
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Precise Type Checking for JavaScript

Permalink
https://escholarship.org/uc/item/49c5363t

Author
Vekris, Panagiotis

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49c5363t
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Precise Type Checking for JavaScript

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Panagiotis Vekris

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Samuel R. Buss
Professor Sorin Lerner
Professor Todd Millstein
Professor Yannis Papakonstantinou

2017



Copyright

Panagiotis Vekris, 2017

All rights reserved.



The Dissertation of Panagiotis Vekris is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2017

iii



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Dynamic Scripting Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Traits of Dynamic Type Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Static Types for Dynamic Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Foundations of Typing for Dynamic Languages . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Typing JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Mainstream Type Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Flow: Precise Constraint-Based Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Refinement Types for TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Flow: Precise Type Inference for JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Language FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Types, Effects and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Constraint System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Constraint Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Runtime Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.1 Declarative Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.2 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Implementation of Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3 Trust, but Verify: Two-Phase Typing for Dynamic Languages . . . . . . . . . . . . . . . . 54
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Value-based Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



3.1.2 Refinement Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.3 Phase 1: Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Phase 2: Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.5 Two-Phase Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Syntax and Operational Semantics of TBV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Source Language (λsrc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Target Language (λtgt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Phase 1: Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Source Language Type checking and Elaboration . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 Source and Target Language Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Phase 2: Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.1 Refinement Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Two-Phase Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 4 Refinement Types for TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Formal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Source Language (Irsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Intermediate Language (λrsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Static Single Assignment (SSA) Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.5 Type Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Scaling to TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Interface Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.4 Imperative Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.2 Transducers (A Case Study) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.3 Unhandled Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Refinement Types for TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter A Flow: Precise Type Inference for JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter B Trust, but Verify: Two-Phase Typing for Dynamic Languages . . . . . . . . . . . . . . . . 160

Chapter C Refinement Types for TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

v



LIST OF FIGURES

Figure 1.1. JavaScript Function with Overloaded Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1. Modern JavaScript Examples: null and undefined . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.2. Modern JavaScript Examples: Algebraic Data Types . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.3. FLOWCORE Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.4. FLOWCORE Type and Effect Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.5. FLOWCORE Constraint Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.6. Expression Constraint Generation in FLOWCORE (Variables and Functions) 34

Figure 2.7. Auxiliary Meta-functions for Function Logistics in FLOWCORE . . . . . . . . . . . 35

Figure 2.8. Auxiliary Environment Operations in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.9. Expression Constraint Generation in FLOWCORE (Logical Operations) . . . . . 37

Figure 2.10. Expression Constraint Generation in FLOWCORE (Records) . . . . . . . . . . . . . . . 38

Figure 2.11. Statement Constraint Generation in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.12. Constraint Propagation in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 2.13. Runtime Definitions in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 2.14. Operational Semantics of FLOWCORE (Expressions) . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2.15. Operational Semantics of FLOWCORE (Statements) . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.1. Computing the Minimum-valued Index with Higher-Order Functions . . . . . 55

Figure 3.2. An Example Program with Value-Based Overloading . . . . . . . . . . . . . . . . . . . . . 59

Figure 3.3. The Prevalence of Value-Based Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.4. Source (left) and Target (right) Program in First Phase Elaboration. . . . . . . . . 63

Figure 3.5. Language λsrc: Syntax and Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.6. Basic Type Well-Formedness for λsrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.7. Language λtgt: Syntax and Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 3.8. Elaboration Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.9. Refined Type Checking for λtgt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



Figure 4.1. Computing the Min-Valued Index with reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.2. Specialization of $reduce Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.3. Example Adapted from D3: Two-Dimensional Arrays . . . . . . . . . . . . . . . . . . . . 98

Figure 4.4. Syntax of Irsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 4.5. Syntax of λrsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 4.6. SSA Transformation in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.7. Type Language in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 4.8. Static Typing Rules for λrsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 4.9. Type Hierarchies in the tsc Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 4.10. Type Invariant Predicate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 4.11. Array Interface with Mutability Annotations in Refined TypeScript . . . . . . . 116

Figure 4.12. Initialization Outside the Constructor in Refined TypeScript . . . . . . . . . . . . . . 117

Figure 4.13. Sample Adapted from Transducers Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 4.14. Complex Constructor Pattern Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 4.15. Function Computing Distinct Elements of an Array . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 4.16. Alternative reduce Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure A.1. Expression Typing in FLOWCORE (Variables and Functions) . . . . . . . . . . . . . . . 133

Figure A.2. Expression Typing in FLOWCORE (Logical Operators and Records) . . . . . . . . 134

Figure A.3. Statement Typing in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure A.4. Evaluation Context Typing in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure A.5. Runtime Stack Typing in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure A.6. Heap Typing in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure A.7. Runtime Configuration Typing in FLOWCORE . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure C.1. Syntax and Runtime Configuration of Irsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Figure C.2. Operational Semantics for Irsc (adapted from Safe TypeScript [87]) . . . . . . . . . 190

Figure C.3. Syntax and Runtime Configuration for λrsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

vii



Figure C.4. Reduction Rules for λrsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure C.5. Additional SSA Transformation Rules in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure C.6. Runtime Configuration Translation in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Figure C.7. Runtime Stack Translation in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Figure C.8. Runtime Term Translation in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure C.9. Evaluation Context Translation Rules in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Figure C.10. Heap and Value Translation Rules in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure C.11. Structural Constraints in RSC (adapted from [76]) . . . . . . . . . . . . . . . . . . . . . . . . 198

Figure C.12. Well-Formedness Rules in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Figure C.13. Subtyping Rules in RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Figure C.14. Typing Runtime Configurations for λrsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

viii



LIST OF TABLES

Table 3.1. The Prevalence of Value-Based Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.1. Benchmark Results for rsc (Annotations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 4.2. Changes Made on rsc Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



ACKNOWLEDGEMENTS

I am hugely grateful to my advisor Ranjit Jhala for his support and guidance throughout

my years as a graduate student. Ranjit’s unique talent to focus on the right questions and

matters was key in steering my work in the right direction and making research a lot less

stressful and a lot more fun. Thanks to my committee members Sorin Lerner, Sam Buss, Todd

Millstein and Yannis Papakonstantinou for their useful feedback and discussion. I have also

been extremely fortunate to have worked with Gavin Bierman and Avik Chaudhuri during some

really productive internships, that have opened up a number of opportunities.

Being part of the CSE department and the Programming Languages group has been a

great joy and honour. I would like to thank Ravi Chugh for being a great friend and patient

enough to impart some of his wisdom when I was still new to the world of type systems and

JavaScript. Thanks to Ben Cosman for his perseverance and courage in being an invaluable user

of RSC and for providing essential feedback. To Alexander Bakst, Alan Leung, Don Jang, Dimo

Bounov and the rest of my labmates for the interesting discussions we have shared and for being

awesome friends over the years.

A lot of the credit for making this work possible goes to my parents, Paraskevas and

Eirini. At every step of my life their example and support has fueled me with courage and

inspiration. Last but not least, I am grateful to Joanna for being next to me through clear skies

and stormy weather.

Work Adapted in This Dissertation

Chapter 2 in part is currently under submission for publication of the material as it may

appear in Fast and Precise Type Checking for JavaScript. Chaudhuri, Avik; Vekris, Panagiotis.

The dissertation author was an author of this paper.

Chapter 3 contains material adapted from the publication Trust, but Verify: Two-Phase

Typing for Dynamic Languages appearing in Proceedings of the 29th European Conference on

Object-Oriented Programming (ECOOP’15). Prague, Czech Republic, July 2015. Vekris, Panagiotis;

Cosman, Benjamin; Jhala, Ranjit. The dissertation author was the primary investigator and

author of this paper.

Chapter 4 contains material adapted from the publication Refinement types for Type-

Script appearing in Proceedings of the 37th ACM SIGPLAN Conference on Programming Language

x



Design and Implementation (PLDI ’16). Santa Barbara, CA, USA, June 2016. Vekris, Panagiotis;

Cosman, Benjamin; Jhala, Ranjit. The dissertation author was the primary investigator and

author of this paper.

xi



VITA

2011 Diploma, National Technical University of Athens

2014 Master of Science, University of California, San Diego

2017 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for TypeScript. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’16). Santa Barbara, CA, USA, June 2016.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Trust, but Verify: Two-Phase Typing for
Dynamic Languages. In Proceedings of the 29th European Conference on Object-Oriented Program-
ming (ECOOP’15). Prague, Czech Republic, July 2015.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe
& Efficient Gradual Typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). Mumbai, India, January
2015.

Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, and Yuvraj Agarwal. Towards Verifying Android
Apps for the Absence of No-Sleep Energy Bugs. In Proceedings of the 2012 USENIX conference
on Power-Aware Computing and Systems (HotPower’12). Berkeley, CA, USA, October 2012.

Prodromos Gerakios, Nikolaos Papaspyrou, Konstantinos Sagonas, and Panagiotis Vekris. Dy-
namic Deadlock Avoidance in Systems Code Using Statically Inferred Effects. In Proceedings
of the 6th Workshop on Programming Languages and Operating Systems (PLOS ’11). Cascais, Portugal,
October 2011.

xii



ABSTRACT OF THE DISSERTATION

Precise Type Checking for JavaScript

by

Panagiotis Vekris

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Ranjit Jhala, Chair

Dynamic scripting languages have recently experienced a dramatic growth. JavaScript

in particular is one of the main technologies powering the web. As web applications grow

in complexity so does the need for means to guarantee their correctness. Testing has been a

valuable ally, but falls short with respect to program coverage and formal correctness guarantees.

To complement this approach we propose static type-based analysis. Our goals are early bug

detection, code intelligence for editors and verifying specifications; all with modest annotation

effort from the developer. The biggest challenge is the dynamic nature of JavaScript: overloaded

functions, closures, and mutability both at the stack and heap level.

In this dissertation, we describe our solutions to the problem of type checking JavaScript

in three main contributions. First, we present the constraint-based type inference engine powering

Flow, a static type checker for JavaScript. Here constraint generation accounts for uses of values
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throughout the program, and constraint propagation corresponds to the notion of subtyping.

Detecting bugs amounts to finding inconsistencies in the propagated constraint set. We present

a formal core that supports type refinement based on runtime tests, higher-order functions,

mutable variables and capture-by-reference, and prove it sound. Second, we tackle the problem

of value-based overloading, where functions dynamically reflect upon and behave according to

the types of their arguments. We present a novel two-phased approach to type checking that

breaks the circular dependency between value and type reasoning in heavily dynamic languages.

Our technique enables the straightforward composition of simple type checkers with program

logics. Leveraging this advancement is our third contribution, Refined TypeScript (RSC), a

refinement type system for TypeScript that enables static verification of higher-order, imperative

programs. We develop a formal core of RSC that delineates the interaction between refinement

types and mutability, both on local variables and objects. The core is proven sound and extended

to account for features of real-world TypeScript programs. We evaluate our checker on a set of

benchmarks, including parts of the Octane benchmarks and the TypeScript compiler.
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Chapter 1

Introduction

Scripting languages like Perl, Bash and Python were originally designed to serve as “glue

code” connecting system modules written in mostly static “system” languages like C and C++.

JavaScript in particular was originally designed to assemble web components in browsers as they

became dynamically available. With the prevalence of web technologies, JavaScript attained great

popularity as the main technology for developing the business logic in web applications. Today,

JavaScript is supported by default in all browsers and it even powers the server-side components

of several web applications (most notably through the node.js platform). As applications and

their respective codebases grow in size and complexity, so does the task of guaranteeing that

they are free of errors.

Traditionally, developers of dynamic languages relied on testing to establish the cor-

rectness of their programs. To supplement these approaches, static analysis techniques, such as

type systems, have recently seen increasing popularity in the development work-cycle. Despite

superficially contradicting the mantra of rapid prototyping and development, type systems offer

a plethora of benefits. Besides assisting in the early discovery of errors, they act as a concise form

of documentation, provide the foundation for auto-completion and refactoring services, and

with the introduction of more expressive underlying theories, operate as a means of verification

with respect to a set of specifications. Porting existing typing techniques from the statically typed

world, however, is at best a challenging task on its own and at worse impossible without major

intervention. Bridging this gap is the primary focus of this dissertation.

In this chapter we first provide an overview of the main characteristics that identify

dynamic languages (Section 1.1). Subsequently, we provide a general outline the native typing

support that one could expect from a dynamically typed language, and then elaborate on the

1
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benefits associated with introducing a static typing principle (Section 1.2). To motivate our

contributions in this area, we present the highlights in the literature of typing approaches in

the dynamic language setting, as well as their shortcomings that worked as starting block for

our contribution (Section 1.3). Finally, we give a summary of our approach in developing a

precise constraint-based type inference for JavaScript, and a technique for verifying program

specifications using value based reasoning in TypeScript (Section 1.4).

1.1 Dynamic Scripting Languages

Deploying and maintaining web applications and their server-side counterparts call for a

flexible developer environment that promotes rapid prototyping. This imposes clear restrictions

in the design of the involved programming languages. Tratt [105] gives an excellent overview

of the attributes that make dynamically languages interesting from a design perspective. The

emerging design decisions directly affect our ability to reason about program correctness, which

is the primary focus of this dissertation. In this section we focus on JavaScript and examine the

main features that classify it as a dynamic language.

High-Level. Languages like JavaScript make extensive use of high-level features, once

only found in the functional language realm, such as container constructs or functions as first

class values. For example, objects can be used as dictionaries, with primitive support for the

typical operations of lookup and update, and arrays come with support for a wide range of

primitive operations. In several “systems” languages, like C or Java, such operations would

have to be imported via standard or external libraries. Higher-order constructs facilitate the

production of clean, correct and maintainable code.

Consider, for example, the following code segment that loops over the elements of an

array a, while an accumulator acc is initialized and gets updated in each iteration of the loop:

let acc = ... ; // Initialization
for (let i = 0; i < a.length; i++) {

acc = f(acc, a[i], i); // Update
}

Modern dynamic languages let programmers factor the looping pattern into a higher-order

reduce function (obtained by using the code segment above as function body), which frees

them from the burden of manipulating indices and thereby prevents the attendant “off-by-one”
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mistakes. Instead, the programmer can compute for example the sum of the elements of the array

by supplying an appropriate iterator function plus:

let plus = (x, y) => x + y;

to the reduce function as follows:

let sum = reduce(a, plus, 0);

Building precise program analyses critically depends on our ability to describe the

specifications of high-level constructs succinctly and accurately. In Chapters 3 and 4 we provide

our approach in providing such specification by combining type systems and program logics.

Memory. In terms of memory management JavaScript is an automatically garbage collected

language. This comes as a relief for developers and web users, as memory management is

particularly error-prone in lower-level languages. In the context of a web browser this would

make a web page unresponsive or even crash. Alas, accessing an array out of bounds for example

can still have undesirable consequences. Typically, it leads to the surfacing of the undefined

value that is often the culprit for an exception further down the line. In Chapter 4 we show how

an expressive type system can help guard against this class of errors.

Meta-Programming. Central to the meta-programming capabilities of JavaScript is the

ability of the program to inspect itself and alter its own behavior, referred to as reflection. In

JavaScript a programmer can inspect the runtime type information of a value to determine what

kind of operations are permitted on it. This is often done by using the typeof or instanceof

operators, to recover its type tag (discussed more extensively later on) or test whether a con-

structor belongs to the prototype chain of an object. In addition, the language allows developers

to dynamically alter the behavior of objects by making for example their properties writeable,

or updating their getter function. The approaches presented in this work track these language

capabilities to refine their program reasoning.

One of the most controversial features of JavaScript is the eval primitive that allows

code represented as a string to be executed. eval is widely considered a bad programming

practice 1, since it can slow down execution and if misused enable malicious code to be run with

the caller’s privileges. As far as static program reasoning is concerned, handling eval, and other

constructs in the same family, is considered impractical.

1http://javascript.crockford.com/code.html

http://javascript.crockford.com/code.html
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Closures. Finally, functions in JavaScript can refer to variables that are bound in their

scope of definition. In the following simple code segment

let a = 1;
let f = () => { a = null; };
f();

calling f() has the effect of updating a with null. This complicates reasoning about closures,

since in order to track the behavior of f a mere type specification is not enough; the analysis

needs to keep track of effects. Chapter 2 focuses on this problem and provides a solution to it.

1.2 Type Systems

A notable omission in the previous section and one of the most important aspects that

distinguishes dynamic scripting languages is the type system. In broad terms, a type system

ensures that operations are applied to data in a reasonable way. For example in most languages

the minus operator (-) denotes arithmetic subtraction. A common way to provide a specification

for this operation is to assign it the type:

- :: (Num, Num)→ Num

This specifies that the operation requires two numbers as it arguments and guarantees that the

result will also be a number. It is the type system’s responsibility to only allow numbers to be

passed as arguments. Any other type should be rejected either when the program is compiled

or executed. Several decades of research on type systems have led to a variety of type-based

solutions for reasoning about programs. This dissertation builds on and extends this literature

by providing static techniques for typing languages like JavaScript. But before we proceed to our

discussion on static typing, we give an overview of the typing support that is provided with the

language’s runtime.

1.2.1 Traits of Dynamic Type Systems

The main axes that we survey here are: the time of type checking, types hierarchies, safety

guarantees, flexibility and implicit conversions. This discussion should also help appreciate

the complications involved in designing analyses for a language like JavaScript, as well as the

compromises that need to be made in doing so.
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Time of Type Checking. JavaScript is a dynamically typed language, which means that

type checking happens at runtime (as opposed to statically typed where checking is done

at compile-time). This is why dynamically typed languages are typically not compiled, but

interpreted. In addition, unlike statically typed languages, there is no typing language interface

exposed to the developer, for example there is no way for her to specify that a variable is going

to hold numeric values. Variables are not associated with types, but runtime values are; a notion

also known as duck typing. Before an operation such as a method call, the receiving object is

checked to determine whether it contains the specific method, and only then is the call deemed

safe.

In the absence of an explicit static type language, the runtime tags values with typing

information. These type tags are used to perform latent checks like the above. The language of tags

is limited compared to that of types in statically typed languages. For instance in JavaScript each

value is associated with exactly one of the following tags: "undefined", "number", "string",

"boolean", "function" and "object". One can query the tag of a JavaScript value by calling

typeof on it. While the information revealed by such checks is rather coarse, more complex

queries can be composed by combining simple queries:

typeof x === "object" && typeof x.f === "number"

If this expression evaluates to true, this means that x is an object containing a numeric field f,

effectively establishing that x is of type {. . . , f : number, . . . }. Patterns like these are extremely

pervasive in JavaScript codebases, so any type-based analysis ought to recognize and take them

into account.

Performance. Lifting the burden of static typing can speed up the development process,

but the trade-off comes in the form of an overhead when performing runtime type tests. In

most statically typed languages a variable declared as int is guaranteed to only hold integer

values, without the need of a runtime operation to establish that. To bridge this performance gap,

dynamic language designers have integrated their runtimes with Just In Time (JIT) compilation.

This process dynamically compiles commonly used (“hot”) code segments to machine code to

improve performance as opposed to interpreting the same code.

Type Hierarchy Structure. A common distinction between static type systems is based

on the way they handle checking for equivalence and subtyping (deciding whether one type can

be used in place of another). On the one hand, we have systems that answer these queries based
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on structural equivalence or inclusion. These are known as structural systems and are common

in functional languages like ML or Haskell. On the other hand, we have nominal systems that

determine ordering among types based on programmer specified declarations, e.g. Java with its

explicitly specified class hierarchies. JavaScript has traits from both principles. Depending on the

kind of type query we can expose a different behavior. To support the structural aspect, a query

that tests the existence of the same names of fields in two objects may succeed, even if the objects

were created by unrelated constructors. In this sense, duck typing is the dynamic equivalent of

structural typing. On the other hand queries like the instanceof operator have a nominal flavor,

since the exact name match of the constructor is essential.

Safety Guarantees. As far as type safety is concerned, we are interested in the implied

guarantee that typed programs do not get stuck. Such situations include “method not found”

errors or passing incompatible arguments to primitive operations. In static languages errors

like these typically lead to crashes. In C for example attempting to access locations outside

a program’s memory segment will lead to a segmentation fault, even for programs that have

passed C’s type checker. For this reason C is considered a weakly typed language. Languages like

Java, on the other hand, have more sophisticated runtime systems that check for out-of-bounds

accesses and throw a suitable exception in the case of one. The same thing happens when trying

to cast an object to a incompatible class. In other words, programs can reach exceptional states

but in more predictable ways. Languages like this are considered strongly typed.

Classifying a language like JavaScript as strongly or weakly typed is not straight-forward.

Since the language does not have a static type system and does not come with any static safety

guarantees. Unlike the behavior of C programs, however, a failure in one of the type checks prior

to an operation will not cause the entire application to crash at runtime. In several cases (e.g.

when trying to call a non-function) this will manifest as an error message or (more commonly)

it will lead to a silent type coercion (e.g. when trying to add a string and a number) and the

program will resume execution.

Flexibility. One of the main selling points of dynamic type systems is the ability to

perform quick refactorings, bypassing the need for massive code or interface restructuring.

Unlike statically typed settings, variables are allowed to hold values of varying types. Take for

example the function in Figure 1.1 that negates its argument using a numeric or boolean operator

based on the tag of its input. (This function assumes that inputs may only be of numeric or
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1 function negate(x) {
2 if (typeof x === "number")
3 return 0 - x;
4 else
5 return !x;
6 }

Figure 1.1. JavaScript Function with Overloaded Behavior

boolean type.)

Static typing requires assigning a single type to x for the entire scope of this function,

which leads to the following dilemma: The first use of x in line 3 requires x to have a numeric

type, where as the negation in line 5 requires it to be boolean.

One way to type this program is with untagged unions. However, with statically typed

languages this approach has its shortcomings. On the one hand, several mainstream strongly

typed languages, like Java and OCaml, do not support untagged unions. Therefore, checking a

function like this would be impossible. Note that this case could be handled with the use of a

tagged (or disjoin) union, but this would require defining a data type

type IntOrBool = I of integer | B of bool

and then explicitly matching values of this type against the two constructors I and B before using

the underlying values.

On the other hand, weakly typed languages like C, allow for untagged unions but in a

type-unsafe way: the underlying value is not tagged so the real sort of the data needs to be

explicitly handled by the programmer. To make things worse, static checkers for languages

like these rarely take into account the conditional checks that often guard operations like the

above, so accidentally swapping the order of the numeric and boolean negation could easily go

undetected.

These idioms are pervasive in dynamic languages. To address them, a type checker

needs to allow variables to have multiple possible types, typically through untagged unions. To

make this choice practical, the checker need to account for runtime conditional tests that narrow

down the set of possible values of the involved expressions. Reynolds [88] was among the first

to realize this necessity when checking untyped languages.

Finally, another common idiom in JavaScript are strong updates, i.e. assignments that
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change the type of the updated variable. Take for example the following code snippet that is

often answered in the beginning of function bodies and serves as the initializer of an optional

parameter x:

x = x || 0;

This operation evaluates to the original value of x, if x is initially truthy (a value is truthy if it

is not one of false, 0, "", null, undefined, and NaN). Otherwise the value of x will be 0. This

operation completely changes the type of x: if x was initially of type null then after it will be a

number. An analysis that handles cases like this is called flow-sensitive.

1.2.2 Static Types for Dynamic Languages

Having examined the main attributes of dynamic typing a plausible question is born: Is

there any merit from marrying static typing with a dynamically typed language like JavaScript?

To answer this question we consider the benefits we get with static typing.

IDE Support. One of the major benefits of using static type systems is in enhancing the

developer experience through integration in text editors. Help to developers comes in many

forms. Type errors get detected on the fly and are often accompanied with possible suggestion that

might resolve the issue. The developer is also offered possible expression completions, based on

type information of the part that has already been typed. Finally, API documentation is readily

available based on class and interface hierarchy information.

The use of an IDE with the support of the type checker and compiler has been the de

facto way of developing in many statically typed programming environments, e.g. Java and C#.

In recent years developing JavaScript in an IDE has gained significant popularity, largely due

to the integration with powerful static checkers like the one integrated in WebStorm 2 or Flow,

or full-blown compiler infrastructures such as TypeScript (discussed in detail later on). A great

incentive to use the systems is the availability of typed interfaces for a large number of popular

JavaScript libraries for both TypeScript 3 and Flow 4.

Safety. Statically typed languages, like Java, ML and Haskell, often come with type safety

guarantees (at least for a core part of their specification). As it was coined by Milner [73]: “Well

typed programs don’t go wrong.” In addition, sound analyses, are usually a requirement for

2https://www.jetbrains.com/webstorm/
3http://definitelytyped.org/
4https://github.com/flowtype/flow-typed

https://www.jetbrains.com/webstorm/
http://definitelytyped.org/
https://github.com/flowtype/flow-typed
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semantics preserving code transformations. To enjoy similar guarantees as the complexity of

scripts increases, developers often opt in for paying the burden of adding type annotations to

their programs. Of course these guarantees come modulo the compromises that the type system

makes with respect to soundness. Unfortunately, expressive type systems are at best hard and

often impossible to prove sound [110], which leads to systems that are deliberately unsound [10]

or sound up to some syntactic restrictions. Even unsound systems, however, can be useful as a

means of bug detection.

Performance. An undisputed factor for a pleasant user experience in web applications

is performance. JIT compilation can greatly boost JavaScript’s performance, but its effectiveness

is undermined by highly dynamic code, as unpredictable object structures hinder type special-

ization by the compiler [2]. At the same time, in ahead-of-time compilers, such as asm.js for

JavaScript, fixed object layouts can enable aggressive optimizations. Both of these features are

made possible by strong static type systems, like SJS [19].

1.3 Existing Solutions

The benefits of checking and inferring types for dynamic language have long been

appreciated. Therefore, before delving into the contributions of this dissertation, we explore the

highlights of this rich research area.

1.3.1 Foundations of Typing for Dynamic Languages

In this section we explore the main ideas that have been the bedrock for most current

approaches in type systems for dynamic languages, including techniques in this current work.

Soft typing. This is one of the first attempts to bridge the gap between static and

dynamic typing. The goal here is to retain the expressiveness of dynamic typing on the one hand,

but also offer some of the benefits of static typing in error reporting and optimization capabilities

on the other. Cartwright and Fagan [15] originally use soft typing to infer types in the context of a

higher-order imperative language. They attempt to incorporate static analysis to statically type

dynamic languages. However, when a program cannot be proven safe statically, it is not rejected.

Instead, runtime checks are inserted and hence type safety is restored dynamically. One of the

key priorities here is that the system is prudent in adding costly runtime checks.

The original work on soft typing inference was heavily influenced by Hindley-Milner
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style type inference [27]. As such, it suffered from the known issue of large and complicated

inferred types, and undecipherable error messages that were of little help to the developer. To

circumvent this problem, Aiken et al. [5] present a soft type system based on set-based analysis.

Subtyping here is realized through constraints between sets of values, that are more natural to

the programmer than ML style unification constraints. In addition, they improve their accuracy

by introducing conditional types. Here the type of an expression e can be constrained by the result

of a conditional check in the context of e. Consider for example the expression:

λy.case y of true : zero | false : succ(zero)

By introducing a conditional type τ1 ? τ2 (to be read as τ1 if τ2), they infer the type:

α→ (zero ? (α∧ true))∨ (succ(zero) ? (α∧ false))

This type captures the dependency of the return type on the input type. If a type true (resp. false)

is passed as argument then the return type is the literal type zero (resp. succ(zero)). Despite

being more accurate, their inference system, is not complete (i.e. correct programs may be flagged

as erroneous). So, in order to avoid rejecting program in a dynamic language due to type errors

at compiler time, they resort to runtime checks in the same way as Cartwright and Fagan [15].

Henglein and Rehof [55] build up on this work by extending soft typing’s monomorphic

typing to polymorphic coercions and by providing a translation of Scheme programs to ML.

Finally, Wright and Cartwright [111] develop and evaluate Soft Scheme, a soft type system for all

of R4RS Scheme including features that previously had not been addressed, such as uncurried

procedures of fixed and variable arity, assignment, and continuations.

Gradual Typing. These works foreshadow the notion of gradual typing [94] that allows

the programmer to control the boundary between static and dynamic checking depending on the

trade-off between the need for static guarantees and deployability. The key difference between

soft and gradual typing is in the involvement of the developer in controlling the parts of the

program that are statically checked, as opposed to those that are checked at runtime. In particular,

the designers of soft typing strived to retain the dynamic feeling of the target language by not

requiring any type annotation from the programmer. Gradual typing on the other hand allows

the developer to decide whether a portion of the program is type checked at compile time or



11

runtime, by adding or removing type annotations. Conceptually, in its extremes gradual typing

borders soft typing on the one side and full static typing on the other.

Occurrence Typing. Returning to purely static enforcement, Tobin-Hochstadt and

Felleisen [103] present an explicitly typed extension of Scheme (now known as Typed Racket),

based on the notion of occurrence typing. In this approach, the type system takes advantage of

conditional tests, to narrow down the type of unions in parts of the program dominated by the

checks. Examine for example a variation of the negate example we saw in lines 1 – 5:

(lambda ([x: U Number Boolean])
(if (number? x) (- 0 x) (not x)))

Here a primitive tag test number? is used as a predicate. In the then-branch of this conditional

expression variable x will have the narrower type Number, and so it can be used as an argument

to the numeric subtraction. Typed Racket also allows developers to define their own type tests in

the form of functions that encode predicates, known as latent predicates. However, this approach

is limited in that it only allows for simple fixed predicates over variables. In later work, Tobin-

Hochstadt and Felleisen [104] extend occurrence typing to also account for logical combinations

of predicates as well as components of data structures.

Constrained Types. Set constraints have been used for the purpose of type inference by

Aiken and Wimmers [4] and Aiken et al. [5], who adopt the set-theoretic model to infer types

in a simple functional language. Trifonov and Smith [106] and Pottier [83] infer polymorphic

recursively constrained types, but retain a simpler interpretation of type terms. In their work,

ground types are regular terms, and subtyping is defined explicitly on terms. This enables

various simplifications to their constraint sets, like garbage collection [32, 83, 84]. Flanagan and

Felleisen [38] use a simpler type representation and, based on simplification algorithms that

exploit the observable equivalence of constraint sets, perform componential set-based analysis.

Flow, the type checker we describe in Chapter 2, builds directly on work by Pottier [84],

but does not infer polymorphic types. Instead, our formal core exposes features less frequently

addressed in the context of set-constraint based analyses, such as variable updates and type

refinement based on conditional checks.

Advances in algebraic foundations have spurred renewed interest in this rich area. Even

though polymorphic type inference with subtyping is known to be undecidable [99], Dolan and

Mycroft [29] infer compact principal types by keeping a strict separation between the types used
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to describe inputs and those used to describe outputs (polarities).

Semantic subtyping. The vast majority of the approaches we have seen this far follow a

syntactic approach in defining the subtyping relation by axiomatising it in a formal system. In the

semantic approach, instead, one starts with a model of the language and an interpretation of types

as subsets of the model. Then subtyping is simply defined as set inclusion. Semantic subtyping

has been proposed in the context of functional languages for XML based programming [43],

ML-like languages [17], and more recently for imperative object-oriented languages, where fields

can be mutable [6].

1.3.2 Typing JavaScript

While the techniques above are more general and can apply to multiple programming

settings, below are prominent attempts at creating static type systems for JavaScript in particular.

Early on. Thiemann [102] provides a type system for flagging suspicious type con-

versions, and Anderson et al. [7] develop an inference algorithm that tracks object evolution,

allowing members to be added to an object after it has been created. This is achieved by annotat-

ing each member of an object type as either potential or definite. These approaches are limited

in the subset of JavaScript that they support and do not take into account newer features of the

language.

Recency Types. Heidegger and Thiemann [53] introduce the notion of recency types and

apply it on a language that captures many of the features that are answered in a language like

JavaScript: first-class functions, objects as property maps, and prototypes. They propose a system

that infers precise singleton object types that are handled flow-sensitively and change during

the objects’ initialization phase. When these precise types need to be used in a flow-insensitive

context, the system automatically detects this and subsumes them to summary object types. Zhao

[115] develops a similar approach, but presents a more flexible type system with support for

parametric polymorphism and singleton type objects that can be extended after they are assigned

to variables of summary types.

Flow Typing. In the area of type refinement, Guha et al. [50] develop flow typing for an

imperative dynamic language that uses control and state to reason about types. Their approach

is influenced by occurrence typing, but to remain sound with respect to flow sensitive variable

updates they combine their type analysis with an intraprocedural flow analysis, which tracks
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stack and heap refinements. Facts established by this flow analysis can be used to narrow types

during type checking. This work focuses on checking rather than type inference and does not

track non-local effects (e.g. variable updates). Building on the idea of flow typing, Lerner et al.

[69] present a framework for building type systems for JavaScript, engineered modularly to

encourage experimentation. This framework offers several tunable parameters, such as subtyping

variance, but is also limited to local type inference.

Program Logics. Reasoning about programs through logic has recently been empowered

with the advances in SMT solver technology. A comprehensive discussion is included in Sec-

tion 4.5, however, here, we include a short mention of the work of Chugh et al. [20] on Dependent

JavaScript (DJS), a static type checker for a sizeable subset of JavaScript, including run-time

type-tests, higher-order functions, extensible objects, prototype inheritance, and arrays. In DJS,

the typical subtyping constraints are transformed to logical implications that are discharged

through an SMT solver.

Static Objects. Abadi and Cardelli [1] and Palsberg and Schwartzbach [77] were among

the first to explore the area of object semantics and type inference. Building up on these principles,

Choi et al. [19] propose a static type system for ahead-of-time compilation of JavaScript that

guarantees fixed object layout. Its type inference is based on very similar foundations as Flow

(Chapter 2). SJS focuses mainly on taming legacy object-oriented features (constructor functions,

open methods, and prototype inheritance). Chandra et al. [18] build on this work by adding

support for abstract objects, first-class methods, and recursive objects, and prove their extensions

sound. Their type system supports additional features such as polymorphic arrays, operator

overloading, and intersection types in manually-written interface descriptors for library code,

that they found important for building GUI applications.

Abstract Interpretation & Points-to Analysis. Inferring type related information has

also benefited from the use of abstract interpretation [26]. TAJS [60, 61, 62, 8] is a whole-program

dataflow analyzer. It is fully automated, in that it does not expect any user type annotations and

offers high precision by being flow-sensitive and partly context- and path-sensitive, and using

allocation site abstraction for objects and constant propagation for primitive values. JSAI [63]

is a similar framework, but offers user-specified analysis sensitivity and a complete formalism

for their concrete and abstract semantics of JavaScript. Finally, SAFE [67, 78] claims even better

precision than the above tools thanks to its Loop-Sensitive Analysis.
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One of the first attempts for Andersen style points-to analysis for a subset of JavaScript

was proposed by Jang and Choe [59], while Guarnieri and Livshits [49] use points-to analysis

to enforce security and reliability policies. Sridharan et al. [97], building on top of WALA

[109], increase their points-to analysis accuracy, and therefore scalability, by tracking correlated

dynamic property accesses.

1.3.3 Mainstream Type Checkers

The related work in this section concerns widely adopted checkers and tools for Java-

Script and other popular dynamic languages like Scheme and PHP. This part is more suitable for

comparison to Flow, presented in Chapter 2.

TypeScript [107]. is a widely used optionally typed superset of JavaScript. Like Flow

it aims to improve developer productivity by providing tooltips through IDEs. Unlike Flow,

it focuses only on finding “likely errors” and favors convenience over soundness [10]. Type

inference in TypeScript is mostly local and in some cases contextual; it doesn’t perform global

type inference like Flow, so in general more annotations are needed. Whenever type annotations

are missing, they are considered to be any (instead of being implicitly inferred). This type, also

known as the “dynamic type”, is surrounded by a set of very relaxed typing rules. Thus, many

type errors are missed. Furthermore, even with fully annotated programs, TypeScript misses type

errors because of unsound typing rules. For example, “bivariant” subtyping means that functions

and instances of polymorphic classes can be passed to contexts that do not preserve their typing

invariants. In practice, this means that TypeScript developers have to code defensively with

dynamic checks, even when types are included.

One of the main strengths of the TypeScript ecosystem that has contributed to its wide

adoption is the availability of more than 2,000 type definitions 5 for several mainstream JavaScript

projects [114]. However, despite being used by numerous developers these definitions are not

immune to errors. Feldthaus and Møller [35] present a hybrid analysis to find discrepancies

between TypeScript interfaces and their JavaScript implementations that reveals 142 errors in the

declaration files of 10 libraries.

Finally, attempts have been made to mitigate the unsoundness that the language features

by design. Rastogi et al. [87] extend TypeScript with an efficient gradual type system that offers a

5As of May, 2017
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stricter set of static rules and a run-time that performs the residual dynamic checks needed for

soundness; and Richards et al. [90] present a variant of TypeScript that allows developers chose

between writing untyped code (i.e. any-typed code), optionally typed code and concretely typed

code.

Dart & Closure. Dart [28] is another language that shares the same philosophy: un-

soundness is a deliberate choice motivated by the desire to balance convenience with bug-finding.

Recent work [54] recovers soundness in Dart by integrating optional type annotations and ap-

plying a flow analysis to provide static type safety guarantees. Closure [23] is another widely

used type system for JavaScript that focuses on transforming code to reduce its size. It is sound

modulo similar assumptions as Flow, but lacks type inference.

Other Languages. Typed Racket [86] and Hack [52] (for PHP) are also quite close in

spirit to Flow. In the former, optional typing is at the level of modules and occurrence typing

is used to perform type refinement, similar to the one done by Flow. The main differences are

that it lacks type inference and, compared to Flow, its treatment of mutable variables is far more

simplistic—there is no distinction between mutability on the stack and on the heap. On the other

hand, Flow heavily borrows from Hack’s design and implementation for scaling to millions of

lines of code.

1.4 Our Approach

In this dissertation we describe the design of two techniques for static analysis of Java-

Script code:

• a technique for precise constraint-based type inference, and

• a technique for verifying program specifications using refinement types.

Before we give an overview of each of the two techniques developed in this dissertation,

we outline the desired goal and shed light in the reasons why current literature falls short of

fulfilling it.

1.4.1 Flow: Precise Constraint-Based Type Inference

Motivation. In this part we aim to provide a (fast) system for inferring precise types for

JavaScript. So the main desiderata here are precision and automation (inference).
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To make the notion of precision more clear, we would like our analysis to take into

account runtime tests on the type of program variables, and use them to refine types in code

segments guarded by these tests (path-sensitivity). Existing systems [69, 18], while supporting

very sophisticated typing features, do not track such type narrowings. We would also like an

analysis that can track mutations to local variables and use the type of the most recent assignment

to maintain precision. Flow-sensitive analyses, like recency types [53], track this correctly but fail

to account for dynamic tests.

On the other hand, several of the above techniques [69, 20] fail to fulfill our inference re-

quirement, namely that the type analysis handles programs like the above without requiring type

annotations from the user at function boundaries. They mostly rely on local type inference [81]

and so require annotation as function signatures.

Finally, the related work in the area of abstract interpretation of Section 1.3.2 involves

whole-program analysis that is typically limited in terms of scalability.

Challenges. Supporting type refinement in the presence of variable updates is not trivial.

Handling the effect of these updates in the presence of closures escalates the situation even

further. A sound analysis needs to account for the effect of functions in updating variables that

are captured in their lexical scope. Such capabilities, however, are often outside the scope of

traditional type systems.

Approach. Our technique fulfills be above goals despite the challenges. At the core

of the approach lies a constraint-based type inference engine [106, 3, 83, 37]. Here, directed

constraints are the equivalent of subtyping constraints in a type checking setting, or flows of

type information if we consider the analysis a dataflow one. The two parts of a flow involve

types built with the usual type constructors (Bool,→, etc.), corresponding to parts of the program

whose type can immediately be inferred (e.g. true can immediately be assigned the type Bool,

or a function’s type will have→ as the top-level constructor); and type variables for parts of the

program whose type cannot yet be determined (e.g. variables, or function parameters).

The first part of the analysis is constraint generation, which corresponds to the specification

phase [3]. This part abstracts the information encoded in the program into a set of constraints

among constructed types and type variables. We perform this phase while keeping track of the

bindings of variables to type information in structures called environments. To make our analysis

precise with respect to strong updates, i.e. assignments that change the type of the updated
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variable, we make our environments flow-sensitive. This means that each variable assignment

introduces a type binding of that variable to a fresh type variable constrained appropriately

based on the assigned expression.

Compiling a system of constraints corresponds to setting up a system of dataflow

facts. What needs to happen next is propagate the dataflow facts until we reach a fixpoint.

This corresponds to the phase of constraint propagation. The rules that dictate this phase draw

similarities to subtyping rules.

A common pitfall in these kinds of analyses is the effect of closures in updating variables

that are in their lexical scope. Our approach to handle cases like this is twofold. First, for each

function we infer a set of variables that get (transitively) updated in their body. Second, for

each variable we keep two type entries in our environment: a special type that tracks the latest

assignment, and a general one that accounts for all possible assignments. When processing a call

to an effectful function, for each variable in the function’s effect we introduce a new binding in

the environment succeeding the call bound to a fresh type variable, to which we flow the most

general version of the variable’s type. This way variables updated in closures, will effectively

obtain the conservative general type after a function call.

Finally, after repeatedly applying our propagation rules, our constraint system reaches

a fixpoint (it becomes saturated). At this point we check the system for consistency. Any

incompatibility between the constructors of the left- and right-hand side of a constraint is

reported as a potential error.

To sum up, by narrowing variable types by taking into account dynamic type tests, our

analysis becomes precise and by being aware of the effect of closures on variable updates it

retains its soundness. Chapter 2 expands on these ideas with examples and presents a formal

core for the Flow system, including a statement of type safety.

1.4.2 Refinement Types for TypeScript

Motivation. In the first part of this dissertation we focus on inferring types that capture

relatively coarse invariants about JavaScript programs. These system are sufficient in catching

bugs early while developing large scale applications. For this second part we turn our focus

to the problem of automatic program verification for dynamic languages. Our goal is to provide

the means for analyzing programs and determining whether they abide by certain desired
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criteria (verification), while only requiring the developer to provide a small amount of essential

annotations (automatic).

The field of automatic program verification has a long and rich history. Most techniques

fall under the fields of abstract interpretation [26] and model checking [22]. The type system

approach we have examined so far falls under the first category [25]. However, the flavor of

system of the previous section (i.e. a mostly syntactic type system) falls short in expressiveness

when it comes to reasoning about value dependent properties of programs and in particular

relational properties. Take for example the following simple array access within a loop:

1 for (let i = 0; i < a.length; i++) {
2 assert(a[i] !== undefined);
3 }

To discharge the assertion, a program analysis would need to relate an invariant of the array a,

namely its length, with values that the index i receives throughout the loop.

Approach. This gap in expressiveness of type systems is bridged with the introduction

of refinement type systems [42]. Here, basic types are decorated with refinement predicates that

constrain the values inhabiting the type. For example to define the non-negative integer numbers

that are less that 100 we can write:

{ν : number | 0 ≤ ν ∧ ν < 100 }

Value ν, known as the value variable, indicates the value which is described by this type. With

this as a basic block, more complex types can be built, for example the type of an array with

non-negative numbers is:

{ν : number | 0 ≤ ν }[ ]

We can also express high-level invariants of containers, for example the type of a non-empty

array would be:

{ν : number[ ] | 0 < len(ν) }

Typically the language of predicates refining types are logical formulas from an SMT

decidable logic, which allows subtyping to be reduced to queries to an SMT solver. Since

its inception refinement typing has mostly targeted functional languages [113, 66, 91]. More

recently, its domain was extended to dynamic [11] and imperative languages [76, 20]. Dependent
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JavaScript (DJS) [20] in particular combines nested refinements [21] with alias types [95], a

restricted separation logic, to account for aliasing and flow-sensitive heap updates to obtain a

static type system for a large portion of JavaScript. DJS, however, proved to be extremely difficult

to use. First, the programmer had to spend a lot of effort on manual heap related annotations;

a task that became especially cumbersome in the presence of higher-order functions. Second,

nested refinements precluded the possibility of refinement inference, further increasing the

burden on the user. X10 [76] is a language that extends an object-oriented type system with

constraints on the immutable state of classes. This approach is limited in providing inference

(similar to DJS) and handling variable updates in a flow-sensitive manner.

Our goal in this part of the dissertation is to overcome these pitfalls, by through simple

transformations and a lightweight mutability tracking type system upon which we perform

refinement type inference.

Challenges. Refinement type systems require a base type system in order to apply the

refinements on. However, establishing base types in the first place can be challenging. In

Figure 1.1 we saw how the implementation of negate depends on the tag of the input value.

This trend of dynamic languages, where functions can dynamically reflect upon and behave

according to the types of its arguments, we refer to as value based overloading. Thus, to establish

basic types, the analysis must reason precisely about values, but in the presence of higher-order

functions and polymorphism, this reasoning itself can require basic types.

Another cumbersome feature for analyses in languages like JavaScript is precisely han-

dling local variable updates. Consider for example the code from lines 1 – 2, only this time

transformed into a while-loop:

4 let i = 0;
5 while(i < a.length) {
6 assert(a[i] !== undefined);
7 i = i + 1;
8 }

Assume we naïvely attempt to assign types in a flow-insensitive manner. It will be impossible to

discharge the assertion conditions. Indeed, to assign i a refinement type capturing all possible

value assignments to it, we would have to account (i) for the initialization of i to 0 and (ii) all the

values that i is updated with, until the loop condition i < a.length is no longer valid. In other

words, we need to consider numbers from 0 up to the length of the array a. This range is more
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aptly described with the type

i :: {ν : number | 0 ≤ ν ∧ ν ≤ len(a) }

However, this type is not precise enough to prove the assertion. It will fail due to the requirement

that the value of i be less than len(a). Remedying this situation requires considering different

versions of the iterator i for before and after the update (i1 and i2, respectively). A possible

valid type assignment for these two variables is the following:

i1 :: {ν : number | 0 ≤ ν ∧ ν < len(a) }

i2 :: {ν : number | 0 < ν ∧ ν ≤ len(a) }

The version of i that takes part in the assertion is i1, and this time we can easily verify that is

respects the assertion requirements.

Finally, another rocky situation arises from the interaction of object mutation with our

refinement logic. The problem arises due to the fact that objects in JavaScript, including arrays,

are mutable. This means that their shape and invariants, such as the length of an array, may

change at any point. Due to the functional nature of SMT solvers, the values that get embedded

in our refinement logic, including for example arguments to the len operator that appear in our

predicates, need to be immutable portions. Let for example the following code:

9 let a = [0, 1, 2];
10 a.pop();
11 assert(a[2] !== undefined);

Due to line 9 we might be tempted to assign a the type:

a :: {ν : number[ ] | len(ν) = 3 }

This would suffice to discharge the assertion in line 11, rendering our analysis unsound. The

problem here is that the invariant encoded in the above refinement type is silently invalidated

by the pop operation in line 10, since this method changes the length of the receiving array.

Only program values whose invariants remain immune to mutation, should be embedded in the

refinement logic.
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Our Solutions. To handle value-based overloading we propose the framework of two-

phased typing. The first “trust” phase performs classical, i.e. flow-, path- and value-insensitive

type checking to assign basic types to various program expressions. When the check inevitably

runs into “errors” due to value-insensitivity, it wraps problematic expressions with dead-casts,

which explicate the trust obligations that must be discharged by the second phase. The second

phase uses refinement typing, a flow- and path-sensitive analysis, that decorates the first phase’s

types with logical predicates to track value relationships and thereby verify the casts and establish

other correctness properties for dynamically typed languages.

To tackle the remaining challenges pertinent to the imperative nature of JavaScript,

namely local variable updates and object mutation, we present Refined TypeScript (RSC), a

lightweight refinement type system for TypeScript, that enables static verification of higher-

order, imperative programs. We develop a formal system for RSC that delineates the interaction

between refinement types and mutability, and enables flow-sensitive reasoning by translating

input programs to an equivalent intermediate SSA form. By establishing type safety for the

intermediate form, we prove safety for the input programs. Next, we extend the core to account

for imperative and dynamic features of TypeScript, including overloading, type reflection, ad

hoc type hierarchies and object initialization. Finally, we evaluate RSC on a set of real-world

benchmarks, including parts of the Octane benchmarks, D3, Transducers, and the TypeScript

compiler. We show how RSC successfully establishes a number of value dependent properties,

such as the safety of array accesses and downcasts, while incurring a modest overhead in type

annotations and code restructuring

A Note on Scope

While the features targeted by existing analyses outlined in Section 1.3.2, e.g. prototype

inheritance, reflection, and legacy patterns, have wide-spread support by most JavaScript im-

plementations, they are rarely the flavor of the language that most JavaScript developers use.

Instead, there is an ongoing trend towards more recent specification like ES6 or typed variants of

the language like TypeScript. Developers prefer programming in higher-level (sub)languages

that are later compiled to lower-level browser-executable code with the use of tools like Babel 6

and tsc. For example, instead of building classes using prototype inheritance now develop-

6https://babeljs.io/

https://babeljs.io/
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ers can use class constructs, just like Java. Instead of imperative features like iterators, they

use higher-order constructs like reduce and map. So, instead of focusing on the target of this

compilation, this work focuses on the source.

