
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Formal Specification and Verification of Secure Information Flow for Hardware Platforms

Permalink
https://escholarship.org/uc/item/48v179tb

Author
Cheang, Kevin

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48v179tb
https://escholarship.org
http://www.cdlib.org/

Formal Specification and Verification of
Secure Information Flow for Hardware Platforms

by

Kevin Cheang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Professor Krste Asanović

Associate Professor Alvin Cheung
Professor Emeritus David L. Dill

Summer 2023

Formal Specification and Verification of
Secure Information Flow for Hardware Platforms

Copyright 2023
by

Kevin Cheang

1

Abstract

Formal Specification and Verification of
Secure Information Flow for Hardware Platforms

by

Kevin Cheang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Hardware platforms, such as microprocessors and Trusted Execution Environments (TEEs),
aim to provide strong memory isolation properties. However, in recent years, this has been
shown not to be the case through hardware attacks such as the class of transient execution
attacks. These attacks affect programs executing on widely-used microprocessor designs in
our present-day devices. Although mitigations have been proposed, many have not been
adopted and lack formal guarantees. As a result, security-critical applications have been
conservative in using hardware platforms without some form of cryptographic approach for
secure computation, despite the additional computational overhead. One approach to ensure
safety for this class of attacks is to use formal methods to prove information flow properties.
Yet, there is limited work in verifying attacks on hardware platforms that are heterogeneous
in nature, namely those that contain hardware and software in the trusted computing base.

This thesis defines a notion of secure information flow for hardware platforms and pro-
poses methods to formally verify non-interference-based properties efficiently using abstrac-
tions and composition. To accomplish the former, we formalize the trace property-dependent
observational determinism property for capturing a new class of non-interference properties.
This property is motivated by verifying transient execution attacks and the need for secure
speculation. To enable efficient verification on hardware platforms, we introduce an efficient
proof system, SymboTaint, and the formalism of information flow state machines to reason
about secure information flow compositionally. Finally, we explore a complementary method
to enforce secure information flow for general programs by relaxing the programming model
of a family of TEE designs and by formally verifying them. This direction builds on top
of existing abstractions of TEEs to provide memory isolation guarantees with an efficient
memory-sharing scheme on TEEs through combined design and verification. Together, this
provides a methodology for enforcing memory isolation for heterogeneous systems, where
joint modeling and analysis of hardware and software have become imperative for security.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 The Rise of Insecure Hardware Platforms . 1
1.2 Secure Information Flow . 3
1.3 Challenges . 6
1.4 Thesis Statement . 9
1.5 Acknowledgements . 10

2 Hardware Platforms 11
2.1 Speculative Microprocessors . 11
2.2 Trusted Execution Environments . 15
2.3 Security for Hardware Platforms . 18

3 Secure Information Flow with Formal Methods 20
3.1 Secure Information Flow . 22
3.2 Formal Methods for Heterogeneous Systems 24
3.3 Formal Modeling, Specification, and Verification with Uclid5 25

4 Trace Property-Dependent Observational Determinism
33

4.1 Introduction . 33
4.2 Overview . 37
4.3 Specification using Trace Property-Dependent Observational Determinism . . 42
4.4 Formal Modeling of Speculation . 47
4.5 Formulating Secure Speculation . 52
4.6 Verification Approach . 60
4.7 Case Studies . 62
4.8 Related Work . 65

iii

4.9 Summary . 66

5 Compositional Proofs of Information Flow Properties for Hardware-
Software Platforms 68
5.1 Introduction . 68
5.2 Motivation . 70
5.3 Security Model . 73
5.4 The SymboTaint Proof System . 76
5.5 IFSMs: Operational Encoding of SymboTaint 81
5.6 Verifying Speculative Platforms with IFSMs 84
5.7 Case Studies . 86
5.8 Discussion . 89
5.9 Related Work . 90
5.10 Summary . 90

6 Designing Secure and Efficient Trusted Execution Environments 92
6.1 Overview . 92
6.2 Motivation and Background . 94
6.3 Design Decisions: Memory Sharing in Enclave Platforms 96
6.4 Formal Model of An Enclave Platform with Memory Sharing 100
6.5 Formal Guarantee of Secure Remote Execution 109
6.6 Implementation in RISC-V Keystone . 114
6.7 Evaluation . 115
6.8 Discussion . 119
6.9 Summary . 120

7 Conclusion 121
7.1 Summary of Contributions . 121
7.2 Future Work . 122

Bibliography 125

iv

List of Figures

1.1 User executing their application on a platform with untrusted applications and
the operating system. 1

1.2 Application protected by the TEE and formal guarantees of secure information
flow. 5

2.1 Example speculative microprocessor design [104] with a front-end component, the
memory hierarchy, and an out-of-order engine. Arrows represent data flow from
one state to another. 12

2.2 Stages of the Prime+Probe attack assuming a 4-way set associative cache. In the
first stage, the attacker primes the cache by making memory accesses from their
address space whose addresses map to the cache lines of a set. This invalidates
all entries in a cache set. In the second stage, the victim executes, resulting in
an evicted cache line. Finally, the attacker times the same memory accesses to
determine information about which address the victim accessed. 13

2.3 Stages of a speculative attack. 14
2.4 Tradition hardware platforms vs. TEE-based hardware platform isolation bound-

aries represented by the vertical bars. 16
2.5 The number of operations in the traditional hardware platform is comparatively

more than that of the TEE-based hardware platforms. 17

3.1 Formal verification allows one to prove that a systemM composed with adversary
A either satisfies ϕ or not. 20

3.2 Illustration of the assumptions and proof obligations for the non-interference
property depicted by the execution of two traces of the system. The initial as-
sumption of low equivalence is shown in blue (≈L) and the proof obligation is
shown in green (≈L). 23

3.3 Illustration of the assumptions and proof obligations for observational determin-
ism. Low equivalence is checked at each intermediate state (≈L) and assumed in
the initial state (≈L). 24

3.4 Victim program in C. 26
3.5 Platform model in Uclid5. 27
3.6 Continued platform model in Uclid5 defining the victim program. 28
3.7 Continued platform model in Uclid5 defining the adversary observation. 28

v

3.8 Main proof module in Uclid5. 29
3.9 Observational determinism using hyperinvariant and hyperaxiom in Uclid5. 30
3.10 Observational determinism using hyperinvariant and hyperaxiom in Uclid5. 31
3.11 UCLID5 workflow for verifying the heterogeneous model from §3.3.1. 32

4.1 Four stages of a speculative execution attack. The execution of untrusted code
is shown in red, while the execution of trusted code is in blue. We show the
attacker-triggered misspeculation in the trusted code in the violet dotted box. . 37

4.2 Spectre v1 vulnerability. 38
4.3 Cache state evolution in Spectre variant 1. The rectangular boxes show the

addresses that are cached. Untrusted accesses are red while accesses by trusted
code are blue. For simplicity, we show the attack on a direct-mapped cache. . . 40

4.4 Illustrative examples of fixes to vulnerable snippet in Figure 4.2. 41
4.5 Conditional variant. 41
4.6 Illustrating observational determinism in the context of the low attacker and

high (trusted) program: low instructions are labeled L, while high instructions
are labeled H1 and H2, proof obligations are shown in green and assumptions are
shown in blue. 44

