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Abstract

A classic paradigm of gene regulation is metabolic enzyme expression in response to 

changes in metabolite levels. In this study we generate a quantitative picture of the 

response of a number of amino acid biosynthesis pathways in S. cerevisiae in response to 

nutrient depletion. We find that a striking pattern emerges that couples the architecture of 

the transcriptional regulatory network to the gene expression response. In particular, we 

find that networks controlled by the intermediate-activated architecture (IAA), in which 

an intermediate metabolite of the pathway activates transcription of pathway genes, 

exhibit the following response: the enzyme immediately downstream of the  regulatory 

metabolite is under the strongest transcriptional control, while the enzymes upstream of 

the regulatory intermediate are only weakly induced. This pattern of separation of 

responses is absent in pathways not controlled by the IAA network and can be explained 

by a fundamental observation regarding the feedback structure of the network, which 

places downstream enzymes under a negative feedback loop, and upstream ones under a 

positive feedback loop. This general design principle for transcriptional control of a 

metabolic pathway can also be derived from a simple cost/benefit model of gene 

expression. Our results suggest that evolution of cis-regulation for metabolic pathway 

genes is strongly constrained by the overlying regulatory architecture.
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Introduction

A classic paradigm of gene regulation is the regulation of metabolic enzyme expression 

in response to changes in external metabolite levels. By regulating enzyme levels, cells 

not only control the metabolic program, but also save resources and energy by not 

expressing enzymes which are not needed at a particular time. Countless studies have 

observed higher expression of enzymes in response to depletion of external nutrients. To 

achieve this regulation, a variety of strategies can be used, involving different interplay 

between metabolites and regulatory proteins. In many cases involving model organisms, 

the regulatory framework that controls this process is known, and research over past 

decades has indeed revealed a large number of different regulatory strategies (Jacob and 

Monod, 1961; Artz and Broach, 1975; Kohlhaw, 2003; Rébora et al., 2005) .

In this study we will mostly consider the example of a linear biosynthetic pathway in 

which an essential nutrient (hereafter called product) can be produced from an abundant 

precursor through a series of enzymatic steps, each catalyzed by a different gene product. 

A sample of possible regulatory architectures for such a pathway is shown in figure 1. It 

can be shown that any of the networks in figure 1b-1d can solve the problem of keeping 

pathway activity low when there is a large external product flux, but turning the pathway 

on and restoring product levels if the external flux disappears, as may happen if the cell 

found itself in a new environment with different nutrient sources. Aside from the network 
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structure, the parameters associated with the interactions – the numbers on the arrows 

(binding strengths, synthesis rates, etc) – also evolve and also contribute to the dynamics 

of the network (Ronen et al., 2002; Dekel and Alon, 2005; Hittinger and Carroll, 2007). 

The combination of architecture and parameters leads to the final phenotype, at the level 

of gene induction and nutrient recovery.

Figure 1. A sample of regulatory network architectures for a linear metabolic pathway. 

Metabolism can be regulated by simple mass action (a), by allosteric regulation of 

enzyme activity (b), or, typically, by a combination of allosteric regulation and 
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transcriptional regulation of enzyme levels (c-d). Two classic examples of transcriptional 

regulatory architectures are the end-product-inhibition (EPI) network (c) and the 

intermediate-activated architecture (IAA) network (d). The two networks create different 

feedback structures and place different constraints on gene expression. Examples of 

network (c) include arginine biosynthesis in S. cerevisiae and tryptophan biosynthesis in 

E. coli. Examples of network (d) include leucine and lysine biosynthesis in S. cerevisiae  

and methionine and lysine biosynthesis in E. coli. 

Here we explore in detail the relationship between network architecture and gene 

expression. In particular, we consider several amino acid and nucleotide biosynthesis 

pathways in the yeast S. cerevisiae and measure their gene expression response to product 

depletion by using fluorescent protein constructs and single-cell measurements. We find a 

pattern that strongly suggests that the architecture of the regulatory network firmly 

constrains the dynamic profiles of gene expression. In particular we find that networks 

with intermediate-activated architecture (IAA, figure 1d), have a unique pattern of 

expression, involving strongest activation of the enzyme which catalyzes the step 

immediately after the regulatory intermediate, and often strong induction of other 

enzymes downstream of the intermediate. This pattern, which was observed earlier in the 

yeast leucine biosynthesis pathway (Chin et al., 2008), can be considered a universal 

feature of this network architecture, and is very likely to be based on the feedback 

structure imposed by the regulatory network, as shown in figure 1. In a pathway regulated 

by the end-product inhibition architecture (EPI, figure 1c), this feedback structure does 
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not exist and we do not observe similar gene expression dynamics. In the second half of 

the paper, we introduce a cost-benefit model for a generalized pathway. We show that the 

optimal solution of this very simple model predicts gene expression patterns that are 

consistent with what we observe in vivo, suggesting that such expression patterns may be 

a consequence of optimization through evolution.