1.5 Contributions

Concretely, this dissertation makes the following contributions:

• In Chapter 2 we present the design of Flow, a fast and precise type checker for JavaScript.

The approach uses constrained-based type inference and supports a variety of common

JavaScript idioms. We formalize inference to support refinements in a core fragment

of JavaScript containing higher-order functions, mutable variables, runtime tests, and

capture-by-reference. We prove our system sound with respect to a runtime semantics.

• In Chapter 3 we tackle the problem of typing a dynamic language by introducing the

framework of two-phased typing. We first elaborate a source language with value-based

overloading into a target language with dead-casts in lieu of overloading. We prove that

the elaborated target preserves the semantics of the source, i.e. the dead-casts fail iff the

source would hit a type error at run time. Finally, we apply standard refinement typing

on the elaborated well-typed target to statically verify the dead-casts, yielding end-to-end

soundness for our system.

• In Chapter 4 we examine the interaction of refinement types and mutability and local

variable updates. We formalizes our approach via SSA translation and a declarative

refinement type system that we prove sound. We extend the core language to TypeScript by

describing how we account for its various dynamic and imperative features; in particular

we show how RSC accounts for type reflection via intersection types, encodes interface

hierarchies via refinements. We then evaluate our tool on a suite of real world programs.

• We finally conclude with a discussion of limitations and future directions.



Chapter 2

Flow: Precise Type Inference for JavaScript

JavaScript is one of the most popular languages for writing web and mobile applications

today. The language facilitates fast prototyping of ideas via dynamic typing. The runtime

provides the means for fast iteration on those ideas via dynamic compilation. This fuels a fast

edit-refresh cycle, which promises an immersive coding experience that is quite appealing to

creative developers.

However, evolving and growing a JavaScript codebase is notoriously challenging. Devel-

opers spend a lot of time debugging silly mistakes—like mistyped property names, out-of-order

arguments, references to missing values, checks that never fail due to implicit conversions, and

so on—and worse, unraveling assumptions and guarantees in code written by others. In many

other languages, this overhead is mitigated by having a layer of types over the code and building

tools for the developer that use type information. For example, types can be used to identify

common bugs and to document interfaces of libraries. Our aim is to bring such type-based

tooling to JavaScript.

2.1 Goals

In this chapter, we present the design of the type system underlying Flow, a static type

checker for JavaScript developed at Facebook. The idea of using types to manage code evolution

and growth in JavaScript (and related languages) is not new. In fact, several useful type systems

have been built for JavaScript in recent years. The design and implementation of Flow are driven

by the specific demands of real-world JavaScript development that we have observed in the

industry at large.

• The type checker must be able to cover large parts of the code base without requiring too

23
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many changes in the code itself. Developers want precise answers to code intelligence

queries (the type of an expression, the definition reaching a reference, the set of possible

completions at a point). Relatedly, they want to catch a large number of common bugs with

very few false positives.

• The type checker must provide very fast responses, even on a very large codebase. De-

velopers do not want any noticeable “compile-time” latency in their normal workflow,

because that would defeat the whole purpose of using JavaScript.

To meet these demands, we had to make careful choices and solve technical challenges in Flow

that go beyond related existing systems.

• We precisely model common JavaScript idioms that appear pervasively in a modern

JavaScript codebase. For example, Flow understands the pattern

x = x || 0;

that can be used to initialize an optional parameter x in a function body. Handling a case

like this necessitates support for type refinements: the system needs to recognize that the

assigned value will be truthy i.e. refined with respect to the initial value of x. In addition,

the analysis needs to distinguish the version of the variable before the assignment from

the one after it, in a flow-sensitive manner. Conflating the types of the two versions into the

union of the two would invalidate the effect of the type refinement. (More examples are

shown below.)

• At the same time, we do not focus on reflection and legacy patterns that appear in a relatively

small fraction (that is also usually stable and well-tested). Today, tools like Babel convert

modern JavaScript to (lower-level) ES5 executed on browsers. Flow focuses on analyzing

the source, instead of the target, of such translations (unlike many previous efforts that

address ES5, or the even harder ES3).

2.2 Overview

We now introduce the main ideas behind Flow’s design and implementation. We discuss

how Flow precisely handles type refinement in the presence of local updates and closures.
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1 function pipe(x, f) {
2 f(x);
3 }
4

5 let hello = (s) => console.log("hello", s);
6

7 pipe("world", hello);
8 pipe("hello", null); // error
9

10 function checked_pipe(x, f) {
11 if (f != null) f(x); // ok
12 }

Figure 2.1. Modern JavaScript Examples: null and undefined

Precise type checking

One of the main contributors of Flow’s precision is path-sensitivity: the way types

interact with runtime tests. The essence of many JavaScript idioms is to put together ad hoc sets

of runtime values and to take them apart with shallow, structural (in)equality checks. In Flow,

the set of runtime values that a variable may contain is described by its type, and a runtime test

on that variable refines the type to a smaller set. This ability turns out to be quite powerful and

general in practice.

In this chapter, we formalize refinements in a core subset of JavaScript. The system is

particularly interesting because of the combination of mutable local variables and closures that

capture them by reference. Next, we illustrate this system via a series of examples.

Type Refinement. Higher-order functions like pipe in (lines 1 – 2 of Figure 2.1) are

quite common in JavaScript. A common pattern in JavaScript code is to use null as the default

argument at a function call (line 8), or even to avoid passing the argument whatsoever. In the

latter case the parameter is then bound to undefined in the body of the function. Unfortunately,

this causes the dreaded “null is not a function” error to hit often. Fortunately, Flow finds these

errors by following flows of null to calls in the code.

Checking for nullability is the idiomatic way to prevent such errors at runtime. In

JavaScript, the check f != null is equivalent to f !== null && f !== undefined, which ad-

ditionally rules out undefined, commonly used to denote missing values. Thankfully Flow

understands that this code is safe. It refines the type of f to filter out null and undefined in
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13 let nil = { kind: "nil" };
14 let cons = (head, tail) => {
15 return { kind: "cons", head, tail };
16 }
17

18 function sum(list) {
19 if (list.kind === "cons") {
20 return list.head + sum(list.tail); // ok
21 }
22 return 0;
23 }
24

25 sum(cons(6, cons(7, nil)));
26

27 function merge(x) {
28 x = x || nil;
29 return x.kind; // ok
30 }
31

32 function havoc(x) {
33 let reset = () => { x = null; }
34 x = x || nil;
35 reset();
36 return x.kind; // error
37 }

Figure 2.2. Modern JavaScript Examples: Algebraic Data Types

line 11, and thus knows that neither of these values can reach the call. Many other idiomatic

variants also work, such as f && f(x), where f is checked for “truthiness” (which rules out null,

undefined and other primitive values such as false, 0, and "") before calling.

Algebraic Data Types. Refinements also power a common technique to encode algebraic

data types in JavaScript, which are used quite widely (to manage actions and dispatchers, data

and queries, etc. in user interface libraries). Records of different shapes have a common property

that specifies the “constructor”, and other properties dependent on the constructor value. These

records are then analyzed by “pattern matching”—inspecting and branching on the constructor

value.

For example, consider the encoding of lists in lines 13 – 16 of Figure 2.2. A sum function

(line 18) checks whether a list is non-empty before accessing properties specific to non-empty
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lists. Following the calls to sum, Flow knows that the parameter list in line 18 can contain both

kinds of objects—those whose kind property is "cons", and those for which it is "nil". The

latter ones are filtered out by refining the type of list in line 19, so that the only objects reaching

the property accesses of head and tail in line 20 are guaranteed to have those properties. Thus,

Flow knows that this code is safe. Without refinements, on the other hand, the analysis would

have over-conservatively concluded that nil can also flow to the property accesses, leading to

spurious type errors.

Refinements are tracked by a flow-sensitive analysis, and interact in interesting ways

with variable assignment. The common idiom in line 28 of merge ensures that a variable has a

non-null default. Flow models the assignment by merging the refined type of x with the type of

nil and updating the type of x with it.

On the other hand, refinements can be invalidated by assignments, which can even

happen indirectly via calls Here the call to reset in line 35 updates the value of x with null

which invalidates the refinement that preceded in line 34. While invalidating refinements is

necessary for soundness, they should be preserved as much as possible to avoid spurious type

errors. Flow tracks variable assignments as effects for precise invalidation. So in addition to a

type signature, Flow infers an effect signature for function reset that contains in it the variable

x. Any call to this function would result in the invalidation of refinements on variables that are

contained in its effect.

Refinements and their invalidation carry over to higher-order functions. A function’s

effect is part of its signature and is applied every time the function is called. We also have limited

support for refining mutable object properties, but those refinements are invalidated aggressively

(i.e. our analysis is not heap-sensitive).

This concludes our overview of the Flow type checker. The remainder of this chapter

formalizes Flow as a set-constraint based type inference engine. In Section 2.3 we present

a core fragment of JavaScript containing higher-order functions, mutable variables, runtime

tests, and capture-by-reference, called FLOWCORE. We present a type language for FLOWCORE

(Section 2.3.2) and continue on by describing constraint generation (Section 2.4.1) and propagation

(Section 2.4.2). We then connect our static checking procedure with a runtime semantics of

FLOWCORE through a type soundness result (Section 2.6). We conclude with a discussion on

implementation of type inference as a system of set-based constraints combined with unification
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for optimization (Section 2.7).

2.3 Language FLOWCORE

We consider a minimal subset of JavaScript that includes functions, block-scoped mutable

variables, primitive values and records. Notably, we leave out data structures like dictionaries

and arrays, as well as object-oriented features like this, methods, classes, and inheritance. These

parts of the language are mostly orthogonal to understanding refinements and their type inference

is built on the same foundations, and while interesting, behave more or less similarly to previous

work. So we can safely extend our model to include them, without significantly complicating

our guarantees. Our focus is on formalizing type inference and refinement strengthening, with

the exception of refinements on mutable fields that are not tracked through the heap. While

compact, this fragment is expressive enough to model the examples of Section 2.2, which are

used to illustrate how Flow uses predicate refinements to reduce the false positive rate, while

remain sound with respect to variable updates.

2.3.1 Syntax

Figure 2.3 describes the language of expressions expressions e and statements s.

Expressions. We elide primitive values and operations. These may include numbers and

arithmetic operations, booleans, and undefined. The syntax p(x) draws from a fixed, possibly infi-

nite set of unary predicates p on x. These model dynamic checks, such as typeof x === "number",

x === undefined, x, testing if an expression is truthy, or model tests like x.f === "nil" on

records or strings. Note that in this system the last check does not imply a predicate on the value

of x.f, but rather on x itself. The former would be a heap refinement, which Flow only supports

in a limited fashion, and which is excluded from the formalism.

General-purpose functions (using the keyword function) are complicated in JavaScript:

they can be additionally used as methods and as constructors. To simplify our exposition,

we restrict our attention to arrow functions (essentially lambdas). We assume that a function

body consists of a statement followed by the return of an expression. Functions that do not

explicitly return anything can be thought of as implicitly returning undefined. (Flow’s treatment

of abnormal control flows via return is also interesting, but we omit them here.) We also include

the logical conjunction (&&), disjunction (||) and negation (!) operators, as they are pervasive in
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n ∈ Consts Constants

x,y ∈ Vars Variables

e ::= Expressions

| x variable

| n constant

| x = e assignment

| (x)⇒ {s; return e} arrow function

| e1(e2) function call

| p(x) predicate expression

| e1 && e2 logical and

| e1 || e2 logical or

| ! e logical negation

| {f1: e1, . . . , fn: en} object literal

| e.f field read

| e1.f = e2 field write

s ::= Statements

| e expression

| var x = e variable declaration

| if (e) {s1} else {s2} if-statement

| s1; s2 sequencing

| skip no-op

Figure 2.3. FLOWCORE Expressions

JavaScript and inform our refinement strategy.

Statements. We use var to introduce variables, and include statements for conditional

execution and sequencing. We omit const because it is much simpler than var—refinements

never need to be invalidated. We also omit while here; although it can be encoded with if and

recursion, Flow’s treatment of it is more precise.

A program can be modeled as an expression, e.g. of the form ((x)⇒ {s; return e})(0).

Assumption. We assume an α-renaming pre-pass over the program’s AST that would

rename all variable identifiers to unique names, so that each variable identifier has a unique

definition point which is either a var statement or an arrow definition. This is a fairly straightfor-

ward transformation for any preprocessor that helps avoid non-intentional capturing of variables
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α,β,γ, δ ∈ V Type Variables

τ̇ ::= Type Literals

| b base type

| τ1
ε
−→ τ2 arrow type

| {f1 : α1, . . . , fn : αn} object type

τ ::= Types

| τ̇ type literal

| τ1 t τ2 union type

| α type variable

φ ∈ E Effect Variables

ε̇ ::= Effect Literals

| ⊥ empty effect

| x program variable

ε ::= Effects

| ε̇ effect literal

| ε1 t ε2 effect concatenation

| φ effect variable

Figure 2.4. FLOWCORE Type and Effect Syntax

in exported closures, leading to unnecessary precision loss.

2.3.2 Types, Effects and Constraints

The basic ingredients of our constraint system are types τ and effects ε. Their syntax is

described in Figure 2.4.

Types. The building blocks for constructing complex type structures are type literals

τ̇. These include primitive types b (e.g. the primitive number and void for undefined), arrow

types τ1
ε
−→ τ2 for functions, and record types {f1 : α1, . . . , fn : αn}. Arrow types are annotated

with an effect ε which describes a set of names x that may be assigned in the function’s body or

transitively in code that is executed when calling this function. A more proper introduction of

effects follows. Types also feature a binary join operator t denoting the disjunctive choice among

its operands. Finally, types are ranged over by variables α, β, etc. taken from an enumerable set

V .
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uτ ::= Type Uses

| α type variable

| Call(τ) function call

| Pred(P, τ) predicate

| Get (f, τ) field read

| Set (f, τ) field write

uε ::= Effect Uses

| φ effect variable

| Havoc (Γ) havoc

P ::= Predicates

| p primitive predicate

| ¬p primitive predicate negation

c ::= Constraints

| τ ≤ uτ type constraint

| ε ≤ uε effect constraint

Figure 2.5. FLOWCORE Constraint Syntax

Effects. The effect we are interested in tracking here is variable updates. Each language

term is associated with an effect, as we will see later in constraint generation. This is (roughly)

the set of variables that are (re)assigned within this term. The base constructors of effects are the

empty effect ⊥ and variable symbols x, corresponding to the variables that are updated. Like

types, effects also feature a join operator t denoting effectively concatenation of effects. Finally,

effects are ranged over by variables φ taken from an enumerable set E .

Environments. An environment Γ binds variables x to entries τα, meaning that its most

recent assignment was of type τ, whereas the type variable α is used as the collective summary

for all its (past, current, and future) assignments. Here τ is flow-sensitive—its value may change

from one (flow-sensitive) environment to another—whereas α is invariant. For the rest of this

section, we distinguish environment extension “Γ , x : τα ” (variable x is not bound in the original

environment Γ ), from environment update “Γ [ x 7→ τα ]” (variable xwas bound in Γ ). In certain

situations a more general form of environment entry ττ
′

might be used, i.e. using a type τ ′

instead of a type variable as the general type. This is a mere convenience and not a fundamental

difference.
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Predicates. Key to our type refining process is the notion of predicates. A predicate P is

a clause denoting a property of its implied argument. In our setting, syntactically it can be a base

predicate p or its negation. Base predicates describe properties of constructed or primitive types.

For the remaining sections we will keep these predicates abstract, but examples of these predicates

are the ones implied by checks of the form typeof ? === "string", typeof ? === "number",

?.f === "null", etc., where ? is a program variable.

Constraints. A constraint c is a “flow” from a type τ (resp. effect ε) to a type use uτ (resp.

an effect use uε). Type constraints generalize the notion of subtyping constraints. However, we

chose to enforce some structural restrictions to the forms that can appear on the right-hand side of

constraints, namely the uses. Type and effect variables can be uses themselves. We do not allow

general types and effects to appear in place of a use. Instead we introduce constructors to wrap

type or effect information regarding the operation that instigated the constraint. Uses account for

data flow through function calls (Call), control flow refinement (Pred), object operations (Get, Set)

and refinement invalidation (Havoc).

The use Call(τ), where the only valid form for τ is τ1
ε
−→ τ2 corresponds to a function call

with argument type τ1, resulting in type τ2; the effect εmodels the effect of the receiving function.

The use context Pred(P, τ) is used to refine an incoming type using predicate P, resulting in type τ.

In other words, a constraint τ0 ≤ Pred(P, τ) will only allow the parts of τ0 that satisfy P to flow

to τ. The uses for accessing and writing to a field, Get (f, τ) and Set (f, τ), are straightforward.

For example, τ0 ≤ Get (f, τ) accesses field f of τ0 and propagates the result to τ. For effects we

introduce Havoc, which takes an environment argument Γ . This flow involves variables that get

updated (as incoming effect), so that their potential refinements in Γ are invalidated. This will be

discussed later on in greater detail. The precise usage of each of these uses will become clearer in

Section 2.4.2.

2.4 Constraint System

We present the static semantics of our formal fragment by means of a constraint generat-

ing type inference scheme. Our constraints encode type safety obligations that arise as values

flow to operations through the program.
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2.4.1 Constraint Generation

The core type inference judgments for expressions and statements in FLOWCORE are:

Γ ` e : τ # ε # ψ a Γ ′ .C Γ ` s : ε a Γ ′ .C

The derivation of a judgment relies on a set of constraints C as proof obligations, which appear

on the right of the . symbol. For both expressions and statements this judgment is flow-sensitive

which is achieved by introducing an output environment Γ ′, in addition to the input environment

Γ . The set of variable names assigned in e or s is modeled by ε. The case of expressions has

two additional byproducts: a type τ and a predicate mapping ψ. The latter includes bindings

from names to predicates that must hold when e is truthy, and symbolic operations over them

(explained later):

ψ ::= ∅ empty mapping

| x 7→ P variable binding

| ψ1 ∧ψ2 conjunction

| ψ1 ∨ψ2 disjunction

| ¬ψ negation

| ψ\ε exclude effect

Below we describe in more detail the constraint generation, starting from the rules

regarding handling of variables, and function definitions and calls (Figure 2.6).

Variables. The rules for reading and assigning a local variable (CG-VAR and CG-

ASSIGN) involve looking up and updating the current type for the variable in the outgoing

environment. This part is what makes this system flow-sensitive. A flow-insensitive system would

use a single environment for each judgment. The assigned type would be merged to the same

type used for the variable under update in the first place, making it less precise. In addition,

reading a variable introduces a truthy predicate on it. This is useful under specific contexts such

as when the variable is used as the condition part of an if-branch. Conversely, writing a variable

forgets any refinement coming from expression e that concerns x.

Functions. Rule CG-FUN handles arrow functions by approximating the environment at
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Expression Constraint Generation Γ ` e : τ # ε # ψ a Γ ′ .C

Γ ` n : bn # ⊥ # ∅ a Γ .∅
[CG-CONST]

Γ(x) = τα

Γ ` x : τ # ⊥ # x 7→ truthy a Γ .∅
[CG-VAR]

Γ ` e : τ # ε # ψ a Γ ′ .C Γ ′(x) = τ0
α

Γ ` x = e : τ # εt x # ψ\x a Γ ′[ x 7→ τα ] .C∪ { τ ≤ α }

[CG-ASSIGN]

erase(Γ) = Γ0
α fresh Γ1 = Γ0, x : αα, locals(s) Γ1 ` {s; return e} : τ # ε a Γ2 .C

Γ ` (x)⇒ {s; return e} : α ε
−→ τ # ⊥ # ∅ a Γ .C

[CG-FUN]

Γ ` e1 : τ1 # ε1 # ψ1 a Γ1 .C1
Γ1 ` e2 : τ2 # ε2 # ψ2 a Γ2 .C2 α,φ fresh widen(Γ2) = Γ3 .Cw

ε1 t ε2 tφ = ε C1 ∪C2 ∪Cw ∪
{
φ ≤ Havoc (Γ3) , τ1 ≤ Call(τ2

φ
−→ α)

}
= C

Γ ` e1(e2) : α # ε # ∅ a Γ3 .C
[CG-CALL]

Figure 2.6. Expression Constraint Generation in FLOWCORE (Variables and Functions)

the beginning with the flow-insensitive erasure of the current environment (since we do not know

where this function will be called). The meta-function erase computes this new environment

by mapping each x : τα to x : αα (Figure 2.7). In addition, to capture the hoisting of variables

defined within the scope of the function to the beginning of the function body, we introduce

the meta-function locals that takes as argument a statement and returns a mapping of all local

variables to the undefined type. The inferred arrow type carries the effect of the body of the

function. Note that due to α-renaming we retain full precision even though we are including the

symbol x of the function’s parameter in effect ε (in the event that it gets updated in the arrow

body). The reason is that by performing this transformation, identifier x cannot appear outside

the scope of the arrow function. As such it cannot affect the refining process. As an optimization

we could consider removing it to keep our effect as minimal as possible.

Calls. Rule CG-CALL handles calls. We approximate the outgoing environment with a

flow-sensitive widening of the current environment (instead of pessimistically erasing everything

in scope). The meta-function widen (Figure 2.7) computes this new environment Γ ′ by mapping

each x : τα to x : βα where β is a fresh type variable such that τ ≤ β ≤ α. For any variable x that
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Erase erase(Γ) = Γ ′

erase(·) = ·
[T-ERASE-E]

erase(Γ) = Γ ′

erase(Γ , x : τα) = Γ ′, x : αα
[T-ERASE-C]

Widen widen(Γ) = Γ ′ .C

widen(·) = · .∅
[T-WIDEN-E]

widen(Γ) = Γ0 .C0 β fresh

widen(Γ , x : τα) = Γ0, x : βα .C0 ∪ { τ ≤ β, β ≤ α }
[T-WIDEN-C]

Figure 2.7. Auxiliary Meta-functions for Function Logistics in FLOWCORE

gets assigned during the function call, we must fall back to its erasure, i.e. we must flow α to

β. For now this is achieved by flowing the effect φ of the call to Havoc (Γ ′). The actual erasure

happens later at constraint propagation (Section 2.4.2). At this point, the type of the receive

function is not known, so the incoming effect remains abstract. As we show in Section 2.4.2,

when a function type flows to Call(τ2
φ
−→ α), the effect φ is instantiated with the actual effect

variables x carried over by the incoming function type. These variables trigger the erasure.

Environment Operations. Before delving into the remaining typing rules, we introduce

some operations on environments (Figure 2.8).

Environment join (t) is a commutative operator that computes the least upper bound of a

pair of environments with the same domain. Type entries bound to the same symbol in the input

environments need to refer to the same program variable. This requirement allows us to assume

that the general type of a variable x bound in both environments will be the same.

The next operation we define is environment refinement (::). The semantics of a refinement

ψ is defined by how it refines environments, i.e. a constraint-producing judgment of the form

Γ :: ψ = Γ ′ .C, where an environment Γ is strengthened by the predicates in ψ and result in an

environment Γ ′, potentially including fresh variables that are constrained in C. When ψ is x 7→ P,

we update the relevant binding in the environment Γ to a fresh type β that is the result of the

predicate refinement of the initial type τ with P (Rule ENV-REF-BIND). The rules that handle the

typical logical operators (ENV-REF-AND and ENV-REF-OR) are straightforward. The latter rule
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Environment Join Γ1 t Γ2 = Γ

· t · = ·
[ENV-JOIN-E]

Γ1 t Γ2 = Γ

(Γ1, x : τ1α)t (Γ2, x : τ2α) = Γ , x : (τ1 t τ2)α
[ENV-JOIN-C]

Environment Refinement Γ :: ψ = Γ ′ .C

Γ :: ∅ = Γ .∅
[ENV-REF-E]

Γ(x) = τα β fresh

Γ :: x 7→ P = Γ [ x 7→ βα ] . { τ ≤ Pred(P, β) }
[ENV-REF-BIND]

Γ :: ψ1 = Γ1 .C1 Γ1 :: ψ2 = Γ2 .C2

Γ :: (ψ1 ∧ψ2) = Γ2 .C1 ∪C2
[ENV-REF-AND]

Γ :: ψ1 = Γ1 .C1 Γ :: ψ2 = Γ2 .C2 Γ1 t Γ2 = Γ3

Γ :: (ψ1 ∨ψ2) = Γ3 .C1 ∪C2
[ENV-REF-OR]

Γ :: ψ = Γ1 .C1 widen(Γ1) = Γ2 .C2 Γ3 = { x : βτ | x : τα ∈ Γ , x : βα ∈ Γ2 }

Γ :: ψ\ε = Γ2 .C1 ∪C2 ∪ { ε ≤ Havoc (Γ3) }
[ENV-REF-EFF]

Figure 2.8. Auxiliary Environment Operations in FLOWCORE

depends on environment joins that were introduced earlier.

Refinements can be invalidated by effects. In Rule ENV-REF-EFF, we first refine Γ by ψ,

and then apply the effect ε through the “havoc” mechanism on the resulting environment Γ1.

There is a slight discrepancy in the way this mechanism is applied in this case, since we only

want to revert the effect of the refinement caused by ψ, and not fall back to the most general type.

If “havoc” is triggered, then for every variable x bound in Γ3, that happens to reach effect ε, we

only flow type τ (that xwas bound to in Γ before the refinement) to β, instead of the most general

type α.

Finally, we can have refinements with logical connectives. The negation of x 7→ P is

simply x 7→ ¬P. Otherwise, we push negations inward as much as possible, by applying the
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Expression Constraint Generation Γ ` e : τ # ε # ψ a Γ ′ .C

Γ ` e1 : τ1 # ε1 # ψ1 a Γ1 .C1
Γ1 :: ψ1 = Γ ′1 .C2 Γ ′1 ` e2 : τ2 # ε2 # ψ2 a Γ2 .C2

α1,α fresh (ψ1\ε2) ∧ ψ2 = ψ Γ1 :: ¬ψ1 = Γ ′′1 .C4 Γ ′′1 t Γ2 = Γ ′

Γ ` e1 && e2 : α1 t τ2 # ε1 t ε2 # ψ a Γ ′ .
⋃
Ci ∪ { τ1 ≤ Pred(falsy, α1) }

[CG-AND]

Γ ` e1 : τ1 # ε1 # ψ1 a Γ1 .C1
Γ1 :: ¬ψ1 = Γ ′1 .C2 Γ ′1 ` e2 : τ2 # ε2 # ψ2 a Γ2 .C3

α1,α fresh (ψ1\ε2)∨ψ2 = ψ Γ1 :: ψ1 = Γ ′′1 .C4 Γ ′′1 t Γ2 = Γ ′

Γ ` e1 || e2 : α1 t τ2 # ε1 t ε2 # ψ a Γ ′ .
⋃
Ci ∪ { τ1 ≤ Pred(truthy, α1) }

[CG-OR]

Γ ` e : τ # ε # ψ a Γ ′ .C

Γ ` ! e : boolean # ε # ¬ψ a Γ ′ .C
[CG-NOT]

Γ ` p(x) : boolean # ⊥ # x 7→ p a Γ .∅
[CG-PRED]

Figure 2.9. Expression Constraint Generation in FLOWCORE (Logical Operations)

following laws:

¬(ψ1 ∧ψ2) = ¬ψ1 ∨¬ψ2

¬(ψ\ε) = ¬ψ\ε

¬(ψ1 ∨ψ2) = ¬ψ1 ∧¬ψ2

¬(¬ψ) = ψ

Logical operations. The typing rules of Figure 2.9 are interesting for their effect on

predicate refinement.

In Rule CG-AND, e2 is analyzed under the refinement ψ1 (since otherwise it would not

be evaluated). The type inferred for the entire expression contains components from both e1 and

e2. From the former is contains type α1 that is a version of τ1 refined by the falsy predicate, since

it corresponds to the case where e1 is actually falsy. From the latter it includes the type τ2 as

is. For the output environment we follow a similar strategy. The component that corresponds

to e1’s output environment will be refined with ¬ψ1, since otherwise we would be using the

environment corresponding to e2. With respect to the output predicate mapping, parts of ψ1

that apply on names written in e2 are forgotten when taking the conjunction with ψ2.
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Expression Constraint Generation Γ ` e : τ # ε # ψ a Γ ′ .C

Γ ≡ Γ0 ∀i ∈ [1,n] . Γi−1 ` ei : τi # εi # ψi a Γi .Ci αi fresh

Γ ` {f1: e1, . . . , fn: en} : {f1 : α1, . . . , fn : αn} #
⊔
εi # ∅ a Γn .

⋃
Ci ∪

⋃
{ τi ≤ αi }

[CG-REC]

Γ ` e : τ # ε # ψ a Γ ′ .C α fresh

Γ ` e.f : α # ε # ∅ a Γ ′ .C∪ { τ ≤ Get (f,α) }
[CG-FLDRD]

Γ ` e1 : τ1 # ε1 # ψ1 a Γ1 .C1 Γ1 ` e2 : τ2 # ε2 # ψ2 a Γ2 .C2

Γ ` e1.f = e2 : τ2 # ε1 t ε2 # ∅ a Γ2 .C1 ∪C2 ∪ { τ1 ≤ Set (f, τ2) }
[CG-FLDWR]

Figure 2.10. Expression Constraint Generation in FLOWCORE (Records)

Rule CG-OR is the dual of the above rule, and works similarly. Finally, rules CG-

NOT and CG-PRED are straightforward. The former just negates the refinement and the latter

introduces a refinement from a runtime test p.

Records. The rules of Figure 2.10 for record type inference are mostly routine. During

record creation the initializer types flow to the newly constructed record literal type. Subsequent

assignments of type τ to a field fwiden the type of f by introducing flows to the use Set (f, τ).

In practice, Flow follows a slightly stricter approach. It “fixes” the type of an object at

initialization and checks that all subsequent writes adhere to this type. This essentially amounts

to checking for type annotations which is out of scope in this section of type inference.

Statements. The main difference compared to the respective expression rule is the

omission of the assigned type and the refinement. Rule CG-VARDECL is a simplified version of

the assignment rule seen earlier. Rule CG-IF handles conditional statements. This rule uses the

refinement ψ for the conditional expression e to refine the environments that are used to check

each branch, with the appropriate sign in each case. The output environment is the join of the

environments at the end of each branch.

Example

We now examine how the rules of Figures 2.6 – 2.11 handle the code in lines 13 – 37 in

Figure 2.2. In the following we keep the produced type bindings on the left and constraint sets

on the right. Whenever, a general type (exponent) is not made explicit, this means that it’s not
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Statement Constraint Generation Γ ` s : ε a Γ ′ .C

Γ ` e : τ # ε # ψ a Γ ′ .C

Γ ` e : ε a Γ ′ .C
[CG-EXP]

Γ ` e : τ # ε # ψ a Γ ′ .C Γ ′(x) = τ0
α

Γ ` var x = e : εt x a Γ ′[ x 7→ τα ] .C∪ { τ ≤ α }

[CG-VARDECL]

Γ ` e : τ # ε # ψ a Γ ′ .C1 Γ ′ :: ψ = Γ1 .C2 Γ1 ` s1 : ε1 a Γ ′1 .C3
Γ ′ :: ¬ψ = Γ2 .C4 Γ2 ` s2 : ε2 a Γ ′2 .C5 Γ ′1 t Γ ′2 = Γ ′′ α fresh

Γ ` if (e) {s1} else {s2} : εt ε1 t ε2 a Γ ′′ .
⋃
Ci

[CG-IF]

Γ ` s1 : ε1 a Γ1 .C1 Γ1 ` s2 : ε2 a Γ2 .C2

Γ ` s1; s2 : ε1 t ε2 a Γ2 .C1 ∪C2
[CG-SEQ]

Figure 2.11. Statement Constraint Generation in FLOWCORE

important for that particular binding. Also, to avoid clutter, we do not define a new environment

for each program point, but rather introduce different versions for variables that get updated or

refined.

By applying Rule CG-REC on line 13:

nil : {kind : α1} C ⊇ { "nil" ≤ α1 } (2.1)

Here, "nil" is the string literal type denoting the exact string "nil". For the function cons

(lines 14 – 16) we get

cons : (α2, α3)→ O C ⊇ { "cons" ≤ α4, α2 ≤ α5, α3 ≤ α6 } (2.2)

where O .
= {kind : α4, head : α5, tail : α6}. We also define τcons

.
= (α2, α3) → O. The

function’s effect is empty, so omitted here. Moving on to function sum, before checking its body

we introduce bindings for the (recursive) function itself and its parameter:

sum : α7 → τr, list : α7 (2.3)
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We define τsum
.
= α7 → τ5. Checking the conditional in line 19, list gets a more precise type,

and is referred to as line1 inside the then-branch:

list1 : β7 C ⊇ {α7 ≤ Pred(pc, β7) } (2.4)

Here, pc
.
= ?.kind === "cons" is the predicate of exact equality of the field kind with the string

"cons". The uses of list in line 20 produce the following constraints (here we focus on the

interesting uses i.e. the two field accesses and the call):

C ⊇


β7 ≤ Get (head,γ1),

β7 ≤ Get (tail,γ2),

τsum ≤ Call(γ2 → δ1)

 (2.5)

We omit the constraints pertinent to the return statements, since they are not crucial in this

example. The compound calls in line 25 further produce the constraints (starting from deeper

nesting levels):

C ⊇ { τcons ≤ Call((number, {kind : α1})→ δ2) } (2.6)

C ⊇ { τcons ≤ Call((number, δ2)→ δ3) } (2.7)

C ⊇ { τsum ≤ Call(δ3 → δ4) } (2.8)

In function merge, let x1 correspond to the initial value for x and x2 to the value after the update

in line 28. Below, the first three constraints correspond to the use of the || operator and the last

one to the field access in line 29:

x1 : α8α8 , x2 : α11α8 C ⊇


α8 ≤ Pred(truthy, β8),

β8 t τnil ≤ α11,

α11 ≤ Get (kind,α10)

 (2.9)
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Finally, function havoc in lines 32–37 is similar to merge (so we won’t repeat the common parts),

but additionally, defines a function reset, that assigns null to x. Crucially, the type of x inside

reset has been erased to α8:

reset : () x
−→ void C ⊇ { null ≤ α8 } (2.10)

This time the call to reset in line 35 needs to handle the function’s effect, so a fresh variable φ is

generated:

C ⊇

 ()
x
−→ void ≤ Call(()

φ
−→ void),

φ ≤ Havoc (Γ [ x 7→ α11
α8 ])

 (2.11)

For the moment, we have merely constructed a flow network, but haven’t reached

any critical conclusions. In the next section, we’ll see how we can use these facts to discover

inconsistencies, and what guarantees we get if we don’t find any.

2.4.2 Propagation

Thinking of our system as a dataflow analysis framework, constraint generation amounts

to setting up a flow network. The next step is to allow the system to stabilize under a set of

appropriate flow functions. This latter part is called constraint propagation and corresponds

to exploring all potential data-flow paths and finding inconsistencies in them. Decomposing

complex constraints intro simpler ones is done by the rules shown in Figure 2.12. We say that a

constraint set C is in closed form, if it is closed with respect to these rules. In practice, we keep

our constraint sets in closed form at all times during constraint generation; that is, for every new

constraint that gets generated, we apply all eligible propagation rules until we reach a fixpoint.

If we consider the elements of C as subtyping constraints, then these rules amount to

subtyping rules. Rules CP-TRANS-T and CP-TRANS-E express transitivity for types and effect

accordingly. CP-JOIN-T and CP-JOIN-E decompose as usual flows from joins of elements.

Rule CP-CALL decomposes a flow of an arrow type to a calling context, into flows of

(i) the argument’s type τ ′1 to the parameter type τ1, (ii) the return type τ2 to the call-site’s type

τ ′2, and (iii) the function’s effect ε to the call’s effect ε ′. This last byproduct often triggers the

“havoc” mechanism, which carries out the task of applying a function’s effect on the variables

that are updated by it.



42

{ τ ≤ α, α ≤ uτ } ⊆ C =⇒ τ ≤ uτ ∈ C (CP-TRANS-T)

{ ε ≤ φ, φ ≤ uε } ⊆ C =⇒ ε ≤ uε ∈ C (CP-TRANS-E)

τ1 t τ2 ≤ uτ ∈ C =⇒ { τ1 ≤ uτ, τ2 ≤ uτ } ⊆ C (CP-JOIN-T)

ε1 t ε2 ≤ uε ∈ C =⇒ { ε1 ≤ uε, ε2 ≤ uε } ⊆ C (CP-JOIN-E)

τ1
ε
−→ τ2 ≤ Call(τ ′1

ε ′
−→ τ ′2) ∈ C =⇒ {

τ ′1 ≤ τ1, τ2 ≤ τ ′2, ε ≤ ε ′
}
⊆ C (CP-CALL)

x ≤ Havoc (Γ , x : τα) ∈ C =⇒ α ≤ τ ∈ C (CP-HAVOC)

τ̇ ≤ Pred(P, α) ∈ C∧ check (τ̇, P) =⇒ τ̇ ≤ α ∈ C (CP-P-BASE){
τ ≤ α, τ ′〈α〉+ ≤ Pred(P, β)

}
⊆ C =⇒ τ ′〈τ〉+ ≤ Pred(P, β) ∈ C (CP-P-TRANS)

{. . . , f : α, . . . } ≤ Get (f,β) ∈ C =⇒ α ≤ β ∈ C (CP-GET)

{. . . , f : α, . . . } ≤ Set (f, τ) ∈ C =⇒ τ ≤ α ∈ C (CP-SET)

Figure 2.12. Constraint Propagation in FLOWCORE

In particular, Rule CP-HAVOC, handles the case where a concrete effect, i.e. a variable

x (that gets updated in a function), reaches a havoc operation (generated at a call site) on an

environment with a binding on x (that is the environment at the call site). Effectively, this

corresponds to erasing the type of the binding x : τα, by generating a flow from the flow-

insensitive type α to τ. Note that this process may happen far away from the actual call-cite,

which exemplifies the global character of the type inference. An observant reader might notice

that a generated constraint of the form α ≤ τ violates our restriction on the form of constraints,

namely that the right-hand side cannot be a general type τ. However, we have been careful

when populating the arguments of the Havoc constructor. In both cases where it is introduced

(CG-CALL and ENV-REF-EFF) it happens after a widening operation, which guarantees that

the special type of an environment entry (and hence the right-hand side of the havoc-induced

constraint) is a type variable.

Rule CP-P-BASE handles predicate refinement. The intuition here is that τ̇ should

flow to α, if it succeeds in the check implied by P, i.e. if check (τ̇, P) is true. We have kept the

representation of base predicates abstract, and so we will do with the definition of check. In
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general, check should be able to decide if τ̇ satisfies P by inspecting its top-level constructor (for

checks like typeof ? === "string"), or by inspecting the type of some of τ̇’s fields.

Rule CP-P-TRANS is a technical one. It allows parts of types under refinement to be

concretized. In τ ′〈α〉, the form τ ′〈〉 is a type context, i.e. a type with a “hole” that is filled in with

α, for example {f : 〈〉}. While rule CP-TRANS-T will fail to instantiate α, CP-P-TRANS allows

type variables appearing under a type constructor (e.g. the object constructor) to be instantiated.

However, not all substitutions are allowed, but only the ones where α is in a positive position

with respect to type polarity [83, 29]. Section A.1.3 in the Appendix includes a formal definition of

polarity and type contexts. The reason we require type variable α to appear in a positive position

is to abide by our restriction that type joins cannot appear at the right-hand side of constraints.

If we allowed the replacement of α from τ in any part of τ ′, this could potentially break this

invariant in a later propagation. We will also see the importance of this rule in the upcoming

example.

Finally, Rules CP-GET and CP-SET handling record field access and update are standard.

2.4.3 Consistency

The goal of running constraint generation and propagation is to eventually discover

inconsistencies in the saturated constraint set. These effectively correspond to potential bugs

in the use of the various operators, for example they could correspond to the case of a non-

function value reaching the receiver position of a call. Below we present a formal description of

consistency.

Definition 2.4.1 (Consistency). A closed constraint set is consistent if it does not contain any con-

straints in one of the forms:

• τ̇ ≤ Call(τ ′) where τ̇ is not an arrow type (or an arrow-like type, e.g. the types of constructors

objects in JavaScript). If a flow of this form is produced it would mean that a function call could be

attempted with at non-function receiver.

• τ̇ ≤ Set (f, τ) or τ̇ ≤ Get (f, τ) where τ̇ is not an record type literal (or an object-like type)

containing f.

If our analysis finds an inconsistency, then this leads to an error report. Otherwise, if no

inconsistency can be found then the input program enjoys the safety guarantees of Theorem 2.2.
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Example

We continue where we left off in example of Section 2.4.1, by applying the rules from

Figure 2.12 on C, in order to discover inconsistencies or prove the absence thereof.

Use of predicates. We start by applying CP-CALL on calls (2.5), (2.6), (2.7), (2.8), and

the respective function definitions:

C ⊇ {γ2 ≤ α7, τr ≤ δ1 } (2.12)

C ⊇ { number ≤ α2, {kind : α1} ≤ α3, O ≤ δ2 } (2.13)

C ⊇ { number ≤ α2, δ2 ≤ α3, O ≤ δ3 } (2.14)

C ⊇ { δ3 ≤ α7, τr ≤ δ4 } (2.15)

Now lets focus on the interesting case of handling the getters of (2.5). By transitivity

(CP-TRANS-T ) using (2.14), (2.15) and (2.4), the record type O flows to the predicate use:

C ⊇ { {kind : α4, head : α5, tail : α6} ≤ Pred(pc, β7) } (2.16)

We use Rule CP-P-TRANS on (2.2) and (2.16) to obtain:

C ⊇ { {kind : "cons", head : α5, tail : α6} ≤ Pred(pc, β7) } (2.17)

This is now a successful test since the string literal type "cons" of field kind satisfies pc and so:

C ⊇ { {kind : "cons", head : α5, tail : α6} ≤ β7 } (2.18)

Flow has thus discovered a path in which a “cons” object reaches the field accesses of line 20.

However, this latest constraint has enabled new flows that could potentially cause inconsistencies,

for example the recursive calls to sum on the tail of list. By (2.18) and (2.5), and applying

CP-TRANS-T and CP-GET:

C ⊇ {α6 ≤ γ2 } (2.19)
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Indeed, by combining (2.13), (2.2), (2.19), (2.12) and (2.4) with CP-TRANS-T and the result

with (2.1) with CP-P-TRANS :

C ⊇ { {kind : "nil"} ≤ Pred(pc, β7) } (2.20)

This test, however, will fail, as it would at runtime, and so the “nil” object will not reach the

getter for head or tail through α6. Without the predicate refinement filtering out “nil” objects,

we would have introduced a spurious error.

Refinements and Mutation. Last, we illustrate how Flow handles functions merge and

havoc. We start by processing (2.11) with CP-CALL and then CP-HAVOC , which yields

C ⊇ {α8 ≤ α11 } (2.21)

This allows the null from the reset function to find its way to α11 from (2.10) and from there to

the “get” operation through (2.9):

C ⊇ { null ≤ Get (kind,α10) } (2.22)

This latter constraint signals a consistency violation, keeping Flow sound with respect to variable

updates that invalidate prior refinements.

2.5 Runtime Semantics

Before we describe our safety result (Section 2.6) we present the runtime semantics for

the formal fragment of Section 2.3. The semantics presented here is heavily based on that used

by Rastogi et al. [87] that cover a subset of JavaScript, emphasizing on features of interest in each

case, while abstracting away non-crucial features.

Runtime Values. Figure 2.13 contains the definitions for the runtime configurations. To

account for heap-allocated values, we introduce locations ` that index runtime heaps. Together

with constants they synthesize runtime values, which are normal form as far as execution is

concerned.

Runtime State. There are three constituent parts that compose a runtime state S. The first

part is the heapH, which includes bindings from locations to heap values v̇, which in turn are either
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e ::= . . . Runtime Expressions

| ` location

v ::= Values

| n constant

| ` location

v̇ ::= Heap Values

| v value

| 〈L, (x)⇒ {s; return e}〉 closure

| {f1: v1, . . . , fn: vn} heap object

E ::= 〈 〉 | x =E | E(e) | `(E) Evaluation Contexts

| E && e | E || e | !E

| {f1: v1, . . . , fk:Ek, . . . , fn: en}

| E.f | E.f = e | v.f = E

| var x =E | if (E) {s1} else {s2}

| return E | E; s

H ::= · | H, ` 7→ v̇ Heaps

X ::= · | X, L.E Stacks

L ::= · | L, x 7→ ` Stores

S ::= 〈H; X; L〉 States

R ::= S; e | S; s | S; M Configurations

Figure 2.13. Runtime Definitions in FLOWCORE

values, closures, or heap objects. A closure is a pair containing a store L that binds all external

variables available at the point of definition of the arrow function (capture by reference), and the

function’s code, which is a statement succeeded by a returned expression. The second part of the

runtime state is the stack X, that contains a list of stack frames. Each stack frame includes a store

containing the variables bound in the stack frame at the time execution left that frame, and an

evaluation context E that holds the context that execution would jump into when returning to

that stack frame. Evaluation contexts are defined in the usual way having the same structure

as expressions or statements but with a hole 〈 〉 at the position of the term that is about to be

evaluated next. Finally, the runtime state includes a store L, that comprises bindings of variable
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names to locations to allow closure to capture values by reference.

Runtime Configurations. We write our runtime configurations S (i.e. programs under

execution) as pairs that contain a runtime state S, and a language term, which can either be

an expression e, a statement s, or a function body {s; return e}. We conflate the notions of

expressions and function bodies into a common notion using the symbolM, for compactness in

stating our results.

2.5.1 Reduction Rules

Figures 2.14 and 2.15 contain a small-step operational semantics for programs in FLOW-

CORE. The rules can have the following forms:

S; e −→ S ′; e ′ S; s −→ S ′; s ′

Next we describe some of the most interesting rules. Rule RT-VAR shows the indirection

in dereferencing variables. First the store L is looked up and then the resulting location is used to

access the heapH. Similarly variable right have to go through the same process in Rule RT-ASGN.

When evaluating arrows, the current store R.L is saved as part of the created closure,

along with the code of the function (Rule RT-ARROW). This store is restored when the function is

called (Rule RT-CALL). The new store L ′ that will be used in the new stack frame also includes

a binding for the function parameter x and bindings from all variables xi defined in the body

M, since their definition is hoisted to the top of the function body. We use metavariable locals to

extract these variables. All new variables are bound to fresh locations `i. Locals have not been

initialized yet, so their corresponding locations are bound to undefined in the initial heap H ′.

The rest of the expression reduction rules are routine.

2.6 Metatheory

In order to prove type safety for our type system we first introduce a declarative type

system that corresponds closely to the type inference system described in Section 2.4. Based

on the declarative system we then formulate a type safety argument for the above language

fragment via a progress and a preservation theorem [112], that connect type checking with the

runtime semantics of Section 2.5. Essentially, we establish the fact that if a program has been
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Expression Reduction Rules S; M −→ S ′; M ′

〈H; ·; L〉; e −→ 〈H ′; ·; L ′〉; e ′
〈H; X; L〉; E〈e〉 −→ 〈H ′; X; L ′〉; E〈e ′〉 [RT-ECTX]

S; x −→ S; S.H(S.L(x))
[RT-VAR]

H ′ = H[L(x) 7→ v ]

〈H; X; L〉; x = v −→ 〈H ′; X; L〉; v [RT-ASGN]

` fresh H ′ = H, ` 7→ 〈S.L, (x)⇒M〉

S; (x)⇒M −→ S /H ′; `
[RT-ARROW]

H(`) = 〈L0, (x)⇒M〉 ` ′, `i fresh xi = locals(M)

H ′ = H, ` ′ 7→ v, `i 7→ undefined X ′ = X, L.E L ′ = L0, x 7→ ` ′, xi 7→ `i

〈H; X; L〉; E〈`(v)〉 −→ 〈H ′; X ′; L ′〉; M [RT-CALL]

S ≡ 〈H; X; L〉 v̇ = H(L(x))

S; p(x) −→ S; δp(v̇)
[RT-PRED-VAR]

truthy(v)

S; v && e −→ S; e
[RT-AND-TRU]

falsy(v)

S; v && e −→ S; v
[RT-AND-FLS]

truthy(v)

S; v || e −→ S; v
[RT-OR-TRU]

falsy(v)

S; v || e −→ S; e
[RT-OR-FLS]

v ′ = ¬toBool(v)

S; ! v −→ S; v ′
[RT-NEG]

` fresh H ′ = H, ` 7→ {f1: v1, . . . , fn: vn}

S; {f1: v1, . . . , fn: vn} −→ S /H ′; `
[RT-RECORD]

S.H(`) = {fi: vi, f: v, fj: ej}

S; `.f −→ S; v
[RT-FLDRD]

H ′ = S.H[ ` 7→ S.H(`)[ f 7→ v ] ]

S; `.f = v −→ S /H ′; v
[RT-FLDWR]

Figure 2.14. Operational Semantics of FLOWCORE (Expressions)

checked with the above algorithm and has been found consistent, then its execution will not lead

to uncaught type errors (e.g. “undefined is not a function”).
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Statement Reduction Rules S; s −→ S ′; s ′

H ′ = H[ ` 7→ v ]

〈H; X; L〉; var x = v −→ 〈H ′; X; L〉; skip [RT-LET]

truthy(v)

S; if (v) {s1} else {s2} −→ S; s1

[RT-IF-TRU]

falsy(v)

S; if (v) {s1} else {s2} −→ S; s2

[RT-IF-FLS]

S.X = X ′, L.E S ′ = S.H; X ′; L

S; return v −→ S ′; E〈v〉
[RT-RET]

S; skip; s −→ S; s
[RT-SKIP]

Figure 2.15. Operational Semantics of FLOWCORE (Statements)

2.6.1 Declarative Type System

This system assigns concrete types, i.e. types stripped off of type variables, to expressions

and statements of FLOWCORE. In the following, the environments ∆ and G both map variables

to concrete types (not type entries like before). ∆ has the same flow-sensitive behavior as before,

while G is a flow-insensitive environment providing the most general type for each variable. The

typing judgments for expressions and statements are:

∆ # G 
 e : τ # ε # ψ 
∆ ′ ∆ # G 
 s : ε 
∆ ′

The respective rules for these judgments are unsurprising and therefore deferred to Section A.2

of the appendix.

