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Abstract

Essays in Environmental and Energy Economics
by
Joshua Aaron Blonz
Doctor of Philosophy in Agricultural and Resource Economics
University of California, Berkeley
Professor Severin Borenstein, Co-chair

Professor Maximilian Auffhammer, Co-chair

This dissertation combines research on three topics in applied Energy and Envi-
ronmental Economics related to the electricity industry. In the first paper, I study
the economic welfare impact of an electricity pricing program that increases the price
of electricity for small commercial and industrial customers when the cost of genera-
tion is high. The second paper explores an energy efficiency retrofit program that
provides free upgrades to low-income households in California. Both of these policy
interventions were a result of orders from the California Public Utilities Commission,
the energy regulator in California. The final paper examines the cost of air quality
regulations on employment in the coal mining sector in Appalachia. These three
papers study different important aspects of the electricity sector, from upstream
regulation of generation to end use pricing and consumption efficiency.

In the first chapter, I study how in electricity markets, the price paid by retail
customers during periods of peak demand is far below the cost of supply. This leads to
overconsumption during peak periods, requiring the construction of excess generation
capacity compared to first-best prices that adjust at short time intervals to reflect
changing marginal cost. In this paper, I investigate a second-best policy designed
to address this distortion, and compare its effectiveness to the first-best. The policy
allows the electricity provider to raise retail price by a set amount (usually 3 to 5 times)
during the afternoon hours of a limited number of summer days (usually 9 to 15). Using
a quasi-experimental research design and high-frequency electricity consumption data,
I test the extent to which small commercial and industrial establishments respond to
this temporary increase in retail electricity prices. I find that establishments reduce
their peak usage by 13.4% during peak hours. Using a model of capacity investment
decisions, these reductions yield $154 million in welfare benefits, driven largely by



reduced expenditures on power plant construction. I find the current policy provides
of the first-best benefits but that, with improvements in targeting just the days with
the highest demand, a modified peak pricing program could achieve 80% welfare gains
relative to the first-best pricing policy.

In the second chapter, I study energy efficiency retrofits programs, which are
increasingly being used to both save on energy bills and as a carbon mitigation
strategy. This paper evaluates the California Energy Savings Assistance program,
which provides no-cost upgrades to low-income households across the state. I use
quasi-experimental variation in program uptake to measure energy savings for a
large portion of the treated population in the San Diego Gas & Electric service
territory between 2007 and 2012. The results suggest that the overall program is
ineffective at delivering energy savings and is not cost-effective. One challenge in
implementing efficiency retrofit programs is that each upgrade must be customized
to the housing unit on which it is installed. As a consequence, there is a wide
range in efficiency upgrade potential across the population of candidate households.
To better understand this heterogeneity in measure installation and its potential
to drive program outcomes, I use discontinuities in program rules to identify key
measure specific savings. This analysis shows that larger upgrades such as refrigerator
replacements do provide cost-effective savings when considering the full set of social
benefits. Households that do not receive larger upgrades generally see little or no
savings. These results suggest that heterogeneity in upgrade potential can drive
overall program outcomes when only a small portion of the treated population is
eligible for cost-effective efficiency upgrades.

In the third chapter, I study the costs of Title IV of the Clean Air Act. This
regulation put a cap on sulfur emissions from electric power plants, which reduced the
demand for high-sulfur coal. Using a quasi-experimental research design, I estimate
how coal mine employment and production in high-sulfur coal-producing counties
were impacted by the regulation by comparing them to neighboring counties that
produced low-sulfur coal. I find that coal production dropped by 20% and coal sector
employment dropped by 14%. I find no evidence of spillovers to employment or wages
in the non-coal sectors of the high-sulfur coal counties. The results suggest that the
coal sector employment costs of Title IV of the Clean Air Act are highly concentrated
in the coal industry, and that the decline does not detectably impact the overall
regional economy.



Contents

Contents i
List of Figures ii
List of Tables iv
Acknowledgements vi

1 Making the Best of the Second-Best: Welfare Consequences of

Time-Varying Electricity Prices 1
1.1 Imtroduction . . . . . . . . ... 1
1.2 Background . . . .. ..o 5
1.3 Data . . . . . . 8
1.4 Empirical Strategy . . . . . . ... 9
1.5 Results . . . . . . oo 14
1.6 Welfare Impacts of Peak Pricing . . . . . .. .. ... ... ... ... 20
1.7 Conclusion . . . . . . . .. 33

2 Energy Efficiency Retrofit Heterogeneity and Program Outcomes:
Evidence from the California Energy Savings Assistance Program 52

2.1
2.2
2.3
24
2.5
2.6

Introduction . . . . . .. ..o 52
IV empirical design and analysis . . . . . ... ... .. ... .. ... 56
Refrigerator savings estimates . . . . . . . . . ... .. .. ... ... 62
High efficiency washing machine savings estimates . . . . . . . . . .. 67
Discussion . . . . . . .. 70
Conclusion . . . . . . . . .. 75

3 Environmental Air Quality Regulation and Coal Employment Costs:
Evidence from Appalachia 100

3.1

Introduction . . . . . . ..., 100



3.2 Background . . .. ... 102

3.3 Data . . .. .. 105
3.4 Empirical strategy . . . . . ..o 106
3.5 Results. . . . . . 108
3.6 Discussion . . . . . ..o 110
3.7 Conclusion . . . . . . .. L 112
Bibliography 126
A All the robustness checks I couldn’t fit in my job market paper 133
A.1 Peak pricing program details . . . . . .. ... .. 0L 133
A2 Dataappendix . . . . . . . ... 134
A3 Time of use pricing . . . . . . . ... 136
A4 Results robustness . . . . . .. ..o 139
A5 Calculations . . . . . . ... 141

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8
1.9

Average Consumption Profile of Small Commercial and Industrial Estab-
lishments in Sample . . . . .. .. ... ... 35
Timeline of Peak Pricing Rollout . . . . .. .. .. ... ... ... ... 36
The Effect of Eligibility on Peak Pricing Treatment Status . . . . . . . . 37
Pre-Period Electricity Consumption by Eligibility Group . . . . . . . .. 38
Smoothness of Observable Characteristics through the September 1, 2011
Threshold . . . . . . . .. 39
The Impact of Peak Pricing Eligibility on Inland Establishment Peak
Consumption (Reduced Form) . . . . .. ... ... ... ... ... ... 40
Treatment for Inland Establishments Effects Estimated at Varying Band-
widths . . . . . . 41
Effect of Peak Pricing on Inland Establishment Electricity Consumption 42
Benefits and Costs of Peak Pricing . . . . ... ... ... ... ... .. 43

1.10 Comparison of Peak Pricing to the First-Best, Real-Time Price . . . . . 44

ii



2.1
2.2
2.3
24
2.5

2.6
2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Al
A2
A3

In kind transfers . . . . . . . ...
In kind transfers . . . . . . ... ..
Care enrollments and unemployment rate in SDG&E’s service territory .
Map of all zip+4s in SDG&E’s service territory by certification status . .
Map of zip+4s in SDG&E’s service territory trimmed to 75 meters by
certification status . . . . . . ..o oL
Zoomed in map of zip+4s trimmed to 75 meters by certification status

Zoomed in map of distances between zip+4s of opposite certification
regimes trimmed to 75 meters . . . .. ... .o
Individual housing units by self-certifications status . . . . . . .. . . ..
Individual housing units by self-certifications status - trimmed to 75m . .
Density of pre-period kWh consumption by eligibility status . . . . . . .
Density of pre-period therm consumption by eligibility status. . . . . . .
First stage of fridge analysis . . . . . . .. ... ... ... L.
Distribution of fridge vintages . . . . . . . . . ... ...
Covariates graphed through 1993 fridge age discontinuity . . . . . . . . .
Savings from fridge replacement . . . . . .. . ..o
Savings from fridge replacement - alternate specification . . . . .. . ..
First stage of high efficiency washer analysis . . . . . . . .. .. ... ..

Distribution of County Level Sulfur Content . . . . . . . ... ... ...
Sulfur Content of Appalachian Counties in Study . . . . .. .. ... ..
High sulfur (>1%) Designation of Appalachian Counties . . . . .. . ..
Average Appalachian Coal Price by Sulfur Content . . . . . . .. .. ..
Total Appalachian Coal Production by Sulfur Content . . . . .. . . ..
Total Appalachian Coal Employment by Sulfur Content . . . . . . . . ..
Coal Production Labor Efficiency by Sulfur Content . . . . . . . . . . ..
Average Appalachian County Level Employment (all sectors) . . . . . . .
Average Appalachian County Level Wage (all sectors) . . . . . . .. . ..

Letter Sent to Establishments 30 Days Before Peak Pricing . . . . . . . .
Map of Establishments in Sample by Region . . . . .. ... ... ...
Comparison of Establishment Consumption Between Primary Sample and
Establishments in Larger Bandwidths . . . . . . .. ... ... ... ...

iii



A.4 Average Temperature on Event days by County . . . . ... ... .. .. 148

List of Tables

1.1 Characteristics of Establishments by Peak Pricing Eligibility Status . . . 45
1.2 The Effect of Peak Pricing Eligibility on Enrollment (First Stage) . . . . 46
1.3 The Effect of Peak Pricing on Peak Electricity Consumption (2SLS results) 46
1.4 The Effect of Peak Pricing on Peak Electricity Consumption for Inland

Establishments: Temperature Interaction . . . . . . . . . ... ... ... 47
1.5 The Effect of Peak Pricing for Coastal Establishments on Hot Event Days:

Alternate Control Day Approach . . . . . . ... ... ... ... .... 48
1.6 The Effect of Peak Pricing on Peak Electricity Consumption for Inland

Establishments: Industry Classification . . . . . . . ... ... ... ... 49
1.7 Total Welfare Benefits of Peak Pricing . . . . .. ... .. ... .. ... 49
1.8  Welfare Impacts for 2015 Event Days . . . . . . .. ... ... ... ... 50
1.9 Welfare Impacts of Peak Pricing Under Alternate Scenarios. . . . . . . . 51
1.10 Welfare Impacts of Peak Pricing Compared to First-Best, Real-Time Price 51
2.1 Income limits for ESA program . . . . . ... ... .. ... ....... 93
2.2 Summary of ESA upgrades . . . . ... ... oL 94
2.3 Program savings: First stage . . . . . . . . ... Lo 95
2.4 Program savings: [V results . . . . . ... ... ... ... 95
2.5 Program savings: IV results interacted with refrigerator installation . . . 95
2.6 Refrigerator RD: first stage results . . . . . . ... .. ... ... ... 96
2.7 Refrigerator RD: IV results . . . . . .. .. .. ... .. ... .. 97
2.8 Refrigerator RD: bandwidth robustness checks . . . . . . . ... ... .. 97
2.9 HE washing machines: first stage results . . . . . . ... ... ... .. 98
2.10 HE washing machines: [V results . . . . .. .. ... ... ... ... 98
2.11 Fridge savings bandwidth checks . . . . . . . .. ... ... ... ... 98
2.12 Discounted benefits from appliance upgrades . . . . . . . . .. ... ... 99
3.1 Summary Statistics by Sulfur Content . . . . . . . . .. ... ... ... 123
3.2 Impact of Title IV on High-Sulfur Coal County Production . . . . . . .. 123

v



3.3 Impact of Title IV on High-Sulfur Coal County Employment . . . . . . . 124

3.4 Impact of Title IV on High-Sulfur Coal County Labor Productivity . . . 124
3.5 Impact of Title IV on High-Sulfur Coal County Total Employment . . . 125
A.1 Event Days with Day Ahead Forecast and Trigger Temperature . . . . . 150
A.2 Average Outdoor Temperature by Event day . . . . . . .. .. ... ... 151
A.3 Establishment Industry Classifications . . . . . . ... ... ... .... 152
A.4 Highest PG&E System Demand Days of 2015 . . . . . . . ... ... .. 153
A.5 The Effect of Peak Pricing on Peak Electricity Consumption: Demand

Elasticities . . . . . . . . . . 154
A.6 Main results dropping establishments with ambiguity in establishment

definition . . . . . . ... 154
A.7 Robustness : Impacts of TOU when it was first implemented . . . . . . . 155
A8 OLSresults . . . . . . . 155
A.9 Non event day 2pm-6pm impacts . . . . . . . ... ... ... ... ... 156
A.10 Main results with errors clustered at weather station level . . . . . . .. 156
A.11 Robustness: Opt-in peak pricing establishments included . . . . . . . .. 157
A.12 Robustness: Comparison of differently peak pricing targeting scenarios to

RTP with long period of high peak prices . . . . . ... ... ... ... 157



Acknowledgments

I am grateful to many people for their help throughout the PhD process. Severin
Borenstein has been an enormously important advisor, mentor, role model and teacher
for me while at Berkeley. I consider myself lucky to have spent so many years learning
from him and he has shaped the way I think about and study economics. Maximillian
Auffhammer has been an inspiring advisor and mentor who taught me how to write
papers, be an effective teacher, and how to work in an academic environment. I could
not have asked for better advisors to guide me through this process.

I am thankful to everyone at the Energy Institute that helped create a special and
unique academic environment. The lunchtime conversations about energy policy were
pivotal to my education as an economist. I want to thank Lucas Davis, Meredith
Fowlie, Catherine Wolfram, Jim Sallee, and Reed Walker for their input and willingness
to discuss my research. Many graduate students played a critical role in my education.
I want to thank Patrick Baylis, Judson Boomhower, Fiona Burlig, Walter Graff,
Sylvan Herskowitz, Louis Preonas , Matt Woerman and Matthew Zaragosa-Watkins
for their invaluable input on my research. I also want to thank Paula Pedro, Casey
Hennig and Karen Notsund for their help and support while at the Energy Institute.

Finally, I want to thank my family and friends who supported me throughout the
PhD process. My parents were incredibly supportive and were always willing to feed
me a home cooked meal at a moment’s notice. I couldn’t have completed this degree
without their ever-present support.

vi



Chapter 1

Making the Best of the

Second-Best: Welfare
Consequences of Time-Varying

Electricity Prices

1.1 Introduction

Supplying electricity during periods of peak demand is expensive. Because
electricity storage is not cost effective, sufficient generation capacity must exist to
satisfy demand at all moments in time. To avoid blackouts, electricity providers
regularly invest in power plants that operate only on the few highest demand days
of the year. Electricity prices, however, do not reflect the high cost of meeting peak
demand. Most retail prices reflect the average cost of providing power and do not
vary based on when this power is consumed. As a result, retail electricity customers
are undercharged for their electricity at peak times, leading to inefficiently high
consumption (Boiteux 1949; Steiner 1957).

In the long run, higher peak consumption necessitates additional generation
capacity. In most U.S. electricity markets, capacity investment decisions are made
by the regulator through the “resource adequacy” process (P. Joskow and Tirole
2007). The regulator uses past demand levels to determine generation capacity
requirements for electricity providers. If retail prices were adjusted to reflect the full
cost of generation during peak periods, this would reduce both peak demand and the
regulator’s capacity requirement. Borenstein and S. Holland (2005) and Borenstein



(2005) estimate the efficiency loss due to flat retail prices to be 5%-10% of wholesale
electricity costs.

Inefficient peak demand pricing also occurs in other contexts. Vickrey (1963)
and Vickrey (1969) outlines the problem of unpriced traffic congestion, where drivers
do not pay the full external costs of using infrastructure at peak hours. Instead,
drivers pay for the use of road networks through a flat gasoline tax, which is similar
to the average pricing structure used for electricity. In the long run, this can lead
to overinvestment in transportation infrastructure, as additional capacity is built
to alleviate unpriced congestion instead of providing the greatest social marginal
benefit.!

For both electricity markets and traffic congestion, the first-best policy is to charge
a price that reflects the short-run marginal scarcity value during periods of peak
demand. In the case of electricity, this policy is “real-time pricing” (RTP), under
which the retail price changes hourly or more frequently. RTP is technologically
feasible at low cost for most commercial and industrial customers due to the wide-scale
deployment of smart meters. Despite its large potential benefits, however, real-time
pricing remains politically infeasible. Because many customers receive large cross-
subsidies under existing flat pricing schemes, mandatory real-time pricing would be
difficult to implement without politically unpopular transfer payments (Borenstein
2007b).

The inability to implement real-time pricing suggests two important questions.
First, how large are the potential benefits of real-time pricing? This depends on
the extent to which customers would respond to short-run price changes. If demand
is sufficiently price inelastic, then any potential costs of implementing real-time
pricing could outweigh the benefits. Borenstein (2005), however, shows that, for most
plausible elasticities, the benefits are very likely to outweigh the costs. Second, to
what extent can second-best policies achieve the benefits of real-time pricing? This
paper addresses the second question by examining a common second-best policy
that raises electricity prices on high demand days, and by measuring this program’s
effectiveness compared to the first-best, real-time pricing policy.

I study the largest peak demand program to date in the U.S.; which includes
commercial and industrial (C&I) establishments in the Pacific Gas & Electric (PG&E)
Northern California service territory. Programs like PG&E’s “Peak Pricing” are
among the most common time-varying pricing policies in the U.S. The popularity
of such programs has grown with the recent deployment of advanced smart meter
technology. The peak pricing implementation I study gives PG&E the ability to

LA related problem is seen in the provision of public transportation, where fares typically do not
vary over time to reflect the marginal costs (Mohring 1972; Parry and Small 2009).



declare up to 15 “event days” per summer, during which the retail electricity price
more than triples between 2:00 pm and 6:00 pm. Customers are notified one day before
each event day, and they receive a small discount on all other summer consumption
in exchange for their participation in the program. My analysis focuses on small
commercial and industrial (C&I) establishments because the way in which the program
was implemented for these customers created a quite similar, and exogenous, control
group to which the treated group could be compared.

To identify the impacts of this peak pricing program, I leverage the rules that
governed its rollout. Establishments were placed on peak pricing by default only
after they satisfied a set of eligibility criteria. They were then allowed to opt out. I
compare establishments that satisfied the eligibility criteria for the first wave of peak
pricing to similar establishments that just missed being eligible by not satisfying the
eligibility criteria. I provide supporting evidence that assignment to peak pricing
is as-good-as-random, using data from before program implementation. I use both
a panel fixed effects instrumental variables strategy and a regression discontinuity
design to identify program impacts.

Using hourly electricity consumption data, I find that peak pricing reduces
electricity consumption for non-coastal establishments by 13.4% on event days,
compared to a control group. I estimate that the program will reduce PG&E peak
demand by 118 MW among small C&I customers when fully implemented by the
summer of 2018, thereby reducing the need for one or more specialized power plants
that are constructed with the sole purpose of generating electricity during the highest
demand hours of the year. To evaluate the welfare impacts of peak pricing, I model
the regulatory resource adequacy process that governs the amount of capacity that is
built specifically to meet peak demand. I find that the estimated reduction in peak
demand increases welfare on the PG&E grid by $154 million over a 30-year period,
due to avoided generation capacity investments.

To put these welfare effects in perspective, I compare my estimated peak demand
reductions to a first-best real-time price. Using the empirical estimates of demand
response, I calculate that the current program recovers 43% of the first-best welfare
gains. I then consider simple adjustments to the policy to better target the highest
demand days, and show that substantial welfare gains would likely result from reducing
the number of event days and increasing the event day price. This better-targeted
peak pricing policy could achieve 80% of first-best welfare gains.

The importance of the design of second-best policies has also been found in other
contexts. Sallee and Slemrod (2012) and Ito and Sallee (2014) show that notched
levels of fuel economy regulation can lead car makers to strategically manipulate
their production decisions for favorable treatment. This behavior can lead to negative
welfare outcomes compared to a differently designed, smooth fuel economy regulation.
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Ramnath (2013) finds that the design of the Saver’s Credit in the U.S. tax code
distorts household income reporting behavior in a way that is potentially costly to
the program.

This paper makes three distinct contributions to the economics literature. First,
no previous academic research has estimated the impacts of peak pricing on the
commercial and industrial sector, which is responsible for two-thirds of California and
U.S. electricity demand (Energy Information Administration 2016). The program
rollout that I study caused more business establishments to move to peak pricing
than any similar program in the U.S. Previous empirical work has focused on peak
pricing programs in the residential sector (Fowlie, C. Wolfram, et al. 2015; Ito, Ida,
and Tanaka 2015; Bollinger and Hartmann 2015; Jessoe and Rapson 2014; Wolak
2010; Wolak 2007).

The paper also contributes to the literature on long-run investment efficiency
in electricity markets. This literature typically relies on simulation and stylized
models of power plant capacity construction to value the impacts of alternate pricing
policies (Borenstein 2012; S. P. Holland and Mansur 2006; Borenstein and S. Holland
2005; Borenstein 2005). I depart from this approach, and instead focus on the
mechanisms that actually drive power plant construction in a regulatory setting.
Using this technique, I am able to estimate welfare impacts under a more realistic set
of assumptions.? I am also able to evaluate which program design features specifically
drive impacts, allowing me to propose improvements informed by the empirical
estimates.

Finally, the paper contributes to the literature on second-best pricing policies
under capacity constraints. The existing literature is mainly theoretical in nature,
applying a range of assumed parameter values to stylized models. For example, Arnott,
de Palma, and Lindsey (1993) use numerical examples to estimate Vickrey’s (1969)
model of traffic congestion and simulate outcomes under different pricing regimes.
Similarly, research on airplane landing congestion relies on stylized numerical examples
to analyze optimal pricing (Brueckner 2002; Brueckner 2005; Brueckner 2009). My
paper contributes to this literature by estimating the causal effects of a peak pricing
program focused on capacity constraints. My empirical estimates enter directly
into the welfare calculations, while allowing evaluation of potential improvements to
program design.

The rest of the paper is organized as follows: Section 1.2 discusses the electricity
industry, related literature, and the peak pricing program in detail. Section 1.3
outlines the data used in the analysis. Section 1.4 describes the empirical strategy

2My approach complements the work of Boomhower and L. W. Davis (2016), who use capacity
market payments to value the benefits of energy efficiency at peak hours.



and Section 1.5 presents results. Section 1.6 proposes a model for calculating the
welfare impacts of peak pricing programs, discusses potential improvements, and
benchmarks the outcomes to the first-best, real-time price. Section 1.7 concludes.

1.2 Background

Most electricity in the U.S. is sold to retail customers at a constant flat rate that
does not reflect the time-varying marginal cost of producing another kilowatt-hour
(kWh). In most cases, the marginal cost consists of two components. The first is the
short-run marginal production cost (SRMC), which includes the fuel costs associated
with producing an additional kWh. The second is due to a regulatory process in
most states that requires an electricity supplier to demonstrate it controls adequate
capacity to meet the peak demand it serves. These “resource adequacy” requirements
are generally based on previous peak demand quantities. As a result, each additional
kWh consumed on the highest demand days of the year increases future capacity
requirements, adding significant costs.

The welfare costs of the current system of flat-rate pricing are well studied in the
economics literature (Borenstein 2005; Borenstein 2012; Borenstein and S. Holland
2005). An efficient alternative to the current system is to vary the retail price of
electricity to reflect the time-varying marginal cost of supply. This could be done
by passing through the wholesale electricity market prices to retail customers in
real time. Real-time pricing is technically feasible at low cost due to the wide-scale
deployment of smart meters over the last decade (P. L. Joskow and C. D. Wolfram
2012).% Existing research shows that RTP could provide large, long-run efficiency
gains compared to the current flat-rate pricing by reducing total quantity demanded
(load) during high demand hours and increasing load when generation costs are low
(S. P. Holland and Mansur 2006). By reducing peak demand, RTP reduces the need
for costly power plants specifically built for the hottest few days of the year.

Despite the large potential welfare gains from RTP, implementation is politically
challenging. Retail electricity prices are set through a regulatory process under
political constraints. Some customers would face significantly higher energy bills
under real-time pricing, creating a constituency opposed to the new pricing system.
Borenstein (2007b) shows that substantial transfers would be required to keep many
customers whole when transitioning to a real-time price. Other customers are wary

3Smart meter deployment is financially justified because the meters eliminate the need to pay
employees to manually check electricity usage every month. As of 2014, the smart meter penetration
for C&I customers in California and the rest of the US was 89% and 66% respectively (Energy
Information Administration 2014).



of the potential volatility in electricity bills that could result from real-time pricing.
Borenstein (2007a) shows that switching to a real-time price could increase the
month-to-month bill volatility for commercial and industrial customers by a factor
of two to four, but that simple hedging programs offered by the utility could reduce
most of the variation.

In the absence of RTP, policymakers have introduced a number of other policies
that pass through some portion of time-varying prices to customers without unex-
pected volatility. Time of Use (TOU) pricing adjusts the price of electricity in a
prescribed manner by hour, day and season, but does not pass through high price
events. For example, a previously flat retail price of $.20/kWh could be changed
to a TOU rate of $.25/kWh between noon and 6:00 pm, when demand is generally
high, and $.15/kWh at night. These prices can capture some of the average shape
of marginal costs, but they do not adjust when wholesale costs spike on the highest
demand days of the year. Borenstein (2005) shows that TOU captures only a small
amount of the efficiency gains of RTP.

Peak pricing programs, like the one studied in this paper, are designed to address
the costs associated with the highest demand days of the year. To date, however,
research on consumer response to peak pricing programs has focused on the residential
sector. Existing studies find that households reduce their energy consumption when
facing high prices during peak hours, though the estimated response magnitude varies
across studies and depending on the use of automation technology. There has been
no published research to date on peak pricing in the commercial and industrial sector.
Because firms are responsible for twice the electricity usage of the residential sector,
this is an important gap.

The existing residential peak pricing studies have been run as utility experiments
and pilot programs. Fowlie, C. Wolfram, et al. (2015) partnered with the Sacramento
Municipal Utility District in California to study the impacts of opt-in versus opt-out
peak pricing programs. They find that households in the opt-out program reduce
their electricity usage by 13.9% during peak pricing events. Households that chose
to opt-in to peak pricing reduced their usage by 27.3%. Other residential peak
pricing research has focused on the importance of information and technology in
responding to peak pricing. Jessoe and Rapson (2014) find that providing households
with detailed usage data results in substantially larger reductions than just the price
alone. Bollinger and Hartmann (2015) investigate how automation technology that
adjusts consumption in response to higher prices affects the response to peak pricing.
They find that households are more than twice as responsive when they are given
automation technology and higher prices along with price information, compared with
price information alone. My paper is the first to investigate whether a similar overall
response to peak prices is also found among commercial and industrial customers.
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1.2.1 PG&E’s Peak Pricing Program

The PG&E peak pricing program for small C&I customers raises the price of
electricity from the normal price of $.25/kWh to $.85/kWh from 2:00 pm to 6:00
pm on 9 to 15 “event days” per year. The program runs between June 1% and
October 31%" each year. Enrolled establishments receive a discount of $.01/kWh on all
other consumption during the summer to compensate them for participating. PG&E
determines when event days are called based on day-ahead weather forecasts.* for
specific details on this process. Establishments are notified by 2:00 pm the day before
an event via e-mail, text message and/or phone call. Establishments are told about
Monday event days on the prior Friday.

Establishments are given “bill protection” for the first summer they are enrolled.
This protection guarantees that customers do not pay more in their first summer as a
consequence of the peak pricing rates. If their total utility bill is higher between June
1 and October 31 on peak pricing than it would have been if they had opted out, the
customer is refunded the difference. Establishments were sent a letter by PG&E in
November 2015 informing of them of how much money they saved or would have lost
during the first year of the program. The letter explained that the bill protection
credit would be dispersed on their November 2015 bill, and that they would no longer
receive bill protection going forward. In Section 1.5, I discuss the potential impact of
bill protection on the estimates of price response.

The enrollment data suggests that customers will remain in the peak pricing
program after they no longer have bill protection. In the first summer of peak pricing,
89% of establishments in my sample would have lost money if not for bill protection.
The average loss for these establishments was $104 over the summer of 2015.%> Despite
these losses, only an additional 5.5% of establishments dropped out between their bill
protection payment in November 2015 and the most recent data from October 2016.
This suggests that, even after the first summer, when establishments no longer have
bill protection, they do not choose to leave the peak pricing program.

I study the first wave of enrollments, in which 29% of small C&I accounts were
placed on peak pricing and given the ability to opt out at any time using a simple
web interface.® Only 5.9% of the establishments in the first wave opted out before
the first summer. An additional 5.3% of establishments dropped out during the

4When the forecasted maximum temperature at a set of five specified weather stations exceeds
a given “trigger” temperature, an event day is called. See Appendix Section A.1

52015 was the first year that small C&I establishments were included in peak pricing. The
program is designed to be revenue neutral with respect to enrollees, suggesting that the $.01/kWh
subsidy for non-event hours may need to be increased in future years.

6See Appendix Figure A.1 for an example of the letter sent to establishments 30 days before the
program started, with directions on how to opt out.



first summer of the program. The high number of people remaining in the program
reflects both the role of default bias and the impact of bill protection. There is a
large economics literature documenting the impact that changing the default can
have on choice, including Madrian and Shea (2001), Choi et al. (2004), Abadie and
Gay (2006), and Johnson, Bellman, and Lohse (2002), among many others.

1.3 Data

I use confidential data provided by PG&E for this analysis. The data consist
of hourly electricity usage data for 19,071 establishments for the summers of 2014
and 2015. These establishments are used in the analysis because their smart meter
data started within 6 months of September 1, 2011, which is a key feature of the
identification strategy and is described in the following section. I classify establish-
ments in the sample as being in coastal or inland areas based on a PG&E designation.
This classification is used frequently in my analysis of peak pricing because the two
regions have vastly different climates. The coastal region, which runs the length of
the coast in PG&E’s service territory, has much milder summers compared to the
inland region.”

