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Today, as the world is stricken by the proliferation of novel infectious pathogens, we are 

faced with the urgent need for new anti-infective therapeutic agents. Natural products, also known 

as specialized metabolites, are chemical compounds produced by living organisms and have served 

as an excellent source for drug discovery. Many clinically used small molecules including various 

antimicrobial, anticancer, antiviral, and immunosuppressant drugs, are either natural products or 

are inspired by them. Traditionally, natural products were discovered mostly through slow and 

laborious experiments that often lead to rediscovering previously known compounds. 



 xiv 

  

Over the past decade, advancements in short/long-read (meta)genomics and tandem mass 

spectrometry (MS/MS) technologies provided an unprecedented resource for large-scale natural 

product discovery. In accordance with these advancements, scalable bioinformatics algorithms are 

required to leverage this massive data and enable analyses of natural products across thousands of 

samples. In this dissertation, I present several scalable computational methods for discovering 

novel natural products using the (MS/MS-based) metabolomics and/or (meta)genomics data. 

 In the first chapter, I present CycloNovo, the first algorithm for scalable de novo 

sequencing of MS/MS data to discover cyclic and branch cyclic peptides (referred to as 

cyclopeptides). Cyclopeptides constitute a diverse and biomedically important class of natural 

products. CycloNovo employs de Bruijn graphs, the workhorse of DNA sequencing algorithms, 

for efficient cyclopeptide sequencing and revealed a wealth of novel cyclopeptides, including a 

large hidden cyclopeptidome in the human gut. 

 In the following chapters, I discuss bioinformatics methods for discovering Non-

Ribosomal Peptides (NRPs) that include a multitude of antibiotics and other clinically used drugs. 

NRPs are produced by metabolic pathways partially encoded by Biosynthetic Gene Clusters 

(BGCs). In the second chapter, I present NRPminer, a modification-tolerant and scalable algorithm 

for NRP discovery by integrating (meta)genomic and MS/MS data. NRPminer identified many 

novel NRPs from different origins, including novel NRPs produced by soil-associated microbes 

and human microbiota. Finally, I discuss the problem of identifying NRP-producing BGCs in the 

human gut microbiome and I show long-read metagenomic assemblies can be used to reveal many 

BGCs that synthesize previously unknown NRPs in the human gut microbiome. 

  



 1 

INTRODUCTION 
 

Natural products, also known as specialized metabolites, have been used as a rich resource 

for discovering a wide range of therapeutic agents, including many anti-microbial, anticancer, 

antiviral, antifungal and immunosuppressants drugs1,2. For example, over the past four decades, 

nearly 52% and 64% of small molecules approved in the area of infectious disease and cancer, 

respectively, are either inspired by or directly derived from natural products. Natural products have 

also found applications in the crop protection3 and food preservation4 industries. Traditionally, 

natural products are discovered using bioassay-guided fractionation followed by structure 

elucidation with nucleic magnetic resonance spectrometry5,6. These methods are laborious and 

time-consuming and often lead to rediscovery of previously known compounds7. Exciting, over 

the past decade, progress in short/long-read (meta)genomics and the advancements in tandem mass 

spectrometry for metabolomic screening, has created a new opportunity for large-scale search for 

natural products, across thousands of samples from various origins and environments6. 

Tandem mass spectrometry for natural product discovery. 

Advancements in tandem mass spectrometry (MS/MS) established this technology as a 

fast, sensitive, and reliable approach for large-scale natural product discovery over the past decade. 

The MS/MS spectra can be regarded as bar codes or fingerprints of the metabolites present in a 

sample6. A single MS/MS project can yield millions of spectra representing a wide range of 

metabolites and natural products6,7. Natural products can be classified to a range of chemical 

classes based on their underlying monomers and biosynthetic origin. Peptidic natural products 

(PNPs) constitute an important class of medicinal natural product that include some of the most 

potent antibiotics. Among the classes of natural products, PNPs are the most amenable MS/MS 
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technologies, due to the nature of the bonds between their amino acids6,7. Several scalable 

computational methods have been developed over the past few years that specifically targets this 

class of natural products.  

Identifying known PNPs and their variants in MS/MS data. 

To avoid rediscovering previously characterized compounds, an initial step in natural 

product discovery is to identify the known compounds represented by a given spectral datasets. 

Currently, three main approaches are available for MS/MS-based identification of known 

compounds. This section provides a brief description for each of these approaches. In spectral 

library matching, a given spectrum S, is compared against a library of already characterized spectra 

(spectral library) to find spectra similar to S8. While this approach has been successful for finding 

known compounds, but often a known compound might be absent from the sample while its related 

PNP (which has some modifications compared to the known compound) is present. To identify 

such metabolites in a scalable fashion, Bandeira et al.9 introduced the concept of spectral networks 

that reveal the spectra of related peptides without knowing their amino acid sequences. Nodes in 

a spectral network correspond to spectra, while edges connect spectral pairs, i.e. spectra of 

peptides differing by a single modification or a mutation. Ideally, each connected component of a 

spectral network corresponds to a molecular family10 representing a set of similar PNPs. In contrast 

to the former method, spectral networks can identify a PNP using the spectra of its related PNPs.  

Spectral matching and spectral networking have proven effective in identifying spectra 

originating from known PNP (or their related peptides) in metabolomics datasets6; however, only 

a small fraction of known PNPs are represented in the current reference spectral libraries6,7.To 

overcome this barrier, several bioinformatics methods have been developed over the past few years  

that use the chemical structure of known PNPs to identify the spectra originating from them. We 
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refer to a database of chemical structures representing known PNPs as PNP database. Given a 

spectrum S and a PNP database DB, database search refers to the process of finding a peptide (or 

its variant) in DB that generated S. Several computational tools have been developed for scalable 

database search. Dührkop et al., 201511, proposed CSI:fingerID that utilizes support vector 

machines trained on previously annotated spectra to predict the MS/MS fragmentation patterns 

and find the spectra representing the known compounds11. While this method worked well for a 

number of small metabolites, it failed to generalize due to lack of sufficient annotated spectra in 

natural product studies. As a result, the database search problem remained open for most PNPs6,7.  

To address this bottleneck, several dedicated scalable computational methods were 

developed that specifically targets PNPs7,12. Similar to the methods in traditional proteomics13, 

these methods use statistical measures to form matches between the chemical structure of a PNP 

P and a given spectrum S. Dereplicator14 was the first scalable algorithm that systematically links 

structures from a large PNP database to MS/MS spectra by using specific in silico MS/MS 

fragmentation rules in PNPs6,14. Furthermore, this method was complimented by the VarQuest15 

which is able to find variants of known PNPs represented in a spectral dataset. Later, Mohimani et 

al. 201916, introduced Dereplicator+ and expanded this idea to other classes of natural products.  

Discovering novel PNPs using MS/MS data.  

As high-throughput experimental and computational technologies became a staple in 

natural product discovery research5, number of natural products platforms such as the Global 

Natural Products Social (GNPS) molecular networking17 were developed. GNPS provides an 

online repository to share massive spectral datasets. Furthermore, GNPS delivers a scalable 

platform to apply a variety of computational tools for finding known and novel natural products 

(including most approaches described above)18. The GNPS project has already gathered nearly 
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half a billion of information-rich tandem mass spectra and is an untapped gold mine for discovering 

new molecules. However, the utility of the GNPS network is mostly limited to the identification 

of previously discovered molecules and their variants using the methods described above6. 

Currently, only about 5% percent of the GNPS spectra are annotated15,17. This highlights the need 

for novel algorithms for annotating large spectral datasets that are not bound by the current 

database of known PNPs. In this dissertation, I present several such methods using metabolomics 

and (meta)genomic data.  

De novo PNP sequencing of MS/MS data. 

De novo PNP sequencing is the process of determining the amino acid sequence of a PNP 

from a spectrum alone, i.e. without using any database or genomic information. Although recent 

studies made progress towards PNP database search14,15,19,20, existing de novo PNP sequencing 

algorithms21–24 are not compatible with the large-scale nature of current metabolomics and mass 

spectrometry studies. These tools are rarely used7,25 because they are inaccurate, too slow for 

analyzing large spectral datasets, are limited to the proteinogenic amino acids, and cannot 

distinguish cyclopeptides from other compounds.  

To address this issue, I developed CycloNovo26 algorithm for finding cyclic and branch 

cyclic peptides (cyclopeptides). Cyclopeptides are an important class of bioactive PNPs that 

include many antibiotics and anti-tumor compounds2,22. The discovery of the cyclopeptide 

gramicidin S in 1942 (the first antibiotic used for treating soldiers during the World War II) led to 

two Nobel prizes and has been followed by the discovery of ≈400 families of cyclopeptides 

(cyclofamilies) in the last 75 years15. A relatively small number of known cyclofamilies reflects 

the experimental and computational challenges in cyclopeptide discovery. The question of how 

many cyclofamilies stayed below the radar of previous studies, even though their spectra were 



 5 

already deposited in public databases, remains open. To answer this question, CycloNovo first 

recognizes cyclospectra (tandem mass spectra that originated from cyclopeptides) in large spectral 

datasets. Afterwards, CycloNovo de novo sequences the recognized cyclospectra (determining the 

cyclopeptide sequence from a spectrum alone). 

In Chapter 1, I describe how CycloNovo uses de Bruijn graphs, that are the workhorse of 

DNA sequencing algorithms, to de novo sequence cyclospectra. CycloNovo is the first scalable 

PNP sequencing method and reconstructed many new cyclopeptides, which were validated with 

transcriptome and metagenome analyses26. Our benchmarking revealed a large hidden 

cyclopeptidome in the human gut and other environments, including a wealth of anti-microbial 

cyclopeptides from food that survive the complete human gastrointestinal tract. 

Integrating Metabolomics and (Meta)genomics for Discovering Non-Ribosomal Peptides. 

Non-Ribosomal Peptides (NRPs) represent a diverse class of PNPs that include many 

antibiotics, immunosuppressants, anticancer agents, toxins, siderophores, pigments, and 

cytostatics1,27–29. NRPs have been reported in various habitats, from marine environments30 to 

soil29 and even human microbiome31–34. However, the discovery of novel NRPs remains a time-

consuming and onerous process because NRPs are not directly encoded in the genome and are 

instead assembled by Non-Ribosomal Peptide Synthetases (NRPSs). NRPSs are multi-modular 

proteins that are encoded by a set of chromosomally adjacent genes called biosynthetic gene 

clusters (BGCs)35,36. As the microbial projects expanded in the past decade, multiple genome 

mining methods have been developed for predicting the molecular products synthesized by a given 

BGC37–41.  

Despite a great progress in genome mining methods in recent years, only a small fraction 

of the identified BGCs have been successfully connected to their metabolites so far42,43as genome 
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mining tools predict too many putative NRPs synthesized by a given BGC. Due to this large false 

positive rate, it remains unclear which of these putative NRPs are correct or how to identify post-

assembly modifications (PAM) of amino acids in the final NRPs in a blind mode, without knowing 

which modifications exist in the sample. Therefore, genome mining and identification of BGCs 

should without revealing the true chemical diversity encoded by these BCGs44 does not capture 

their full potential for discovering novel NRPs. To do so, it has been shown integrating 

(meta)genomics and metabolomics is necessary for realizing the promise of large-scale natural 

products discovery5,25,45. In Chapter 2, I present NRPminer algorithm, a scalable and 

modification-tolerant tool for discovering novel NRPs by combining the power of MS/MS and 

(meta)genome mining. Using NRPminer, I identified many known and novel NRPs from different 

environments, including four novel NRP families from soil-associated microbes as well as a novel 

NRP from human microbiota, thus demonstrating the power of NRPminer for discovering novel 

bioactive NRPs.  

Search for novel biosynthetic gene clusters in human gut assemblies.  

Finally, I discuss the problem of identifying NRP-producing BGCs from complex long-

read metagenomics datasets. Genome mining approaches fail unless a BGC is fully assembled 

within a single contig. However, NRP-producing BGCs are difficult to assemble as they are long 

(average length ~60 kb) and repetitive (made up of series of highly similar domains). 

Consequently, short-read metagenome assemblers hardly ever capture these BGCs within a single 

contig and hence are not adequate for BGC identification in complex samples46.  

In Chapter 3, I address the problem of assembling BGC sequences using long-read 

metagenomics. I show that assembly algorithms specialized for this technology revealed several 
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novel BGCs in human gut microbiome encoding for previously unknown NRPs47 as well as 

multiple NRP-producing BGCs associated with colorectal cancer33,34 

In summary, this dissertation presents novel computational methods utilizing 

(meta)genomic and metabolomics data to identify novel natural product and/or recognize the 

enzymes involved in their biosynthesis. Furthermore, it also presents a variety of novel natural 

products discovered by applying the described methods to multiple large-scale (multi-omics) 

datasets.   
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CHAPTER 1.  

De Novo Peptide Sequencing Reveals Many Cyclopeptides in the 

Human Gut and Other Environments  

 

1.1.  ABSTRACT 

Cyclic and branch cyclic peptides (cyclopeptides) represent an important class of bioactive 

natural products that include many antibiotics and anti-tumor compounds. However, despite the 

recent advances in metabolomics analysis, still little is known about cyclopeptides in the human 

gut and their diversity while we are constantly exposed to them. To address this bottleneck, we 

developed the CycloNovo algorithm for automated de novo cyclopeptide analysis and sequencing 

that employs de Bruijn graphs, the workhorse of DNA sequencing algorithms. CycloNovo 

reconstructed many new cyclopeptides that were validated with transcriptome, metagenome, and 

genome mining analyses. Our benchmarking revealed a large hidden cyclopeptidome in the human 

gut and other environments and suggested that CycloNovo offers a much-needed step-change for 

cyclopeptide discovery. Furthermore, CycloNovo revealed a wealth of anti-microbial 

cyclopeptides from food that survive the complete human gastrointestinal tract, raising the 

question of how these cyclopeptides might affect the human microbiome. 
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1.2. INTRODUCTION 

The golden age of antibiotics was followed by a decline in the pace of antibiotics discovery 

in the 1990s. However, antibiotics and other natural products are again at the center of attention as 

exemplified by the recent discovery of teixobactin1. A key prerequisite for the resurgence of 

natural product research is the development of computational discovery pipelines2 such as the 

Global Natural Products Social (GNPS) molecular networking3, Dereplicator4, and VarQuest5. The 

GNPS project alone has already accumulated over one billion mass spectra, an untapped resource 

for discovery of new antibiotics. Currently, however, the GNPS network is mainly used for 

identifying previously discovered natural products and their analogs. Therefore, developing 

algorithms that are not bound by the current database of natural products is necessary to truly 

realize the promise of computational natural product discovery. 

This study focuses on de novo analysis of cyclopeptides, which includes cyclic and branch-

cyclic peptides (might include several branches), an important and large class of bioactive natural 

products with an unparalleled track record in pharmacology. Many antibiotics as well as anti-tumor 

agents, immunosuppressors, and toxins are cyclopeptides. The favorable properties of bioactive 

cyclopeptides such as high affinity and selectivity, has made them particularly interesting as drug 

candidates6 among peptidic natural products. Despite this great interest, cyclopeptide sequencing 

and analysis from tandem mass spectra are extra challenging as the propensity of these molecules 

to break at all pairs of points in their cyclic backbone gives a far more complex series of ions than 

in linear peptides. Cyclopeptides are divided into cyclic Ribosomally synthesized and Post-

translationally modified Peptides (RiPPs) and cyclic Non-Ribosomal Peptides (NRPs). RiPPs are 

encoded using the genetic code and are built from the 20 proteinogenic amino acids, which 

however are subjected to numerous post-translational modifications. NRPs are not directly 
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inscribed in the genomes and cannot be inferred with traditional DNA sequencing. Instead, they 

are encoded using “nonribosomal code”7 and are built from over 300 different naturally occurring 

amino acids. 

The discovery of the cyclopeptide gramicidin S in 1942 (first antibiotic used for treating 

soldiers during the World War II) led to two Nobel prizes and has been followed by the discovery 

of ≈400 families of cyclopeptides (cyclofamilies) in the last 75 years5. A relatively small number 

of known cyclofamilies reflects the experimental and computational challenges in cyclopeptide 

discovery. The question of how many cyclofamilies stayed below the radar of previous studies 

(even though their spectra have already been deposited to public databases!) remains open. To 

answer this question, first we considered the problem of recognizing cyclospectra (tandem mass 

spectra that originated from cyclopeptides) in large spectral datasets (targeted and/or untargeted). 

Bandeira et al.8 introduced the concept of spectral networks that reveal the spectra of 

related peptides without knowing their amino acid sequences. Nodes in a spectral network 

correspond to spectra, while edges connect spectral pairs, i.e. spectra of peptides differing by a 

single modification or a mutation. Ideally, each connected component of a spectral network 

corresponds to a cyclofamily9 representing a set of similar cyclopeptides. Although spectral 

networks of various GNPS datasets have become the workhorse of the cyclopeptide studies, they 

typically contain false-positive edges that render the analysis of cyclofamilies challenging3. 

Moreover, constructing the spectral network of all GNPS spectra remains an open algorithmic 

problem. 

By recognizing cyclospectra first, one can construct a small cyclospectral sub-network of 

the entire input spectral dataset (for example the GNPS network) and to evaluate the number of 

cyclofamilies in the dataset as the number of connected components in this sub-network. Our 
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analysis revealed that many cyclopeptides evaded detection in previous studies and that the known 

cyclopeptides represent the tip of the iceberg of cyclopeptides that are waiting to be decoded.  

Recognition of cyclospectra, not only creates the possibility to get an estimate on the 

number of cyclofamilies for large-scale projects but also makes otherwise time-consuming 

downstream analyses feasible for such projects. For example, recognized cyclospectra can be 

matched against NRP and RiPP biosynthetic genes using various genome mining and 

peptidogenomics tools10,11. These tools typically generate a huge database of putative cyclopeptides 

mounting to possibly millions of putative peptides10, making it prohibitively time-consuming to 

search large spectral datasets against such databases. This problem is especially aggravated in the 

case of NRPs where the traditional DNA sequencing approaches do not apply. Genome mining 

tools for NRP prediction such as NRPSpredictor212 combined with NRPquest13, predict a database 

of putative NRPs based on the nonribosomal code. Because the nonribosomal code is not yet fully 

understood and is not as specific as the genetic code, these analyses often result in colossal 

databases of putative error-prone peptides predicted from a single gene cluster and therefore are 

limited in their power for peptidogenomics analysis2,10. Fast algorithms for recognizing 

cyclospectra are critical as they greatly reduce the set of spectra that need to be matched against 

databases of putative cyclopeptides.  

In addition to recognizing cyclospectra, CycloNovo de novo sequences the recognized 

cyclospectra. We distinguish between cyclopeptide identification (identifying cyclopeptides by 

matching their spectra against databases of known cyclopeptides14) and de novo cyclopeptide 

sequencing (determining the cyclopeptide sequence from a spectrum alone). Although recent 

studies have made progress towards cyclopeptide identification4,5,15,16, previous cyclopeptide 

sequencing algorithms17–20 are not compatible with the large-scale nature of current metabolomics 
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and mass spectrometry studies. These tools are rarely used14,21 because they are inaccurate, are too 

slow for analyzing high-throughput spectral datasets, are limited to the proteinogenic amino acids, 

and also cannot distinguish cyclopeptides from other compounds. To this date, no novel 

cyclopeptide has been introduced through fully automated de novo sequencing of tandem mass 

spectra. 

To close these gaps, here we present CycloNovo, an algorithm that performs fast 

cyclopeptide sequencing based on the concept of the de Bruijn graph of a spectrum, a compact 

representation of putative k-mers (strings formed by k consecutive amino acids) in an unknown 

cyclopeptide. Although de Bruijn graphs represent the workhorse of DNA sequencing22, they have 

not previously been applied to cyclopeptide sequencing. We demonstrate that using this technique, 

CycloNovo enables high-throughput analysis of cyclopeptides in large spectral datasets, 

sequencing many cyclopeptides in diverse samples that include marine, soil, and human gut 

bacterial communities.  
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1.3. RESULTS 

To illustrate how CycloNovo works, we used a spectrum of the cyclopeptide 

surugamide A23 (referred to as surugamide hereon) with the amino acid sequence AIIKIFLI 

(Figure 1.1). 

 

Figure 1.1. Theoretical and experimental spectra of surugamide. (Top left) Diagram 
of the surugamide from a marine Streptomyces CNQ329 (mass 911.62 Da). Each color 
represents an amino acid (the numbers on the outer edge are the nominal masses of amino 
acids in Daltons). Each chord corresponds to a fragment of surugamide appearing between 
its start and end. The solid chords represent the fragments in 
TheoreticalSpectrum(Surugamide) whose masses match masses in the experimental 
spectrum SpectrumSurugamide. The numbers on solid chords show the nominal masses of the 
corresponding fragment represented by that chord. For example, the chord labeled 297 
corresponds to the fragment Ile-Ile-Ala of mass 297 Da. Each chord corresponds either to 
a single mass x or two masses x and mass(Spectrum)-x (in the latter case the chord is shown 
in bold). Given a set of fragments with the same mass, we show one of them (arbitrarily 
chosen) by a solid chord and the others by dashed chords. For example, one of two 
fragments with the same integer mass 241 (Ile-Lys and Lys-Ile in clockwise order), is 
shown by a solid chord and another by a dashed chord. (Top right) The experimental 
spectrum of surugamide (SpectrumSurugamide) with 82 peaks (GNPS ID MSV000078839). 
The y-axis in the SpectrumSurugamide shows the ion intensities as the percentage of the 
intensity of the highest intensity peak. Blue peaks represent masses shared with 
TheoreticalSpectrum(Surugamide) for the error threshold ε=0.015 Da. (Bottom) The 
theoretical and (pre-processed) experimental spectra for surugamide rounded to the nearest 
integer (this rounding results in the repetitive integers in the list). Masses in the pre-
processed experimental spectrum were reduced by the mass of hydrogen mH≈1.0078 Da. 
A mass in the theoretical spectrum is shared with a mass in the experimental spectrum if 
they were within the error threshold. The numbers in bold represent 13 shared masses. 
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Theoretical and experimental spectra. Given an amino acid string, its mass is defined as 

the sum of masses of its amino acids. Given a cyclopeptide Peptide, its theoretical spectrum 

TheoreticalSpectrum(Peptide) is the set of masses of all substrings of Peptide (Figure 1.1). For 

example, TheoreticalSpectrum(AGCD) contains masses of A, G, C, D, AG, GC, CD, DA, AGC, 

GCD, CDA, DAG, and AGCD. Note that if multiple fragments have the same mass, they 

contribute a single mass to the theoretical spectrum.  

An experimental spectrum is a list of peaks, where each peak is characterized by its 

intensity and m/z (m and z represent the mass and the charge of the ion corresponding to the peak). 

For simplicity, we represent a pre-processed spectrum as an increasing sequence of numbers 

Spectrum={s1, …, sn}, assuming that all peaks in the spectrum have charge 1 and ignoring 

intensities. Similar to pre-processing practices in proteomics24, CycloNovo filters out low-intensity 

peaks in each spectrum by retaining at most 5 peaks with the highest intensities in each 50 Da 

window. CycloNovo further filters out all peaks that are less than 0.05 Da apart from another peak 

with higher intensity. It further removes spectra with a small number of peaks (less than 20) and 

spectra with a small precursor mass (less than 500 Da). We subtract the mass of a hydrogen atom 

from all masses in the spectrum (for simplicity, we assume that each ion is protonated with a single 

proton). 

We estimate the PeptideMass of the cyclopeptide that generated Spectrum based on the 

precursor mass and the charge of Spectrum. We define the symmetric version of Spectrum (denoted 

Spectrum*) as a spectrum that, in addition to all masses in Spectrum, contains PeptideMass-s for 

each mass s in Spectrum. 

Scoring Peptide-Spectrum Matches. A mass s in a (pre-processed) experimental 

spectrum Spectrum matches a mass s’ in TheoreticalSpectrum(Peptide) if s is “equal” to s’. By 
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“equal” we mean “approximately equal” with error below the error threshold 𝜀 (with default value 

𝜀=0.02 Da). The score between Peptide and Spectrum (denoted score(Peptide, Spectrum) is 

defined as the number of matches between masses in Spectrum and masses in 

TheoreticalSpectrum(Peptide). Although CycloNovo uses accurate masses, examples below use 

nominal masses for simplicity. 

Figure 1.1 illustrates that score(Surugamide, SpectrumSurugamide)=13. For a linear peptide 

Peptide, score(Peptide, Spectrum) is the number of matches between masses of all linear 

substrings of Peptide and all masses in Spectrum. For example, score(ILFIK, SpectrumSurugamide)=7 

because the theoretical spectrum of the linear peptide ILFIK has 7 shared masses with 

SpectrumSurugamide corresponding to 7 chords within the ILFIK segment in Figure 1.1. These chords 

correspond to the following substrings: K (nominal mass 128), IL (226), IK (241), LF (260), LFI 

(373), LFIK (501), and ILFIK (614).  

Spectral convolution. The convolution of a spectrum is the set of all pairwise differences 

between its masses18. Given a mass a, the convolution of Spectrum with offset a (denoted 

convolution(Spectrum, a)) is defined as the number of masses in the convolution equal to a (with 

error up to ε). As shown by Ng et al.18, the value convolution(Spectrum, a) is expected to be high 

if a is the mass of an amino acid in a cyclopeptide that gave rise to Spectrum. Thus, offsets with 

high convolutions reveal the masses of amino acids in an unknown cyclopeptide that gave rise to 

an experimental spectrum.  

To account for measurement errors, we cluster the masses in the convolution using single 

linkage clustering by combining pairs of masses in a cluster if they are less than 𝜀 apart. We define 

the cluster mass as the median mass of its members, and cluster multiplicity as the number of 

elements in the cluster. We call a cluster cyclopeptidic if one of its elements is within 𝜀 of the mass 
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of a selected amino acid. Since high-multiplicity clusters reveal amino acids in the unknown 

cyclopeptide that gave rise to an experimental spectrum, we use them to generate the set of putative 

amino acids in an unknown cyclopeptide18.  

CycloNovo outline. Given an experimental spectrum Spectrum, the Cyclopeptide 

Sequencing Problem refers to finding a cyclopeptide Peptide that maximizes score(Peptide, 

Spectrum). Figure 1.2 illustrates the CycloNovo pipeline for solving this problem: 

• Recognizing cyclospectra. Natural product researchers use Marfey’s analysis for inferring 

the amino acid composition and configuration of an unknown peptide. However, since 

Marfey’s analysis requires a purified peptide and has a number of limitations25, we describe 

its in silico alternative for deriving an approximate amino acid composition of a 

cyclopeptide that gave rise to a given spectrum (see Methods section). If applying this 

approach reveals that a spectrum originated from a cyclopepeptide, we classify it as a 

cyclospectrum. 

• Predicting amino acids in a cyclopeptide. For each cyclospectrum, CycloNovo predicts 

the set of putative amino acids in a cyclopeptide that gave rise to this spectrum. CycloNovo 

considers each cyclopeptidic cluster with multiplicity exceeding the cyclopeptidic aa 

threshold and classifies the selected amino acids corresponding to this cluster as a putative 

amino acid of the cyclopeptide that generated the cyclospectrum. Figure 1.2 illustrates that 

CycloNovo classifies amino acids A, I/L, F, K, T, W, R, and G as putative amino acids for 

SpectrumSurugamide (amino acids occurring in suragamide are shown in bold).   

• Predicting amino acid composition of a cyclopeptide. For each cyclospectrum, 

CycloNovo uses dynamic programming to find all combinations of putative amino acids 

with total mass matching the precursor mass of the spectrum. We refer to each such 
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combination as a putative composition, which may include the same amino acid multiple 

times. We represent a composition by a sequence of its amino acids where each amino acid 

is superscripted by its multiplicity in the composition. For example, a composition 

A1I/L5K1F1 includes eight amino acids: one A, five I/L, one K, and one F, and its total 

mass matches the precursor mass mass(SpectrumSurugamide). Note that composition reveals 

the set of amino acids but provides no information about the order of amino acids in a 

cyclopeptide. Figure 1.2 illustrates that CycloNovo predicts the following putative 

compositions for SpectrumSurugamide: A1I/L5K1F1 (711113512811471), I/L4F1R2 

(113414711562), A2T1K4R1 (712101112841561), and G1T1I/L1K5 (571101111311285). The 

putative composition of surugamide is shown in bold. 

• Predicting k-mers in a cyclopeptide. For each Composition(Spectrum), CycloNovo 

analyzes all linear k-mers formed by amino acids in this composition (the default value 

k=5) and scores them against Spectrum* using linear scoring. It assumes that if a Peptide-

Spectrum Match has a high score score(Peptide,Spectrum) (a condition that usually holds 

for well-fragmented spectra), then each linear k-mer in Peptide also has high score (for an 

appropriately chosen k).  High-scoring k-mers (defined as k-mers with scores exceeding 

the k-mer score threshold) represent putative k-mers in an unknown cyclopeptide. For 

example, for Composition=711113512811471, there exist 45=1024 5-mers and CycloNovo 

identifies 524 of them as high-scoring 5-mers. We refer to the set of high-scoring k-mers 

as KmersComposition,k(Spectrum). Figure 1.2 illustrates that three out of six highest scoring 5-

mers for SpectrumSurugamide are correct, i.e., represent 5-mers from surugamide. CycloNovo 

computes the k-merScore, the score of the highest-scoring k-mer. 
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• Constructing the de Bruijn graph of a spectrum. Given a set Kmers= 

KmersComposition,k(Spectrum), CycloNovo constructs the de Bruijn graph 

DBKmers(Spectrum)22. Nodes in DBKmers(Spectrum) correspond to all (k-1)-mers from 

Kmers and each directed edge corresponds to a k-mer from Kmers and connects its first (k-

1)-mer with its last (k-1)-mer. Each cycle in DBKmers(Spectrum) spells out a cyclic amino 

acid sequence. Figure 1.2 presents the pruned de Bruijn graph for the putative composition 

711113512811471 that is obtained by iterative removal of tips (nodes without outgoing or 

incoming edges), and single isolated edges from the de Bruijn graph. The composition 

113512817111471 results in a de Bruijn graph with 202 vertices and 524 edges and the 

pruned de Bruijn graph with 126 vertices and 392 edges (Figure 1.2).  

• Generating cyclopeptide reconstructions. A cycle in the de Bruijn graph of a spectrum is 

feasible if it spells a cyclopeptide with the mass matching the precursor mass of the 

spectrum. Using the breadth-first search algorithm, CycloNovo finds all feasible cycles in 

the de Bruijn graph with length equal to the number of amino acids in Composition (a cycle 

may traverse the same edge multiple times). Each such cycle spells a putative cyclopeptide 

and CycloNovo scores each of them against Spectrum. Finally, it reports the highest scoring 

cyclopeptides along with the P-values of their Peptide-Spectrum Matches (PSMs) 

computed using MS-DPR13. The default P-value threshold (10-15) is chosen based on the 

previous studies where the P-value cut-off 10-15 was necessary for reaching a False 

Discovery Rate (FDR) below 1% against CyclopeptideDatabase4,5. However, the user can 

change the P-value thresholds depending on their study. See See Methods section for a 

brief summary on P-value estimations in CycloNovo. 
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Figure 1.2. CycloNovo outline illustrated using SpectrumSurugamide. CycloNovo includes six 
steps: (1) recognizing cyclospectra in the entire spectral dataset, (2) predicting amino acids in a 
cyclopeptide from a recognized cyclospectrum, (3) predicting amino acid composition of a 
cyclopeptide by generating all combinations of predicted amino acids with total mass equal to the 
precursor mass of the spectrum, (4), predicting k-mers in a cyclopeptide, (5) constructing the de 
Bruijn graph of a spectrum, and (6) generating cyclopeptide reconstructions. Only six top-scoring 
putative k-mers for each putative amino acid composition are shown. Masses of amino acids 
occurring in surugamide are shown in red and k-mers occurring in surugamide are underlined. To 
simplify the de Bruijn graph (corresponding to the composition 711113512811471), all tips and 
isolated edges in the graph were removed. Red, blue and green feasible cycles in the graph spell 
out three cyclopeptides shown in the bottom table along with their P-values. The red cycle spells 
out surugamide. 

✓X
X

putative
amino            
acids

113 
(I/L)

128
(K)

186
(W)

71
(A)

147 
(F)

156
(R)
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(G)

101
(T)

putative 
compositions top-scoring putative k-mers #putative

k-mers

113415621471
(156 156 113 113 147) (156 113 147 113 113)
(156 113 147 113 156) (113 113 147 156 113)
(113 147 113 113 113)  (113 147 113 156 113)

57

128471215611011
(101 128 128 128 156) (128 128 128 101 71) 
(128 128 101 128 71) (128 113 71 113 113)
(128 128 128 128 71)  (127 101 128  71 128)

76

113512817111471
(113 113 128 113 113)  (113 147 113 128 113)
(113 147 113 113 128)  (113 113  71 113 113)
(147 113 128 113 71)  (128 113  71 113 113)

524

128511311011571
( 57 128 113 128 128) (128 128 128 113 57)
(101 128 113 128 128)  (128 128 101 128 113)
(128 113 128 101 57) (128  57 128 113 128)

180

sequence of masses of amino acids in a cyclopeptide P-value
128 113 147 113 113 71 113 113 3.9×10-23
128 113 113 147 113 113 71 113 3.9×10-23
128 113 113 147 113 71 113 113 7.1×10-21

(1) (2)

(3&4)

(5)

(6)
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In the case of SpectrumSurugamide, CycloNovo found three similar cyclopeptides (Figure 1.2) 

spelled by feasible cycles in the de Bruijn graph with a putative composition 113512817111471 (the 

highest-scoring one corresponds to surugamide). The remaining three putative compositions do 

not yield feasible cycles in their de Bruijn graphs. Figure 1.3 shows the pruned de Bruijn graphs 

of three compositions of SpectrumSurugamide that do not contain feasible cycles. CycloNovo 

sequenced SpectrumSurugamide in ≈3 seconds on a laptop with a single 2.5GHz processor. 

