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ABSTRACT OF THE DISSERTATION 

 

A Multilayered and Clinically-Informed Integration of the Transcriptome,  

Phenome, and Radiome in Multifactorial Disorder Assessment 

 

by 

 

Amal Katrib 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2018 

Professor Yi Xing, Chair 

 

 

Researchers continue to struggle in deciphering the underlying molecular machinery of complex, 

multifactorial, and comorbid medical disorders. Integrating multiple layers of data –from genomic 

to exposomic – and evaluating their combinatorial effect on the phenome can mitigate limitations 

of simple differential analyses and ultimately help uncover causal factors. 

 

In my dissertation work, I specifically focus on the integration of transcriptomic data with 

other data types that have a high clinical translatability such as phenomic and radiomic 

characteristics. I apply a multi-layered transcriptome-phenome-radiome integrative framework to 

two use case scenarios to demonstrate its benefits and drawbacks.  

 

For use case scenario 1, I perform a multi-level analysis of RNA sequencing collected 

from in-house human placental decidual samples of various modes of parturition in late-stage 

pregnancy. I highlight differences in gene expression, co-expression, and alternative splicing and 
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identify tissue- and labor-specific enrichment. I then incorporate dense prognostic and maternal 

and fetal phenomic information to derive genes and biological processes associated with 

premature and ceased labor. I demonstrate how an integrative framework successfully allows us 

to extract biologically relevant information that would have otherwise been missed through 

hypothesis-driven or monolayer differential analysis. For use case scenario. 2, I generate isoform-

level information from RNA sequencing collected from The Cancer Genome Atlas (TCGA) GBM 

tumors. Using additional layers of the transcriptome, I filter for tumor-enriched genes to subtract 

microenvironment effects. I then incorporate 2 forms of quantitative morphologic radiomic features 

to extract exon inclusion-radiophenotype correlates. Through functional annotation, I highlight the 

underlying biological differences between tumor phenotypes. I demonstrate how an integrative 

framework provides exploratory insights into the biology of a GBM tumor yet fails to reveal 

significant associations due to data quality and analytical limitations.  

 

The potential applications of a multi-layered and clinically-informed integration of the 

transcriptome, phenome, and radiome extend far beyond the immediate rejoice of joining systems 

biology efforts in the integration of “big data”. Through a synergistic coupling of functional 

molecular indexes, phenotypic characterization, and dense prognostic traits, it enables an in-

depth and comprehensive investigation of multifactorial disorders. In the process, it uses a 

converged data- and hypothesis-mediated approach to balance the benefit of a comprehensive 

analysis approach and an elaborate mechanistic depiction of etiology. By incorporating individual-

level information (from phenomic and radiomic traits) into population-level findings (from 

transcriptomic analyses), it poses as a promising contributor to the personalized and precision 

medicine initiatives of modern medicine. 
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CHAPTER I 
1  T r anscr ip tomic  D ata  In tegr a t ion  in   

Mul t i -Omic  S tud ies 
 

1.1 THE RICH AND EXPANDING LANDSCAPE OF THE TRANSCRIPTOME 

1.1.1 Why study the transcriptome? 

Given its central role in numerous aspects of cellular functioning, the transcriptome has become 

a major candidate for in-depth molecular investigations of disease states, readily competing with 

other “omic” tools (Figure 1.1) Profiling of the transcriptome, which encompasses the entire set of 

assorted ribonucleic acid (RNA) molecules, is extensively used by researchers to evaluate 

pathogenic disruptions in normal cellular functions. As encapsulated in the central dogma of 

molecular biology, the transcriptome lies as an intermediate between the genome (consisting of 

the biological units of inheritance) and the proteome (consisting of the final set of functional 

products). It offers a snapshot of information transcribed by the genome, within a specific cell type 

Figure 1.1 | Omic analysis in phenotype assessment 
 
Flow of omic data within the central dogma of biology and in the context of phenome characterization. Abbreviations 
include: SNP – single nucleotide polymorphism; CNV – copy number variation; LOH – loss of heterozygosity; mRNA 

– messenger RNA; miRNA – microRNA; and ncRNA – non-coding RNA. 
 



 2 
 

and tissue, during a precise stage of development, and under specific physiologic conditions. 

While the genome only provides a static characterization of genetic variations that define a 

phenotype, the transcriptome reflects dynamically-evolving gene activity. Quantification of 

protein-coding (1-4% messenger) and non-coding (>95% - ribosomal, small nuclear, micro-, long 

non-coding, small nuclear, small interfering, etc). RNA expression allows us to evaluate the 

influence of environmental factors and varying physiological demands on genetic information as 

it relates to the manifestation of a phenotype (Manzoni et al, 2018). Transcriptomic analysis also 

informs gene structure and function as well as gene expression plasticity and regulation.  By 

reflecting cellular state at the transcription level and exposing cellular dynamics, it therefore offers 

a unique look into the inner workings of a cell –one that can be missed using other omic analyses. 

With each newly characterized class of RNA molecules, the dominant agency of the transcriptome 

continues to be reinforced, necessitating its incorporation in biomedical investigations.  

 

From a technology perspective, transcriptomics is impermeable to the limitations of novel 

proteomic-based approaches. This includes bias towards highly abundant proteins, an input with 

a large domain size and a dynamic nature, and coverage that depends on sample preparation 

and separation methods (Dove, 1999; Smaczniak et al, 2012). And albeit its inability to relay 

cellular biochemical activity, it surpasses metabolomics in its simplicity, maturity, and sensitivity, 

and reproducibility. The lead of transcriptomics is further enhanced by the advent of sequencing 

technologies that have facilitated rapid, high-throughput, and robust investigations of the 

transcriptome at the single nucleotide resolution (Anderson & Schrijver, 2010).  

 

Transcriptomics holds a great potential for prognostic and diagnostic biomarker research, 

patient stratification, and therapeutic drug application. Nevertheless, its translatability to the clinic 

is limited by the need for invasive and risky extractions of less readily available tissue biopsies as 

well as the slow turnaround times and the high costs of operation (Damodaran et al, 2015). “Liquid 

biopsies” have gained tremendous traction in the last few years, promising to detect diseases 
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during the early stages and with minimal invasiveness. However, due to their novelty, low 

detection rates, and unclear biology, There is also the concern of limited harmonization across 

platforms and standardized benchmarking to ensure accuracy and reproducibility (Damodaran et 

al, 2015; Van Keuren-Jensen et al, 2014). Finally, inherent to transcriptomic analysis, there is a 

lack of established metrics that can minimize artifacts and false discoveries and rigorous protocols 

that can correct for biases and low-quality and -abundance specimens (Damodaran et al, 2015; 

Van Keuren-Jensen et al, 2014). 

1.1.2 Eukaryotic isoform complexity and diversity 

The evaluation of messenger RNA (mRNA) gene expression pattern differences between normal 

and pathogenic (or abnormal) states is commonly pursued to identify genes involved in disease 

etiology. In eukaryotes, protein-coding genes are transcribed as a nascent pre-mRNA and then 

further processed through 5’ 7-methyl guanosine capping, 3’ polyadenylation, and intron splicing 

Figure 1.2 | Eukaryotic transcription and gene expression  
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to generate the final mature mRNA (Figure 1.2). Modifications in the transcription and RNA 

processing stages often occur in a spatiotemporal and cell type-, stage-, and condition-specific 

manner, contributing to a diverse set of protein products and a high degree of variability in RNA 

translation, stability, and localization (Figure 1.2). Such modifications can yield consequences of 

substantial functional magnitude, including the acquisition of pathogenic traits. By studying the 

mRNA, we can explore these stages and learn about changes in (a) transcribed products – 

through the quantification of gene- and isoform-level abundances and (b) co- and post-

transcriptional regulatory mechanisms – through the evaluation of alternative splicing, alternative 

polyadenylation, and RNA editing.  

 

Dysregulation in transcription and alternative splicing (AS) has been extensively linked to 

the production of altered disease-driving transcript variants and isoforms (Scotti & Swanson, 

2016). Variations at the transcriptional level can be monitored via differential gene expression 

profiling and at the AS co-/post-transcriptional level via differential isoform-specific gene 

expression profiling or direct quantification of AS events. AS is a highly prevalent and versatile 

regulatory RNA processing regulatory mechanism, undergone by more than 90-95% of multi-

exonic human genes (Shen et al, 2014). It is a major contributor to the estimated 5-10 fold 

discrepancy between the number of protein-coding genes and generated proteins (Wang et al, 

2014; Scotti & Swanson, 2016). Changes in AS patterns can result in either a complete switch in 

protein isoforms or more commonly a deviation in relative splice isoform abundances. Even a 

small shift in splice isoform proportions is sufficient to induce pathogenesis (Buchner et al, 2003). 

This highlights the importance of AS in promoting disease-driving traits. AS involves coordinated 

cis and trans splicing mechanisms that are catalyzed by the spliceosome ribonucleoprotein 

enzymatic complex. In addition to constitutive splicing, AS can occur through the following basic 

modes: (a) skipped exon (the most common form); (b) mutually exclusive exon; (c) alternative 5’ 

splice site; (d) alternative 3’ splice site; and (e) retained intron (Figure 1.2). In human cells, 
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skipped exon, or cassette exon skipping, represents the most common form of AS, in which exons 

are either included or skipped from the final transcript.  

1.2 NEXT-GENERATION RNA SEQUENCING 

1.2.1 Why use RNA sequencing? 

A variety of hybridization- and sequencing-based tools have been developed to quantify the 

transcriptome. Notwithstanding the popularity of microarray technology, high-throughput next 

generation sequencing (NGS) is surpassing Moore’s law predictions, rapidly becoming the 

platform of choice for transcriptional profiling (Hitzemann et al, 2013). Hybridization-based 

methods are limited by their dependence on a predefined transcriptome and focused 

measurement of mRNA with corresponding homologous printed probes (Steger et al, 2011; 

Zhang, 2005). This has resulted in high noise and saturation background levels and cross-

hybridization in microarrays, constraining their dynamic range of detection and inflating error due 

to the nonlinear dye response (Koltai & Weingarten-Baror, 2008). RNA sequencing (RNA-seq) 

has become the preferred choice for transcript quantification, despite a higher cost and analytical 

complexity (Hitzemann et al, 2013). With the exponentially declining sequencing costs and 

advances in sequence detection methods, library preparation protocols, and multiplexing 

capabilities, RNA-seq has revolutionized gene transcriptomic analysis, translating into countless 

novel discoveries of pathogenic molecular signatures.  

1.2.2 RNA sequencing workflow 

RNA-seq can be performed either at the cell-population level (bulk RNA-seq) or the single-cell 

level (single-cell RNA-seq). Investigations of polyadenylated (polyA+) mRNAs from bulk tissue 

involves the following sample-to-insight workflow:  
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Table 1.1 | Bulk RNA-seq workflow 

 

Gene expression levels are estimated by mapping RNA-seq reads or k-mers (read 

sequences of length k; used by pseudo-aligners) against a reference genome or transcriptome. 

Expression units are then processed through a differential expression analysis pipeline to extract 

key differential genes that can be investigated for functional enrichment or embed in a network 

framework for a systems evaluation of interactions. Pre-mRNA alternative splicing differences can 

then be analyzed to explore the role of co- and post-transcriptional events in modulating gene 

expression and rendering multiple gene isoforms. Alternative splicing analysis can be achieved 

through the evaluation of either differential isoform expression (using transcript-based tools) or 

differential splicing (using event-based tools) (Park et al, 2018). For direct differential splicing 

analyses, exon inclusion levels of alternatively spliced cassette exons are estimated using the 

percent spliced in (PSI or Ψ) metric that represents the percentage of gene isoforms including the 

exon of interest. The various modes of alternative splicing (Figure 1.2) can help investigators 

RNA-SEQ 
(1) Data Generation RNA extraction; RNA fragmentation; library construction and sequencing 
(2) Data Pre-processing Raw data quality checking; adapter sequence trimming 

(3) Data Processing Read mapping to reference genome/ transcriptome/ de novo assembly; 

indexing to coding regions/ splice junctions; annotation extraction 

PROCESSED RNA-SEQ 
(4) Abundance 

Quantification 

Gene expression levels 

(5) Data Manipulation Normalization; transformation; missing data imputation 

(6) Differential Analysis Differential gene / isoform expression; differential alternative splicing 

(7) Data Visualization Pattern recognition; knowledge extraction 

(8) Pathway Analysis Functional enrichment 

(9) Network Analysis Multi-dimensional network representation; regulatory interactions 

PROCESSED RNA-SEQ 
(10) Data Integration Phenotypic correlation; feature space reduction 

(11) Enrichment Analysis Functional interpretation; biological insights 
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incorporate information on the dynamic regulation of gene function, thus spatially and temporally 

accounting for environmental impacts on pathogenic development. 

1.3 MULTIOMICS IN MULTIFACTORIAL DISORDER ASSESSMENT 

Despite the expansive development of computational methods and high-throughput technologies, 

scientists struggle in identifying causal factors in multifactorial disorders and medical conditions. 

This is notably a result of their composite (having many causes), multifaceted (having many 

features), and comorbid (co-occurring with other disorders) nature. A simple differential analysis 

of one type of biomolecule is unable to account for the inherent multilevel structure of biological 

mechanisms. It also misses the collective involvement of various types of biomolecules and 

extrinsic factors in disease etiopathogenesis. Furthermore, the variation in clinical manifestation 

and treatment response between patients has fostered the dissolution of a “one-size-fits-all” 

attitude in evaluation in favor of personalized and individually-tailored options. Such variability has 

necessitated careful patient stratification, which requires the inclusion of individual-level risk and 

prognostic information to complement population-level findings. We propose that a multilayered 

profiling of the transcriptome and a clinically-informed integration with other omic data can help 

mitigate some of those hurdles. For this work, we focus on the incorporation of phenomic and 

radiomic data due to their value in precision medicine endeavors. Those two forms of omic data 

are already collected in the clinic and offer extensive coverage of patient-specific traits. The 

transcriptome provides rich molecular information at a cell-to-tissue resolution. The radiome 

provides non-invasive and longitudinal radiophenotyping at the tissue/organ resolution. And the 

phenome provides an eclectic repertoire of extrinsic contributing factors.  

1.3.1 Why incorporate phenomic data? 

The digital revolution has accelerated the collection of rich patient-specific electronic health data 

with measurements gathered from clinical practice, biomedical research studies, independent 

health surveys, and patient-reported outcomes. Such records often include a large selection of 
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data sources: (a) demographics – such as age, gender, race, and socioeconomic status; (b) 

health risks – such as behavioral and lifestyle factors; (c) medical history – such as prior 

procedures, pregnancies, and family history; (d) management of current condition – such as lab 

tests, medications, allergies, diagnostics, and therapeutics; and (e) self-reported measures – such 

as sleep, exercise, and diet (Nathanson, 1994).  

 

With the push towards personalized and precision health care, researchers are now 

recognizing the value in incorporating detailed high-dimensional and longitudinal phenotypic data 

–referred to as the phenome – into omic studies. The value of phenome-level information is 

especially evident when studying multifactorial disorders. Such disorders often arise from the 

combinatorial role of many elements, some of which are not easily identified, or are unaccounted 

for, in mere molecular evaluations. By providing an extra layer of information and facilitating 

further sample stratification, linking phenomic traits can therefore improve the clinical significance 

of transcriptome-level findings. 

1.3.2 Why incorporate radiomic data? 

Medical imaging has long been a standard in the diagnostic and therapeutic assessment of 

diseases and the inference of clinical outcome. Physicians use medical imaging on a regular basis 

to monitor morphologic, functional, molecular, metabolic, and microenvironmental changes in 

patients in vivo. Structural medical imaging modalities, such as X-ray, magnetic resonance 

imaging (MRI), and computed tomography (CT), are used to observe anatomical abnormalities 

(Mahesh, 2013). On the other hand, functional imaging modalities, such as functional-MRI (fMRI), 

positron emission tomography (PET), and single-photon emission computed tomography 

(SPECT), are used to assess physiologic activity (Mahesh, 2013). By melding complementary 

imaging modalities, modern multimodal devices have expedited the correlation of anatomy to 

pathogenic function and molecular composition (Martí-Bonmatí et al, 2010; Padhani & Miles, 

2010).  
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The standardization of imaging protocols, along with automated image registration, 

alignment, and segmentation and the availability of reference atlases, has propelled imaging from 

a largely qualitative tool to a robust quantitative measure. This transition has been supported by 

abundant open-source and user-friendly image analysis software. Using those tools, investigators 

can quickly perform quality control steps to alleviate acquisition scheme- and operator-induced 

errors as well as normalize imaging data across normal variations (Filippi et al, 1998). With a 

variety of available manual, semi-automatic, and automatic methods, they can then proceed to 

generate quantitative imaging features of interest –referred to as the radiome. A region-of-interest 

(ROI) can be used to extract signal intensity information within pre-defined anatomical areas, 

albeit with a limited precision in the evaluation of smaller regions (Poldrack, 2007). Voxel-based 

methods can also be employed to carry statistical tests across image voxels and identify 

correlates to preselect covariates of interest (Smith et al, 2006). Voxel-based results, 

nevertheless, are prone to misinterpretation due to misalignment, imperfect registration to 

standard space, and arbitrary spatial smoothing. Tract-based spatial statistics (TBSS) can be 

introduced to mitigate those concerns, carefully tuning registration and projecting onto an 

alignment-invariant tract representation (Smith et al, 2006).  

  

The non-invasive yet inclusive nature of the radiome has made it a valuable data point in 

biomedical investigations and an ideal biomarker for clinical diagnoses and treatment responses. 

Radiomic features offer a quick yet comprehensive characterization of many diseases. They can 

be generated on a recurrent basis to monitor progress and at a relatively lower cost relative to 

biopsy-based options. On its own, however, imaging can fail to capture early disease onset or 

multifaceted disorders that lack a standard trend. 