To construct the final dataset, I combine hourly usage data with establishment
characteristics. Exact establishment latitude and longitude coordinates were provided
by PG&E, and are used to match establishments to hourly weather data obtained from
Mesowest.® T observe when a customer was placed on the opt-out tariff and whether
they decided to opt out. I also observe industry classification in the form of North
American Industry Classification System (NAICS) codes for 89.2% of establishments
in the sample.

PG&E categorizes its C&I customers based on electricity consumption. This
paper focuses on the smallest non-residential PG&FE rate, the A-1 tariff, because the
peak pricing rollout for this group allows me to causally identify program impacts.”
I remove smaller individual meters that consumed below 800 kWH/month in the

7Appendix A.2 describes the creation of the dataset in detail. See Appendix Figure A.2 for a
map of the 7,435 establishments used in the primary specification and their region designation.

8The hourly weather station data were cleaned to remove any weather stations with unreliable
data and are matched to the closest establishment. The final dataset contained measurements from
297 weather stations over 2014 and 2015.

9Establishments are placed on the A-1 tariff if they consume less than 150,000 kWh /year and if
they have peak usage of less than 75 kW. The average PG&E residential customer consumes around
8,000 kWh/year. PG&E, like most utilities, imposes a demand charge for its larger non-residential
customers. This charge is based on the customer’s maximum flow of electricity in a given month.
A-1 establishments do not pay a demand charge.



summer of 2014.1° This leaves me with the 19,071 establishments used in the analysis.
The average customer in the sample consumed 87 kWh/day and spent $560/month on
electricity in the summer of 2014. This is a larger amount than the average residential
household, which consumed 21 kWh/day. Figure 1.1 shows the average summertime
hourly consumption profile of the establishments in the sample, where the vertical
lines indicate the peak pricing window.

There are approximately 283,000 C&I customers of this size profile in the PG&E
service territory. These establishments make up 82% of the load of the small C&I
class. In total, small C&I customers constitute about 2,000 MW of peak load,
which is around one-tenth of PG&E’s total peak load. The customers in my sample
are typically smaller businesses for which energy is not a major input, including
restaurants, barber shops, bakeries, corner stores, small retail shops, strip mall
storefronts, law offices and doctors’ offices. Energy intensive establishments from
industries such as food processing, cement manufacturing, aluminum smelting or
commercial establishments with large refrigeration needs are on different tariffs and
are not studied because they face different electricity prices and event day prices.!!

1.4 Empirical Strategy

1.4.1 Natural Experiment in Peak Pricing Enrollment

The nature of the PG&E peak pricing program does not permit the use of
an OLS selection-on-observables design to carry out a simple comparison between
enrolled customers and those yet to be enrolled. That approach would likely result
in a comparison between dissimilar establishments and therefore biased estimates
of program impacts. To avoid potential bias, I use an instrument that leverages a
natural experiment in the rollout of opt-out peak pricing for the summer of 2015.

PG&E used a set of rules to determine when an establishment would be placed on
opt-out peak pricing. They evaluated their customer base once per year starting in
November 2014 to determine which establishments were eligible. This paper examines
the first wave of this rollout. The regulator required that an establishment had a
history of high-frequency metering data before they were placed on peak pricing, so

10T drop low-usage meters because most are not associated with an establishment. For example,
a single meter may be attached to a sign in a strip mall, but may not be associated with other uses
of the business. A full accounting of how the final dataset was constructed and cleaned is provided
in Appendix Section A.2.

HMost larger establishments were moved to peak prices using different criteria before 2015. As a
result of how this was done, there is no way to reliably identify the impacts of peak pricing on their
usage.



that customers could be informed about the potential price impacts and could make
informed decisions.

Specifically, establishments’ smart meter data needed to have started before Septem-
ber 1, 2011 to be eligible for the 2015 rollover to opt-out peak pricing. Figure 1.2
provides a timeline of this process. I classify establishments in two groups: those that
were eligible for peak pricing in 2015 and those that were not. Those establishments
with high-frequency data starting after September 1, 2011 were deemed ineligible for
peak pricing in 2015.

The impacts of this eligibility status can be seen more than three years after the
September 1, 2011 threshold, when treatment started.'? In November, 2014, a portion
of the eligible establishments were moved to opt-out peak pricing.'® In contrast, none
of the ineligible establishments were moved and will have to wait for subsequent
rollovers.

To illustrate the transition to peak pricing, Figure 1.3 breaks down the eligible
and ineligible groups by the week their smart meter data were first collected. The
horizontal axis shows weeks relative to the September 1, 2011 cutoff. The vertical
axis displays the percent of each bin that was placed on opt-out peak pricing for
the summer of 2015. A portion of the establishments to the left of the September 1,
2011 threshold were moved to peak pricing, while no establishments to the right were
moved.

The date an establishment’s smart meter data began is based on when its smart
meter was installed. PG&E started installing smart meters in 2008, long before
planning began for the peak pricing program rollout. PG&E treated installations
as general capital upgrades, with installation decisions based on factors such as
labor availability and logistical constraints. Installations typically took 5-15 minutes,
and did not require the account holder to be present. The smart meter installation
date was not related to consumption or to any observable characteristics of a given
establishment.

The nature of the smart meter rollout suggests that establishments on either side
of the September 1, 2011 threshold are similar. The peak pricing eligibility cutoff was
not known when the smart meters were installed, suggesting that establishments had
no reason to strategically adjust their installation date. While the installations are as

12The long time lag was due to a number of requirements that the regulator had given PG&E
about the information that had to be available to an establishment before it was transitioned to
opt-out peak pricing. See Appendix Section A.3 for more details on these requirements.

13Which establishments were moved depends on technological factors, which are described later
in this section.

14Gee Appendix Section A.3.1 for more details on the smart meter rollout, including quotes from
annual reports describing the process.
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good as random over short periods of time, there are longer-term patterns to consider.
Smart meters were installed across California during this time period, but certain
areas of the state were emphasized earlier in the rollout compared to others. I select
customers within an eight-week bandwidth of the September 1, 2011 threshold to
avoid potential bias from long-term installation trends. This bandwidth is indicated as
the dashed vertical lines in Figure 1.3, and cuts the sample to 7,435 establishments.!®
Table 1.1 shows the summary statistics for a number of characteristics broken out by
peak pricing eligibility. The table shows that establishments within eight weeks of
the September 1, 2011 cutoff are observationally similar to each other.

One noteworthy feature of the September 1, 2011 cutoff is that eligible establish-
ments closer to the threshold were less likely to be rolled over. This pattern is due
to technical requirements that govern when high-frequency usage data is considered
usable. PG&E requires that the “remote meter reads become stable and reliable
for billing purposes” before they can be used for any official purpose (Pacific Gas &
Electric 2010).1% The validation process can be quick for some establishments, but
can take a number of months to complete for others.!” For this reason, establishments
that had high-frequency data for longer (farther to the left in Figure 1.3) are more
likely to be placed on opt-out peak pricing in the summer of 2015. The eligible
establishments that missed peak pricing in the summer of 2015 due to technical
requirements were scheduled to be moved over for the summer of 2016.

I use two different identification strategies to estimate program impacts. I first
instrument for program participation based on the high-frequency meter data start
date eligibility criterion. Second, I use a regression discontinuity approach around
the September 1, 2011 threshold. This explicitly controls for an establishment’s
distance in days from the September 1, 2011 discontinuity in the post period, by
using a trend line. Both approaches use establishment fixed effects to control for
time-invariant characteristics. The unit of observation is the establishment-hour.
In most specifications, I limit the sample to 2:00 pm-6:00 pm on event days in the
summer of 2014 and 2015. In the summer of 2014, event days were called by PG&E,
but they did not apply to this customer class. This makes them an ideal set of
pre-period control days that are similar to the 2015 event days.

15T consider alternate bandwidths in the results section as robustness checks.

6PG&E still sends employees to physically read the meters monthly until this validation is
complete. See Appendix Section A.3.1 for more details on the validation process.

ITEstablishments to the right of the cutoff are assumed to have a similar pattern of data validation
characteristics.
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1.4.2 Instrumental Variables Approach

To identify peak pricing program impacts in the instrumental variables (IV) ap-
proach, I instrument for peak pricing participation with whether an establishment’s
smart meter was installed before September 1, 2011, limiting my sample to establish-
ments getting smart meters within eight weeks. I estimate the impact of peak pricing
using the following two equations via 2SLS:

(1.1) Qit = B1Peak, + BoTempy; + BsTempy, + (i + Yind + €it

(1.2)  Peaky = ar{Eligible x Post};; + asTemp; + Ongempft + i + Yind + Mt

Equation (1.1) is the second stage. P/eafit is an indicator of peak pricing enrollment
for establishment ¢ in hour-of-sample ¢, which is predicted in the first stage regression
(Equation 1.2) using the eligibility instrument interacted with the 2015 dummy
({Eligible x Post}y).

Qi is the log of electricity consumption for establishment ¢ in hour-of-sample ¢.
Hourly temperature is controlled for with Temp;; and Temp?,.'® Hour-of-sample fixed
effects, which control for any contemporaneous shocks that affect all establishments,
are captured with ;. ;g is a set of establishment fixed effects that control for
time-invariant factors. Each establishment has a separate establishment fixed effect
for each hour of day (h) and day of week (d) combination because these are both
significant dimensions across which establishments change their energy consumption.
B is the coefficient of interest and represents the average hourly reduction across
peak event hours in 2015. The identifying variation comes from within-establishment
variation in peak electricity consumption following the implementation of the peak
pricing program in 2015.

€;¢ 18 the error term in the second stage and 7);; is the error term from the first stage.
The panel nature of this analysis makes each of the errors potentially correlated both
over time and across establishments. To account for this two-way errors dependence,
I two-way cluster at the establishment and hour-of-sample level, as suggested by
Cameron, Gelbach, and Miller (2011). As a result, the errors are robust to both
within-establishment and within-hour-of-sample correlation.

The identifying assumption underlying the 25LS estimation is that peak pricing
eligibility is not correlated with peak electricity consumption, conditional on fixed

8The temperature controls are used to increase precision, but the results are robust to their
omission.
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effects and temperature controls, through any other mechanism than being placed
on opt-out peak pricing. Formally, this is written as cov(Peak Eligibility; ,€; | Xi)
= 0, where X; represents the covariates and fixed effects that are controlled for in
Equation (1.1). The exclusion restriction could be violated if there are time-varying
trends that differentially affect establishments in the two eligibility groups. The
estimation also requires a valid first stage, for which I provide evidence in Section
1.5.1.

Evidence of the validity of the research design restriction is provided in Figure 1.4,
which shows the average summer 2014 (pre-period) consumption by eligibility group,
after controlling for establishment-level fixed effects. The consumption patterns
are similar, indicating that the eligible and ineligible establishments function as
good comparison groups. Table 1.1 shows summary statistics by eligibility group for
establishments in the eight-week bandwidth on either side of the September 1, 2011
threshold. I cannot reject that eligible and ineligible establishments are statistically
the same across all observables.

1.4.3 Regression Discontinuity Approach

This section introduces a regression discontinuity (RD) approach that explicitly
controls for the distance in days an establishment is from the September 1, 2011

threshold. I estimate the impact of peak pricing with the following two equations via
2SLS:

Qi = 61@% + B2 X; Posty + B3 X { Eligible X Post}y + B:Tempy+

(1.3) )
BsTemp;, + G + v + €

Peak;, = an{Eligible x Post}; + asX;Post, + a3 X;{Eligible x Post};+

(1.4) 2
asTempy + asTempy + G + i + it
Equation (2.4) is the second stage equation. As above, P/eacit is an indicator of
peak pricing enrollment for establishment ¢ in hour-of-sample ¢, which is instrumented
for in the first stage (Equation 2.3) using the cutoff-based instrument interacted
with the post period. I control for the distance in days from September 1, 2011
linearly, using X;, as suggested by Gelman and G. Imbens (2014). ~; controls for
establishment fixed effects.! The remaining terms are the same as those found in

19The results are robust to using an establishment by hour-of-day by day-of-week fixed effect.
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Section 1.4.2. Inference is complicated by the discrete nature of the distance from
the threshold running variable. I cluster at the distance from threshold level based
on the suggestion of Lee and Card (2008).%

The main difference between the RD and IV approach is that the RD controls for
the distance from the threshold in the post period. This technique absorbs any linear
relationship between the distance from the threshold and ¢;;, which removes it as a
potential confounding factor in the estimation of peak pricing impacts. Identification
in the RD model comes from the assumption that the relationship between ¢; and
the distance from threshold does not change discontinuously at the September 1, 2011
cutoff, conditional on controls and fixed effects.

Figure 1.5 presents graphical evidence that the observable characteristics are
smooth through the discontinuity. Another concern is the potential manipulation of
the running variable near the threshold. I do not expect this to be a factor because
the September 1, 2011 threshold was not known to the establishments or PG&E
staff at the time. The top right graph in Figure 1.5 shows the count of smart meter
installations by bin. There is no visible spike before or after the September 1, 2011
threshold, which is evidence that establishments did not manipulate their starting
date.

The main RD specification uses the same sample as the IV approach, where
establishments are restricted to have high-frequency metering data that started
within eight weeks of the September 1, 2011 cutoff. In alternate specifications, I use
varying bandwidths and find similar results.

1.5 Results

1.5.1 Main Results

I use the IV and RD approaches to identify the impacts of peak pricing on
electricity usage. Table 1.2 shows the first stage results from estimating Equations
(1.2) and (2.3). Columns (1) and (2) show the results for the sample that spans the
PG&E service territory. The first stage is significant for both identification strategies,
and the IV approach has a larger coefficient. The discrepancy reflects the differences
between the approaches: they are identifying different local average treatment effects
(LATE). The RD approach estimates the vertical difference, conditional on fixed
effects, at the September 1, 2011 cutoff, which is roughly 9 percentage points, as seen

20Tndividual establishments are nested within each distance from the threshold, meaning the
errors are also robust to within-establishment correlation. See Appendix Section A.4.3 for alternate
clustering specifications.
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in Figure 1.3. The IV approach, on the other hand, estimates the average difference
between eligible and ineligible customers, leading to a higher number. The F-statistic
for the IV and RD approaches are 406 and 24 respectively, providing evidence of a
valid first stage. Columns (3)-(6) report the first stages for the coastal and inland
regions separately. The results show a significant impact of eligibility on peak pricing
enrollment for all specifications except for the coastal RD.

Table 1.3 shows the IV and RD impacts of peak pricing on electricity consumption.
The sample for analysis comprises the 7,435 establishments with high-frequency data
starting within eight weeks of the September 1, 2011 cutoff. Columns (1) and (2)
show the impacts for the IV and RD strategies. Both show reductions in peak usage,
but with p-values of .10 and .31 for the IV and RD approaches respectively. Columns
(3)-(6) split the results by region, showing that the impact of peak prices varies
substantially by geography and temperature. Coastal regions, which are characterized
by lower electricity usage and temperatures, show almost no response to peak prices.
In contrast, inland establishments reduce peak usage by 13.4% and 24.6% in the IV
and RD approaches respectively, and both are significant at the 5% level.?!

The results provide evidence that, in the warmer inland regions of California,
peak pricing significantly impacts electricity usage. Coastal customers, however,
do not seem to be as responsive. The regional nature of the results is consistent
with Ito (2015), who finds that inland households are more price-elastic than coastal
customers.

Figure 1.6 graphically shows the reduced form impacts of peak pricing eligibility
on peak usage using the RD approach for inland customers. The horizontal axis bins
customers by when their smart meter data were first collected, similar to Figure 1.3.
The vertical axis displays the difference between average 2015 event day consumption
and 2014 event day consumption. The figure presents residuals after temperature,
establishment, and hour-of-sample fixed effects are removed. Customers to the right
of the September 1, 2011 cutoff were not on peak pricing, while a portion of customers
to the left of the vertical line were on peak pricing. The figure shows a reduction in
peak consumption for peak-pricing-eligible establishments to the left of the vertical
line compared to the ineligible group to the right.?? The reduced form impacts of
peak pricing seen in this figure are visible but noisy, so I focus on regression analysis
for the remainder of the results section.

21Percent reductions reflect antilog transformed coefficients. See Appendix Section A.4.1 for the
non-instrumented OLS results, which show a smaller impact of peak pricing. Appendix Table A.5
shows the results as elasticities.

221 remove Monday event days from the figure because they typically have a noisier response due
to being announced the Friday before. By removing Mondays, it is easier to see the effects in Figure
1.6.
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The role of bill protection is important to consider when interpreting the results
in this paper. Establishments know they cannot lose money in the first year of the
program. This creates incentives similar to those in Ito (2015), where establishments,
far from making money under the program, may choose to “give up,” take the bill
protection, and not respond to the price. The role of bill protection can be seen
by examining the financial impacts of peak pricing in its first year. Only 11% of
establishments in my sample saved money in the 2015 peak pricing program, with
the remainder receiving the help of bill protection. As discussed in Section 1.2.1,
only 5.5% of establishments dropped out between the time they received the bill
protection credit in November 2015 and the end of the second year of the peak pricing
program. The low dropout rate after most establishments would have lost money in
the first year, combined with the lack of bill protection in future years, suggest that
my results are a lower bound for future peak pricing impacts. If establishments are
exposed to potential monetary losses, they have a larger incentive to reduce their
usage. It is possible that additional establishments may opt out of peak pricing
after losing money, which could reduce future aggregate impacts. However, the low
observed opt-out rate after the first summer suggests that this impact may not be
very large. Future years of program data are necessary to resolve the impact that
opt-out behavior might have on program impacts.?

Both the RD and IV approaches use an eight-week bandwidth around the Septem-
ber 1, 2011 cutoff, but the results do not change substantially at different bandwidths,
as shown in Figure 1.7. The results in this section are robust to a number of other
specification and clustering choices, as shown in Appendix Section A.4.

1.5.2 Spillovers to Non-Event Hours

The analysis to this point has only focused on the change in usage between 2:00 pm
and 6:00 pm on event days. This ignores the scope for establishments to re-optimize
their usage during off-peak hours. Figure 1.8 shows the treatment effects for inland
establishments by hour of day. The results suggest that establishments begin to
reduce their energy usage around 11:00 am, with the reductions becoming statistically
significant by 1:00 pm. This pattern of reductions is consistent with establishments
making event day changes that spill over to non-event window hours. For example,
an establishment may adjust its air conditioner set point from the normal 72 degrees
up to 76 degrees on event days. This behavior would reduce the overall demand for
cooling on event days, leading to the reductions seen before 2:00 pm.?* Immediately

23] am not able to estimate the causal impact of peak pricing without bill protection in future
years because the control group used in my identifications strategy will have rolled onto peak pricing.
24 Appendix Section A.9 shows the impacts on non-event days between 2:00 pm and 6:00 pm.
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after the event window ends, usage returns to the level of the control group. Many
small C&I businesses close around 6:00 pm, which might explain the return to control
consumption levels.

1.5.3 Impacts of Temperature

The outdoor temperature on event days is much higher in the inland regions of
California than on the coast.?> This suggests that temperature could play a role in
an establishment’s demand elasticity. Reiss and White (2005) show that residential
customers with air conditioners have more elastic demand than those without. Ideally,
I would measure the impacts of peak pricing on establishments with air conditioning
separately from those without, but this is not possible with the data available. Instead,
I focus on the role that temperature plays in event day reductions.

Table 1.4 presents the results for inland establishments from interacting the
treatment effect in Equations 1.1 and 2.4 with temperature.? The negative sign on
the interaction term shows that peak reductions get larger as temperature increases.
The estimated impacts are relative to a 75 degree day.?” The IV results show a
statistically significant reduction, while the RD estimates have the same sign but
with a p-value of .099.

The results show that, on average, higher reductions come from higher outdoor
temperatures. As a consequence, the peak pricing program may provide larger
reductions on the hottest event days when the grid is most stressed. This finding is
relevant to program design, because, if event days occurred only on the hottest few
summer days, then reductions might be higher than the average impacts under the
current program.

1.5.4 Firm Heterogeneity

Small C&I establishments use electricity to produce a wide range of goods and
services in their day-to-day operations. For example, retail establishments have
different patterns of electricity usage than office spaces or doctors’ offices (Kahn,
Kok, and Quigley 2014). In this subsection, I use the industry classification infor-
mation provided by PG&E to test how different types of establishments respond
to peak pricing. Specifically, I test how customer-facing and non-customer-facing

25See Appendix Figure A.4 for a map showing temperatures on event days.

26For the RD specification, I interact temperature with treatment and the distance from the
threshold terms. The results for the coastal region remain insignificant.

271 re-center temperature at 75 degrees for ease of interpretation; this does not impact the peak
pricing times temperature coefficient.
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establishments each respond to peak pricing. I hypothesize that customer-facing
businesses such as retail establishments or movie theaters may be less likely to reduce
air conditioning usage if it affects business. Customers may choose a different movie
theater or store if the indoor temperature is above expectations. On the other hand,
non-customer-facing establishments such as office spaces may be more willing to
reduce peak usage if it is easier for employees to adapt.?

I classify establishments as customer-facing or non-customer-facing using the
first two digits of their North American Industry Classification System (NAICS)
industry code. To determine which two-digit industries are customer-facing, I use the
U.S. Bureau of Labor Statistics classification of service-providing industries.?? From
this list, I define the set of service industries that are customer-focused. This list
includes retail trade (NAICS 44-45), health care (NAICS 62), leisure and hospitality
(NAICS 71), and accommodation and food services (NAICS 72). All other NAICS
codes are classified as non-customer-facing. These include industries such as goods
manufacturing (NAICS 11-31), transportation and warehousing (NAICS 48-49) and
office spaces (NAICS 52-56).3

Table 1.6 shows the results from running the I'V regressions separately for customer-
facing and non-customer-facing industries. In all cases, the customer-facing industries
do not show a significant response to peak pricing. This is in contrast to the non-
customer-facing industries, where the impacts are larger than previously found when
considering all industries together in Table 1.3. Inland customer-facing establishments
show the largest response to peak pricing, reducing their peak usage by 17.9%. The
result supports the hypothesis that customer-facing industries are less price-elastic.
The result also highlights that most of the overall reductions from peak pricing are
coming from the non-customer-facing establishments in inland California. In other
states where peak pricing is not structured as an opt-out program, it may be optimal
to target non-customer-facing establishments for enrollment to generate the largest
program impacts.

1.5.5 Coastal Event Days

Event days are determined based on the day-ahead forecasts for weather stations
in the inland regions of California. Temperatures in the coastal region of California,

28For example, an employer could inform their staff of an event day in advance and encourage
them to dress for a warm office.

Phttp:/ /www.bls.gov/iag/tgs/iag07.htm

30The NAICS codes that I have are often imprecise, which limits the ability to finely cut the
data into many different industries. See Appendix Table A.3 for a breakdown of establishments by
two-digit NAICS code.
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however, are not highly correlated with inland temperatures. In many cases, peak
hour average inland temperatures will reach 96 degrees Fahrenheit or more, while
coastal temperatures remain below 70. In some years, this can result in a relatively
cool set of coastal event days even with high inland temperatures. In 2014, inland
temperatures were high while all but one of the event days on the coast were below
72.31

Previous sections have illustrated the role that temperature and air conditioning
play in an establishment reducing usage on an event day. On cool event days on
the coast, there is likely a lower demand for air conditioning on the coast. If air
conditioning is playing a central role in an establishment’s ability to respond to peak
pricing, then it is possible that establishments are less responsive on cool event days.
The relatively cool summer of 2014 on the coast suggests it may not be a good control
group for estimating coastal peak pricing impacts.

To estimate program impacts on hot event days on the coast, I adjust my identifi-
cation strategy to use only 2015 data. I replace the 2014 pre-period event days with
a set, of control days in 2015 when the temperature was relatively hot, but an event
day was not called. The sample is limited to days where the average temperature for
both event days and non-event days was above 72 degrees. This results in a set of
the hottest 7 event and 15 control days of 2015, which I use to run the analysis.?? 1
further limit establishments to those with consumption over 1600 kWh/month in the
summer of 2014 in order to focus on establishments that are more likely to have air
conditioning.

Table 1.5 shows the results from this modified regression specification for both
the IV and RD specifications. The results show approximately an 8% reduction in
usage for coastal customers when the appropriate set of control days is considered.
These results highlight the role that temperature plays in an establishment’s ability to
respond to peak prices. When it is cool out, establishments run less air conditioning,
which gives them a smaller margin on which to adjust their usage compared to a
control group.

1.5.6 Aggregate Impacts

The previous subsections estimated the impacts of peak pricing on a subset of
small C&I establishments in the PG&E service territory. Importantly, these customers
are part of a utility-wide rollout that will place all small C&I establishments on peak
pricing by 2018, which has the potential to generate large peak reductions.

31See Appendix Table A.2 for a breakdown of temperatures by event day and region.
32This approach would not work for inland customers; the event days are typically the hottest
days of the summer, making the non-event days bad controls.
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To better understand the impacts of the fully deployed peak pricing program, I
extrapolate my savings to all small C&I customers. There are three main assumptions
that I make for this calculation. First, both the IV and the RD approaches reflect
local average treatment effects. It is possible that the average treatment effect
across all small C&I customers could be smaller or larger than those found here.
Observationally, the establishments in the eight-week bandwidth are similar to those
in a 27-week bandwidth, which is my complete sample.?3

Second, these estimates capture only the short-run impacts of peak pricing in
the summer of 2015. It is possible that establishment demand will become more
elastic as peak pricing continues. For example, customer-facing establishments may
be able to reduce peak consumption by upgrading their air conditioners to more
efficient models or improving insulation. Third, I assume the estimated savings reflect
future program year savings when there is no bill protection. This could result in my
estimates understating aggregate impacts, as discussed in Section 1.5.1.

I extend the savings from both the IV and RD estimates using the results for
inland customers from Columns (5) and (6) of Table 1.3. I focus on the inland
establishments because coastal establishments only reduce their usage on a subset of
the hotter coastal event days. I assume that the establishments in the eight-week
bandwidth are representative of all small inland C&I customers, and that long-run
opt-out rates will be similar to those observed in the first two years of my sample. I
combine this with customer count information provided by PG&E to estimate the
projected total impacts when the program is fully rolled out by the summer of 2018.3*
Using this technique, I find that small C&I establishments will provide reductions of
118 MW and 216 MW in peak load for the IV and RD approaches respectively.

1.6 Welfare Impacts of Peak Pricing

In this section, I first introduce a model to evaluate the welfare impacts of the
peak pricing program, which I calibrate using the empirical peak demand reductions
from the previous section. Using this approach, I consider changes to the current
peak pricing program to better target the long-run investment inefficiencies that
result from flat-rate pricing. I find that, by changing when event days are called,
and adjusting the event hour price, program outcomes can be greatly improved. I
conclude by benchmarking the impacts of peak pricing against the first-best, real-time
price using a simple theoretical energy pricing model.

33See Appendix Figure A.3 for a comparison of 2014 pre-period consumption across the two
groups.
34 A full accounting of the assumptions and calculations can be found in Appendix section A.5.1.
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1.6.1 A Model of Welfare Impacts from Peak Prices

The model is based on the current regulatory process in California, which is
responsible for capacity construction decisions. Most other states follow a similar
process. In the model, peak pricing reduces the level of summer peak demand, which
in turn reduces long-run capacity requirements and saves costs by avoiding power
plant construction. This framework allows me to calculate the welfare benefits of peak
pricing in a manner that reflects how capacity decisions in electricity markets are made.
The existing literature typically calculates the welfare impacts of alternative pricing
policies using a stylized model of electricity prices and power plant construction
(Borenstein 2012; S. P. Holland and Mansur 2006; Borenstein and S. Holland 2005;
Borenstein 2005). These models provide insight on the welfare impacts of alternative
pricing policies, but use assumptions that do not realistically portray the nature of
the binding capacity constraint in electricity markets.

The structure of electricity markets is defined by the lack of cost-effective storage,
which requires supply and demand to be balanced in real time. This feature introduces
a capacity constraint equal to the total capacity of generators; blackouts will result
if demand exceeds this constraint at any time. The stylized models of electricity
markets do not consider this constraint, and assume that the price and demand for
electricity are able to adjust quickly enough to avoid shortfalls. Additionally, such
models assume a cost to build new generators, but not construction time. In practice,
it can take six years from the initial proposal for a power plant to begin generating
electricity. Much of this process is governed by the regulator that sets the amount of
generation capacity that a utility must have on hand to avoid blackouts. The stylized
models used in the literature do not reflect the complexities of the regulatory process
and how this impacts electricity market outcomes.

I introduce a model based on the actual “resource adequacy” process, where the
regulator mandates how much peak generation capacity the utility must have on
hand (P. Joskow and Tirole 2007).3® These peak capacity requirements are typically
met by building specialized “peaker” power plants, which have a low capital cost but
a high marginal cost of generation. Some of these plants run for only a few hours on
the hottest day of the year. A large amount of peaker capacity is expensive to build
and maintain.

Typically, the regulator forecasts future peak demand using historical data and
load growth projections. Using this forecast and a valuation of blackouts, they set
a resource adequacy level for the utility in the coming year. The model I introduce

35The process I model is based on the California resource adequacy process, but is representative
of how capacity requirements are set in most states.
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is based on how peak pricing changes the resource adequacy process. The model
proceeds in three steps that happen yearly.

