
2
 is necessary since the complex shear is defined by 𝜖𝜖 = 𝜖𝜖1 + 𝑖𝑖𝜖𝜖2 = |𝜖𝜖|𝑒𝑒2𝑖𝑖𝜙𝜙, with 

the factor of 2 in the complex exponential accounting for the transformation properties of an 

ellipse onto itself after a rotation of 180o. Thus, the argument of complex 𝜖𝜖 provides 2𝜙𝜙 instead 

of 𝜙𝜙. 

In practice, the reduced shear is not exactly equal to the average ellipticity that can be 

measured by real telescopes. Even assuming an isotropic PSF, the limiting galaxy magnitude 

used for detection, the photometric depth of the image, and the size of the seeing disk all effect 

the measurement of the average ellipticity signal in a field, so the 〈𝜖𝜖〉𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜 that we measure is not 
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exactly equal to the 〈𝜖𝜖〉 defined in theory. Instead, the mean image ellipticity will be proportional 

to the reduced shear, 𝑔𝑔 ≈ 𝑓𝑓〈𝜖𝜖〉𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜, where 𝑓𝑓 is a correction factor. This correction factor can be 

estimated by simulating realistic galaxy fields imposed with a known shear signal, applying the 

measurement scheme used on the real data to the simulated field, and then measuring the average 

ellipticity on the simulated field to compare to the known shear value. Instead of following this 

procedure, however, we will compare our measured average ellipticity to the reduced shear 

signal in the Abell 2744 cluster measured by (Medezinsk, et al., 2016). We will then take the 

ratio of the reported shear in the Abell 2744 FPF to our measured average ellipticity to be our 

correction factor 𝑓𝑓, and will apply this correction factor to recalibrate our shear values on all six 

of the FPFs.   Once a calibrated average reduced shear signal has been estimated for a particular 

FPF, equation [85] will be used to calculated the encircled mass, which assumes a symmetric 

matter distribution and is the estimate of the total projected mass inside a radius equal to the 

distance from any given FPF to the corresponding primary FF.  

We conclude this chapter by noting that a purely isotropic PSF will have the effect of 

rounding out small galaxy shapes. Assuming a purely symmetric Gaussian PSF as we do here is 

likely to underestimate the “true” reduced shear signal. On the other hand, by assuming there is 

no anisotropic part of the telescope PSF when there actual is, there is a potential to overestimate 

of the true shear signal since an anisotropic part of the real PSF has the effect of adding a 

spurious measured ellipticity to small objects that we are not bothering to subtract.  

Additionally, in using SExtractor’s pre-equipped quadrupole moment calculations, it is likely 

we are oversampling the noise in the quadrupole calculations in the extreme pixels at the edge of 

a detected galaxy and thus, will have larger shape measurement noise versus what one would 

have utilizing a more robust weighting scheme such as 𝑞𝑞𝐼𝐼[𝐼𝐼(𝜃𝜃)] = 𝐼𝐼(𝜃𝜃)𝑊𝑊(𝜃𝜃) as mentioned in 
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Section 3.6. For example, a Gaussian weight factor 𝑊𝑊 as originally proposed by (Kaiser, et al., 

1995) can be tuned to cut off at large angular separations from the galaxy center faster than  

𝑞𝑞𝐼𝐼 = 𝐼𝐼(𝜃𝜃), thereby reducing the noise counted at the galaxy edge in the quadrupole moment 

formulae. Furthermore, if a galaxy features a bright compact core emitting a significant fraction 

of the galaxy’s total light, then this core can become smeared out by the PSF. The observed 

ellipticity in this case may be dominated by the core and contain little information about the 

actual galaxy ellipticity. For this reason, (Bonnet & Millier, 1995) defined a quadrupole moment 

with a weight factor 𝑊𝑊(𝜃𝜃) which not only cuts off at large angular separations, but which is also 

small near the galaxy center. Figure 16 compares a few of the different weighting schemes used 

by other groups. 
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Figure 14 – A comparison of a few different weight functions 𝑊𝑊(𝜃𝜃) used by a few different 

groups. The dashed red line represents no weight, or 𝑊𝑊(𝜃𝜃) = 1, and is the baseline plot of a 

Gaussian galaxy light profile. The blue line is similar to SExtractor’s measurement of the galaxy 

shape which matches the measured the intensity profile but cuts off at some threshold intensity 

used by the program to represent the boundary of a galaxy object. The green line is similar to the 

original KSB Gaussian weight which falls off faster than the original profile to avoid counting 

too much noise at the galaxy edge. Finally, the purple line represents the weight used by (Bonnet 

& Millier, 1995) which is small at the center of the galaxy and falls off quickly at the galaxy 

edge. 

5. Data 

In this chapter we describe the ULTRAVISTA field and Frontier Fields data used to 

construct the collections of Sersic galaxy light profiles used in our model calculations. For the 

ULTRAVISTA field data, catalogs of galaxy morphology were readily available for public use, 

and the galaxy parameters required for Sersic’s equation were simply extracted from these 
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catalogs. For the FFs, we used SExtractor software on the publically available FF mosaics to 

estimate the required Sersic parameters for ourselves. 

5.1. Constructing a galaxy catalog from the UltraVISTA field 

Two independent sets of galaxy data were collected from the ultra-deep UltraVISTA Ks-

selected and R-selected photometric catalogs (Muzzin, et al., 2013). These two catalogs are 

considered simultaneously in this paper to help track any possible role of wavelength-dependent 

incompleteness in our analysis. These catalogs each provide us with galaxy flux data from 11 

different filters, including YJHKs-bands from UltraVISTA, u-band from CFHT, and BVgriz+ 

bands from Subaru. Stars and other objects with possibly nonsensical photometry and population 

parameters have been filtered out of the two catalogs, and a 5σ detection limit was imposed on 

the selection band total flux. Aperture magnitudes were given for all bands in the original 

UltraVISTA catalogs, while total flux was only provided for the Ks- or R-band, respectively. 

The ratio of the selection band total flux to selection band aperture flux was used as a conversion 

factor in each catalog to calculate total flux in other bands, assuming galaxy morphology can be 

treated as independent of wavelength.  

Multi-object searches using the Infrared Science Archive (IRSA); Cosmic Evolution 

Survey (ULTRAVISTA), ULTRAVISTA Photometry Catalogs (Scoville, et al., 2007) were 

performed using a 0.5 arcsecond cone search radii with the “ULTRAVISTA ACS I+ band 

photometry catalog September 2007” (Leauthaud, et al., 2007) and “Photometric Redshift 

Catalog Fall 2008” (Ilbert, et al., 2009) to obtain half-light radii and morphological data in each 

of our catalogs, respectively. Throughout this paper, we will refer to these two sets of galaxy 

data collected from the UltraVISTA Ks-selected and R-selected photometric catalogs as either 

the Ks catalog or the R catalog. After filtering the original data in the full UltraVISTA catalogs 
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and after the ULTRAVISTA multi-object searches prescribed above, our Ks and R catalogs 

contain total galaxy source counts of 74,950 and 64,969, respectively. Although the original R-

selected UltraVISTA catalog contains more galaxies than the original Ks-selected catalog, after 

the 5𝜎𝜎 detection limit we impose, more of the dim sources in the R-catalog are cut whereas more 

of the brighter sources in the K-catalog survive, leaving us a filtered Ks catalog that is slightly 

larger than the filtered R catalog. 