4.7 Illustrating the strawman observational determinism property for Figure 4.2.
Numbers within each state refer to program counter values (shown as line num-
bers). Labels above each state indicates the data memory address accessed (if
any). States shown in dotted circles are specuative states. 44

4.8 Illustrating trace property-dependent observational determinism. As in Figure 4.6
low instructions are labelled L, while high instructions are labelled H1 and H2,
proof obligations are shown in green and assumptions are shown in blue. 45

4.9 The Assembly Intermediate Representation (AIR). ♢u and ♢b are typical unary
and binary operators respectively. 49

4.10 Semantics of expression evaluation . 49
4.11 Operational Semantics for Statements in AIR. 50
4.12 Illustrating the secure speculation property for the code in Figure 4.5. The num-

bers within each state refer to program counter values (shown as line numbers
from the figure). A label above each state indicates the data memory address
accessed by that instruction (if any). States shown in dotted circles are specua-
tive states. Note the non-speculative traces “stutter” when the other traces are
speculating. The values v1 and v2 refer to the contents of memory address a1 in
their respective traces. Note that traces π1 and π2 do not speculate while traces
π3 and π4 do. 57

4.13 Example 1: Original Spectre BCB (bounds check bypass) example. 62
4.14 Example 5: BCB with a for loop. 63
4.15 Example 7: BCB with unsafe static variable check. 63
4.16 Example 8: BCB with the ternary conditional operator. 63
4.17 Example 10: BCB using an additional attacker-controlled input. 64

vi

4.18 Example 11: BCB using the memory comparison function. 64
4.19 Example 15: BCB using attacker-controlled pointer. 64
4.20 Example NI: BCB with nested if statements. 64

5.1 Victim program executing in the trusted user’s domain with input x which is
adversary controlled. This function is vulnerable to Spectre V1 (BCB), Spectre
V4 (store-bypass), their combination and leakage from segment B. 71

5.2 Instruction level translation of lines 4-6 of the program in Figure 5.1. 71
5.3 Different levels of modeling detail. 72
5.4 A simple platform model. 74
5.5 Information flow in the Lazy-FP vulnerability. 75
5.6 Modified platform model from Figure 5.4 with a partitioned cache. 78
5.7 Proof rules for joint symbolic-taint judgments. 80
5.8 CPU, cache, and branch prediction components of the SAP model. 84
5.10 Branch prediction in the SAP model . 85
5.9 Continued cache model from Figure 5.6 with the load operation and guard. . . . 85
5.11 Program composed with the SAP model. 86

6.1 Memory sharing models with varying flexibility. Blue (and white) boxes indicate
shareable (and non-shareable) physical memory regions, and circles indicate en-
claves. An edge from an enclave to physical memory is an access relation stating
that an enclave can access the memory it points to. The figure only depicts cases
where the number of memory regions m is the same as that of enclaves n, but m
can be greater than n in practice. 97

6.2 Difference between capped- and single-sharing models in use cases. libX, libY,
and objZ are the large libraries or objects that enclaves want to share. Enclave
10 and 11 relies on libX and libY, while Enclave 12 relies on libY and objZ. . 98

6.3 A user provisions their (protected) enclave e in the remote enclave platform iso-
lated from untrusted software. Green/red boxes indicate trusted/untrusted com-
ponents. 101

6.4 Illustrating the execution of two traces of the platform in the secure measure-
ment, integrity and confidentiality proofs. Proof obligations for each property
are checked as indicated by ≈L and equal initial condition indicated as ≈L. opi

indicates enclave execution of an operation from O at step i and A indicates an
adversary execution. 106

6.5 The physical memory layout of the three scenarios: using (a) Snapshot-only, (b)
Clone-only, and (c) Clone-after-Snapshot. Each column represents a region of
memory allocated to enclave e0, enclave e1, or the operating system (OS). Each
region either respects the permissions based on the regular platform semantics or
is snapshot memory which is writable only using the copy-on-write scheme. . . . 107

vii

6.6 Parent-child relationship and root snapshot-child relationship of four enclaves in
Cerberus. Enclave e1 is a snapshot and the parent enclave of e2, which is the
parent of e3, which is the parent of e4. Despite the nested parent relationship,
the root snapshot of e2, e3, and e4 are e1. 110

6.7 Model Statistics and Verif. Times . 116
6.8 C code to measure fork latency . 117
6.9 The latency of fork with respect to the size of the allocated memory. 117
6.10 Computation Overhead on RV8. native: native execution of the original RV8,

fork: native execution of the modified RV8 with fork, keystone: enclave execu-
tion of the original RV8, and our work: enclave execution of the modified RV8
with Cerberus. 118

viii

List of Tables

4.1 Runtime (sec.) of each example using 5 steps for bounded model checking to
find vulnerabilities and 1 step induction to prove correctness after inserting a
memory fence. These experiments were run on a machine with an 2.20GHz
Intel(R) Core(TM) i7-2670QM CPU with 5737MiB of RAM. 65

5.1 The execution column indicates whether the adversary is allowed to execute asyn-
chronously or only before and after the victim program (at entry points). VO, VT

and F represent the observable states, tamperable states and the flow transmit
pairs (§5.3.2) of the adversary. 87

5.2 Time (in seconds) to verify OD using the 2-safety encoding with BMC, the trace
property encoding of OD (TOD) with BMC and TOD with interpolants. Exam-
ples are checked using Uclid5, and marked with TLE (time limit exceeded) if it
takes longer than 15 minutes. 88

6.1 TAPC State Variables V . 104
6.2 Record of TAPC enclave metadata EM . Additional state variables were added to

the TAP model support Snapshot & Clone, as indicated by the † superscript. . 105

ix

Acknowledgments

Throughout the years, I have had the privilege of crossing paths with numerous researchers,
mentors, and individuals, each of whom added unforgettable moments to my life. Whether it
was chatting with colleagues both inside and outside the office, pulling countless all-nighters
alongside my co-authors and classmates, having discussions with researchers at conferences
and workshops, or simply spending time with friends who were always there for me, each
one of them contributed to my growth and filled my life with an overwhelming amount of
gratitude and meaning. It is only proper that I express my gratitude to everyone who played
such a significant role, that ultimately led to this monumental moment in my life.

First and foremost, I thank my advisor Sanjit A. Seshia, for his life-changing guidance
and support, for which I am eternally grateful. Among the myriad of things that he has
done for me, there are a few that stand out that I would like to acknowledge here. When
I first entered the lab, I was a rather reserved individual. Sanjit immediately took note of
this with empathy, and over the years, he consistently encouraged me to engage with fellow
researchers, taught me how to promote my research and emphasized its importance, and gave
me opportunities that propelled my growth as a researcher and on a personal level. I feel
very fortunate to have worked with Sanjit and give him my deepest gratitude. I also thank
the other members of my qualifying exam and thesis committee for providing invaluable
guidance along the way: Krste Asanović, Alvin Cheung, and David Dill.