In step 1, no peak pricing program has been implemented. The regulator has
information about the distribution of historical peak loads and temperatures, which
also includes information about the peak load from the previous summer. I denote
this information set as Ly. The regulator uses this information to determine how
much peak capacity is needed, using the decision function F(), which does not change
over time.?0 T assume this is a well-defined process known to all market participants,
and that the regulator sets capacity high enough that there will be no generation
shortages in the coming year.?” I define this peak capacity requirement as X; =
F(Ly).

In step 2, the utility acquires capacity X; at cost C(X;). I assume that the utility
must fulfill this requirement and that the regulator perfectly observes the utility’s
behavior. The cost function is linear and does not change over time. For simplicity,
it reflects the utility’s yearly cost to acquire capacity.

Step 3 is when the demand for the year is realized. In the absence of peak prices,
demand would have reached a peak level of L;. However, with the implementation
of peak prices and their corresponding demand reductions, the new load is Ly, such
that L, < L;. For simplicity, I assume peak pricing reduces peak load on all event
days in a summer by the same amount, and that this amount remains constant from
year to year.

The majority of the benefits from peak pricing come from this reduction in summer
peak demand. This can be seen in Panel A of Figure 1.9, using a simplified peaker
capacity supply curve. By reducing the total peak demand, peak pricing reduces the
total generation capacity necessary to satisfy demand. This saving in capacity cost
reflects the high costs associated with building generation capacity and is the main
driver of savings under the peak pricing program.

The second impact from peak pricing is the surplus loss that results from changes
in customer behavior when paying higher prices on event days. For example, estab-
lishments may choose to run their air conditioner less, leading to a less comfortable

36If the regulator were an optimal social planner, the F() decision function would balance the
benefits of reliability against the costs of acquiring capacity, and pick an optimal capacity requirement
for the utility. In practice, most regulators are risk averse and put a very high cost on supply
shortfalls that result in localized blackouts. As a consequence, regulators typically set very high
reserve requirements for utilities. I do not take a stand on the exact approach the regulator should
use. I simply assume they follow the same rule each year.

37Blackouts from demand exceeding capacity are rare. The current California process requires
capacity at 1.15 times the projected peak load. This level is sufficiently high to assure that capacity
limits will never be reached. See P. Joskow and Tirole (2006) and P. Joskow and Tirole (2007) for a
discussion of optimal capacity with the possibility of rationing.

22



indoor environment. This impact can be seen graphically in Panel B of Figure 1.9.
To calculate this impact, I first recognize that the electricity still sold at the peak
price (to the left of (1) induces no change in total surplus, as it is just a transfer
from consumers to producers. For units that go unsold due to the price increase (to
the right of @1 and to the left of @), the change in surplus is the area under the
demand curve minus the resource savings from not producing these units. In this
case, the resource savings are equal to the fuel savings of the peaker plants that would
otherwise be used to generate this electricity.

I value the reduction in fuel used to run a peaker plant at its short-run marginal
production cost (SRMC), which I assume to be $.102/kWh based on current natural
gas prices (California Energy Commission 2015). T use the SRMC for this calculation
because I assume the regulatory process dictates that sufficient capacity is available
at all hours of the year, meaning the surplus losses are net of the short-run costs
associated with running a peaker plant. This set of calculations leaves what I term
the net consumer surplus loss, which is represented by the shaded triangle in Panel B
of Figure 1.9. I use a linear demand curve for simplicity and because it provides a
conservative upper bound on the net CS losses compared to other concave alternatives
such as a constant elasticity of substitution demand curve. I define the net consumer
surplus loss in year 1 as C'S;.

The process now restarts at step 1 in year 2. In the world with peak pricing, the
regulator observes peak load L; and sets peak capacity requirements for the coming
year Xy = F(L;). In the non-peak pricing scenario, the regulator observes peak load
Ly, resulting in peak capacity requirement X, > X,. In step 2 of year 2, the utility
must acquire capacity at cost C(X3) and C(X3) for the peak and non-peak pricing
scenarios, respectively. This process continues and repeats for both scenarios over
time.

To calculate the welfare impacts of the peak pricing program, I subtract the costs
in the peak pricing scenario from the costs in the non-peak pricing scenario. The
benefits are calculated over T periods on N event days per year using discount rate r.
The change in welfare from implementing peak pricing is defined as follows:

T

(1.5) AWelfare = Z

t=1

C(X,) — C(X,) = N x CS,
(I+7r)t

This calculation compares the cost of peak generation capacity with standard
pricing to the lower peak capacity needs when peak prices are used.

The model in this section leans on a stylized formulation of net consumer surplus
losses. It considers only the surplus losses to establishments that occur between 2:00
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pm and 6:00 pm on event days, when prices increase. It is possible that customers
are responding to peak prices in ways that that are not reflected in these hours.
For example, Section 1.5.2 shows that peak pricing enrolled establishments reduce
their usage before the 2:00 pm-6:00 pm event window starts. The model presented
here does not capture the net consumer surplus losses associated with this change
in behavior before the event window, or any other non-event window impacts. Bill
protection could also impact the magnitude of the net consumer surplus losses. If
the price signal to establishments is potentially affected by bill protection, then the
response to peak pricing may not reflect the true net consumer surplus impacts. I
conduct robustness checks using different levels of CS losses to see how these factors
impact the welfare estimates.

1.6.2 Calculating Welfare Impacts of PG&E’s Peak Pricing
Program

In this section, I calculate the welfare impact of the PG&E peak pricing program
using the model from the previous section and my empirical results.®® Some of
the simplified assumptions in the model are adjusted to better reflect the PG&E
service territory. In the model, the utility purchases capacity yearly at cost C'(X}).
In practice, the peaker plants that are used to satisfy peak demand typically last
at least 30 years. To approximate the cost function, I use the construction cost of
a single cycle peaker plant. The California Energy Commission (CEC) estimates
it costs $1,185,000/MW to build a natural gas combustion turbine peaker plant
(California Energy Commission 2015).> Using these plant construction numbers
and my empirical estimates, I find that the peak pricing program would provide a
one-time saving of $139 million in construction costs with the IV approach. I assume
this cost savings occurs in year 1 of a 30 year program. To value the total impacts of
the program, I include the discounted stream of annual costs and benefits. Reducing
peaker capacity provides an annual benefit of avoided staffing and maintenance costs,
which in this case totals $3.05 million per year.

To make the CS loss calculation, I use a linear demand curve as discussed in the
previous section. One important difference between the model and PG&E prices
is that retail electricity rates for small C&I customers are set at $.25/kWh. Retail
prices are higher than the short-run marginal cost of production because fixed costs

38From this point forward, I present calculations using only the IV estimate from inland estab-
lishments for simplicity. Appendix Section A.5.2 outlines why I make this choice and the welfare
benefit calculations using the RD estimates.

39 All values used in this paper are in 2016 dollars. Original 2011 values are inflated using the
THS North American Power Capital Costs Index.
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are recovered volumetrically in PG&E. In the previous section, I set retail rates at
the short-run marginal cost of production, which I assume to be $.102/kWh for a
peaker plant (California Energy Commission 2015). Establishments were willing
to pay the $.25/kWh price for their electricity during these peak periods, meaning
economic surplus is lost on event days when prices are increased and consumption is
reduced. Graphically, this impact is represented by a rectangle between the $.25/kWh
electricity price and the $.102/kWh short-run marginal cost of production. The total
CS loss from peak pricing is this rectangle plus the triangle under the demand curve,
shown in Figure 1.9. Using my empirical estimates, I find that the total net consumer
surplus loss in 2015 equals $3.14 million/year.

The PG&E peak pricing program gives enrolled establishments a $.01/kWh
discount on all non-event day electricity consumption. As a result, establishments
will consume more electricity in off-peak hours, resulting in increased consumption
across almost all summer hours.*’ Using my elasticity estimates and linear demand,
I calculate these welfare gains to be $0.84 million/year.!

To come up with a total welfare value, 1 take the construction costs and add
on the discounted stream of costs and benefits detailed above. This results in total
welfare benefits of $154 million (2016 dollars) using a 3 percent real discount rate and
a 30 year horizon.*? These numbers represent the welfare benefits of running the peak
pricing program every summer for 30 years. Embedded in this back-of-the-envelope
calculation is the assumption that electricity supply and demand will not change in
ways that affect the numbers calculated above. I also assume that the operation and
maintenance costs stay constant over the life of the plant, which likely understates
the costs as the plant ages. Furthermore, establishment demands are likely to become
more elastic as they face peak prices over many summers.

The above welfare calculations only capture the negative net consumer surplus
impacts from peak pricing that occur between 2:00 pm and 6:00 pm. Establishments
may undertake behaviors that affect consumption outside of the event window,
resulting in welfare impacts that are not captured with this model. Bill protection
may also impact the welfare estimate by affecting consumer response to the peak

4OImportantly, this price reduction is welfare-improving because the retail price of electricity for
small C&I customers exceeds any reasonable social cost.

41This is a strong assumption because I am applying my demand curve estimates, derived for the
period between 2:00 pm and 6:00 pm on event days, to all other hours in the summer. Using the
empirical analysis on non-event hours in the summer of 2015, I can reject the level of responsiveness
I am using for this calculation. Ultimately, the response from the off-peak CS gains is small and
does not significantly impact outcomes.

42The results are not very sensitive to discount rate assumptions because most of the benefit
is incurred upfront with the avoidance of capital construction costs. The other annual costs and
benefits are roughly offsetting.
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price. For robustness, I consider a scenario where the net consumer surplus impacts
are double what is calculated above. Using this assumption, I find the total welfare
impacts of the program to be $108 million. This shows that, even under a conservative
set of assumptions, the welfare impacts of peak pricing remain positive.

PG&E is one of three major utilities in California, along with Southern California
Edison and San Diego Gas and Electric, to implement peak prices under order of
the Public Utilities Commission. As a result, most of California is in the process of
implementing opt-out peak prices for C&I customers. I use my estimates to inform
the impacts of the larger rollout across the state. The first row of Table 1.7 shows the
welfare impacts of peak prices for small C&I customers. Columns (2) and (3) show
the PG&E savings estimates extended to the three major investor-owned utilities
(IOU) and for the full state, respectively. I find that the IOU-wide benefits total
$394 million while the California-wide benefits are $573 million over a 30 year period.
There are a number of assumptions used to make these welfare calculations. First,
I assume that small C&I customers in PG&E are similar to those in other regions.
This may be a reasonable assumption in California, but it is likely less true for the
full U.S. grid. Column (4) shows the savings estimates extended out to the national
grid, showing a potential $17 billion benefit of this policy. This number represents
the impact only for small C&I establishments, which I assume to be 10% of peak
load across the U.S. The magnitude of this estimate highlights the significance of the
distortion caused by flat retail pricing.*3

The second row of Table 1.7 considers the impacts for the full set of C&I customers.
I assume the same 13.4% reduction in peak usage for all of these customers as I
estimated for the small C&I customers.** The welfare estimate is likely a lower bound,
since peak pricing adds $1.20/kWh to the price of electricity for large C&I customers
on event days rather than the $.60/kWh for small establishments. Extending this
estimate nationally results in a $82 billion savings estimate. This estimate assumes
that the national C&I makeup of the U.S. reflects California. This large potential
welfare benefit provides perspective on the size of the distortion that flat retail prices
introduce.

1.6.3 Targeting the Capacity Constraint

The PG&E peak pricing program is designed in a manner similar to other peak
pricing policies around the U.S. The utility has discretion over when to charge
higher prices on 9 to 15 event days per summer. In this section, I consider the

43See Appendix Section A.5.3 for the data and assumptions used in these calculations.
44T adjust the savings estimates for the 43% of large C&I customers that have opted out of peak
pricing since it was first introduced in 2010.
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welfare implications of how event days are chosen and the price charged during event
hours. I do this in the context of the current peak pricing program, where resource
adequacy requirements guarantee that there will be sufficient capacity available to
avoid blackouts.

PG&E calls event days using day-ahead weather forecasts. When the average
forecasted temperature for inland California exceeds a trigger temperature of 96 or 98
degrees, an event day is called. The trigger temperature is based on how many event
days have been called so far in a given summer and on historical weather trends.*®
This approach is effective at selecting the top 12-15 demand days each summer, but
it is not designed to maximize the net benefits of the peak pricing program.

The typical summer in California has a small number of days with very high
demand that are responsible for peak load. For example, the difference between the
demand on the highest event day and the median event day in 2015 was 1,220 MW,
more than 14% of total peak load.“® The few highest demand days each summer
drive resource adequacy requirements and the long-run construction of peaker plants.
I define as “super-peak” days the set of days each summer for which calling an
event day reduces the total summer peak load. The number of super-peak days each
summer depends on both the level of reduction due to peak pricing and the number
of high-demand days.*” Most Northern California summers have between one and
three super-peak demand days based on the estimated reduction due to the peak
pricing program for small C&I customers.

The role of super-peak days in the 2015 program can be seen in the first two
columns of Table 1.8. To project the impact that the peak pricing program for small
C&I establishments will have once it is fully rolled out, I use the aggregate 118 MW
reduction that projects outcomes for 2018. This reduction would lower the 2015
summer peak from 19,451 MW to 19,333 MW, which would become the new summer
peak L;. In 2015, no event days other than the one with the highest demand will
affect L;. For example, reducing the load on September 9, 2015 from 19,017 MW
to 18,899 MW will not affect L; and will not provide savings in long-run generation
capacity investment.*®

45The trigger temperature is adjusted every 15 days throughout the summer to hit the target
number of 12 to 15 event days. See Appendix Section A.1 for more details.

46The same pattern holds for all years 2010-2015, with the difference between maximum and
median peak load of 1,600 MW.

47Tf the reductions from peak pricing were larger, then there could be more super-peak days
each summer where calling an event day would reduce peak load L;. For example, the number of
super-peak days could go up if the large C&I establishments were included in the calculation.

48 A list of the top 20 demand days in 2015 can be seen in Appendix Table A 4.
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Table 1.8 shows the 2015 event days with the welfare impacts broken out. These
values reflect the welfare impact associated with each event day in 2015, using the ex-
post information about the realized demands. In practice, the peak pricing program
is based on day-ahead forecasts, which introduces significant uncertainty about which
event days will provide benefits when they are called. Column 3 shows the capacity
value of reducing peak load. Only the highest demand event day of the summer
provided capacity cost savings, because none of the other event days affect summer
peak load. Column 4 shows the net consumer surplus loss figure of $209,000 per event
day, which is reported in the same discounted manner to allow for easy comparison.
All of the non-super peak event days reduce the welfare impacts of the program
without providing capacity cost savings.

The cost of non-super peak event days quickly adds up. Each extra event day that
does not provide capacity cost savings results in a loss of $4.2 million of net consumer
surplus over the life of the program. A refinement to the peak pricing program would
call just the super-peak event days each summer.*® This approach is challenging with
event day programs because it is not possible to forecast ex-ante which summer days
will be super-peak (Borenstein 2012). Despite this limitation, there are a number
of improvements that could be made to the current program using the day-ahead
information that is available to PG&E.

One simple change to the peak pricing program is to tighten the criterion used
to call an event day. The second to last column of Table 1.8 shows the day-ahead
temperature forecasts for the inland region of California. An event day is called
when this temperature equals or exceeds the “trigger temperature” set by PG&E,
which is shown in the last column.?® The current set of trigger temperatures typically
calls the super-peak demand days each summer, but also includes a large number of
additional days that do not provide capacity cost savings. A simple adjustment to the
peak pricing program would move the trigger temperature to 101 degrees and remove
the current 9 days per summer minimum. This approach uses the same day-ahead
temperature forecast that PG&E currently uses to pick event days. It would result in
a program that is better targeted at the super-peak event days, and would result in
fewer low-demand event days each year.

In an electricity market with regulated resource adequacy requirements, the
impacts of missing a super-peak event day are a higher summer peak L; and the costs
of building capacity in a future period. In most cases, the welfare loss from missing
a super-peak event day is much higher than the benefit of avoiding a non-super

49Tt may be useful to set a minimum number of event days so that establishments do not forget
they are on the program. I have not found any research that identifies the impact of using too few
event days.

50See Appendix refPDP program details for more details on trigger temperatures.
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peak event day. Any day-ahead program must take this tradeoff into account. The
proposed 101-degree trigger temperature accurately selects the super-peak event days
over the last five years using day-ahead temperature forecast data, but a different
trigger may be preferred in the future. For example, climate change may impact the
intensity and frequency of high temperature days, which could necessitate a further
refinement.®!

The second dimension of the peak pricing program that could be adjusted is the
level of the event day price. Currently, small C&I establishments pay $.85/kWh
during event windows, which is $.60 higher than their typical rate. Wholesale prices
are routinely above $.85/kWh, and the peak price for large C&I PG&E establishments
is set at $1.35/kWh. This level is designed to reflect the long-run value of capacity
and is based on the regulator’s avoided cost of capacity (California Public Utilities
Commission 2001). There is no reason to charge different event day prices to different
customer classes, because both are subject to the same capacity constraint that drives
system costs. If $.85/kWh is below the efficient wholesale cost of electricity on event
days, there are potential welfare gains from raising the event day price for small C&I
establishments.

I quantify the welfare benefits of changing the number of event days and level
of peak prices in Table 1.9. To estimate the impact of higher prices, I assume a
linear demand curve, as in the previous section, and extend the results from the
current peak pricing program. The current peak pricing program has an event price
of $.85/kWh on 15 days per year and is shown in the top left entry. Column (2) shows
outcomes if the small C&I peak price were raised to $1.35/kWh, the level paid by
large establishments. It shows that using the current 15 event days per summer and
increasing the event price from $.85/kWh to $1.35/kWh would increase the welfare
benefits from $154 to $204 million. The third column shows the impacts of a peak
price set at $1.85/kWh.?> Moving down the table decreases the number of event
days per summer from 15 to 8 to just the 3 super-peak days.® The table shows that
moving to a 101 degree trigger and using the large C&I peak price of $1.35/kWh —
both of which are realistic adjustments — could improve program outcomes by 87%.

51T also considered more complicated regression-based event day models using load forecasts,
but this adds unnecessary complexity without additional insight. A lower trigger may also be
optimal when including the reductions from large C&I establishments, which can increase the set of
super-peak days through larger reductions.

52The calculations assume that peak wholesale prices are greater than or equal to the peak price
in each column. If, for example, peak prices only reached $1.50/kWh, then the results in Column
(3) would overestimate the benefits.

53The estimated impacts assume that the super-peak days are correctly called as event days
under all three approaches. Forecasting errors could reduce the benefits if a super-peak event day is
missed.

29



1.6.4 Comparing Peak Pricing to First-Best Policy

To put the second-best peak pricing program in perspective, I compare outcomes
to the first-best alternative. Real-time pricing has been shown by previous research to
result in efficient long-run outcomes, making it a useful benchmark (Borenstein 2005;
Borenstein and S. Holland 2005). For this exercise, I consider a theoretical energy-only
electricity market where electricity supply and demand are cleared continuously with
a uniform price auction.”® I assume long-run capacity construction decisions are made
through the resource adequacy process outlined in the previous sections.

With real-time prices, customers face retail rates that change every five minutes
to reflect the real-time wholesale cost of electricity. I assume customers are fully
informed about the real-time price they are paying, and that their usage reflects
the five minute price.’® To allow a simple comparison between peak pricing and a
real-time price, I assume the wholesale price takes on two distinct values. The low
price reflects the marginal cost of generation at high-efficiency natural gas power
plants, which I set at $.10/kWh. When demand exceeds the capacity of the low-cost
plants, the price of electricity spikes to the high level.>” The high price reflects the
long-run cost of generation, which includes the costs of building and running peaker
power plants to meet demand. I assume a high real-time price of $1.35/kWh, which
corresponds to the peak price paid by large commercial and industrial customers in
the existing program. When demand drops to a level where the base load capacity is
sufficient to balance load, the price returns to the low price level.

I benchmark outcomes under the peak pricing program against the benefits under
real-time pricing. I first consider the existing peak pricing program, where prices are
increased to $.85/kWh between 2:00 pm and 6:00 pm on 15 event days per summer.>

541 use a simplified market design because the California electricity market has a wholesale price
cap of $1.00/kWh, as well as secondary markets for providing capacity, which make the comparison
challenging.

55The first-best outcome reflects any inefficiencies that may exist in the resource adequacy
capacity investment process.

56Real-time pricing programs could have prices vary as frequently as every minute or in larger
15-30 minute increments. P. Joskow and Tirole (2006) suggest that customers may not respond to
short-run changes in electricity price if transaction costs are too high. They suggest that this cost
will be reduced through the use of advanced technologies that can quickly take advantage of price
variation.

57This pricing structure reflects a retail electricity model with fixed charges, where the retail rate
reflects the marginal cost of generation. Depending on natural gas prices, the cost at a high-efficiency
natural gas power plant may be lower than $.10/kWh. A full accounting of the assumptions can be
found in Appendix Section A.5.4.

58] assume 15 event days will be called each summer, to reflect the summer of 2015 for which
peak pricing impacts were estimated.
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This can be seen in Panel A of Figure 1.10. The well-targeted peak pricing program
uses the optimal event hour price of $1.35/kWh on only eight event days per year.>
This can be seen in Panel B of Figure 1.10. In both scenarios, I assume there are
three super-peak event days each summer that provide capacity savings, and that
these will be called as event days under both systems. During the super-peak days, I
assume the price is at the high level for five minutes between 2:00 pm and 6:00 pm.%°

The model outlined for this calculation is stylized in nature and makes a number
of simplifying assumptions that could impact outcomes. Real-time prices typically
vary throughout the day and year to reflect transmission constraints, variation in
short-run marginal generation costs or other system costs. Peak prices, by having
only two possible price levels on a set number of event days, are not able to capture
the benefits from this type of price variation. Ultimately, these impacts are likely
small compared to large capacity savings benefits from reducing peak load.

To compare peak-pricing to first-best, I use my empirical estimates to calculate
the welfare gains under peak pricing and compare them to the outcomes under
real-time pricing.%! For the existing peak pricing program, the difference between
first and second-best comes from two sources. First, by charging an event price below
$1.35/kWh, peak pricing will generate lower capacity construction savings than will
real-time pricing. Second, under the current peak pricing program, the event price
will be charged for 60 hours per year compared to just 15 minutes under the real-time
price. I choose a short period of time during which real-time prices are at the high level
in order to remain conservative in reporting the benefits of peak pricing compared to
real-time pricing. The longer the high event price is charged while real-time prices are
low, the lower the relative benefits that peak pricing provides. The well-targeted peak
pricing program, by setting peak prices at $1.35/kWH, provides the same capacity
construction savings as the real-time price. The lower number of event hours each
year (32) also reduces the extra net consumer surplus loss that comes from non-super
peak event days.

Using this approach, I find that the current peak pricing program provides 43% of
the welfare benefits of the first-best approach. The result illustrates that the current

59Tt may be ideal to set the peak price slightly below $1.35/kWh due to the net consumer surplus
loss caused by peak pricing. For simplicity, I assume the well-targeted peak price is set at $1.35/kWh.
I use the temperature trigger proposed in Section 1.6.3 to select eight event days per summer.

60The short length of time at peak is a conservative assumption with respect to the value of peak
pricing. I consider longer periods of peak prices as a robustness check.

617 use the same elasticity for both the peak pricing and real-time price reductions. I assume
customer response to the high price will be the same whether they face the high price for a short
time or the full peak window. Wolak (2011) showed that, for residential customers, the response to
peak prices was similar using both a short and a long event window.
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program is providing some value, but performs poorly compared to the first-best
policy. The well-targeted peak pricing program is able to make significant welfare
improvements, delivering 80% of the first-best outcome. This result underscores the
value of targeting. In markets with a binding capacity constraint, directly targeting
the distortion caused by the constraint is an effective tool to improve welfare.

The results of the benchmarking analysis depend on both the empirical estimates
and the modeling assumptions. The empirical estimates inform the level of capacity
savings and the net consumer surplus loss from charging a higher price. There are
a number of modeling assumptions that can affect the levels of the benchmarking
numbers, but do not significantly shift the qualitative results. First, I assume the
peak price is set at $1.35/kWh. This level is based on a PG&E valuation of capacity,
but it may not reflect the true long-run cost of supply. If the optimal event day price
were higher, it would reduce the effectiveness of the peak pricing program compared
to real-time pricing. Second, the assumption that real-time prices are at peak for
only 15 minutes per year underestimates the relative value of peak pricing compared
to real-time pricing.®> Third, the current approach measures net consumer surplus
loss only between 2:00 pm and 6:00 pm on event days. If net consumer surplus losses
from peak pricing were higher, the relative benefits of peak pricing would be lower.%3

The benchmarking model is useful in understanding the impacts of poorly targeting
the peak pricing program. Table 1.10 shows a number of alternate scenarios that
consider how an incorrectly targeted peak pricing program might perform. As before,
I assume the high real-time price is $1.35/kWh. Column (1) mirrors the current
program, where peak prices are set at $.85/kWh; Column (2) shows the results for
the correctly chosen peak price; and Column (3) shows the impacts if peak prices
were set too high, at $1.85/kWh. The first row shows the outcome when eight event
days are chosen per year using the 101 degree trigger of the well-targeted program.
The second row shows the outcomes with 15 event days. The bold entries correspond
to the current and well-targeted peak pricing programs discussed previously. The
other entries show the consequences of poorly targeting the peak pricing program.®?

The benchmarking model shows that, while the returns to targeting can be large,
the downsides to incorrectly targeting are also significant. Setting the wrong price
or calling too many days reduces program effectiveness. For example, calling 15

62This assumption has a relatively small impact on outcomes. For robustness, I consider the
extreme case where real-time prices are at the peak for all four hours between 2:00 pm and 6:00 pm.
Using this assumption, the benefits of the current program would be 46% of the first-best policy.

631 find that, when net consumer surplus losses are doubled, the current program and the
well-targeted program provide 32% and 60% of the benefits, respectively.

64See Appendix Table A.12 for a robustness check where prices hit the peak for the full four-hour
period between 2:00 pm and 6:00 pm.
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event days per year at a price of $1.85/kWh would capture only 19% of the first-
best outcome. The results highlight the value that empirical research can provide
in measuring program outcomes and using these estimates to further improve the
program. The ability to design a well-targeted program depends on the aggregate
peak pricing reductions, combined with knowledge of institutional details to value
the costs and benefits of the program. Using these insights helps inform the best
way to target the costly capacity constraints by observing the underlying structure
of peak-event days on the PG&E grid. The estimation of the short-run electricity
demand curve allows me to balance the net consumer surplus losses under peak
pricing against the capacity cost savings from higher prices. Taken together, these
results suggest that it is possible to achieve four-fifths of the first-best outcome using
a well-targeted, second-best policy.

1.7 Conclusion

Retail electricity customers in the U.S. are typically charged a flat price per kWh
consumed. This time-invariant price does not reflect the cost of capacity at peak
demand hours. This paper studies a policy, peak pricing, that charges higher prices
to retail customers on high-demand days when it is more costly to supply marginal
units of electricity. Using quasi-random variation in program implementation and
two different identification strategies, I find that establishments reduce their usage
between 2:00 pm and 6:00 pm by 13.4%. In the aggregate, the peak pricing program
will provide 118 MW of peak demand reductions in the PG&E service territory
when fully implemented. The peak savings reduce the amount of generation capacity
required at peak, yielding $154 million of welfare benefits. I compare outcomes to
a theoretical first-best, real-time pricing policy, finding that the current program
captures 43% of the benefits. I show that a well-targeted peak pricing program could
provide greatly improved outcomes, equaling 80% of the first-best outcome.

This paper fills an important gap in the literature by providing the first evidence of
how commercial and industrial customers respond to peak pricing. This is particularly
important as the popularity of peak pricing programs continues to grow, fueled by the
installation of low-cost, advanced metering technology. Further research is required
to better understand the impacts of peak pricing on large C&I customers. They
constitute over 50% of California and national electricity demand, making their
response to peak prices important for future energy policy.