 

 
Figure 1.3. The pruned de Bruijn graphs of the compositions of SpectrumSurugamide that do not 
contain feasible cycles. (Left) The composition 113415621471 results in a de Bruijn graph with 40 
vertices and 57 edges and a pruned de Bruijn graph with 18 vertices and 40 edges. (Middle) The 
composition 128471215611011 results in a de Bruijn graph with 52 vertices and 76 edges and a 
pruned de Bruijn graph with 20 vertices and 42 edges. (Right) The composition 128511311011571 
results in a de Bruijn graph with 94 vertices and 180 edges and a pruned de Bruijn graph with 40 
vertices and 92 edges.   
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Datasets. We analyzed various spectral datasets obtained from diverse bacterial 

communities. To benchmark CycloNovo, we also analyzed a plant spectral dataset that had a paired 

RNA-seq dataset, thus enabling us to validate the CycloNovo reconstructions by matching them 

against the transcriptome. 

The S.VULGARIS dataset was generated from a single sample collected from seeds of the 

plant Senecio vulgaris (both medicinal and poisonous)27 from the Asteraceae family. We also 

analyzed the RNA-Seq reads from the same sample (~74 million 100 bp long Illumina reads)27, 

assembled them using rnaSPAdes28, and used the assembled transcripts (61.9 Mb total length) and 

prior knowledge of cyclopeptide processing29–31 to validate the reconstructed cyclopeptides.  

The HUMANSTOOL dataset was generated from 65 stool samples of a single person 

(L.S., co-author of this paper and a contributor to the “Quantified self” initiative) collected over a 

course of four years. This dataset is accompanied by the detailed medical and food metadata32 as 

well as metagenomics reads generated from the same samples  (bioproject ID PRJEB24161). 

The GNPS dataset5 was formed by combining forty datasets from GNPS3. The 

GNPSCYANO, GNPSPSEUDO, and GNPSACTI datasets represent sub-datasets of the GNPS dataset 

corresponding to three phyla with extensively analyzed cyclopeptides (Cyanobacteria, 

Pseudomonas and Actinobacteria).  

The CYCLOLIBRARY dataset contains 81 spectra from 81 distinct cyclopeptides 

(forming 41 cyclofamilies) that were identified by Dereplicator4 after searching the GNPS network 

against a chemical structure database of known cyclopeptides, CyclopeptideDatabase. To generate 

such databse we used the PNPDatabase5 which combines all known peptidic natural products from 

various databases. Many peptides in this database are lipopeptides containing a lipid chain, e.g., 

surfactin is a cyclopeptide containing a fatty acid side chain connected to a fully peptidic part via 
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a peptide bond. We classify a peptide in the PNPdatabase as a cyclopeptide if its backbone could 

be represented as a circular graph (cycle) with nodes corresponding to either a single amino acid 

or a single lipid tail (i.e. monomers) and edges corresponding to the amide bonds in the peptide 

structure. 1,257 out of 5,021 peptides in the PNPDatabase represent cyclopeptides and form 

CyclopeptideDatabase (note that the CyclopeptideDatabase database contains lipopeptides). We 

searched ~130 million GNPS spectra against the CyclopeptideDatabase using Dereplicator4 and 

identified 81 distinct cyclopeptides (41 cyclofamilies) corresponding to PSMs with FDR=0% and 

P-value below 10!"#. For each identified cyclopeptide, we selected the PSM with the minimum 

P-value (among all PSMs identified for this cyclopeptide), resulting in a set of 81 PSMs and hence 

created a spectral dataset CYCLOLIBRARY with 81 spectra (Table 1.1). CYCLOLIBRARY 

includes only 13 cyclopeptides (6 cyclofamilies) that are made up entirely of selected amino acids 

(Table 1.1). 34 peptides (25 cyclofamilies) in the CYCLOLIBRARY dataset contain lipid tails and 

34 peptides (14 cyclofamilies) contain non-selected amino acids.  
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Table 1.1. Cyclopeptides in the CYCLOLIBRARY dataset. The peptides that gave rise 
to 81 spectra in the CYCLOLIBRARY dataset with their corresponding peptide mass, P-
value, the GNPS ID of the dataset a spectrum belongs to, k-merScore, and cycloIntensity. 
The column ‘compound type’ specifies whether the compound is fully peptidic or 
represents a lipopeptide. Column ‘#correct k-mers predicted with top 25 aa’s/length of 
peptide’ shows the total number of correct k-mers predicted using top 25 most frequent 
amino acids in CyclopeptideDatabase versus the total number of correct k-mers appearing 
in the cyclopeptide, i.e. length of cyclopeptide. Column ‘#unique correct monomers 
predicted using top 25 aa’s / #unique monomers in correct sequence. The blue rows show 
the 13 cyclopeptides that are made up entirely of selected amino acids.   
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peptide ID peptid
e mass 

compound 
type P-value GNPS ID k-

merScore cycloIntensity 

#correct k-
mers 

predicted 
with top 25 

aa’s /  
length of 
peptide 

Antibiotic_FR_901459 609.9 peptide 1.8×10-24 MSV000079098 10 0.59 0/11 
Arthrofactin 1354.8 lipopeptide 1.2	×10-16 MSV000079772 8 0.96 7/12 
Bacillomycin_D2 1031.5 lipopeptide 6.0×10-24 MSV000078635 4 0.95 0/8 
Bacillomycin_D3 1045.6 peptide 3.9×10-31 MSV000079450 4 0.94 0/8 
Bacillomycin_D5 1059.6 peptide 2.5×10-21 MSV000078635 5 0.85 0/8 
Bacillopeptin_B 1035.5 peptide 1.2×10-19 MSV000079054 4 0.88 3/8 
Bacillus_amyloliquefacie
ns_Surfactin_1 1036.7 lipopeptide 1.3×10-18 MSV000080116 6 0.98 3/8 

Bacillus_amyloliquefacie
ns_Surfactin_22 1022.7 lipopeptide 3.0×10-26 MSV000078936 6 0.87 3/8 

BK_10 _101A-form 1021.7 lipopeptide 2.5×10-22 MSV000078688 6 0.78 2/8 
BK_10 _101C 1035.7 lipopeptide 2.6×10-21 MSV000078937 6 0.96 3/8 
Champacyclin 898.6 peptide 5.8×10-26 MSV000078936 6 0.98 8/8 
Cyclolinopeptide_A 1040.7 peptide 4.0×10-31 MSV000080050 6 0.93 9/9 
Cyclolinopeptide_B 1058.6 peptide 1.8×10-29 MSV000080050 8 0.87 9/9 
Cyclolinopeptide_B_S-
Oxide 1074.6 peptide 4.6×10-26 MSV000080050 6 0.81 9/9 

Cyclolinopeptide_D 1064.6 peptide 9.2×10-20 MSV000080050 6 0.86 8/8 
Cyclolinopeptide_E 977.6 peptide 2.6×10-26 MSV000079777 4 0.73 8/8 
Cyclolinopeptide_H 1082.5 peptide 5.1×10-20 MSV000080050 6 0.80 8/8 
Cyclosporin_B 1188.8 peptide 3.8×10-29 MSV000079098 8 0.65 6/11 
Cyclosporin_C 1218.8 peptide 1.4×10-32 MSV000079581 6 0.81 0/11 
Cyclosporin_E 1188.8 peptide 4.7×10-27 MSV000079098 8 0.93 5/11 
Cyclosporin_L 1188.7 peptide 1.7×10-30 MSV000079098 8 0.81 5/11 
Cyclosporin_P 1204.8 peptide 4.6×10-16 MSV000079777 6 0.74 5/11 
Cyclosporin_U 594.9 peptide 3.5×10-26 MSV000079098 9 0.66 5/11 
Cyclosporin_Y 601.9 peptide 2.0×10-24 MSV000079098 10 0.45 0/11 
Cyclosporin,_9CI_4 1188.8 peptide 1.5×10-27 MSV000079098 8 0.61 0/11 
Cyclosporin,_9CI_9 1202.8 peptide 1.8×10-43 MSV000079098 8 0.95 5/11 
Cyclosporin,_9CI_Deox
y 1186.9 peptide 1.6×10-35 MSV000079098 8 0.85 5/11 

Cyclosporin,_9CI_N9-
De-Me 1188.8 peptide 3.8×10-32 MSV000079098 9 0.74 5/11 

[8'-Hydroxy-MeBmf]1-
cyclosporin 1218.8 peptide 3.0×10-37 MSV000079581 8 0.97 6/11 

Daitocidin_B2 1064.7 lipopeptide 1.4×10-22 MSV000078937 6 0.90 0/11 
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Table 1.1. Cyclopeptides in the CYCLOLIBRARY dataset. The peptides that gave rise 
to 81 spectra in the CYCLOLIBRARY dataset with their corresponding peptide mass, P-
value, the GNPS ID of the dataset a spectrum belongs to, k-merScore, and cycloIntensity. 
The column ‘compound type’ specifies whether the compound is fully peptidic or 
represents a lipopeptide. Column ‘#correct k-mers predicted with top 25 aa’s/length of 
peptide’ shows the total number of correct k-mers predicted using top 25 most frequent 
amino acids in CyclopeptideDatabase versus the total number of correct k-mers appearing 
in the cyclopeptide, i.e. length of cyclopeptide. Column ‘#unique correct monomers 
predicted using top 25 aa’s / #unique monomers in correct sequence. The blue rows show 
the 13 cyclopeptides that are made up entirely of selected amino acids, Continued.   

 

peptide ID peptid
e mass 

compound 
type P-value GNPS ID k-

merScore cycloIntensity 

#correct k-
mers 

predicted 
with top 25 

aa’s /  
length of 
peptide 

Daitocidin_Pumilacidin_
F 1050.7 lipopeptide 7.5×10-27 MSV000078936 6 0.76 3/11 

Dolastatin_1_11-N-Me 999.6 lipopeptide 9.6×10-18 MSV000078568 3 0.58 3/8 
Dolastatin_1_15-Epimer 1013.6 lipopeptide 3.5×10-16 MSV000079050 0 0.18 3/8 
Dolastatin_1_31 492.3 lipopeptide 1.4×10-19 MSV000078568 4 0.42 0/9 
Dolastatin_12 969.6 lipopeptide 4.2×10-16 MSV000078568 5 0.65 0/9 
Dolastatin_14_Dolastatin
_14 1089.7 lipopeptide 1.5×10-20 MSV000078568 7 0.47 0/9 

g-Hydroxy-Meleu4-
cyclosporin 609.9 peptide 3.6×10-26 MSV000079581 9 0.56 3/9 

Ilamycin_B1 1012.6 peptide 7.7×10-25 MSV000078937 5 0.73 0/8 
Ilamycin_B2 1028.6 peptide 1.6×10-19 MSV000078936 3 0.67 0/7 
Isocyclosporin_D 1216.9 peptide 5.0×10-27 MSV000079098 7 0.40 0/7 
Laxaphycin_A 1196.7 peptide 2.7×10-48 MSV000079050 6 0.95 0/11 
Laxaphycin_B 1395.9 peptide 3.9×10-33 MSV000079050 5 0.97 2/11 
Laxaphycin_B_32-
Epimer,_53-deoxy 690.4 peptide 1.1×10-27 MSV000079050 7 0.18 0/12 

Laxaphycin_D 1367.8 peptide 7.1×10-28 MSV000079050 3 0.86 0/12 
Laxaphycin_E 1224.8 peptide 7.9×10-39 MSV000079050 6 0.89 0/12 
Lichenysin_A 1007.7 lipopeptide 1.2×10-20 MSV000079481 3 0.95 1/11 
Lichenysin-G1a 993.7 lipopeptide 1.8×10-19 MSV000078936 5 0.70 0/8 
Lichenysin-G3 1007.7 lipopeptide 8.1×10-22 MSV000078936 6 0.93 0/8 
Lichenysin-G5b 1021.7 lipopeptide 9.7×10-20 MSV000078936 6 0.99 0/8 
Lipodepsipeptides_KM
M_A 1036.7 lipopeptide 9.2×10-25 MSV000078635 5 0.98 2/8 

Lipodepsipeptides_KM
M_E 1064.7 lipopeptide 6.2×10-16 MSV000078937 6 0.96 3/8 
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Table 1.1. Cyclopeptides in the CYCLOLIBRARY dataset. The peptides that gave rise 
to 81 spectra in the CYCLOLIBRARY dataset with their corresponding peptide mass, P-
value, the GNPS ID of the dataset a spectrum belongs to, k-merScore, and cycloIntensity. 
The column ‘compound type’ specifies whether the compound is fully peptidic or 
represents a lipopeptide. Column ‘#correct k-mers predicted with top 25 aa’s/length of 
peptide’ shows the total number of correct k-mers predicted using top 25 most frequent 
amino acids in CyclopeptideDatabase versus the total number of correct k-mers appearing 
in the cyclopeptide, i.e. length of cyclopeptide. Column ‘#unique correct monomers 
predicted using top 25 aa’s / #unique monomers in correct sequence. The blue rows show 
the 13 cyclopeptides that are made up entirely of selected amino acids, Continued.   

 

peptide ID peptid
e mass 

compound 
type P-value GNPS ID k-

merScore cycloIntensity 

#correct k-
mers 

predicted 
with top 25 

aa’s /  
length of 
peptide 

Lipodepsipeptides_KM
M_F 1078.8 lipopeptide 2.4×10-19 MSV000078936 6 0.97 2/8 

Lipopeptide_NO 994.6 lipopeptide 4.1×10-17 MSV000078688 6 0.98 2/8 
Majusculamide_C 985.6 lipopeptide 1.1×10-23 MSV000078892 5 0.91 3/8 
Majusculamide_C_Deme
thoxy 955.6 lipopeptide 7.3×10-17 MSV000078568 6 0.95 3/9 

Nocardiamide_A 687.5 peptide 8.0×10-24 MSV000078936 6 0.97 4/9 
NVA2-g-hydroxy-
Meleu4-cyclosporin 1232.9 peptide 5.5×10-17 MSV000079777 9 0.90 6/6 

Peptidolipin_NA 964.7 lipopeptide 1.6×10-17 MSV000078937 4 0.64 0/8 
Pitipeptolide_E 794.5 peptide 9.3×10-19 MSV000078568 5 0.90 0/7 
Pitiprolamide 905.5 peptide 7.3×10-17 MSV000078568 4 0.95 0/8 
Precarriebowmide 865.5 lipopeptide 2.1×10-24 MSV000079050 7 0.75 0/7 
Precarriebowmide_S-
Oxide 881.5 lipopeptide 9.3×10-21 MSV000079050 6 0.70 0/7 

Puwainaphycin_A 1235.7 peptide 7.1×10-26 MSV000078982 4 0.97 0/10 
Puwainaphycin_B 1233.7 peptide 6.4×10-34 MSV000078982 5 0.91 0/10 
Puwainaphycin_C 1227.7 peptide 7.9×10-28 MSV000078982 4 0.91 0/10 
Sch_378167_5'-Amide 569.3 peptide 3.5×10-31 MSV000079098 7 0.61 0/10 
SCH-378161 1123.6 peptide 2.5×10-27 MSV000079098 6 0.99 0/10 
Streptocidin_C 649.9 peptide 8.6×10-24 MSV000079598 7 0.60 0/10 
Surfactin_ A1 1008.7 lipopeptide 1.1×10-26 MSV000078936 6 0.83 0/8 
Surfactin_7-L-
Valine_analogue 1022.7 lipopeptide 1.9×10-26 MSV000078936 5 0.93 3/8 

Surfactin_B1 1022.7 lipopeptide 5.2×10-23 MSV000078937 3 0.68 3/8 
Surfactin_C1 1036.7 lipopeptide 1.2×10-25 MSV000078688 6 0.84 3/8 
[Ile2,Val7]-
Surfactin_C14i 1008.7 lipopeptide 2.3×10-17 MSV000079450 4 0.82 0/8 

[Val7]-Surfactin_C13ai 994.7 lipopeptide 1.9×10-23 MSV000078936 6 0.80 0/8 
Surfactin_D 1050.7 lipopeptide 6.8×10-24 MSV000078937 6 0.96 3/8 
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Table 1.1. Cyclopeptides in the CYCLOLIBRARY dataset. The peptides that gave rise 
to 81 spectra in the CYCLOLIBRARY dataset with their corresponding peptide mass, P-
value, the GNPS ID of the dataset a spectrum belongs to, k-merScore, and cycloIntensity. 
The column ‘compound type’ specifies whether the compound is fully peptidic or 
represents a lipopeptide. Column ‘#correct k-mers predicted with top 25 aa’s/length of 
peptide’ shows the total number of correct k-mers predicted using top 25 most frequent 
amino acids in CyclopeptideDatabase versus the total number of correct k-mers appearing 
in the cyclopeptide, i.e. length of cyclopeptide. Column ‘#unique correct monomers 
predicted using top 25 aa’s / #unique monomers in correct sequence. The blue rows show 
the 13 cyclopeptides that are made up entirely of selected amino acids, Continued.   

 

peptide ID peptide 
mass 

compound 
type P-value GNPS ID k-

merScore cycloIntensity 

#correct k-
mers 

predicted 
with top 25 

aa’s /  
length of 
peptide 

Surugamide_A 912.6 peptide 1.6×10-25 MSV000078936 6 0.91 8/8 
Surugamide_B 898.6 peptide 7.5×10-33 MSV000079519 7 0.90 8/8 
Surugamide_C 898.6 peptide 6.8×10-32 MSV000079519 6 1.00 8/8 
Surugamide_D 898.6 peptide 5.9×10-30 MSV000078937 6 0.98 8/8 
Viequeamide_B 808.5 lipopeptide 2.7×10-18 MSV000078568 5 0.96 0/7 
[Dihydro-MeBmt]1-[g-
hydroxy-Meleu]4 1220.9 peptide 8.3×10-18 MSV000079777 8 0.87 3/11 

 
 

Information about the GNPS dataset. The GNPS dataset is formed by 40 MassIVE 

datasets that were selected from 120 datasets analyzed in Gurevich et al.5 to exclude potentially 

miscalibrated (with respect to mass accuracy) spectral datasets. Since miscalibrated datasets 

typically do not result in any cyclopeptide identifications, we searched each of these 120 datasets 

with Dereplicator and excluded datasets that did not result in any identifications (with 0% FDR 

and P-value below 10-15) from further analysis, leaving us with 40 datasets. The GNPS IDs are of 

these 40 MassIVE datasets are listed further below. Table 1.2 provides information about the 

various datasets analyzed by CycloNovo and provides a summary of CycloNovo results. Below 

we further describe the results for each dataset. 
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Table 1.2. Information about various high-resolution spectral datasets analyzed by 
CycloNovo. The number of distinct cyclopeptides and cyclofamilies was estimated using 
MS-Cluster24 and SpecNets3, respectively. The last column shows the number of known 
cyclopeptides/cyclofamilies (identified by Dereplicator) in each dataset. For each 
identified cyclopeptide in the CYCLOLIBRARY dataset, we selected the PSM with the 
minimum P-value (among all PSMs for that cyclopeptide), resulting in a spectral dataset 
CYCLOLIBRARY with 81 spectra. 

 

dataset #spectra #spectra after 
preprocessing #cyclospectra 

#distinct 
cyclopeptides/ 
cyclofamilies 

#known 
cyclopeptides/ 
cyclofamilies  

CYCLOLIBRARY 81 81 45 45/27 45/27 
S.VULGARIS 667 212 23 12/9 4/4 

HUMANSTOOL 1,242,178 451,962 703 79/69 7/5 
GNPS 51,220,679 27,883,895 12,004 512/213 67/37 

GNPSACTI 5,903,921 4,435,893 1,478 116/56 38/24 
GNPSCYANO 23,582,408 12,118,482 317 74/35 5/4 
GNPSPSEUDO 697,812 581,012 2,076 120/39 5/2 

 
Analyzing the CYCLOLIBRARY dataset.  As the cyclopeptides that gave rise to the 

spectra in the CYCLOLIBRARY dataset are known, we used this dataset to benchmark 

CycloNovo. We considered a cyclopeptide/spectrum as correctly sequenced if the sequence of the 

cyclopeptide appeared among reconstructions with three highest-scores. CycloNovo recognized 

45 spectra in the CYCLOLIBRARY dataset as cyclospectra and correctly sequenced 38 of these 

cyclospectra. For 22 cyclopeptides, the correct sequence of the cyclopeptide was among the 

highest-scoring reconstructions (Table 1.3). For each of the remaining 16 correctly sequenced 

cyclopeptides, Table 1.3 lists a high-scoring reconstruction and shows that for all those cases, at 

least one of the high-scoring reconstructions represented a rearranged sequence of amino acids 

compared to the correct sequence, except for a single cyclopeptide, where CycloNovo failed to 

predict correct amino acids for the top-scoring reconstruction.  
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Table 1.3. 38 cyclopeptides reconstructed by CycloNovo from 45 cyclospectra in the 
CYCLOLIBRARY dataset. The PSM score represents the score of the PSM in the 
CYCLOLIBRARY dataset. The ‘max score’ represents the score of the top-scoring 
reconstruction. For 22 cyclopeptides, the correct sequence of the cyclopeptide has the 
highest-scoring reconstruction. For the remaining 16 cyclopeptides, a highest-scoring 
reconstruction is listed below the correct sequence of the cyclopeptide in blue (differently 
arranged amino acid masses in the reconstructed cyclopeptide are shown in bold blue). 
Only in one case (cyclosporin C), CycloNovo predicted the wrong amino acids (shown in 
red) for the top-scoring reconstruction. Column ‘rank of correct peptide’ shows the rank of 
the score of the correct cyclopeptide, that the spectrum is generated, from among the scores 
of all reconstructions for that spectrum. CycloNovo failed to sequences 45-38=7 
cyclospectra in the CYCLOLIBRARY dataset since it was not able to predict all their 
amino acids.  
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peptide ID  sequence of aa masses in the peptide 
vs.  

sequence of aa masses in the                           
highest-scoring reconstruction 

 (if PSM score ≠	max score) 

PSM 
score 

max 
score 

# 
reconstruction

s with 
score  

≥ 𝐏𝐒𝐌 score 

rank of 
correct 
peptide 

BK 101C 113 113 115 99 113 113 128 240    21 21 6 1 
nocardiamide A 113 113 99 99 99 163      19 19 1 1 
cyclolinopeptide A 113 113 113 147 147 97 97 99 113   30 30 1 1 
cyclolinopeptide B 113 99 147 147 97 97 113 113 131   24 24 1 1 
bacillopeptin B 239 101 87 129 87 114 163 114    17 17 1 1 
daitocidin_Pumilac
idin F 

254 99 113 115 113 113 113 129    24 24 4 1 

BK 101A 113 113 115 99 113 113 128 226    19 19 6 1 
cyclolinopeptide H 113 186 147 147 97 131 113 147    16 16 1 1 
cyclosporin 
9CI_Deoxy 

167 113 127 127 71 71 127 99 127 71 85 29 29 6 1 

cyclosporin B 183 113 127 127 71 71 127 99 127 71 71 30 30 4 1 
laxaphycin A 57 113 113 113 113 147 101 113 83 101 

141 44 44 1 1 
surfactin 2  240 113 113 115 99 113 99 129    21 21 8 1 
cyclolinopeptide D 113 186 147 147 97 113 113 147    20 20 2 1 
cyclolinopeptide E 113 147 113 97 147 99 113 147    23 23 1 1 
lipodepsipeptide 
KMM 1364A 

240 99 113 115 113 113 113 129    20 20 8 1 

Lipodepsipeptide 
KMM 1364E 

268 99 113 115 113 113 113 129    20 20 2 1 

cyclolinopeptide C 113 99 147 147 97 97 113 113 147   24 24 1 1 
bacillomycin D2 97 114 163 114 225 101 87 129    22 22 1 1 
bacillomycin D3 97 114 163 114 239 101 87 129    21 21 2 1 
SCH-378161 113 57 97 147 114 143 99 97 113 142  29 29 2 1 
[Val7]-Surfactin 
C13ai 

99 113 113 129 212 99 113 115    21 21 3 1 

lipopeptide_NO 99 113 113 129 198 113 113 115    17 17 15 1 
cyclosporin,9CI 9 183 113 127 127 71 71 127 99 127 71 85 

183 113 127 127 71 71 127 113 99 85 85 32 33 10 2 
surfactin C1 240 113 113 115 99 113 113 129    

240 113 113 99 113 115 113 129 20 21 15 2 
cyclosporin C 183 113 127 127 71 71 127 99 127 71 101 

183 113 127  85  71 113 128 71 99 99 128  33 34 49 2 
surfactin 1  254 113 113 115 99 113 99 129    

254 113 113  99  99 129 99 129  23 24 16 2 
puwainaphycin_B 325 97 128 115 57 128 99 101 83 99  

325 97 99 128 57 115 128 101 83 99 26 27 6 2 

 
  



 36 

Table 1.3. 38 cyclopeptides reconstructed by CycloNovo from 45 cyclospectra in the 
CYCLOLIBRARY dataset. The PSM score represents the score of the PSM in the 
CYCLOLIBRARY dataset. The ‘max score’ represents the score of the top-scoring 
reconstruction. For 22 cyclopeptides, the correct sequence of the cyclopeptide has the 
highest-scoring reconstruction. For the remaining 16 cyclopeptides, a highest-scoring 
reconstruction is listed below the correct sequence of the cyclopeptide in blue (differently 
arranged amino acid masses in the reconstructed cyclopeptide are shown in bold blue). 
Only in one case (cyclosporin C), CycloNovo predicted the wrong amino acids (shown in 
red) for the top-scoring reconstruction. Column ‘rank of correct peptide’ shows the rank of 
the score of the correct cyclopeptide, that the spectrum is generated, from among the scores 
of all reconstructions for that spectrum. CycloNovo failed to sequences 45-38=7 
cyclospectra in the CYCLOLIBRARY dataset since it was not able to predict all their 
amino acids, Continued.  

 
surugamide A 128 113 113 71 113 113 147 113 

128 113 113 71 113 113 113 147 23 24 5 2 
surugamide B 128 99 113 71 113 113 147 113    

128 99 113 71 113 147 113 113  26 27 5 2 
surugamide D 128 113 99 71 113 113 147 113    

128 113 113 71 99 113 147 113 28 30 7 2 
lichenysin G5b 99 113 115 99 113 113 128 240 

99 113 99 115 113 113 128 240    20 21 6 2 
pitiprolamide 100 97 99 142 97 175 97 97    

100 97 142 99 97 175 97 97 17 18 6 2 
surfactin 7-L-
Valine 

240 99 113 115 99 113 113 129    
240 99 99 129 99 113 113 129 22 24 15 3 

surfactin D 254 113 113 115 99 113 113 129    
254 113 113 113 115 113 99 129 22 25 14 3 

majusculamide C 
Demethoxy 

57 114 113 71 141 161 113 57 127 
57 113 114 71 161 141 113 57 127   20 22 69 3 

cyclosporin E 183 99 127 127 71 71 127 99 127 71 85 
183 99 127 127 99 71 71 127 127 71 85 24 26 53 3 

champacyclin 128 99 113 147 113 113 71 113 
128 99 71 113 147 113 113 113     21 23 21 3 

surugamide C 128 113 113 71 113 113 147 99  
128 113 113 71 113 99 147 113 29 31 10 3 

CycloNovo recognized 45 out of 81 spectra in the CYCLOLIBRARY dataset as 

cyclospectra. It classified 12 out of 13 cyclopeptides built from selected amino acids as 

cyclospectra and de novo sequenced them with one of the top three highest scores. 

CycloNovo is unable to sequence most spectra in the CYCLOLIBRARY dataset since 68 

of them originated from lipopeptides or peptides containing non-selected amino acids. To evaluate 

how CycloNovo performs on 45 cyclospectra in this dataset, we extended the set of selected amino 

acids to include the mass of the lipid chain and/or the masses of non-selected amino acids for each 

spectrum. Using this admittedly imperfect benchmarking approach, CycloNovo sequenced 22 of 



 37 

45 cyclospectra as a highest-scoring de novo reconstructions and an additional 16 spectra with one 

of the three highest scores. Table 1.4 lists the highest-scoring reconstruction for these spectra and 

illustrates that the highest-scoring reconstruction is similar to the correct amino acid sequence for 

all these spectra.  

Analyzing the S.VULGARIS dataset. The 23 recognized cyclospectra in this dataset 

correspond to twelve distinct cyclopeptides. CycloNovo sequenced ten of them with P-values 

below 10-15 (Table 1.4). Nine of ten reconstructed cyclopeptides matched the assembled 

transcriptome. One reconstructed cyclopeptide (with the highest-scoring reconstruction 

AFLLADV and score 22), did not match the assembled transcriptome but a suboptimal ALFLGLD 

reconstruction with score 20 did (see Note “Cyclopeptide-encoding transcripts in the 

S.VULGARIS dataset”).  
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Table 1.4. Cyclopeptides reconstructed in the S.VULGARIS dataset. Ten 
reconstructed cyclopeptides (highlighted in yellow) along with their flanking sequences in 
transcripts translated into amino acids. For each of these cyclopeptides (reconstructed with 
P-values below 10-15), we selected one representative spectrum with the highest score. The 
conserved flanking amino acids in the transcripts on the left and right sides of the 
highlighted cyclopeptides (preceding and succeeding motifs) are shown in red and green, 
respectively. For nine out of ten cyclopeptides, the reconstruction with the highest score 
matches one of the transcripts. For the cyclopeptide with mass 730.41 (highlighted in pink), 
the highest scoring reconstruction AFLLADV (score 22), did not match the assembled 
transcriptome but a suboptimal ALFLGLD reconstruction (score 20) did. The novel 
cyclopeptides discovered by CycloNovo are shown with bold IDs and named PLP-47 
through PLP-52. For this dataset we used the error threshold ε=0.015 Da as recommended 
in Fisher et al 29. 
 

precursor 
mass 

sequence matching 
transcripts  

PSM 
score 

highest 
score 

#reconstructions 
with score ≥             
PSM score 

P-value peptide   
ID gene 

899.36 DNFVDTTGYDRLSDN 24 24 1 1.4×10-47 PLP-14 Sv_PawL1c 
811.37 DNFVGGTSFDRLSDN 14 14 2 2.4×10-24 PLP-12 Sv_PawL1c 
803.42 DNTFGVVIADRLSEN 30 30 1 1.2×10-61 PLP-13 Sv_PawL1b 
762.32 DNGFHGTFDGLDN 13 13 1 3.2×10-23 PLP-47 Sv_PawL1e 
730.41 DNALFLGLDGLDN 20 22 12 2.2×10-39 PLP-48 Sv_PawL1f 
702.38 DNAIFGVVDGLDN 20 20 1  5.6×10-36 PLP-49 Sv_PawL1j 
688.36 DNFVGGVIDGLDN 21 21 1  1.0×10-40 PLP-50 Sv_PawL1g 
674.35 DNGVVVGFDGLDN 14 14 5  1.1×10-25 PLP-51 Sv_PawL1l 

668.40 DNALVVGLDGLDN 14 14 1  1.9×10-27 PLP-15 Sv_PawL1d 
Sv_PawL1g 

654.39 DNALLGIADGLDN 18 18 5 6.9×10-34 PLP-52 Sv_PawL1i 

The ten reconstructed cyclopeptides (nine highest-scoring reconstruction and one 

suboptimal reconstruction) matched 11 transcripts (some transcripts encode multiple 

cyclopeptides and some cyclopeptides are encoded by multiple transcripts) that belong to 

cyclopeptide-encoding PawS1-Like genes in various Asteraceae species27,29. While three out of 11 

identified PawL1 ORFs and the four cyclopeptides encoded by them (PLP-12 through PLP-15) 

have been extensively analyzed in recent studies27,29, the remaining eight ORFs represented 

previously unknown cyclopeptide-encoding genes in S. vulgaris. Table 1.5 lists ORFs (translated 

into amino acid sequences) in the orbitide-encoding transcripts. The PawL1 proteins have dual 
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fates; they encode an albumin as well as a cyclopeptide(s). An enzyme asparaginyl endopeptidase 

(targets Asp, Asn) matures both the albumin and the cyclopeptide. 