I thank my co-authors, all of whom I had a great deal of pleasure working with. First, I
thank Pramod Subramanyan. From his contributions to the formalism of TPOD and devel-
opment of Uclid5, to all the graduate student advice he gave me when I first started, his
influence is what made much of my research possible. I thank Cameron Rasmussen, Pranav
Gaddamadugu, Dayeol Lee, and Adwait Godbole for all the intellectually stimulating conver-
sations and fruitful discussions that led to a lot of writing, paper submissions, conferences,
and never-ending laughter. I also thank the folks in the Uclid5 team for all Uclid5 re-
lated collaborations: Federico Rocha, Elizabeth Polgreen, Yatin A. Manerkar, and Shaokai
Lin. I also need to thank many of my lab mates (who were not already mentioned above),
Ben Caulfield, Tomasso Dreossi, Daniel Fremont, Shubham Goel, Markus Rabe, Sumukh
Shivakumar, Edward Kim, Shiv Kushwah, Hazem Torfah, Marcell Vazquez-Chanlatte, Sahil
Bhatia, Pei-Wei Chen, Niklas Lauffer, Shaokai Lin, Ameesh Shah, Victoria Tuck, Justin
Wong, and Beyazit Yalcinkaya, for making my time in the office never a dull moment.

During the course of my time here, I was also fortunate to have met many great industry
mentors and colleagues that have given me indispensable graduate student advice while also
teaching me a vast amount in my research area. From my internships at Facebook/Novi, I
thank David Dill (again), Shaz Qadeer, Clark Barrett, Wolfgang Grieskamp, Evan Cheng,
Sam Blackshear, and Jingyi Emma Zhong. From my internship at Intel, I thank Robert
Jones and Amit Goel. I also extend my gratitude to the folks at Intel who provided insightful
feedback on my work in our monthly meetings.

Naturally, I could not have done this without the folks back at home. I thank my
parents for the countless sacrifices they made over the decades and for their unwavering

x

support which helped pave the way for this moment. I also thank my brother for taking care
of our parents while I was away for all these years. Additionally, I owe a debt of thanks to
Alan J. Hu and Mark R. Greenstreet, as it was their initial support and encouragement that
led me to start my journey here at Berkeley.

Finally, to all the individuals (including those unnamed for the sake of privacy) who have
blessed me with the strength to persevere through this degree, thank you.

1

Chapter 1

Introduction

1.1 The Rise of Insecure Hardware Platforms

Hardware platforms such as the microprocessors in our phones, laptops, and web servers,
aim to provide strong memory isolation guarantees to protect a user’s confidential data
from being leaked to untrusted entities (Figure 1.1). For example, a user interacting with
a web application from their phone would involve using an input/output (I/O) interface
to control how their application executes and responds. In this interaction, the user may
provide sensitive data to their application such as credit card numbers or information about
their identity. Naturally, a user would hope that untrusted entities executing on the same
hardware platform, such as other applications, are unable to infer any information about
their confidential data. However, the discovery of a number of hardware-based security flaws
— in particular, transient execution vulnerabilities such as Spectre [116] and Meltdown [133]
— in widely-used present-day microprocessors, has raised major security concerns about
the memory isolation guarantees between programs running on these platforms. If we are

User
Computing Platform

I/O User
Application

(Untrusted)
Applications Operating

System

Trusted Untrusted

Figure 1.1: User executing their application on a platform with untrusted applications and
the operating system.

CHAPTER 1. INTRODUCTION 2

not careful, untrusted entities that share the platforms where we store our data have the
potential to exploit these newly found attack vectors in order to gain access to our confidential
information.

One approach to counter these attacks is by using formal methods to establish formal
proofs of memory isolation on the platform. Formal methods is an area of computer science
that relies on rigorous mathematical proofs to provide system correctness through specifica-
tion, modeling, and verification. Over the last several decades, formal methods have made
great advances in becoming practical and have become extensively used in the industry for
proving system correctness. One prominent technique in formal methods is model checking,
which is used to mechanically prove properties about finite state machines. We refer to these
proofs as formal guarantees, which is often a reliable measure of system correctness.

Unfortunately, it is becoming increasingly difficult to ensure that hardware platforms are
secure due to their growing complexity. To exacerbate the situation, new vulnerabilities are
discovered every year, requiring non-trivial changes to the hardware platform [63] in order
to protect against new attacks. Even without the added complexity, formal guarantees of
security such as memory isolation for hardware platform designs often lag years behind their
commercial releases. The reason for this lies predominantly in the reliance on manual effort
when applying formal methods to hardware platform designs, as exemplified by work such
as seL4 [114] and Komodo [70]. It is immensely challenging and costly to manually apply
formal verification to a hardware platform because of the sheer size of the design.

On the other hand, secure computation on secure hardware platforms [53, 101, 112, 127,
141, 161, 200] has been of growing interest for security-critical applications in recent years.
For instance, machine learning inference models [91], blockchain technology [67, 232, 234],
and serverless computing [71, 160] have become ubiquitous, and many of these applications
require a high degree of confidentiality for the underlying data used for computation. These
applications execute on hardware platforms and require that they provide strong memory
isolation guarantees. Unfortunately, the only viable hardware platforms that we can rely on
to provide memory isolation have become a prime target for transient execution attacks and
more generally, what we refer to as hardware attacks [29, 116, 133, 174, 186, 189, 215, 216,
224, 225]. As a result, the gap between the demand for secure hardware platforms and the
actual level of security provided has been widening. This has led to a noticeable disparity
that leaves security-critical applications with no other option but to resort to less performant
alternatives for enforcing memory isolation, such as cryptographic-based methods [74].

Mitigations proposed [89] for hardware attacks have mostly been hardware- or software-
based, yet there is a barrier to adoption. Hardware mitigations are often regarded as too
intrusive and vulnerability-specific. On the other hand, the security of software mitigations
depends on the hardware it runs on. This frequently leads to platform-specific software miti-
gations (e.g., using x86 serializing instructions [102]) and warrants more precise analysis that
includes details about the hardware, which are often lacking in many analysis methodolo-
gies. In addition, new side-channel attacks [40] have repeatedly found a way to circumvent
proposed mitigations. Time has proved that this class of attacks is difficult to overcome with
hardware- and software-based mitigations alone.

CHAPTER 1. INTRODUCTION 3

Alternatives to secure computation include cryptographic-based alternatives and hardware-
based isolation techniques. The former includes techniques such as secure multi-part compu-
tation and homomorphic encryption, however, these techniques have been shown to be com-
putationally expensive, even with hardware accelerators [182]. On the other hand, hardware-
based isolation techniques implemented by platforms such as trusted execution environments
(TEEs) [52, 53, 127] have been of growing research interest [67] to the community as they
are more performant. Unfortunately, they lack maturity in feature richness and assume a
very restrictive programming and memory-sharing model which severely limits usability.

The culmination of these barriers to secure computation on hardware platforms leads to
one possible solution: to develop and improve existing formal techniques that can provide
hardware platforms with formal guarantees in a practical manner. However, this direction
comes with major challenges that we discuss in the next section. Broadly speaking, with the
current advances in secure computation technology and the discovery of new vulnerabilities,
the trusted computing base of hardware platforms, the part of a system that is critical to
security, has grown to include both software and hardware components. We refer to these
mixed component systems as heterogeneous systems, which because of their complexity, are
inherently difficult to both model and analyze using traditional methods.