The approach I take in this paper is relevant to a wide range of markets where
prices do not reflect the cost of capacity constraints at peak demand periods. I use
empirical estimates of a second-best pricing policy to make welfare calculations and
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compare outcomes to the first-best alternative. This framework could be used to
evaluate and improve other second-best policies. For example, most bridge tolls do
not adjust to accurately reflect congestion costs at peak commute hours. In the
long run, this may lead to the construction of excess transportation infrastructure,
similarly to the manner in which flat electricity pricing leads to excess generation
capacity. More work in these and related settings will help to validate these insights
and can lead to the improvement of other second-best policies.
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Figures

Figure 1.1: Average Consumption Profile of Small Commercial and Industrial Estab-
lishments in Sample
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Note. - This figure shows the average consumption profile of the establishments in my analysis for
all weekdays during the summer of 2014. The vertical lines signify the beginning (2:00 pm) and

end (6:00 pm) of the peak event window. The system peak demand for the PG&E grid typically is
between 4:00 pm and 6:00 pm.
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Eligibility
cutoff

Figure 1.2: Timeline of Peak Pricing Rollout

September 1
2011

Enrollment
starts
Summer Summer
2014 pre 2015
period study
data window
November
2014

Note. - This figure shows the timeline of peak pricing implementation. I classify establishments as
eligible for peak pricing in 2015 if their high-frequency metering data began before September 1,
2011. Enrollment in opt-out peak pricing starts November of 2014 for the summer of 2015. Final
treatment status is determined by eligibility and technical requirements, which are described in

Section 1.4.1.
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Figure 1.3: The Effect of Eligibility on Peak Pricing Treatment Status
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Note. - This figure shows the impact of peak pricing eligibility on treatment. Establishments are
binned by the week their high-frequency data began. Establishments to the left of the September 1,
2011 threshold are peak pricing eligible. There are around 500 establishments per bin. The figure
shows 27 weeks in each direction from the threshold to show the larger default patterns. The vertical
dashed lines represent the eight-week bandwidth used in the main specification.
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Figure 1.4: Pre-Period Electricity Consumption by Eligibility Group
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Note. - This figure shows the 2014 pre-period average hourly consumption for peak pricing eligible
and ineligible establishments. Consumption is shown conditional on establishment fixed effects.
I cannot statistically reject that the pre-period consumption is the same for both groups using
hour-by-hour t-tests. The vertical lines signify the beginning (2:00 pm) and end (6:00 pm) of the
peak event window.
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Figure 1.5: Smoothness of Observable Characteristics through the September 1, 2011
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Note. - This figure shows trends in observable characteristics near the September 1, 2011 discontinuity,
shown with the solid black vertical line. The vertical dashed lines indicate the eight-week bandwidth
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used in the main specifications.
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Figure 1.6: The Impact of Peak Pricing Eligibility on Inland Establishment Peak
Consumption (Reduced Form)
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Note. - This figure shows the reduced form impact of peak pricing eligibility on consumption between
2:00 pm and 6:00 pm on event days. Each dot represents the difference between 2015 and 2014
peak consumption by bin, conditional on establishment and hour-of-sample fixed effects. The figure
shows the reduced form impacts of the peak pricing policy, which is 6.2% and is significant at the
5% level. Establishments to the left of the September 1, 2011 cutoff are eligible for peak pricing and
show a reduction in peak usage.
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Figure 1.7: Treatment for Inland Establishments
Bandwidths
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Note.

- Each panel on this figure shows the coefficient from seven different regressions estimating the

impacts of peak pricing on usage. Each dot represents an individual regression. Panel A shows the results
from estimating Equation (1.1) for inland establishments using bandwidths between 4 and 16 weeks from the
September 1, 2011 threshold. Panel B does the same using the RD specification from estimating Equation
(2.4). The dotted lines are the 95% confidence interval. The estimate at eight weeks is the same as the

results in Columns (5) and (6) in Table 1.3.
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Figure 1.8: Effect of Peak Pricing on Inland Establishment Electricity Consumption
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Note. - This figure shows the results of a regression estimating the hourly impacts of peak pricing on
event days. Each dot corresponds to an hourly treatment effect comparing treated establishments
to the control group. The dotted lines signify the 95% confidence interval. The vertical lines signify
the beginning (2:00 pm) and end (6:00 pm) of the peak event window. The regression is estimated
on inland establishments using the IV approach. The average impact between 2:00 pm and 6:00
pm reflects the coefficient in Column (5) of Table 1.3. The results show that establishments begin
reducing their electricity usage in the hours before the event window starts. This pattern suggests
that some establishments are adjusting their consumption over the whole event day and not just
between 2:00 pm and 6:00 pm.
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Figure 1.9: Benefits and Costs of Peak Pricing

Panel A: Peaker capacity supply curve
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Note: - This figure graphically shows the benefits and costs of peak pricing. Panel A shows the capacity
supply curve for fossil generation. Reducing peak demand lowers the need for peaker power plants. I assume
a constant cost of $1.2 million/MW to build a peaker plant, using California Energy Commission estimates
to value the benefits. Using the IV estimate for inland establishments, I find an aggregate reduction of
118 MW, which translates into a reduction of $139 million in capacity costs. Panel B shows the hourly net
consumer surplus (CS) loss from calling an event day. The horizontal axis is in kWh per hour (kWh/h),
which is equivalent to kW. Short-run marginal production costs (SRMC) are $.102/kWh and reflect the
fuel cost at marginal power plants during peak hours. Qo is the quantity of electricity consumed during an
event hour without peak prices, and @1 is the quantity consumed during an event hour with peak prices. I
assume a linear demand curve and find that each event day reduces welfare by $209,000. See Section 1.6.2
for a full discussion of the welfare impacts of peak pricing.
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Figure 1.10: Comparison of Peak Pricing to the First-Best, Real-Time Price

Panel A: Current peak pricing program
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Note. - This figure compares the first-best, real-time price (solid black line) to the peak pricing program
on one super-peak event day. The real-time price takes on two values. The low value is $.10/kWh and
represents the marginal cost of generation at a low-cost power plant. I assume the price jumps to the high
level of $1.35/kWh on three super-peak event days per summer. This high price reflects both the marginal
cost and capacity costs on the high demand days. The dashed vertical lines signify the beginning (2:00 pm)
and end (6:00 pm) of the peak event window. Panel A shows the current peak pricing program, where the
event price is set at $.85/kWh between 2:00 pm and 6:00 pm, which I assume happens on 15 event days per
year. Panel B shows the well-targeted version where the event price is set at $1.35/kWh, which I assume
happens on eight event days per year. The current program provides 43% of the first-best benefits while
the well-targeted program achieves 80%.
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Tables

Table 1.1: Characteristics of Establishments by Peak Pricing Eligibility Status

Variable Ineligible  Eligible (P;ii\:;ziflcoef
Summer 2014 avg peak hourly consumption 5.17 5.19 .87
(3.79) (3.8)
Summer 2014 max peak hourly consumption 9.92 10.00 .61
(6.82) (6.86)
Summer 2014 event consumption 218 219 .80
(165) (166)
Summer 2014 non-event consumption 12,412 12,280 bl
(8,958) (8,958)
Summer 2014 electricity expenditure $563 $557 54
(396) (385)
Percent of establishments customer facing 44 43 73
(.5) (.5)
Money saved if program run on 2014 usage -$10 -$12 .16
(58) (57)
Average peak hour temperature (F) 73.24 73.38 A1

(7.55) (6.96)

Establishment count 3,188 4,190

Notes. - This table shows the mean and standard deviation of the observable characteristics by peak
pricing eligibility status for establishments within eight weeks of the September 1, 2011 threshold.
Standard deviations are shown in parentheses. Customer-facing establishments are defined based on
North American Industry Classification System codes, as discussed in Section 1.5.4. ***Significant
at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 1.2: The Effect of Peak Pricing Eligibility on Enrollment (First Stage)

All PG&E Coastal Inland
(1) (2) (3) (4) (5) (6)
FS IV FS RD FS IV FS RD FS IV FS RD

Eligible x Post  0.2230%**  0.0932%%  0.1547%%%  0.0538  0.3654%%*  (.2258%**
(0.0064)  (0.0359)  (0.0068)  (0.0361)  (0.0129)  (0.0449)

Establishments 7,435 7,435 5,096 5,096 2,339 2,339
F statistic 406 24 174 15 268 45

Notes. - This table reports regression coefficients from six separate first-stage regressions. The
dependent variable in all regressions is a binary indicator if an establishment is enrolled in the peak
pricing program. Eligible x Post is an interaction of an establishment’s eligibility for peak pricing
and 2015. The coefficients show the impact of peak pricing eligibility on program enrollment. “FS IV”
and “FS RD” correspond to the first stage of the IV and RD approaches estimated using Equations
(1.2) and (2.3). All regressions control for temperature and include hour-of-sample fixed effects and
establishment fixed effects. Standard errors are in parentheses. IV errors two-way clustered at the
establishment and hour-of-sample levels. RD errors clustered at the distance from threshold level.
***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10
percent level.

Table 1.3: The Effect of Peak Pricing on Peak Electricity Consumption (2SLS results)

All PG&E Coastal Inland

(1) (2) (3) (4) (5) (6)

v RD v RD v RD
Peak pricing —0.0695*  —0.2152 0.0084 —0.0584 —0.1441%%*  —(.2828**

(0.0412)  (0.2102)  (0.0708)  (0.4227) (0.0454) (0.1379)

Establishments 7,435 7,435 5,096 5,096 2,339 2,339
Event day kWh usage 5.55 5.55 5.03 5.03 6.70 6.70
Average temperature 78 78 71 71 92 92

Notes. - This table reports regression coefficients from six separate 2SLS regressions. The dependent
variable in all regressions is the log of establishment hourly kWh consumption. Peak pricing is
an indicator for enrollment in peak pricing, for which I instrument with eligibility status. The
coefficients show the impact of peak pricing on peak consumption between 2:00 pm and 6:00 pm.
“IV” and “RD” correspond to the instrumental variables and regression discontinuity approaches
estimated using Equations (1.1) and (2.4). For inland establishments, the IV coefficient corresponds
to a 13.4% reduction in usage. All regressions control for temperature and include hour-of-sample
fixed effects and establishment fixed effects. Standard errors are in parentheses. IV errors two-way
clustered at the establishment and hour-of-sample levels. RD errors clustered at the distance from
threshold level. ***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant
at the 10 percent level.
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Table 1.4: The Effect of Peak Pricing on Peak Electricity Consumption for Inland
Establishments: Temperature Interaction

Inland
(1) (2)
1A% RD
Peak pricing x Temperature (F) —0.01120** —0.03622*
(0.00450) (0.02168)
Peak pricing 0.04018 0.18102
(0.07371) (0.13676)
Temperature 0.01210%** 0.01513%**
(0.00168) (0.00294)
Temperature squared —0.00013*** —0.00010
(0.00004) (0.00006)
Establishments 2,339 2,339
Event day kWh usage 6.73 6.73
Average temperature 92 92

Notes. - This table reports regression coefficients from two separate 2SLS regressions for inland
establishments where treatment is interacted with temperature. The dependent variable in both
regressions is the log of establishment hourly kWh consumption. “IV” and “RD” correspond to the
instrumental variables and regression discontinuity approaches estimated using Equations (1.1) and
(2.4). Peak pricing x Temperature (F) is the interaction between the treatment variable and hourly
establishment temperature. Temperature has been re-centered at 75 degrees for scaling purposes.
The coefficients show that peak pricing impacts are larger on hotter inland event days. In the IV
specification, the peak pricing impacts become positive around 79 degrees, which is lower than the
temperature for all inland event days. Both regressions include hour-of-sample fixed effects and
establishment fixed effects. Standard errors are in parentheses. IV errors two-way clustered at the
establishment and hour-of-sample levels. RD errors clustered at the distance from threshold level.
***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the 10
percent level.
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Table 1.5: The Effect of Peak Pricing for Coastal Establishments on Hot Event Days:
Alternate Control Day Approach

Coastal

(1) (2)

v RD
Peak pricing —0.0783*%*  —0.0824**

(0.0361) (0.0409)

Establishments 2,991 2,991
Event day kWh usage 6.96 6.96
Average temperature 76 76

Notes. - This table reports regression coefficients from two separate 2SLS regressions for coastal
establishments. The dependent variable in both regressions is the log of establishment hourly kWh
consumption. Peak pricing is an indicator for enrollment in peak pricing, for which I instrument with
eligibility status. To identify the impacts of peak pricing for coastal customers on the hottest event
days, I use hot 2015 non-event days instead of 2014 event days as controls. This approach is used
because 2014 was a relatively cool summer on the coast, making it a bad control group with which
to identify coastal program impacts on hot event days. See Section 1.5.5 for more details on this
approach. The coefficients show the impact of peak pricing on coastal establishment consumption
on hot event days between 2:00 pm and 6:00 pm. “IV” and “RD” correspond to the instrumental
variables and regression discontinuity approaches estimated using Equations (1.1) and (2.4). Both
regressions control for temperature and include hour-of-sample fixed effects and establishment fixed
effects. Standard errors are in parentheses. IV errors two-way clustered at the establishment and
hour-of-sample levels. RD errors clustered at the distance from threshold level. ***Significant at
the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 1.6: The Effect of Peak Pricing on Peak Electricity Consumption for Inland
Establishments: Industry Classification

All PG&E Coastal Inland
(1) (2) (3) (4) (5) (6)
Customer Non-cust Customer Non-cust Customer Non-cust
facing facing facing facing facing facing
Peak pricing 0.0351 —0.1261** 0.0849 —0.0477 —0.0160 —0.1967***
(0.0555) (0.0586) (0.0981) (0.1021) (0.0518) (0.0659)
Establishments 2,889 3,745 2,133 2,468 756 1,277
Event day kWh 6.34 5.15 5.66 4.61 8.25 6.19
Average temp 76 78 71 72 92 92

Notes. - This table reports regression coefficients from six separate 2SLS regressions broken down
by industry. The dependent variable in all regressions is the log of establishment hourly kWh
consumption. Peak pricing is an indicator of enrollment in peak pricing, for which I instrument
with eligibility status. The coefficients show the impact of peak pricing on peak consumption
between 2:00 pm and 6:00 pm. All regressions use the instrumental variables approach estimated
using Equation (1.1). Establishments are classified as customer- facing or non-customer-facing by
their industry classification code, as described in Section 1.5.4. For inland establishments, the
non-customer-facing coefficient corresponds to a 17.9% reduction in usage. All regressions control
for temperature and include hour-of-sample fixed effects and establishment fixed effects. Standard
errors are in parentheses. IV errors two-way clustered at the establishment and hour-of-sample
levels. RD errors clustered at the distance from threshold level. ***Significant at the 1 percent level.
**Significant at the 5 percent level. *Significant at the 10 percent level.

Table 1.7: Total Welfare Benefits of Peak Pricing

(1) (2) 3) (4)

PG&E welfare IOU welfare  California welfare  National welfare

Scenario benefits benefits benefits benefits
Small C&I customers $154 $394 $573 $16,616
All C&I customers $1,320 $1,940 $2,820 $81,754

Notes. - This table shows the welfare benefits (in millions of 2016 dollars) of the peak pricing
program over a 30 year horizon under a number of scenarios. Welfare benefits are calculated using
aggregate peak load reduction values informed by empirical estimates. Benefits are primarily due
to the reduction in generation capacity necessary to meet peak demand. Costs include the net
consumer surplus loss from higher prices on event days. The top left entry shows the estimated
savings for the current program in the PG&E service territory. Moving to the right scales this
welfare impact for larger regions of the country. The IOU column corresponds to the three major
Investor Owned Utilities in California, all of which will implement peak pricing over the next five
years. The bottom row extends the peak pricing program to all C&I customers and assumes the
same percent reductions for all C&I customers, with adjustments for establishments opting out.
Moving both down and to the right, the estimates require more out-of-sample assumptions.
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Table 1.8: Welfare Impacts for 2015 Event Days

Annual capacity

Annual net consumer

NWS day ahead

Event day ng%g d co.st savings sqrplus loss max temperature terI;legrgaiI;lre
(discounted) (discounted) forecast
8/17/2015 19,451 $10,000,000 -$209,000 101 96
6/30/2015 19,320 $0 -$209,000 101 96
7/29/2015 19,248 $0 -$209,000 104 98
8/28/2015 19,233 $0 -$209,000 96 96
9/10/2015 19,230 $0 -$209,000 104 98
9/9/2015 19,017 $0 -$209,000 102 98
7/28/2015 18,403 $0 -$209,000 101 98
8/27/2015 18,328 $0 -$209,000 97 96
6/25/2015 18,114 $0 -$209,000 103 96
9/11/2015 18,019 $0 -$209,000 101 98
6/26/2015 17,950 $0 -$209,000 100 96
7/30/2015 17,750 $0 -$209,000 100 98
7/1/2015 17,734 $0 -$209,000 100 98
8/18/2015 17,372 $0 -$209,000 96 96
6/12/2015 17,275 $0 -$209,000 99 96

Note. - This table shows the two main welfare impacts of the 2015 event days. The annual capacity
cost savings shows the benefits of reducing peak load. Annual capacity cost savings includes both
the plant construction and operating costs, amortized over the assumed 30 year power plant life.
There are non-zero savings numbers only for the super-peak event days of each summer. In 2015,
only the highest load day was super-peak. The annual net consumer surplus loss shows the negative
welfare consequences of charging higher prices during event hours and is displayed in the same
units as capacity cost savings. The values are the same for all event days because the estimate is
based on the average impact of peak pricing. NWS day-ahead maximum temperature forecast is the
day-ahead temperature used by PG&E to call event days. It is based on the average of five National
Weather Service weather stations. When the day-ahead maximum forecast equals or exceeds the

trigger temperature, an event day is called.
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Table 1.9: Welfare Impacts of Peak Pricing Under Alternate Scenarios
(1) (2) (3)

Scenari $.85/kWh peak $1.35/kWh peak $1.85/kWh peak
cenatio (current price) (large C&I peak price) (high price)

15 days/summer $154 $204 $200

101 degree trigger (8 days) $184 $288 $349

Super-peak days (3 days) $205 $349 $455

Note. - This is a table that shows the welfare benefits (in millions of 2016 dollars) of the peak
pricing program under different program design scenarios. Column (1) shows outcomes under the
current $.85/kWh peak price. Column (2) shows the estimated outcomes if the peak price were set
at $1.35, which is the level of large commercial and industrial customers and is based on a PG&E
valuation of capacity at peak. Column (3) shows the impacts if the price was set at $1.85/kWh.
The first row reflects the current 15 event days per summer and the entry in the top left shows the
welfare impacts estimated for the current program. The middle row reflects the proposed alternate
101 degree trigger for event days, and the bottom row shows the hypothetical scenario when only
the three super-peak event days each year could be called. The welfare calculations assume that
peak wholesale prices are greater than or equal to the peak price in each column.

Table 1.10: Welfare Impacts of Peak Pricing Compared to First-Best, Real-Time
Price

(1) (2) 3)

Event days called per summer $.85/kWh peak price ~ $1.35/kWh peak price  $1.85/kWh peak price

(peak price < RTP) (peak price = RTP) (peak price > RTP)
8 event days (well targeted) 49% 80% 57%
15 event days (current) 43% 62% 19%

Note. - This table compares the peak pricing program to the first-best, real-time price across a
number of scenarios. The percent values reflect the percent of the welfare benefits the peak pricing
scenario can achieve compared to the first-best alternative. For this table, the optimal peak price is
set at $1.35/kWh for five minutes on three super-peak days per summer. Column (1) reflects the
current program, where peak prices are set at $.85/kWh, which is below the optimal level. Column
(3) shows the impacts when prices are set above this level. The top row reflects the outcomes when
eight event days are called per year. The bottom row shows the results for the current program,
in which I assume 15 event days are used each summer. The current program achieves 43% of the
first-best policy, while the well-targeted program could achieve 80% of the benefits.
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Chapter 2

Energy Efficiency Retrofit
Heterogeneity and Program
Outcomes: Evidence from the
California Energy Savings
Assistance Program

2.1 Introduction

Energy efficiency is a large part of the U.S. strategy in addressing climate change.
Some view it as a win-win policy, where energy savings and reduced carbon emis-
sions can be easily achieved. Many of these projections are done using engineering
models that estimate the benefits from energy efficiency to be large and cost-effective
(McKinsey & Company 2009). The analyses present energy efficiency as an attractive
and efficient policy tool that can be used to effectively address climate change in the
absence a carbon policy.

The growing importance of energy efficiency is reflected in the increasing funding
it has received. Gas and electric energy efficiency budgets totaled 8.7 billion dollars
for 2014, up from 3.7 billion in 2008. California is a major contributor to the total,
with 1.7 billion allocated to energy efficiency programs in 2014 (CEE 2014).

Energy efficiency spending is expected to grow as the Clean Power Plan (CPP),
the major piece of national environmental policy aimed at reducing U.S. carbon
emissions, includes energy efficiency as a carbon mitigations strategy. The CPP fact
sheet highlights that:
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Demand-side EE is an important, proven strategy that states and utilities
are already widely using, and that can substantially and cost-effectively
lower CO2 emissions from the power sector. EPA anticipates that, thanks
to their low costs and large potential in every state and region, demand-
side EE programs will be a significant component of state compliance
plans under the Clean Power Plan. The CPP’s flexible compliance options
allow states to fully deploy EE to help meet their state goals (EPA 2015).

The EPA designed the CPP with energy efficiency as one of the main low-cost
mitigation mechanisms available to states. One challenge in implementing energy
efficiency as a carbon mitigation policy is how to credit states for their energy efficiency
programs. The current CPP program rules will credit energy efficiency by calculating
program specific savings and counting them against the hypothetical energy demand
in the state if the energy efficiency program was not in effect. This calculation is
based on the measurement of efficiency program savings, making it imperative that
states are credited the appropriate amount for their energy efficiency programs.

The Clean Power Plan also provides second level of credits for energy efficiency
implemented in low-income communities named the Clean Energy Incentive Program
(CEIP). This optional program grants double credits for demand side management in
low-income communities conducted during 2020 or 2021.! The targeted nature of the
CEIP credits shows that low-income energy efficiency is a national policy priority
and will continue to play a part in climate policy going forward.

One such program that provides energy efficiency retrofits to low-income house-
holds is the Energy Savings Assistance (ESA) program in California. The program
has been in existence in various forms since the 1980s, and currently provides no-cost
energy efficiency retrofits to around 300,000 low-income California households per
year. The program is administered through the three major investor owned utilities
and provides energy efficiency upgrades such as CFL lightbulbs, weatherstripping,
water conservation technologies and appliance replacements to qualifying households.
This paper focuses on estimating the energy savings from the ESA program run
by San Diego Gas and Electric (SDG&E) and Southern California Gas (SoCalGas)
between 2007 and 2014.

In order to credibly identify energy savings from the ESA program, the empirical
analysis exploits quasi-random variation in program uptake. The ESA program,
like many other low-income weatherization programs, requires income certification
to demonstrate that a customer qualifies. Previous work on a similar program

!These credits are granted for early action projects, since the mandatory goals of the Clean
Power Plan do not start until 2022. Renewable energy construction is also included as a category
that can receive CEIP credits.

53



has shown high non-monetary costs associated with this process that likely reduce
program participation (Fowlie, Greenstone, and C. Wolfram 2015a). To reduce the
burden associated with signing up for ESA, SDG&E modified its program to allow
customers that lived in areas with sufficiently low incomes to self-certify that they
met the income requirements without providing documentation. The self-certification
increases program participation in the areas where it was implemented. Importantly,
the assignment to self-certification was done at a very small geographic level, leading
to similar households in geographic proximity being assigned to different certification
regimes. The increase in ESA uptake from self-certification allows for program
evaluation across this quasi-random change in program participation.

Using the variation in self-certification requirements as an instrument, I find the
ESA program does not save a significant amount of energy for households close to
the self-certification threshold. I am able to rule out up to a 2.5 percent decrease in
kWh usage and a .7 percent decrease in therm usage for these customers.? These low
overall program savings results are similar to the other main analysis conducted on
low-income energy retrofits by Fowlie, Greenstone, and C. Wolfram (2015b).

One defining feature of residential energy efficiency programs is that retrofits must
be adapted to each individual housing unit. Some households have a high potential
for efficiency measures while others may have little or no possibility for cost-effective
upgrades. This heterogeneity in housing stock creates a challenge for policymakers
trying to design and implement a cost-effective policy. The ESA program exhibits this
characteristic variation in upgrade potential, with 19 percent of households receiving
a large appliance or insulation upgrade, and the remainder only eligible for smaller
upgrades.

To better understand the heterogeneity in housing upgrade potential and its
effects on outcomes, the analysis turns to estimating measure-specific savings. These
estimates are identified by exploiting a source of quasi-experimental variation in
program implementation. The ESA program has a strict set of guidelines that govern
which households are eligible for specific upgrades. Some of the guidelines have
discontinuous eligibility thresholds that allow for identification of measure specific
effects. Refrigerator replacements are given to households at no-cost if their existing
unit was manufactured in 1992 or earlier. This cutoff allows for regression discontinuity
analysis of energy savings across this refrigerator age threshold by comparing the
energy usage of households with refrigerators that qualified for replacements to those
that just missed the cutoff. Similarly, high efficiency washing machines are provided to
households with more than 4 members that satisfy a number of criteria. Importantly

2Using a more restrictive set of assumptions and sample trimming the analysis rejects a 5.7
percent decrease in kWh usage and an 8.6 percent decrease in therm usage.
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for this analysis, appliance characteristics are collected for all program participants
even if they do not qualify for appliance replacement.

The results of this appliance specific analysis finds that the 1 in 10 households
who receive a replacement refrigerator experience a significant electricity savings
of 36 kWh/month. High efficiency washing machines are also installed in around
3.4 percent of households, and similarly show significant therm savings as a result.
When considering the full social benefits of the upgrade, refrigerator replacements
are found to deliver cost-effective savings for high usage recipients. The ability to
conduct these measure specific analyses shows that while the ESA program may not
provide large savings for most customers, some customers do see statistically and
economically significant savings as a result of the program. Furthermore, it shows how
heterogeneity in upgrade potential can dramatically affect overall program savings.
By primarily retrofitting households that were only eligible for small upgrades, the
ESA program yielded average outcomes that were not cost-effective.

This is the first paper to estimate both program level effects and measure specific
savings. Past analyses have not had variation in both program uptake and measure
installation that allows for this type of identification. The ability to estimate both
effects for the same large-scale program gives this paper a high degree of policy
relevance. Understanding the impact of heterogeneity in retrofit upgrade potential
on overall program savings offers policymakers ways to improve efficiency programs
going forward.

The ESA program is an important policy since it has the potential to serve as a
model program for other states implementing low-income energy efficiency retrofits.
Currently, the federal Weatherization Assistance Program is the main provider of
low-income no-cost weatherization nationally, but it relies on federal funding and
community agencies for implementation. The ESA program is the largest state funded
and administered low-income program in the country. As states create policies to
comply with the Clean Power Plan and take advantage of the CEIP credit, it is
important that the existing programs provide good examples of well designed and
evaluated policies that provide cost-effective savings. Furthermore, the Clean Power
Plan requires measurement of program effects to appropriately credit implementing
states. Without careful evaluation of energy efficiency programs, the carbon reductions
promised by the Clean Power plan will not deliver the intended savings.

, the date of installation, and a number of demographic characteristics for enrolling
households including number of occupants, household size, household income and
language spoken. This includes 120,244 individual household upgrades between 2007
and the end of 2012. The ESA program collected detailed information on the condition
of many existing appliances in all households that participated in the program. Data
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on refrigerator age, model number and serial number were collected for all households
regardless of if they qualified for a replacement.

Similar data was used for SoCalGas to estimate the effect of high efficiency washing
machines. Billing data on 23,415 customers from 2012-2014 was used in this analysis.
These data were merged with ESA upgrade data and supplemental information that
specified if a household had a washing machine and its condition.

Both the billing data and ESA program data was provided through an internship
with the California Public Utilities commission.

2.2 IV empirical design and analysis

2.2.1 Empirical setting

Starting in 2007, SDG&E began to use an income self-certification system across
their service territory in an effort to increase program participation. If a neighborhood
was determined to be self-certification eligible, households were not required to
provide income verification when they enrolled in the ESA program. The idea
behind this strategy is to reduce barriers to entry for customers that were likely to
satisfy the income criteria based on where they lived. To implement this program,
SDG&E classified zip+4 codes using a product which they purchased from the Nielson
Company called PRIZM codes. This product classifies each zip+4 into one of 66
geo-demographic characteristics. The codes roughly correspond to income, going from
1 (richest) to 66 (poorest), but they also contain other demographic information such
as race, employment status, age group, household tenure, household composition and
education level. These other demographic characteristics generally are not ordered
based on the 1 to 66 ranking.

PRIZM codes are calculated using a proprietary formula and data sources which
are not available to the public. An important feature of the PRIZM codes purchased
by SDG&E is that the level of designation, the zip+4, is a small geographic unit
usually consisting of on average 8 households. This results in large spatial variation
in PRIZM code assignment across even small geographic areas.

SDG&E, with the permission of the PUC, used PRIZM codes to classify customers
as eligible for self-certification. Households living in zip+4s designated with the num-
bers 46 through 49 and 52 through 66 do not have to provide income documentation
when they enroll in the program. Households that do not live in these PRIZM codes
can still qualify for the ESA program using the standard income verification process.
For example, ESA participants can live in PRIZM code 1 neighborhoods, but they
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must provide documentation to show they meet the income qualifications for the
program.

2.2.2 Self-certification as an instrument for program
enrollment

There are a number of challenges in evaluating the effects of an energy efficiency
retrofit program. First, households self-select into the ESA program. Choosing to
enroll in a time consuming intensive program like ESA likely makes them different
than the average low-income California utility customer. Second, the opt-in nature
of the program makes the timing of enrollment potentially correlated with observed
and unobserved factors. Both of these problems make it difficult to evaluate the ESA
program using a standard billing regression framework typically used by past 3rd
party evaluators (Evergreen Economics 2013).

The self-certification mechanism in the ESA program provides an opportunity to
evaluate program outcomes in a causal, unbiased manner. Households that are eligible
for self-certification have an easier time enrolling in the ESA program compared to
households that must provide income verification. This makes them more likely to
enroll in the program than similar households that cannot self-certify based on where
they live. This variation in program uptake is then used to identify the program
outcomes.

For this identification strategy to provide unbiased estimates, assignment to self-
certification zip+4s must be as good as random conditional on observables and fixed
effects. If this is not the case, the results could be biased as the self-certification areas
could systematically differ from the non-self-certification areas. Two strategies are
used to address this concern. First, households that live in lower numbered PRIZM
code areas far below the self-certification cutoff are dropped from the analysis. This
removes customers that may qualify for the ESA program, but live in higher income
zip+4s. The main specification limits PRIZM codes to 18-66.