Results

Gene expression profiles in amino acid and nucleotide biosynthesis pathways in S. 

cerevisiae

To look in vivo at the relationship between regulatory architecture and expression 

dynamics, we measured the transcriptional response to starvation in a number of amino 

acid and nucleotide biosynthesis pathways in S. cerevisiae. We choose amino acid and 

nucleotide biosynthesis pathways for several reasons. One is that they are a large and 

well-characterized class of pathways, in the sense that they come with a large body of 

knowledge about their regulation. A second is that the stimulus to turn on the pathway is 

easy to perform experimentally, by switching cells from a medium in which the amino 

acid is present to one where it is absent. Finally, since amino acids are fundamental 

cellular building blocks, we can estimate the amount of pathway flux that is necessary to 

sustain growth, and this aids us in constructing a quantitative model.
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We used fluorescent reporter strains constructed by putting yeast-enhanced green 

fluorescent protein (yeGFP) (Heim et al., 1995) under the control of the natural promoter 

of each gene. The strains were grown in rich media, then moved quickly to media lacking 

one of the amino acids. Throughout the time course, fluorescence in single cells was 

monitored by flow cytometry, using an automated system for sample injection and data 

collection. We go through the results for each pathway sequentially. 

Leucine biosynthesis

Leucine is synthesized from pyruvate via a pathway that also branches to valine 

biosynthesis, and involves some of the same enzymes as isoleucine biosynthesis. The 

linear leucine-specific branch of the pathway starts with alpha-ketoisovalerate, and the 

first of these steps is feedback-inhibited by leucine. The major transcriptional regulation 

involves the transcription factor Leu3, which is constitutively bound to DNA, but only 

activates transcription in the presence of the metabolic intermediate alpha-isopropyl-

malate (αIPM), creating an example of the IAA network (Kohlhaw, 2003) (figure 3a). 

This pathway was explored in detail in Chin et.al (Chin et al., 2008), which was one of 

the first quantitative pictures of the dynamical transcriptional response in an IAA 

network. In that study, the authors observed a striking difference in the induction profiles 

of the enzymes which depended on the position of the enzyme within the pathway. While 

most genes were induced by about 2-fold, Leu1 and Leu2, the enzymes immediately 
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downstream of the regulatory intermediate αIPM, were induced by over 10-fold. 

Here, we remeasured the transcriptional dynamics for the pathway in response to leucine 

depletion using promoter-GFP constructs instead of the fusion proteins used in the 

previous study (fig 3b). The results we obtained were consistent with the previous study. 

We confirmed that the strongest transcriptionaly regulated enzyme in the pathway was 

Leu1, with over 20-fold induction in response to leucine depletion. The next enzyme 

downstream of the control point αIPM, Leu2, was also relatively strongly induced, with a 

change of about 10-fold. In contrast, none of the enzymes upstream of the control point 

had more than about a 2-fold induction (ratios are for 6 hours after environmental shift, 

when most genes have reached steady state).
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Figure 2: Dynamic profiles of leucine biosynthesis enzymes. (a) The leucine biosynthesis 

pathway in yeast is an IAA network regulated by the transcription factor Leu3, which 

senses the intermediate metabolite αIPM. (b) mean GFP fluorescence levels normalized 

to the level before environmental shift show that Leu1 is the highest induced gene in 

response to leucine depletion and Leu2 is also strongly affected. (c) GFP levels 

normalized to both initial and final levels shows no significant timing difference between 

pathway genes. Genes with negligible fold-changes are not shown. (d) deletion of LEU3 

abolishes Leu1 and Leu2 induction, but actually increases Leu4 induction. In figures 2-5, 

data shown is an average of two independent experiments done on the same day. Data 

from identical experiments on different days was also quantitatively consistent and is 
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shown in the supplementary information.

We did not observe significant timing differences between pathway enzymes when genes 

were normalized to both initial and final levels (figure 1c), suggesting that all genes in the 

pathway sense the stimulus at the same time. We also verified that the strong induction of 

Leu1 and Leu2 was dependent on the transcription factor Leu3. When LEU3 was deleted, 

Leu1 and Leu2 induction fell drastically, whereas other enzymes were affected to a lesser 

degree, and Leu4 was actually induced more strongly (figure 1d). Evidence for Leu3 

playing the role of transcriptional repressor instead of activator exists and has been 

discussed previously (Kohlhaw, 2003; Chin et al., 2008).

Lysine biosynthesis

Lysine biosynthesis in yeast occurs via a linear pathway from 2-oxoglutarate. Regulation 

is present by inhibition of the first committed pathway step (catalyzed by Lys20 and 

Lys21) by the end product lysine, and also by transcriptional regulation of the pathway 

enzymes. The major transcription factor involved is Lys14, which has been shown to 

regulate transcription of most enzymes in the pathway (Ramos et al., 1988). Lys14 can 

bind DNA constitutively but activates transcription only after a conformational change, 

induced by the binding of the small molecule α-aminoadipate-6-semialdehyde (α-AAS) 

(El Alami et al., 2002; Feller et al., 1999). α-AAS is an intermediate of the pathway, 
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which means that the regulatory network topology is another example of the IAA, similar 

to the leucine biosynthesis pathway.