For the remainder of this chapter, an overview of the problems addressed in this thesis
is presented. Specifically, section §1.2 discusses the formal methods-based approaches used
and section §1.3 outlines the challenges of applying formal methods to hardware platforms.
Section §1.4 presents the thesis statement and summarizes the contributions of this thesis.
Lastly, we conclude with acknowledgments in section §1.5 to thank those who have funded
my work and played a crucial role in making this research possible.

1.2 Secure Information Flow

The security of hardware platforms relies on a core component that defines the behavior
of the software programs that they execute: the microprocessor. To safeguard against the
attacks mentioned earlier using formal methods, we need to both model and verify properties
defined over microprocessor designs. Specifically, we target speculative microprocessor and
TEE models where strong memory isolation is essential. To get a better sense of how one can
model these platforms and use them to prove memory isolation, it is important to understand
the types of components in these systems that are exploited and how they are exploited in
hardware attacks to even bypass the more resilient security measures.

Microprocessors and TEEs are types of heterogeneous systems that rely heavily on both
software and hardware for security. Perhaps unsurprisingly, hardware attacks exploit both of
these components of the platform to leak secrets, explaining the elusiveness of these vulner-
abilities. For instance, in transient execution vulnerabilities, a microprocessor implements
speculative features to increase throughput, but these features inadvertently cause unin-
tended executions of instructions that lead to secrets being leaked to covert channels such as
the data cache. Clearly, proof of memory isolation needs to include the cache along with the

CHAPTER 1. INTRODUCTION 4

exploited program. Similarly for TEEs, even though they rely on specialized hardware to
enforce memory isolation, speculation can be exploited to break security [215, 224]. Thus, in
addition to the exploited components in a microprocessor model, one also needs to consider
the hardware mechanisms specific to TEEs that are used to strengthen memory isolation.

Integrating both hardware and software components into a single model requires them
to share the same programming model. As a result, a significant challenge in formalizing a
hardware platform model is precisely defining this unified programming model. First, one
needs to determine the level of abstraction at which the models are described at. Ideally, the
abstraction level should be capable of describing both the hardware and software components
being exploited. For instance, one such level of abstraction is the instruction level. Second,
one needs to determine the operations of the model and the granularity at which they
execute to change the system state. For example, updates to hardware components are
typically driven by a clock signal that concurrently and atomically updates the components
connected to that clock signal. On the other hand, software does not have a notion of a clock
signal and thus the atomicity of program execution that should be modeled is less obvious. In
light of these differences, it is natural to consider a transition system-styled model in which
each atomic operation of the system can be chosen to suit the assumptions of the application
and the associated attacker model. The work presented in this thesis assumes this modeling
style. We now turn to the type of attacker model needed to model these attacks and the
security properties we need to prove.

A general attacker model. The rate of discovery of new vulnerabilities is concerning
as it has implications for the attacker model. Historically, attacker models have been fixed
for a given vulnerability of a hardware platform. However, this approach has proven to be
increasingly limited in its productivity and effectiveness. Often, checking for the security
of a single adversary model is not sufficient for sound guarantees of security on a hardware
platform. To scale, we must consider models that are parameterized and allow us to capture
classes of attacks. For that reason, the attacker models considered throughout the thesis is
one that is general and has the following two major characteristics. One, we assume that
it can execute an unbounded number of steps whenever the platform allows it to execute.
Two, we assume that it has access to an abstract observation function and tamper function
which defines the components that it can observe and modify when it executes.

Enforcing secure information flow. Finally, in order to verify memory isolation for
hardware platforms, it is necessary to prevent any information leakage from secret states to
observable states, irrespective of the adversary’s actions. One way to capture this notion of
security is by using the standard non-interference [76] security property based on information
flow. Non-interference is used to restrict the information flow of a system; it states that a
group of users executing a set of commands on a system does not affect what another group
of users (on the same system) can see. This thesis presents extensions of the non-interference

CHAPTER 1. INTRODUCTION 5

property, which we collectively refer to as secure information flow (SIF). We will describe
these properties briefly in Chapter §2.3 and define them formally in Chapters §4, §5 and §6.

1.2.1 A Workflow that Guarantees Secure Information Flow

While we have already mentioned the applications that motivate our work, the central focus
of this thesis is really motivated by the vision of a workflow that provides secure information
flow of programs executing on hardware platforms. Naturally, explaining this workflow will
provide insight into the research directions of our work.

The workflow begins with the consideration of using a prominent hardware platform that
aims to enforce memory isolation without incurring a large performance penalty: trusted exe-
cution environments. TEEs use hardware primitives to ensure that enclave program memory
is protected from untrusted entities executing on the platform. Examples of TEEs include
Intel SGX [141] and Trust Domain Extensions [101], ARM TrustZone [10], Keystone [127],
MIT Sanctum [53], and AMD SEV [112], many of which exist in the processors of major
computer hardware manufacturers. However, existing TEEs have been discovered to be vul-
nerable to various side-channel attacks such as Foreshadow [215, 224]. Moreover, TEEs have
a restrictive programming model that limits how they can share memory. Without memory
sharing, enclave programs are very limiting for typical user applications. Thus, it is crucial
that these issues are first addressed for the widespread adoption of TEEs. This leads us to
the following observation. If we have a methodology to prove that a class of enclave pro-
grams is protected against hardware attacks (i.e., by proving SIF) and if we can extend the
functionality of enclaves to capture a wider family of applications, then TEEs can become
a practical approach for enforcing memory isolation of more general applications. This is
depicted in Figure 1.2.

Computing Platform

User (Untrusted)
Applications

Operating
System

Satisfies SIF Untrusted

I/O User
Application

TEE protected

Firmware

Figure 1.2: Application protected by the TEE and formal guarantees of secure information
flow.

To better understand the complexity of developing such a methodology and extending
TEEs securely, we describe the models needed to prove SIF on such a workflow in more detail.

CHAPTER 1. INTRODUCTION 6

At the core of these hardware platforms, there is an architectural model that describes how
the platform state evolves at a functional level as it executes. However, the extent of security
that a purely architectural model can provide is limited to functional correctness. Naturally,
it is not unless we also consider the other component of the heterogeneous system — the
implementation-based microarchitectural model — that we can reason about hardware-based
attacks such as transient execution vulnerabilities. Below, we discuss some key aspects that
should be taken into account when verifying hardware platforms.

Microprocessors. A microprocessor design consists of the computer architecture, on which
an instruction set architecture (ISA) [9, 103, 221, 222] is used to define the semantics of how
a program controls the CPU and the microarchitecture which implements these seman-
tics. Historically, methodologies have often focused on verifying the functional correctness
of microprocessor designs [36, 70, 199] and thus only modeled the architectural state of a
microprocessor. However, with transient execution attacks, new formal models of proces-
sors have been increasingly microarchitecture-aware [45, 125, 153, 204]. Microarchitectural
buffers and caches such as the pattern history table, page tables, reorder buffer, transla-
tion lookaside buffer, caches, store, and load buffers have become intrinsic to the formal
analysis of hardware platform security, and there is an increasing trend toward unifying pro-
gram semantics and hardware behavior as a monolithic model. As one can imagine, direct
translations or implementation-accurate models of hardware implementations in hardware
description languages (HDL) such as RTL or Verilog are often too complex and requires
complete remodeling whenever the hardware design is changed. Thus, our work considers
a middle-ground model that abstractly models microarchitectural components. This allows
the model to capture a class of microarchitectures while also being amenable to changes due
to its simplicity. As a transition system, this translates to modeling each instruction from
the ISA as an operation that atomically updates the architectural and microarchitectural
components according to the ISA semantics and hardware design.

