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ABSTRACT OF THE DISSERTATION

Analysis and Mitigation of Tropospheric Effects on Ka Band
Satellite Signals and Estimation of Ergodic Capacity and

Outage Probability for Terrestrial Links

by

Scott Warren Enserink
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Michael Paul Fitz, Chair

The first part of this work covers the effect of the troposphere on Ka band (20-30 GHz) satellite

signals. The second part deals with the estimation of the capacity and outage probability for

terrestrial links when constrained to quadrature amplitude modulations.

The desire for higher data rates and the need for available bandwidth has pushed satellite

communications into the Ka band (20-30 GHz). At these higher carrier frequencies the effects

of scintillation and rain attenuation are increased. In regards to the effects of scintillation, the

first part of this work quantifies, through the use of a multiple phase screen simulation model,

the benefits of using two receive antennas to mitigate tropospheric-induced scintillation on Ka

band satellite downlinks. Two representative turbulence profiles are considered, and cumulative

distribution curves for scintillation-induced attenuation are generated for selection and maximal

ratio combining schemes and compared to those for a single antenna. The results indicate that

there can be significant diversity gains achieved by combining two antennas separated by only a

short distance. Also, a comparison of simulation results with the results predicted by the basic

Rytov approximation shows that at elevation angles greater than 10 degrees, Rytov theory can

accurately predict performance benefits of antenna combining, but at elevation angles less than

10 degrees it is better to use multiple phase screen simulations to make performance predictions.

In addition, the effects of scintillation-induced phase perturbations on the output power of large
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aperture antennas is examined. It is found that the output power degradation due to scintillation-

induced phase perturbations is generally negligible and can be countered by the simple means

of antenna tracking if necessary.

In regards to rain attenuation, this work developed simple methods for estimating the out-

age probability and outage capacity and ergodic capacity of satellite links due to rain fades. The

rain-induced fades of a satellite link are often modeled with a log-log-normal distribution. Re-

searchers have determined methods for calculating the outage probability for Shannon capacity

for log-log-normal channels. However, in practical communications systems, the input signal

is constrained to a discrete signalling set such as finite-size quadrature amplitude modulations.

Under these conditions the outage probability with regards to the constrained capacity is a more

accurate measure. A method is detailed in this work for tightly estimating the outage probability

and outage capacity of satellite links with quadrature amplitude modulations. In addition this

work derives a lower bound for the ergodic constrained capacity of log-log-normal channels. To

date, no other method for calculating the outage probability, outage capacity, or a lower bound

for the ergodic capacity for a log-log-normal channel with a finite-size quadrature amplitude

modulation has been published. Also, this portion of the work quantifies the benefit of using

receive diversity to mitigate rain fades, providing the gains in outage capacity due to the use of

diversity for a tropical region and a fairly dry region under the constraint that practical constel-

lations are transmitted. The above information and analysis methods provide useful tools for

satellite system planners.

The second part of this work examines terrestrial communication links, which can suffer

greatly from channel fading or shadowing. Two common statistical models for channels are the

Rayleigh distribution and the log-normal distribution. The goal of this second part of the work

was to develop a simple method for tightly estimating the ergodic capacity and outage probabil-

ity of these two channel types when used with quadrature amplitude modulated signalling sets.

Specifically an innovative method was developed for estimating the ergodic constrained capac-

ity for Rayleigh and log-normal channels with and without antenna combining. The expressions

facilitate straightforward computation of outage probability as well. Researchers have deter-
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mined methods for calculating the ergodic Shannon capacity for log-normal and Rayleigh chan-

nels for single and multiple receive antenna systems. However, in practical communications

systems, the input signal is constrained to a discrete signalling set such as finite-size quadrature

amplitude modulation constellations. Under these conditions the ergodic constrained capacity

is a more accurate measure. The method detailed in this work provides a uniform expression

for computing the ergodic capacity, both Shannon and constrained, of Rayleigh and log-normal

channels with and without antenna combining. The expressions facilitate straightforward com-

putation of outage probability as well. Both the noise-limited and interference-limited cases are

studied. To date, no other method for estimating the outage probabilities for the constrained ca-

pacity of Rayleigh or log-normal channels has been published for either the noise-limited case

or interference-limited case. Also, no method for estimating the ergodic constrained capacity of

a log-normal channel or of an interference-limited Rayleigh channel has appeared in the litera-

ture. The analysis methods and information for terrestrial links developed in the second part of

this work provide useful tools for the designers of wireless communication systems in general

and have particular application to cellular mobile and ultra-wideband systems.
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Part I

Analysis and Mitigation of Tropospheric

Effects on Ka Band Satellite Signals
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CHAPTER 1

Analysis and Mitigation of Tropospheric Scintillation

Contributions:

• Quantified the benefits of using receiver diversity to mitigate tropospheric scintillation of

Ka band satellite signals.

• Quantified the power output degradation of large antennas due to scintillation-induced

phase perturbations of Ka band satellite signals.

• Determined guidelines for when analytic approximations can be used to accurately esti-

mate the diversity gain obtained by two receive antennas, and when simulation modeling

is necessary.

• Re-introduced the multiple phase screen method to characterize scintillation effects on

satellite communications.

1.1 Introduction

The desire for higher data rates and the need for available bandwidth has pushed satellite com-

munications into the Ka band (20-30 GHz). At these higher carrier frequencies the effects of

scintillation due to turbulence-induced index of refraction irregularities in the troposphere is

known to become more prevalent, particularly on slant paths. Mitigation of scintillation can be

very important for certain links such as those operating at a low-margin along a low elevation

path in a dry climate, where scintillation, rather than rain, is the key link factor. One of the

goals of this work was to quantify the benefit of using two receive antennas to mitigate the
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tropospheric-induced amplitude scintillation of a satellite signal in the Ka band. Another of the

goals of this work was to characterize the effect of tropospheric-induced phase perturbations on

the output power of large aperture antennas. A secondary goal was to establish some guidelines

to determine in what situations basic Rytov theory, which is applicable in weak scattering con-

ditions, can be used and in what situations simulations should be used in determining possible

antenna combining benefits. In this work the multiple phase screen (MPS) model was used

to simulate the effect of the troposphere on the Ka band satellite signal in order to study both

amplitude and phase scintillation. In years past the MPS method has been used to model the

effects of the ionosphere on the propagation of satellite signals at less than 10 GHz [Kne83].

In recent years it has been used extensively by the free-space optical communications com-

munity to model the effects of the troposphere on laser signals, and by one other researcher

(other than the author of this work) to study tropospheric-induced amplitude scintillation of

Ka band signals [VGW05]. Various spectrums for the index of refraction irregularities were

used in conjunction with the MPS modeling to determine the effect of outer scale size on the

tropospheric-induced amplitude and phase scintillation.

1.2 Background

This section presents some results derived from scintillation theory. The interested reader may

wish to consult the classic text by Tatarski [Tat61] or the more recent text by Wheelon [Whe03]

for more details.

1.2.1 The Origins Of Scintillation: Turbulence

Air has an index of refraction near 1, however, the index of refraction, at radio frequencies, is a

function of temperature, pressure and water vapor density. Mixing of the air in the troposphere,

caused by heating and cooling, creates wind eddies. Large eddies break apart into smaller and

smaller eddies until finally the energy of the smallest eddies dissipates into the heat energy of

random molecule movement. Different eddies can have slightly different values for temperature,
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Figure 1.1: As the zenith angle approaches 90 degrees (elevation angle approaches 0 degrees)
the distance traveled by the signal through turbulence greatly increases.

pressure and water vapor density. This creates inhomogeneities in these quantities, and thus in

the index of refraction, or equivalently, in the dielectric constant ε [Tys00]. The dielectric

constant will be written as ε = 1 +4ε to reflect the fact that it has a value that is nearly 1,

but has minor random fluctuations about that value. The eddy-induced slight spatial variations

in the index of refraction causes some parts of a propagating wave to travel more quickly or

slowly then other parts. These phases changes lead to amplitude changes as constructive and

destructive interference occurs as the wave progresses. This results in phase and amplitude

variations at the receiver. This effect is referred to as scintillation. Since they pass through

more of the turbulent troposphere, signals traveling along slant paths, defined as having a low

elevation angle or equivalently a large zenith angle, have larger amounts of scintillation than do

signals traveling along higher elevation path as shown in Fig. 1.1.

1.2.2 Spatial Correlation and Structure Function

Since the dielectric constant irregularities ε(r, t) form a random process with a spatial correla-

tion defined by

<4ε(r, t),4ε(r′, t) > (1.1)

where, < . > indicates an ensemble average.

A related quantity, one that cancels out terms common at both location r and at r′ is the

4



structure function, defined as,

Dε(r,r′)
.=< [4ε(r, t)−4ε(r′, t)]2 >

Assuming a homogeneous medium this simplifies to,

Dε(r,r′) = 2[<4ε >2 −<4ε(r, t),4ε(r′, t) >] (1.2)

Developments by Kolmogorov led to a theoretical expression for the above structure func-

tion. Working with wind velocity measurements he reasoned that the structure function for the

velocity component parallel to the separation vector ρ must be a function of the rate of energy

ϒ going into the creation of eddies (and eventually being dissipated) and the distance between

the two measurement points ρ.

Dv(r,r+ρ) .=< [v(r, t)− v(r+ρ, t)]2 >= F(ϒ,ρ)

The energy dissipation rate ϒ has units of m2 s−3. The only combination of ρ and ϒ that

produces units of a squared velocity is,

Dv(r,r+ρ) = constant(ϒρ)
2
3 = C2

v ρ
2
3

The 2/3 scaling law has been verified by numerous experiments. It works under a wide range of

conditions, from small-scale turbulence near the earth’s surface to enormous irregularities in the

interstellar plasma. This formula holds only for separation distance larger than the smallest eddy

size l0 and smaller than the largest eddy size L0. These quantities are referred to as the inner

scale and outer scale respectively. The constant C2
v is called the velocity structure constant.

After Kolmogorov’s development others realized that the same technique could be applied

to describe the turbulent mixing of passive scalars, such as the index of refraction n. This led to

the following relationship key to the study of the propagation of electromagnetic waves through

5



the turbulent troposphere.

Dn(r,r+ρ) .= E[(n(r)−n(r+ρ))2] = C2
nρ

2
3

The constant C2
n , called the refractive index structure constant, is the key parameter in the

analysis of the effects of random media on electromagnetic propagation. Its value is a measure

of the strength of the turbulence. Its profile along the propagation path directly influences the

variance of the received signal’s amplitude and phase. This formula holds only for separation

distance l0 < ρ < L0.

1.2.3 Models for the Spectrum of Index of Refraction Irregularities

With homogeneous medium, the spatial correlation of (1.1) can be expressed in terms of its

Fourier wavenumber decomposition, Φε(κ), analogous to how the temporal correlation of a

random process can be expressed as the inverse Fourier transform of the power spectral density.

<4ε(r, t)4ε(r′, t) >
.=
Z

d3κΦε(κ)eκ·(r−r′) (1.3)

where the spectrum Φε(κ) describes the relative energy contained in eddies of size l by their

associated wavenumber κ = 2π
l . This relationship, or the equivalent one for the index of refrac-

tion n, allows analysts to separate the wave-scattering features of the problem (i.e. the geometry

of the problem and the type of wave) from the description of the turbulent medium.

Using the index of refraction versions of (1.2) and (1.3) it can be shown that the wavenumber

spectrum of index of refraction irregularities will be [Whe01]

Φn(κ) = 0.033C2
nκ−

11
3 for 0 < κ (1.4)

This is the unrestricted Kolmogorov spectrum. Strictly speaking this formula only applies

for κ0
.= 2π

LO
< κ < 2π

lO
.= κs. This is referred to as the inertial range, over which larger eddies

6
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Figure 1.2: These three spectrums for the index of refraction irregularities were used in the
simulations, each handles the energy-input region slightly differently.

transfer energy to smaller eddies. The range of l > L0 is the energy-input region in which the

translational motion of the wind is beginning to be turned into the rotational motion of large

eddies. This is an ambiguous region, the behavior of which is not well known because it is

difficult to distinguish between the effects of large eddies and basic changes in the weather. In

the unrestricted Kolmogorov model the behavior of the energy-input region is assumed to be

the same as that of the inertial range, i.e. it is assumed that the Kolmogorov spectrum can be

extended into the energy-input region without modification. This simplifies analytical work,

and is a sufficient model in some situations, but provides inaccurate results in other situation.

The following formulas have been used by researchers to attempt to model the energy-input

portion of the spectrum. Fig. 1.2 provides graphs of these spectral models.

a.) Kolmogorov model with Cutoff : The Kolmogorov model with cutoff simply ignores the

energy-input and energy-loss regions.

Φn(κ) =





0.033C2
nκ−

11
3 : 2π

LO
< κ < 2π

lO

0 : otherwise
(1.5)
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In the simulation work, this model was used effectively in that the spatial span covered

1,000 m, thus creating an effective outer scale value of L0 = 1,000 m.

b.) von Karman model: This spectral model is often used in analysis because it is tractable,

and has been shown to fairly well agree with actual measurements. It also was used as

one of the models in this effort’s simulation work with an outer scale value of L0 = 100 m

which is a typical value for space-to-earth paths [Whe01].

Φn(κ) = 0.033C2
n(κ2 +κ2

0)
− 11

6 for 0 < κ < κs (1.6)

c.) Greenwood-Tarazano model: Greenwood and Tarazano developed an expression for the

spectrum that better matched the measured spectrums and structure functions then the

above spectral expressions. However, the expression is not very tractable, and as result

is not used in analytical developments. It also was used as one of the models in this

effort’s simulation work, again with L0 = 100 m. This highlights another feature of MPS

simulations, they can implement spectrums which are not analytically tractable.

Φn(κ) = 0.033C2
n(κ2 +κ0κ)−

11
6 for 0 < κ < κs (1.7)

d.) Exponential model: The exponential model lends itself to analysis, but experimental re-

sults showed that it does not match measured data as well as the von Karman model. As

a result it was not used as a model in this project’s simulation work.

Φn(κ) = 0.033C2
nκ−

11
3

[
1− e

(
− κ2

κ2
0

)]
for 0 < κ (1.8)

1.2.4 Amplitude Scintillation Theoretical Formula

Using the basic Rytov approximation (i.e. the approximation based on the first term in the

series representation of the surrogate function as described in appendix B), it can be shown that

1) the received signal’s amplitude has a log-normal distribution, and thus that the log of that

8



amplitude, χ, has a Gaussian distribution and that 2) the variance of χ, can be found for a plane

wave from [Tat61, Whe03] for the Kolmogorov spectrum to be

σ2
χ = 0.563k

7
6 csc

11
6 (θ)

Z
C2

n(h)h
5
6 dh (Np)2 (1.9)

where, 1) C2
n(h) describes how C2

n , the index of refraction structure function constant, varies

with altitude h, 2) θ is the elevation angle of the slant path, 3) k = 2π
λ is the wave number and 4)

λ the wave length of the signal. The value C2
n quantifies the turbulence strength, for this reason

C2
n is also often simply termed the turbulence strength. Fig. 1.3 shows a typical turbulence

profile when 1) clouds are present and 2) when clouds are not present. The cloud-present profile

was determined from radio-sonde measurements taken in Belgium on a summer day (August

14, 1990) [VV98]. The no-cloud profile was developed in [YWL03]. It is based on the ITU-

R C2
n profile model, with a modification to take into account water vapor. The version shown

assumes a standard summer atmosphere for European latitudes. These two profiles represent

what might be expected on a summer day in European latitudes.

The above formula from basic Rytov theory was used to calculate, for a given turbulence

profile, the anticipated value of σ2
χ. Which in turn was used along with a log-normal distribution

to predict the benefits of using antenna combining. These values, based on the basic Rytov

approximation, were then compared with the values generated from simulations.

1.2.5 Antenna Configurations

This study considered the following antenna configurations: 1) a single antenna, 2) maximal-

ratio-combining (MRC), in which the received signals from two separate antennas are scaled

by the conjugate of their channel gains and then added and 3) selection-combining, in which

the signal from the antenna with the best signal-to-noise ratio (SNR) is used. It is well known

that the MRC method of combining results in the best SNR, but that selection combining is less

complicated to implement. Let |ai| be the magnitude of the signal at antenna i, then the relative

output SNRs can be expressed as, 1) SNRsingle = |a1|2, 2) SNRMRC = (|a1|2 + |a2|2) and 3)

9
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Figure 1.3: Two typical C2
n profiles during summer in European latitudes.

SNRSC = max(|a1|2, |a2|2).

1.3 Multiple Phase Screen Model

The MPS method was used to simulate the effects of the troposphere in creating scintillation.

This section describes the MPS method. Additional information on the MPS method can be

found in [Kne83], which deals with propagation through the ionosphere, but the principles are

the same for the troposphere. In general, in modeling propagation through a random medium,

MPS models have been found to give good agreement with theory and experimental measure-

ments for both weak and strong scattering conditions (see [Kne83] and the references within).

The MPS technique models the propagation of an electro-magnetic (E-M) wave through the

turbulent atmosphere by dividing the path into sections and then modeling each section as a 1)

thin phase screen followed by a 2) propagator. Each phase screen models the relative delay of

portions of the wavefront due to the variations in the index of refraction in the volume associated

with that phase screen, as if there were no diffraction. The phase delays of each phase screen

are selected with a probability distribution based on turbulence theory. Each propagator, in turn,

models the E-M signal propagating through the section of the path as if there were no variations

in the index of refraction. The MPS model and its relation to the actual physical model are

10



shown in Fig. 1.4.

In summary the MPS method consists of the following two parts:

1. Phase screen: At each stage each spatial sample of the incoming E-M signal is multiplied

in the spatial domain by the value of the associated grid point of the randomly generated

phase screen. This is done in order to cause a phase change between any two points on

the wavefront equal to that which would be caused by the delta in the time delay between

the two associated paths due to random differences in the index of refraction along the

paths. The generation of the phase screens is described in appendix A.1.

2. Propagation: The resulting output is propagated to the next stage by convolving it with

the propagation filter. The convolution is actually carried out by a multiplication in the

spatial frequency domain, using equation (A.2), as described in appendix A.2, as the

transfer function for the effective propagation filter.

The MPS model parameters such as the spacing of grid points, ∆grid , the distance between

the application of phase screens, ∆zscreen, and the size of a N×N grid, must all be carefully

selected to ensure that the turbulence effects are adequately modeled, while still allowing for a

feasible implementation. In this work these parameters were determined in a three step process.

First, estimates, ∆grid,e, ∆zscreen,e, and Ne , of these simulation parameters were determined

based on a calculation of the maximum angular change of any portion of the E-M wave produced

by any phase screen. Second, simulations were performed with these MPS model parameters.

Third, additional simulations were run with a higher model resolution (i.e. grid spacing less

than ∆grid,e, screens closer than ∆zscreen,e, more grid points than Ne, and total grid span larger

than Ne ∆grid,e) in order to see if the results produced by the simulations would change. The

resolution of the MPS model was increased until the results no longer changed. Generally the

values estimated for the MPS model parameters in the first step were sufficient.
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Figure 1.4: Illustration of the modeling approach showing: 1) the turbulence profile (left), 2)
representation of physical channel (middle), and 3) the associated multiple phase screen model.

1.4 MPS Simulation Results

The MPS method was used to simulate the effects of the troposphere in creating amplitude

and phase scintillation. In order to quantify the benefit of using antenna diversity to mitigate

amplitude scintillation, simulations were run with frequencies of fc= 20 GHz and fc= 30 GHz

assuming the presence of two receive antennas separated by various distances and using each
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of the following spectrums for the index of refraction irregularities: 1) restricted Kolmogorov

with L0= 1000 m , 2) von Karman, with L0= 100 m, and 3) Greenwood-Tarazano also with

L0= 100 m. The antennas were assumed to act like point receivers. (Simulations run assuming

an antenna dish diameter of 3.4 m yielded almost identical results). Both 1) the typical cloud-

present and 2) the cloud-not-present (i.e. the modified ITU-R model) turbulence profiles shown

in Fig. 1.3 were used in the simulations. In order to determine the degradation of an antenna’s

output power caused by phase scintillation and determine the effect of the value of L0 on that

degradation, simulations were run with frequencies of fc= 20 GHz and fc= 30 GHz assuming

various diameter apertures for the receive antenna using each of the aforementioned spectrums

for the index of refraction irregularities. Simulation parameters of ∆grid= 64λ for the grid spac-

ing, ∆zscreen= 100 meters for the distance between phase screens and N×N = 1024×1024 for

the grid size were selected based on the method described in section 1.3.

1.4.1 Antenna Separation

Data portrayed in Fig. 1.5 for 20 GHz and 30 GHz shows the average gain of selection combin-

ing, relative to a single antenna, in mitigating scintillation. From analyzing these diversity gain

values for various antenna spacings it was determined that a separation of only 20 m is required

to obtain a low correlation between the fades at the two antennas for any path elevation and

Ka band frequency. Increasing the spacing beyond 20 m will lead to no additional gain. The

determination of the required spacing is an important feature of MPS modeling in that it can be

quite difficult to obtain by theoretical analysis for a general turbulence profile [Whe03, ch. 4.2].

1.4.2 Diversity Gain

The simulation results showed that the use of two independent antennas can provide substantial

diversity benefits, particularly for slant paths of less than 20 degrees of elevation. For the typical

cloud-present turbulence profile, Fig. 1.6 portrays the cumulative distribution function (CDF)

curves, determined by simulation, for the scintillation-induced attenuation at 30 GHz for 1)

13



Selection Combining Gain Vs. Antenna Separation Distance For 

Typical Cloud-Present Cn
2
 Profile (20GHz)

0.0

0.5

1.0

1.5

0 50 100 150 200

Separation (m)

C
o

m
b

in
in

g
 G

a
in

 (
d

B
)

85 deg (Sel): Kolm

85 deg (Sel): vKarm

85 deg (Sel): G-T

80 deg (Sel): Kolm

80 deg (Sel): vKarm

80 deg (Sel): G-T

75 deg (Sel): Kolm

75 deg (Sel): vKarm

75 deg (Sel): G-T

70 deg (Sel): Kolm

70 deg (Sel): vKarm

70 deg (Sel): G-T

45 deg (Sel): Kolm

45 deg (Sel): vKarm

45 deg (Sel): G-T

0 deg (Sel: Kolm

0 deg (Sel): vKarm

0 deg (Sel): G-T

85 deg. 