1.4 OVERVIEW, SPECIFIC AIMS, AND USE CASES 

This dissertation leverages a multiomic framework –integrating transcriptomic, phenomic, and 

radiomic data – to investigate multifactorial disorders.  
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    OVERALL AIM: To evaluate the ability of a transcriptome-phenome-

radiome integrative framework to uncover clinically-relevant findings 

otherwise undetected through hypothesis-driven or monolayer differential 

analysis 

   

A
IM

1
 Mine the transcriptomic underpinnings of the system of interest, using a 

variety of analytical tools to profile gene expression, co-expression, and 

alternative splicing as well as measure tissue-, condition-, and function-

specific enrichment 

  

A
IM

2
 Incorporate complementary phenomic and radiomic features, correlating 

them with transcriptome-level information 

 

A
IM

3
 Derive candidate genes and biological processes that correspond to a 

specific phenotype  

(transcriptome ↔ clinical trait / transcriptome ↔ radiophenotype) 

A
IM

4
  Apply this framework to two use case scenarios to demonstrate its 

strengths and weaknesses 

 

1.4.1 USE CASE SCENARIO 1 – Examine the transcriptomic and phenotypic 
landscape of various modes of parturition in late-stage pregnancy  

Objective :  Can the integration of decidual transcriptome and maternal / fetal phenome 

inform normal and abnormal parturition in pregnancy?  

We explore this objective in Chapter II, in which we collect the following data points: (1) in-house 

raw RNA sequences from decidual placental tissue at birth; (2) in-house clinical data highlighting 

birth and pregnancy complications and outcomes, interview information, maternal chart 

abstraction, maternal labs and self-report health information, and infant labs; and (3) publicly-

accessible lists of placental tissue- (Human Protein Atlas) and labor-enriched genes (peer-
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reviewed publication). We demonstrate that a multilayered analysis of the transcriptome allows 

us to identify genes that repeatedly show significant differential expression, co-expression, and 

splicing. We then show how integrating phenotypic data can help us narrow down our list of genes 

to those with significant association with pregnancy risk and prognostic factors. Finally, we 

functionally annotate our findings and incorporate prior knowledge of mechanisms involved in 

late-stage pregnancy to delineate the molecular story of abnormal and normal parturition. Overall, 

we note the strength of a transcriptome-phenome integrative framework in (a) extracting 

biologically meaningful information that would have otherwise been missed through simple 

differential analysis and (b) overcoming limitations of analyzing clinical samples that have been 

collected from different center, under different protocols, and over a span of a few years and that 

are inherently heterogeneous. This use case demonstrates the strengths of our proposed 

framework. 

1.4.2 USE CASE SCENARIO 2 – Examine the heterogeneous transcriptomic and 
radiomic landscape of glioblastoma tumors  

Objective :  Can the integration of tumor transcriptome and MRI radiome reveal unique 

mRNA isoform signatures for glioblastoma (GBM) morphologic radiophenotypes?  

We explore this objective in Chapter III, in which we collect the following data points: (1) The 

Cancer Genome Atlas (TCGA) RNA sequencing read counts for GBM tumor samples; (2) 

corresponding TCGA raw RNA sequences; (3) corresponding The Cancer Imaging Archive 

(TCIA) T1- and T2-weighted MRI images; and (4) publicly-accessible list of glioma-intrinsic genes 

(peer-reviewed publication). We demonstrate that the incorporation of multiple layers of the 

transcriptome (gene expression and cell type-specific enrichment) can be used to focus the 

analysis on glioma-enriched genes. We show how this approach can help mitigate the 

heterogeneity between transcriptome and radiome-level data, allowing us to evaluate the 

relationship between tumor-specific transcriptome and tumor-specific morphologic radiome. We 
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also show how this approach can be employed to safely reduce the high-dimensional molecular 

feature space that often limits correlation-based investigations in the fields of radiogenomics and 

“radiotranscriptomics”. We then extract exon inclusion – radiophenotype correlates and 

functionally annotate them to highlight transcriptome-level molecular differences between the 

different GBM tumor phenotypes. Overall, we note the ability of a transcriptome-radiome 

integrative framework to provide exploratory insights into the biological state of GBM tumor 

phenotypes. We also note the framework’s weakness in revealing significant associations as a 

result of several data quality and analytical limitations. These include: (a) inherent intratumoral 

and inter-patient heterogeneity, (b) variability in image acquisition, tumor segmentation, and 

image feature extraction, (c) limited evaluation of image feature robustness, (d) lack of textural 

image features to capture the inherent heterogeneity, and (e) high degree of missing values in 

exon inclusion estimates. This use case demonstrates the weaknesses of our proposed 

framework. 
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C H A P T E R  I I  
2  I n tegr a ted  Tr anscr ip tom ic  and  P henom ic A na lysis  o f  

V ar ious  Modes  o f  P ar tur i t ion 
  

2.1 ABSTRACT 

The multifactorial and paradoxical nature of pregnancy has rendered it difficult to decipher its 

intricacies. A comprehensive analysis of placental organization –from early stages of gestation to 

parturition – can provide a keener insight into the underlying molecular machinery. We examine 

the molecular signature of different forms of parturition to explore the pregnancy paradox. We 

perform an exhaustive investigation of transcriptomic profiles of human placental decidual 

samples from normal spontaneous vaginal (N=16), cesarean section (N=18), and preterm labor 

(N=16) deliveries. We use RNA sequencing to characterize the gene expression and splicing 

dysregulation signature of abnormal parturition. We identify significant differences in the 

expression and exon inclusion levels of genes involved in inflammatory and stress response, 

extracellular matrix remodeling, neovascularization, and lipid metabolism. We also portray the 

decidual co-expression architecture during parturition and its relationship with prognostic 

maternal, fetal, and pregnancy characteristics. This study provides the first multilevel survey of 

the transcriptional and post-transcriptional landscape of human decidua under various modes of 

parturition. Through a systems integration of transcriptomic and rich phenomic information, it 

expands on previous findings by highlighting the orchestrated and synergistic interplay of key 

factors in pregnancy. 

2.2 INTRODUCTION 

2.2.1 The pregnancy paradoxical complexity 

Pregnancy is paradoxical in its nature. The host not only tolerates an invading foreign body but 

also nurtures and sustains its growth irrespective of its overconsumption of available resources. 
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This is a testament to the well-maintained and adaptive nature of the human body in response to 

changing environmental cues. A major shift in the inherent biological state of the mother, from 

expulsion to tolerance, is necessary to ensure the successful establishment and maintenance of 

pregnancy. A growing body of evidence has shown that an immunosuppressive phenotype is set 

forth within the decidua - the immunologically distinct maternal component of the placenta that 

directly interfaces with the feto-placental unit (Mori et al, 2016; Salker et al, 2010). Prompted by 

elevated ovarian steroid hormone levels, decidualization of the endometrium commences 

following embryonic implantation into the uterine luminal epithelium (Lei et al, 2012). This process 

regulates placentation and initiates fetomaternal cross-talk to prepare the mother’s immune 

system for the semi-allogeneic fetus (Cartwright et al, 2010; Faas et al, 2014; Lei et al, 2012). 

Decidualization plays a central role in pregnancy – from conception to parturition – by 

orchestrating maternal-fetal immunologic interactions and signaling cascades that mediate cell-

to-cell and cell-to-extracellular matrix (ECM) communication and vasculature remodeling (Kim et 

al, 2012; Vinketova et al, 2016). Leukocytes, including natural killer cells (NKs), macrophages, T-

cells, and dendritic cells (DCs), are recruited to support local immune function, through protection 

against infection and immunomodulation (Faas et al, 2014; Pavličev et al, 2017). The 

hemodynamic network within the uterus concurrently expands through a dynamic series of 

vasodilation, cellular hypertrophy, and hyperplasia (Osol & Moore, 2014; Sipos et al, 2013). The 

decidual stromal matrix undergoes extensive reorganization to support the rapidly proliferating 

vessels and to ensure an undisrupted supply of nutrients and oxygen to the fetus, (Smith et al, 

2016). These events evolve synergistically in a spatial and temporal manner throughout the 

course of gestation, with varying degrees of involvement per pregnancy stage-specific needs. 

During the final stage of pregnancy, a fetal rejection program is invoked to initiate labor. 

Physiological changes progress in a coordinated fashion: from uterine quiescence and cervical 

softening prior to parturition to uterine activation and cervical ripening in preparation for labor-

associated myometrial contractions and cervical dilation (Timmons et al, 2010).  It is believed that 
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a successful onset of active labor is triggered by a precise combination of attenuation of earlier 

processes in pregnancy and pro-inflammatory signaling during later stages (El-Azzamy et al, 

2017; Tan et al, 2012). The same hormonal, humoral, vascular, and adhesion bioactive mediators 

that initially helped sustain the fetus now contribute to the inflammation burst and the proceeding 

degradation of the ECM in gestational tissues-that is needed to expel it (Marcellin et al, 2017). By 

comprehensively and systemically investigating the underlying dynamically evolving molecular 

signature of pregnancy, we can decipher the varying contribution of different biological 

components and ultimately isolate key players in pregnancy-associated pathologies. 

2.2.2 Normal and abnormal parturition 

In an attempt to delve into the pregnancy paradox, we examine the transcriptomic landscape of 

placental deciduae during parturition in late-stage pregnancy. We compare normal labor cases to 

two forms of abnormal parturition: cesarean section (C/S) and preterm labor (PTL). Cesarean 

section (C/S) –the surgical delivery of a baby via incisions in the abdominal wall and uterus of the 

mother – is performed when there is failure or fear of   induction of labor. Given its invasive nature, 

it has been associated with several intra- and post-operative maternal complications. This 

includes infection, post-partum hemorrhage, organ injury, uterine rupture, placental anomalies, 

and infertility (Mylonas & Friese, 2015). C/S has also been shown to increase neonatal risk for 

Figure 2.1 | Indications of Cesarean section deliveries 
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respiratory disease, type 1 diabetes mellitus, and even mortality (Mylonas & Friese, 2015). With 

only a few elective cases, C/S procedures are typically scheduled per doctor’s recommendation 

due to obstetrical indications (Mylonas & Friese, 2015). Such indications include pelvic deformity, 

anomalous placental or fetal position, amniotic or viral infection, delayed or ceased labor, and 

prior C/S delivery (Mylonas & Friese, 2015). PTL –labor prior to 37 completed weeks of gestation 

– is a leading cause of perinatal and neonatal morbidity and mortality (Mwaniki et al, 2012). Health 

implications of PTL have been shown to extend into adulthood, with higher incidences of 

neurodevelopmental and growth deficits, chronic medical problems, and recurrent hospitalization 

(Blencowe et al, 2013). A number of pregnancy-related diseases are risk factors for PTL. These 

include multiple pregnancies, preeclampsia, gestational diabetes, short cervical length, uterine 

over-distension, amniotic fluid leak, infections, and cervical disorders (Asl et al, 2017; Hermans 

et al, 2015; Koucký et al, 2014). While direct causes of PTL remain unclear, numerous studies 

have proposed the involvement of T-regulatory lymphocytes (Treg), ECM glycoproteins, oxidative 

stress, progesterone dysfunction, decidual senescence and hemorrhage, and abnormal uterine 

vascular remodeling within the “decidual clock” program (Asl et al, 2017; Hermans et al, 2015; 

Figure 2.2 | The speculated heterogeneous etiology of preterm 
labor 
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Koucký et al, 2014; Norwitz et al, 2015) (Figure 2.2). Studying C/S and PTL offers a preview into 

the ramifications of imbalances in the homeostatic state of the mother. It thus holds the potential 

to get us a step closer to deciphering the complex pregnancy paradox. 

2.2.3 Why use a multi-layered transcriptome-phenome framework in pregnancy? 

The high prevalence and cost –physically, emotionally, and economically – of pregnancy 

complications, including prematurity, have rendered them a major public health priority. 

Premature birth, on its own, accounts for over 1 million deaths worldwide and over $26 billion in 

societal costs in the US every year (Blencowe et al, 2013; Liu et al, 2016; Boardman, 2008). 

Health implications of prematurity extend far beyond the neonatal period, with numerous reports 

on lifelong effects on neurodevelopment and growth and higher rates of chronic medical problems 

and recurrent hospitalization (Blencowe et al, 2013). Global-scale efforts to devise innovative and 

actionable plans to address this growing medical urgency have significantly increased in the 

recent years (Blencowe et al, 2013). Nonetheless, researchers continue to lag in unraveling the 

underpinnings of pregnancy, resulting in a paucity of robust predictors of associated pathologies 

in clinical practice. In Table 2.1, we briefly highlight elements that we believe have hindered 

translational progress in pregnancy research.  

 

A multidimensional examination of human placentae undergoing different forms of labor 

and delivery can help mitigate some those of barriers, ultimately cultivating our understanding of  

Paradoxical: 

•  A host immune system that needs to tolerate a foreign body yet equally 
defend against pathogens  •  A host vascular system that needs to 
increase the blood supply of nutrients to support a growing fetus yet 
maintain a safe level of vascular organization to prevent bleeding 

Transient: •  Typically lasting 40 weeks and involving the placenta, a temporary yet 
critical organ in pregnancy 
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Table 2.1 | Elements that hamper pregnancy research 
 

the impact of molecular perturbations in late-stage pregnancy. While such method arguably only 

provides a static capture of parturition-specific factors, when viewed in the context of a system, it  

can also offer a snapshot into mechanisms generally involved in the unidirectional flow of 

pregnancy.  

2.2.4 Study design 

We apply a systems approach –as depicted in Figure 2.3 – to evaluate transcriptomic changes 

associated with normal parturition (normal spontaneous vaginal delivery; NSVD) and abnormal 

parturition (cesarean section; C/S and preterm labor; PTL). We analyze the transcriptomic 

landscape of the placenta given its relevance to placental health and pregnancy complications 

Multifactorial: 
•  An orchestra of immune; pro-inflammatory; neuro-endocrine; 
extracellular matrix; cytoskeletal; metabolic; and growth biological factors 
as well as genetic and environmental factors 

Synergistic: 
•  An orchestra composed of biological factors that synergistically interact 
in a controlled fashion to maintain harmony amidst a less controllable 
external environment   

Multifaceted: 

•  Discordance in the harmonious interaction of involved factors can yield 
a wide range of complications including preterm labor; (pre)eclampsia; 
placental abruption and previa; intrauterine growth restriction; and 
miscarriage 

Dynamic and 
Temporal: 

•  Biological processes that evolve throughout the course of gestation, 
with significant variation across the 1st, 2nd, and 3rd trimesters and 
parturition due to varying stage-specific demands 

A 2-in-1 
scenario: 

•  Mediated via the placenta, which is composed of both maternal 
(decidua) and fetal (chorion and amnion) components  •  Mis-alignment in 
maternal and fetal goals for optimal survival   

Ethically 
challenging: 

•  Knowledge-based investigations of early stages of pregnancy 
necessitate invasive measures that pose major risks to both the mother 
and the fetus  •  Pregnant women cohorts are typically excluded from 
clinical drug trials, yielding a significant knowledge gap in potential points 
of intervention 
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(Kleinrouweler et al, 2013; Struwe et al, 2010). We compare gene expression and alternative 

splicing profiles of samples collected from human placentae, to derive molecular processes that 

manifest in labor and aberrant parturition timing. We specifically evaluate the decidual tissue to 

explore the role of maternal factors and endometrial immunological priming in abnormal 

parturition. We mine multiple levels of data to account for the heterogeneous molecular and 

phenomic makeup of patients. By integrating findings from the various analyses, we aim to 

highlight term- and labor-specific transcriptomic and phenomic signatures as well as elucidate 

molecular mechanisms and key players potentially involved in abnormal parturition in general. 

2.3 METHODS 

2.3.1 Sample collection  

Human placentae are obtained within one hour of delivery with signed informed consent under 

the protocols approved by the University of Iowa Institutional Review Board (201411731). 

Samples are obtained from 16 term vaginal deliveries (NSVD), 16 preterm deliveries (PTL), and 

18 cesarean deliveries (C/S). Placenta decidual tissue samples are macroscopically isolated from 

the maternal-facing surface of the placenta. Samples are cut into small pieces and placed in 

RNAlater® solution (Applied Biosystems, Foster City, CA).  Biopsies are obtained after written 

informed consent, according to a protocol approved by the University of Iowa and in accordance 

with the Department of Health and Human Services regulations at 45 CFR 46. Maternal and infant 

chart abstraction, maternal and infant labs, medical history, and social history are available in 

Appendix Table 2.1. 
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Figure 2.3 | Overview of analysis workflow 

 

Flowchart describing the multiple levels of analysis in the study. RNA-seq data from normal spontaneous vaginal 
delivery (NSVD) deciduae are used to generate gene expression (GE) and alternative splicing (AS) profiles and a co-
expression network for normal parturition (NP). RNA-seq data from cesarean section (C/S) and preterm labor (PTL) 
deciduae are used to derive GE and AS profiles and a co-expression network for abnormal parturition (AP). Pairwise 

comparison is used to identify significantly differentially expressed genes (DEGs), differential alternative splicing 
events (DASs), and gene clusters specific to each parturition type. RNA-seq data from all samples are used to create 
a co-expression landscape for general parturition, which in turn is correlated with clinical data to identify gene clusters 

that are prognostic indicators of parturition type. Within the general parturition co-expression network, we also 
highlight modules that are enriched for labor and pregnancy complications genes. Finally, we integrate findings from 

individual analyses to investigate DEGs in DASs; DEGs in abnormal parturition co-expression modules; DEGs in 
general parturition co-expression modules that are enriched for labor-associated genes; and DEGs in general 

parturition co-expression modules that are enriched for pregnancy complications genes. 
 



 21 
 

2.3.2 RNA extraction and library preparation and sequencing 

Total RNA is extracted from each tissue using the TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instruction and stored at -80˚C until used. RNA integrity is 

measured using an Agilent Bioanalyzer. RNA samples included in the analysis had an RNA 

integrity number (RIN) > 6. RNA-seq libraries are prepared using TruSeq RNA Sample Prep Kit 

v2 (Illumina) and sequenced on an Illumina HiSeq 2000 to produce 27-49 million 2x100nt pair-

end reads per sample. The entire RNA-seq dataset, including raw and processed files for Gene 

Expression Omnibus (GEO) submission and sample metadata, is available at Dataset 2.1. 

2.3.3 RNA-seq data processing 

Raw RNA-seq reads are filtered for adapter sequences and mapped against the Ensembl human 

genome (hg19; GRCh37.75) using the software STAR v2.4.1c (Dobin et al, 2013) with default 

parameters. The percentage of mapped reads is 88.6%±2.9% (mean±s.d). Transcript 

abundances are quantified using htseq-count v0.6.1(Anders et al, 2015). Raw count data are then 

normalized with respect to library size using DESeq2 (Love et al, 2014) and log-transformed to 

minimize differences between samples with low counts. Outlier samples are identified by 

performing pairwise correlation of the normalized expression data of samples and by principal 

component analysis (PCA). Unsupervised hierarchical clustering of normalized expression data 

using squared Euclidean distances confirms identified outliers. Samples CS101 and CS105 are 

removed from downstream analysis (Appendix Figure 2.1). 