Trusted execution environments. Instead of relying on the operating system to isolate
memory, a trusted execution environment provides a set of operations for users to manage
and execute their enclave program within a protected area of the platform [10, 101, 127, 141].
From a modeling standpoint, one may extend the microprocessor model described above to
execute the set of enclave operations. Similar to microprocessors, enclave platforms modeled
without hardware components have left it open to speculative attacks [215].

1.3 Challenges

As alluded to in the previous section, verifying non-interference properties on hardware
platforms presents several challenges. To better understand these challenges, it is useful
to examine the desired characteristics of a formal approach that checks non-interference on

CHAPTER 1. INTRODUCTION 7

hardware platforms against a class of attacks. Three key requirements emerge in verify-
ing these platforms: accuracy, reusability, and scalability. Accuracy is needed to precisely
explain the underlying cause of a vulnerability, while reusability and scalability allow an
approach to adapt to changes and scale to realistic problems. While we desire our approach
to incorporate these aspects, it is challenging to have all three. Thus, the crux of this thesis
is also about finding the right balance of abstractions and developing techniques to satisfy
these requirements for hardware platforms.

1.3.1 Accuracy

Accuracy is imperative to any formal approach. We refer to two types of accuracy in an
approach. The first type of accuracy is about precisely capturing the desired property,
such as the class of attacks or vulnerabilities. The second type refers to the soundness and
completeness of the procedures used to determine security.

Formalizing secure information flow. Proving security requires one to first define a
security criterion. The first part of this criterion is the attacker model. The second and
more subtle part is how one specifies a property to capture the vulnerabilities or attacks of
interest. For example, checking that a program satisfies non-interference is not as informative
as checking for a violation of non-interference due to optimizations in a platform. A more
informative property is desirable because it can more precisely capture and explain the
violation of a given property. In addition, the standard non-interference property is often
too strong to be practically enforced and is violated by most programs whether or not they
are vulnerable to hardware attacks.

Soundness and Completeness. As in any standard decision procedure for determining
the security of a system, we require soundness at a minimum, which states that if the
procedure says the system is secure, then the system is truly secure. While soundness is
necessary and fundamental in our approaches, an approach is only practical when it has a
minimal number of false positives. That is, it cannot be too overapproximate and return
an excessive number of incorrect results. Overly abstract models in formal verification,
for instance, are often prone to resulting in false positives. Thus, one challenge of writing
abstractions is determining the right level of detail. Conversely, completeness states that the
procedure returns an answer whenever one exists. We acknowledge that while completeness
is desirable, this thesis does not address this aspect.

1.3.2 Reusability

With the rapidly growing number of hardware attacks discovered every year and the growing
complexity of the systems on which they exploit, an approach needs to be reusable and
scale to the growing pace of the system. These challenges can be alleviated by considering
parameterizability and automation.

CHAPTER 1. INTRODUCTION 8

Parameterizability. In writing models, we must also consider how various hardware at-
tacks can be expressed because the security of a hardware platform design (e.g., a micro-
processor [108]) is dependent on the individual components and optimizations implemented.
Ideally, formalisms are defined in a way that allows models to check a range of attacks be-
yond a single variant that it was designed for so they can be reused whenever there are slight
changes to the attack vector or design. Thus, modeling and specification formalisms should
be compositional and easily parameterizable. Additionally, this would allow the models to
adapt to new changes, which is crucial for formal models that would often take an expert,
months to write.

Automation. While parameterizability enables us to scale to a range of attacks and plat-
forms, automation is typically necessary to maintain the usage of the approach practically.
Hardware platforms contain thousands of lines of code at a minimum, either as firmware or
as part of the application that we are verifying. As a result, our approaches should ideally
automatically generate models and proofs from the implementation.

1.3.3 Proof Scalability

Lastly, parameterizability brings issues with proof scalability because of the complexity of
the platform. This is commonly addressed through model abstraction and compositional
reasoning.

Reducing model complexity with abstraction. Formal models can still be fragile when
used with state-of-the-art formal method-based engines, which may not always terminate.
A model of a complex system must have the right level of abstraction. For starters, this
can help alleviate the modeling effort required to compose different components of a system
together. Determining which parts of the model to abstract away is also important for
reducing the runtime of these engines [32, 33]. Second, the encoding of these models needs
to be efficient. Formal models are often written as logical formulas in Satisfiability Modulo
Theories [17, 18] (SMT). The SMT problem is the problem of determining whether a given
logical formula is satisfiable. This problem is solved in practice by using SMT solvers, which
are often used in formal method engines [57, 129, 169]. The formulas compiled from the
security questions we ask, often contain a range of theories in SMT and can have alternative
encodings that are equivalent or approximate, each of which can vary drastically in runtime
when given to the solvers. As such, an efficient encoding [30, 177, 211] with a suitable logic
or set of theories for complex models is imperative in preventing state explosion and avoiding
undecidable logical encodings [27]. We acknowledge that there is an obligation to check that
the abstract model is a sound abstraction of the implementation model [49], however, this
is not within the scope of this thesis.

CHAPTER 1. INTRODUCTION 9

Scaling proofs by composition. Lastly, the method of proof needs to be efficient. For
example, executing bounded model checking on a large model will likely result in state explo-
sion for symbolic model-checking techniques. Thus, designing a methodology that can take
advantage of assumptions and security criteria to construct compositional proofs is often
necessary to scale to realistic programs.

To that end, we present the thesis statement and a list of contributions that overcome
these challenges to address the problems presented in §1.1. Through this thesis, we aim to
take a step towards realizing what we can call secure hardware platforms.

1.4 Thesis Statement

We develop methodologies to prove secure information flow by formalizing abstract mod-
els of hardware platforms, formalizing trace property-dependent observational determinism
to precisely capture classes of hardware attacks, and introducing an interpolant-based proof
methodology to efficiently verify heterogeneous systems against hardware attacks.

1.4.1 Contributions

A summary of the research contributions to address this thesis statement includes the fol-
lowing:

1. Chapter §2 provides background on secure hardware platforms and the applications of
this thesis.

2. Chapter §3 provides background on the general approaches used, relevant concepts
from formal methods, and a primer for the verification toolkit used throughout this
thesis, Uclid5 [169, 193].

3. Chapter §4 presents the secure speculation property, used to capture information flow
leaks caused by transient execution attack vulnerabilities. Furthermore, we generalize
this property as trace property-dependent observation determinism.

4. Chapter §5 generalizes the approach from the previous chapter to efficiently verify
information flow-based properties using the SymboTaint proof system and information
flow state machines.

5. Chapter §6 returns to the problem of hardware-based secure computation and provides
a methodology for combined design and verification of secure and efficient trusted
execution environments.