80 deg. 

75 deg. 

70 deg. 

45 deg. 

0 deg. 

(a) 20 GHz
Selection Combining Gain Vs. Antenna Separation Distance 

For Typical Cloud-Present Cn
2
 Profile (30GHz)

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200

Separation (m)

C
o

m
b

in
in

g
 G

a
in

 (
d

B
)

85 deg (Sel): Kolm

85 deg (Sel): vKarm

85 deg (Sel): G-T

80 deg (Sel): Kolm

80 deg (Sel): vKarm

80 deg (Sel): G-T

75 deg (Sel): Kolm

75 deg (Sel): vKarm

75 deg (Sel): G-T

70 deg (Sel): Kolm

70 deg (Sel): vKarm

70 deg (Sel): G-T

45 deg (Sel): Kolm

45 deg (Sel): vKarm

45 deg (Sel): G-T

0 deg (Sel: Kolm

0 deg (Sel): vKarm

0 deg (Sel): G-T

85 deg. 

80 deg. 

75 deg. 

70 deg. 

45 deg. 

0 deg. 

(b) 30 GHz

Figure 1.5: Selective combining gain versus antenna separation distances for 20 and 30 GHz
for typical cloud-present C2

n profile with Kolmogorov, von Karman and Greenwood-Tarazano
spectrums.

a single antenna, 2) selection combining, and 3) MRC combining for elevation angles of a)

10 and b) 5 degrees. The CDF curves generated using the basic Rytov theory results are also

shown. The 0 dB level represents the attenuation level for a single antenna if no scintillation is

present, in other words these attenuation values are with respect to clear air. The results shown

are for the von Karman spectrum, with a realistic outer scale length of 100 m. The results

14



for the Kolmogorov spectrum were slightly more dramatic, but probably not as realistic since

the Kolmogorov spectrum does not limit the outer scale length to a realistic value [Whe01].

These results show that there can be significant advantage to using receiver diversity to mitigate

scintillation.

For an elevation angle of 10 degrees (Fig.1.6(a)), in this typical cloud-present example,

the results show gains ranging from 2.0 dB (3.6 dB) for selection combining and 4.5 dB (5.8

dB) for MRC combining at a desired link availability of 99% (99.99%). Also, the basic Rytov

theory accurately predicted the CDF curves for probability values greater than 1% (i.e. link

availabilities less than 99%). At probabilities less than 1% the values obtained using the basic

Rytov approximation produced values for attenuation that were too optimistic for the single

antenna case. These single-antenna theoretical values would result in values that were 1 to 2 dB

too low in estimating the mitigation benefit of antenna combining.

For an elevation angle of 5 degrees (Fig.1.6(b)), in this typical cloud-present example, the

results show large gains ranging from 5.0 dB (15.0 dB) for selection combining and 6.8 dB

(16.2 dB) for MRC combining at a desired link availability of 99% (99.99%). At this eleva-

tion, the scintillation is so strong that the basic Rytov theory fails to accurately predicted the

CDF curves for any of the antenna configurations, showing that simulations need to be used to

obtain accurate estimates. Although equation (1.9) from basic Rytov theory produced a value

of σ2
χ in close agreement with that found by MPS simulation (0.13 compared to 0.12) for the

single antenna case, the CDF curves were very different, indicating a substantial difference in

amplitude distributions. In contrast for the no-cloud case the theoretical predictions were close

to the results produced by MPS simulations (e.g. just 0.2 dB too low for the single antenna

case at the 99.9 %availability level). As mentioned above, basic Rytov theory predicts that the

received amplitude will have a log-normal distribution. Under weak scattering conditions this

does hold true. However, in actuality, as the scintillation increases that distribution will become

skewed towards lower amplitude values. The second order Rytov solution can predict this skew

up to a point [Whe03, ch. 10], but the amount of skew is difficult to predict analytically and the

analysis holds over a limited range, yet this skew can greatly influences the link margin values
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Figure 1.6: CDFs from simulation and from Rytov theory for attenuation due to scintillation for
cloud-present turbulence profile for a) 10 degree and b) 5 degree elevations.

(as seen in Fig.1.6(b)), which makes the MPS simulation method valuable when accurate values

are needed.

Fig. 1.7 portrays the attenuation values that were exceeded 0.1% of the time as a func-

tion of elevation angle for both the a) cloud-present and b) no-cloud-present profiles. In other

words, these are the link margin values that would be required in order to obtain a link avail-

ability of 99.9% under the type of turbulent conditions pictured in Fig. 1.3. As the elevation

angle decreases (zenith angle increases) the signal traverses more of the troposphere, and the

scintillation-induced attenuation becomes more pronounced, drastically increasing, particularly
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for the cloud-present profile, as the elevation angle decreases below 20 degrees (increases above

70 degrees zenith). At a given elevation angle, the vertical distance from the single antenna

curve to the curve for either selection combining or MRC provides the value for combining

gain that could be expected to be obtained under this type of turbulence profile when receiving

a signal at that elevation angle. As expected, the no-cloud-present turbulence profile produces

significantly less scintillation, which is evidenced by the much lower attenuation levels of Fig.

1.7(b) relative to those of Fig. 1.7(a). For the no-cloud-present case, it should be noted that

the lower altitude portion of the profile contributes significantly to the scintillation and that this

is a section of the model that is open to debate. For an elevation angle of 20 degrees (70 de-

gree zenith) the results in Fig. 1.7 show a gain of 1.2 dB for selection combining and 4 dB for

MRC for the cloud-present case and 0.5 dB for selection combining and 3.2 for MRC for the

no-cloud-present case. For an elevation angle of 5 degrees (85 degree zenith) the results in Fig.

1.7b show a gain 2 dB for selection combining and 4.6 for MRC for the no-cloud-present case.

1.4.3 Scintillation-Induced Phase Fluctuations and Antenna Output Power

This part of the study quantified the possible benefits of applying some techniques from adaptive

optics (AO) to the Ka band. Namely, the benefits that antenna tracking provides, which is

analogous to tilting the mirror in an AO system, and the possible use of a changeable sub-

reflector for large diameter antennas, which is analogous to the use of a deformable mirror in

an AO system.

In the simulation the effect of antenna tracking, i.e. of pointing the antenna in the best

possible direction, was implemented by 1) determining the least squares linear (i.e. planar)

fit to the phase front over the aperture and then 2) removing this estimate from the phase front

prior to combining. The least squares planar fit also determines the angle of arrival of the signal.

In the reported results the angle of arrival (AOA) is defined as the angle by which the axis of

the dish antenna would have to change from the nominal direction in order to best receive the

incoming wavefront. This quantity will be called the bore-sight angle. Fig. 1.8 presents an

example phase front generated by MPS simulations. Fig. 1.9 shows the least squares planar fit
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Figure 1.7: Attenuation values exceeded 0.1% of the time with a 30 GHz signal for various
zenith angles for the two turbulence profiles shown in Fig. 1.3: a) cloud-present and b) cloud-
not-present (modified ITU-R model).

to the example phase front. The typically small residual error is shown in Fig. 1.10.

Antennas of the following diameters were considered: 1) 3.2 m, 2) 6 m, 3) 12 m, 4) 25

m, and 70 m. These antenna diameters were chosen because antennas of this size are used

in actual satellite communication systems. Jet Propulsion Labs (JPL) is considering building

a large antenna array using 6 m and 12 m antennas for its Deep Space Network (DSN). The

proposed array will cover elevation angles down to 10 degrees. The Westerbork telescope in the

Netherlands and the Expanded Very Large Array (EVLA) in New Mexico use arrays of 25 m
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antennas. The Goldstone Deep Space Communications Complex near Barstow, California uses

antennas of 34 m and 70 m down to elevation angles of 20 degrees. For each antenna size, at

each zenith angle, the following three methods were used in combining the signals within the

dish’s aperture:

• Normal combining: The signal values within the antenna’s aperture were added together

without any phase compensation.

• De-tilted combining: First the least squares planar fit to the phase was subtracted from the

phase of each signal value within the aperture of the antenna. Then the resulting values

were combined together. The generates the value that would occur if the antenna were

pointed, or tilted, in the optimal direction. It is analogous to the use of a de-tilt mirror in

adaptive optics.

• Equi-phase combining: The magnitude of the signal values within the antenna’s aperture

were added together. This generates the value that would occur if the antenna had a

malleable subreflector that perfectly took out any phase distortion. This is analogous to

the use of a deformable mirror in adaptive optics.

The average angle of arrival (AOA) as defined by the bore-sight angle φbore > 0, is shown in
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Fig. 1.11 for antenna diameters of 12m, 25m and 70m. Results are shown for frequencies of 20

GHz and 30 GHz as a function of zenith angle. The simulation used the typical cloud-present

turbulence profile and the Kolmogorov spectrum with a L0 cutoff of 1,000 m. The smaller

antennas average the phase distortions over a smaller area and thus show larger average AOA

values then those of larger antennas for the same phase fronts. It was surprising to see that the

AOA values for a given antenna diameter and zenith angle were the same at 20 GHz as they

were at 30 GHz. A larger value for the higher frequency had been anticipated. This behavior

requires further examination for better understanding.

Larger antennas are more directional than smaller antennas and thus suffer a larger power

loss for a given AOA error than do smaller antennas. Fig. 1.12 portrays this effect. It shows

the associated improvement obtained in antenna output power, relative to normal combining, of

equi-phase combining in which AOA error and all other phase distortions were removed. Most

of the improvement, as will be seen later, is due to removing the AOA error through antenna

tracking. The ratio of the power from equi-phase combining to that from normal combining is

the inverse of the Strehl ratio commonly used in free-space optical communication systems to

asses the signal power loss due to phase-distortion-induced de-focussing.

Next the effect of outer scale size L0 was considered by running MPS simulations with the

three aforementioned models for the spectrums of the index of refraction irregularities. The

results show that the outer scale value has a large influence on AOA values. A 70m dish was

considered since the effects of phase distortion are heightened for such large antennas. It is

improbable that such a large dish would ever be used at low elevation angles but for the sake of

studying a worst case situation, such angles were examined. Fig. 1.13 shows that large eddies

contribute significantly to the average difference of the AOA relative to its nominal value. The

restricted Kolmogorov spectrum, which in the MPS simulation had L0 = 1,000 m, has much

larger AOA values than either the Greenwood-Tarazano spectrum or the von Karman spectrum

which both used L0= 100 m.

Fig. 1.14 shows the improvements that would be obtained relative to normal combining

by using 1) equi-phase combining (i.e. perfect phase compensation), and 2) de-tilt combining
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Figure 1.11: Average angle of arrival, relative to nominal bore-sight direction, for various an-
tenna sizes for 20 GHz and 30 GHz (Kolmogorov Spectrum).
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Figure 1.13: Angle of arrival, relative to the nominal bore-sight axis, for 70 m diameter antenna
at 30 GHz, the Von Karman and Greenwood-Tarazano spectrums have fewer large eddies, which
results in milder angle of arrival effects.

(i.e. perfect antenna tracking). Also shown is the percentage of the available energy that can

be recovered through antenna tracking. The results show that antenna tracking can re-cover

most of the available power. This was not surprising since in adaptive optics the de-tilt mirror

typically provides 80% or more of the benefit in removing phase-distortion effects.

1.5 Conclusions

According to MPS simulations of tropospheric scintillation effects on Ka band satellite signals,

used in conjunction with 1) a typical summer cloud-present turbulence profile and 2) typical

summer no-cloud-present profile, there can be a substantial diversity benefit from using mul-

tiple antennas for links with elevation angles less than 20 degrees. At elevation angles greater

than 10 degrees the potential benefit can be adequately estimated by basic Rytov theory for link

availability percentages up to 99%. At elevations less than 10 degrees one should use simula-

tions in order to adequately ascertain the potential benefits of using receive antenna diversity to

mitigate scintillation at Ka band.
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Figure 1.14: Benefits of phase compensation for 70 m diameter antenna at 30 GHz, the Von
Karman and Greenwood-Tarazano spectrums have fewer large eddies, which results in less
phase distortion and milder antenna output power degradation.

The results of the MPS simulations also show that the troposphere, under typical conditions,

does not cause serious AOA fluctuations, or other forms of phase front distortion, for antennas

with diameters of 25 m or less. For larger antennas, when the outer scale L0 is larger than 100

m, a loss in antenna output power can be substantial. Tracking the direction of the incoming

signal mitigates the loss, recovering almost all of the energy, with only a small fraction lost to

higher-order phase distortions.

In terms of future applications of the method proposed in this chapter, MPS simulations

could be used to confirm the estimates provided in [DA05] of the output power loss due to

scintillation of JPL’s proposed DSN array, which consists of 400 12-m diameter antennas spread

out over a circular area with a diameter of 1.8 km.
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CHAPTER 2

Analysis of Effects of Rain on the Capacity of Ka Band

Satellite Signals

Contributions:

• Developed method for tightly estimating the outage probability of satellite links due to

rain fades in regards to constrained capacity.

• Developed lower bound for the ergodic constrained capacity of log-log-normal channels.

• Developed constrained capacity analysis technique of using a piece-wise linear fit of the

constrained capacity, selecting as the variable of fit either SNR in linear or logarithmic

form to facilitate analysis.

2.1 Introduction

The rain fades, in decibels, for satellite channels are often modeled as having a log-normal dis-

tribution. The channel gain then has a log-log-normal (LLN) distribution. Researchers have

determined methods for calculating the outage probabilities for LLN channels in regards to

Shannon capacity [FV90, PLA09]. In these analyses the Shannon capacity assumes a continu-

ously valued input signal with infinite support and Gaussian distribution. In practical satellite

communications systems, such as those conforming to the European Telecommunication Stan-

dards Institute’s (ETSI) second generation digital video broadcast-satellite (DVB-S2) standard,

the input signal is constrained to a discrete signalling set such as finite-size quadrature amplitude

modulation (QAM) constellations. At high SNR the Shannon capacity greatly overestimates the
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capacity of these practical systems, particularly for low order constellations. For this reason a

method is needed to evaluate the capacity and outage probability for LLN channels when the

signal set is constrained to a finite alphabet. This chapter 1) introduces a new technique for

estimating the outage probability, and outage capacity of LLN channels and 2) develops an effi-

cient method for calculating a lower bound for the ergodic constrained capacity (ECC) of LLN

channels. The outage probability method presented is applicable to both Shannon capacity and

constrained capacity.

This chapter is organized as follows, section 2.2 gives the details of the LLN channel model

and provides the constrained capacity formula that is to be evaluated for the LLN channel.

Section 2.3 details the recent work done in determining estimates of the outage probabilities for

the LLN channel. In addition, recent work done in determining lower bounds for the constrained

capacity of fading channels is described. Section 2.4 describes the approach taken to develop

a method applicable to the calculation of outage probabilities associated with the constrained

capacity for the LLN channel. Section 2.5 details the derivation of a lower bound for the ECC

of a LLN channel. Section 2.6 provides results and section 2.7 lists conclusions and possible

future work.

2.2 System Model and Performance Measures

2.2.1 Channel Model

The PDF commonly used for the attenuation in decibels, AdB, caused by rain fades is the log-

normal distribution [GF04]

fAdB(AdB) =
1√

2πσ2
c AdB

e−(ln(AdB)−mc)2/(2σ2
c) AdB ≥ 0 (2.1)

where mc and σc are the log-normal parameters, i.e. the mean and standard deviation of the

underlying normal process.
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The associated CDF is

FAdB(AdB) = 1−Q
((

ln(AdB)−mc
)
/σc

))
, (2.2)

where

Q(x) .=
1√
2π

Z ∞

x
e−t2

dt.

Substituting, AdB = κ ln(g), where κ =−20/ ln(10), the PDF of the channel gain g is obtained

fG(g) = (2.3)
−1√

2πσc g ln(g)
exp

(−(ln(κ ln(g))−mc)2

2σ2
c

)
0 < g≤ 1.

This is a LLN distribution.

The received signal y through the channel is modeled as

y =
√

Es gx+n (2.4)

where Es is the average transmitted signal energy, x ∈ X is the transmitted signal with constel-

lation X , g is the LLN distributed channel gain (2.3), and n is complex additive white Gaussian

noise with zero mean and variance N0.

The received SNR is γrx = g2γcs, where γcs = Es/N0 is the SNR received under clear sky

conditions for which g = 1. In decibels this can be expressed as

γrx,dB = log10(g
2γcs) = γcs,dB−AdB. (2.5)

27



2.2.2 Capacity Formulas

The Shannon capacity as a function of the clear sky SNR and channel gain is

CShan(g,γcs) = λ ln(1+g2γcs) (2.6)

where constant λ= 1/ ln(2) (λ= 1) if the capacity is expressed in bits/s/Hz (nats/s/Hz).

The constrained capacity, with a QAM input that has a finite alphabet of M equiprobable

values is [Bac99] (see also (C.6) in appendix C)

Ccon(g,γcs)
.=

λ ln(M)− λ
M

M

∑
j=1

1
πN0

Z

y∈C
e−∆2(y,x j)/N0

· ln
[

M

∑
s=1

e(∆2(y,x j)−∆2(y,xs))/N0)

]
dy (2.7)

where xi is the complex value of input i, ∆2(y,xi)
.= |y−xi

√
g2γcsN0|2 and | · |2 denotes squared

Euclidean distance. The summation is over all the elements of the constellation X, and the

integration is over all possible values of output Y, i.e. over the entire complex plane C .

2.2.3 Outage Probability

Given a desired capacity value, co, there is an associated SNR, γo that must maintained in order

for the channel to support co. Methods for determining the γo associated with co from (2.6) and

(2.7) will be discussed in a following section. There is a non-zero probability at any point in

time that the gain, g, of the LLN channel will be large enough to allow the received SNR to

be larger than γo. The outage probability Pout is defined as the probability that the capacity, c,

of the channel at a particular point in time will be less than co due to a channel fade. This is

equal to the probability that γrx will be less than γo, which in turn is equal to probability that the
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attenuation will exceed

A0 = γcs,dB− γo,dB (2.8)

The outage probability as a function of desired capacity co is

Pout(co)
.= P(c≤ co) = P(γrx ≤ γo)

= P(AdB > Ao)
.= 1−FAdB(A0)

= Q
(
(ln(Ao)−mc)/σc

)
. (2.9)

A performance metric related to the outage probability is the outage capacity, Cout,P(γcs),

which gives the capacity value available with an outage probability of P as a function of the

clear sky SNR γcs.

2.2.4 Ergodic Constrained Capacity

The ergodic capacity at a specific γcs is, by definition,

E[C(γ)] .=
Z ∞

0
x fC(γcs)(x) dx (2.10)

where fC(γ)(·) is the PDF for the capacity. Equivalently, (2.10) can be written in terms of the

PDF of the channel gain,

E[C(γ)] =
Z ∞

0
C(g,γcs) fg(g) dg (2.11)

where fg(g) is the PDF of the channel gain and C = Ccon (C = CShan) to determine the ergodic

constrained (Shannon) capacity of the given channel for an SNR of γ.
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For a LLN channel (2.11) becomes

E[C(γ)] = (2.12)

1
σ2

c

Z 1

0
C(g,γcs)

−1√
2πσc g ln(g)

e
−(ln(−κ ln(g))−mc)2

2σ2c dg.

2.3 State of the Art

2.3.1 Calculation of Outage Probability

Filip and Vilar calculated the outage probability for the Shannon capacity of a bent-pipe Ka

band satellite links subject to a global fading process (i.e., rain attenuation and scintillation

amplitude fluctuations) [FV90]. In their work they showed the advantage of looking at a link

from a capacity point of view: features are highlighted that would not otherwise be considered,

such as the fact that scintillation enhances the link approximately 50% of the time. Others have

expanded their work by adding the noise temperature increase caused by rain attenuation to the

global fading process [ABS97]. This work expands the calculation of outage probability for a

given capacity to include the effects of using a finite alphabet input such as a QAM constellation

rather than the Gaussian distributed input assumed by Shannon capacity calculations. Since

rain attenuation is the dominant factor in determining outage probability and outage capacity,

scintillation and noise temperature will be ignored and only rain fading will be considered.

As shown in (2.9) the outage probability of a given capacity value, co can be determined

from the cumulative distribution function (CDF) of the channel attenuation by mapping co to

the associated SNR γo, and in turn to the attenuation A0 associated with γo. A means is required

to map co to γo. In [FV90, PLA09] for the Shannon capacity, (2.6) provides such a mapping

γo = eco/λ−1 (2.13)

A similar method is needed to map co to γo for constrained capacity. However, the SNR

associated with a given constrained capacity is not readily obtained from (2.7) due to the 2-D
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integration over the complex plane and to the summation over all the constellation points. An

indirect method for obtaining the attenuation associated with a given constrained capacity value

must be used. Such a method is introduced in section 2.4.

2.3.2 Lower Bound on Ergodic Constrained Capacity

For typical channel PDF’s a closed form expression does not exist for (2.11) for either the

Shannon or the constrained capacity and numerical means must be used. The evaluation of

(2.11) for constrained capacity is further complicated by the 2-D integration over the complex

plane required by (2.7). For these reasons a bound of (2.11) that is readily evaluated is required.

The cutoff rate, R0, provides a lower bound for the constrained capacity, LB(g)≡ R0(g). From

( [Wil96], 4.3.37) the cutoff rate is given by,

R0 ≡ log2(M)− log2

[
1+

1
M

M

∑
j=1

∑
s=1,s 6= j

e−
g2‖α j−αs‖2

4N0

]

By taking the expectation on both sides of the equation and applying Jensen’s inequality, a

lower bound, LB1, for (2.12) for the constrained capacity case is obtained [Bac99],

E[LB] ≡ E[R0]

= log2(M)− (2.14)

E
[

log2

[
1+

1
M

M

∑
j=1

∑
s=1,s 6= j

e−
g2‖α j−αs‖2

4N0

]]

≥ log2(M)−

log2

[
1+

1
M

M

∑
j=1

∑
s=1,s6= j

Eg

[
e−

g2‖α j−αs‖2

4N0

]]

≡ LB1 (2.15)

A lower bound, LB1, for the channel-averaged (ergodic) constrained capacity can be ob-

tained by the above formula for any channel. The crux is the evaluation of the expectation with

respect to the channel gain, g, of the exponential term. In [Bac99] and [BF00] this expectation
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was evaluated, and LB1 expressions developed, for Rayleigh, Nakagami, and Rician channels.