Table 1.5. ORFs in the cyclopeptide-encoding transcripts. All identified ORFs originate 
from various PawS1-Like genes. The sequences are color-coded based on the subunits they 
belong to: endoplasmic reticulum signal sequence (pink), the reconstructed cyclopeptide 
(blue), 2S albumin small subunit (lime green), and 2S albumin large subunit (orange). 
While the first three sequences (Sv_PawL1b, Sv_PawL1c, and Sv_PawL1d) are known 
PawS1-Like genes in S. vulgaris, the other eight sequences (named Sv_PawL1e through 
Sv_PawL1l) are novel PawS1-Like genes that were identified by searching for novel 
cyclopeptides. 
 

gene ORF sequence 

Sv_PawL1b AKLIVVVFAFAVIVAFAEVSAYKTTITTTTVEDNFVGGTSFDRLSENFMYGTPVDRLSDN
RGSQKQCHRQIP 

Sv_PawL1c AKLIVVVFAFAVIVAFAEVSAYKTTITTTTVEDNTFGVVIADRLSDNFVDTTGYDRLSDN
RGSQKQCHRQIP 

Sv_PawL1d ITTVEDNALVVGLDGLDNPITTTVEDNYFAGLIDGLDNPITTTVEDNGVFLGLDGLDNPS
GSTYQCRRQIQGQQLNHCQMHIIQQGRSLVE 

Sv_PawL1e FVAIVAFSEQVSAYKTTIPTTVEDNALLVALDGLDNGFHGTFDGLDNGFHGTFDGLDNPS
GSTYQCRRQIQ* 

Sv_PawL1f TTVEDNALFLGLDGLDNPSGSTYQCRRQIQGQQLNHCQMHITQQGRSLMENPRQQQLLQM
CCNQLRQVEEECQCE* 

Sv_PawL1g ITTTVEDNALVVGLDGLDNPITTTVEDNFVGGVIDGLDNFVGGVIDGLDNPSGSTYKCRR
QIQGQQLNHCQMHITQQGRSLVE 

Sv_PawL1h MTKVSAIVVLAFVAIVAFSEQVSAYKTTITTPVEDNAIFLGVDGLDNPI* 

Sv_PawL1i LDGLDNALLGIADGLDNPSGSTYQCRMQIQGQQLNHCQMHIIQQGRSLVENPRQQQQLQM
CCNQLR* 

Sv_PawL1j SEQVSAYKTTITTTVEDNAIFGVVDGLDNPSGSTYQCRKQIQGQQ* 

Sv_PawL1k AIVAFSEQVSAYKTTITTTVEDNAIFLGVDGLDNPITTTVEDNGVSDFFDDGLDKPSGST
YQCRRQIQGQQLNHCQMHISQQGRSLVENPRQQQQLQM* 

Sv_PawL1l FVAIVAFSEQVSAYKTTITTPVEDNGVVVGFDGLDNPSGSTYQCRKQIQGQQ* 

 
Figure 1.4 shows cyclospectra in the S.VULGARIS dataset, annotated using their 

CycloNovo reconstructions. 
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Figure 1.4. Annotated cyclospectra of the ten reconstructed cyclopeptides in the 
S.VULGARIS dataset. The x-axis shows the m/z ratios and the y-axis shows the 
percentage of the peak intensity compared to the intensity of the largest peak in that 
spectrum. 

Analysing the HUMANSTOOL dataste. A Dereplicator search of the HUMANSTOOL 

dataset against CyclopeptideDatabase identified seven PSMs at 0% FDR, namely an antimicrobial 

orbitide citrusin V found in various Citrus species33,34 and cyclolinopeptides A35, B36, C37, D37, 

H37, and E37. Cyclolinopeptides are bioactive flaxseed orbitides from Linum usitatissimum. The 

individual who provided the HUMANSTOOL sample frequently ate flaxseeds because they 

contain α-linolenic acids. CycloNovo sequenced six flaxseed cyclopeptides from the 

CyclopeptideDatabase as well cyclolinopeptide P (a recently discovered cyclopeptide38 that has 

not been added to CyclopeptideDatabase yet) as the highest-scoring reconstructions. Table 1.6 
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lists cyclopeptides identified by Dereplicator in the HUMANSTOOL datasets. Table 1.7 lists 

CycloNovo-reconstructions of 31 cyclopeptides in the HUMANSTOOL dataset. 

Table 1.6. Cyclopeptides identified by Dereplicator in the HUMANSTOOL dataset. 
The correct sequence of all reconstructed cyclopeptides has the highest score among all 
reconstructions. For each cyclopeptide, the score of the correct cyclopeptide (column 
“PSM score”), the number of reconstructions with scores larger or equal to the PSM score 
(column “#reconstructions score ≥ PSM score”), and P-values are listed. 

 
precursor   

mass peptide    PSM 
score 

#reconstructions      
with score ≥ PSM 

score  
P-value peptide ID 

1040.66 ILVPPFFLI 31 1 1.2×10-54 cyclolinopeptide A 
1058.61 MLIPPFFVI 24 1 2.3×10-42 cyclolinopeptide B 
1074.62 M+16LIPPFFVI 16 1 9.7×10-18 cyclolinopeptide C 
1064.57 M+16LLPFFWI 20 2 1.5×10-33 cyclolinopeptide D 
1082.52 M+16LMPFFWI 19 1 1.2×10-31 cyclolinopeptide H 
977.56 M+16LVFPLFI 25 1 1.6×10-43 cyclolinopeptide E 
961.55 MLVFPLFI 25 10 3.1×10-42 cyclolinopeptide P 
567.36 GIVIPS 11 1 2.1×10-17 citrusin V 
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Table 1.7. De novo reconstructions of 32 cyclopeptides in the HUMANSTOOL 
dataset. For each spectrum, its precursor mass, the de novo reconstruction (shown as a 
sequence of nominal masses of amino acids), the score, and the P-value are shown. De 
novo reconstructions are ordered in the decreasing order of their precursor masses. Only 
reconstructions with score≥ 13 are shown. Precursor masses of spectra identified by 
Dereplicator are highlighted in blue. Cyclopeptides highlighted in green represent a novel 
cyclofamily described in Figure 1.5. 
 

peptide 
mass 

precursor 
mass sequence of amino acid masses score 

#reconstructions 
with score ≥
𝐏𝐒𝐌 score 

P-value 

1151.52 1152.53 87 99 99 101 147 129 71 97 113 71 
137 19 1 2.3×10-27 

1098.49 549.75 147 71 87 137 57 99 71 129 163 137 23 1 6.6×10-24 
1085.53 543.27 99 99 137 57 113 115 186 71 137 71 20 2 6.2×10-30 
1081.51 1082.52 147 113 131 97 147 147 186 113 19 1 1.2×10-31 
1080.55 1081.56 87 99 99 101 147 129 71 97 113 137 22 1 3.0×10-36 
1073.61 1074.62 147 113 113 97 97 147 147 99 113 16 1 9.7×10-18 
1063.56 1064.57 147 113 113 97 147 147 186 113 20 2 1.5×10-33 
1060.75 530.74 147 163 57 99 57 137 71 129 71 129 22 1 2.7×10-29 
1057.61 1058.62 131 113 113 97 97 147 147 99 113 24 1 2.3×10-42 
1052.52 1053.53 87 99 101 147 129 71 97 113 71 137 25 1 8.6×10-38 
1039.65 1040.66 113 113 99 97 97 147 147 113 113 31 1 1.2×10-54 
1003.54 1004.55 71 97 147 99 147 97 147 99 99 13 1 4.0×10-17 
981.493 982.50 101 147 129 71 97 137 113 186 24 1 2.6×10-37 
978.543 979.55 128 113 147 87 113 57 99 87 147 18 3 6.1	×10-25 
976.553 977.56 147 113 99 147 97 113 147 113 25 1 1.6×10-43 
960.553 961.56 131 113 99 147 97 113 147 113 25 10 3.1×10-42 
948.493 949.50 147 128 99 87 71 147 57 99 113 17 3 2.3	×10-23 
891.463 892.47 113 147 101 71 57 57 99 99 147 15 1 3.4×10-19 
889.453 890.46 128 101 103 71 113 147 129 97 14 4 2.0×10-20 
888.493 889.50 57 97 147 113 113 99 99 163 15 9 9.7×10-21 
877.453 878.46 113 99 57 71 147 163 113 57 57 20 11 1.1×10-27 
873.403 874.41 71 97 115 71 97 101 87 97 137 17 2 2.7×10-23 
872.453 873.46 57 71 87 113 71 99 186 101 87 18 1 1.7×10-24 
871.453 872.46 147 101 71 57 99 114 97 57 128 19 1 2.5×10-26 
856.463 857.47 99 99 147 97 147 71 97 99 21 2 3.2×10-37 
841.433 842.44 97 147 101 57 97 113 128 101 20 1 2.2×10-29 
829.433 830.44 57 113 57 97 71 147 101 99 87 13 1 3.7×10-17 
826.393 827.40 147 99 137 71 71 99 115 87 17 3 5.8×10-23 
812.493 813.50 87 99 57 99 99 71 128 71 101 15 1 6.6×10-19 
811.413 812.42 147 113 57 57 57 97 99 97 87 16 7 2.0×10-20 
801.383 802.39 97 87 57 129 99 57 71 57 147 17 1 1.9×10-23 
695.273 696.28 71 57 163 129 57 71 147 18 1 6.1×10-27 
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In addition to the eight reconstructed orbitides, CycloNovo reconstructed 32 cyclopeptides 

in the HUMANSTOOL dataset with P-values below 10-15 forming 26 cyclofamilies. Figure 1.5 

shows  a connected component in the spectral network formed by four novel cyclopeptides in the 

HUMANSTOOL dataset and illustrates that CycloNovo reconstructions are consistent with the 

spectral network. 
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precursor   
mass peptide    PSM 

score 

#reconstructions      
with  

score ≥ PSM 
score  

P-value dates 
 

982.49 SVTFEAPLH 24 1 2.6×10-37 07.14.2014  
07.19.2015 

1053.53 SVTFEAPLAH 25 1 8.6×10-38 07.14.2014  
07.19.2015 

1081.56 SVVTFEAPLH 21 1 3.0×10-36 07.14.2014  
07.19.2015 

1152.59 SVVTFEAPLAH 19 1 2.3×10-27 07.14.2014   
 

 

 
Figure 1.5. A novel cyclofamily reconstructed by CycloNovo in the HUMANSTOOL 
dataset. (Top) Four cyclopeptides reconstructed by CycloNovo form a cyclofamily 
represented by a connected component in the spectral network of the HUMANSTOOL 
dataset (label “L” stands for one of amino acids L and I). Each node represents a spectrum 
and two nodes are connected by an edge if their spectral similarity3 exceeds 0.8. The 
numbers on the edges show the mass shifts between the corresponding spectra. (Middle) 
The de novo reconstructions corresponding to the four spectra forming the spectral 
network. For each cyclopeptide, the cyclic sequence of the highest-scoring reconstruction 
along with their scores, the number of reconstructions with scores larger or equal to the 
PSM score (column “#reconstructions with score ≥ PSM score”), and P-values are listed. 
The “dates” column shows the dates when the corresponding samples were taken. Note 
that the cyclopeptides in this cyclofamily appear on the same dates. (Bottom) The 
annotated spectra of the four cyclopeptides based on the CycloNovo reconstructions. 

SVTFEAPLH SVTFEAPLAH 

SVTFEAPLH SVVTFEAPLAH 
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The Dereplicator search of all 703 cyclospectra in the HUMANSTOOL dataset against 

CyclopeptideDatabase resulted in a single hit and identified a cyclic lipopeptide massetolide F39 

with P-value 7.5×10-22. As this compound includes lipid chains not included in the set of selected 

amino acids, CycloNovo was not able to generate its full-length reconstructions, but correctly 

reconstructed its partial amino acid sequence.  

We classify a peptide as branch-cyclic if its backbone includes a cycle (with all monomers 

connected via amide bonds) and a side chain that includes at least one additional amide bond not 

included in the cycle. Although CycloNovo classify spectra of some branch cyclic peptides as 

cyclospectra, it is unable to de novo sequence them. Nevertheless, CycloNovo provides 

information about substrings of branch-cyclic peptides made of selected amino acids. For example, 

CycloNovo classified the spectrum of massetolide F in the HUMANSTOOL dataset as a 

cyclospectrum. The lipopetide massetolide F consists of the cycle TILSLSLV and a branch EL 

(along with a fatty acid chain tail with nominal mass 171 Da) connected to the cycle via an amide 

bond between T and E. We represent this branch cyclic peptides as a concatenate between the 

sequence of nominal masses of the cyclic and branch region separated by “*” sign, i.e., massetolide 

F is represented as 100, 113, 87, 113, 87, 113, 99 * 129, 113, 171. CycloNovo found five selected 

amino acids in massetolide F (S, I, L, V, T, and E) and missed the lipid chain (171 Da).  

Massetolides are non-ribosomal lipopeptides produced by Pseudomonas fluorescens, an 

indigenous member of human and plant microbiota40,41.  

Analysis of the metagenome assembly of reads paired with the HUMANSTOOL dataset 

confirmed that P. fluorescens is present in the stool samples where massetolide F was detected. 

Therefore, massetolide F might be originated from P. fluorescens in the human gut but further 

investigation is necessary to test this hypothesis. We used metaSPAdes42 to assemble the 
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metagenomic dataset, generated from the stool sample (dated by 6/16/2014) where massetolide F 

was detected. This dataset includes 34.5 million paired reads which are assembled into 81 thousand 

scaffolds of lengths longer than 500 bp amounting to 407 Mb total assembly length. 

Analyzing the GNPS dataset. We analyzed all cyclospectra in the GNPS dataset using 

MS-Cluster24 and SpecNets43 with the goal of estimating the number of still unknown 

cyclopeptides and cyclofamilies originating from spectra already deposited into GNPS. To provide 

a conservative estimate for the number of cyclopeptides and cyclofamilies, we limited the analysis 

to clusters with at least three spectra. Table 1.8 lists the preditected numbers for each GNPS sub-

datasets.  
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Table 1.8. Information about the GNPS dataset. The last row shows the total number of 
spectra and unique cyclopeptides/cyclofamiles across all datasets. The datasets marked in 
red, blue, and green form GNPSCYANO, GNPSPSEUDO, and GNPSACTI subsets of the GNPS 
dataset, respectively. 

GNPS ID #spectra #spectra 
after pre-

processing 

#cyclo
spectra 

  

#putative 
cyclo-

peptides/ 
cyclo-

families 
found 

 by 
CycloNovo   

#identified 
cyclo-

peptides/ 
cyclo-

families 
identified by 
Dereplicator 

(among 
cyclo-

spectra)  

#identified 
cyclo-

peptides/ 
cyclo-

families 
identified by 
Dereplicator 
(among all 

spectra) 

#identified 
branch-
cyclic . 

peptides/ 
branch-
cyclic 

families  
identified by 
Dereplicator 

 (among 
cyclo- 

spectra) 
MSV000078567 730582 316993 4 2/1 2/1 4/2 0/0 
MSV000078568 23582408 12118472 317 74/35 9/8 15/10 1/1 
MSV000078584 680906 263160 0 0/0 0/0 0/0 0/0 
MSV000078604 311617 281617 606 56/25 6/3 6/3 3/3 
MSV000078606 289170 237988 122 32/12 1/1 1/1 7/6 
MSV000078635 680168 569316 2388 124/40 9/4 12/5 10/7 
MSV000078656 2844 1023 88 14/1 10/5 11/6 3/3 
MSV000078710 1469076 689912 6 1/1 2/2 3/3 0/0 
MSV000078787 1767830 1281235 208 58/31 25/13 25/13 8/7 
MSV000078839 717600 504350 1 1/1 1/1 1/1 0/0 
MSV000078847 167917 115603 19 7/5 1/1 1/1 1/1 
MSV000078892 847114 461769 27 8/4 3/2 4/3 0/0 
MSV000078936 2059306 1538683 526 58/30 25/13 30/15 5/5 
MSV000078937 1694918 1303349 256 52/26 26/14 33/19 11/9 
MSV000078982 984 727 32 4/2 3/1 3/1 2/2 
MSV000079044 576282 270860 2 1/1 1/1 2/1 0/0 
MSV000079050 1241328 683124 207 24/8 3/1 7/3 3/3 
MSV000079054 702020 364382 112 16/7 13/6 13/6 3/3 
MSV000079069 847145 215229 1066 23/2 0/0 1/1 0/0 
MSV000079140 607488 443147 1118 25/7 14/6 15/7 0/0 
MSV000079274 5433248 3457806 14 2/2 1/1 1/1 0/0 
MSV000079312 54806 25354 1112 15/3 0/0 1/1 0/0 
MSV000079450 697812 581012 2245 120/39 6/2 6/2 9/6 
MSV000079471 22379 16138 68 14/4 10/4 10/4 0/0 
MSV000079481 45742 7692 48 2/1 0/0 2/2 0/0 
MSV000079502 47450 3167 14 3/1 3/1 4/2 0/0 
MSV000079516 120154 19113 138 22/6 4/2 5/2 0/0 
MSV000079517 22516 2911 37 7/3 3/1 4/2 0/0 
MSV000079519 76289 13985 112 15/6 3/1 5/2 0/0 
MSV000079568 224645 10273 0 0/0 0/0 4/2 0/0 
MSV000079581 129012 41779 74 4/3 2/2 5/5 0/0 
MSV000079598 919494 286130 9 3/1 4/1 6/3 0/0 
MSV000079651 81818 5239 0 0/0 0/0 2/1 0/0 
MSV000079679 595244 300682 109 24/14 12/7 14/7 2/2 
MSV000079772 75916 13870 40 7/5 2/2 2/2 0/0 
MSV000079778 1242178 451962 265 50/44 6/1 7/2 0/0 
MSV000079813 578683 170990 23 6/4 2/2 3/2 0/0 
MSV000079888 238820 74317 170 17/7 8/4 9/5 1/1 
MSV000080115 1567520 709527 400 33/9 12/6 13/7 9/6 
MSV000080116 70250 31009 19 9/5 6/3 6/3 0/0 
TOTAL 51220679 27883895 12004 512/213 67/37 81/51 41/27 
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The 12,004 cyclospectra in the GNPS dataset originated from 512 cyclopeptides and 213 

cyclofamilies. Dereplicator search of these cyclospectra against CyclopeptideDatabase identified 

only 67 cyclopeptides from 37 cyclofamilies. For each putative cyclopeptide, we selected a 

representative spectrum with the highest k-merScore, resulting in 512 spectra corresponding to the 

512 cyclopeptides. CycloNovo de novo sequenced 94 cyclopeptides with P-values below 10-15 in 

this set of 512 cyclospectra.  

Figure 1.6 shows the number of identified cyclopeptides across all GNPS sub-datasets. 

Figure 1.7 shows the number of cyclopeptides and cyclofamilies that gave rise to cyclospectra 

found by CycloNovo across all GNPS sub-datasets. 

 

 
Figure 1.6. Number of cyclopeptides identified by Dereplicator across all GNPS sub-
dataset. Dereplicator identified 81 unique cyclopeptides in the GNPS dataset. Since some 
cyclopeptides are identified in multiple sub-datasets, the total numbers of identified 
cyclopeptides across all GNPS sub-datasets (180) exceeds 81. The green (blue) part of each 
bar represent spectra that were (were not) classified by CycloNovo as cyclospectra. 
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Figure 1.7. Number of cyclopeptides (yellow) and cyclofamilies (pink) found by 
CycloNovo across all GNPS dataset. The ID under each column shows the GNPS ID for 
corresponding subdataset.  

Comparing CycloNovo and Dereplicator. We compared the number of distinct 

cyclopeptides, including some branch-cyclic peptides, and cyclofamilies revealed by CycloNovo 

and identified by Dereplicator in searches against the CyclopeptideDatabase (Figure 1.8). As 

Figure 1.8 illustrates, even for the extensively studied phyla of Cyanobacteria and Pseudomonas, 

only a small fraction of cyclopeptides and cyclofamilies revealed by CycloNovo are currently 

known.  
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Figure 1.8. Number of cyclopeptides (blue bars) and cyclofamilies (green bars) 
predicted by CycloNovo and identified/missed by Dereplicator searching against 
CyclopeptideDatabase in various spectral datasets. Missed cyclopeptides/cyclofamilies 
are not represented in CyclopeptideDatabase. 

Moreover, CycloNovo revealed many novel cyclopeptides in known cyclofamilies. For 

example, CycloNovo reconstructed six novel variants of surugamide by analyzing the GNPSACTI 

dataset and revealed the widespread proliferation of the recently described A-domain skipping 

phenomenon5,44, suggesting that it is more prevalent than was previously thought. The A-domain 

skipping phenomenon defies the traditional view that each A-domain encodes a single amino acid 

in an NRP according to the non-ribosomal code. Genome mining efforts typically rule out such 

events due to the consecutive arrangements of A-domains in NRP synthetases. CycloNovo found 

all the known cyclopeptides identified by Dereplicator in the HUMANSTOOL and S.VULGARIS 

datasets. For each MassIVE dataset included in the GNPS dataset, Figure 1.8 and Table 1.8 

presents the number of known cyclopeptides/cyclofamilies identified by Dereplicator and missed 

by CycloNovo. Figure 1.9 shows a connected component in the spectral network containing known 

and novel surugamide variants (spectral dataset GNPSACTI generated from samples collected from 

various Actinobacteria species). 
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Figure 1.9. A connected component in the spectral network that contains various 
surugamide variants. Each node in the network is labeled by the precursor mass of a 
spectrum and each edge connects spectral pairs that reveal related cyclopeptides. The five 
green nodes are the known surugamide variants4. The pink nodes represent unknown 
cyclopeptides. The spectral network was constructed based on all cyclospectra in the 
GNPSACTI dataset.  

Figure 1.10 shows a subgraph of the spectral network shown in Figure1.9 that includes 

only known surugamides and six novel variants reconstructed by CycloNovo. Figure 1.11 

illustrates that five of these novel variants differ from known surugamides by deletions of some 

amino acids.  
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Figure 1.10. Subgraph of the surugamides spectral network (depicted in Figure 1.9) 
representing only known and novel surugamides. The green nodes correspond to known 
surugamides and the blue nodes represent the novel surugamide variants reconstructed by 
CycloNovo. The numbers on edges represent the nominal mass shift between the 
corresponding spectra. The red edges highlight the mass shifts that suggest loss/addition 
of an amino acid in the peptide and the blue edges connects peptides that differ from each 
other by a single Ile � Val or Val � Ile substitution (resulting in a nominal offset 14 Da). 
Although the 14 Da offset can also correspond to methylation, the substitutions represent 
the more likely explanations in this case. The grey edges show mass shifts that represent 
combinations of those mass shifts. Figure 1.9 presents the entire connected component. 
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Figure 1.11.  Known and novel surugamide variants. (a) Surugamide gene cluster in 
Streptomyces albus along with the three most likely amino acids for each A-domain and 
their scores predicted by NRPSpredictor212. See Mohimani et al, 20174 for more details on 
this representation. (b) Five known (first five rows) and six novel (last six rows) 
surugamide variants. Each column is color-coded based on the color of the A-domain they 
represent in the top figure. The dash symbols indicate a violation of the non-ribosomal 
code (A-domain skipping) when an A-domain in the surugamide gene cluster does not add 
an amino acid to a cyclopeptide. (c) De novo reconstructions of the novel surugamide 
variants. The column ‘PSM score/highest score’ shows the score of the cyclopeptide and 
the highest score observed for that spectrum among all CycloNovo reconstructions. The 
“P-value” column presents the P-value of the PSM (for each cyclopeptide, the spectrum 
that yielded the lowest P-value is reflected). The column “#reconstructions with score ≥
	PSM score” shows the number of reconstructions with score greater or equal to the PSM 
score. The column “reconstruction with the highest score” shows a highest-scoring 
reconstruction for the cases when the PSM score is below the highest score. The number 
of spectra corresponding to each novel surugamide variant in the five GNPS datasets are 
presented in the columns ‘78604’, ‘78787’, ‘78936’, ‘78937’, and ‘79516’, representing 
the GNPS sub-datasets MSV000078604, MSV000078787, MSV000078936, 
MSV000078937, and MSV000079516, respectively. Finding the same surugamide 
variants in different studies makes it unlikely that they represent artifacts.  (d) Annotated 
spectra of six novel surugamide variants.  
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(a) 

 
(b) 

 
870.6 Ile Ala Val Val Lys Val Phe Leu 
884.6 Ile Ala Val Ile Lys Val Phe Leu 
898.6 Ile Ala Val Ile Lys Ile Phe Leu 
912.6 Ile Ala Ile Ile Lys Ile Phe Leu 
926.6 Ile Ala Ile Ile Lys+14 Ile Phe Leu 
799.5 Ile Ala - Ile Lys Ile Phe Leu 
785.5 Ile Ala Val Ile Lys - Phe Leu 
771.5 Ile Ala Val - Lys Val Phe Leu 
856.5 Val Ala Val Val Lys Val Phe Leu 
784.5 Ile Ala Ile Ile - Ile Phe Leu 
671.5 - Ala Ile Ile - Ile Phe Leu 

(c) 
 
 
 
 
 
 
 
 
 
 

(d) 

 
  

precursor 
mass sequence PSM score/ 

highest score  P-value 
#reconstructions  

with score	≥ 
PSM score 

reconstruction  
with the  

highest score 78
60

4 

78
78

7 

78
93

6 

78
93

7 

79
51

6 

799.5 IA-IKIFL 19/19 6.2×10-37 1  6     
785.5 IAVIK-FL 22/22 1.6×10-38 4  5 1 4 3  
771.5 IAV-KVFL 20/22 9.4×10-39 3 IAVKVLF 2 2 2 1  
856.6 VAVVKVFL 20/22 4.3×10-36 5 VVVAKVFL 2    1 
784.5 IAII-IFL 10/12 3.4×10-19 2 AIIIIFL 5     
671.5 -AII-IFL 12/12 5.0×10-21 1  5     
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1.4. DISCUSSION 

Although the advances in mass spectrometry and advent public repositories such as the 

GNPS molecular network has created a new resource for natural product discovery, there exists a 

large body of still unknown bioactive compounds represented by various spectra in current studies 

and the GNPS network4 (less than one percent of GNPS spectra have been identified so far). As 

the existing database search approaches are limited to identifying known cyclopeptides and their 

variants, de novo cyclopeptide recognition and sequencing is needed to reveal the “dark matter of 

cyclopeptidomics.”  

To address this problem, we developed CycloNovo, an algorithm for de novo recognition 

and sequencing of cyclopeptides. The de novo recognition feature relies on the idea of spectral 

convolutions and can be used as a stand-alone tool for selection and prioritization of cyclopeptides 

in large metabolomics datasets for further downstream analyses. Using this feature, we analyzed 

the GNPS molecular network that contains mass spectra generated from various isolated and 

environmental samples. While only 81 out of 1,257 known cyclopeptides (42 out of 387 known 

cyclofamilies) have been identified in the GNPS network5. CycloNovo revealed over 400 unknown 

cyclopeptides from 176 novel cyclofamilies by analyzing only ≈51 million GNPS spectra from 

already published datasets, illustrating that the currently known cyclopeptides represent just a 

small fraction of cyclopeptides whose spectra have been already deposited into the GNPS network.  

After de novo recognition of cyclospectra, we showed how CycloNovo de novo sequences 

those cyclospectra by utilizing a de Bruijn graph representation of them. This representation 

enables CycloNovo to find a small set of potential peptide sequences, by finding cycles in 

reconstructed graphs, which it then scores against the input spectra. We applied CycloNovo to 
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CYCLOLIBRARY and S.VULGRAIS datasets and demonstrated that CycloNovo correctly 

sequenced many known cyclopeptides in a blind mode and reconstructed novel cyclopeptides that 

were validated using transcriptomics data. This analysis therefore reports the first cyclopeptides 

found through fully automated de novo sequencing of mass spectra.  

 Our CycloNovo analysis of the HUMANSTOOL dataset demonstrated that several 

bioactive cyclopeptides from consumed food remain stable throughout the proteolytic, absorptive 

and microbial ecosystem provided by the gastrointestinal system and thus may be interacting with 

the human microbiome. Our analysis also found cyclospectra originating from the branch cyclic 

peptide massetolide produced by an indigenous member of the human microbiota and confirmed 

by metagenomics analysis. In addition, it revealed a large number of still unknown cyclopeptides 

in the human gut that are either a part of the human diet or are products of the human gut 

microbiome and provided the composition of some of these peptides including a completely novel 

family of cyclopeptides present in the stool samples.  

In this study, we successfully applied CycloNovo to spectral datasets generated from 

cultured and environmental samples of different origins and phyla and produced in different 

laboratories and demonstrated how CycloNovo can be used for de novo analysis and sequencing 

of cyclopeptides in metabolomics datasets. As with all mass spectrometry-based tools that do not 

use stable isotope labeling45, CycloNovo is unable to infer stereochemical information and to 

distinguish leucine from isoleucine. Moreover, CycloNovo is unable to differentiate between 

similar cyclopeptides (like cyclopeptides with some rearranged amino acids) that yield near 

identical theoretical spectra and are not discernable using our PSM function. However, in these 

cases, deriving further information about the final structure (for example via nuclear magnetic 

resonance) is simplified when some partial sequence information is available through CycloNovo 
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predictions. See Methods section for more information about other possible failure modes of 

CycloNovo and the limitations of our study. 

1.5. METHODS  

Spectral convolutions.  

We represent each spectrum Spectrum={s1, …, sn} as its spectral diagram, the set of n×(n-

1)/2 2-dimensional points (si, sj) for 1 ≤ i <j ≤ n. Given a mass a, the convolution of Spectrum with 

offset a (denoted convolution(Spectrum, a)) is equivalently defined as the number of points in the 

diagonal (45°) band y ≈ x+a in the spectral diagram. Figure 1.12 presents the spectral diagram of 

TheoreticalSpectrum(AGCD) and reveals that bands corresponding to its amino acids (71, 57, 103, 

and 115 Da) are the most populous (contain a large number of points as compared to other bands), 

meaning convolution(Spectrum,a) is high when a is the mass of amino acids A, G, C, or D. For 

example, TheoreticalSpectrum(AGCD) includes five pairs of fragment masses ((G,AG), (D,AD), 

(AGC,GC), (CD,CDA), and (GCD,AGCD)) that are located on the “blue” diagonal y = x+mass(A) 

in Figure 1.12. 
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cluster 
mass 

cluster         
multiplicity 

cluster 
distance 

113.07 12 0.006 (I/L) 
128.08 7 0.006 (K) 
56.02 6 - 
186.10 6 0.029 (W) 
71.04 5 0.004 (A) 
147.07 4 0.001 (F) 
156.10 4 0.002 (R) 
184.11 4 - 
98.08 4 - 

169.11 4 - 
57.05 4 0.027 (G) 

Figure 1.12. The spectral diagram of TheoreticalSpectrum(AGCD) (left) and the list 
of clusters in the convolutions of SpectrumSurugamide (right). (Left) The highlighted lines 
with slope 1 correspond to the masses of the amino acids, A, G, C, and D and contain 5, 9, 
5, and 6 points, respectively. (Right) Clusters in the convolutions of SpectrumSurugamide in 
the decreasing order of their multiplicities. Only clusters with masses between 55 and 190 
Da and multiplicity exceeding 3 are shown. Cyclopeptidic clusters are shown in bold and 
cyclopeptidic clusters with masses similar to the masses of amino acids in surugamide are 
shown in red. Cluster distance is defined as the distance between the cluster mass and a 
closest mass of a selected amino acid.  

Figure 1.12 lists high-multiplicity clusters for SpectrumSurugamide  and shows that many of 

them have masses that are similar to the masses of amino acids in surugamide. Since populous 

diagonals (high-multiplicity clusters) in the spectral diagram reveal amino acids in the unknown 

cyclopeptide that gave rise to an experimental spectrum, we use them to generate the set of putative 

amino acids22.  

The spectral diagrams for TheoreticalSpectrum(Surugamide) and experimental 

SpectrumSurugamide highlight four populous diagonal bands y ≈ x+a, where a is the mass of one of 

four amino acids in surugamide with integer masses 71, 113, 128, and 147. These populous bands 

in the spectral diagram reveal the masses of amino acids in an unknown cyclopeptide that gave 

rise to an experimental spectrum. Figure 1.13 illustrates that each amino acid in surugamide results 

in a populous diagonal in the spectral diagram of SpectrumSurugamide. For each constructed cluster 
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(diagonal band in the spectral diagram), we consider all pairs of masses in Spectrum that 

contributed to this cluster and form a band as the set of these k pairs.  

 
Figure 1.13. The spectral diagrams of the TheoreticalSpectrum(Surugamide) (left) and 
SpectrumSurugamide (right). The highlighted lines with slope +1 have y-intercepts equal to 
the masses of the constituent amino acids of surugamide (A, L/I, K, and F). Amino acids 
A, L/I, K, and F correspond to populous diagonals containing 11, 23, 11, and 11 points 
(left figure) and 5, 14, 8, and 4 points (right figure), respectively. 

We define the cluster diameter as the difference between its maximum and minimum 

elements. Figure 1.14 presents the band for the cluster with multiplicity 8 and mass 128.09 

(diameter 0.03) in the spectral convolution of SpectrumSurugamide and reveals that the 8 elements of 

this band can be partitioned into 7 groups of closely located points. We are interested in the number 

of such groups (rather than the raw cluster multiplicities) since experimental spectra often contain 

satellite masses resulting from neutral losses and isotopic peaks. For example, in addition to the 

integer mass 242 Da corresponding to the peptide IK, SpectrumSurugamide also contains the integer 

mass 225 Da corresponding to the loss of NH3 from this peptide.  
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Figure 1.14. A band with multiplicity eight in SpectrumSurugamide (cluster with mass 128.09 and 
diameter 0.03). (top) Coordinates of the points in the band. Since the difference between the x-
coordinates and y-coordinates of the two points shown in bold match the mass of hydrogen, these 
two points are clustered together in this band. (bottom) The same band in the spectral diagram for 
SpectrumSurugamide. The points of the band can be partitioned into seven groups of closely located 
points: six singleton groups and one group with two elements. 