2.3.4 Differential Gene Expression analysis 

Differential Gene Expression (DGE) analysis is performed pairwise (NSVD versus CS; NSVD 

versus PTL; CS versus PTL) using the DESeq2 R package (Love et al, 2014). Genes with 

significant differential expression show a Benjamini-Hochberg FDR-adjusted Wald test p-value ≤ 

0.05 and pass an extra filter of max raw read count > 10 to disqualify genes with very low 

expression levels across samples.  Double filtration using a maximum likelihood estimate (MLE) 
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of log2 fold change ≥ 1.5 is performed to limit the number of significant C/S vs PTL gene hits to 

those with greatest expression difference between the 2 conditions when used as input into 

functional enrichment analysis. 

2.3.5 Network construction 

Co-expression networks for each sample group and for the entire dataset are generated using 

normalized, log-transformed and filtered (max read count > 10) read counts as input into the 

weighted gene co-expression network analysis (WGCNA) R package (Langfelder & Horvath, 

2008). An adjacency matrix is calculated for the signed networks using the pairwise Pearson 

correlation of each set of genes. The adjacency matrix is then raised to a soft-thresholding power 

to increase weight of strong correlations while avoiding limitations of a hard “discontinuous” 

threshold. Per the scale-free topology criterion and a scale-free fit R2 cutoff of 0.75, a power of 𝛽 

= 14 is chosen for the NSVD network, 𝛽 = 12 for the CS network, 𝛽 = 14 for the PTL network, and 

𝛽= 20 for all samples. Using the blockwiseModules function for automatic network construction, 

the topological overlap measure (for interconnectedness) is then calculated and used as input for 

average linkage hierarchical clustering. The dynamic tree cut method is applied to identify 

dendrogram branches and extract network modules. Genes are grouped into modules with a 

minimum size of 40 genes and minimum height for merging modules at 0.25. Only genes that 

exhibit a high module membership to the module (absolute correlation of their expression values 

with module eigengene - kME) ≥ 0.7 are included within a module. Hub genes that exhibit highest 

number of connections within a module are extracted using kME ≥ 0.9.  

2.3.6 Network analysis 

The conservation of complimentary modules across the three condition-specific co-expression 

networks is evaluated using the hypergeometric probability of intersecting genes, adjusted using 

Bonferroni correction for multiple comparisons. Complimentary modules are designated as 

modules with the maximum number of overlapping genes without repetition. To test for significant 
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associations between modules in the whole dataset co-expression network and clinical data, we 

correlate module eigengenes with select patient phenotypic and socio-economic information 

previously associated with pregnancy complications. We use median-based biweight 

midcorrelation to limit the effect of outliers. Missing clinical input is imputed separately for each 

labor subtype by mean. Gene-gene interaction maps for “interesting” modules are created by 

exporting the WGCNA adjacency matrix, filtered for module genes, into Cytoscape version 3.5.1 

(Shannon et al, 2003). 

2.3.7 Differential Alternative Splicing 

Alternative Splicing (AS) events corresponding to all five basic AS patterns (skipped exon – SE; 

alternative 5’ splice site – A5SS; alternative 3’ splice site – A3SS; mutually exclusive exons – 

MXE; and retained intron – RI) are quantified using the percent spliced in (PSI; Ψ) metric using 

replicate Multivariate Analysis of Transcript Splicing (rMATS) version turbo (Shen et al, 2014). 

rMATS is an exon-centroid method that uses a modified version of the generalized linear mixed 

model to detect differential AS from RNA-seq data with replicates. For each AS event, we use 

both reads that span splicing junctions and reads on target (defined as reads that are fully 

contained within the alternatively spliced region) as rMATS input. Significant differential AS 

between two sample groups were identified using a cutoff of Benjamini-Hochberg FDR adjusted 

p-value < 0.05 and |∆Ψ| ≥ 0.05. 

2.3.8 Enrichment of Gene Ontology (GO) functional categories, tissue-specific 
genes, and cell types 

Functional enrichment of significantly upregulated/downregulated, co-expressed, and 

differentially spliced genes is assessed using Enrichr (Chen et al, 2013) at default settings. Select 

gene ontology (GO) terms and pathways are extracted with a Benjamini-Hochberg adjusted p-

value < 0.1 and a combined score ≥ 10, unless otherwise noted. Enrichment analysis for genes 

with elevated expression levels within placental tissues (with at least five-fold higher mRNA levels 
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in the placenta compared to other tissues) is performed by assessing the overlap with The Human 

Protein Atlas placenta-specific gene set (available from www.proteinatlas.org) (Uhlén et al, 2015). 

For enrichment for labor genes, we use meta-analysis results for differentially expressed genes 

associated with labor (Lee et al, 2010). For enrichment for preterm genes, we assess the overlap 

with public curated lists of genes from The Database for Preterm Birth (Uzun et al, 2012) and The 

Comparative Toxicogenomics Database (CTD) for premature birth (Rouillard et al, 2016). For 

enrichment for genes associated with pregnancy complications, we use the overlap with the list 

of genes from CTD for pregnancy complications.  
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2.4 RESULTS 

2.4.1 Transcriptome-wide differential gene expression analysis in premature and 
caesarean deliveries 

We conduct deep RNA sequencing analysis of 50 human decidua samples from term vaginal 

delivery (NSVD; n=16), preterm delivery (PTL; n=16), and cesarean delivery (C/S; n=18) 

placentae (Figure 2.4A). After processing sequencing data to remove outliers (Appendix Figure 

2.1), we calculate gene expression levels represented by read counts and normalize using the 

Figure 2.4 | Patient clinical demographics 
 

(A) Select maternal / fetal clinical characteristics. Additional clinical data is found under Appendix Table 2.1 (B) 
Histograms depicting the difference in rates of infection (sepsis; urinary tract infection; and chorioamnionitis) across the 

3 parturition groups. Fisher’s exact test of independence p-values are indicated. 
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default relative log expression (RLE) method in DESeq2 (Methods). Using a strict Benjamini-

Hochberg adjusted Wald test p-value ≤ 0.05, we identify a total of 1028 differentially expressed 

genes (DEGs) out of 21,465 expressed genes (Methods), 32 of which have significant altered 

expression between NSVD and C/S; 14 between NSVD and PTL; and 1010 between C/S and 

PTL (Figure 2.5A; Supplementary Table 2.2A-C). 

 

 
 

(A) Venn diagrams displaying the intersection of DEGs detected in pairwise comparison. Genes overlapping in 
NSVD vs PTL and C/S PTL are designated as term-specific DEGs. Genes overlapping in NSVD vs C/S and C/S vs 

PTL are designated as labor-specific genes. (B) Boxplots displaying the log-transformed read count profile of 
NR4A3 (labor-specific DEG overlapping in NSVD vs C/S and C/S vs PTL); LIPH (term-specific DEG overlapping in 
NSVD vs PTL and C/S vs PTL); PSG7 (NSVD vs PTL DEG with highest +log2 (fold change)+); and CD177 (C/S vs 
PTL DEG with highest +log2 (fold change)+. (C) List of gene ontology GO) terms and pathways that are significantly 
enriched in NSVD vs C/S (orange); NSVD vs PTL (green); and C/S vs PTL (red). Significance is set as FDR < 0.1 

and a combined score ≥ 10 in Enrichr. 
 

Figure 2.5 | Differences in gene expression profiles of NSVD, C/S, and PTL decidual samples 
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We identify 18 DEGs that overlap between NSVD vs C/S and C/S vs PTL and label them 

labor-specific due to their consistent varied expression signature in non-laboring decidual 

samples (Figure 2.5A; Supplementary Table S2.2D). NR4A3 (nuclear receptor subfamily 4 group 

A member 3) is a labor-specific DEG that exhibits over 2-fold decrease in expression in C/S 

samples (Figure 2.5B; one-tailed T-test; p-value = 2.57 × 1012 ). Downregulation of NR4A3 

transcription factor has been documented in cases of impaired decidualization (Jiang et al, 2016). 

We perform functional enrichment analysis of NSVD vs C/S DEGs to explore the biological 

property of genes with significantly altered expression levels in non-laboring deciduae (Materials 

and Methods). Using Enrichr (Methods), we find enriched gene ontology (GO) terms associated 

with inflammation, leukocyte adhesion, and smooth muscle cell proliferation (Figure 2.5C, orange 

bars; Supplementary Table S2.3A). These results are in line with our expectations of an absent 

pro-inflammatory and contractile state in non-laboring cases.  

 

We then identify 8 DEGs that overlap between NSVD vs PTL and C/S vs PTL and 

designate them term-specific due to their significantly altered expression in preterm decidual 

samples (Figure 2.5A; Supplementary Table 2.2D). LIPH (lipase H) is a term-specific DEG that 

exhibits over 2-fold decrease in expression in PTL samples (Figure 2.5B; one-tailed T-test; p-

value =5.95 × 1014). The lipid mediator is heavily involved in smooth muscle contraction and 

platelet aggregation (Thiriet, 2013). Amongst the 14 DEGs significantly differentially expressed 

between spontaneous term and preterm, PSG7 (pregnancy specific beta-1 glycoprotein 7) 

exhibits the highest fold-increase (21-fold-increase in expression) labor (Figure 2.5B). PSG7 is 

highly enriched in the syncytiotrophoblast of the placenta, with a prominent – albeit elusive – 

immunoregulatory, angiogenic, and anti-platelet role in pregnancy (Aleksic et al, 2016; Sanborn 

et al, 1997; Snyder et al, 2001). Previous studies have reported significant differences in PSG7 

expression between preterm and term placentae, with a potential role in aberrant trophoblast 

differentiation and uteroplacental vascular insufficiency (Brockway et al, 2017). While mean PSG7 
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expression levels in our study do not drastically differ between the NSVD and PTL sample groups, 

we note a significantly larger variance and the presence of two subpopulations within PTL (F-test; 

p-value = 2.49 × 1016 ). The presence of 2 subpopulations within the PTL group appears to 

correlate with birth order (Spearman 𝜌 = −0.66;	p-value = 5.38 × 101? ), in which high PSG7 

expression is observed in nulliparous (first pregnancy) PTL cases (n=8). In fact, mean PSG7 

expression in firstborn PTL placentae is significantly higher than that of firstborn NSVD placentae 

(unequal variance Welch’s T-test; p-value = 1.25 × 101?) and overall NSVD placentae (unequal 

variance Welch’s T-test; p-value = 1.28 × 101?). We note a similar dichotomy in PSG7 expression 

within the C/S group (F-test; p-value = 8.22 × 1016), suggesting a general involvement of PSG7 

deregulation in abnormal parturition. Functional enrichment analysis of NSVD vs PTL DEGs 

reveals FOXA1 transcription factor network, a regulator of embryonic development and lipid 

metabolism (Bochkis et al, 2012) and complement pathway activation, a crucial mediator of 

inflammatory response to infection in preterm labor (Vaisbuch et al, 2010) (Figure 2.5C, green 

bar; Supplementary Table 2.3B).  

 

We observe the greatest distinction in gene expression levels between our C/S and PTL 

cohorts (n=1010). CD177 exhibits 2-fold increased expression in C/S compared to PTL (one-

tailed T-test; p-value =7.55 × 1016; Figure 2.5B). Neutrophil-specific CD177 encodes a glycosyl-

phosphatidylinositol-anchored glycoprotein reported to be upregulated in inflammatory conditions 

and involved in activated platelet adhesion to endothelial cells (Sachs et al, 2007). We then filter 

for absolute maximum likelihood estimate (MLE) of log2 fold change ≥ 1.5, calculated by DESeq2 

(Methods), to limit the input into Enrichr to genes with the greatest variation between C/S and 

PTL. We note significant over-representation of processes with importance in peripartum 

adaptations of the placenta. This includes cytokine, neutrophil chemotaxis, glycosylated ECM 

proteoglycan, and cyclic AMP-dependent CREB transcription factor activity (Figure 2.5C, red 

bars). Reasons behind the drastic distinction in transcriptomic signatures between the two modes  
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Heatmap of 956 genes identified from the union of DEGs from each pairwise comparison (NSVD vs C/S – 33 genes; 
NSVD vs PTL – 4 genes; C/S vs PTL – 942 genes) using DESeq2 for differential gene expression analysis. Genes 
are filtered for maximum read count > 10 and adjusted p-value (FDR) ≤ 0.05. Rows represent the z-transformed 

distribution of gene expression values and are color-coded according to the color key on the right. Columns represent 
patient samples, which are separately clustered for each condition using average-linkage hierarchical clustering and 
accordingly ordered in the heatmap. The bottom bars indicate the 3 parturition groups (C/S; NSVD; and PTL). The 

top bars indicate select maternal and fetal metadata that are color-coded according to the legend on the right. 

Figure 2.6 | Differential gene expression clustering of parturition groups 
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of abnormal parturition remain unclear. Such observation, however, leads us to believe in the 

possible involvement of similar molecular factors but with divergent activity in all modes of 

abnormal parturition.  

 

Using the comprehensive list of DEGs (n=1030), we then perform supervised hierarchical 

clustering of normalized and log-transformed counts to stratify the 3 parturition groups (Figure 

2.6). Overall, we do not observe a strong distinction in DEG signature between NSVD and PTL. 

We attribute this to within-group variation in clinical characteristics (Figure 2.4A; Appendix Table 

2.1) and transcriptomic profiles (Appendix Figure 2.2) as well as to the study’s limited power by 

virtue of its clinical nature. In spite of the general heterogeneity in those factors, documented 

infections appear to covary with parturition mode (Figure 2.4B; Figure 2.6). The PTL cohort 

showcases a higher percentage of sepsis (Fisher’s exact test; p-value =1.08 × 101? relative to 

NSVD and p-value =4.81 × 101? relative to C/S); urinary tract infection (UTI) (Fisher’s exact test; 

p-value = 1.67 × 101@  relative to NSVD and p-value = 5.84 × 101?  relative to C/S), and 

chorioamnionitis (Fisher’s exact test; p-value =1.01 × 101@  relative to NSVD and C/S) (Figure 

2.4B).  This agrees with our DEG findings, in which PTL exhibits a prevalence of processes related 

to immune reactions. While a clear segregation of gene expression profiles is not achieved, the 

C/S cohort appears to be the primary driver of any differences (Figure 2.6; Appendix Figure 2.2). 

This highlights the dominance of a labor-specific transcriptomic state of the decidua during 

parturition. 

2.4.2 Parturition mode-specific gene co-expression patterns  

We next pursue a network-based approach to integrate the coordinated expression differences 

between parturition types into a higher-order systems level framework. We run weighted gene co-

expression network analysis (WGCNA) to identify biologically relevant patterns in the decidual 

transcriptome and functionally classify groups of genes with unknown connections to parturition. 

We perform this in two steps (Methods).  



 31 
 

First, we construct a separate co-expression network for each parturition condition 

(Appendix Figure 2.3A-C; Appendix Table 2.3). We use this to assess the preservation of 

topologically distinct modules across the NSVD, C/S and PTL networks and develop a systems-

level understanding of transcriptomic differences. Using complete-linkage hierarchical clustering, 

we identify module gene clusters within each network and perform functional analysis of their hub 

genes (Figure 2.7). Modules that are conserved across the 3 parturition conditions are enriched 

Figure 2.7 | Clustering of NSVD, C/S, and PTL co-expression network modules 
 

Complete-linkage hierarchical clustering of WGCNA co-expression modules for each parturition group, generated 
using module eigengene measures. Clusters of modules are categorized according to the legend on the bottom. 
For each cluster, module hub genes (genes with module interconnectedness kME ≥ 0.9) are input into Enrichr to 

identify significant enrichment for biological processes (FDR < 0.1 and a combined score ≥ 10). Blue boxes reflect 
processes more common in NSVD (spontaneous term parturition). Green boxes reflect processes more common in 

PTL (spontaneous preterm labor). Orange and blue boxes reflect processes common in NSVD and C/S (term 
parturition). Orange and green boxes reflect processes common in C/S and PTL (abnormal parturition). And grey 

boxes reflect processes common across NSVD, C/S and PTL (general parturition). 
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for the common cellular processes of splicing, apoptosis evasion, protein transport, and 

cytoskeletal assembly. They are also involved in reproductive functions including 

phosphatidylinositol signaling and immunoregulation. We highlight sets of modules that are 

unique to each network and thus reflect processes specific to the mode of parturition. The NSVD 

network modules (Figure 2.7, blue boxes) are enriched for glycosaminoglycan metabolism, insulin 

growth factor binding, and oxidative stress response. These processes are heavily employed 

during the early phases of pregnancy to mediate placental and fetal tissue growth. They are also 

involved in regulating cervical softening in normal parturition. Both NSVD and C/S networks 

exhibit a higher incidence of modules associated with ECM modification, collagen tensile strength 

maintenance, and vascular development (Figure 2.7, blue and orange boxes). The assembly and 

distribution of collagen fibril within the decidual endometrial ECM structure of the uterus influences 

reproductive efficiency. It also dictates the contractile capacity of the myometrium in preparation 

for labor. The PTL network modules, on the other hand, show a stronger affiliation with lipoprotein 

metabolism and homeostasis regulation (Figure 2.7, blue borders). Peroxisome proliferator-

activated receptor gamma (PPAR-𝛾) is a key regulator of energy metabolism and adipogenesis. 

Upon activation within intrauterine tissues, it develops inflammatory properties that impact labor 

onset in term parturition (Dunn-Albanese et al, 2004; St. Louis et al, 2016). Distinct from the NSVD 

network, the C/S and PTL networks share modules with pathogen-associated processes (Figure 

2.7, green and boxes). It will be interesting to further explore the role of microbial-induced platelet 

activation in abnormal parturition.  