An approximate correction for the Hubble Space telescope point spread function was 

applied to the half-light radii in the catalogs via  

(𝑟𝑟𝑡𝑡𝑐𝑐𝑠𝑠𝑒𝑒)2 = (𝑟𝑟𝑒𝑒𝑒𝑒𝑚𝑚𝑜𝑜𝑠𝑠𝑐𝑐𝑒𝑒𝑑𝑑)2 − (𝑟𝑟𝑃𝑃𝑆𝑆𝑃𝑃)2 [140] 

The mean and median half-light radius in the Ks catalog was 0.367 and 0.324 arcseconds, 

respectively, and for the R catalog the mean and median half-light radius were 0.363 and 0.317 

arcseconds. The average sizes from the two UltraVISTA catalogs are very consistent. We 

assume the half-light radii of galaxies to be independent of wavelength and these radii values 

have been obtained by cross-referencing with the ULTRAVISTA ACS I+ band Photometry 

Catalog as mentioned above. The average total galaxy flux in each wavelength band in our two 

catalogs are summarized in Table 2 and Figure 17.  
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Filter 
Ks catalog Mean 

(AB mag) 

Ks catalog Median 

(AB mag) 

R catalog Mean 

(AB mag) 

R catalog Median 

(AB mag) 

CFHT u* 24.928 24.857 24.369 24.408 

Subaru B 24.476 24.603 24.082 24.225 

Subaru g+ 24.431 24.476 23.942 24.119 

Subaru V 24.051 24.186 23.636 23.742 

Subaru r+ 23.645 23.835 23.321 23.602 

Subaru i+ 23.049 23.240 22.870 23.121 

Subaru z+ 22.677 22.855 22.632 22.862 

VISTA Y 22.449 22.677 22.493 22.721 

VISTA J 22.161 22.355 23.310 22.559 

VISTA H 21.900 22.100 22.134 22.406 

VISTA Ks 21.695 21.901 22.044 22.337 

Table 2 – The mean and median total flux values for each of the wavelength bands in our Ks-

selected and R-selected catalog collected from the UltraVISTA catalogs (Muzzin, et al., 2013). 

Flux values are listed in AB magnitude. 
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Figure 15 — Plot of mean and median AB magnitude of the 74,950 galaxies collected in the Ks 

catalog. The average brightness of galaxies is maximum in the Ks-band. 

 

Figure 16 — Plot of mean and median AB magnitude of the 64,969 galaxies collected in the R 

catalog. The average brightness of galaxies is maximum in the Ks-band. 
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5.2. Constructing a galaxy catalog from the HST Frontier Parallel Fields 

The HST FF Survey consists of six large galaxy clusters selected for their strong lensing 

properties: Abell 2744, MACSJ0416.1-2403, MACS0717.5+3745, MACS1149.5+2223, Abell 

S1063, and Abell370. These six clusters were chosen to allow simultaneous observation of the 

cluster field and a blank parallel field with the HST WFC3/IR and ACS cameras. The FPF 

observations are centered approximately six arcminutes from the main cluster core, and the weak 

lensing signal for the FPFs have median magnification factors between 1.02 and 1.30 for 

background galaxies between 1 < 𝑧𝑧 < 9 (Lotz, et al., 2017). Each field has been imaged across 

seven HST filter wavelengths: BF435W (433nm), VF606W (592nm), IF814W (896nm) with the 

ACS/WFC, and YF105W (1055nm), JF125W (1249nm), JHF140W (1392nm), HF160w (1537nm) with 

the WFC3/IR camera. Each camera was given 70 HST orbits for a total of 140 HST orbits over 

the whole survey. 
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Figure 17 – This image illustrates the “footprints” of the Wide Field Camera 3 (WFC3) infrared 

detector, in red, and the visible-light Advanced Camera for Surveys (ACS), in blue. An 

instrument’s footprint is the area on the sky it can observe in one pointing. These adjacent 

observations are taken in tandem. In six months, the cameras swap places, with each observing 

the other’s previous location. 

From: https://frontierfields.org/2014/01/10/cluster-and-parallel-fields-two-for-the-price-of-one-2/ 
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Figure 18 – This diagram shows the light paths that originate with the galaxy cluster field and the 

neighboring parallel field. The light from the galaxy cluster field (red) is imaged with the 

Hubble’s Wide Field Camera 3 (WFC3) infrared detector, while the light from the parallel field 

(blue) is imaged with the visible-light Advanced Camera for Surveys (ACS). Hubble’s entire 

field of view is shown on the left side of the diagram. It includes the “footprints” of ACS (red) 

and WFC3 (blue), as well as those of the fine guidance sensors (FGSs), which are the three, 

white wedges on the outside, and everything in between them. 

 

From: https://frontierfields.org/2014/01/10/cluster-and-parallel-fields-two-for-the-price-of-one-2/ 

 

HST FPF 30 mas/pixel drizzled mosaics and weight images for each field and each color 

filter (Koekemoar, et al., 2014) were gathered from the Mikulski Archive for Space Telescopes 

(MAST) at STSCI. SExtractor was used to produce catalogs for each field image extracting 
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galaxy total flux, half-light radii and an estimation of the Sersic index. The six catalogs, one for 

each FPF, were ultimately combined into a single collection containing 6946 sources. 

The detection strategy we adopt to construct our catalog is similar to the SExtractor 

configuration described in (Leauthaud, et al., 2007) to detect faint sources in the HST 

ULTRAVISTA field. A list of SExtractor parameters used are provided in Table 3 and 

summarized below. Our data is filtered with a 5 pixel (0.15”) FWHM Gaussian filtering kernel 

prior to detection. Weight maps produced by MultiDrizzle (Koekemoar, et al., 2014) are used 

with SExtractor WEIGHT_IMAGE option set to WEIGHT_MAP. Effective half-light radii are 

obtained with the FLUX_RADIUS parameter and PHOT_FLUXRAC set to 0.5, and this is used 

in conjunction with KRON_RADIUS to obtain a rough estimate of the Sersic index of each 

galaxy by taking the ratio between the two radii estimates and cross referencing with Table 1 in 

(Graham & Driver, 2005), which tabulates Kron radii in units of effective half-light radii via the 

relation 

Here, 𝑥𝑥 = 𝑜𝑜𝑛𝑛 �
𝑅𝑅
𝑅𝑅𝑒𝑒
�
1/2

, the constant 𝑜𝑜𝑛𝑛 is defined in terms of the Sersic index n which describes 

the “shape” of the light profile, and γ is the incomplete gamma function.  If the ratio of the radii 

was less than or greater than 1.74, it was assigned a Sersic index of one or four, respectively. 