A substitution ρmaps type variables to concrete types, and is extended to environments

in a point-wise manner. In Section A.1 we introduce subtyping for concrete types, which helps

us map constraints c through a substitution ρ to subtyping relations over concrete types. We say

that a substitution ρ satisfies a constraint set C if all subtyping constraints generated by mapping

ρ over C are valid. In this case we write ρ ` C.
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We argue about the soundness of our type inference system with respect the declarative

system with the following lemma.

Lemma 2.1 (Type Inference Soundness). If

(i) Γ ` e : τ # ε # ψ a Γ ′ .C

(ii) ρ ` C

then ρ (Γ) 
 e : ρ (τ) # ρ (ε) # ψ 
ρ (Γ ′).

2.6.2 Type Safety

Before we state our type safety result for the declarative type system, we extend the

type checking judgment to runtime configurations: G 
Σ S; e : τ. Here G is a flow-insensitive

environment mapping variables to their most general type throughout the entire program. The

judgment is to be read as: under a heap typing Σ, mapping heap locations to types and a flow-

insensitive environment G, a configuration S; e is a assigned a type τ. Now we can finally state

our type safety result.

Theorem 2.2 (Type Safety). For a configuration S; e and heap typing Σ, if G 
Σ S; e : τ, then:

• (Preservation) If S; e −→ S ′; e ′ , then there exists Σ ′, such that G 
Σ ′ S ′; e ′ : τ ′.

• (Progress) Either e is a normal form, or there exists a configuration S ′; e ′ such that S; e −→ S ′; e ′ .

Proof for the results of this section along with supporting lemmas can be found in the

appendix.

2.7 Implementation of Type Inference

The implementation of Flow represents constraint sets as graphs, so we will use the terms

constraint set and constraint graph interchangeably. In this section, we briefly discuss issues that

arise from the representation of the constraint graph that enables an efficient computation of its

closure, and conclude with a brief note on performance.

Implementing Unification. Let us refer to type and effect variables as “unknowns.”

Following Pottier [84], the constraint graph maps each unknown to a set of lower bounds and a

set of upper bounds, each of which contains the unknown itself. The transitive propagation rules

are specialized to exploit this structure to efficiently keep the constraint graph in closed form.
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However, equality constraints are quite inefficient in this system: they are represented

as a pair of subset constraints, which causes a cubic blowup in the transitive propagation rules.

On the other hand, equality constraints are quite useful and common in Flow. They arise due to

invariant typing of object properties, array elements, and type arguments of polymorphic classes.

They directly model equations expressed by type aliasing. Finally, even though we formalize

CP-HAVOC with a constraint of the form α ≤ τ, we can replace it without loss of generality with

α = τ.

To address the inefficiency, we generalize the constraint graph by considering each

unknown to be in an equivalence class containing other unknowns it is unified with, and

mapping each equivalence class to either “unresolved” bounds (as in Pottier), or to a “resolved”

type or effect (as in unification). The transitive propagation rules generalize in a straightforward

way. Overall, this simple optimization leads to O(n) reduction in space and time complexity.

A note on performance. Behind the scenes, Flow relies on set-based analysis as a

common low-level “assembly language” for encoding a wide variety of high-level analyses.

Compared with pure unification, this affords far more precision, but is much less efficient (quasi-

cubic vs. quasi-linear in program size). The key to Flow’s speed is modularity: the ability to

break the analysis into file-sized chunks that can be assembled later.

Fortunately, JavaScript is already written using files as modules, so we modularize our

analysis simply by asking that modules have explicitly typed signatures. (We still infer types

for the vast majority of code “local” to modules.) Coincidentally, developers consider this good

software engineering practice anyway.

With modularity, we can aggressively parallelize our analysis. Furthermore, when files

change, we can incrementally re-analyze only those files that depend on the changed files, and

avoid re-analysis when their typed signatures have not changed. Together, these choices have

helped scale the analysis to millions of lines of code.

Under the hood, Flow relies on a high-throughput low-latency systems infrastructure that

enables distribution of tasks among parallel workers, and communication of results in parallel

via shared memory. Combined with an architecture where the analysis of a codebase is updated

automatically in the background on file system changes, Flow delivers near-instantaneous

feedback as the developer edits and rebases code, even in a large repository.
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2.8 Related Work

Work that directly relates to the tool and type checking techniques described in this

chapter were discussed in Section 1.3.2. In this section we focus on two relevant topics that were

not covered in the introduction: JavaScript semantics and constraint simplification.

JavaScript Semantics. The runtime semantics presented in Section 2.5 was adapted from

the work of Rastogi et al. [87]. However, providing a complete, sound, thoroughly tested and

executable semantics for a rapidly evolving language like JavaScript is a challenging task. Below

we outline a brief overview of some of the main efforts to undertake it.

Early work by Herman and Flanagan [56] used ML as the specification language. How-

ever, they targeted ECMAScript 4, which was never approved as a standard. Maffeis et al. [70]

define a non-mechanized semantics that covers almost all of ECMAScript 3. While handling

a large portion of the language specification, this work lacks extensibility since any change to

the semantics would have to be manually patched and so any comparison to implementation

is impossible. Building up on this last work, Gardner et al. [45] reason about complex features

of JavaScript by adapting ideas from separation logic and prove their reasoning sound. Guha

et al. [50] present λJS, a small-step operational semantics for a core of JavaScript, to which they

desugar ES3 code. This is extended to ES5 by Politz et al. [82], by accounting for accessors and

eval.

Recent efforts focus on providing mechanized specifications of JavaScript. Bodin et al.

[12] formulate the ES5 specification in the Coq proof assistant (JSCert) and extract a reference

interpreter to OCaml (JSRef). Proving the interpreter correct with respect to the specification

involved a considerable amount of labor. Park et al. [79] promise a more modest development

effort. They provide a complete and executable semantics for ES5 (KJS) that uses the K frame-

work [93]. Unlike previous work, KJS passes all of the core languages tests and offers modularity

and extensibility.

Constraint Simplification. In Section 1.3.1 we discussed the foundations of constraint

type inference [4, 106, 83, 37]. These research directions already include several simplification

techniques [33, 37]. To further improve performance of inclusion constraint analyses, Fähndrich

et al. [34] propose a technique for eliminating cycles in constraint graphs that is based on a

non-standard graph representation called inductive form, and only traverses part of the paths
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during the search for cycles. To address the problem of redundant paths in a constraint graph,

Su et al. [98] propose projection merging, a technique intended to be used in conjunction with the

above. In contrast, we directly implement unification constraints using union-find over a base

representation of inclusion constraints.
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Chapter 3

Trust, but Verify: Two-Phase Typing for Dy-
namic Languages

Higher-order constructs are increasingly adopted in dynamic scripting languages, as they

facilitate the production of clean, correct and maintainable code. Consider, for example, the

following (first-order) JavaScript function

1 function minIndexFO(a) {
2 if (a.length <= 0)
3 return -1;
4 var min = 0;
5 for (var i = 0; i < a.length; i++) {
6 if (a[i] < a[min])
7 min = i;
8 }
9 return min;

10 }

which computes the index of the minimum value in the array a by looping over the array,

updating the min value with each index i whose value a[i] is smaller than the “current” a[min].

Modern dynamic languages let programmers factor the looping pattern into a higher-order

_reduce function (Figure 3.1), which frees them from manipulating indices and thereby prevents

the attendant “off-by-one” mistakes. Instead, the programmer can compute the minimum index

by supplying an appropriate f to reduce as in minIndex also shown in Figure 3.1.

This trend towards abstraction and reuse poses a challenge to static program analyses:

how to precisely trace value relationships across higher-order functions and containers? A variety of

dataflow- or abstract interpretation- based analyses could be used to verify the safety of array

accesses in minIndexFO by inferring the loop invariant that i and min are between 0 and a.length.

54
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11 function _reduce(a, f, x) {
12 var res = x;
13 for (var i = 0; i < a.length; i++)
14 res = f(res, a[i], i);
15 return res;
16 }
17

18 function reduce(a, f, x) {
19 if (arguments.length === 3)
20 return _reduce(a, f, x);
21 return _reduce(a.slice(1), f, a[0]);
22 }
23

24 function minIndex(a) {
25 if (a.length <= 0)
26 return -1;
27 function step(min, cur, i) {
28 return cur < a[min] ? i:min;
29 }
30 return reduce(a, step, 0);
31 }

Figure 3.1. Computing the Minimum-valued Index with Higher-Order Functions

Alas, these analyses would fail on minIndex. The usual methods of procedure summarization

apply to first-order functions, and it is not clear how to extend higher-order analyses like CFA to

track the relationships between the values and closures that flow to _reduce.

An Approach: Refinement Types. Refinement types [113] hold the promise of a precise

and compositional analysis for higher-order functions. Here, basic types are decorated with

refinement predicates that constrain the values inhabiting the type. For example, we can define

type idx〈〈x〉〉 = {ν : number | 0 ≤ ν ∧ ν < len(x) }

to denote the set of valid indices for an array x and can be used to type _reduce as

_reduce :: ∀α,β . (a : α[ ], f : (β, α, idx〈〈a〉〉)⇒, x : β)⇒ β

The above type is a precise relational summary of the behavior of _reduce: the higher-order f is
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only invoked with valid indices for a. Consequently, step is only called with valid indices for a,

which ensures array safety.

Problem: Value-based Overloading. A main attraction of dynamic languages is value-

based overloading, where syntactic entities (e.g. variables) may be bound to multiple types at

run-time, and furthermore, computations may be customized to particular types, by reflecting

on the values bound to variables. For example, it is common to simplify APIs by overloading

the reduce function to make the initial value x optional; when omitted, the first array element

a[0] is used instead (Figure 3.1). Here, reduce really has two different function types: one with

3 parameters and another one with 2. Furthermore, reduce reflects on the size of arguments to

select the behavior appropriate to the calling context.

Value-based overloading conflicts with a crucial prerequisite for refinements, namely

that the language possesses an unrefined static type system that provides basic invariants about

values which can then be refined using logical predicates. Unfortunately, as shown by reduce, to

soundly establish basic typing we must reason about the logical relationships between values,

which is exactly the problem we wished to solve via refinement typing. In other words, value-

based overloading creates a chicken-and-egg problem: refinements require us to first establish

basic typing, but the latter itself requires reasoning about values (and hence, refinements!).

Solution: Trust but Verify. We introduce two-phased typing, a new strategy for statically

analyzing dynamic languages. The key insight is that we can completely decouple reasoning

about basic types and refinements into distinct phases by converting “type errors” from the first

phase into “assertion failures” for the second. Two-phase typing starts with a source language

where value-based overloading is specified using intersections and (untagged) unions of the

different possible (run-time) types.

The first phase performs classical, i.e. flow-, path- and value-insensitive type checking to

assign basic types to various program expressions. When the check inevitably runs into “errors”

due to value-insensitivity, it wraps problematic expressions with dead-casts which allow the first

phase to proceed, trusting that the expressions have the casted types. In other words, the first

phase elaborates [31] the source language with intersection and (untagged) union types, into a

target ML-like language with classical products, (tagged) sums and dead-casts, which explicate

the trust obligations that must be discharged by the second phase. The second phase carries out

refinement, i.e. flow- and path-sensitive inference, to decorate the basic types (from the first phase)
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with predicates that precisely track relationships about values, and uses the refinements to verify

the casts and other properties, discharging the assumptions of the first phase.

For example, reduce is described as the intersection of two contexts, i.e. function types

which take two and three parameters respectively. The trust-phase checks the body under both

contexts (separately). In each context, one of the calls to _reduce is “ill-typed”. In the context

where the function takes two inputs, the call using x is undefined; when the function takes three

inputs, there is a mismatch in the types of f and a[0]. Consequently, each ill-typed expression is

wrapped with a cast which obliges the verify phase to prove that the call is dead code in that

context, thereby verifying overloading in a cooperative manner.

Benefits. While it is possible to account for value-based overloading in a single phase,

the currently known methods that do so are limited to the extremes of types and program logics.

At one end, systems like Typed Racket [104] and Flow Typing [50] extend classical type systems

to account for a fixed set of typeof-style tests, but cannot reason about general value tests (e.g.

the size of arguments) that often appear in idiomatic code. At the other end, systems like System

D [21] embed the typing relation in an expressive program logic, allowing general value tests,

but give up on basic type structure, thereby sacrificing inference, causing a significant annotation

overhead. In contrast, our approach separates the concerns of basic typing and reasoning about

values, thereby yielding several concrete benefits by modularizing specification, verification and

soundness.

• Specification: Instead of a fixed set of type-tests, two-phase typing handles complex value

relationships which can be captured inside refinements in an expressive logic. Furthermore,

the expressiveness of the basic type system and logics can be extended independently, e.g.

to account for polymorphism, classes or new logical theories, directly yielding a more

expressive specification mechanism.

• Verification: Two-phase typing enables the straightforward composition of simple type

checkers (uncomplicated by reasoning about values) with program logics (relying upon the

basic invariants provided by typing – e.g. the parametric polymorphism needed to verify

minIndex). Furthermore, two-phase typing allows us to compose basic typing with abstract

interpretation [91], which drastically lowers the annotation burden for using refinement

types.
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• Soundness: Finally, our elaboration-based approach makes it straightforward to establish

soundness for two-phased typing. The first phase ignores values and refinements, so we

can use classical methods to prove the elaborated target is “equivalent to” the source. The

second phase uses standard refinement typing techniques on the well-typed elaborated

target, and hence lets us directly reuse the soundness theorems for such systems [66] to

obtain end-to-end soundness for two-phased typing.

Contributions. Concretely, in this chapter we make the following contributions. First, we

informally illustrate (Section 3.1) how two-phase typing lets us statically analyze dynamic, value-

based overloading patterns drawn from real-world code, where, we empirically demonstrate,

value-based overloading is ubiquitous. Second, we formalize two-phase typing using a core

calculus, TBV, whose syntax and semantics are detailed in Section 3.2. Third, we formalize the

first phase (Section 3.3), which elaborates [31] a source language with value-based overloading

into a target language with dead-casts in lieu of overloading. We prove that the elaborated

target preserves the semantics of the source, i.e. the dead-casts fail iff the source would hit a

type error at run time. Finally, we demonstrate how standard refinement typing machinery can

be applied to the elaborated well-typed target (Section 3.4) to statically verify the dead-casts,

yielding end-to-end soundness for our system.

3.1 Overview

We begin with an overview illustrating how we soundly verify value-based overloading

using our novel two-phased approach.

3.1.1 Value-based Overloading

Consider the TypeScript code in Figure 3.2. The function negate behaves as follows.

When a number is passed as input, indicated by passing in a non-zero, i.e. “truthy” flag, the

function flips its sign by subtracting the input from 0. Instead, when a boolean is passed in,

indicated by a zero, i.e. “falsy” flag, the function returns the boolean negation. Hence, the calls

made to assign a and b are legitimate and should be statically accepted. However, the calls made

to assign c and d lead to run-time errors (assuming we eschew implicit coercions), and hence,

should be rejected.

The function negate distils value-based overloading to its essence: a run-time test on
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32 function negate(number, number): number;
33 function negate(number, boolean): boolean;
34 function negate(flag, x) {
35 if (flag) return 0-x;
36 return !x;
37 }
38

39 var a = negate(1,1); // OK
40 var b = negate(0,true); // OK
41 var c = negate(0,1); // ERR
42 var d = negate(1,true); // ERR

Figure 3.2. An Example Program with Value-Based Overloading

one parameter’s value is used to determine the type of, and hence the operation to be applied to,

another value. Of course in JavaScript, one could use a single parameter and the typeof operator

for this particular simple case, and design analyses targeted towards a fixed set of type tests, e.g.

using variants of the typeof operator [104, 50]. However, arbitrary value tests – such as tests

of the size of arguments shown in reduce in Figure 3.1 – can be and are used in practice. Thus,

we illustrate the generality of the problem and our solution without using the typeof operator

(which is a special case of our solution).

Prevalence of Value-based Overloading. The code from Figure 3.1 is not a pathological

toy example. It is adapted from the widely used D3 visualization library. The advent of Type-

Script makes it possible to establish the prevalence of value-based overloading in real-world

libraries, as it allows developers to specify overloaded signatures for functions. (Even though

TypeScript does not verify those signatures, it uses them as trusted interfaces for external Java-

Script libraries and code completion.) The Definitely Typed repository 1 contains TypeScript

interfaces for a large number of popular JavaScript libraries. We analyzed the TypeScript in-

terfaces to determine the prevalence of value-based overloading. Intuitively, every function or

method with multiple (overloaded) signatures or optional arguments has an implementation

that uses value-based overloading.

We summarize next the results of our study. On Table 3.1 we show the fraction of

overloaded functions in the 10 benchmarks analyzed by Feldthaus et al. [35]. The data shows

that over 25% of the functions in 4 of 10 libraries use value-based overloading, and an even

1http://definitelytyped.org

http://definitelytyped.org
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Table 3.1. The Prevalence of Value-Based Overloading. Libraries are taken from the survey of
Feldthaus et al. [35]. #Funs is the number of functions in the signature, %Ovl is %-functions with
multiple signatures, %Opt is %-functions with optional arguments, and %Any is %-functions with
either of these features.

File #Funs %Ovl %Opt %Any

box2d 529 0 3 3

ace 484 1 5 6

pixi 123 0 12 12

fabricjs 371 5 9 13

threejs 1022 1 24 24

leaflet 414 12 38 41

underscore 344 25 34 45

sugar 446 29 37 48

d3 475 43 17 52

jquery 226 52 31 67

larger fraction is overloaded in libraries like jQuery and D3. On Figure 3.3 we summarize

the occurrence of overloading across all the libraries in Definitely Typed. The data shows, for

example, that in more than 25% of the libraries, more than 25% of the functions are overloaded

with multiple types. The figure jumps to nearly 55% of functions if we also include optional

arguments.

The signatures in Definitely Typed have not been soundly checked against2 their im-

plementations. Hence, it is possible that they mischaracterize the semantics of the actual code,

but modulo this caveat, we believe the study demonstrates that value-based overloading is

ubiquitous, and so to soundly and statically analyze dynamic languages, it is crucial that we

develop techniques that can precisely and flexibly account for it.

3.1.2 Refinement Types

Types and Refinements. A basic refinement type T is a basic type, e.g. number, refined

with a logical formula from an SMT decidable logic – for our purposes, the quantifier-free logic

of uninterpreted functions and linear integer arithmetic (QF_UFLIA [96]). For example,

{ν : number | ν 6= 0 }

2Feldthaus et al. [35] describe an effective but unsound inconsistency detector.
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Figure 3.3. The Prevalence of Value-Based Overloading. Overloading across all files in Definitely
Typed. A point (x,y) means y% of files have more than x% overloaded functions.

describes the subset of numbers that are non-zero. We write τ to abbreviate the trivially refined

type {ν : τ | true }, e.g. number is an abbreviation for {ν : number | true }.

Summaries: Function Types. We can specify the behavior of functions with refined

function types, of the form

(x1 : T1, . . . , xn : Tn)⇒ T

where arguments are named xi and have types Ti and the output is a T . In essence, the input

types Ti specify the function’s preconditions, and the output type T describes the postcondition.

Furthermore, each input type and the output type can refer to the arguments xi which yields

precise function contracts. For example,

(x : {ν : number | 0 ≤ ν })⇒ {ν : number | x < ν }

is a function type that describes functions that require a non-negative input, and ensure that the

output is greater than the input.
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Example. Returning to negate in Figure 3.2, we can define two refinements of number

type tt = {ν : number | ν 6= 0 } “truthy” numbers

type ff = {ν : number | ν = 0 } “falsy” numbers

which are used to specify a refined type for negate shown on the left in Figure 3.4.

Problem: A Circular Dependency. While it is easy enough to specify a type signature,

it is another matter to verify it, and yet another matter to ensure soundness. The challenge is

that value-based overloading introduces a circular dependency between types and refinements.

The soundness of basic types requires (i.e. is established by) the refinements, while the refine-

ments themselves require (i.e. are attached to) basic types. In classical refinement systems like

DML [113], basic types are established without requiring refinements. A classical refinement

system is thus a conservative extension of the corresponding non-refined language, i.e. removing

the refinements from a DML program, yields valid, well-typed ML. Unfortunately, value-based

overloading removes this crucial property, posing a circular dependency between types and

refinements.

Solution: Two-Phase Checking. We break the cycle by typing programs in two phases.

In the first, we trust the basic types are correct and use them (ignoring the refinements) to

elaborate source programs into a target overloading-free language. Inevitably, value-based

overloading leads to “errors” when typing certain sub-expressions in the wrong context, e.g.

subtracting a boolean-valued x from 0. Instead of rejecting the program, the elaboration wraps

ill-typed expressions with dead-casts, which are assertions stating the program is well-typed

assuming those expressions are dead code. In the second phase we reuse classical refinement

typing techniques to verify that the dead-casts are indeed unreachable, thereby discharging the

assumptions made in the first phase.

3.1.3 Phase 1: Trust

The first phase elaborates the source program into an equivalent typed target language

with two key properties: First, the target program is simply typed – i.e. has no union or inter-

section types, but just classical ML-style sums and products. Second, source-level type errors

are elaborated to target-level dead-casts. The right side of Figure 3.4 shows the elaboration of
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function negate(flag: tt, x: num): num
function negate(flag: ff, x: bool): bool
function negate(flag, x) {

if (flag) return 0-x;
return !x;

}

var a = negate(1, 1); //OK
var b = negate(0, true); //OK
var c = negate(0, 1); //ERROR
var d = negate(1, true); //ERROR

let negate1 (flag: tt) (x: num): num =
if flag then 0-x
else !dead(x)

let negate2 (flag: ff) (x: bool): bool =
if flag then 0-dead(x)
esle !x

let negate = (negate1, negate2)

let a = (fst negate) 1 1 (* OK *)
let b = (snd negate) 0 true (* OK *)
let c = (fst negate) 0 1 (* ERROR *)
let d = (snd negate) 1 true (* ERROR *)

Figure 3.4. Source (left) and Target (right) Program in First Phase Elaboration.

the source from the left side. While we formalize the elaboration declaratively using a single

judgment form (Section 3.3), it comprises two different steps. Critically, each step, and hence the

entire first phase, is independent of the refinements – they are simply carried along unchanged.

A. Clone. In the first step, we create separate clones of each overloaded function, where

each clone is assigned a single conjunct of the original overloaded type. For example, we create

two clones negate1 and negate2 respectively typed using the two conjuncts of the original

negate. The binder negate is replaced with a tuple of its clones. Finally, each use of negate

extracts the appropriate element from the tuple before issuing the call.

Since the trust phase must be independent of refinements, the overload resolution

in this step uses only the basic types at the call-site to determine which of the two clones to

invoke. For example, in the assignment to a, the source call negate(1,1) – which passes in two

number values, and hence, matches the first overload (conjunct) – is elaborated to the target call

(fst negate) 1 1. In the assignment to d, the source call negate(1,true) – which passes in a

number and a boolean, and hence matches the second overload – is elaborated to the target call

(snd negate) 1 true, even though 1 does not have the refined type ff.

B: Cast. In the second step we check – using classical, unrefined type checking – that each

clone adheres to its specified type. Unlike under usual intersection typing [89, 31], in our context

these checks almost surely “fail”. For example, negate1 does not type check as the parameter

x has type number and so we cannot compute !x. Similarly, negate2 fails because x has type

boolean and so 0-x is erroneous. Rather than reject the program, we wrap such failures with

dead-casts. For example, the above occurrences of x elaborate to dead(x) on the right in Figure 3.4.
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Intuitively, the value relationships established at the call-sites and guards ensure that the

failures will not happen at run-time. However, recall that the first phase’s goal is to decouple

reasoning about types from reasoning about values. Hence, we just trust all the types but use

dead-casts to explicate the value-relationship obligations that are needed to establish typing:

namely that the dead-casts are indeed dead code.

3.1.4 Phase 2: Verify

The second phase takes as input the elaborated program emitted by the first phase,

which is essentially a classical well-typed ML program with assertions and without any value-

overloading. Hence, the second phase can use any existing program logic [41, 14], refinement

typing [113, 66, 91, 9], or contracts & abstract interpretation [75] to check that the target’s

assertions never fail, which, we prove, ensures that the source is type-safe.

To analyze programs with closures, collections and polymorphism, (e.g. minIndex

from Figure 3.1) we perform the second phase using the refinement types that are carried over

unchanged by the elaboration process of the first phase. Intuitively, refinement typing can be

viewed as a generalization of classical program logics where assertions are generalized to type

bindings, and the rule of consequence is generalized as subtyping. While refinement typing is a

previously known technique, to make this work self-contained, we illustrate how the second

phase verifies the dead-casts in Figure 3.4.

Refinement Type Checking. A refinement type checker works by building up an envi-

ronment of type bindings that describe the machine state at each program point, and by checking

that at each call-site, the actual argument’s type is a refined subtype of the expected type for the

callee, under the context described by the environment at that site. The subtyping relation for

basic types is converted to a logical verification condition whose validity is checked by an SMT

solver. The subtyping relation for compound types (e.g. functions, collections) is decomposed, via

co- and contra-variant subtyping rules, into subtyping constraints over basic types, which can be

discharged as above.

Typing dead-Casts. To use a standard refinement type checker for the second phase of

verification, we only need to treat dead as a primitive operation with the refined type:

dead :: ∀α,β . ({ν : α | false })⇒ β
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That is, we assign dead the precondition false which states there are no valid inputs for it, i.e. that it

should never be called (akin to assert(false) in other settings).

Environments. To verify dead-casts, the refinement type checker builds up an environ-

ment of type binders describing variables and branch conditions that are in scope at each program

point. For example, the dead call in negate1, has the environment

Γ1
.
= flag : tt, x : number, g1 : {ν : boolean | flag = 0 } (3.1)

where the first two bindings are the function parameters, whose types are the input types. The

third binding is from the “else” branch of the flag test, asserting the branch condition flag is

“falsy” i.e. equals 0. At the dead call in negate2 the environment is:

Γ2
.
= flag : ff, x : boolean, g1 : {ν : boolean | flag 6= 0 } (3.2)

At the assignments to a, b and c the environments are respectively

Γa
.
= negate : Tnegate (3.3)

Γb
.
= Γa, α : number (3.4)

Γc
.
= Γb, β : boolean (3.5)

where Tnegate abbreviates the product type of the (elaborated) tuple negate.

Tnegate
.
= ((tt, number)⇒ number)× ((ff, boolean)⇒ boolean) (3.6)

Subtyping. At each function call-site, the refinement type system checks that the actual

argument is indeed a subtype of the expected one. For example, the dead calls inside negate1 and

negate2 yield the respective subtyping obligation:

Γ1 ` {ν : number | ν = x } v {ν : number | false } (3.7)

Γ2 ` {ν : boolean | ν = x } v {ν : boolean | false } (3.8)
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The obligation states that the type of the argument x should be a subtype of the input type of dead.

Similarly, at the assignments to a, b and c the first arguments generate the respective subtyping

obligations:

Γa ` {ν : number | ν = 1 } v {ν : number | ν 6= 0 } (3.9)

Γb ` {ν : number | ν = 0 } v {ν : number | ν = 0 } (3.10)

Γc ` {ν : number | ν = 0 } v {ν : number | ν 6= 0 } (3.11)

Verification Conditions. To verify subtyping obligations, we convert them into logi-

cal verification conditions (VCs), whose validity determines whether the subtyping holds. A

subtyping obligation

Γ ` {ν : b | p } v {ν : b | q }

translates to the VC

JΓK⇒ (p⇒ q)

where JΓK is the conjunction of the refinements of the binders in Γ . For example, the subtyping

obligations (3.7) and (3.8) yield the respective VCs:

(flag 6= 0∧ true ∧ flag = 0)⇒ ν = x ⇒ false (3.12)

(flag = 0∧ true ∧ flag 6= 0)⇒ ν = x ⇒ false (3.13)

Here, the conjunct true arises from the trivial refinements e.g. the binding for x. The above VCs

are deemed valid by an SMT solver as the hypotheses are inconsistent, which proves the call is

indeed dead code. Similarly, (3.9) and (3.10) respectively yield VCs

true⇒ ν = 1 ⇒ ν 6= 0 (3.14)

true⇒ ν = 0 ⇒ ν = 0 (3.15)

which are deemed valid by SMT, verifying the assignments to α, β. However, by (3.11)

true⇒ ν = 0 ⇒ ν 6= 0 (3.16)
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which is invalid, ensuring that we reject the call that assigns to c.

3.1.5 Two-Phase Inference

Our two-phased approach readily lends itself to abstract interpretation based refinement

inference which can drastically lower the programmer annotations required to verify various

safety properties, e.g. reducing the annotations needed to verify array bounds safety in ML

programs from 31% of code size to under 1% [91]. Here we illustrate how inference works in the

presence of value-based overloading. Suppose we are not given the refinements for the signature

of negate but only the unrefined signature (either given to us explicitly as in TypeScript, inferred

via dataflow analysis [50], or inferred via the techniques outlined in Chapter 2). As inference is

difficult with incorrect code, we omit the erroneous statements that assign to c and d.

Refinement inference proceeds in three steps. First, we create templates which are the

basic types decorated with refinement variables κ in place of the unknown refinements. Second,

we perform the trust phase to elaborate the source program into a well-typed target free of

overloading. Remember that this phase uses only the basic types and is oblivious to the (in

this case unknown) refinements. Third, we perform the verify phase which now generates VCs

over the refinement variables κ. These VCs – logical implications between the refinements and κ

variables – correspond to so-called Horn constraints over the κ variables, and can be solved via

abstract interpretation [39, 91].

0. Templates. Let us revisit the program from Figure 3.2, with the goal of inferring the

refinements. Recall that the (unrefined) type of negate is:

negate :: (number, number)⇒ number

∧ (number, boolean)⇒ boolean

We create a template by refining each base type with a (distinct) refinement variable:

negate :: ({ν : number | κ1 }, {ν : number | κ2 })⇒ {ν : number | κ3 }

∧ ({ν : number | κ4 }, {ν : boolean | κ5 })⇒ {ν : boolean | κ6 }

1. Trust. The trust phase proceeds as before, propagating the refinements to the signa-

tures of the elaborated target, yielding the code on the right in Figure 3.4 except that negate1
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and negate2 have the respective templates:

negate1 :: ({ν : number | κ1 }, {ν : number | κ2 })⇒ {ν : number | κ3 }

negate2 :: ({ν : number | κ4 }, {ν : boolean | κ5 })⇒ {ν : boolean | κ6 }

2. Verify. The verify phase proceeds as before, but using templates instead of the types.

Hence, at the dead-cast in negate1 and negate2, and the calls to negate that assign to a and b,

instead of the VCs (3.12), (3.13), (3.14) and (3.15), we get the respective Horn constraints:

(κ1 [flag/ν]∧ true ∧ flag = 0)⇒ ν = x ⇒ false (3.17)

(κ4 [flag/ν]∧ true ∧ flag 6= 0)⇒ ν = x ⇒ false (3.18)

true⇒ ν = 1 ⇒ κ1 (3.19)

true⇒ ν = 0 ⇒ κ4 (3.20)

These constraints are identical to the corresponding VCs except that κ variables appear in place

of the unknown refinements for the corresponding binders. We can solve these constraints using

fixpoint computations over a variety of abstract domains such as monomial predicate abstraction

[39, 91] over a set of ground predicates which are arithmetic (in)equalities between program

variables and constants, to obtain a solution mapping each κ to a concrete refinement:

κ1
.
= ν = 0 κ4

.
= ν 6= 0 κ2, κ3, κ5, κ6

.
= true

which, when plugged back into the templates, allow us to infer types for negate.

Higher-Order Verification. Our two-phased approach generalizes directly to offer pre-

cise analysis for polymorphic, higher-order functions. Returning to the code in Figure 3.1, our

two-phased inference algorithm infers the refinement types

_reduce :: ∀α,β . (a : α[ ], f : (β, idx〈〈a〉〉)⇒ β, x : β)⇒ β

reduce :: ∀α . (a : α[ ]+, f : (α, α, idx〈〈a〉〉)⇒ α)⇒ α

∧ ∀α,β . (a : α[ ], f : (β, α, idx〈〈a〉〉)⇒ β, x : β)⇒ β
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where idx〈〈a〉〉 describes valid indices for array a, and α[ ]+ describes non-empty arrays:

idx〈〈a〉〉 .
= {ν : number | 0 ≤ ν < len(a) }

α[ ]+ .
= {ν : α[ ] | 0 < len(ν) }

The above type is a precise summary for the higher-order behavior of _reduce: it describes the

relationship between the input array a, the step (“callback”) function f, and the initial value

of the accumulator, and stipulates that the output satisfies the same properties β as the input

x. Furthermore, it captures the fact that the callback f is only invoked on inputs that are valid

indices for the array a that is being reduced. Consequently, Liquid Types [91], for example,

would automatically infer

step .
= ∀α . (idx〈〈a〉〉, α, idx〈〈a〉〉)⇒ idx〈〈a〉〉

minIndex .
= ∀α . (α[ ])⇒ number

thereby verifying the safety of array accesses in the presence of higher order functions, collections,

and value-based overloading.

3.2 Syntax and Operational Semantics of TBV

Next, we formalize two-phase typing via a core calculus TBV comprising a source lan-

guage λsrc with overloading via union and intersection types, and a simply typed target language

λtgt without overloading, where the assumptions for safe overloading are explicated via dead-

casts. In Section 3.3, we describe the first phase that elaborates source programs into target

programs, and finally, in Section 3.4 we describe how the second phase verifies the dead-casts on

the target to establish the safety of the source. Our elaboration follows the overall compilation

strategy of Dunfield [31] except that we have value-based overloading instead of an explicit

“merge” operator [89], and consequently, our elaboration and proofs must account for source

level “errors” via dead-casts.

3.2.1 Source Language (λsrc)

Terms. We define a source language λsrc, with syntax shown in Figure 3.5. Expressions

include variables, functions, applications, a ternary conditional construct, and primitive constants
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Syntax of λsrc

v ::= Values

| n constant

| (x)⇒ e arrow function

e ::= Expressions

| v value

| x variable

| if e then e1 else e2 conditional

| e1(e2) call

τ ::= Types

| b primitive type

| τ1 → τ2 arrow type

| τ1 ∧ τ2 intersection

| τ1 ∨ τ2 union

Reduction Rules for λsrc e −→ e ′

e −→ e ′

E〈e〉 −→ E〈e ′〉
[E-ECTX]

n ≡ true =⇒ e ≡ e1
n ≡ false =⇒ e ≡ e2

if n then e1 else e2 −→ e
[E-COND]

n(v) −→ JnK(v)
[E-APP-1]

((x)⇒ e)(v) −→ [v/x] (e)
[E-APP-2]

Figure 3.5. Language λsrc: Syntax and Operational Semantics

nwhich include numbers 0, 1, . . ., operators +,−, . . ., etc.

Operational Semantics. In Figure 3.5 we also define a standard small-step operational

semantics for λsrc with a left-to-right order of evaluation, based on evaluation contexts

E ::= 〈〉 | if E then e1 else e2 | E(e) | v(E)

Types. Figure 3.5 shows the types τ in the source language. These include primitive

types b, arrow types τ1 → τ2 and, most notably, intersections τ1 ∧ τ2 and (untagged) unions

τ1 ∨ τ2. Note that the source level types are not refined, as crucially, the first phase ignores the

refinements when carrying out the elaboration.
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Well-Formed Types ` τ

` b
` τ1 ` τ2

` τ1 → τ2

` τ1 ` τ2 tag(τ1) = tag(τ2)

` τ1 ∧ τ2

` τ1 ` τ2 tag(τ1)∩ tag(τ2) = ∅

` τ1 ∨ τ2

tag(Num) = {"number"}

tag(Bool) = {"boolean"}

tag(τ→ τ ′) = {"function"}

tag(τ∧ τ ′) = tag(τ)

tag(τ∨ τ ′) = tag(τ)∪ tag(τ ′)

Figure 3.6. Basic Type Well-Formedness for λsrc

Tags. As is common in dynamically typed languages, runtime values are associated with

type tags, which can be inspected with a type test (cf. JavaScript’s typeof operator). We model

this notion by associating each type with a set of possible tags. The multiplicity arises from

unions. The meta-function tag(τ), defined in Figure 3.6, returns the possible tags that values of

type τmay have at runtime.

Well-Formedness. In order to resolve overloads statically, we apply certain restrictions

on the form of union and intersection types, shown by the judgment ` τ formalized in Figure 3.6.

For convenience of exposition, the parts of an untagged union need to have distinct runtime tags,

and intersection types require all conjuncts to have the same tag.

3.2.2 Target Language (λtgt)

The target language λtgt eliminates (value-based) overloading and thereby provides a

basic, well-typed skeleton that can be further refined with logical predicates. Towards this end,

unions and intersections are replaced with classical tagged unions, products and dead-casts, that

encode the requirements for basic typing.

Terms. Figure 3.7 shows the terms w of λtgt, which extend the source language with the

introduction of pairs, projections, injections, a case-splitting construct and a special constant term

dead↓τ1τ2 (w) which denotes an erroneous computation. Intuitively, a dead↓τ1τ2 (w) is produced in

the elaboration phase whenever the actual type τ1 for a term w is incompatible with an expected

type τ2.

Operational Semantics. As in the source language we define evaluation contexts for
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Syntax of λtgt

w ::= . . . Expressions

| (w1,w2) pair

| proj1w | proj2w projection

| inj1 w | inj2 w injection

| case w of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 case

| dead↓τ1τ2 (w) deadcast

v ::= . . . Values

| inj1 v | inj2 v value injection

| (w1,w2) value pair

| dead↓τ1τ2 (v) deadcast

T ::= Refinement Types

| {ν : b | P } base refinement type

| x : T1 → T2 arrow type

| T1+ T2 sum type

| T1× T2 product type

Reduction Rules for λtgt w −→ w ′

w −→ w ′

E〈w〉 −→ E〈w ′〉 [TE-ECTX]

k ∈ { 1, 2 }

projk(w1, w2) −→ wk

[TE-PROJ]

v 6≡ dead↓τ1τ2 (v ′)
n(v) −→ JnK(v)

[TE-APP-1]

((x)⇒ w)(v) −→ [v/x] (w)
[TE-APP-2]

k ∈ { 1, 2 }

case injk v of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 −→ [v/xk] (wk)
[TE-CASE]

Figure 3.7. Language λtgt: Syntax and Operational Semantics

λtgt:

E ::= 〈〉 | if E then w1 else w2 | E(w) | v(E) | injk E

| projkE | dead↓τ1τ2 (E) | case E of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

and use them to define a small-step operational semantics for the target in Figure 3.7. Note how

evaluation is allowed in dead-casts and dead↓τ1τ2 (v) is a value.
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Types. The target language is checked against a refinement type checker. Thus, we

modify the type language to account for the new language terms and refinements. Basic Refinement

Types are of the form {ν : b | P }, consisting of the same basic types b as source types, and a

logical predicate P (over some decidable logic), which describes the properties that values of the

type must satisfy. Here, ν is a special value variable that describes the inhabitants of the type, that

does not appear in the program, but can appear inside the refinement P. Function types are of

the form x : T1 → T2, to express the fact that the refinement predicate of the return type T2 may

refer to the value of the argument x. Sum and product types have the usual structure found in

ML-like languages.

3.3 Phase 1: Trust

Terms of λsrc are elaborated to terms of λtgt by a judgment:

Γ ` e : τ ↪→ w

This is read: under the typing assumptions in Γ , term e of the source language is assigned a type

τ and elaborates to a term w of the target language. This judgment follows closely Dunfield’s

elaboration judgment [31], but with crucial differences that arise due to dynamic, value-based

overloading, which we outline below.

Elaboration Ignores Refinements. A key aspect of the first phase is that elaboration

is based solely on the basic types, i.e. does not take type refinements into account. Hence, the

types assigned to source terms are transparent with respect to refinements; or more precisely,

they work just as placeholders for refinements that can be provided as user specifications. These

specifications are propagated as is during the first phase along with the respective basic types

they are attached to. Due to this transparency of refinements we have decided to omit them

entirely from our description of the elaboration phase.

3.3.1 Source Language Type checking and Elaboration

Figure 3.8 shows the rules that formalize the elaboration process. In this formulation

we follow a bidirectional approach [81] to make our rules more algorithmic and restrict the

context under which dead-casts can occur. At a high-level, following Dunfield [31], unions
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Elaboration Typing Rules Γ ` e ↑ τ ↪→ w Γ ` e ↓ τ ↪→ w

` τ Γ ` e ↓ τ ↪→ w

Γ ` (e : τ) ↑ τ ↪→ (w : τ)
[T-ANNOT]

Γ ` e ↑ τ ↪→ w

Γ ` e ↓ τ ↪→ w
[T-WEAKEN]

Γ ` n ↑ b ↪→ n
[T-CST]

x : τ ∈ Γ

Γ ` x ↑ τ ↪→ x
[T-VAR]

Γ ` e ↓ boolean ↪→ w Γ ` e1 ↓ τ ↪→ w1 Γ ` e2 ↓ τ ↪→ w2

Γ ` if e then e1 else e2 ↓ τ ↪→ if w then w1 else w2
[T-IF]

Γ ` v ↓ τ1 ↪→ w1 Γ ` v ↓ τ2 ↪→ w2 ` τ1 ∧ τ2

Γ ` v ↓ τ1 ∧ τ2 ↪→ (w1,w2)
[T-∧I]

Γ ` e ↑ τ1 ∧ τ2 ↪→ w k ∈ { 1, 2 }

Γ ` e ↑ τk ↪→ projkw
[T-∧E]

Γ , x : τ1 ` e ↓ τ2 ↪→ w

Γ ` (x)⇒ e ↓ τ1 → τ2 ↪→ (x)⇒ w
[T-ARROW]

Γ ` e1 ↑ τ1 → τ2 ↪→ w1 Γ ` e2 ↓ τ ↪→ w2

Γ ` e1(e2) ↑ τ2 ↪→ w1(w2)
[T-APP]

Γ ` e ↑ τ ′ ↪→ w tag(τ)∩ tag(τ ′) = ∅

Γ ` e ↓ τ ↪→ dead↓τ ′τ (w)
[T-⊥]

Γ ` e ↓ τk ↪→ w ` τ1 ∨ τ2

Γ ` e ↓ τ1 ∨ τ2 ↪→ injk w
[T-∨I]

Γ , x1 : τ1 ` E〈x1〉 ↓ τ ↪→ w1

Γ ` e0 ↑ τ1 ∨ τ2 ↪→ w0 Γ , x2 : τ2 ` E〈x2〉 ↓ τ ↪→ w2

Γ ` E〈e0〉 ↓ τ ↪→ case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

[T-∨E]

Figure 3.8. Elaboration Typing rules
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and intersections are translated to simpler typing constructs like sums and products (and the

attendant injections, pattern-matches, and projections). Unlike the above work, which focuses on

the classical intersection setting where overloading is explicit via a “merge” construct [89], we are

concerned with the dynamic setting where overloading is value-based, leading to conventional

type “errors”.

Elaboration Modes: Checking and Inferring. One of the distinguishing features of our

type system is its ability to not fail in cases where conventional static type system would raise

type incompatibility errors, but instead elaborate the offending terms to the special error form

dead↓τ1τ2 (w). These error forms do not appear indiscriminately, but only under checking rules

(↓).
However, the formulation of Figure 3.8 is too flexible in handling calls to overloaded

functions. Consider, call e1(e2) where e1 has an overloaded signature. The checking algorithm

would have to examine all possible conjuncts of the overload and check e2 under each one.

The problem arises since even for incompatible signatures Rule T-⊥ can be applied and allow

typechecking to proceed.

Conceptually this approach is still sound. Erroneous programs will be caught in the

second phase, when the dead-casts fail to be discharged. However, to keep the algorithm more

tractable and predictable, we restrict this behavior, by tracking the use of intersection types. We

revise Rule T-∧E as follows:

Γ ` e ↑ τ1 ∧ τ2 ↪→ w k ∈ { 1, 2 }

Γ ` e ↑? τk ↪→ projkw
[T-∧E-?]

This speculative version (note the subscript “?” of ↑) of the judgment denotes that the current

type was obtained by choice among parts of an intersection. We also introduce a revised version

of the T-APP Rule that handles speculative results:

Γ ` e1 ↑? τ1 → τ2 ↪→ w1 Γ ` e2 ↑ τ ↪→ w2

Γ ` e1(e2) ↑ τ2 ↪→ w1(w2)
[T-APP-?]

This change requires the type for e2 to be inferred, instead of checked, crucially disabling Rule T-

⊥. In fact, the only rules applicable here require e2 to either be a constant, a variable or an
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annotated expression. The rest of the rules preserve the speculative mode transparently.

Standard Rules. Rules T-CST, T-VAR are standard and preserve the structure of the

source program. Rule T-IF expects the condition e of a conditional expression to be of boolean

type, and checks each branch of the conditional under the same type τ.

Intersections. In Rule T-∧I the choice of the type we assign to a value v causes different

elaborated terms vk, as different typing requirements cause the addition of dead-casts at different

places. This rule is intended to be used primarily for abstractions, so it’s limited to accept values

as input. Rule T-∧E for eliminating intersections replaces a term e that is originally typed as an

intersection with a projection of that part of the pair that has a matching type. By T-∧I values

typed at an intersection get a pair form.

Unions. Rule T-∨I for union introduction is standard. The union elimination rule, taken

from Dunfield’s elaboration scheme [31], is more involved. It first assumes an expression e0, for

which we can infer a union type τ1 ∨ τ2. Then requires finding an evaluation context E, such

that when filled in with a variable x typed at either τ1 or τ2, the resulting expression context can

be checked under type τ. If such E exists then E〈e0〉 can be checked under type τ. While the rule

is inherently non-deterministic, it suffices for our purposes of describing the elaboration process;

see Dunfield’s subsequent work on untangling type checking of intersections and unions [30] for

an algorithmic variant via a let-normal conversion.

Abstraction and Application. Rule T-ARROW assumes the arrow type τ1 → τ2 is given

as annotation and is required to conform to the well-formedness constraints. At the crux of

our type system is the Rule T-APP. We saw earlier how we disable dead-cast insertions when

the function is an overloaded one. Below, we justify this choice using an example. If on the

other hand, the type for e1 is assigned without choosing among the parts of an intersection, then

expression e2 can be typed in checked mode, potentially producing dead-casts.

Trusting via dead-Casts. The cornerstone of the “trust” phase lies in the presence of the

T-⊥ rule. As we mentioned earlier, this rule can only be used in checking mode. The main idea

here is to allow cases that are obviously wrong, as far as the simple first phase type system is

concerned; but, at the same time, include a dead-cast annotation and defer sound type checking

for the second phase. The premises of this rule specify that a dead-cast annotation will only be

used if the inferred and the expected type have different tags. One of the consequences of this

decision is that it does not allow dead-casts induced by a mismatch between higher-order types,
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as the tags for both types would be the same (most likely "function"). Thus, such mismatches

are ill-typed and rejected in the first phase. This limitation is due to the limited information that

can be encoded using the tag mechanism. A more expressive tag mechanism could eliminate this

restriction but we omit this for simplicity of exposition.

Semantics of dead-Casts. To prove that elaboration preserves source level behaviors, our

design of dead-casts preserves the property that the target gets stuck iff the source gets stuck. That

is, source level type “errors” do not lead to early failures (e.g. at function call boundaries). Instead,

dead-casts correspond to markers for all source terms that can potentially cause execution to get

stuck. Hence, the target execution itself gets stuck at the same places as the source – i.e. when

applying to a non-function, branching on a non-boolean or primitive application over the wrong

base value, except that in the target, the stuckness can only occur when the value in question

carries a dead marker. Consider the source program ((x)⇒ x 1) 0 which gets stuck after the

top-level application, when applying 1 to 0. It could be elaborated to ((x)⇒ x 1) (dead↓τ1τ2 (0))
(where τ1 and τ2 are respectively number and number → number) which also has a top-level

application and gets stuck at the second, inner application.

Necessity of speculative mode. If we allowed the argument of an overloaded call-site

to be typed in checking mode, then for the application f(x), where f has been assigned the

type f : I→ I∧B→ B and x : B (where I and B stand for number and boolean respectively), the

following derivation would be possible:

...