We measured expression of all characterized genes in the pathway in response to lysine 

starvation (fig. 3). The most striking feature of the response is that Lys9, the enzyme 

immediately downstream of the regulatory intermediate α-AAS, has an induction ratio of 

over 40-fold, significantly higher than any other enzyme in the pathway. We verified that 

this strong induction was caused by regulation by the transcription factor Lys14. In a 

lys14Δ strain, the strong induction of Lys9 was completely abolished, while the other 

enzymes were not affected to nearly as large a degree. Lys1, the other enzyme 

downstream of the regulatory intermediate, had an intermediate level of induction, and 

interestingly, was largely unaffected by a lys14Δ perturbation, suggesting that it may be 

regulated by a completely separate mechanism. This observation is consistent with the 

previous data in Ramos et.al (Ramos et al., 1988). Similarly to our data for leucine 

biosynthesis, we did not observe significant timing differences among pathway enzymes 

(fig. 3c). 
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Figure 3: Dynamic profiles of lysine biosynthesis enzymes. (a) The lysine biosynthesis 

pathway in yeast is an IAA network regulated by the transcription factor Lys14, which 

senses the intermediate metabolite α-AAS. (b) mean GFP fluorescence levels normalized 

to the level before environmental shift show that Lys9 is the highest induced gene in 

response to lysine depletion. (c) GFP levels normalized to both initial and final levels 

shows no significant timing difference between pathway genes. Genes with negligible 

fold changes are not shown. (d) deletion of LYS14 abolishes Lys9 induction but in general 

has a smaller effect on enzymes upstream of α-AAS.  

Adenine biosynthesis

10



Similarly, adenine biosynthesis takes place via a nearly linear pathway starting with 

PRPP (phosphoribosyl pyrophosphate). The first committed step (catalyzed by Ade4) is 

inhibited by adenine, and transcriptional regulation of the pathway involves the factors 

Bas1 and Bas2. Only when Bas1 and Bas2 form a complex at the promoter do they 

activate transcription, and their interaction is modulated by either of the two small 

molecules AICAR and SAICAR, intermediates of the biosynthesis pathway (Rébora et 

al., 2001).This creates a third example of the IAA architecture. There is some interesting 

interplay between the histidine and adenine biosynthesis pathways as histidine 

biosynthesis can also produce AICAR as a side-product (Rébora et al., 2005), but we do 

not consider this aspect here.

The profiles for the all the genes in the pathway are shown in figure 4. Again, the striking 

feature of the results is that the Ade17 has by far the highest level of induction, with 

about 15-fold change in response to adenine depletion. Ade17 is one of the two isozymes 

which catalyze the conversion of the regulatory intermediate into the next metabolite. 

However, the other isozyme, Ade16, performs a smaller fraction of the synthesis, and its 

expression is known not to be regulated at all by adenine levels (Tibbetts and Appling, 

2000) as observed also in our experiments. The other enzymes in the pathway exhibit 

about a 2-fold change, except for Ade1 and Ade2 which have about an 8-fold induction. 

When the gene encoding the transcription factor BAS1 was deleted, Ade17 induction was 

completely abolished, showing that as in the previous two examples, the enzyme 

downstream of the intermediate has by far the strongest dependence on the transcriptional 
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regulator. While previous biochemical evidence suggests that both AICAR and SAICAR 

can affect transcription factor activity, we speculate that the major regulator is AICAR 

since Ade17, but not Ade13, was found to be very strongly induced by adenine depletion. 

We comment further on this in the discussion section.

After IMP synthesis, the step catalyzed by Ade17, the pathway branches into guanine 

(GMP) syntehsis and adenine (AMP) synthesis. Ade12 and Ade13, the enzymes on the 

AMP branch, were induced to only a moderate level and only depended weakly on Bas1. 

It is possible that the branching introduces other constraints on the network regulation 

due to different demands for flux on the two branches.
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Figure 4: Dynamic profiles of adenine biosynthesis enzymes. (a) The adenine 

biosynthesis pathway in yeast is an IAA network regulated by the transcription factor 

Bas1, which senses the intermediate metabolites SAICAR and AICAR. (b) mean GFP 

fluorescence levels normalized to the level before environmental shift show that Ade17 is 

the highest induced gene in response to adenine depletion. (c) GFP levels normalized to 

both initial and final levels shows no significant timing difference between pathway 

genes. Genes with negligible fold changes are not shown. (d) deletion of BAS1 abolishes 

Ade17 induction but in general has a smaller effect on enzymes upstream of AICAR.