6. Chapter §7 concludes with discussions about the existing work and future directions.

CHAPTER 1. INTRODUCTION 10

1.5 Acknowledgements

Over the years I have had the honor of publishing work with collaborators who have been
immensely helpful, insightful, and a pleasure to work with. This thesis is a compilation of
these works that we wrote together jointly. In this section, I describe their contributions and
acknowledge the sources of funding which made this thesis possible.

1.5.1 Collaborative Work

Chapter §3 presents a primer toUclid5 and is partially based on the paper “UCLID5: Multi-
Modal Formal Modeling, Verification, and Synthesis” [169], which is a joint contribution with
Elizabeth Polgreen, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer, Shaokai Lin,
Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia who designed and developed the
UCLID5 verification tool, whose initial version were created by Pramod Subramanyan and
Sanjit A. Seshia [193].

Chapter §4 is based on “ A Formal Approach to Secure Speculation” [46]. Cameron
Rasmussen contributed by having countless discussions with me and by helping out with
the experiments. Pramod Subramanyan contributed by proposing TPOD, in addition to
providing lots of guidance and feedback with Sanjit A. Seshia.

Chapter §5 is based on “Compositional Proofs of Information Flow Properties for Secure
Platforms” [44]. Adwait Godbole contributed by having countless discussions with me and
by helping formalize the SymboTaint proof system and information flow state machines.
Yatin A. Manerkar and Sanjit A. Seshia contributed by providing invaluable guidance and
feedback throughout this project as well.

Chapter §6 is based on “Cerberus: A Formal Approach to Secure and Efficient Enclave
Memory Sharing” [125]. Dayeol Lee contributed by having countless discussions with me,
designing Cerberus, and implementing it in Keystone. Pranav Gaddamadugu contributed
by translating the TAP model from Boogie to UCLID5 and attempting to formally ver-
ify the initial version of Cerberus [72]. Alexander Thomas and Catherine Lu for making
significant contributions to the experimental sections and the implementation of Cerberus.
Anjo Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia, and Krste Asanović
contributed by providing invaluable guidance and feedback.

1.5.2 Funding

The research described in this thesis was supported in part by SRC tasks 2867.001 and
2854.001, the iCyPhy Center, NSF grants CNS-1739816 and CNS-1646208, the Science and
Engineering Research Board, a gift from Microsoft Research, the Qualcomm Innovation
Fellowship, Amazon, Intel under the SCAP and Scalable Assurance program, and by RISE,
ADEPT, and SLICE Lab industrial sponsors and affiliates.

11

Chapter 2

Hardware Platforms

Hardware platforms consist of many layers, from the I/O layer and networking layer to data
buses and individual hardware intellectual properties, but the core component that is gener-
ally responsible for security is the microprocessor that executes the application software on
our devices. Consequently, our primary focus is soley directed towards ensuring security for
microprocessor-based designs. Although microprocessor security has been extensively stud-
ied, it wasn’t until recently that reasoning about hardware and software together has become
more conventional for security [135, 204, 209] on hardware platforms. In this section, we
provide background for microprocessor models and TEE models to illustrate how modeling
has changed, the vulnerabilities of the respective platforms, and briefly discuss the attacker
models.

2.1 Speculative Microprocessors

Ever since processors began to adopt out-of-order execution, speculation, and superscalar
optimizations [164, 195, 200], microprocessors became increasingly complex. We describe
this complex architecture below and explain how it has become increasingly vulnerable over
the years.

2.1.1 Breaking Down The Microprocessor Design

A microprocessor design can be thought of as a dyadic of abstraction layers: the architectural
and the microarchitectural designs. The former can be used to describe how a program
is computed and the latter how the underlying computation engine is implemented. We
describe each of these layers below.

Architectural design. A microprocessor is designed to adhere to what is called the ar-
chitectural model, which includes a set of registers such as the program counter, general
purpose integer registers, control status registers, and floating point (FP) registers, in addi-

CHAPTER 2. HARDWARE PLATFORMS 12

tion to an instruction set architecture (ISA) [9, 11, 103] that defines the semantics of how
these registers change values as an instruction executes through the processor pipeline.

Front End Memory Hierarchy

Out-of-order Engine

Disk
Memory

Main
Memory

I/O
Memory

Memory Bus

Shared
L3 Cache

L2 TLB

iCache

Shared
L2 CacheLine Fill

Buffer

L1 DCache

iTLBInstruction Fetch

Instruction Queue Branch Prediction Unit
Return
Stack
Buffer

Branch
Target
Buffer

Pattern
History
Table

Allocation Queue

Physical Register File

Reorder Buffer

Execution Unit
Integer

Registers
FP

Registers

Load Buffer
Store Buffer

Register Allocation,
Renaming, and Alias Table

L1 DTLB

Figure 2.1: Example speculative microprocessor design [104] with a front-end component,
the memory hierarchy, and an out-of-order engine. Arrows represent data flow from one

state to another.

Microarchitectural design. Buffers, caches, arithmetic logical units, and other digital
logic blocks constitutes the actual implementation of the processor. As each instruction is
executed by the processor pipeline, each component is used to compute the next architectural
state. More precisely, the microarchitecture includes all the components that implement the
logic of how an executed instruction affects the registers, memory, arithmetic logic and other
states defined in the architecture. As an example, Figure 2.1 depicts a design of a micropro-
cessor (described at some arbitrary level of abstraction) with three main parts consisting of
the front end, the memory hierarchy, and the out-of-order engine. The front end deals with
anything related to instruction fetch, instruction decode, and register allocation, which in-
cludes logic used to determine the next instruction to execute such as the branch predictors.
The out-of-order engine is part of the microprocessor that deals with asynchronous events
that may occur out-of-order such as the reorder buffer and load/store buffers. Lastly, the
memory hierarchy optimizes the speed at which memory accesses and writes are made using
caches.

CHAPTER 2. HARDWARE PLATFORMS 13

2.1.2 A Decades-Old Flaw: Transient Execution Vulnerabilities

Unfortunately, the introduction of optimizations and buffers mentioned in the previous sec-
tion has led to numerous side channels that can be used by an attacker as a data extraction
channel of a victim process. On top of that, extraction is made simpler because of specula-
tion.

Stage 0:
Before Prime+Probe

Stage 1:
Attacker primes

Tag1Index1
Tag2Index2
Tag3Index3

Tag0Index0 Data0
Data1
Data2
Data3

Stage 2:
Victim executes

Stage 3:
Attacker probes

Tag1Index1

Tag3Index3
Tag2Index2

Tag0Index0 Data0
Data1

Data3
Data2

Not evicted Evicted Faster access Slower access

Tag1Index1
Tag2Index2
Tag3Index3

Tag0Index0 Data0
Data1
Data2
Data3

Tag1Index1
Tag2Index2
Tag3Index3

Tag0Index0 Data0
Data1
Data2
Data3

Figure 2.2: Stages of the Prime+Probe attack assuming a 4-way set associative cache. In
the first stage, the attacker primes the cache by making memory accesses from their

address space whose addresses map to the cache lines of a set. This invalidates all entries
in a cache set. In the second stage, the victim executes, resulting in an evicted cache line.
Finally, the attacker times the same memory accesses to determine information about

which address the victim accessed.