 

 

 

 

 

 𝑅𝑅𝐾𝐾𝑐𝑐𝑜𝑜𝑛𝑛(𝑥𝑥,𝑛𝑛) =
𝑅𝑅𝑒𝑒
𝑜𝑜𝑛𝑛

𝛾𝛾(3𝑛𝑛, 𝑥𝑥)
𝛾𝛾(2𝑛𝑛, 𝑥𝑥) [141] 
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PARAMETER VALUE 

DETECT_MINAREA 28 

DETECT_THRESH 1.0 

DEBLEND_NTHRESH 64 

DEBLEND_MINCONT 0.065 

CLEAN_PARAM 1.0 

BACK_SIZE 100 

BACK_FILTERSIZE 3 

BACKPHOTO_TYPE Local 

BACKPHOTO_THICK 200 

 

Table 3—SExtractor Configuration Parameters 
 

H-band data was used for the initial detection of objects and cross-referenced with 

photometry in the other HST filters. Objects with S/N < 5 were omitted in the construction of our 

catalog, and only galaxies for which SExtractor returned good data in all colors were kept. We 

also omitted any flux data with AB magnitude greater than 28. The detected sources in our 

catalogs were then used to construct Sersic galaxy light profiles (Sersic, 1963) using the total 

galaxy flux, effective half-light radius, and Sersic index estimated with SExtractor according to 

equation [97].  
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  F160W 

(AB Mag) 

F140 

(AB Mag) 

F125 

(AB Mag) 

F105 

(AB Mag) 

F814 

(AB Mag) 

F606 

(AB Mag) 

F435 

(AB Mag) 

Median 26.33 26.36 26.44 26.57 26.80 27.13 27.57 

Mean 25.81 25.87 25.96 26.11 26.39 26.81 27.32 

 

Table 4 — Average statistics of our total catalog containing 6946 galaxy sources constructed 

from combining the six individual FPF catalogs.  

 

5.3. Using SExtractor to measure galaxy ellipticity in the Frontier Parallel Fields 

To obtain an estimate of the reduced shear signal in each HST FPF, we need to measure the 

ellipticity of galaxy sources in each of the parallel fields. To do achieve this, we use the actual 

galaxy images this time instead of constructing a catalog of Sersic model galaxies as in previous 

sections. The same SExtractor detection strategy outlined in the previous section is used to locate 

and identify galaxy sources in the HST FPFs. We chose to keep only sources with S/N > 10 and 

AB magnitude greater than 28 for shape measurements. As outlined in Section 4.7, we utilize 

SExtractor’s ability to automatically calculate and output galaxy quadrupole moments according 

to equation [136] and compute complex ellipticity components defined by equation [68] for each 

galaxy source. For each of the parallel fields, the HST F160w H-band mosaics are used for 

galaxy shape measurements since the longer wavelengths are expected to have greater flux S/N 

and smaller ellipticity measurement variance for better weak lensing shear measurement (see the 

Results chapters for verification).  
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 Abell 2744 Abell 1063 Abell 370 MACS1149 MACS0717 MACS0416 

𝑵𝑵𝐞𝐞𝐟𝐟𝐟𝐟 1,286 2,424 1,307 1,909 1,493 1,010 

Table 5 – Effective number of galaxy sources in each HST FPF using the detection and filtering 

procedures outlined in Section 5.3. 

 

6. Results 

Here we present the results of our model calculations for the galaxy flux S/N, shape 

measurement error, and effective galaxy number density vs. wavelength. Sub chapters provide 

results for the ULTRAVISTA field and FPFs, respectively. We note that the ULTRAVISTA 

field sub chapters include a couple of additional sections for making the model galaxy source 

shapes intrinsically elliptical instead of circular and for plotting surface brightness vs. galaxy 

size. While useful, the results of these sections are nothing unexpected and thus excluded in the 

sub chapters for the FPF results. 

 

6.1. UltraVISTA field 

6.1.1. Galaxy Flux S/N vs. Wavelength  

The galaxy flux S/N was computed for two subsets of 1000 randomly selected galaxies in 

the Ks- and R-selected UltraVISTA data sets, respectively, via equation [104]. We will 

henceforth refer to these two smaller collections of galaxy data the Ks subset and R subset. 

Using the future space telescope missions Euclid and WFIRST as a reference, we performed 

calculations for telescope diameters of 1.2 meters and 2.4 meters. Two hundred of these galaxies 

are individually plotted with flux S/N vs. wavelength for the Ks catalog in Figure 21 and Figure 

45, and likewise, plots for the R catalog are displayed in Figure 23 and Figure 24. In these plots, 
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the median galaxy flux S/N is also plotted, calculated across the full 1000 galaxy subsets used in 

this calculation. 

 

 

Figure 19 – Log-Log plot of galaxy flux S/N vs. 

wavelength using a 1.2 meter diameter telescope 

for the Ks catalog. Individual data points are 

plotted for 200 of these galaxies. The bold black 

dots and line represent the median S/N values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median S/N values are shown in this plot to have 

their highest average value around the Ks-band. 

 

 

Figure 20 – Log-Log plot of galaxy flux S/N vs. 

wavelength using a 2.4 meter diameter telescope 

for the Ks catalog. Individual data points are 

plotted for 200 of these galaxies. The bold black 

dots and line represent the median S/N values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median S/N values are shown in this plot to have 

their highest average value around the Ks-band. 
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Figure 21 – Log-Log plot of galaxy flux S/N vs. 

wavelength using a 1.2 meter diameter telescope 

for the R catalog. Individual data points are plotted 

for 200 of these galaxies. The bold black dots and 

line represent the median S/N values at each 

wavelength band, which is calculated across the 

full 1000 galaxy subset used in the calculation. 

Median S/N values are shown in this plot to have 

their highest average value around the Ks-band. 

 

Figure 22 – Log-Log plot of galaxy flux S/N vs. 

wavelength using a 2.4 meter diameter telescope 

for the R catalog. Individual data points are plotted 

for 200 of these galaxies. The bold black dots and 

line represent the median S/N values at each 

wavelength band, which is calculated across the 

full 1000 galaxy subset used in the calculation. 

Median S/N values are shown in this plot to have 

their highest average value around the Ks-band. 

 

In all cases considered, we find the maximum of the median flux S/N lies near the Ks-

band. In both catalogs, the two times larger 2.4 meter diameter telescope results in S/N values 

which are on average about 2.2 times larger than S/N values obtained from a 1.2 meter diameter 

telescope. We note that by doubling the telescope diameter, a perfectly resolved galaxy 

theoretically results in two times larger S/N values, and point sources would produce four times 

larger S/N values. 