Arginine biosynthesis

In all three pathways with IAA regulation, we observe a strikingly similar pattern of gene 
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expression. To contrast this with an example of the end-product inhibition architecture 

(fig. 5), we also measured the gene expression dynamics of the arginine biosynthesis 

pathway. Arginine is synthesized from glutamate via  a nearly linear pathway. While there 

are still some unknowns regarding the allosteric regulation by arginine, it appears that 

Arg2 and Arg5,6, which catalyze the first two enzymatic steps, form a complex in which 

both steps are performed, and that both activities are inhibited by arginine (Abadjieva et 

al., 2001; Davis, 1986). The major mode of transcriptional regulation for this pathway 

involves a complex of several transcription factors which is generally called ArgR. In the 

presence of arginine this complex binds to DNA to repress transcription of the pathway 

genes, but is unbound in the absence of arginine (Amar et al., 2000), thus resulting the the 

end-product inhibition architecture as in figure 1c.  

We found that all the enzymes in this pathway were induced by about 2-4 fold in 

response to arginine starvation, with similar timing (fig 5). This is consistent with the 

observation that in this regulatory network, all enzymes share the same effect on the level 

of active transcription factor and do not create different feedback structures. 
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Figure 5: Dynamic profiles of arginine biosynthesis enzymes. (a) The arginine 

biosynthesis pathway in yeast is an EPI network regulated by the transcription factor 

complex ArgR, which senses arginine directly. Ort1, the ornithine transporter, is not a 

catalytic enzyme but rather transports the intermediate ornithine from the mitochondria to 

the cytosol for further conversion into arginine; it is shown in the appropriate position in 

the pathway. (b) mean GFP fluorescence levels normalized to the level before 

environmental shift show that all genes have approximately equal magnitudes of 

induction except for weaker induction of Arg4. We were unable to monitor expression of 

Arg2 or Arg5,6 due to very low basal levels of expression. (c) GFP levels normalized to 

both initial and final levels shows no significant timing difference between pathway 

genes. (d) deletion of ARG80, one of the components of ArgR, abolishes induction of all 

enzymes.
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A theoretical cost-benefit model

Our observation of similar expression patterns across several metabolic pathways with 

IAA suggests that there may be a common design principle underlying their regulation. 

The contrast between IAA and EPI also indicates that the feedback structure of the 

regulatory network can severely constrain gene expression response. To explore whether 

optimization by natural evolution can create the observed pattern we developed a 

theoretical model to look quantitatively at the effect of different gene induction profiles 

on cellular growth. The key element of the model is the tradeoff between the costs of 

making a protein (energy and metabolic resources) and the benefits of making it (its 

cellular function), a fundamental idea in gene regulation. This tradeoff has been observed 

in vivo in a number of studies across different organisms in which higher fitness was 

observed for cells that did not express unnecessary genes (Suiter et al., 2003; Dekel and 

Alon, 2005; Lang et al., 2009; Gore et al., 2009). 

This tradeoff has been the basis for a number of quantitative models for optimal gene 

expression in a metabolic pathway. Klipp et.al. modeled the metabolic cost by 

constraining the amount of available total enzyme concentration, and then asked if there 

was an optimal temporal profile for enzyme concentrations (Klipp et al., 2002). This 

resulted in a just-in-time (JIT) behavior, where enzymes were expressed in the order they 
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were needed in the pathway. However, this model assumed a black box regulatory 

network in which enzyme concentrations were assigned an arbitrary function of time. A 

followup on this model was published by Zaslaver et.al. in their study of amino acid 

biosynthesis pathways in E. coli (Zaslaver et al., 2004). Their model invoked a regulatory 

network with end-product inhibition architecture, but assumed an initial steady state in 

which all enzyme levels were at zero, and an infinitely fast drop in product concentration 

at time zero. In this study we use a more general model to explore different network 

architectures on top of the metabolic pathway, and allow for more realistic modeling of 

the starvation stimulus and the evolutionary environment.

We start by developing a model for cellular growth as a function of metabolic pathway 

response to starvation (fig. 6). We assume that two factors negatively impact cell growth: 

production of enzymes, which expends cellular reserves of energy and nutrients; and lack 

of flux through the metabolic pathway, i.e. lack of production of the nutrient which is 

absent in the environment and is required for growth (hereafter called "product"). While 

the functional form of the equation is inspired by the model in Zaslaver et.al, there are 

several key changes that make the model more realistic. The most important of these are 

the assumption that cells maintain a basal level of enzyme even in non-starvation 

environment, and that the product concentration does not drop from infinity to zero 

immediately upon starvation, but rather decays exponentially until the pathway is 

activated. 
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Figure 6: A cost-benefit model for gene expression in a metabolic pathway upon nutrient 

depletion. (a) a generalized linear pathway with one possible regulatory architecture. (b) a 