For these channels the LB1 value was found to be within 1-5 dB of numerical evaluations of

(2.11) under a variety of conditions. This paper will evaluate this expectation and develop an

expression for LB1 for the LLN channel, and thus a lower bound for (2.12), in Section V.

2.4 Method for Calculation Outage Probability for LLN Channel

This section describes an indirect method for obtaining the SNR associated with a given con-

strained capacity value. The long near linear sections and large radii of curvature of the con-

strained capacity function (2.7) make it an ideal candidate for piece-wise linear (PWL) curve

fitting. A PWL fit can also be applied to the Shannon capacity (2.6) to obtain a uniform method

for obtaining the outage probability associated with a given capacity value, whether it be asso-

ciated with Shannon capacity or constrained capacity. Using the method of [Tom74], PWL fits

were made to (2.6) and to (2.7) for DVB-S2 constellations, shown in Fig. 2.1, as a function of

γrx,dB

C(α,γ) ∼= Cpwl(α,γ)

= mk γrx,dB +bk for ck−1 < C ≤ ck, (2.16)

where mk and bk are the slope and intercept values for section k of the PWL fit, which apply to

capacity values between ck−1 and ck. Figure 2.2 (a) shows the Shannon capacity and its PWL

fit and Figure 2.2 (b) shows the constrained capacity curves and their PWL approximations. In

all cases the fits were made so as to have a maximum absolute error of 0.04 bits/s/Hz. Table

2.1 provides the corresponding slope and intercept values for each section of the PWL fits

portrayed in these figures. Since the constrained capacity curves for the various ring ratios (RR)

for 16APSK are within 0.1 dB of each other, only values for the RR= 2.7 constellation are

provided. A similar situation holds for 32APSK.

The maximum absolute error can be reduced further if desired at the expense of the addition
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Figure 2.1: Constellations of the DVB-S2 standard: (a) QPSK, (b) 8PSK, (c) 16APSK, and (d)
32APSK

of more sections to the PWL fit. Conversely, the PWL fit can be made with even fewer sections

with a relaxed error limit. Since as the SNR increases the Shannon capacity becomes linear as

a function of the SNR in dB the PWL of the Shannon capacity has a finite number of sections.

In addition, since the constrained capacity of an M-ary constellation goes to cmax = log2(M) as

the SNR becomes large the capacity curve plateaus and thus the number of sections needed for

the PWL fit to a constrained capacity curve is also finite.

The outage probability associated with a given capacity value co can be evaluated by using

the PWL fit of the capacity to estimate the SNR value γo,dB needed to achieve ck−1 < co ≤ ck

γo,dB
∼= co−bk

mk
, (2.17)
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Figure 2.2: Piece-wise linear fits for (a) Shannon capacity and (b) constrained capacities of
DVB-S2 constellations as a function of SNR in dB with a maximum error of 0.04 bits/s/Hz.

and then using (2.8) in conjunction with (2.9) to calculate the outage probability associated with

co for an SNR of γcs,dB resulting in

Pout(co)∼=
Q

((
ln

(
γcs,dB− co−bk

mk

)
−mc

)
/σc

)
(2.18)
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(a) Shannon
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20214 0.016307 0.32253
2 0.81754 0.095012 0.90353
3 2.04144 0.20398 1.00214
4 4.90771 0.29684 0.52905
5 > 4.90771 0.33210 0.00884059

(b) BPSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20729 0.016077 0.31777
2 1.0 0.069586 0.68548
3 > 1 0 1

(c) QPSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20221 0.016308 0.32253
2 0.83973 0.094504 0.89946
3 1.86128 0.15464 0.93746
4 2 0.026623 1.70223
5 > 2 0 2

(d) 8PSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20219 0.016308 0.32253
2 0.83160 0.094647 0.90059
3 2.75584 0.17427 0.95863
4 3 0.053184 2.20735
5 > 3 0 3

(e) 16APSK (RR= 2.70)
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20218 0.0163084 0.32254
2 0.82437 0.094817 0.90193
3 2.21297 0.19826 0.98655
4 3.59738 0.23927 0.73286
5 4 0.097632 2.42853
6 > 4 0 4

(f) 32APSK (RR1= 2.64, RR2= 4.63)
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20216 0.016308 0.32253
2 0.82156 0.094884 0.90250
3 2.11144 0.20082 0.99287
4 4.51479 0.26574 0.63127
5 5 0.11584 2.82188
6 > 5 0 5

Table 2.1: Coefficients for the PWL fit for: (a) the Shannon capacity and (b)-(f) constrained
capacities for DVB-S2 constellations.

2.5 Proposed Lower Bound on the Ergodic Constrained Capacity of LLN

Channels

This section describes the evaluation of the LB1 lower bound given in (2.15) for the ergodic

constrained capacity of a LLN channel. In order to obtain LB1 for a LLN channel the following

expectation is needed,

Eg

[
e−

g2‖α j−αs‖2

4N0

]
=

1√
2πσ2

c

Z g=1

g=0

1
g ln(g)

e−
(ln(−κ ln(g))−mc)2

2σc e−
g2‖α j−αs‖2

4N0 dg
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By first substituting x =−κ ln(g), and then u = ln(x), the above integral becomes

Eg

[
e−

g2‖α j−αs‖2

4N0

]
= (2.19)

1√
2πσ2

c

Z u=∞

u=−∞
e
−
(

(u−mc)2

2σ2c
+
‖α j−αs‖2

4N0
e(−2eu/κ)

)
du

The term f (u) = e−2eu/κ in (2.19) can be well approximated with the piecewise continuous

function

g(u) =





1 −∞ < u≤ b1

1− ( u−b1
b2−b1

)2 b1 < u≤ b2

0 b2 < u < ∞

(2.20)

Figure 2.3 compares the original function, f (u), with the above approximation (2.20). Use

of (2.20) with values of b1= -2.65 and b2= 2.60 provide integration results that are within 2% of

numerically integrated values for equation (2.19) for values of 0 <‖ α j−αs ‖2 /4N0 < 2, which

is the range of interest, and values of the LLN parameters mc and σc ranging from those for arid

regions to those for tropical regions.

Using this piece-wise continuous approximation, a closed form expression can be developed

(see appendix D) for (2.19) that can be evaluated for any LLN channel. This expression can

be used in (2.15) to provide a lower bound expression for the ergodic constrained capacity of a
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Figure 2.3: Comparison of the actual function and its associated integrand with the approxima-
tion and its associated integrand.

given QAM constellation in a LLN channel

LB1 = log2(M)

−log2

(
1+

1
M

M

∑
j=1

M

∑
s=1,s6= j

Eg

[
e−

g2‖α j−αs‖2

4N0

])

= log2(M)− log2

(
1+

1
M

M

∑
j=1

M

∑
s=1,s 6= j

[
e−

‖α j−αs‖2

4N0 Q
(

mc−b1

σc

)

+e−τ j,s
1√

2πσc|a j,s|
(Q(v2 j,s)−Q(v1 j,s))

+Q
(

b2−mc

σc

)])

= log2(M)− log2

(
1+(M−1)Q

(
b2−mc

σc

)

+
1
M

M

∑
j=1

M

∑
s=1,s 6= j

[
e−

‖α j−αs‖2

4N0 Q
(

mc−b1

σc

)
(2.21)

+e−τ j,s
1√

2πσc|a j,s|
(Q(v1 j,s)−Q(v2 j,s))

])
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where,

M: The number of elements in the modulation alphabet

αi: The i th element of the modulation alphabet

mc: The mean of the underlying normal process of the LLN channel

σc: The standard deviation of the underlying normal process of the LLN channel.

b1: The boundary point between region 1 and region 2 of the piecewise approximation to

e−2eu/κ, nominally -2.65

b2: The boundary point between region 2 and region 3 of the piecewise approximation to

e−2eu/κ, nominally 2.60

and,

a j,s = 1
2σ2

c
− ‖α j−αs‖2

4N0(b2−b1)2

τs, j=
m2

c
2σ2

c
+ ‖α j−αs‖2b2(b2−2b1)

4N0(b2−b1)2 − (‖α j−αs‖2−2N0m(b2−b1)2)2

4N0(b2−b1)2[2N0(b2−b1)2−‖α j−αs‖2σ2
c ]

v1s, j=
√

2a′j,s(b1− γ j,s)

v2s, j= v1 j,s +
√

2a′j,s(b2−b1)

γ j,s=
2N0m(b2−b1)2−σ2

cb1‖α j−αs‖2

2N0(b2−b1)2−σ2
c‖α j−αs‖2

a′s, j= max(as, j,0).

The evaluation of variables a j,s, τ j,s, v1 j,s , v2 j,s and γ j,s may be tedious but is straightforward.

Equation (2.21) can be used to determine a lower bound for the ergodic constrained capacity

of a given QAM constellation in a LLN channel with parameters (mc,σc) without any 2-D

integrations using only well known functions.
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and P, freq= 20 GHz, el. angle = 20 degrees) for a SNR of 15 dB.

2.6 Results

2.6.1 Results Using the LLN Outage Probability Formula

Figure 2.4 compares Monte Carlo simulation results with values calculated using the proposed

method, given in (2.18), for the outage probability of the constrained capacity for DVB-S2

modulations in two LLN channels associated with rain regions E (mc= -3.08, σc= 1.51) and P

(mc= -1.38, σc= 1.51) for an elevation angle of 20 degrees and a frequency of 20 GHz for a

clear sky SNR of 15 dB. At a given outage probability value, the estimate from the proposed

expression agrees within the error of the PWL fit, 0.04 bits/s/Hz in this example, of the results

from Monte Carlo simulations and numerical methods.

Figure 2.5 shows the outage constrained capacity, Cout,P(γ), associated with outage per-

centages of P= 10%, 1%, 0.5% and 0.1% for DVB-S2 constellations for a LLN channel with

parameters (mc= -1.38, σc= 1.51). These values were determined by using (2.18) to generate

outage probability curves for several clear sky SNR values and then determining from each of

those curves the capacity value associated with the desired outage percentage. Also included in
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the graph are the outage capacities determined using numeric integration.

2.6.2 Results Using the LLN Lower Bound Formula

Figure 2.6 shows the ergodic constrained capacity and the associated lower bound from Monte

Carlo simulation for a LLN channel (mc= -1.38, σc= 1.51) along with LB1 values calculated by

numeric integration of (2.15) and by the proposed expression (2.21) for DVB-S2 constellations

in a LLN channel. The LB1 curves vary from being 3.0 dB from the Monte Carlo constrained

capacity curves at c= 0 to being within 2.1 dB at c = 0.95cmax. The match between the Monte

Carlo LB curves and the LB1 curves is very close, which shows that the application of Jensen’s

inequality in obtaining (2.15) from (2.14) had a negligible effect on the bound (0 to 0.2 dB).

2.7 Conclusion

This chapter presented a new method to quickly and accurately estimate the outage probabilities

and outage capacities of a LLN channel, for links constrained to a finite constellation, without
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resorting to lengthy Monte Carlo simulations or numerical integration. This new method was

shown to match well with Monte Carlo simulation results. The method was shown to be ap-

plicable to Shannon capacity outage probability calculations as well. The proposed method is

applicable to any QAM modulation once the parameters of the PWL fit of (2.7) are obtained via

some method such as that of [Tom74]. For the DVB-S2 QPSK, 8PSK, 16APSK, and 32APSK

constellations, Table 2.1 provides the required parameter values.

This chapter also presented a closed form expression for a lower bound for the ergodic

constrained capacity of a LLN channel.

These methods can be extended to the antenna combining situation, and also to the Weibull

distribution, which is also used to model the effects of rain fades on satellite channels.
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CHAPTER 3

Mitigation of the Effects of Rain on the Capacity of Ka Band

Satellite Signals Through Antenna Diversity

Contributions:

• Quantified benefit or receiver diversity in combating rain fades in order to improve ergodic

capacity and outage probability in regards to constrained capacity.

3.1 Introduction

Given that modern coding methods have brought the performance of communication links close

to theoretical limits there has been increased interest in determining theoretical capacity lim-

its for a given link. With the large rain attenuation that Ka band satellite links are subject to

there has been appreciable interest in using site diversity to mitigate the effects of rain fades.

This chapter presents a method to determine the constrained capacity of a satellite link that uses

site diversity to mitigate the effects of rain fades. The constrained capacity is defined as the

maximum information rate that can be sent, error free, through a channel under the constraint

that the input has a finite alphabet, which is the case when standard constellations are used.

The constrained capacity stands in contrast to the Shannon capacity, which assumes a Gaus-

sian distributed input for an additive white Gaussian noise (AWGN) channel. The method of

this chapter determines the ergodic constrained capacity, the outage probability and the outage

constrained capacity of a satellite link with antenna diversity that is subject to rain fades. The

constrained capacity, when averaged over all fade realizations, is termed the ergodic constrained

capacity. The constrained capacity at a given outage rate is known as the outage constrained
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capacity. In the previous chapter, the ergodic constrained capacities, outage probabilities and

outage constrained capacities of a standard satellite link consisting of a single satellite and a sin-

gle ground station, i.e., a single-input-single-output (SISO) configuration, were calculated (see

also [EF10]). In this chapter, the ergodic, outage probabilities and outage constrained capacities

when site diversity is used will be calculated and compared against those of a SISO link.

Section 3.2 describes the state of the art of calculating the capacities of satellite links that

use site diversity. Section 3.3 gives the channel models. Section 3.4 describes how the con-

strained capacities were computed. Section 3.5 provides the results of the constrained capacity

calculations when the DVB-S2 constellations are used. Section 3.6 concludes the chapter and

lists some related areas of future work.

3.2 State of the Art

Liolis, Panagopoulos, and Arapoglou considered the Shannon capacity (i.e., the capacity as-

suming a Gaussian distributed input signal) of satellite links that use site diversity to mitigate

rain fading [PLA09]. They developed a closed form expression for the outage probability for

Shannon capacity that is applicable to both single-input-multiple output (SIMO) and multiple-

input-single-output (MISO) situations. The formula given in their paper is applicable to both

the single-input-double-output and the double-input-to-single output cases, but could be di-

rectly expanded to cover other SIMO and MISO cases. They then numerically evaluated the

expression for some cases of interest.

This chapter further expands on this site diversity capacity work by utilizing the constrained

capacity, as opposed to the Shannon capacity. Practical constellations, such as those defined in

ETSI’s second generation Digital Video Broadcast-Satellite (DVB-S2) standard [ET05] will be

used. Two types of rain regions, a tropical environment and a relatively dry European environ-

ment will be considered. In [PLA09], only outage probabilities were given; in this work ergodic

capacities, outage capacities and outage probabilities will be provided.

A two-site receive-diversity scheme employing maximal ratio combining (MRC) was con-
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sidered. Three different amounts of correlation between the rain fades on the two paths were

examined. Although the constrained capacity results given in this chapter were calculated con-

sidering receive-diversity with two receive antennas, the results are applicable as well to a

transmit-diversity situation with two transmit antennas for the reasons brought forth in [PLA09].

3.3 Channel Model

For the SISO case, the following channel model was used,

ySISO = g1x+n (3.1)

For the two Rx receive-diversity situation it was assumed that MRC combining of the signals

from the two paths would be used. MRC combining was selected because it provides the max-

imum SNR of any linear combining method. In MRC combining, the signal from each path

is weighted by the conjugate of its path gain, and then the two resulting signals are summed

together. Thus, for the site diversity case, the following channel model was used,

yMRC =
1√
2
(|g1|2 + |g2|2)x+n (3.2)

where, in both of the above expressions, x is the transmitted signal, n is additive white Gaussian

noise, ySISO and yMRC are the outputs of the SISO and MRC channels, respectively, and g1

and g2 are the channel gains of path one and path two, respectively. The variables g1 and g2

represents rain-induced fading and, when converted to dB values, have log-normal distributions.

For the MRC channel, the division by
√

2 was done in order to create equal received power for

the SISO and MRC cases in the clear sky situation, so that any increase in performance of the

MRC case relative to that of the SISO case could be attributed to diversity.

In order to keep the problem description fairly generic, this chapter considers situations de-

scribed by rain regions, as formerly used in the ITU-R rain models. This chapter considers both

rain region P, a tropical environment, and also rain region E, a fairly dry region that covers a
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large portion of Europe. It is commonly accepted that the rain attenuation values, when con-

verted to dB values, have a log-normal distribution [GF04]. Therefore the probability density

function of the attenuation of path i, Ai =−10log(gi) (dB), is given by,

f (Ai) = 1√
2πσ2

i

1
Ai

exp
[
− (lnAi−mi)2

2σ2
i

]
i = 1,2 (3.3)

where mi and σi are the log-normal parameters of path i and are the mean and standard deviation,

respectively, of the underlying Gaussian process.

In this work, it was assumed that the attenuations of the two paths were jointly log-normal,

having a joint probability density function given by,

f (A1,A2) = 1
2πσ1σ2A1A2

√
1−ρ2

exp
[
− 1

2(1−ρ)2

(
(lnA1−m1)2

σ2
2

−2ρ(lnA1−m1)(lnA2−m2)
σ1σ2

+ (lnA2−m2)2

σ2
2

)]
(3.4)

where mi and σi are the log-normal parameters of path i and ρ is the correlation coefficient

between A1 and A2. This chapter examined site diversity for three different values of ρ (0, 0.25

and 0.5) in order to quantify the effects of channel correlation on site diversity. It was assumed

that the two paths had the same statistical parameters, i.e., m1 = m2 = m and σ1 = σ2 = σ.

Fig. 3.1 plots the complementary cumulative distribution function (CCDF) for rain regions E

and P with a 20 GHz signal and a 40 deg elevation angle, as specified by the ITU-R model. The

log-normal parameters, (m,σ) for this scenario are (-3.06, 1.51) for region E and (-1.38,1.51)

for region P.

3.4 Constrained Capacity Calculation

From information theory [CT91], the mutual information of a channel with input X and output

Y is described by,

I(X ;Y ) = H(X)−H(X |Y ) (3.5)
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Figure 3.1: Complementary CDF of rain fade levels along with the empirical distribution of
rain fade values used in determining the constrained capacities for that region for each of: (a)
region E and (b) region P.

where H(X) is the entropy of the input and the conditional entropy H(X |Y ) is given by,

H(X |Y ) =
Z

ΩY

f (y)H(X |Y = y)dy (3.6)

where,

H(X |Y = y) =−∑
ΩX

p(x|Y = y) log(p(x|Y = y)) (3.7)

when X has a finite alphabet, and,

H(X |Y = y) =−
Z

ΩX

f (x|Y = y) log( f (x|Y = y))dx (3.8)

when X is continuously distributed.

In these equations, f (y) is the probability density function of the channel output Y . In (3.7),

p(x|y) is the probability mass function of a finite-valued channel input, X , conditioned on a

given value for the output, y, of the channel. In (3.8), f (x|y) is the conditional probability

density function of a continuously-valued channel input, X .
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The mutual information is the upper limit on the rate of information that can be sent across a

channel error-free. It is typically measured in terms of how many bits of information can be sent

per channel usage, e.g., per transmission of a constellation symbol. The capacity of a channel

is the value of mutual information which has been maximized over all possible distributions for

the input, X . For an additive white Gaussian noise channel, subject to the constraint that the

average power must by less than some value Psig, the mutual information is maximized by a

Gaussian distribution on the two-dimensional input X , resulting in the well known formula,

C = maxp(x):E[X2]≤Psig
I(X ;Y )

= log2(1+
Psig

N
) (3.9)

where Psig/N is the signal-to-noise ratio (SNR).

In practice, however, it is not feasible to use an input with a Gaussian distribution and so

the input is usually drawn uniformly from a set of discrete values, i.e., from a constellation,

such as the QPSK, 8PSK, 16APSK and 32APSK constellations of the DVB-S2 standard shown

in Fig. 2.1. The constrained capacity is the value of the mutual information when the input is

constrained to a given constellation and the distribution of the input values is set to maximize the

value of the mutual information. As an alternative to altering the input distribution, constellation

designers can hold the input distribution uniform, and alter the location of points within the

constellation, such as by changing the ratios of the radii of the rings of the 16APSK or 32APSK

constellations, to maximize the mutual information. This also can be called the constrained

capacity.

A uniform distribution maximizes the entropy of a random variable with a finite alphabet

[CT91]. An input, X , that consists of an M-ary constellation will have an entropy, H(X), that is

less than or equal to log2(M). The capacity of a channel with such a constrained input can not

exceed log2(M). For example, the 8PSK constellation with a uniform input distribution, will

have H(X) = 3, and thus a maximum mutual information of 3 bits per channel usage.

In this chapter, a Monte Carlo approach was used to determine the constrained capacity for
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a given set of channel gains, g1 and g2. Each channel gain was calculated from a randomly gen-

erated attenuation value, Ai, i.e., gi = 10−Ai/10. The attenuation values were drawn according

to the distribution of (3.4). The input, X , to the channel consisted of symbols drawn uniformly

from a given DVB-S2 constellation. Noise values were drawn from a Gaussian distribution with

a variance value determined by the desired clear sky SNR. The constrained capacity conditioned

on a given set of channel gains, Ccon(g), was computed by applying information theoretic for-

mulas (3.5), (3.6), and (3.7) to the resulting empirical distributions for the output of the channel,

Y . At a given SNR, the resulting values of Ccon(g) from many channel realizations were 1) av-

eraged together to determine the ergodic constrained capacity and 2) binned in order to create a

histogram from which outage constrained capacities could be determined.

This was done for the situations in which the end-to-end channel was considered to send

either 1) symbols, or 2) individual bits. The first case is referred to as the joint capacity. It

is applicable for coding methods that work on a symbol-by-symbol basis, such as trellis-coded

modulation methods. In the other chapters of this work only the joint capacity is considered

and it is referred to simply as constrained capacity. The second case is applicable to coding

methods that work on a bit-by-bit basis such as binary LDPC codes employed by the DVB-S2

standard. For the second case, each bit of a constellation symbol is considered as a separate

binary channel. The capacities of these individual binary channels were calculated and then

summed to yield what has been termed as the parallel decoding capacity, which will always

be less than the symbol-based capacity. A discussion of joint capacity and parallel decoding

capacity is given in [BJF07] and the formulas for each are given by (C.6) and (C.10) respectively

in appendix C. It was found that the parallel decoding capacity was generally only slightly

less (within ∼ 0.1 bit/channel usage) than the joint capacity for the DVB-S2 constellations.