 

Next, we perform a hypergeometric test to evaluate our qualitative observations and 

quantitatively assess the extent of overlap within complimentary modules in the 3 networks. There 

is a substantial overlap, with moderate to high levels of confidence, between modules that are 
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complimentary across the three networks (Figure 2.8A; Appendix Table 2.4). This suggests that 

the organization of the human placental transcriptome, from a co-expression purview, is generally 

preserved across parturition modes. Overlapping modules are comprised of genes involved in 

core placental functions. The NSVD modules 2, 8, 9, and 11 show the greatest conversation 

across the 3 conditions and are thus designated as general parturition modules (Figure 2.8A, blue 

box). They include a total of 657 overlapping genes that are linked to immunity and vascular 

Figure 2.8 | Overlap assessment of NSVD, C/S, and PTL network modules 
 

(A) Heatmap representing the conservation of WGCNA modules across the NSVD, C/S, and PTL co-expression 
networks. NSVD modules are used as a reference to compare with complimentary modules in C/S and PTL. 
Modules are designated as complimentary across the 3 networks based on a high percentage of overlap of 

similar genes. Adjusted p-values denote the hypergeometric probability of overlap between modules, adjusted for 
multiple comparisons using Bonferroni correction and color-coded per the color key on the bottom left. Modules 
are labeled as General Parturition Modules upon exhibiting high conservation across the 3 networks. General 

Parturition Modules are segregated into 2 groups – (1) modules with a very high degree of conservation and (2) 
modules with a lower degree of conservation. Modules are labeled as Abnormal Parturition upon exhibiting 

limited to no conservation across the 3 networks. Abnormal Parturition Modules are segregated into 2 groups – 
(3) modules observed in PTL and NSVD but not in C/S and (4) modules observed in C/S and NSVD but not in 

PTL. For each group, module genes are input into Enrichr to reveal significant gene ontology (GO) terms (FDR < 
0.1 and a combined score ≥ 10). (B) List of top module hub genes within General and Abnormal Parturition 

Modules, along with their degree of module interconnectedness. In General Parturition Modules, we highlight all 
top hub genes, whereas in Abnormal Parturition Modules, we restrict the list of top hub genes to ones that are 

also found in our list of DEGs (n=1030). 
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development. These reproductive processes are heavily involved in fetomaternal tolerance and 

support of fetal growth. The NSVD modules 4, 5, 6, 7, 12, and 17 are conserved across the 3 

conditions but to a lesser extent (Figure 2.8A, purple box). The shared 87 genes are associated 

with major maternal endocrine and metabolic adaptions in pregnancy and parturition. Hormones 

in late stage gestation, such as leptin and glucagon, regulate energy homeostasis by altering 

glucose and lipid metabolism within the placenta. This ensures continuous ample supply of 

nutrients to a rapidly growing fetus. We explore top hub genes within the general parturition 

modules (Figure 2.8B). FN1 (fibronectin 1) exhibits high module interconnectedness (kME = 0.98) 

and the highest average expression level across the 3 parturition groups (>200,000 mean 

normalized read count; Appendix Table 2.5A). The NSVD modules 10, 13, 24, and 28 overlap 

with the C/S network and are therefore labeled as abnormal parturition modules potentially 

implicated in labor (Figure 2.8A, orange box). Th e 74 overlapping module genes are involved in 

plasminogen (Plg) activation and VEGF (vascular endothelial growth factor) signaling, with 

prominent roles in ECM degradation, vascular remodeling, and inflammation (Mehra et al, 2016). 

Aberrations in these fibrinolytic and pro-inflammatory processes can hinder the rhythmic 

contractions necessary for labor and that are lacking in C-section deliveries. ENO1 (enolase 1) is 

a DEG within our list of top labor module hub genes (Figure 2.8B). It exhibits high module 

interconnectedness (kME = 0.94) and the highest average expression level in C/S (>2,500 mean 

normalized C/S read count; Appendix Table 2.5C). ENO1 encodes for a multifunctional 

plasminogen-binding protein receptor that can promote ECM degradation through local 

focalization of plasmin activity and recruitment of inflammatory cells (Plow & Das, 2009). 

Separately, the NSVD modules 1, 20, and 23 are defined as abnormal parturition modules 

potentially implicated in term timing (Figure 2.8A, green box). The 411 genes uniquely shared 

with the PTL network are significantly enriched for immune-modulating estrogen and NOTCH 

signaling. These processes are crucial to the mediation of macrophage plasticity and polarization 

within gestational tissue, as we expect to see in prematurity (Jaiswal et al, 2015; Pazos et al, 
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2012). We observe a few DEGs within our list 

of top term module hub genes (Figure 2.8B). 

This includes CALM3 (calmodulin 3) that has 

high module interconnectedness (kME = 0.95) 

and the second highest average expression 

level in PTL (>2,000 mean normalized PTL 

read count; Appendix Table 2.5B).  

  

2.4.3 Global transcriptional 
architecture of human placenta 
during parturition 

In an attempt to portray the global 

transcriptional architecture of human placenta 

during parturition notwithstanding delivery 

method, we construct a co-expression network 

using all 48 samples. We stratify 19 discrete 

gene clusters (Appendix Figure 2.3D; Appendix 

Table 2.3D) and test their association with 

patient traits. This allows us to detect gene 

connectivity patterns that align with clinical 

phenotypic, demographic, and socio-economic 

data. We correlate each module eigengene 

(first principal component, or effectively the 

average gene expression of a module) with 

patient information previously shown to either 

influence placental gene expression or 

Figure 2.9 | General parturition co-expression 
module correlation with clinical data 

 

Heatmap illustrating significant correlations (biweight 
midcorrelation coefficient ≥ 0.45 and asymptotic p-
value ≤ 0.01) of general parturition module eigengenes 
with patient information. Modules are extracted from 
the WGCNA co-expression network generated using 
all parturition samples. The x axis shows significantly 
correlated patient information (n=8). This includes 
labor type (term; preterm; or no labor); maternal age 
(continuous); pre-pregnancy weight (in lbs; 
continuous); marital status (married/engaged or 
single); birth order (first or higher order pregnancy); 
gestational age (in wks; continuous); rupture of 
membrane (ROM – spontaneous or artificial); and 
ROM duration (in hrs; continuous). The y axis shows 
all network modules (n=19; color-coded using the 
default module color scheme of WGCNA). Each cell 
contains a measure of correlation and asymptotic p-
value, color-coded according to the legend on the right. 
* Module M8 exhibits the greatest number of significant 
correlations (biweight midcorrelation coefficient ≥ 0.45 
and asymptotic p-value ≤0.01). 
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accompany abnormal parturition (Appendix Table 2.6). We note significant correlation (biweight 

midcorrelation coefficient ≥ 0.45 and student asymptotic p-value ≤ 0.01) between co-expression 

modules and the following parturition indicator traits: gestational age (GA) category, as 

established by the World Health Organization (WHO), and rupture of membrane (ROM) mode 

(Figure 2.9; Appendix Figure 2.4). We also observe significant correlation with abnormal 

parturition risk and prognostic factors such as 

maternal age category; marital status; birth order; 

and pre-pregnancy weight (Figure 2.9; Figure 

2.10). Amongst our PTL patients, we observe a 

higher prevalence of young maternal age (≤ 20), 

single marital status, and low pre-pregnancy 

maternal weight (Figure 2.10). Our C/S cohort, on 

the other hand, shows a greater occurrence of 

advanced maternal age (≥ 35), married/ engaged 

marital status, and high pre-pregnancy weight 

(Figure 2.10). Maternal age at the time of delivery 

and pre-pregnancy weight, at both ends of the 

spectrum and after adjusting for other 

confounding variables, have been extensively 

linked to a higher risk of pregnancy complications 

(Cavazos-Rehg et al, 2015; Cnattingius, 1998; Da Silva et al, 2003; Hauger et al, 2008; McDonald 

et al, 2010). And maternal marital status, through its proposed association with sufficient 

availability of social support and care services, has been frequently highlighted as a major and 

indirect influencer of pregnancy outcome (Shah et al, 2011).  

 

Figure 2.10 | Abnormal parturition risk and 
prognostic factors 

 

Histograms and bar plot depicting differences in clinical 
traits often portrayed as prognostic of abnormal 

parturition. Factors are correlated with co-expression 
network modules to identify relevant gene clusters. 
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Module M8 presents the highest number of significant correlations with the 

aforementioned clinical information, including labor type (biweight midweight correlation 

coefficient = 0.54; student asymptotic p-value = 8.00 × 1014; 	FDR	p-value	 = 	1.52 × 1012;Figure 

2.9). Taking a closer look into the M8 co-expression module, we note the presence of two distinct 

sub-module clusters associated with cytoskeletal reorganization and vascular ECM remodeling 

processes (Figure 2.11). This highlights the co-operative interplay of the two processes, with 

varying degrees and levels of aberrations in parturition and labor complications. GO analysis of 

DEGs; hub genes (exhibiting module interconnectedness kME ≥ 0.9; Methods); and placenta-

enriched genes in sub-module 1 reveals significant enrichment of cell morphological and 

physiological processes commonly involved in premature labor (Figure 2.11). This includes 

fibroblast growth factor (FGF) and phosphatidylinositol signaling and actin filament 

reorganization. In sub-module 2, we see uteroplacental insufficiency and vascular smooth muscle 

processes commonly involved in labor complications (Figure 2.11). This includes collagen and 

fibronectin fibril organization, ECM disassembly, vasoconstriction, and negative regulation of 

hypoxia-inducible factor 1𝛼 signaling. We also note the central role of LAMC1 within the M8 

module (Figure 2.11). LAMC1 (laminin 𝛾1 chain), a placenta-enriched gene with kME = 0.88, is 

one of several laminin (LAM) genes that encode for large ECM basement membrane 

glycoproteins that are extensively localized within the decidua and around newly differentiated 

blood vessels within the fetomaternal junction in the later stages of pregnancy (Kaloglu & 

Onarlioglu, 2010). LAMC1 has been reported as a core placental gene, mediating cell-cell 

interactions (Armstrong et al, 2017). A reduction in LAMC1 expression has been observed in term 

non-laboring unripe cervices (Hassan et al, 2009). We observe a similar trend in our study, in 

which the C/S cohort exhibits presents lower LAMC1 mRNA levels relative to the other groups 

(one-tailed T-test; p-value =5.51 × 101?).  
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Next, we characterize gene co-expression modules that underpin parturition and 

pregnancy complications using a publicly-accessible curated list of associated genes (Materials 

and Methods). We observe significant enrichment for labor genes in modules M1 (FDR	p-value	 =

	5.89 × 101@@) and M7 (FDR	p-value	 = 	1.41 × 101C; Figure 2.12A). Functional analysis of labor 

module genes reveals a strong involvement in selenocysteine biosynthesis, nuclear factor NF-𝜅B 

and phosphatidylinositol 3-kinase (PI3K) activity, and adhesion glycoprotein expression (Figure 

2.12B). The aforementioned inflammation and cohesion processes are commonly engaged in  

Figure 2.11 | Labor type co-expression module 
 

M8 co-expression module Cytoscape gene-gene interaction plot, highlighting the relationship of DEGs (orange); 
hub genes (yellow); and placenta-enriched genes (purple) within the two sub-module gene clusters. Enrichr 

gene ontology (GO) analysis of highlighted genes in sub-module 1 reveals significant enrichment for 
cytoskeletal and cellular dynamics / motility processes, whereas it shows significant enrichment for vascular and 

ECM remodeling processes in sub-module 2. Significance is indicated as FDR adjusted p-value < 0.1 and 
combined score ≥ 10. 

 



 39 
 

 

Figure 2.12 | Enrichment for labor, preterm and pregnancy complications genes within  
global parturition network modules 

 

(A) Hypergeometric test of the over-representation of labor, preterm, and pregnancy complications genes (gathered 
from publicly-accessible curated lists) within general parturition network modules. P-values are adjusted for multiple 

comparisons using Benjamini-Hochberg correction. (B) Functional annotation of parturition-specific genes within 
select modules: M1 in turquoise and M7 in black for labor-enriched modules; M5 in green, M11 in green yellow, and 
M12 in tan for preterm-enriched modules. (C) Overview of labor- and preterm-enriched modules. Volcano plots show 

gene expression changes within each module, emphasizing module genes, DEGs within module, and parturition-
specific DEGs within module. Cytoscape interaction diagrams depict the biological function of genes with statistically 

significant differential expression patterns within each module. 
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general parturition. Amongst the significantly differentially expressed genes within the labor 

modules (Figure 2.12C), we pinpoint the implication of WNT7A (Wnt family member 7A); MRAS 

(muscle RAS oncogene homolog); CREM (cAMP responsive element modulator); and SLC25A4  

(solute carrier family 25 member 4) in Sudden Infant Death Syndrome (SIDS) (Figure 2.12C). 

SIDS is the leading cause of post-neonatal mortality within the first year of life. Despite its unclear  

pathophysiology, the predisposition for SIDS correlates with gestational age, exhibiting an 

increased occurrence in both premature (Malloy, 2013) and post-term (Karagas et al, 1993) labor 

cases. Conversely, modules M5 (FDR 	p-value	 = 	1.74 × 101@2 ; Figure 2.12A), M11 

(FDR	p-value	 = 	8.71 × 101@C ; Figure 2.12A), and M12 (FDR	p-value	 = 	2.75 × 101@? ; Figure 

2.12A) are significantly enriched for preterm genes. Module genes have a combinatorial role in 

immunity, vasculature, placental morphogenesis, maternal-fetal substrate transfer, and hormone 

secretion (Figure 2.12B). These processes are extensively evaluated in the context of abnormal 

parturition. Significantly differentially expressed genes and preterm genes within the preterm 

modules include ADAMTS1 and 4 (a disintegrin metalloproteinase with thrombospondin type 1 

motif 1 and 4) and EFEMP1 (epidermal growth factor containing fibulin extracellular matrix protein 

1). These genes encode for metalloproteases and fibulin glycoproteins that have been shown to 

interact and potentiate ECM remodeling (Figure 2.12D) (Fontanil et al, 2014). We also note the 

involvement of RRM2 (ribonucleotide reductase regulatory subunit M2) and GGT5 (gamma 

glutamyl transferase 5) in glutathione metabolism (Figure 2.12D). Glutathione metabolism is 

known to modulate the production of macrophage-induced ROS in the myometrium and 

subsequently contribute to fetal distress and premature birth (Hadi et al, 2015). We finally observe 

FOSL1 and 2 (FOS-like antigen 1 and 2) as significantly differentially expressed preterm genes 

engaged in corticotropin-releasing hormone (CRH) signaling (Figure 2.12D). CRH is a major 

contributor to myometrial activation and the ensuing heightened sensitivity to prostaglandins that 

induce the synchronous contractions of labor (Fetalvero et al, 2008). 
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Dysregulation of decidual alternative splicing in abnormal parturition  

To further mine the transcriptomic complexity of the placenta, we go beyond analysis at the gene-

level and evaluate isoform-level differences as a result of pre-mRNA alternative splicing. We 

employ the replicate Multivariate Analysis of Transcript Splicing (rMATS) computational pipeline 

to detect splicing alterations between each pair of parturition mode (Methods). We identify a total 

of 1334 significant differential alternative splicing (DAS) events in NSVD vs C/S; 1327 events in 

NSVD vs PTL; and 1056 events in C/S vs PTL covering the major subtypes of AS patterns (Table 

2.2). Cassette skipped exons (SE) represent the 

majority of AS events, accounting for ~70% of all 

splicing events in each comparison. Mutually exclusive 

exon (MXE) events dominate in terms of significant hits. 

We, however, believe this finding to be an 

overestimation.  

 

Using significant pairwise DAS SE events 

(Appendix Table 2.7), we are able to achieve a 

reasonable segregation between parturition types 

(Figure 2.13A-B). We again note a more distinct AS 

signature for C/S patients, with a larger proportion of 

variance captured by the first principal component 

(67.34% versus 2.97%) (Figure 2.13B). This is in 

accordance with our DEG results and thus further 

supports our hypotheses that labor has the greatest 

impact on the transcriptomic state of the decidua. We 

explore our list of significant DAS SE events in abnormal 

parturition (NSVD vs C/S and NSVD vs PTL) and extract 

Table 2.2 | Alternative splicing program in 
NSVD, C/S, and PTL deciduae 

 

rMATS Summary of alternative splicing events 
that are significantly differentiated between each 

pair of parturition mode.  
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genes with multiple isoforms and within our list of DEGs (Figure 2.13C). ATXN2 (ataxin 2), CREM 

(cAMP responsive element modulator), and VEGFA (vascular endothelial growth factor A) are 

seen in NSVD vs C/S. We previously noted CREM as a gene that is significantly differentially 

expressed within labor-enriched co-expression modules (Figure 2.12C) and that, along with 

angiogenic factor VEGFA, is involved in the SIDS pathway. Through alternative splicing, CREM 

yields an array of basic leucine-zipper (bZIP) transcription activator/repressor protein isoforms 

that regulate the expression of CRE-containing target genes (Sanborn et al, 1997). The switch in 

Figure 2.13 | Skipped exon differences between parturition groups 
 

(A) Heatmap showing significant differentially skipped exons (SE)s identified from pairwise DAS analyses using 
rMATS (NSVD vs C/S – 426 events; NSVD vs PTL – 479 events; C/S vs PTL – 490 events). Significance is 

determined as |𝛹FGHIJKLKHI@ −𝛹FGHIJKLKHI?	| ≥ 0.05 (where 𝛹 represents exon percent spliced in value) and adjusted p-
value (FDR) ≤ 0.05. Rows represent the z-transformed distribution of 𝛹MNHI_P −	𝛹FMNHIQ values for each gene and are 

color-coded according to the indicated color key. Columns represent decidual samples. (B) Principal component 
analysis (PCA) of NSVD, C/S, and PTL samples using the union of significant SE DAS events. (C) Boxplots 

displaying the distribution of 𝛹 values for gene variants with multiple significant SE event hits and within the list of 
DEGs in relation to abnormal parturition. The top panel showcases isoforms in NSVD vs CS while the bottom panel 

showcases isoforms in NSVD vs PTL. 
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CREM isoform expression is believed to modulate myometrial gene expression during gestation, 

with a prominent reduction observed in the later stages and a potential contribution to the 

quiescence-to-contractility uterine state shift during parturition (Bailey et al, 2000). This matches 

our observations, in which CREM exhibits a reduction in overall gene expression level (one-tailed 

T-test; p-value =1.50 × 101R; Figure 2.14) and the inclusion level of two alternatively spliced exons 

(Figure 2.13C) in the C/S samples. Exclusion of exon 6 within the glutamine-rich trans-activation 

domain of CREM (chr10: 35,477,128-35,477,316) has been shown to render a CREM repressor 

splice variant (Inada et al, 1999) that can bind to palindromic CRE motifs (TGACGTCA) of target 

genes to halt their activation in laboring myometrial tissue (Bailey et al, 2005). CREM repressor 

target genes in the human myometrium include NRP1 (neuropilin-1) and ID4 (inhibitor of DNA 

binding 4) (Bailey et al, 2005), two of our DEGs that have reduced expression in C/S placentae 

(Figure 2.14). NRP1 is a VEGFA receptor that is downregulated in fetal growth restriction and is 

believed to play a role in malformed fetoplacental vascular branching in abnormal pregnancies 

(Maulik et al, 2015). And ID 4 has been shown to exhibit differential expression in relation to 

delivery mode and labor onset (Sõber et al, 2015). Within the list of NSVD vs PTL DAS genes, 

we identify the following DEGs with multiple isoforms: DCAF8 (DDB1 and CUL4 associated factor 

8), SENP7 (SUMO1/sentrin specific peptidase 7), and TPTEP1 (transmembrane phosphatase 

with tensin homology pseudogene 1). DCAF8 encodes a WD40 repeat-containing substrate 

Figure 2.14 | CRE-target gene expression across parturition types 



 44 
 

receptor that binds to damage-specific DNA binding protein 1 adaptor to form the DDB1-Cullin4-

based E3 (CUL4) ubiquitin ligase complex (Sang et al, 2015). The ligase complex is involved in 

regulating DNA damage checkpoint response and protein turnover, with deficient CUL4 and 

DDB1 levels linked to abnormal placental development and embryonic lethality (Jiang et al, 2012). 