set of differential equations describes the dynamics of enzyme induction and product 

formation. E1-E6 are the concentrations of the enzymes. ci, bi and ai are the regulatory 

parameters that define the effect of active transcription factor on enzyme synthesis. S1-S6 

are the metabolites, with S6=P being the product of the pathway and S0 the upstream 

source. We assume S0=∞. ki and vi are the Michaelis-Menten constant and the maximum 

rate of enzyme activity (catalytic constant) respectively for each enzyme. kf is the 

concentration of regulatory metabolite necessary for half-maximal transcription factor 

activity, and kinh is the concentration of product necessary for half-maximal inhibition of 

the first pathway step. δ is the rate of dilution of enzymes and substrates due to growth 

and δP is the rate of product usage. Fext is the external product flux before starvation. (c) 

the cost function used for optimization of regulatory parameters is an estimate of the 
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growth penalty imposed by insufficient product flux or unneeded protein expression. The 

three terms are C1, which corresponds to the cost of the basal level of enzyme synthesis, 

C2, which corresponds to the cost of enzyme synthesis during starvation, and C3, which 

corresponds to the deficiency of product during starvation. The evolutionary parameters 

that define the relative magnitudes of these terms are γ, the unit cost of enzyme synthesis; 

η, the time spent in non-starvation conditions; and T, the time spent in starvation 

conditions. (d) a graphical illustration of the cost function components. 

Thus, there are three terms in the cost function that correspond to reduced growth due to 

1) basal level enzyme production 2) enzyme production upon starvation, and 3) lack of 

product during starvation. Assigning weights to the three terms results in three meta-

parameters, which can also be thought of as environmental or evolutionary parameters, 

since they have clear interpretations in terms of the environment in which regulation of 

this pathway evolved. These are γ, which corresponds to the cost (growth reduction) from 

synthesizing one additional unit of enzyme; η, the amount of time spent in non-starvation 

conditions; and T, the amount of time spent in starvation conditions. By altering these 

parameters, our model can predict that different environments may cause evolution of 

different types of regulation.

We used our model to ask the question of whether different network architectures impose 

different constraints on gene expression profiles, under the assumption that the regulatory 
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parameters have been optimized by evolution. By fixing the biochemical properties of the 

enzymes, and allowing only the parameters related to transcriptional regulation to vary, 

we make the implicit assumption that more optimal cis-regulation can evolve much faster 

than more optimal enzyme properties, an assumption consistent with a number of studies 

that have suggested that cis-regulatory regions evolve more rapidly than protein coding 

regions (Kellis et al., 2003; Chin et al., 2005) and are under more efficient selection 

(Wray et al., 2003; Stern, 2000; Wray, 2007). We considered a linear pathway of six 

enzymatic steps, and considered six regulatory strategies, which corresponded to six 

different metabolites directly affecting transcription factor activity. For each one, we 

optimized the cost function using numerical methods. Interestingly, as shown in fig. 7, 

the different networks showed different gene expression strategies when allowed to 

evolve optimal regulation.

Figure 7. Predicted optimal dynamic profiles of gene induction under six different 

regulatory network architectures. Some curves which overlap perfectly have been 
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artificially separated by a small offset.

In particular, for networks I-V, in which an intermediate metabolite controls transcription 

factor activity (IAA networks), the optimal network response involves a separation of 

responses: strong induction for enzymes downstream of the controlling intermediate, and 

weaker induction for enzymes upstream of the controlling intermediate. We consider fold 

change as opposed to absolute level since the latter can be scaled by scaling kcat for a 

particular enzyme, while the relative level is insensitive to the particular enzyme 

parameters. 

This separation of responses is similar to our observed dynamics in the yeast leucine, 

lysine, and adenine biosynthesis pathways, and can be explained by a simple observation. 

Looking at the network topology from the point of view of the intermediate metabolite, 

upregulation of the upstream genes creates a positive feedback loop, since higher levels 

of upstream enzymes lead to higher levels of the intermediate metabolite. However, 

upregulation of downstream genes creates a negative feedback loop, since higher enzyme 

levels deplete the intermediate metabolite. Strong negative feedback has long been a 

well-known design principle for strong and fast upregulation of gene expression 

(Rosenfeld et al., 2002; Alon, 2006). While strong positive feedback is invaluable in 

switching or bistable systems, it can often have deleterious consequences for fast 

response in adaptive systems (Wilhelm, 2009). 
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The aforementioned results were obtained by choosing reasonable values for the 

evolutionary parameters γ, η, and T. Since the true values are largely unknowable, we 

repeated the analysis using a wide range of values for these parameters, creating a phase 

diagram of network behaviors. The results for network III are shown in fig. 8. For a wide 

range of parameters, we see the behavior observed previously, with a separation of 

responses between upstream and downstream genes. The area in the lower left corner 

corresponds to very low enzyme synthesis cost or very frequent starvation. In these cases, 

the model predicts that it is actually optimal to have no regulation and to express all the 

enzymes constitutively. The area in the upper right represents the case when enzyme 

synthesis cost is very high. We find no particular pattern among these solutions, and for 

several reasons suggest that this area corresponds to solutions with little biological 

relevance. One of these is that the enzyme synthesis cost is so high that these solutions 

often involve induction ratios of well over 104, a situation rarely observed in real 

metabolic gene expression regulation, especially in yeast. Similar results were obtained 

for the other IAA networks (figure S1).
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Figure 8. Phase diagram of optimal expression dynamics for an IAA network. The 

network is shown in the top right. Each point in the graph corresponds to a pair of values 