Since this chapter is interested in DVB-S2 satellite links only the parallel decoding constrained

capacity values will be shown.
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3.5 Results

Using the method described in Section 3.4, both (1) the average of the constrained capacity and

(2) the outage capacity for each of the constellations of the DVB-S2 standard were calculated

for both rain region E and rain region P. A carrier frequency of 20 GHz and an elevation angle

of 40 degrees were assumed.

The empirical CCDFs of all the realizations of rain attenuations, Ai (i = 1,2), for each of

the two paths that were used in the Monte Carlo calculations of the constrained capacity values

are plotted in Fig. 3.1.

For the 16APSK constellation a value of 2.7 was used for the ratio of the outer ring radius to

that of the inner ring. This ring ratio is the one defined in the DVB-S2 standard for a code rate of

5/6, which yields 3.33 information bits sent per constellation symbol. The constrained capacity

results for 16APSK presented in this section could be improved possibly by a few tenths of

bits per channel usage (bpcu) outside of the 3.3 bpcu zone by altering the ring ratio. A similar

situation holds for the 32APSK results, for which the ring ratios associated with a code rate of

5/6 were used (4.17 information bits per symbol). A discussion on how the ring ratios of these

constellations were selected for the DVB-S2 standard so as to maximize their constrained joint

capacity is presented in [GFM06].

For the two-site MRC situation the transmitter power was cut in half. This was done so that

any advantage observed could be completely attributed to diversity gains.

Fig. 3.2 shows the results for the ergodic parallel decoding capacity for the QPSK, 8PSK,

16APSK and 32APSK constellations of the DVB-S2 standard for SISO and MRC channels for

rain region P. For the MRC channel the rain fades were assumed to be uncorrelated. The plot

also includes the Shannon capacity (i.e. Gaussian distribution on the input) as well as the clear

sky (CS) (i.e. no rain) constrained capacity values, for the sake of comparison. As expected,

for each M-ary constellation, the constrained capacities reach a maximum of log2(M) bits per

channel usage. The figure shows that the clear-sky constrained capacities are only slightly

higher than the ergodic constrained capacities of the MRC and SISO links, which are practically
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Figure 3.2: Average parallel decoding constrained capacities (Par. Dec.) in rain region P with
QPSK, 8PSK, 16APSK and 32APSK. Clear sky (CS) counterparts and Shannon capacity curves
(Gauss. Cap.) are also shown for reference.

the same. There is less than 1 dB difference between the CS values and the rain region P values.

The ergodic capacity results for region E were found to be negligibly different to those of the

clear sky situation.

The main advantage of using two-site receive diversity becomes evident when we consider

the outage probability and outage capacity. Fig. 3.3 shows the outage probabilities for rain

regions E and P when the channel input is constrained to QPSK or to 32APSK. For QPSK,

the clear sky SNR was 6 dB and for 32APSK it was 16 dB. Both of these SNR values are at

the upper range of the SNR values at which the DVB-S2 standard lists performance values for

these constellations in a purely AWGN channel. The outage probabilities in regards to Shannon

capacity are also shown in these figures for reference. The vertical axis provides the percentage

of time that a given capacity value on the horizontal axis will be unobtainable due to fading.

From these outage probability curves we see, as expected, the main advantage of using site

diversity: it greatly increases the outage probability and capacity. For example, from Fig. 3.3
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(c), the 1% outage capacity in region P with QPSK at a clear sky SNR of 6 dB is 0.6 bpcu for

the SISO channel but increases significantly to 0.9 bpcu, 1.1 bpcu and 1.4 bpcu for the MRC

channel with path fading correlation coefficients, ρ, of 0.25, 0.5 and 0 respectively. For the 0.1%

outage capacity the situation is even more dramatic. For the situation just described, the SISO

channel has an 0.1% outage capacity that is negligibly small, but the MRC channel has 0.1%

outage capacities of 0.1 bpcu, 0.3 bpcu and 1.0 bpcu for correlation coefficients of 0.25, 0.5 and

0 respectively. These results show that site diversity greatly increases outage capacity, but that

correlation of the rain fades on the two paths can significantly reduce the benefit, particulary for

small outage percentages.

For the relatively dry rain region E, the outage capacity curves of Fig. 3.3 (a) show that there

is no need for site diversity to increase the 1% outage capacity of QPSK, but that site diversity

can help increase the 0.1% outage capacity.

The outage capacity curves for 32APSK of Fig. 3.3(b) and (d) show the same type of

benefit obtained by using site diversity as that exemplified by the outage capacity curves of

QPSK, i.e., significant increase in the outage capacity with site diversity, particularly at small

outage percentages, and a fairly significant influence on those increases of the correlation of the

fades of the two paths.

Outage probability curves were generated for the 8PSK and 16APSK constellations as well,

but are omitted here due to space considerations. Outage capacity values derived from the

outage probability curves for the four constellation types are provided in Table 3.1 for outage

percentages of 0.1% and 1% at the upper range of the SNR values at which the DVB-S2 standard

lists performance values for these constellations in a purely AWGN channel.

3.6 Conclusion and Future Work

The application of information theoretic analysis tools to the rain-faded Ka band satellite link

has generated realistic capacity values that take into account the usage of practical constella-

tions, as opposed to the Gaussian distributed inputs required to achieve the Shannon capacity.
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Figure 3.3: Outage percentages for parallel decoding capacity for 3 different correlation coeffi-
cients for (a) QPSK in region E, (c) QPSK in region P, (b) 32APSK in region E and (d) 32APSK
in region P, with Shannon capacity (Gaus. Cap.) included for reference. The clear sky SNR
was 6 dB for QPSK and 16 dB for 32APSK.

In order to quantify the benefits of diversity in mitigating rain fades, this was done for both

the single site and the two-site diversity situations. This technique can be used by satellite link

designers for a given set of link conditions (i.e. log-normal parameters m and σ) to examine

the efficiency of a given satellite link in terms of how much of the constrained capacity the link

is actually using, to determine the benefits of diversity methods, and to set realistic goals for
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Table 3.1: Outage constrained capacities for various constellations.
CS Cor. 0.1% Out. Cap. 1% Out. Cap.

Constell- SNR Channel Coeff. Reg. E Reg. P Reg. E Reg. P
ation (dB) Type ρ (bpcu) (bpcu) (bpcu) (bpcu)

QPSK 6 SISO - 1.1 ∼ 0 1.6 0.6
QPSK 6 MRC 0.25 1.3 0.1 1.7 0.9
QPSK 6 MRC 0.5 1.4 0.3 1.7 1.1
QPSK 6 MRC 0 1.5 1.0 1.7 1.4
8PSK 11 SISO - 2.1 ∼ 0 2.6 1.9
8PSK 11 MRC 0.25 2.3 0.4 2.7 2.1
8PSK 11 MRC 0.5 2.4 0.9 2.7 2.3
8PSK 11 MRC 0 2.5 1.9 2.7 2.4

16APSK 13 SISO - 2.6 ∼ 0 3.4 1.7
16APSK 13 MRC 0.25 2.9 0.5 3.5 2.4
16APSK 13 MRC 0.5 3.1 1.2 3.5 2.6
16APSK 13 MRC 0 3.2 2.4 3.5 3.0
32PSK 16 SISO - 3.4 ∼ 0 4.4 2.4

32APSK 16 MRC 0.25 3.8 0.9 4.5 3.0
32APSK 16 MRC 0.5 4.0 1.7 4.5 3.5
32APSK 16 MRC 0 4.2 3.2 4.5 3.9

adaptive modulation methods.

Future work in this area of studying the benefits of diversity in combatting rain fades may

include the calculation of the constrained capacities with global fading processes, i.e., with the

addition of scintillation effects and the increased noise temperatures due to rain fades.
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Part II

Estimation of Ergodic Constrained

Capacity and Outage Probabilities for

Terrestrial Links
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CHAPTER 4

Estimation of Constrained Capacity and Outage Probability

of QAM Modulations in Rayleigh Channels

Contributions:

• Improved on past methods for approximating the ergodic constrained capacity (ECC) of

noise limited Rayleigh channels by increasing the estimation accuracy while maintaining

a low complexity.

• Extended the estimation of ECC of noise limited Rayleigh channels to include maximal

ratio antenna combining (MRC).

• Introduced a new technique for estimating the outage probability of noise limited Rayleigh

channels with and without MRC antenna combining.

• Extended the proposed method to the calculation of ECC and outage probability for in-

terference limited Rayleigh channels that incorporate either MRC or optimum combining

(OC).

• To date, no other method for calculating the ergodic constrained capacity of an interfer-

ence limited Rayleigh channel or estimating the outage probabilities for the constrained

capacity of a noise limited or interference limited Rayleigh channel has been published.
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4.1 Introduction

The well-known Rayleigh fading channel model describes the gain of a non-line-of-sight mul-

tipath channel as a Rayleigh random variable. Researchers have determined methods for cal-

culating the ergodic Shannon Capacity (ESC) for Rayleigh channels for single and multiple

antenna systems [Tel99,AV08]. In these analyses the Shannon capacity assumes a continuously

valued input signal with infinite support and Gaussian distribution. In practical communications

systems, the input signal is constrained to a discrete signalling set such as a finite-size quadra-

ture amplitude modulation (QAM) constellation. At high SNR the Shannon capacity greatly

overestimates the capacity of these practical systems, particularly for low order constellations.

For this reason a method is needed to evaluate the capacity and outage probability for Rayleigh

channels when the signal set is constrained to a finite alphabet. This chapter 1) improves on past

methods for approximating the ergodic constrained capacity (ECC) of noise limited Rayleigh

channels by increasing the estimation accuracy while maintaining a low complexity, 2) extends

the estimation of ECC of noise limited Rayleigh channels to include maximal ratio antenna

combining (MRC), 3) introduces a new technique for estimating the outage probability of noise

limited Rayleigh channels with and without MRC antenna combining, and 4) further extends

the proposed method to the calculation of ECC and outage probability for interference limited

Rayleigh channels that incorporate either MRC or optimum combining (OC). The method for

the interference limited case can be used to estimate the throughput of cellular systems and

determine channel reuse factors.

This chapter is organized as follows, section 4.2 gives the details of the noise limited

Rayleigh channel model and provides the constrained capacity formula that is to be evaluated

for the Rayleigh channel. Section 4.3 details the recent work done in determining estimates of,

and bounds for, the ergodic constrained capacity for noise limited Rayleigh channels. Section

4.4 describes the approach taken to develop a method applicable to the calculation of 1) out-

age probabilities and 2) the ECC for noise limited Rayleigh channels with and without antenna

combining and details the proposed method. Section 4.5 extends the proposed method to the

interference limited Rayleigh channel in conjunction with OC and MRC combining. Section
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4.6 provides results and section 4.7 lists conclusions and possible future work.

4.2 System Model and Performance Measures

The received signal y through the channel is modeled as

y =
√

Esg x+n (4.1)

where Es is the average transmitted signal energy, x ∈ X is the transmitted signal with constel-

lation X , g is the Rayleigh distributed channel gain, and n is complex additive white Gaussian

noise with zero mean and variance N0.

The probability density function (PDF) of g is

fG(g) =
g

σ2
g

e
− g2

2σ2g (4.2)

where σ2
g is the variance of the Rayleigh random variable’s underlying Gaussian process. Typi-

cally, the channel is modeled as having unit power gain. This requires that σ2
g = 1/2.

The Shannon capacity as a function of average SNR, γ = Es/N0 and g is

CShan(g,γ) = λ ln(1+g2γ) (4.3)

where constant λ= 1/ ln(2) (λ= 1) if the capacity is expressed in bits/s/Hz (nats/s/Hz).

The constrained capacity, with a QAM input that has a finite alphabet of M equiprobable
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values is [Bac99] (see also (C.6) in appendix C)

Ccon(g,γ) = H(X)−EY [H(X |y,g,γ)]

= λ ln(M)− λ
M

M

∑
j=1

1
πN0

Z

y∈C
e−∆2(y,x j)/N0

× ln

[
M

∑
s=1

e(∆2(y,x j)−∆2(y,xs))/N0)

]
dy (4.4)

where xi is the complex value of input i, ∆2(y,xi)
.= |y− xi

√
g2γN0|2 and | · |2 denotes squared

Euclidean distance. The summation is over all the elements of discrete input alphabet X, and

the integration is over all possible values of output Y, i.e. over the entire complex plane C .

The ergodic capacity at a specific γ is, by definition,

E[C(γ)] .=
Z ∞

0
x fC(γ)(x) dx (4.5)

where fC(γ)(·) is the PDF for the capacity.

For a Rayleigh channel (4.5) can be shown to be

E[C(γ)] =
1

σ2
g

Z +∞

0
C(g,γ)ge

− g2

2σ2g dg (4.6)

where C = Ccon (C = CShan) to determine the ergodic constrained (Shannon) capacity.

Given a desired capacity value, co, there is a non-zero probability at any point in time that

the gain, g, of the Rayleigh channel will be large enough to allow co to be achieved. The outage

probability Pout is defined as the probability that the capacity, c, of the channel at a particular

point in time will be less than co due to a channel fade. The outage probability as a function of

desired capacity co is

Pout(co)
.= P(c≤ co) = P(γrx ≤ γo)

.= Fγrx(γo) (4.7)

where γo is the received SNR required to achieve a capacity of co, γrx = g2γ is the received
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SNR, and Fγrx(·) is its cumulative distribution function (CDF). A performance metric related to

the outage probability is the outage capacity, Cout,P(γ), which gives the capacity value available

with an outage probability of P as a function of the average SNR γ.

4.3 State of the Art

Baccarelli developed upper and lower bounds for the ergodic constrained capacity of a Rayleigh

channel (4.6) that remove the integration over the complex plane shown in (4.4). These bounds

are readily evaluated for any QAM modulation type, but are relatively loose, i.e. 1 to 5 dB.

The method presented in this chapter provides tight (< 0.15 dB) estimations of the ergodic

constrained capacity. He also looked at a problem related to estimating the outage probability

of a Rayleigh channel for a given constrained capacity value [Bac99]. This chapter takes a

direct approach to estimating the outage probability.

Wong developed a simple series representation for the ergodic constrained capacity of a

Rayleigh fading channel (4.6) applicable only to BPSK and QPSK input constellations [Won01].

The method developed in this chapter is applicable to any QAM modulation type.

Slimane developed a simplified but accurate approximation of (4.4) for any QAM modu-

lation that removes the integration over the complex plane [Sli06]. However, the subsequent

evaluation of the ECC for the Rayleigh channel (4.6) still requires numeric integration. The

method presented in this chapter replaces numerical integration with a finite sum.

None of the aforementioned techniques address antenna combining. The method presented

in this chapter for calculating the ECC of Rayleigh channels works well for any QAM modula-

tion, with or without antenna combining.

Regarding interference limited Rayleigh channels, no research has been published dealing

with the estimation of ECC or of the outage probabilities associated with the constrained ca-

pacity for such channels. The method presented in this chapter provides a means for closely

estimating both of these quantities for interference limited Rayleigh channels.
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4.4 Proposed Method

The goal of this work was to develop a simple means to determine the outage probability of

Rayleigh channels and to develop a readily evaluated expression that approximates (4.6) in

conjunction with either (4.3) or (4.4). The existing literature substitutes (4.3) or (4.4) into (4.6)

and, with the exception of a few special cases, resorts to numerical techniques for its evaluation.

In this work an approximation to (4.4) is introduced which facilitates an accurate closed-form

evaluation when inserted into (4.6).

4.4.1 Piece-wise Linear Fit of the Capacity

The long approximately linear sections and large radii of curvature of the constrained capacity

function (4.4) make it an ideal candidate for piece-wise linear (PWL) curve fitting. Using γrx
.=

g2γ, the received SNR, as the variable of the PWL fit facilitates the development of expressions

for the ergodic capacity. Such a fit as a function of γrx can be expressed as

C(g,γ) ∼= Cpwl(g,γ)

= mk γrx +bk for ck−1 < C ≤ ck (4.8)

where mk and bk are the slope and intercept values for section k of the PWL fit, which apply to

capacity values between ck−1 and ck.

Using the method of [Tom74], PWL fits were made to the constrained capacity expression

(4.4) for modulations commonly of interest. Figure 4.1 shows the constrained capacity and

Shannon capacity curves and their PWL approximations. In all cases the fits were made so as

to have a maximum absolute error of 0.01 bits/s/Hz. Since the constrained capacity of an M-ary

constellation goes to cmax = log2(M) as the SNR becomes large the capacity curve plateaus and

thus the number of sections needed for the PWL fit to a constrained capacity curve is always

finite.

Table 4.1 provides the corresponding slope and intercept values for each section of the PWL
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Figure 4.1: Piece-wise linear fits for BPSK, QPSK, 8PSK, and 16QAM constrained capacities
and Shannon capacity.

fits of the constrained capacity curves portrayed in Figure 4.1. The maximum absolute error

can be reduced further if desired at the expense of the addition of more sections to the PWL fit.

Conversely, the PWL fit can be made with even fewer sections with a relaxed error limit.

4.4.2 PDF and CDF of the SNR

Consider the MRC combining of N receive antennas, of which the single antenna situation is

a special case with N=1. The instantaneous SNR of the MRC signal, γmrc, is the sum of the

SNRs, γrx,n, present at the individual antennas

γmrc =
N

∑
n=1

γrx,n = γ
N

∑
n=1

g2
n (4.9)

where gn is the Rayleigh-distributed channel gain associated with antenna n. Since each gn is

Rayleigh distributed the sum, v .= ∑N
n g2

n, is chi-squared distributed with 2N degrees of freedom
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(a) BPSK
i ck (bits/s/Hz) slope (mi) intercept (bi)
1 0.28982 1.2047 8.2634e-4
2 0.56367 0.72696 0.11543
3 0.77398 0.39564 0.31972
4 0.92035 0.17279 0.57558
5 1 0.042057 0.83644
6 – 0 1

(b) QPSK
i ck (bits/s/Hz) slope (mi) intercept (bi)
1 0.41250 1.2729 5.9338e-4
2 0.83649 0.90071 0.12103
3 1.1961 0.61369 0.34902
4 1.4943 0.39361 0.65281
5 1.7255 0.22563 1.0120
6 1.8882 0.10740 1.3858
7 1.9808 0.033846 1.7299
8 2 0.0015203 1.9695
9 – 0 2

(c) 8PSK
i ck (bits/s/Hz) slope (mi) intercept (bi)
1 0.41266 1.2734 5.9161e-4
2 0.84039 0.90865 0.11862
3 1.2353 0.63874 0.33302
4 1.5933 0.43337 0.62311
5 1.9236 0.28732 0.95006
6 2.2242 0.18514 1.2963
7 2.5025 0.11587 1.6435
8 2.7199 0.065848 2.0143
9 2.8773 0.03297 2.3666
10 2.9741 0.011397 2.7007
11 3 0.0008973 2.9526
12 – 0 3

(d) 16QAM
i ck (bits/s/Hz) slope (mi) intercept (bi)
1 0.41283 1.2740 5.8967e-4
2 0.86003 0.91408 0.11704
3 1.2939 0.65116 0.33075
4 1.7161 0.45906 0.61489
5 2.1165 0.32499 0.93649
6 2.5208 0.23244 1.2726
7 2.9095 0.16247 1.6483
8 3.2375 0.11110 2.0471
9 3.5108 0.073085 2.4544

10 3.728 0.043057 2.8884
11 3.8863 0.021348 3.3117
12 3.9809 0.0068402 3.7022
13 4 0.00030194 3.9686
14 – 0 4

Table 4.1: Coefficients for the PWL fit (maximum error 0.01 bits/s/Hz) as a function of the SNR
to constrained capacities (a) BPSK, (b) QPSK, (c) 8PSK, and (d) 16QAM.

and the PDF of γmrc is [Bre59],

fγmrc,N (x) =
xN−1

(2γσ2
g)NΓ(N)

e−x/(2γσ2
g) (4.10)

where Γ(·) is the standard gamma function.

The associated CDF is

Fγmrc,N (x) = 1− e−x/(2γσ2
g)

N−1

∑
n=0

xn

n!(2γσ2
g)n . (4.11)

In order to examine diversity gains in isolation from aperture gains, the average transmitted

62



energy, Es, and thus the average SNR, γ, can be divided by N. With this normalization (4.10)

becomes

fγmrc,N,div(x) =
NNxN−1

(2γσ2
g)NΓ(N)

e−Nx/(2γσ2
g) (4.12)

and (4.12) becomes

Fγmrc,N,div(x) = 1− e−x/(2γσ2
g)

N−1

∑
n=0

xn

n!(2γσ2
g)n . (4.13)

The div subscript denotes that these distributions are applicable to examining diversity gains

without the effect of aperture gains. As N → ∞, (4.12) becomes a Dirac delta function centered

at the average SNR γ (assuming 2σ2
g = 1) and (4.13) becomes a step function at x = γ. Thus

as N → ∞ the Rayleigh channel with MRC and SNR γ/N approaches the unfaded AWGN case

with SNR γ [Lee90]. This information will be helpful in examining the results in section VI.

4.4.3 Outage Probability Calculation Using PWL Fit

The outage probability associated with a given capacity value co can be evaluated by using the

PWL fit of the capacity to estimate the SNR value γo needed to achieve co, and then using (4.11)

to determine the probability that the actual SNR will be less than γo. The slope and intercept

values can be found in Table 4.1 according to the modulation type. From these values γo can be

estimated

γo ∼= (co−bk)/mk (4.14)
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where the value of k is such that ck−1 < co ≤ ck. Using (4.7) and (4.14) the outage probability

for an N antenna system with MRC combining can be estimated from

Pout(co) = Fγmrc,N (γo)

∼= Fγmrc,N ((co−bk)/mk) (4.15)

= 1− e−(co−bk)/βk
N−1

∑
n=0

(co−βk)n

n!βn
k

where βk = 2σ2
gmkγ.