The second technique exploits the geographic nature of the self-certification
designation. A unique feature of the data used for this analysis is that the billing data
contains the latitude and longitude of all customers in SDG&E’s service territory.
Using this precise location, I construct a distance to household of the opposite
certification regime that can be used to select a sample of similar households. The
distance algorithm works by taking all of the self-certification households and finding
each of their closest location match to a non-self-certification household. Each
household then has a "distance to other regime” value that can be used to trim
the data. The process is repeated for non-self-certification households and their
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distance to self-certification households. By limiting the sample to households within
a small geographic distance, the differences between the self-certification and non-self
certification households is reduced.

To better understand the geographic nature of the data, figure 2.4 maps all
CARE eligible households in SDG&E’s service territory.> The blue area represent
zip+4s that are not eligible for self-certification due to their PRIZM code designation.
It is important to note that these colors are based on the zip+4 designation, and
many customers living in ineligible self-certification areas may still qualify for the
program through traditional certification methods. The orange areas are eligible for
self-certification, and all households living in those areas qualify for the ESA program.

To reduce the significant geographic variability of zip+4s show in 2.4, households
within 75 meters of a household in the opposite regime are shown in figure 2.5. A
zoomed in picture of the more concentrated areas of San Diego with the 75hm distance
can be see in figure 2.6. Both of these figures show that the ineligible and eligible
households are close to each-other, and that the 75 meter limited sample reduces the
geographic variability of households in the sample.

One concern is that the large concentrated orange eligible zip+-4s in figure 2.6 might
be somewhat different from the blue ineligible areas on their periphery. This turns
out to not be the case, since the nature of the zip+4 assignment to self-certification
creates a large amount of variation throughout the sample. Figure 2.7 shows the
same zip+4s as figure 2.6 color coded by their distance to the opposite regime. The
blue dots indicate that the large concentrations of zip+4s are generally within 20-30
meters of the opposite regime.

The variation in self-certification status can be further seen by zooming in on
a small area and showing individual houses. Figure 2.8 does this for a small patch
of SDG&FE’s territory. As before, the blue dots correspond to households that are
ineligible for self-certification and the orange dots are eligible. This figure shows the
sample of CARE customers before trimming for any distance requirements. Even
at the non-trimmed level, it show significant mixing between the self-certification
eligible and ineligible households at the block by block level. Figure 2.9 takes figure
2.8 and keeps units that are within 75 meters of the opposite regime. The result
is that the larger continuous blocks of orange and blue in the previous figure are
dropped, and all that remains are ESA eligible households that are close together of
opposite certification regimes. It is also possible to see how small of a level zip+4s
and eligibility status vary. Some blocks have houses on one side that are ESA eligible
while houses on the other side are not.

3SDG&E’s territory stretches further east, but the majority of the population lives in the area
shown in figure 2.4
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2.2.3 Empirical strategy

In the IV approach, identification of ESA program savings comes from using
eligibility for income self-certification as an instrument for program participation.
The first stage uses OLS to estimate:

where 1{ES A}, is an indicator for if the customer i received ESA treatment in zip
code z in month m and year ¢t. 1{SelfCertify};,m: is an indicator for if a customer
lived in a self-certification zip+4, and switches to 1 for households in eligible zip+4s
when the self-certification policy starts in 2007. To control of weather, (. is included
as a zip code by month-of-sample fixed effect. Household-by-month fixed effects, 7,
are used to control for time invariant differences in household energy consumption
across months of the year, and 7);.,,; is the error term.

The first stage estimated in equation (2.1) gives an estimate for the effect of
self-certification on ESA program enrollment once self-certification was started in
2007. Using the instrument above, I estimate the second stage with OLS as:

(22) Y;zmt = Bl{ESA}zzmt + Cmtz + Yim + €izmt

where Y represents the energy source (kWh or therms) being measured. {@}wmt
from the first stage is substituted for { ESA};..,: to obtain the IV estimate of 5. The
estimate of this coefficient is the local average treatment effect (LATE) of the ESA
program close to the self-certification threshold. Said differently, 5, estimates the
effect of the ESA program on the subpopulation of ESA households where the ability
to self-certify brought them into the program. The estimate of 3; should not be be
interpreted as the average savings generated by the ESA program. Instead, it should
be thought of as a savings estimate for a large subset of the ESA eligible population.

The identification of an unbiased estimate of §; depends on the validity of
self-certification as an instrument for program enrollment. Importantly, the self-
certification instrument cannot be correlated with the outcome variable (energy
consumption) through any other mechanism than ESA program uptake. This cannot
be empirically tested, but the sample trimming based on PRIZM codes and geographic
distance limits the possibility that neighborhood characteristics or any other factor
could be correlated with energy usage.

To better understand the effect of limiting the distance used in this analysis,
figure 2.10 plots the density of pre-period kWh consumption for the 1000 meter
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(panel A) and 75 meter sample (panel B) used in the analysis. The overlap between
the two improves when the distance is cut to 75 meters, but the differences do not
go away entirely. Panel C of figure 2.10 shows the residual density after removing
account-by-month and zip-by-month of sample fixed effects to better reflect the
specifications run in equations (2.1) and (2.2). The significant overlap in pre-period
kWh consumption residuals shows that the main specifications used in this analysis
remove almost all of the differences between the two groups. Similar patterns and
results can be seen when looking at the pre-period therm usage in figure (2.11).

2.2.4 Self-certification IV results

Table 2.3 presents the results of the first stage regression shown in equation
(2.1). All results in this section limit the sample to households living in zip+4s
with prizm code 18-66. The first column shows the results from the regression when
households are limited to 75 meters of households of the opposite regime. The results
show that the self-certification instrument is a significant driver of program uptake.
Households that live in self-certification areas have a 12.8 percentage point higher
program participation than those that cannot self-certify over the sample window.

Column (2) shows the results for the same regression run at 1000 meters. The
coefficient is somewhat larger at 15.6 percent and still shows the same strong ESA pro-
gram uptake.* These outcomes show that the self-certification instrument is correlated
with program uptake, a necessary condition to it being used as an instrument.

There are two likely factors that are driving this large increase in participation
among self-certification eligible households. The first is that the lower documentation
requirements remove a significant barrier to entry for program enrollment. On a
ride-along I participated in, a scheduled enrollment contractor visits was canceled
due to the customer not having the income verification documentation. Program
coordinators I spoke to confirmed that this was a common occurrence. The second
factor that likely drives higher uptake is that contractors target households that
they know are eligible for self-certification. Contractors are compensated based
on the number of jobs they complete, and they have access to data that indicates
which households can self-certify. This has lead to a more focused targeting of self-
certification eligible customers by contractor outreach, leading to higher enrollment
rates. The distinction between these two mechanisms is interesting from a policy
implementation perspective, but it does not affect the validity of the identifications
strategy.

4distances between 75 and 1000 meters also show the same result.
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The IV results from the estimation of equation 2.2 with electricity as the outcome
variable are shown in the first two columns of table 2.4. Column (1) presents the the
IV estimate at 75 meters. The results show that the ESA program does not provide a
significant amount of electricity savings. The results are reported in kWh reductions
per month. The negative -.839 kWh/month savings is statistically indistinguishable
from zero and can be used to reject a 5.7 percent reduction in energy usage. Column
(2) shows the results at 1000 meters, and shows a similar results. The larger sample
used in the 1000m sample allows for the rejection of a 2.5 percent reduction in
electricity usage. Levels are used instead of logs due to the nature of the ESA
program in giving incremental measures to households based on what they are eligible
for. The results are robust to being run in logs.

The same regressions as column (1) is run for column (3) with therm usage as the
dependent variable. The result show that the program does not provide significant
therm savings. Column (4) presents the same regression at 1000 meters and finds the
same zero savings results. Using these estimates, I can reject a savings of 8.6 and .7
percent for the 75m and 1000m results respectively. These results show that the ESA
program on average does not reduce energy consumption.

It is worth noting that these results only estimate the energy impacts of the
ESA program. There are numerous potential non-energy benefits that can result
from an energy efficiency upgrade. These include increased comfort, improved air
quality, increased safety and better all around living conditions. The natural gas
safety checks that are an integral part of the ESA program frequently identify unsafe
living conditions and work to improve them.® The non-energy benefits are potentially
a source of value generated by the ESA program, but they are typically challenging
to measure.

Another important consideration is that the effects estimated in these regressions
do not reflect the average treatment effect of the ESA program. Instead, the results
reflect a LATE for households that entered the ESA program as a consequence of
income self-certification. It is possible that households which come into the program
due to self-certification have lower savings on average. The instrument used, however,
does affect a large portion of the SDG&E enrolling ESA population. Between 2007
and 2012, 54 percent of households self-certified their income when they enrolled in
the program. This large percent of self-certifiers shows that the LATE estimates in
this section reflect a large portion of the potential ESA population.

To test for the effects of heterogeneity in upgrades on program outcomes, an
interaction term for households receiving refrigerators was included. These results can

5During a site visit I was on, the house did not pass the natural gas safety check. As a
consequence, the local utility was contacted and brought out to shut off the dangerous gas leak.
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be seen in columns (1) and (2) of table 2.5. The results show is that those households
that did receive a new refrigerator had a total savings of around 36 kWh per month.
Households that did not receive a fridge, however, still experienced no energy savings.

The refrigerator results are suggestive of heterogeneous upgrade savings, but there
are potential problems with the identification of these coefficients. Households that
receive replacement refrigerators might be different than those that did not qualify.
For example households that did receive a new refrigerator might also be more likely
to receive attic insulation and other significant savings measures. The refrigerator
indicator could then be picking up these other factors, leading to a biased estimate of
refrigerator savings. The next section presents a different methodology to estimate
refrigerator savings estimates without the biases present in table 2.5.

2.3 Refrigerator savings estimates

Identifying heterogeneity in energy efficiency retrofit programs is typically not
possible due to the non-random nature of the efficiency measures that are installed.
Programs generally install all cost-effective retrofits are given to households that enroll.
This creates the potential for bias, where the eligible retrofits could be correlated
with energy usage and outcomes. Even with a well identified random assignment of
treatment such as in Fowlie, Greenstone, and C. Wolfram (2015b), it is not possible
to recover unbiased estimates of specific measures without exogenous variation in
measure instillation.

2.3.1 Institutional details

The ESA program presents an opportunity to identify measure level effects by
exploiting discontinuities in program rules that govern when certain appliances can
be replaced. Households in the ESA program are eligible to have their refrigerator
replaced for free if their current refrigerator was manufactured before 1993.% Impor-
tantly, the ESA program collects the refrigerator age for all households that enter the
program, regardless of if they qualify for a new unit. This allows the identification of
households who just qualified for a refrigerator replacement and a comparison group
who just missed the eligibility cutoff.

The analysis is based off of 77,373 households that received ESA treatment between
April 2007 and July 2014. The sample is further limited to 9,652 households that own
refrigerators manufactured between 1990 and 1995, with 3,463 receiving replacements.

6The household must also have a properly grounded outlet to qualify. Starting in December
2012, refrigerators manufactured before 1999 were also accepted into the program.
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Billing data is taken for these households between 2007 and 2014. It is important
to note that the measure specific effects estimated using program rules are a local
average treatment effect for participants in the ESA program close to the 1993 cutoff.
The results will not be directly comparable to the to the estimated overall program
effects since they are on a different population of customers.

2.3.2 Regression discontinuity specification

I use a RD design to estimate the effects of a replacement appliance. Appliance
take-up is estimated in the first stage using the following equation:

(2.3)
H{Refrigerator}i.me = b11{Eligible}izme + Po Dizmi + B3 D - 1{ Eligible}iomt + CGutz + Nizme

where 1{Refrigerator};.,; is an indicator for if household i received a replace-
ment refrigerator through the ESA program in zip code z in month m and year t.
1{Eligible};,m; is an indicator for if a household has a refrigerator of model year
1992 or earlier, making them eligible for a replacement. The difference in refriger-
ator age from the 1993 threshold is normalized to zero and represented by D. Zip
code-by-month fixed effects, (.., control for weather and 7);,,,; is the error term.
The fuzzy RD regression is estimated using 2SLS using the following equation:

(2.4 Yiomt = Or{Befrigerator} P+ 3 D+ P + By D - 1{Eligible} - P
' +on L{Eligible}ismi + 2 Disny + g D - 1{Eligible}izmt + e + €z
where Re f@ator is the fitted value from the first stage regression. The regression
is similar to the methodology used by G. W. Imbens and Lemieux (2008), except the
standard equation is interacted with an indicator for the post period, represented as P.
[y is the coefficient of interest, which represents the effects of having an ESA upgrade
conducted (P) and receiving a refrigerator as part of the upgrade. Importantly, all
households in the sample receive ESA treatment. The estimate (; identifies the
incremental improvement in program savings for households that just qualified for an

appliance replacement compared to similar households that did not.

Both equation 2.3 and 2.4 are estimated with local linear regression using a uniform
kernel (G. W. Imbens and Lemieux 2008). Higher order polynomial specifications
are avoided based on the suggestions of Gelman and G. Imbens (2014). The main
specification uses a bandwidth of 3 refrigerator model years with robustness checks
for larger and smaller bandwidths.
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2.3.3 Validity of research design

This section uses graphical evidence to assess the validity of the regression dis-
continuity research design and to test for any manipulation across the eligibility
threshold.

Discontinuity in manufacturing age

Figure 2.12 plots the refrigerator replacement rate by refrigerator model age. The
dots represent the percent of households that received a new refrigerator binned by the
age of their existing refrigerator. The red line represents the 1993 model year cutoff,
where refrigerators manufactured before this year were eligible for replacement. The
figure shows a discontinuous increase at the threshold indicating that the refrigerator
age discontinuity does increase refrigerator uptake.

Validity of running variable

Manipulation of the running variable is a frequent concern when doing RD based
analysis. The structure and implementation of the ESA program makes this unlikely
since a number of different contractors are involved in the refrigerator evaluation and
replacement process.” To show that refrigerator age manipulation is not a concern,
figure 2.13 plots the distribution of refrigerator ages for all customers who received
the ESA program. The red line shows the 1993 cutoff. If manipulation of refrigerator
age was taking place, I would expect bunching on the left side of each of the red lines.
This does not seem to be the case, indicating that there is no gaming of the running
variable.

Another concern in RD analysis is that covariates change discontinuously at the
eligibility threshold. These changes could lead to sorting or other behavior that might
drive program outcomes at the discontinuity. To test for this, figure 2.14 plots all
available covariates by refrigerator manufacture date. All of the panels in figure 2.14
have a smooth distribution across the threshold, showing that these variables are not
changing discontinuously and potentially driving changes in energy usage.

2.3.4 Graphical RD results

Figure 2.15 plots energy savings from the ESA program against refrigerator age
manufacture date. The red line indicates the 1993 cutoff, where households to the left

“Corruption is unlikely since this would require multiple contractors involved in the process to
jointly manipulate program rules. The payoffs are likely not high enough to justify a customer or
contractor engaging in this behavior.
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qualify for the refrigerator replacement and households to the right do not. Each blue
dot represents the average savings for households that go through the ESA program.
This is calculated as the difference between the 6 month pre-upgrade consumption and
the 6 month post-upgrade consumption. Crossing the red line greatly increases the
savings from the ESA program as the probability of receiving a refrigerator increases.

Figure 2.16 presents an alternative version of the results. In this figure, the
pre-period and post-period are displayed separately, showing how energy savings from
the ESA program changed differentially on either side of the 1993 cutoff. The dots in
figure 2.15 are calculated from as the difference between the blue and orange values
in each refrigerator age bin. This alternate view illustrates a few additional points
about the results. First, the pre-period consumption of the pre-1993 refrigerator
owners is significantly higher than that of the post-1993 refrigerators. One potential
explanation is that the federal minimum refrigerator efficiency standards, which set
guidelines for all refrigerators made each year, were increased in 1993. The typical
refrigerator manufactured in 1993 used 690 kWh/year compared to the 1990 standard
which was set at 903 kWh /year. This means that the average 1993 refrigerator will
consume much less energy than the average 1992 refrigerator (Koomey et al. 1999).
The 1990 minimum efficiency standards can also be seen in this figure as the 1989
and earlier refrigerators consume even more energy than the 1990-1992 models. Once
households replaced these older standard refrigerators, their consumption dropped to
a similar level of other households with newer refrigerators.

The second noteworthy aspect of figure 2.16 are the small savings to the right
of the 1993 cutoff. All households in this figure received ESA treatment, but the
difference between pre-period and post-period is quite small for households that did
not qualify for a refrigerator. These small differences between pre and post upgrade
consumption for non-refrigerator eligible households should only be interpreted as
an event study, but the results are similar in magnitude to the effects estimated in
section 2.2.

2.3.5 Regression results

I now turn to the numerical results that correspond to the graphical evidence in
the previous section. Table 2.6 shows the results of the estimation of the first stage
shown in equation 2.3. Column (1) shows the effect of having a pre-1993 eligible
refrigerator on refrigerator replacement without the inclusion of zip-by-month fixed
effects. Column (2) shows the same equation with fixed effects included. The 72-73
percent increase in uptake corresponds to the jump in refrigerator uptake seen in
figure 2.12.
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The main IV results can be seen in table 2.4. The results are reported in kWh
savings per month. Consistent with the graphical evidence, replacing a refrigerator
generates significant savings. Column (1) shows the results of estimating equation
(2.3) without fixed effects. Column (2) shows the same equation estimated with
zip-by-month FE to control for weather. The fixed effects are not necessary if the RD
assumption is valid, but their inclusion can help increase the precision of the estimate.
Both show around a 36 kWh/month reduction in energy usage from the installation
of a new refrigerator. These numbers are almost identical to the savings estimates
from the previous section shown in table 2.5, where fridge savings are interacted with
overall program savings. Column (3) replicates column (2) but is run in logs to report
the percent reductions from the instillation of a new refrigerator.

When compared to the ex-ante estimates of refrigerator savings, the estimates
found here are much lower. For example, the 2012 projection finds that a replacement
refrigerator will save around 57 kWh/month. The savings numbers are not directly
comparable, since the ESA ex-ante number is the average for all replaced fridges, while
the results in this section reflect a LATE around the 1993 threshold. Nevertheless, it
is striking how much larger the program projects refrigerator savings to be.

Other empirical studies of refrigerator replacement programs have found much
smaller savings estimates. L. W. Davis, Fuchs, and Gertler (2014) examined the
Mexican Cash for Coolers program, where participants were given subsidies to replace
their old refrigerator with a new energy efficient model. The authors find that the
program saved 11 kWh/month for the average program participant. There are a
number of important differences that help explain some of the disparity between the
L. W. Davis, Fuchs, and Gertler (2014) estimates and the savings found in my analysis.
First, the ESA program replaced refrigerators that were at least 15 years old, which
is much longer than the 10 year limit requirement in the Mexican program. Second,
the ESA program provided all recipients with the same basic energy star model
with no additional features. In the Cash for Coolers program, the customers had a
choice of what model they purchased with their subsidy and the replacement fridges
tended to have features that increased electricity consumption. As a consequence,
the ESA program refrigerator estimates reflect savings with less behavioral responses
to consider.

To put the 36 kWh/month reductions in in context, I calculate the bill savings
experienced by households from a refrigerator replacement. California uses increasing
block pricing, where the per-kWh charge goes up as the total monthly usage increase.
In SDG&E, CARE households pay between 9.99 and 17.55 cents/kWh for their energy
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depending on what tier they are on and the season.® These prices translate to between
a 3.63 and 6.38 dollars/month savings for the households who receive an upgraded
refrigerator. These are significant savings for households, especially considering the
no-cost nature of the upgrades.

To verify that the estimates shown are not sensitive to bandwidth choice, table 2.11
shows the regression from column (2) estimated with all bandwidths between 2 and 5
years. The results show that the estimates vary between 34.65 kWh of savings with a
4 year bandwidth to 41.00 kWh of savings with a 5 year bandwidth. This small shift
in savings estimates shows that the bandwidth selection is not determining the RD
regression outcomes. The 3 year bandwidth is chosen as the preferred specification
because minimum efficiency standards were increased in 1990. Any bandwidth above
3 years would include refrigerators from that early efficiency era.

2.4 High efficiency washing machine savings
estimates

2.4.1 Institutional details

High efficiency (HE) washing machines provide energy savings through two mech-
anisms. First, HE washing machines use less water than older units, and require less
energy to heat that smaller amount of water. Second, HE washing machines generally
do a better job at removing water from the washed clothes, reducing the amount
of energy used by the dryer. To qualify for a free washing machine, ESA enrollees
must meet a strict list of requirements. These include: the household must have 4
or more members, the customer must own the washing machine, the customer must
have a dryer, the dwelling must have an individual water heater billed to the unit,
both washing machine and dryer must be functioning and the old washing machine
must be manufactured before 2004. HE washing machines were introduced into the
ESA program starting in 2012.

Similar to the work on refrigerators, the analysis conducted on washers is limited
to households that participate in the ESA program. The identification strategy
will exploit the 4 occupant requirement for a HE washer replacement and compare
outcomes to otherwise similar households with 3 occupants. In some ways this is
similar to the refrigerator RD regressions run in the previous section, except the
variation in take-up will be used in a different manner. In particular, the sample will

8These prices are for the first 3 months of 2012. The prices change slowly over time, but not in
any significant amount during the sample window.
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be limited to households that meet the list of qualifications that make them eligible
for a new HE washing machine. The sample will also be limited to households with 3
and 4 occupants in order to minimize the difference between the eligible and ineligible
ESA customers.

The analysis on HE washing machines will be conducted using SoCalGas data
as opposed to the SDG&E data used in the earlier sections of the paper. This is
done for a number of reasons. First, the supporting data provided by SoCalGas
provides more insight on which households have the prerequisite conditions such as
having an existing washer and dryer. Second, SoCalGas is a larger service territory
with more customers, and as a consequence has installed more HE washers in their
program. SDG&E installed 5,376 washers in the sample window and only 2,361
of those to households with 4 occupants. SoCalGas installed 49,587 HE washing
machines, with 21,672 going to households with 4 occupants. This allows for a more
precise identification of the effects of HE washers on energy usage. There is no reason
to believe that the results from SoCalGas would vary significantly from those in
SDG&E.

The dataset used includes the billing records for 23,415 households between 2012
and 2014. The analysis is conducted only on households with 3 or 4 members that
meet the program criteria such as owning a washer and dryer. There are 6,969 3
occupant households in the sample that satisfy this criteria but will not be eligible for
for an upgrade due to household size. Of the 16,446 households that have 4 occupants,
11,730 of them receive HE washing machines.

2.4.2 Empirical strategy

The identification of savings from HE washers comes from the variation in uptake
between households with 3 and 4 members, with the later qualifying for an upgrade.
Unlike the previous section where savings are identified with a regression discontinuity
design, this estimation will use a difference-in-difference setup. The pre-period signifies
the time before a household receives ESA treatment and will be interacted with if the
household has 4 or more occupants to estimate the effects of HE washers on therm
usage. A RD approach was not utilized in this context because there is a limited
support on the number of occupants on either side of the cutoff, making inference at
the threshold challenging.

The first stage uses OLS to estimate the effect of having 4 occupants on HE
washer uptake using the specification:
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(2.5)
H{Washer}ime = an1{4 occupants} - 1{ ESA upgrade};,mi + caol{ ES A upgrade}; i

1{Washer} is an indicator of if household ¢ received a replacement HE washer
through the ESA program in zip code z in month m and year t. 1{4 occupants} is
an indicator for if a household has 4 occupants and is eligible for the replacement HE
washer. When a household recieves an ESA upgrade, the 1{ ESA upgrade} turns to
1. There is no standalone 1{4 occupants} term since it is absorbed by the account-
by-month fixed effects. Similar to previous estimation equations, zip code-by-month
fixed effects, (., control for weather and 7;,,,; is the error term.

The second stage is estimated with 2SLS using the following equation:

Thermium: = ﬁﬂ{W@r} - {ESAupgrade};.m + B21{ ESA upgrade};.m:

(2.6)

_I_Cmtz + Yim + €izmt
where Washer is the fitted value from the first stage regression. [y is the coefficient
of interest which is the interaction term between receiving an ESA upgrade and
receiving a HE washer.

The causal identification of the therm savings from HE washers depends on the
exclusion restriction holding, which requires that the only mechanism through which
the 1{4 occupants} instrument changes energy consumption is from the instillation
of an HE washer. In this case, the violation of the exclusion restriction must be
time varying because household-by-month fixed effects absorb the time-invariant
differences between the 3 and 4 occupant groups. For example, if households with 4
occupants saved more energy from the non-HE washer ESA upgrades than 3 occupant
participants, then the estimate of 3; could be biased upwards.

Another important consideration is if selection into the program could be driven
by HE washer eligibility. This might lead to 4 occupant ESA households being
systematically different than 3 occupant households. It is unlikely, however, that
prospective ESA participants knew what measures they might qualify for. The
appliance eligibility criteria was not advertised or public on any of the utility web
sites. Households only discovered what they were eligible for after they completed
the enrollment contractor step. Even if a household was eligible based on all of the
criteria, the weatherization specialist (the second contractor to visit) usually had the
final say on if a household could accommodate a replacement HE washer.
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2.4.3 HE washer results

Table 2.9 presents the results from the estimating the first stage equation (2.5). It
shows a significant increase of in washer uptake of 66 percentage points for households
with 4 occupants. Figure 2.17 presents this first stage graphically by showing the HE
washer uptake by number of occupants. This figure helps confirm that the uptake
pattern is driven by this occupant threshold, and the pattern continues for smaller
and larger households.

The results for the IV regression can be seen in Table 2.10, which reflects the
estimation of equation (2.6). Column (1) reports the results of the regression run
in levels, and column (2) has the same result in logs. The results show that the
instillation of an HE washer significantly reduced therm usage in households that
received them. This 1.26 therm/month saving from the new HE washers was around
a 4.5 percent reduction in therm usage.

The economic significance of these reductions must also be considered. SoCalGas
CARE customers pay between 55.94 and 76.74 cents per therm depending on their
monthly usage.” The 1.26 therm/month reduction translates to a .70 to .97 dol-
lar/month discount on a households bill. Even though this is a small savings amount,
it is important to note that the therm reduction is only one part of the savings from
an HE washer. The new washing machines likely provide water savings, as well as
some electricity savings for households that use electric dryers. Unfortunately, the
water data is not available for analysis in this paper. Electricity data should be
available for subsequent drafts.

2.5 Discussion

2.5.1 Costs vs benefits

Comparing the costs and benefits of the ESA program is important to understand-
ing its success as a low-income energy retrofit program. As discussed in the conceptual
framework, the ESA program must be evaluated as both a transfer program and a
carbon mitigation policy. As an in kind transfer program, it is strictly worse from a
welfare perspective than an equivalent cash transfer. Furthermore, it is not able to
dynamically provide relief in times of need such as economic downturns.

To quantify the benefits of the ESA program as an energy policy, this paper
empirically estimates the savings the program generates. There are a number of

980CalGas has a two tier rate schedule where customers pay a lower marginal cost for a given
portion of their usage, and a higher rate for all remaining therms. The numbers cited here reflect
the Tariff in January 2012 with the 20 percent CARE discount.
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different ways to value the energy savings to society. First, households receive private
benefits in the form of reduced energy bills. Second, ESA customers are also on
the CARE rate. All reductions in energy usage by this population will reduce the
amount of CARE subsidies that must be paid out. This in turn reduces the amount
of fees that must be collected to fund the CARE program. Third, the reduction in
energy usage also reduces the amount of carbon emissions associated with eletricity
generation. These three main savings from the ESA program are considered in turn
and the total is reported to evaluate the cost-effectiveness of the ESA program. This
draft has not considered the comparison to the true marginal cost of energy, which
will be included in subsequent drafts.

Private benefits

One of the main goals of the ESA program is to reduce energy usage and bills for
low-income households. The savings estimates presented in section 5 show that the
program likely does not provide significant electricity or gas savings to participants. It
is important to highlight that those savings are a LATE around the self-certification
threshold, and do not represent the average effect of the program on a new enrollee.
Even considering that caveat, it is striking that a large part of the eligible ESA
population can expect few savings when they enroll in the ESA program.

It is hard to back out a specific cost against which one can compare savings
estimates to. One method is to compare measure costs to program savings. For exam-
ple, SDG&E spent $14.4 million dollars on measures in 20,888 homes in 2012. This
works out to $691/household for just the measures alone. An additional $7.5 million
was spent on costs such as outreach and assessment ($3.5 million), advertising ($1.2
million), administration costs ($1.9 million). Factoring in total program expenditures,
which is the best metric to compare savings against, the program cost $1,053 per
household. Considering that a large portion of households likely does not see any
significant savings, this is a noteworthy overall program expenditure.

The heterogeneity in upgrade potential present in the ESA program suggests that
overall cost numbers are not always the best metric to compare against savings. Some
households likely cost more than $1053 per household, and many cost less. To better
understand these individual expenditures, I use a set of calculators generated for the
ESA program. These are developed by the consulting firm E3 and give measure costs
for each of the main measures installed. They estimate that the gross cost, which
includes purchase price and retrofit expenditures, totals to $1,025 for a replacement
refrigerator.

Discounted private benefits over the lifetime of the refrigerator are shown in the
top part of panel A of table 2.12. The nature of California energy billing, where
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households pay on increasing blocks based on how much they use, necessitates private
benefits being presented as a range. The low value in the left column of table 2.12
corresponds to energy savings for customers on the first tier and the high numbers
on the right to customers on the highest tier. For refrigerators, this works out to
$3.63/month for low tier usage and $6.38/month for high tier usage.