(γ, η/T) represents an optimization of the cost function over the regulatory parameters. 

Each solution was classified based on the resulting enzyme expression dynamics. The red 

region corresponding to intermediate values of the evolutionary parameters shows a 

pattern of separation of enzymes dynamics before and after the regulatory metabolite. 

The x-axis (γ) represents increasing cost of enzyme synthesis, relative to the cost of 

product starvation, while the y-axis (η/T) represents decreasing frequency of starvation. 

Behavior that depended on T independent of η was found only for very small T. At the 

bottom, gene expression profiles from sample solutions from the three regions are shown. 
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For network VI, in which the product of the pathway regulates the transcription factor, we 

found the optimal response to involve almost identical expression profiles for every 

enzyme in the pathway. This behavior was found to be robust for a very wide range of 

meta-parameters. In this network, there is no positive feedback loop, and thus no 

constraint on induction of the enzymes at the top of the pathway. This agrees with our 

observations in the yeast arginine biosynthesis pathway where all enzymes had similar 

induction dynamics.

Discussion

We have shown that in a number of biosynthetic pathways in yeast, gene expression 

dynamics depend on the underlying regulatory architecture. In particular, we have 

observed that under the IAA, the enzyme immediately downstream of the regulatory 

intermediate is induced much more strongly than any other enzyme in the pathway. These 

include Leu1 in leucine biosynthesis, Lys9 in lysine biosynthesis, and Ade17 in adenine 

biosynthesis. In some cases, other enzymes downstream of the intermediate also have a 

relatively strong induction level. In arginine biosynthesis, which is regulated by the EPI 

architecture, we did not observe significant differences in gene induction among pathway 

enzymes. 

By using a theoretical model to balance the relative costs and benefits of gene expression 

24



level and pathway flux in response to nutrient depletion, we have shown that organisms 

are likely to evolve different patterns of gene expression depending on the regulatory 

architecture used to control the pathway. In particular, for networks in which an 

intermediate metabolite interacts with the transcriptional regulator, the theoretical model 

predicts that the most favorable gene expression dynamics involve a much stronger 

induction for enzymes downstream of the intermediate than for those upstream of the 

intermediate.

While we have concentrated on the prediction of gene expression profiles for individual 

networks, our model also predicts a final cost value for each network, and we can 

compare the costs between the six networks in figure 7. We find that across virtually the 

entire phase space, network VI consistently has the lowest cost, followed by networks I, 

II, III, IV, V in that order. This is somewhat intuitive since this is the order in which the 

networks sense the starvation signal, from earliest (directly sensing lack of product) to 

latest (the last intermediate in the pathway). However, it does create the question of why 

not all biological pathways use the least costly regulatory topology. We hypothesize that 

this is due to the high evolutionary barrier of switching the regulatory program. A switch 

in regulatory program must involve the evolution of a new metabolite-TF interaction, as 

well as a concurrent evolution of each of the promoters involved, and is likely to create a 

very unfavorable intermediate state. Nevertheless, this question deserves attention, and 

multi-species studies are underway to investigate this topic.
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Our theoretical model can make several predictions in the reverse direction – namely the 

prediction of network architecture based on gene expression data. One example of the 

first case is our discussion in the adenine pathway of the roles of AICAR and SAICAR. 

Our results suggest that AICAR is the major regulator of Bas1 activity (through 

Bas1/Bas2 interaction) based on the strong induction of Ade17 and weaker induction of 

Ade13. It may also be possible to use gene expression profiles to predict the regulatory 

architecture controlling a completely uncharacterized pathway.

Our model is undeniably a vast simplification of several biological features. One aspect 

of this is the accuracy of the cost function, which is meant to be inversely proportional to 

growth rate. Despite the many studies that have noted the effect of unnecessary gene 

expression on growth rate, no general quantitative model has been developed. In addition, 

it is naive to consider the flux through the linear pathway in isolation from the rest of 

cellular metabolism. For instance, turning the pathway on diverts flux from central 

metabolism that could be used for other biomass, or turning on the pathway could upset 

the balance of various cofactors. These effects are certainly complex and given these 

factors, we do not claim that our model is a quantitatively accurate model for cellular 

growth. Nevertheless, we feel that it captures the major components of the cost/benefit 

structure: a penalty for high gene expression, and a penalty for low pathway flux. 