4.4.4 Ergodic Capacity Calculation Using PWL Fit

Since C is a monotonic function of γrx the PDF of C over a Rayleigh channel with MRC antenna

combining can be obtained from

fC(c) =
fmrc,N(γrx)∣∣ dC

dγrx

∣∣

∣∣∣∣∣
γrx=C−1(c)

. (4.16)

For the constrained capacity case the derivative can be evaluated using (4.4), but this does

not simplify the evaluation of (4.5) since the resulting expression for the derivative will still

contain an integral over the complex plane and a double sum. Also, it is not apparent how the

inverse γrx = C−1(c) can be obtained from (4.4). Using the piecewise linear fit (4.8), these two

quantities can be approximated. For ck−1 < c≤ ck

∣∣∣ dC
dγrx

∣∣∣ ∼= mk (4.17)

and

γrx = C−1(c)∼= c−bk

mk
. (4.18)
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Using (4.17) and (4.18) the PDF of (4.16) can be approximated for ck−1 < c≤ ck as

fC(c) ∼= fC,N,k(c)

.=
(c−bk)N−1

(βk)NΓ(N)
e
− c−bk

βk . (4.19)

Using (4.19) in (4.5) results in a readily integrable expression. The PWL fit was made to γrx

in order to take advantage of the well-known PDF of the SNR of the output of N-MRC combined

antennas for a Rayleigh channel and to create an approximation for fC(·) that facilitates the

evaluation of (4.5). From (4.5) and (4.19) the ergodic capacity of a Rayleigh channel with N

MRC combined antennas can be approximated as

E[C(γ)] ∼=
(

K−1

∑
k=1

Z ck

ck−1

c fC,N,k(c) dc

)

+(1−Fγmrc,N (γ̃max))cmax

=

(
K−1

∑
k=1

Z ck

ck−1

c
(c−bk)N−1

βN
k Γ(N)

e
− c−bk

βk dc

)

+(1−Fγmrc,N (γ̃max))cmax (4.20)

where c0 = 0, cK−1 = cmax, K is the number of segments in the PWL fit and γ̃max is an ap-

proximation to γmax the SNR needed to achieve cmax, i.e. γ̃max = (cmax− bK−1)/mK−1. The

(1−Fγrx(γ̃max))cmax term accounts for a possible probability mass in the capacity PDF at c =

cmax due to the received SNR exceeding that required to achieve cmax. With an M-ary modula-

tion cmax = log2(M). The integral can be readily evaluated for various values of N through the

use of the identity

Z b

a
xne−x dx = −xnex

∣∣∣
x=b

x=a
+n

Z b

a
xn−1e−x dx

= −e−xn!
n

∑
i=0

xi

i!

∣∣∣∣∣
x=b

x=a

(4.21)
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giving

E[C(γ)]∼= (4.22)
K−1

∑
k=1

φk(N) + cmaxe−γ̃max/(2γσ2
g)

N−1

∑
n=0

γ̃n
max

n!(2γσ2
g)n

where

φk(N) =

e−x

[
βk

Γ(N)
xN +(Nβk +bk)

N−1

∑
n=0

xn

n!

]∣∣∣∣∣
x=

ck−1−bk
βk

x= ck−bk
βk

.

Table 4.2 provides the evaluation of (4.22) for 1≤ N ≤ 4.

Equations (4.15) and (4.22) can be evaluated for BPSK, QPSK, 8PSK and 16QAM using

the coefficients of Table 4.1. These equations are also applicable to the evaluation of ergodic

Shannon capacity with the use of a PWL fit of (4.3) over the range of SNR values of interest.

4.5 Interference Dominated Links

In wireless communication networks the presence of co-channel interference (CCI) will dimin-

ish link capacity. In this section the proposed method will be extended to determine the outage

probability and constrained capacity of a CCI limited link in a Rayleigh channel.

An interference limited link over a Rayleigh channel with L co-channel interferers each

of power P and N ≤ L optimally combined (OC) receiver antenna elements was examined in

[SH98], and the MRC case was developed in [SH00]. As pointed out in [SH98], although the

equal power interferers model is not as realistic as an exponential decay model its use lends

itself to analysis and allows the development of closed form expressions. If P = maxk≤L(Pk)

(P = mink≤L(Pk)), where Pk is the power of the k th interfering signal, then the results using

this model will provide a lower (upper) bound for the performance of the link. The following
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N E[C]

1 ∑K−1
k=1 e−x[βk(x+1)+bk]

∣∣∣
x=

ck−1−bk
βk

x= ck−bk
βk

+e
− γ̃max

2γσ2g cmax

2 ∑K−1
k=1 e−x[βkx2 +(2βk +bk)(x+1)]

∣∣∣
x=

ck−1−bk
βk

x= ck−bk
βk

+e
− γ̃max

2γσ2g ( γ̃max
2γσ2

g
+1)cmax

3 ∑K−1
k=1 e−x[βk

2 x3 +(3βk +bk)(1
2x2 + x+1)]

∣∣∣
x=

ck−1−bk
βk

x= ck−bk
βk

+e
− γ̃max

2γσ2g (1
2( γ̃max

2γσ2
g
)2 + γ̃max

2γσ2
g
+1)cmax

4 ∑K−1
k=1 e−x[βk

6 x4 +(4βk +bk)(1
6x3 + 1

2x2 + x+1)]
∣∣∣
x=

ck−1−bk
βk

x= ck−bk
βk

+e
− γ̃max

2γσ2g (1
6( γ̃max

2γσ2
g
)3 + 1

2( γ̃max
2γσ2

g
)2 + γ̃max

2γσ2
g
+1)cmax

Table 4.2: Evaluations of (4.20) for N = 1, 2, 3 and 4 based on a PWL fit to the capacity as a
function of received SNR.

development deals with links that are CCI limited and so, to simplify analysis, the effect of

thermal noise is assumed to be negligible and is ignored. The received signal y through the

channel is modeled as

y =
√

Ps g0 x0 +
√

P
L

∑
k=1

gk xk (4.23)

where x0 and xk are the desired and the k th interfering signals, respectively. The power of

the desired signal is Ps and the power of each of the cochannel interferers is P. The complex

vectors g0 and gk, k = 1, ...,L, are independently identically distributed, with elements that have

magnitudes which are Rayleigh distributed according to (4.2).

When N > L there are sufficient degrees of freedom (DOF) to reject the interferers resulting,

effectively, in a noise limited Rayleigh channel and the method of the previous section can be

applied, taking into account the reduction in DOF after the interference cancelation to N−L−1.

In this section, as noted above, the link is assumed to be CCI limited which implies that the
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number of antenna elements N and the number of cochannel interferers L are related by L≥ N.

4.5.1 PDF and CDF of the SIR With OC and MRC

The PDF of the signal-to-interference ratio (SIR), µ, of such a CCI limited link with OC com-

bining is [SH98]

foc,µ(µ) =
Γ(L+1)

Γ(N)Γ(L−N +1)
ρL−N+1

· µN−1

(ρ+µ)L+1 , ∀ µ≥ 0, 1≤ N ≤ L, (4.24)

where N is the number of antennas combined, L is the number of equal power co-channel

interferers and ρ = Ps/P.

The associated CDF is [SH98]

Foc,µ(µ) =
Γ(L+1)

Γ(N +1)Γ(L−N +1)

(µ
ρ

)N

·2F1(L+1,N;N +1;−µ/ρ) (4.25)

where 2F1 (a,b;c;x) is the hypergeometric function as defined in [GR65, eqn. 9.100]. If the

hypergeometric function is available by a given software package, then (4.25) can be used. If

not then the following, developed in this work, can be used in evaluating the outage probability

Foc,µ(µ) = 1− Γ(L+1)ρL−N+1

µ(ρ+µ)L

·
N−1

∑
k=0

ρkµN−k

Γ(N− k)Γ(L−N + k +2)
. (4.26)

The PDF of the SIR of such a CCI limited link with MRC is [SH00]

fmrc,µ(µ) =
Γ(L+N)
Γ(L)Γ(N)

ρL µN−1

(ρ+µ)L+N . (4.27)
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The associated CDF is [SH00]

Fmrc,µ(µ) =
Γ(L+N)

Γ(L)Γ(N +1)

(µ
ρ

)N

·2F1(L+N,N;N +1;−µ/ρ). (4.28)

An alternate expression developed in this work is

Fmrc,µ(µ) = 1− Γ(L+N)ρL

µ(ρ+µ)L+N−1

·
N−1

∑
k=0

ρkµN−k

Γ(N− k)Γ(L+ k +1)
. (4.29)

4.5.2 Outage Probability Calculation for Interference Limited Link Using PWL

In [LH02] it was demonstrated that the interference can be represented accurately as having

a Gaussian distribution. Under this assumption the constrained capacity expression of (4.4)

as well as the PWL fits of Table 4.1 are applicable to the interference limited case with SNR

replaced by SIR.

The outage probability associated with a given capacity value co can be evaluated by using

the PWL fit of the capacity to estimate the SIR value µo needed to achieve co, and then using

(4.25) or (4.26) for the OC case and (4.28) or (4.29) for the MRC case to determine the prob-

ability that the actual SIR will be less than µo. The slope and intercept values can be found in

Table 4.1 according to the modulation type. From these values µo can be estimated

µo ∼= (co−bk)/mk (4.30)

where the value of k is such that ck−1 < co ≤ ck. Using (4.26) and (4.30) the outage probabil-

ity for an interference limited link with L equal power interferers and N optimally combined
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antennas can be estimated from

Poc,out(co) = Foc,µ(µo)

∼= Foc,µ((co−bk)/mk)

=
Γ(L+1)

Γ(N +1)Γ(L−N +1)

(
(co−bk)

mkρ

)N

·2F1

(
L+1,N;N +1;−(co−bk)

mkρ

)

= 1−Γ(L+1)ρL−N+1
(

ρ+
co−bk

mk

)−L

·
N−1

∑
k=0

ρk((co−bk)/mk)N−k−1

Γ(N− k)Γ(L−N + k +2)
. (4.31)

Following a similar development, using (4.29) and (4.30) the outage probability for the

MRC case can be estimated from

Pmrc,out(co) = Fmrc,µ(µo)

∼= Fmrc,µ((co−bk)/mk)

=
Γ(L+N)

Γ(L)Γ(N +1)

(
co−bk

mkρ

)N

·2F1

(
L+N,N;N +1;−co−bk

mkρ

)

= 1− Γ(L+N)ρL

(ρ+(co−bk)/mk)(L+N−1)

·
N−1

∑
k=0

ρk((co−bk)/mk)N−k−1

Γ(N− k)Γ(L+ k)
. (4.32)

4.5.3 Ergodic Capacity Calculation for Interference Limited Link Using PWL Fit

The PDF of the constrained capacity C as a function of the SIR, µ, is

fC(c) =
fµ(µ)
|dC

dµ |

∣∣∣∣
µ=C−1(c)

. (4.33)
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Using (4.17) and (4.18) the PDF of (4.33) for the OC case can be approximated for ck−1 <

c≤ ck as

fC(c) ∼= fC,k(c)

.=
Γ(L+1)

Γ(N)Γ(L−N +1)
αL−N+1

k

· (c−bk)N−1

(αk + c−bk)L+1 (4.34)

where αk = mkPs/P.

From (4.5) and (4.34) the ergodic capacity of a Rayleigh channel with L equal powered

interferers and N OC combined antenna elements is

E[Coc(ρ)] ∼=
(K−1

∑
k=1

Z ck

ck−1

c fC,k(c) dc
)

+(1−Fµ(µ̃max))cmax

=
K−1

∑
k=1

Z ck

ck−1

c
Γ(L+1)

Γ(N)Γ(L−N +1)
αL−N+1

k

· (c−bk)N−1

(αk + c−bk)L+1 dc (4.35)

+(1−Fµ(µ̃max))cmax

where c0 = 0, cK−1 = cmax, K is the number of segments in the PWL fit and µ̃max is an ap-

proximation to µmax the SIR needed to achieve cmax, i.e. µ̃max = (cmax − bK−1)/mK−1. The

(1−Fµ(µ̃max))cmax term accounts for a possible probability mass in the capacity PDF at cmax

due to the SIR exceeding that required to achieve cmax. The integral can be readily evaluated

for various values of L and N through the use of the identity [GR65, eqn. 2.111.2]

Z xn

(a+bx)m dx =
−xn

(a+bx)m−1(m−n−1)b

+
na

(m−n−1)b

Z xn−1

(a+bx)m dx (4.36)

=
−Γ(n+1)xn

(a+bx)m−1

n

∑
i=0

Γ(m−n−1)x−i

Γ(n− i+1)Γ(m−n+ i)
ai

bi+1
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giving, for L > N,

E[Coc(ρ)]∼=
K−1

∑
k=1

ϕk(N,L)+ cmax
Γ(L+1)ρL−N+1

µ̃max(ρ+ µ̃max)L (4.37)

·
N−1

∑
k=0

ρkµ̃N−k
max

Γ(N− k)Γ(L−N + k +2)

where

ϕk(N,L) =

Γ(L+1)
vNαL−N+1

k
(αk + v)L

[
1

(L−N)Γ(N)

· 1
Γ(L−N +1)

+
( N

L−N
+

bk

αk

)

·
( N

∑
i=1

αi
kv−i

Γ(N− i+1)Γ(L−N + i+1)

)]∣∣∣∣∣
v=ck−1−bk

v=ck−bk

(4.38)

The case for L = N has been derived in a similar fashion through the use of an alternate form

of (4.36), given in [GR65, eqn. 2.111.3], but is omitted here.

Following a similar development, the ergodic capacity of a Rayleigh channel with L equal

power interferers and N MRC combined antenna elements is, for L≥ N

E[Cmrc(ρ)]∼=
K−1

∑
k=1

ψk(N,L)+ cmax
Γ(L+N)ρL

µ̃max(ρ+ µ̃max)L+N−1

·
N−1

∑
k=0

ρkµ̃N−k
max

Γ(N− k)Γ(L+ k +1)
(4.39)
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where

ψk(N,L) =

Γ(L+N)
vNαL

k
(αk + v)L+N−1

[
1

(L−1)Γ(L)Γ(N)

+
( N

L−1
+

bk

αk

)

·
( N

∑
i=1

αi
kv−i

Γ(N− i+1)Γ(L+ i)

)]∣∣∣∣∣
v=ck−1−bk

v=ck−bk

. (4.40)

Equations (4.31), (4.32), (4.37), and (4.39) can be evaluated for BPSK, QPSK, 8PSK and

16QAM using the coefficients of Table 4.1. These equations are also applicable to the evaluation

of ergodic Shannon capacity with the use of a PWL fit of (4.3) over the range of SIR values of

interest.

4.6 Results

Figure 4.2 shows the match between ergodic capacity values obtained from the proposed ex-

pression (4.22) as evaluated in Table 4.2 and from Monte Carlo simulations for BPSK, QPSK,

8PSK, 16QAM and Gaussian (i.e. the Shannon case) alphabets for N = 1, 2 and 4 antennas.

The transmitted power was divided by N in order to study the diversity gains as a function of

N in isolation from aperture gains. The match is within 0.01 bits/s/Hz at any SNR, and within

0.15 dB at any capacity value between 0.2 and 0.99cmax bits/s/Hz across all modulations types

and values of N. As expected based on [Lee90] and the comments following (4.13), there is

a decreasing marginal increase in ergodic capacity with the addition of antennas as the ECC

approaches the AWGN constrained capacity.

Figure 4.3 shows the outage probability values, Pout , obtained from the proposed expression

(4.15) and from Monte Carlo simulations for BPSK, QPSK, 8PSK, 16QAM and Gaussian input

alphabets for N = 1, 2, 3, 4 and 100 antennas at an SNR of 15 dB. At a given outage probability

value, the estimate from the proposed expression agrees within the error of the PWL fit, 0.01
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Figure 4.2: Ergodic constrained capacity for BPSK, QPSK, 8PSK and 16QAM in Rayleigh
channel for single antenna and for MRC combining with two and four antennas comparing
values from the proposed expression and values from Monte Carlo simulations.

bits/s/Hz in this example, of the results from Monte Carlo simulations and numerical meth-

ods. As N → ∞ the outage probability approaches a step function at the constrained capacity

associated with the average SNR γ as anticipated from the comments following (4.13).

Figure 4.4 shows the outage constrained capacity, Cout,P(γ), for 16QAM associated with

P = 0.10% and P = 10% outage rates with MRC antenna combining for N = 1, 2, 3 and 4. These

values were determined by using (4.15) to generate outage probability curves for several average

SNR values and then determining from each of those curves the capacity value associated with

the desired outage percentage.

For the interference dominated case, ergodic capacity values were obtained using the pro-

posed expressions (4.37) and (4.39) for OC and MRC combining, respectively, and by Monte

Carlo simulations for QPSK, 8PSK, 16QAM and Gaussian (i.e. Shannon) modulations with

values of 1≤ N ≤ 7 antennas and N +1≤ L ≤ 8 equal power interferers. The results from the

proposed expressions matched the Monte Carlo results within 0.01 bits/s/Hz at any Ps/P ratio,

and within 0.4 dB of Ps/P at any capacity value between 0.2 and 0.99cmax bits/s/Hz. Figure

74



0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cap. (bits/sec/Hz)

P
ro

b.
 (

C
ap

 <
 a

bs
ci

ss
a)

Monte Carlo
Proposed Method

16QAM

BPSK QPSK 8PSK

Shannon

N= 4

N= 1

N= 2

N= 3

N= 100

Figure 4.3: Outage probabilities for BPSK, QPSK, 8PSK and 16QAM constrained capacities
and also Shannon capacity (Gaussian-distributed input) in Rayleigh channel with N= 1, 2, 3,
4, and 100 MRC-combined receive antennas obtained from the proposed expression and from
Monte Carlo simulations (100 million trials). The average SNR, γ, out of the combiner was 15
dB in all cases.

4.5 shows the ergodic capacity values obtained from the proposed expressions and from Monte

Carlo simulations for 16QAM with L = 8 interferers and N = 1, 3 and 6 antennas.

Figure 4.6 shows the outage probability values, Pout , obtained from the proposed expres-

sions (4.31) and (4.32) for OC and MRC, respectively, and from Monte Carlo simulations for

QPSK, 16QAM and Gaussian input alphabets for N = 2 and 4 antennas and L = 6 equal power

interferers with Ps/P = 20 dB. At a given outage probability value, the estimate from the pro-

posed expression agrees within the error of the PWL fit, 0.01 bits/s/Hz in this example, of the

results from Monte Carlo simulations and numerical methods. This type of data can be useful

to a system designer in determining channel reuse factors, the number of antennas required and

whether the extra expense of implementing OC instead of MRC is merited.
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Figure 4.4: Outage capacity for 0.10% and 10% outages with 16QAM in Rayleigh channel with
N= 1, 2, 3, and 4 MRC-combined receive antennas obtained from the proposed expression.

4.7 Conclusion

This chapter presented a new method to quickly and accurately estimate the ergodic capac-

ity, outage probabilities, and outage capacity of a Rayleigh channel, with and without antenna

combining, for links constrained to a finite alphabet, without resorting to lengthy Monte Carlo

simulations or numerical integration. Both the noise limited case and the interference limited

case were considered. This new method was shown to match well with Monte Carlo simulation

results and with Wong’s results for BPSK and QPSK. The method was shown to be applicable

to ergodic Shannon capacity and outage probability calculations as well. The method for the

interference limited case can serve as an analysis tool for a cellular system designer.

The proposed method is applicable to any QAM modulation once the parameters of the

PWL fit of (4.4) are obtained via some method such as that of [Tom74]. For BPSK, QPSK,

8PSK and 16QAM, Table 4.1 provides the required parameter values.

The proposed method readily lends itself to the evaluation of the ergodic constrained ca-

pacity and outage probabilities for other channel types, e.g. MIMO systems with transmit-
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beamforming and MRC combining at the receiver over Rayleigh channels [MA05], by replac-

ing the PDF and CDF of the SNR at the receiver in (4.10) and (4.11), respectively, with the

appropriate expressions for the channel of interest. In addition, the PWL fit (4.8) of the con-

strained capacity and associated coefficients of Table 4.1 could be used in forming the objective

function for a cellular system’s power control algorithm similar to that in [QC99]. The appli-

cation of the proposed method to other channel types and the use of (4.8) in a power control

algorithm are two areas of possible future work.
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CHAPTER 5

Estimation of Constrained Capacity and Outage Probability

of QAM Modulations in Log-Normal Channels

Contributions:

• Developed a simple but accurate method for calculating both 1) the ergodic Shannon

capacity and 2) the ergodic constrained capacity of practical signals for log-normal chan-

nels.

• Introduced a new technique for estimating the outage probability of log-normal channels.

• To date, the ergodic constrained capacity and outage probability of practical signals for

log-normal channels had not been dealt with in the literature.

5.1 Introduction

The log-normal distribution is often used in wireless communications to model mid-scale fad-

ing caused by shadowing in outdoor environments. It has also been applied more recently to

describe small-scale fading of indoor ultra-wideband channels. Formulas for estimating the

ergodic Shannon capacity of a log-normal (LN) channel have been recently presented in the

literature [LSA07, HCH09]. In these analyses the Shannon capacity assumes a continuously

valued input signal with infinite support and Gaussian distribution. In practical communications

systems, the input signal is constrained to a discrete signalling set such as finite-size quadra-

ture amplitude modulation (QAM) constellations. At high SNRs the Shannon capacity greatly

over-estimates the capacity of these systems, particularly for low order constellations. For this
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reason a method is needed to evaluate the ergodic capacity and outage probability for the LN

channel when the signal set is constrained to a finite alphabet. This chapter proposes such a

method.

Ergodic capacity and outage probability are important performance measures of communi-

cation systems in fading channels. For fast fading channels, for which the range of channel fades

are experienced during the time period covered by a practical interleaver, the ergodic capacity

determines the rate at which data can be sent error free. For slow fading channels, in which it is

impractical to interleave over a time interval long enough to cover the range of channel fades,

the ergodic capacity provides the average rate at which data can be transmitted error free using

adaptive coded modulation (ACM) in which the coding rate and/or modulation order is adjusted

in accordance with the channel conditions. The ergodic capacity also is used in determining the

area spectral efficiency for mobile cellular systems [AG99]. The outage probability provides

the percentage of the time the link will be unable to transmit error free at a given data rate, a

particularly useful measure for slow fading channels.

This chapter is organized as follows, section 5.2 gives the details of the channel model and

provides the Shannon and constrained capacity formulas that are to be evaluated for the LN

channel. Section 5.3 details the recent work done in determining the ergodic Shannon capacity

for LN channels. Section 5.4 describes the approach taken to develop a method applicable to the

calculation of 1) outage probabilities and 2) ergodic values, for both Shannon and constrained

capacity, of LN channels and details the proposed method. Section 5.5 provides results and

section 5.6 lists conclusions and future work.

5.2 System Model and Performance Measures

The received signal y through the channel is modeled as,

y =
√

Es αx+n (5.1)
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where Es is the average transmitted signal energy, x is the transmitted signal, α is the log-

normally distributed channel power gain, and n is additive white Gaussian noise with a variance

of N0.