Creating a side channel for an attacker. The discovery of new side-channel retrieval
techniques has enabled attackers to retrieve information about sensitive data more efficiently
over the years. Attackers can use these techniques to break address space layout random-
ization techniques and retrieve information about the execution paths of programs to break
encryption schemes. For example, Flush+Reload [228] and Prime+Probe [134] are prominent
techniques that reveal the address of a victim’s memory accesses to an attacker. The attacker
accomplishes this in three stages as shown in Figure 2.2, which depicts the Prime+Probe
attack for a given set of the cache. We describe these three stages below.

Stage 1. In the first stage of the attack, the attacker first constructs an eviction set
using a buffer that is accessible in their own address space. The attacker uses this set to
evict every cache line from the cache set with their data. In a later step, the attacker uses
the eviction set to determine which addresses the victim has accessed.

Stage 2. In the second stage of the attack, context switches to the victim which executes
their code. As they execute, they make memory accesses whose contents are eventually
cached at some level of the memory hierarchy.

Stage 3. In the final stage of the attack, the attacker makes memory accesses using the
same eviction set constructed in the first stage and times each access. If access to a particular

CHAPTER 2. HARDWARE PLATFORMS 14

memory address in the eviction set is fast, then this corresponds to accessing a cache line
that was previously accessed during the prime stage and nothing is learned. However, if the
access to a memory address in the eviction set is slow, this means that the corresponding
cache line was evicted during victim execution. Consequently, this reveals to the attacker
information about the address that was accessed by the victim. The attacker can then use
this information to infer the secret-dependent execution path taken in algorithms such as
square-and-multiply and AES, revealing information about secrets.

We note that this attack has been shown to be effective even for the last-level cache,
thus it is even easier for attackers to retrieve information from the L1D cache if the attacker
and victims execute on the same physical core.

Speculation. The remaining element that is fundamental to reproducing transient execu-
tion attacks is speculation in a processor. Speculation allows a microprocessor to guess the
value of a particular result currently being computed in the pipeline and proceeding without
knowing what the actual value is. In the event that the speculated value is incorrect, the
processor reverts its state to a former state before it made the speculation. This technique
allows the microprocessor to increase instruction throughput and ultimately improves the
processor’s performance. Examples of speculation include branch prediction, value predic-
tion, and store-to-load forwarding [195].

Combining speculation with side channels. Together, side channels and speculation in
microprocessors form a new class of vulnerabilities called transient execution vulnerabilities
that existed for over a decade before it was discovered. Unfortunately, the focus of formal
verification for hardware has mainly been on verifying functional correctness. When out-
of-order and superscalar processors became widely adopted, the trend of using the ISA as
a correctness criterion persisted, giving birth to techniques such as the Burch-Dill flushing
technique [37, 88, 185, 199, 217] which has been used as a general correctness criterion
for leading semiconductor chip companies. Software-based formal verification, on the other
hand, only reasons at the instruction level, without details about the hardware which is
fundamental to these attacks. Consequently, many existing techniques that reason about
hardware only or software only, have become inadequate for security.

Attacker prepares microarchitectural state

Invoke victim code(S2)

(S1)

Non-speculative path Speculative path(S3)

Attacker reads side-channel(S4)

Figure 2.3: Stages of a speculative
attack.

A transient execution vulnerability typically
follows four stages as shown in Figure 2.3.
In the first stage of the attack (S1), the at-
tacker prepares the side channel similar to the
Prime+Probe attack and executes code gadgets
to trick the microprocessor into speculating in a
later stage. In the second stage (S2), the attacker
calls the victim function, which speculatively ex-
ecutes code that wouldn’t have otherwise been
executed under non-speculative execution. In the

CHAPTER 2. HARDWARE PLATFORMS 15

third stage (S3), the victim’s program accesses secret information and propagates it to a side
channel as indicated by the red arrow. At that point, all the attacker needs to do is initiate
the probe stage (S4) to infer information about the secret. While this may seem similar to
an attack using the Prime+Probe attack, we will later see in Chapter §4, the difference in
the extent to which secrets can be revealed.

2.1.3 Attacker Model

For a majority of hardware-based attacks [116, 133], the attacker model is assumed to be
executing on the same physical core so that it shares the same resources such as the L1D
cache, branch prediction buffers, etc. However, this is not always the case, and the attacker
has been shown to effectively observe leakage even across cores [134]. The attacker is also
typically assumed to have access to user space and can execute for an unlimited duration, use
system calls, and execute instructions to accurately time programs (e.g., using an instruction
such as rdtsc in x86 architectures).

2.2 Trusted Execution Environments

Trusted execution environments first appeared in the mobile device industry over a decade
ago to prevent malicious users from exploiting their networks and to isolate applications from
confidential user data. Over time, they have become popular for the secure computation of
unencrypted data in both commercial devices and cloud computing. In this section, we
mention the existing formal security efforts for TEEs, why we should embrace their use, and
motivate how the use of formalisms and formal guarantees can alleviate the limitations that
exist. Lastly, we briefly explain how even with such a powerful hardware mechanism for
enforcing memory isolation, hardware attacks began to cast doubt on TEEs in recent years.

2.2.1 Formal Guarantees for TEEs

As TEE adoption increased, users became more security-aware about the security of their
platforms, and efforts to verify properties critical to correctness and safety such as lineariz-
ability [130] and confidentiality [198, 204] began to materialize. However, to date, there is
still limited effort in proving the formal properties of these platforms. Despite this shortcom-
ing, TEEs are still a promising tool as we explain below, and we believe that the community
should embrace both the usage and automated formal verification of TEEs to further enforce
security.

2.2.2 Why Use a TEE?

Besides the low overhead in performance cost compared to other secure computation alter-
natives, TEEs have a number of additional benefits which we detail below.

CHAPTER 2. HARDWARE PLATFORMS 16

Hardware-Based Memory Isolation. TEEs provide strong memory isolation by using
hardware mechanisms to isolate memory accesses from a given process to their own domain.
Typically, these hardware mechanisms rely on non-traditional hardware components. For
example, Intel’s SGX and TDX [101] contain reserved memory regions inside the DRAM
referred to as the Processor Reserved Memory (RPM) and the Secure Arbitration Mode
(SEAM) memory range respectively. These memory ranges are isolated based on the logic of
the memory management unit or memory controller, which is a hardware component within
the processor. Similarly, in Keystone, the set of protected memory ranges is specified by
the physical memory protection (PMP) registers and memory access is enforced through the
memory controller. This strengthens traditional process isolation enforced by the operating
system because in order for an attacker to break isolation, they would now need to also
bypass the access checks of the memory controller in hardware.

User
App App App

Operating System

Firmware + Hardware

User
Enclave App App

Operating System

Firmware + hardware
Root of Trust

Untrusted

Trusted

(a) Traditional Hardware Platforms (b) TEE-Based Hardware Platforms

Figure 2.4: Tradition hardware platforms vs. TEE-based hardware platform isolation
boundaries represented by the vertical bars.