Since satellite masses artificially inflate cluster multiplicities, there is a need to reduce 

biases caused by these masses. We thus define the set of common satellite offsets (1 Da (H), 18 

Da (H2O), 17 Da (NH$), and 28 Da (CO)) and perform additional single linkage clustering in each 

populous band by combining pairs of masses in a single cluster if both their x-coordinates and y-

coordinates differ by a satellite offset. We redefine the concept of cluster multiplicity as the number 

of the resulting clusters in the band (Table 1.9) 

  

𝑦 ≈ 𝑥 + 128 (185.13,313.22) (261.17,389.26) (298.21,426.28) (374.24,502.32) 
(446.30,574.38) (445.28,573.35) (487.35,615.42) (784.52,912.62) 
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Table 1.9. List of clusters in the spectral convolution of SpectrumSurugamide. Clusters are shown 
in the decreasing order of their multiplicities (only clusters with multiplicity at least 2 are shown). 
Cyclopeptidic clusters are shown in bold and cyclopeptidic clusters with masses similar to masses 
of amino acids in surugamide are shown in red. 

cluster  
 mass 

 multiplicity 
after satellite removal 

multiplicity before 
satellite removal 

cluster  
diameter  cluster distance  

113.078 12 14 0.106 0.006 (I/L) 
128.089 7 8 0.032 0.006 (K) 
56.025 6 6 0.033 - 
186.108 6 6 0.077 0.029 (W) 
71.041 5 5 0.022 0.004 (A) 
147.069 4 4 0.027 0.001 (F) 
156.099 4 5 0.036 0.002 (R) 
184.106 4 5 0.032 - 
98.079 4 4 0.031 - 
169.11 4 5 0.01 - 
57.049 4 4 0.02 - 
70.042 3 3 0.01 - 
132.058 3 3 0.006 - 
133.584 3 3 0.013 - 
183.116 3 3 0.024 - 
168.159 3 3 0.023 - 
52.049 3 3 0.005 - 
96.035 3 3 0.017 - 
165.115 3 3 0.004 - 
76.041 3 4 0.013 - 
73.08 3 3 0.017 - 

101.053 3 3 0.011 0.005 (T) 
167.886 3 4 0.024 - 
189.105 2 3 0.009 - 
57.018 2 2 0.006 0.004 (G) 
114.09 2 2 0.01 - 
45.041 2 2 0.012 - 

 

Recognizing Cyclospectra.  

A cluster in the spectral convolution is called frequent if its multiplicity exceeds the cluster 

multiplicity threshold (the default threshold for SpectrumSurugamide is 7). CycloNovo classifies a 

spectrum as a cyclospectrum if the number of frequent cyclopeptidic clusters in its spectral 

convolution is at least minNumberFrequentClusters (the default value 

minNumberFrequentClusters=2). Since there exist two frequent cyclopeptidic clusters for 

SpectrumSurugamide (corresponding to amino acids I/L and K), it is classified as cyclopeptidic (Figure 
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1.12). In addition to SpectrumSurugamide, out of 938 spectra passing the preprocessing step in the 

small spectral dataset for Streptomyces CNQ329 that contains SpectrumSurugamide, CycloNovo 

recognized only one cyclospectrum, also originated from surugamide. 

 The challenge of distinguishing cyclospectra from spectra of linear peptides and polymers. 

Fragmentation of linear peptides typically results in prefix (e.g., b-ions) and suffix (e.g., y-ions) 

ions and rarely generates internal ions. However, spectra of some linear peptides feature a 

substantial number of internal ions, leading to a possibility to erroneously classify them as 

cyclospectra. Another source of a potential misclassification of some spectra as cyclospectra are 

polymers that represent a common source of contamination in mass spectral datasets. Since 

polymers are made up of repeated units, the spectral convolution of a polymer spectrum typically 

has high-multiplicity clusters (for clusters corresponding to masses of the repeat units). In some 

cases, the adducts of these repeat units form high multiplicity clusters with masses equal to the 

masses of a selected amino acid, triggering a possibility to misclassify a polymer spectrum as a 

cyclospectrum.  

LINEARLIBRARY and POLYMERLIBRARY datasets. To ensure that CycloNovo does not 

misclassify spectra of linear peptides and polymers as cyclospectra,  

we analyzed two spectral datasets described below:  

• LINEARLIBRARY is a set of 105,871 Collision-Induced Dissociation (CID) tandem 

mass spectra of distinct linear peptides from the MassIVE Knowledge-Based 

(MassIVE-KB) spectral library46 of linear peptides distilled from all human proteomics 

data in the MassIVE database. In particular the CID library under MassiveIVE-KB is 

the annotated spectra from CID datasets generated from a collection of over 330,000 

synthetic tryptic peptides representing almost all of the canonical human gene products 
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as a synthetic human proteome collection (Zolg et al., Nature Methods, 2017). In this 

study, pools of synthetic peptides were subjected to LC-MS/MS analysis using CID 

fragmentation method coupled with ion trap or Orbitrap readouts. 

• POLYMERLIBARY is a set of 448 tandem spectra generated from polyethylene glycol 

(MSV000081544).  

These spectral datasets have spectra with the precursor masses varying between 500 Da 

and 2000 Da and the charges at most 2.  

Additional tests for recognizing cyclospectra. To distinguish cyclospectra from spectra 

of linear peptides and polymers, CycloNovo only classifies a spectrum as cyclopeptidic if it passes 

additional tests described below.  

• High multiplicity cyclopeptidic clusters test (distinguishing cyclospectra from spectra 

of linear peptides). As described in the main text, CycloNovo first selects a spectrum for 

further analysis if its spectral convolution has at least minNumberFrequentClusters 

frequent cyclopeptidic clusters, i.e., clusters with multiplicities exceeding the cluster 

multiplicity threshold. Since the cluster multiplicities typically increase with the increase 

in the length of a peptide, this threshold increases with the increase in the peptide mass. 

We thus defined the cluster multiplicity threshold as α×precursorMass+β (see below for 

selecting parameters α and β).  

• Polymer test (distinguishing cyclospectra from polymer spectra). For each 

cyclospectrum Spectrum, CycloNovo analyzes clusters with masses of repeat units 

observed in background contamination from polyethylene glycol, NaCl, polypropylene 

glycol, and trimethylsiloxane (44.03, 57.96, 58.04, and 72.04 Da, respectively). We refer 

to these masses as polymeric units47 and refer to clusters with masses equal to polymeric 
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units as polymer-clusters. CycloNovo classifies a spectrum as polymeric if there exist at 

least minNumberFrequentClusters polymer-clusters with multiplicities at least the cluster 

multiplicity threshold. Polymeric spectra are filtered out from the set of found cyclospectra. 

• cycloIntensity test. For each cyclospectrum, CycloNovo considers all frequent 

cyclopeptidic clusters. For each such cluster of mass a, we consider all pairs of masses x 

and y in the spectrum contributing to this cluster, i.e., satisfying the condition y≈x+a. The 

cyclointensity of the spectrum, referred to as cycloIntensity, is defined as the total intensity 

of all such peaks (across all frequent cyclopeptidic clusters) divided by the total intensity 

of all peaks in Spectrum. Spectra with cyclointensity below the cycloiIntensity threshold 

are filtered out.  

• k-merScore test. CycloNovo computes the k-merScore, the score of the highest-scoring 

k-mer that contributes to the de Bruijn graph of the spectrum and filters out cyclospectra 

with k-merScore below the k-merScore threshold.  

Selecting thresholds for recognizing cyclospectra. To select the default value of cluster 

multiplicity threshold=α×precursorMass+β, we varied parameters α (from 0.005 to 0.02) and β 

(from -5 to +5) and analyzed all found cyclospectra in the CYCLOLIBRARY, 

LINEARLIBRARY, and POLYMERLIBARY datasets (Figure  1.15). Despite its smaller size, 

CYCLOLIBRARY is the only dataset where CycloNovo recognizes cyclospectra for all analyzed 

values of α and β. Since α=0.07 and β=-1 yielded the largest number of recognized cyclospectra 

in CYCLOLIBRARY (46 out of 81) and no cyclospectra in the LINEARLIBRARY and 

POLYMERLIBRARY datasets (Figure  1.15) we selected these values as the default parameters.  
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Figure 1.15.  Number of spectra passing both the “high multiplicity cyclopeptidic 
cluster” and the “polymer”. Number of spectra in CYCLOLIBRARY, 
LINERALIBRARY, and POLYMERLIBRARY datasets passing the two tests using 
various values of parameters α and β, are shown. 

Figure 1.16 presents the values of cycloIntensity and k-merScore for each spectrum in the 

CYCLOLIBRARY, LINEARLIBRARY, and POLYMERLIBRARY datasets and reveals a 

separation between the former and the two latter datasets with respect to these two parameters. 

CycloNovo thus classifies a spectrum as a cyclospectrum if its cycloIntensity exceeds the 

cycloIntensity threshold (60%) and its k-merScore exceeds the k-merScore threshold (5). 45 

spectra in the CYCLOLIBRARY datasets, that pass all four tests described above, are classified 

as cyclospectra.  
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Figure 1.16. cycloIntensity and k-merScore values in various annotated datasets. Each 
point presents the cyclointensity (x-axis) and k-merScore (y-axis) values for a spectrum in 
the entire CYCLOLIBRARY, POLYMERS, and LINEARLIBRARY datasets (k=5). 
Colors highlight spectra in different datasets. 

We also investigated how CycloNovo’s ability to recognize a cyclospectrum is affected by 

the fragmentation quality of the corresponding PSM (measured by the P-value of this PSM). For 

each spectrum in the CYCLOLIBRARY dataset, we identified the minimum value of the 

parameter α that leads to classifying this spectrum as cyclopeptidic (for β=-1). Figure  1.17 

illustrates that well-fragmented spectra can be recognized even with more restrictive threshold 

values (larger values of α).  

 
Figure 1.17. Dependence between the P-values and the parameter alpha (for 𝜷 = −𝟏) 
that leads to correctly recognizing each cyclospectrum in CYCLOLIBRARY. Each 
point represents a spectrum in the CYCLOLIBRARY dataset. The x-axis shows the P-
value of the PSM for that spectrum and the y-axis shows the minimum value of the 
parameter α that leads to classifying this spectrum as a cyclospectrum. The points 
corresponding to cyclospectra recognized with the default parameter α=0.07 are shown in 
red. 
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Estimating the number of distinct cyclopeptides and cyclofamilies.  

Spectral datasets often contain multiple spectra originating from the same compound. 

CycloNovo clusters similar cyclospectra using MS-Cluster24 and estimates for the number of 

distinct cyclopeptides as the number of constructed clusters. CycloNovo further constructs the 

spectral network of cyclospectra using SpecNets3 and estimates for the number of distinct 

cyclofamilies as the number of connected components in this network.  

Limitations of CycloNovo. 

CycloNovo is only applicable to high-resolution CID MS/MS experiments (<0.02 Da 

window). Also, it has been only on MS/MS data generated by ion trap or Orbitrap instruments. In 

this paper, we showed that CycloNovo can analyze spectra representing cyclopeptides from RiPP 

orbitides and cyanobactins RiPP classes. CycloNovo has also been successfully applied to non-

ribosomal cyclopeptide (or lipopeptides) produced by bacterial organisms from many genera 

including Pseudomonas, Bacilli, cyanobacterial genera Lyngbya and Anabaena, actinobacteria 

genera Streptomyces, Narcodia, etc. In what follows we describe a list of challenges and failure 

modes for CycloNovo in recognizing or sequencing cyclospectra. Any classes of cyclopeptide that 

are prone to any of the following characteristics are less likely to be successfully analyzed by 

CycloNovo: 

A. Cyclopeptide has monomers not included in the initial amino acid list: either they have 

modifications that are not considered by CycloNovo and/or they include non-proteinogenic 

amino acids not considered by CycloNovo. 

B. Cyclopeptide includes side chains (or lipid chain). Specifically, CycloNovo often fails to 

reconstruct branch-cyclic peptides with long side chains (peptidic/non-peptidic) or 
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multiple side chains, where only a small portion of amino acids are appearing in their ring, 

especially if the total mass of the ring is smaller compared to the total mass of the 

cyclopeptide. The spectral convolution analysis step of such peptides typically fails 

because their cyclopeptidic convolution does not meet the threshold set by their peptide 

mass as the mass representing the ring is much smaller than the intact peptide mass. 

C. Cyclopeptide has many fragments with similar masses (hence similar fragments): since the 

number of unique peaks in the spectrum matching the theoretical spectrum of such 

cyclopeptide is low, there is insufficient amount of information in their corresponding 

spectrum. Therefore, the cyclospectrum might fail the spectral convolution or k-merScore 

tests. 

D. Cyclopeptide is a hybrid compound and contains large non-peptidic elements, for example 

polyketide-NRP hybrid or a lipopeptide with large lipid chains (see the explanation B about 

side chains above) 

E. Cyclopeptide includes bonds other than amide bonds (for example disulfide bonds).  

F. Cyclopeptide only is represented in spectra with charge states larger than 2: CycloNovo 

only consider spectra with charge states 1 and 2.  

Table 1.10 provides information about the seven peptides that CycloNovo failed to 

reconstruct. Note that, although the mentioned features hinder the recognition and sequencing of 

cyclospectra by CycloNovo, CycloNovo may perform well on cyclopeptides with above 

conditions. We distinguish between simple cyclopeptides (like surugamide) and complex peptides 

such as peptides with monomers not included in the initial set of amino acids or the ones with a 

complex backbone structure such as branch-cyclic peptides, lipopeptides, depsipeptides and 

others. CycloNovo has two main applications: recognizing a cyclospectrum and sequencing it. 
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With respect to sequencing, CycloNovo can output either a complete (for simple cyclopeptides) or 

partial cyclopeptide reconstruction (for complex cyclopeptides). Table 1.3 shows the number of 

correct k-mers predicted by CycloNovo (using only the default set of amino acids) versus the 

length of the cyclopeptide. This column highlights that CycloNovo reports at least one correct k-

mer for many lipopeptides (19 out of 34) although it is not designed for complex compounds. With 

respect to cyclospectrum recognition, CycloNovo successfully recognized many spectra that 

originated from complex peptides as cyclospectra (see Table 1.1). Although we were able to 

predict many putative cyclopeptides with extremely low P-values and confirmed several of them 

with accompanying datasets, but we did not have the resources to experimentally validate our 

putative cyclopeptides through NMR or cyclopeptide synthesis. 
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Table 1.10. Seven cyclopeptides for which CycloNovo failed to correctly sequence the 
corresponding cyclospectra from CYCLOLIBRARY. CycloNovo failed to predict all 
amino acids in five of these cyclopeptides and failed to predict some correct k-mers in two 
of these cyclopeptide since their score was below the threshold. For each peptide, we list 
either the k-mer or the mass of the amino acid that CycloNovo failed to predict (k-mers are 
shown as a sequence of nominal masses of amino acids in bold). In cases where an amino 
acid was missed, the composition of amino acid is presented under column ‘elemental 
compositions of missing amino acids’. The third column presents the elemental 
composition of missed amino acids. In one case when CycloNovo was able to generate a 
reconstruction (arthrofactin), the highest-scoring reconstruction with sequence of nominal 
masses 115 113 101 115 170 113 113 87 87 113 113 113 and score 20 represents a 
rearrangements of the correct peptide 115 113 170 115 113 113 87 113 87 113 113 101 
with score 17 (differently arranged amino acid mases in the correct cyclopeptide are shown 
in bold). For each cyclopeptide, the last column presents the type of experimental or 
structural challenges that contributed to CycloNovo’s failure for that peptide, as listed and 
labeled above. 

peptide ID missing k-mer or 
amino acid 

elemental composition of 
missing amino acids 

Structural 
Challenges 

arthrofactin 113 113 101 115 113 - C, G 

bacilomycin D5 97.05 C5H7NO C 

dolastatin 1-31 127.1 C7H13NO B, E 

dolastatin 12 114 113 85 141 161 - B, C, E 

puwainaphycin A 325.36 C19H35NO3 A, B, E 

puwainaphycin C 317.21 C17ClH32NO2 A, B, E 

SCH-378167 143.06 and 147.07 C6H9NO3 and C9H9NO A 
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Computing P-values for de novo generated Peptide-Spectrum-Matches.  

The PSM score, while informative, is biased with respect to length. Therefore, CycloNovo 

computes a P-value to evaluate the statistical significance of each individual PSM formed. Given 

a PSM(P,S) between a cyclopeptide P and a spectrum S, MS-DPR13 computes the probability (p-

value) that a random peptide forms a PSM with the spectrum S with a score that is greater than or 

equal to the score of PSM(P,S). Therefore, the p-value statistics is not biased by length.   

To estimate the p-value of a PSM, one can use Monte Carlo simulations by randomly 

generating a population of billions of peptides and estimating the distribution of PSM scores of all 

peptides against S, using the distribution of PSM scores in this population. But this approach 

becomes prohibitively time-consuming for estimating very low p-values, i.e., when calculating the 

probabilities of extremely rare events. For example, estimating p-values as low as 10-12 requires 

calculating PSM scores of trillions of randomly generated peptides. Therefore, this method is 

impractical in mass spectrometry experiments where PSMs with p-values as low as 10-12 are 

common (Kim and Pevzner, Nature Communications, 2014). 

To overcome this challenge, MS-DPR uses a method for evaluating probability of rare 

events (peptides yielding “high” PSM scores) called multilevel splitting for Markov Chain Monte 

Carlo sampling. This method that was originally developed in nuclear physics, rapidly 

approximates an extreme tail of the probability distribution of PSM scores against a spectrum S. It 

constructs a Markov Chain over a space of PSM scores of millions of peptides similar to P (in 

molecular weight and length) against S. It then uses selection mechanisms under a multilevel 

splitting implementation that favors the trajectories in this Markov chain deemed likely to lead to 

rare events. Using this method, it dedicates a greater fraction of the computational effort to a 
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portion of the peptide space that leads to higher PSM scores against S and therefore can efficiently 

estimate the total probability of all peptides with high scores in the constructed Markov chain. 

Note that computing p-values of de novo reconstructions of linear peptides does not make 

sense since there exists an efficient dynamic programming algorithm for finding a linear peptide 

with maximum score against a spectrum S26. Indeed, the peptide with maximum score against a 

spectrum S, over the set of all possible peptides, corresponds to the most extreme point in the 

probability distribution and therefore its P-value is exactly 0.  

In contrast, since efficient algorithms for finding a cyclopeptide with the maximum score 

against a spectrum S remain unknown (CycloNovo is a heuristic approach that does not guarantee 

finding the highest-scoring cyclopeptide), CycloNovo reconstructions have to be evaluated with 

respect to p-values. Hence, under the assumption that the reconstructed cyclopeptide did not reach 

the maximum score among all peptides (with ANY amino acids), using MS-DPR provides a 

statistical measure for de novo cyclopeptide sequencing by evaluating how “close” the score of the 

reconstructed cyclopeptide is to the maximum score in the space of all peptides. Note that this is 

consistent with calculating P-values in database search in traditional “linear” proteomics, where 

the assumption is that the exact peptide generating the spectrum (i.e. the peptide with the maximum 

score) may not be present in the database.   

 
Availability. CycloNovo is available as both a stand-alone tool 

(https://github.com/bbehsaz/cyclonovo) and as a web application 

(http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp). All described datasets are 

available through the corresponding public repositories.  
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CHAPTER 2.  

Integrating Metagenomics and Metabolomics for Scalable Non-

Ribosomal Peptide Discovery 

2.1. ABSTRACT 

Non-Ribosomal peptides (NRPs) represent a biomedically important class of natural 

products that include a multitude of antibiotics and other clinically used drugs. NRPs are not 

directly encoded in the genome but are instead produced by metabolic pathways encoded by 

biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative 

NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct 

and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, 

without knowing which modifications exist in the sample. To address this challenge, we developed 

NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass 

spectrometry datasets. NRPminer identified 59 known and 121 novel NRPs from different 

environments, including four completely novel NRP families from soil-associated microbes and a 

novel NRP from human microbiota. We confirmed the anti-parasitic activities and the structure of 

two of these novel NRP families using direct bioactivity screening and nuclear magnetic resonance 

spectrometry, thus demonstrating the power of NRPminer for discovering novel bioactive NRPs. 
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2.2. INTRODUCTION  

Non-ribosomal peptides. Microbial natural products represent a major source of bioactive 

compounds for drug discovery1. Among these molecules, Non-Ribosomal peptides (NRPs) 

represent a diverse class of natural products that include antibiotics, immunosuppressants, 

anticancer agents, toxins, siderophores, pigments, and cytostatics1–4. NRPs have been reported in 

various habitats, from marine environments5 to soil3 and even human microbiome6–9. However, 

the discovery of novel NRPs remains a slow and laborious process because NRPs are not directly 

encoded in the genome and are instead assembled by Non-Ribosomal Peptide Synthetases 

(NRPSs).  

NRPSs are multi-modular proteins that are encoded by a set of chromosomally adjacent 

genes called biosynthetic gene clusters (BGCs)10,11. Each NRP-producing BGC encodes for one or 

more genes composed of NRPS modules. Together the NRPS modules synthesize the core NRP in 

an assembly line fashion, with each module responsible for adding one amino acid to the growing 

NRP. Each NRPS module contains an Adenylation domain (A-domain) that is responsible for 

recognition and activation of the specific amino acid12 that can be incorporated by that module 

through the non-ribosomal code10 (as opposed to the genetic code). At minimum, each NRPS 

module also includes a Thiolation domain (T-domain) and a Condensation domain (C-domain) 

that are responsible for loading and elongation of the NRP scaffold, respectively. Additionally, an 

NRPS module may include additional domains such as Epimerization domain (E-domain) or dual-

function Condensation/Epimerization domain (C/E domain). An NRPS assembly line refers to a 

sequence of NRPS modules that together assemble a core NRP. The core NRP often undergoes 

post-assembly modifications (PAMs) that transform it into a mature NRP. The order of the 
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modules in an NRPS assembly line can be different from the order of NRPS modules encoded in 

the BGC through iterative use of NRPS modules.  

NRP discovery via genome mining. In the past decade, genome mining methods have 

been developed for predicting the NRP sequences from their BGC sequences13,14. Genome mining 

tools, such as antiSMASH15, start by identifying the NRPS BGCs in a microbial genome using 

Hidden Markov Models (HMMs). Afterwards, they identify NRPS modules and predict the amino 

acids incorporated by the A-domain in each module using the substrate prediction algorithms 

(such as NRPSpredictor213 or SANDPUMA16) that are based on machine learning techniques 

trained on a set of A-domains with known specificities14,16. For each observed A-domain, these 

algorithms predict a set of amino acids potentially recruited by that A-domain, along with the 

specificity score reflecting confidence of each amino acid prediction. The use of genome mining 

is becoming increasingly popular for discovering novel NRPsover the past decade17–19, 

demonstrating the potential of (meta)genomic projects for NRP discovery.  

Although genome mining tools like SMURF20 and antiSMASH15 greatly facilitate BGC 

analysis, the core NRPs (let alone mature NRPs) for the vast majority of sequenced NRP-

producing BGCs (>99%) remain unknown21,22. Identification of NRP-producing BGCs without 

revealing the molecular products encoded by these BGCs does not capture their full potential for 

discovering novel NRPs23. Thus, integrating (meta)genome mining with metabolomics is 

necessary for realizing the true promise of large-scale NRP discovery4. However, the existing 

genome mining strategies fail to reveal the chemical diversity of NRPs. For example, these 

methods fall short in correctly identifying PAMs, which are a unique feature of NRPs that make 

them the most diverse class of natural products24 and play a crucial role in their mode of action25,26. 

As a result, the promise of large-scale NRP discovery has not yet been realized27. 
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Computational challenges in NRP discovery. Discovery of novel NRPs involves a 

multitude of challenges such as PAM identification (with exception of methylation and 

epimerization15, genome mining tools fail to identify PAMs) and accounting for substrate 

promiscuity of A-domains. The substrate promiscuity in NRP biosynthesis refers to the ability of 

an A-domain in an NRPS to incorporate several different amino acids into the NRP. The existing 

genome mining tools often predict a set of incorporated amino acids and output a ranked list of 

multiple amino acids for each A-domain. Allowing for all amino acid possibilities for each A-

domain in an NRPS module results in a large number of putative NRPs predicted from each BGC. 

Without additional complementary data (such as mass spectra of NRPs), the genome mining 

approaches cannot identify the correct NRP among the multitude of putative NRPs27,28.  

Another challenge in discovering novel NRPs is due to the non-canonical assembly lines. 

While in many NRPSs each A-domain incorporates exactly one designated amino acid and the 

sequence of amino acids in NRP matches the order of the A-domains in BGC29–31 (see Figure 

2.1.a), several studies revealed that many NRP families violate this pattern7,29,31–37. Since an NRPS 

may have multiple assembly lines38, one needs to consider different combinations of NRPS units 

encoded by each open reading frames (ORFs) for finding the core NRPs25,38. In some non-

canonical assembly lines, A-domains encoded by at least one ORF may be incorporated multiple 

times (in tandem) in the NRPS (Figure 2.1.b)7,33–35. For example, during biosynthesis of 

rhabdopeptides33,37 and lugdunin7, a single ORF encoding only one Val-specific A-domain loads 

multiple Val in the final NRPs. Moreover, in some NRPS assembly lines, the A-domains in some 

ORFs do not contribute to the core NRP31,36,39 (see Figure 2.1.c). For example, surugamide 

BGC31,40,41,46 from Streptomyces albus produces two completely distinct NRPs through different 

non-canonical assembly lines. The non-canonical biosynthesis of surugamide makes its discovery 
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particularly difficult as one need to account for these non-canonical assembly lines by generating 

different combinations of ORFs in the process of building a database of putative NRPs for each 

BGC.  

 
 

 
Figure 2.1. Schematic examples of canonical and non-canonical NRPS assembly lines. 
Squares represent A-domains and circles represent amino acids (different amino acids are 
shown by different colors). Each amino acid is colored by the same color as the 
corresponding A-domain. In each panel, the final NRP is represented by its amino acids 
with amide bonds shown with black lines. (a) A canonical assembly line where each A-
domain adds one amino acid to the growing structure. (b) A non-canonical assembly line 
where a single A-domain (on one ORF) loads a series of three amino acids (the loop shows 
the repeat of A-domain on the assembly line) to the growing structure also referred to as 
stuttering in polyketide synthases43,44. (c) A non-canonical assembly line where the A-
domain appearing on one ORF is skipped in the final NRP. 

 
Other hurdles include lack of sufficient training data for many A-domains, which can lead 

to specificity mispredictions16 and complications in the genome mining due to fragmented 

assemblies (e.g. failure to capture a BGC in a single contig45). These challenges, in combination 
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with those mentioned above, make it nearly impossible to accurately predict NRPs based solely 

on genome mining. The problem gets even more severe for NRP discovery from microbial 

communities.  

 Peptidogenomics approaches to NRP discovery. To address these challenges, multiple 

peptidogenomics approaches have been developed for discovering novel peptidic natural products 

by combining genome mining and MS information28,46. These approaches often use antiSMASH14 

to find all NRPS BGCs in the input genome, use NRPSPredictor213 to generate putative core NRPs 

encoded by each BGC, and attempt to match mass spectra against these putative NRPs. Kersten et 

al.46 described a peptidogenomics approach based on manually inferring amino acid sequence tags 

(that represent a partial sequence of an NRP) from mass spectra and matching these tags against 

information about the substrate specificity generated by NRPSpredictor213. Nguyen et al.47,48 and 

Tobias et al.30 presented a manual approach for combining genome mining with molecular 

networking. In this approach, which is limited to the identification of novel variants of known 

NRPs, molecules present in spectral families with known compounds are compared to BGCs. 

Medema et al.38 complemented the manual approach from Kersten et al.46 by the 

NRP2Path38 tool for searching the sequence tags against a collection of BGCs. NRP2Path starts 

with a set of sequence tags manually generated for each spectrum, considers multiple assembly 

lines for each identified BGC, and forms a database of all possible core NRPs for this BGC. Then, 

NRP2Path38 computes a match score between each tag and each core NRP (using the specificity 

scores provided by NRPSpredictor213) and reports high-scoring matches as putative core NRPs. 

The success of this approach relies on inferring long sequence tags of 4-5 amino acids, which are 

usually absent in spectra of non-linear peptides. Such long sequence tags are often missing in NRPs 

with macrocyclic backbones and complex modifications, limiting the applicability of 
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NRP2Path46,49. Moreover, NRP2Path is not able to identify enzymatic modifications (e.g. 

methylation) and PAMs in the final NRPs and is unable to predict the backbone structure of the 

mature NRPs (e.g. linear/cyclic/branch-cyclic). 

Mohimani et al.28 developed an automated NRPquest approach that takes paired MS and 

genomic datasets as input and searches each mass spectrum against all structures generated from 

putative core NRPs to identify high-scoring Peptide-Spectrum Matches (PSMs). NRPquest 

leverages the entire mass spectrum (instead of just the sequence tags) to provide further insights 

into the final structure of the identified NRPs. They proposed using modification-tolerant search 

of spectral datasets against the core NRPs structures, for identifying PAMs in a blind mode (that 

is without knowing which PAMs exists in the sample). This is similar to identifying post-

translational modifications in traditional proteomics50. The presence of covalent modifications in 

peptides affects the molecular weight of the modified amino acids, therefore, the mass increment 

or deficit can be detected using MS data41,50. However, as NRPquest uses a naïve pairwise scoring 

of all NRP structures against all mass spectra for PAM identification, it is prohibitively slow when 

searching for PAMs28. Furthermore, NRPquest does not handle non-canonical NRPS assembly 

lines and it does not provide statistical significance of identified NRPs, a crucial step for large-

scale analysis.  

On the other hand, development of high-throughput MS-based experimental and 

computational natural products discovery pipelines27 such as the Global Natural Products Social 

(GNPS) molecular networking51, PRISM52, GNP53, RODEO54 , Dereplicator+55, CSI:FingerID56, 

NAP57 and CycloNovo49 have permanently changed the field of peptide natural product discovery. 

GNPS project already generated nearly half a billion of information-rich tandem mass spectra 

(MS), an untapped resource for discovering new molecules. However, the utility of the GNPS 
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network is mainly limited to the identification of previously discovered molecules and their 

analogs. Currently, only about 5% percent of the GNPS spectra are annotated51, emphasizing the 

need for novel algorithms, like NRPminer, for annotating such large spectral datasets. 

To address these shortcomings, we developed NRPminer, a scalable modification-tolerant 

tool for analyzing paired MS and (meta)genomic datasets (Figure 2.2). Unlike NRPquest, 

NRPminer uses the specificity scores of the amino acids appearing in core NRPs to perform an 

efficient search of all spectra against all core NRPs. In addition to predicting the amino acid 

sequence of an NRP generated by a BGC, NRPminer also analyzes various non-canonical 

assembly lines and efficiently predicts potential PAMs and backbone structures. Currently 

NRPminer is limited to the prediction of total mass and site of modification (rather than complete 

chemical structure) of PAMs. Such information allows researchers to characterize known PAMs 

based on their total mass, making it possible for researchers to prioritize NRPs with novel PAMs. 

After searching only four MS datasets in GNPS against their corresponding reference genomes, 

NRPminer discovered 180 NRPs representing 18 distinct NRP families, including four novel NRP 

families from Amycolatopsis and Xenorhabdus species.  
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Figure 2.2. NRPminer pipeline. (a) Predicting NRPS BGCs using antiSMASH14. Each 
ORF is represented by an arrow, and each A-domain is represented by a square, (b) 
predicting putative amino acids for each NRP residue using NRPSpredictor213, colored 
circles represents different amino acids, (c) generating multiple assembly lines by 
considering various combinations of ORFs and generating all putative core NRPs for each 
assembly line in the identified BGC (for brevity only assembly lines generated by deleting 
a single NRPS unit are shown; in practice, NRPminer considers loss of up to two NRPS 
units, as well as single and double duplication of each NRPS unit), (d) filtering the core 
NRPs based on their specificity scores, (e) identifying domains corresponding to known 
modifications and incorporating them in the selected core NRPs (modified amino acids are 
represented by purple squares), (f) generating linear, cyclic and branch-cyclic backbone 
structures for each core NRP, (g) generating a set of high-scoring PSMs using 
modification-tolerant VarQuest41 search of spectra against the database of the constructed 
putative NRP structures. NRPminer considers all possible mature NRPs with up to one 
PAM (shown as hexagons) in each NRP structure. For brevity some of the structures are 
not shown. (h) computing statistical significance of PSMs and reporting the significant 
PSMs, and (i) expanding the set of identified spectra using spectral networks58. Nodes in 
the spectral network represent spectra and edges connect “similar” spectra (see Methods). 
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2.3. RESULTS  

Outline of the NRPminer algorithm. Figure 2.2 illustrates the NRPminer algorithm. All 

these steps are described in detail in the Methods section which includes: (a) NRPminer starts by 

identifying the NRPS BGCs in each genome (using antiSMASH14), (b) predicting the putative 

amino acids for each identified A-domain (using NRPSpredictor213), (c) NRPminer accounts for 

different NRPS assembly-lines by considering various combinations of ORFs in the BGCs, (d) 

NRPminer filters the set of all core NRPs based on the specificity scores of their amino acids and 

selects those with high scores, (e) NRPminer searches each BGC to find known modification 

enzymes and incorporates them in the corresponding core NRPs, (f) It then constructs a database 

of putative NRP structures by considering linear, cyclic and branch-cyclic backbone structures for 

each core NRP, (g) NRPminer performs a modification-tolerant search of the input spectra against 

the constructed database of putative NRPs and computes the statistical significance of Peptide-

Spectrum-Matches (PSMs), (h) NRPminer reports the statistically significant PSMs, and (i) which 

are then expanded using spectral networks58 approach.  

Datasets. We analyzed four microbial isolate datasets from Xenorhabdus and 

Photorhabdus families (XPF), Staphylococcus (SkinStaph), soil dwelling and soil dwelling 

Actinobacteria (SoilActi), and a collection of soil-associated bacteria within Bacillus, 

Pseudomonas, Buttiauxella, and Rahnella genera generated under the Tiny Earth antibiotic 

discovery project59 (TinyEarth); all available from GNPS/MassIVE repository. The spectra 

collected on each of these datasets are referred to as spectraXPF, spectraSkinStaph, spectraSoilActi, 

spectraTinyEarth, and the genomes are referred as genomeXPF, genomeSkinStaph, genomeSoilActi, and 

genomeTinyEarth, respectively. Below we describe sample preparation and mass spectra generation 

for all analyzed datasets.  
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XPF: A total of 27 strains from soil nematode symbiont Xenorhabdus and Photorhabdus 

families were grown in lysogeny broth and agar and were extracted with methanol as described 

previously30. Briefly, the crude extracts were diluted 1:25 (vol/vol) with methanol and analyzed 

by UPLC-ESI coupled with Impact II qTof mass spectrometer. MS dataset spectraXPF30 contains 

27 spectral sub-datasets representing each sample for a total of 263,768 spectra across all strains 

(GNPS-accession #: MSV00081063). The genomeXPF dataset contains 27 draft genomes generated 

by DNA sequencing from the same samples as reported by Tobias et al.30 (available from 

RefSeq60).  