Histogram plots of the number of galaxies across each wavelength band whose S/N is 

maximum for the Ks subset are shown in Figure 25 and Figure 26 for 1.2 meter and 2.4 meter 
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telescopes, respectively. Similar histogram plots for the R subset are shown in Figure 27 and 

Figure 28. These histogram plots all show a large majority of galaxies have their maximum S/N 

values lying around the Ks-band and the peak around the Ks-band in these plots correlate to the 

peaks shown in Figure 21 through Figure 24. This trend of maximum S/N peaking around Ks-

band is demonstrated for both 1.2 meter and 2.4 meter diameter telescopes, and the peak around 

the Ks-band in the average S/N curves across wavelength is even more pronounced with the 

larger telescope.  

 

Figure 23 – Histogram plots of the band with the 

maximum S/N for the Ks selected galaxies using a 

1.2 meter diameter telescope. There is a strong 

peak around the Ks-band showing a large majority 

of galaxies have their peak S/N value near these 

wavelengths. 

 

Figure 24 – Histogram plots of the band with the 

maximum S/N for the Ks selected galaxies using a 

2.4 meter diameter telescope. There is a strong 

peak around the Ks-band showing a large majority 

of galaxies have their peak S/N value near these 

wavelengths. 
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Figure 25 – Histogram plots of the band with the 

maximum S/N for the R selected galaxies using a 

1.2 meter diameter telescope. There is a strong 

peak around the Ks-band showing a large majority 

of galaxies have their peak S/N value near these 

wavelengths. 

 

Figure 26 – Histogram plots of the band with the 

maximum S/N for the R selected galaxies using a 

2.4 meter diameter telescope. There is a strong 

peak around the Ks-band showing a large majority 

of galaxies have their peak S/N value near these 

wavelengths. 

 

6.1.2. Ellipticity measurement variance vs. Wavelength 

The ellipticity measurement variance via equation [115] was computed for the same 1000 

galaxy Ks and R subsets used Section 6.1.1 for telescope diameters of 1.2 meters and 2.4 meters. 

Plots of the calculated ellipticity measurement variance vs. wavelength for the Ks catalog set are 

shown in Figure 29 and Figure 30, and plots for the R catalog are shown in Figure 31 and Figure 32.  
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Figure 27 – Log-Log plot of the ellipticity 

measurement variance vs. wavelength for a 1.2 

meter diameter telescope for the Ks subset. 

Individual data points are plotted for 200 of these 

galaxies. The bold black dots and line represent the 

median ellipticity measurement variance values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median measurement error values are shown in this 

plot to have their highest average value around the 

Ks-band. 

 

Figure 28 – Log-Log plot of the ellipticity 

measurement variance vs. wavelength for a 2.4 

meter diameter telescope for the Ks subset. 

Individual data points are plotted for 200 of these 

galaxies. The bold black dots and line represent the 

median ellipticity measurement variance values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median measurement error values are shown in this 

plot to have their highest average value around the 

Ks-band. 
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Figure 29 – Log-Log plot of the ellipticity 

measurement variance vs. wavelength for a 1.2 

meter diameter telescope for the R subset. 

Individual data points are plotted for 200 of these 

galaxies. The bold black dots and line represent the 

median ellipticity measurement variance values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median measurement error values are shown in this 

plot to have their highest average value around the 

R band. 

 

Figure 30 – Log-Log plot of the ellipticity 

measurement variance vs. wavelength for a 2.4 

meter diameter telescope for the R subset. 

Individual data points are plotted for 200 of these 

galaxies. The bold black dots and line represent the 

median ellipticity measurement variance values at 

each wavelength band, which is calculated across 

the full 1000 galaxy subset used in the calculation. 

Median measurement error values are shown in this 

plot to have their highest average value around the 

R band. 

 

Both data sets show the median ellipticity measurement variance obtains a minimum 

value around the Ks-band. For the Ks (or R) subset, the larger 2.4 meter telescope diameter 

produces ellipticity measurement variance values generally smaller than the 1.2 meter diameter 

results by an average factor of 0.182 (0.126). In terms of S/N, this corresponds to a 1
√0.182

≈ 2.34 

(2.817) times improvement with a 2.4 meter telescope over a 1.2 meter telescope. 
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Histogram plots shown in Figure 33 and Figure 34 display the number of galaxies in each 

wavelength band from the 1000 galaxies plotted in the Ks subset whose ellipticity measurement 

variance is minimum. The corresponding plots from the R subset are displayed in Figure 35 and 

Figure 36. These plots again exhibit a clear preference for each galaxy to have minimum variance 

around the Ks-band for both the 1.2 meter and 2.4 meter diameter telescopes. The trend favoring 

the Ks-band is even more dramatic using the larger 2.4 meter diameter telescope.  

 

 

Figure 31 – Histogram plot of the number of 

galaxies in each wavelength band for the Ks subset 

whose ellipticity measurement variance is 

minimum using a 1.2 meter diameter telescope. 

There is a strong peak around the Ks-band showing 

a large majority of galaxies have their minimum 

value near these wavelengths. 

 

Figure 32 – Histogram plot of the number of 

galaxies in each wavelength band for the Ks subset 

whose ellipticity measurement variance is 

minimum using a 2.4 meter diameter telescope. 

There is a strong peak around the Ks-band showing 

a large majority of galaxies have their minimum 

value near these wavelengths. 
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Figure 33 – Histogram plot of the number of 

galaxies in each wavelength band for the R subset 

whose ellipticity measurement variance is 

minimum using a 1.2 meter diameter telescope. 

There is a strong peak around the Ks-band showing 

a large majority of galaxies have their minimum 

value near these wavelengths. 

 

Figure 34 – Histogram plot of the number of 

galaxies in each wavelength band for the R subset 

whose ellipticity measurement variance is 

minimum using a 2.4 meter diameter telescope. 

There is a strong peak around the Ks-band showing 

a large majority of galaxies have their minimum 

value near these wavelengths. 

 

6.1.3. Flux S/N and Ellipticity measurement variance with Gaussian Distributions 

For comparison, the same calculations and plots for the ellipticity measurement variance 

as in Section 6.1.2 were also computed using the analytical Gaussian approximation in equation 

[128]. Relative to the non-Gaussian calculations, the average Gaussian ellipticity measurement 

variance values are generally slightly smaller, and the Gaussian plots mirror the trend of lower 

variance values over larger telescope diameters and minimum average variance around the Ks-

band. Figure 37 and Figure 38 show the Gaussian ellipticity measurement variance plots for the Ks 

catalog. Because the Gaussian calculations are significantly faster, the average ellipticity 

measurement variance shown in these plots has been calculated across the entire set of 74,950 

galaxies in the Ks catalog (instead of only a subset of 1000 as in Section 6.1.2), but only a couple 
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of hundred of individual galaxies are plotted in the background so as not to compromise the 

readability of the plot. 

 

Figure 35 – Log-Log plot of ellipticity 

measurement variance using Gaussian functions vs. 

wavelength for a 1.2 meter diameter telescope for a 

sample of galaxies in the Ks catalog. The bold 

black dots and line represent the median values at 

each wavelength band calculated over the full 

catalog. Median variance values are shown to have 

their lowest average value around the Ks-band.  