The calculations show the discounted stream of energy savings to households at a
10, 15 and 20 year horizon at a 3 and 6 percent discount rate in a similar manner to
Fowlie, Greenstone, and C. Wolfram (2015a). The 15 year horizon corresponds to
the estimated appliance life used in the E3 calculators. The savings numbers in the
left and right sections display the lower and upper bounds respectively. The results
show that users on the lower electricity tiers, and thus paying the lower electricity
rate, do not see savings that exceed the $1,025 cost of the refrigerator. Users on the
highest tier that pay the most for electricity only see cost-effective savings for the
longest time horizon and lowest discount rate. These outcomes show that when only
counting private benefits, refrigerator replacements are not necessarily a cost-effective
investment.

Using similar metrics, HE washers are estimated to cost $749 per replacement.
These can be compared to the the energy savings estimates for HE washers shown in
the bottom portion of panel A in table 2.12. These numbers show that the natural
gas savings are much lower than the replacement cost of a washer. These estimates,
however only reflect one aspect of the savings that HE washers can generate. By using
less water, HE washing machines can help lower a household’s water bill. Electricity
bills may also be reduced for households with an electric dryer since HE washing
machines are better at removing moisture from clothing. Unfortunately, this analysis
cannot presently capture the electricity benefits. With this limitation in mind, the
numbers presented in table 2.12 present a lower bound for total savings from HE
washers.

Benefits for reductions in CARE usage

The CARE program, which provides subsidized energy for low-income households,
and the ESA program are closely linked in California energy policy. The two programs
share the same eligibility limits and ESA treated households are automatically enrolled
in CARE. The ESA program can reduce the amount of CARE expenditures by lowering
low-income household demand for energy (and CARE subsidies) going forward. In
SDG&E’s territory, the CARE rates are 4.35 cents/kWh lower for users on the
first tier and 10.14 cents/kWh lower for users on the highest tier. The discount in
SoCalGas is 13.99 cents/therm for users on the lowest tier, and 19.19 cents/therm for
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high tier users.!® By lowering the demand for energy, the ESA program can reduce
the amount of subsidies it pays out to CARE customers.

Table 2.12 panel B shows the range of potential CARE savings from installing
a refrigerator and a HE washing machine. The calculations show that there are
significant savings from reduced CARE payouts for a refrigerator replacement. For
example households consuming on the top tier at a 6 percent discount rate over 15
years can reduce the amount of CARE subsidies by $456 over the lifetime of the
refrigerator. The results for HE washing machines are more modest. This is due to
the smaller savings numbers for HE washers, and the lower relative CARE discount
for natural gas.

Social and total benefits

Reducing carbon emissions is an integral goal of the ESA program. To account
for the amount of carbon emissions avoided, I use the estimates of carbon intensity in
J. S. Graff Zivin, Kotchen, and Mansur (2014). They estimate the marginal carbon
emissions rate of generation on specific parts of the U.S. grid for every hour of the
day. I use their estimate of .81bs/kWh, which is the daily average emissions rate of
the Western Interconnection grid. Avoided emissions of CO, are valued at $38 ton as
calculated in Greenstone, Kopits, and Wolverton (2013) and used in a similar manner
in Fowlie, Greenstone, and C. Wolfram (2015a).

The value of total abated carbon can be seen in panel C of table 2.12. The carbon
savings estimates are modest and highlighting that the climate benefits of the ESA
program are much smaller than the direct energy cost savings. For example, the
carbon savings from a refrigerator replacement are 8 percent the value of the private
benefits for high tier users. It is important to note that the carbon savings numbers
should only be counted as benefits for time periods when California does not have
a binding cap-and-trade program in effect. Under a binding carbon cap, the total
carbon emitted in the state is capped, so emissions reductions from energy efficiency
will not reduce total state emissions. There was no binding carbon cap during the
period studied in this analysis.

Adding up the private, CARE and carbon reduction benefits gives a good ap-
proximation of the value of each appliance replacement to society. These estimates
can be seen in panel D of table 2.12. The results show that refrigerators are a
cost-effective replacement under most scenarios when reducing high tier electricity
usage. This is not the case when refrigerators are displacing first tier energy usage,
where replacement costs are mostly higher than benefits. High efficiency washing

10 A5 before, these rates reflect prices in January 2012.
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machines show lower savings numbers than the $749 replacement cost. These values
only reflect the therm savings, and not electricity or water savings, making them not
directly comparable to the full $749 cost.

The total benefits in table 2.12 do not include non-energy benefits. They are
outside the scope of this analysis, and typically are challenging to estimate. Any
non-energy benefits would add on to the estimated energy benefits in table 2.12,
making refrigerator replacements cost-effective under a larger set of situations.

2.5.2 Comparison to third party evaluation

The ESA program is periodically evaluated by a third party consulting firm to
assess program savings. The last evaluation was written in 2013 and covered the
results for program year 2011 (Evergreen Economics 2013). The study found that the
ESA program saved 278.57 kWh/year and 26.06 therms/year for the average SDG&E
customer. Both of these estimates are outside the 95 percent confidence intervals of
the results found in this paper.!!

The Evergreen Economics (2013) study also estimated measure specific savings.
The refrigerator estimates show a replacement unit saved 640.42 kWh /year, which
is substantially larger than the 436.58 kWh /year savings estimated in this paper.
The therm savings from HE washing machines in SoCalGas’s territory was found
to be 30.88 Therms/year which is more than twice the 15.12 savings found in this
analysis.!?

The methodology used in the Evergreen Economics (2013) study does not leverage
quasi-random variation in program uptake to estimate program effects. Furthermore
the appliance estimates in this paper are LATEs around the implementation thresholds,
meaning they do not provide an average savings estimate for all refrigerator or HE
washer replacements. As a consequence, the estimates in this analysis are not directly
comparable to the Evergreen Economics (2013) study. With these caveats in mind,
the existing Evergreen Economics (2013) report finds significantly larger savings
estimates for the ESA program. Past 3rd party evaluations have found similarly
large program savings, highlighting the importance of further careful evaluation going
forward.

"The 75 meter 1000 meter estimates can reject an annual savings of 245 and 122 kWh//year
respectively. The therm savings estimates can reject a 23.7 and 2.1 therm/year for the same
distances.

12Both the refrigerator and HE washing Evergreen estimates lay outside the 95 percent confidence
interval of the estimates in this paper. Standard errors were not reported in the Evergreen savings
estimates.
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2.6 Conclusion

This paper focuses on evaluating the Energy Savings Assistance program in
California, and provides insight on the effectiveness of efficiency retrofit programs
aimed at low-income households. The prevalence of similar programs will continue to
increase with the Clean Power Plan and the CIEP credit mechanism incentivizing
their deployment. States that implement energy efficiency programs to meet their
carbon reduction goals will be credited based on their projected savings. If evaluations
are not conducted appropriately, the climate goals of the Clean Power Plan could be
undermined by programs not delivering on their ex-ante projections.

This paper focuses on the largest state-run low-income energy efficiency retrofit
policy, the California Energy Savings Assistance program. The results find that the
overall program is ineffective at delivering energy savings to most participants. Some
households, however, were eligible for larger upgrades and had energy savings as a
result. The 1 in 10 households that received a refrigerator replacement experienced
between $3.63 and $6.38 in bill savings per month. Furthermore, the refrigerator
replacements were cost-effective when considering the full set of societal benefits.

The analysis in this paper is the first to both estimate program effects for a large
portion of the treated population and to estimate measure specific savings numbers.
Previous studies have either estimated overall program effects, or analyzed appliance
replacement, but never both for the same retrofit program. The results provide
important insights on program design that have not previously been empirically
testable.

More broadly, this paper provides strong evidence of heterogeneity in upgrade
potential affecting overall program outcomes. Many households are not well suited
for energy efficiency retrofits, and their inclusion in upgrade programs can erode the
overall cost-effectiveness of a program. In the ESA program, 81 percent of households
received smaller upgrades and likely did not see significant savings. This challenge is
present in most energy efficiency retrofit programs, and must be carefully considered
when designing efficiency policies.
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Figure 2.2: In kind transfers
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Figure 2.3: Care enrollments and unemployment rate in SDG&E’s service territory
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Figure 2.4: Map of all zip+4s in SDG&E’s service territory by certification status

a

Self certification status (@) Ineligible () Eligible

79



Figure 2.5: Map of zip+4s in SDG&E’s service territory trimmed to 75 meters by
certification status
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Figure 2.6: Zoomed in map of zip+4s trimmed to 75 meters by certification status
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Figure 2.7: Zoomed in map of distances between zip+4s of opposite certification
regimes trimmed to 75 meters
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Figure 2.8: Individual housing units by self-certifications status
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Figure 2.9: Individual housing units by self-certifications status - trimmed to 75m

Self certification status (@) Ineligible () Eligible

84



Figure 2.10: Density of pre-period kWh consumption by eligibility status
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Figure 2.11: Density of pre-period therm consumption by eligibility status
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Figure 2.13: Distribution of fridge vintages
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Figure 2.14: Covariates graphed through 1993 fridge age discontinuity
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Figure 2.15: Savings from fridge replacement
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Figure 2.16: Savings from fridge replacement - alternate specification
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Figure 2.17: First stage of high efficiency washer analysis
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Tables

Table 2.1: Income limits for ESA program

Household Size | Care Income Limit
1to2 $30,500
3 $35,800
4 $43,200
5 $50,600
6 $58,000
Each additional $7,400

Note: Limits reflect 2008-2009 cutoffs
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Table 2.2:

Summary of ESA upgrades

Percent of households

Upgrade category Count receiving upgrades

Minor upgrade only 129455 81.25
Refrigerator 16715 10.49
Lighting 152650 95.8
Microwave 16006 10.05
Furnace replacement 4048 2.54
Room AC 2440 1.53
Attic insulation 4538 2.85
Washer - electric 607 .38
Central AC 61 .04
Washer - gas 5367 3.37
Water heater 845 .53
Building seal 107356 67.38
Water conservation 94308 59.19
Furnace tune up 28527 17.9
Total number of houses upgraded 159336 100

Notes: Data presents all upgrades in SDG&Es territory from 2007-2012. These aggregate categories
were constructed by the author to best reflect the nature of the upgrades. Minor upgrades signifies
households that received only one of the following: lighting, microwave, building seal, water
conservation and furnace tune up.
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Table 2.3: Program savings: First stage

(1) (2)

Self-certification instrument 0.12587*** 0.15359***

(0.00440) (0.00312)
Average take-up rate 0.259 0.239
Distance trimming 75 meters 1000 meters
Number of accounts 38,323 109,199
Number of observations 2,953,999 8,111,111
F statistic 820 2,425

Notes:All regressions have account by month FE and zip by month of sample FE. Standard errors
clustered at account level

Table 2.4: Program savings: IV results

®) ®) ® @
kWh kWh Therms Therms
ESA program install -0.839 0.948 -0.172 0.761
(9.976) (5.658) (0.921) (0.478)
Mean kWh 355.951 398.839 22.813 24.991
Max distance 75 meters 1000 meters 75 meters 1000 meters
Number of accounts 38,320 109,189 24,808 78,978
Number of observations 2,956,417 8,126,628 1,934,202 5,868,280

Notes: All regressions have account by month FE and zip by month of sample FE. Standard errors
clustered at account level

Table 2.5: Program savings: IV results interacted with refrigerator installation

(1) (2)

kWh kWh

ESA program install 3.798 5.152

(10.716) (6.007)
Fridge installed -40.271*** -41.991***

(8.534) (5.149)
Mean kWh 355.951 398.839
Max distance 75 meters 1000 meters
Number of accounts 38,320 109,189
Number of observations 2,956,417 8,126,628

Notes: All regressions have account by month FE and zip by month of sample FE. Standard errors
clustered at account level
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Table 2.6:

Refrigerator RD: first stage results

) @)
No FE Zip-by-month FE

Eligible for fridge 0.72457*** 0.73181***

(0.01236) (0.01223)
Distance by post 0.00360*** 0.00579***

(0.00064) (0.00091)
Distance by eligible by post -0.00764 -0.01177

(0.00967) (0.00956)
Number of accounts 7,668 7,668
Number of observations 99,684 99,684
F statistic 2,826 2,892
Bandwidth 3 years 3 years

Notes:All regressions have month of sample FE. Standard errors clustered at account level
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Table 2.7: Refrigerator RD: IV results

0 ®) ®
kWh kWh Log kWh
Fridge monthly kWh savings -36.17366*** -36.38198*** -0.11646***
(7.58157) (8.41046) (0.01972)
Distance by post 0.92664 1.20173 0.00499
(1.89563) (2.20018) (0.00494)
Distance by eligible by post 6.51369** 4.37848 0.00900
(3.25937) (3.67810) (0.00834)
Post -5.18822 -14.41889*** -0.04312%**
(4.18866) (5.12823) (0.01232)
Distance -3.97252 -3.36659 -0.01043
(4.27086) (4.04895) (0.00984)
Distance by eligible -4.94705 -2.15524 -0.01443
(7.30631) (7.14531) (0.01571)
Eligible 21.49186* 24.07697** 0.04972*
(12.42827) (11.68784) (0.02694)
Average kWh consumption 391.718 391.718 5.782
Number of accounts 7,668 7,668 7,667
Number of observations 99,684 99,684 99,647
Bandwidth 3 years 3 years 3 years
Account-by-month FE No Yes Yes
Zip-by-month FE No Yes Yes

Notes:All regressions have month of sample FE. Standard errors clustered at account level

Table 2.8: Refrigerator RD: bandwidth robustness checks

(1)

2 year bandwidth 3 year bandwidth

4 year bandwidth

(4)

5 year bandwidth

Fridge monthly kWh savings -39.11551%** -36.38198™*" -34.64998™** -41.00426™**
(12.17608) (8.41046) (7.07341) (6.25784)
Average kWh consumption 391.962 391.718 396.465
Number of accounts 4,769 7,668 12,429
Number of observations 61,997 99,684 161,561
Bandwidth 2 years 3 years 5 years

Notes:All regressions have month of sample FE. Standard errors clustered at account level

97



Table 2.9: HE washing machines: first stage results

(1)

Four occupants by ESA upgrade 0.65699***

(0.00449)
ESA upgrade 0.00255

(0.00214)
Number of accounts 23,415
Number of observations 770,211
F statistic 12,703

Notes:All regressions have month of sample FE. Standard errors clustered at account level

Table 2.10: HE washing machines: IV results

M ®)
Therm Log therm
Washer installed -1.25635*** -0.04448***
(0.20366) (0.00695)
ESA upgrade -0.38798*** -0.01734***
(0.12888) (0.00428)
Average monthly therm usage . .
Number of accounts 23,415 23,410
Number of observations 770,211 763,457

Notes:All regressions have month of sample FE. Standard errors clustered at account level

Table 2.11: Fridge savings bandwidth checks

) 2)
3 year bandwidth

2 year bandwidth

3) (4)
4 year bandwidth 5 year bandwidth

Fridge monthly kWh savings -39.115517*"

-36.38198™**

-34.64998™** -41.00426™**

(12.17608) (8.41046) (7.07341) (6.25784)
Average kWh consumption 391.962 391.718 394.015 396.465
Number of accounts 4,769 7,668 10,129 12,429
Number of observations 61,997 99,684 131,666 161,561
Bandwidth 2 years 3 years 4 years 5 years

Notes:All regressions have month of sample FE. Standard errors clustered at account level
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Table 2.12: Discounted benefits from appliance upgrades

Low tier costs High tier costs
Discount Rate 3 percent 6 percent 3 percent 6 percent
Panel A - Private Benefits
Fridges
10 years $383 $340 $673 $598
15 years $536 $449 $942 $789
20 years $668 $530 $1,174 $932
HE washing machines
10 years $74 $66 $102 $91
14 years $104 $87 $143 $119
20 years $130 $103 $178 $141
Panel B - CARE benefits
Fridges
10 years $167 $148 $389 $345
15 years $234 $196 $544 $456
20 years $291 $231 $678 $538
HE washing machines
10 years $19 $17 $25 $23
15 years $26 $22 $36 $30
20 years $32 $26 $44 $35
Panel C - Carbon benefits
Fridges
10 years $53 $47
15 years $74 $62
20 years $92 $73
HE washing machines
10 year $25 $22
15 year $35 $30
20 year $44 $35
Panel D - Total Savings
Fridges
10 years $603 $535 $1,115 $990
15 years $844 $706 $1,560 $1,306
20 years $1,052 $834 $1,945 $1,543
HE washing machines
10 years $118 $105 $153 $136
15 years $165 $138 $214 $179
20 years $206 $163 $266 $211
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Chapter 3

Environmental Air Quality
Regulation and Coal Employment
Costs: Evidence from Appalachia

3.1 Introduction

Starting with its passage in 1963, The Clean Air Act (CAA) is the main legislation
responsible for regulating air quality in the U.S. The Environmental Protection Agency
(EPA) estimated that in 2010 the CAA will provided $1.3 trillion in benefits, most of
which were from the reduction in premature deaths due to airborne particulate matter.
The costs of the policy in 2010 are estimated to be $53 billion per year, the majority
of which are estimated to come from shifting technologies to reduce emissions in
the electricity utility and transportation sectors (Environmental Protection Agency
2011).

One potentially important cost that is not included in the official EPA estimates
is the cost of dislocated workers from industries impacted by the regulation (Environ-
mental Protection Agency 2011). If displaced employees in regulated industries are
able to easily find jobs with similar wages in other sectors, then this cost may be small.
W. R. Walker (2013) investigates this question and shows that the reallocative costs of
the 1990 CAA amendments are significant. He finds that workers in regulated sectors
experience a total lifetime earnings loss of 20% compared to those in unregulated
sectors. The existing literature has focused on the cost of environmental regulation
to the sectors and plants explicitly covered by the regulation. These analyses capture
a large portion of the costs of environmental regulation, but they do not include the
costs to industries that supply the regulated industries.
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In this paper, I estimate the cost of the CAA on a prominent upstream sector —
the coal mining industry. I focus on Title IV of the 1990 CAA amendments, which
put a cap on sulfur dioxide emissions permitted from electricity generating plants.
The regulation reduced the demand for high-sulfur coal, which had large impacts on
the coal mining industry. In this paper I focus on the employment impact of Title IV
on communities in the Appalachian region of the U.S. that previously mined much of
this high-sulfur coal.

To study the impacts on counties that mine high-sulfur coal, I leverage a natural
experiment created by Title IV of the CAA. One of the main ways electric power
plants complied with the cap on sulfur dioxide emissions was to switch to a low-sulfur
coal (Carlson et al. 2000). I focus on Appalachia in the eastern U.S. because within
that region there are both low-sulfur and high-sulfur coal mines. This allows for
the comparison between counties with high-sulfur coal mines that were negatively
impacted by Title IV, and counties with low-sulfur coal mines that were not similarly
affected. Using this approach, I am able to identify the impacts of Title IV on
employment in the high-sulfur coal sector and to investigate spillovers to other sectors
of the economy.

I find that Title IV has a large negative impact on coal industry in the high-sulfur
counties. Production drops by 20% in the five years after the regulation. Coal
mines appear to have reduced their output in part by laying off employees. Coal
mining employment in high-sulfur counties drops by 14% relative to the neighboring
low-sulfur counties. The regulation also impacts how mines function. I find that Title
IV causes a reduction in labor efficiency (defined as tons mined/employees) for the
high-sulfur coal regions relative to the low-sulfur coal regions. This result is consistent
with a long-run reduction in value for high-sulfur coal decreasing the incentive to
invest. It also could follow from a lowered economy of scale at now smaller coal mines.
The overall reductions in production, employment and labor efficiency are striking
considered the coal mining industry was not directly regulated under Title IV of the
CAA.

Coal mining has historically been a large part of the Appalachian economy. In
1980, coal mining accounted for 15.5% of the West Virginian GDP. By 1994, this
number had dropped to 7.8%, mostly through growth in non-coal sectors. Sociologists
have noted that the coal industry actively promotes the image of coal mining as being
part of the regional identity through industry funded organizations such as “Friends
of Coal” (Bell and York 2010). The large role of the coal industry in Appalachia
creates the concern that coal-mining job losses will spillover to the non-coal sectors. I
test this hypothesis by using quarterly county level employment data and comparing
non-coal industry outcomes across high and low-sulfur counties. I find no evidence
that the Title IV regulations significantly impacted the Appalachian economy. I can
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rule out a reduction in total employment and wages in the high-sulfur coal counties
of 2.8% and 1.2% respectively.

The results from this analysis highlight a previously unmeasured costs of the CAA
on industries that are not directly regulated. The large impacts show that these
upstream employment costs should be included in the official cost-benefit analysis of
environmental regulation. This likely will be a future requirement. In 2016, a federal
judge required that the EPA consider the impacts of the Clean Power Plan (a CAA
regulation) on jobs in the coal industry.

There are two important policy implications from this analysis. First, the concen-
trated nature of the job losses in the coal mining industry suggest that a targeted
federal program to compensate the losers from Title IV could ameliorate some of the
the negative consequences of the regulation. To date, little or no funds have been
directed to coal miners in this region as compensation for the employment costs of
the regulation. Second, in the decades since the implementation of Title IV, the
Appalachian region has continued to lose coal jobs at a high rate. Much of these
changes are driven by technological improvements in mining and cheap natural gas,
but the employment costs to coal miners remains significant. The results in this paper
suggest that the non-coal sectors in Appalachia may not be significantly impacted by
the continued decline of the coal mining industry.

The rest of the paper is organized as follows: Section 2 discusses the Clean Air
Act, the related literature and the coal industry. Section 3 outlines the data used
in the analysis. Section 4 describes the empirical strategy and Section 5 presents
results. Section 6 discusses the results, policy implications and future directions for
the research. Section 7 concludes.

3.2 Background

3.2.1 Clean Air Act

The Clean Air Act was first passed in 1963 with the goal of reducing harmful
air pollution in the U.S. Major amendments were added in 1970 that introduced
regulatory programs to reduce pollution from both stationary and mobile sources.
The CAA was greatly expanded again in 1990 with a new set of amendments designed
to increase the scope of the existing regulation. Title IV of the 1990 Amendments
added a new program to regulate sulfur emissions from electric power plants that
contribute to acid rain. This was done through a “cap-and-trade” system, where a
cap was set at the total quantity of sulfur emissions and regulated entities were able
to trade permits.
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Phase 1 of the acid rain program began in 1995 and required 110 power plants
across 21 states to comply with the cap. These power plants were the largest and
dirtiest coal plants in the country, making them big contributors to sulfur emissions
that caused acid rain. A second set of plants was brought under the cap-and-trade
program in 2000, further expanding the restrictions on sulfur emissions (Busse and
Keohane 2007).

Power plants have two main options to comply with the regulation. The first is
to install “scrubbers” that remove the sulfur from the exhaust stream before they are
released from the power plant. This can be an expensive investment and includes
ongoing operation costs. Power plants also have the option to switch to coal with
a lower sulfur content. Before Title IV, high-sulfur coal was generally preferred in
power plants because it has a much higher energy content (around 12-13,000 Btu/ton)
than low-sulfur coal (around 8-10,000 Btu/ton). Transportation of coal is a large
portion of the cost, so this difference in energy density made high-sulfur coal the
preferred input.

Installing scrubbers and switching to lower-sulfur coal were both used to comply
with the Title IV cap-and-trade program. One of the consequences of Title IV was to
increase the demand for low-sulfur coal across the U.S. This furthered the growth
of major coal mining operations in the Powder River Basin of Wyoming, which is
now the largest source of low-sulfur coal in the U.S. Busse and Keohane (2007). Title
IV also reduced the value of high-sulfur coal by putting a price on the embedded
sulfur content. The decrease in the value of high-sulfur coal had impacts on the
Appalachian region, which mined a large portion of the high-sulfur coal in the U.S.
This paper seeks to estimate a portion of the costs to the employees who worked in
the coal industry and to the wider regional economy.

3.2.2 Costs and benefits of air pollution regulation

The EPA is required to estimate the projected costs and benefits of environmental
regulation before it is implemented. The most recent retrospective report on the CAA
conducted in 2011 estimates that the benefits are 25 times the costs (Environmental
Protection Agency 2011). The official EPA analyses are conducted using a computable
general equilibrium model that assumes the economy is at full employment, implying
it does not capture the costs of dislocated workers. Other research has addressed the
employment costs of environmental regulation using an ex-post econometric approach.
Greenstone (2002) estimates that the 1970 CAA amendments were responsible for
590,000 jobs lost across the U.S.

W. R. Walker (2013) uses detailed, worker level data to track the impacts of the
1990 CAA amendments on wages for employees in regulated sectors. He estimates
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that the wage cost for workers in regulated industries totaled more than $5.4 billion.
The majority of this lost income is from workers leaving the regulated industries and
receiving lower wages in other sectors. Other analyses have investigated various other
costs of environmental regulation including where industry locates due to regulation
(Kahn and Mansur 2013) and the transition away from regulated industries and
locations (W. R. Walker 2011).

A large literature documents the harmful impacts of air pollution on a variety
of health outcomes. Infants are particularly sensitive to air pollution, and infant
mortality has been shown to drop as air quality improves (Chay and Greenstone 2003;
Currie and Neidell 2005). Worker productivity for agricultural laborers has also been
shown to decline at high levels of ozone pollution (J. Graff Zivin and Neidell 2012;
Chang et al. 2016). Air pollution is also responsible for respiratory and heart-related
problems among the general public that cause expensive hospital visits and early
death (Schlenker and W. R. Walker 2016). Many other papers (e.g. (Currie, L. Davis,
et al. 2015; Isen, Rossin-Slater, and W. R. Walker 2014; Currie and R. Walker 2011))
document the negative consequences of air pollution to human health and the benefits
from reductions through government action. The EPA has estimated that the value
of the reductions in air pollution caused by the CAA totals $1.3 trillion/year in 2010
(Environmental Protection Agency 2011). To date, all CAA studies have found that
the benefits are an order of magnitude larger than the costs. This suggests that even
if some portion of the costs are not counted, the net benefit the regulation remains
high.

3.2.3 Coal mining techniques

Low-sulfur coal is usually defined as having below 1% sulfur by weight. High
and low-sulfur coal are each mined using different approaches. High-sulfur coal is
found in coal seams that are hundreds of feet below the surface. To recover this
coal, a variety of techniques that involve underground tunnels are used. This is in
contrast to low-sulfur coal, which occurs in larger, less dense coal seams closer to
the surface. The most economic method for extracting this coal is through surface
mining, where coal is exposed by removing the earth above the coal seam. Depending
on the characteristics of the terrain, this can be done using strip mining, contour
mining or mountaintop removal mining. In 1994, before Title IV was implemented,
39% of coal mined in the U.S. was underground.

The differences in mining approaches can lead to different scale mining opera-
tions. Low-sulfur surface mines typically require larger scale operations to make
them economic due to the less energy dense coal they mine and the earth-moving
capital required. In contrast, underground high-sulfur coal mines are usually smaller
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operations. In 1994, the average underground mine produced 57% as much coal as a
surface mine by volume. High-sulfur mines are also thought to be more flexible in
their production. P. L. Joskow (1987) argues that low-sulfur mines, by virtue of their
scale and capital requirements, are “lumpier” in their ability to adjust production.
High-sulfur mines, by contrast, have less economies of scale and can can more easily
expand or contract production by changing capital deployment.

3.3 Data

For the analysis I use data from the Mine Safety and Health Administration
(MSHA), which has quarterly data on coal mine production, employment and wages.
This data are reported directly to MSHA by mine operators using Form 7000-2. I
aggregate the mine-level data to the county level for analysis. From the Bureau
of Labor Statistics, I use the Quarterly Census of Employment and Wages. The
dataset reports quarterly employment, wages and establishment count at the county
level by industry. I use the data which is classified using the Standard Industrial
Classification (SIC) system.! T take county level annual population from the Census
Bureau’s County Intercensal Dataset.

To proxy for the sulfur content of the coal in a given county, I use data from
Federal Energy Regulatory Commission (FERC) Form 423. Form 423 reports monthly
deliveries of fossil fuels to electricity generators around the U.S. For coal deliveries, it
reports many statistics including the county of origin, quantity delivered, and sulfur
content. Coal delivered to power plants is the relevant subset of coal production for
this analysis, because that is what was directly impacted by Title IV. To calculate the
average county level sulfur content, I take the quantity weighted average of a given
county’s coal production for the 5 years before Title IV went into effect (1990-1994).
This approach gives an imperfect measure of the sulfur content of the coal in a county
because there can be multiple mines in a given county, each with different sulfur
contents.

The analysis in this paper focuses on the coal-producing counties in the Ap-
palachian region of West Virginia, Kentucky, Ohio and Virginia.? In this region, there
are both high and low-sulfur coal resources. I classify 23 of the 92 coal-producing
counties in the Appalachian region studied as producing low-sulfur coal based on
the FERC Form 423 data. The sulfur content in the high and low-sulfur counties

T use the SIC classified data in this version of the paper. Future analysis will use North
American Industry Classification System (NAICS) coded employment data.

2Tennessee and Pennsylvania coal country was omitted because it not contiguous with the
Appalachian coal region studied.
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averages 1.85% and .85% by weight respectively. Figure 3.1 shows a histogram of the
sulfur content of the relevant counties. Low-sulfur counties produce more coal than
higher sulfur counties. This is due to the different scale of high versus low-sulfur coal
mines as discussed in the previous section.