SkinStaph: A total of 171 Staphylococcus strains isolated from skin of healthy individuals 

were grown in 500 ml Tryptic Soy Broth (TSB) liquid medium in Nunc 2.0 mL DeepWell plates 

(Thermo Catalog# 278743). An aliquot of each culture was used to measure optical density. 

Cultures that effectively grew were transferred to a new deep well plate. Cultures were placed in 

a -80C freezer for 10 min then allowed to thaw at room temperature 3 times, to lyse bacterial cells. 

200 ul of the supernatant collected from cell cultures were filtered using a Phree Phospholipid 

Removal kit (Phenomenex). Sample clean up was performed following the manufacturer protocol 

described here (https://phenomenex.blob.core.windows.net/documents/c1ac3a84-e363-416e-

9f26-f809c67cf020.pdf). Briefly, the Phree kit plate was conditioned using 50% MeOH, bacterial 

supernatant were then added to the conditioned wells followed by sample clean up using 100% 

MeOH (a 4:1 v/v ratio of MeOH:Bacterial supernatant). The plate was centrifuged 5 min at 500 g 

and the clean up extracts were lyophilized using a FreeZone 4.5 L Benchtop Freeze Dryer with 

Centrivap Concentrator (Labconco). Wells were resuspended in 200 µL of resuspension solvent 

(80% MeOH spiked with 1.0 µM Amitriptyline), vortexed for 1 min, and centrifuged at 2000 rpm 

for 15 min at 4 °C. 150 µL of the supernatant was transferred into a 96-well plate and maintained 
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at 20 °C prior to LC-MS/MS analysis. Bacterial extracts were analyzed using a ThermoScientific 

UltiMate 3000 UPLC system for liquid chromatography and a Maxis Q-TOF (Quadrupole-Time-

of-Flight) mass spectrometer (Bruker Daltonics), controlled by the Otof Control and Hystar 

software packages (Bruker Daltonics) and equipped with ESI source. Untargeted metabolomics 

data were collected using a previously validated UPLC-MS/MS method61,62. The spectraSkinStaph 

dataset contains 2,657,398 spectra from bacterial extracts of 171 Staphylococcus strains (GNPS- 

accession #: MSV000083956). The genomeSkinStaph dataset contains draft genomes of these species 

(available from RefSeq). 

SoilActi: A total of 20 strains of soil-dwelling Actinobacteria were grown on A1, MS, and 

R5 agar, extracted sequentially with ethyl acetate, butanol, methanol and analyzed on Agilent 6530 

Accurate-Mass QTOF spectrometer coupled with Agilent 1260 LC System. The spectraSoilAct 

dataset contains 362,421 spectra generated from extracts of these 20 Actinobacteria strains 

(GNPS-accession #: MSV00007860463) includes 20 sub-datasets representing each strain. The 

genomeSoilActi dataset contains draft genomes of these strains (available via RefSeq).  

TinyEarth: A total of 23 bacterial strains extracted from the soil in Wisconsin were 

extracted with methanol and analyzed by LC-MS/MS on a Thermo Fisher Q-Exactive mass 

spectrometer. The spectraTinyEarth dataset contains 380,414 spectra generated from extracts of these 

23 strains (GNPS-accession #: MSV000084951) includes 23 sub-datasets representing each strain 

(four Bacillus, 16 Pseudomonas, one Buttiauxella, and one Citrobacter) The genomeTinyEarth 

dataset contains draft genomes of these strains (available via Gold OnLine Database64 under study 

ID Gs0135839).  

Summary of NRPminer results. Table 2.1 summarizes the NRPminer results for each 

dataset. NRPminer classifies a PSM as statistically significant if its p-value is below the default 
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conservative threshold 10-15. The number of distinct NRPs and NRP families was estimated using 

MS-Cluster65 and SpecNets51 using the threshold cos < 0.7 (see Methods section). Two peptides 

are considered to be variants/modifications of each other if they differ in a single modified residue 

due to changes by tailoring enzymes, enzyme promiscuity or through changes in the amino acid 

specificity at the genetic level48. Known NRPs (NRP families) are identified either by 

Dereplicator40 search against the database of all known peptidic natural products41 (referred to as 

PNPdatabase) using the p-value threshold 10-15, and/or by SpecNet58 search against the library of 

all annotated spectra available on GNPS51. NRPminer ignores any BGCs with less than three A-

domains and spectra that include less than 20 peaks.  

Table 2.1. Summary of NRPminer search results on the XPF, SkinStaph, SoilActi, and 
datasets. Column “#strains” shows the number of microbial strains. Column “#identified 
PSMs/ #spectra” shows the number of PSMs identified by NRPminer and the total number 
of spectra. The column “#distinct NRPs (families)” shows the number of unique NRPs 
(unique families). The number of unique NRPs is estimated using MS-Cluster65, and the 
number of unique families is estimated using SpecNets51. The column “#known NRPs 
(families)” shows the number of known NRPs (families) among all identified NRPs 
(families). Column “#novel variants of known NRPs” shows the number of NRPs in the 
known families that were identified as a novel variant. Column “#novel NRPs (families)” 
shows the number of novel NRPs (families). 

 

 dataset #strains #identified 
PSMs/ #spectra  

#distinct 
NRPs 

(families) 

#known 
NRPs 

(families)  

#novel variants 
of known  

NRPs  

#novel 
NRPs 

(families) 
XPF 27 3,023 / 263,768 122 (12) 21 (9) 79 22 (3) 

SkinStaph 171 23 / 2,657,398 3 (1) 2 (1) 1 0 

SoilActi 20 206 / 362,421 24 (2) 7 (1) 14 3 (1) 

TinyEarth 28 498  / 380,414 31 (3) 29 (3) 2 0 

Generating putative core NRPs. Table 2.2 presents the number of NRP-producing BGCs 

and the number of putative core NRPs generated by NRPminer for each analyzed genome in XPF 

(before and after filtering). For example, NRPminer identified eight NRP-producing BGCs and 

generated 253,027,076,774 putative core NRPs for X. szentirmaii DSM genome. After filtering 
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putative core NRPs based on the sum of the specificity scores reported by NRPSpredictor213, only 

29,957 putative core NRPs were retained (see Methods section for the details of filtering). 

Therefore, filtering putative core is an essential step for making the search feasible.  

Table 2.2. The number of predicted core NRPs before and after filtering for 27 genomes 
in the XPF dataset. The column "#NRP producing BGCs" show the number of NRP-
producing BGCs. Columns under "#unique core NRPs" show the number of core NRPs 
generated by NRPminer before and after filtering for each genome. For example, in the 
case of the X. szentirmaii DSM genome with 8 NRP-producing BGCs, NRPminer 
considers 253,027,076,774 core NRPs before filtering, while after filtering only 57,888 
cores are retained. The five species corresponding to the datasets yielding the novel NRP 
families are shown in blue. 

 
Strain #NRP 

producing 
BGCs 

#unique core NRPs 

before filtering after filtering  

Xenorhabdus bovienii SS-2004 8 8,973,905 7,701 
Xenorhabdus nematophila ATCC  6 18,043,657,358 18,062 
Xenorhabdus doucetiae FRM16 8 3,726,625,228 8,013 
Xenorhabdus poinarii G6 6 14,280 658 
Photorhabdus luminescens PB45.5 10 2,994,745,388,283 8,333 
Photorhabdus asymbiotica PB68.1 8 157,964 2,602 
Xenorhabdus sp. DL20 9 94,818 2,187 
Xenorhabdus sp. 30TX1 8 76,044,111 7,287 
Xenorhabdus vietnamensis  15 3,373,109,836 21,648 
Xenorhabdus beddingii DSM 4764 8 13,721,302 2,998 
Photorhabdus temperata  9 42,555,972,979,030 6,924 
Photorhabdus asymbiotica PB68.1 8 160,034 5,136 
Xenorhabdus budapestensis 16342 7 149,918,342 51,600 
Xenorhabdus ehlersii DSM 16337 10 5,026,725 7,542 
Xenorhabdus innexi DSM 16336 10 4,957,948,632 9,184 
Xenorhabdus szentirmaii US 8 360,039,991,874 57,888 
Xenorhabdus mauleonii  10 51,502,147,078 19,400 
Xenorhabdus miraniensis  14 11,679,221,261 14,658 
Xenorhabdus szentirmaii  8 253,027,076,774 57,888 
Xenorhabdus sp. KK7.4 9 5,036,899,357 17,300 
Xenorhabdus hominickii DSM 13 60,224,436 6,688 
Xenorhabdus stockiae DSM 17904 10 1,159,012,484,964 7,896 
Xenorhabdus ishibashii  7 19,911,786 2,547 
Xenorhabdus sp. KJ12.1 10 11,916,878,760 10,458 
Xenorhabdus kozodoi DSM 17907 11 87,750 2,192 
Xenorhabdus cabanillasii JM26 9 80,529,848 47,856 
Photorhabdus temperata  11 567,909,518,582 4,823 

Analysis of the paired genomic and spectral datasets. NRPminer has a one-vs-one mode 

(each MS dataset is searched against a single genomic dataset) and a one-vs-all mode (each MS 
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dataset is searched against a collection of genomic datasets within a taxonomic clade). While the 

one-vs-all mode is slower than the one-vs-one mode, it is usually more sensitive. For example, a 

BGC may be fragmented (or misassembled) in the draft assembly of one strain, but a related BGC 

may be correctly assembled and captured within a single contig in a related well-assembled strain. 

If these two BGCs synthesize the same (or even similar) NRP, NRPminer may be able to match 

the spectra from a poorly assembled strain to a BGC from a related well-assembled strain.  

For example, NRPminer search of spectraXPF against genomeXPF generated 3,023 PSMs 

that represent 122 NRPs from 12 NRP families. Figure 2.3 shows the spectral network representing 

12 NRP families identified by NRPminer in the XPF dataset. SpecNet analysis against the 

annotated spectra in GNPS51 showed that 9 out of 12 identified NRP families are known (reported 

by Tobias et al.30). NRPminer failed to identify only one additional known family which was 

reported by Tobias et al.30 (xefoampeptides) that has a side-chain modification with total mass 

exceeding the default NRPminer threshold (150 Da). Xefoampeptides contain only three amino 

acids and a large side-chain modification (total mass over 200 Da), resulting in a poorly fragmented 

spectrum that did not generate statistically significant PSMs against the putative structures 

generated from their corresponding core NRPs.  
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Figure 2.3. Spectral networks for nine known and three novel NRP families identified by 

NRPminer in the XPF dataset. Each node represents a spectrum. The spectra of known NRPs (as 

identified by spectral library search against the library of all known compounds in GNPS) are 

shown with a dark blue border. A node is colored if the corresponding spectrum forms a statistically 

significant PSM and not colored otherwise. We distinguish between identified spectra of known 

NRPs with known BGCs30 (colored by light blue) and identified spectra of known NRPs (from 

xentrivalpeptide family) with previously unknown BGC (colored by dark green). Identified spectra 

of novel NRPs from known NRP families (novel NRP variants) are colored in light green. 

Identified spectra of novel NRPs from novel NRP families are colored in magenta. Proteogomycins 

and xenoinformycin subnetworks represent previously unreported NRP families with novel 

putative BGCs. The Xenoamicin-like subnetwork revealed a BGC family distantly related to 

xenoamicins (6 out 13 amino acids are identical). For simplicity only spectra at charge state +1 are 

used for the analysis. 

Table 2.3 provides information about NRPminer-generated PSMs representing known 

NRP families. Among the nine known NRP families (in the XPF dataset) listed in Table 2.3, eight 

families have been connected to their BGCs in the previous studies, and for these families, the 

corresponding BGCs discovered by NRPminer are consistent with the literature30 (see Table 2.3 

for the list of identified BGCs).  

novel NRP families  

Rhabdopeptides Xenoamicines

 

Xenobactins

Ambactins GameXPeptides Taxlllaids XentrivalpeptidesSzentiamides

Xenoinformycin Protegomycin Xenoamicin-like family

PAX peptide
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Table 2.3. PSMs identified by NRPminer in the XPF dataset representing the known 
NRP families. For each NRP family, the information about the PSM with the lowest p-
value among all PSMs corresponding to the spectra representing the known NRPS in that 
family is listed. The column “matched genome” shows the name of the organism whose 
BGCs generated the putative NRP structure corresponding to that PSM and the column 
"BGC position” shows the contig and the starting and ending nucleotide position of the 
BGC in that contig. Columns “precursor mass” and “charge” show the precursor mass and 
the charge state of matched spectrum.   
 
NRP family 

name matched genome BGC position p-value 
precursor 

mass charge 
GameXPeptide Photorhabdus asymbiotica PB68.1 ctg1: 3584973 - 3640476 1.5×10-25 586.394 1 

PAX peptide Xenorhabdus nematophila ATCC 19061 ctg1: 11609 - 67919 9.9×10-18 826.538 1 

Xenobactin Xenorhabdus mauleonii DSM 17908 ctg11: 65321 - 162527 5.0×10-21 756.425 1 

Szentiamide Xenorhabdus szentirmaii DSM 16338 ctg1: 762001 - 821352 7.0×10-31 838.404 1 

Taxlllaid Xenorhabdus bovienii SS-2004 ctg1: 739318 - 804275 1.2×10-30 808.55 1 

Xentrivalpeptide Xenorhabdus sp. KK7.4 ctg14: 6760-112451 6.4×10-37 430.749 2 

Ambactin Xenorhabdus miraniensis DSM 17902 ctg6: 132143-191993 5.4×10-16 751.41 1 

Xenoamicin Xenorhabdus vietnamensis DSM 22392 ctg9: 1-75156 3.3×10-56 1300.8 1 

Rhabdopeptide Xenorhabdus stockiae DSM 17904 ctg14: 1-77935 6.1×10-17 599.427 1 

 
Figure 2.4 presents an example of an identified NRP family, szentiamide, and its 

corresponding BGC in X. szentirmaii. For one family (xentrivalpeptides) we report the BGC for 

the first time (Figure 2.5). In addition to these known families, NRPminer also discovered four 

novel NRP families and 79 novel NRP variants in this dataset.  

 

 
Figure 2.4. Szentiamide biosynthetic gene clusters. (Left) szentiamide BGC in 
Xenorhabdus szentirmaii DSM 16338 with NRPS genes (shown in red) which is consistent 
with the previous study66. Three highest scoring NRPSpredictor213 amino acid predictions 
for each A-domain in these BGC are shown. Amino acids corresponding to the correct 
structure are shown in blue. NRPminer identified this NRP with p-value 7.0x10-31. (Right) 
The structure of the szentiamide is shown with amino acids highlighted in blue. 
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Figure 2.5. Predicted xentrivalpeptides biosynthetic gene clusters. (Left) The BGC in 
Xenorhabdus sp. KK7.4 predicted to encode xentrivalpeptide with NRPS genes (shown in 
red). Three highest scoring NRPSpredictor213 amino acid predictions for each A-domain 
in these BGCs are shown. Amino acids corresponding to the correct structure are shown in 
blue. NRPminer identified this NRP with p-value 6.4x10-37. (Right) The structure of the 
xentrivalpeptide is shown with amino acids highlighted in blue. 

We named each identified NRP in a reported novel family by combining the name of that 

family with the nominal precursor mass of the spectrum representing that NRP (with the lowest p-

value among all spectra originating from the same NRP). In what follows, we describe the four 

novel NRP families identified by NRPminer (protegomycin, xenoinformycin, and novel 

xenoamicin-like family in the XPF dataset and aminformatide in SoilActi), as well as the novel 

variants in two additional NRP families (lugdunin in SkinStaph and surugamide in SoilActi).  

Novel protegomycin (PRT) NRP family in the XPF dataset. NRPminer matched 28 

spectra representing 11 novel cyclic NRPs to two previously unreported BGCs. These spectra are 

from species X. doucetiae, Xenorhabdus sp. 30TX1, and X. poinarii. The BGCs were from in X. 

doucetiae and X. poinarii with six and five A-domains, respectively, with one PAM. Figure 2.6 

present information about protegeomycin BGC and NRPs.  
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Figure 2.6. Novel protegomycin NRP family. (a) The BGCs generating the NRP in X. 
doucetiae (top) and X. porinarii (bottom) along with NRPS genes (shown in red) and A-, 
C-, PCP-, and E-domains in these NRPSs. The rest of the genes in the corresponding 
contigs are shown in white. No BGC was found in Xenorhabdus sp. 30TX1. Three highest-
scoring amino acids for each A-domain in these BGCs (according to NRPSpredictor213 
predictions) are shown below the corresponding A-domains. Amino acids appearing in the 
NRPs [+99.06]FYYYYW and [+99.06]FYYYW identified by NRPminer (with the lowest 
p-value) are shown in blue. (b) Spectral network formed by the spectra that originate from 
NRPs in the protegomycin family. (c) Sequences of the identified NRPs in the 
protegomycin family (with the lowest p-value among all spectra originating from the same 
NRP). PRT represents protegomycin. (d) For each strain, an annotated spectrum 
representing the lowest p-value is shown. The spectra were annotated based on predicted 
NRPs [+99.06]FYYWYW, [+99.06]FYYYYW, and [+99.06]FYYYW from top to 
bottom. The "+" sign represents the addition of [+99.06Da]. Colors in parts b and d are 
coordinated. Figures 2.7-2.9 show the annotated spectra for all NRPs shown in part c. (e) 
Key HMBC and HSQC-COSY correlations in PRT-1037. (f) Structures for selected PRT 
derivatives produced by X. doucetiae including amino acid configuration as concluded 
from the presence of epimerization domains in the corresponding NRPSs and acyl residues 
as concluded from feeding experiments).  
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Figures 2.7-2.9 provide further information about MS/MS fragmentation pattern of PRT 

NRPs listed in Figure 2.6. Figure 2.6.f pictures the selected PRT derivatives produced by X. 

doucetiae including amino acid configuration as concluded from the presence of epimerization 

domains in the corresponding NRPSs and acyl residues as concluded from feeding experiments.  
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Figure 2.7. Fragmentation pattern (MS/MS of the molecular ions) of selected PRT 
derivatives from X. doucetiae observed by HPLC-MS analysis. For each spectrum, the 
corresponding NRP ID is listed in the top left corner. 
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Figure 2.7. Fragmentation pattern (MS/MS of the molecular ions) of selected PRT 
derivatives from X. doucetiae observed by HPLC-MS analysis. For each spectrum, the 
corresponding NRP ID is listed in the top left corner, Continued. 
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Figure 2.8. Fragmentation pattern (MS/MS of the molecular ions) of selected PRT 
derivatives from Xenorhabdus sp. 30TX1 observed by HPLC-MS analysis. For each 
spectrum, the corresponding NRP ID is listed in the top left corner. 
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Figure 2.9. Fragmentation pattern (MS/MS of the molecular ions) of selected PRT 
derivatives from X. poinarii observed by HPLC-MS analysis. For each spectrum, the 
corresponding NRP ID is listed in the top left corner. 
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Figure 2.10. MS analysis of selected PRT derivatives after cultivation in 12C (LB), 13C- 
and 15N- medium. Analysis of the incorporation of non-labelled Phe, Trp, Tyr and 
Leu added to fully labeled 13C medium. For each spectrum, the corresponding NRP ID 
is listed in listed on the top. 
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Figure 2.10. MS analysis of selected PRT derivatives after cultivation in 12C (LB), 13C- 
and 15N- medium. Analysis of the incorporation of non-labelled Phe, Trp, Tyr and 
Leu added to fully labeled 13C medium. For each spectrum, the corresponding NRP ID 
is listed in listed on the top, Continued. 
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Figure 2.11. (top) Base peak chromatogram (BPC) of X. doucetiae wt (green) and X. 
doucetiae-Δhfq (red) crude extracts. (bottom) Extracted ion chromatograms (EIC) of PRT 
derivatives from the extract of induced X. doucetiae-Δhfq-PBAD-prtA. 

Additional derivatives were found in large scale cultivation of wildtype and �hfq mutants 

of X. doucetiae (Figure 2.11). Appendix 1 describes this additional analysis. No BGC was found 

in Xenorhabdus sp. 30TX1 due to highly fragmented assembly. We further conducted nuclear 

magnetic resonance (NMR) spectroscopy on one of the major derivatives (Appendix 1 describe 

this experiment and Figures 2.12-2.18, and Table 2.4 present the results). Our NMR results 

confirmed the MS results, with the distinction that NMR revealed a short chain fatty acid like 

phenylacetic acid (PAA) as a starting unit (incorporated by the C-starter domain), followed by a 

Lys that is cyclized to the terminal thioester by the C-terminal TE domain. NRPminer predicted 
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Phe instead of the correct amino acid Lys, since NRPSpredictor213 made an error in identifying 

the amino acid for the corresponding A-domain (see Figure 2.6.a for the list of predicted amino 

acids). It has been shown that NRPSpredictor213 often fails to predict Lys residues, due to lack of 

training data for this amino acid13. Furthermore, as with any other MS-based method, NRPminer 

was not able to distinguish between residues with the same molar mass in the structure of final 

NRP, such as the pair Ala and b-Ala. All other NRPminer predictions of individual amino acids 

were consistent with NMR.  

 
Figure 2.12. Numbering of protegomycin PRT-1037 (NMR data are provided in Table 
2.4). 
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Figure 2.13. Key HMBC and HSQC-COSY correlations PRT-1037. 

 

 
 
 

 
Figure 2.14. 1H NMR spectrum of compound PRT-1037. 
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Figure 2.15. 13C NMR spectrum of compound PRT-1037. 

 

 
Figure 2.16. HSQC spectrum of compound PRT-1037. 
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Figure 2.17. HMBC spectrum of compound PRT-1037. 

 

 
Figure 2.18. HSQC-COSY spectrum of compound PRT-1037. 
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Table 2.4. 1H (500 MHz) and 13C (125 MHz) NMR spectroscopic data for PRT-1037 in 
DMSO-d6 (δ in ppm and J in Hz ). 

no. PRT-1037 no. PRT-1037 
δC, type δH (mult., J) δC, type δH (mult., J) 

1 14.25 0.88 (d, 7.4) 45 171.92  
2 18.76 1.59 (dq, 14.6, 7.2) 46 55.76 4.22 (overlap) 
3 37.45 2.21 (t, 7.2) 47 36.3 2.92 (overlap) 
4 174.41    2.80 (overlap) 
5  8.27 (br s) 48 128.67  
6 56.00 4.08 (m) 49 130.80 6.81 (overlap) 
7 31.04 1.48 (m) 50 115.21 6.61 (overlap) 
8 22.58 1.42 (br s) 51 156.20  
9 27.98 1.42 (overlap) 52 115.21 6.61 (overlap) 
10 38.17 3.31 (m) 53 130.80 6.81 (overlap) 
  2.78 (m) 54  8.05 (d, 6.6) 
11  7.62 (br s) 55 171.06  
12 171.73  56 55.53 3.96 (m) 
13 55.39 4.35 (m) 57 34.70 2.92 (overlap) 
14 27.05 3.20 (m)   2.80 (overlap) 
  3.03 (dd, 14.7, 9.0) 58 128.48  
15 110.82  59 130.61 6.81 (overlap) 
16 123.95 7.22 (d, 1.9) 60 115.32 6.61 (overlap) 
17  10.86 (br s) 61 156.29  
18 136.59  62 115.32 6.61 (overlap) 
19 111.85 7.59 (d, 8.0) 63 130.61 6.81 (overlap) 
20 118.82 7.00 (t, 7.2) 64  8.05 (overlap) 
21 121.43 7.08 (t, 7.2) 65 

 
173.61  

22 118.74 7.35 (d, 8.0)    
23 127.67     
24  8.11 (br s)    
25 171.83     
26 55.83 4.22 (m)    
27 37.12 2.60 (m)    
  2.53 (overlap)    
28 128.14     
29 130.32 6.81 (d, 8.5)    
30 115.28 6.60 (d, 8.5)    
31 156.27     
32 115.28 6.60 (d, 8.5)    
33 130.32 6.81 (d, 8.5)    
34  8.11 (d, 6.6)    
35 171.68     
36 56.35 4.22 (overlap)    
37 37.26 2.92 (overlap)    
  2.80 (overlap)    
38 128.69     
39 130.58 6.81 (overlap)    
40 115.42 6.61 (overlap)    
41 156.07     
42 115.42 6.61 (overlap)    
43 130.58 6.81 (overlap)    
44  8.11 (overlap)    
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Besides PAA, other starter acyl units are isovaleric acid (in PRT-1012; NRPminer 

prediction 99.06+Leu; see Figure 2.6.f) and butyric acid (in PRT-1037; see Figure 2.6.e). Figure 

2.10 describes labelling data and mass spectra for the identified protegomycins in X. doucetiae. 

The isolated derivatives PRT-1037 and PRT-1021 were tested against various protozoa and 

showed a weak activity against Trypanosoma brucei rhodesiense (IC50 [mg/L] 79 and 53) and 

Plasmodium falciparum (IC50 [mg/L] >50 and 33) with no toxicity against L6 rat myoblast cells 

(IC50 [mg/L] both >100). Figures 2.19 and 2.20 present further information about protegeomycin 

BGC and NRPs. 

 

Figure 2.19. Predicted structures of PRT derivatives produced by Xenorhabdus sp. 
30TX1 and X. proinarii. (A) Predicted structures for PRT derivatives produced by 
Xenorhabdus sp. 30TX1 including amino acid configuration as found in X. doucetiae. (B) 
Predicted structures for PRT derivatives produced by X. poinarii including amino acid 
configuration as concluded from the presence of epimerization domains in the 
corresponding NRPS PrtAB. 
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Figure 2.20. Structures for PRT derivatives produced by X. doucetiae. The structure 
are shown including amino acid configuration as concludes from the presence of 
epimerization domains in the corresponding NRPSs PrtAB. 

Novel xenoinformycin (XINF) NRP family in the XPF dataset. NRPminer matched four 

spectra representing four cyclic NRPs from X. miraniensis spectral dataset to a novel BGC (figure 

2.21). NRPminer reported a modification with total mass of 99.068 for all the four identified NRPs, 

which matches the valine mass. We hypothesize that one of the valine-specific adenylation 

domains is responsible for the activation of two consecutive valine units, suggesting an iterative 
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use of the Val-incorporating module (similar to stuttering observed in polyketide synthases43,67) 

but this is yet to be experimentally verified. Interestingly, the predicted xenoinformycin producing 

NRPS XinfS is highly similar to the widespread NRPS GxpS found in Xenorhabdus and 

Photorhabdus, responsible for the GameXPeptide production30,68. While both XinfS and GxpS 

have five modules, XinfS has a C-domain instead of the usual C/E-domain in the last module, 

suggesting a different configuration of the amino acid Phe or Leu (corresponding to the second 

last A-domain on their NRPSs), respectively.  
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Figure 2.21. Novel xenoinformycin NRP family. (a) The BGC generating the NRP in X. 
miraniensis along with NRPS genes (shown in red) and the A-, C-, PCP-, and C/E-domains 
appearing on the corresponding NRPS. The rest of the genes in the corresponding contigs 
are shown in white. Three highest-scoring amino acids for each A-domain in this BGC 
(according to NRPSpredictor213 predictions) are shown below the corresponding A-
domains. Amino acids appearing in the NRP VVWFF identified by NRPminer (with the 
lowest p-value) are shown in blue. (b) Spectral network formed by the spectra that originate 
from NRPs in the xenoinformycin family. A node is colored if the corresponding spectrum 
forms a statistically significant PSM (with p-value threshold 10-15) and not colored 
otherwise. (c) Sequences of the identified NRPs in the xenoinformycin family (with the 
lowest p-value among all spectra originating from the same NRP). XINF represents 
xenoinformycin. (d) For each identified NRP, an annotated spectrum forming a PSM with 
the lowest p-value is shown.  

Novel xenoamicin-like (XAM) NRP family in the XPF dataset. NRPminer discovered 

a novel NRP family that includes eight distinct NRPs, along with their BGC (Figure 2.22). While 

the matched BGC for this family is evolutionary related to the xenoamicin BGC69 and both BGCs 

include 13 A-domains, 7 out of 13 amino acids in XAM differ from the corresponding amino acids 
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in xenoamicin A (Figure 2.23). We named this novel class of xenoamicins class III. Interestingly, 

the occurrence of XAM-1237 and XAM-1251 suggest a loss of Pro in their structure indicating 

another possibility of NRP diversification, namely module skipping as previously observed in 

other NRPSs67,70,71.  
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Figure 2.22. Novel xenoamicin-like NRP family. (a) The BGCs generating the NRP in 
Xenorhabdus sp. KJ12 along with NRPS genes (shown in red) and A-, C-, PCP-, and E-
domains in these NRPSs. The rest of the genes in the corresponding contigs are shown in 
white. Three highest-scoring amino acids for each A-domain in these BGCs (according to 
NRPSpredictor213 predictions) are shown below the corresponding A-domains. Amino 
acids appearing in the NRP [+99.06]TAVLLTTLLAAPA identified by NRPminer (with the 
lowest p-value) are shown in blue. (b) Spectral network formed by the spectra that originate 
from NRPs in the XAM family. (c) Sequences of the identified NRPs in this family (with 
the lowest p-value among all spectra originating from the same NRP). (d) For each strain, 
an annotated spectrum representing the lowest p-value is shown. The spectra were annotated 
based on predicted NRPs [+99.06]TAVLLTTLLAAPA and [+99.06] TAVLLTTLVAAPA 
from top to bottom. The "+" sign represents the addition of [+99.06].  Figure 2.26 and 2.27 
show the annotated spectra for the other NRPs shown in part (c). (e) NMR-based 
correlations of XAM-1320 (m/z 1320.8 [M+H]+) produced by Xenorhabdus KJ12.1 (Table 
2.5) HSQC-TOCSY (bold lines) and key ROESY correlations (arrows) are shown. (f) 3D 
structure of XAM-1320 derived from 121 ROE-derived distance constraints (Table 2.6), 
molecular dynamics and energy minimization. Peptide backbone is visualized with a yellow 
bar (left). Predicted hydrogen bonds stabilizing the β-helix are shown as dashed lines. View 
from above at the pore formed by XAM-1320. (right) NRPminer identified this NRP with 
p-value 8.4 × 10!#%. 
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Figure 2.23. General NRPS structure of xenoamicin XabABC in X. doucetiae (yellow) 
and Xenorhabdus KJ12.1 (violet). Amino acid specificities are assigned for all A-domains. 
For domain assignment the following symbols are used: A (large circles), T (rectangle), C 
(triangle), C/E (diamond), TE-TE (two C-terminal small diamonds). 

 

We confirmed the sum formula of XAM-1320 and XAM-1334 by feeding (Figures 

2.24 and 2.25) and MS-MS experiments (figure 2.26 and Appendix 2) and were also able to 

isolate the major derivative XAM-1320 from Xenorhabdus KJ12.1 and to elucidate its 

structure by NMR including its 3D solution structure (Table 2.5 and Table 2.6) that confirms 

its helical structure from the alternating D/L configurations (confirmed by the advanced 

Marfey’s analysis; Figure 2.27 and Appendix 2) throughout the peptide chain from the 

presence of C/E domains, except for the C-terminal part shown in Figure 2.22. XAM-1320 

was also tested against protozoa and showed a good activity against T. brucei rhodesiense 

(IC50 [mg/L] 3.9) but much lower activity against Trypanosoma cruci, Plasmodium 

falciparum and rat L6 cells (IC50 [mg/L] 25.5, 56.2 and 46.0, respectively). Figure 2.26 

provides information about the isolation and structure elucidation of XAM-1320, XAM-1278, 
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XAM-1292, and XAM-1348 that differed in the starter acyl unit and the following amino acid 

(Ala or Gly) as pictured in Figure 2.28.  

 

Figure 2.24. Determination of the number of carbon and nitrogen atoms in XAM-1320 by 
cultivation of Xenorhabdus KJ12.1 in LB medium, 13C labelled or 15N labelled ISOGRO® 
medium and the following mass shift detected by mass spectrometry. 
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Figure 2.25. Determination of the number of carbon and nitrogen atoms in XAM-1334 by 
cultivation of Xenorhabdus KJ12.1 in LB medium, 13C labelled or 15N labelled ISOGRO® 
medium and the following mass shift detected by mass spectrometry. 

 
Figure 2.26. MS2 and MS3 spectra of linearized XAM-1334. The complete serial of y-ions 
could be assigned in MS3 spectra from the double charged xenoamicin ion (m/z = 676.9 
[M+2H]2+). 
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Figure 2.27. Determination of the absolute configuration of amino acids in XAM-1320 
(XAM-IIIA) by the advanced Marfey’s method. The single amino acids were measured 
in the positive mode. The following m/z ratios ([M+H]+) were used to detect the amino 
acids: alanine 384, leucine 426, valine 412, proline 410, threonine 414. For every amino 
acid the references are also shown. 
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Figure 2.28. MS2 spectra of derivatives according to subclass xenoamicin III. 
Compounds 14 (m/z = 1278.744 [M+H+], 15 (m/z = 1292.763 [M+H+] and 16 (m/z = 
1348.825 [M+H+] differ to multiple of 14 Da from compound 12. Mass differences could 
be localised between y12 and y10 ions. 
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Table 2.5. NMR spectroscopic data (600 MHz (1H), 125 MHz (13C) in CDCl3) of XAM-
1320; δ in ppm; HM, hexanoyl moiety. 