 

Figure 36 – Log-Log plot of ellipticity 

measurement variance using Gaussian functions vs. 

wavelength for a 2.4 meter diameter telescope for a 

sample of galaxies in the Ks catalog. The bold 

black dots and line represent the median values at 

each wavelength band calculated over the full 

catalog. Median variance values are shown to have 

their lowest average value around the Ks-band.  

  

6.1.4. Effective Galaxy Number  

As discussed in Section 4.6, we have introduced in equation [133] an effective galaxy 

number per square degree, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒. In calculating 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒, the Gaussian equations in Section 0 were 

used for the flux S/N and ellipticity measurement variance. The effective galaxy number was 

then computed at various wavelength bands across the full set of galaxies in our Ks and R 

catalogs and for integration times ranging from one to 10,000 seconds in powers of 10. Both a 

1.2 meter and 2.4 meter diameter telescope were considered and plots of the results of the Ks 
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catalog are displayed in Figure 39 and Figure 40, and the R catalog results are displayed in 

Figure 41 and Figure 42.   

 

Figure 37 – Log-log plot of the effective galaxy number per square degree vs. integration time 

calculated from equation [133] with a 1.2 meter telescope diameter using the Ks catalog. 

Gaussian equations derived in Section 0 were used for the flux S/N and ellipticity measurement 

variance in these calculations. 
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Figure 38 – Log-log plot of the effective galaxy number per square degree vs. integration time 

calculated from equation [133] with a 2.4 meter telescope diameter using the Ks catalog. 

Gaussian equations derived in Section 0 were used for the flux S/N and ellipticity measurement 

variance in these calculations. 
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Figure 39 – Log-log plot of the effective galaxy number per square degree vs. integration time 

calculated from equation [133] with a 1.2 meter telescope diameter using the R catalog. Gaussian 

equations derived in Section 0 were used for the flux S/N and ellipticity measurement variance in 

these calculations. 
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Figure 40 – Log-log plot of the effective galaxy number per square degree vs. integration time 

calculated from equation [133] with a 2.4 meter telescope diameter using the R catalog. Gaussian 

equations derived in Section 0 were used for the flux S/N and ellipticity measurement variance in 

these calculations. 

 

 Across all calculations of the effective galaxy number counts are highest in the Ks-band. 

At longer integration times, performance across wavelength bands begins to even out, at a depth 

where the incompleteness of the input catalogs becomes apparent in Figure 15. This saturation of 

the counts occurs at shorter integration times with the larger 2.4 meter telescope, as it is easier to 

collect more counts with the larger diameter and PSF smearing is less of an issue. Between the 

Ks catalog and the R catalog, the 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 plots are qualitatively similar. Nevertheless, bluer bands 

obtain a higher 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 in the R catalog, both in absolute value compared with Ks catalog, and 

relative to the longer wavelength band counts in the R catalog. In general, counts across all 

wavelength bands in the R catalog are larger than the corresponding counts from the Ks catalog, 
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but again, the two calculations are ultimately qualitatively similar, with the Ks counts in either 

catalog consistently being the largest across all telescope sizes and integration times considered.  

6.1.5. Intrinsic Galaxy Ellipticity 

 In this paper, we have thus far assumed radially symmetric galaxy light profiles given by 

Sersic’s equation, but we can also demonstrate here that the effect of an overall (average) 

intrinsic ellipticity among source galaxies produces no qualitative difference in the shear 

measurement results. By applying a linear transformation on the space coordinates in the Sersic 

profile equation, prior to lensing distortions, we transform the all circular galaxy light profiles 

into elliptical profiles. We impose an intrinsic 2:1 major axis ratio while preserving the area of 

the source so the peak surface brightness stays the same via the transformation 

 (𝑥𝑥,𝑦𝑦) → (𝑥𝑥′,𝑦𝑦′) = �√2𝑥𝑥,
𝑦𝑦
√2
� 

[142

] 

As before, a 10% stretch is then applied according to equation [107] to simulate gravitational 

shear, the Airy disk PSF is convolved with the now elliptical galaxy light profiles, and the 

ellipticity measurement variance is calculated via equation [115].  

 Figure 43 displays the ellipticity measurement variance vs. wavelength for the 1000 

selected galaxies from the Ks subset used in Section 6.1.1, with non-trivial intrinsic ellipticity 

imposed on all galaxies, and we use a 1.2 meter telescope for this plot. Quantitatively, compared 

with the intrinsically circular results, the average ellipticity measurement variance values are 

very slightly increased on average for the elliptical light profiles across most wavelengths (these 

are difficult to perceive visually on these plots), but the behavior of the ellipticity measurement 

variance vs. wavelength is not significantly affected, and the average minimum ellipticity 

measurement variance is still located around the Ks-band.  
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Figure 41 – Log-Log plot of ellipticity measurement variance vs. wavelength for a 1.2 meter 

diameter telescope for the Ks subset with a 1.2 meter diameter telescope with intrinisc 2:1 

elliptical axis ratio imposed. The bold black dots and line represent the median values at each 

wavelength band. Median variance values are shown to have their lowest average value around 

the Ks-band. Comparing this with Figure 29, the two plots are nearly identical. 

 

We have also tested the effects of intrinsic ellipticity on a 2.4 meter telescope and on the R 

subset applying the same procedure as outlined earlier in this section, and results are identical: 

ellipticity measurement variance values show a very slight increase on average after imposing 

2:1 axis ratios on the intrinsic galaxy light profiles with negligible change to the average 

ellipticity measurement variance vs. wavelength curves displaying minimum variance around the 

Ks-band for both telescope sizes. We conclude the intrinsic ellipticity of galaxies does not 

appreciably affect the behavior of the ellipticity measurement variance across wavelengths. 
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6.1.6. Dependence on Effective Radius 

Our results across all data sets consistently favor the Ks-band for maximum flux S/N. As 

might be expected, the total Ks-band flux generally increases with galaxy radius. Figure 44 

displays total Ks-band flux vs. effective radii for the Ks subset used in Section 6.1.1. The plot 

demonstrates a general trend of increasing Ks-band surface brightness vs. galaxy size. 

 

Figure 42 – Log-Log plot of total K-flux vs. effective half-light radius 𝜃𝜃𝑒𝑒 for 1000 galaxies in the 

Ks subset. Red circles indicate spiral galaxies with Sersic index 𝑛𝑛 = 1, and blue squares indicate 

elliptical galaxies with Sersic index 𝑛𝑛 = 4. The best fit line is of the form 𝐹𝐹 ∝ 𝜃𝜃𝑒𝑒2, under the 

assumption the original 𝐹𝐹𝑖𝑖 are independently normally distributed with mean 𝐹𝐹�𝑖𝑖 and common 

standard deviation.  