3.4 Empirical strategy

3.4.1 Natural experiment in coal demand

The empirical approach in this paper exploits the decrease in demand for high-
sulfur coal that results from Title IV of the CAA amendments of 1990. The exogenous
shift in demand affected only a subset of coal-producing Appalachian counties. To
identify the impacts of Title IV, I compare outcomes in counties with high-sulfur coal
to neighboring counties with low-sulfur coal resources.

Figure 3.2 shows a map of the region studied. It includes all coal producing
counties in West Virginia, Ohio, Kentucky, Maryland and Virginia.® The shaded
counties are those with significant coal deposits that were active during this time
period. The darker blue counties have a lower sulfur content. Figure 3.3 shows the
same map with a binary indicator for counties with high-sulfur coal. Both maps show
that the sulfur content changes across the region, with high-sulfur counties located
close to low-sulfur neighbors.

The empirical approach allows for the comparison of similar counties with different
sulfur contents. Table 3.1 shows the summary statistics for a number of characteristics
across the high and low-sulfur regions during the period before Title [V was enacted.
The table shows that the high and low-sulfur counties have similar populations and
non-coal employment. One main difference in the non-coal sectors is that the high-
sulfur counties have a larger manufacturing sector than the low-sulfur counties. In
the coal industry, the two regions differ significantly on the sulfur content, number
of coal employees and quarterly coal production. This dissimilarity is due to the
different mining techniques used for high and low-sulfur coal discussed in Section 3.2.3.
Low-sulfur coal, by virtue of having larger mining operations, has larger production
and employs more workers per county.

The impacts of Title IV on coal prices are hard to measure with the available
data. Figure 3.4 shows the publicly available pricing data split between the high
and low-sulfur counties in the sample. The figure shows some divergence in the
price after Title IV is enacted, with high-sulfur coal becoming relatively less valuable.

3Counties in Tennessee and Pennsylvania were not included because they are not contiguous
with the group of counties examined.
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Unfortunately, this data is not available before 1994. 1 instead turn to data on
quantity produced to show how Title IV impacted the Appalachian coal industry.

The total coal produced in this region is split relatively evenly between high
and low-sulfur coal before the implementation of Title IV of the CAA. Figure 3.5
shows the total coal production by quarter from 1989-2000. The vertical black line
indicates when Title IV of the CAA went into effect. After this date, coal production
in high-sulfur regions dropped relative to the low-sulfur regions.

Figure 3.6 shows the total employment in the coal industry in this region over
time. Before the implementation of Title IV of the CAA, the high and low-sulfur
regions employed a similar number of workers. After the regulation went into effect,
employment in high-sulfur coal counties dropped relative to low-sulfur counties. This
figure suggests that the reduction in coal production due to Title IV had an impact
on employment in the coal sector.

One similarity in the coal industry across high and low-sulfur counties is the
ratio of coal mined to employees before the implementation of Title IV. Figure 3.7
shows this ratio over time, which is similar in the pre period and diverges after the
implementation of the regulation. The following section investigates the changes in
outcomes after Title IV was implemented using a regression analysis.

3.4.2 Regression framework

To identify the impacts of changing coal demand on employment, I leverage the
exogenous impact of Title IV on the relative demand for high and low-sulfur coal. I
estimate the effects of the regulation using the following equation:

(3.1) Yy = 1+ BoHigh Sul fur; x Post, + fsPopulation;, + ¢ + v; + Ost + €it

Y;: represents the outcome of interest in county ¢ and quarter of sample ¢ in logs.
High Sul fur; is an indicator for county ¢ having a sulfur content above 1% before
1995. Post, is an indicator for the implementation of Title IV, which turns to 1
after January 1, 1995. The interaction of High Sul fur, and Post, is the treatment
indicator. Population,, controls for county level population in year y. (; is a quarter
of sample fixed effect, which absorbs any contemporaneous impacts to all coal counties.
v; is a county fixed effect that absorbs time-invariant county characteristics. 0 is a
state time trend, which controls for any trends in outcomes at the state level. €; is
the error term, which is clustered at the county level.

The identifying assumption is that the high and low-sulfur counties have parallel
trends in the pre-period. It is not possible to prove this assumption, but examining
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pre-period trends can be informative. Figures 3.5, 3.6 and 3.7 show that total coal
production and employment are at similar levels before Title IV was implemented.

The high and low-sulfur counties are also similar in their non-coal industry makeup.
Figure 3.8 shows the average county level employment in the high and low-sulfur
counties. It shows that before Title IV, employment was increasing in both high and
low-sulfur counties at a similar rate.* The same parallel trends can be seen in wages
in Figure 3.9, which shows the average weekly nominal wage by high and low-sulfur
counties. Before the implementation of Title IV, they were increasing at a similar
rate for both high and low-sulfur counties.

The balance in observable characteristic trends suggests that high and low-sulfur
counties are similar along most dimensions. The main area where they differ is in the
size of the coal industry, where low-sulfur coal counties have higher production and
employment per county than their high-sulfur neighbors. This difference in county
level industry sizes means that the impacts estimated using Equation 3.1 must be
interpreted in this context. The estimated coefficients reflect what happens when
there is a relative shift in demand from high to low-sulfur coal.

3.5 Results

I use Equation 3.1 to identify the impacts of Title IV on high-sulfur coal production,
employment and wages in both the coal and non-coal sectors in the Appalachian
region. Table 3.2 shows the impact of Title IV on coal production in high-sulfur
regions compared to low-sulfur regions in the five years after implementation. Column
1 shows a significant reduction of 20% in tons per quarter mined in the high-sulfur
counties compared to the low-sulfur counties. Column 2 estimates the impacts in
levels, and shows that Title IV is associated with a 528 thousand ton reduction in
output per quarter. These results show that Title IV resulted in a significant drop in
coal production in the Appalachian region as seen in Figure 3.5. It is important to
interpret these results as the difference in production between high and low-sulfur
counties. If, for example, low-sulfur coal production increased due to the Title IV
regulations, then the estimated impact reflects both this increase and the decrease in
the high-sulfur counties.

Table 3.3 shows the estimated impacts of Title IV on workers in the coal industry.
Column 1 shows that high-sulfur coal production dropped by 14% after the regulation
went into effect. This impact is similar to the drop in total coal production and
reflects the shift in employment seen in Figure 3.6 after Title IV is implemented.

4The large changes in employment for low-sulfur counties in 1996 and later may be a data
quality issue. Further investigation is needed to resolve those shifts.
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Column 2 estimates how the hours worked in the coal industry changed as a result
of the regulation. It shows a 16% decline, which is similar to the total decline in
employment. Column 3 tests if the coal industry readjusted the hours worked per
employee after the regulation. The results show a small and insignificant change,
which suggests that the coal industry primarily adjusted its output by firing works,
not by reducing their hours.

One important question is do the high-sulfur counties adjust their business prac-
tices after the implementation of Title IV? Figure 3.7 shows that both the high and
low-sulfur counties were increasing their tons of coal produced per employee at a
steady rate in the pre period. One result of the reduction in tons mined at high-sulfur
mines could be an increase in mining efficiency. Borenstein and Farrell (2007) found
that gold-mining firms accumulate inefficient “fat” when times are good, and then
scale back production and cut fat when commodity prices are low. An analogous
situation could happen in the coal industry. Mines, facing lower demand for their
product, could contract and mine the lowest cost coal available, leading to an increase
in efficiency. Conversely, the long-run reduction in the value of high-sulfur coal could
reduce the incentive to invest in efficient production. Table 3.4 tests this outcome by
looking at the impact of Title IV on tons of coal produced per employee. Column 1
shows that there is a 7% reduction in coal produced per worker after 1995. Column 2
tests the impact using total hours worked, showing that there is a 5% reduction in
that measure with a p value of .064.

Figure 3.7 illustrates what may be causing these changing labor input ratios.
Before Title IV, both the high and low-sulfur counties were increasing their ratio of
output to employees at similar and steady rates. The low-sulfur counties continued
this throughout the time period, but the high-sulfur counties level off after the
regulation. This suggests that high-sulfur counties are not adjusting to the lower
demand by increasing their efficiency of production with respect to labor. One
interpretation is that production in high-sulfur counties declined more quickly than
the number of employees, which would produce this impact. The two year lag after the
implementation of Title IV makes this explanation less likely. Another interpretation
is that both high and low-sulfur counties were investing in increased efficiency before
Title IV, which can be seen in the increasing ratio of tons/hours worked even as the
total number of employees in the sector dropped. After Title IV, the high-sulfur
counties may have reduced their investment in efficiency, which can be seen in the ratio
flattening out and slightly declining after 1997. It is not possible to separate these
explanations with the current data, but it shows that Title IV did have significant
impacts on both the size and composition of the high-sulfur coal industry.

The previous results show that the coal industry in high-sulfur counties was
significantly impacted by the implementation of Title IV. The next question is what
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happens to the overall economy in high-sulfur counties after the regulation? Are the
negative consequences limited to the coal industry or do they spillover to non-coal
sectors? Table 3.5 estimates the impact on employment in all sectors including
the coal industry. Column 1 shows that there is not a significant change in overall
employment due to Title IV. I can reject a 5.9% decrease in employment using the
95% confidence interval. Column 2 shows that average wages across all industries
are also not changing as a result of the regulation. This impact is estimated more
precisely than the employment change, allowing me to reject a 3% decrease in wages.”
Figure 3.9 supports this result and shows that the wages in low-sulfur counties are
higher by around $30-$50/week, this amount does not change after Title IV.

3.6 Discussion

The results in the previous section suggest that Title IV had a negative impact
on the coal industry in the high-sulfur counties. Production, employment and hours
worked all dropped in high-sulfur counties relative to their low-sulfur neighbors. High-
sulfur counties may also have reduced their investment in improved labor efficiency,
as illustrated in Figure 3.7.

The impacts of Title IV appear to be limited to the coal sector. Overall employment
and wages in the high-sulfur counties did not change as a result of the regulation,
which has a number of implications for the interpretation of the costs of Title IV. First,
while the regulation did hurt the high-sulfur coal industry, it does not detectably
depress employment in the whole region. Opponents of environmental regulation
sometimes argue that regulation not only hurts the industry it targets, but it creates
ripple effects through the economy as the industries that support the coal industry also
lose out. Coal was only 3.3% of total employment before section IV was implemented
in high-sulfur counties in Appalachia, but it is thought of as one of the economic
divers of the region.® The results in this paper show that the overall impacts were
not large enough to detectably affect employment throughout the region.

There are a number of important caveats to consider when interpreting the results.
First, these impacts are estimated over a short time horizon in the five years after
the implementation of Title IV. It is possible that over a longer period the overall
impacts will be larger. Second, as discussed previously, the results reflect the relative
differences between the high and low-sulfur regions in Appalachia after Title IV. If

5Both of these lower bounds are likely overestimates of the potential impacts because the
estimation strategy reflects increases in employment in the low-sulfur counties.

61 use the West Virginian GDP as a proxy for the Appalachian economy because it makes up
the majority of the counties studied.
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Title IV caused an increase in low-sulfur employment and a decrease in high-sulfur
county employment, then the estimates reflect both of these shifts. Third, some of
the county-level employment data are omitted from the publicly available non-coal
employment data for confidentiality reasons. This happens in small counties where
information about individual establishments could be recovered from the aggregate
data. Further work will be needed to appropriately use this data for analysis that
deals with individual non-coal sectors.

3.6.1 Policy implications

The concentrated impact of Title IV on the coal industry suggests that government
intervention may be effective at reducing the costs of the policy for this limited
population. If it is only the coal miners that are hurt by the regulation, then targeted
financial compensation for those who lost their jobs may be able to ameliorate some
of the negative consequences. To my knowledge, there has not been funding directed
at coal miners that have lost their jobs due to the Clean Air Act regulation. The
Appalachian Regional Commission, founded in 1965 as a federal-state partnership
to address poverty in the greater Appalachian region, has assisted in some coal
communities, but that is not its primary goal. The agency covers 13 states and is
relatively small (less than $100 million/year), meaning its limited resources are not
able to directly compensate coal miners in these regions.

Coal miners that lose their jobs due to regulation are limited to the same programs
as all other unemployed Americans. Disabled coal miners suffering from Black Lung
are eligible for benefits through the Federal Black Lung Program, but this does not
help all regulation-affected workers. One model to help unemployed coal miners due
to regulation is the Federal Trade Adjustment Assistance (TAA) program. TAA
provides compensation and retraining to U.S. workers that lost their job due to trade.
There are many shortcomings to this approach, including how a worker proves they
lost their job to trade (or regulation) and the benefits of retraining programs. (Baicker
and Rehavi 2004). A similar program for coal workers hurt by regulation could reduce
some of the employment consequences of environmental regulation. To avoid some of
the shortcomings of TAA, the program could be designed as a cash transfer to be
used at the recipients discretion.

3.6.2 Future directions

There are a number of additions that will be made to the analysis in future drafts.
First, I intend to conduct the analysis using sector-level non-coal employment data
from the Bureau of the Economic Analysis. This will allow me to see if certain
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sectors gained or lost employment as a result of the drop in coal sector employment.
The results will help inform if coal miners can easily move to different sectors, and
which sectors they choose. Second, I intend to include non-coal producing counties in
Appalachian region as potential controls for robustness checks. This approach would
allow me to compare coal-producing counties to similar non-coal counties, giving a
second estimate of the non-coal sector employment impacts.

Third, I hope to have better price data for high and low-sulfur coal during the
time period studied. Unfortunately, new data confidentiality policies at the Energy
Information Administration have made it challenging to access FERC 423 data that
include mine level price information. Fourth, I plan to estimate the total costs of the
employment dislocation to affected workers in the form of forgone wages. This exercise
will require a number of assumptions, but it will provide an overall cost estimate for
the employment impacts of Title IV on coal workers. Finally, I hope to look at how
the decreased demand for high-sulfur coal impacted mining practices using data from
the Mine Health Safety Administration. I plan to test if, for example, there more
citations or injuries at high-sulfur mines that could result from cost cutting measures.

3.7 Conclusion

Environmental air quality regulations are responsible for large gains in human
health and productivity. The costs of this regulation, while usually much smaller than
the benefits, are frequently concentrated in a small number of regulated industries.
This paper considers the costs of Title IV of the Clean Air Act, which sets limits on
total sulfur emissions from power plants, on an upstream sector not directly regulated
— the coal mining industry. Understanding the indirect impacts to upstream industries
is important to calculating the full costs of the regulation. The existing literature has
focused on the industries and areas directly regulated, but have not covered upstream
industries. The upstream costs of the CAA have recently become relevant as a 2016
ruling by a federal district court judge required the EPA to explicitly consider the
employment costs to the coal industry.

This paper measures a portion of the employment impacts of Title IV of the CAA
on the coal industry in the Appalachian region of the Eastern U.S. using a natural
experiment introduced by the regulation. I find that coal production in high-sulfur
counties in Appalachia dropped by 20% compared to low-sulfur counties after the
implementation of Title IV. This led to a drop in coal worker employment in high-
sulfur coal counties of 16%. The results show that industries not directly regulated
by the CAA can be significantly impacted. I then examine non-coal employment,
finding no evidence of spillovers to employment in other sectors in the Appalachian
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region. Overall employment and wages in the high-sulfur counties do not change
relative to the low-sulfur counties, suggesting the employment costs are limited to
the coal industry.

The findings in this paper have important policy implications. First, I provide the
first well-identified evidence that Title IV of the CAA impacts upstream sectors that
are not directly regulated by the policy. The size of the impact to the coal industry
shows that official analyses should consider both the direct and upstream costs of
environmental regulation. Second, the findings suggest that it is possible to reduce
some of the costs of Title IV by directly compensating or retraining workers displaced
from the coal industry. Further research will be required to better understand the
magnitude of these costs, and what happens to the displaced coal workers in the
long run. This research can also be informative about the consequences of continued
coal mining employment decline that is driven by market forces (e.g. low natural gas
prices) or future regulation (e.g. the Clean Power Plan). The lack of spillovers from
the coal industry to non-coal sectors suggest that the long-term decline of the coal
industry in Appalachia may not have large impacts on the region’s economic health.
Further research is required to better understand the future of the Appalachian coal
industry and its role in the regional economy.
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Figures

Figure 3.1: Distribution of County Level Sulfur Content
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Figure 3.2: Sulfur Content of Appalachian Counties in Study
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Figure 3.3: High sulfur (>1%) Designation of Appalachian Counties
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Figure 3.4: Average Appalachian Coal Price by Sulfur Content
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Figure 3.5: Total Appalachian Coal Production by Sulfur Content
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Figure 3.6: Total Appalachian Coal Employment by Sulfur Content
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Figure 3.7: Coal Production Labor Efficiency by Sulfur Content
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Figure 3.8: Average Appalachian County Level Employment (all sec-

tors)
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Figure 3.9: Average Appalachian County Level Wage (all sectors)
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Tables

Table 3.1: Summary Statistics by Sulfur Content

Variable

High-Sulfur counties

Low-Sulfur counties

P value of difference

Coal sulfur content (%)
Coal employees

Quarterly coal production
County population

All employed
Construction employment
Manufacutring employment
Public sector employment
Wholesale employment
Retail employment
Finance employment

Service employment

2.19
459
640
42547
13733
545
2606
630
606
2818
018
3015

.821
1338
1933
43040
14669
599
1458
839
721
2903
607
3265

00 *e*
00 *e*
00 ***
.87
.67
13
.03 **
.93
.15
.44
.46
.32

Table 3.2: Impact of Title IV on High-Sulfur Coal County Production

(1)

In(coal production)

(2)

Coal production

High sulfur county -0.2195** -528.4882**
(0.0861) (264.2537)

Percent change -19.70

High sulfur average production 625 625

High sulfur counties 68 68

Low sulfur counties 23 23

Notes: Dependent variable is quarterly coal production in thousands of tons. All regressions include
county fixed effects, quarter of sample FE and state specific time trends. ***Significant at the 1
percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Table 3.3: Impact of Title IV on High-Sulfur Coal County Employment

0 @) ®
In(coal employment) In(hours worked) In(hours/employees)
High sulfur county -0.1521** -0.1787** -0.0266***
(0.0765) (0.0797) (0.0099)

Percent change -14.11 -16.37 -2.62

High sulfur county employment 392 392 392

High sulfur counties 68 68 68

Low sulfur counties 23 23 23

Notes: Dependent variable is the log of quarterly coal employment in Column 1. Dependent
variable is the log of quarterly hours worked in coal sector in Column 2. Column 3 is the log of the
ratio of hours worked to employees per county each quarter. All regressions include county fixed
effects, quarter of sample FE and state specific time trends. ***Significant at the 1 percent level.
**Significant at the 5 percent level. *Significant at the 10 percent level.

Table 3.4: Impact of Title IV on High-Sulfur Coal County Labor Productivity

M @
In(tons/coal employees) In(tons/hours worked)

High sulfur county -0.0727** -0.0469
(0.0363) (0.0341)

Percent change -7.01 -4.59

High sulfur county employment 392 392

High sulfur counties 68 68

Low sulfur counties 23 23

Notes: Dependent variable is the log of quarterly coal production divided by hours worked in
Column 1. Dependent variable is the log of quarterly coal production divided by coal employees in
Column 2. All regressions include county fixed effects, quarter of sample FE and state specific time
trends. ***Significant at the 1 percent level. **Significant at the 5 percent level. *Significant at the
10 percent level.
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Table 3.5: Impact of Title IV on High-Sulfur Coal County Total Employment

0 @)
In(all employment) In(all wages)
High sulfur county 0.0361 0.0256
(0.0329) (0.0193)
High sulfur county employment 14,489 14,489
High sulfur counties 68 68
Low sulfur counties 23 23

Notes: Dependent variable in Column 1 is the log of quarterly employment in all sectors.
Dependent variable in Column 2 is the log of average quarterly wage by county for all sectors. All
regressions include quarter of sample FE and county specific time trends. ***Significant at the 1
percent level. **Significant at the 5 percent level. *Significant at the 10 percent level.
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Appendix A

All the robustness checks I
couldn’t fit in my job market paper

A.1 Peak pricing program details

The PG&E peak pricing program was created in 2008. In 2010 and 2011, the
California Public Utilities commission issued decision 10-02-032 and 11-11-008 respec-
tively, which ordered that small and medium C&I customers be placed on opt-out
peak pricing once they had sufficient hourly billing data available.! Prior to these
decisions, peak pricing was structured as an optional opt-in program, but enrollment
generally was low. The first wave of small and medium C&I customers were placed on
the peak pricing tariff in November 2014. Customers were notified of their enrollment
via mail and e-mail, and were easily given the ability to opt out at any time via a
simple web interface. Figure A.1 shows the letter that was sent to all establishments
that were opted in October 2014 that includes clear directions on how to opt out of
the program through their PG&E online billing interface.

Event days are chosen using the day ahead maximum temperature forecasts at 5
National Weather Service (NWS) stations located in the inland regions of California.?
When the average of maximum temperatures across all 5 stations exceeds a trigger
temperature, typically 96 or 98 degrees, an event day is called for the following day.
Appendix Table A.1 lists all of the event days between 2013 and 2015. The second
column shows the forecasted average maximum temperature from the 5 NWS weather
stations. The trigger temperature is based on historical weather patterns and is

Large PG&E customers, defined as having demand charges above 200kW /month, were transi-
tioned to opt-out peak pricing starting in 2010.

2The five stations used for the average are Red Bluff (KRBL), Sacramento (KSAC), Fresno
(KFAT), Concord (KCCR), and San Jose (KSJC).
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adjusted every 15 days throughout the summer. The trigger temperature starts at
96 degrees earlier in the summer and adjusts based on how many event days are
called. For example, if many event days are called in the first part of the summer,
the trigger will be revised upward to save the remaining event days for the hottest
days.? Monday event days must be called the Friday before to give businesses that
may be closed on the weekend time to prepare.*

A.2 Data appendix

For this analysis I combined PG&E data from many sources to create the final
dataset for analysis. Interval billing data requires extensive cleaning and a number of
assumptions to collapse it down to the establishment level. The following sections
detail the process for how the final dataset was constructed.

A.2.1 Interval usage data

I was initially given interval usage data for a large sample of non-residential
non-agricultural establishments for 2010-2014. From this dataset, I requested the
2015 data for the subset of establishments that I use in my analysis. This gave me
a dataset of 2014 and 2015 consumption for 54,458 accounts that I proceeded to
clean. The usage data is collected from establishments at the 15 minute level, which
I aggregated to the hourly level for analysis. From this point forward, the sample I
discuss refers to 2pm-6pm for all summer non-holiday weekdays (June-October) in
2014 and 2015.°

Using this data, I created a balanced panel of establishments that did not move
or change ownership during the summer of 2014 or 2015. This step dropped 10,231
establishments, leaving 44,227 in the balanced panel. I required that at least 23% of
the establishments have non-zero usage over the 2014-2015 sample. This dropped
an additional 4,603 establishments leaving 39,624. I dropped all establishments that
never consumed 1 kWh in any peak hour and I dropped establishments that consumed
less than 800 kWh/month during the summer of 2014.

3The goal of this approach is to be more stringent earlier in the summer as there is more
uncertainty over the remaining weather of the summer.

4My conversations with the staff involved with calling the peak pricing program is aware of this
shortcoming, but it is a requirement for how the program must be run.

51 drop all establishments that voluntarily opted into the peak pricing program. More details on
this can be found in section A.4.4.
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These requirements are to remove any smaller usage meters that may not be
directly associated with an establishment’s main electricity usage.® For example,
there are cases where a meter was installed to power a single light in a strip mall, but
was not associated with any of the establishments there. In some cases, the light was
paid for by the owner of the strip mall and not a business establishment, making too
small it too small to consider in this analysis. The 1 kWh /hour restriction dropped
5,145 accounts and the 800 kWh/month restriction dropped another 14,224, leaving
a dataset of 19,318. Establishments that consumed more than 10,000 kWh/month in
the summer of 2014 were also dropped due to their large size and the likelihood that
they would graduate to a higher tariff in the near future. Only 272 establishments
met this criteria. Despite the 800 and 10,000 kWh/month restrictions dropping a
large number of customers, the remaining customers account for 82% of the load in
this group.

Industry classifications in the form of NAICS codes were provided for 89.2% of the
establishments in the sample. The NAICS classifications have shortcomings because
PG&E does not closely maintain or update this data field. Classifications are typically
done at the firm level, meaning that the NAICS code assigned to a given establishment
may not reflect its actual business. For example, the office space associated with a
food packing plant may also be classified as a food packing plant due to the overall
firm classification. Despite these limitations, it still provide useful information for the
data cleaning process. Appendix Table A.3 shows the breakdown of establishments
by 2 digit NAICS prefix. I dropped establishments with the 2 digit prefix 22 and
51. NAICS code 22 signifies “utilities”, but for small C&I establishments it typically
signified irrigation systems run by city governments. Only 166 of these establishments
were in the dataset. The NAICS prefix 51 corresponds to the “information” industry
classification, which in my dataset meant cell transmission towers run by companies
such as AT&T and Verizon. The 702 establishments with this classification had flat
consumption profiles and were usually located in fields or on top of buildings. The
results in this paper are robust to the inclusion of these two NAICS codes.

The final cleaned dataset contains interval usage data for 19,071 establishments
in the summers of 2014 and 2015.

6This step is due to the fact that the data is provided at the account level, and must be aggregated
to the establishment level. Some small usage accounts are not associated with an establishment,
and are dropped in this step. Appendix Section A.2.2 discusses the establishment definition in more
detail.
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A.2.2 Classifying establishments

Establishments are defined as a business at a single location where the utility bills
are all paid by the same entity. An establishments may be owned by an individual, set
up as a franchise or owned by a larger company. Around 70% of the establishments
in the sample have a single account that pays for just that establishment and no
other locations.

PG&E interval usage data is reported at the meter-account level which does not
map directly to the establishment level that I use for analysis. The majority (83%)
of establishments have one meter associated with each location, making the mapping
of meter-account to establishment level data straightforward. Around 9% of the total
establishments had multiple meters clearly at the same location, making it easy to
collapse down to the establishment level. Another 8% of customers have meters that
may be at the same premise, but where the smart meters were installed on a different
date. These customers are harder to collapse down to the establishment level, so they
are left in the sample as individual establishments. Around 2.3% of establishments
share a premise with a meter that is of a higher tariff. For example, the office space
that administers a food processing plant may be on the A-1 tariff and is a part of my
sample. The food processing plant, which uses a lot more electricity, may be on the
much higher E-19 tariff and is not.

To test for the impact of establishment classification, Appendix Table A.6 shows
the result from the main regression in Table 1.3 with all potentially ambiguously
classified establishments dropped. The results show that dropping these establishment
has little impact on the estimated outcomes.

A.3 Time of use pricing

The California Public Utilities Commission established a set of data requirements
for each establishment before it was placed on opt-out peak pricing. They were
designed so that establishments would have a history of interval metering data before
they were presented with a new pricing system. The September 1, 2011 cutoff is
due to two different but related requirements. First, establishments needed to be on
mandatory time of use (TOU) pricing for two years before they were eligible for peak
pricing. Second, establishments needed to be presented with a billing analysis by
PG&E before they were moved on to mandatory TOU pricing. The billing analysis
needed to be given to establishments at least 45 days before being placed on TOU
prices, and it required one full year of data to conduct. These two requirements
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combined to require that an establishment had interval usage data before September
1, 2011 to be eligible for opt-out peak pricing in the summer of 2015.

The TOU pricing structure for small commercial & industrial establishments
does not change prices significantly between peak and off-peak periods. The peak
period, which runs between noon and 6pm, charges customers $.248 /kWh, while the
low-cost off-peak period price is set at $.212/kWh.” This is contrast to large C&I
establishments, where the off-peak price is almost half the peak price.

The establishments that were placed on peak pricing in November 2014 are the
same establishments that were placed on TOU in November 2012. At the time of
peak pricing treatment in the summer of 2015, these establishments had been on
the TOU rate for around 2.5 years. The establishments in my sample that were not
placed on peak pricing in November 2014 were rolled over to TOU in November 2013,
putting them on TOU pricing for 1.5 years in the summer of 2015.% Importantly,
establishments were on TOU pricing for both the summer of 2014 and 2015, but some
had been on TOU longer than others.

I empirical test the impacts of TOU on peak consumption by examining the impact
during the first year it is rolled out. I leverage the same September 1, 2011 threshold
used in the main identification strategy to test how TOU impacted usage. I compare
establishments that are eligible for TOU in November 2012 to those that just missed
the cutoff and were rolled over in 2013. This design compares establishments on the
first year of TOU to those that are still on flat-rate prices. I use the instrumental
variables approach outlined in section 1.4.2 and look at the same 2pm-pm window as
the peak pricing analysis.

Appendix Table A.7 shows the results of these TOU regressions. I conduct the
analysis for both the full summer and for just the event days called that summer.
The results across all of the specifications show that TOU does not significantly affect
peak electricity consumption during the summer of 2013 when the program was first
implemented. If TOU does not significantly change an establishment’s consumption
compared to the flat rate, then it seems unlikely that being on the tariff for 2.5 years
versus 1.5 years will significantly affect usage. This result suggests that TOU will not
impact the peak pricing evaluation during the summer of 2014 and 2015.

"The part-peak rate is set between at $.239/kWh. The non-TOU flat rate that customers
previously paid was $.228 /kWh.