Spin Sys. Pos. δC δH Spin Sys. Pos. δC δH 
1-HM C=O 173.73  9-Leu C=O 170.61  
 α 36.12 2.23  NH  7.46 
 β 31.64 1.28  α 51.28 4.76 
 γ 25.46 1.66  β 41.18 1.72 
 δ 22.50 1.29  β  1.49 
 ε 14.00 0.88  γ 24.88 1.53 
2-Thr C=O 172.09   δ1 22.64 0.93 
 NH  8.38  δ2 22.56 0.98 
 α 58.41 4.74  α 60.71 3.76 
 β 67.43 4.78  β 29.43 2.07 
 γ 19.14 1.18  γ1 19.21 0.86 
3-Ala C=O 172.48   γ2 19.00 0.89 
 NH  7.10 11-β-Ala C=O 172.09  
 α 47.25 4.66  NH  6.49 
 α 14.87 1.41  α 37.00 3.81 
4-Val C=O 172.44   α  3.24 
 NH  7.51  β 35.66 3.24 
 α 59.32 4.26  β  2.25 
 β 30.60 1.94 12-β-Ala C=O 172.27  
 γ1 19.10 1.00  NH  7.53 
 γ2 19.10 0.94  α 33.89 4.06 
5-Leu C=O 169.95   α  3.52 
 NH  8.50  β 35.26 2.71 
 α 50.31 4.44  β  2.47 
 β 39.28 1.70 13-Pro C=O 172.83  
 β  1.56  α 60.67 4.57 
 γ 24.84 1.53  β 29.64 2.25 
 δ1 22.68 0.89  β  2.07 
 δ2 22.28 0.88  γ 24.33 2.00 
6-Leu C=O 173.20   γ  1.93 
 NH  7.48  δ 47.46 3.68 
 α 51.48 5.01  δ  3.40 
 β 39.09 1.65 14-β-Ala C=O 170.71  
 γ 24.97 1.64  NH  6.56 
 δ1 22.34 0.97  α 36.31 3.58 
 δ2 21.95 0.90  α  3.35 
7-Thr C=O 169.44   β 33.81 2.78 
 NH  8.64  β  2.34 
 α 69.34 5.26    
 β 57.76 4.33    
 γ 17.37 1.25    
8-Thr C=O 170.65     
 NH  8.91    
 α 65.84 4.12    
 β 61.22 4.52    
 γ 20.00 1.28    
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Table 2.6. ROE list with upper and lower distance restraint limits (90%, 110%) including 
pseudoatom correction from experimentally determined distance for 3D modelling of 
XAM-1320. Average distance and average violation of single distance restraints over ten 
conformations from the final MD trajectory (after energy minimization) are shown. 
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ROEs      
ATOM1 ATOM2 LOWER UPPER AV_DIST AV_VIOL 
8-THR NH 8-THR γ 4 5.8 4.45 0 
8-THR NH 3-ALA γ 4 5.8 4.01 0 
8-THR NH 8-THR β 2.5 3.1 2.92 0 
4-VAL α 8-THR NH 2.8 3.4 2.86 0 
7-THR α 8-THR NH 2.2 2.7 2.42 0 
8-THR α 8-THR NH 2.9 3.5 2.71 0.19 
7-THR β 8-THR NH 3.5 4.3 3.82 0 
10-VAL NH 10-VAL β 2.6 3.2 2.41 0.19 
10-VAL α 10-VAL NH 3 3.7 2.88 0.12 
9-LEU α 10-VAL NH 2.2 2.6 2.44 0 
6-LEU α 10-VAL NH 3.1 3.8 4.33 0.53 
7-THR NH 7-THR γ 3.6 5.5 4.2 0 
7-THR α 7-THR NH 2.87 3.5 2.8 0.07 
6-LEU α 7-THR NH 2 2.5 2.52 0.02 
7-THR NH 7-THR β 2.8 3.4 2.85 0 
5-LEU NH 8-THR α 3.6 4.4 4.83 0.43 
4-VAL α 5-LEU NH 2.1 2.6 2.35 0 
5-LEU NH 7-THR α 3.3 4.1 4.15 0.05 
5-LEU α 5-LEU NH 2.8 3.4 2.94 0 
2-THR NH 2-THR γ 2.5 4 3.63 0 
2-THR NH Acyl α 2.4 3.9 2.87 0 
2-THR NH Acyl β 2.6 4 3.43 0 
2-THR NH 3-ALA NH 2.3 2.8 2.81 0.01 
2-THR NH 4-VAL NH 3.3 4.1 4.27 0.17 
7-THR α 12-ALA NH 3.6 4.4 5.07 0.68 
8-THR α 12-ALA NH 3.2 3.9 4.21 0.31 
5-LEU NH 8-THR NH 4.2 5.2 4.36 0 
10-VAL NH 10-VAL γ 3.1 4.8 3.63 0 
7-THR β 12-ALA NH 3.7 4.5 3.38 0.32 
4-VAL NH 3-ALA γ 4.3 6.2 4.5 0 
4-VAL NH 4-VAL β 2.7 3.3 3.1 0 
4-VAL α 4-VAL NH 2.7 3.4 2.84 0 
4-VAL NH 3-ALA α 2.1 2.6 2.7 0.1 
2-THR α 4-VAL NH 3.6 4.5 4.26 0 
2-THR β 4-VAL NH 3.3 4.1 2.89 0.41 
4-VAL NH 3-ALA NH 3.4 4.2 2.97 0.43 
6-LEU NH 6-LEU β 2.4 3.9 2.45 0 
5-LEU α 6-LEU NH 2.1 2.6 2.26 0 
6-LEU α 6-LEU NH 2.7 3.4 3.01 0 
9-LEU NH 8-THR γ 3.7 5.5 4.35 0 
2-THR β 9-LEU NH 3.8 4.6 4.74 0.14 
8-THR α 9-LEU NH 2 2.5 2.34 0 
9-LEU α 9-LEU NH 2.7 3.3 3.06 0 
3-ALA NH 7-THR γ 3.5 5.3 3.23 0.27 
3-ALA NH Acyl α 3.4 5.1 3.64 0 
3-ALA NH 7-THR α 3 3.7 2.76 0.24 
3-ALA α 3-ALA NH 2.7 3.4 3.01 0 
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Table 2.6. ROE list with upper and lower distance restraint limits (90%, 110%) including 
pseudoatom correction from experimentally determined distance for 3D modelling of 
XAM-1320. Average distance and average violation of single distance restraints over ten 
conformations from the final MD trajectory (after energy minimization) are shown, 
Continued. 

ROEs      
ATOM1 ATOM2 LOWER UPPER AV_DIST AV_VIOL 
2-THR α 3-ALA NH 3 3.6 3.7 0.1 
2-THR β 3-ALA NH 3.5 4.2 4.22 0.01 
7-THR β 7-THR γ 2.4 2.9 2.49 0 
7-THR β 3-ALA γ 4 5.9 5.75 0 
7-THR β Acyl α 3.1 4.7 5.09 0.39 
6-LEU α 10-VAL β 2.5 3 3.42 0.42 
9-LEU α 9-LEU δ 2.6 4.2 4.67 0.47 
9-LEU α 9-LEU δ 2.6 4.2 3.17 0 
2-THR β 2-THR γ 2.2 3.7 2.47 0 
2-THR α 2-THR γ 2.3 3.8 2.88 0 
3-ALA α 3-ALA γ 2.1 3.6 2.66 0 
13-PRO α 8-THR γ 2.6 4.2 3.58 0 
13-PRO α 13-PRO δ 2.6 3.2 3.48 0.28 
13-PRO α 13-PRO δ 3.6 4.5 4.15 0 
13-PRO α 13-PRO β 2.6 3.2 2.24 0.36 
8-THR α 8-THR γ 2.3 3.9 2.82 0 
5-LEU α 5-LEU δ 2.4 3.9 3.59 0 
5-LEU α 5-LEU γ 2.6 3.15 2.51 0.09 
7-THR α 7-THR γ 2.4 3.9 3.09 0 
7-THR α 3-ALA γ 2.6 4.2 4.19 0 
4-VAL β 7-THR α 3.6 4.5 5.01 0.51 
4-VAL α 4-VAL β 2.7 3.3 2.38 0.32 
4-VAL α 8-THR β 2.1 2.6 2.34 0 
4-VAL α 4-VAL γ 2.5 3.1 3.7 0.6 
4-VAL α 4-VAL γ 2.5 3.1 3.16 0.06 
8-THR β 4-VAL γ 2.2 3.7 3.36 0 
8-THR β 4-VAL γ 3.1 4.8 5.15 0.35 
8-THR β 8-THR γ 3 4.6 2.71 0.29 
10-VAL α 10-VAL γ 2.5 4.1 3.44 0 
10-VAL α 10-VAL γ 2.5 4.1 3.04 0 
10-VAL α 10-VAL β 2.8 3.4 3 0 
12-ALA α1 12-ALA NH 2.4 3 2.27 0.13 
12-ALA α1 12-ALA β1 2.5 3 2.58 0 
12-ALA α2 12-ALA β2 2.4 3 2.57 0 
12-ALA α2 12-ALA β1 3.3 4.1 3.16 0.14 
12-ALA β1 13-PRO δ 2.6 3.2 3.46 0.26 
12-ALA β1 13-PRO δ 2.2 2.7 2.48 0 
12-ALA β2 13-PRO δ 2.3 2.8 2.56 0 
12-ALA β2 13-PRO δ 2.8 3.5 2.61 0.19 
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Table 2.6. ROE list with upper and lower distance restraint limits (90%, 110%) including 
pseudoatom correction from experimentally determined distance for 3D modelling of 
XAM-1320. Average distance and average violation of single distance restraints over ten 
conformations from the final MD trajectory (after energy minimization) are shown, 
Continued. 

ROEs      
ATOM1 ATOM2 LOWER UPPER AV_DIST AV_VIOL 
9-LEU NH 12-ALA α2 2.6 3.3 2.88 0 
8-THR NH 14-ALA α 3.8 5.5 3.58 0.22 
8-THR NH 14-ALA β 3.9 5.7 4.89 0 
7-Thr NH 14-ALA α 3.6 5.3 4.47 0 
5-LEU NH 5-LEU β 3 3.9 2.43 0.57 
5-LEU NH 5-LEU β 3.2 3.9 3.74 0 
5-LEU NH 9-LEU α 3.1 3.8 3.9 0.1 
4-VAL NH 4-VAL γ 3 3.7 2.76 0.24 
4-VAL NH 4-VAL γ 3.6 4.4 4.64 0.24 
9-LEU NH 9-LEU β 3.1 3.8 2.53 0.57 
9-LEU NH 9-LEU β 3.3 4 3.78 0 
6-LEU α 6-LEU β 2.6 4.3 2.59 0.01 
9-LEU α 9-LEU β 2.6 4.1 2.53 0.07 
5-LEU α 5-LEU β 2.4 3.9 2.82 0 
9-LEU α 10-VAL γ 3.2 4.9 4.23 0 
7-THR β 12-ALA α1 3.4 4.2 4.36 0.16 
7-THR β 12-ALA β1 2 2.5 2.26 0 
13-PRO α 14-ALA β 4.3 6.1 6.27 0.17 
8-THR α 14-ALA α 3.1 4.8 4.42 0 
7-THR α 14-ALA α 3.5 5.12 5.26 0.14 
7-THR α 12-ALA β2 3 3.7 4.45 0.75 
11-ALA NH 10-VAL γ 3.4 4.2 3.68 0 
14-ALA NH 13-PRO γ 3.5 5.2 3.41 0.09 
13-PRO α 14-ALA NH 2.9 3.6 3.51 0 
14-ALA NH 13-PRO δ 2.9 3.6 3.07 0 
8-THR α 14-ALA NH 3.1 3.8 4.06 0.26 
Average Restraint Violation: 0.114    
Average RMS RestrViolation: 0.116       
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Novel aminformatide NRP family produced by Amycolaptosis sp. aa4 in the SoilActi dataset. 

Table 2.7 presents the number of NRP-producing BGCs and the number of putative core NRPs 

generated by NRPminer for each analyzed genome in SoilActi (before and after filtering).  

Table 2.7. The number of predicted core NRPs before and after filtering for the 
genomes of the 20 soil-dwelling Actinobacteria strains in SoilActi. The columns show 
the number of NRP-producing BGCs (column "#NRP-producing BGC") along with the 
number core NRPs generated by the canonical and non-canonical assembly lines for each 
genome before and after filtering by NRPminer using OrfDel option. Column "removing 
no ORFs" shows the number of core NRPs generated from the canonical assembly lines 
before and after filtering. For example, in case of S. albus genome, NRPminer produces 
102,852,968,758 core NRPs before filtering, while after filtering only 2,368 core NRPs are 
retained. Column "removing one ORF" shows the number of core NRPs generated from 
all non-canonical assembly lines resulted from removing A-domains encoded by one ORF 
on the corresponding BGC, before and after filtering with NRPminer. Column "removing 
two ORFs" shows this figure for non-canonical assembly lines generated by removing A-
domains encoded by two ORFs.  Column "total" shows the total number of core NRPs 
before and after filtering across all considered assembly lines for each organism. The 
strains corresponding to the datasets yielding the novel NRPs in SoilActi are shown in 
blue. 

strain 

#NRP-
producing 

BGCs 

#unique core NRPs 
before / after filtering  

generated by different assembly lines 
removing  
no ORFs  removing one ORF 

removing 
two ORFs total 

SCNY228 3 2,369/102,852,968,758 5,759/1,537,478,841 7,483/4023,756 15,611/104,394,471,355 
albus 3 3,189/25,713,264,922 5,788/473,652,036 7,471/2237,220 16,460/2,618,9154,178 
CNS654 5 1,560/21,499,085,734 3,870/87,589,011 2,331/45,216 7,761/21,586,719,961 
griseoflav 7 3,235/17,916,143,265 6,431/75,146,556 2,484/45,695 12,150/17,991,335,516 
hygro 5 3,753/79,748,772 12,887/27,905,444 11,964/5481,248 28,604/113,135,464 
15998 3 2,436/19,088,674 8,084/49,356,874 19,156/43,902,448 29,676/112,347,996 
coelicolor 3 1,191/787,524 1,693/75,438 91/819 2,975/863,781 
lividan 2 1,032/262,476 2,662/178,686 1,572/31644 5,266/472,806 
ghana 2 1,666/115,488 5,516/246,416 6,137/146728 13,319/508,632 
kutzneria 9 4,983/47,046 9,866/73,172 5,748/53050 20,597/173,268 
aa4 2 1,381/111,780 798/2,554 103/351 2,282/114,685 
CNB091 3 960/29,448 603/16,976 290/3124 1,853/49,548 
cattleya 4 1,300/23,068 1,475/6,165 77/225 2,852/29,458 
11379 4 1,643/6,853 2,800/11,961 1,632/6,882 6,075/25,696 
griseoflav 2 2,173/15,488 1,240/3,016 368/368 3,771/18,872 
tu6071 4 1,674/10,638 0/0 0/0 1,674/10,638 
pristin 2 864/864 279/279 0/0 1,143/1,143 
afghan 0 252/252 288/288 72/72 612/612 
e14 1 240/240 0/0 0/0 240/240 
viridochromoges 1 36/36 0/0 0/0 36/36 
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NRPminer identified 11 PSMs (representing three NRPs) when searching the SoilActi 

spectral dataset against Amycolaptosis sp. aa4 genome (Figure 2.29). Previously, another NRP 

family, siderophore amychelin, and its corresponding BGC was reported from this organism72. 

Using the NRPSpreidctor213-predicted amino acids NRPminer predicted a modification of ~0.95 

Da on the Glu in aminoformatide-1072 VVII[E-1.0]TRY. Since NRPSpredictor2 is the least 

sensitive in recognizing Lys (as compared to other amino acids)13, we hypothesize that this amino 

acid is in fact a Lys as we have seen in the case of protegomycins (with Lys), but this is yet to be 

determined.  
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Figure 2.29. Novel aminformatide (AMINF) NRP family discovered by NRPminer in 
the SoilActi dataset. (a) The BGC generating the core NRP in Amycolatopsis sp. AA4 
along with NRPS genes (shown in red) and the A-, C-, PCP, and E-domains appearing in 
the corresponding NRPS. The rest of the genes in the corresponding contigs are shown in 
white. Three highest-scoring amino acids for each A-domain in this BGC (according to 
NRPSpredictor213 predictions) are shown below the corresponding A-domains. Amino 
acids appearing in the NRP VVIVETRY identified by NRPminer (with the lowest p-value) 
are shown in blue. (b) Spectral network formed by spectra that originate from the AMINF 
NRPs. A node is colored if the corresponding spectrum forms a statistically significant 
PSM and not colored otherwise. (c) Sequences of the NRPs identified by NRPminer in the 
aminformatide family (with the lowest p-value among all PSMs originating from the same 
NRP). NRPminer predicted a PAM with loss of ~0.96 Da on E, represented by E*. AMINF 
represents aminformatide. (d) For each identified NRP, an annotated spectrum representing 
the lowest p-value is shown.   

Identifying lugdunin NRP family in the SkinStaph dataset. Antibiotics lugdunins7 

represent the only NRP family reported in the human commensal microbiota. NRPminer matched 

nine spectra representing three NRPs from a single family in the spectraSkinStaph dataset against 

A
PCP C

A
PCP PCPCA CE

A
PCPC

A PCP C
A

PCP PCPCA
C

A
PCPE E C

A
E PCP E E

val (100)
abu (90)
ile (60)

glu (80)
arg (60)
gln (60)

glu (80)
arg (70)
gln (70)

thr (100)
ser (80)
arg (60(

tyr (80)
bht (80)
phe (70)

val (100)
ile (80)
abu (70)

val (100)
abu (90)
ile (60)

val (100)
abu (90)
ile (60)

val (100)
ile (80)
abu (60)

1076.7

959.6

973.6

1072.7

1090.7

aa4

aa4

aa4VVI-V[-0.96]ETRY

VVIIV[-0.95]ETRY

VVII-[-0.95]ETRY

AMINF-959

AMINF-1072

AMINF-973

6.2x10-25

6.1x10-42

6.4x10-30

959.6

1072.7

973.63

strain
predicted 
aa seq P-value

precursor 
massNRP 

a

b

d

c

*

Amycolatopsis sp. AA4 (ctg1, location: 3340944 - 3468071)

973.63

1072.70

959.61

*

VVI-VE*TRY

VVIIVE*TRY

VVII-E*TRY

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*
*

*
*

*

*



 136 

Staphylococcus lugdunensin genome. In addition to the two known cyclic variants of lugdunin, 

NRPminer also discovered a novel lugdunin variant with precursor mass 801.52 (Figure 2.30). 

Due to a +18.01Da mass difference, NRPminer predicted a linear structure for this new variant 

that represents the linear version of the known one. Since NRPminer predicts sequence VWLVVVt 

for the linear lugdunin, with the breakage between valine and Cys-derived thiazolidine, we 

hypothesize that this is a naturally occurring linear derivative in the lugdunin family. Lugdunins, 

synthesized by a non-canonical assembly line, were predicted using the non-canonical assembly 

line feature of NRPminer.  
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Figure 2.30. Lugdunin NRP family matched by NRPminer in the SkinStaph dataset. 
(a) The BGC generating the core NRP in S. lugdunensin along with NRPS genes (shown in 
red) and the A-, C-, PCP-, and E-domains appearing in the corresponding NRPS. The rest 
of the genes in the corresponding contigs are shown in white. Three highest-scoring amino 
acids for each A-domain in this BGC (according to NRPSpredictor213 predictions) are 
shown below the corresponding A-domains. Amino acids appearing in the NRP VYLVV 
identified by NRPminer (with the lowest p-value) are shown in blue. The "Cys*" represent 
Cys-derived thiazolidine in the lugdunin structure. (b) Spectral network formed by spectra 
that originate from the NRPs in the lugdunin family. The known lugdunin NRPs are shown 
in blue, while the green node represents the novel variant identified by NRPminer. (c) 
Structure of a known lugdunin synthesized by a non-canonical assembly line. (d) For each 
matched NRP, an annotated spectrum of a PSM yielding the lowest p-values (2.7x10-21, 
3.6x10-15, and 7.5x10-15 from top to bottom) are shown. 

Identifying novel lipopeptides in the TinyEarth dataset. Our NRPminer analysis of the 

TinyEarth dataset generated 498 PSMs representing 31 NRPs from three families using the 200 
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Da threshold for PAM identification. Table 2.8 provides information about the NRPminer-

generated PSMs representing these three NRP families.   

Table 2.8. PSMs identified by NRPminer in the TinyEarth dataset representing the 
known NRP families. For each NRP family, the information about the PSM with the 
lowest p-value among all PSMs corresponding to the spectra representing the NRPs in that 
family, is listed. The column “matched genome” shows the name of the organism whose 
BGCs generated the putative NRP structure corresponding to the listed PSM and the 
column "BGC position” presents the contig and the starting and ending nucleotide position 
of the BGC in that contig. Columns “precursor mass” and “charge” list the precursor mass 
and the charge state of the matched spectra. 

 

NRP family 
name matched genome BGC position p-value 

precursor 
mass charge 

Surfactin Bacillus amyloliquefaciens sp. 
GZYCT-4-2 ctg1: 416695 - 482102 1.6×10-46 1036.7 1 

Plipastatin Bacillus amyloliquefaciens sp. 
GZYCT-4-2 ctg1: 2727818 - 2749701 7.0×10-55  731.4 2 

Arthrofactin Pseudomonas baetica sp. 04-6(1) ctg1: 3,566,169 - 3,642,017 2.7×10-39 1354.8 2 
 

Bacillus derived surfactins73 and plipastatin74 are bioactive lipopeptide with wide variety 

of activities. Surfactins are reported to have anti-viral75,76, anti-tumor77, anti-fungal78 and anti-

microbial79 functions80–83 and plipastatins have known anti-fungal activities84. In the analysis of 

Bacillus amyloliquefaciens sp. GZYCT-4-2, NRPminer correctly reported all known surfactins (17 

NRPs) and plipastatins (9 NRPs) identified in this dataset (PSMs listed in Table 2.9).  
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Table 2.9. NRPminer-generated PSMs representing all known surfactins85 and 
plipastatins74,86 identified in spectraTinyEarth dataset. For each known NRP, the PSM with 
the lowest p-value among all PSMs corresponding to the spectra generated from that NRP, 
is listed. The columns "core NRP aa sequence" and "structure" presents the core NRP and 
the backbone structure of each variant identified in TinyEarth dataset. Column "precursor 
mass" and "charge" lists the precursor mass and the charge state of the matched spectra. 
 

NRP family 
name 

core NRP  
aa sequence structure 

precursor 
mass p-value charge 

Surfactins 

ELLVDLL cyclic 966.5 2.5×10-23 1 
ELLVDLL cyclic 980.6 3.4×10-30 1 
ELLVDLL cyclic 994.7 4.0×10-35 1 
ELLVDLL cyclic 1008.7 2.9×10-45 1 
ELLVDLL linear 1012.7 2.1×10-17 1 
ELLIDLL cyclic 1022.7 1.5×10-41 1 
ELLVDLL linear 1026.7 3.3×10-19 1 

ELLVDLL cyclic 1029.7 8.1×10-20 1 
ELLIDLL cyclic 1036.7 1.6×10-46 1 
ELLVDLL linear 1040.7 9.0×10-19 1 
ELLVDLL cyclic 1044.7 9.2×10-16 1 
ELLVDLL cyclic 1050.7 2.1×10-28 1 
ELLVDLL linear 1054.7 6.8×10-16 1 

ELLIDLL cyclic 1057.7 7.8×10-24 1 

ELLVDLL cyclic 1064.7 2.0×10-41 1 

ELLVDLL linear 1068.7 6.4×10-31 1 

ELLVDLL cyclic 1071.7 3.9×10-22 1 

Plipastatins 

EOYTEAPQYI cyclic 718.4 9.6×10-33 2 
EOYTEAPQYI cyclic 724.4 2.9×10-30 2 
EOYTEAPQYI cyclic 725.4 2.5×10-38 2 
EOYTEAPQYI cyclic 731.4 7.0×10-55 2 
EOYTEAPQYI cyclic 732.4 2.3×10-37 2 
EOYTEVPQYI cyclic 739.4 3.2×10-49 2 
EOYTEVPQYI cyclic 746.4 5.5×10-43 2 
EOYTEVPQYI cyclic 753.4 6.1×10-42 2 

EOYTEVPQYI cyclic 760.4 2.6×10-21 2 
 

Moreover, NRPminer search of spectraTinyEarth against putative NRP structures generated 

from Pseudomonas baetica sp. 04-6(1) genome, identified 63 PSMs representing the arthrofactins 
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(ARF) NRP family (Figure 2.31). NRPminer identified the known branch-cyclic arthrofactins87 

that only differ in the fatty acid tail (namely ARF-1354 and ARF-1380) and a known linear 

arthrofactin ARF-1372 (the linear version of ARF-1354). Furthermore, it identified two novel 

arthrofactins: ARF-1326 (predicted to only differ in its side chain from the known branch-cyclic 

ARF-1354 shown in Figure 2.31.e) and ARF-1343 (predicted to be the linear version of the 

putative ARF-1326). NRPminer missed one known NRP family identified in spectraTinyEarth 

(xantholysins88) since the xantholysin BGC was split among multiple contigs in the Pseudomonas 

plecoglossicida sp. YNA158 genome assembly 
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Figure 2.31. Arthrofactin (ARF) NRP family. (a) The BGCs generating the NRP in 
Pseudomonas baetica sp. 04-6(1) along with the NRPS genes (shown in red) and A-, C-, 
C/E-, PCP-, and E-domains in these NRPSs. The rest of the genes in the corresponding 
contigs are shown in white. Three highest-scoring amino acids for each A-domain in these 
BGCs (according to NRPSpredictor213 predictions) are shown below the corresponding A-
domains. Amino acids appearing in the known NRP ARF-1354 with amino acid sequence 
[+170.13]LDTLLSLSILD are shown in blue. (b) Spectral network formed by the spectra 
that originate from NRPs in the ARF family. The known arthrofactins are shown in blue, 
while the purples nodes represent the novel variants identified by NRPminer. all identified 
athrofactins share the same core NRP LDTLLSLSILD. (c) Sequences of the identified 
NRPs in this family (with the lowest p-value among all spectra originating from the same 
NRP). Column "structure" shows if the predicted structure for the identified NRPs is linear 
or branch-cyclic (shown by b-cyclic). (d) Two annotated spectra representing the PSMs 
(with the lowest p-values among spectra originating from the same NRPs) corresponding 
to ARF-1354 and 1326. The two spectra were annotated based on predicted NRPs 
[+170.13]LDTLLSLSILD (PSM p-value 2.7×10-39) and [+142.11]LDTLLSLSILD (PSM 
p-value 6.5×10-55), from top to bottom. The "+" and "*" signs represent the addition of 
[+170.13] and [+142.11], respectively. (e) The 2D structure of known arthrofactin ARF-
135487. NRPminer identified this NRP with p-value 2.7×10-39. 

Identifying novel surugamides in the SoilActi dataset. NRPminer identified 183 spectra 

representing 25 NRPs when searching spectraSoilActi against S. albus J10174 genome, hence 

extending the set of known surugamide variants from 8 to 21 (Figure 2.32 and Table 2.8). Spectral 

network analysis revealed that these spectra originated from two NRP families. VarQuest search 
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of this spectral dataset against PNPdatabase41 identified only 14 of these 21 NRPs. The remarkable 

diversity of surugamide NRPs, that range in length from 5 to 10 amino acids, is explained by the 

non-canonical assembly lines29,41. In addition to the surugamides synthesized by the SurA-SurD 

pair, NRPminer also discovered a novel Surugamide G synthesized by the SurB-SurC pair (Figure 

2.32.d). In comparison with surugamide F from Streptomyces albus31, this NPR lacks the N-

terminal tryptophan. Surugamide F was not identified in the spectral dataset from Streptomyces 

albus.  
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Figure 2.32. Known and novel surugamide variants identified by NRPminer in the 
SoilActi dataset. Suragamide BGC contains four successive genes, namely SurA, SurB, 
SurC, and SurD with five, four, six, and three A-domains, respectively. SurA and SurD 
synthesize cyclic surugamides A-D using a non-canonical assembly line, while SurB and 
SurC synthesize a linear surugamide F. (a) Surugamide BGC from S. albus with SurA and 
SurD highlighted in red, while SurB and SurC are shown in white. In the middle, A-, C-, 
PCP-, and E-domains appearing in the corresponding NRPS are shown. Three highest-
scoring amino acids for each A-domain in this NRPS (according to NRPSpredictor213 
predictions) are shown below the corresponding A-domains. Amino acids appearing in 
surugamide A (IFLIAIIK) are shown in blue. (b) Spectral network formed by spectra that 
originated from cyclic surugamides (corresponding to the NRPS shown in part a) including 
the seven known cyclic surugamides. The known cyclic surugamides are shown in blue, 
while the purples nodes represent the novel cyclic variants identified by NRPminer. (c) 
NRPminer predicted novel cyclic surugamides with eight, seven, six, and five amino acids. 
For each length, the annotated spectrum representing the lowest p-value (among all PSMs 
corresponding to the identified novel surugamides with that length) is presented. Amino 
acid sequence, p-value, and precursor mass of each PSM is shown in the top right corner. 
Annotated peaks are shown in blue. The spectra were annotated based on predicted NRPs 
IAIIKIIL, IAIKIFL, IAIFIL, IAIFL, from top to bottom. The "+" sign represent the 
addition of [+14.02Da]. Table 2.9 shows the predicted amino acids and p-values for all 
NRPs represented by the nodes in part b. (d) Surugamide BGC from S. albus with SurB 
and SurC highlighted in red, while SurA and SurD are shown in white. In the middle, A-, 
C-, PCP-, and E-domains appearing in the corresponding NRPS are shown. The highest-
scoring amino acids for each A-domain in this NRPS (according to NRPSpredictor213 
predictions) are shown below the corresponding A-domains. Amino acids appearing in the 
novel surugamide G (LVTALVAVA) are shown in blue. The amino acid shown in black 
did not appear in the predicted surugamide G. (e) Annotated spectrum representing the 
novel surugamide G (synthetized by the NRPS shown in part d) with the lowest p-value 
among all spectra representing this NRP (p-value=5.0× 𝟏𝟎!𝟒𝟔 ). Annotated peaks are 
shown in blue. 
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Table 2.10. Amino acid sequences of the 19 NRPs identified by NRPminer appearing in 
spectral network presented in Figure 2.23.b (with the lowest p-value among the PSMs 
corresponding to all spectra originating from the same NRP). The known surugamide 
variants are shown in green.  The column "predicted aa sequence" shows the sequence of 
corresponding NRPs as predicted by NRPminer. The "[+14]" represents addition of 
[+14.01Da] and "[+28]" represents addition of [+28.03Da]. Column "precursor mass" 
shows the precursor mass of the matched spectra and the column "p-vale" presents the p-
value of the corresponding PSMs. 

predicted aa 
Sequence 

precursor 
mass p-value 

IAI---FL 558.37 9.2×10-16 
IAV--IFL 657.44 4.9×10-19 
IAI--IFL 671.45 3.1×10-32 
IAII-IFL 770.52 3.1×10-27 
IAV-KVFL 771.52 1.3×10-44 
IAII-IFL 784.54 3.5×10-20 
IAV-KIFL 785.53 8.1×10-47 
IAI-KIFL 799.55 6.4×10-43 
IAI-[+14]KIFL 813.56 5.6×10-50 
VAVVKVFL 856.57 4.9×10-45 
IAIVKIIL 864.63 4.1×10-55 
IAVVKVFL 870.59 8.7×10-73 
IAIIKIIL 878.65 1.4×10-27 
IAVVKIFL 884.60 2.6×10-59 
IAIVKIFL 898.62 3.3×10-67 
IAIIKIFL 912.63 6.9×10-65 
IAIVKIYL 914.61 3.5×10-43 
IAII[+14]KIFL 926.65 1.3×10-56 
IAII[+28]KIYL 928.63 1.9×10-56 
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2.4. DISCUSSION 

We developed the scalable and modification-tolerant NRPminer tool for automated NRP 

discovery by integrating genomics and metabolomics data. We used NRPminer to match multiple 

publicly available spectral datasets against 241 genomes from RefSeq60 and genome online 

database (GOLD)64. NRPminer identified 55 known NRPs (13 families) whose BGCs have been 

identified previously, without having any prior knowledge of them (Figure 2.3, Figure 2.4, Figure 

2.30, and Figure 2.31, and Table 2.3 and Table 2.9). Furthermore, NRPminer identified the BGC 

for an orphan NRP family (xentrivalpeptides) with previously unknown BGC (Figure 2.5). In 

addition to the known NRPs, NRPminer reported 121 novel NRPs from a diverse set of microbial 

organisms. Remarkably, NRPminer identified four completely novel NRP families (representing 

25 novel NRPs), three in the XPF dataset (Figure 2.6, Figure 2.21, and Figure 2.22)and one in the 

SoilActi dataset (Figure 2.29), illustrating that it can match large spectral datasets against multiple 

bacterial genomes for discovering novel NRPs that evaded identification using previous methods. 

We further validated two of the novel families predicted by NRPminer using NMR and 

demonstrated their anti-parasite activities.  

Existing peptidogenomics approaches are too slow (and often memory-intensive) to 

conduct searches of large MS datasets against many genomes. Moreover, these approaches are 

limited to NRPs synthesized by canonical assembly lines and without PAMs, which limits the 

power of these methods for discovering novel NRPs. NRPminer is the first peptidogenomics tool 

that efficiently filters core NRPs based on their specificity scores without losing sensitivity and 

enables searching millions of spectra against thousands of microbial genomes. Furthermore, 

NRPminer can identify NRPs with non-canonical assembly lines of different types (e.g., 
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surugamides, xenoinformycin and lugdunin) and PAMs (e.g. surfactins, arthrofactins, plipastatins, 

protegomycins, and PAX peptides).  