While neither identified DAS DCAF8 isoforms involve amino acid deletions within the DDB1-

binding WD40 motifs, its cellular function within the ligase complex has been shown to be 

extensively subverted by pathogenic viruses to degrade host anti-viral response factors and allow 

undisrupted viral replication (Li et al, 2010). DCAF variants with mutations outside WD repeats 

have reduced interaction with DDB1 and can be competed off by viral protein motifs (Li et al, 

2010). Viral infection of the placenta has been previously demonstrated to stimulate a fetal 

inflammatory response, sensitize the mother host to bacterial infection, and ultimately promote 

preterm labor (Cardenas et al, 2010). 

 

We next assess the overlap of genes corresponding to significant DAS SE events from 

each pairwise analysis (Figure 2.15A). We identify 82 intersecting genes in NSVD vs C/S and C/S 

vs PTL and label them as labor-specific DAS genes (Figure 2.15A). We investigate those 

containing alternatively spliced exons with the highest absolute percent spliced in values (PSI; 

Ψ). IMMP1L and AGBL5 yield isoforms with significantly upregulated exon inclusion levels (∆Ψ) 

in C/S relative to NSVD (FDR = 4.47 × 101? and FDR = 1.04 × 101? respectively) (Figure 2.15B-

C). IMMP1L (inner mitochondrial membrane peptidase 1-like) encodes for catalytic subunit 1 of 

the inner membrane peptidase (IMP) complex that is responsible for cleaving signal peptide 

sequences after reaching the inner mitochondrial membrane. AGBL5 (ATP/GTP binding protein 

like 5) encodes for a matrix metalloproteinase (MMP) enzyme with increased proteolytic cleavage 

activity in the presence of pro-inflammatory cytokines in the uterine cervix during parturition 

(Dubicke et al, 2010; Wang & Stjernholm, 2007). Within the 84 genes that overlap between NSVD 

vs PTL and C/S vs PTL – designated as term-specific DAS genes (Figure 2.15A,) we observe 
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significantly upregulated exon inclusion levels for ST5 in PTL (FDR = 6.61 × 1016)	(Figure 2.15B-

C). ST5 (suppression of tumorigenicity 5) encodes for a protein regulator of MAPK1/ERK2 

signaling, whose activity in human uterine cervix has been shown to covary with gestational period 

and labor onset (Ruzycky, 1998; Wang & Stjernholm, 2007). We finally note 25 genes that 

intersect across the three pairwise DAS analyses (Figure 2.15A). Amongst those genes are 

PLA2G6 and EEF1D, with a total of 3 isoforms exhibiting significantly downregulated exon 

inclusion levels in PTL (Figure 2.15B-C). PLA2G6 (phospholipase A2 group VI) encodes for a 

Figure 2.15 | Genes of differentially skipped exons in abnormal parturition 
 
 

(A) Venn diagram displaying the overlap of DAS SE genes from each pairwise analysis. Intersecting genes in 
NSVD vs PTL and C/S PTL are labeled term-specific genes. Intersecting genes in NSVD vs C/S and C/S vs 

PTL are labeled labor-specific genes. (B) Scatter plots showing skipped exons with significantly different exon 
inclusion levels between NSVD and C/S (top plot) and NSVD and PTL (bottom plot). Significance is determined 

as |ΨFTUVWXYXUV@ −ΨFTUVWXYXUV?	| ≥ 0.05 and FDR ≤ 0.05. Genes corresponding to exons with the highest absolute 
expression fold change are highlighted. (C) List of genes associated with top significant DAS SE events in C/S 

and PTL along with their percentage exon inclusion relative to NSVD and FDR adjusted p-values. 
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PLA2 enzyme involved in glycerophospholipid homeostasis and prostaglandin synthesis (Gilbert 

& Harmon, 2004; Sun et al, 2010). PLA2 enzyme levels in human placenta have been linked to 

premature rupture of membranes (PROM) (Lappas et al, 2001) and fetal rejection due to 

perturbations in the pro-/anti-inflammatory mediators ratio at the fetomaternal interface (Mosher 

et al, 2014). EEF1D (eukaryotic translation elongation factor 1 delta) encodes for a subunit of the 

eEF1 protein complex. A known translational factor member in protein biosynthesis, the eEF1 

complex has acquired various non-canonical and moonlight functions. This includes pro-

inflammatory signal transduction, viral replication, response to oxidative stress, and cytoskeletal 

remodeling (Gross & Kinzy, 2005; Li et al, 2013; Sasikumar et al, 2012; Schulz et al, 2014) – 

processes we previously saw as associated with PTL. 

2.5 DISCUSSION 

Disruption in the seemingly Sisyphean task of pregnancy, from early through late stages of 

gestation, can result in a wide range of life-threatening complications that impact the fetus and 

the mother. Such disruption is believed to be brought on by intrinsic genetic and extrinsic 

environmental stimuli or stressors that interact in a dynamic, temporally-varying, and many-to-

many correspondence manner. The complex gene-environment interplay in pregnancy has long 

hindered scientists’ ability to isolate precise trigger points for pregnancy complications. It is thus 

imperative to pursue novel methodologies to unveil the underlying etiology and ultimately address 

a major unmet medical need for better prognostic and diagnostic markers. We perform a 

comprehensive and multilayered analysis of RNA sequencing and clinical data from 3 parturition 

groups to explore the underpinnings of late-stage pregnancy. In doing so, we capture the 

biological detail transcribed within the transcriptomic state of maternal uterine tissue and use it to 

convey the narrative for general and abnormal parturition. 
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2.5.1 A proposed molecular depiction of labor processes in the decidua 

Our findings lead us to recognize the decidua, with its unique immunomodulatory and cancer-like 

properties, as an important mediator of the rapid physiological changes invoked prior to labor. 

Figure 2.16 | Summary of Findings 
 

Summary of findings from transcriptomic, interactomic, and phenomic analyses of intrapartum 
decidual specimens. We highlight potential key player genes, molecular processes, and clinical traits 

that frequently appear to associate labor, C-section, and preterm labor. 
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Functional analysis of its transcriptomic landscape reveals the composite inflammatory nature of 

parturition in its various forms. While the exact mechanisms that trigger parturition remain unclear, 

we are able to systemically integrate results from individual analyses to paint a rough picture of 

involved factors. We posit that the growing gestation demands in late-stage pregnancy activate 

the NOTCH transmembrane receptor to reprogram mitochondrial metabolism (Eun & Jeong, 

2016; Xu et al, 2015). The increased respiration rate and oxidative burst stimulates master 

transcription factor nuclear factor NF-𝜅B activity, stabilizes the transcription factor hypoxia-

inducible factor (HIF), and promotes a transient and parturition-specific hypoxic episode within 

the uterine myometrium. Hypoxic stress, in turn, increases the production of chemokines to attract 

leukocytes and induce a higher degree of pro-inflammatory M1-polarized phenotype expression 

(Xu et al, 2015). Leukocytes successively infiltrate the inflammatory cell-enriched cervix and 

release proteases to disrupt its rigid extracellular matrix and initiate cervical effacement. The pro-

inflammatory and neuroendocrine feedback loop concomitantly stimulates pro-labor uterotonic 

signaling and prostaglandin synthesis in intra-uterine tissues. This process is modulated by 

selenoprotein levels and the phosphatidylinositol turnover-mediated release of arachidonic acid 

from membrane glycerophospholipids (Folkert et al, 1984; Huang et al, 2012; Walsh, 2011). The 

surge in vasoactive lipid autacoids then elicits a biphasic response, manifested as an alternating 

constriction and dilation rhythm, in the endometrial endothelial vascular smooth muscles. The 

contractile signal propagates through gap junctions within the cytoskeletal framework of 

myometrial cells and culminates in the strong phasic uterine contractions of labor. Cervical dilation 

advances as a result of the highly excitable uterine state and facilitates transportation of the fetus 

down the cervical canal.  The amniochorionic fetal membranes continue to weaken and ultimately 

rupture to commence birth. We pinpoint several humoral, adhesion, vascular, endocrine, and 

cytoskeletal gene factors that we believe can cooperatively converge to instigate the coordinated 

series of labor events (Figure 2.16; blue box). Amongst those are FN1 and LAMC1, which are 

highly expressed in human placental tissue (Figure 2.17). FN1 and LAMC1 encode major 
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structural glycoproteins that characteristically reside at the chorionic-decidual interface. They 

actively participate in extracellular matrix remodeling of the cervix in preparation for labor 

(Goossens et al, 2009; Hassan et al, 2009).  

 

2.5.2 A proposed molecular depiction of C-section processes in the decidua 

The higher number of altered gene and isoform expression hits we observe in our C/S population 

underlines the extensive molecular and structural modifications associated with labor. Cesarean 

deliveries are performed as a result of labor-specific obstetric complications that include delayed, 

prolonged, dystotic, or absent labor. We typically foresee the identification of a large selection of 

pathophysiologic factors that can contribute to C/S from various gestational periods. By analyzing 

only non-laboring C/S placentae, we are able to isolate those specific to halting proper parturition. 

In addition to the previously conveyed processes of parturition, we notice significantly higher 

Figure 2.17 | Expression profile of labor genes in human tissue 
 

Tissue-specific enrichment for labor genes that were identified using the integration of analyses in the study. 
RNA levels in 37 human tissue samples were downloaded from the Human Protein Atlas (www.proteinatlas.org). 

% Tissue Expression represents tissue-specific gene expression level divided by total gene expression level 
across all tissues (in TMP - Transcripts per Million values). In red we denote placenta-specific enrichment. 
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enrichment for eccentric vascular ECM mechanics, angiogenesis, and smooth muscle contraction 

in C/S. In agreement with previously published studies (Bogaerts et al, 2013; Ecker et al, 2001), 

C/S patients also exhibit a more advanced age, greater pre-pregnancy weights, and higher parity. 

We extrapolate that older age, overweight, and altered reproductive tract morphology impair the 

utero-placental hemodynamic system of parturition. Reduction in vascular permeability and 

thickening of the amniotic basement membrane can be conducive to prostaglandin insensitivity, 

delays in cervical activation, inefficient uterine contractile function, and the cessation of fetal 

membrane rupture. This manifests in labor difficulties including an increase in gestation duration 

and inadequate preparation for parturition. Overweight pregnant women are also more likely to 

deliver macrocosmic newborns that necessitate C-section deliveries.  Furthermore, diminished 

plasminogen activity within the vascular smooth muscle cells of certain C/S placentae can 

influence the ability of MMPs to degrade its extracellular matrix at term. NFE2L3, EDRNB, and 

NID2 show the highest enrichment in placental tissue (Figure 2.18) within the list of gene factors 

we present as associated with C/S (Figure 2.16; orange box). NFE2L3 (Nuclear Factor Erythroid 

2 Like 3) has been characterized as the “Cinderella” of Cap‘n’Collar (CNC) transcription factors 

due to its under-studied and elusive functionality (Chevillard & Blank, 2011). Recent studies have 

revealed its involvement in placental vascularization and fetal growth during the late stages of 

pregnancy (Kashif et al, 2012). EDNRB (Endothelial Receptor Type B) encodes a G protein-

coupled receptor protein that binds endothelin-1 (ET-1) within vascular smooth muscles. In 

addition to its vasomodulatory properties, ET-1 has been shown to influence the peripartum 

endocrinological cascade and moderate the detachment of fetal membranes (GRAM et al, 2017; 

Takagi et al, 2008). NID2 (Nidogen 2) encodes a peptide within vascular and epithelial basement 

membranes of decidual tissue. By binding nidogen, a known MMP substrate, it can modulate 

ECM composition and limit its degradability at term (Strauss, 2013). 
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2.5.3 A proposed molecular depiction of PTL processes in the decidua 

Preterm labor, on the other hand, is a term-specific obstetric complication prompted by disruption 

in the scheduling of parturition. While exhibiting diverse pathophysiology, it is generally associated 

with instability in fetal microenvironment, from an immunologic and sufficiency purview, and 

defective timing regulation for uterine quiescence-to-contractility state transition. The 

transcriptomic profile of PTL appears to be less distinctive, as it incorporates components from 

across parturition modes. We do, however, note a higher level of immunologic response to 

infectious agents and an imbalance in the attack/tolerate homeostatic state of pregnancy in PTL. 

This matches our clinical findings, in which infections, such as sepsis, UTI, and chorioamnionitis, 

are more common in the PTL cohort. We propose that sterile and microbial-induced inflammation 

Figure 2.18 | Expression profile of C/S genes in human tissue 
 

Tissue-specific enrichment for C/S genes that were identified using the integration of analyses in the 
study. RNA levels in 37 human tissue samples were downloaded from the Human Protein Atlas 

(www.proteinatlas.org). % Tissue Expression represents tissue-specific gene expression level divided 
by total gene expression level across all tissues (in TMP - Transcripts per Million values). In red we 

denote placenta-specific enrichment. 
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contribute to prematurity in the following manner: Physical trauma, including systemic and intra-

amniotic infection and decidual hemorrhaging and senescence, as well as psychological and 

psychosocial stress provide stimulus for the premature release of CRH – of varying maternal, 

fetal, hypothalamic, and placental origins. Levels of circulating pro-inflammatory mediators, such 

as leukocytes and MMPs, amplify in response. This disturbs the finely-tuned local inflammatory 

environment and elicits a shift towards a M1 inflammatory predominant state. Both hemostatic 

coagulation and complementary systems get activated to generate thrombin at a higher rate and 

recruit activated platelets to further modulate immune response. The overstimulation of 

prostaglandin and estrogen production and MMP activity then consecutively prompts an 

intrapartum switch in myometrial contractility. It also effectuates an increase in collagen solubility, 

a disruption in rigid cervical matrix, and softening of fetal membranes. Additionally, we detect 

significantly lower maternal pre-pregnancy weights, higher rates of neonatal hypoglycemia 

(Figure 2.19), and enriched lipid metabolic processes 

in PTL. This makes us speculate that underweight 

mothers are more prone to nutritional deficiencies that 

can impact fetal and placental development as well as 

limit adequate placental-fetal exchange. Nutritional 

stress, due to unmet metabolic needs by the growing 

fetus, results in increased CRH and glucocorticoid 

production and glucose shortage. The 

PI3K/AkT/mTOR signaling network is then engaged to 

modulate glucose metabolism by influencing forkhead 

(FOXO1) and peroxisome proliferator-activated 

receptor (PPAR) transcription factor levels in the placenta. PPARs successively enhance the 

production of cytokines, creating a heightened state of inflammation and prompting early labor. 

Alternatively, a caloric deficit can increase the mother’s susceptibility to infections through 

Figure 2.19 | Neonatal hypoglycemia 
records across parturition types 
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glucocorticoid hindrance of immune response. We identify PSG7, HGF, and EFEMP1 as PTL 

genes (Figure 2.16; green box) with greatest placental expression (Figure 2.20) PSG7 

(Pregnancy Specific Beta-1-Glycoprotein 7) encodes for one of the most abundant trophoblastic 

proteins in maternal serum (Lin et al, 1974). With a demonstrated role in immunomodulation, 

pregnancy-specific glycoproteins (PSGs) regulate cytokine production and immune activation 

phenotypes within the decidual microenvironment (Martinez et al, 2013; Snyder et al, 2001). High 

PSG concentration levels are typically detected near term (Blois et al, 2014), whereas low PSG 

concentration levels have been reported in pregnancy complications and abortion (Grudzinskas 

et al, 1983; Tamsen, 1984). HGF (Hepatocyte Growth Factor) encodes for a pluripotent cytokine 

with established roles in placental development (Somerset et al, 1997), placental glucose uptake 

(Visiedo et al, 2015), and placental inflammation. It has also been linked to inflammation-mediated 

uterine distensibility and premature fetal membrane rupture in preterm labor (Waldorf et al, 2015). 

Figure 2.20 | Expression profile of PTL genes in human tissue 
 

Tissue-specific enrichment for PTL genes that were identified using the integration of analyses in the study. RNA 
levels in 37 human tissue samples were downloaded from the Human Protein Atlas (www.proteinatlas.org). % Tissue 
Expression represents tissue-specific gene expression level divided by total gene expression level across all tissues 

(in TMP - Transcripts per Million values). In red we denote placenta-specific enrichment. 
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Lastly, EFEMP1 (EGF Containing Fibulin Extracellular Matrix Protein 1) encodes an ECM 

glycoprotein that strongly binds laminins, fibronectins, and nidogens and modulates MMP activity 

(Timpl et al, 2003). It is highly expressed at the site of spontaneous rupture of membranes (Nhan-

Chang et al, 2010).  

2.5.4 Study limitations 

Our study faces the following limitations that can reduce the reproducibility and translatability of 

reported findings: 

2.5.4.1 Abnormal parturition heterogeneity 

The identification of a limited number of DEGs in PTL highlights its inherent heterogeneous nature 

(Figure 2.2). PTL has several subtypes including: (a) medically indicated PTL, brought on by 

maternal and fetal complications; (b) PTL associated with preterm premature rupture of 

membranes (PPROM), typically due to infection; and (c) spontaneously PTL, occurring without 

evident risk factors (Moutquin, 2003). PTL is therefore a condition of multiple etiologies and worthy 

of further sub-classification in future assessments of larger sample sizes. Prior classification of 

C/S cases into elective or emergency C/S groups in future studies is also necessary Figure 2.1). 