The probability density function (PDF) of the channel power gain is,

f (α) =
1

α
√

2πσ2
α

e
− (ln(α)−µα)2

2σ2
α (5.2)

where µα and σ2
α are the mean and variance of ln(α). Typically the channel is normalized to

have E[α]= 1, which requires that µα =−σ2
α/2.

The Shannon capacity as a function of average SNR, γ = Es/N0, and α is,

CShan(α,γ) = λ ln(1+αγ) (5.3)

where constant λ= 1/ ln(2) (λ= 1) if the capacity is expressed in bits/s/Hz (nats/s/Hz).

The constrained capacity, with a QAM input that has a finite alphabet of M equiprobable

values is [Bac99] (see also (C.6) in appendix C)

Ccon(α,γ) = H(X)−H(X |Y,α,γ)

= λ ln(M)− λ
M

M

∑
j=1

1
πN0

Z

y∈C
e−∆2(y,x j)/N0

× ln

[
M

∑
s=1

e(∆2(y,x j)−∆2(y,xs))/N0)

]
dy (5.4)

where, xi is the complex value of input element i, ∆2(y,xi)
.= ‖ y−xi

√
αγN0 ‖2 and ‖ · ‖ 2 denotes

squared Euclidean distance. The summation is over all the elements of discrete input alphabet

X, and the integration is over all possible values of output Y, i.e., over the entire complex plane

C .
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The ergodic capacity at a specific γ is, by definition,

E[C(γ)] .=
Z ∞

0
x fC(γ)(x)dx (5.5)

where fC(γ)(·) is the PDF for the capacity at average SNR γ.

For a LN channel (5.5) can be shown to be,

E[C(γ)] =
1√

2πσ2
α

Z +∞

0

C(α,γ)
α

e
− (ln(α)−µα)2

2σ2
α dα (5.6)

where C = CShan (C = Ccon) to determine the ergodic Shannon (constrained) capacity.

Given a desired capacity value, co, there is a non-zero probability at any point in time that

the gain, α, of the LN channel will be large enough to allow co to be achieved. The outage

probability Pout is defined as the probability that the capacity, c, of the channel at a particular

point in time will be less than co due to a channel fade. The outage probability as a function of

desired capacity co is,

Pout(co)
.= P(c≤ co) = P(γrx ≤ γo)

.= Fγrx(γo) (5.7)

where γo is the received SNR required to achieve a capacity of co, γrx = αγ is the received SNR,

and Fγrx(·) is its cumulative distribution function (CDF).

A performance metric related to the outage probability is the outage capacity, Cout,P(γ),

which gives the capacity value available with an outage probability of P as a function of the

average SNR γ.

In wireless communications it is convenient to express the standard deviation of the channel

gain in dB. Define parameters (µy,σy) to characterize the LN distribution, where σy = κσα

(µy = κµα) is the standard deviation (average value) in dB of the channel power gain and κ =

10/ ln(10). Typical values for σy are, 6 to 12 dB for medium-scale fading, 3 to 5 dB for single-

input single-output indoor ultra-wideband (UWB) channels and 1 to 4 dB for multiple-input

multiple-output indoor UWB channels (see [HCH09] and references therein).
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5.3 State of the Art

Upper and lower bounds for (5.6) were derived in [AG99] for Shannon capacity. As mentioned

in [AG99] and quantified in [LSA07] these bounds are loose for low SNR values, e.g. at a SNR

of 7 dB the upper bound is off by 3 dB and the lower bound is off by 1 dB. The bounds become

looser as the SNR is decreased.

In [LSA07] Laourine developed an accurate approximation of (5.6) for the Shannon capac-

ity,

E[C] ∼= 1
2

e
− γ̂2

dB
2σ2y

K

∑
k=1

ak

[
erfcx

(
kσy√

2 κ
+

γ̂dB√
2 σy

)

+ erfcx
(

kσy√
2κ
− γ̂dB√

2 σy

)]
(5.8)

+
σy√
2π κ

e
− γ̂ 2

dB
2σ2y +

γ̂dB

2κ
erfc

(
− γ̂dB√

2 σy

)

where γ̂dB = γdB +µy, γdB = κ ln(γ), erfcx(x) .= ex2
erfc(x), and the coefficients ak are from Hast-

ing’s polynomial approximation of ln(1 + x) = ∑i=K
k=1 akxk for 0≤ x ≤ 1. These coefficients are

given in [AS72, (4.1.43-44)] for K=5 and K=8. In [LSA09] Laourine developed an additional

formula that provides a generic solution for computing all the moments of the Shannon capac-

ity for a LN channel. However, at a given complexity, this formula is not as precise as (5.8) in

computing the first moment.

Héliot’s work led to the following accurate closed form approximation of (5.6) for Shannon

capacity [HCH09],

E[C] ∼= λ
[

γ̂dB

2κ
+ ln

(
2cosh

( γ̂dB

2κ

))]

+λφ
(

σy, γ̂dB

)
(5.9)

The first term is the greatest lower bound (GLB) of the actual ergodic Shannon capacity and the

second term, φ(·), compensates for the difference between the actual ergodic capacity and the
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GLB, and is given by,

φ(σy, γ̂dB) =
η0(σy)

coshη1(σy)
(

γ̂dB
2κη2(σy)

) (5.10)

The parameters ηi were optimized via a piece-wise curve fitting method and each has the form,

ηi(σy) = βi

Ni

∑
k=1

bi,kσk
y (5.11)

The values for each βi, Ni, and bi,k are given in [HCH09].

Each of these two methods for calculating the ergodic Shannon capacity employs approxi-

mations and the use of pre-calculated coefficients. In the following section a method of similar

complexity is proposed that also uses an approximation and pre-calculated coefficients, but

which is applicable not only to Shannon capacity but to constrained capacity as well.

5.4 Proposed Method

Reminiscent of Laourine’s use of Hastings approximation and to Héliot’s use of a piece-wise

function based on curve fitting, this work will use an approximation to the capacity functions

based on piece-wise linear (PWL) curve fitting. The Shannon capacity (5.3) and the constrained

capacity (5.4) were each fit to a PWL curve as a function of γrx,dB, the received SNR in dB, using

the easily implemented method of [Tom74] in which the maximum allowable error of the fit is

specified as a parameter. The Shannon and constrained capacity functions can be approximated

by the PWL fit

C(α,γ) ∼= Cpwl(α,γ)

= mk γrx,dB +bk for ck−1 < C ≤ ck (5.12)

where mk and bk are the slope and intercept values for section k of the PWL fit, which apply to

capacity values between ck−1 and ck. Figure 5.1 (a) shows the Shannon capacity and its PWL
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Figure 5.1: Piece-wise linear fits for (a) Shannon capacity and (b) BPSK, QPSK, 8PSK, and
16QAM constrained capacities as a function of SNR in dB with a maximum error of 0.04
bits/s/Hz.

fit and Figure 5.1 (b) shows the constrained capacity curves and their PWL approximations. In

all cases the fits were made so as to have a maximum absolute error of 0.04 bits/s/Hz. Table 5.1

provides the corresponding slope and intercept values for each section of the PWL fits portrayed

in these figures. The maximum absolute error can be reduced further if desired at the expense

of the addition of more sections to the PWL fit. Conversely, the PWL fit can be made with even

fewer sections with a relaxed error limit.

The PWL fit was made using γrx,dB as the independent variable in order to facilitate the
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(a) Shannon
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20214 0.016307 0.32253
2 0.81754 0.095012 0.90353
3 2.04144 0.20398 1.0021
4 4.7012 0.29684 0.52905
5 > 4.90771 0.33210 0.00884059

(b) BPSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20807 0.016205 0.31988
2 1.0 0.069184 0.68544
3 – 0 1

(c) QPSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20348 0.016509 0.32565
2 0.83249 0.093881 0.89820
3 1.8600 0.15336 0.93984
4 2 0.027322 1.69610
5 – 0 2

(d) 8PSK
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20350 0.016511 0.32568
2 0.82407 0.094025 0.89929
3 2.75000 0.17351 0.96288
4 3 0.055022 2.18330
5 – 0 3

(e) 16QAM
i ci (bits/s/Hz) slope (mi) intercept (bi)
1 0.20353 0.016513 0.32572
2 0.81540 0.094134 0.90012
3 2.16570 0.19570 0.99153
4 3.6309 0.24019 0.72459
5 4 0.09572 2.47270
6 – 0 4

Table 5.1: Coefficients for the PWL fit for: (a) the Shannon capacity and (b)-(e) constrained
capacities for common modulations.

development of a convenient expression for the ergodic constrained capacity as will be seen

shortly. Since α is log-normal, γrx,dB = κ ln(αγ) = κ ln(α)+ γdB, is Gaussian distributed with

PDF,

fγrx,dB(x) =
1√

2πσ2
y

e−(x−γ̂dB)2/2σ2
y (5.13)

The associated CDF is,

Fγrx,dB(x) =
1
2

erfc
(
− (x− γ̂dB)

/√
2σ2

y

)
(5.14)

The outage probability associated with a given capacity value co can be evaluated by using
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the PWL fit of the capacity to estimate the SNR value γ0 needed to achieve co, and then using

(5.14) to determine the probability that actual SNR will be less than γ0. The slope and intercept

values can be found in Table 5.1 according to the modulation type. From these values γo can be

estimated,

γo ∼= (co−bk)/mk (5.15)

where the value of k is such that ck−1 < co ≤ ck. Using (5.7) and (5.15) the outage probability

can be estimated from,

Pout(co) = Fγrx,dB(γo)∼= Fγrx,dB

(
(co−bk)/mk

)
(5.16)

Since C is a monotonic function of γrx,dB the PDF of C over a LN channel can be obtained

from,

fC(c) =
fγrx,dB(γrx,dB)∣∣∣ dC

dγrx,dB

∣∣∣

∣∣∣∣∣
γrx,dB=C−1(c)

(5.17)

For the constrained capacity case the derivative could possibly be evaluated using an altered

form of (5.4), but this does not simplify the evaluation of (5.5) since the resulting expression

for the derivative will still contain an integral over the complex plane and a double sum. Also,

it is not apparent how the inverse γrx = C−1(c) can be obtained from (5.4). Using the piecewise

linear fit (5.12), these two quantities can be approximated. For ck−1 < c≤ ck,

∣∣∣∣
dC

dγrx,dB

∣∣∣∣ ∼= mk (5.18)

γrx,dB = C−1(c)∼= c−bk

mk
(5.19)
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Using (5.18) and (5.19) the PDF of (5.17) can be approximated for ck−1 < c≤ ck as,

fC(c) ∼= fC,k(c)

.=
1√

2πσ2
k

e
− (c−µk)2

2σ2
k (5.20)

where,

µk = bk +mkγ̂dB

σk = mkσy

Using (5.20) in (5.5) results in a readily evaluable expression. The PWL fit was made to

γrx,dB in order to take advantage of the Gaussian distribution of the received SNR as measured

in dB and thus to create an approximation for fC(·) that facilitates the evaluation of (5.5). From

(5.5) and (5.20) the ergodic capacity of a LN channel can be approximated as,

E[C] ∼=
K−1

∑
k=1

[Z ck

ck−1

c fC,k(c)dc
]

+
(
1−Fγrx,dB(γ̃max)

)
cmax

=
K−1

∑
k=1

[
σk√
2π

(
e
− (ck−1−µk)2

2σ2
k − e

− (ck−µk)2

2σ2
k

)

+
µk

2

(
erfc

(ck−1−µk√
2 σk

)
− erfc

(ck−µk√
2 σk

))]

+
1
2

erfc
(

cmax−µK−1√
2 σK−1

)
cmax (5.21)

where c0 = 0, cmax is the maximum achievable capacity, K is the number of segments in

the PWL fit, and γ̃max,dB is an approximation to γmax,dB the SNR needed to achieve cmax, i.e.

γ̃max,dB = (cmax− bK−1)/mK−1. The (1−Fγrx,dB(γ̃max))cmax term accounts for a possible prob-

ability mass in the capacity PDF due to the received SNR exceeding that required to achieve
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cmax. With an M-ary modulation cmax = log2(M). For the Shannon case there is no probability

mass at any value of c and so the probability mass term is ignored and the sum is taken over all

K terms of the PWL fit instead.

Equations (5.16) and (5.21) provide a uniform computation of both Shannon and constrained

capacity outage probabilities and ergodic capacities. These equations can be evaluated using the

coefficients of Table 5.1 (a) for the Shannon case and the coefficients of Table 5.1 (b)-(e) for

BPSK, QPSK, 8PSK and 16QAM constellations.

The outage probability and ergodic capacity estimation method described above can be ex-

panded to the situation in which N antennas are combined via maximal ratio combing (MRC)

by using the log-normal approximation, which states that the sum of LN random variables can

be well approximated by another log-normal random variable (see [HCH09] and [LSA09] and

the references therein). The SNR values of each branch of the MRC combiner have a log-

normal distribution. The SNR of the output of the MRC combiner is the sum of the SNR’s

of the individual branches, and thus has a distribution that is well represented by a log-normal

distribution.

The parameters for this log-normal distribution can be estimated by the Fenton-Wilkinson

(F-W) moment-matching method for low to moderate values of σy (4 dB or less [AG99]) as

described in [LSA09]. For large values of σy the method in [MWM07] can be used. For the

combination of N branches, where ln(αi) of branch i has standard deviation σi, and a correlation

coefficient with ln(α j) of branch j given by ρi, j, the F-W estimates of µmrc and σmrc of the

effective log-normal channel are

µmrc = −σ2
MRC/2

σ2
MRC = ln

(
1

N2

N

∑
i, j=1

exp
(
ρi, j σiσ j

))
. (5.22)

These values for µmrc and σMRC can then be used in conjunction with (5.16) and (5.21) to find

the outage probabilities and ergodic capacities of a LN channel with the MRC combining of N

antennas.
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The proposed outage probability and ergodic capacity estimation method also can be ex-

panded to the interference dominated situation as well. As explained in [AG99] the signal-to-

interference ratio (SIR) of an interference dominated LN channel has a LN distribution. The

parameters for the LN distribution of the SIR can be found using the F-W method and (5.16)

and (5.21) applied to find the outage probabilities and ergodic capacities of the interference

dominated LN channel. The ergodic capacities of the interference dominated channel can in

turn be used to calculate the area spectral efficiency of a cellular mobile radio system.

5.5 Results

As seen in Fig. 5.2 the proposed expression closely matches Laourine’s method, Héliot’s

method and Monte Carlo results. The match between the proposed method’s results and those

of the previously published methods and of the Monte Carlo simulations is within 0.03 bits/s/Hz

at any SNR, and within 0.4 dB at any capacity value > 0.2 bits/s/Hz across all values of σy.

With BPSK, QPSK, 8PSK and 16QAM modulations the match between results from the

proposed method and Monte Carlo simulations was within 0.03 bits/s/Hz at any SNR, and

within 0.4 dB at any capacity value between 0.2 and 0.99cmax bits/s/Hz with values of σy of 2,

6, 9 and 12 dB. Fig. 5.3 shows the results for QPSK and 16QAM.

Figure 5.4 shows the outage probability values, Pout , obtained from the proposed expression

(5.16) and from Monte Carlo simulations for BPSK, QPSK, 8PSK, 16QAM and Gaussian (i.e.

the Shannon case) input alphabets. At a given outage probability value, the estimate from the

proposed expression agrees within the error of the PWL fit, 0.04 bits/s/Hz in this example, of

the results from Monte Carlo simulations and numerical methods.

Using the approach described in the previous section for the antenna combining case, the

proposed method was applied to evaluate the ergodic Shannon capacity and ergodic constrained

capacity for a 16QAM transmission in a log-normal channel with the MRC combining of N=

1, 2 and 8 antennas. The correlation model used was exponential, i.e. ρi j = ρ|i− j| with 0≤ ρ≤
1. Figure 5.5 shows that the proposed method agrees very well with Monte Carlo simulation
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Figure 5.2: Ergodic Shannon capacity obtained by 1) Laourine’s method (K=5), 2) Héliot’s
method 3) the proposed method (K=5) and 4) Monte Carlo simulations in log-normal channels
of various σy values.

results. In generating the data for this figure a value of σy= 3 dB was used for the N=1 case,

whereas for N= 2 and 8, half the channels used σy = 3 dB and the other half used σy = 4 dB.

The proposed expression was within 0.4 dB of the Monte Carlo results at any capacity value

between 0.2 and 0.99cmax bits/s/Hz for N= 1, 2, and 8 for 0 ≤ ρ ≤ 1. When the values for σy

were increased from 3 and 4 dB to 5 and 6 dB, the error margin for N= 2 and 8 increased to 0.8

dB, due to the inaccuracy of the Fenton-Wilkinson method for large values of σy. The diversity

gain can be obtained by comparing the ρ= 0 and ρ= 1 cases. For the situation considered, it

was found to be 0.5 dB (0.75 dB) for N= 2 antennas and 1.1 dB (1.5 dB) for N= 8 antennas for

ergodic Shannon (16QAM constrained) capacity at 3 b/s/Hz.

Figure 5.6 shows the outage constrained capacity, Cout,P(γ), for 16QAM, QPSK and Shan-

non associated with P = 0.01% and P = 10% outage rates with MRC antenna combining for

N = 1 and 2 for a LN channel with σy= 5 dB. The SNR was normalized by the number of anten-

nas in order to remove the aperture gain so that the effect of the diversity gain could be clearly

seen. These values were determined by using (5.16) to generate outage probability curves for

several average SNR values and then determining from each of those curves the capacity value

associated with the desired outage percentage.
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various σy values.

5.6 Conclusion

This chapter presented an innovative method to quickly and accurately estimate the ergodic

capacity and outage probability of a log-normal channel for practical communication systems

constrained to a finite alphabet, without resorting to lengthy Monte Carlo simulations or nu-

merical integration. This new method is similar to two previously published methods that dealt

solely with Shannon capacity in that it relies on pre-computed coefficients and the summation

of a small number of terms. The new method has the advantage over the previous methods of

also being applicable to the calculation of outage probabilities and ergodic constrained capaci-

ties for practical communication systems. In this chapter pre-computed coefficients have been

provided for Shannon capacity and for the constrained capacities of BPSK, QPSK, 8PSK and

16QAM. This new method was shown to match well with Monte Carlo simulation results and

with the two formerly published Shannon capacity methods.

The proposed method is applicable to any QAM modulation once the parameters of the

PWL fit of (5.4) are obtained via some method such as that of [Tom74]. For BPSK, QPSK,

8PSK and 16QAM modulations the coefficients of Table 5.1 can be used.

This method also facilitates the evaluation of ergodic constrained capacities for other chan-

92



0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cap. (bits/s/Hz)

P
ro

b.
 (

C
ap

. <
 a

bs
ci

ss
a)

Monte Carlo
Proposed Method

σ
y
=  

9 dB

σ
y
=  6 dB

Shannon

16QAM8PSKQPSK
BPSK

Figure 5.4: Outage probabilities for BPSK, QPSK, 8PSK and 16QAM constrained capacities
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cases.

nel types, e.g. Nakagami channel. In addition, the PWL fit (5.12) of the constrained capacity

and associated coefficients of Table 5.1 could be used in forming the objective function for a

cellular system’s power control algorithm. The usage of the highly accurate approximation to

the constrained capacity (5.12) in place of a somewhat loose bound (± 1 dB) on the bit error rate

used in [QC99] may yield a more optimized power distribution and a higher system throughput.

The application of the proposed method to other channel types and the use of (5.12) in a power

control algorithm are two areas of possible future work.
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APPENDIX A

Multiple Phase Screen Model

A.1 Generation of Phase Screens

In brief, each phase screen is generated randomly according to the following process:

1. The phase at each (nx,ny) of the NxN grid is generated independently according to a

Gaussian distribution of zero mean and unit variance. This generation is assumed to take

place in the frequency domain, resulting in a NxN grid of values Φ1( fx, fy).

2. The resulting values are then spectrally shaped according to the desired spectrum of index

of refraction irregularities Ψ( fx, fy) in order to introduce the same phase correlation that

is observed in the troposphere. This is done in the frequency domain by multiplying each

Φ1( fx, fy) value by
√

Ψ( fx, fy) producing Φ2( fx, fy).

3. The spectrally shaped values Φ2( fx, fy) are then scaled appropriately so that the phase

difference between any two grid points (nx,1,ny,1) and (nx,2,ny,2) has the same statistical

average as that of the phase difference between the two corresponding points of a plane

E-M wave that has propagated a distance ∆z in the z direction through a random medium

with turbulence strength C2
n(z). This produces Φ3( fx, fy).

4. The scaled and spectrally shaped grid of values Φ3( fx, fy) is inverse Fourier transformed

and the real (or imaginary) components taken in order to generate the spatial-domain

values for the random phase screen φps(nx,ny).

The resulting phase screen has the same spatial correlation and statistical properties as the phase

differences between the corresponding points of a E-M plane wave that has propagated a dis-

95



tance ∆z through an isotropic, homogeneous medium of turbulence strength C2
n(z). The Gaus-

sian assumption is based on the central limit theorem. The delay, t(|z1− z0|,x0,y0),of an E-M

wave along a path in the z-direction from (z0,x0,y0) to (z1,x0,y0), scaled by that through a

vacuum, is given by

t(|z1− z0|,x0,y0) =
Z z0

z1

n(z,x0,y0)dz

The variable of interest is the difference in phase across the wavefront, which is what the val-

ues of the phase screen represent. This is directly proportional to the difference in the delay,

4t(|z1−z0|, |x1−x0|, |y1−y0|), along two paths in the z-direction (z,x0,y0) and (z,x1,y1) which

is given by

4t(|z1− z0|, |x1− x0|, |y1− y0| =
Z z0

z1

n(z,x1,y1)dz−
Z z0

z1

n(z,x0,y0)dz

=
Z z0

z1

n(z,x1,y1)−n(z,x0,y0)dz

The difference in delay is an infinite sum (integral) of the random index of refraction, which

is independent for sufficient separation distances. Consequently the central limit theorem ap-

plies, and the difference in delay, and thus phase, can be well represented by a Gaussian random

variable. This assumption is supported by the material in [Whe03, ch. 10.1].