· · · ` f ↑ I→ I ↪→ proj1f
[T-∧E]

· · · ` x ↑ B ↪→ x tag(B)∩ tag(I) = ∅

· · · ` x ↓ I ↪→ dead↓BI (x)
[T-⊥]

f : I→ I∧B→ B, x : B ` f(x) ↑ I ↪→ (proj1f)(dead↓BI (x))
[T-APP]

But, clearly, the intended derivation here is:

...

· · · ` f ↑ B→ B ↪→ proj2f
[T-∧E]

· · · ` x ↑ B ↪→ x

f : I→ I∧B→ B, x : B ` f(x) ↑ B ↪→ (proj2f)(x)
[T-APP]

Subtyping. This formulation has been kept simple with respect to subtyping. The only
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notion of subtyping appears in the T-∨I rule, where a type τ1 is widened to τ1 ∨ τ2. We could

have employed a more elaborate notion of subtyping, by introducing a subtyping relation (≤)

and a subsumption rule for our typing elaboration. The rules for this subtyping relation would

include, among others, function subtyping:

τ ′1 ≤ τ1 τ2 ≤ τ ′2

τ1 → τ2 ≤ τ ′1 → τ ′2

However, supporting subtyping in higher-order constructs would only be possible with the

introduction of wrappers around functions to accommodate checks on the arguments and results

of functions. So, assuming that a cast c represents a dynamic check the above rule would

correspond to a cast producing relation (.):

τ ′1 . τ1  c1 τ2 . τ
′
2  c2

τ1 → τ2 . τ
′
1 → τ ′2  λf.λx.(c2 (f (c1 x)))

This formulation would just complicate the translation without giving any more insight in the

main idea of our technique, and hence we forgo it.

3.3.2 Source and Target Language Consistency

In this section, we present the theorems that precisely connect the semantics of source

programs with their elaborated targets. The main challenges towards establishing those are that:

(1) the source and target do not proceed in lock-step, a single step of the one may be matched

by several steps of the other (for example evaluating a projection in the target language does

not correspond to any step in the source language), and (2) we must design the semantics of the

dead-casts in the target to ensure that dead-casts cause evaluation to get stuck iff some primitive

operation in the source gets stuck. We address these, next, with a number of lemmas and state

our assumptions.

Value Monotonicity. This lemma fills in the mismatch that emerges when (non-value)

expressions in the source language elaborate to values in the target language. Informally, if a

source expression e elaborates to a target value v, then e evaluates (after potentially multiple

steps) to a value v that is related to the target value vwith an elaboration relation under the same
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type. Furthermore, all expressions on the path to the target value v elaborate to the same value

and get assigned the same type.

Lemma 3.1 (Value Monotonicity). If Γ ` e : τ ↪→ v, then there exists v s.t.:

(1) e −→∗ v
(2) Γ ` v : τ ↪→ v

(3) ∀i (e −→∗ ei) . Γ ` ei : τ ↪→ v

Proof. The first two parts are handled similarly to Dunfield [31, Lemma 11]. The last part is

proved by induction on the length of the path e −→∗ ei. Details of this proof can be found in the

appendix (Lemma B.8).

The reverse of the above lemma also comes in handy. Namely, given a value v that

elaborates to an expression w and gets assigned the type τ, there exists a value in the target

language v, such that v elaborates to v and get assigned the same type τ.

Lemma 3.2 (Reverse Value Monotonicity). If Γ ` v : τ ↪→ w, then there exists v s.t.: w −→∗ v and

Γ ` v : τ ↪→ v.

Proof. Similar to proof of Lemma 3.1.

This is an interesting result as it establishes that different derivations may assign the

same type to a term and still elaborate it to different target terms. For example, one can assume

derivations that consecutively apply the intersection introduction and elimination rules. It’s easy

to see that the same value v can be used in the following elaborations:

· ` v : τ1 ∧ τ2 ↪→ (v1, v2)

· ` v : τ1 ∧ τ2 ↪→ (proj1(v1, v2), proj2(v1, v2))︸ ︷︷ ︸
w

Lemma 3.2 guarantees it will always be the case that w −→∗ (v1, v2). It is up to the implementa-

tion of the type checking algorithm to produce an efficient target term.

Primitive Semantics. To connect the failure of the dead-casts with source programs

getting stuck, we assume that the primitive constants are well defined for all the values of their

input domain but not for dead-cast values. This lets us establish that primitive operations n
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are invariant to elaboration. Hence, a source primitive application gets stuck iff the elaborated

argument is a dead-cast. The forward version of this statement is the following assumption.

Assumption 3.3.1 (Primitive constant application). If

(i) · ` n : τ1 → τ2 ↪→ n

(ii) · ` v : τ1 ↪→ v

(iii) v 6≡ dead↓·τ1 ( · )
then

(a) n(v) −→ JnK(v)

(b) n(v) −→ JnK(v)

(c) · ` JnK(v) : τ2 ↪→ JnK(v)

Substitution lemma. The proof of soundness relies upon the following substitution

lemma.

Lemma 3.3 (Substitution). If Γ , x : τ ` e : τ ′ ↪→ w and Γ ` v : τ ↪→ v then Γ ` [v/x] (e) :

τ ′ ↪→ [v/x] (w).

Proof. Similar to the substitution proof of Dunfield [31, Lemma 12].

We use the above lemmas and assumptions to obtain a consistency result, analogous to

Dunfield’s Consistency Theorem [31], which states that the elaboration produces terms that are

consistent with the source in that each step of the target is matched by a corresponding step of the

source, i.e. the behaviors of the target under-approximate the behaviors of the source.

Theorem 3.4 (Consistency). If · ` e : τ ↪→ w and w −→ w ′ then there exists e ′ such that e −→∗ e ′
and · ` e ′ : τ ↪→ w ′.

Proof. The proof of this theorem is by induction on the derivation · ` e : τ ↪→ w, adapting the

proof scheme given by Dunfield [31], and using Lemma 3.1. Details of this proof can be found in

the appendix (Theorem B.12).
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While this suffices to prove soundness – intuitively if the target does not “go wrong” then

the source cannot “go wrong” either – it is not wholly satisfactory as a trivial translation that

converts every source program to an ill-typed target also satisfies the above requirement. So,

unlike Dunfield [31], we also establish a completeness result stating that if the source term steps,

then the elaborated program will also eventually step to a corresponding (by elaboration) term.

Theorem 3.5 declares that behaviors of the elaborated target over-approximate those of the source,

and hence, in conjunction with Theorem 3.4, ensure that the source “goes wrong” iff the target

does.

Theorem 3.5 (Reverse Consistency). If · ` e : τ ↪→ w and e −→ e ′ then there exists w ′ such that

· ` e ′ : τ ↪→ w ′, and w −→+ w ′.

Proof. Similar to the proof of Theorem 3.4, using adapted versions of the lemmas used by

Dunfield [31] and Lemma 3.2. Again, details can be found in the appendix (Theorem B.13).

3.4 Phase 2: Verify

At the end of the first phase, we have elaborated the source with value based overloading

into a classically well-typed target with conventional typing features and dead-casts which

are really assertions that explicate the trust assumptions made to type the source. Thanks to

Theorems 3.4 and 3.5 we know the semantics of the target are equivalent to the source. Thus, to

verify the source, all that remains is to prove that the target will not “go wrong”, that is to prove

that the dead-casts are indeed never executed at run-time.

One advantage of our elaboration scheme is that at this point any program analysis for

ML-like languages (i.e. supporting products, sums, and first class functions) can be applied to

discharge the dead-cast [26]: as long as the target is safe, the consistency theorems guarantee that

the source is safe. In our case, we choose to instantiate the second phase with refinement types as

they: (1) are especially well suited to handle higher-order polymorphic functions, like minIndex

from Figure 3.1, (2) can easily express other correctness requirements, e.g. array bounds safety,

thereby allowing us to establish not just type safety but richer correctness properties, and, (3) are

automatically inferred via the abstract interpretation framework of Liquid Typing [91]. Next, we

recall how refinement typing works to show how dead-cast checking can be carried out, and then

present the end-to-end soundness guarantees established by composing the two phases.
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Refined Typechecking Rules G ` w :: T

G ` w :: T1 G ` T1 v T2

G ` w :: T2

[R-SUB]

G ` n :: b
[R-CST]

x : T ∈ G

G ` x :: sngl (T , x)
[R-VAR]

G ` w :: Bool G; w ` w1 :: T G; ¬w ` w2 :: T

G ` if w then w1 else w2 :: T
[R-IF]

G, x : Tx ` w :: T

G ` (x)⇒ w :: Tx → T
[R-LAM]

G ` w1 :: Tx → T G ` w2 :: Tx

G ` w1(w2) :: [w2/x] (T)
[R-APP]

∀k ∈ { 1, 2 } .G ` wk :: Tk

G ` (w1,w2) :: T1× T2
[R-PAIR]

G ` w :: T1× T2

G ` projkw :: Tk

[R-PROJ]

G ` w :: Tk

G ` injk w :: T1+ T2

[R-INJ]

G ` w :: T1+ T2 G, x1 : T1 ` w1 :: T G, x2 : T2 ` w2 :: T

G ` case w of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 :: T
[R-CASE]

Refinement Subtyping G ` T1 v T2

Valid(JGK∧ JPK⇒ JP ′K)

G ` {ν : b | P } v {ν : b | P ′ }
[v-BASE]

G ` T ′x v Tx G, x : T ′x ` T v T ′

G ` (x : Tx)⇒ T v (x : T ′x)⇒ T ′
[v-FUN]

Figure 3.9. Refined Type Checking for λtgt

3.4.1 Refinement Type Checking

We present a brief overview of refinement typing as the target language falls under the

scope of existing refinement type systems [66], which can, after accounting for dead-casts, be

reused as is for the second phase. Similarly, we limit the presentation to checking; inference follows

directly from Liquid Type inference [91]. Figure 3.9 summarizes the refinement system. The type

checking judgment is

G ` w :: T

where type environment G is a sequence of bindings of variables x to refinement types T and

guard predicates, which encode control flow information gathered by conditional checks. As is

standard [66] each primitive constant n has a refined type b, and a variable xwith type T is typed

as sngl (T , x) which is {ν : b | ν = x } if T is a basic type b and T otherwise.
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Checking dead-casts. The refinement system verifies dead-casts by treating them as

special function calls, i.e. discharging them via the application rule R-APP. Formally, dead↓τ1τ2 (w)
is treated as call to:

dead↓τ1τ2 :: Bot([τ1])→ Bot([τ2])

The notation [·] denotes the elaboration of λsrc types to λtgt types [31]:

[b]
.
= b

[τ1 ∧ τ2]
.
= [τ1]× [τ2]

[τ1 ∨ τ2]
.
= [τ1] + [τ2]

[τ1 → τ2]
.
= [τ1]→ [τ2]

The meta-function Bot(T) .
= Tx(T , false) where:

Tx(b, r) .
= {ν : b | r }

Tx(T1+ T2, r) .
= Tx(T1, r)+Tx(T2, r)

Tx(T1 → T2, r) .
= Tx(T1, ¬r)→ Tx(T2, r)

Tx(T1× T2, r) .
= Tx(T1, r)×Tx(T2, r)

Returning to Rule R-APP for dead-casts and inverting, expression w gets assigned a

refinement type T . For simplicity we assume this is a base type b. Due to R-SUB we get the

subtyping constraint

G ` {ν : b | P } v {ν : b | false }

which generates the VC

Valid(JGK∧ JPK⇒ JfalseK)

This holds if the environment combined with the refinement in the left-hand side is inconsistent,

which means that the gathered flow conditions are infeasible, hence dead-code [66]. Thus, the

refinements statically ensure that the specially marked dead values are never created at run-time.

As only dead terms cause execution to get stuck, the refinement verification phase ensures that

the source is indeed type safe.
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Conditional Checking. R-IF and R-CASE check each branch of a conditional or case

splitting statement, by enhancing the environment with a guard (w or ¬w) or the right binding

(x : T1 or x : T2), that encode the boolean test performed at the condition, or the structural check

at the pattern matching, respectively. Crucially, this allows the use of “tests” inside the code to

statically verify dead-casts and other correctness properties. The other rules are standard and are

described in the refinement type literature.

Correspondence of Elaboration and Refinement Typing. The following result estab-

lishes the fact that the type τ assigned to a source expression e by elaboration and the type T

assigned by refinement type checking to the elaborated expression w are connected with the

relation: [τ] = ‖T‖, where ‖T‖ is merely a (recursive) elimination of all refinements appearing in

T . The notation [Γ ] = ‖G‖means that for each binding x : τ ∈ Γ there exists x : T ∈ G, such that

[τ] = ‖T‖, and vice versa.

Lemma 3.6 (Correspondence). If Γ ` e : τ ↪→ w, G ` w :: T and [Γ ] = ‖G‖, then [τ] = ‖T‖.

Proof. By induction on pairs of derivations: Γ ` e : τ ↪→ w and G ` w :: T . Details of this proof

can be found in the appendix (Lemma B.11).

The target language satisfies a progress and preservation theorem [66]:

Theorem 3.7 (Refinement Type Safety). If · ` w : T then either w is a value or there exists w ′ such

that w −→ w ′ and · ` w ′ : T .

Proof. Given by Rondon et al. [91] for a similar language.

3.4.2 Two-Phase Type Safety

We say that a source term e is well two-typed if there exists a source type τ, target term w

and target (refinement) type T such that: (1) · ` e : τ ↪→ w, and, (2) · ` w :: T . That is, e is well

two-typed if it elaborates to a refinement typed target. The Consistency Theorems 3.4 and 3.5,

along with the Safety Theorem 3.7, yield end-to-end soundness: well two-typed terms do not get

stuck, and step to well two-typed terms.

Theorem 3.8 (Two-Phase Soundness). If e is well two-typed then, either e is a value, or there exists e ′

such that:

(1) (Progress) e −→ e ′
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(2) (Preservation) e ′ is well two-typed.

Proof. By induction on pairs of derivations: Γ ` e : τ ↪→ w and G ` w :: T . Details are to be found

in the appendix (Theorem B.14).

3.5 Related Work

Several relevant research directions regarding type systems for functional and imperative

dynamic languages were introduced in Section 1.3.1. This section attempts to compare Two-

Phased Typing with related work in the areas of intersection and union types, program logics

and refinement type systems.

Intersection and Union Types. Central to our elaboration phase are intersection and

union types. Pierce [80] indicates the connection between unions and intersections with sums

and products, that is the basis of Dunfield’s elaboration scheme [31] on which we build. However,

Dunfield studies static source languages that use explicit overloading via a merge operator [89].

In contrast, we target dynamic source languages with implicit value based overloading, and hence

must account for “ill-typed” terms via dead-casts discharged via the second phase refinement

check. Castagna et al. [16] describe a λ&-calculus, where functions are overloaded by combining

several different branches of code. The branch to be executed is determined at run-time by using

the arguments’ typing information. This technique resembles the code duplication that happens

in our approach, but overload resolution (i.e. deciding which branch is executed) is determined

at runtime whereas we do so statically.

Furr et al. [44] present DRuby, a tool for type inference for Ruby scripts combining

several practices from earlier work on soft typing, gradual typing and contracts [36]. DRuby uses

intersection types to represent summaries for overloaded functions. However, these systems do

not handle value-based overloading (like TypeScript, DRuby allows overloaded specifications

for external functions).

Refinement Types. DML [113] is an early refinement type system composing ML’s

types with a decidable constraint system. Hybrid type checking [66] uses arbitrary refinements

over basic types. A static type system verifies basic specifications and more complex ones are

defered to dynamically checked contracts, since the specification logic is statically undecidable.

In these cases, the source language is well typed (ignoring refinements), and lacks intersections
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and unions. Our second phase can use Liquid Types [91] to infer refinements using predicate

abstraction.

Program Logics for Dynamic Languages. The intuition of expressing subtyping rela-

tions as logical implication constraints and using SMT solvers to discharge these constraints

allows for a more extensive variety of typing idioms. Bierman et al. [11] investigate semantic

subtyping in a first order language with refinements and type-test expressions.

In nested refinement types [21], the typing relation itself is a predicate in the refinement

logic and a feature-rich language of predicates accounts for heavily dynamic idioms, like run-time

type tests, value-indexed dictionaries, polymorphism and higher order functions. While program

logics allow the use of arbitrary tests to establish typing, the circular dependency between values

and basic types leads to two significant problems in theory and practice. First, the circular

dependency complicates the metatheory which makes it hard to add extra (basic) typing features

(e.g. polymorphism, classes) to the language. Second, the circular dependency complicates the

inference of types and refinements, leading to significant annotation overheads which make the

system difficult to use in practice. In contrast, two-phase typing allows arbitrary type tests while

enabling the trivial composition of soundness proofs and inference algorithms.

Kent et al. [64] present Occurrence Typing Modulo Theories, a type system combining oc-

currence typing, a technique for checking dynamic languages that was discussed in Section 1.3.1,

with dependent refinement types. Their technique allows the integration of arbitrary solver-

backed reasoning about logical propositions from external theories, leading to an expressive

overall system. As with previous approaches, however, this technique is limited with respect to

inferring refinements compared to the approach we follow in this work.
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Chapter 4

Refinement Types for TypeScript

Modern scripting languages – like JavaScript, Python, and Ruby – have popularized the

use of higher-order constructs that were once solely in the functional realm. This trend towards

abstraction and reuse poses two related problems for static analysis: modularity and extensibility.

First, how should analysis precisely track the flow of values across higher-order functions and

containers or modularly account for external code like closures or library calls? Second, how can

analyses be easily extended to new, domain specific properties, ideally by developers, while they

are designing and implementing the code? (As opposed to by experts who can at best develop

custom analyses run ex post facto and are of little use during development.)

Refinement types hold the promise of a precise, modular and extensible analysis for

programs with higher-order functions and containers. Unfortunately, attempts to apply refine-

ment typing to scripts have proven to be impractical due to the interaction of the machinery that

accounts for imperative updates and higher-order functions [20] (Section 4.5).

In this chapter, we introduce Refined TypeScript (RSC): a novel, lightweight refinement

type system for TypeScript, a typed superset of JavaScript. Our design of RSC addresses three

intertwined problems by carefully integrating and extending existing ideas from the literature.

First, RSC accounts for mutation by using ideas from Immutability Generic Java [116] to track

which fields may be mutated, and to allow refinements to depend on immutable fields, and by

using SSA-form to recover path and flow-sensitivity. Second, RSC accounts for dynamic typing

by using the Two-Phase Typing technique described in Chapter 3, where dynamic behaviors

are specified via union and intersection types, and verified by reduction to refinement typing.

Third, the above are carefully designed to permit refinement inference via the Liquid Types [91]

framework to render refinement typing practical on real-world programs. Concretely, we make

87
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the following contributions:

• We develop a core calculus that permits locally flow-sensitive reasoning via SSA translation

and formalizes the interaction of mutability and refinements via declarative refinement

type checking that we prove sound (Section 4.2).

• We extend the core language to TypeScript by describing how we account for its various

dynamic and imperative features; in particular we show how RSC accounts for type reflection

via intersection types, encodes interface hierarchies via refinements and handles object

initialization (Section 4.3).

• We implement rsc, a refinement type checker for TypeScript, and evaluate it on a suite of

real-world programs from the Octane benchmarks, Transducers, D3 and the TypeScript

compiler 1. We show that RSC’s refinement typing is modular enough to analyze higher-

order functions, collections and external code, and extensible enough to verify a variety

of properties from classic array-bounds checking to program specific invariants needed

to ensure safe reflection: critical invariants that are well beyond the scope of existing

techniques for imperative scripting languages (Section 4.4).

4.1 Overview

In Section 3.1 we gave a high-level overview of refinement types and showed how they

can be used to verify properties like within bounds array accesses. The form in which they were

presented there is readily applicable to the setting of Refined TypeScript. For completeness we

briefly review them and demonstrate their applications (Section 4.1.1). Then we move on to show

how Refined TypeScript handles imperative, higher-order constructs (Section 4.1.2).

Types and Refinements. A basic refinement type is a basic type, e.g. number, refined

1Our implementation and benchmarks can be found at https://github.com/UCSD-PL/refscript.

https://github.com/UCSD-PL/refscript
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with a logical formula from an SMT decidable logic [74]. For example, the types

type nat = {ν : number | 0 ≤ ν }

type pos = {ν : number | 0 < ν }

type natN〈n〉 = {ν : nat | ν = n }

type idx〈〈a〉〉 = {ν : nat | v < len(a) }

describe (the set of values corresponding to) non-negative numbers, positive numbers, numbers

equal to some value n, and valid indexes for an array a, respectively. Here, len is an uninterpreted

function that describes the size of the array a.

Summaries. Function types (x1 : τ1, . . . , xn : τn)⇒ τ, where arguments are named xi

and have types τi and the output is a type τ, are used to specify the behavior of functions. In

essence, the input types τi specify the function’s preconditions, and the output type τ describes

the postcondition. Each input type and the output type can refer to the arguments xi, yielding

precise function contracts. For example,

(x : nat)⇒ {ν : nat | x < ν }

is a function type that describes functions that require a non-negative input, and ensure that the

output exceeds the input.

Higher-Order Summaries. This approach generalizes directly to precise descriptions

for higher-order functions. Take for example the code in Figure 4.1. This code is the same as

the one in Figure 3.1. It has been duplicated here for convenience. The function reduce can be

specified as Treduce:

∀α,β . (a : α[ ], f : (β, α, idx〈〈a〉〉)⇒ β, x : β)⇒ β (4.1)

This type is a precise summary for the higher-order behavior of reduce: it describes the

relationship between the input array a, the step (“callback”) function f, and the initial value

of the accumulator, and stipulates that the output satisfies the same properties β as the input x.

Furthermore, it critically specifies that the callback f is only invoked on valid indices for the
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function reduce(a, f, x) {
var res = x;
for (var i = 0; i < a.length; i++)

res = f(res, a[i], i);
return res;

}

function minIndex(a) {
if (a.length <= 0) return -1;
function step(min, cur, i) {

return cur < a[min] ? i : min;
}
return reduce(a, step, 0);

}

Figure 4.1. Computing the Min-Valued Index with reduce

array a being reduced.

4.1.1 Applications

Next, we show how refinement types let programmers specify and statically verify a

variety of properties — array safety, reflection (value-based overloading), and downcasts —

potential sources of runtime problems that cannot be prevented via existing techniques.

Array Bounds

Specification. We specify safety by defining suitable refinement types for array creation

and access. For example, we view read a[i], write a[i] = e and length access a.length as calls

get(a,i), set(a,i,e) and length(a) where

get :: ∀α . (a : α[ ], i : idx〈〈a〉〉)⇒ α

set :: ∀α . (a : α[ ], i : idx〈〈a〉〉, e : α)⇒ void

length :: ∀α . (a : α[ ])⇒ natN〈a〉

Verification. Refinement typing ensures that the actual parameters supplied at each call

to get and set are subtypes of the expected values specified in the signatures, and thus verifies

that all accesses are safe. As an example, consider the function that returns the “head” element
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of an array:

function head<T>(arr: NEArray<T>) {
return arr[0];

}

The input type requires that arr be non-empty:

type NEArray〈α〉 = {ν : α[ ] | 0 < len(ν) }

We convert arr[0] to get(arr,0) which is checked under environment Γhead defined as

arr : {ν : T[ ] | 0 < len(ν) }

yielding the subtyping obligation

Γhead ` {ν = 0} v idx〈〈arr〉〉

which reduces to the logical verification condition (VC)

0 < len(arr)⇒ (ν = 0 ⇒ 0 ≤ ν < len(arr))

The VC is proved valid by an SMT solver [74], verifying subtyping, and hence, the array access’

safety.

Path Sensitivity. We obtain path sensitivity by adding branch conditions into the typing

environment. Consider the function:

function head0(a: number[]): number {
if (0 < a.length) return head(a);
return 0;

}

Recall that head should only be invoked with non-empty arrays. The call to head above occurs

under Γhead0 defined as:

a : number[ ], 0 < len(a)

i.e. which has the binder for the formal a, and the guard predicate established by the branch
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condition. Thus, the call to head yields the obligation

Γhead0 ` {ν = a} v NEArray〈number〉

yielding the valid VC

0 < len(a)⇒ (ν = a ⇒ 0 < len(ν))

Polymorphic, Higher-Order Functions. Next, let us assume that reduce from Figure 3.1

has the type Treduce and see how to verify the array safety of minIndex. The challenge here is to

precisely track which values can flow into min (used to index into a), which is tricky since those

values are actually produced inside reduce.

Types make it easy to track such flows: we need only determine the instantiation of

the polymorphic type variables of reduce at this call site inside minIndex. The type of the f

parameter in the instantiated type corresponds to a signature for the closure step which will

let us verify the closure’s implementation. Here, rsc automatically instantiates (by building

complex logical predicates from simple terms that have been predefined in a prelude)

α 7→ number β 7→ idx〈〈a〉〉 (4.2)

Let us reassure ourselves that this instantiation is valid, by checking that step and 0

satisfy the instantiated type. If we substitute (4.2) into Treduce we obtain the following types for

step and 0, i.e. reduce’s second and third arguments:

step :: (idx〈〈a〉〉, number, idx〈〈a〉〉)⇒ idx〈〈a〉〉 0 :: idx〈〈a〉〉

The initial value 0 is indeed a valid idx〈〈a〉〉 thanks to the a.length check at the start of the

function. To check step, assume that its inputs have the above types:

min :: idx〈〈a〉〉 curr :: number i :: idx〈〈a〉〉

The body is safe as the index i is trivially a subtype of the required idx〈〈a〉〉, and the output is

one of min or i and hence, of type idx〈〈a〉〉 as required.
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Overloading

Dynamic languages extensively use value-based overloading to simplify library interfaces.

For example, a library may export

function $reduce(a, f, x) {
if (arguments.length === 3) return reduce(a,f,x);
return reduce(a.slice(1),f,a[0]);

}

The function $reduce has two distinct types depending on its parameters’ values, rendering it

impossible to statically type without path-sensitivity.

Intersection Types. Refinements let us statically verify value-based overloading via

Two-Phase Typing (Chapter 3). First, we specify overloading as an intersection type. For example,

$reduce gets the following signature, which is just the conjunction of the two overloaded

behaviors:

∀α . (a : α[ ]+, f : (α, α, idx〈〈a〉〉)⇒ α)⇒ α (4.3)

∀α,β . (a : α[ ], f : (β, α, idx〈〈a〉〉)⇒ β, x : β)⇒ β (4.4)

The type α[ ]+ in the first conjunct indicates that the first argument needs to be a non-empty

array, so that the call to slice and the access of a[0] both succeed.

Dead Code Assertions. Second, we check each conjunct separately, replacing ill-typed

terms in each context with assert(false). This requires the refinement type checker to prove

that the corresponding expressions are dead code, as assert requires its argument to always be

true:

assert :: ∀α . (b : {ν : boolean | ν = true })⇒ α

To check $reduce, we specialize it per overload context as can be seen in Figure 4.2 In each case,

the “ill-typed” term (for the corresponding input context) is replaced with the call assert(false).

Refinement typing easily verifies the asserts, as they respectively occur under the inconsistent

environments

Γ1
.
= arguments : {len(ν) = 2}, len(arguments) = 3

Γ2
.
= arguments : {len(ν) = 3}, len(arguments) 6= 3
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function $reduce1(a,f) {
if (arguments.length === 3) return assert(false);
return reduce(a.slice(1), f, a[0]);

}

function $reduce2(a,f,x) {
if (arguments.length === 3) return reduce(a,f,x);
return assert(false);

}

Figure 4.2. Specialization of $reduce Function

which bind arguments to an array-like object corresponding to the arguments passed to that

function, and include the branch condition under which the call to assert occurs.

4.1.2 Analysis

Next, we outline how rsc uses refinement types to analyze programs with closures,

polymorphism, assignments, classes and mutation.

Polymorphic Instantiation

rsc uses the framework of Liquid Typing [91] to automatically synthesize the instantiations

of (4.2). In a nutshell, rsc

(a) creates templates for unknown refinement type instantiations,

(b) performs type checking over the templates to generate subtyping constraints over the tem-

plates that capture value-flow in the program,

(c) solves the constraints via a fixpoint computation (abstract interpretation).

Step 1: Templates. Recall that reduce has the polymorphic type Treduce. At the call-site

in minIndex, the type variables A, B are instantiated with the known base-type number. Thus, rsc

creates fresh templates for the (instantiated) α, β:

α 7→ {ν : number | κA } β 7→ {ν : number | κB }

where the refinement variables κA and κB represent the unknown refinements. We substitute the
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above in the signature for reduce to obtain a context-sensitive template

(a : κA[ ], f : (κB, κA, idx〈〈a〉〉)⇒ κB, x : κB)⇒ κB (4.5)

Step 2: Constraints. Next, rsc generates subtyping constraints over the templates. Intu-

itively, the templates describe the sets of values that each static entity (e.g. variable) can evaluate

to at runtime. The subtyping constraints capture the value-flow relationships e.g. at assignments,

calls and returns, to ensure that the template solutions – and hence inferred refinements – soundly

over-approximate the set of runtime values of each corresponding static entity.

We generate constraints by performing type checking over the templates. As a, 0, and

step are passed in as arguments, we check that they respectively have the types κA[ ], κB and

(κB, κA, idx〈〈a〉〉)⇒ κB. Checking a and 0 yields the subtyping constraints

Γ ` number[ ] v κA[ ]

Γ ` {ν = 0} v κB

where Γ .
= a : number[ ], 0 < len(a) from the else-guard that holds at the call to reduce. We

check step by checking its body under the environment Γstep that binds the input parameters to

their respective types

Γstep
.
= min : κB, cur : κa, i : idx〈〈a〉〉

As min is used to index into the array a we get

Γstep ` κB v idx〈〈a〉〉

As i and min flow to the output type κB, we get

Γstep ` idx〈〈a〉〉 v κB

Γstep ` κB v κB

Step 3: Fixpoint. The above subtyping constraints over the κ variables are reduced via

the standard rules for co- and contra-variant subtyping, into Horn implications over the κs. rsc
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solves the Horn implications via (predicate) abstract interpretation [91] to obtain the solution

κA 7→ true and κB 7→ 0 ≤ ν < len(a) which is exactly the instantiation in (4.2) that satisfies the

subtyping constraints, and proves minIndex is array-safe.

Assignments

Next, let us see how the signature for reduce in Figure 4.1 is verified by rsc. Unlike in

the functional setting, where refinements have previously been studied, here, we must deal with

imperative features like assignments and for-loops.

SSA Transformation. We solve this problem in three steps. First, we convert the code

into SSA form, to introduce new binders at each assignment. Second, we generate fresh templates

that represent the unknown types (i.e. set of values) for each Φ-variable. Third, we generate

and solve the subtyping constraints to infer the types for theΦ-variables, and hence, the “loop-

invariants” needed for verification.

Let us see how this process lets us verify reduce from Figure 4.1. First, we convert the

body to SSA form (Section 4.2.3):

function reduce(a, f, x) {
var r0 = x, i0 = 0;
while [ i2 .

= φ(i0, i1), r2 .
= φ(r0, r1) ] (i2 < a.length) {

r1 = f(r2, a[i2], i2);
i1 = i2 + 1;

}
return r2;

}

where i2 and r2 are the Φ-variables for i and r respectively. Second, we generate templates for

the Φ-variables:

i2 : {ν : number | κi2 } r2 : {ν : B | κr2 } (4.6)

We need not generate templates for the SSA variables i0, r0, i1 and r1 as their types are those

of the expressions they are assigned. Third, we generate subtyping constraints as before; the
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Φ-assignment generates additional constraints

Γ0 ` {ν = i0} v κi2 Γ1 ` {ν = i1} v κi2

Γ0 ` {ν = r0} v κr2 Γ1 ` {ν = r1} v κr2

where Γ0 is the environment at the “exit” of the basic block where i0 and r0 are defined:

Γ0
.
= a : number[], x : β, i0 : natN〈0〉, r0 : {ν : β | ν = x }

Similarly, the environment Γ1 includes bindings for variables i1 and r1. In addition, code

executing the loop body has passed the conditional check, so our path-sensitive environment is

strengthened by the corresponding guard:

Γ1
.
= Γ0, i1 : natN〈i2+ 1〉, r1 : β, i2 < len(a)

Finally, the above constraints are solved to

κi2 7→ 0 ≤ ν < len(a) κr2 7→ true

which verifies that the “callback” f is indeed called with values of type idx〈〈a〉〉, as it is only

called with i2 : idx〈〈a〉〉, obtained by plugging the solution into the template in (4.6).

Mutability

In the imperative, object-oriented setting (common in dynamic scripting languages),

we must account for class and object invariants and their preservation in the presence of field

mutation. For example, consider the code in Figure 4.3, modified from the Octane Navier-Stokes

benchmark.

Class Invariants. Class Field implements a 2-dimensional vector, “unrolled” into a single

array dens, whose size is the product of the width and height fields. We specify this invariant

by requiring that width and height be strictly positive (i.e. pos) and that dens be a grid with

dimensions specified by this.w and this.h. An advantage of SMT-based refinement typing

is that modern SMT solvers support non-linear reasoning, which lets rsc specify and verify

program specific invariants outside the scope of generic bound checkers.
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type ArrayN〈α, n〉 = {ν : α[ ] | len(ν) = n }

type grid〈w, h〉 = ArrayN〈number, (w+ 2) ∗ (h+ 2)〉
type okW = natLE〈this.w〉
type okH = natLE〈this.h〉

class Field {
immutable w: pos;
immutable h: pos;
dens : grid〈this.w, this.h〉;

constructor(w: pos, h: pos, d: grid〈w, h〉) {
this.h = h; this.w = w; this.dens = d;

}
setDensity(x: okW, y: okH, d: number) {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
this.dens[i] = d;

}
getDensity(x: okW, y: okH): number {

var rowS = this.w + 2;
var i = x+1 + (y+1) * rowS;
return this.dens[i];

}
reset(d: grid〈w, h〉) {

this.dens = d;
}

}

Figure 4.3. Example Adapted from D3: Two-Dimensional Arrays

Mutable and Immutable Fields. The above invariants are only meaningful and sound

if fields w and h cannot be modified after object creation. We specify this via the immutable

qualifier, which is used by rsc to then (1) prevent updates to the field outside the constructor,

and (2) allow refinements of fields (e.g. dens) to soundly refer to the values of those immutable

fields.

Constructors. We can create instances of Field, by using new Field(...) which invokes

the constructor with the supplied parameters. rsc ensures that at the end of the constructor,

the created object actually satisfies all specified class invariants i.e. field refinements. Of course,

this only holds if the parameters passed to the constructor satisfy certain preconditions, specified
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via the input types. Consequently, rsc accepts the first call, but rejects the second:

var z = new Field(3,7,new Array(45)); // OK
var q = new Field(3,7,new Array(44)); // BAD

Methods. rsc uses class invariants to verify setDensity and getDensity, that are

checked assuming that the fields of this enjoy the class invariants, and method inputs satisfy

their given types. The resulting VCs are valid and hence, check that the methods are array-safe.

Of course, clients must supply appropriate arguments to the methods. Thus, rsc accepts the first

call, but rejects the second as the x co-ordinate 5 exceeds the actual width (i.e. z.w), namely 3:

z.setDensity(2, 5, -5) // OK
z.getDensity(5, 2); // BAD

Mutation. The dens field is not immutable and hence, may be updated outside of the

constructor. However, rsc requires that the class invariants still hold, and this is achieved by

ensuring that the new value assigned to the field also satisfies the given refinement. Thus, the

reset method requires inputs of a specific size, and updates dens accordingly. Hence:

var z = new Field(3,7,new Array(45));
z.reset(new Array(45)); // OK
z.reset(new Array(5)); // BAD

4.2 Formal System

Next, we formalize the ideas outlined in Section 4.1. We introduce our formal core

Irsc (Section 4.2.1): an imperative, mutable, object-oriented subset of Refined TypeScript, that

resembles the core of Safe TypeScript [87]. To ease refinement reasoning, we SSA-transform (Sec-

tion 4.2.3) Irsc to a functional, yet still mutable, intermediate language λrsc (Section 4.2.2) that

closely follows the design of CFJ [76] (the language used to formalize X10), which in turn is based

on Featherweight Java [57]. We then formalize our static semantics in terms of λrsc (Section 4.2.4),

prove them sound and connect them to those of Irsc (Section 4.2.5).

4.2.1 Source Language (Irsc)

The syntax of this language is given below. Meta-variable e ranges over expressions,

which can be variables x, constants n, property accesses e.f, method calls e.m(e), object cre-

ations new C(e), and cast operations <T>e. Here T is a source-level basic type (i.e. unrefined).
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Variables x ∈ X

Constants n ∈ Consts

Expressions e ::= x | n | this | e.f | e.f = e | e.m(e) |

new C(e) | <T>e

Statements s ::= e | var x = e | x = e | s; s | if (e) {s} else {s}

Field Def. F ::= · | f | F1, F2

Method Def. M ::= · | m(x): {s; return e} | M1, M2

Class Def. K ::= · | class C extends D {F, M} | K1, K2

Program P ::= K s

Field Sig. F̂ ::= · | ◦ f : T | � f : T | F̂1, F̂2

Method Sig. M̂ ::= · | m(x : T) : T | M̂1, M̂2

Class Sig. K̂ ::= C /D :: P
{
F̂, M̂

}
Figure 4.4. Syntax of Irsc

Statements s include expressions, variable declarations, field updates, assignments, concatena-

tions, conditionals and empty statements. Method definitions include a method name, parame-

ters and a body, i.e. a statement immediately followed by a returned expression. Methods are

annotated with method signatures that include input ant output types. Classes include methods

and fields. We distinguish between immutable and mutable class members, using ◦ f : T and

� f : T , respectively. Finally, class signatures, that annotate classes, are associated with an invariant

predicate P.

The core system does not formalize (a) method overloading, which is orthogonal to the

current contribution and was investigated in Chapter 3, or (b) method overriding, which means

that method names are distinct from the ones defined in parent classes.

4.2.2 Intermediate Language (λrsc)

To maintain precision for stack-allocated variables, we transform Irsc programs into

equivalent (in a sense that we will make precise in the sequel) programs in a functional language

λrsc through SSA renaming. In λrsc, statements are replaced by let-bindings and new variables

are introduced for each reassigned variable in Irsc code. Thus, λrsc has the syntax shown in
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Expressions w ::= z | n | this | w.f | w.m(w) | new C(w) |

w as T | w1.f← w2 | u〈w〉

SSA Context u ::= 〈 〉 | let z = w in u | if [φ ]w then u1 else u2

Phi Variable φ ::= (z; z1; z2)

Field Def. F ::= · | f | F1, F2
Method Def. M ::= · | def m(z) = w | M1, M2

Class Def. K ::= · | class C extends D {F , M} | K1, K2
Program P ::= K, w

Figure 4.5. Syntax of λrsc

Figure 4.5.

The majority of the expression forms e are unsurprising. An exception is the form of the

SSA context u, which corresponds to the translation of a statement s and contains a hole 〈 〉 that

will hold the translation of the continuation of s. Form u〈e〉 fills the hole of uwith expression e.

4.2.3 Static Single Assignment (SSA) Transformation

Figure 4.6 describes the SSA transformation, that uses translation environments δ to map

Irsc x to λrsc variables z. The translation of expressions e tow is routine; as expected, S-VAR maps

a variable x to its bindings z in δ. The translating judgment for statements s has the form

δ ` s ↪→ u a δ ′

The output environment δ ′ is used for the translation of the expression that will fill the hole in u.

The most interesting case is the conditional statement (Rule S-ITE). The condition

expression and each branch are translated separately. To compute the variables that get updated

in either branch (Φ-variables), we combine the produced translation states δ1 and δ2 as δ1 ./ δ2

defined as

{ (x; x1; x2) | x 7→ x1 ∈ δ1, x 7→ x2 ∈ δ2, x1 6= x2 }

Fresh Φ-variables z populate the output environment δ ′ and annotate the produced

structure, along with the versions of theΦ-variables at the end of each branch (z1 and z2).

Assignment statements introduce a new SSA variable and bind it to the updated source-
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Expression Transformation Rules (selected) δ ` e ↪→ w

δ ` x ↪→ δ(x)
[S-VAR]

δ ` n ↪→ n
[S-CONST]

δ ` this ↪→ this
[S-THIS]

δ ` e ↪→ w

δ ` e.f ↪→ w.f
[S-FLDRD]

δ ` e ↪→ w δ ` e ′ ↪→ w ′

δ ` e.f = e ′ ↪→ w.f← w ′
[S-FLDWR]

δ ` e ↪→ w δ ` ei ↪→ wi

δ ` e.m(ei) ↪→ w.m(wi)
[S-CALL]

Statement Transformation Rules (selected) δ ` s ↪→ u a δ ′

δ ` e ↪→ w δ[ x 7→ z ] = δ ′ z fresh

δ ` let x = e ↪→ let z = w in 〈 〉 a δ ′
[S-VARDECL]

δ ` e ↪→ w δ ` s1 ↪→ u1 a δ1 δ ` s2 ↪→ u2 a δ2
δ1 ./ δ2 = x 7→ (z1, z2) δ[ x 7→ z ] = δ (z; z1; z2) = φ z fresh

δ ` if (e) {s1} else {s2} ↪→ if [φ ]w then u1 else u2 a δ ′
[S-ITE]

δ ` e ↪→ w δ[ x 7→ z ′ ] = δ ′ z ′ fresh

δ ` x = e ↪→ let z ′ = w in 〈 〉 a δ ′
[S-ASGN]

δ ` s1 ↪→ u1 a δ1 δ1 ` s2 ↪→ u2 a δ2

δ ` s1; s2 ↪→ u1〈u2〉 a δ2
[S-SEQ]

δ ` skip ↪→ 〈 〉 a δ [S-SKIP]

δ ` s ↪→ u a δ ′ δ ′ ` e ↪→ w

δ ` s; return e ↪→ u〈w〉
[S-BODY]

Method Transformation Rule M ↪→M
x 7→ z ` {s; return e} ↪→ w z fresh

m(x): {s; return e} ↪→ def m(z) = w
[S-METH-DEF]

Figure 4.6. SSA Transformation in RSC
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level variable (Rule S-ASGN). Statement sequencing is emulated with nesting SSA contexts

(Rule S-SEQ); empty statements introduce a hole (rule S-SKIP); and, finally, method declarations

fill in the hole introduced by the method statement with the translation of the return expression

(Rule S-METH-DEF).

Consistency. To validate our transformation, we provide a consistency result that

guarantees that stepping in the target language preserves the transformation relation, after the

program in the source language has made an appropriate number of steps.

We define a runtime configuration R for Irsc (resp. R for λrsc) for a program P (resp. P) as:

P
.
= K, e P .

= K, w

R
.
= S, e R .

= S , w

S
.
= 〈K;L;X;H〉 S .

= K, H

Similar to Safe TypeScript [87], a runtime state S consists of class signatures K, a call stack X, a local

store L of the current stack frame and a heap H. The runtime state S for λrsc only consists of

signaturesK and a heapH. SSA consistency is established via a weak forward simulation theorem

that connects the dynamic semantics of the two languages, expressed through the reduction rules

R −→ R ′ R −→ R ′
Rules for Irsc are adapted from Safe TypeScript and the rules for λrsc are straightforward,

so we leave the details to the appendix (Section C.2.1). Figure C.2 presents some interesting cases:

(a) To emulate tsc’s type erasure, Rule R-CAST of Irsc trivially steps a cast operation to the

enclosed expression. The corresponding Rule R-CAST of λrsc, on the other hand, checks

that the content of the cast location satisfies the cast type (Corollary 4.2.1 deems this check

redundant).

(b) In Rule R-LIF of λrsc, expression e is produced assuming Φ-variables x, so as soon as the

branch has been determined, x are substituted for x1 or x2 (depending on the branch) in e.

This formulation allows us to perform all SSA-related book-keeping in a single step, which

is key to preserving the invariant that λrsc steps faster than Irsc.

We also extend our SSA transformation judgment to runtime configurations, leveraging
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Ref. Types T ::= ∃ x : T1 . T2 | {ν : N | P }

Base Types N ::= C | b

Predicates P ::= P1 ∧ P2 | ¬P | t

Terms t ::= x | n | ν | this | t.f | f(t) | b(t)

Figure 4.7. Type Language in RSC

the SSA environments that have been statically computed for each program entity. A global SSA

environment ∆ is used to map each AST node (e, s, etc.) to an SSA environment δ:

∆ ::= · | e 7→ δ | s 7→ δ | . . . | ∆1, ∆2

We assume that the compile-time SSA translation yields this environment as a side-effect (e.g.

δ ` e ↪→ w produces e 7→ δ) and the top-level program transformation judgment returns the net

effect:

P ↪→ P . ∆

Hence, the SSA transformation judgment for configurations becomes:

S, e
∆
↪−→ S , w

We can now state our simulation theorem as:

Theorem 4.1 (Forward Simulation). If R
∆
↪−→ R, then:

(a) ifR is terminal, then there exists R ′ s.t. R −→∗ R ′ and R ′
∆
↪−→ R.

(b) ifR −→ R ′, then there exists R ′ s.t. R −→∗ R ′ and R ′
∆
↪−→ R ′.

4.2.4 Static Semantics

We proceed by describing refinement checking for λrsc.

Types. Type annotations on the source language are propagated unaltered through the

translation phase. Our type language shown in Figure 4.7 resembles that of existing refinement

type systems [66, 91, 76]. A refinement type T may be an existential type or have the form

{ν : N | P }, where N is a class name C or a primitive type b, and P is a logical predicate (over
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some decidable logic) which describes the properties that values of the type must satisfy. Type

specifications (e.g. method types) are existential-free, while inferred types may be existentially

quantified [65].

Logical Predicates. Predicates P are logical formulas over terms t. These terms can

be variables z, primitive constants n, the reserved value variable ν, the reserved variable this

to denote the containing object, field accesses t.f, uninterpreted function applications f(t) and

applications of terms on built-in operators b, such as =, <, +, etc.

Structural Constraints. Following CFJ, we reuse the notion of an Object Constraint

System, to encode constraints related to the object-oriented nature of the program. Most of the

rules carry over to our system. A key extension in our setting is we partition C has I (that encodes

inclusion of an element I in a class C) into two cases: C hasMut I and C hasImm I, to account for

elements that may be mutated.

These elements can only be fields (i.e. there is no mutation on methods).

Environments and Well-formedness. A type environment Γ contains type bindings x : T

and guard predicates P that encode path sensitivity. Γ is well-formed if all of its bindings are

well-formed. A refinement type is well-formed in an environment Γ if all symbols (simple or

qualified) in its logical predicate (i) are bound in Γ , and (ii) correspond to immutable fields of

objects. We omit the rest of the well-formedness rules as they are standard in refinement type

systems. Besides well-formedness, our system’s main judgment forms are those for subtyping

and refinement typing [66].

Subtyping. We defined subtyping by the judgment:

Γ ` T1 ≤ T2

The rules are standard among refinement type systems with existential types. For example, the

rule for subtyping between two refinement types

Γ ` {ν : N | P } ≤ {ν : N | P ′ }

reduces to a verification condition

Valid(JΓK⇒ (JPK⇒ JP ′K))
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Expression Typing Rules Γ ` e : T

Γ(z) = T

Γ ` z : sngl (T , z)
[T-VAR]

Γ ` n : bn

[T-CST]

Γ ` u . z : T Γ , z : T ` e : T

Γ ` u〈e〉 : ∃ z : T . T
[T-CTX]

Γ ` e : T y fresh Γ , y : T ` y hasImm fi : Ti

Γ ` e.fi : ∃ y : T . sngl (Ti, y.fi)
[T-FLD-I]

Γ ` e : T Γ , y : T ` y hasMut gi : Ti y fresh

Γ ` e.gi : ∃ y : T . Ti
[T-FLD-M]

Γ ` e : T , e : T

Γ , y : T ` y has (m(y : T1) : T2) Γ , y : T , y : T1 ` T ≤ T1 y, y fresh

Γ ` e.m(e) : ∃ y : T . ∃ y : T1 . T2
[T-MTH-CALL]

Γ ` e1 : T1, e2 : T2 Γ , y1 : bT1c ` y1 hasMut f : T ′2, T2 ≤ T ′2 y1 fresh

Γ ` e1.f← e2 : T2

[T-DOTASGN]

Γ ` e : (T◦, T�) ` class(C) Γ , y : C ` fields(y) = ◦ f : T
′
◦, �g : T

′
�

Γ , y : C, y◦ : sngl
(
T◦, y.f

)
` T◦ ≤ T

′
◦, T� ≤ T

′
�, inv(C, y) y,y◦ fresh

Γ ` new C(e) : ∃ y◦ : T◦ . {ν : C | ν.f = y◦ ∧ inv(C, ν) }
[T-NEW]

Γ ` e : T ′ Γ ` T Γ ` T ′ . T

Γ ` e as T : T
[T-CAST]

SSA Context Typing Rules Γ ` u . Γ ′

Γ ` 〈 〉 . ·
[T-CTXEMP]

Γ ` e : T

Γ ` let z = e in 〈 〉 . z : T
[T-LETIN]

Γ ` e : T , T ≤ Bool Γ , z : T , z ` u1 . Γ1 Γ , z : T , ¬z ` u2 . Γ2
φ ≡ (z; z1; z2) Γ , Γ1 ` Γ1(z1) ≤ T Γ , Γ2 ` Γ2(z2) ≤ T Γ ` T T fresh

Γ ` if [φ ] e then u1 else u2 . z : T
[T-IF]

Figure 4.8. Static Typing Rules for λrsc
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where JΓK is the embedding of environment Γ into our logic accounting for both guard predicates

and variable bindings:

JΓK .
=
∧

{P | P ∈ Γ } ∧
∧

{ [ x/ν ] (P) , | x : {ν : N | P } ∈ Γ }

Here, we assume existential types are simplified to non-existential bindings when they enter the

environment.