 

6.2. HST Frontier Parallel Fields 

6.2.1. Weak Lensing Measurement Performance Across Wavelength 

The galaxy flux S/N and shape measurement uncertainty were computed via equations [122] 

and [128], respectively, for an integration time of 10,000 seconds and plotted vs. wavelength. 
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For visual clarity, only five hundred galaxies are individually plotted in Figure 45 and Figure 46, 

but the median galaxy flux S/N and shape measurement uncertainty are also shown, calculated 

across the full 6946 galaxies in our source catalog. These plots show the highest galaxy flux S/N 

and lowest shape measurement uncertainty are both found around the longest available 

wavelength near the H-band. 

  

Figure 43 – Log-Log plot of galaxy flux S/N vs. wavelength. Individual data points are 

plotted for 500 randomly selected galaxies in our combined catalog. Bold black dots and line 

represent the median S/N values at each wavelength band, which is calculated across the full 

6946 galaxy catalog. Median S/N values have their highest average value around the H-band. 
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Figure 44 – Log-Log plot of galaxy shape mesaurement uncertainty vs. wavelength. 

Individual data points are plotted for the same 500 radomly selected galaxies as in Figure 45. 

Bold black dots and line represent the median shape measurement uncertainty values at each 

wavelength band, which is calculated across the full 6946 galaxy catalog. Median shape 

measuremnt uncertainty values have their lowest average value around the H-band. 

 

The effective galaxy number was also computed at various wavelength bands across the full 

set of galaxies in the combined FPF catalog for a range of integration times varying from one to 

106 seconds in powers of ten using equation [133]. Figure 47 displays a plot of the effective 

number density vs. integration for the various HST color filters.  
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Figure 45 – Log-log plot of the effective galaxy number per square degree vs. integration time 

calculated from equation [133] for our combined catalog consisting of all six FPFs. The solid 

vertical line marks the equivalent integration time where the flux uncertainty in our model 

matches the average uncertainty obtained calculated from the weight maps of the FPF mosaics; 

the vertically dashed line to the right represents the approximate F160W filter integration time of 

the FF survey; and the horizontally dashed line to the left represents the integration time of future 

space telescope mission WFIRST HLS. 

 

The effective galaxy number counts are shown to be highest around the longest available 

wavelength in the F160W H-band across all integration times. At longer integration times, the 

performance across wavelengths begins to even out at a depth where the incompleteness of the 

input catalogs becomes apparent. Since the measurement of weak lensing signal is statistical in 

nature, these calculations suggest better performance in the longer wavelengths where more 

galaxy counts can be obtained in shorter integration times. The solid vertical line in Figure 47 
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marking the equivalent integration time in our sky dominated model where the calculated flux 

uncertainty matches the median measured uncertainty in the weight maps of the FPFs mosaics, 

suggests the instrument sensitivity assumptions in our model of a diffraction-limited 

background-limited space telescope are optimistic, as is to be expected.  

6.2.2. Weak Lensing Measurement Performance Across Wavelength 

Using the galaxy shape quadrupole moments output by SExtractor, complex ellipticities 

were computed as per equation [68] for galaxy sources in the HST FPFs. Assuming a symmetric 

Gaussian PSF, equations [87] – [90] were used to extract approximate source ellipticities from 

each detected galaxy. Equations [137], [138], and [139] were then used to compute a weighted 

average ellipticity for each field, and we this take this average ellipticity value to be an estimate 

of the reduced shear for each FPF, which we calibrate with the reported tangential shear value in 

Abell 2744 FPF measured by (Medezinsk, et al., 2016). 

Table 6 summarizes the reduced shear magnitude and angle for each of the FPFs and an 

estimated encircled mass estimate at the location of the parallel fields using equation [85]. For 

this calculation, (Castellano, et al., 2016) was used to estimate the median redshift of sources in 

the parallel fields of Abell 2744 and MACS 0416. We calculate a range of encircled mass 

estimates corresponding the range of median redshifts we get for these two fields. The angles in 

Table 6 are given relative to the pointing direction of the corresponding primary field. Figure 48 

through Figure 53 graphically summarizes the reduced shear angle at each of the HST FPFs and 

the relative pointing direction of the primary fields. Figure 54 displays a polar plot of individual 

galaxy shear vectors in the Abell 2744 parallel field using the shear magnitude as the polar radius 

and twice the angle as the polar angle. The distribution among galaxies appears random, but the 

average angle is close to tangent relative to the primary field pointing. 
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We expect the gravitational distortion at the location of the FPFs to be dominated the 

massive galaxy clusters of the primary fields, and hence, the direction of the shear in each 

parallel field should be tangent to radial pointing direction to each of corresponding primary 

fields. The mean angle relative to the primary pointing across the six fields is 85.6o with a 

standard deviation of 11.2o. In any given parallel field, the standard deviation of the average 

angle is around 50o – 60o, a rather large spread, but the random distribution of intrinsic 

orientations is expected to vanish in the average, leaving only the relative angle pointing of the 

reduced shear vector, which we measure to be fairly close to 90o. In the Abell 2744 parallel field, 

(Medezinsk, et al., 2016) measured a tangential shear value at a the approximate location of the 

parallel field, a distance 6 arcminutes away from the primary field, of about 0.1. The 

corresponding tangential shear value that we would naively compute from our average ellipticity 

measurements is about 0.041. We thus apply a calibration factor of 𝛼𝛼 = 2.44619 to match our 

Abell 2744 measurement with (Medezinsk, et al., 2016), and we use this calibration factor across 

all fields to estimate an encircled mass via equation [85] and compare with the primary cluster 

masses reported in (Lotz, et al., 2017). Table 6 summarizes all of these results. 

It should be noted that (Medezinsk, et al., 2016) uses a more complicated weight function 

to define the galaxy shape quadrupole moments and a more accurate and sophisticated method 

for deconvolving the PSF to obtain accurate measurements of galaxy source shapes. Also, 

equation [85] assumes a spherically symmetric mass distribution for the gravitational lens, but of 

course, the real primary FF are not perfectly symmetric but each possess their own structure and 

mass distributions.  
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 𝜽𝜽 
 < 𝒈𝒈𝒕𝒕 > < 𝒈𝒈𝒕𝒕 >𝒄𝒄𝒄𝒄𝒄𝒄 𝒛𝒛𝑫𝑫 𝒛𝒛𝑺𝑺 

𝑴𝑴𝒆𝒆𝒆𝒆𝒄𝒄𝒆𝒆𝒆𝒆𝒄𝒄𝒄𝒄𝒆𝒆𝒆𝒆 
(𝑴𝑴𝒔𝒔𝒔𝒔𝒆𝒆 × 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏) 

Reported  
𝑴𝑴𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒕𝒕𝒆𝒆𝒆𝒆 

(𝑴𝑴𝒔𝒔𝒔𝒔𝒆𝒆 × 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏) 