C/S can be performed either as a result of abnormally slow or failed progress of labor (referred to 

as dystocia) or pre-/co-existing life-threatening complications and thus involving varying 

pathophysiology.  

2.5.4.2 Confounding factors  

Patients within each parturition group exhibit a wide range of characteristics, raising the concern 

of confounding factors that can diminish or over-exaggerate our findings. For example, PTL 

placental samples are collected over a span of 3 years from 3 centers. While all cases were 

filtered for non-singleton births, preeclampsia, and gestational diabetes, many factors remain 

variable such as gravidity and parity, infection, pre-pregnancy maternal weight, and prenatal 

steroid treatment. The majority of women that deliver prematurely in our study (13/16) are 
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administered glucocorticoids (GCs) to promote fetal maturation (Figure 2.4). Synthetic GCs can 

significantly impact the gene expression make-up of the placenta (Ozmen et al, 2017; Robinson 

et al, 1988) and therefore need to be controlled for in forthcoming studies. Additionally, while an 

ideal model to study maternal-fetal interface anomalies, the decidua is a mélange of maternal 

stromal cells, glandular epithelial and immune cells, and fetal trophoblast cells (Fu & Wei, 2016). 

It is therefore difficult to extract clean maternal decidual cells and isolate biological events specific 

to the mother. We note minor fetal contamination in our dataset by observing 21 genes that align 

to the Y chromosome (Appendix Figure 2.5). Samples collected from patients with male fetuses 

exhibit much higher expression levels for those genes relative to their female counterparts thus 

confirming the presence of fetal transcriptome.  

2.5.4.3 Study design weaknesses 

An averaged total gene expression overview of the placenta conceals the underlying biological 

heterogeneity. Bulk RNA-seq analysis limits our ability to assess the extrinsic and intrinsic 

variations and interactions between cell types. This is especially of crucial interest when studying 

a microenvironment heavily enriched with and regulated by inflammatory cells. And finally, the 

switch from pregnancy to labor can be viewed as a dynamic system of highly interactive feedback 

loops – both maternal and fetal – with a tissue-specific and time-dependent nature. Research 

remains unclear on whether abnormal parturition reflects late-stage aberrations or is rather rooted 

in early placental development defects. In order to extract the point of disruption within such tightly 

controlled system, we need to assess the joint role of the mother and the fetus as well as evaluate 

chronological changes throughout the course of gestation. This can be achieved through 

longitudinal and comprehensive analysis of both fetal and maternal membranes, which will enable 

the design of therapeutic agents that can provide precise, targeted dosages at the appropriate 

time window.   
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2.6 CONCLUSION 

Through a high-dimensional examination of RNA sequencing and clinical data, we provide a 

comprehensive description of the transcriptomic landscape of human decidua under term, 

preterm, and non-laboring conditions. By integrating differential expression and alternative 

splicing, co-expression, and functional enrichment analyses findings, we show that labor has the 

most significant influence on the underlying molecular composition. We associate the C/S form of 

abnormal parturition with compromised utero-placental ECM organization and hemodynamics, 

advanced maternal age, and higher pre-pregnancy weight. On the other hand, we postulate an 

integral function for CRH – the “placental clock” – in birth timing and stress-induced humoral 

response in the PTL form of abnormal parturition. We also uncover the association of infection, 

younger maternal age, and lower pre-pregnancy weight with PTL. We generate a list of 

transcriptomic, phenomic, and interactomic factors (Figure 2.16) that we believe have potential 

contribution to parturition-specific complications, paving the way for future experimental validation 

and predictive biomarker identification. 

2.7 FUTURE DIRECTIONS 

Our findings offer a strong indication of factors involved in various modes of parturition. The goal 

is to harness the knowledge acquired about mechanisms in late-stage pregnancy, moving past 

the exploratory stage to ultimately extract determinants of a successful pregnancy from earlier 

stages. I intend to further pursue this work as a postdoctoral fellow, with the goal of depicting the 

“central dogma” of pregnancy. I will do so by participating in efforts to (a) create a comprehensive 

database of longitudinal pregnancy-associated data from whole genome sequences, 

epigenomes, proteomes, metabolomes, microbiomes, clinical tests, medical imaging, and patient 

traits; (b) use the high dimensional landscape of pregnancy at its various stages to identify points 

of perturbation, and (c) ultimately identify biomarkers that improve on the sensitivity of predictors 
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currently used in the clinical assessment of life-threatening pregnancy complications such as 

preterm labor.  

  



 58 
 

CHAPTER II I  
3  I so form -Leve l  Pr o f i l ing  o f  G l iob las tom a 

R adiophenotypes  
 

3.1 ABSTRACT 

Glioblastoma (GBM), used to refer to Grade-IV astrocytoma, is a malignant type of solid brain 

tumors that continues to exhibit a high degree of resistance to treatment despite the abundance 

of newly discovered molecular targets and pathways. This is notably the result of GBM tumor’s 

heterogeneous molecular structure as well as the undefined involvement of its microenvironment. 

The push for precision and personalized management in medicine has fostered highly integrative 

efforts in GBM assessment, with a heavy focus on incorporating a wide range of imaging- and 

molecular-based profiling techniques to improve clinical phenotypic stratification. Using a 

“radiotranscritpomic” framework, we evaluate the relationship between glioma-intrinsic exon 

inclusion levels and quantitative, morphological MRI image features for 38 GBM patients from 

The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA). Functional 

enrichment analysis of significant exon correlates reveals the overrepresentation of motility-

enhancing signaling cascades, extracellular matrix remodeling, and ion channel activity, 

highlighting the proliferative and invasive property of GBM tumors. Identified exon genes exhibit 

a high prognostic power, yielding significant associations with radiographic edema. We posit that 

an invasion-specific “radiotranscriptomic” profile of GBM tumors serves as a robust prognostic 

tool that can be used to derive multimodal treatment options that can specifically target motile, 

invading tumor cells. 
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3.2 INTRODUCTION 

3.2.1 The heterogeneous landscape of glioblastoma 

Glioblastoma (GBM), used to refer to Grade-IV astrocytoma, is the most common, aggressive, 

and malignant form of primary brain tumors in adults. It can either directly manifest as a Grade-

IV tumor –referred to as primary GBM – or evolve from lower grade gliomas –referred to as 

secondary GBM (Ozawa et al, 2014). Upon suspicion of glioblastoma (GBM), patients undergo a 

regimen of gadolinium-enhanced magnetic resonance imaging (MRI) and histopathologic 

tissue analysis for a definitive diagnosis (Itakura et al, 2015). From an imaging perspective, 

GBM tumors lack a characteristic regional manifestation. They exhibit lesions with varying 

sizes, contrast enhancing margins, necrotic masses, edema, neoplastic cell infiltration, 

hemorrhaging, and microvasculature (Jain et al, 2014; Hammoud, 1996). Histological 

evaluations have also revealed fluctuations in the proportion of GBM tumor anatomic 

structures with increased cellularity, pseudopalisading necrosis, nuclear pleomorphism, vascular 

endothelial proliferation, and mitotic figures (Lawton, 2009). The eclectic mixture of cell types, 

with genetically distinct clonal populations and varying levels of cellular and nuclear 

polymorphisms, is believed to contribute to a high degree of GBM intratumoral heterogeneity 

(Louis et al, 2016).  This has spurred numerous efforts to decipher the molecular underpinnings 

of GBM to develop personalized treatment strategies that better accommodate the variability 

between patients. 

3.2.2 Existing imaging- and molecular-based efforts to decode GBM tumor 
heterogeneity 

3.2.2.1 GBM radiomic features 

Several studies have explored image-based biomarkers of distinct GBM tumor phenotypes, 

with the goal of non-invasively stratifying patients into subgroups for targeted therapy 

(Itakura et al, 2015). Image-based features to characterize GBM tumors are currently 
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extracted from a wide range of imaging modalities –such as MRI, CT, and PET – and 

sequences –such as T1-weighted (T1W), T2-weighted (T2W), fluid attenuation inversion 

recovery (FLAIR), and diffusion weighted imaging (DWI).  

 

In an attempt to ensure uniformity between radiographic measurements, the cancer 

research community has generated the Visually AcceSAble Rembrandt Images (VASARI) MRI 

feature set schema (https://wiki.nci.nih.gov/display/ CIP/VASARI) for neuroradiologists to use in 

their assessments. The well-defined and standardized lexicon, comprising thirty semantic 

features,  has been widely adopted by domain experts to provide a comprehensive depiction of 

features associated with GBM (Gutman et al, 2013). It consists of a combination of 

quantitative/continuous, categorical (ordinal), and qualitative grading systems for feature rating. 

VASARI features have provided significant radiophenotypic information about GBM tumors and 

have been extensively investigated in relation to survival and tumor molecular profile (Gutman et 

al, 2013). With the increased interest in further elucidating GBM tumor characteristics, 

researchers have also independently derived computational features. These include intensity, 

morphologic, volumetric, histogram-based and texture analysis-derived features using 2D/3D 

tumor regions (Narang et al, 2016). Others have also collected diffusion properties and spatial 

information using models of glioma growth (Bakas et al, 2017). PET imaging has also been used 

to derive semantic and computational features due to its ability to differentiate residual GBM 

tumors from scar tissue and edema (Narang et al, 2016). MRI, however, continues to be the 

preferred modality for radiomic evaluations of GBM due to its high sensitivity and specificity. The 

development of Diffusion Weighted Imaging and Perfusion MRI analysis methods now offers the 

potential to depict tumor phenotypic information at the tissue-level including tumor cell density 

and invasion (Padhani et al, 2009).   
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3.2.2.2 GBM molecular profiling 

Molecular profiling-based classification methods have also been extensively explored to elucidate 

the heterogeneous molecular structure of GBM tumors and risk stratify GBM patients. In a study 

led by The Cancer Genome Atlas (TCGA), researchers identified four distinct, clinically-relevant, 

and non-transitioning GBM patient subtypes: (1) classical (CL); (2) mesenchymal (MES); (3) 

proneural (PN); and (4) neural (NL) (Verhaak et al, 2010). This was achieved through validated 

differential analysis of transcript abundances of 600 TCGA GBM tumors. They were able to 

demonstrate that distinct gene expression profiles between GBM subgroups with varying somatic 

mutations, DNA copy numbers, treatment response, and survival (Verhaak et al, 2010). In the 

process, they generated a list of 840 predictive and subtype-specific genes that has been a 

standard in GBM molecular classification (https://tcga-data.nci.nih.gov/docs/publications/ 

gbm_exp/). In an attempt to segregate the glioma-intrinsic transcriptomic landscape from that of 

tumor microenvironment, another study leveraged single cell RNA sequencing to identify genes 

uniquely expressed by tumor cells (Wang et al, 2017). They generated a list of 150 subtype-

predictive genes and demonstrate a level of overlap with Verhaak et al.’s list of MES, PN, and CL 

genes. Such efforts have provided a tremendous amount of knowledge regarding the molecular 

landscape of GBM.  

3.2.3 Radio-‘omic’ analyses of GBM tumors  

Matching the molecular landscape of GBM tumors, at the microscopic level, with their 

radiographic manifestation, at the macroscopic level, can provide a more comprehensive 

overview of the underlying heterogeneity. Radiological imaging can provide a detailed 

representation of GBM tumor phenotype, while molecular profiling can better isolate sources of 

its heterogeneous infrastructure. Radiogenomic (alternatively image genomic or 

“radiotranscriptomic”) efforts are actively pursued in GBM research, with the goal of integrating 

quantitative radiomic features with biomolecular information to identify more robust prognostic 
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and predictive tumorigenesis biomarkers, stratify patients, and inform clinical decisions (Jaffe, 

2012).  

3.2.4 Why use a multi-layered transcriptome-radiome framework in GBM? 

Patients with GBM face a poor prognosis, with a median survival rate of less than 2 years (Ohgaki 

& Kleihues, 2005). GBM heterogeneity has limited clinician’s ability to predict treatment response 

and recurrence following the standard course of surgical re-sectioning, fractionated radiotherapy, 

and chemotherapy (Martinez et al, 2010). A robust classification of GBM tumors is therefore 

necessary to improve our understanding of primary brain tumor etiology and identify determinants 

of GBM subtypes for tailored therapies.  

 

Molecular profiling of GBM, on its own, has failed to decode intratumoral heterogeneity. 

This is due to its inability to differentiate between tumor, tumor microenvironment, disease 

progression, and treatment contributions and its bias towards effects specific to the tumor region 

from which a sample is collected. Furthermore, molecular investigations of biopsied tumor 

samples can only be performed following surgical resectioning. There is, therefore, a higher 

likelihood of falsely capturing a pro-inflammatory signature that is separate from GBM. And image-

based biomarkers, by themselves, are unable to 

 

Researchers have previously evaluated the relationship between GBM tumor copy 

number variation, DNA methylation, and gene expression profiles and MRI image traits. We 

further expand on such findings by incorporating glioma-intrinsic alternative splicing information. 

The goal is to use a “radiotranscriptomic” approach to identify isoform-level molecular correlates 

of morphologic images features of GBM tumors. By integrating complementary radiophenotypic, 

transcriptomic, and clinical information, we hope to provide insight into the heterogeneous 

landscape of GBM tumors and GBM-associated gene isoforms and biological processes. 
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3.2.5 Study design 

In this study, we use a multi-layered transcriptome-radiome framework to investigate the 

relationship between the transcriptome (exon-level molecular information) and the radiome (pre-

operative MRI quantitative anatomical tumor radiophenotypes) (Figure 3.1). We posit that the 

phenotypic diversity of GBM tumors that is captured via radiographic imaging also reflects the 

underlying molecular heterogeneity.  

 

 

3.3 METHODS 

3.3.1 Selection of GBM MRI images 

GBM MRI images from The Cancer Imaging Archive (TCIA) are selected using the following 

criteria: (a) includes pre-operative baseline images; (b) includes pre- and post-contrast T1-

weighted and T2-weighted fluid-attenuated inversion recovery (FLAIR) MR images; and (c) has 

a timestamp that relatively matches that of RNA sample acquisition. Image features are extracted 

in 2 parts: (1) supervised manner, using Visually AcceSAble Rembrandt Images (VASARI) feature 

Figure 3.1 | An integrative transcriptome-radiome assessment of GBM 
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annotations, and (2) semi-supervised manner, using Region of Interest (ROI) segmentation and 

morphologic features. 

3.3.2 VASARI feature extraction 

Image features characterizing the tumor and its microenvironment are manually extracted in 

Osirix using the VASARI MR feature set schema (https://wiki.nci.nih.gov/display/CIP/VASARI).  

The following subset of prognostic VASARI features are generated: (1) F1 - Tumor Location; (2) 

F9 - Multifocal or Multicentric; (3) F5 - Proportion Enhancing; (4) F6 - Proportion Non-Enhancing; 

(5) F7 - Proportion Necrosis; (6) F10 - T1/FLAIR ratio; (7) F14 - Proportion Edema; (8) F29 - 

Largest Cross-Sectional Length; and (9) F30 - Perpendicular Length to the Largest Cross-

Sectional Length. The latter two features are quantitative. Extracted VASARI features can be 

found in Appendix Table 3.1.  

3.3.3 Quantitative ROI feature extraction 

A semi-supervised segmentation pipeline is used to regions of interest (ROIs). Images are first 

pre-processed for correction and smoothing, image re-slicing, and cleaning). Three ROI subtypes 

are then extracted: (1) Contrast Enhancement; (2) Edema (FLAIR); (3) Total (Enhancement + 

Necrosis) (Figure 3.2). Eight morphological features that capture tumor intensity and shape are 

used to describe the ROI subtypes:  

 

• Surface Area (A) = Surface 
Area of the Tumor 

• Maximum Diameter =	Largest distance 
between 2 image voxels  

• Volume (V) = # of image voxels • Spherical Disproportion = 𝐴 4𝜋𝑅?⁄ 	

• Compactness 1 = 𝑉 √𝜋𝐴?/2⁄  • Sphericity = 𝜋
a
b(6𝑉)?/2 𝐴d  	

• Compactness 2 = 36𝜋𝑉? 𝐴2⁄  	 • Surface to Volume	Ratio =𝐴 𝑉⁄  
 

 

These features are calculated using the three-dimensional size and shape of tumor region in the 

following manner (Aerts et al, 2014). For patients with multiple tumors, ROI features are filtered 



 65 
 

to represent only primary and contiguous tumors with the largest volume. Extracted ROI features 

can be found in Appendix Table 3.2. 

 

3.3.4 RNA-seq data download and pre-processing 

Processed TCGA Level 3 RSEM normalized RNA-seq count data is downloaded from The Cancer 

Genome Atlas (TCGA) for 38 patients with available MRI imaging data from TCIA. The 

aggregated gene expression dataset, which includes 20,531 genes, is then filtered for coefficient 

of variation > 1.0, to remove genes with low distribution dispersion, and max > 1 TPM, to remove 

genes with a low read count. Raw RNA sequences are also downloaded for further downstream 

analysis. Reads are filtered for adapter sequences and mapped against the Ensembl human 

genome (hg19; GRCh37.75) using the software STAR v2.4.1c (Dobin et al, 2013) with default 

parameters. 

3.3.5 Exon inclusion calculation and filtering 

We use an in-house statistical tool, replicate multivariate analysis of transcript splicing (rMATs; 

http://rnaseq-mats.sourceforge.net – version turbo) to generate percent spliced in (Ψ  ; psi) 

estimates of gene exon inclusion. Exon inclusion estimates are calculated as Ψe = f/gh
f/ghij/gk

 , in 

which 𝐼  represents read count of inclusion isoforms connecting upstream splice junction, 

alternative exon, and downstream splice junction; 𝑆 represents read count of skipping isoforms 

Figure 3.2 | ROI GBM tumor segments 
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connecting upstream and downstream splice junctions; and 𝑙f	and	𝑙j  represent the effective 

lengths of inclusion and skipping isoforms, respectively. Using the raw RNA sequences, we 

generate a list of 204,657 exons. To focus our analysis on tumor-intrinsic heterogeneity, we filter 

the list of exons to include those within the 7,425 genes identified by Wang et al. as uniquely 

expressed by glioma cells instead of tumor-associated host cells (Wang et al, 2017). For the 

27.4% of exons missing inclusion values, ones with >50% missing values are discarded and the 

remaining exons are given median-imputed values. Exon inclusion levels are then filtered for 

coefficient of variation > 1.0 and corresponding gene expression values > 1 TPM.  