Details regarding structural and well-formedness constraints, and subtyping rules are

included in Section C.1.4 of the appendix.

Refinement Typing Rules. Figure 4.8 contains rules of the two forms of our typing

judgements:

Γ ` e : T Γ ` u . Γ ′

The first assigns a type T to an expression e under an environment Γ , and the second checks the

body of an SSA context u under Γ and returns the environment Γ ′ of the variables introduced in

u that are available when checking its hole (Rule T-CTX). Below, we discuss the novel rules:

[ T-FLD-I ] Immutable object parts can be assigned a more precise type, by leveraging the

preservation of their identity. This notion, known as self-strengthening [65, 76], is defined with the

aid of the strengthening operator C:

{ν : N | P }C P ′ .
= {ν : N | P∧ P ′ }

(∃ x : T1 . T2)C P .
= ∃ x : T1 . (T2 C P)

sngl (T , t) .
= T C (ν = t)

[ T-FLD-M ] Here we avoid such strengthening, as the value of field gi is mutable, so cannot

appear in refinements.

[ T-NEW ] Similarly, only immutable fields are referenced in the refinement of the inferred type

at object construction.

[ T-MTH-CALL ] Extracting the method signature using the has operator has already performed

the necessary substitutions to account for the specific receiver object.
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[ T-CAST ] Cast operations are checked statically obviating the need for a dynamic check. This

rule uses the notion of compatibility subtyping (.), which is defined as:

Definition 4.2.1 (Compatibility Subtype). A type T1 is a compatibility subtype of a type T2 if trans-

forming T1 to match the base of T2 results in a subtype of τ2. Formally,

Γ ` T1 . T2

iff

〈T1
Γ
−→ bT2c〉 = T ′1 6= fail

with Γ ` T ′1 ≤ T2.

Here, the operation bTc extracts the base type of T , and 〈T Γ
−→ D〉 succeeds when under environ-

ment Γ we can statically proveD’s invariants, starting from the invariants contained in T . We use

the predicate inv(D, ν) (as in CFJ) to denote the conjunction of the class invariants of D and its

supertypes (with the necessary substitutions of this by ν). We assume that part of these invariants

is a predicate that states inclusion in the specific class (instanceof(ν,D)). Therefore, we can prove

that T can safely be cast to D. For the output of this operation it holds that: b〈T Γ
−→ D〉c = D,

which enables the use of traditional subtyping. Formally:

〈{ν : _ | P }
Γ
−→ D〉 .

=


DC P if (JΓK∧ JPK) =⇒ inv(D, ν)

fail otherwise

〈∃ x : T1 . T2
Γ
−→ D〉 .

= ∃ x : T1 . 〈T2
Γ ,x : T1−−−−−→ D〉

[ T-DOTASGN ] Only mutable fields may be reassigned.

[ T-LETIF ] To type conditional structures, we first infer a type for the condition and then check

each of the branches u1 and u2, assuming that the condition is true or false, respectively, to

achieve path sensitivity. Each branch assigns types to the Φ-variables which compose Γ1 and Γ2,

and the propagated types for these variables are fresh types operating as upper bounds to their

respective bindings in Γ1 and Γ2.
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4.2.5 Type Safety

To state our safety results, we extend our type checking judgment to runtime locations `

with the use of a heap typing Σ, binding locations to types, and add a location typing rule:

Σ(`) = T

Γ ; Σ ` ` : T
[T-LOC]

We establish type safety for λrsc in the form of a subject reduction (preservation) and a progress

theorem that connect the static and dynamic semantics of λrsc. These theorems employ the

notions of heap and signature well-formedness: Σ ` H and ` K.

Theorem 4.2 (Subject Reduction). If

(i) Γ ; Σ ` e : T

(ii) S ; e −→ S ′; e ′
(iii) Σ ` S .H

then there exist T ′ and Σ ′ ⊇ Σ s.t.

(a) Γ ; Σ ′ ` e ′ : T ′

(b) Γ ` T ′ . T

(c) Σ ′ ` S ′.H

Theorem 4.3 (Progress). If

(i) Γ ; Σ ` e : T

(ii) ` K

(iii) Σ ` H

then either e is a value, or there exist e ′,H ′ and Σ ′ ⊇ Σ s.t.

(a) Σ ′ ` H ′

(b) K, H; e −→ K, H ′; e ′
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The proofs can be found in Section C.2.2 of the appendix. As a corollary of the Progress

Theorem we get that cast operators are guaranteed to succeed, hence they can safely be erased.

Corollary 4.2.1 (Safe Casts). Cast operations can safely be erased when compiling to executable code.

With the use of our Simulation Theorem and extending our checking judgment for terms

in λrsc to runtime configurations (` R), we can state a soundness result for Irsc:

Theorem 4.4. (Irsc Type Safety) If R
∆
↪−→ R and ` R then either R is a terminal form, or there exists R ′

s.t. R −→ R ′, R ′
∆
↪−→ R ′ and ` R ′.

4.3 Scaling to TypeScript

TypeScript extends JavaScript with modules, classes and a lightweight type system that

enables IDE support for auto-completion and refactoring.

TypeScript deliberately eschews soundness [10] for backwards compatibility with ex-

isting JavaScript code. In this section, we show how to use refinement types to regain safety, by

presenting the highlights of Refined TypeScript (and our tool rsc), that scales the core calculus

from Section 4.2 up to TypeScript by extending the support for types (Section 4.3.1), reflection (Sec-

tion 4.3.2), interface hierarchies (Section 4.3.3), and imperative programming (Section 4.3.4).

4.3.1 Types

First, we discuss how rsc handles core TypeScript features like object literals, interfaces

and primitive types.

Object Literal Types. TypeScript supports object literals, i.e. anonymous objects with

field and method bindings. rsc types object members in the same way as class members: method

signatures need to be explicitly provided, while field types and mutability modifiers are inferred

based on use, e.g. in:

var point = { x: 1, y: 2 };
point.x = 2;

the field x is updated and hence, rsc infers that x is mutable.

Interfaces. TypeScript supports named object types in the form of interfaces, and treats

them in the same way as their structurally equivalent class types. For example, the interface
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interface PointI {
number x, y;

}

is equivalent to a class PointC defined as

class PointC {
number x, y;

}

In rsc these two types are not equivalent, as objects of type PointI do not necessarily

have PointC as their constructor:

var pI = { x: 1, y: 2 };
var pC = new PointC(1,2);
pI instanceof PointC; // returns false
pC instanceof PointC; // returns true

However,

· ` PointC ≤ PointI

i.e. instances of the class may be used to implement the interface.

Primitive Types. We extend rsc’s support for primitive types to model the correspond-

ing types in TypeScript. TypeScript has undefined and null types to represent the eponymous

values, and treats these types as the “bottom” of the type hierarchy, effectively allowing those

values to inhabit every type via subtyping. rsc also includes these two types, but does not treat

them as “bottom” types. Instead rsc handles them as distinct primitive types inhabited solely by

undefined and null, respectively, that can take part in unions. Consequently, the following code

is accepted by TypeScript but rejected by rsc:

var x = undefined;
var y = x + 1;

Unsound Features. TypeScript’s system is unsound due to

1. treating undefined and null as inhabitants of all types,

2. co-variant input subtyping,

3. allowing unchecked overloads, and

4. allowing a special “dynamic” any type to be ascribed to any term.
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rsc ensures soundness by

1. performing checks when non-null (non-undefined) types are required (e.g. during field

accesses),

2. using the correct variance for functions and constructors,

3. checking overloads via two-phase typing (Chapter 3), and,

4. eliminating the any type.

Many uses of any (indeed, all uses, in our benchmarks Section 4.4) can be replaced with

a combination of union or intersection types or downcasting, all of which are soundly checked

via path-sensitive refinements. In future work, we wish to support the full language, namely

allow dynamically checked uses of any by incorporating orthogonal dynamic techniques from the

contracts literature. We envisage a dynamic cast operation

castT :: (x : any)⇒ {ν : T | ν = x }

It is straightforward to implement castT for first-order types T as a dynamic check that traverses

the value, testing that its components satisfy the refinements [92]. Wrapper-based techniques

from the contracts/gradual typing literature should then let us support higher-order types.

4.3.2 Reflection

JavaScript programs make extensive use of reflection via “dynamic” type tests. rsc

statically accounts for these by encoding type-tags in refinements. The following tests if x is a

number before performing an arithmetic operation on it:

var r = 1;
if (typeof x === "number") {

r += x;
}

We account for this idiomatic use of typeof by statically tracking the “type” tag of values

inside refinements using uninterpreted functions (akin to the size of arrays). So a type τ is

refined with the predicate ttag = tag(τ) where tag was defined in Figure 3.6. For example,

values v of type boolean, number, string, etc. ttag(v) = "boolean", ttag(v) = "number",
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ttag(v) = "string", etc.. Furthermore, typeof has type

typeof :: ∀α . (z : α)⇒ {ν : string | ν = ttag(z) }

so the output type of typeof x and the path-sensitive guard under which the assignment

r = x + 1 occurs, ensures that at the assignment x can be statically proven to be a number.

The above technique coupled with two-phase typing (Chapter 3) allows rsc to statically

verify reflective, value-overloaded functions that are ubiquitous in TypeScript (Section 3.1.1).

4.3.3 Interface Hierarchies

JavaScript programs frequently build up object hierarchies that represent unions of

different kinds of values, and then use value tests to determine which kind of value is being

operated on. In TypeScript this is encoded by building up a hierarchy of interfaces, and then

performing downcasts based on value tests2.

Implementing Hierarchies with Bit-vectors. Figure 4.9 describes a slice of the hier-

archy of types used by the TypeScript compiler (tsc) v1.0.1.0. tsc uses bit-vector valued flags

to encode membership in a particular interface type, i.e. discriminate between the different

entities. (Older versions of tsc used a class-based approach, where inclusion could be tested via

instanceof tests.) For example, the enumeration TypeFlags above maps semantic entities to

bit-vector values used as masks that determine inclusion in a sub-interface of Type. Suppose t

of type Type. The invariant here is that if t.flags masked with 0x00000800 is non-zero, then

t can be safely treated as an InterfaceType object, or an ObjectType object, since the relevant

flag emerges from the bit-wise disjunction of the Interface flag with some other flags.

Specifying Hierarchies with Refinements. rsc allows developers to create and use Type

objects with the above invariant by specifying a predicate typeInv (Figure 4.10) and then refining

TypeFlags with the predicate 3:

type TypeFlags = {ν : TypeFlags | typeInv〈〈ν〉〉 }

Intuitively, the refined type says that when v (that is the flags field) is a bit-vector with the first

2rsc handles other type tests, e.g. instanceof, via an extension of the technique used for typeof tests.
3Modern SMT solvers easily handle formulas over bit-vectors, including operations that shift, mask bit-vectors, and

compare them for equality.
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interface Type {
immutable flags: TypeFlags;
id: number;
symbol?: Symbol;
...

}

interface ObjectType extends Type { ... }

interface InterfaceType extends ObjectType {
baseTypes: ObjectType[];
declaredProperties: Symbol[];
...

}

enum TypeFlags {
Any = 0x00000001,
String = 0x00000002,
Number = 0x00000004,
Class = 0x00000400,
Interface = 0x00000800,
Reference = 0x00001000,
Object = Class | Interface | Reference
...

}

Figure 4.9. Type Hierarchies in the tsc Compiler

position set to 1 the corresponding object satisfies the AnyType interface, etc.

Verifying Downcasts. rsc verifies the code that uses ad hoc hierarchies such as the above

by proving the TypeScript downcast operations (that allow objects to be used at particular in-

stances) safe. For example, consider the following code that tests if t implements the ObjectType

interface before performing a downcast from type Type to ObjectType that permits the access of

the latter’s fields:

function getPropertiesOfType(t: Type): Symbol[] {
if (t.flags & TypeFlags.Object) {

var o = <ObjectType>t;
[...]

}
}
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isMask〈〈ν,m, τ〉〉 .
= mask(ν, m) =⇒ implements(this, τ)

typeInv〈〈ν〉〉 .
= isMask〈〈ν, 0x00000001, Anytype〉〉
∧ isMask〈〈ν, 0x00000002, StringType〉〉
∧ isMask〈〈ν, 0x00003C00, ObjType〉〉

Figure 4.10. Type Invariant Predicate Definition

tsc erases casts, thereby missing possible runtime errors. The same code without the

if-test, or with a wrong test would pass the tsc type checker. rsc, on the other hand, checks casts

statically. In particular, <ObjectType>t is treated as a call to a function with signature

∀α . (x : {ν : α | implements(ν, ObjectType) })⇒ {ν : ObjectType | ν = x }

The if-test ensures that the immutable field t.flags masked with 0x00003C00 is non-zero, satisfy-

ing the third line in the type definition of typeInv, which in turn implies that t in fact implements

the ObjectType interface.

4.3.4 Imperative Features

Immutability Guarantees. Our system uses ideas from Immutability Generic Java [116]

(IGJ) to provide statically checked immutability guarantees. In IGJ a type reference is of the

form C<M,T>, where immutability argument M works as proxy for the immutability modifiers of

the contained fields (unless overridden). It can be one of: Immutable (or IM), when neither this

reference nor any other reference can mutate the referenced object; Mutable (or MU), when this

and potentially other references can mutate the object; and ReadOnly (or RO), when this reference

cannot mutate the object, but some other reference may. Similar reasoning holds for method

annotations. IGJ provides deep immutability, since a class’s immutability parameter is (by default)

reused for its fields; however, this is not a firm restriction imposed by refinement type checking.

Arrays. TypeScript’s definitions file provides a detailed specification for the Array

interface. In Figure 4.11 we extend this definition to account for the mutating nature of certain

array operations.

Mutating operations (push, pop, field updates) are only allowed on mutable arrays, and

the type of a.length encodes the exact length of an immutable array a, and just a natural number
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interface Array<M extends ReadOnly,T> {
Mutable pop(): T;
Mutable push(x:T): number;
Immutable get length(): {ν : nat | ν = len(this) }
ReadOnly get length(): nat;

...
}

Figure 4.11. Array Interface with Mutability Annotations in Refined TypeScript

otherwise. For example, assume the following code:

for (var i = 0; i < a.length; i++) {
var x = a[i];
..

}

To prove the access a[i] safe we need to establish 0≤ i and i < a.length. To guarantee that the

length of a is constant, a needs to be immutable, so rsc will flag an error unless a: Array<IM,T>.

Object Initialization. Our formal core (Section 4.2) treats constructor bodies in a very

limiting way: object construction is merely an assignment of the constructor arguments to the

fields of the newly created object. In rsc we relax this restriction in two ways: (a) We allow class

and field invariants to be violated within the body of the constructor, but checked for at the exit.

(b) We permit the common idiom of certain fields being initialized outside the constructor, via an

additional mutability variant that encodes reference uniqueness. In both cases, we still restrict

constructor code so that it does not leak references of the constructed object (this) or read any of

its fields, as they might still be in an uninitialized state.

(a) Internal Initialization: Constructors. Type invariants do not hold while the object is

being “cooked” within the constructor. To safely account for this idiom, rsc defers the checking

of class invariants (i.e. the types of fields) by replacing: (a) occurrences of this.fi = ei, with

f̂i = ei, where f̂i are local variables, and (b) all return points with a call ctor_init(f̂i, . . . ),

where the signature for ctor_init is:

(x : T)⇒ void

Thus, rsc treats field initialization in a field- and path-sensitive way (through the usual SSA

conversion), and establishes the class invariants via a single atomic step at the constructor’s exit
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function createType(flags:TypeFlags):Type<IM> {
const r: Type<UQ> = new Type(checker, flags);
r.id = typeCount++;
return r;

}

Figure 4.12. Initialization Outside the Constructor in Refined TypeScript

(return).

(b) External Initialization: Unique References. Sometimes we want to allow immutable

fields to be initialized outside the constructor. Consider the code in Figure 4.12 (adapted from

tsc).

Field id is expected to be immutable. However, its initialization happens after Type’s

constructor has returned. Fixing the type of r to Type<IM> right after construction would disallow

the assignment of the id field on the following line. So, instead, we introduce Unique (or UQ),

a new mutability type that denotes that the current reference is the only reference to a specific

object, and hence, allows mutations to its fields. This idea is related to the main idea bind Recency

Types [53]. When createType returns, we can finally fix the mutability parameter of r to IM.

We could also return Type<UQ>, extending the cooking phase of the current object and allowing

further initialization by the caller. UQ references obey stricter rules to avoid leaking of unique

references:

• they cannot be reassigned,

• they generally cannot be referenced, unless this occurs at a context that guarantees that no

aliases will be produced, e.g. the context of e1 in e1.f = e2, or the context of a returned

expression, and

• they cannot be cast to types of a different mutability (e.g. <C<IM>>x), as this would allow

the same reference to be subsequently aliased.

Section 4.5 discusses more expressive initialization approaches.

4.4 Evaluation

To evaluate rsc, we have used it to analyze a suite of JavaScript and TypeScript programs,

to answer two questions: (1) What kinds of properties can be statically verified for real-world
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code? (2) What kinds of annotations or overhead does verification impose? Next, we describe

the properties, benchmarks and discuss the results.

Safety Properties. We verify with rsc the following:

• Property Accesses. rsc verifies that each field (x.f) or method lookup (x.m(...)) succeeds.

Recall that undefined and null are not considered to inhabit the types to which the fields

or methods belong.

• Array Bounds. rsc verifies that each array read (x[i]) or write (x[i] = e) occurs within

the bounds of the array (x).

• Overloads. rsc verifies that functions with overloaded (i.e. intersection) types correctly

implement the intersections in a path-sensitive manner as described in (Section 4.1.1).

• Downcasts. rsc verifies that at each TypeScript (down)cast of the form <T>e, the expression

e is indeed an instance of T. This requires tracking program-specific invariants, e.g. bit-

vector invariants that encode hierarchies (Section 4.3.3).

4.4.1 Benchmarks

We ported a number of existing JavaScript or TypeScript programs to rsc. We selected

benchmarks that make heavy use of language constructs relevant to the safety properties de-

scribed above. These include parts of the Octane test suite, developed by Google as a JavaScript

performance benchmark [46] and already ported to TypeScript by Rastogi et al. [87], the Type-

Script compiler [71], and the D3 [13] and Transducers [24] libraries:

• navier-stokes, which simulates two-dimensional fluid motion over time; richards,

which simulates a process scheduler with several types of processes passing informa-

tion packets; splay, which implements the splay tree data structure; and raytrace, which

implements a raytracer that renders scenes involving multiple lights and objects; all from

the Octane suite,

• transducers: a library that implements composable data transformations, a JavaScript

port of Hickey’s Clojure library, which is extremely dynamic in that some functions have

12 (value-based) overloads,
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Table 4.1. Benchmark Results for rsc (Annotations). LOC is the number of non-comment lines of
source (computed via cloc v1.62). The number of rsc specifications given as JML style comments
is partitioned into T trivial annotations i.e. tsc type signatures, M mutability annotations, and
R refinement annotations, i.e. those which actually mention invariants. Time is the number of
seconds taken to analyze each file.

Benchmark LOC T M R Time (s)

navier-stokes 366 3 18 39 473

splay 206 18 2 0 6

richards 304 61 5 17 7

raytrace 576 68 14 2 15

transducers 588 138 13 11 12

d3-arrays 189 36 4 10 37

tsc-checker 293 10 48 12 62

TOTAL 2522 334 104 91

• d3-arrays: the array manipulating routines from the D3 [13] library, which makes heavy

use of higher-order functions as well as value-based overloading,

• tsc-checker, which includes parts of the TypeScript compiler (v1.0.1.0), abbreviated as tsc.

We check 15 functions from compiler/core.ts and 14 functions from compiler/checker.

ts (for which we needed to import 779 lines of type definitions from compiler/types.ts).

These code segments were selected among tens of thousands of lines of code comprising

the compiler codebase, because they exemplified interesting properties, like the bit-vector

based type hierarchies explained in Section 4.3.3.

Results. Figure 4.1 quantitatively summarizes the results of our evaluation. Overall,

we had to add about 1 line of annotation per 5 lines of code (529 for 2522 LOC). The vast

majority (334/529 or 63%) of the annotations are trivial, i.e. are TypeScript-like types of the form

(x : nat)⇒ nat; 20% (104/529) are trivial but have mutability information, and only 17% (91/529)

mention refinements, i.e. are definitions like type nat = {ν : number | 0 ≤ ν } or dependent

signatures like

∀α . (a : α[ ], n : idx〈〈a〉〉)⇒ α

These numbers show rsc has annotation overhead comparable to TypeScript, as in 83% of the

cases the annotations are either identical to TypeScript annotations or to TypeScript annotations

with some mutability modifiers. Of course, in the remaining 17% of the cases, the signatures are
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more complex than the (non-refined) TypeScript version.

Code Changes. We had to modify the source in various small (but important) ways to fa-

cilitate verification. The total number of changes is summarized in Figure 4.2. The trivial changes

include the addition of type annotations (accounted for above) and simple transformations to

work around the current limitations of our front-end, e.g. converting x++ to x=x+1. The important

classes of changes are the following:

• Control-Flow: Some programs had to be restructured to work around rsc’s currently

limited support for certain control flow structures (e.g. break). We also modified some

loops to use explicit termination conditions.

• Classes and Constructors: As rsc does not yet support default constructor arguments, we

changed relevant new calls in Octane to supply them explicitly, and refactored navier-

stokes to use traditional OO style classes and constructors instead of JavaScript records

with function fields.

• Non-null Checks: In splay we added 5 explicit non-null checks for mutable objects as

proving those required precise heap analysis that is outside rsc’s scope.

• Ghost Functions: navier-stokes has more than a hundred (static) array access sites, most

of which compute indices via non-linear arithmetic (i.e. via computed indices of the form

arr[r*s + c]); SMT support for non-linear integer arithmetic is brittle (and accounts for

the anomalous time for navier-stokes). We factored axioms about non-linear arithmetic

into ghost functions whose types were proven once via non-linear SMT queries, and which

were then explicitly called at use sites to instantiate the axioms (thereby bypassing non-

linear analysis). An example of such a function is:

mulThm :: (a : nat, b : {ν : number | ν ≥ 2 })⇒ {ν : boolean | a+ a ≤ a ∗ b }

which, when instantiated via a call mulThm(x, y) establishes the fact that (at the call-site),

x + x <= x * y. The reported performance assumes the use of ghost functions. In cases

where they were not used rsc would time out.
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Table 4.2. Changes Made on rsc Benchmarks. LOC: number of non-comment lines of source
(computed via cloc v1.62). The number of lines changed is counted as either ImpDiff: important
changes, such as restructuring the original JavaScript code to account for limited support for
control flow constructs, replacing records with classes and constructors, and adding ghost
functions; or AllDiff: the above plus trivial changes due to the addition of plain or refined type
annotations (Figure 4.1), and simple edits to work around current limitations of our front-end.

Benchmark LOC ImpDiff AllDiff

navier-stokes 366 79 160

splay 206 58 64

richards 304 52 108

raytrace 576 93 145

transducers 588 170 418

d3-arrays 189 8 110

tsc-checker 293 9 47

TOTAL 2522 469 1052

4.4.2 Transducers (A Case Study)

We now delve deeper into one of our benchmarks: the Transducers library. At its heart

this library is about reducing collections, in other words performing folds. A Transformer is

anything that implements three functions: init to begin computation, step to consume one

element from an input collection, and result to perform any post-processing. One could imagine

rewriting reduce from Figure 4.1 by building a Transformer where init returns x, step invokes

f, and result is the identity4. The Transformers provided by the library are composable -

their constructors take, as a final argument, another Transformer, and then all calls to the outer

Transformer’s functions invoke the corresponding one of the inner Transformer. This gives rise to

the concept of a Transducer, a function of type (Transformer)⇒ Transformer and this library’s

namesake.

The main reason this library interests us is because some of its functions are massively

overloaded. Consider, for example, the reduce function it defines in Figure 4.13. As discussed

above, reduce needs a Transformer and a collection. There are two opportunities for overloading

here. First of all, the main ways that a Transformer is more general than a simple step function is

that it can be stateful and that it defines the result post-processing step. Most of the time the

user does not need these features, in which case the Transformer is just a wrapper around a step

4For simplicity of discussion we will henceforth ignore init and initialization in general, as well as some other details.
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function reduce<A, B>(xf: (B, A) => B , col: A[]) : B;
function reduce<B> (xf: (B, string) => B , col: string): B;
function reduce<A, B>(xf: Transformer<A, B> , col: A[]) : B;
function reduce<B> (xf: Transformer<string, B>, string) : B;
function reduce(xf, col) {

xf = (typeof xf == "function") ? wrap(xf) : xf;
if (isString(col)) {

return stringReduce(xf, col);
}
if (isArray(col)) {

return arrayReduce(xf, col);
}

}

Figure 4.13. Sample Adapted from Transducers Benchmark

function. Thus for convenience, the user is allowed to pass in either a full-fledged Transformer

or a step function which will automatically get wrapped into one. Secondly, the collection being

reduced can be a stunning array of options: an array, a string (i.e. a collection of characters,

which are themselves just strings), an arbitrary object (i.e., in JavaScript, a collection of key-value

pairs), an iterator (an object that defines a next function that iterates through the collection), or

an iterable (an object that defines an iterator function that returns an iterator). Each of these

collections needs to be dispatched to a type-specific reduce function that knows how to iterate

over that kind of collection. In each overload, the type of the collection must match the type of

the Transformer or step function. Thus our reduce begins as shown in Figure 4.13. Considering

all five possible types of collections and the option between a step function or a Transformer,

reduce has ten distinct overloads!

4.4.3 Unhandled Cases

This section outlines and explains some pitfalls of rsc.

Complex Constructor Patterns. Due to our limited internal initialization scheme, certain

common constructor patterns are not supported by rsc. For example, the code in Figure 4.14.

Currently, rsc does not allow method invocations on the object under construction in the

constructor, as it cannot track the (value of the) updates happening in the method setF. Note

that this case is supported by IGJ. Section (Section 4.5) includes approaches that could lift this

restriction.
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1 class A<M extends RO> {
2 f: nat;
3 constructor() {
4 this.setF(1);
5 }
6 setF(x: number) {
7 this.f = x;
8 }
9 }

Figure 4.14. Complex Constructor Pattern Example

10 function distinct<T>(a: T[]): T[] {
11 var res: T[] = [];
12 for (var i = 0, n = a.length; i < n; i++) {
13 var current = a[i];
14 for (var j = 0; j < res.length; j++) {
15 if (res[j] === current) break;
16 }
17 if (j === res.length)
18 res.push(current);
19 }
20 return res;
21 }

Figure 4.15. Function Computing Distinct Elements of an Array

Recovering Unique References. rsc cannot recover the Unique state for objects after

they have been converted to Mutable (or other state), as it lacks a fine-grained alias tracking

mechanism. Assume, for example the function distinct in Figure 4.15 from the TypeScript

compiler v1.0.1.0. Array res is defined in line 11 so it is initially typed as Array<UQ,T>. At

lines 14 – 17 it is iterated over, so to prove the access in line 15 safe, we need to treat res as an

immutable array. However, in line 18 an element is pushed on res, which requires res to be

mutable. Our system cannot handle the interleaving of these two kinds of operations that (in

addition) appear in a tight loop (lines 12 – 20). However, Section 4.5 includes approaches that

could allow support for such cases.

Annotations per Function Overload . A weakness of rsc, that stems from the use of

Two-Phase Typing (Chapter 3) in handling intersection types, is cases where type checking

requires annotations under a specific signature overload. Consider for example the code of
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22 function reduce<A> (a: A[]+, f: (A, A, idx〈〈a〉〉) => A): A;
23 function reduce<A, B>(a: A[], f: (B, A, idx〈〈a〉〉) => B): B;
24 function reduce(a, f, x) {
25 var r, s;
26 if (arguments.length === 3) {
27 r = x;
28 s = 0;
29 } else {
30 r = a[0];
31 s = 1;
32 }
33 for (var i = s; i < a.length; i++)
34 r = f(r, a[i], i);
35 return r;
36 }

Figure 4.16. Alternative reduce Function

Figure 4.16, which is a variation of the reduce function presented in Section 4.1. Checking

the function body for the second overload (line 23) is problematic: without an annotation on

r, its type at the end of the conditional will be B|(A|undefined) (r collects values from x and

a[0], at lines 27 and 30), instead of the intended B. This causes an error when r is passed to

function f at line 34, expected to have type B, which cannot be overcome even with refinement

checking, since this code is no longer guarded by the check on the length of arguments (line 26).

A solution would be for the user to annotate the type of r as B at its definition in line 25, but only

for the specific (second) overload. The assignment in line 30 will be invalid, but this is acceptable

since that branch is provably (by the refinement checking phase of Section 3.4) dead. This option,

however, is currently not available.

4.5 Related Work

Program Logics for Imperative Programs. Instead of developing a system that segre-

gates base types from refinements like we described in this chapter, one can encode types as

formulas in a logic, and use SMT solvers for all the analysis (subtyping). DMinor explores this

idea in a first-order functional language with type tests [11]. The idea can be scaled to higher-

order languages by embedding (nesting) the typing relation inside the logic [20]. DJS combines

nested refinements with alias types [95], a restricted separation logic, to account for aliasing and
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flow-sensitive heap updates to obtain a static type system for a large portion of JavaScript [20].

DJS proved to be extremely difficult to use. First, the programmer had to spend a lot of effort

on manual heap related annotations; a task that became especially cumbersome in the presence

of higher-order functions. Second, nested refinements precluded the possibility of refinement

inference, further increasing the burden on the user. In contrast, mutability modifiers have

proven to be lightweight [116] and two-phase typing lets rsc use liquid refinement inference [91],

yielding a system that is more practical for real-world programs.

Extended Static Checking [40] uses Floyd-Hoare style first-order contracts (pre-, post-

conditions and loop invariants) to generate verification conditions discharged by an SMT solver.

Refinement types can be viewed as a generalization of Floyd-Hoare logics that uses types

to compositionally account for polymorphic higher-order functions and containers that are

ubiquitous in modern languages like TypeScript.

X10 [76] is a language that extends an object-oriented type system with constraints on the

immutable state of classes. Compared to X10, in rsc: (a) we make mutability parametric [116],

and extend the refinement system accordingly, (b) we crucially obtain flow-sensitivity via SSA

transformation, and path-sensitivity by incorporating branch conditions, (c) we account for

reflection by encoding tags in refinements and two-phase typing [108], and (d) our design

ensures that we can use liquid type inference [91] to automatically synthesize refinements.

Object and Reference Immutability. rsc builds on existing methods for statically en-

forcing immutability. In particular, we build on Immutability Generic Java which encodes object

and reference immutability using Java generics [116]. Subsequent work extends these ideas

to allow (1) richer ownership patterns for creating immutable cyclic structures [117], (2) unique

references, and ways to recover immutability after violating uniqueness, without requiring alias

analysis [47].

Reference immutability has recently been combined with rely-guarantee logics (originally

used to reason about thread interference), to allow refinement type reasoning. Gordon et al. [48]

treat references to shared objects like threads in rely-guarantee logics, and so multiple aliases to

an object are allowed only if the guarantee condition of each alias implies the rely condition for

all other aliases. Their approach allows refinement types over mutable data, but resolving their

proof obligations depends on theorem-proving, which hinders automation. Militão et al. present

Rely-Guarantee Protocols [72] that can model complex aliasing interactions, and, compared to
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Gordon’s work, allow temporary inconsistencies, can recover from shared state via ownership

tracking, and resort to more lightweight proving mechanisms.

The above extensions are orthogonal to rsc; in the future, it would be interesting to see

if they offer practical ways for accounting for (im)mutability in TypeScript programs.

Object Initialization. A key challenge in ensuring immutability is accounting for the

construction phase where fields are initialized. We limit our attention to lightweight approaches

i.e. those that do not require tracking aliases, capabilities or separation logic [95, 45]. Haack

and Poll [51] describe a flexible initialization schema that uses secret tokens, known only to

stack-local regions, to initialize all members of cyclic structures. Once initialization is complete

the tokens are converted to global ones. Their analysis is able to infer the points where new

tokens need to be introduced and committed. The Masked Types [85] approach tracks, within

the type system, the set of fields that remain to be initialized. X10’s hardhat flow-analysis based

approach to initialization [118] and Freedom Before Commitment [100] are the most permissive of the

lightweight methods, allowing, unlike rsc, method dispatches or field accesses in constructors.
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Chapter 5

Conclusions and Future Work

In this dissertation we have presented two main techniques for type checking JavaScript

code. In the first one, Flow (Chapter 2) we focus on type reasoning, whereas in the second one,

Refined TypeScript (Chapter 4) on value and relational reasoning. In the latter we bridge the gap

between type and logic analysis with the novel type checking technique of Two-Phase Typing

(Chapter 3). In both works we show that precise static type checking at scale is possible through

flow- and path-sensitivity and taking dynamic type tests into account in our analyses. In this

chapter we address some of the limitations and explore some future directions in each of these

lines of work.

5.1 Flow

Flow’s analysis is context-insensitive, and also not well-suited for libraries with reflection

lacking type annotations. Types originating from multiple contexts get merged at the boundaries

of exported functions, leading to imprecise type inference. Typical remedies for this situation, is to

either infer the dynamic type any or require type annotations. On the other hand, many libraries

provide annotations without checked implementations, so we can type check the vast majority of

code that uses these libraries. Better techniques for checking libraries [60] can complement Flow.

Like many other type systems for dynamically typed languages, Flow has the any type,

with which type checking can be completely bypassed. Unlike gradual type systems, though,

there is no runtime enforcement of types when they interact with any. For sound gradual typing,

the subtyping rules can be augmented to mark all type constructors as either trusted or untrusted.

Even without any, some aspects of JavaScript force us into choosing unsoundness where

it is objectively justified. We can lay down the conditions for soundness, but not enforce them. For

127
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example, arrays in JavaScript can have “holes”: it is possible to add an element out of bounds, in

which case any intermediate positions are filled with undefined. Likewise, records in JavaScript

can also be accessed as dictionaries, so it is possible to read and write a named property by

passing a computed string. Short of complicated numeric and string analysis, soundness would

demand that we lose type information on array dereferences and dictionary reads, but this is

too restrictive in practice. Instead we hope that developers who care about soundness will not

create arrays with holes (e.g. by always using Array.push to add elements), or will check for

undefined on dereferences when needed; and the properties that are named and those that are

accessed via computed strings are disjoint.

5.2 Refinement Types for TypeScript

Refined TypeScript brings SMT-based modular and extensible analysis to dynamic,

imperative, class-based languages by harmoniously integrating several techniques. First, we

restrict refinements to immutable variables and fields (cf. X10 [101]). Second, we make mutability

parametric (cf. IGJ [116]) and recover path- and flow-sensitivity via SSA. Third, we account for

reflection and value overloading via two-phase typing (Chapter 3). Our design ensures that

we can use liquid type inference [91] to automatically synthesize refinements. Finally, we have

shown how RSC can verify a variety of properties with a modest annotation overhead similar to

TypeScript.

Our experience points to several avenues for future work. There is plenty of room

for improvement by using a more sophisticated system to establish immutability which is a

prerequisite for refinement reasoning. In addition, the initialization scheme supported at this

point is fairly limited. Incorporating a more advanced approach would allow more programs

to be verified with our tool. Section 4.5 has a more detailed discussion on the techniques that

could be integrated with our checker. Note that the modular way in which base type reasoning is

segregated from refinement reasoning allows for new approaches to be easily recruited without

having to drastically change refinement reasoning as well.

Refined TypeScript assumes that each program term has already been assigned a base

type. Assigning these base types still imposes a burden to the developer. Hence employing base

type inference in our toolchain would be a reasonable direction. As we saw in Chapter 2, however,

this task itself is not trivial, especially when this system needs to be aware of object immutability
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invariants. One possible future direction is using Flow as the provider for base types, upon

which refinement reasoning will be done later. Recent advances in property variance 1 could be

of help in establishing guarantees that would enable refinement reasoning.

Finally, just like Flow the dynamic type any is a source of unsoundness. In addition to

the issues that were discussed in the previous section, recovering type information from dynamic

contexts will now also need to account for immutability guarantees. Recent work by Lehmann

and Tanter [68] and Jafery and Dunfield [58] explore the interaction of logical refinements and

gradual typing but in a functional setting. It would be interesting to investigate the extensions

that would have to be made to support this idea in the setting of a mutable object-oriented

language like JavaScript.

1https://flow.org/blog/2016/10/04/Property-Variance/

https://flow.org/blog/2016/10/04/Property-Variance/


Appendix A

Flow: Precise Type Inference for JavaScript

A.1 Types

In this section we include a discussion on ground types which is the model that the

types described in Section 2.3 are based on. We then provide some more context on the notion of

polarity that was alluded to during the discussion about constraint propagation (Section 2.4.2).

Finally, we define notions related to type subsumption as they are going to be useful for the

statement of lemmas and theorems moving forward.

A.1.1 Ground Types

At the basis of the type language described in Section 2.3.2 is the notion of ground types.

The formulation of our ground type language follows the one presented by Pottier [83]. Here

we will focus on the changes we made to adapt that formulation to our system’s needs. Ground

types in our system are regular trees. The formal definition is similar to Pottier [83, Definition 1.1]

but our ground signature Σg contains the terminals b and→ for types and the terminals ⊥ and

the set of program variables X for effects. Also→ has arity 3 to also account for the function’s

effect, whose position is co-variant.

Ground Substitutions. We connect the notion of types that were introduced in Sec-

tion 2.3.2 with ground types using the notion of ground substitutions ρ.

Definition A.1.1 (Ground Substitution). A ground substitution ρ (we will also refer to it as solution)

is a total mapping from type variables to ground types.

Ground substitution can be applied to types by recursively applying the substitution the

parts of the type replacing type variables with their ground type equivalent.

As regular trees, ground types can be infinite structures, whereas the types we introduced

in the main part are finite, but crucially include type variables. This means that a finite, yet

recursively defined, type may correspond (through a substitution) to an infinite ground type.

Ground Subtyping. Because of their infinite nature defining a subtyping relation on

ground types requires some special treatment. Here, we define an ordering on ground types
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by quantifying over paths in the regular trees that represent types. The symbol ≤k denotes

subtyping up to level k. The definition is similar to Pottier [83, Definition 1.5]. For the case of

effects, ≤0 is reflexive and ⊥ is the minimum element. The definition of the subtyping relation

≤ over ground types follows Pottier [83, Definition 1.4] and as in Pottier [83, Proposition 1.3],

τ ≤ τ ′ is equivalent to:

∀k ≥ 0 . τ ≤k τ ′

Equipping our ground alphabet with ⊥ and > for types, and > for effects (we have omitted

them from our formulation to avoid clutter), and using the subtyping relation, our ground types

can form a lattice. The proof follows Pottier [83, Proposition 1.3].

Effect and Environment Subtyping. The subtyping relation is extended to ground

effects as well (we also refer to them as concrete effects). Concrete effects can be interpreted as

sets of variables and so effect subtyping corresponds to the subset relation.

In the following we assume that applying a substitution ρ to an environment Γ of the

constraint generation system returns a pair containing two environments:

• a concrete flow-sensitive environment ∆ binding variables to ground types in a flow-sensitive

manner (i.e. types that correspond to the base of the entries in Γ ), and

• a general environment G binding variables to ground types corresponding to the general

type of each entry in Γ .

We write this as:

ρ (Γ) = ∆ # G

We also use indexes as subscripts to retrieve the first or second part of the above pair:

ρ (Γ)1 = ∆ ρ (Γ)2 = G

The subtyping relation is extended to ∆ and G in a point-wise manner.

A.1.2 Constraint Satisfaction

The following definitions relate ground substitutions with constraint sets.

Definition A.1.2 (Constraint Satisfaction). We say that a ground substitution ρ satisfies a constraint

c, and we write ρ ` c, if the corresponding subtyping relation(s) in the right hand side of the definitions

below hold(s):

ρ ` τ ≤ α .
= ρ (τ) ≤ ρ (α)

ρ ` τ ≤ Call(τ ′) .
= ρ (τ) ≤ ρ (τ ′)

ρ ` τ ≤ Pred(P, τ ′) .
= ρ (τ :: P) ≤ ρ (τ ′)

ρ ` τ ≤ Get (f, τ ′) .
= ρ (τ) ≤ ρ ({f : τ ′})

ρ ` τ ≤ Set (f, τ ′) .
= ρ (τ) ≤ ρ ({f : τ ′})
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ρ ` ε ≤ φ .
= ρ (ε) ≤ ρ (φ)

ρ ` ε ≤ Havoc (Γ) .
= ∀x ∈ ρ (ε) .G(x) ≤ ∆(x)

where ρ (Γ) = ∆ # G

Definition A.1.3 (Constraint Set Satisfaction under Substitution). We say that a ground substitution

ρ satisfies a constraint set C, and we write ρ ` C, if for all c of C it holds that ρ ` c.

The following proposition connects constraint set consistency that was discussed in

Section 2.4.3 with constraint satisfiability under ground substitution defined above.

Proposition A.1.1 (Constraint Set Satisfaction). A (saturated) constraint set C is satisfiable, iff there

exists ground substitution ρ s.t. ρ ` C.

A.1.3 Polarities

In Section 2.4.2, we introduced Rule CP-P-TRANS that contained the notion of a “positive

type hole”. To define this formally we first introduce polar types, which can be positive or negative.

A positive type τ+ is a type used to to describe outputs, whereas a negative type τ− describes

inputs. Similar definitions hold for effects (ε+ and ε−). Formally:

τ+ ::= b | τ−1
ε+
−−→ τ+2 |

{
f1 : τ+1 , . . . , fn : τ+n

}
| α | τ+1 t τ

+
2

τ− ::= b | τ+1
ε−
−−→ τ−2 |

{
f1 : τ−1 , . . . , fn : τ−n

}
| α

ε+ ::= ⊥ | x | φ | ε+1 t ε
+
2

ε− ::= ⊥ | x | φ

With this in mind we now define a type context t as a type that contains a hole 〈 〉 in one

of its leafs. Type contexts also come in two flavors:

t+ ::= b | t−1
ε+
−−→ t+2 |

{
f1 : t+1 , . . . , fn : t+n

}
| α | t+1 t t

+
2 | 〈〉

t− ::= b | t+1
ε−
−−→ t−2 |

{
f1 : t−1 , . . . , fn : t−n

}
| α

The critical part in the above definition is that negative contexts t− do not contain joins

at their top-levels.

A.2 Declarative Type System

In Figures A.1, A.2 and A.3 we define a declarative type system that assigns types to

expressions and statements of FLOWCORE. The typing judgments for expressions and statements

are:

∆ # G 
 e : τ # ε # ψ 
∆ ′ ∆ # G 
 s : ε 
∆ ′
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Expression Typing ∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 n : bn # ⊥ # ∅ 
∆
[T-CONST]

∆(x) = τ

∆ # G 
 x : τ # ⊥ # x 7→ truthy 
∆
[T-VAR]

∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 x = e : τ # εt x # ψ\x 
∆ ′[ x 7→ τ ]
[T-ASSIGN]

eraseG(∆), x : τ, locals(s) # G 
 {s; return e} : τ ′ # ε 
∆ ′

∆ # G 
 (x)⇒ {s; return e} : τ ε−→ τ ′ # ⊥ # ∅ 
∆
[T-FUN]

∆ # G 
 e1 : τ1 # ε1 # ψ1 
∆1

∆1 # G 
 e2 : τ2 # ε2 # ψ2 
∆2 τ1 ≤ τ2
ε
−→ τ ∆ ′ = eraseεG (∆2)

∆ # G 
 e1(e2) : τ # ε1 t ε2 t ε # ∅ 
∆ ′
[T-CALL]

Figure A.1. Expression Typing in FLOWCORE (Variables and Functions)

Here types τ are identical in structure to the types introduced for the inference system but are

concrete, i.e. there contain no type variables. As mentioned earlier, environments∆ bind variables

x to types τ (instead of type entries containing both a precise and a general type). The most

general type for each variable is included in environment G– a flow-insensitive structure that

gathers the most general type (globally) for each variable across the entire program. Thanks

to α-renaming each defined variable to a unique name, there is no ambiguity among variable

identifiers.

Effects ε are also concrete in this declarative system. This means that they can now be

directly interpreted as sets of variables (since no effect variables are presents).

We use the shorthand eraseG(∆) to denote the erasure of an environment ∆ with the

types of G. This operation effectively creates a new environment binding all variables in ∆ to

their bound types in G. We also introduce the variant eraseεG (∆), where ε is a concrete effect, to

denote the environment ∆[ x 7→ G(x) | x ∈ ε ].
Environment join (t) and environment refinement (::) have similar definitions as in their

constraint generation counterparts of Figure 2.8, and so are omitted here.

A.3 Runtime Typing

Stating a progress and preservation theorem requires us to extend the notion of well-

typed expressions and statements to runtime configurations.
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Expression Typing ∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 e1 : τ1 # ε1 # ψ1 
∆1 ∆1 :: ψ1 # G 
 e2 : τ2 # ε2 # ψ2 
∆2

τ = τ1 :: falsy t τ2 ε = ε1 t ε2 ψ = (ψ1\ε2) ∧ ψ2 ∆ ′ = (∆1 :: ¬ψ1)t∆2

∆ # G 
 e1 && e2 : τ # ε # ψ 
∆ ′
[T-AND]

∆ # G 
 e1 : τ1 # ε1 # ψ1 
∆1 ∆1 :: ¬ψ1 # G 
 e2 : τ2 # ε2 # ψ2 
∆2

τ = τ1 :: truthy t τ2 ε = ε1 t ε2 ψ = (ψ1\ε2)∨ψ2 ∆ ′ = (∆1 :: ψ1)t∆2

∆ # G 
 e1 || e2 : τ # ε # ψ 
∆ ′
[T-OR]

∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 ! e : boolean # ε # ¬ψ 
∆ ′
[T-NOT]

∆ # G 
 p(x) : boolean # ⊥ # x 7→ p 
∆
[T-PRED]

∆ ≡ ∆0 ∀i ∈ [1,n] .∆i−1 # G 
 ei : τi # εi # ψi 
∆i ∀i ∈ [1,n] . τi ≤ τ ′i

∆ # G 
 {f1: e1, . . . , fn: en} :
{
f1 : τ ′1, . . . , fn : τ ′n

}
#
⊔
εi # ∅ 
∆n

[T-REC]

∆ # G 
 e : τ # ε # ψ 
∆ ′ τ ≤
{
f : τ ′

}
∆ # G 
 e.f : τ ′ # ε # ∅ 
∆ ′

[T-FLDRD]

∆ # G 
 e1 : τ1 # ε1 # ψ1 
∆1

τ1 ≤ {f : τf} ∆1 # G 
 e2 : τ2 # ε2 # ψ2 
∆2 τ2 ≤ τf

∆ # G 
 e1.f = e2 : τ2 # ε1 t ε2 # ψ2 
∆2
[T-FLDWR]

Figure A.2. Expression Typing in FLOWCORE (Logical Operators and Records)

A.3.1 Term Typing

Expressions & Statements. First we extend typing to runtime expressions. The judg-

ment form is similar to the one for static expressions with the difference that we have to include

locations ` in the set of typeable expressions. To do that we equip our judgment with an additional

argument, the heap typing Σ, defined as:

Σ ::= · | Σ, ` : τ

The expression typing judgment becomes:

∆ # G 
Σ e : τ # ε # ψ 
∆ ′
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Statement Typing ∆ # G 
 s : ε 
∆ ′

∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 e : ε 
∆ ′
[T-EXP]

∆ # G 
 e : τ # ε # ψ 
∆ ′

∆ # G 
 var x = e : εt x 
∆ ′[ x 7→ τ ]
[T-VARDECL]

∆ # G 
 e : τ # ε # ψ 
∆ ′ ∆ ′ :: ψ # G 
 s1 : ε1 
∆ ′1 ∆ ′ :: ¬ψ # G 
 s2 : ε2 
∆ ′2

∆ # G 
 if (e) {s1} else {s2} : εt ε1 t ε2 
∆ ′1 t∆ ′2
[T-IF]

∆ # G 
 s1 : ε1 
∆1 ∆1 # G 
 s2 : ε2 
∆2

∆ # G 
 s1; s2 : ε1 t ε2 
∆2
[T-SEQ]

Figure A.3. Statement Typing in FLOWCORE

Extending the rules for expression typing in Figures A.1 and A.2 to runtime expressions is

straightforward. An important addition is the rule for location ` typing:

Σ(`) = τ

∆ # G 
Σ ` : τ # ⊥ # ∅ 
∆
[T-LOC]

Similarly the form of typing runtime statements is extended to:

∆ # G 
Σ s : ε 
∆ ′

Evaluation Contexts. A more interesting situation arises when we try to extend the

judgment to evaluation contexts E. The main issue here is that the object under judgment

contains a “hole” where another expression is expected to appear. To address this we include a

“hole” in the type structure of the return type to host the type of the term that is expected to fill

in the hole of the evaluation context. The linked effect and predicate are handled in a similar

fashion:

∆ # G 
Σ E : τ ′〈τ〉 # ε ′〈ε〉 # ψ ′〈ψ〉 
∆ ′

Figure A.4 contains a selection of rules for this judgment.