Abell 2744 
82.2o 0.041 0.1 0.308 1.7 – 2.1 2.01 − 2.00 1.8 

Abell 1063 
82.8 o 0.025 0.062 0.348 1.7 – 2.1 1.46 − 1.40 1.4 

Abell 370 
92.8 o 0.0147 0.036 0.375 1.7 – 2.1 0.916 − 0.872 1 

MACS1149 
83.1 o 0.0154 0.038 0.543 1.7 – 2.1 1.44 − 1.33 2.5 

MACS0717 
70 o 0.031 0.076 0.545 1.7 – 2.1 2.90 − 2.67 2 − 3 

MACS0416 
103.1 o 0.019 0.048 0.397 1.7 – 2.1 1.30 − 1.23 1.2 

 

Table 6 – The columns from left to right represent: 1) the FF cluster name; 2) the relative angle 

(in degrees) with respect to the primary field pointings; 3) the measured tangential shear as 

defined in Chapter 3.5; 4) calibrated tangential shear values so that tangential shear in the Abell 

2744 parallel field matches the value reported in (Medezinsk, et al., 2016); 5) redshift of the 

primary FF cluster; 6) median redshift of the source galaxies in the parallel fields of Abell 2744 

and MACS 0416, respectively, as measured in (Castellano, et al., 2016); 7) our calculated 

encircled mass estimate; and 8) the reported mass of the primary cluster in the FF as in (Lotz, et 

al., 2017). In the ideal case, the angles should be 90o, perpendicular to the primary field pointing. 

A multiplicative calibration factor of 2.44619 has been applied to the reduced shear values of all 

fields, chosen so that the Abell 2744 values match those in (Medezinsk, et al., 2016). In the mass 

estimate, the following cosmological parameters were used: 𝛺𝛺𝑒𝑒 = 0.301, 𝛺𝛺𝑐𝑐 = 2.47 ∗ 10−5,

𝛺𝛺𝛬𝛬 = 1 − 𝛺𝛺𝑒𝑒, 𝛺𝛺𝑘𝑘 = 0, 𝐻𝐻 = 67.74. The reported mass values in the far right column and the 

lens redshift of the primary fields 𝑧𝑧𝐷𝐷 in the fifth column form the left are referenced from (Lotz, 

et al., 2017). 
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Figure 46 – The relative pointing directions of the primary Abell 2477 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 82 degrees.  
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Figure 47 – The relative pointing directions of the primary Abell 1063 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 83 degrees. 
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Figure 48 – The relative pointing directions of the primary Abell 370 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 93 degrees. 
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Figure 49 – The relative pointing directions of the primary MACS 1149 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 83 degrees. 
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Figure 50 – The relative pointing directions of the primary MACS 0717 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 70 degrees. 
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Figure 51 – The relative pointing directions of the primary MACS 0416 field w.r.t. the parallel 

field. The blue bi-vector represents the average measured shear direction in the parallel field and 

the green arrow points to the center of the primary field. The relative angle between the two was 

measured to be about 103 degrees.  

 

 

 



110 
 

 

Figure 52 – Polar plot of individual galaxy ellipticity vectors in the Abell 2744 parallel field 

using the ellipticity magnitude as the polar radius and twice the angle as the polar angle. The 

distribution among galaxies appears random, but the average angle is close to tangent relative to 

the primary field. 

 

7. Conclusion 

Our results suggest that weak lensing shear measurement performance is improved at 

longer wavelengths where flux SNR and galaxy number density are largest and the shape 

measurement uncertainty is smallest. This conclusion is consistent across each of the galaxy 

catalogs considered.  

For the ULTRAVISTA field catalogs and results, the lower zodiacal background at 2 −

4 μm and the galaxy flux peaking in the Ks-band combine to make the optimum band for 

observing shear in our sample of galaxies to be near the Ks-band around 2.2 μm, and our 

numerical calculations confirm this result. For the 1.2 meter and 2.4 meter diameters we 
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considered, and across both the R selected and Ks selected sets of galaxy data, the J band at 

1.25 𝜇𝜇𝑒𝑒 gives ellipticity measurement variance values on average 1.5 to 2.5 times higher than at 

the Ks-band. Relative to the r+ band at 0.66 𝜇𝜇𝑒𝑒, our calculations show the ellipticity 

measurement variance at the Ks-band with a 1.2 meter telescope to be around four times smaller 

in the R catalog and about 13 times smaller in the Ks catalog. For a 2.4 meter telescope, the 

ellipticity measurement variance at the r+ band relative to the Ks-band is around 6.5 times 

smaller in the R catalog and about 20 times smaller in the Ks catalog.  

Our plots of the effective number of galaxies with measurable shapes per square degree 

in Section 6.1.4 further validate wavelengths near the Ks-band as being optimal for weak lensing 

measurements. For both the Ks and R selected UltraVISTA catalogs, our results show that the 

highest number of effective counts generally occur around the Ks-band across all integration 

times and both telescope sizes considered. At the largest of integration times, counts for both 

telescopes in our plots saturate, implying the input galaxy catalogs used in our calculation are 

becoming incomplete. Thus our calculations do not fully include the additional weak lensing 

performance coming from fainter background galaxies that benefit from the longest integration 

times. As the original ULTRAVISTA survey had a depth of one HST orbit per ACS field, this 

incompleteness is expected. 

In the HST FF survey considered in this paper, the HST F160W H-band filter provides 

the longest available wavelength in our galaxy data, leaving us with a smaller wavelength range 

than the ULTRAVISTA field catalogs. Additionally, while the ULTRAVISTA survey covered a 

larger sky area compared to the FF survey, the FFs are considerably deeper and have been 

observed by the HST over a longer total integration time. Despite these differences, we find the 

same type of improvements at longer wavelengths. 
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We note that while Figure 47 shows increasing effective galaxy number over increasing 

telescope integration time, practically speaking it is preferable for weak lensing measurements to 

prioritize a wider area survey rather than a deeper one. Not only is a faster survey cheaper and 

easier to schedule, but the effective galaxy number scales linearly with solid angle, whereas an 

approximate log-log slope of Figure 47 up to 103 seconds suggests slightly less than 1/3 power 

law  scaling (0.30) of the effective number counts vs. integration time in the H-band. So, for 

example, while an eight times longer survey could yield a roughly two times larger density 

count, it would be considerably easier to simply survey a twice larger surface area for the same 

advantage. 