8This group includes all peak pricing ineligible establishments and the eligible establishments
that were not moved to peak pricing.
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A.3.1 Smart meter background

Analog meters have been used since the late 1800’s to measure how much electricity
an establishment consumes. These meters were read monthly a “meter reader’,” a
utility employee that manually checked an establishment’s usage once a month. Analog
meters are limited to tracking total kWh consumption, and for some customers they
also measure peak monthly kW usage. Smart meters were first installed across the
PG&E service territory starting in 2008. Smart meters automatically transmit data
to PG&E via a radio network, eliminating the need for manual checking and allowing
for the collection of more detailed usage and billing data.

Most PG&E establishments have smart meters as of mid-2013, with some residen-
tial customers remaining on traditional meters by request. Smart meter installations
require a utility worker to visit a business and swap out the old meter. A replacement
typically takes 5-15 minutes, does not require the account holder to be present, and
only results in a brief interruption in power. Smart meters were deployed across
California simultaneously, with deployments first being heavier in the central valley in
the earlier years then moving to the rest of the state. Conversations with employees at
PG&E have indicated that the deployment pattern of smart meters was based on the
availability of contractors and resources, and generally not related to establishment
characteristics. A PG&E report on the deployment described:

The deployment schedule is dependent upon the availability of a trained
workforce, an effective supply chain to maintain an efficient installation
process, and customer premise access to make the necessary changes at
each service location. Deployment planning adjustments may be required
due to any number of factors, including adverse customer impacts, supply
chain considerations, labor availability, and technology considerations,

which could affect the scheduling of meter endpoint installations (Pacific
Gas & Electric 2010).

The smart meter network functions by the meter interfacing with a series of
network access points on utility polls throughout PG&FE’s service territory. After
a smart meter is installed, it takes between 60 and 90 days for the meter to sync
up with the network and for the data to become available in the PG&E system.
Furthermore, a series of data quality checks is conducted by the PG&E system to
verify that the data is of billing quality, and there are no holes in the data. During
this time period, the meter reader would continue to manually check the usage on the
smart meter to verify the transmission system worked as intended. Once this process
is complete, the establishment is transitioned to full smart meter interval usage data
collection. This process is summarized in the PG&E documentation as:
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After installation, gas and electric meters transition when: (1) the
communications network infrastructure is in place to remotely read them;
(2) the meters are installed, remotely read, and utilize smart meter data
for billing; (3) and the remote meter reads become stable and reliable for
billing purposes. Once enough customers on a particular “route string’
transition to smart meter billing, manual reading of the meters on that
“route string” ceases, and those meters are considered activated (Pacific
Gas & Electric 2010).

9

This transition process explains why a large portion of the establishments that
were peak pricing eligible, did not end up in the program for the summer of 2015. If
an establishment did not have a full year of “stable and reliable” billing data to allow
for a billing analysis to be conducted, then they were not moved to TOU pricing in
November 2012. The interval meter start date data used in this paper reflects when
the interval data was first collected, not when it was declared “stable and reliable.”
As a result, the eligibility status does not perfectly predict peak-pricing enrollment in
the summer of 2015.

A.4 Results robustness

A.4.1 OLS results

Appendix Table A.8 shows the results for the IV approach run with OLS. This
regression compares the roughly 13% of establishments with peak prices to all the
other establishments in my sample. The results are smaller than what was found
using the IV approach. This is consistent with the story that specific establishments
opted out because peak pricing would be costly for them. The control group is then
unrepresentative of the average usage of an establishment, meaning the treatment
effect is subject to bias. The smaller coefficient suggests that the control group in
the OLS specification may be increasing its electricity usage, resulting in a downward
biased treatment effect.

A.4.2 Non-event day impacts

The results in this paper focus on establishment behavior on event days when
prices increase. Establishments may make changes in response to peak pricing that
spills over into non-event days. Appendix Table A.9 show the results of the regressions
run on summer non-event weekdays between 2pm and 6pm. The results show a small
reduction for the inland region using the IV approach that is only significant at the
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10% level. This suggests that establishments do not undertake responses to peak
pricing that have significant impacts on non-event days.

A.4.3 Clustering robustness

This section considers an alternate level of clustering of the errors in this paper.
In the main analysis, the IV specification clusters errors at the establishment and
hour of sample level. In the RD specification, errors are clustered at the distance from
threshold level. One alternative option is to cluster errors at the weather station level.
The hourly weather data comes from 297 weather stations across Northern California,
with establishments distance matched to the closest station.” Establishments are
matched to the same weather station for the full sample, meaning the establishment
clusters are contained within each weather station cluster.

Appendix Table A.10 shows the results with errors clustered at weather station
level. For the IV specification I cluster at the weather station and hour of sample
level, and in the RD specification I cluster at the distance from threshold and weather
station level. The change has a negligible impact on the standard errors, showing
that the results are robust to higher levels of clustering.

A.4.4 Opt-in establishments

In the primary analysis in this paper, I do not include establishments that voluntary
opted into the peak pricing program. I do this because these establishments opted
in to peak pricing at different times during 2014 and 2015, meaning they faced a
different treatment than the majority of establishments. 48 of the 234 establishments
that opted into peak pricing did so before the summer of 2014, meaning they did
not have bill protection in the summer of 2015. Another 5 establishments chose to
enroll in peak pricing during the summer of 2015. The remaining 181 establishments
enrolled in peak pricing in April and May of 2015, giving them much less time to
prepare for the program.

I include the opt-in establishments in the main analysis to test if their presence
impacts the results. Appendix Table A.11 shows the main specification estimated
with the 234 opt-in establishments included. The results show that including these
opt-in customers has a small impact on the overall results. Column (6) shows that
the inland RD specification is no longer significant at the 5% level, but the point
estimate does not change much.

9T use a balanced panel of weather stations, no weather stations enter or leave during the sample.
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A.5 Calculations

A.5.1 Calculating PG&E wide savings estimates

This section provides details on the PG&E wide savings calculations discussed in
Section 1.6. PG&E does not release data that splits peak load out by different customer
classes. To proceed with the calculations in this section, I make a number of informed
assumptions about the consumption patterns of small C&I PG&E customers.!?

First, I calculate the total number of inland establishments on the Al tariff based
on demographic data provided by PG&E. I adjust this number downward to reflect
that my sample only includes customers that consume between 800 kWh/month
and 10,000 kWh/month during the summer months. This results in 157,000 inland
establishments which are like those I study in my analysis. I adjust for establishments
that will opt out of peak pricing using the overall observed opt out rate from 2015 of
16.7 %. I assume subsequent waves of establishments will opt out at the same rate.

I assume that the establishments used in the main estimation sample reflect the
average consumption for all C&I establishments. Appendix Figure A.3 shows that
this is true when comparing establishments within 8 weeks of the September 1, 2011
cutoff to those within 27 weeks. It shows a similar pattern of usage, helping to
validate this assumption.

To estimate total savings, I multiply this average consumption by the implied
percent reductions that from columns (5) and (6) of Table 1.3 respectively. This
approach leads to a total savings estimate that is is conservative in nature. I am
only considering the savings for inland customers with summer consumption between
800 kWh/month and 10,000 kWh/month. This leaves out a large number of smaller
establishments and a few much larger establishments that likely reduce their usage
under peak pricing.

The savings estimate also ignores reductions from coastal customers. I chose do
to this because the main empirical strategy did not find significant reductions for the
coastal establishments. Section 1.5.5 provides evidence that on hotter coastal days,
larger firms reduce their usage. I choose not to include these savings numbers in my
final MW savings estimates because there is a level of uncertainty about how these
event days line up with the highest demand event days of the summer. In subsequent
sections, I use the aggregate savings numbers in welfare calculations that assume the
total savings number is reflected on all event days, not just hot coastal event days.

10T cannot use my interval consumption data to make these calculations because I only have a
sample of small C&I establishments usage.
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A.5.2 Welfare impacts of peak pricing using RD approach

I use the IV estimates of program impacts for the welfare calculations in this
paper for two reasons. First, I prefer to use the IV estimate, because it is more likely
representative of the average treatment effect across all small C&I establishments.
The local average treatment effect for the IV approach is the full 8 week bandwidth,
while the RD approach is more focused on the September 1, 2011 discontinuity.*!
Second, the IV approach yields a smaller coefficient, making my welfare estimates
more conservative.

In this section I calculate the welfare impacts for the RD estimates for completeness.
I use the estimated 216 MW of peak reductions reductions derived in Section 1.6.
The net consumer surplus losses from higher prices total $3.14 million/year, and
the benefits from the $.01/kWh discount on non event day consumption are 0.84
million /year. Taken together this results in a total welfare benefits of $283 million
(2016 dollars) using a 3 percent real discount rate and a 30 year horizon.

A.5.3 Extending savings estimates to other California
Utilities

This section describes the method used to extend the welfare estimates from
small PG&E C&I customers to larger regions and customer classes. To make the
calculation, I use data on system peak load from EIA form 861. In this form, every
utility in the U.S. is required to file their summer and winter peak load with the EIA.
To extend the welfare benefits to the larger regions, I simply scale up the PG&E
welfare benefits by the ratio of peak loads. The IOU welfare benefits column in
Table 1.7 extends the welfare benefits to the other major investor owned utilities in
California Southern California Edison and San Diego Gas & Electric. These utilities
provide 69% of the electricity in California, and are all in the process of implementing
opt-out peak pricing for their C&I customers. The California welfare benefits further
extends the savings to all California utilities, which includes the larger Los Angeles
and Sacramento municipal utility districts.

There are a number of assumptions underlying these calculations. The savings
estimates are for the peak pricing program run for small C&I establishments. I assume
that the small C&I establishments in the other regions have similar consumption
patterns and demand reductions when facing peak pricing. It also assumes that the
small C&I customer class is around the same percent of peak load in the other regions.
This assumption is reasonable in California, where the climate and income is similar

Tn the limit, the RD approach estimates the impact directly at the discontinuity.
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across the state. However, the assumption may be less plausable at the national level,
where I find that the national welfare benefits of small C&I peak pricing would be
over $17 billion. This exact number should be interpreted with caution based on the
assumptions used in its calculation, but the large value does highlight the magnitude
of the distortion caused by flat retail pricing.

The bottom row of Table 1.7 extends the welfare savings to the full C&I customer
class. These customers were moved over to opt-out peak pricing over the previous
four years. I assume they would have the same 13.4 % reduction in usage as the
small C&I customers. 1 adjust for the opt out behavior observed for the large C&I
establishments in the PG&E program, where 42% of establishments opted out.

A.5.4 Assumptions for comparison of peak pricing to
real-time pricing

This section describes the assumptions used to make the calculations in Section
1.6.4. T compare the outcomes under peak pricing to the first-best outcomes under a
theoretical real-time price scenario. I do this for two may reasons. First, there isn’t
a market price in California that can be used for the real-time price comparisons.
The existing wholesale market has a number of distortions including a price cap, a
capacity market and the regulator resource adequacy requirements. These policies
distort the wholesale price, making it a poor real-time price. Second, the simple
setup allows for a transparent comparison between the two that isn’t dependent on
institutional details of the California market.

The theoretical market I use is structured as an energy only market without any
price caps. Real-time prices take on two values. The low value is set at $.10/kWh,
which roughly reflects the marginal cost of a natural gas combined cycle generator.
The high value is set at $1.35/kWh and reflects both the generation and capacity
cost of peaker plants.'? I assume prices spike to the high level sometime between
2pm and 6pm on 3 super-peak days per year. Customers are charged a fixed fee in
the RTP market to recover the remaining fixed costs associated with transmission
and distribution.

The peak pricing alternative is set up in a comparable manner. Retail prices are
set at the low RTP price and fixed charges are used to recover any remaining costs
including capacity costs, transmission and distribution charges. During event hours,
the price is raised to the high RTP level between 2pm and 6pm. I assume 8 event
days are called per year based on the 101 degree trigger temperature described in

12The $1.35 value is based on the large C&I peak price. PG&E based this value on their internal
value of capacity number.
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section 1.6.3. 3 of these event days are on the super-peak days, while the other 5
are called on low price days to capture the uncertainty in choosing the correct event
days. By design, the peak pricing program will collect more revenue than the RTP
program because of the longer and more frequent periods at the high price. I assume
this money is reflected in adjustments to fixed charges for the subsequent year.
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Appendix figures

Figure A.1: Letter Sent to Establishments 30 Days Before Peak Pricing

21PDPDEFLT2
PDP Final Default Letter

<<DATE>> Important information regarding
[Customer Name1] your transmo_n to a Peak Day
[Customer Name?2, if exists] Pricing electric rate plan. Please
[Mailing Address2, if exists] read to learn more.

[Mailing Address1]
[Mailing Address City, State Zip]
[Mailing Address Country1]

Re: 30 Day Notification of Switch to Peak Day Pricing Electric Rate Plans for Business
Dear [Customer Name]:

Last month, we sent a letter to notify you that starting in November, one or more of your business accounts is
scheduled to transition from a time-of-use electric rate plan to a Peak Day Pricing rate plan. This is part of a
requirement by the California Public Utilities Commission to encourage conservation when energy demand is higher.
This is a reminder of the upcoming move to a new electric rate plan.

Peak Day Pricing works in conjunction with your existing time-of-use rate, applying higher energy prices on 9 to 15
Event Days per year in exchange for discounted energy rates at all other times from May 1% through October 31%.*

This rate plan transition will affect the Service ID(s) referenced on the following page(s).

Peak Day Pricing includes automatic Bill Protection

Bill Protection lets you try Peak Day Pricing risk-free for a full year. After 12 months, we will compare your costs on
Peak Day Pricing to what your costs would have been on your time-of-use rate plan. If your costs on Peak Day
Pricing are higher, you will automatically receive a bill credit for the difference. You can opt out and return to your
time-of-use rate plan at any time.

Make your decision today
PG&E is here to help you understand this new rate plan and decide what is best for your business. A personalized
rate analysis can help you estimate how your electric bills may change with Peak Day Pricing.

e Access your online rate analysis anytime at pge.com/myrateanalysis
If you want to enroll early, or opt-out of the transition to Peak Day Pricing you can do so before your eligible Service
ID(s) are automatically enrolled in November.

+ Enroll early, or opt out of transition by visiting pge.com/pdpchoice
Update your notification preferences
If you plan to enroll, or have already enrolled in Peak Day Pricing, please be sure to update your Peak Day Pricing
notifications, so you don’t miss any Event Day notices. Update your notifications at pge.com/myalerts.

We value you as a customer and understand you may have some questions. For more information about the
transition to Peak Day Pricing, visit pge.com/pdp30day.

Sincerely,

Maril Pitcock
Director, Pricing Products
Pacific Gas and Electric Company

P.S. Remember to stay away from downed power lines and never touch or try to move them. Always assume a
downed power line is live and report them immediately by calling 911 and PG&E at 1-800-743-5000.

* Effective summer rates are lower after Peak Day Pricing credits have been applied, but effective rates are higher during Peak Day Pricing Event Hours. “PG&E" refers to
Pacific Gas and Electric Company, a subsidiary of PG&E Corporation. ©2014 Pacific Gas and Electric Company. All rights reserved 21PDPDFLT2

Note. - This letter is a sample of what was sent to every establishment 30 days be-
fore peak pricing started. It provides information on how to opt out at the web site
“pge.com/pdpchoice.” It also describes bill protection and directs establishments how to set
their event day notification preferences.
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Figure A.2: Map of Establishments in Sample by Region
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Note. - This figure shows all 7,435 establishments in primary sample. Each dot corresponds
to an individual establishment. Inland vs coastal designation is based on baseline territory
as defined by PG&E and reflects climate conditions.
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Figure A.3: Comparison of Establishment Consumption Between Primary Sample and Establishments in
Larger Bandwidths
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Note. - This figure compares summer 2014 hourly kWh usage for establishments in the
8 week bandwidth to establishments in up to 27 weeks away from the September 1, 2011
cutoff. Values show residuals after establishment fixed effects are removed. Formal statistical
comparison between the two cannot reject that the two groups are the same.
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Figure A.4: Average Temperature on Event days by County
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Note. - This figure shows the average temperature on event days in 2015 at the county
level. Temperatures reflect the average temperature across all Mesowest weather stations
in a county. Weather stations are weighted based on how many establishments they are
distance matched to in the main analysis.
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Table A.1: Event Days with Day Ahead Forecast and Trigger Temperature

Event date NWS day ahead Trigger
max temperature forecast temperature
6/7/2013 98 96
6/28/2013 99 96
7/1/2013 107 96
7/2/2013 106 96
7/9/2013 96 96
7/19/2013 98 98
8/19/2013 94 96
9/9/2013 97 94
9/10/2013 94 94
10/18/2013 82 89
6/9/2014 100 96
6/30/2014 102 96
7/1/2014 96 96
7/7/2014 101 96
7/14/2014 99 96
7/25/2014 101 96
7/28/2014 97 96
7/29/2014 97 96
7/31/2014 98 96
9/12/2014 96 98
6/12/2015 99 96
6/25/2015 103 96
6/26/2015 100 96
6/30/2015 101 96
7/1/2015 100 98
7/28/2015 101 98
7/29/2015 104 98
7/30/2015 100 98
8/17/2015 101 96
8/18/2015 96 96
8/27/2015 97 96
8/28/2015 96 96
9/9/2015 102 98
9/10/2015 104 98
9/11/2015 101 98

Notes. - This table shows the day ahead maximum temperature forecast used by PG&E for
all event days between 2013 and 2015. NWS corresponds to 5 National Weather Service
stations PG&E uses for its forecasting. An event day is called when the day ahead forecast
equals or exceeds the trigger temperature.
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Table A.2: Average Outdoor Temperature by Event day

All PG&E Coastal establishments  Inland establishments
Event date average temperature average temperature average temperature
6/9/2014 74.76 67.01 91.66
6/30/2014 75.79 68.05 92.67
7/1/2014 71.28 64.92 85.15
7/7/2014 73.26 66.89 87.15
7/14/2014 73.49 66.85 87.99
7/25/2014 80.98 74.76 94.54
7/28/2014 76.67 71.12 88.77
7/29/2014 76.93 70.71 90.41
7/31/2014 76.00 68.85 91.58
9/12/2014 75.55 68.69 90.50
6/12/2015 75.03 67.57 91.29
6/25/2015 77.30 70.18 92.81
6/26/2015 72.94 65.12 89.98
6/30/2015 81.08 73.57 97.44
7/1/2015 75.89 69.38 90.05
7/28/2015 80.86 74.34 95.06
7/29/2015 77.21 69.55 93.90
7/30/2015 76.86 70.50 90.69
8/17/2015 77.94 70.66 93.77
8/18/2015 75.65 70.37 87.14
8/27/2015 83.97 80.18 92.21
8/28/2015 82.88 78.52 92.38
9/9/2015 86.73 81.66 97.77
9/10/2015 82.79 76.54 96.40
9/11/2015 80.62 74.40 94.17
Average 77.70 71.21 91.82

Notes. - This table shows the average temperature between 2pm and 6pm on all event
days in 2014 and 2015. The values reflect the establishment weighted average temperature.
Temperatures do not reflect official National Weather station temperatures used to call
event days.
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Table A.3: Establishment Industry Classifications

Naics Establishment Percent of
2 digit code count establishments
11 104 1.4%
23 232 3.1%
31 168 2.3%
32 107 1.4%
33 226 3%
42 224 3%
44 749 10%
45 286 3.8%
48 73 .98%
52 213 2.9%
53 650 8.7%
54 307 4.1%
56 157 2.1%
61 106 1.4%
62 655 8.8%
71 131 1.8%
72 1,068 14%
81 963 13%
92 215 2.9%
Not available 801 11%

Notes. - This table shows the first two digits of the North American Industry Classification
System (NAICS) industry classification for all 7,435 establishments in the sample. These 2
digit NAICS codes are used to classify establishments as customer facing or non-customer
facing in section 1.5.4. The PG&E data did not have NAICS code information for the 11%
of establishments classified as ”Not available.”
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Table A.4: Highest PG&E System Demand Days of 2015

PG&E Hour of

Date Event day max load  max load
8/17/2015 yes 19,451 4pm-5pm
6/30/2015 yes 19,320 4pm-5pm
7/29/2015 yes 19,248 4pm-5pm
8/28/2015 yes 19,233 4pm-5pm
9/10/2015 yes 19,230 4pm-5pm
9/9/2015 yes 19,017 4pm-5pm
7/20/2015 no 18,546 4pm-5pm
6/8/2015 no 18,441 6pm-7pm
7/28/2015 yes 18,403 5pm-6pm
9/21/2015 no 18,398 4pm-5pm
8/27/2015 yes 18,328 4pm-5pm
8/16/2015 no 18,197 6pm-7pm
6/25/2015 yes 18,114 4pm-5pm
9/11/2015 yes 18,019  4pm-5pm
6/26,/2015 ves 17,950  4pm-5pm
9/8/2015 no 17,875 4pm-5pm
7/30/2015 yes 17,750 4pm-5pm
7/1/2015 yes 17,734 2pm-3pm
8/18/2015 yes 17,372 4pm-5pm
6/12/2015 yes 17,275 5pm-6pm

Notes. - This table shows the top 20 PG&E system load dates in the summer of 2015.
PG&E max load reported by the California Independent System Operator (CAISO) at
from oasis.caiso.com. The hour of max load signifies in what hour the load occurred.
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Table A.5: The Effect of Peak Pricing on Peak Electricity Consumption: Demand
Elasticities

All PG&E Coastal Inland

(1) (2) (3) (4) () (6)

v RD v RD v RD
Peak pricing - elasticity =~ —0.0565*  —0.1749 0.0068 —0.0474  —0.1171%%  —0.2298**

(0.0335) (0.1708) (0.0576)  (0.3434) (0.0369) (0.1120)

Establishments 7,435 7,435 5,096 5,096 2,339 2,339
Event day kWh usage 5.55 5.55 5.03 5.03 6.70 6.70
Average temperature 78 78 71 71 92 92

Notes. - This table reports elasticity coeflicients from 6 separate 2SLS regressions. The dependent
variable in all regressions is the log of establishment hourly kWh consumption. The coefficients
show the impact of peak pricing on peak consumption between 2pm and 6pm. “IV” and “RD”
correspond to the instrumental variables and regression discontinuity approaches estimated using
equations 1.1 and 2.4. All regressions control for temperature and include hour of sample fixed
effects and establishment fixed effects. Standard errors are in parentheses. IV errors two-way
clustered at the establishment and hour-of-sample levels. RD errors clustered at the distance
from threshold level. ***Significant at the 1 percent level. **Significant at the 5 percent level.
*Significant at the 10 percent level.

Table A.6: Main results dropping establishments with ambiguity in establishment
definition

All PG&E Coastal Inland
(1) (2) (3) (4) () (6)

IV FE IV RD IV FE IV RD IV FE IV RD
Peak pricing —0.0543  —0.2284 0.0346 —0.0039 —0.1423***  —(0.3479**

(0.0436)  (0.2379) (0.0711)  (0.4764) (0.0508) (0.1677)
Establishments 6,247 6,247 4,330 4,330 1,917 1,917
Event day kWh usage 5.47 5.47 4.92 4.92 6.73 6.73
Average temperature 77 77 71 71 92 92

Table shows the results from Table 1.3 with the ambiguously classified establishments dropped.
Appendix Section A.2.2 outlines the establishment classification process and which estab-
lishments are dropped. All regressions control for temperature and include hour of sample
FE. IV regressions include account by hour of day by day of week FE. Standard errors are
in parentheses. IV errors two-way clustered at the establishment and hour-of-sample levels.
RD errors clustered at the distance from threshold level. ***Significant at the 1 percent level.
**Significant at the 5 percent level. *Significant at the 10 percent level.
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Table A.7: Robustness : Impacts of TOU when it was first implemented

All PG&E Coastal Inland
(1) (2) (3) (4) (5) (6)

All days  Event days All days  Event days All days  Event days
TOU 0.0363 0.0383 0.0343 0.0235 0.0390 0.0478

(0.0296) (0.0464) (0.0538) (0.0830) (0.0327) (0.0532)
Establishments 7,383 7,383 5,059 5,059 2,324 2,324
Event day kWh usage 4.99 5.45 4.75 4.96 5.52 6.52
Average temperature 71 76 66 69 79 90

Note. - Table shows the impact of TOU pricing on peak electricity consumption the first year
it was implemented. This specification uses the same empirical strategy as the IV approach
on the same sample of establishments. See Appendix Section A.3 for details. Standard errors
are in parentheses. IV errors two-way clustered at the establishment and hour-of-sample levels.
RD errors clustered at the distance from threshold level. ***Significant at the 1 percent level.
**Significant at the 5 percent level. *Significant at the 10 percent level.

Table A.8: OLS results

(1) (2) (3)
All PG&E Coastal Inland

Peak pricing —0.0469***  —0.0272  —0.0589**
(0.0149) (0.0176) (0.0244)
Establishments 7,435 5,096 2,339
Event day kWh usage 5.59 5.03 6.70
Average temperature 78 71 92

Notes. - Table shows results from OLS regression of electricity
usage on peak pricing status using the IV approach. All
regressions control for temperature and include hour of sample
FE. IV regressions include account by hour of day by day
of week FE. Standard errors are in parentheses. IV errors
two-way clustered at the establishment and hour-of-sample
levels. RD errors clustered at the distance from threshold
level ***Significant at the 1 percent level. **Significant at
the 5 percent level. *Significant at the 10 percent level.
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Table A.9: Non event day 2pm-6pm impacts

All PG&E Coastal Inland
1) 2) (3) (4) () (6)
IV FE IV RD IV FE IV RD IV FE IV RD
Peak pricing —0.0170  —0.0380 0.0333 0.1175 —0.0682*  —0.1148
(0.0341)  (0.1401) (0.0585)  (0.3401) (0.0370) (0.1104)
Establishments 7,669 7,669 5,272 5,272 2,397 2,397
Event day kWh usage 5.13 5.13 4.87 4.87 5.71 5.71
Average temperature 73 73 69 69 81 81

Notes. - Table shows results from main specifications run with 2-6pm usage on non-event
weekdays between June 1st and October 31st 2015. Establishments do not face high peak
prices during these hours. “IV FE” and “IV RD” correspond to the 2SLS estimation of the
IV and RD approach respectively. All regressions control for temperature and include hour
of sample FE. IV regressions include account by hour of day by day of week FE. Standard
errors are in parentheses. IV errors two-way clustered at the establishment and hour-of-
sample levels. RD errors clustered at the distance from threshold level. ***Significant at
the 1 percent level. **Significant at the 5 percent level. *Significant at the 10 percent
level.

Table A.10: Main results with errors clustered at weather station level

All PG&E Coastal Inland

(1) (2) 3) (4) () (6)

v RD v RD v RD
Peak pricing —0.0695*  —0.2152 0.0084 —0.0584  —0.1441%%  —0.2828**

(0.0401) (0.2046) (0.0729)  (0.4070) (0.0438) (0.1274)

Establishments 7,435 7,435 5,096 5,096 2,339 2,339
Event day kWh usage 5.55 5.55 5.03 5.03 6.70 6.70
Average temperature 78 78 71 71 92 92

Notes. - This table reports regression coefficients from 6 separate 2SLS regressions. The
dependent variable in all regressions is the log of establishment hourly kWh consumption. The
coefficients show the impact of peak pricing on peak consumption between 2pm and 6pm. “IV”
and “RD” correspond to the instrumental variables and regression discontinuity approaches
estimated using equations 1.1 and 2.4. All regressions control for temperature and include
hour of sample fixed effects and establishment fixed effects. IV errors two-way clustered at the
weather station and hour of sample levels. RD errors clustered at the distance from threshold
and weather station levels. ***Significant at the 1 percent level. **Significant at the 5 percent

level. *Significant at the 10 percent level.
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Table A.11: Robustness: Opt-in peak pricing establishments included

All PG&E Coastal Inland
1) 2) (3) (4) (5) (6)
IV FE IV RD IV FE IV RD IV FE IV RD
Peak pricing —0.0616  —0.1493 0.0145 0.1177 —0.1377***  —0.2765%*
(0.0431)  (0.1958) (0.0726)  (0.4408) (0.0481) (0.1466)
Establishments 7,669 7,669 5,272 5,272 2,397 2,397
Event day kWh usage 5.54 5.54 5.02 5.02 6.71 6.71
Average temperature 78 78 71 71 92 92

Table shows the results from Table 1.3 with the 234 establishments that voluntarily opted in
to peak pricing included. All regressions control for temperature and include hour of sample
FE. IV regressions include account by hour of day by day of week FE. Standard errors are
in parentheses. IV errors two-way clustered at the establishment and hour-of-sample levels.
RD errors clustered at the distance from threshold level. ***Significant at the 1 percent level.
**Significant at the 5 percent level. *Significant at the 10 percent level.

Table A.12: Robustness: Comparison of differently peak pricing targeting scenarios to
RTP with long period of high peak prices

(1) (2) (3)
$.85/kWh peak price ~ $1.35/kWh peak price ~ $1.85/kWh peak price
Event days called (peak price < RTP) (peak price = RTP) (peak price > RTP)
8 days (well targeted) 51% 87% 73%
15 days (current) 46% 69% 35%

Note. - Table shows the percent of the welfare gains for various peak pricing scenarios
compared to the efficient real-time price policy when peak prices hit $1.35/kWh for 4 hours
on 3 super-peak days per summer. The center column reflects when the peak prices are
correctly set at $1.35/kWh. The left column shows the effectiveness of peak compared to
real-time prices when the peak prices are set at $.85/kWh but prices actually hit $1.35/kWH.
Similarly, the far right column shows the impacts when peak prices are set too high. The
first row shows the impacts with the well targeted 8 days per summer, while the bottom row
shows the impacts when 15 are called.
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