A natural extension of the definition of evaluation context typing is the following lemma

that accounts for substituting an expression in the hole of an evaluation context.

Lemma A.1 (Evaluation Context Typing). If

(i) ∆ # G 
Σ e : τ # ε # ψ 
∆ ′

(ii) ∆ ′ # G 
Σ E : τ ′〈τ〉 # ε ′〈ε〉 # ψ ′〈ψ〉 
∆ ′′
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Evaluation Context Typing Rules (selected) ∆ # G 
Σ E : τ ′〈τ〉 # ε ′〈ε〉 # ψ ′〈ψ〉 
∆ ′

∆ # G 
Σ 〈〉 : 〈〉 # 〈〉 # 〈〉 
∆
[ECTX-HOLE]

∆ # G 
Σ E : τ ′1〈τ1〉 # ε ′1〈ε1〉 # ψ ′1〈ψ1〉 
∆1
∆1 # G 
 e : τ2 # ε2 # ψ2 
∆2 τ ′1 ≤ τ2

ε
−→ τ ∆ ′ = eraseεG (∆2)

∆ # G 
Σ E(e) : τ〈τ1〉 # ε ′1〈ε1〉 t ε2 t ε # ∅〈ψ1〉 
∆ ′
[ECTX-CALL]

Figure A.4. Evaluation Context Typing in FLOWCORE

then

∆ # G 
Σ E〈e〉 : τ ′ # ε ′ # ψ ′ 
∆ ′′

Proof. By induction on the second given derivation.

When inverting typing relations, we often need to decompose the typing of filled evalua-

tion contexts E〈e〉. The following lemma deconstructs the typing of such an expression to the

typing of a bare evaluation context E and a typing of the filling expression e.

Lemma A.2 (Decomposing Evaluation Context Typing). If

∆ # G 
Σ E〈e〉 : τ # ε # ψ 
∆ ′′

then there exist τ ′, ε ′, ψ ′ and ∆ ′ s.t.

(a) ∆ # G 
Σ e : τ ′ # ε ′ # ψ ′ 
∆ ′

(b) ∆ # G 
Σ E : τ〈τ ′〉 # ε〈ε ′〉 # ψ〈ψ ′〉 
∆ ′′

Proof. By examining all possible cases of typing evaluation contexts E, we will always type the expression

e in the “hole” first and then the evaluation context E.

A.3.2 Configuration Typing

A runtime configuration in FLOWCORE contains the runtime state, that itself comprises

a heap H, a stack X and a store L, and a program term. Typing configurations amounts to typing

their subparts. Before we move on to that we define two auxiliary functions.

Auxiliary Functions. The first one is the environment compositionM ◦N. This operation

works in the usual way. The range of environment N needs to be compatible with the domain of

M, otherwise the result is undefined:

(M ◦N)(x) =

M(N(x)) if X ∈ dom(N) and N(x) ∈ dom(M)

undefined otherwise
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Stack Typing Rules G 
Σ X : τ ′〈τ〉

G 
Σ · : τ〈τ〉
[RT-STACK-E]

∆ = Σ ◦ L ∆ # G 
 E : τ ′〈τ〉 
∆ ′ Σ ′ = ∆ ′ ◦ L−1 ⊕ Σ G 
Σ ′ X : τ
′′〈τ ′〉

G 
Σ X, L.E : τ ′′〈τ〉
[RT-STACK-C]

Figure A.5. Runtime Stack Typing in FLOWCORE

The second operator is the environment override M ⊕ N. This operator produces an

environment whose domain is the union of the domains of the two arguments. For each one of

its arguments the override first attempts to return a binding by looking it up in environment M;

if this fails it tries N; and finally returns undefined if it fails there as well.

(M⊕N)(x) =


M(x) if x ∈ dom(M)

N(x) if x ∈ dom(N) \ dom(M)

undefined otherwise

Stack. The form of the stack is reminiscent of the evaluation context, so the judgment

we use here has the following form:

G 
Σ X : τ〈τ ′〉

Figure A.5 contains the rules for this judgment. The interesting rule here is Rule RT-STACK-C,

that types a stack X, L.E. Following the flow of execution the rule first checks the frame E that is

on the top of the stack and then proceeds with the remaining stack X. What is interesting here is

the construction of the environment used for checking X. Assume ∆ ′ the output environment

after checking E. This environment contains the most recent updates of all the variables that

were assigned to in E. Our goal here is to construct an accurate heap typing Σ ′ that corresponds

to the state of the heap at the end of E. This heap typing will subsequently be used to check X.

To do that, for every variable x such that x : ` ∈ L, i.e. in scope at the beginning of E, we require

its type to be looked up in ∆ ′. This amounts to ∆ ′ ◦ L−1. The rest will just be looked up in the

incoming Σ.

Heap. Figure A.6 shows the rules for checking a heap H against a heap typing Σ. The

most interesting case here is that of record typing by Rule RT-HEAP-REC. This rule infers a type

for each value vi stored at some field of the record and then unifies this type with the type of

each field specified in the store typing Σ.

Configuration. Finally, Figure A.7 shows the typing rules for runtime configurations

where the terms are either expressions, function bodies or statements. These largely follow the

same principles as the typing for stacks that we saw earlier.
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Heap Typing Rules G 
Σ H

G 
Σ ·
[RT-HEAP-E]

` ′ ∈ dom(H) G 
Σ H Σ(`) = Σ(` ′)

G 
Σ H, ` 7→ ` ′
[RT-HEAP-LOC]

G 
Σ H Σ(`) = bn

G 
Σ H, ` 7→ n
[RT-HEAP-CONST]

G 
Σ H

Σ(`) = τ ∆ = Σ ◦ L ∆ # G 
 (x)⇒ {s; return e} : τ # ⊥ # ∅ 
∆

G 
Σ H, ` 7→ 〈L, (x)⇒ {s; return e}〉
[RT-HEAP-FUN]

G 
Σ H Σ(`) = {f1 : τ1, . . . , fn : τn}

∀i ∈ [1,n] .∆ # G 
Σ vi : τ ′i # ⊥ # ∅ 
∆ ∀i ∈ [1,n] . τ ′i ≤ τi

G 
Σ H, ` 7→ {f1: v1, . . . , fn: vn}
[RT-HEAP-REC]

Figure A.6. Heap Typing in FLOWCORE

Runtime Configuration Typing G 
Σ S; M : τ G 
Σ S; s

G 
Σ H

∆ = Σ ◦ L ∆ # G 
Σ M : τ # ε 
∆ ′ Σ ′ = ∆ ′ ◦ L−1 ⊕ Σ G 
Σ ′ X : τ
′〈τ〉

G 
Σ 〈H; X; L〉; M : τ ′
[RT-CONF-B]

G 
Σ H

∆ = Σ ◦ L ∆ # G 
Σ s : ε 
∆ ′ Σ ′ = ∆ ′ ◦ L−1 ⊕ Σ G 
Σ ′ X : τ
′〈τ〉

G 
Σ 〈H; X; L〉; s
[RT-CONF-S]

Figure A.7. Runtime Configuration Typing in FLOWCORE

A.4 Proofs

This section contains a statement and proof of soundness of the inference type system

of Section 2.4 with respect to the declarative system of Section A.2, followed by our type safety

result for the declarative system and by extension the entire type system.
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A.4.1 Type Inference Soundness

The following lemma captures the intuition behind the “havoc” mechanism, as the

erasure of the part of the widened environment that is affected by the reaching effect.

Lemma A.3 (Havoc). If

(i) widen(Γ) = Γ ′ .C

(ii) C ′ ⊇ C∪ {φ ≤ Havoc (Γ ′) }

(iii) ρ ` C ′

then

∆ ′ = eraseρ(φ)
G (∆)

where ρ (Γ) = ∆ # G and ρ (Γ ′) = ∆ ′ # G.

Proof. Let ρ (φ) = ε. For every variable x ∈ ε, it also holds that x ≤ Havoc (Γ ′) ∈ C ′, since C ′ is

saturated. Let Γ ′(x) = τα. By Rule CP-HAVOC on the binding for x, it holds that α ≤ τ ∈ C ′.
Due to (iii), ρ (α) ≤ ρ (τ). Which is also written as G(x) ≤ ∆(x). But by definition of G it holds

that ∆(x) ≤ G(x), so it must be that ∆(x) = G(x). Generalizing for all variables in ρ (φ) we prove

the wanted.

Lemma A.4 (Type Inference Soundness). If

(i) Γ ` e : τ # ε # ψ a Γ ′ .C

(ii) ρ ` C

then

ρ (Γ) 
 e : ρ (τ) # ρ (ε) # ψ 
ρ (Γ ′)1

Proof. By induction on the derivation of (i):

• CG-CALL:

Γ ` e1(e2) : α # ε # ∅ a Γ3 .C (A.4.1)

By inverting Rule CG-CALL on (A.4.1):

Γ ` e1 : τ1 # ε1 # ψ1 a Γ1 .C1 (A.4.2)

Γ1 ` e2 : τ2 # ε2 # ψ2 a Γ2 .C2 (A.4.3)

widen(Γ2) = Γ3 .Cw (A.4.4)

ε1 t ε2 tφ = ε (A.4.5)

C1 ∪C2 ∪Cw ∪
{
φ ≤ Havoc (Γ3) , τ1 ≤ Call(τ2

φ
−→ α)

}
= C (A.4.6)
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where α,φ fresh.

Since by (A.4.6) it is C ⊇ C1 and C ⊇ C2, using (ii) it holds that:

ρ ` C1 (A.4.7)

ρ ` C2 (A.4.8)

By induction hypothesis using (A.4.2), (A.4.7), (A.4.3) and (A.4.8):

ρ (Γ) 
 e1 : ρ (τ1) # ρ (ε1) # ψ1 
ρ (Γ1)1 (A.4.9)

ρ (Γ1) 
 e2 : ρ (τ2) # ρ (ε2) # ψ2 
ρ (Γ2)1 (A.4.10)

By (A.4.6), using Definition A.1.2:

ρ (τ1) ≤ ρ
(
τ2

φ
−→ α

)
≡ ρ (τ2)

ρ(φ)
−−−→ ρ (α) (A.4.11)

By Lemma A.3 on (A.4.4), (A.4.6) and (ii):

∆3 = eraseρ(φ)
G (∆2) (A.4.12)

where ρ (Γ2) = ∆2 # G and ρ (Γ3) = ∆3 # G.

By Rule T-CALL on (A.4.9), (A.4.10), (A.4.11) and (A.4.12)

ρ (Γ) 
 e1(e2) : ρ (α) # ρ (ε1)t ρ (ε2)t ρ (φ) # ∅ 
ρ (Γ3)1 (A.4.13)

∴ ρ (Γ) 
 e1(e2) : ρ (α) # ρ (ε1 t ε2 tφ) # ∅ 
ρ (Γ3)1 (A.4.14)

• CG-ASSIGN:

Γ ` x = e : τ # εt x # ψ\x a Γ ′[ x 7→ τα ] .C (A.4.15)

By inverting Rule CG-ASSIGN on (A.4.15):

Γ ` e : τ # ε # ψ a Γ ′ .C0 (A.4.16)

Γ ′(x) = τ0
α (A.4.17)

C = C0 ∪ { τ ≤ α } (A.4.18)

Since by (A.4.18) it is C ⊇ C0, using (ii) it holds that:

ρ ` C0 (A.4.19)
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By induction hypothesis using (A.4.16) and (A.4.19):

ρ (Γ) 
 e : ρ (τ) # ρ (ε) # ψ 
ρ
(
Γ ′
)
1

(A.4.20)

By applying Rule T-ASSIGN on (A.4.20):

ρ (Γ) 
 x = e : ρ (τ) # ρ (ε)t x # ψ\x 
ρ
(
Γ ′
)
[ x 7→ ρ (τ) ] (A.4.21)

∴ ρ (Γ) 
 x = e : ρ (τ) # ρ (εt x) # ψ\x 
ρ
(
Γ ′[ x 7→ τα ]

)
1

(A.4.22)

The rest of the cases are handled similarly.

A.4.2 Type Safety

In this section we present the proofs of our safety result that connects the declarative

type system of Section A.2 with the runtime semantics of Section 2.5. First we set up a number of

auxiliary lemmas and then proceed with a Preservation Theorem (A.11) and a Progress Theorem

(A.12) that are later combined to produce a Type Safety Theorem (A.14).

Lemma A.5 (Erased Environment Subtyping). If eraseεG (∆) = ∆ ′, then ∆ ≤ ∆ ′.

Proof. By definition of the erase operator.

In the remaining we use the metavariableM to denote a term that is either an expression

e or a function body {s; return e}.

Lemma A.6 (Heap Typing Weakening). For Σ ′ ⊇ Σ, if ∆ # G 
Σ M : τ # ε # ψ 
∆ ′, then ∆ # G 
Σ ′
M : τ # ε # ψ 
∆ ′.

Proof. By induction on the given derivation.

Lemma A.7 (Environment Weakening). For the following, let environments ∆ and ∆ ′ be defined over

common domains.

I. If ∆ # G 
 e : τ # ε # ψ 
∆1 then for ∆ ′ ≤ ∆:

(a) ∆ ′ # G 
 e : τ ′ # ε ′ # ψ ′ 
∆ ′1,

(b) τ ′ ≤ τ, ε ′ ≤ ε and ∆ ′1 ≤ ∆1.

II. If ∆ # G 
 E : τ〈τ1〉 # ε〈ε1〉 # ψ〈ψ1〉 
∆1 then for ∆ ′ ≤ ∆, τ ′1 ≤ τ1 and ε ′1 ≤ ε1:

(a) ∆ ′ # G 
 E : τ ′〈τ ′1〉 # ε ′〈ε ′1〉 # ψ ′〈ψ ′1〉 
∆ ′1
(b) τ ′ ≤ τ, ε ′ ≤ ε and ∆ ′1 ≤ ∆1.

Proof. By induction on the given derivation.
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Lemma A.8 (Heap Typing Weakening). If

(i) Σ ′ ≤ Σ

(ii) τ ′1 ≤ τ1

(iii) G 
Σ X : τ〈τ1〉

then

(a) G 
Σ ′ X : τ ′〈τ ′1〉

(b) τ ′ ≤ τ

Proof. By induction on the derivation (iii).

Lemma A.9 (NonEffect). If

∆ # G 
 e : τ # ε # ψ 
∆ ′

then

∆ ′
∣∣
ε ≤ ∆

∣∣
ε

where ε is the set of program variables that do not belong to the concrete effect ε.

Proof. By induction on the given derivation:

• T-VAR, T-CONST, T-FUN and T-PRED: It holds that

∆ ′ ≡ ∆ (A.9.1)

so the wanted result holds trivially.

• T-ASSIGN:

∆ # G 
 x = e0︸ ︷︷ ︸
e

: τ # ε0 t x # ψ0\x 
∆0[ x0 7→ τ ]︸ ︷︷ ︸
∆ ′

(A.9.2)

By inverting T-ASSIGN on (A.9.2):

∆ # G 
 e0 : τ # ε0 # ψ0 
∆0 (A.9.3)

By (A.9.2) for a variable y s.t. y 6∈ ε, it also holds that:

y 6= x (A.9.4)

y 6∈ ε0 (A.9.5)
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By induction hypothesis using (A.9.3) and (A.9.5):

∆0(y) ≤ ∆(y) (A.9.6)

By (A.9.4) it holds that ∆0(y) = ∆ ′(y), and so by (A.9.6):

∆ ′(y) ≤ ∆(y) (A.9.7)

• T-CALL:

∆ # G 
 e1(e2) : τ # ε1 t ε2 t εc︸ ︷︷ ︸
ε

#∅ 
∆ ′ (A.9.8)

By inverting T-CALL on (A.9.8)

∆ # G 
 e1 : τ1 # ε1 # ψ1 
∆1 (A.9.9)

∆1 # G 
 e2 : τ2 # ε2 # ψ2 
∆2 (A.9.10)

τ1 ≤ τ2
εc−−→ τ (A.9.11)

∆ ′ = eraseεcG (∆2) (A.9.12)

For a variable x ∈ dom(∆ ′) s.t. x 6∈ ε, it also holds that:

x 6∈ ε1 (A.9.13)

x 6∈ ε2 (A.9.14)

x 6∈ εc (A.9.15)

By induction hypothesis on (A.9.9) and (A.9.13), and (A.9.10) and (A.9.14):

∆1(x) ≤ ∆(x) (A.9.16)

∆2(x) ≤ ∆1(x) (A.9.17)

By definition of the erase operator on (A.9.12) for x s.t. (A.9.15):

∆ ′(x) = ∆2(x) (A.9.18)

By (A.9.16), (A.9.17) and (A.9.18):

∆ ′(x) ≤ ∆(x) (A.9.19)

• T-AND, T-OR, T-NOT, T-PRED, T-REC, T-FLDRD and T-FLDWR: Similar to above.
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Lemma A.10 (Preservation of Typing by Expression Reduction). Typing is preserved over the

reduction of an expression that preserves the state of the stack. That is, for an initial runtime state

S
.
= 〈H, X, L〉, a target state S ′ .

= 〈H ′, X, L ′〉 if, under a heap typing Σ:

(i) G 
Σ H

(ii) ∆ # G 
Σ e : τ # ε # ψ 
∆1

(iii) S; e −→ S ′; e ′

where ∆ .
= Σ ◦ L, then there exist Σ ′ s.t.:

(a) G 
Σ ′ H ′

(b) ∆ ′ # G 
Σ ′ e ′ : τ ′ # ε ′ # ψ ′ 
∆ ′1

(c) τ ′ ≤ τ

(d) ε ′ ≤ ε

(e) ∆ ′1 ≤ ∆1

where ∆ ′ .
= Σ ′ ◦ L ′.

Proof. By induction on the derivation of (ii):

• RT-PRED-VAR:

〈H, X, L〉; p(x)︸︷︷︸
e

−→ 〈H, X, L〉; v (A.10.1)

By Rule T-PRED, (ii) is of the form:

∆ # G 
Σ p(x) : boolean # ⊥ # x 7→ p︸ ︷︷ ︸
ψ


∆ (A.10.2)

We pick Σ ′ .
= Σ.

Store and heap do not evolve, i.e. L ′ = L and H ′ = H. So, by (i):

G 
Σ ′ H
′ (A.10.3)

which proves (a).

By definition of ∆ and ∆ ′, it holds that ∆ ′ = ∆.
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By applying Rule T-CONST on v (true or false)

∆ ′ # G 
Σ ′ v : boolean # ⊥ # ∅ 
∆ ′ (A.10.4)

which proves (b), (c), (d) and (e).

• RT-ASGN with v = n:

〈H, X, L〉; x =n︸︷︷︸
e

−→ 〈H ′, X, L〉; n (A.10.5)

By inverting Rule RT-ASGN on (A.10.5):

H ′ = H[L(x) 7→ n ] (A.10.6)

By Rule T-ASSIGN, (ii) is of the form:

∆ # G 
Σ x =n : bn # εt x # ψ\x 
∆[ x 7→ bn ] (A.10.7)

By inverting Rule T-ASSIGN on (A.10.7):

∆ # G 
Σ n : bn # ⊥ # ∅ 
∆ (A.10.8)

So, ε = ⊥ and ψ = ∅.

Let ` s.t. x 7→ ` ∈ L.

We pick Σ ′ .
= Σ[ ` 7→ bn ]. By T-CONST on n under ∆ ′:

∆ ′ # G 
Σ ′ n : bn # ⊥ # ∅ 
∆ ′ (A.10.9)

Let Σ0 and H0 s.t. Σ = Σ0, ` : τ` and H = H0, ` 7→ n.

It holds that:

Σ ′ = Σ0, ` : bn (A.10.10)

By applying Rule RT-HEAP-CONST on (i) (on the part of H0) and (A.10.10):

G 
Σ ′ H0, ` 7→ n (A.10.11)

which proves (a).

By (A.10.8) we prove (b), (c) and (d).
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Since ∆ ′ and ∆ agree on all variables with the exception potentially of x, we limit the scope

to x. By definition of ∆ ′ it holds that:

∆ ′(x) = (Σ ′ ◦ L)(x)

= Σ ′(L(x))

= Σ ′(`)

= bn

= ∆(x)

• RT-ECTX:

〈H, X, L〉; E〈e0〉︸ ︷︷ ︸
e

−→ 〈H ′, X, L ′〉; E〈e ′0〉 (A.10.12)

By inverting Rule RT-ECTX on (A.10.12):

〈H, X, L〉; e0 −→ 〈H ′, X, L ′〉; e ′0 (A.10.13)

By Lemma A.2 on (ii) for e ≡ E〈e0〉:

∆ # G 
Σ e0 : τ0 # ε0 # ψ0 
∆0 (A.10.14)

∆0 # G 
 E : τ〈τ0〉 # ε〈ε0〉 # ψ〈ψ0〉 
∆1 (A.10.15)

By induction hypothesis using (i), (A.10.14) and (A.10.13) there exists Σ ′ s.t.:

G 
Σ ′ H
′ (A.10.16)

∆ ′ # G 
Σ ′ e
′
0 : τ

′
0 # ε ′0 # ψ ′0 
∆ ′1 (A.10.17)

τ ′0 ≤ τ0 (A.10.18)

ε ′0 ≤ ε0 (A.10.19)

∆ ′0 ≤ ∆0 (A.10.20)

By (A.10.16) we prove (a).

By Lemma A.7.II on (A.10.15), (A.10.20), (A.10.18) and (A.10.19):

∆ ′0 # G 
 E : τ ′〈τ ′0〉 # ε ′〈ε ′0〉 # ψ ′〈ψ0〉 
∆ ′1 (A.10.21)

τ ′ ≤ τ (A.10.22)

ε ′ ≤ ε (A.10.23)

∆ ′1 ≤ ∆1 (A.10.24)
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By Lemma A.1 on (A.10.17) and (A.10.21):

∆ ′ # G 
Σ ′ E〈e ′0〉 : τ ′ # ε ′ # ψ ′ 
∆ ′1 (A.10.25)

By (A.10.25), (A.10.22), (A.10.23) and (A.10.24) we prove (b), (c), (d) and (e), respectively.

• RT-AND-TRU:

〈H, X, L〉; v1 && e2︸ ︷︷ ︸
e

−→ 〈H, X, L〉; e2 (A.10.26)

By inverting Rule RT-AND-TRU on (A.10.26):

truthy(v1) (A.10.27)

Due to (A.10.26) judgment (ii) is of the form:

∆ # G 
Σ v1 && e2 : τ1 :: falsy t τ2︸ ︷︷ ︸
τ

# ε1 t ε2︸ ︷︷ ︸
ε

# (ψ1\ε1) ∧ ψ2︸ ︷︷ ︸
ψ


∆1 :: ¬ψ1 t∆2︸ ︷︷ ︸
∆1

(A.10.28)

By inverting Rule T-AND on (ii) and simplifying by using Rules RT-T-LOC and T-CONST:

∆ # G 
Σ v1 : τ1 # ⊥ # ∅ 
∆ (A.10.29)

∆ # G 
Σ e2 : τ2 # ε2 # ψ2 
∆2 (A.10.30)

So, ε1 = ⊥ and ψ1 = ∅.

Store and heap do not evolve, i.e. L ′ = L and H ′ = H.

We pick Σ ′ .
= Σ and so ∆ ′ = ∆. So, by (i):

G 
Σ ′ H
′ (A.10.31)

which proves (a).

By (A.10.30) we prove (b).

It holds that τ2 ≤ (τ1 :: falsy t τ2)
(A.10.28)
≡ τ, which proves (c).

It holds that ε2 ≤ ε1 t ε2
(A.10.28)
≡ ε, which proves (d).

Finally, it holds that ∆2 ≤ (∆1 :: ¬∅t∆2)
(A.10.28)
≡ ∆1, which proves (e).

The rest of the cases are handled similarly.

Theorem A.11 (Subject Reduction). Typing is preserved over expression reduction. Formally, if
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(i) G 
Σ S; e : τ

(ii) S; e −→ S ′; M ′

then there exists Σ ′ s.t.

(a) G 
Σ ′ S ′; M ′ : τ ′

(b) τ ′ ≤ τ

Proof. Let

S ≡ 〈H; X; L〉 (A.11.1)

S ′ ≡ 〈H ′; X ′; L ′〉 (A.11.2)

By inverting Rule RT-CONF-B on (i):

G 
Σ H (A.11.3)

∆ = Σ ◦ L (A.11.4)

∆ # G 
Σ e : τe # εe 
∆e (A.11.5)

ΣX = ∆e ◦ L−1 ⊕ Σ (A.11.6)

G 
ΣX X : τ〈τe〉 (A.11.7)

By induction on the derivation of (ii):

• RT-ASGN, RT-ARROW, RT-PRED-VAR, RT-AND-TRU, RT-AND-FLS, RT-OR-TRU, RT-OR-

FLS, RT-NEG, RT-LET, RT-IF-TRU, RT-IF-FLS, and RT-SKIP do not evolve the stack, so can

be proven by use of Lemma A.10.

• RT-CALL:

〈H; X; L〉; E〈`(v)〉︸ ︷︷ ︸
e

−→ 〈H ′; X ′; L ′〉; {s0; return e0}︸ ︷︷ ︸
M ′

(A.11.8)

where ` ′ fresh. By inverting Rule RT-CALL on (A.11.8):

H(`) = 〈L0, (x)⇒M ′〉 (A.11.9)

xi = locals(M ′) (A.11.10)

H ′ = H, ` ′ 7→ v, `i 7→ undefined (A.11.11)

X ′ = X, L.E (A.11.12)

L ′ = L0, x 7→ ` ′, xi 7→ `i (A.11.13)
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Due to (A.11.8), judgment (A.11.5) is of the form:

∆ # G 
Σ E〈`(v)〉 : τe # εe 
∆e (A.11.14)

By Lemma A.2 on (A.11.14):

∆ # G 
Σ `(v) : τc # εc # ψc 
∆3 (A.11.15)

∆3 # G 
Σ E : τe〈τc〉 # εe〈εc〉 # ψ〈ψc〉 
∆e (A.11.16)

By inverting Rule T-CALL on (A.11.15):

∆ # G 
Σ ` : τ` # ⊥ # ∅ 
∆1 (A.11.17)

∆1 # G 
Σ v : τv # ⊥ # ∅ 
∆2 (A.11.18)

τ` ≤ τv
εc−−→ τc (A.11.19)

∆3 = eraseεcG (∆2) (A.11.20)

By Rules RT-T-LOC and T-CONST on (A.11.17) and on (A.11.18):

∆ = ∆1 = ∆2 (A.11.21)

So (A.11.18) becomes:

∆ # G 
Σ v : τv # ⊥ # ∅ 
∆ (A.11.22)

By inverting Rule RT-HEAP-FUN on (A.11.3) using (A.11.9):

G 
Σ H0 (A.11.23)

Σ(`) = τ` (A.11.24)

∆0 = Σ ◦ L0 (A.11.25)

∆0 # G 
 (x)⇒ {s0; return e0} : τ` # ⊥ # ∅ 
∆ ′0 (A.11.26)

where

H ≡ H0, ` 7→ 〈L0, (x)⇒M ′〉 (A.11.27)
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By inverting Rule T-FUN on (A.11.26):

eraseG(∆0), x : τx, xi : void︸ ︷︷ ︸
∆0.1

#G 
Σ {s0; return e0} : τ0 # ε0 
∆0.2 (A.11.28)

τ` ≡ τx
ε0−−→ τ0 (A.11.29)

where xi are the local variables defined in s0.

By (A.11.19) and (A.11.29):

τx
ε0−−→ τ0 ≤ τv

εc−−→ τc (A.11.30)

By subtyping decomposition on (A.11.30):

τv ≤ τx (A.11.31)

τ0 ≤ τc (A.11.32)

ε0 ≤ εc (A.11.33)

After the reduction step, we pick:

Σ ′ = Σ, ` ′ : τv, `i : void (A.11.34)

The bodyM ′ = {s0; return e0} is checked under the environment produced by store L0
and heap typing Σ ′. Σ ′ coincides with Σ on their common domain dom(L), so:

∆0 = Σ ′ ◦ L0 = Σ ◦ L0 (A.11.35)

We extend the store L0 with a binding from x to ` ′, and from every variable declared in the

body s0 to void, resulting in the following environment:

∆ ′ = ∆0, x : τv, xi : void = Σ ′ ◦ L0, x : ` ′, xi : `i︸ ︷︷ ︸
L ′

(A.11.36)

By Lemma A.6 on (A.11.22):

∆ # G 
Σ ′ v : τv # ⊥ # ∅ 
∆ (A.11.37)

By applying Rules RT-HEAP-LOC and RT-HEAP-CONST using (A.11.3), (A.11.34) and

(A.11.37):

G 
Σ ′ H
′ (A.11.38)
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By definition of erase and (A.11.31):

∆0, x : τv, xi : void︸ ︷︷ ︸
∆ ′

≤ eraseG(∆0), x : τx, xi : void︸ ︷︷ ︸
∆0.1

(A.11.39)

By Lemma A.7.I on (A.11.28) and (A.11.39), and using the extended heap typing Σ ′:

∆ ′ # G 
Σ ′ {s0; return e0} : τ
′
0 # ε ′0 
∆ ′2 (A.11.40)

τ ′0 ≤ τ0 (A.11.41)

∆ ′2 ≤ ∆0.2 (A.11.42)

ε ′0 ≤ ε0 (A.11.43)

Stack X ′ = X, L.E is checked under a heap typing:

Σ ′X,L.E
.
= ∆ ′2 ◦ L−10 ⊕ Σ

′ (A.11.44)

Evaluation context E is checked under an environment:

∆ ′3 = Σ ′X,L.E ◦ L (A.11.45)

Let X and X0 be the domains of L and L0:

X .
= dom(L) (A.11.46)

X0
.
= dom(L0) (A.11.47)

Since dom(∆3) = X , we can examine ∆3 in two parts based on whether an element x in X ,

also belongs to X0 or not:

∆3 ≡ ∆3
∣∣
X0∩X

, ∆3
∣∣
X \X0

(A.11.48)

We similarly examine ∆ ′3 into two parts: (i) the closure environment ∆ ′2 at the end of the

function body, and (ii) the part of the environment at the call-site that is not part of the

closure environment and so retains the typing from before the function call:

∆ ′3 ≡ ∆ ′2
∣∣
X0∩X

, ∆
∣∣
X \X0

(A.11.49)

We examine the two non-overlapping domains separately:
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� X0 ∩ X . By restricting (A.11.36) to X0 ∩ X :

∆ ′
∣∣
X0∩X

= ∆0, x : τv, xi : void
∣∣∣
X0∩X

= Σ ′ ◦
(
L0, x : ` ′, xi : `i

∣∣∣
X0∩X

)
(A.11.50)

∴ ∆ ′
∣∣
X0∩X

= ∆0
∣∣
X0∩X

= Σ ′ ◦ L0
∣∣
X0∩X

(A.11.51)

Note that due to α-renaming every variable is uniquely defined. Therefore, each

variable is bound to the same location in a store that contains it. In particular, for L0
and L it holds that:

L0
∣∣
X0∩X

= L
∣∣
X0∩X

(A.11.52)

By restricting (A.11.4) to X0 ∩ X :

∆
∣∣
X0∩X

= Σ ◦ L
∣∣
X0∩X

(A.11.53)

By combining (A.11.21), (A.11.51), (A.11.52) and (A.11.53):

∆ ′
∣∣
X0∩X

= ∆2
∣∣
X0∩X

(A.11.54)

Effect εc is concrete so it can be interpreted as a set of variables. We split the set

X0 ∩ X in the following:

X0 ∩ X = X0 ∩ X ∩ εc︸ ︷︷ ︸
Xε

, (X0 ∩ X ) \ εc︸ ︷︷ ︸
Xε

(A.11.55)

We examine each part separately.

I Xε. We first restrict (A.11.20) to domain εc (a concrete effect interpreted as a set):

∆3
∣∣
εc

= eraseεcG (∆2)
∣∣
εc

(A.11.56)

By definition of erase, (A.11.56) can be written as:

∆3
∣∣
εc

= G
∣∣
εc

(A.11.57)

By definition of G it holds that:

∆ ′2 ≤ G (A.11.58)
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By (A.11.57) and (A.11.58):

∆ ′2
∣∣
Xε ≤ ∆3

∣∣
Xε (A.11.59)

I Xε. By definition of erase:

eraseεcG (∆2)
∣∣
(X0∩X )\εc

= ∆2
∣∣
(X0∩X )\εc

(A.11.60)

since the binding for variables not in εc will not be affected by the erasure.

By (A.11.20) and (A.11.60):

∆2
∣∣
(X0∩X )\εc

= ∆3
∣∣
(X0∩X )\εc

(A.11.61)

By (A.11.33) and (A.11.43) (interpreting concrete effects as sets):

ε ′0 ⊆ εc (A.11.62)

By Lemma A.9 on (A.11.40):

∆ ′2
∣∣
(X0∩X )\ε ′0

≤ ∆ ′
∣∣
(X0∩X )\ε ′0

(A.11.63)

By (A.11.62) and (A.11.63):

∆ ′2
∣∣
(X0∩X )\εc

≤ ∆ ′
∣∣
(X0∩X )\εc

(A.11.64)

By (A.11.64) and (A.11.54):

∆ ′2
∣∣
(X0∩X )\εc

≤ ∆2
∣∣
(X0∩X )\εc

(A.11.65)

By definition of Xε, (A.11.65) can be written as

∆ ′2
∣∣
Xε ≤ ∆2

∣∣
Xε (A.11.66)

� X \X0. We follow a similar reasoning to above restricting the difference X \X0 to

variables contained in εc or not. We examine the cases:

I Restrict to εc. By (A.11.20):

∆3
∣∣
(X \X0)∩εc

= eraseεcG (∆2)
∣∣
(X \X0)∩εc

(A.11.67)

By definition of erase the above becomes:

∆3
∣∣
(X \X0)∩εc

= ∆2
∣∣
(X \X0)∩εc

(A.11.68)
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I Restrict to εc. By (A.11.20):

∆3
∣∣
(X \X0)\εc

= eraseεcG (∆2)
∣∣
(X \X0)\εc

(A.11.69)

By definition of erase the above becomes:

∆3
∣∣
(X \X0)\εc

= G
∣∣
(X \X0)\εc

(A.11.70)

In either case it holds that:

∆
∣∣
X \X0

≤ ∆3
∣∣
X \X0

(A.11.71)

By (A.11.48) it holds that: (
∆3
∣∣
Xε , ∆3

∣∣
Xε , ∆3

∣∣
X \X0

)
≡ ∆3 (A.11.72)

By (A.11.59) and (A.11.72): (
∆ ′2
∣∣
Xε , ∆3

∣∣
Xε , ∆3

∣∣
X \X0

)
≤ ∆3 (A.11.73)

By Lemma A.5 on (A.11.73) and (A.11.19):(
∆ ′2
∣∣
Xε , ∆2

∣∣
Xε , ∆3

∣∣
X \X0

)
≤ ∆3 (A.11.74)

By (A.11.74) and (A.11.66): (
∆ ′2
∣∣
Xε , ∆ ′2

∣∣
Xε , ∆3

∣∣
X \X0

)
≤ ∆3 (A.11.75)

By (A.11.71) and (A.11.75): (
∆ ′2
∣∣
Xε , ∆ ′2

∣∣
Xε , ∆

∣∣
X \X0

)
︸ ︷︷ ︸

∆ ′3

≤ ∆3 (A.11.76)

By Lemma A.7.II on (A.11.76) and (A.11.16):

∆ ′3 # G 
Σ ′ E : τ
′
e〈τc〉 # ε ′e〈εc〉 # ψ ′〈ψc〉 
∆ ′e (A.11.77)

τ ′e ≤ τe (A.11.78)

ε ′e ≤ εe (A.11.79)

∆ ′e ≤ ∆e (A.11.80)
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We check the remaining stack X under a heap typing (see also (A.11.44)):

Σ ′X
.
= ∆ ′e ◦ L−1 ⊕∆ ′2 ◦ L−10 ⊕ Σ

′︸ ︷︷ ︸
Σ ′X,L.E

(A.11.81)

Let L and L0 the ranges of L and L0:

L .
= rng (L) (A.11.82)

L0
.
= rng (L0) (A.11.83)

We examine Σ ′X in the following subdomains that correspond to the three parts of the

definition above:

� L. By restricting (A.11.6) and (A.11.81), respectively, to L (the first part of the override

will always be selected):

ΣX
∣∣
L = ∆e ◦ L−1 (A.11.84)

Σ ′X
∣∣
L = ∆ ′e ◦ L−1 (A.11.85)

By substituting (A.11.84) and (A.11.85) in (A.11.80):

Σ ′X
∣∣
L ≤ ΣX

∣∣
L (A.11.86)

� L0 \L. By (A.11.6) and (A.11.25):

ΣX
∣∣
L0 \L

(A.11.6)
= Σ

∣∣
L0 \L

(A.11.25)
= ∆0 ◦ (L0 \L)−1 (A.11.87)

By restricting (A.11.81) to L0 \L (the second part of the override will always be

selected):

Σ ′X
∣∣
L0 \L

= ∆ ′2 ◦ (L0 \L)−1 (A.11.88)

By (A.11.65), (A.11.87) and (A.11.88):

Σ ′X
∣∣
L0 \L

≤ ΣX
∣∣
L0 \L

(A.11.89)

� (L0 ∪ L). By (A.11.6) and (A.11.44):

ΣX
∣∣
(L0 ∪ L)

= Σ
∣∣
(L0 ∪ L)

(A.11.90)

ΣX
∣∣
(L0 ∪ L)

= Σ ′
∣∣
(L0 ∪ L)

(A.11.91)
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By (A.11.90), (A.11.91) and (A.11.34):

Σ ′X
∣∣
(L0 ∪ L)

≤ ΣX
∣∣
(L0 ∪ L)

(A.11.92)

By composing (A.11.86), (A.11.89) and (A.11.92):

Σ ′X ≤ ΣX (A.11.93)

By Lemma A.8 on (A.11.93), (A.11.78) and (A.11.7):

G 
Σ ′X X : τ
′〈τ ′e〉 (A.11.94)

τ ′ ≤ τ (A.11.95)

By Rule RT-STACK-C on (A.11.45), (A.11.77), (A.11.81) and (A.11.94) we get the typing for

X ′ = X, L.E:

G 
Σ ′X,L.E
X, L.E : τ ′〈τc〉 (A.11.96)

By applying Rule RT-CONF-B on (A.11.38), (A.11.36), (A.11.40) and (A.11.96):

G 
Σ ′ 〈H ′; X ′; L ′〉; {s0; return e0} : τ ′ (A.11.97)

which proves (a).

By (A.11.95) we prove (b).

• RT-RET

This case is treated similarly.

Theorem A.12 (Progress – Expressions and Function Bodies). If

G 
Σ S; M : τ

then one of the following holds:

(a) M is a value

(b) there exist S ′ andM ′ s.t. S; M −→ S ′; M ′ .

Proof. Let

S ≡ 〈H; X; L〉 (A.12.1)

We prove the desired by induction on the given derivation.
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• RT-CONF-B:

G 
Σ S; e : τ (A.12.2)

By inverting Rule RT-CONF-E on (A.12.2):

G 
Σ H (A.12.3)

∆ = Σ ◦ L (A.12.4)

∆ # G 
Σ e : τe # ε # ψ 
∆ ′ (A.12.5)

Σ ′ = ∆ ′ ◦ L−1 ⊕ Σ (A.12.6)

G 
Σ ′ X : τ〈αX〉 (A.12.7)

By induction on the derivation of (A.12.5):

� T-CONST: This expression is already a value so (a) holds.

� T-CALL:

∆ # G 
Σ `(v)︸︷︷︸
e

: τe # ε # ψ 
∆ ′ (A.12.8)

By inverting Rule T-CALL on (A.12.8):

∆ # G 
Σ ` : τ` # ⊥ # ∅ 
∆1 (A.12.9)

∆1 # G 
Σ v : τv # ⊥ # ∅ 
∆2 (A.12.10)

τ` ≤ τv
ε
−→ τe (A.12.11)

∆ ′ = eraseεG (∆2) (A.12.12)

By inverting Rule RT-T-LOC on (A.12.9):

∆1 = ∆ (A.12.13)

Σ(`) = τ` (A.12.14)

By Rule T-CONST (or Rule RT-T-LOC) on (A.12.10):

∆2 = ∆ (A.12.15)

By (A.12.3) for location `:

G 
Σ H0, ` 7→ v̇ (A.12.16)

For some heap H0 and heap value v̇.
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Next we prove that H(`) = 〈L0, (x) ⇒ {s0; return e0}〉 for some L0, s0 and e0 by

induction on the derivation of (A.12.16):

I RT-HEAP-LOC:

G 
Σ H0, ` 7→ ` ′ (A.12.17)

For some location ` ′ distinct from `.

By inverting RT-HEAP-LOC on (A.12.17):

G 
Σ H0 (A.12.18)

Let H0 = H ′0, ` ′ 7→ v̇ ′. (A.12.18) becomes:

G 
Σ H
′
0, ` ′ 7→ v̇ ′ (A.12.19)

By induction hypothesis using (A.12.19):

H0(`
′) = 〈L ′0, (x)⇒ {s ′0; return e

′
0}〉 (A.12.20)

I RT-HEAP-CONST:

G 
Σ H0, ` 7→ n (A.12.21)

For some constant n. By inverting RT-HEAP-CONST on (A.12.21):

G 
Σ H0 (A.12.22)

Σ(`) = bn (A.12.23)

The subtyping constraint (A.12.11) and (A.12.23) lead to a contradiction.

I RT-HEAP-FUN:

G 
Σ H0, ` 7→ 〈L0, (x)⇒ {s0; return e0}〉 (A.12.24)

which proves the desired result immediately.

I RT-HEAP-REC: Similar to rule RT-HEAP-CONST.

So there exist L0, s0 and e0 s.t.:

H(`) = 〈L0, (x)⇒ {s0; return e0}〉 (A.12.25)
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We pick:

H ′ = H, `v 7→ v, `i 7→ undefined (A.12.26)

X ′ = X, L.〈 〉 (A.12.27)

L ′ = L0, x 7→ `v, xi 7→ `i (A.12.28)

where xi are the variables defined in the function body, and `v and `i are fresh

locations.

By applying Rule RT-CALL using (A.12.25), (A.12.26), (A.12.27) and (A.12.28)

S; `(v) −→ 〈H ′; X ′; L ′〉; {s0; return e0} (A.12.29)

which proves (b).

� T-VAR, T-ASSIGN, T-FUN, T-AND, T-OR, T-NOT and T-PRED are straight-forward

since they only impose very minimal preconditions for the respective transition to

happen.

• RT-CONF-S Proved by applying Theorem A.13 on the statement part of the body.

Theorem A.13 (Progress – Statements). If

(i) `Σ S; s .C

(ii) C is consistent

then one of the following holds:

(a) s is a irreducible form

(b) there exists S ′ and s ′ s.t. S; s −→ S ′; s ′

Proof. The proof is by induction on the derivation of (i).

Theorem A.14 (Type Safety). A well-typed program is either in normal form or reduces to another well

typed state.

Proof. The proof follows by subsequent applications of Theorems A.12, A.13 and A.11.



Appendix B

Trust, but Verify: Two-Phase Typing for Dy-
namic Languages

We now provide detailed versions of the proofs mentioned in Chapter 3. This part reuses

the definitions of Sections 3.2, 3.3 and 3.4, and is structured in three main sections:

• Assumptions (Section B.1)

• Lemmas (Section B.2)

• Theorems (Section B.3)

Sections B.1 and B.2 build up to the main results:

• Consistency and Reverse Consistency Theorems (3.4, 3.5)

• Two-phase Safety Theorem (B.14)

For the remainder of the document we are going to use the plain version of the elabora-

tion relation, i.e. without mode annotations:

Γ ` e : τ ↪→w
The annotations on the judgment merely determine which rules are available at type checking.

The majority of the proofs below involve induction over the elaboration derivation, which is

fixed once type checking is complete, so the annotations can be safely ignored.

In certain lemmas the reader is referred to Dunfield’s techniques from his work on the

elaboration of intersection and union types [31]. The proofs there refer to a language similar but

not exactly the same as ours. The main proof ideas, however, hold.

B.1 Assumptions

Assumption B.1.1 (Primitive Constant Application). If

160
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(i) · ` n : τ→ τ ′ ↪→ n,

(ii) · ` v : τ ↪→ v,

(iii) v 6≡ dead↓·τ ( · ),

then

(a) n(v) −→ JnK(v)

(b) n(v) −→ JnK(v)

(c) · ` JnK(v) : τ ′ ↪→ JnK(v)

Assumption B.1.2 (Lambda Application). If

(i) · ` (x)⇒ e : τ→ τ ′ ↪→ (x)⇒ w,

(ii) · ` v : τ ↪→ v,

(iii) v 6≡ dead↓·τ ( · ),

then

(a) ((x)⇒ e)(v) −→ [v/x] (e)

(b) ((x)⇒ w)(v) −→ [v/x] (w)

Assumption B.1.3 (Canonical Forms).

(I) If Γ ` (x)⇒ e : τ→ τ ′ ↪→ v then

(a) v ≡ (x)⇒ w for some w, or

(b) v ≡ dead↓·τ→τ ′ (v ′) for some v ′

(II) If Γ ` n : τ ↪→ v then

(a) v ≡ n, or

(b) v ≡ dead↓·τ (v ′) for some v ′

B.2 Auxiliary lemmas

Lemma B.1 (Multi-Step Source Evaluation Context). If e −→∗ e ′ then E〈e〉 −→∗ E〈e ′〉.
Proof. Based on Dunfield [31, Lemma 7].

Lemma B.2 (Multi-Step Target Evaluation Context).

I. If w −→∗ w ′ then E〈w〉 −→∗ E〈w ′〉.
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II. If w −→+ w ′ then E〈w〉 −→+ E〈w ′〉.

Proof. Similar to proof of Lemma B.1.

Lemma B.3 (Unions/Injections). If Γ ` e : τ1 ∨ τ2 ↪→ injk w then Γ ` e : τk ↪→ w.

Proof. Based on Dunfield [31, Lemma 8].

Lemma B.4 (Intersections/Pairs). If Γ ` e : τ1 ∧ τ2 ↪→ w1, w2 then there exist e ′1 and e ′2 such that:

(a) e1 −→∗ e ′1 and Γ ` e ′1 : τ1 ↪→ w1

(b) e2 −→∗ e ′2 and Γ ` e ′2 : τ2 ↪→ w2

Proof. Based on Dunfield [31, Lemma 9].

Lemma B.5 (Beta Reduction Canonical Form). If

(i) · ` (x)⇒ e : τ→ τ ′ ↪→ v1

(ii) · ` v2 : τ ↪→ v2

(iii) ((x)⇒ e)(v2) −→ [v2/x] (e)

then v1 ≡ (x)⇒ w for some w.

Lemma B.6 (Primitive Reduction Canonical Form). If

(i) · ` n : τ→ τ ′ ↪→ v1

(ii) · ` v : τ ↪→ v2

(iii) n(v) −→ JnK(v)

then

(a) v1 ≡ n

(b) v2 6≡ dead↓·τ ( · )
Lemma B.7 (Conditional Canonical Form). If

(i) · ` n : Bool ↪→ v

(ii) · ` e1 : τ ↪→ w1 and · ` e2 : τ ↪→ w2

(iii) if (n) {e1} else {e2} −→ ek

Then:

(a k = 1 =⇒ n = v ≡ true

(b k = 2 =⇒ n = v ≡ false
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Lemma B.8 (Value Monotonicity). If

Γ ` e : τ ↪→ v

then there exists v s.t.:

(a) e −→∗ v
(b) Γ ` v : τ ↪→ v

(c) ∀i (e −→∗ ei) . Γ ` ei : τ ↪→ v

Proof. Parts (a) and (b) of the lemma has been proven by Dunfield [31] for a similar language, so

here we are just going to prove part (c).

We will show this by induction on the length i of the path: e −→∗ ei.
• i = 0: e ≡ ei, so it trivially holds.

• Suppose it holds for i = k, i.e. for e −→∗ ek, it holds that:

Γ ` ek : τ ↪→ v (B.8.1)

We will show that it holds for i = k+ 1, i.e. for ek+1 such that:

ek −→ ek+1 (B.8.2)

We will do this by induction on the derivation (B.8.1), but limit ourselves to the terms ek
that elaborate to values:

� Cases T-CST, T-VAR, T-∧I, T-ARROW: For these cases, term ek is already a value, so

doesn’t step.