Majority of the spectral datasets in GNPS are currently not accompanied by 

genomics/metagenomics data. To address this limitation, NRPminer can search a spectral dataset 

against all genomes from RefSeq60 or GOLD databases64 within a user-defined taxonomic clade. 

This one-vs-all mode enables analysis of spectral datasets that are not paired with 

genomic/metagenomic data by searching them against multiple genomes. This mode, that relies 

on the scalability of NRPminer, enabled NRPminer to identify the lugdunin family (by searching 

the SkinStaph spectral dataset) even though the paired genome sequence from the same strain was 

not available.  

In contrast to the previous peptidogenomics approaches, NRPminer is robust against errors 

in specificity prediction in genome mining tools and can efficiently identify mature NRPs with 

PAMs. This feature was crucial for finding the novel protegomycins that include a PAM (lipid 

chain) and a mis-prediction (Phe instead of Lys), as well as for identifying the lipopeptide 

biosurfactant in the TinyEarth dataset. While NRPminer is a powerful tool for discovering novel 

NRPs it can only succeed if the genome mining algorithms successfully identify an NRP-encoding 

BGC and predicts the correct amino acids for nearly all A-domains. (see Methods section). One of 

the bottlenecks of genome mining methods for NRP discovery is the lack of training data for many 

non-standard amino acids from under-explored taxonomic clades. We anticipate that more NRPs 

will be discovered using automated methods, and these discoveries will increase the number of A-

domain with known specificity, which in turn will pave the path toward the development of more 

accurate machine learning techniques for A-domains specificity prediction.  
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In case of metagenomic datasets, NRPminer's one-vs-all function allows for searching the 

spectral dataset generated from a sample against all the metagenomic assemblies generated from 

that same sample. However, the success of genome mining crucially depends on capturing the 

entire BGCs in a single contig during genome assembly. NRPS BGCs are long (average length 

~60 kb45) and repetitive (made up of multiple highly similar domains), making it difficult to 

assemble them into a single contig. Meleshko et al.45, recently developed the biosyntheticSPAdes 

tool for BGC reconstruction in short-read isolate assemblies, but at the same time acknowledged 

that short-reads metagenome assemblies are not adequate for full-length BGC identification. Even 

with biosyntheticSPAdes45, it remains difficult to capture long and repetitive BGCs within a single 

contig. The one-vs-all approach can also mitigate this deficiency in cases where the BGCs 

corresponding to an NRP is poorly assembled, however, a related BGC from another genome, in 

that sample or another, is assembled in full. Furthermore, we note that with the advent of long-

read sequencing technologies, more contiguous microbial genome assemblies are becoming 

available84, increasing the power of NRPminer. Kolmogorov et al.85 recently demonstrated that 

long-read sequencing is effective in identifying NRP-producing BGCs in metagenomic samples. 

NRPminer only considers methylation and epimerization tailoring enzymes in the BGCs 

and does not recognize any other modification enzymes that modify NRPs, such as glycosylation 

and acylation86. These modifications can only be predicted as blind modifications using the 

modification tolerant search of their corresponding spectral datasets against the input genomes.  

Currently, NRPminer identified ~1% of spectra of isolated microbes as NRPs. However, 

~99% of spectra in these datasets remain unidentified, representing the dark matter of 

metabolomics. These spectra could represent primary metabolites (e.g. amino acids), other classes 

of secondary metabolites (e.g. RiPPs, polyketides, lipids, terpenes, etc.), media contaminations, 
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and lower intensity/quality spectra that are difficult to identify. Thus, further advances in 

experimental and computational mass spectrometry are needed toward a comprehensive 

illumination of the dark matter of metabolomics. 
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2.5. METHODS 

Outline of the NRPminer algorithm. NRPminer expands on the existing tools for 

automated NRP discovery28,38 by utilizing new algorithms that enable high-throughput analysis 

and handle non-canonical assembly lines and PAMs. Below we describe various steps of the 

NRPminer pipeline:  

 (a) Predicting NRPS BGCs in (meta)genome sequences by genome mining. NRPminer 

uses antiSMASH15 to identify the NRP-producing BGCs in the assembled genome. Given a 

genome (or a set of contigs), antiSMASH uses hidden Markov models to find NRP-producing 

BGCs. The NRPminer software package also includes biosyntheticSPAdes45, a specialized short-

read BGC assembler.  

(b) Predicting putative amino acids for each A-domain in the identified BGCs. 

NRPminer uses NRPSpredictor213 to predict putative amino acids for each position in an NRP. 

Given an A-domain, NRPSpredictor2 uses support vector machines (trained on a set of A-domains 

with known specificities) to predict the amino acids that are likely to be recruited by this A-domain. 

NRPSpredictor2 provides a specificity for each predicted amino acid that is based on the similarity 

between the analyzed A-domain and the previously characterized A-domains14,16. NRPminer uses 

NRPSpredictor213 predictions to calculate the specificity scores for each predicted amino acid.  

During NRP synthetase, the Adenylation domains (A-domains) recognize and activate the 

specific amino acid that will be appended to the growing peptide chain by other NRPS enzymes. 

Conti et al.89 showed that some residues at certain positions on each A-domain are critical for 

substrate activation and bonding; they reported 10 such positions. Stachelhaus et al.90 showed that 

for each A-domain AD, the residues at these decisive 10 positions can be extracted to form a 

specificity-conferring code called non-ribosomal code of AD. They demonstrated that the 
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specificity of an uncharacterized A-domain can be inferred based on the sequence similarity of its 

non-ribosomal code to those of the A-domains with known specificities90.  

Given an input A-domain AD, NRPSpredictor213 first compares the sequence of the non-

ribosomal code of AD to those of the already characterized A-domains in the NRPSpredictor213 

database. Afterwards, for each amino acid a, NRPSpredictor213 reports the Stachelhaus score of 

(specificity of) a for A-domain AD, that is (the integer value of) the percentage of sequence identity 

between the nonribosomal code of AD and that of the most similar A-domain within 

NRPSpredictor213 search space that encodes for a.  

Furthermore, Rausch et al.91, expanded the set of specificity-conferring positions on A-

domains to 34 residue positions and proposed a predictive model trained on residues at these 34 

positions (instead of just the 10 included in Stachelhaus code) to provide further specificity 

predictions13. Given an A-domain, they used a Support Vector Machine (SVM) method trained on 

previously annotated A-domains. For each input A-domain, this approach91 predicts three sets of 

amino acids in three different hierarchical levels based on the physio-chemical properties of the 

predicted amino acids: large clusters91 (each large cluster is at most 8 amino acids), small 

clusters91 (each small cluster is at most three amino acids), and single amino acid prediction (the 

single amino acid most likely to be activated by the given A-domain), as described by Rausch et 

al.91 For a given A-domain AD, we use the terms large cluster, small cluster, and single prediction 

of AD to describe the sets of amino acids predicted at each of these hierarchical levels. While 

Rausch et al.91 demonstrated that their approach reports better specificity predictions for less 

commonly observed A-domains, they also showed that integrating their score with the sequence 

similarity approach described by Stachelhaus et al.90 results in the highest accuracy91.  
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Similar to the approach used by NRP2Path38, NRPminer combines the two predictions 

provided by NRPSpredictor213. Given an A-domain AD and an amino acid a, NRPminer defines 

the SVM score of a for AD to be 100 if a matches the single amino acid prediction, 90 if a appears 

in the small cluster predictions, and 80 if a appears in the large cluster. If a does not appear in any 

of these sets, NRPminer defines the SVM score of a for AD to be 0. The total number of amino 

acids per A-domain with SVM score above 0 is at most 12 (considering all three sets of amino 

acids). For a given A-domain AD, NRPminer only considers amino acids with a predicted 

Stachelhaus score>50 and a predicted SVM score>0 for AD. Finally, NRPminer defines the 

specificity (or NRPSpredictor2) score of a for AD as the mean of Stachelhaus and SVM scores of 

a for AD.  

(c) Generating multiple NRPS assembly lines. NRPminer generates multiple NRPS 

assembly lines by allowing for the option to either delete an entire ORFs, referred to as "orfDel" 

or duplicate A-domains encoded by an ORF, referred to as "orfDup" (Figure 2.1). For example, 

for surugamide BGC with four ORFs (shown in yellow in Figure 2.33.a), with "orfDel" option, 

NRPminer generates six NRP assembly lines formed by two ORFs (Figure 2.33.b), four assembly 

lines formed by three ORFs, and one canonical assembly line formed by all four ORFs. Using this 

approach, NRPminer discovered the non-canonical assembly lines for synthesizing surugamide 

and lugdunin NRP families in SoilActi and SkinStaph datasets, respectively (Figures 2.32 and 

2.30). 
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Figure 2.33. Surugamide BGC and the surugamide assembly line formed by the SurA 
and SurD genes. (a) Surugamide BGC with four ORFs shown in yellow. (b) 11 assembly 
lines formed by deletion of zero, one and two ORFs (shown in red). NRPminer in the 
OrfDel mode explores all assembly lines generated by removing up to two ORFs. (c) The 
NRPS assembly line that synthesizes cyclic surugamides (formed by the SurA and SurD 
genes). At least three highest-scoring amino acids (along with their NRPSpredictor213 
scores) are shown below each A-domain in this assembly line. Amino acids appearing in 
surugamide A are shown in bold. NRPminer considers all amino acids with the same score 
as the score of the third highest-scoring amino acid as illustrated in the case of the fifth and 
the eighth A-domains. 
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Given a BGC, an assembly line refers to a sequence of NRPS modules in this BGC that 

together assemble the core NRP. NRPminer represents an assembly line as the sequence of A-

domains appearing in its NRP modules and allows a user to explore various assembly lines 

using OrfDel and OrfDup options. Each portion of an NRPS that is encoded by a single ORF 

is an NRPS subunit.  With OrfDel option, NRPminer considers skipping up to two entire NRPS 

subunits. Figure 2.33.b illustrates the assembly lines generated from surugamide BGC by 

deleting A-domains appearing on zero, one, and two NRPS subunits, out of the four NRPS 

subunits encoded by the four ORFs appearing in this BGC. We represent an NRPS assembly 

line as a sequence of sets of amino acids, 𝒜1,…,	𝒜k where each 𝒜i represents the set of amino 

acids predicted for the i-th A-domain of this assembly line along with their specificity scores. 

Figure 2.33.c illustrates that for surugamide NRPS assembly line formed by SurA and SurD 

genes, 𝒜1 = {val, ile, abu}, 𝒜2 = {phe, tyr, bht}, etc. 

Given an NRPS assembly line with k A-domains and the corresponding sets 𝒜1,…,	𝒜k, 

the set of all possible core NRPs for this assembly line is given by the cartesian product 

𝒜1×…×𝒜k. In case of the Surugamide BGC (Figure 2.33.a), there are 45,927 possible core 

NRPs for the assembly line formed by SurA and SurD genes (2.33.c) and a total of 

3,927,949,830 assembly lines for all 11 possible assembly-line for the surugamide BGC Figure 

2.33.d.  

In the default "orfDel" setting, NRPminer considers all assembly lines formed by deleting 

up to two ORFs. With "orfDup" option, NRPminer generates non-canonical assembly lines that 

tandemly duplicate all A-domains appearing in a single ORF. For example, Figure 2.34 describe 

that using this mode for lugdunin BGC with four ORFs, NRPminer generates one canonical 

assembly line formed by all four ORFs appearing once, four assembly lines where one of the ORFs 
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appears two times, and four assembly lines where one of the ORFs appears three times. NRPminer 

considers all assembly lines made up of at least three and at most 20 NRPS modules. 

 

Figure 2.34. Lugdunin BGC and the assembly lines formed by NRPminer using the 
OrfDup option. (a) Lugdunin BGC with the four ORFs shown in different colors. The 
squares represent the A-domains. (b) Assembly lines formed by duplication of a single 
NRPS subunit (corresponding to each ORF) zero, one and two times are pictured. 
NRPminer explores all assembly lines generated by duplicating each ORF up to two times 
when the "OrfDup" option is selected. (c) The NRPS assembly lined (with A-, C-, PCP-, 
and E-domains pictured) appearing in the NRPS that synthesizes lugdunin, where one val-
specific A-domain loads three amino acids (valines) to the growing peptide. Amino acids 
corresponding to lugdunin structure are shown below each A-domain. Circles represent 
amino acids (different amino acids are shown by different colors). (d) Cyclic structure of 
lugdunin with the amino acids highlighted in blue. The "Cys*" represent Cys-derived 
thiazolidine in lugdunin structure. 

(d) Filtering the core NRPs based on their specificity scores. Table 2.2 and Table 2.7 

illustrate that some BGC-rich genomes give rise to trillions of putative core NRPs. NRPminer uses 

the specificity scores of amino acids in each core NRP to select a smaller set of core NRPs for 

downstream analyses. Given an assembly line 𝒜1,…,	𝒜k, for each 𝑎 ∈ 𝒜i (i=1,...,k), NRPminer 

first divides the specificity score of 𝑎 by the maximum specificity score observed across all amino 

acids in 𝒜i; we refer to the integer value of the percentage of this number as the normalized 

specificity score of 𝑎. Table 2.11 show the normalized specificity scores of the amino acids 
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predicted for the assembly line of cyclic surugamides (corresponding to SurA and SurD genes). 

We define the score of a core NRP to be the sum of the normalized scores of its amino acids. 

NRPminer algorithm for filtering core NRPs.  

NRPminer uses a dynamic programming algorithm to efficiently find N highest-scoring 

core NRPs for further analyses (the default value is N=1000), which enables peptidogenomics 

analysis of BGCs with many A-domains.  presents the number of core NRPs generated from the 

assembly line formed by SurA and SurD genes, based on their scores. In total, 14,345 core NRPs 

from the original 3,927,949,830 core NRPs of the 11 assembly lines of surugamide BGC (listed in 

Figure 2.33.b) are retained.  

Given an NRPS assembly line A=A1,...,An, where Ai is the set of amino acids predicted for 

the ith A-domain of A, for every a ∈Ai (i=1,...,n), let 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒(!(𝑎) be the specificity 

score of a for the ith A-domain of A as described in Supplementary Note 3. Then, for each integer 

1 ≤ 𝑖 ≤ 𝑛 and 𝑎 ∈ 𝐴), we define normalized specificity score of a for ith A-domain of A, denoted 

by 𝑆((𝑖, 𝑎), to be the nearest integer to the following value: 

*+,-).)-)/0*-12,"!(4)

678
#∈"!

*+,-).)-)/0*-12,"!(9)
× 100. 

We use this scoring function (instead of SpecificityScore) to reduce the bias towards the 

more frequently observed A-domains that usually result in higher specificity scores compared to 

the less commonly observed ones, which do not have closely related A-domains in 

NRPSpredictor2 training datasets13. Consider the assembly line of cyclic surugamides A-D shown 

in Figure 2.33.c (corresponding to SurA-SurD gene pairs in surugamide BGC) which is made up 

of eight A-domains, we refer to this assembly line by 𝑆𝑢𝑟𝑢𝑔𝑎𝑚𝑖𝑑𝑒𝐴𝐿. Table 2.11 presents the 
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values of 𝑆*:2:;4<)=,(> for integers 1 ≤ 𝑖 ≤ 8 and (at least) the three amino acids with the highest 

normalized specificity scores for each A-domain in this assembly line. 

 
Table 2.11. Predicted amino acids for the eight A-domains appearing on cyclic surugamides 

A-D assembly line 𝑺𝒖𝒓𝒖𝒈𝒂𝒎𝒊𝒅𝒆𝑨𝑳. Ai represents the set of amino acids predicted for the ith A-

domain in 𝑆𝑢𝑟𝑢𝑔𝑎𝑚𝑖𝑑𝑒𝐴𝐿. For each Ai at least three amino acids with the highest normalized 

specificity scores (listed in parentheses) are presented. Amino acids appearing in surugamide A 

(IFLIAIIK) are shown in bold. NRPminer considers all amino acids with the same normalized 

specificity score, as illustrated in the case of the fifth and the eighth A-domains. 

 𝑨1 𝑨2 𝑨 3 𝑨 4 𝑨 5 𝑨 6 𝑨 7 𝑨 8 
val (100) phe (100) tyr (100) val (100) ala (100) val (100) val (100) met (100) 
ile (80) tyr (90) phe (100) ile (100) ser (87) ile (100) ile (100) apa (100) 
abu (70) bht (90) leu (100) abu (70) pro (75) abu (70) abu (70) glu (86) 
    val (75)   arg (86) 
    cys (75)   gln (86) 
    phe (75)   lys (86) 
    gly (75)   asp (86) 
       val (86) 
       orn (86) 

 
Given A=	𝐴1,…,An we call the set of all core NRPs generated by the cartesian product 

𝐴1×…× 𝐴? as the core NRPs of A. For each core NRP of A, a1a2...an, we define the adenylation 

score of a1a2...an, denoted by ScoreA(a1a2...an), to be the sum of the normalized specificity scores 

of all of its amino acids:  

ScoreA(a1a2...an)= ∑ 	?
)@" SA(i,ai). 

Therefore, given assembly line SurugamideAL and core NRP, P=IAIIKIFL (the core NRP 

corresponding to surugamide A), ScoreSurugamideAL(P)=80+100+100+100+100+100+100 

+86=766. Note that, for any assembly line A, the maximum value of ScoreA denoted by 

maxScoreA=∑ 𝑚𝑎𝑥4!∈(!𝑺𝑨(	𝑖, 𝑎)
?
)@" ) = 100𝑛. 

For many organisms, the total number of possible core NRPs is prohibitively large, 

making it infeasible to conduct search against massive spectral repositories. Currently, even the 
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fastest state-of-the-art spectral search methods are slow for searching millions of input spectra 

against databases with over 105 peptides in a modification-tolerant manner as the runtime grows 

exceedingly large when the database size grows41.  Tables 2.7 and 2.12 show that for 24 (22) out 

for 27 organisms in XPF dataset and 9 (7) out of 20 organisms in SoilActi dataset, the total number 

of core NRPs exceed 105 (106). Therefore, to enable scalable peptidogenomics for NRP discovery, 

for each constructed assembly line NRPminer, selects a set of candidate core NRPs. To do so, 

NRPminer starts by finding the number of core NRPs of A according to their adenylation scores 

(Problem 1) and then it uses these numbers for generating all core NRPs of A with adenylation 

scores higher than a threshold (Problem 2). 

Problem 1. Given A=A1,...,An and a positive integer s, find the of number of all core NRPs 

of A with adenylation score equal to s. 

Let 𝑘 = 𝑚𝑎𝑥
)∈{",...,?}

(|𝐴)|) where |𝐴) | shows the number of amino acids in 𝐴). For any positive 

integers i and s satisfying,1≤i≤n and s≤maxScoreA, let 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑖, 𝑠) denote the number 

of core NRPs, of assembly line 𝐴", . . . , 𝐴) 	with 𝑆𝑐𝑜𝑟𝑒(%,...,(! equal to s. Let 

𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((0, 𝑠) = 0 for any positive integer s, and 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑖, 𝑠) = 0 for any 

integer 𝑠 < 0, across all possible values of i. Then, for any positive integers i and s satisfying 1 ≤

𝑖 ≤ 𝑛 and 0<s≤ maxScoreA, we have, 

𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑖, 𝑠)= ∑ 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑖 − 1, 𝑠 − 𝑆((𝑖, 𝑎))4!∈(! ).    (1) 

Using the recursive formula (1), NRPminer calculates 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠( using parametric 

dynamic programming in a bottom-up manner: NRPminer first, computes 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((1,s), 

for all positive integers s≤maxScoreA. then proceeds to 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((2,s) for all such s, and 

so on, computing 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((n,s) for all such 0<s. Using this approach, for each value of i 
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and s, NRPminer computes 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑖, 𝑠) by summing over at most k values. Therefore, 

NRPminer calculates all values of 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠( with time complexity O(k×n×maxScoreA). 

Given a positive integer N<105, let 𝑠𝑐𝑜𝑟𝑒(,G be the greatest integer s'≤ maxScoreA such 

that,  

𝑁 ≤ ∑ 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((𝑛, 𝑠)	HIJHJ<4K*-12, . 

Then, we define, 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒((𝑁) = ^
						𝑠𝑐𝑜𝑟𝑒G																			if	𝑠𝑐𝑜𝑟𝑒G < 𝑠𝑐𝑜𝑟𝑒"%&
𝑠𝑐𝑜𝑟𝑒G − 1																		if	𝑠𝑐𝑜𝑟𝑒G = 𝑠𝑐𝑜𝑟𝑒"%&

 .    (2) 

NRPminer selects, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((N), defined as the set of all core NRPs of A, 

with adenylation score at least 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝑐𝑜𝑟𝑒((𝑁). NRPminer selects core NRPs 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((N) for downstream spectral analyses. Using this approach, NRPminer is 

guaranteed to be scalable as at most 105 candidate core NRPS are explored per assembly line.  

 

Table 2.12Table 2.12 presents the values of numCoreNRPsSurugamideAL(8,s) for various 

values of s. Note that, this table presents the number of core NRP only for a single assembly line, 

𝑆𝑢𝑟𝑢𝑔𝑎𝑚𝑖𝑑𝑒𝐴𝐿, corresponding to cyclic surugamides (surugamide A-D). In total, 14,345 core 

NRPs were retained from the original 3,927,949,830 core NRPs of the 11 assembly lines of 

surugamide's BGC.  

Table 2.12. Number of core NRPs of SurugamideAL (assembly line corresponding to cyclic 
surugamides A-D) according to their adenylation scores. Only values of s with non-zero number 
of cores and corresponding to the top 1000 high-scoring core NRPs are shown.  

s 800 790 788 786 780 778 776 774 772 total 

𝒏𝒖𝒎𝑪𝒐𝒓𝒆𝑵𝑹𝑷𝒔𝑺𝒖𝒓𝒖𝒈𝒂𝒎𝒊𝒅𝒆𝑨𝑳(𝟖, 𝒔) 24 48 24 192 24 48 384 192 168 1104 
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Problem 2. Given an assembly line A and a positive integer N, generate 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((N), defined as all core NRPs of A with adenylation scores at least 

thresholdScoreA(N).  

NRPminer follows a graph-theoretic approach to quickly generate 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((N) by using the computed values of numCoreNRPs. Let G(A) be the 

acyclic directed graph with nodes corresponding to pairs of positive integers i≤n and 

s≤maxScoreA, such that 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((i,s)>0, denoted by 𝑣),H. For every node 𝑣),H (i=1,...,n) 

and every 𝑎 ∈ 𝐴) such that 𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑁𝑅𝑃𝑠((i-1,s-SA(i,a))>0, there exists a directed edge from 

𝑣)!",H!*"(),4) to 𝑣),H. Let Source be 𝑣%,% and let Sink be the set of all nodes 𝑣?,H	such that 

thresholdScoreA(N) ≤ 𝑠. We call each directed path in G(A) from Source to the nodes in Sink as a 

candidate path of G(A). 

Each candidate path of G(A), corresponds to a distinct core NRP of A with adenylation 

score at least thresholdScoreA(N) and vice versa. Therefore, the problem of finding all core NRPs 

of A with adenylation score at least thresholdScoreA(N), corresponds to the problem of finding all 

candidate paths of G(A). While enumerating all paths with n nodes in a directed acyclic graph can 

grow exponentially large (as there can be exponentially many such paths), but due to our choice 

of thresholdScoreA(N), the number of candidate paths of G(A) is bound by 105 (or N if 𝑠𝑐𝑜𝑟𝑒G =

𝑠𝑐𝑜𝑟𝑒"%&). NRPminer uses the default value N=1000. Moreover, n≤20, (only assembly lines made 

up of up to 20 A-domains are considered) and k≤12.  

(e) Identifying domains corresponding to known modifications and incorporating 

them in the core NRPs. NRPminer searches each BGC for methylation domains (PF08242) and 

accounts for the possible methylations on corresponding residues for all resulting core NRPs 

(corresponding to +14.01Da mass shift). NRPminer also searches each BGC for epimerization 
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domains (as well as dual condensation-epimerization domains) that provide information about the 

structure of the final NRP (D- or L-amino acids). 

(f) Generating linear, cyclic, and branch-cyclic backbone structures for each core 

NRP. NRPminer generates linear and cyclic structures for all core NRPs. Similar to NRPquest28, 

whenever NRPminer finds a cytochrome P450 domain, it also generates branched-cyclic NRPs by 

considering a side-chain bond between any pair of residues in the peptide.  

(g) Modification-tolerant search of spectra against the constructed backbone 

structures. Similar to PSMs in proteomics, a PSM in peptidogenomics is scored based on 

similarities between the theoretical spectrum of the peptide and the mass spectrum41 (See 

Supplementary Note 8). The standard search of a spectrum against a peptide database refers to 

finding a peptide in the database that forms a highest-scoring PSM with this spectrum. Similarly, 

the modification-tolerant search of a spectrum against the peptide database refers to finding a 

variant of a peptide in the database that forms a highest-scoring PSM with this spectrum. In the 

case of NRPs, it is crucial to conduct modification-tolerant search in a blind mode in order to 

account for unanticipated PAMs in the mature NRP. For example, NRPminer identified PAX-

peptides family and their corresponding BGC in X. nematophila ATCC 19061 in the XPF dataset 

even though these NRPs include lipid side-chains that are not predictable via genome mining. As 

another example, NRPminer identified lugdunin in the SkinStaph dataset that contains an unusual 

Cys-derived thiazolidine modification7.  

Existing peptidogenomics methods utilize a brute-force approach for modification-tolerant 

search, by creating a database of all possible unanticipated modification28. For example, given a 

spectrum and a core NRP structure with n amino acids, these methods consider a modification of 

mass 𝛿 on all possible amino acids in the NRP, where 𝛿 is the mass difference between the 
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spectrum and the NRP. Gurevich et al. developed the VarQuest15 tool for modification-tolerant 

search of large spectral datasets against databases of peptidic natural products that is two orders of 

magnitude faster than the brute-force approach. NRPminer utilizes VarQuest for identification of 

PAMs with masses up to MaxMass with the default value MaxMass=150 Da (See below for further 

information). This approach also allows NRPminer to identify loss or addition of an amino acid 

(for amino acids with molecular mass up to MaxMass Da). Note that, similar to identification of 

post-assembly modifications in linear proteomics28, MS-based methods for NRP discovery are 

limited to finding modification masses and cannot provide information about the exact chemistry 

of the identified modifications.  

Forming Peptide-Spectrum-Matches (PSMs) and Calculating PSM Scores. Peptide-

Spectrum-Matches (PSMs) and their PSM scores are described by Gurevich et al.41. Given a 

peptide P (with any backbone structure), the graph of P is defined as a graph with nodes 

corresponding to amino acids in P and edges corresponding to generalized peptide bonds as 

described in Mohimani et al.92. The mass of this  graph (referred to as Mass(P)) is defined as the 

total mass of its amino acids and TheoreticalSpectrum(P) is defined as the set of masses 

(theoretical peaks) of all connected components of the graph of P resulting from removal of two-

cuts (e.g. a pair of edges in the ring potion of a cyclic and branch-cyclic PNPs) or a bridge (e.g. a 

bond in a linear peptide, or branch of a branch-cyclic peptide)92. Note that each such removal 

results in two peaks (fragments) with a total mass equal to Mass(P).  

Given a peptide P and a spectrum S, the PSM score of the PSM formed between P and S 

(or the shared peak count score), denoted by SPCScore(P,S), is defined as the number of peaks 

shared between TheoreticalSpectrum(P) and S. Two peaks are shared if their masses are within a 

threshold ε (0.02 Da for high-resolution spectra). We compute the PSM score only if the precursor 
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mass of the spectrum, denoted as Mass(S), matches Mass(P) with error up to Δ (0.02 Da for high-

resolution data).  

If (A1, …, An) is the list of amino acid masses in a peptide P, we define Variant(P,i,δ) as 

(A1,…, Ai + δ, …, An), where P and Variant(P,i,δ) have the same topology and Ai + δ ≥ 0. 

VariableScore(P,S) is defined as: 

𝑚𝑎𝑥(SPCScore(Variant(𝑃,𝑖,𝜔),𝑆)), 

where ω is Mass(P) − Mass(S) and i varies from 1 to n (n stands for the number of amino acids in 

the peptide P)41. We define a variant of peptide P derived from a spectrum S as Variant(P,i,ω) of 

peptide P, that maximizes SPCScore(Variant(P,i,ω),S) across all positions i in P. For simplicity, 

we refer to this variant as Variant(P,S). Given P and S, VarQuest41 uses a heuristic approach to 

efficiently find Variant(P,S).  

NRPminer uses VarQuest41 to perform modification-tolerant search of the input spectral 

datasets against the constructed peptide structures generated from selected core NRPs (see the 

NRPminer step "generating linear, cyclic and branch-cyclic backbone structures for each core NRP 

" in Figure 2.2 and in Method section). Given a positive number MaxMass representing the 

maximum allowed modification mass (default value of MaxMass=150), for each constructed 

structure P and input spectrum S, if |Mass(P)-Mass(S)|≤MaxMass, NRPminer uses VarQuest41 to 

find the Variant(P, S). In this context, Variant(P,S) represents the mature NRP with a single post-

assembly modification (PAM) on P that resulted in the mass difference |Mass(S)-Mass(P)|. Similar 

idea has been applied to identification of post-translational modifications in traditional 

proteomics50,93. 

NRPminer has the one-vs-one mode for searching a spectral dataset against the genome 

corresponding to its producer. Additionally, NRPminer features one-vs-all mode that a spectral 
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dataset is searched against all genomes in the corresponding taxonomic clade. One-vs-all is useful 

in cases when an entire BGC is not assembled in a single contig in the producer’s genome, but 

well-assembled in a related genome. For example, the spectra representing the three 

protegomycins produced by Xenorhabdus sp. 30TX1 did not match any core NRP generated from 

its genome because the corresponding BGC was not assembled in a single contig in this genome. 

However, they were identified with statistically significant p-values using the one-vs-all search 

when these spectra were searched against core NRPs from X. doucetiae genome (Figure 2.6) that 

included an orthologous BGC in a single contig.  

In scoring PSMs, NRPminer has a user-adjustable threshold for the accuracy of precursor 

and products ions, thus improving the accuracy of PSM scoring in the case of modification-tolerant 

search of high-resolution spectral datasets. This feature improves on NRPquest whose applications 

are largely limited to low-resolution spectra.  

(h) Computing statistical significance of PSMs. NRPminer uses MS-DPR94 to compute 

p-values of the identified PSMs. Given a PSM, MS-DPR computes the probability (p-value) that 

a random peptide has a score greater than or equal to the PSM score. The default p-value threshold 

(10-15) is chosen based on the previous studies where the p-value cut-off 10-15 was necessary for 

reaching a False Discovery Rate (FDR) below 1% against non-ribosomal peptides15. However, the 

user can change the p-value thresholds (using "--pvalue" handle) depending on their study. 

NRPminer uses the MS-DPR94 to compute the statistical significance (p-value) of each 

identified PSM. Given a PSM(P,S) between a NRP P and a spectrum S, MS-DPR94 computes the 

probability (p-value) that a peptide with the same length as P forms a PSM with the spectrum S 

with a PSM score that is greater than or equal to the score of PSM(P,S). We refer to this probability, 

as the p-value of PSM(P,S). 
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A simple way to estimate the p-value of a PSMs is to use Monte Carlo simulations - that 

is to generate a population of billions of random peptides and estimate the distribution of PSM 

scores of all peptides against the spectrum S. However, this approach becomes prohibitively time-

consuming for estimating very low p-values, i.e., when calculating the probabilities of extremely 

rare events. For example, estimating p-values as low as 10-12 requires calculating PSM scores of 

trillions of randomly generated peptides. Therefore, naïve Monte Carlo is impractical in mass 

spectrometry experiments where PSMs with p-values as low as 10-12 and below are common, 

including the case of NRP studies95. 

To overcome this challenge, MS-DPR94 uses a method for evaluating probability of rare 

events (peptides yielding “high” PSM scores) called multilevel splitting. This method, that was 

originally developed in nuclear physics, rapidly approximates an extreme tail of the probability 

distribution of PSM scores against a spectrum. It constructs a Markov Chain over a space of PSM 

scores of millions of random peptides similar to P (in molecular weight and length) against S. It 

then uses selection mechanisms that favors the trajectories in this Markov chain deemed likely to 

lead to high-scoring PSMs. Using this method, MS-DPR94 dedicates a greater fraction of the 

computational effort to a portion of the peptide space that leads to higher PSM scores against S, 

and therefore can efficiently estimate the total probability of all peptides with high scores in the 

constructed Markov chain. 

(i) Expanding the set of identified NRPs using spectral networks. Spectral datasets 

often contain multiple spectra originating from the same compound. NRPminer clusters similar 

spectra using MS-Cluster65 and estimates the number of distinct NRPs as the number of clusters. 

It further constructs the spectral network58,51 of all identified spectra and estimates the number of 

distinct NRP families as the number of connected components in this network.  
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Spectral networks reveal the spectra of related peptides without knowing their amino acid 

sequences58. Nodes in a spectral network correspond to spectra, while edges connect spectral 

pairs, i.e. spectra of peptides differing by a single modification or a mutation. Ideally, each 

connected component of a spectral network corresponds to a single NRP family58 representing a 

set of similar NRPs. In this study, we only report an identified NRP family if at least one NRP in 

the family is identified with a PSM p-value at least 10-20. NRPminer utilizes spectral networks for 

expanding the set of identified NRPs. 

Availability. NRPminer is available as both a stand-alone tool 

(https://github.com/bbehsaz/nrpminer) and as a web application via GNPS in silico toolbox. All 

described datasets are available through the corresponding public repositories.  
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2.7. APPENDECIES  

Appendix 1: Additional Analyses for Novel Protegomycin Family  

Description of Experiment. X. doucetiae-Δhfq was constructed as described before66. 