Moreover, our use of meta-parameters to explore a large phase space in large part 

compensates for the uncertainty in the model.
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We note also that the model predicts virtually identical expression profiles for all 

enzymes downstream of the control point in IAA networks, while our data only shows 

consistently a strong induction for the enzyme immediately after the control point. There 

are several reasons why this could be the case. One possibility is that we are observing 

some natural variation away from the optimal solution, which is lower for the enzyme 

immediately after the control point than for other downstream enzymes. Indeed we show 

(figure S2) that the sensitivity of the cost function is highest to parameters that affect the 

expression of the enzyme immediately downstream; that is, changing expression of the 

enzyme downstream of the intermediate is most detrimental to the behavior of the 

system. This is because this expression level tightly controls the level of regulator and 

will affect expression in the entire pathway. The second possibility is that our cost 

function has not captured fully the way by which fitness depends on expression level, as 

discussed in the previous paragraph. It is likely that cells are trying to optimize many 

things other than the cost of gene expression. One possibility is that strong regulation of 

the immediately downstream enzyme could enhance system stability or reduce noise. 

Nevertheless, both stability and noise reduction are aspects of strong negative feedback, 

which was the basis of differential induction in our model. We feel that the key finding of 

strong dependence of expression profiles on network architecture and in particular on the 

feedback structure will be robust as more interesting models for cellular fitness are 

considered.

We have noted that we do not observe significant timing differences between pathway 
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enzymes. Previous work had shown that in E. coli amino acid biosynthesis pathways, 

response to starvation involved sequential induction of pathway enzymes, in the order of 

their position in the pathway (Zaslaver et al., 2004). Furthermore, a theoretical model 

could produce a similar just-in-time type of behavior under some circumstances (Klipp et 

al., 2002; Zaslaver et al., 2004).  Regarding the model, we found that we could reproduce 

just-in-time behavior, but only under two particular conditions. For the first, we 

considered a situation where instead of being constrained by a regulatory network, 

expression of each enzyme could be controlled arbitrarily. We reran our optimization 

algorithm under conditions where each enzyme could be controlled independently with 

an arbitrary sigmoid function, with the parameters of this sigmoid optimized according to 

the same cost function. We found (figure S3) that this produced the classic just-in-time 

behavior. A second scenario in which just-in-time regulation could be reproduced by our 

model was when steady state expression levels were much less important than transient 

levels. This occurred when the meta-parameter T, representing the duration of starvation, 

was very small. In that regime, the final concentration of the enzymes were irrelevant, 

and drastic overshooting is not punished by the cost function (supplementary figure). It 

can be shown that under the standard model of gene regulation that we use, involving one 

transcription factor, it is impossible to maintain identical basal and maximal levels for 

two different enzymes while maintaining different timing of responses. In order to create 

different timing when only one regulator is used, either the basal level or the induced 

level must also be different. Thus, given our model and cost function, in a regime where 

the duration of starvation is not insignificant, and where the basal level of the enzyme is 
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not zero, just-in-time is not optimal, since it will result in highly suboptimal steady state 

enzyme levels. It is possible that the reason just-in-time regulation was observed in E. 

coli amino acid biosynthesis pathway is precisely because E. coli evolved in such a 

regime where steady state levels were unimportant. However, we also note that this study 

only considered absolute enzyme abundance as opposed to fold change from basal level, 

since the basal levels are extremely difficult to measure accurately in E. coli. for most 

enzymes. It is possible that with a more careful measure of basal expression, the two 

results will become consistent. Another possibility is that the regulatory architectures for 

the pathways considered in that study are not yet fully understood. If a second factor is 

involved in regulating expression, a just-in-time phenotype is more feasible.

Another recent study suggests that the effect of separated induction levels under the IAA 

is present outside of yeast. We obtained time course data for expression of a large number 

of amino acid biosynthesis genes under depletion for six different amino acids in E. coli 

from Yamada et.al.  (Yamada et al., 2010). While the same problem with measurement of 

basal level is present, these data suggest the same pattern that we have observed in yeast 

may also be present in E. coli. For instance, the lysine biosynthesis pathway in E.coli is 

regulated by the transcription factor LysR, which binds the metabolic intermediate 

diaminopimelate to become active (Stragier et al., 1983). Three other pathways: 

methionine biosynthesis, cysteine biosynthesis, and valine biosynthesis all are thought to 

be controlled by an IAA network, with intermediate coinducers homocysteine, 

acetylserine, and α-acetolactate respectively (Urbanowski and Stauffer, 1989; Ostrowski 
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et al., 1987; Wek and Hatfield, 1988) (review in (Schell, 1993)). In each case, the enzyme 

downstream of the intermediate (MetE, CysM/CysK, and IlvC, respectively) has a higher 

change in expression than any other enzyme in the pathway.