A.2 Propagation Between Screens

It can be shown [Goo05, sec. 3.10] that if U(x,y,z0) is the field at (x,y,z0) and A( fx, fy;z0) is

its Fourier transform with respect to (x,y) in the plane z = z0, then A( fx, fy;z0) represents the

spectrum of plane waves propagating at wave vector~k, where,

~k =
2π
λ

(αâx +βây + γâz)
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where,

α = λ fx

β = λ fy

γ =
√

1− (λ fx)2− (λ fy)2

It can also be shown that at some further point z, in the direction of propagation, the angular

spectrum can be expressed in terms of the angular spectrum at z0.

A( fx, fy;z1) = A
(α

λ
,
β
λ

;z1

)

= A
(α

λ
,
β
λ

;z0

)
exp

(
jµ

∣∣z1− z0
∣∣)

=





A
(

α
λ , β

λ ;z0

)
exp

(
j 2π

λ

√
1−α2−β2

∣∣∣z1− z0

∣∣∣
)

for α2 +β2 < 1

0 for α2 +β2 ≥ 1

= A
(α

λ
,
β
λ

;z0

)
exp

(
j
2π
λ

√
1−α2−β2

∣∣z1− z0
∣∣
)

circ
(√

α2 +β2
)

Since,

U(x,y;z1) = F −1
(

A
(α

λ
,
β
λ

;z1

))
(A.1)

We have,

U(x,y, ;z1) = F −1
(

A
(α

λ
,
β
λ

;z1

))

=
Z Z +∞

−∞
A
(α

λ
,
β
λ

;z1

)
exp

(
j2π

(α
λ

x+
α
λ

y
))

d
α
λ

d
β
λ

=
Z Z +∞

−∞
A
(α

λ
,
β
λ

;z0

)
exp

(
j
2π
λ

√
1−α2−β2

∣∣∣z1− z0

∣∣∣
)
·

circ
(√

α2 +β2
)

exp( j2π(
α
λ

x+
α
λ

y))d
α
λ

d
β
λ

= F −1
(

A
(α

λ
,
β
λ

;z0

)
exp

(
j
2π
λ

√
1−α2−β2

∣∣∣z1− z0

∣∣∣
)

circ
(√

α2 +β2
))
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Since multiplication in the spatial frequency domain is like convolution in the spatial domain

we see that the wave propagation phenomena can be viewed as a linear filter where the spatial

frequency domain expression of the filter is

H( fX , fY ;z) =





exp
[

j2π z
λ

√
1− (λ fX)2− (λ fY )2

]
for

√
(λ fX)2 +(λ fY )2 < 1

0 for
√

(λ fX)2 +(λ fY )2 ≥ 1
(A.2)

This is the formula that the MPS model used to perform the propagation of the wave a distance

z between phase screens.
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APPENDIX B

Derivation of the Random Wave Equation and Description of

the Rytov Approximation Solution

B.1 Derivation of the Random Wave Equation

B.1.1 Maxwell’s Equations

We will derive the random wave equation, closely following Wheelon’s clearly-presented de-

velopment in [Whe01] throughout, beginning with Maxwell’s equations,

∇×E =−1
c

∂B
∂t

(B.1)

∇×H =
1
c

∂D
∂t

+
4π
c

J (B.2)

∇ ·D = 4πρe (B.3)

∇ ·B = 0 (B.4)

Where, E is the electric field, D is the displacement field, H is the magnetic field, B is the

induction field, and ρe is the net charge density.

The displacement field is related to the electric field by,
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D = ε(r, t)E (B.5)

where ε(r, t) is the permittivity of the medium at position r at time t.

The induction field is related to the magnetic field by,

B = µ(r, t)H (B.6)

where µm(r, t) is the permeability of the medium at position r at time t. In the units we will be

using µm will have a value of 1.

B.1.2 Random Wave Equation

In this section we will provide a derivation for the scalar random wave equation.

First though, let us take a look at the balance of current and charge on the transmitting

source. Taking the divergence of (B.2) gives

∇ · (∇×H) =
1
c

∂∇ ·D
∂t

+
4π
c

∇ ·J (B.7)

Using the identity, that for any vector a,

∇ · (∇×a) = 0

and (B.3), the above becomes

0 =
1
c

∂ρe

∂t
+

4π
c

∇ ·J

Thus we have,

1
c

∂ρe

∂t
+

4π
c

∇ ·J = 0 (B.8)
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This equation relates to the balance of current and charge on the transmitting antenna or

laser source, elsewhere in the transmission region one can ignore these quantities, (i.e.J = 0 and

ρe = 0). In this situation (B.3) becomes

∇ ·D = 0 (B.9)

We also know that

B = µm(r, t)H = H (B.10)

since in the units we are using µm = 1, in the earth’s atmosphere.

We decompose ε(r, t) into its average value and a small component that is a stochastic

function of position and time,

ε(r, t) = ε0(r)+4ε(r, t) (B.11)

In the lower atmosphere (e.g. troposphere) ε0(r)=1. The fluctuating component 4ε(r, t)

gives rise to electromagnetic scintillation. This is a key point.

Let us move on to the specifics of the random wave equation. To get the random wave

equation we combine Maxwell’s equation. Applying the curl operator to (B.1) and using (B.10)

gives

∇× (∇×E) = −1
c

∇× ∂H
∂t

(B.12)

= −1
c

∂∇×H
∂t

= −1
c

∂
∂t

(
1
c

∂D
∂t

+4πJ)

= − 1
c2

∂2(D)
∂t2 − 4π

c
∂J
∂t

= − 1
c2

∂2εE
∂t2 − 4π

c
∂J
∂t

(B.13)
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In the above we went from line 2 to line 3 by using (B.2).

The double curl operation can be simplified since the following holds for any vector,

∇×∇×E =−∇2E+∇(∇ ·E) (B.14)

So (B.13) becomes,

−∇2E+∇(∇ ·E) =− 1
c2

∂2εE
∂t2 − 4π

c
∂J
∂t

(B.15)

Now from (B.3) with ρe=0,

0 = ∇ ·D
= ∇ · (εE)

= E ·∇ε+ ε∇ ·E

So,

∇ ·E = −1
ε

E ·∇ε

= −E · ∇ε
ε

= −E ·∇(lnε)

Where the last step comes because ∇ lnε = 1
ε ∇ε by the chain rule.

So (B.15) becomes,

−∇2E+∇ · (−E∇(lnε)) =− 1
c2

∂2εE
∂t2 − 4π

c
∂J
∂t

(B.16)

Writing ε as ε = 1+4ε we get
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∇2E− 1
c2

∂2(1+4ε)E
∂t2 =

4π
c

∂J
∂t
−∇(E ·∇(ln(1+4ε))) (B.17)

The final term descries polarization changes induced by scattering in the random medium,

this is supposedly negligible for atmospheric propagation (Assumption number 1, which is

validated in [Whe03]], chapter 11), so that term is dropped leaving,

∇2E− 1
c2

∂2(1+4ε)E
∂t2 =

4π
c

∂J
∂t

(B.18)

The dielectric fluctuations, 4ε change slowly compared to the frequencies of interest for E,

i.e. 4ε fluctuations are in the Hz range (1-10 Hz). As a result frequency mixing that occurs in

the term 4εE are not important (Assumption number 2).This means we can consider a single

frequency at a time in (B.18), i.e. we can study J(r, t) = J(r)e(−iωt) and E(r, t) = E(r)e(−iωt)

and get the solution for a general J(r, t) and E(r, t) from the superposition of the single fre-

quency solutions.

With J(r, t) = J(r)e(−iωt) and E(r, t) = E(r)e(−iωt) (B.18) becomes,

∇2[E(r)e(iωt)]− 1
c2

∂2

∂t2 [(1+4ε)E(r)e(−iωt)] =
4π
c

∂Jre(−iωt)

∂t

e(iωt)∇2E(r)− 1
c2 E(r)

∂2

∂t2 [(1+4ε)e(−iωt)] =
−4π(iω)

c
J(r)e(−iωt)

∇2E(r)−E(r){ 1
c2 e(+iωt) ∂2

∂t2 [(1+4ε)e(−iωt)]} =
−4π(iω)

c
J(r) (B.19)

The effects of the random medium are concentrated in the second term of the right hand

side. Let us look at the second term, and eventually make an assumption that will simplify it.

∂
∂t

[(1+4ε)e(−iωt)] =
∂4ε

∂t
e(−iωt) +(1+4ε)(−iω)e(−iωt)
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and thus,

∂2

∂t2 [(1+4ε)e(−iωt)] =
∂24ε

∂t2 e(−iωt) +
∂4ε

∂t
(−iωe(−iωt))+

(−iω)[
∂4ε

∂t
e(−iωt) +(1+4ε)(−iω)e(−iωt)]

= −ω2(1+4ε)e(−iωt)−2iω
∂4ε

∂t
e(−iωt) +

∂24ε
∂t2 e(−iωt)

Using this equation the second term in (B.19) becomes,

1
c2 e(+iωt) ∂2

∂t2 [(1+4ε)e(−iωt)] = −ω2

c2 (1+4ε)−2i
ω
c2

∂4ε
∂t

+
1
c2

∂24ε
∂t2

Since, ω
c = 2π f

c = 2π
λ ≡ k, we have

1
c2 e(+iωt) ∂2

∂t2 [(1+4ε)e(−iωt)] = −k2(1+4ε)−2i
k
c

∂4ε
∂t

+
1
c2

∂24ε
∂t2 (B.20)

Now we are at the point where the physics of the situation allow us to simplify this equation.

The first derivative of with respect to time, ∂4ε
∂t , can be estimated from the wind speed v. The

wind blows the eddies, with their differing values of 4ε through space, thus causing a change

in 4ε with respect to time at a fixed spatial location. The first derivative of 4ε w.r.t. time can

be estimated as.
∂4ε(r, t)

∂t
∼= v

l
4ε

where l is the size of an eddy (1e-3 m to 100 m). The quantity v/l is just 1/4t where 4t is the

time it takes for the eddy to pass the point, r, under consideration.

So the second term on the r.h.s. of (B.20) compared to the portion of the first term involving

4ε is,
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−2ik
c

∂
∂t
4ε(r, t) vs −k24ε(r, t)

2k
c

v
l
4ε(r, t) vs k24ε(r, t)

2v
lc

vs k

Since v
c is very small and k is large we know that the second term of (B.20) is much, much

less than the portion of the first term involving4ε, and can be considered negligible in compar-

ison. The third term, involving the second time derivative of 4ε(r, t) will be even smaller, and

it is multiplied by 1/c2, making it even more negligible.

Given the above qualitative argument that the second and third terms of (B.20) will be

negligible relative to k24ε(r, t), we have

1
c2 e(+iωt) ∂2

∂t2 [(1+4ε)e(−iωt)] = −k2(1+4ε)−2i
k
c

∂4ε
∂t

+
1
c2

∂24ε
∂t2

1
c2 e(+iωt) ∂2

∂t2 [(1+4ε)e(−iωt)] ∼= −k2(1+4ε) (B.21)

where the approximation is quite good.

Plugging the above approximation into (B.19) for the second term of the r.h.s of (B.19), we

get

∇2E(r)−{ 1
c2 e(+iωt) ∂2

∂t2 [(1+4ε(r, t))e(−iωt)]}E(r) =
−4π(iω)

c
J(r)

∇2E(r)+ k2[1+4ε(r, t)]E(r) = −4πikJ(r) (B.22)

This is the vector wave equation for propagation through a random medium. The following

assumptions were made in deriving this equation:

1. No polarization changes are induced by scattering in the medium.
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2. ε changes slowly relative to E, thus frequency mixing in the product εE is negligible.

This allows us to consider one frequency at a time.

3. kε(r, t) >> 2
c

∂4ε(r,t)
∂t > 1

kc2
∂24ε(r,t)

∂t2 .

Note that in (B.22) there is no interaction between the various components Ex,Ey and Ez of E.

Thus each component of the vector E must satisfy this equation, and we can now finally write

the scalar wave equation [see also p.10 of [Whe01]].

∇2E(r)+ k2[1+4ε(r, t)]E(r) = −4πiωkJ(r) (B.23)

Where,

• E(r) is either the x,y or z component of E

• 4ε(r, t) is the random fluctuation of the dielectric constant ε from it nominal value of 1

at position r at time t.

• k = 2π
λ is the wave number of the e-m wave under consideration.

• J(r) is the x,y or z component of the current density vector J(r), depending on whether

Ex,Ey or Ez is being considered.

If we are interested in solving this equation far from the transmitter than J(r) = 0 and (B.23)

becomes,

∇2E(r)+ k2[1+4ε(r, t)]E(r) = 0 (B.24)

This is the scalar wave equation that will be used with the Rytov approximation to obtain an

expression for E(r) that can be used to generate the statistics of the amplitude and the phase of

E(r) in the random media.
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B.2 Rytov Solution to Random Wave Equation

To deal with weak scattering conditions, where ray optics-based analysis no longer holds, re-

searchers use the Rytov approximation [Whe03] [Sas94] to solve the random wave equation. In

this section we will again closely follow Wheelon’s description provided in [Whe03, p.10-21].

There are two steps to the Rytov Approximation.

1. A transformation of the electric-field strength, E, that changes the random wave equation

to one that can be solved in many interesting situations.

2. Expand the transformed field strength into a series of terms proportional to successively

higher powers of the dielectric variations. The first term, which is proportional to 4ε,

is the basic Rytov approximation, and provides a solution for E in weak scattering cases

that well match experimental results.

Restating (B.23)

∇2E(r)+ k2[1+4ε(r, t)]E(r) = −4πiωkJ(r)

This equation presents a difficulty in that the random quantity 4ε(r, t) multiplies the func-

tion E(r) we are trying to find. We would like to separate these two functions and have

4ε(r, t)appear an additional source term in B.23. Rytov’s transformation achieves this goal

as we shall below.

Let,

E(r) = E0(r)eΨ(r) (B.25)

Where,

1. E0(r) is the coherent field strength that would be measured in the absence of irregularities

(i.e. if 4ε(r, t) = 0 everywhere).

2. Ψ(r)is a surrogate function that must be discovered. It is assumed to be complex.

107



We will substitute E(r) = E0(r)eΨ(r) into the random wave equation (B.23) and see what

drops out, but first lets state the following identity which we will use in the substitution.

∇2(FG) = F∇2G+2∇F ·∇G+G∇2F (B.26)

Which comes from,

∇2(FG) .= ∇ ·∇(FG)

= ∇ · [F∇G+G∇F ]

= F∇2G+∇F ·∇G+G∇2F +∇G ·∇F

= F∇2G+2∇F ·∇G+G∇2F

Using this identity and the form E(r) = E0(r)e(Ψ) we have

∇2E(r) = ∇2[E0(r)eΨ(r)]

= E0(r)∇2eΨ(r) +2∇E0 ·∇eΨ(r) + eΨ(r)∇2E0(r)

Putting this expression for ∇2E(r) and E(r) = E0(r)eΨ(r) into (B.23) gives,

∇2E(r)+ k2[1+4ε(r, t)]E(r) =−4πk j(r)
[
E0(r)∇2eΨ(r) +2∇E0 ·∇eΨ(r) + eΨ(r)∇2E0(r)

]

+k2 [1+4ε(r, t)]E0(r)eΨ(r) =−4πik j(r)

108



Re-arranging gives,

E0(r)∇2eΨ(r) +2∇E0(r) ·∇eΨ(r) + k24ε(r, t)E0(r)eΨ(r) = (B.27)

−4πik j(r)− eΨ(r)∇2E0(r)− k2E0(r)eΨ(r)

Since by definition E0(r) is the solution of the wave equation without irregularities (i.e. with

4ε = 0), we know that,

∇2E0(r)+ k2E0(r) =−4πik j(r)

So the right hand side of (B.27) becomes

−4πik j(r)− eΨ(r)∇2E0(r)− k2E0(r)eΨ(r) = −4πik j(r)− eΨ(r)[∇2E0(r)+ k2E0(r)]

= −4πik j(r)[1− eΨ(r)]

And (B.27) itself becomes

E0(r)∇2eΨ(r) +2∇E0 ·∇eΨ(r) + k24ε(r, t)E0(r)eΨ(r) = 4πik j(r)
[
eΨ(r)−1

]

Or,

∇2eΨ(r) +2
1

E0(r)
∇E0(r) ·∇eΨ(r) + k24ε(r, t)eΨ(r) = 4πik j(r)

[
eΨ(r)−1

E0(r)

]

(B.28)

Since ∇ln(E0(r)) = 1
E0(r)

∇E0(r) we can write (B.28) as

∇2eΨ(r) +2∇ln(E0(r)) ·∇eΨ(r) + k24ε(r, t)eΨ(r) = 4πik j(r)

[
eΨ(r)−1

E0(r)

]

(B.29)
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Now,

∇2eΨ(r) .= ∇ ·
[
∇eΨ(r)

]

= ∇ ·
[
eΨ(r)∇Ψ(r)

]

= eΨ(r) [∇Ψ(r) ·∇Ψ(r)]+ eΨ(r)∇2Ψ(r)

= eΨ(r) [∇Ψ(r)]2 + eΨ(r)∇2Ψ(r)

With this (B.29) becomes,

[
eΨ(r)(∇Ψ(r))2 + eΨ(r)∇2Ψ(r)

]
(B.30)

+2∇ln(E0(r)) · eΨ(r)∇Ψ(r)+ k24ε(r, t)eΨ(r) = 4πik j(r)

[
eΨ(r)−1

E0(r)

]

When we are far from the transmitter j(r) = 0, so the r.h.s. become zero. Canceling eΨ(r) from

every term we get,

∇2Ψ(r)+(∇Ψ(r))2 +2∇ln(E0(r)) ·∇Ψ(r) = −k24ε(r, t) (B.31)

We have achieved the goal! The random function 4ε(r) no longer multiplies the function we

are seeking, Ψ. Instead it appears as an artificial source term (i.e. it does not multiply the

function for which we are solving).

The transmitter current density influences the solution of (B.31) through the unperturbed

field strength E0 which satisfies,

∇E0(r)+ k2E0(r) =−4πik j(r)

It will be notationally handy to represent E0 as, E0 = eψ0(r), where ψ0 is a complex-valued

function.

With this representation, the total field which travels through the medium can be written in
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exponential form as,

E(r) .= E0(r)eΨ(r) = eψ0(r)+Ψ(r)

Since,

ln(E0(r)) = ln(eψ0(r)) = ψ0(r)

(B.31) becomes

∇2Ψ(r)+(∇Ψ(r))2 +2∇ψ0(r) ·∇Ψ(r) =−k24ε(r, t) (B.32)

We see that the surrogate function Ψ must satisfy the the above non-linear partial differential

equation. In order to make a solution possible to this non-linear equation we will expand Ψ(r)

into a series of terms, each proportional to a power of the random fluctuation in the permittivity,

4ε. This is step number 2 of the Rytov approximation. Let Ψ(r) be expressed as,

Ψ(r) = ψ1(r)+ψ2(r)+ψ3(r)+ ... (B.33)

where ψn(r) is proportional to the nth power of 4ε. Substituting Ψ(r) = ∑ ∞
n=1ψ(r) into (B.32)

we get,

∇2Ψ(r)+(∇Ψ(r))2 +2∇ψ0(r) ·∇Ψ(r)+ k24ε(r, t) = 0[
∞

∑
n=1

∇2ψn(r)

]
+

[
∞

∑
n=1

∞

∑
k=1

∇ψn(r) ·∇ψk(r)

]
(B.34)

+
∞

∑
n=1

2∇ψ0(r) ·∇ψn(r)+ k24ε(r, t) = 0

Grouping terms with like power of 4ε in (B.34) we get a set of equations that can be used

to obtain successive approximations (a.k.a terms ψn) to the surrogate function Ψ(r). Note that

∇ψn ·∇ψk is proportional to4εn4εk =4εn+k. Terms proportional to4ε provide the following
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partial differential equation,

∇2ψ1 +0+2ψ0 ·∇ψ1 + k24ε = 0

∇2ψ1 +2ψ0 ·∇ψ1 + k24ε = 0 (B.35)

The above equation is called the basic Rytov equation and it provides a means for solving for

the basic Rytov solution ψ1, which is the solution used in most estimates of signal variations

due to turbulence effects, mainly in the weak scattering regime.

Terms proportional to 4ε2 provide,

∇2ψ2 +∇ψ1 ·ψ1 +2ψ0 ·∇ψ2 = 0

∇2ψ2 +2ψ0 ·∇ψ2 +(∇ψ1)2 = 0

The second order solution ψ2 comes into play when a more precise estimate is needed for the

surrogate function, Ψ, and thus for the field strength E, than that provided by ψ1. This situation

comes about as the turbulence increases in strength from the weak scattering regime.

Terms proportional to 4ε3 give,

∇2ψ3 +2ψ0 ·∇ψ3 +2∇ψ1 ·∇ψ2 = 0 (B.36)

Terms proportional to 4ε4 provide,

∇2ψ4 +2ψ0 ·∇ψ4 +2∇ψ1 ·∇ψ3 +(∇ψ2)2 = 0 (B.37)

In general 4εn terms provide,

∇2ψn +2ψ0 ·∇ψn +
n−1

∑
p=1

∇ψp ·∇ψn−p = 0 (B.38)

The vacuum field E0 = eψ0 influences each succeeding approximation through the coupling
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term 2∇ψ0 ·∇ψn.