� Case T-∨I (assume left injection – the case for right injection is similar):

Γ ` ek : τ1 ↪→ v ` τ1 ∨ τ2
Γ ` ek : τ1 ∨ τ2 ↪→ inj1 v

By inversion:

Γ ` ek : τ1 ↪→ v

By induction hypothesis, using (B.8.2):

Γ ` ek+1 : τ1 ↪→ v

Applying rule T-∨I on the latter one:

Γ ` ek+1 : τ1 ∨ τ2 ↪→ inj1 v
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Lemma B.9 (Reverse Value Monotonicity). If Γ ` v : τ ↪→ w, then there exists v s.t. w −→∗ v and

Γ ` v : τ ↪→ v.

Proof. Similar to proof of Lemma B.8.

Lemma B.10 (Substitution). If Γ , x : τ ` e : τ ′ ↪→ w and Γ ` v : τ ↪→ v, then Γ ` [v/x] (e) :

τ ′ ↪→ [v/x] (w).

Proof. Based on Dunfield [31, Lemma 12].

Corollary B.2.1 (Target Multi-step Preservation). If · ` w :: T and w −→∗ w ′, then · ` w ′ :: T .

Proof. Stems from Theorem 3.7.

Corollary B.2.2 (dead-cast Invalid). · 6` dead↓ττ ′ (w) :: T

Lemma B.11 (Correspondence). If

(i) Γ ` e : τ ↪→ w

(ii) G ` w :: T

(iii) [Γ ] = ‖G‖

then

[τ] = ‖T‖

Proof. We prove this by induction on pairs T-Rule/R-Rule of derivations:

Γ ` e : τ ↪→ w

G ` w :: T

• T-CST/T-CST:

Γ ` n : b ↪→ n

G ` n :: {ν : b | ν = n }

Meta-function sngl operates entirely on the refinement so it holds that:

‖{ν : b | ν = n }‖ = ‖b‖

Also, it holds that:

[b] = ‖b‖
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• T-VAR/T-VAR:

x : τ ∈ Γ

Γ ` x : τ ↪→ x

x : T ∈ G

G ` x :: sngl (T , x)

By inversion:

x : τ ∈ Γ (B.11.1)

x : T ∈ G (B.11.2)

If x is bound multiple times in Γ andG, we assume the we have picked the correct instances

from each environment.

By (iii) we have that:

[Γ(x)] = ‖G(x)‖

Also meta-function sngl operates entirely on the refinement so it holds that:

‖T‖ = ‖sngl (T , x)‖ (B.11.3)

By (B.11.1), (B.11.2) and (B.11.3) it holds that:

[τ] = ‖sngl (T , x)‖

• T-IF/T-IF: Similar to previous case.

• T-∧I/T-PPAIR:

From the first premise of the implication:

∀k ∈ {1, 2} . Γ ` v : τk ↪→ vk

Γ ` v : τ1 ∧ τ2 ↪→ v1, v2

By inversion:

∀k ∈ {1, 2} . Γ ` v : τk ↪→ vk (B.11.4)

From the second premise of the implication:

∀k ∈ {1, 2} .G ` vk :: Tk

G ` v1, v2 :: T1× T2
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By inversion:

∀k ∈ {1, 2} .G ` vk :: Tk (B.11.5)

By induction hypothesis on (iii), (B.11.4) and (B.11.5):

∀k ∈ {1, 2} . [τk] = ‖Tk‖ (B.11.6)

Using properties of [·] and ‖·‖:

[τ1 ∧ τ2] = [τ1]× [τ2] = ‖T1‖× ‖T2‖ = ‖T1× T2‖

• T-∧E/T-PROJ: Straightforward based on earlier cases.

• T-ARROW/T-LAM: Straightforward based on earlier cases.

• T-APP/T-APP: Straightforward based on earlier cases.

• T-∨I/T-INJ: Straightforward based on earlier cases.

• T-∨E/T-CASE:

From the first premise of the implication:

Γ , x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1

Γ ` e0 : τ1 ∨ τ2 ↪→ w0 Γ , x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2

Γ ` E〈e0〉 : τ ′ ↪→ case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

By inversion:

Γ ` e0 : τ1 ∨ τ2 ↪→ w0 (B.11.7)

Γ , x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1 (B.11.8)

Γ , x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2 (B.11.9)

From the second premise of the implication:

G ` w0 :: T1+ T2 G, x1 : T1 ` w1 :: T G, x2 : T2 ` w2 :: T

G ` case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 :: T

By inversion:

G ` w0 :: T1+ T2 (B.11.10)

G, x1 : T1 ` w1 :: T (B.11.11)

G, x2 : T2 ` w2 :: T (B.11.12)
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By induction hypothesis on (iii), (B.11.7) and (B.11.10):

[τ1 ∨ τ2] = ‖T1+ T2‖

From properties of type elaboration and refinement types:

[τ1 ∨ τ2] = [τ1] + [τ2]

‖T1+ T2‖ = ‖T1‖+ ‖T2‖

The right-hand side of the last two equations are tagged unions, so it is possible to match

the consituent parts by structure:

[τ1] = ‖T1‖ and [τ2] = ‖T2‖

Combining the last equation with (iii):

[Γ , x : τ1] = ‖G, x : T1‖ (B.11.13)

[Γ , x : τ2] = ‖G, x : T2‖ (B.11.14)

By induction hypothesis on (B.11.8), (B.11.11) and (B.11.13) (or (B.11.9), (B.11.12) and

(B.11.14)):

[τ ′] = ‖T‖

• T-⊥/T-APP:

From the first premise of the implication:

Γ ` e : τ ↪→ w tag(τ)∩ tag(τ ′) = ∅

Γ ` e : τ ′ ↪→ dead↓ττ ′ (w)
From the second premise of the implication:

G ` dead↓ττ ′ :: Bot([τ])→ Bot([τ ′]) G ` w :: T ′

G ` dead↓ττ ′ (w) :: [w/x]
(
Bot([τ ′])

)
The result type of the last derivation can also be written as:

[w/x]
(
Bot([τ ′])

)
= Bot([τ ′])

Because after the application of Bot(·) all original refinements get erased. Also, after

removing the refinements:

‖Bot([τ ′])‖ = [τ ′]
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B.3 Theorems

Theorem B.12 (Consistency). If · ` e : τ ↪→ w and w −→ w ′ then there exists e ′ such that e −→∗ e ′
and · ` e ′ : τ ↪→ w ′.

Proof. By induction on the derivation · ` e : τ ↪→ w:

• T-CST, T-VAR, T-∧I, T-∧E and T-ARROW: The respective target expression does not step.

• T-IF:
· ` ec : boolean ↪→ w ∀i ∈ {1, 2} . · ` ei : τ ↪→ wi

· ` if (ec) {e1} else {e2} : τ ↪→ if (wc) {w1} else {w2}

By inversion:

· ` ec : boolean ↪→ wc (B.12.1)

· ` e1 : τ ↪→ w1 (B.12.2)

· ` e2 : τ ↪→ w2 (B.12.3)

Cases on the form of w −→ w ′:

� Rule:
wc −→ w ′c

if (wc) {w1} else {w2} −→ if (w ′c) {w1} else {w2}

By inversion:

wc −→ w ′c (B.12.4)

By induction hypothesis using (B.12.1) and (B.12.4) there exists e ′c such that

ec −→∗ e ′c
· ` e ′c : boolean ↪→ w ′c (B.12.5)

Applying rule T-IF on (B.12.5), (B.12.2) and (B.12.3) we get:

· ` if (e ′c) {e1} else {e2} : τ ↪→ if (w ′c) {w1} else {w2}

� Rule:

if (true) {w1} else {w2} −→ w1
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Equation (B.12.1) becomes:

· ` ec : boolean ↪→ true

By Lemma B.8 there exists vc such that:

ec −→∗ vc (B.12.6)

· ` vc : boolean ↪→ true (B.12.7)

The only possible case for (B.12.7) to hold is:

vc ≡ true

By Lemma B.1 using (B.12.6) on E ≡ if (〈〉) {e1} else {e2}:

if (ec) {e1} else {e2} −→∗ if (true) {e1} else {e2}
By E-COND:

if (true) {e1} else {e2} −→ e1

So there exists e ′ ≡ e1, such that e −→∗ e ′ and by (B.12.2) it holds that:

· ` e ′ : τ ↪→ w1

� Rule:

if (false) {w1} else {w1} −→ w2

This case is similar to the previous one.

• T-APP: Similar to Dunfield [31, Proof of Theorem 13]

• T-∨I:
· ` e : τk ↪→ w0 ` τ1 ∨ τ2
· ` e : τ1 ∨ τ2 ↪→ injk w0

By inversion:

· ` e : τk ↪→ w0 (B.12.8)

` τ1 ∨ τ2 (B.12.9)

The only possible case for w −→ w ′ is:

w0 −→ w ′0

injk w0 −→ injk w
′
0
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By inversion:

w0 −→ w ′0 (B.12.10)

By induction hypothesis using (B.12.8) and (B.12.10) there exists an e ′ such that:

e −→∗ e ′ (B.12.11)

· ` e ′ : τk ↪→ w ′0 (B.12.12)

By T-∨I on (B.12.12) and (B.12.9):

· ` e ′ : τ1 ∨ τ2 ↪→ injk w
′
0

• T-∨E:
x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1

· ` e0 : τ1 ∨ τ2 ↪→ w0 x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2

· ` E〈e0〉 : τ ′ ↪→ case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

By inversion:

· ` e0 : τ1 ∨ τ2 ↪→ w0 (B.12.13)

x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1 (B.12.14)

x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2 (B.12.15)

Cases on the form of w −→ w ′:

� Rule:
w0 −→ w ′0

case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 −→
case w ′0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

By inversion:

w0 −→ w ′0 (B.12.16)

By induction hypothesis using (B.12.13) and (B.12.16) there exists e ′0 such that

e0 −→∗ e ′0 (B.12.17)

· ` e ′0 : τ1 ∨ τ2 ↪→ w ′0 (B.12.18)
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Applying T-∨E on (B.12.18), (B.12.14) and (B.12.15):

· ` E〈e ′0〉 : τ1 ↪→ case w ′0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

By Lemma B.2 using (B.12.17):

E〈e0〉 −→∗ E〈e ′0〉
� Rule:

case inj1 v of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 −→ [v/x1] (w1)

Equation (B.12.13) becomes:

· ` e0 : τ1 ∨ τ2 ↪→ inj1 v (B.12.19)

By Lemma B.8 on (B.12.19), there exists v0 such that:

e0 −→∗ v0 (B.12.20)

· ` v0 : τ1 ∨ τ2 ↪→ inj1 v (B.12.21)

By Lemma B.3 on (B.12.21):

· ` v0 : τ1 ↪→ v (B.12.22)

By Lemma B.10 on (B.12.14) and (B.12.22):

· ` [v0/x1] (E〈x1〉) : τ1 ↪→ [v/x1] (w1)

Or, after the substitutions1:

· ` E〈v0〉 : τ1 ↪→ [v/x1] (w1) (B.12.23)

By Lemma B.1 on (B.12.20):

E〈e0〉 −→∗ E〈v0〉
� Rule

case inj2 v of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 −→ [v/x2] (w2)

This case is similar to the previous one.
1Variable x1 is only referenced in the “hole" of the evaluation context E〈x1〉.
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• T-⊥:
· ` e : τ ↪→ w tag(τ)∩ tag(τ ′) = ∅

· ` e : τ ′ ↪→ dead↓ττ ′ (w)
By inversion:

· ` e : τ ↪→ w (B.12.24)

tag(τ)∩ tag(τ ′) = ∅ (B.12.25)

The only possible step here is:

w −→ w ′

dead↓ττ ′ (w) −→ dead↓ττ ′ (w ′)
By inversion:

w −→ w ′ (B.12.26)

By induction hypothesis using (B.12.24) and (B.12.26) there exists e ′ such that:

e −→∗ e ′
· ` e ′ : τ ↪→ w ′ (B.12.27)

By applying T-⊥ on (B.12.27) and (B.12.25):

· ` e ′ : τ ′ ↪→ dead↓ττ ′ (w ′)

Theorem B.13 (Reverse Consistency). If · ` e : τ ↪→ w and e −→ e ′, then there exists w ′ such that

· ` e ′ : τ ↪→ w ′ and w −→+ w ′.

Proof. By induction on the derivation · ` e : τ ↪→ w:

• T-CST, T-VAR, T-∧I, T-ARROW: The respective source expression does not step.

• T-IF:

· ` ec : boolean ↪→ w ∀i ∈ {1, 2} . · ` ei : τ ↪→ wi

· ` if (ec) {e1} else {e2} : τ ↪→ if (wc) {w1} else {w2}
(B.13.1)
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By inversion:

· ` ec : boolean ↪→ wc (B.13.2)

· ` e1 : τ ↪→ w1 (B.13.3)

· ` e2 : τ ↪→ w2 (B.13.4)

Cases on the form of e −→ e ′:

� Rule:
ec −→ e ′c

if (ec) {e1} else {e2} −→ if (e ′c) {e1} else {e2}

By inversion:

ec −→ e ′c (B.13.5)

By induction hypothesis using (B.13.2) and (B.13.5) there exists w ′c such that:

· ` e ′c : boolean ↪→ w ′c (B.13.6)

wc −→+ w ′c (B.13.7)

By Lemma B.2 using (B.13.7):

if (wc) {w1} else {w2} −→+ if (w ′c) {w1} else {w2}

Applying rule T-IF on (B.13.6), (B.13.3) and (B.13.4) we get:

· ` if (e ′c) {e1} else {e2} : τ ↪→ if (w ′c) {w1} else {w2}

� Rule:

if (true) {e1} else {e2} −→ e1 (B.13.8)

Equation (B.13.2) becomes:

· ` true : boolean ↪→ wc (B.13.9)

By Lemma B.9 there exists vc such that:

wc −→∗ vc (B.13.10)

· ` true : boolean ↪→ vc (B.13.11)
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By Lemma B.2 using (B.13.10):

if (wc) {w1} else {w2} −→∗ if (vc) {w1} else {w2} (B.13.12)

By Lemma B.7 on (B.13.11), (B.13.3), (B.13.4) and (B.13.8):

vc ≡ true (B.13.13)

By E-COND:

if (true) {w1} else {w2} −→ w1 (B.13.14)

By (B.13.12) and (B.13.14):

if (wc) {w1} else {w2} −→+ w1

Combining with (B.13.3) we get the wanted relation.

� Rule:

if (false) {e1} else {e1} −→ e2

Similar to the previous case.

• T-∧E: Similar to earlier cases.

• T-APP:

· ` e1 : τ→ τ ′ ↪→ w1 · ` e2 : τ ↪→ w2

· ` e1(e2) : τ ′ ↪→ w1(w2)
(B.13.15)

By inversion:

· ` e1 : τ→ τ ′ ↪→ w1 (B.13.16)

· ` e2 : τ ↪→ w2 (B.13.17)

Cases on the form of e −→ e ′:

� Rule:
e1 −→ e ′1

e1(e2) −→ e ′1(e2)

Similar to earlier cases.

� Rule:
e2 −→ e ′2

v1(e2) −→ v1(e ′2)
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By inversion:

e2 −→ e ′2 (B.13.18)

By Lemma B.9 on (B.13.16) there exists v1 such that:

w1 −→∗ v1 (B.13.19)

· ` v1 : τ2 ↪→ v1 (B.13.20)

By Lemma B.2 using (B.13.19):

w1(w2) −→∗ v1(w2) (B.13.21)

By induction hypothesis using (B.13.17) and (B.13.18) there exists w ′2 such that:

w2 −→+ w ′2 (B.13.22)

· ` e ′2 : τ ↪→ w ′2 (B.13.23)

By Lemma B.2 using (B.13.22) on the target of (B.13.20):

v1(w2) −→+ v1(w ′2)

And combining with (B.13.21):

w1(w2) −→+ v1(w ′2)

By Rule T-APP using (B.13.16) and (B.13.23):

· ` v1(e ′2) : τ ↪→ v1(w ′2)

� Rule:

((x)⇒ e0)(v2) −→ [v2/x] (e0) (B.13.24)

By Lemma B.9 on (B.13.16) there exists v1 such that:

· ` (x)⇒ e0 : τ→ τ ′ ↪→ v1 (B.13.25)

w1 −→∗ v1 (B.13.26)

By applying Lemma B.2 on w ≡ w1(w2) given (B.13.26):

w1(w2) −→∗ v1(w2) (B.13.27)
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Equation (B.13.17) is:

· ` v2 : τ ↪→ w2 (B.13.28)

By Lemma B.9 on (B.13.28), there exists v2 such that:

w2 −→∗ v2 (B.13.29)

· ` v2 : τ ↪→ v2 (B.13.30)

By Lemma B.5 on (B.13.25), (B.13.30) and (B.13.24), there is a w0 such that:

v1 ≡ (x)⇒ w0

So (B.13.16) becomes:

· ` (x)⇒ e0 : τ→ τ ′ ↪→ (x)⇒ w0 (B.13.31)

The only production of (B.13.31) is by T-ARROW:

` τ→ τ ′ x : τ ` e0 : τ ′ ↪→ w0

Γ ` (x)⇒ e0 : τ→ τ ′ ↪→ (x)⇒ w0

By inversion:

x : τ ` e0 : τ ′ ↪→ w0 (B.13.32)

By applying Lemma B.10 on (B.13.32) and (B.13.30) we get:

· ` [v2/x] (e0) : τ ′ ↪→ [v2/x] (w0) (B.13.33)

By applying Lemma B.2 on w ≡ ((x)⇒ w0)(w2) given (B.13.29):

((x)⇒ w0)(w2) −→∗ ((x)⇒ w0)(v2) (B.13.34)

By Rule TE-APP-2:

((x)⇒ w0)(v2) −→ [v2/x] (w0) (B.13.35)

By (B.13.27), (B.13.34) and (B.13.35) we get:

w1(w2) −→+ [v2/x] (w0) (B.13.36)

By (B.13.33) and (B.13.36) we get the wanted relation.
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� Rule:

n(v) −→ JnK(v) (B.13.37)

Equations (B.13.16) and (B.13.17) become:

· ` n : τ→ τ ′ ↪→ w1 (B.13.38)

· ` v : τ ↪→ w2 (B.13.39)

By Lemma B.9 on (B.13.38) there exists v1 such that:

· ` n : τ→ τ ′ ↪→ v1 (B.13.40)

w1 −→∗ v1 (B.13.41)

By Lemma B.2 on w ≡ w1(w2) given (B.13.41):

w1(w2) −→∗ v1(w2) (B.13.42)

By Lemma B.9 on (B.13.39) there exists v2 such that:

w2 −→∗ v2 (B.13.43)

· ` v : τ ↪→ v2 (B.13.44)

By Lemma B.2 on (B.13.43):

n(w2) −→∗ n(v2) (B.13.45)

By Lemma B.6 on (B.13.40), (B.13.44) and (B.13.37):

v1 ≡ n (B.13.46)

v2 6≡ dead↓·τ ( · ) (B.13.47)

So (B.13.40) becomes:

· ` n : τ→ τ ′ ↪→ n (B.13.48)

So we can apply TE-APP-1:

n(v2) −→ JnK(v2) (B.13.49)
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By (B.13.42), (B.13.45) and (B.13.49):

w1(w2) −→+ JnK(v2)

By assumption B.1.1 using (B.13.48), (B.13.47) and (B.13.44):

· ` JnK(v) : τ ↪→ JnK(v2)

• T-∨I:
· ` e : τk ↪→ w ` τ1 ∨ τ2
· ` e : τ1 ∨ τ2 ↪→ injk w

By inversion:

· ` e : τk ↪→ w (B.13.50)

` τ1 ∨ τ2 (B.13.51)

By induction hypothesis using (B.13.50) with e −→ e ′, there exists w ′ such that:

· ` e ′ : τk ↪→ w ′ (B.13.52)

w −→+ w ′ (B.13.53)

By Lemma B.2 using (B.13.53):

injk w −→+ injk w
′

Applying T-∨I with premises (B.13.52) and (B.13.51):

· ` e ′ : τ1 ∨ τ2 ↪→ injk w
′

• T-∨E:
x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1

· ` e0 : τ1 ∨ τ2 ↪→ w0 x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2

· ` E〈e0〉 : τ ′ ↪→ case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

By inversion:

· ` e0 : τ1 ∨ τ2 ↪→ w0 (B.13.54)

x1 : τ1 ` E〈x1〉 : τ ′ ↪→ w1 (B.13.55)

x2 : τ2 ` E〈x2〉 : τ ′ ↪→ w2 (B.13.56)

Cases on the form of e −→ e ′:
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� Rule:
e0 −→ e ′0

E〈e0〉 −→ E〈e ′0〉

By inversion:

e0 −→ e ′0 (B.13.57)

By induction hypothesis using (B.13.54) and (B.13.57):

· ` e ′0 : τ1 ∨ τ2 ↪→ w ′0 (B.13.58)

w0 −→+ w ′0 (B.13.59)

Using rule T-∨E on (B.13.58), (B.13.55) and (B.13.56):

· ` E〈e ′0〉 : τ ′ ↪→ case w ′0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

Also, applying Lemma B.2 on E ≡ case 〈〉 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 using

(B.13.59):

case w0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2 −→+

case w ′0 of inj1 x1 ⇒ w1 | inj2 x2 ⇒ w2

� Rule:

e0 ≡ v0 (B.13.60)

E〈v0〉 −→ e ′ (B.13.61)

Because v0 is a value, we can split cases for its type. Without loss of generality we can

assume that its type is τ1 (the same exact holds for τ2). This is depicted on the form of

w0 in equation (B.13.54), which now becomes (for some w01):

· ` v0 : τ1 ∨ τ2 ↪→ inj1 w01 (B.13.62)

By Lemma B.3 on (B.13.62):

· ` v0 : τ1 ↪→ w01 (B.13.63)

By Lemma B.9 on (B.13.63) there exists v01 such that:

w01 −→∗ v01 (B.13.64)

· ` v0 : τ1 ↪→ v01 (B.13.65)
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By Lemma B.9 on (B.13.62) there exists v012 such that:

inj1 w01 −→∗ inj1 v01 (B.13.66)

· ` v0 : τ1 ∨ τ2 ↪→ inj1 v01 (B.13.67)

Cases for the form of E〈v0〉:

I E〈v0〉 ≡ if (v0) {e1} else {e2}: Similar to case if (ec) {e1} else {e2}

I E〈v0〉 ≡ v0(e): Similar to earlier cases.

I E〈v0〉 ≡ ((x)⇒ e0)(v0): Similar to earlier cases.

• T-⊥:
· ` e : τ ↪→ w tag(τ)∩ tag(τ ′) = ∅

· ` e : τ ′ ↪→ dead↓ττ ′ (w)
By inversion:

· ` e : τ ↪→ w (B.13.68)

tag(τ)∩ tag(τ ′) = ∅ (B.13.69)

There also exists e ′ such that:

e −→ e ′ (B.13.70)

By induction hypothesis on (B.13.68) and (B.13.70) there exists w ′, such that:

w −→+ w ′ (B.13.71)

· ` e ′ : τ ↪→ w ′ (B.13.72)

By Lemma B.2 on (B.13.71):

dead↓ττ ′ (w) −→+ dead↓ττ ′ (w ′)
Applying rule T-⊥ on (B.13.72) and (B.13.69):

· ` e ′ : τ ′ ↪→ dead↓ττ ′ (w ′)

Theorem B.14 (Two-Phase Safety). If

(i) · ` e : τ ↪→ w

2This is the same that we got right before, due to uniqueness of normal forms.
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(ii) · ` w :: T

then, either e is a value, or there exists e ′ s.t. e −→ e ′ and · ` e ′ : τ ↪→ w ′ for w ′, s.t. w −→+ w ′ and

· ` w ′ :: T .

Proof. By induction on pairs T-Rule/R-Rule of derivations:

Γ ` e : τ ↪→ w

G ` w :: T

• T-CST/T-CST, T-VAR/T-VAR, T-∧I/T-PPAIR, T-ARROW/T-LAM: The term e is a value.

• T-IF/T-IF:

From (i) we have:

· ` ec : Bool ↪→ w ∀i ∈∈ {1, 2} . · ` ei : τ ↪→ wi

· ` if (ec) {e1} else {e2} : τ ↪→ if (wc) {w1} else {w2}

By inversion:

· ` ec : Bool ↪→ wc (B.14.1)

· ` e1 : τ ↪→ w1 (B.14.2)

· ` e2 : τ ↪→ w2

From (ii):
· ` wc :: Bool wc ` w1 :: T ¬wc ` w2 :: T

· ` if (wc) {w1} else {w2} :: T

By inversion:

· ` wc :: Bool (B.14.3)

wc ` w1 :: T (B.14.4)

¬wc ` w2 :: T (B.14.5)

By induction hypothesis using (B.14.1) and (B.14.3) we have two case on the form of ec:

� Expression ec is a value:

ec ≡ vc

By a standard canonical forms lemma vc is either true or false. Assume the first

case (the latter case is identical but involving the “else" branch of the conditional). By

E-COND-TRUE:

if (true) {e1} else {e2} −→ e1
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� There exists e ′c such that:

ec −→ e ′c (B.14.6)

Hence, by E-ECTX:

if (ec) {e1} else {e2} −→ if (e ′c) {e1} else {e2}

In either case, there exists e ′ such that:

e −→ e ′ (B.14.7)

By Theorem 3.5 on (i) and (B.14.7), there exists w ′ such that:

w −→+ w ′

· ` e : τ ↪→ w ′

And by Corollary B.2.1:

· ` w ′ :: T

• T-∧E/T-PROJ: Without loss of generality we’re going to assume first projection (the same

holds for the second projection). From (i):

· ` e : τ1 ∧ τ2 ↪→ w0

· ` e : τ1 ↪→ proj1w0

By inversion:

· ` e : τ1 ∧ τ2 ↪→ w0 (B.14.8)

From (ii):
· ` w0 :: T1× T2
· ` proj1w0 :: T1

By inversion:

· ` w0 :: T1× T2 (B.14.9)

By induction hypothesis using (B.14.8) and (B.14.9) we have two case on the form of e:

� Expression e is a value:

e ≡ v
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So the source term does not step.

� There exists e ′ such that:

e −→ e ′ (B.14.10)

By Theorem 3.5 on (i) and (B.14.10), there exists w ′ such that:

w −→+ w ′

· ` e : τ ↪→ w ′

And by Corollary B.2.1:

· ` w ′ :: T

• T-APP/T-APP: From (i):

· ` e1 : τ→ τ ′ ↪→ w1 · ` e2 : τ ↪→ w2

· ` e1(e2) : τ ′ ↪→ w1(w2)

By inversion:

· ` e1 : τ→ τ ′ ↪→ w1 (B.14.11)

· ` e2 : τ ↪→ w2 (B.14.12)

From (ii):
· ` w1 :: Tx → T · ` w2 :: Tx

· ` w1(w2) :: [w2/x] (T)

By inversion:

· ` w1 :: Tx → T (B.14.13)

· ` w2 :: Tx (B.14.14)

By induction hypothesis using (B.14.11) and (B.14.13) we have three cases on the form of

e1:

� Expression e1 is a primitive value:

e1 ≡ n

Elaboration (B.14.11) becomes:

· ` n : τ→ τ ′ ↪→ w1 (B.14.15)



184

By Lemma B.9 on (B.14.15) there exists v1, such that:

w1 −→∗ v1 (B.14.16)

· ` n : τ→ τ ′ ↪→ v1 (B.14.17)

By Corollary B.2.1 using (B.14.13) and (B.14.32):

· ` v1 :: Tx → T (B.14.18)

By Assumption B.1.3 on (B.14.17):

v1 ≡ n

or

v1 ≡ dead↓·τ (v ′1)
The latter case combined with (B.14.18) contradicts Corollary B.2.2, so we end up with:

v1 ≡ n (B.14.19)

By Lemma B.2 using (B.14.16):

w1(w2) −→∗ n(w2) (B.14.20)

By induction hypothesis using (B.14.12) and (B.14.14) we have two cases on the form

of e2:

I Expression e2 is a value:

e2 ≡ v2

Elaboration (B.14.12) becomes:

· ` v2 : τ ↪→ w2 (B.14.21)

By Lemma B.9 on (B.14.21) there exists v2, such that:

w2 −→∗ v2 (B.14.22)

· ` v2 : τ ↪→ v2 (B.14.23)

By Lemma B.2 using (B.14.22):

n(w2) −→∗ n(v2) (B.14.24)
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For the sake of contradiction assume:

v2 ≡ dead↓τ ′τ (v ′2) (B.14.25)

for some v ′2. By (B.14.14):

· ` v2 :: Tx (B.14.26)

So, by (B.14.26) and Corollary B.2.2 we have a contradiction. So:

v2 6≡ dead↓τ ′τ (v ′2) (B.14.27)

By Assumption B.1.1 on (B.14.17), (B.14.19) (B.14.23) and (B.14.27):

n(v2) −→ JnK(v2) (B.14.28)

I There exists e ′2 such that:

e2 −→ e ′2 (B.14.29)

By E-ECTX:

n(e2) −→ n(e ′2)

� Expression e1 is an abstraction:

e1 ≡ (x)⇒ e0 (B.14.30)

Elaboration (B.14.11) becomes:

· ` (x)⇒ e0 : τ→ τ ′ ↪→ w1 (B.14.31)

By applying lemma B.9 on (B.14.15) there exists v1, such that:

w1 −→∗ v1 (B.14.32)

· ` (x)⇒ e0 : τ→ τ ′ ↪→ v1 (B.14.33)

By Corollary B.2.1 using (B.14.13) and (B.14.32):

· ` v1 :: Tx → T (B.14.34)

By Assumption B.1.3 on (B.14.33):

v1 ≡ (x)⇒ w0
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or

v1 ≡ dead↓·τ→τ ′ (v ′1)
The latter case combined with (B.14.34) contradicts Corollary B.2.2, so we end up with:

v1 ≡ (x)⇒ w0 (B.14.35)

So (B.14.11) becomes:

· ` (x)⇒ e0 : τ→ τ ′ ↪→ (x)⇒ w0 (B.14.36)

By induction hypothesis using (B.14.12) and (B.14.14) we have two cases on the form

of e2:

I Expression e2 is a value:

e2 ≡ v2

Equation (B.14.12) becomes (for some w2):

· ` v2 : τ ↪→ w2

By Lemma B.9, there exists v2 such that:

· ` v2 : τ ↪→ v2 (B.14.37)

For the sake of contradiction assume:

v2 ≡ dead↓τ ′τ (v ′2) (B.14.38)

for some v ′2. By (B.14.14):

· ` v2 :: Tx (B.14.39)

So, by (B.14.39) and Corollary B.2.2 we have a contradiction. So:

v2 6≡ dead↓τ ′τ (v ′2) (B.14.40)

By Assumption B.1.2 on (B.14.36), (B.14.37) and (B.14.40):

((x)⇒ e0)(v2) −→ [v2/x] (e0)

I There exists e ′2 such that:

e2 −→ e ′2 (B.14.41)
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By E-ECTX:

((x)⇒ e0)(e2) −→ ((x)⇒ e0)(e ′2)

� There exists e ′1 such that:

e1 −→ e ′1 (B.14.42)

By E-ECTX:

e1(e2) −→ e ′1(e2)

In all cases, there exists e ′ such that:

e −→ e ′ (B.14.43)

By Theorem 3.5 on (i) and (B.14.43), there exists w ′ such that:

w −→+ w ′

· ` e : τ ′ ↪→ w ′

And by Corollary B.2.1:

· ` w ′ :: T

• T-∨I/T-INJ: Following similar methodology as before.

• T-∨E/T-CASE: Following similar methodology as before.

• T-⊥/T-APP: Corollary B.2.2 contradicts the second premise (ii), so the theorem does not

apply here.



Appendix C

Refinement Types for TypeScript

C.1 Full System

In this section we present the full type system for the core language of Chapter 4.

C.1.1 Formal Languages

Figure C.1 shows the runtime syntax for the input language Irsc, building up on the

language described in Figure 4.4. The type language is the same as described in Figure 4.7. The

operational semantics, shown in Figure C.2, is borrowed from Safe TypeScript [87], with certain

simplifications since the language we are dealing with is simpler than the one used there. We use

evaluation contexts E, with a left to right evaluation order.

Figure C.3 shows the runtime syntax for the SSA transformed language λrsc, building

up on the language described in Figure 4.5. The reduction rules of the operational semantics

for language λrsc are shown in Figure C.4. We use evaluation contexts E , with a left to right

evaluation order.

188
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Evaluation Context E ::= 〈〉 | E.f | E.m(e) | v.m(v,E, e) | new C(v,E, e)

| <T>E | var x =E | E.f = e | v.f = E

| x =E | if (E) {s} else {s} | return E | E; s

| E; return e

Runtime Conf. R ::= S, s

State S ::= 〈K, L, XH〉

Store L ::= · | x 7→ v | L1, L2

Value v ::= ` | n

Stack X ::= · | X, L.E

Heap H ::= · | ` 7→ O | H1, H2

Field Bindings ~F ∈ F→ Vals

Objects O ::= {proto: `; f:~F; ...} | {name:C; proto: `; m:M}

Figure C.1. Syntax and Runtime Configuration of Irsc
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Expression Reduction Rules (Selected) S; e −→ S ′; e ′

〈K;L; ·;H〉; e −→ 〈K;L ′; ·;H ′〉; e ′
〈K;L; ·;H〉; E〈e〉 −→ 〈K;L ′; ·;H ′〉; E〈e ′〉 [R-EVALCTX]

S; x −→ S; S.L(x)
[R-VAR]

S.H(`) = {proto: ` ′; f: f:=v; ...}

S; `.f −→ S; v
[R-DOTREF]

H(`0) = {name:C; proto: ` ′0; m:M}

fields(K, C) = f {proto: `0; f: v} = O H[ ` 7→ O ] = H ′ ` fresh

〈K;L;X;H〉; new C(v) −→ 〈K;L;X;H ′〉; ` [R-NEW]

resolveMethod(H, `) = m(x): {s; return e} L ′ = x : v, this : ` X ′ = X, L.E

〈K;L;X;H〉; E〈`.m(v)〉 −→ 〈K;L ′;X ′;H〉; s; return e [R-CALL]

S; <T>e −→ S; e
[R-CAST]

Statement Reduction Rules (Selected) S; s −→ S ′; s ′

S; skip; s −→ S; s
[R-SKIP]

L ′ = S.L[ x 7→ v ]

S; let x = v −→ S / L ′; v
[R-VARDECL]

H ′ = S.H[ ` 7→ S.H(`)[ f 7→ v ] ]

S; `.f = v −→ S /H ′; v
[R-DOTASGN]

L ′ = S.L[ x 7→ v ]

S; x = v −→ S / L ′; v
[R-ASGN]

n ≡ true =⇒ i = 1 n ≡ false =⇒ i = 2

S; if (n) {s1} else {s2} −→ S; si

[R-ITE]

S.X = X ′, L.E

S; return v −→ S /X ′, L; E〈v〉
[R-RET]

Figure C.2. Operational Semantics for Irsc (adapted from Safe TypeScript [87])
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Evaluation Context E ::= 〈〉 | E .f | E .m(w) | v.m(v, E ,w)

| new C(v, E ,w) | E as T | let x = E in w

| E .f← w | v.f← E | if [φ ] E then e1 else e2

SSA Eval. Context U ::= let x = E in 〈 〉 | if [φ ] E then u1 else u2

Term Eval. Context W ::= E | U

Runtime Conf. R ::= S , w

State S ::= K, H

Heap H ::= · | ` 7→ O | H1, H2
Value v ::= ` | n

Field Bindings ~F ∈ F → Vals

Object O ::= {proto: `; f: ~F; ...}

| {name:C; proto: `; m:M}

Figure C.3. Syntax and Runtime Configuration for λrsc

Operational Semantics for λrsc S ; w −→ S ′; w ′
S ; w −→ S ′; w ′

S ; E〈w〉 −→ S ′; E〈w ′〉 [RC-ECTX]

S .H(`) = {proto: ` ′; f: ~F; ...} f := v ∈ ~F

S ; `.f −→ S ; v [R-FIELD]

resolveMethod(H, `) = (def m(x) = w)

S ; `.m(v) −→ S ; [ v/x, `/this ] (w)
[R-CALL]

Γ ` S .H(`) : T ′; T ′ ≤ T

S ; ` as T −→ S ; ` [R-CAST]

H(`0) = {name:C; proto: ` ′0; m:M}

fields(K, C) = f := T O = {proto: `0; f: v} H ′ = H[ ` 7→ O ] ` fresh

K, H; new C(v) −→ K, H ′; `
[R-NEW]

S ; let x = v in w −→ S ; [v/x] (w)
[R-LETIN]

H ′ = S .H[ ` 7→ S .H(`)[ f 7→ v ] ]

S ; `.f← v −→ S /H ′; v
[R-DOTASGN]

n ≡ true =⇒ i = 1 n ≡ false =⇒ i = 2

S ; if [ x, x1, x2 ]n then u1 else u2 −→ S ; ui〈[xi/x] 〈 〉〉 [R-LIF]

Figure C.4. Reduction Rules for λrsc
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C.1.2 SSA Transformation

Section 4.2.3 describes the SSA transformation from Irsc to λrsc. This section provides

more details and extends the transformation to runtime configurations, to enable the statement

and proof of our consistency theorem.

Static Tranformation

Figure C.5 includes some additional transformation rules that supplement the rules of

Figure 4.6. The main program transformation judgment is:

P ↪→ P . ∆

A global SSA enviornment ∆ is the result of the translation of the entire program P to P . In

particular, in a program translation tree:

• each expression node introduces a single binding to the relevant SSA environment

δ ` e ↪→ w produces binding e 7→ δ

• each statement introduces two bindings, one for the input environment and one for the

output (we use the notation d·e and b·c, respectively):

δ0 ` s ↪→ u a δ1 produces bindings dse 7→ δ0 bsc 7→ δ1

We assume all AST nodes are uniquely identified.

Runtime Configuration Tranformation

Figures C.6, C.7, C.8, C.9 and C.10 include rules for translating runtime configurations.

The main judgment is of the form:

S, M
∆
↪−→ S , e

This assumes that the program containing expression (or body)Mwas SSA-translated producing

a global SSA environment ∆. Rule S-EXP-RTCONF translates a term M under a state S. This

process gets factored into the translation of:

• the signatures S.K, which is straight-forward (same as in static translation),

• the heap S.H, which is described in Figure C.10, and

• termM under a local store S.L and a stack S.X.

The last part breaks down into rules that expose the structure of the stack. Rule S-STACK-

E translates configurations involving an empty stack, which are delegated to the judgment
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Program Translation Rules P ↪→ P . ∆

K ↪→ K . ∆1 · ` B ↪→ e . ∆2

K, B ↪→ K, e . ∆1 ∪∆2
[S-PROG]

Signature Translation K ↪→ K
· ↪→ · [S-SIGS-EMP]

F ↪→ F M ↪→M
class C extends D {F, M} ↪→ class C extends D {F , M}

[S-SIGS-BND]

K1 ↪→ K1 K2 ↪→ K2
K1, K2 ↪→ K1, K2

[S-SIGS-CONS]

Expression and Statement Translations (selected) δ ` e ↪→ w δ ` s ↪→ u a δ ′

n ↪→ n
[S-CONST]

δ ` e ↪→ e δ ` ei ↪→ ei m fresh

δ ` e.m(ei) ↪→ e.m(ei)
[S-CALL]

Figure C.5. Additional SSA Transformation Rules in RSC

L, M
H,∆
↪−−−→ e, and rule S-STACK-C separately translates the top of the stack and the rest of the

stack frames, and then composes them into a single target expression.

Finally, judgments of the forms L; X; M
H,∆
↪−−−→ e and L; X; E

H,∆
↪−−−→W translate expressions

and statements under a local store L. The rules here are similar to their static counterparts. The

key difference stems from the fact that in λrsc variable are replaced with the respective values as

soon as they come into scope. On the contrary, in Irsc variables are only instantiated with the

matching (in the store) value when they get into an evaluation position. To wit, rule SR-VARREF

performs the necessary substitution θ on the translated variable, which we calculate though the

meta-function toSubst, defined as follows:

toSubst(δ,L,H) .
=

{[v/z] | x 7→ z ∈ δ, x 7→ v ∈ L, H; v ↪→ v} if dom(δ) = dom(L)

impossible otherwise

C.1.3 Object Constraint System

Our system leverages the idea introduced in the formall core of X10 [76] to extend a

base constraint system C with a larger constraint system O(C), built on top of C. The original

system C comprises formulas taken from a decidable SMT logic [74], including, for example,
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Runtime Configuration Translation Rules S, M
∆
↪−→ S , e S, s

∆
↪−→ S , u

S.K
∆
↪−→ K S;S.H ↪→ H S.L; S.X; M

S.H,∆
↪−−−−→ e

S, M
∆
↪−→ K, H, e

[S-EXP-RTCONF]

S.K
∆
↪−→ K S;S.H ↪→ H S.L; S.X; s

S.H,∆
↪−−−−→ u

S, s
∆
↪−→ K, H, u

[S-STMT-RTCONF]

Figure C.6. Runtime Configuration Translation in RSC

Runtime Stack Translation Rules L; X; M
H,∆
↪−−−→ e L; X; E

H,∆
↪−−−→W

L, M
H,∆
↪−−−→ e

L; ·; M H,∆
↪−−−→ e

[S-STACK-E]

L;E
H,∆
↪−−−→W

L; ·; E H,∆
↪−−−→W [S-EC-STACK-E]

L0; ·; M
H,∆
↪−−−→ e0 L; X; E

H,∆
↪−−−→ E

L0; (X, L.E); M
H,∆
↪−−−→ E〈e0〉 [S-STACK-C]

L0; ·; E0
H,∆
↪−−−→W0 L; X; E

H,∆
↪−−−→ E

L0; (X, L.E); E0
H,∆
↪−−−→ E〈W0〉 [S-EC-STACK-C]

Figure C.7. Runtime Stack Translation in RSC

linear arithmetic constraints and uninterpreted predicates. The Object Constraint System O(C)
introduces the constraints:

• class(C), which it true for all classes C defined in the program;

• x hasImm f, to denote that the immutable field f is accessible from variable x;

• x hasMut f, to denote that the mutable field f is accessible from variable x; and

• fields(x) = F, to expose all fields available to x.

Figure C.11 shows the constraint system as ported from CFG [76]. We refer the reader to

that work for details. The main differences are syntactic changes to account for our notion of

strengthening. Also the SC-FIELD rule accounts now for both immutable and mutable fields. The
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Runtime Term Translation Rules (selected) M
∆
↪−→M L, M

H,∆
↪−−−→ e L, s

H,∆
↪−−−→ u

·, B ·,∆
↪−−→ e

m(x):B
∆
↪−→ def m(x) = e

[SR-METH]

H; v ↪→ v

L, v
H,∆
↪−−−→ v

[SR-VAL]

∆(x) ` x ↪→ x

θ = toSubst(∆(x),L,H)

L, x
H,∆
↪−−−→ θ (x)

[SR-VARREF]

L, e
H,∆
↪−−−→ e L, e

H,∆
↪−−−→ e

L, e.m(e)
H,∆
↪−−−→ e.m(e)

[SR-CALL]

L, s
H,∆
↪−−−→ u ∆ ′ = ∆[ e 7→ ∆bsc ] L, e

H,∆ ′
↪−−−→ e

L, s; return e
H,∆
↪−−−→ u〈e〉

[SR-BODY]

x 7→ x ∈ ∆bvar x = ec L, e
H,∆
↪−−−→ e

L, var x = e
H,∆
↪−−−→ let x = w in 〈 〉

[SR-VARDECL]

L, e
H,∆
↪−−−→ e L, s1

H,∆
↪−−−→ u1 L, s2

H,∆
↪−−−→ u2

(x; x1; x2) = ∆bs1c ./ ∆bs2c x = ∆bif (e) {s1} else {s2}c(x)

L, if (e) {s1} else {s2}
H,∆
↪−−−→ if [ x, x1, x2 ]w then u1 else u2

[SR-ITE]

x 7→ x ∈ ∆bx = ec L, e
H,∆
↪−−−→ e

L, x = e
H,∆
↪−−−→ let x = w in 〈 〉

[SR-ASGN]

Figure C.8. Runtime Term Translation in RSC

main judgment here is of the form:

Γ `K P

where K is the set of classes defined in the program. Substitutions and strengthening operations

on field declarations are performed on the types of the declared fields (e.g. SC-FIELD-I, SC-

FIELD-C).

C.1.4 Well-formedness Constraints

The well-formedness rules for predicates, terms, types and heaps can be found in

Figure C.12. The majority of these rules are routine.

The judgment for term well-formedness assigns a sort to each term t, which can be
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Evaluation Context Translation Rules (selected) L;E
H,∆
↪−−−→W

L; 〈〉 H,∆
↪−−−→ 〈〉

L;E
H,∆
↪−−−→ E f fresh

L;E.f
H,∆
↪−−−→ E .f

L;E
H,∆
↪−−−→ E m fresh

L; ·; e H,∆
↪−−−→ e

L;E.m(e)
H,∆
↪−−−→ E .m(e)

L; ·; x H,∆
↪−−−→ x L;E

H,∆
↪−−−→ E

L; var x =E
H,∆
↪−−−→ let x = E in 〈 〉

L;E
H,∆
↪−−−→ U L; s

H,∆
↪−−−→ u

L;E; s
H,∆
↪−−−→ U〈u〉

Figure C.9. Evaluation Context Translation Rules in RSC

thought of as a base type. The judgment Γ `q t is used as a shortcut for any further constraints

that the f operator might impose on its arguments t. For example if f is the equality operator

then the two arguments are required to have types that are related via subtyping, i.e. if t1 : N1
and t2 : N2, it needs to be the case that N1 ≤ N2 or N2 ≤ N1.

Type well-formedness is typical among similar refinement types [65].

C.1.5 Subtyping

Figure C.13 presents the full set of sybtyping rules, which borrows ideas from similar

systems [65, 91].
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Heap Translation Rules S;H ↪→ H

S; · ↪→ · [S-HEAP-EMP]

S.H;O ↪→ O ` fresh

S; (` 7→ O) ↪→ (` 7→ O) [S-HEAP-BND]

S;H1 ↪→ H1 S;H2 ↪→ H2
S; (H1, H2) ↪→ H1, H2

[S-HEAP-CONS]

Value Translation Rules H; v ↪→ v

` 7→ O ∈ H H; (` 7→ O) ↪→ (` 7→ O)
H; ` ↪→ `

[S-LOC]

H;n ↪→ n
[S-CONST]

Heap Object Translation Rules H;O ↪→ O
H; ` ↪→ ` H; F ↪→ ~F

H; {proto: `; f:~F; ...} ↪→ {proto: `; f: ~F; ...}

H; ` ↪→ ` M ↪→M
H; {name:C; proto: `; m:M} ↪→ {name:C; proto: `; m:M}

Figure C.10. Heap and Value Translation Rules in RSC



198

Structural Constraints Γ `K P

class C extends D {F , M} ∈ K

Γ `K class(C)
[SC-CLASS]

Γ `K x : C, class(C)

Γ `K inv(C, x)
[SC-INV]

Γ `K fields(x) = ◦ fi : Ti, �gi : T ′i

Γ `K x hasImm fi : Ti

Γ `K x hasMut gi : T ′i

[SC-FIELD]

x : Object `K fields(x) = ∅
[SC-OBJECT]

Γ , x : D `K fields(x) = F̂ C /D :: P
{
F̂ ′, M̂ ′

}
∈ K

Γ , x : C `K fields(x) = F̂, [ x/this ] F̂ ′
[SC-FIELD-I]

Γ , x : C `K fields(x) = F̂

Γ , x : {ν : C | P } `K fields(x) = F C [ x/ν ] P
[SC-FIELD-C]

Γ `K class(C) θ = [ x/this ] m(x : T) : T ∈ K̂

Γ , x : C `K x has (m(x : θ T) : θ T)

[SC-METH-B]

Γ , x : D `K x has (m(x : T) : T) C /D :: P
{
F̂, M̂

}
∈ K m /∈ M̂

Γ , x : C `K x has (m(x : T) : T)

[SC-METH-I]

Γ , x : C `K x has (m(x : T) : T)

Γ , x : {ν : C | P } `K x has (m(x : T) : T C [ x/this ] P)
[SC-METH-C]

Figure C.11. Structural Constraints in RSC (adapted from [76])
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Well-Formed Predicates Γ ` P

Γ ` P1 Γ ` P2

Γ ` P1 ∧ P2

[WP-AND]

Γ ` P

Γ ` ¬P
[WP-NOT]

Γ ` t : Bool

Γ ` t
[WP-TERM]

Well-Formed Terms Γ ` t : N

x : T ∈ Γ

Γ ` x : bTc
[WF-VAR]

Γ ` n : bbnc
[WF-CONST]

Γ ` t : N Γ , x : N ` x hasImm fi : Ti

Γ ` t.fi : bTic
[WF-FIELD]

Γ ` f : N→ N ′ Γ `q t

Γ ` f(t) : N ′
[WF-FUN]

Well-Formed Types Γ ` T

Γ , ν : N ` P

Γ ` {ν : N | P }
[WT-BASE]

Γ ` T1 Γ , x : T1 ` T2

Γ ` ∃ x : T1 . T2
[WT-EXISTS]

Well-Formed Heaps Σ ` H

Σ ` ·
[WF-HEAP-EMP]

O .
= {proto: ` ′; f: ~F; ...} ~F .