There are two design principles for the regulation of metabolic pathways which we have 

introduced in this work: 1) optimal dynamics of gene induction are strongly dependent on 

the underlying network architecture and 2) under the IAA, strong induction of enzymes 

downstream of the intermediate is highly favorable. The latter is one application of the 

more general principle of using strong negative feedback for fast response. Nevertheless, 

it is striking that these results can be deduced from an extremely simple mathematical 

model of evolutionary optimality. It is likely that the model captures the basic principles 

behind the biology, and it is possible that in the future, similar models could be used to 

tackle more complex problems.

Materials and Methods

Strains and plasmids

All yeast strains are derived from S288c MATα ura3-52. Transcription factor knockouts 

were constructed by replacement of the target gene with the NatMx casette by one-step 

homologous recombination. For promoter-GFP constructs, plasmid pVC02 was 

constructed by amplifying yeGFP from pFA6-GFP-KanMx with SacII and NgoMIV 
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flanking sequences, digesting, and subcloning into PRS306. In addition pVC02 contains a 

silent mutation in yeGFP creating a SacI digest site near the start codon, allowing 

integration of the promoter and 5' UTR before GFP with no restriction enzyme scar. The 

silent mutation had no effect on GFP expression. Plasmids with each promoter were then 

constructed by amplifying a 720bp fragment directly upstream of the start codon of each 

gene using primers with flanking digest sites E1 and E2 (E1={XbaI,NotI,BafmHI}, 

E2={SacI,SacII}). After digestion and ligation with appropriately digested pVC02, 

plasmids were verified by sequencing, and digested at a restriction site inside the URA3 

gene for transformation into yeast via standard protocols (Gietz and Woods, 2002).

Media

Growth before starvation (t<0) was on SD-complete media. Amino acids and nucleotides 

were present at the following concentrations: adenine: 40mg/L arginine: 20mg/L; 

histidine: 20mg/L; isoleucine:  30mg/L; leucine: 100mg/L; lysine: 30mg/L; methionine: 

20mg/L; phenylalanine: 50mg/L; threonine: 200mg/L; trypophan: 40mg/L; tyrosine: 

30mg/L; uracil: 20mg/L; valine: 150mg/L. Starvation media was identical except for the 

absence of the appropriate amino acid.

Flow Cytometry
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Cultures were grown in deep well 96-well plates, with a volume of 500ul per well. 

Overnight cultures were diluted and grown for 14-18 hours to OD 0.05-0.1 while 

fluorescence was monitored and observed to reach steady state. At that point media was 

removed by centrifugation, and cells were resuspended in dropout media. During both 

pre-starvation and post-starvation growth, a customized robotic liquid handler 

periodically diluted the cultures with fresh media and delivered samples to an LSRII flow 

cytometer (Beckton-Dickinson). GFP was excited with a 488nm laser and emission was 

collected with a 530/30 filter. Cell populations were filtered by gating on the forward and 

side scatter values, and total GFP fluorescence was normalized to side scatter to give an 

approximate measure of GFP concentration (Salzman, 2001).

Cost/benefit model and parameter optimization

All computation was done using software written by the authors. The SUNDIALS 

package (Hindmarsh et al., 2005) was used for numerical solution of the ordinary 

differential equations. For a given network architecture and values of the evolutionary 

parameters, optimization of the regulatory parameters was done by simulated annealing 

with the Metropolis Monte Carlo method (Metropolis et al., 1953; Kirkpatrick et al., 

1983). Five independent simulations were done for each optimization problem, and 

variation in the final objective function was typically below 1%. 
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Appendix

Figure S1. Phase diagrams for all networks. Networks I-VI correspond to the same 

networks in figure 7 in the text. For networks I-V, red points correspond to solutions with 

separation of regulation of downstream and upstream enzymes. For network VI, red 

points correspond to solutions with almost identical induction levels for all enzymes. 

Black points correspond to solutions with no appreciable induction of any enzymes. Blue 

points are solutions with no clear pattern. 
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Figure S2. Sensitivity of the cost function to small changes in parameter values away 

from the found optimum. Parameters b1-b6 correspond to promoter dependence on 

transcription factor activity for enzymes 1-6 in the pathway. Enzyme 4 is the one 

immediately downstream of the regulatory intermediate. The cost function is most 

sensitive to b1 since enzyme 1 controls basal pathway flux, but also highly sensitive to b4 

since enzyme 4 exerts the most control over the level of regulatory intermediate.
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Figure S3. Examples of just-in-time behavior produced by our model. The left graph 

shows the profiles when the cost function is minimized with the similar meta-parameters 

to the rest of our analysis, but no regulatory network exists, and enzyme profiles are 

allowed to be a sigmoid function of three parameters. The right graph shows optimal 

profiles under network VI (end-product-inhibition) but with T=0.5, so steady state levels 

are largely irrelevant.
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