We know that E0 = eψ0 satisfies

∇2E0(r)+ k2E0(r) = 0

∇2eψ0(r) + k2eψ0(r) = 0 (B.39)

From earlier, ∇2eψ0 = eψ0(∇ψ0)2 + eψ0∇2ψ0. So we have,

[
eψ0(∇ψ0)2 + eψ0∇2ψ0

]
+ k2eψ0(r) = 0

∇2ψ0 +(∇ψ0)2 + k2 = 0 (B.40)

This equation provides a means for finding the unperturbed field’s surrogate, ψ0, which can

then be used in the above equation to get solutions for ψ1, ψ2, ...ψn, for some desired value of

n. The complexity of the solutions increases as n increases. Fortunately, the n = 1 approxima-

tion provides an approximation that is quite good under weak scattering conditions. As noted

previously, the n = 1 approximation provides the basic Rytov solution, which will be denoted

E1,

E1(r)
.= E0(r)eψ1(r) = eψ0(r)+ψ1(r) (B.41)

The equation that allows us to solve for ψ1 is (B.35),

∇2ψ1 +2ψ0 ·∇ψ1 = −k24ε

In order to solve this equation we will make yet another substitution. Let,

ψ1(r) = Q(r)e−ψ0(r) (B.42)

Putting this into (B.35) will result in a solvable expression for Q(r). First note that using the
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identity,

∇2(FG) = F∇2G+2∇F ·∇G+G∇2F

we have,

∇2ψ1(r) = ∇2(Q(r)e−ψ0(r)
)

= Q(r)∇2e−ψ0 +2∇Q(r) ·∇e−ψ0(r) + e−ψ0(r)∇2Q(r)

= e−ψ0(r)∇2Q(r)−2e−ψ0(r)∇Q(r) ·∇ψ0(r)

+Q(r)e−ψ0(r)
[
−∇2ψ0(r)+

(
∇ψ0(r)

)2
]

Putting our new expression for ψ1 and the resulting expression for ∇2ψ1 into (B.35) gives

∇2ψ1 +2ψ0 ·∇ψ1 = −k24ε

e−ψ0(r)
[
∇2Q(r)−2∇Q(r) ·∇ψ0(r)+Q(r)

[−∇2ψ0(r)+(∇ψ0(r))2]

+ 2∇ψ0(r) · (∇Q(r)−Q(r)∇ψ0(r))
]

= −k24ε

∇2Q(r)−2∇Q(r) ·∇ψ0(r)+Q(r)
[−∇2ψ0(r)+(∇ψ0(r))2]

+2∇ψ0(r) · (∇Q(r)−Q∇ψ0(r)) = −k2eψ0(r)4ε

∇2Q(r)+Q(r)
[−∇2ψ0(r)− (∇ψ0(r))2] = −k2eψ0(r)4ε

In the above we used the identity (∇ψ0)2 .= ∇ψ0 ·∇ψ0 to arrive at the final expression. This

expression can be further reduced using, (B.40) to simplify the second term on the l.h.s. to

obtain,

∇2Q(r)+ k2Q(r) =−k2eψ0(r)4ε (B.43)

This expression shows the benefit of using the ψ1 = Qeψ0 substitution. We now have an ex-

pression with only one term, Q, and it is located in a simplified wave equation for which the

solution is known. Note that the quantity on the r.h.s is considered as an artificial source term.

Green’s Function provides the solution to the above wave equation. Green’s Function,
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G(R,r), is the solution to the partial differential equation,

∇rG(R,r)+ k2G(R,r) =4(R− r) (B.44)

The solution is,

G(R,r) =
eik|R−r|

4π|R− r| (B.45)

which represents a spherical wave of unit amplitude at position R originating from a point

source at r. Note that (B.43) looks like (B.44) except that the source term (artificial) is not a

point source but is distributed over some volume. The solution to (B.43) will be the superpo-

sition of Green’s functions, where each Green’s function is viewed as coming from a different

part of the source, which is viewed as a composite of point sources.

Q(R) =
Z

d3r
[
−k2eψ0(r)4ε(r, t)

]
G(R,r)

The term in brackets is the value of the artificial source at position r, and G(R,r) is the Greens

function at R for a source located at r.

Recall from (B.42) that we defined ψ1 as,

ψ1(r)
.= Q(r)e−ψ0(r)

Also recall that,

E0(r)
.= e−ψ0(r)

so,

ψ1(R) =
Q(R)
E0(R)

Thus,

ψ1(R) =−k2
Z

d3rG(R,r)4ε(r, t)
E0(r)
E0(R)

(B.46)

This is the final form for the basic Rytov solution!
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This type of equation, i.e. (B.35),

∇2ψn +2ψ0 ·∇ψn = −(some ”source” term)

shows up repeatedly in solving for the higher order Rytov approximations. From the above we

know that the solution will be,

ψn(R) =−
Z

d3rG(R,r)(some ”source” term)
E0(r)
E0(R)

(B.47)

Let’s look at the amplitude and phase of the basic Rytov solution,

E1(R) = E0(R)eψ1(R) = eψ0(R)+ψ1(R) (B.48)

Let’s write this in amplitude and phase form,

E1(R) = A(R)eφ0(R)+φ1(R) (B.49)

The fluctuating part of the signal phase is, from (B.46)

φ(R) = Im
[
−k2 R d3rG(R,r)4ε(r, t) E0(r)

E0(R)

]

=−k2 R d3r4ε(r, t)Im
[
G(R,r) E0(r)

E0(R)

]
(B.50)

The signal amplitude is,

A(R) =| E1(R) |=| E0(R) || eψ1(R) |
=| E0(R) | eRe(ψ1(R))

=| E0(R) | e
−k2 R d3r4ε(r,t)Re

[
G(R,r) E0(r)

E0(R)

]
(B.51)
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Normally, we deal with the normalized log-amplitude,

χ(R) .= log A(R)
|E0(R)| =−k2 R d3r4ε(r, t)Re

[
G(R,r) E0(r)

E0(R)

]
(B.52)

Recall that E0(R) is what the field at R would be if there were no perturbations.

Using the notation,

G(R,r)
E0(R)
E0(r)

= A(R,r)+ iB(R,r)

We can express the amplitude and phase fluctuations, from the basic Rytov solution, as

χ(R) .= a(R) = −k2
Z

d3rA(R,r)4ε(r, t)

φ(R) .= b(R) = −k2
Z

d3rB(R,r)4ε(r, t)

Since <4ε(r, t) >= 0, meaning that the average random fluctuation (positive and negative0

is zero, we have

< χ(R) >= 0

< φ(R) >= 0

Keep in mind this is for the basic Rytov solution (i.e. ψ1), once the weak scattering regime is

left and other orders of the Rytov solution are needed to model the actual situation, we will get

to the point where < χ >6= 0.

The variances of each, assuming < χ >= 0 and < φ >= 0, are given by,

σ2
χ =< χ2(R) >= k4

Z
d3rA(R,r)

Z
d3r′A(R,r′) <4ε(r, t)4ε(r′, t) > (B.53)
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and,

σ2
φ =< φ2(R) >= k4

Z
d3rB(R,r)

Z
d3r′B(R,r′) <4ε(r, t)4ε(r′, t) > (B.54)

We see that the variances depend on the spatial correlation of the index of refraction irregu-

larities

<4ε(r, t)4ε(r′, t) >

With homogeneous medium, we can express the spatial correlation in terms of its Fourier

wavenumber decomposition analogous to how the temporal correlation of a random process can

be expressed as the inverse Fourier transform (FT) of the power spectral density (PSD).

<4ε(r, t)4ε(r′, t) >
.=
Z

d3κΦε(κ)eκ·(r−r′) (B.55)

This substitution separates the wave-scattering features of the problem (i.e. the geometry of

the problem and the type of wave) from the description of the turbulent medium. When we put

(B.55) into (B.53) we get,

σ2
χ =< χ2(R) >= k4

Z
d3κΦε(κ)

Z
d3rA(R,r)eiκ·r

Z
d3r′A(R,r′)e−iκ·r′ (B.56)

The turbulence properties are located in Φε(κ), while the geometric properties of the prop-

agation (without turbulence-induced index of refraction irregularities) are located in A(R,r).

Expressing < 4ε(r, t)4ε(r′, t) > in terms of the FT of the power spectrum of the index of

refraction irregularities allowed this separation. Note that this separation via the expression of

the spatial correlation in terms of the F.T. of a spectrum is valid only for homogenous medium,

strictly speaking, just like the autocorrelation of a random process in time can be expressed as

the FT of the PSD only if the process is wide sense stationary.

Let us consider briefly how the inhomogenous situation might be handled. This will aid
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in the analysis of a satellite signal’s propagation down through the atmosphere, in which the

turbulence activity changes as a function of height. When the medium is not homogenous,

approximations can be made that reflect the inhomogeneity of the medium while still allowing

the above separation. In one approximation the turbulence spectrum is made to depend on the

average position of the two points, i.e.

Φε(κ,
r+ r′

2
)

is used as the spectrum expression. But, this does not allow the turbulence properties to be

separated from the geometric properties (i.e. the κ integral is coupled to the r and R integrals).

In a second approximation for inhomogeneous media the spatial correlation is considered to

be able to be written as

<4ε(r)4ε(r′) >=4εrms(r)4εrms(r′)C(r− r′)

Where C(·) is a function of only the separation between the two point r and r′. The function

4εrms(a) is the rms value of 4ε at position a. The rms values at a position are proportional

to the local value of the index of refraction structure constant, C2
n , at that position. We now

introduce a turbulence-profile function,

℘(r) =

√
C2

n(r)
C2

n(0)
(B.57)

Note that this expression can also be used for the homogenous expression, in which case℘(r) =

1. We can now represent the spatial correlation of 4ε , as,

<4ε(r)4ε(r′) >=℘(r)℘(r′) <4ε2 > C(r− r′) (B.58)
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We can represent the C(r− r′) function by a wave number integral,

C(r− r′) .=
1

<4ε2 >

Z
d3κΦε(κ)eκ·(r−r′)

and thus,

<4ε(r)4ε(r′) >=℘(r)℘(r′)
Z

d3κΦε(κ)eκ·(r−r′) (B.59)

Using (B.59) for the spatial correlation in an inhomogeneous medium we can write the variance

of χ(R) from (B.53) as

< χ2(R) > = k4
Z

d3rA(R,r)
Z

d3r′A(R,r′) <4ε(r, t)4ε(r′, t) >

= k4
Z

d3κΦε(κ)
Z

d3rA(R,r)℘(r)eiκ·r
Z

d3r′A(R,r′)℘(r)e−iκ·r′ (B.60)

Once again, just as in the homogenous situation, given in (B.56), we have the desired separa-

tion. We can integrate over r and r′, obtaining an expression in terms of κ, and then put in

the expression for the spectrum of irregularities, Φε(κ), and integrate over κ. This allows the

analysis of various turbulence conditions to be analyzed, without redoing the entire problem,

through the substitution of various expressions for Φε(κ). As a result, this second expression

for dealing with an inhomogeneous medium is often used. As mentioned previously, the profile

function of C2
n is often a function of only elevation, i.e. C2

n(r) = C2
n(z).
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APPENDIX C

Constrained Capacity Formula

C.1 Constrained Capacity

This appendix derives a formula for the constrained capacity, denoted Ccon, used throughout

this work. This quantity is also known as the symmetric capacity [Bac99] or as the joint ca-

pacity [BJF07]. It measures the channel capacity well for certain systems that are constrained

to used QAM modulations with equiprobable input symbols. These systems include: 1) un-

coded systems, 2) systems that use symbol-based error correction codes (e.g. trellis coded

modulation), and 3) systems that use a binary error correction code (e.g. low density parity

check (LDPC)) along with belief propagation iterations between the decoder and constellation

demapper. If a binary error correction codes is used without belief propagation iterations be-

tween the decoder and demapper than the parallel decoding capacity, CPD, described in the next

section is a better measure of the system’s capacity [BJF07].

Let X , be drawn uniformly from a finite alphabet of size M, i.e.,

X ∈ {α1,α2, ...,αM}

Let Y be the output of the AWGN channel. Let the constrained capacity of the channel be

defined as the mutual information between X and Y when the input is constrained to be drawn

from the finite alphabet in a uniform manner. The derivation of the constrained capacity of this

channel, for a given channel gain g, begins with the basic definition,

Ccon(g) .= H(X)−H(X |Y,g) (C.1)
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The * denotes that this is the capacity under the given constraints. Since the input distribution

is uniform, p(X) = 1
M , the first term on the right hand side of (C.1) is, H(X) = log2(M).

The derivation of an expression for H(X |Y,g) is more involved,

H(X |Y,g) =

EY [H(X |Y = y,g)]

=
Z

y∈C
fY (y)H(X |Y = y,g)dy

=
Z

y∈C
fY (y)

[
∑
x∈X

p(X = x|Y = y,g)

· log2(
1

p(X = x|Y = y,g)
)
]

dy

=
Z

y∈C
fY (y)

[ j=M

∑
j=1

p(X = α j|Y = y,g)

· log2(
1

p(X = α j|Y = y,g)
)
]

dy

=
j=M

∑
j=1

Z

y∈C
fY (y)p(X = α j|Y = y,g)

log2

( 1
p(X = α j|Y = y,g)

)
dy (C.2)

The probability, p(X = α j|Y = y,g), can be expressed, using Baye’s rule as the starting point,

as,

p(X = α j|Y = y,g) =

f (Y |X = α j,g)
p(X = α j)

f (Y |g)

=
[ 1

πN0
exp

(
− ‖y−gα j‖2

No

)][ 1
M

]

·
[ 1

M

i=M

∑
i=1

1
πN0

exp
(
− ‖y−gαi‖2

No

)]−1

=

[
i=M

∑
i=1

exp
(‖y−gα j‖2−‖y−gαi‖2

No

)]−1

(C.3)
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Applying Baye’s rule again, this time to fY (y)p(X = α j|Y = y,g), gives,

fY (y)p(X = α j|Y = y,g)

= f (y|X = α j,g)p(X = α j)

=
1

πN0
exp(−‖y−gα j‖2

No
)

1
M

(C.4)

Inserting (C.3) and (C.4) into (C.2) gives,

H(X |Y,g) =
j=M

∑
j=1

Z

y∈C

[ 1
πN0

exp(−‖y−gα j‖2

No
)

1
M

]

· log2

( 1
p(X = α j|Y = y,g)

)
dy

=
1
M

1
πN0

j=M

∑
j=1

Z

y∈C
exp

(
− ‖y−gα j‖2

No

)
(C.5)

· log2

(
i=M

∑
i=1

exp
((‖y−gα j‖2−‖y−gαi‖2)

No

))
dy

Placing (C.5) into (C.1) provides the desired formula,

Ccon(g) .=

H(X)−H(X |Y,g) (C.6)

= log2(M)− 1
M

1
πN0

j=M

∑
j=1

Z

y∈C
exp

(
− ‖y−gα j‖2

No

)

· log2

(
i=M

∑
i=1

exp
((‖y−gα j‖2−‖y−gαi‖2)

No

))
dy

C.2 Parallel Decoding Capacity

Systems that use an M-ary QAM modulation along with a binary code and have no belief

propagation iterations between the decoder and the constellation demapper can be considered
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to consist of l = log2(M) parallel binary channels. The capacity of such a system is the parallel

decoding capacity, given by

CPD =
l−1

∑
i=0

I(Bi;Y ), (C.7)

where Bi is the ith bit of the l-bit transmitted symbol, Y is the received symbol, and I(U ;V )

denotes the mutual information between random variables U and V .

From the definition of mutual information

I(Bi;Y ) = H(Bi)−H(Bi|Y ) (C.8)

Given that Bi is a binary random variable with a uniform distribution (i.e. p(Bi=0) = p(Bi=1)

= 1/2) inherited from the uniform distribution of the input symbols, the entropy of Bi is 1 bit:

H(Bi)= 1.

From the definition for conditional entropy

H(Bi|Y ) = Ey

[
H(Bi|Y = y)

]

= Ey

[
∑

bi={0,1}
p(bi|y) log2(1/p(bi|y))

]

=
Z

y∈C
∑

bi={0,1}
p(bi|y) f (y) log2(1/p(bi|y)) dy.

Applying Baye’s rule this becomes

H(Bi|Y ) =
Z

y∈C
∑

bi={0,1}
f (y|bi)p(bi) log2

( f (y)
f (y|bi)p(bi)

)
dy

=
1
2 ∑

bi={0,1}

Z

y∈C
f (y|bi) log2

(∑b j={0,1} f (y|b j)p(b j)

f (y|bi)p(bi)

)
dy

=
1
2 ∑

bi={0,1}

Z

y∈C
f (y|bi) log2

(∑b j={0,1} f (y|b j)

f (y|bi)

)
dy.
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Let S0 (S1) be the set indices for symbols α ∈ X that have a value of zero (one) for the i th

bit. Then the above can be expressed as

H(Bi|Y ) =
1
2 ∑

bi={0,1}

Z

y∈C

(
∑

j∈Sbi

f (y|α j)
)

log2

(
∑M

m=1 f (y|αm)
∑ j∈Sbi

f (y|α j)

)
dy.

Assuming an AWGN channel and allowing for a channel gain of g, this becomes

H(Bi|Y,g) =
1

2πN0
∑

bi={0,1}

Z

y∈C

(
∑

j∈Sbi

exp
(
− ‖y−gα j‖2

No

))
·

log2

(
∑M

m=1
1

πN0
exp

(
− ‖y−gαm‖2

No

)

∑ j∈Sbi

1
πN0

exp
(
− ‖y−gα j‖2

No

)
)

dy. (C.9)

Using (C.9) and (C.8) in (C.7) results in an expression for the parallel decoding capacity for a

system that uses an M-ary QAM constellation in a AWGN channel

CPD =
l−1

∑
i=0

I(Bi;Y )

=
l−1

∑
i=0

[
1− 1

2πN0
∑

bi={0,1}

Z

y∈C

(
∑

j∈Sbi

exp
(
− ‖y−gα j‖2

No

))
·

log2

(
∑M

m=1
1

πN0
exp

(
− ‖y−gαm‖2

No

)

∑ j∈Sbi

1
πN0

exp
(
− ‖y−gα j‖2

No

)
)

dy

]
. (C.10)

125



APPENDIX D

Lower Bound On the Cutoff Rate in a LLN Channel

Expression for LB1 for LLN Channel

A closed form approximation for (2.19) can be made using the proposed piece-wise approxi-

mation, over each of the three regions of the approximation.

Evaluation of the integral on region 1 (u ∈ [−∞,b1))

With the approximation that e−2eu/κ = 1 on the first region, the integral of (2.19) over this region

becomes,

Θ1 =
1√

2πσ2
c

Z b1

−∞
e
−( (u−m)2

2σ2c
+
‖α j−αs‖2

4N0
)
du

= e−
‖α j−αs‖2

4N0
1√

2πσ2
c

Z b1

−∞
e
− (u−m)2

2σ2c du

Substituting v = u−m
σc

gives,

Θ1 = e−
‖α j−αs‖2

4N0
1√
2π

Z −m−b1
σc

−∞
e−

v2
2 dv

= e−
‖α j−αs‖2

4N0
1√
2π

Z ∞

m−b1
σc

e−
v2
2 dv

= e−
‖α j−αs‖2

4N0 Q(
m−b1

σc
) (D.1)
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Evaluation of the integral on region 2 (u ∈ [b1,b2])

With the approximation that e−2eu/κ = 1− ( u−b1
b2−b1

)2 on the second region, the integral of (2.19)

over this region becomes,

Θ2 =
1√

2πσ2
c

Z b2

b1

e
−( (u−m)2

2σ2c
+
‖α j−αs‖2

4N0
(1−( u−b1

b2−b1
)2))

du

=
1√

2πσ2
c

Z b2

b1

e
−(( 1

2σ2c
− k j,s

(b2−b1)2
)u2+(

2k j,s
(b2−b1)2

− m
σ2c

)u)

·e−( m2

2σ2c
+k j,s(1− b2

1
(b2−b1)2

))
du

where k j,s = ‖α j−αs‖2

4N0
. Completing the square in the argument of the exponential and making

some variable substitutions for the sake of simplification, the argument becomes,

( 1
2σ2

c
− k j,s

(b2−b1)2

)
u2 +

( 2k j,s

(b2−b1)2 −
m
σ2

c

)
u

+
m2

2σ2
c
+ k j,s

(
1− b2

1
(b2−b1)2

)

= a j,s(u− γ j,s)2 + τ j,s

where,

a j,s
.=

1
2σ2

c
− k j,s

(b2−b1)2

γ j,s
.=

m(b2−b1)2−2k j,sσ2
cb1

(b2−b1)2−2k j,sσ2
c

=
2N0m(b2−b1)2−σ2

cb1 ‖ α j−αs ‖2

2N0(b2−b1)2−σ2
c ‖ α j−αs ‖2
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τ j,s
.=

m2

2σ2
c
+

k j,sb2(b2−2b1)
(b2−b1)2

− (2k j,sσ2
cb1−m(b2−b1)2)2

2σ2
c(b2−b1)2((b2−b1)2−2k j,sσ2

c)

=
m2

2σ2
c
+
‖ α j−αs ‖2 b2(b2−2b1)

4N0(b2−b1)2

− (‖ α j−αs ‖2 −2N0m(b2−b1)2)2

4N0(b2−b1)2[2N0(b2−b1)2− ‖ α j−αs ‖2 σ2
c ]

As a result the integral in region 2 becomes,

Θ2 =
1√

2πσ2
c

e−τ j,s

Z b2

b1

e−a j,s(u−γ j,s)2
du (D.2)

With the substitution v j,s =
√

2a j,s(u− γ j,s) this becomes,

Θ2 =
1√

2a j,sσ2
c

e−τ j,s
1√
2π

Z v2 j,s

v1 j,s

e
−v2

2 dv

=
1√

2|a j,s|σ2
c

e−τ j,s(Q(v1 j,s)−Q(v2 j,s)) (D.3)

where

v1 j,s =
√

2a′j,s(b1− γ j,s),

v2 j,s =
√

2a′j,s(b2− γ j,s)

= v1 j,s +
√

2a′j,s(b2−b1),

and,

a′s, j = max(as, j,0). (D.4)

The integral (D.2) is valid at all SNR values, however, the re-formulation of it in (D.3) is only

valid for SNR values such that as, j¿0. Equation D.4 takes this in to account. Typically this
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restriction has a negligible effect on the bound, lowering it slightly at high SNR’s where the

constrained capacity approaches Cmax = log2(M), where M is the order of the constellation.

Evaluation of the integral on region 3 (u ∈ (b2,∞))

With the approximation that e−2eu/κ = 0 on the third region, the integral of (2.19) over this

region becomes,

Θ3 =
1√

2πσ2
c

Z ∞

b2

e
− (u−m)2

2σ2c du

Substituting v = u−m
σc

gives,

Θ3 =
1√
2π

Z ∞

b2−m
σc

e−
v2
2 dv

= Q
(

b2−m
σc

)
(D.5)

The overall integral

Using (D.1), (D.3) and (D.5) the above evaluations, we have,

Eg[e
− g2‖α j−αs‖2

4N0 ]∼= Θ1 +Θ2 +Θ3

= e−
‖α j−αs‖2

4N0 Q
(

m−b1

σc

)

+ e−τ j,s
1√

2πσc|a j,s|
(

Q(v1 j,s)−Q(v2 j,s)
)

+ Q
(

b2−m
σc

)
(D.6)

Equation (D.6) was used in (2.15), resulting in the LB1 expression (2.21) for LLN channels.
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