= ◦ f := v◦, �g := v� bΣ(`)c = C

Γ , y : C ` fields(y) = ◦ f : T ′, �g : T ′′ Σ ` v◦ : T◦ Σ ` v� : T�

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
` T◦ ≤ T ′, T� ≤ T ′′, inv(C, y)

Σ ` ` 7→ O [WF-HEAP-INST]

Σ ` H1 Σ ` H2

Σ ` H1, H2
[WF-HEAP-CONS]

Figure C.12. Well-Formedness Rules in RSC
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Subtyping Γ ` T ≤ T ′

Γ ` T ≤ T
[SUB-REFL]

Γ ` T1 ≤ T2 Γ ` T2 ≤ T3

Γ ` T1 ≤ T3
[SUB-TRANS]

C /D :: P
{
F̂, M̂

}
Γ ` C ≤ D

[SUB-EXTENDS]

Γ ` N ≤ N ′

Valid(JΓK⇒ (JPK⇒ JP ′K))

Γ ` {ν : N | P } ≤ {ν : N ′ | P ′ }
[SUB-BASE]

Γ ` e : T Γ ` T1 ≤ [ e/x ] (T2)

Γ ` T1 ≤ ∃ x : T . T2
[SUB-WITNESS]

Γ , x : T ` T1 ≤ T2 x /∈ FV(T2)

Γ ` ∃ x : T . T1 ≤ T2
[SUB-BIND]

Figure C.13. Subtyping Rules in RSC

Runtime Typing Rules Σ ` v : T Σ `H O : T

Σ(`) = T

Σ ` ` : T
[RT-T-LOC]

Σ ` v : bn
[RT-T-CONST]

bΣ(`)c = C fieldDefs(H, `) = ◦ f := v◦, �g := v� Σ ` v◦ : T◦

Σ `H {proto: `; f: ~F; ...} : ∃ y◦ : T◦ . {ν : C | ν.f = y◦ ∧ inv(C, ν) }
[RT-T-OBJ]

Figure C.14. Typing Runtime Configurations for λrsc
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C.2 Proofs

The main results in this section are:

• Program Consistency Lemma (Lemma C.13, page 213)

• Forward Simulation Theorem (Theorem C.14, page 218)

• Subject Reduction Theorem (Theorem C.27, page 220)

• Progress Theorem (Theorem C.28, page 231)

C.2.1 SSA Translation

Definition C.2.1 (Environment Substitution).

[δ1/δ2]
.
= [x1/x2] where (x; x1; x2) = δ1 ./ δ2

Definition C.2.2 (Valid Configuration).

validConf(S, M)
.
=

true if (S.X = ·) =⇒ ∃B s.t. M ≡ B

false otherwise

Assumption C.2.1 (Stack Form). Let stack X = X0, L.E. Evaluation context E is of one of the following

forms:

(a) E0; return e

(b) return E0

Lemma C.1 (Global Environment Substitution). If L, e
H,∆
↪−−−→ e, then L, e

H,∆ ′
↪−−−→ [∆ ′(e)/∆(e)] (e)

Lemma C.2 (Evaluation Context). If

L, M
H,∆
↪−−−→ E〈e〉

then there exist E and e s.t.:

(a) M ≡ E〈e〉

(b) L;E
H,∆
↪−−−→ E

(c) L, e
H,∆
↪−−−→ e

Proof. By induction on the derivation of the input transformation.

Lemma C.3 (Translation under Store). If

·, B ·,∆
↪−−→ e
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then

L, B
H,∆
↪−−−→ θ (e)

where θ = toSubst(∆(B),L,H).

Proof. By induction on the structure of the input translation.

Lemma C.4 (Canonical Forms).

(a) If L, M
H,∆
↪−−−→ n, thenM ≡ n

(b) If L, M
H,∆
↪−−−→ `.m(v), thenM ≡ `.m(v)

(c) If L, M
H,∆
↪−−−→ if [φ ] e then u1 else u2, thenM ≡ if (e) {s1} else {s2}

(d) IfM ↪→ def m(x) = e0, thenM ≡ m(x):B

Lemma C.5 (Translation Closed under Evaluation Context Composition). If

(a) L;E0
H,∆
↪−−−→ E0

(b) L ′; (L, E1); B
H,∆
↪−−−→ e

then L ′; (L, E0〈E1〉); B
H,∆
↪−−−→ E0〈e〉

Lemma C.6 (Heap and Store Weakening). If

L; X; E
H,∆
↪−−−→W

then ∀ H ′,L ′ s.t. H ′ ⊇ H and L ′ ⊇ L, it holds that L ′; X; E
H ′ ,∆
↪−−−→W

Lemma C.7 (Translation Closed under Stack Extension). If

(a) L0; X0; E0
H,∆
↪−−−→ E0

(b) L1; X1; B1
H,∆
↪−−−→ e1

then L1; (X0, L0.E0, X1); B1
H,∆
↪−−−→ E0〈e1〉

Proof. We proceed by induction on the structure of derivation (b):

• S-STACK-E: Fact (b) has the form:

L1; ·; B1
H,∆
↪−−−→ e1 (C.7.1)

By applying Rule S-STACK-C on C.7.1 and (a):

L1; (X0, L0.E0); B1
H,∆
↪−−−→ E0〈e1〉 (C.7.2)

Which proves the wanted result.
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• S-STACK-C: Fact (b) has the form:

L1; (X, L.E); B1
H,∆
↪−−−→ E〈e1.1〉 (C.7.3)

By inverting Rule S-STACK-C on C.7.3:

L1; ·; B1
H,∆
↪−−−→ e1.1 (C.7.4)

L; X; E
H,∆
↪−−−→ E (C.7.5)

By induction hypothesis on (a) and C.7.5 (the lemma can easily be extended to evaluation

contexts):

L; (X0, L0.E0, X); E
H,∆
↪−−−→ E0〈E〉 (C.7.6)

By applying Rule S-EC-STACK-C on C.7.4 and C.7.6:

L1; (X0, L0.E0, X, L.E); B1
H,∆
↪−−−→ E0〈E〈e1.1〉〉 (C.7.7)

Which proves the wanted result.

Lemma C.8 (Translation Closed under Evaluation Context Application). If

(i) L; X; E
H,∆
↪−−−→W

(ii) L, e
H,∆
↪−−−→ e

then L; X; E〈e〉 H,∆
↪−−−→W〈e〉

Proof. By induction on the derivation of (i).

Lemma C.9 (Method Resolution). If

(i) S;H ↪→ H
(ii) H; ` ↪→ `

(iii) resolveMethod(H, `) =M

then:

(a) resolveMethod(H, `) =M

(b) M ↪→M
Lemma C.10 (Value Monotonicity). If
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(i) validConf(S, M)

(ii) S, M
∆
↪−→ S , v

then there exist L ′ andM ′ s.t.:

(a) S;M −→∗ S ′;M ′
(b) S ′, M ′

∆
↪−→ S , v

(c) M ′ ≡

return v if M ≡ B

v otherwise

(d) If S.X = · then S ′.L = S.L

where S ′ ≡ S.K;L ′; ·;S.H

Proof. By induction on the structure of the derivation (ii).

Lemma C.11 (Top-Level Reduction). If

K;L;X;H; M −→ K;L ′;X ′;H ′; M ′

then for a stack X0 it holds that:

K;L; (X0, X);H; M −→ K;L ′; (X0, X ′);H ′; M ′

Proof. By induction on the structure of the input reduction.

Lemma C.12 (Empty Stack Consistency). If

(i) S, M
∆
↪−→ S , e

(ii) S.X = ·

(iii) S ; w −→ S ′; w ′
then there exist S ′ andM ′ s.t.:

(a) S;M −→∗ S ′;M ′,
(b) S ′, M ′

∆
↪−→ S ′, e ′

(c) (A) IfM ≡ E〈`.m(v)〉 then:

(1) S ′.X = S.L.E

(2) S ′.H = S.H

(3) ∃B ′ s.t. M ′ ≡ B ′

(4) S ′ = S
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(B) Otherwise:

(1) S ′.X = ·
(2) S ′.H ⊇ S.H

(3) S ′.L ⊇ S.L

(4) If ∃e s.t. M ≡ e then ∃e ′ s.t. M ′ ≡ e ′

(5) If ∃B s.t. M ≡ B then ∃B ′ s.t. M ′ ≡ B ′

Proof. Fact (i) has the form:

S, M
∆
↪−→ K, H, e (C.12.1)

Because of fact (ii):

S ≡ K;L; ·;H (C.12.2)

By inverting Rule S-EXP-RTCONF on C.12.1:

K
∆
↪−→ K (C.12.3)

S;H ↪→ H (C.12.4)

L; ·; M H,∆
↪−−−→ e (C.12.5)

By inverting S-STACK-E on C.12.10:

L, M
H,∆
↪−−−→ e (C.12.6)

SupposeM is a value. By Rules S-CONST and S-LOC, e is also a value: a contradiction

because of (iii). Hence:

M is not a value (C.12.7)

We proceed by induction on the structure of reduction (iii):

• RC-ECTX

S ; E0〈e0〉 −→ S ′; E0〈e ′0〉 (C.12.8)

By inverting RC-ECTX on C.12.8:

S ; e0 −→ S ′; e ′0 (C.12.9)
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Fact C.12.6 is of the form:

L, M
H,∆
↪−−−→ E0〈e0〉 (C.12.10)

By Lemma C.2 on C.12.10:

M ≡ E0〈e0〉 (C.12.11)

L;E0
H,∆
↪−−−→ E0 (C.12.12)

L, e0
H,∆
↪−−−→ e0 (C.12.13)

By Rule S-STACK-E on C.12.13:

L; ·; e0
H,∆
↪−−−→ e0 (C.12.14)

By Rule S-EXP-RTCONF on C.12.3, C.12.4 and C.12.14:

S, e0
∆
↪−→ S , e0 (C.12.15)

By induction hypothesis using C.12.15, (ii) and C.12.9:

K;L; ·;H; e0 −→ K;L ′;X ′;H ′; M ′0 (C.12.16)

K;L ′;X ′;H ′, M ′0
∆
↪−→ S ′, e ′0 (C.12.17)

We examine cases on the form of e0:

� Case e0 ≡ E1〈`.m(v)〉 :

X ′ = L, E1 (C.12.18)

H ′ = H (C.12.19)

M ′0 = B ′ (C.12.20)

S ′ = S (C.12.21)

For some method body B ′. So C.12.17 becomes:

K;L ′; (L, E1);H, B ′
∆
↪−→ S , e ′0 (C.12.22)
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By inverting rule R-CALL on C.12.16:

resolveMethod(H, `) = m(x):B ′ (C.12.23)

L ′ = x 7→ v, this 7→ ` (C.12.24)

X ′0 = L.E1 (C.12.25)

Let:

S, M ≡ K;L; ·;H, (E0〈E1〉)〈`.m(v)〉

By rule R-CALL using C.12.23, C.12.24 and X ′ = L.E0〈E1〉 on S, M:

K;L; ·;H; (E0〈E1〉)〈`.m(v)〉 −→ K;L ′; (L, E0〈E1〉);H; B ′ (C.12.26)

Which proves (a). By inverting Rule S-EXP-RTCONF on C.12.22:

S ′;H ↪→ H (C.12.27)

L ′; (L, E1); B ′
H,∆
↪−−−→ e ′0 (C.12.28)

From Lemma C.5 on C.12.12 and C.12.28:

L ′; (L, E0〈E1〉); B ′
H,∆
↪−−−→ E0〈e ′0〉 (C.12.29)

By Rule S-EXP-RTCONF using C.12.3, C.12.27 and C.12.29:

K;L ′; (L, E0〈E1〉);H, B ′
∆
↪−→ S , E0〈e ′0〉 (C.12.30)

Which proves (b). By C.12.11 and the current case:

M ≡ (E0〈E1〉)〈`.m(v)〉 (C.12.31)

By C.12.26 and C.12.30:

S ′.X = L, E0〈E1〉 (C.12.32)

M ′ = B ′ (C.12.33)

S ′ = S (C.12.34)

By C.12.32, C.12.19, C.12.33 and C.12.34 we prove (c).
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� All remaining cases:

X ′ ≡ · (C.12.35)

H ′ ⊇ H (C.12.36)

L ′ ⊇ L (C.12.37)

M ′0 ≡ e ′0 (C.12.38)

So C.12.16 and C.12.17 become:

K;L; ·;H; e0 −→ K;L ′; ·;H ′; e ′0 (C.12.39)

K;L ′; ·;H ′, e ′0
∆
↪−→ S ′, e ′0 (C.12.40)

By Rule R-EVALCTX using C.12.39:

K;L; ·;H; E0〈e0〉 −→ K;L ′; ·;H ′; E0〈e ′0〉 (C.12.41)

Which proves (a) and (c). By inverting Rules S-EXP-RTCONF and S-STACK-E on

C.12.40:

L ′, e0
H ′ ,∆
↪−−−→ e0 (C.12.42)

From Lemma C.6 using C.12.12, C.12.36 and C.12.37:

L ′;E0
H ′ ,∆
↪−−−→ E0 (C.12.43)

From Lemma C.8 on C.12.42 and C.12.43:

L ′, E0〈e0〉
H ′ ,∆
↪−−−→ E0〈e0〉 (C.12.44)

By inverting Rule S-EXP-RTCONF on C.12.40:

S ′;H ′ ↪→ H ′ (C.12.45)

By Rule S-EXP-RTCONF using C.12.3, C.12.44 and C.12.45:

K;L ′; ·;H ′, E0〈e ′0〉
∆
↪−→ K, H ′, E0〈e ′0〉 (C.12.46)

Which proves (b).
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• R-CALL:

S ; `.m(v) −→ S ; [ v/x, `/this ] (e0) (C.12.47)

Where by inverting R-CALL on C.12.47:

resolveMethod(H, `) = (def m(x) = e0) (C.12.48)

Fact C.12.5 is of the form:

L; ·; M H,∆
↪−−−→ `.m(v) (C.12.49)

By Lemma C.4(b) on C.12.49:

M ≡ `.m(v) (C.12.50)

So C.12.49 becomes:

L; ·; `.m(v)
H,∆
↪−−−→ `.m(v) (C.12.51)

By inverting Rule S-STACK-E on C.12.51:

L, `.m(v)
H,∆
↪−−−→ `.m(v) (C.12.52)

By inverting Rule SR-CALL on C.12.52:

L, `
H,∆
↪−−−→ ` (C.12.53)

L, v
H,∆
↪−−−→ v (C.12.54)

By inverting SR-VAL on C.12.53 and C.12.54:

H; ` ↪→ ` (C.12.55)

H; v ↪→ v (C.12.56)

By Lemma C.9 on C.12.4, C.12.55 and C.12.48:

resolveMethod(H, `) =M (C.12.57)

M
∆
↪−→ def m(x) = e0 (C.12.58)
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By Lemma C.4(d) on C.12.58:

M ≡ m(x):B (C.12.59)

By Rule R-CALL using C.12.57, C.12.62, C.12.63 and E ≡ 〈〉:

K;L;X;H; `.m(v) −→ K;L ′;X ′;H; B (C.12.60)

Which proves (a). By inverting rule SR-METH on C.12.58:

·, B ·,∆
↪−−→ e (C.12.61)

Let a store L ′ and a stack X ′ s.t.:

L ′ ≡ x 7→ v, this 7→ ` (C.12.62)

X ′ ≡ L.〈〉 (C.12.63)

By Lemma C.3 on C.12.61

L ′, B
H,∆
↪−−−→ θ (e0) (C.12.64)

Where:

θ
.
= toSubst(∆(B),L ′,H)

=
{
[v/x] | x 7→ x ∈ ∆(B), x 7→ v ∈ L ′, H; v ↪→ v

}
= [ v/x, `/this ] (C.12.65)

We pick:

M ′ ≡ B (C.12.66)

By Rule S-STACK-E using C.12.64:

L ′; ·; B H,∆
↪−−−→ θ (e0) (C.12.67)

It holds that:

L; ·; 〈〉 H,∆
↪−−−→ 〈〉 (C.12.68)
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By Rule S-STACK-C on C.12.67 and C.12.68:

L ′; (L.〈〉); B H,∆
↪−−−→ θ (e0) (C.12.69)

By Rule S-EXP-RTCONF using C.12.3, C.12.4 and C.12.69:

K;L ′;X ′;H, B
∆
↪−→ K, H, θ (e0) (C.12.70)

Which proves (b). From C.12.63, C.12.60, C.12.66 and C.12.55 we prove (c).

• R-LIF:

S ; if [ x, x1 x2 ]n then u1〈e0〉 else u2〈e0〉 −→ S ; ui〈[xi/x] e0〉 (C.12.71)

n = true =⇒ i = 1 (C.12.72)

n = false =⇒ i = 2 (C.12.73)

Let:

n = true (C.12.74)

The case for false is symmetrical. Facts C.12.71 and C.12.6 become:

S ; if [ x, x1, x2 ] true then u1 else u2 −→ S ; u1〈[x1/x] (e0)〉 (C.12.75)

L, M
H,∆
↪−−−→ if [ x, x1, x2 ] true then u1〈e0〉 else u2〈e0〉 (C.12.76)

By Lemma C.4(c) on C.12.76:

M ≡ if (ec) {s1} else {s2}; return e0 (C.12.77)

So C.12.76 becomes:

L, if (ec) {s1} else {s2}; return e0
H,∆
↪−−−→ if [ x, x1, x2 ] true then u1〈e0〉 else u2〈e0〉

(C.12.78)

By inverting Rule SR-BODY on C.12.78:

L, if (ec) {s1} else {s2}
H,∆
↪−−−→ if [ x, x1, x2 ] true then u1 else u2 (C.12.79)

∆ ′ = ∆[ e0 7→ ∆bif (ec) {s1} else {s2}c ] (C.12.80)

L, e0
H,∆ ′
↪−−−→ e0 (C.12.81)
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By inverting Rule SR-ITE on C.12.79:

L, ec
H,∆
↪−−−→ true (C.12.82)

L, s1
H,∆
↪−−−→ u1 (C.12.83)

L, s2
H,∆
↪−−−→ u2 (C.12.84)

(x; x1; x2) = ∆bs1c ./ ∆bs2c (C.12.85)

x = ∆bif (ec) {s1} else {s2}c(x) (C.12.86)

By Lemma C.4 on C.12.82 we get:

ec ≡ true (C.12.87)

By Rules R-EVALCTX and R-ITE we get:

S; if (true) {s1} else {s2}; return e0 −→ S; s1; return e0 (C.12.88)

Which proves (a). Let:

∆ ′′ ≡ ∆ ′[ e0 7→ ∆bs1c ] (C.12.89)

By Lemma C.1 on C.12.81 using C.12.89:

L, e0
H,∆ ′′
↪−−−→ [∆ ′′(e0)/∆ ′(e0)] (e0) (C.12.90)

From C.12.80 and C.12.89 it holds that:

∆ ′(e0) = ∆bif (true) {s1} else {s2}c (C.12.91)

∆ ′′(e0) = ∆bs1c (C.12.92)

So:

∆ ′(e0) ./ ∆
′′(e0) = (x; x1; x) (C.12.93)

By Definition C.2.1:

[∆ ′′(e0)/∆ ′(e0)] = [x1/x] (C.12.94)
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So C.12.90 becomes:

L, e0
H,∆ ′′
↪−−−→ [x1/x] (e0) (C.12.95)

By Rule SR-BODY on C.12.83, C.12.92 and C.12.95, using C.12.94:

L, s1; return e0
H,∆
↪−−−→ u1〈[x1/x] (e0)〉 (C.12.96)

Which, using S-EXP-RTCONF and S-STACK-E, prove (b) and (c).

• R-CAST, R-NEW, R-LETIN, R-DOTASGN, R-FIELD: Cases handled in similar fashion as before.

Corollary C.2.1 (Empty Stack Valid Configuration). If

(a) S, M
∆
↪−→ S , e

(b) S.X = ·

(c) S ; w −→ S ′; w ′
then S;M −→∗ S ′;M ′ with validConf(S ′, M ′).

Proof. Examine all cases of result (c) of Lemma C.12.

Lemma C.13 (Consistency). If

(i) S, M
∆
↪−→ S , e

(ii) S ; w −→ S ′; w ′
(iii) validConf(S, M)

then there exist S ′ andM ′ s.t.:

(a) S;M −→∗ S ′;M ′,
(b) S ′, M ′

∆
↪−→ S ′, e ′

(c) validConf(S ′, M ′)

Proof. Let:

S ≡ K;L;X;H (C.13.1)
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By inverting Rule S-EXP-RTCONF on (i):

K
∆
↪−→ K (C.13.2)

S;H ↪→ H (C.13.3)

L; X; M
H,∆
↪−−−→ e (C.13.4)

We proceed by induction on the derivation C.13.4:

• S-STACK-E:

L; ·; M H,∆
↪−−−→ e (C.13.5)

By Lemma C.12 using (i) and (ii) there existM ′ and S ′ s.t.:

S;M −→∗ S ′;M ′ (C.13.6)

S ′, M ′
∆
↪−→ S ′, e ′ (C.13.7)

From Corollary C.2.1 using (i), (ii) and (iii) we get:

validConf(S ′, M ′) (C.13.8)

We prove (a), (b) and (c) by C.13.6, C.13.7 and C.13.8, respectively.

• S-STACK-C:

L; (X0, L0.E0); M
H,∆
↪−−−→ E0〈e0〉 (C.13.9)

Where:

X ≡ X0, L0.E0 (C.13.10)

By (iii) and the definition of a valid configuration, there exists a B0 s.t.:

M ≡ B0 (C.13.11)

By inverting Rule S-STACK-C on C.13.9 using C.13.11:

L; ·; B0
H,∆
↪−−−→ e0 (C.13.12)

L0; X0; E0
H,∆
↪−−−→ E0 (C.13.13)
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By applying Rule S-EXP-RTCONF on C.13.2, C.13.3 and C.13.12:

K;L; ·;H, B0
∆
↪−→ K, H, e0 (C.13.14)

We examine cases on the configuration of S , e0:

� Case S , e0 is a terminal configuration, so there exists v s.t.:

e0 ≡ v (C.13.15)

Fact C.13.14 becomes:

K;L; ·;H, B0
∆
↪−→ K, H, v (C.13.16)

By Lemma C.10 on C.13.16:

K;L; ·;H;B0 −→∗ K;L; ·;H; return v (C.13.17)

K;L; ·;H, return v
∆
↪−→ S , v (C.13.18)

By Lemma C.11 on C.13.17:

K;L;X;H;B0 −→∗ K;L;X;H; return v (C.13.19)

By inverting Rule S-EXP-RTCONF on C.13.18:

L; ·; return v H,∆
↪−−−→ v (C.13.20)

By applying Rule S-STACK-C on C.13.20 and C.13.13:

L; (X0, L0.E0); return v
H,∆
↪−−−→ E0〈v〉 (C.13.21)

By applying Rule S-EXP-RTCONF on C.13.2, C.13.3 and C.13.21:

K;L; (X0, L0.E0);H, return v
∆
↪−→ K, H, E0〈v〉 (C.13.22)

By applying Rule R-RET on on THe left-hand side of C.13.22:

K;L; (X0, L0.E0);H; return v −→ K;L0;X0;H; E0〈v〉 (C.13.23)
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By inverting S-STACK-E and SR-BODY on C.13.20:

L, v
H,∆
↪−−−→ v (C.13.24)

By inverting Rule SR-VAL on C.13.24:

H; v ↪→ v (C.13.25)

By applying Rule SR-VAL on C.13.25 using L0:

L0, v
H,∆
↪−−−→ v (C.13.26)

By applying Lemma C.8 on C.13.13 and C.13.26:

L0; X0; E0〈v〉
H,∆
↪−−−→ E0〈v〉 (C.13.27)

By applying Rule S-EXP-RTCONF on C.13.2, C.13.3 and C.13.27:

K;L0;X0;H, E0〈v〉
∆
↪−→ K, H, E0〈v〉 (C.13.28)

Because of C.13.11:

validConf(K;L0;X0;H, E0〈v〉) (C.13.29)

By induction hypothesis using C.13.28, (ii) and C.13.29:

K;L0;X0;H;E0〈v〉 −→∗ S ′;M ′ (C.13.30)

S ′, M ′
∆
↪−→ S ′, e ′ (C.13.31)

validConf(S ′, M ′) (C.13.32)

We prove (a) by C.13.19, C.13.23 and C.13.33; (b) by C.13.31; and (c) by C.13.32.

� Case S , e0 is a non-terminal configuration, so there exists e ′0 s.t.:

S ; e0 −→ S ′; e ′0 (C.13.33)

By Rule RC-ECTX using C.13.33:

S ; E0〈e0〉 −→ S ′; E0〈e ′0〉 (C.13.34)
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By Lemma C.12 using C.13.14 and C.13.33:

K;L; ·;H;B0 −→∗ S ′;M ′ (C.13.35)

S ′, M ′
∆
↪−→ S ′, e ′0 (C.13.36)

And we examine cases on the form of B0 for the last result of the above lemma:

I Case B0 ≡ E〈`.m(v)〉. It holds that:

S ′, M ′ ≡ K;L1; (L.E);H, B1 (C.13.37)

So C.13.36 becomes:

K;L1; (L.E);H, B1
∆
↪−→ S ′, e ′0 (C.13.38)

By inverting S-EXP-RTCONF on C.13.38:

L1; (L.E); B1
H,∆
↪−−−→ e ′0 (C.13.39)

By Lemma C.7 using C.13.13 and C.13.39:

L1; (X0, L0.E0, L.E); B1
H,∆
↪−−−→ E0〈e ′0〉 (C.13.40)

Let:

X ′ ≡ X0, L0.E0, L.E (C.13.41)

By applying Rule S-EXP-RTCONF on C.13.2, C.13.3 and C.13.40:

K;L1;X
′;H, B1

∆
↪−→ S ′, E0〈e ′0〉 (C.13.42)

By Lemma C.11 on C.13.35:

K;L;X;H;B0 −→∗ K;L1;X ′;H;B1 (C.13.43)

We prove (a), (b) and (c) by C.13.43, C.13.42 and C.13.37, respectively.

I For all remaining cases on B0:

H ′ ⊇ H (C.13.44)

L ′ ⊇ L (C.13.45)
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Because of C.13.11, it holds that:

S ′, M ′ ≡ K;L ′; ·;H ′, B ′ (C.13.46)

By inverting Rule S-EXP-RTCONF on C.13.36:

S ′;H ′ ↪→ H ′ (C.13.47)

By Lemma C.11 on C.13.35:

K;L;X;H;B0 −→∗ K;L ′;X;H ′;B ′ (C.13.48)

Fact C.13.36 becomes:

K;L ′; ·;H ′, B ′ ∆↪−→ S ′, e ′0 (C.13.49)

By inverting S-EXP-RTCONF on C.13.49:

L ′; ·; B ′ H
′ ,∆

↪−−−→ e ′0 (C.13.50)

By applying Lemma C.6 on C.13.13 using C.13.44:

L0; X0; E0
H ′ ,∆
↪−−−→ E0 (C.13.51)

By applying rule S-STACK-C on C.13.13 and C.13.50:

L ′; (X0, L0.E0); B ′
H ′ ,∆
↪−−−→ E0〈e ′0〉 (C.13.52)

By applying rule S-EXP-RTCONF on C.13.2, C.13.47 and C.13.52:

K;L ′;X;H ′, B ′
∆
↪−→ S ′, E0〈e ′0〉 (C.13.53)

We prove (a), (b) and (c) by C.13.48, C.13.53 and C.13.46, respectively.

Theorem C.14 (Forward Simulation). If R
∆
↪−→ R, then:

(a) ifR is terminal, then there exists R ′ s.t. R −→∗ R ′ and R ′
∆
↪−→ R

(b) ifR −→ R ′, then there exists R ′ s.t. R −→∗ R ′ and R ′
∆
↪−→ R ′

Proof. Part (a) is proven by use of by Lemma C.10, and part (b) by Lemma C.13.
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C.2.2 Type Safety

Lemma C.15 (Substitution Lemma). If

(i) Γ ` w0 : T0

(ii) Γ , x : T0 ` T0 ≤ T0
′

(iii) Γ , x : T0
′
` w : T

then Γ ` [w0/x ] (w) : T1, T1 ≤ T

Proof. By induction on the derivation of the statement Γ , x : T0 ` w : T .

Lemma C.16 (Environment Substitution). If

Γ1, x : T , Γ2 ` w : T ′

then

Γ1, x : T , [y/x] (Γ2) ` [y/x] (w) : [y/x] (T ′)

Lemma C.17 (Weakening Subtyping). If Γ ` T ′ ≤ T , then Γ , x : T1 ` T ′ ≤ T .

Lemma C.18 (Weakening Typing). If Γ ` w : T , then for Γ ′ ⊇ Γ , it holds that Γ ′ ` w : T .

Lemma C.19 (Store Type). If

(i) Σ ` H

(ii) H(`) = O

(iii) Σ(`) = T

then Σ `H O : T ′, T ≤ T ′.

Lemma C.20 (Method Body Type – Lemma A.3 [76]). If

(i) Γ ,y : T ` y has (def m(y : T2) : T1 = w)

(ii) Γ ,y : T ,y : T
′
2 ` T

′
2 ≤ T2

then for some type T ′1 it holds that

Γ ,y : T ,y : T
′
2 ` w : T ′1, T ′1 ≤ T1

Lemma C.21 (Cast). If

(i) Σ ` H

(ii) Γ ;Σ ` ` : T ′, T ′ . T

then Γ ;Σ ` H(`) : T1, T1 ≤ T



220

Lemma C.22 (Evaluation Context Typing). If Γ ` E〈w〉 : T , then for some type T ′ it holds that

Γ ` w : T ′.

Proof. By induction on the structure of the evaluation context E .

Lemma C.23 (Evaluation Context Step Typing). If

Γ ;Σ ` E〈w〉 : T ,w : T0

and for some expression w ′ and heap typing Σ ′ ⊇ Σ it holds that

Γ ;Σ ′ ` w ′ : T ′0, T ′0 . T0

then Γ ;Σ ′ ` E〈w ′〉 : T ′, T ′ . T

Proof. By induction on the structure of the evaluation context E .

Lemma C.24 (Selfification). If Γ , x : T ′ ` T ′ ≤ T then Γ , x : T ′ ` T ′ ≤ sngl (T , x).

Lemma C.25 (Existential Weakening). If Γ ` T1 ≤ T ′1 then Γ ` ∃ x : T1 . T ≤ ∃ x : T ′1 . T .

Lemma C.26 (Boolean Facts). If

(i) Γ ` x : T , T ≤ {ν : Bool | ν = true }

(ii) Γ , x ` w : T ′, T ′ ≤ T

then Γ ` w : T ′, T ′ ≤ T

Theorem C.27 (Subject Reduction). If

(i) Γ ; Σ ` w : T

(ii) S ; w −→ S ′; w ′
(iii) Σ ` S .H

then for some T ′ and Σ ′ ⊇ Σ:

(a) Γ ; Σ ′ ` w ′ : T ′

(b) Γ ` T ′ . T

(c) Σ ′ ` H ′.

Proof. We proceed by induction on the structure of fact (ii):

S ; w −→ S ′; w ′
We have the following cases:
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• RC-ECTX: Fact (ii) has the form:

S ; E〈w0〉 −→ S ′; E〈w ′0〉 (C.27.1)

From (i):

Γ ; Σ ` E〈w0〉 : T (C.27.2)

By Lemma C.22 on C.27.2:

Γ ; Σ ` w0 : T0 (C.27.3)

By inverting Rule RC-ECTX on C.27.1:

S ; w0 −→ S ′; w ′0 (C.27.4)

By induction hypothesis, using C.27.3, C.27.4 and (iii) we get:

Γ ; Σ ′ ` w ′0 : T ′0 (C.27.5)

Γ ;Σ ′ ` T ′0 . T0 (C.27.6)

Σ ′ ` S ′.H (C.27.7)

Σ ′ ⊇ Σ (C.27.8)

For some type T ′0 and heap S ′.H.

From C.27.7 we prove (c).

By Lemma C.23 using C.27.2, C.27.3, C.27.5, C.27.6 and C.27.8:

Γ ;Σ ′ ` E〈w ′0〉 : T ′, T ′ . T (C.27.9)

From C.27.9 we prove (a) and (b).

• R-FIELD: Fact (ii) has the form:

S ; `.h −→ S ; v (C.27.10)

By Fact (i) for w ≡ `.hwe have:

Γ ; Σ ` `.h : T (C.27.11)
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By inverting R-FIELD on C.27.10:

S .H(`) ≡ O = {proto: ` ′; f: ~F; ...} (C.27.12)

f:=v ∈ ~F (C.27.13)

By inverting WF-HEAP-INST on (iii) for location `:

~F .
= ◦ f := v◦, �g := v� (C.27.14)

bΣ(`)c = C (C.27.15)

Γ , y : C ` fields(y) = ◦ f : T2, �g : T3 (C.27.16)

Σ ` v◦ : T◦ (C.27.17)

Σ ` v� : T� (C.27.18)

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
` T◦ ≤ T2, T� ≤ T3, inv(C, y) (C.27.19)

By applying RT-T-OBJ on C.27.15, C.27.14 and C.27.17:

Γ ; Σ ` O : T ′1 (C.27.20)

Where:

T ′1 ≡ ∃ y◦ : T◦ . {ν : C | ν.f = y◦ ∧ inv(C, ν) } (C.27.21)

By Lemma C.19 using (iii), C.27.12 and C.27.15:

Γ ` T1 ≤ T ′1 (C.27.22)

Where:

Σ(`) = T1 (C.27.23)

We examine cases on the typing statement C.27.11:

� T-FLD-I: Field h is an immutable field fi, so fact C.27.11 becomes:

Γ ; Σ ` `.fi : ∃ y : T1 . sngl (T2.i, y.fi) (C.27.24)

By inverting T-FLD-I on C.27.24:

Σ ` ` : T1 (C.27.25)

Γ ,y : T1;Σ ` y hasImm fi : T2.i (C.27.26)
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For a fresh y.

Keeping only the relevant part of C.27.17 and C.27.19:

Γ ; Σ ` vi : Ti (C.27.27)

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
;Σ ` Ti ≤ T2.i (C.27.28)

By C.27.27 we prove (a).

By Lemma C.24 using C.27.28 and picking yi as the selfification variable:

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
;Σ ` Ti ≤ sngl (T2.i, yi) (C.27.29)

For the above environment it holds that:

JΓ , y : C,y◦ : sngl
(
T◦, y.f

)
;ΣK =⇒ yi = y.fi (C.27.30)

By SUB-REFL and By Lemma C.24 using C.27.30:

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
;Σ ` sngl (T2.i, yi) ≤ sngl (sngl (T2.i, yi) , y.fi) (C.27.31)

By simplifying C.27.31 using SUB-TRANS on C.27.29 and C.27.31 we get:

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
;Σ ` Ti ≤ sngl (T2.i, y.fi) (C.27.32)

By C.27.32 it also holds that:

Γ ,y : ∃ y◦ : sngl
(
T◦, y.f

)
.C ` Ti ≤ sngl (T2.i, y.fi) (C.27.33)

By C.27.33 it also holds that:

Γ ,y : ∃ y◦ : T◦ . sngl (C, y◦) ` Ti ≤ sngl (T2.i, y.fi) (C.27.34)

By expanding C.27.34 and C.27.19:

Γ ,y : ∃ y◦ : T◦ . {ν : C | ν.f = y◦ ∧ inv(C, ν) } ` Ti ≤ sngl (T2.i, y.fi) (C.27.35)

By using C.27.21 on C.27.35:

Γ ,y : T ′1 ` Ti ≤ sngl (T2.i, y.fi) (C.27.36)
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By Lemma C.17 using C.27.36 and C.27.22:

Γ ,y : T1 ` Ti ≤ sngl (T2.i, y.fi) (C.27.37)

From Rule SUB-WITNESS using C.27.37:

Γ ` Ti ≤ ∃ y : T1 . sngl (T2.i, y.fi) (C.27.38)

Using C.27.24, C.27.17 and C.27.38 we prove (b).

Heap S .H does not evolve so (c) holds trivially.

� T-FLD-M: Field h is a mutable field gi, so fact (i) becomes:

Γ ; Σ ` `.gi : ∃ y : T1 . T5.i (C.27.39)

By inverting T-FLD-M on C.27.39:

Γ ` ` : T1 (C.27.40)

Γ , ` : T1 ` y hasMut gi : T3i (C.27.41)

For a fresh y.

Keeping only the relevant parts of C.27.17 and C.27.19:

Γ ` vi : Ti (C.27.42)

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
` Ti ≤ T3i (C.27.43)

By C.27.42 we prove (a).

By similar reasoning as before and using C.27.43 we get:

Γ ,y : T ′1 ` Ti ≤ T3i (C.27.44)

By Lemma C.17 using C.27.44 and C.27.22:

Γ ,y : T1 ` Ti ≤ T3i (C.27.45)

By Rule SUB-WITNESS using C.27.45:

Γ ` Ti ≤ ∃ y : T1 . T3i (C.27.46)
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Using C.27.39, C.27.17 and C.27.46 we prove (b).

Heap S .H does not evolve so (c) holds trivially.

• R-CALL: Fact (ii) has the form:

S ; `.m(v) −→ S ; [ v/y, `/this ]
(
w ′
)

(C.27.47)

By (i) for w ≡ `.m(v) we have:

Γ ; Σ ` `.m(v) : ∃ y : T . ∃ y : T . T1 (C.27.48)

By inverting T-MTH-CALL on C.27.48:

Γ ;Σ ` ` : T , v : T (C.27.49)

Γ ,y : T ,y : T ` y has (def m(y : T2) {P} : T1 = w ′) (C.27.50)

Γ ,y : T ,y : T ` T ≤ T2 (C.27.51)

Γ ,y : T ,y : T ` P (C.27.52)

With fresh y and y.

By inverting R-CALL on C.27.47:

resolveMethod(H, `) = (def m(y : T2) {P} : T1 = w) (C.27.53)

eval(P) = true (C.27.54)

Note that this has already been substituted by ` in T1 and P.

By Lemma C.20 using C.27.50 and C.27.51:

Γ ,y : T ,y : T ` w ′ : T ′1, T ′1 ≤ T1 (C.27.55)

By C.27.55 we prove (a).

By Rule SUB-WITNESS using C.27.55:

Γ ` T ′1 ≤ ∃ y : T . ∃ y : T . T1 (C.27.56)

By Lemma C.15 using C.27.49, C.27.51 and C.27.55:

Γ ` [ v/y, `/this ]
(
w ′
)
: T3, T3 ≤ T ′1 (C.27.57)
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By Rule SUB-TRANS on C.27.55 and C.27.57:

Γ ` T3 ≤ ∃ y : T . ∃ y : T . T1 (C.27.58)

By C.27.58 we prove (b).

Heap S .H does not evolve so (c) holds trivially.

• R-CAST: Fact (ii) has the form:

S ; ` as T −→ S ; `
By (i) for w ≡ ` as T we have:

Γ ; Σ ` ` as T : T (C.27.59)

By inverting T-CAST on C.27.59:

Γ ; Σ ` ` : T1 (C.27.60)

Γ ` T (C.27.61)

Γ ` T1 . T (C.27.62)

By C.27.60 and C.27.62 we get (a) and (b), respectively.

S .H does not evolve, which proves (c), given (ii).

• R-NEW: Fact (iii) has the form:

S ; new C(v) −→ S ′; ` (C.27.63)

By inverting R-NEW on C.27.63:

H(`0) = {name:C; proto: ` ′0; m:M} (C.27.64)

fields(K, C) = f : T (C.27.65)

O = {proto: `0; f: f:= v; ...} (C.27.66)

H ′ = H[ ` 7→ O ] (C.27.67)

By (i) for w ≡ new C(v) we have:

Γ ; Σ ` new C(v) : T2.0 (C.27.68)
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Where:

T2.0 ≡ ∃ y◦ : T◦ . {ν : C | ν.f = y◦ ∧ inv(C, ν) } (C.27.69)

By inverting T-NEW on C.27.68:

Γ ` v : (T◦, T�) (C.27.70)

` class(C) (C.27.71)

Γ , y : C ` fields(y) = ◦ f : T2, �g : T3 (C.27.72)

Γ , y : C, y : T ,y.f = y◦ ` T◦ ≤ T2, T� ≤ T3, inv(C, y) (C.27.73)

For fresh y and y.

We choose a heap typing Σ ′, such that:

Σ ′ = Σ[ ` 7→ T2.0 ]

Hence:

Σ ′(`) = T2.0 (C.27.74)

By applying Rule RT-T-LOC using C.27.74:

Γ ; Σ ′ ` ` : T2.0

Which proves (a).

By applying Rule RT-T-OBJ using C.27.74, C.27.66 and C.27.70:

S `Σ O : T2.0 (C.27.75)

By ≤-ID we trivially get:

Γ ` T2.0 ≤ T2.0 (C.27.76)

Which proves (b).

By applying Rule WF-HEAP-INST on C.27.66, C.27.64, C.27.74, C.27.72, C.27.70 and C.27.73:

Σ ′ ` S ′.H
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Which proves (c).

• R-LETIN Similar approach to case R-CALL.

• R-DOTASGN: Fact (ii) has the form:

S ; `.gi ← v ′ −→ S ′; v ′ (C.27.77)

By inverting Rule R-DOTASGN on C.27.77:

H ′ = S .H[ ` 7→ S .H(`)[gi 7→ v ′ ] ] (C.27.78)

From (i) for w ≡ `.gi ← v ′:

Γ ; Σ ` `.gi ← v ′ : T ′ (C.27.79)

By inverting Rule T-DOTASGN on C.27.79:

Γ ;Σ ` ` : T`, v ′ : T ′ (C.27.80)

Γ , y : bT`c;Σ ` y hasMut gi : T3i, T ′ ≤ T3i (C.27.81)

For a fresh y.

By C.27.80 and SUB-REFL we prove (a) and (b).

By inverting RT-T-LOC on C.27.80:

Σ(`) = T` (C.27.82)

By inverting WF-HEAP-INST on (iii) for location ` and using C.27.82:

O .
= {proto: ` ′; f: ~F; ...} (C.27.83)

~F .
= ◦ f := v◦, �g := v� (C.27.84)

bΣ(`)c = C (C.27.85)

Γ , y : C ` fields(y) = ◦ f : T2, �g : T3 (C.27.86)

Σ ` v◦ : T◦ (C.27.87)

Σ ` v� : T� (C.27.88)

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
` T◦ ≤ T2, T� ≤ T3, inv(C, y) (C.27.89)
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Fact C.27.78 becomes:

H ′ = S .H[ ` 7→ O ′ ] (C.27.90)

O ′ = {proto: ` ′; f: ~F ′; ...} (C.27.91)

~F ′ = ◦ f := v◦, �g := v ′� (C.27.92)

v ′� = v�,..i−1, v ′�,i, v�,i+1.. (C.27.93)

Also by C.27.80 and C.27.88 it holds that:

Σ ` v ′� : (T�,..i−1, T ′, T�,i+1..) (C.27.94)

By Lemma C.17 on C.27.81:

Γ , y : C,y◦ : sngl
(
T◦, y.f

)
;Σ ` T ′ ≤ T3i (C.27.95)

By applying Rule WF-HEAP-INST on C.27.91, C.27.92, C.27.85, C.27.86, C.27.87, C.27.94,

C.27.89 and C.27.95:

Σ ` H ′

Which proves (c).

• R-LIF: Assume n ≡ true (the case for false is symmetric).

Fact (ii) has the form:

S ; if [ x, x1, x2 ] true then u1〈w〉 else u2〈w〉 −→ S ; u1〈[x1/x] (w)〉 (C.27.96)

By Rule T-CTX fact (i) has the form:

Γ ` if [ x, x1, x2 ] true then u1〈w〉 else u2〈w〉 : ∃ x : T1 . T2 (C.27.97)

So type T has the form:

T ≡ ∃ x : T1 . T2 (C.27.98)

By inverting Rule T-CTX on (i):

Γ ` if [ x, x1, x2 ] true then u1〈w〉 else u2〈w〉 . x : T1 (C.27.99)

Γ , x : T1 ` w : T2 (C.27.100)
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By inverting Ryle T-LETIF on C.27.99:

Γ ` true : T1, T1 ≤ Bool (C.27.101)

Γ , y : T1, y ` u1 . Γ1 (C.27.102)

Γ , y : T1, ¬y ` u2 . Γ2 (C.27.103)

Γ , Γ1 ` Γ1(x1) ≤ T1 (C.27.104)

Γ , Γ2 ` Γ2(x2) ≤ T1 (C.27.105)

Γ ` T1 (C.27.106)

By Rule T-CST on true:

Γ ` true : {ν : Bool | ν = true } (C.27.107)

By Lemma C.26 on C.27.101 and C.27.102:

Γ ` u1 . Γ1 (C.27.108)

Environment Γ1 has the form:

Γ1 ≡ x1 : Γ1(x1), x ′1 : Γ1(x ′1) (C.27.109)

For some x ′1.

By Lemma C.16 using C.27.100:

Γ , x1 : T1 ` [x1/x] (w) : [ x1/x ] (T2) (C.27.110)

By Lemma C.18 using C.27.110:

Γ , x1 : T1, x ′1 : Γ1(x
′
1) ` [x1/x] (w) : [ x1/x ] (T2) (C.27.111)

By applying rule T-CTX on C.27.108 and C.27.111:

Γ ` u〈[x1/x] (w)〉 : ∃ x1 : Γ1(x1) . ∃ x ′1 : Γ1(x ′1) . [ x1/x ] (T2) (C.27.112)

Which proves (a).

Fact C.27.112 can be rewritten as:

Γ ` u〈[x1/x] (w)〉 : ∃ x : Γ1(x) . ∃ x ′1 : Γ1(x ′1) . T2 (C.27.113)
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Applying Rule SUB-BIND using C.27.113:

Γ ` ∃ x : Γ1(x) . ∃ x ′1 : Γ1(x ′1) . T2 ≤ ∃ x : Γ1(x) . T2 (C.27.114)

By Lemma C.25 on the right-hand side of C.27.114:

Γ ` ∃ x : Γ1(x) . T2 ≤ ∃ x : T1 . T2 (C.27.115)

By C.27.113, C.27.114 and C.27.115, and using Rule SUB-TRANS we prove (b).

Heap S .H does not evolve so (c) holds trivially.

Theorem C.28 (Progress). If

(i) Γ ; Σ ` e : T ,

(ii) Σ ` H

then one of the following holds:

(a) e is a value,

(b) there exist e ′,H ′ and Σ ′ ⊇ Σ s.t. Σ ′ ` H ′ andH; e −→ H ′; e ′.
Proof. We proceed by induction on the structure of derivation (i):

• T-FLD-I:

Γ ; Σ ` e0.fi : ∃ y : T0 . sngl (T , y.fi) (C.28.1)

By inverting T-FLD-I on C.28.1:

Γ ; Σ ` e0 : T0 (C.28.2)

Γ ,y : T0;Σ ` y hasImm fi : T (C.28.3)

By i.h. using C.28.2 and (ii) there are two possible cases on e0:

� e0 ≡ `0 Statement C.28.2 becomes:

Γ ; Σ ` `0 : T0 (C.28.4)

By (ii) for location `0:

Σ ` H[ `0 7→ O ] (C.28.5)
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Where:

O ≡ {proto: ` ′0; f: ~F; ...} (C.28.6)

By Lemma C.19 using (ii) and C.28.5:

Σ(`0) = T0 (C.28.7)

Γ ;Σ ` O : T ′0, T ′0 ≤ T0 (C.28.8)

By Lemma A.6 in [76] using C.28.3 and C.28.8:

Γ ,y : T ′0;Σ ` y hasImm fi : T (C.28.9)

By applying Rule R-FIELD using C.28.5, C.28.6 and C.28.9:

H; `0.fi −→ H; vi

� ∃e ′0 s.t. H; e0 −→ H ′; e ′0 By applying Rule RC-ECTX:

H; e0.fi −→ H ′; e ′0.fi

• T-FLD-M: Similar to previous case.

• T-MTH-CALL, T-NEW: Similar to the respective case of CFJ [76].

• T-CAST:

Γ ; Σ ` e0 as T : T (C.28.10)

By inverting T-CAST on C.28.10:

Γ ` e0 : T ′0 (C.28.11)

Γ ;Σ ` T (C.28.12)

Γ ;Σ ` T ′0 . T (C.28.13)

By i.h. using C.28.11 and (ii) there are two possible cases on e0:

� e0 ≡ `0 Statement C.28.11 becomes:

Γ ; Σ ` `0 : T ′0 (C.28.14)
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By Lemma C.21 using (ii) and C.28.13:

Γ ;Σ ` H(`0) : T
′′
0 , T ′′0 ≤ T (C.28.15)

From R-CAST using C.28.15:

H; `0 as T −→ H; `0

� ∃e ′0 s.t. H; e0 −→ H ′; e ′0 By rule RC-ECTX:

H; e0 as T −→ H ′; e ′0 as T

• T-LET, T-DOTASGN, T-IF These cases are handled in a similar manner.
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