3.3.6 Exon inclusion-image feature correlation 

Exon inclusion levels are correlated with quantitative VASARI and ROI image features (n = 26) 

using median-based biweight midcorrelation. Permutation resampling with 1000 permutations is 

then applied to adjust p-values for multiple testing. 

3.3.7 Functional enrichment and gene-gene interaction analysis 

We use Enrichr (Kuleshov et al, 2016), at default settings, to identify functional annotations of 

identified genes. Significant gene ontology (GO) terms and pathways are extracted using a 

Benjamini-Hochberg adjusted p-value < 0.1 and a combined score ≥ 10. GeneMANIA (Warde-

Farley et al, 2010) is also used to generate a functionally-relevant biological network of identified 

genes. GeneMANIA is run with maximum resultant attributes = 10 and an automatically-selected 

weighting method for co-expression; co-localization; genetic interactions; pathway; physical 

interactions; predicted; and shared protein domains networks.  
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3.4 RESULTS 

3.4.1 Quantitative MRI image feature characterization of GBM 

Using TCIA MRI images and the VASARI lexicon and ROI metrics, we generate a variety of 

quantitative features to comprehensively characterize GBM tumor morphology  (Methods; 

Appendix Table 3.1; Appendix Table 3.2; Table 3.1). For the ROI features, we obtain good 

interrater agreement amongst 4 imaging experts –Contrast Enhancement (median 𝜅 = 0.82); 

Edema (median 𝜅 = 0.88); and Total (median 𝜅 = 0.89). We produce a total of 26 quantitative 

image features for 38 patients. 

 

Table 3.1 | VASARI and ROI feature description and reason for selection 
Tumor Location  
(categorical / nominal metric) 

Lesion geographic epicenter location 
 

A full resectioning of a GBM tumor is extremely difficult due to its 
highly infiltrative nature. Tumor location therefore greatly affects the 
outcome of the surgery and onset of recurrence 

Multifocal or Multicentric  
(categorical / nominal metric) 

Whether or not the tumor is multifocal (with at least one region 
that is not contiguous with the dominant lesion as a result of 
dissemination, spread via commissural pathways, or local 
metastasis but with clear communication) or multicentric (with 
lesions in separate lobes or hemispheres and with no 
communication) 
 
The presence of more than one focus is less common than single 
focal tumors in GBM patients, but has been implicated in even worse 
prognosis due to the spreading and involvement of many key 
structures in the brain (Lasocki et al, 2016) 

Proportion Enhancing  
(categorical / ordinal metric) 

The proportion of the tumor that exhibits a high concentration of 
contrast enhancement, producing significantly higher signal on 
post-contrast compared to pre-contrast T1-weighted images 
 
To assess active lesions with a clear breakdown of the blood-brain 
barrier 

Proportion Non-Enhancing 
(categorical / ordinal metric) 

Region of intermediate hyper-intensity associated with mass 
effect and architectural distortion 
 
To assess active lesions with a clear blood-brain barrier breakdown 
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Proportion Necrosis  
(categorical / ordinal metric) 

Proportion of the tumor that exhibits a high percentage of pre-
mature, autolytic tumor cell death, often as a result of growth 
beyond vasculature supply and overconsumption 
 
Greatly implicated in poor prognosis 

T1/FLAIR  
(categorical / nominal metric) 

Size of pre-contrast T1 abnormality in relation to the size of 
FLAIR abnormality 
 
Used to assess whether tumor is expansive, infiltrative, or both 

Proportion Edema  
(categorical / ordinal metric) 

Proportion of the tumor that exhibits the presence of fluid within 
the brain extracellular space 
 
A result of tumor-induced capillary endothelial tight junctions and has 
pseudopods extending up to the subcortical white matter 

Largest Cross-Sectional 
Length and the Length 
Perpendicular  

Lesion size major and minor axes 
 
Used to characterize tumor longitudinal and transversal lengths and 
calculate total volume 

Contrast Enhancement 
(ROI) 

Represented as a ring pattern in an MRI image, is used the infer 
the extent of microvasculature and blood brain barrier 
disruption. 
 
Complementary to the VASARI Proportion Enhancement metric. 
 

Edema  
(ROI) 

Can arise either as a result of pivotal molecular changes or as a 
response mechanism to tumor development, leading to both 
peritumoral and intratumoral abnormal accumulation of water  
 
Associated with a disrupted blood-tumor barrier and excess tissue 
spacing and thus swelling. It has also been speculated to have the 
biggest impact on patient cognition, which renders it an interesting 
target for studies of cancer-associated (or cancer-induced) cognitive 
decline (Lin, 2013) 
 
This ROI feature complementary to the VASARI Proportion Edema 
metric. 
 

Total  
(ROI) 

Measures both enhancement and necrosis 
 
Can be used to assess the extent of the necrotic core of a GBM tumor 
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3.4.2 Exon inclusion – quantitative image feature correlation 

We proceed to identify exon inclusion-based transcriptomic signatures for GBM tumor 

radiophenotypes. Using rMATS, we calculate exon inclusion levels (n = 204,657) from raw RNA 

sequences collected from the corresponding 38 TCGA patient tumor samples. We further filter 

the list of exons to include only those that are glioma-intrinsic, highly-expressed, and highly-

variable (Methods). This ensures that the transcriptomic features reflect information specific to 

the tumor and not its microenvironment, thus safely reducing our high-dimensional feature space. 

Using biweight midcorrelation, we then correlate filtered exon inclusion estimates (n = 6599) with 

quantitative VASARI and ROI MRI image features (n = 26). We apply a permutation test to obtain 

1000 realizations of the null permutation distribution of correlation coefficients. We then extract 

exons that are associated with tumor radiophenotypes in general. For each exon, significant 

correlations are determined via a minimum permutation-adjusted p-value < 0.05 across the 26 

quantitative image features. Significant Fisher z-transformed correlations for 93 exons, arranged 

into 3 clusters via unsupervised complete hierarchical clustering, are shown in Figure 3.3A. 

Enrichr analysis of exon cluster genes reveals significant enrichment for neuronal growth, axonal 

guidance, extracellular matrix (ECM) organization, focal adhesion, and channel activity –

processes that exhibit an association with tumor morphology (Figure 3.3B; Methods).  

 

In order to identify exon-level signatures for each ROI metric, we extract exons that instead 

significantly correlate (permutation-adjusted p-value < 0.1) with at least 6 out of the 8 morphologic 

features used to characterize Enhancement, Total, and Edema ROIs and both quantitative 

VASARI features. We identify 5 exon genes associated with the Enhancement ROI that are 

enriched for high voltage-gated calcium channel activity and cytoskeletal reorganization; 3 exon 

genes associated with the Total ROI that are enriched for PDGF (platelet-derived growth factor) 

signaling; and 11 exon genes associated with VASARI tumor length that are enriched for 

extracellular matrix (ECM) organization and proteoglycans in cancer (Methods). We observe 
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(A) Unsupervised hierarchical clustering of 93 significant exon inclusion – quantitative image feature 
correlations, as determined by a row minimum permutation-adjusted p-value < 0.05. Rows represent 

Fisher’s z-transformed biweight midcorrelation coefficients that are color coded per key on the bottom right. 
Columns represent quantitative VASARI and ROI image features. Bar on the right indicates exon clusters. 

(B) Significantly enriched functions for exon clusters, identified using FDR < 0.1 and a combined score ≥ 10. 
 

 

CACNA1A (calcium voltage-gated channel subunit alpha 1A) in both Enhancement and Total 

ROIs. We note that the Total ROI also measures contrast enhancement and therefore an overlap 

in correlated exon genes is expected.  

Figure 3.3 | Significant exon inclusion-image feature correlations 
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Figure 3.4 | Significant exon-radiophenotype correlations 
 

Cells indicate permutation-adjusted p-values from biweight midcorrelation of all exons with image features. 
Highlighted cells represent significant values. 

 
 
 

We input those genes into GeneMANIA to generate a molecular functional interaction 

network involving associated genes that are predicted through documented physical interactions 

and co-expression (Methods; Figure 3.5). We highlight the overlapping contribution of genes in 

ECM organization and calcium channel activity. 

3.5 DISCUSSION  

A transcriptomic-radiomic integrative framework allows us to explore the transcriptomic 

underpinnings (at the exon-level) of quantitative MRI radiomic phenotypes of GBM. This 

information can be used to better understand the molecular mechanisms that regulate the 

development of tumor phenotype and ultimately untangle intratumoral heterogeneity for future 

sub-classification of patients. 

 

Gene Name SurfaceArea Vol Compact1 Compact2 MaxDia SphereDis Sphericity SurfVolRatio
TAC3 0.01 0.01 0.16 0.01 <0.009 <0.009 <0.009 0.50
SLC26A10 <0.009 <0.009 0.29 0.04 <0.009 0.07 0.08 0.47
AGBL2 0.07 0.44 0.30 <0.009 <0.009 <0.009 0.02 0.06
CACNA1A <0.009 0.02 0.71 <0.009 0.01 <0.009 <0.009 0.13
THBS4 0.02 0.02 0.27 0.04 0.03 0.06 0.06 0.36

Gene Name SurfaceArea Vol Compact1 Compact2 MaxDia SphereDis Sphericity SurfVolRatio
FRS2 0.11 0.02 <0.009 0.04 0.19 0.05 0.04 0.05
CACNA1A <0.009 <0.009 0.04 0.03 0.01 0.05 0.05 0.42
THBS4 0.02 0.05 0.1 0.02 0.06 0.01 0.03 0.61

Gene Name
Largest Cross

Sectional Length
Perpendicular

Length

FN1 0.09 0.07
COLEC11 0.04 <0.009
CLGN 0.07 0.08
FXYD3 <0.009 0.02
FGFR4 0.05 0.02
FRS2 <0.009 0.04
FRS2 0.01 0.04
MFAP5 0.01 0.03
RPH3A <0.009 0.09
GALNT14 <0.009 0.07
KCNG1 0.09 0.01
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We identify exon inclusion measures that are significantly correlated with Enhancement 

and Total ROIs. Our results indicate that the Enhancement ROI, which has been shown to inform 

blood brain barrier disruption through neovascularization, angiogenesis, and cellular proliferation, 

is associated with calcium signaling. Calcium signaling is a known orchestrator of GBM 

development and is involved in various tumor characteristics including invasion and sustained 

angiogenesis (Leclerc et al, 2016; Morrone et al, 2016). As for the Total ROI, which contains 

overlapping information with the Enhancement radiophenotype, we observe a role for PDGF 

signaling. PDGF has an established involvement in cell cycle regulation an cellular death 

(Westermark, 2014). This matches our findings, as the Total radiophenotype is also used to infer 

the extent of necrosis in GBM tumors.  

  

 Functional enrichment and interaction network mapping of morphology gene correlates 

reveal a molecular signature for glioma invasion and motility, a defining hallmark of GBM. We 

Figure 3.5 | GeneMANIA 
functional interaction network of 

genes with significant exon-
radiophenotype correlation 
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observe the involvement of motility-enhancing signaling cascades involving PI3K, tyrosine kinase 

receptors, angiogenesis regulators, and neurotrophin in addition to ECM remodeling, ion channel 

activity, cytoskeletal reorganization and neural excitability. There is a growing body of evidence 

showing that neutrotrophin growth factors and disrupted cell-ECM interactions are major 

contributors to paracrine-mediated tumor invasiveness (Roux & Barker, 2002; Denkins, 2004; 

Wolf et al, 2018). Neurocentric processes, including altered ion channel activity, have also been 

shown to enable glioma call invasion into perivascular space (Cuddapah et al, 2014). 

 

Tumor microenvironment is believed to primarily drive the excessive proliferation, diffusive 

parenchymal infiltration, and perivascular invasion behavior in GBM (Wolf et al, 2018). It is 

therefore heavily investigated to clarify the variegated treatment resistance, recurrence, and 

failure patterns across GBM patients. Given that our analysis only reflects glioma-intrinsic 

contributions, we are able to highlight the equally important role of core tumor cells in dictating 

the degree of invasiveness. GBM cells with an invasive phenotype can engage developmental 

migration mechanisms to increase proliferation. This agrees with our imaging findings, in which 

we note a significant association with edema levels. Edema is an important prognostic variable in 

GBM and a strong measure of invasiveness. We speculate that the introduction of new diagnostic 

measures of cellular invasiveness, through a concurrent monitoring of molecular correlates and 

the extent of edema, can help predict disease progression and better tailor therapies.  

3.5.1 Study limitations 

However, it is critical to note that findings from this study are purely exploratory and cannot be 

readily translated to clinical practice.  

3.5.1.1 “Low” data quality and heterogeneity 

We believe an integrative transcriptome-radiome framework has the potential to reveal unique 

molecular profiles for GBM tumor phenotypes. However, it is unable to yield reproducible findings 
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when applied to a dataset with two forms of inherently heterogeneous data and a small sample 

size. Bulk RNA sequencing provides a single molecular representation of the entire tumor. It 

therefore has an admixture of different types of cells with varying degrees of mutations and 

infiltration of other molecules. This can be mitigated by using a dataset with either histologically-

defined tumor compartments (such as the Ivy GAP dataset; http://ivygap.swedish.org/) or single-

cell RNA-seq.  

 

Both ROI and VASARI radiomic features are also heterogeneous in that they are 

influenced by artifacts introduced at the image acquisition, image registration and processing, 

tumor segmentation, and feature extraction stages. They also highly depend on proper contouring 

of tumor regions, which varies between radiologists and image processing engineers/scientists. 

3.5.1.2 Limited imaging descriptors 

The radiomic features used in this analysis only reflect a priori-defined classic tumor 

compartments (contrast enhancements; edema; and necrosis) and their morphological 

characteristics (volume; surface area; etc). They provide useful information on tumor appearance 

but might fail to fully capture its structural complexity. For a more comprehensive assessment of 

GBM transcriptome-radiome relationships, it will be useful to include information from other tumor 

subregions as well as textural, kinetic, and functional descriptors that can inform tumor tissue 

microstructure and composition.  

3.5.1.3 Incorporate categorical VASARI features 

This study only incorporates quantitative image features and does not take advantage of the 

remaining rich semantic information provided through VASARI. We can evaluate the accuracy of 

the 24 extracted ROI features by correlating them to comparable VASARI radiophenotypes: 

proportion enhancing (F5); proportion necrosis (F7); and proportion edema (F8). We can also 

explore the relationship between ROI measures (such as enhancement ROI) and associated 

VASARI characteristics (such as and enhancement quality (F4); thickness of enhancing margin 
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(F11); definition of enhancing margin (F12); and CET cross midline (F23)). Finally, since we are 

interested in highlighting the molecular underpinnings of radiophenotypes, it will be beneficial to 

include VASARI features that are prognostic of genomic variation, recurrence and survival such 

as eloquent brain (F3); multifocal or multicentric (F9); ependymal extension (F19); etc. 

3.5.1.4 Exon inclusion estimate distribution and missing values 

There is a large number of exon inclusion estimates that have missing values. Median imputation 

is used to replace those values. Multiple imputation, however, is a better approach as it uses the 

distribution of observed data to estimate missing values that account for the uncertainty around 

the real value. 

3.5.1.5 Confounding factors  

Correlation-based investigations are notorious for their inability to distinguish true biological 

signals from confounding factors incurred by technical variability and stochastic events/ noise. 

Technical variability can occur throughout the various stages of this study’s workflow. This is 

further discussed in the following chapter.  

3.5.1.6 Association versus causation 

This study assesses significance using a resampling approach to calculate adjusted p-values, 

specifying measurements equal to or less than a set threshold. On the basis of such ubiquity of 

assessment of significance, it is important to note that p-values are a measure of likelihood and 

not inference, a very common misinterpretation amongst scientific studies. P-values are indeed 

useful to assess the strength of evidence against a null hypothesis (no association). However, 

they are not indicative of biological inference, which in the context of Bayesian networks can be 

assessed by measuring the posterior probability of the hidden variable (imaging biomarker(s) in 

a phenotype-to-transcriptome relationship or gene expression/ exon inclusion pattern(s) in a 

transcriptome-to-phenotype relationship) after accounting for observations. Statistical methods 

are incapable of determining causality, as they only handle behavior under uncertain, static 
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conditions. Causality testing on candidate genes or image surrogates requires changing 

experimental conditions. Given their ability to account for changes in complex data, Bayesian-

approaches can be employed for multidimensional association studies; however, they require 

knowledge of prior probabilities. Using uninformative prior probability distributions can result in 

spurious results and should therefore be avoided at all costs in radiotranscriptomic quantitative 

studies. Instead, an informed priory can be obtained by performing a separate controlled 

experiment, arbitrarily changing a set, underlying condition and observing potential modifications 

in observed response. We can therefore use molecular findings from such studies and conduct 

longitudinal studies or bench experiments to better determine causality/inference instead of 

association.  

3.6 CONCLUSION 

Here, we present the first exon inclusion-based “radiotranscriptomic” evaluation of GBM tumors. 

We demonstrate the transcriptome-radiome framework’s ability to identify an exon-level signature 

for the Enhancement and Total (Necrotic) radiophenotypes. The high degree of heterogeneity in 

both feature spaces of the correlation analysis, as well as mismatches in dimensionality (high 

number of features with a small sample size) and lack of comprehensive radiomic features, has 

limited the framework’s ability to reveal biologically- and clinically-relevant information. 

3.7 FUTURE DIRECTIONS 

For further “radiotranscriptomic” investigations of GBM tumor heterogeneity, we propose the 

following series of analyses for future studies: (a) explore the relationship between radiological 

and/or transcriptomic characteristics and other clinical attributes; (b) validate findings using the 

Ivy GAP dataset, which includes RNA sequencing from histologically-distinct tumor compartments 

as well as various longitudinal medical imaging modalities; (c) integrate additional omic 

information, including additional transcriptomic and radiomic features, for a comprehensive 

characterization of tumor heterogeneity; and (d) incorporate molecular subtype information.  
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CHAPTER IV 
4  S ys tem s In tegr a t ion  o f  Mul t iom ics   

in  Tr ans la t iona l  B iomedica l  R esearch  
 

4.1 BOTTLENECKS, PRECAUTIONS, AND CONSIDERATIONS 

A multilayered and clinically-informed approach to integrating multiomic data enables the 

systematic assessment of relationships between different layers of rich data. Accordingly, it has 

all the ingredients fitted to investigate biomedical questions that have not been answered through 

hypothesis-driven or monolayer differential analysis methodologies. Nonetheless, this approach 

presents numerous shortcomings that necessitate a precautious attitude in analysis. The biggest 

challenge lies in the need to integrate terabytes of heterogeneous data from distinct sources. This 

can lead to the accumulation of errors throughout the various stages of the study, potentially 

biasing results and reducing their reproducibility and translatability. It also raises the concern of 

how to adequately link the various data types. Here, we highlight some of the challenges 

associated with this integrative approach, specifically with regards to the integration of 

transcriptomic, phenomic, and radiomic data, and provide workarounds to moderate them. 