Exchange of the natural promoter against the inducible PBAD was performed as described96. Briefly, 

the first 598 base pairs of prtA were amplified with primer pEB_317-fw 

TTTGGGCTAACAGGAGGCTAGCAT_ATGAGAATACCTGAAGGTTCG and PEB_318-rv 

TCTGCAGAGCTCGAGCATGCACAT_CGTAATGAAACGAGTTCAGG. The resulting 

fragment was cloned via hot fusion cloning into pCEP-km via homologous arms. The resulting 

construct pCEP_XdV3_70082-km was transformed into E. coli S17-1 λpir resulting in E. coli 

pCEP_XdV3_70082. Conjugation of this strain with X. doucetiae wt or X. doucetiae-Δhfq was 

followed by integration of pCEP_XdV3_70082 into the acceptors genome via homologous 

recombination (zit). In X. doucetiae-Δhfq-PBAD-prtA the production of protegomycin was induced 

by adding 0.2 % L-arabinose into the fresh inoculated medium66.  

For large scale production of protegomycin, 6 x 1 L LB medium was inoculated with X. 

doucetiae-Δhfq_PBAD-prtA pre-culture 0.02 %. 2 % Amberlite® XAD-16 adsorber resin was added 

and the production was induced with 0.2 % L-arabinose. The cultures were constantly shaking at 

130 rpm at 30 °C. After 72 h the XAD beads were harvested and protegomycins extracted using 3 

L of methanol. The solvent was evaporated, and the crude extract was then used for isolation and 

analyzation of protegomycin derivatives. Part of crude extraction was purified by preparative 

HPLC with a gradient mobile from 5% to 95% ACN in H2O (v/v) in 30 mins followed by semi-

preparative HPLC (ACN–H2O, 35-45% in 30 mins, v/v) to yield PRT-1037 (24.4 mg). 

For structure elucidation and determination of incorporated C- and N- atoms and amino 

acids into protegomycins, cultivation of X. doucetiae-Δhfq_PBAD-prtA and X. doucetiae_ PBAD-
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prtA, induced with 0.2 % L-arabinose was performed in 5 mL LB (12C), 13C- and 15N-isogrow® 

medium (Sigma Aldrich). The cultures were supplemented with 2 % Amberlite® XAD-16 adsorber 

resin. To analyze the incorporated amino acids, induced mutants were grown in LB medium 

supplemented with selected 13C-labeled amino acids with a concentration of 2 mM. After 48 h 

cultivation at 30 °C, constantly shaking at 200 rpm, Amberlite® XAD-16 beads were harvested 

and extracted with 5 mL MeOH for 45 min. Samples were taken from the filtered extracts and 

centrifuged for 15 min at 13.000 rpm for further HPLC-MS analysis (Dionex Ultimate 3000 

coupled to a Bruker AmaZon X ion trap). Generated HPLC-MS data were interpreted as described 

previously66,97.  
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Appendix 2: Additional Analyses for Novel Xenoamicin-like Family 

Cultivation of strains. Xenorhabdus KJ12.1 was routinely cultivated in Luria-Bertani 

(LB) medium (pH 7.0) at 30°C and 200 rpm on rotary shaker and on LB agar plates at 30°C. 

Inverse feeding experiments were applied in either ISOGRO® 13C medium, ISOGRO® 15N 

medium. 50 ml ISOGRO® medium was prepared with ISOGRO® powder (0.5 g), K2HPO4 

(1.8 g/l), KH2PO4 (1.4 g/l), MgSO4 (1 g/l) and CaCl2 (0.01 g/l) solved in water. Feeding 

experiments in ISOGRO® 13C medium supplemented with 12C amino acids was inoculated with 

ISOGRO® washed overnight cultures.  

Production cultures were grown in LB media containing 2% Amberlite® XAD-16 resin 

inoculated with 1% overnight culture. Promotor exchange mutants were induced with 0.2% 

arabinose at the beginning of the cultivation. Resin beads and bacterial cells were harvested by 

centrifugation after 72 h cultivation time, washed twice with one culture volume methanol. The 

crude extracts were analysed by means of MALDI-MS and HPLC-MS (Bruker AmaZon). 

HPLC based purification. XAM-1320 was isolated by a two-step chromatography. Strain 

KJ12.1 was cultivated in a BIOSTAT A plus fermenter (Sartorius) equipped with a 2-L vessel in 

1.5 L of LB broth at 30 °C for 12 hours. For the inoculation, 1% overnight preculture was used 

and 2% XAD-16 were added. Additionally, 10 g of glucose and 5 mL Antifoam 204 (Sigma-

Aldrich) were added. The fermentation was performed with an aeration of 2.25 vvm, constant 

stirring at 300 rpm and at pH 7, stabilized by the addition of 0.1 N phosphoric acid or 0.1 N sodium 

hydroxide. The XAD resin was washed with methanol to get the extract after evaporation. 

Xenoamicin III A was isolated by a two-step chromatography. In the frist step the extract was 

fractionated with a 5-95% water/acetonitrile gradient over 15 min on a Luna C18 10 �m 50x50 mm 
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column (Phenomenex). In the second step XAM-1320 was isolated with a 40-60% water-

acetonitrile gradient over 19 min on Luna C18 5 �m 30x75 mm column (Phenomenex). 

MS analysis. MS analysis was carried out by using an Ultimate 3000 LC system (Dionex) 

coupled to an AmaZon X electronspray ionization mass spectrometer (Bruker Daltonics). 

Separation was done on a C18 column (ACQITY UPLC BEH, 1.7 mm, 2.1x50 mm, flow rate 

0.4 ml/min, Waters). Acetonitrile/water containing 0.1% formic acid was used as mobile phase. 

The gradient started with 5% acetonitrile continuous over 2 minutes. Over 0.5 minutes under a 

linear gradient acetonitrile reaches 40%. Following an equilibration phase over 1.5 minutes with 

40% acetonitrile takes place. For separation a linear gradient from 40-95% acetonitrile over 10.5 

minutes were used. The gradient ends up with 95% acetonitrile continuous over 1.5 minutes. 

Collision-induced dissociation (CID) was performed on ion trap in the AmaZon X in positive 

mode. 

HR-ESI-HPLC-MS data were obtained with on a LC-coupled Impact II ESI-TOF 

spectrometer (Bruker Daltonics). 

Advanced Marfey’s method. The advanced Marfey’s method to determine the 

configurations of the amino acid residues was performed as described previously69. 
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CHAPTER 3.  

Long-Read Metagenome Assembly for Reconstructing 

Biosynthetic Gene Clusters 

 

3.1. ABSTRACT 

Non-Ribosomal Peptides (NRPs) are biomedically important natural products that include 

many antibiotics and antitumor agents1,2. Search for new NRPs is an important goal since many 

pathogens have developed resistance against most drugs, including NRP antibiotics of the last 

resort as daptomycin and vancomycin3. Today, little is known about antibiotic NRPs that are 

produced by bacteria that live in the human gut (rather than doctor-prescribed) and it is unclear 

whether the continuous exposure to them leads to the development of antibiotic resistance. 

Identifying NRP-producing Biosynthetic Gene Clusters (BGCs) in human gut microbiome is 

critically important for discovering such NRPs. In this chapter, we show that, long-read 

metagenomic assemblies reveal many BGCs that synthesize previously unknown NRPs in the 

human gut microbiome as well as some BGCs encoding for NRPs associated with colorectal 

cancer. We also benchmarked multiple assembly methods and demonstrated that metaFlye4 

method for scalable long-read metagenome assembly, improves on other assemblers with respect 

to identification of BGCs that synthesize NRPs.  
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3.2. INTRODUCTION 

Non-ribosomal peptides. Non-Ribosomal Peptides (NRPs) are biomedically important 

natural products that include many antibiotics and antitumor agents1,2. Most NRPs are 

cyclopeptides synthesized via non-ribosomal (rather than genetic) code and built from over 300 

different amino acids (rather than 20 standard proteinogenic amino acids). Search for new NRPs 

is an important goal since many pathogens have developed resistance against most drugs, including 

NRP antibiotics of the last resort such as daptomycin and vancomycin3. Today, little is known 

about antibiotic NRPs that are produced by bacteria that live in the human gut (rather than doctor-

prescribed) and it is unclear whether the continuous exposure to them leads to the development of 

antibiotic resistance. 

De novo cyclopeptide sequencing tools (that analyze cyclospecta arising from 

cyclopeptides) only succeed in the case of well-fragmented mass spectra that constitute a small 

fraction of all cyclospectra5.  As a result, although Behsaz et al., 20206 recently demonstrated that 

there exists a surprisingly large array of still unknown cyclopeptides in the human gut (by 

identifying cyclospectra), the amino acid sequences of the vast majority of these cyclopeptides 

remain unknown. NRPs are not directly encoded in the genome and are instead assembled by Non-

Ribosomal Peptide Synthetases (NRPSs). NRPSs are multi-modular proteins that are encoded by 

a set of chromosomally adjacent genes called biosynthetic gene clusters (BGCs)7,8. Currently, the 

most promising way to sequence an NRP cyclopeptide is the peptidogenomics approach that 

matches its cyclospectrum with a Non-Ribosomal Peptide Synthetase (NRPS) that synthesizes this 

cyclopeptide using tools like NRPminer9. In this chapter, we used the terms NRPS to refer to 

NRPS-encoding BGCs as we are focusing on DNA data. 
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Metagenome mining for NRPSs. New NRPSs are usually discovered using various 

genome mining approaches enabled by antiSMASH10 and other genome mining tools11. However, 

metagenome mining is still in infancy since the performance of antiSMASH deteriorates in the 

case of fragmented metagenomic assemblies12. Since NRP-producing BGCs are long (average 

length ~60 kb) and repetitive (made up of multiple highly similar domains) they are specifically 

difficult to assemble13. Meleshko et al.14, 2019 recently developed the biosyntheticSPAdes tool for 

NRPS identification in short-read isolate assemblies, but, at the same time, acknowledged that 

short-reads metagenome assemblies are not adequate for full-length BGC assembly in case of 

longer BGCs. Since genome mining approach fails unless almost an entire NRPS is assembled 

within a single contig15, only a small number of NRPs have been discovered via 

peptidometagenomics approach based on joint analysis of short-read metagenomic assemblies and 

mass spectra9.  

In this Chapter, we demonstrated that long-read assemblies address this limitation and 

identify many NRPSs in the human gut metagenome. Furthermore, we benchmarked several state-

of-the-art long-read assemblers (metaFlye4, Canu16, and OPERA-MS17) using sequencing data 

generated from human gut samples by Bertrand et al, 201917.  
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3.3. METHODS  

Generating human microbiome assemblies. To evaluate the performance of long-read 

assemblers on human gut datasets, we extracted the available records from the ENA database 

generated from a cohort of stool samples17 (project ID: PRJEB29152) and excluded three samples 

where Canu failed (two samples) or metaFlye failed (one sample). Removing these samples 

resulted in 19 datasets (Table 3.1) with total read lengths varying from 1.6 Gbp to 8.0 Gbp. Each 

dataset includes nanopore long-read metagenomics reads as well as the Illumina short-read 

metagenomic reads generated from the same sample17.  

Table 3.1. ENA/NCBI accession numbers for 19 human gut samples used in 
benchmarking. Sample numbers are given as they appear in the original manuscript by 
Bertrand et al., 201917. We removed four datasets (out of the original 23) failed by either 
canu (in three cases) or metaFlye (in one case). 

Sample 
No Sample ID ONT reads 

accession 
Illumia reads 

accession 
1 V06-T-0501-S07 ERR3201932 ERR3201927 
2 V03-S-0457-S04 ERR3201933 ERR3201920 
3 V02-T-1664-S03 ERR3219598 ERR3201913 
5 V00-S-0509-S01 ERR3201936 ERR3201908 
6 V05-S-0512-S05 ERR3201937 ERR3201930 
7 V03-T-0508-S04 ERR3201938 ERR3201914 
8 V05-T-0513-S05  ERR3201939 ERR3201928 
9 V01-T-0506-S02 ERR3201940 ERR3201921 
10 V03-T-0504-S04 ERR3201941 ERR3201909 
11 V02-T-1665-S03 ERR3201942 ERR3201916 
14 V07-T-0504-S08 ERR3201945 ERR3201931 
15 V03-T-0506-S04 ERR3201946 ERR3201923 
16 V04-S-0509-S04 ERR3201947 ERR3201912 
17 V07-S-0510-S08 ERR3201948 ERR3201917 
18 V03-S-1663-S04 ERR3201949 ERR3201911 
19 V07-S-0512-S07 ERR3219597 ERR3201925 
21 V02-T-0504-S03 ERR3201952 ERR3201910 
22 V04-T-0508-S05 ERR3201953 ERR3201915 
23 V08-S-0510-S09 ERR3201954 ERR3201924 

 

We used metaFlye4 and Canu16 to assemble each dataset separately, followed by polishing 

with the corresponding Illumina reads using Pilon18. metaFlye and Canu assembled 837 and 815 

Mbp of sequence in contigs >10 kbp and 152 and 125 Mbp in contigs >1 Mbp, respectively 
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(separate sample statistics are given in Table 3.2. In brief, metaFlye has produced more 90%-

complete contigs (14), had a higher rate of contigs validated using 16S rRNA (77 out of 100) and 

recovered more plasmids (109) and viruses (49), as compared to Canu. OPERA-MS17 implements 

a hybrid approach that initially assembles short-read contigs and then uses long reads to scaffold 

these contigs. This strategy has resulted in longer, but less contiguous assembly with only one 

90%-complete contig and only 16 complete 16S rRNA genes (while metaFlye and Canu 

reconstructed 852 and 1,091 complete 16S rRNA genes, respectively).  

Table 3.2. metaFlye and Canu assemblies of 19 human gut samples. Contigs shorter 
than 10 kbp were filtered out. All assemblies were further polished using Pilon. The NG50 
statistic was calculated based on a genome size equal to the minimum of the metaFlye and 
Canu total assembly lengths. Genes were predicted using Prodigal. 

Sample ID 
Total read 

length 
(Gbp) 

Assembly size (Mb) NG50 (Kb) Longest contig (Mb) 

metaFlye Canu metaFlye Canu metaFlye Canu 

1 3.18 23 29 31 85 1.8 1.7 
2 2.66 14 15 130 179 4.8 4.8 
3 5.37 92 80 476 179 4.5 4.5 
5 4.22 65 63 77 64 3 1.4 
6 1.99 5 5 1,172 891 1.2 1.2 
7 7.99 62 66 234 279 2.7 2 
8 2.53 29 37 69 179 2.2 1.5 
9 1 26 30 51 46 0.9 1.1 
10 5.86 78 68 127 113 2.4 2.9 
11 4.25 72 58 498 420 4.5 5.8 
14 4.3 45 41 153 176 2.3 1.7 
15 1.63 53 54 58 54 1.4 1.7 
16 2.57 13 31 39 146 0.62 1.3 
17 4.93 48 43 145 218 1.8 1.9 
18 2.52 29 28 56 110 0.59 1 
19 5.17 36 37 142 126 3.2 4 
21 7.25 25 31 47 24 0.52 0.13 
22 2.67 30 28 994 672 2.8 4.9 
23 5.23 97 75 119 63 5.2 2.4 

 

Co-assembly of multiple human gut samples. We further used SibeliaZ19 to analyze the 

sequence overlap between the samples (Figure 3.1) and found that 159 Mbp (~40%) of the total 

sequence generated by metaFlye for all 19 samples appears in at least two samples. We therefore 

performed co-assembly by running metaFlye on the mix of reads from all samples. As there is a 
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large sequence overlap between human gut samples, we co-assembled all of them by running 

metaFlye on the mix of reads from all samples. Co-assembly is computationally more difficult 

than assembling each sample separately due to (1) increased strain divergence levels and (2) 

increased shared sequence content that complicates the assembly graph. Nevertheless, metaFlye 

co-assembly resulted in 453 Mbp of sequence, which closely matched the amount of nonredundant 

sequence from assemblies of separate samples. We also attempted to run Canu on the mix of all 

reads but terminated the pipeline after no substantial progress within a month of running it on a 

computational server. 

 

Figure 3.1. Multi-way sequence alignments were computed using SiebliaZ19. (left) The 
proportions of unique and shared sequences in each sample. An assembled segment within 
a sample is called unique if it has no alignments against sequence from any other samples. 
Otherwise, the segment is shared. (right) The total amount of sequence for each 
multiplicity bin. A sequence fragment belongs to the multiplicity bin X if it is shared by 
exactly X samples. 

Identification of NRPS contigs. Genome mining tools use the previously identified 

NRPSs to identify NRPSs in a newly sequenced genome. AntiSMASH genome mining tool10 

translates the nucleotide sequence of each contig into amino acid sequences (in all frames) and 

constructs protein-to-protein alignments against all known NRPSs. It classifies a protein in the 

translated sequence as homologous to a protein from a known NRPS, if they form a sufficiently 
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long alignment with sufficiently high sequence identity. Using a predefined set of NRPS-specific 

domains/proteins (such as adenylation domains that are present in all NRPS), antiSMASH 

classifies a contig as an NRPS contig if it finds a protein homologous to an NRPS-specific 

domain/protein in this contig. We extend the definition of the NRPS contigs to contigs containing 

hybrid NRP-polyketide BGCs that encode hybrids of NRPs and polyketides. In addition to 

adenylation domains (A-domains), related to NRP biosynthesis, these hybrid BGCs include 

acetyltransferases domains (AT-domains) specific to polyketide biosynthesis.  

For each NRPS contig, antiSMASH computes a match metric which is the percentage of 

genes within the closest known NRPS that have significant similarity to the genes in this contig 10. 

To minimize the effect of false positives in antiSMASH predictions, we ignored an NRPS contig 

if it has only three or fewer A-domains (antiSMASH is unlikely to identify more than three A-

domains in a contig that does not contain an NRPS) unless this contig has more than 50% match 

to a known NRPS. Since the vast majority of NRPSs are longer than 20 kb, we also ignored NRPS 

contigs shorter than 20 kb.  
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3.4. RESULTS  

Search for NRPSs in human metagenomes. We searched for NRPSs in Opera-MS, Canu, 

and metaFlye assemblies of 19 human metagenome datasets generated by Bertrand et al 17 as well 

as the metaFlye co-assembly of all these datasets. Opera-MS, Canu, metaFlye, and metaFlye co-

assembly identified 6, 8, 10, and 10 NRPSs, respectively. Since some NRPSs appear in multiple 

samples in Opera-MS, Canu, and metaFlye assemblies, they may be counted multiple times in this 

analysis. In contrast, each NRPS identified in the metaFlye co-assembly is unique. Table 3.3 

provides information about NRPS contigs identified in the metaFlye co-assembly.  

Table 3.3. Information about the NRPS contigs in the metaFlye co-assembly. Each 
row provides a NRPS contig generated via metaFlye co-assembly method. 

contig 
length 
(kb) 

closest 
known 
BGC 

matching 
genes 
(%) 

BGC 
length 

 

# A-
domains    
in contig/ 
reference 

# AT-
domains 

in contig/ 
reference 

MIBiG ID of 
known BGC 

 

length of 
reference 

BGC 
(kb) 

20 Unknown  20394 4 0   
29 Unknown  29124 5 0   
62 Acinetobactin 82 50973 3 / 2 0 /0 BGC0000294 32 
68 Colibactin 95 67552 7  / 7 3 / 3 BGC0000972 55 
77 Unknown  61682 4 1   
78 Paenibacterin 60 48993 3 / 13 0  / 0 BGC0000400 53 
106 Turnerbactin 30 53145 4  /1 0 / 0 BGC0000451 24 
121 Unknown  56532 5 0 -  
213 Myxothiazol 42 55443 8 / 3 0 /6 BGC0001024 43 
1060 Unknown  59688 5 0 -  

 
An NRPS identified within an NRPS contig is classified as matching if at least 50% of the 

genes in a known NRPS match the genes in an NRPS appearing in this contig. Identification of 

matching NRPSs is important because it enables analysis of NRPS conservation/evolution and 

connections between the NRPS and the peptide it encodes through the non-ribosomal code. Since 

antiSMASH aligns translated contigs against proteins in known NRPSs, frame-shift causing errors 

(i.e., insertions and deletions in metagenomics assemblies) may “hide” similarities between the 

compared proteins. We thus minimized the effect of frame-shift causing indels by constructing 
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nucleotide-based (rather than amino acid-based) comparison between all matching contigs and the 

reference BGCs. metaFlye co-assembly identified three matching NRPSs that synthesize 

acinetobactin20, colibactin21, and paenibacterin22 (Table 3.4). Opera-MS, Canu, and metaFlye 

(separate) assemblies identified only one of these NRPSs (Opera-MS identified colibactin while 

Canu and metaFlye (separate) identified acinetobactin).  

Table 3.4. Matching NRPSs (acinetobactin, colibactin, and paenibacterin) found in 
human metagenomes. The column “match (%)” refers to the protein-level match metric, 
the percentage of matching proteins from a known NRPS (computed by antiSMASH).  The 
column “sequence identity” refers to the nucleotide-level percent identity of the alignment 
against the reference NRPS. Column “reference BGC aligned (%)” shows the total 
alignment length (not considering the indels) as the percentage of the length of the 
corresponding reference NRPS. The last two columns present the number of A-domains 
and AT-domains in the contig and in the corresponding reference NRPS. The GenBank 
entry “Escherichia coli colibactin polyketide biosynthesis gene cluster and flanking 
regions, strain IHE3034” (NCBI accession ID AM229678.1) was used as the colibactin 
NRPS reference. The GenBank entry “Acinetobacter baumannii genes involved in 
acinetobactin biosynthesis and ferric complex transport” (NCBI accession ID 
AB101202.1) was used as the acinetobacter NRPS reference. The GenBank entry 
Ruminococcus obeum A2-162 draft genome (NCBI accession ID FP929054.1 was used as 
the paenibacterin reference since it generated the longest alignment 94.2% nucleotide 
sequence identity. 

 Assembler match (%) contig 
length 
(kb)  

reference 
BGC 

aligned (%) 

sequence 
identity 

(%) 

# A-
domains  
contig / 

reference 

# AT-
domains 
contig / 

reference 
Acinetobactin - reference BGC (32,436 bp) 

Canu 65 24 73 94.62 2 / 2 NA 
metaFlye 95 62 100 94.75 2 / 2 NA 
metaFlye co-assembly 82 62 100 94.29 2 / 2 NA 
Colibactin - reference BGC (55,140 bp) 
Opera-MS 95 115 95 99.93 5 / 7 3 / 3 
metaFlye co-assembly 95 68 100 99.86 7 / 7 3 / 3 
Paenibacterin - reference BGC (52,556 bp) 
metaFlye co-assembly 60 78 93 94.20 3 / 13 0/0 

Acinetobactin BGC. Acinetobactin is an NRP with two A-domains produced by 

Acinebacteria baumanii, a multi-drug resistant gram-negative pathogen that causes serious 

infections of immunocompromised patients20. All methods but Opera-MS assembled contigs 
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matching the acinetobactin-encoding BGC. Both Canu and metaFlye assemblies of all samples 

resulted in the identification of acinetobactin in a single sample #22. metaFlye (separate) and 

metaFlye (co-assembly) captured acinetobactin BGC within 62 kb long contig each, while Canu 

captured it within a 24 kb long contig with a lower match score (Table 3.4).  

Colibactin BGC. About 20% of humans carry E. coli strains containing a BGC that 

encodes a DNA-damaging compound colibactin (a hybrid NRP-polyketide with seven A-domains 

and three AT-domains). When some inflammatory condition co-occurs with E. coli infection, 

these strains are able to deliver colibactin to enterocytes and induce gastrointestinal cancer23. 

antiSMASH identified contigs matching colibactin BGC in Opera-MS assembly of a single sample 

(sample #7) and metaFlye co-assembly, both with a 95% match. Figure 3.2 presents the dot-plot 

comparison of the identified and reference colibactin BGCs in both assemblies. It shows that 

Opera-MS assembly resulted in a gapped alignment against the reference BGC as it failed to 

assemble two identical copies of the cysteine-recruiting A-domain of length ~1,430 bp.  
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Figure 3.2. Nucleotide alignment of the NRPS contigs matching colibactin-encdoing 
BGC in assemblies generated by Opera-MS (sample #7) and metaFlye co-assembly 
against the reference colibactin BGC. Dot plots showing the aligned region based upon 
the blastn results between the reference colibactin BGC and metaFlye co-assembly of the 
colibactin contig (top) and Opera-MS assembly of the colibactin contig (bottom). The 
query sequence is represented on the X-axis and the reference BGCs are represented on 
the Y-axis. The track under each Y-axis shows the genes and their positions on the 
reference colibactin BGC where each gene is shown with a different color. The two smaller 
lines in the top dot-plot highlight the position of a ~1430 bp long repeat in this BGC that 
corresponds to the identical cysteine-recruiting A-domains appearing on genes clbG 
(positions 16,063 to 17,542 on the reference colibactin BGC) and clbK (the positions 
21,716 to 23,195 on the reference colibactin BGC). The contig generated by metaFlye co-
assembly resolves this repeat, resulting in the full-length BGC captured within a single 
contig. 
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Paenibacterin BGC. Meta-Flye co-assembly is the only method that identified an NRPS 

contig matching the paenibacterin NRPS from Paenibacillus sp. thiaminolyticus strain OSY-SE 

(60% match score). antiSMASH reported a rather low maximum amino acid identity with proteins 

in the reference paenibacterin NRPS (39%) indicating a remote evolutionary relationship between 

the reference strain and one the strain in the analyzed community relevant to the analyzed NRPS 

contig. We thus searched for a bacterial species with the closest genome (highest sequence 

identity) by comparing the identified NRPS contig against the entire bacterial nucleotide collection 

in NCBI. The GenBank entry Ruminococcus obeum A2-162 draft genome (NCBI accession ID 

FP929054.1) generated the longest alignment with 14% coverage of the contig and 94.2% 

nucleotide sequence identity. Since Ruminococci are extensively studied gut microbes24, we 

hypothesize that the identified NRPS contig contains a novel Ruminococci NRPS with remote 

similarity to the paenibacterin NRPS. 
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3.5. Discussion 

In this chapter, we focused on the question of identifying NRPS-encoding BGCs using 

long-read human metagenomics datasets and compared this ability them across different assembly 

methods. We benchmarked OPERA-MS, Canu and metaFlye assemblers and demonstrated that 

metaFlye co-assembly recovered more known NRP-synthesizing BGCs than the other assemblies 

(including separate sample assemblies by metaFlye). Majority of the identified contigs does not 

have a close counterpart in the database of known BGCs (Table 3.3), indicating existence of 

unknown NRPS BGCs in human microbiome awaiting further characterization.  

metaFlye co-assembly was the only method that resolved all repeats in a known NRP-

synthesizing BGC that synthesizes a compound colibactin associated with colorectal cancer21. As 

these repeats represent adenylation domains (that define the colibactin structure), identification of 

the complete BGC, including each domain, is essential for follow-up structure elucidation efforts 

using peptidogenomics approaches9,15. In this chapter we successfully showed how metaFlye, a 

scalable algorithm specialized for long-read metagenome assembly can deliver assemblies that are 

suitable for automated NRP discovery in metagenomic samples.  

  



 196 

3.6. ACKNOWLEDGEMENTS 

Chapter 3, in full, is a reformatted reprint of  a part of “metaFlye: scalable long-read 

metagenome assembly using repeat graphs” as it appears in Nature Methods (2020) by Mikhail, 

Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong 

Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy P. L. Smith & Pavel A. 

Pevzner.  The dissertation author was a primary author of the material included in this chapter. 

Contributions. B.B. performed all the BGC identification efforts and the comparison 

across the methods in this chapter. M.K. assembled all the datasets using the different assembly 

methods discussed in this chapter. 

 
  



 197 

3.7. REFERENCES  

1. Kersten, R. D., Yang, Y.-L., Xu, Y., Cimermancic, P., Nam, S.-J., Fenical, W., Fischbach, 
M. A., Moore, B. S. & Dorrestein, P. C. A mass spectrometry-guided genome mining 
approach for natural product peptidogenomics. Nature chemical biology 7, 794–802 
(2011). 

2. Medema, M. H., Paalvast, Y., Nguyen, D. D., Melnik, A., Dorrestein, P. C., Takano, E. & 
Breitling, R. Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of 
Peptidic Natural Products. PLoS Computational Biology 10, e1003822 (2014). 

3. Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., 
Mueller, A., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. a, Cohen, 
D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C. & 
Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature 517, 
455–459 (2015). 

4. Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., 
Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L. & others. metaFlye: scalable long-read 
metagenome assembly using repeat graphs. Nature Methods 1–8 (2020). 

5. Mohimani, H. & Pevzner, P. A. Dereplication, sequencing and identification of peptidic 
natural products: from genome mining to peptidogenomics to spectral networks. Natural 
product reports 33, 73–86 (2016). 

6. Behsaz, B., Mohimani, H., Gurevich, A., Prjibelski, A., Fisher, M., Vargas, F., Smarr, L., 
Dorrestein, P. C., Mylne, J. S. & Pevzner, P. A. De Novo Peptide Sequencing Reveals 
Many Cyclopeptides in the Human Gut and Other Environments. Cell Systems 10, 99–108 
(2020). 

7. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular Peptide Synthetases Involved 
in Nonribosomal Peptide Synthesis. Chemical Reviews 97, 2651–2674 (1997). 

8. Süssmuth, R. D. & Mainz, A. Nonribosomal Peptide Synthesis—Principles and Prospects. 
Angewandte Chemie - International Edition 56, 3770–3821 (2017). 

9. Behsaz, B., Bode, E., Gurevich, A., Shi, Y., Grundmann, F., Mauricio Caraballo-
Rodríguez, A., Bouslimani, A., Panitchpakdi, M., Linck, A., Guan, C., Oh, J., Dorrestein, 
P. C., Bode, H. B., Pevzner, P. A. & Mohimani, H. Integrating Metagenomics and 
Metabolomics for Scalable Non-Ribosomal Peptide Discovery. bioRxiv (2020). 

10. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H. & 
Weber, T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. 
Nucleic acids research 47, 81–87 (2019). 

11. Navarro-Muñoz, J. C., Selem-Mojica, N., Mullowney, M. W., Kautsar, S. A., Tryon, J. H., 
Parkinson, E. I., De Los Santos, E. L. C., Yeong, M., Cruz-Morales, P., Abubucker, S., 



 198 

Roeters, A., Lokhorst, W., Fernandez-Guerra, A., Cappelini, L. T. D., Goering, A. W., 
Thomson, R. J., Metcalf, W. W., Kelleher, N. L., Barona-Gomez, F. & Medema, M. H. A 
computational framework to explore large-scale biosynthetic diversity. Nature Chemical 
Biology 16, 60–68 (2020). 

12. Stevenson, L. J., Owen, J. G. & Ackerley, D. F. Metagenome Driven Discovery of 
Nonribosomal Peptides. ACS Chemical Biology 14, 2115–2126 (2019). 

13. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product 
discovery. Nature chemical biology 11, 639–648 (2015). 

14. Meleshko, D., Mohimani, H., Tracanna, V., Hajirasouliha, I., Medema, M. H., 
Korobeynikov, A. & Pevzner, P. A. BiosyntheticSPAdes: reconstructing biosynthetic gene 
clusters from assembly graphs. Genome Research 29, 1352–1362 (2019). 

15. Mohimani, H., Liu, W.-T., Kersten, R. D., Moore, B. S., Dorrestein, P. C. & Pevzner, P. 
A. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide 
discovery. Journal of natural products 77, 1902–1909 (2014). 

16. Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. & Phillippy, A. M. 
Canu: Scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat 
separation. Genome Research 27, 722–736 (2017). 

17. Bertrand, D., Shaw, J., Kalathiyappan, M., Ng, A. H. Q., Kumar, M. S., Li, C., Dvornicic, 
M., Soldo, J. P., Koh, J. Y., Tong, C., Ng, O. T., Barkham, T., Young, B., Marimuthu, K., 
Chng, K. R., Sikic, M. & Nagarajan, N. Hybrid metagenomic assembly enables high-
resolution analysis of resistance determinants and mobile elements in human 
microbiomes. Nature Biotechnology 37, 937–944 (2019). 

18. Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. 
A., Zeng, Q., Wortman, J., Young, S. K. & Earl, A. M. Pilon: An integrated tool for 
comprehensive microbial variant detection and genome assembly improvement. PLoS 
ONE 9, e112963 (2014). 

19. Minkin, I. & Medvedev, P. Scalable multiple whole-genome alignment and locally 
collinear block construction with SibeliaZ. bioRxiv (2019). 

20. Dijkshoorn, L., Nemec, A. & Seifert, H. An increasing threat in hospitals: Multidrug-
resistant Acinetobacter baumannii. Nature Reviews Microbiology 5, 939–951 (2007). 

21. Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. Nature 
Chemistry 7, 411–417 (2015). 

22. Cochrane, S. A. & Vederas, J. C. Lipopeptides from Bacillus and Paenibacillus spp.: A 
Gold Mine of Antibiotic Candidates. Medicinal Research Reviews 36, 4–31 (2016). 

23. Wilson, M. R., Jiang, Y., Villalta, P. W., Stornetta, A., Boudreau, P. D., Carrá, A., 
Brennan, C. A., Chun, E., Ngo, L., Samson, L. D., Engelward, B. P., Garrett, W. S., 



 199 

Balbo, S. & Balskus, E. P. The human gut bacterial genotoxin colibactin alkylates DNA. 
Science 363, eaar7785 (2019). 

24. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species 
for the degradation of resistant starch in the human colon. ISME Journal 6, 1535–1543 
(2012). 

 

 

 
 