Future space telescope project WFIRST (Spergel, et al., 2015) is planned to launch with a 

2.4 meter telescope like the HST, but the wide field camera of WFIRST will have a FoV 200 

times larger than HST’s powerful WFC3 IR camera. The WFIRST high-latitude survey (HLS) is 

a proposed wide-area weak lensing survey which will image 2227 square degrees of sky in 4 

NIR bands spanning the range of 0.92 – 2.00 microns. The survey will have an exposure time of 

5 × 174 seconds per filter, and WFIRST is expected to yield an effective galaxy number density 

of 45 per square arcminute in the HLS, or potentially 200 – 300 per arcminute in longer, targeted 

observations (Spergel, et al., 2015). In contrast, the FF survey data used in this paper was 

observed over 70 HST orbits per camera, consisting of ~10-40 HST orbits per filter, with a 

typical exposure time during an orbit of ~2,200 seconds, which is ~25 – 100 times longer per 

filter than the HLS. However, the entire FF survey was viewed across six FoVs of the 

comparatively smaller HST camera area. In terms of the weak lensing measurement performance 

as studied here, the smaller exposure time of the HLS versus the FF survey should be 

compensated by the much larger observation area of the WFIRST HLS.  
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We can attempt a crude comparison of our model’s performance in this paper with the 

future WFIRST HLS. Scaling the FF exposure time by the HLS exposure time and multiplying 

by the equivalent integration time in our model where the calculated flux uncertainty matches the 

real telescope data of the FPF weight maps yields an effective time of 270 seconds. This 

effective time of 270 seconds is about one third of the real HLS exposure time and correlates in 

Figure 47 to an effective galaxy number density of roughly 80 per square arcminute. This is 

higher than the HLS’s reported count of 45 per square arcminute, but again, we understand that 

our model is optimistic and performs about three times better than the real HST FF survey 

according to Figure 47. This straightforward comparison is further complicated by the fact that 

HLS’s reported density count of 45 galaxies per square arcminute is presumably obtained by 

taking into account the measurement performance of all available wavelength bands together to 

increases overall S/N, while here we are only using our model to investigate performance in 

individual bands; e.g., the H-band. This gives the reported HLS performance an advantage 

versus the numbers we have quoted here in this paper from our model, but ultimately our simple 

model of a diffraction-limited background-limited space telescope still comes out overly 

optimistic relative to the impressive performance of the WFIRST HLS.  

For some final thoughts, we emphasize that the objective of this project is not to directly 

compare the performance of specific space telescopes, but rather to simply track the weak 

lensing measurement behavior across wavelength bands. While our model is simplistic, we 

believe it is sophisticated enough to provide some insight towards this objective. Nevertheless, 

there are some relevant features that our model admittedly neglects, and including features these 

in later works could lead to further improvements and refinements of the results therein.  
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For one, the variation of galaxy shape noise as a function of wavelength is currently 

assumed to be constant in this model. Lifting this restriction would be a good test to see if our 

results still hold. Our model also largely ignores galaxy redshift information. Higher redshift 

galaxies are both redder and carry more lensing signal. It could be useful to account for the 

relationship between the redshift distributions of galaxies in different bands and the amount of 

shear signal they carry. Additionally, galaxy populations with a well-measured number density 

as a function of redshift are more useful for mapping cosmic shear than those with poorly 

measured 𝑛𝑛(𝑧𝑧). It would be productive to investigate the relationship between the redshift 

measurement uncertainty and the wavelength of observation. While this current work focusses 

on finding the highest galaxy flux S/N and lowest shape measurement uncertainty as functions of 

wavelength for weak lensing measurement, this does not necessarily translate to which galaxies 

are most useful for weak lensing for the reasons stated above. Improving our model to account 

for this in the future could proceed by adding redshift information to the simulated catalogs, 

before applying a redshift-dependent shear with a given power spectrum. From these catalogs, it 

would then be possible to measure the ability of each sample to recover the input shear signal. 

In an attempt to measure an approximate shear signal in the HST FPFs using SExtractor’s 

equipped quadrupole moment definitions and under the assumption of a purely symmetric 

Gaussian PSF, we seem to have been able to pick up the tangent direction of the shear vectors in 

each of the fields but significantly under sampled the shear magnitudes. Our average shear 

angles in the parallel fields are tangent in all six parallel fields relative to the primary field 

pointing directions, as would be expected of gravitational shear.  

A more robust weighing scheme in the quadrupole moment definitions could increase the 

accuracy of the shape measurements, providing better shear estimates and better mass estimates. 
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Most weak lensing groups use more sophisticated quadrupole moment definitions, with the 

understanding that real-life telescope measurements do strictly follow the weak lensing theory 

outlined in Chapter 3. It is possible that our 𝐼𝐼𝑡𝑡ℎ cutoff too small to pick up good galaxy shapes, 

but have attempted to correct for this by calibrating our shear measurements to the values 

reported in (Medezinsk, et al., 2016). We have also not individually inspected each galaxy source 

for accuracy. Neighboring images that SExtractor might count as a single source could lead to 

awkward shapes and drastically different measurement outputs. 

To improve our shear estimates, a more accurate PSF would produce more realistic 

source ellipticities. We have not accounted for anisotropy or instability of PSF, and we have 

assumed that the PSF is uniform across CCD frame. As is always the case in weak lensing 

measurements, higher number density could lead to more accurate statistics and better shear 

estimates. The FFs are sufficiently deep, but relatively small. We have also assumed that the 

theoretical equations of weak lensing theory hold and can be used exactly as derived in Chapter 

3. This is not quite the case. We are ignoring complications that incur from pixelization on the 

CCD field and the complications introduced by realistic PSFs of real telescopes. Instead, we 

have simply assumed that deconvolution of isotropic PSF according to equations [87] – [90] is 

reasonable, while the real PSF is not purely isotropic, or symmetric, or time independent. 

Using our estimated shear values, our encircled mass estimates are of the right order of 

magnitude, and generally larger than the reported cluster masses. This trend is expected given 

that our encircled mass estimates are by definition summing over a larger area than just the main 

galaxy clusters whose masses are referenced in Table 6. However, two of the parallel fields, 

Abell 370 and MACS1149 have the smallest measured shear values and the corresponding 

encircled mass estimates are smaller than the reported cluster masses, the latter field having the 
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largest discrepancy of any of the fields. The method we use to calculated the encircled mass 

estimates assumes a circularly symmetric mass distribution for the lensing galaxy clusters in the 

primary FFs. The real clusters, however, have more complicated extended structure, which could 

be part of why the encircled mass estimates we calculate for these two fields under this 

assumption are not coming out equal or larger than the primary cluster masses as naively 

expected. 

Nevertheless, despite our crude estimates of the reduced shear and encircled mass in the 

six FPFs, shear measurements in NIR bands are completely reasonable to perform, and based on 

the results of our current work we can conclude that weak lensing measurement performance 

benefits from observations at longer wavelengths up to about the K-band, unless limited by 

thermal background from the telescope or interplanetary dust reduces the sensitivity. Using a 

colder mirror allowing longer wavelengths bands beyond the H-band in future space telescopes 

could, therefore, lead to further performance improvements and benefits for weak lensing 

science. 
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This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by 

the Jet Propulsion Laboratory, California Institute of Technology, under contract with the 

National Aeronautics and Space Administration. 

 

This study is based on a Ks-selected (and R-selected) catalog of the ULTRAVISTA/UltraVISTA 

field from Muzzin et al. (2013).  The catalog contains PSF-matched photometry in 30 

photometric bands covering the wavelength range 0.15 micron – 24 micron and includes the 

available GALEX (Martin et al. 2005), CFHT/Subaru (Capak et al. 2007), UltraVISTA 

(McCracken et al. 2012), S-ULTRAVISTA (Sanders et al. 2007), and zULTRAVISTA (Lilly et 

al. 2009) datasets. 
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