4.1.1 General shortcomings and considerations 

4.1.1.1 Data quality 

The number of existing, well-documented datasets that include concurrent RNA-seq, clinical, and 

medical imaging data is limited. The majority of those datasets often involve small cohorts; multi-

institutional collection centers and platforms; variable protocols and study parameters; and 

missing information. While this limitation is not specific to a study, it will determine what biological 

question we can ask and what additional information (or datasets) we can incorporate to alleviate 

data quality concerns. In use case scenario 2, we highlight such limitation and the need to explore 

additional datasets to improve the power of the study and achieve statistically significant results. 
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4.1.1.2 Choice of data integration methodology 

Multidimensional data integration can be achieved through either the summation of results from 

single omic layer analyses or the formation of mechanistic models that recapitulate true biological 

topology. While the former approach is simpler, the latter approach accounts for the 

interdependency between different biological layers, facilitating the inference of regulatory 

relationships between different biological elements (for example: transcription factor activation 

and repression of gene expression). To reflect the complex biology involved, it is beneficial to 

elucidate the structure and connection between biological layers and their dynamic evolution in 

response to the varying developmental and environmental demands and infections. Various tools 

have been developed to integrate heterogeneous multiomic data that exhibit differences in 

dynamic range, temporal information, and annotation. It is imperative to evaluate the costs and 

benefits of such integration methods, early on, as they can conceal biologically-important 

relationships.  

 

We also highlight the need to normalize data (using log-transformation and variance-

stabilization, for example) to ensure it conforms to normality prior to integration using statistical 

methods with prior assumptions of data distribution. Untransformed raw data can be skewed, 

dominated by extreme values from outliers, and exhibit heteroscedasticity through the 

dependence of mean on variance. In use case scenario 1, for example, we demonstrate the 

Figure 4.1 | Data transformation effects use gene expression read counts from use case scenario 1 
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effects of various transformation methods (log2 transformation; regularized log-transformation 

that also normalizes with respect to library size; and variance stabilizing transformation that output 

constant-variance data while also normalizing with respect to library size) on raw read count 

distribution for a single gene across a condition.  

4.1.1.3 Exploratory nature 

Studies in this arena predominantly use correlation / linear regression-based approaches to 

identify feature-phenotype relationships. To transition from an exploratory “guess and pray” 

attitude to a “predict, test, and validate” plan, we highlight the need for datasets with larger sample 

sizes. These datasets are better equipped to generate machine learning models for validation or 

computational models for cohesive and mechanistic representation of disease etiology. 

Furthermore, to reduce the number of false positives in association studies and ensure 

reproducibility and clinical applicability, further validation is necessary. This can be done 

experimentally, in which either another research group repeats the experiment using independent 

biological replicate samples or the same group attempts to reproduce the results using similar or 

different techniques such as quantitative reverse-transcription (qPCR). We can apply this form of 

validation to our findings in use case scenario 1 to confirm their effects in a biological context. we 

can This can also be done computationally, through cross-validation using an independent 

dataset and measurement of concordance. We can use this in use case scenario 2 to increase 

the study’s power and ensure the reproducibility of results.  

4.1.1.4 Confounding effects 

Confounding effects influence results by either falsely demonstrating an association or masking 

a true relationship. Technical artifacts can be introduced during the following stages: study design 

and protocol selection; data collection; RNA-seq library preparation and analysis; image 

acquisition and processing; and statistical/mathematical integration models. Biological artifacts 

can also occur due to transient molecular changes as a result of unrelated environmental changes 
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and inherent variations between subjects. Such stochastic effects can be compounded in 

multiomic endeavors. The contribution of these effects on reported findings can be mitigated 

through quality control measures (to control for batch effect, for example) and emphasis on 

findings that recurrently demonstrate significance from each layer of analysis. We further discuss 

data type-specific confounding effects in later sections. 

4.1.1.5 Determination of significance 

Careful determination of the significance of reported findings is especially important in studies 

involving high-dimensional data. The arbitrary selection of cut-off thresholds for significance lacks 

the scientific rigor necessary to differentiate between true associations and chance. For example, 

in use case scenario 2, we correlate 6,599 exons with 26 radiomic features. If we were to use a 

standard p-value cuff-off of 0.05, we would expect to identify 330 “significant” genes due to chance 

alone. Multiple testing adjustment of p-values is commonly used to address this concern, with a 

variety of methods available to correct for type II or type II errors. A Benjamini-Hochberg false 

discovery rate (FDR) correction is often used in transcriptomic studies to control the proportion of 

false positive amongst a set of rejected hypotheses. Unlike family-wise error rate (FWER) 

methods, such as Bonferroni, it reduces the number of false positive discoveries without 

unnecessarily sacrificing power (probability of significance for tests of the false null hypotheses). 

On the other hand, re-sampling approaches (such as permutation testing) are able to control for 

error without heavily relying on prior assumption of underlying data distribution and p-value 

dependency structure.   

 

Accordingly, it is important to select a multiple testing adjustment procedure that helps 

formulate biological hypotheses and prioritize statistically significant findings for future 

investigations. We emphasize that such procedure must be able to account for: 

(a) Significant mismatches in data dimensionality 
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(b) Failure of the central limit theorem when working with small sample sizes, as 

asymptotic and exact p-values can drastically differ. We demonstrate this in use case 

scenario 2, in which a resampling-based technique is more appropriate when 

analyzing a 6,599 x 26 feature matrix for 38 patients.  

(c) Correlation between features (gene-gene interactions, for example) 

(d) The inherent proportion of features with significant effects (a percentage of genes are 

known to have a differential effect, for example). We demonstrate this in use case 

scenario 1, in which less a stringent FDR vs FWER technique is better at uncovering 

genes with differential expression patterns. However, with only 48 patients analyzed, 

a re-sampling approach might be a better fit. 

4.1.1.6 Dimensionality mismatches 

The number of investigated features often far exceeds experimental sample size. This 

necessitates the careful adoption of feature space reduction strategies to limit the number of 

hypotheses to be tested.  

(a) One can remove uninteresting hypotheses –ones that do not pertain to the biological 

question or depend on the results of the analysis – prior to testing. We show this in use 

case scenario 2, in which we are interested in correlating information specific to the tumor 

and not the microenvironment.  By filtering for expressed (read count > 1 TPM) glioma-

intrinsic genes (n=7,425), we are able to reduce our exon inclusion feature space from 

204,657 to 6,599 exon inclusion estimates without sacrificing information pertinent to the 

question in hand.  

(b) Another approach is to use network-level information of features for correlation. For 

example, use case scenario 1, we correlate 19 co-expression gene clusters instead of 

25,531 genes with maternal traits. 
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(c) Redundant features can also be filtered by removing those that highly correlate with one 

another. This approach can be applied in use case scenario 2 to reduce the number of 

image features in the correlation matrix.  

4.1.2 Shortcomings associated with RNA-seq 

4.1.2.1 Inherent data collection and generation errors  

Pre-sequencing chemistry (enzymatic reactions during RNA purification and extraction) can 

significantly influence findings from downstream analyses. Artifacts can also be introduced during 

library preparation as a result of amplification, inconsistent trimming of the RNA, and low “quality” 

RNA with a high level of degradation and contamination. Furthermore, insufficient gene coverage, 

which is related to low sequencing depth, can result in higher technical variation. As such, it is 

critical to carefully consider the biases and trade-offs involved in the selection of sequencing 

protocols when preparing an RNA-seq experiment. 

4.1.2.2 Bulk RNA-seq limitations 

Bulk tumor RNA-seq only reveals information at the cell-population level. It is unable to fully 

dissect intratumoral heterogeneity, as seemingly identical cells can harbor varying degrees of 

mutation and as such promote an inconsistent contribution to disease progression. With the 

expansion of single-cell RNA-seq, there is now the possibility of exploring the transcriptomic 

landscape at a single-cell resolution and deconvolving bulk RNA-seq samples using cell type 

proportion estimates.  

4.1.2.3 Bias in differential gene expression analysis 

The wealth of available algorithms and statistical methods raises the concern of methodology 

selection bias on reported findings. RNA-seq computational analysis tools vary in their statistical 

frameworks; assumptions of underlying data distribution; read-counting procedure; and 

identification of significant events. We explore this in use case scenario 2, in which we opt to use 

a count-based approach (HTSeq à DESeq2) to identify DEGs for the following reasons:  
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(1) It uses negative binomial regression for generalized linear modeling, therefore 

eliminating the dependency on a normally-distributed data. 

(2) It calculates total expression, across gene isoforms, instead of using a probabilistic 

measure for transcript abundance like fragments per kilobase of transcript per million 

(FPKM)-based approaches. 

(3) It corrects for library size and RNA composition bias by internally normalizing the data 

using the ratio of gene count to gene geometric mean across samples.  

(4) It applies a shrinkage estimation for dispersion to account for variance within 

conditions. 

 

Additionally, in differential gene expression analysis, a common approach to narrowing 

down the list of DEGs is to apply a simultaneous fold-change and multiple testing-adjusted p-

value cutoff. This approach, however, favors genes with low expression values and misses 

biologically-important genes that typically exhibit small changes in RNA expression. We account 

for this in use case scenario 1, in which we elect to first apply a more stringent FDR cut-off of 0.05 

to extract DEGs and then rank them by fold change.  

4.1.2.4 Bias in differential alternative splicing analysis 

Detection of alternative splicing is prone to error. Human exons are small, with ~80% measuring 

at less than 200 base pairs in length. Human introns, on the other hand, span much larger 

sequence lengths. The confidence interval of exon inclusion estimates is also highly dependent 

on RNA-seq read coverage. As dictated by ENCODE guidelines and Illumina, a minimum of 30 

million paired-end reads > 30 base pairs are needed for gene expression estimation and a 

minimum of 30-60 million are needed for splicing analysis. Furthermore, exons of highly 

expressed genes have high read counts that can introduce false positives. 
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4.1.3 Shortcomings specific to radiomics 

4.1.3.1 Inconsistent image acquisition protocols 

Medical imaging acquisition parameters are constrained by local settings and scanner 

capabilities, hindering the standardization of generated images. Pre-processing techniques, such 

as image registration, intensity normalization, and re-slicing, can be applying to ensure images 

are comparable across various acquisitions (Narang et al, 2016).  

4.1.3.2 Image segmentation and feature extraction variability 

Variability can also arise during image alignment and segmentation and feature extraction and 

quantification. It is important to ensure that radiomic features are not only independent of 

collection site but also of the radiologist/annotator (to limit inter- and intra-observer uncertainty) 

and extraction approach and protocol (to limited inter-software uncertainty).  

 

There are various ways to validate the accuracy of tumor segmentation. A common 

approach is to achieve group-consensus contouring, by taking the overlap of contours generated 

by field experts or repeated segmentations and calculating a metric of overlap similarity such as 

the Dice coefficient (as we do use case scenario 2) or distance similarity. Since the calculation of 

image features highly depends on accurate tumor contouring, it is important to evaluate image 

feature robustness against tumor delineation uncertainties to maintain features with high 

intraclass correlation scores and ensure reproducibility. It is equally important to employ a suitable 

image segmentation evaluation metric that is sensitive to the properties of the segmented image, 

accounting for size, boundary, and density.  

 

Another approach is to refer to a controlled and standardized vocabulary system for image 

features (such as the VASARI lexicon used in use case scenario 2). By normalizing invariant 

feature measurements, the rank-ordering form of scoring used in VASARI is able to reduce the 

qualitative nature of manual segmentation. Nonetheless, supervised extraction of VASARI 
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features remains subjective and as a result, quantitative measurements can vary between 

different radiologists and different extraction dates for the same radiologist. Inter-observer 

variability can also arise due to the limited precision when assessing certain features. This can 

introduce undesired noise in association analysis. To moderate inhomogeneity and subsequent 

obfuscation in quantitative analysis, it is common to consult the expertise of only one specialist, 

to ensure measurements are done in a narrow time frame, and validate VASARI semantic findings 

with computational features such as the ROI measures obtained in use case scenario 2. 

4.1.4 Shortcomings associated with phenomics 

Phenomic data can also face the limitation of incomplete and inaccurate documentation 

of information. We observe this in use case scenario 1, in which many patient clinical variable 

entries are missing or are designated as “unknown”, thus reducing our ability to expand on our 

findings with additional phenotypic relationships. And in some cases, infection records are 

populated under “Notes” instead of the appropriate column, which can drastically influence our 

results for significant differences in infection rates between parturition groups. Digitization is 

becoming more widely adopted to streamline the process of data acquisition and limit human error 

as a result of manual entry  

 

Furthermore, there is a concern for inconsistencies and mismatches in data entry due to 

the use of different metrics and criterion for assessment and the limited sharing between 

institutions. This can be mitigated through effective data governance, in which standardized 

terminology and a uniform data structure can be implemented to ensure consistency across 

investigation efforts and facilitate cross-institutional communication.  
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4.2 SYSTEMS BIOLOGY MEET MEDICINE 

4.2.1 A reductionist, hypothesis-driven theme in “old” medicine 

The “Oslerian paradigm”, which uses a top-down hypothesis-driven approach to emphasize a 

direct link between symptoms and etiology, heavily predominates the current practice in Western 

modern medicine. The correlation of clinical manifestations with pathological findings has 

bestowed upon clinicals a clearly-defined list of syndromic patterns to look for. Using this list, they 

are able to effectively address acute or monofactorial disorders. A reductionist lens is elegant in 

its focus on select elements. However, it fails to account for the emergent properties that arise 

from the dynamic and interdependent interactions within biological systems. It also assumes an 

averaged contribution of individual components. As such, it undervalues the effect of 

unpredictable outliers within heterogeneous populations and the multifunctionality of certain 

components. The shortcomings of this approach become especially evident when evaluating 

chronic and multifactorial health conditions.   

4.2.2 A holistic, systems theme in biomedical research 

The early 21st century witnessed a paradigm shift in biomedical research, driven by biology’s 

transition from a qualitative, descriptive discipline into a quantitative, numerical field. The recent 

emergence of high-throughput and wet-lab technologies, advanced imaging modalities, and 

powerful computational capabilities has rendered a wealth of biomedical “big data”. This 

newfound capacity has facilitated the adoption of a bottom-up data-driven approach, in which 

knowledge is gained from data integration rather than conventional hypotheses testing. By 

applying sophisticated algorithms and statistical tools, investigators are now able to rapidly 

examine massive amounts of data and unravel novel biology at an unprecedented level.  

 

Left unguided, a hypothesis-limited methodology, however, can render findings that derail 

from biological truth and lack clinical significance. With the conviction that “every object that 
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biology studies is a system of systems” (Trewavas, 2006), the field of systems biology emerged 

to comprehensively evaluate time- and space-sensitive communication within and across 

systems, subsystems, and individual components. It emphasizes the incorporation of cross-

disciplinary techniques to showcase the joint involvement of multimodal data points in driving a 

phenotype within a defined biological context. In doing so, it attempts to extract order from an 

inherently chaotic data pool. A systems data-driven approach has helped inform numerous novel 

hypotheses for follow-up studies and identify key biomolecules in health and disease states. 

4.2.3 A reconciliation of hypothesis- and data-driven approaches in “new” 
medicine 

A data-driven approach offers an all-inclusive depiction of the underlying structure, accounting for 

the genetic, phenotypic, and environmental diversity of human populations. Coupled with a 

systems perspective, it can provide elaborate mechanistic models of disease etiology. On its own, 

such approach can have limited clinical utility. The development of systems models is highly 

iterative, requiring infinite rounds of fine-tuning to hone in on key biological functions while 

accommodating newly-discovered influences of individual variability. And the level of detail in 

reported systems biology findings does not match the capabilities of medical practice. This has 

resulted in a “work-in-progress” style in data-driven research, where results make their way to 

publications but not the clinic.  

 

In a 1933 lecture at Oxford, Einstein argued that “it can scarcely be denied that the 

supreme goal of all theory is to make the irreducible basic elements as simple and as few as 

possible without having to surrender the adequate representation of a single datum of 

experience”. A hypothesis or a priori information can safely guide systems data-driven models 

while alleviating some of the complexity that has hampered their adoption in the clinic. In a highly 

integrative process, both hypothesis- and data-driven tactics can synergistically come in play at 

various stages and throughout the course of a study. To better illustrate this, let us assume the 
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role of a detective who has reported to a murder scene and is trying to solve the case. Using her 

past experience, she knows what areas to target to look for traces left behind by the criminal. She 

begins to gather all available pieces of evidence directly surrounding the body, in the vicinity, and 

from relevant areas. She starts analyzing those pieces, looking for clues and patterns that deviate 

from the norm. Using her knowledge of human nature and criminal mentality, she then tries to 

build a narrative to put together the pieces of evidence. She continues to gather additional pieces 

of information as she goes along. She studies the victim’s background and interrogates involved 

bystanders, constantly tweaking and strengthening the narrative. She has now narrowed down 

her list of potential criminals to a much smaller pool of players with strong motives for committing 

the crime. She proceeds to confirm her highly informed exploratory model by testing which 

hypotheses hold true. With the help of other members of the police and judicial authority, she is 

now able to isolate the true criminal.  

 

We believe such converged data- and hypothesis-mediated framework can lay the 

groundwork for translational research and can help identify true determinants of health and 

Figure 4.2 | Converged hypothesis- and data-mediated research approaches in P4 
medicine 
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disease. By maintaining an ongoing and multidirectional line of communication between basic 

biological and computational sciences, population-centric biomedical research, and patient-

centric clinical practice, it can ultimately help us make the leap towards modern P4 (personalized, 

participatory, predictive and preventive) medicine (Figure 4.2). 

 

.  
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