Small trusted computing base. The other upside of a TEE is that the trusted com-
puting base (TCB) of the TEE (Figure 2.4 (b)) – the part of the system that is critical for
security – is typically smaller than the TCB of traditional computing platforms (Figure 2.4
(a)), due to several factors. First, a TEE-based hardware platform provides a handful of
hardware-assisted functions to manage enclave programs (e.g., launch, destroy, pause, etc)
as shown in Figure 2.5(b). In contrast to traditional platforms, this is much smaller than
the hundred(s) of system calls provided by an operating system for privileged operations as
shown in Figure 2.5(a). Second, TEEs generally expose these functions through a trusted
security monitor as part of the firmware, as the only way to manage the protected enclave
programs. For instance, in Keystone [127], the security monitor executes in a privileged
machine mode and only exposes these functions to manage enclaves at the user level. Thus,
the operating system, which often contains tens of millions of lines of code, does not directly
interact with trusted enclave programs. Consequently, this separates the operating system

CHAPTER 2. HARDWARE PLATFORMS 17

from the TCB and greatly reduces the part of the system that needs to be formally verified
as indicated by the green components in Figure 2.4(b). This reduction of complexity makes
verification of security properties such as non-interference possible on hardware platforms.

Operating System Firmware + Hardware
Security Monitor

la
un

ch

de
st

ro
y

pa
us

e

re
su

m
e

en
te

r

ex
it

m
ea

su
re

sy
sc

al
l 1

sy
sc

al
l 2

sy
sc

al
l 3

sy
sc

al
l 3

sy
sc

al
l 5

0

sy
sc

al
l 5

1
……

(a) Traditional Hardware Platforms (b) TEE-Based Hardware Platforms

Figure 2.5: The number of operations in the traditional hardware platform is
comparatively more than that of the TEE-based hardware platforms.

Secure remote execution with attestation. Beyond proving memory isolation for en-
clave programs on the platform, TEEs are often implemented with remote attestation to
ensure the integrity of a remote enclave program. The function provides an attestation re-
port to the user of the remote platform and tells the user that the program executing in
the cloud is indeed the program they uploaded. The attestation report is a chain of trust
containing a tamper-proof key from the silicon root of trust, a component integrated into
the hardware by the platform vendor.

2.2.3 Limitations Due to a Lack of Formalisms

Nevertheless, existing designs of modern TEEs come with a number of limitations that
warrant consideration for future designs and verification efforts.

Restrictive programming model. While having a simple programming model is ben-
eficial because a reduced number of operations is needed to be reasoned about, it imposes
constraints on the behavior of enclave programs and their optimizations. An example of this
is many TEE designs also do not allow enclave programs to access many of the functions
provided by the OS (e.g., system calls) while executing. As a result, the only alternative the
enclave program [159, 210] can take is to perform costly context switches.

Strict memory sharing model. Another downside is that TEE designs often impose
strict memory isolation at the physical memory level [10, 53, 112, 141]. This results in un-
necessary overhead from cold-start latency, which is undesirable for programs that frequently

CHAPTER 2. HARDWARE PLATFORMS 18

read from the same libraries or data models. Work on extending enclaves to support memory
sharing exists [63, 131, 231], but they often lack formal analysis. Without a formal model, it
is difficult to reason about the claimed security guarantees, and introducing memory sharing
on top of existing vulnerabilities without formal analysis only adds to the unreliability of
such claims.

Missing a common platform and threat model. Lastly, TEEs such as Intel SGX and
TDX, AMD SEV, Arm TrustZone, Keystone, and Sanctum lack a consistent threat or plat-
form model. This was historically influenced by the industry, due to a difference in goals that
address each vendor’s business needs and the customers they target for commercial products.
However, this makes it almost impossible to design formal verification methodologies that
aren’t one-off approaches for each platform. Having a formal model that TEE designers can
use as a specification would provide security ”for free”.

These issues are addressed in Chapter §6 by extending an existing formal abstract TEE
model called the Trusted Abstract Platform [204] with memory sharing. This allows us to
provide support for all TEEs that implement this abstraction and more importantly, provide
a way to escape the traditional approach of building TEEs without combined design and
verification.

2.2.4 Hardware Attacks on Trusted Execution Environments

Unfortunately, transient execution attacks even affect memory isolation in TEEs. In 2019,
the Foreshadow [215] attack was discovered in Intel’s SGX enclaves, which exploits a flaw in
the exception handling logic when accessing enclave memory, resulting in secret information
being leaked through the caches similar to the Spectre attack. This was later extended [224]
to break the virtual memory abstraction, resulting in secrets being leaked across user pro-
gram, virtual machine, and operating system domains.

In addition, many TEEs do not offer formal assurances of secure computation or protec-
tion against transient execution attacks. Ideally, platforms such as TEEs, that claim to be
secure, should have a workflow that allows checking security properties an efficient task.

2.3 Security for Hardware Platforms

While there exist many techniques to prove functional correctness on these platforms, lit-
erature on proving secure information flow is sparse. Two key security properties from the
CIA triad that a platform should satisfy are confidentiality and integrity∗. These properties
form the basis of secure information flow.

∗We forgo availability because the applications we consider (i.e., the hardware platforms) typically do
not aim to provide this guarantee, which is consistent with existing work.

CHAPTER 2. HARDWARE PLATFORMS 19

Confidentiality. When a user executes their program on a hardware platform with sensi-
tive information, they hope that no other entity is able to access that information. Enforcing
such a policy is what is referred to as confidentiality.

Integrity. While the protection of data is important, we also need to know that the result
is trustworthy or unmodified by an untrusted entity. Integrity says that a platform will
always execute in an expected way for a given user input sequence. For example, if a user
asks their program to return the balance of their bank account, they would hope that the
result is the actual balance of their bank account and not that of another user.

More precisely, these two properties are hyperproperties [51] that require reasoning about
multiple copies of a platform. We will see in later chapters why providing guarantees about
hyperproperties on hardware platforms is challenging. In the next chapter, we present our
approach to providing formal guarantees of secure information flow for speculative micro-
processors and TEEs presented in this chapter.

20

Chapter 3

Secure Information Flow with Formal
Methods

In the previous chapter, we explained the necessity for proving hyperproperties on hardware
platforms. While there are numerous model checking approaches for hyperproperties, exist-
ing approaches and hyperproperties are not tailored for the class of hardware attacks. Our
work focuses on extending these approaches to precisely and efficiently prove security against
these hardware attacks. In this chapter, we motivate why this class of attacks requires formal
approaches and provide the necessary formal definitions that the subsequent chapters build
upon.

In the context of our work, formal methods enable one to definitively check the satisfac-
tion of a property ϕ about a formal model M of a platform against a formal adversary model
A (Figure 3.1). Due to the scale of our models, our approaches focus on the use of automated
techniques such as bounded and inductive model checking [24] and interpolation [143] with
an underlying Satisfiability Modulo Theory (SMT) solver-based [15, 17, 56] backend.

ϕ

A
M

“no”

“yes”Does M || A
satisfy ϕ?

Figure 3.1: Formal verification allows one to prove that a system M composed with
adversary A either satisfies ϕ or not.

This approach exhaustively explores all reachable states of a model and can be brittle
when the models are complex, often resulting in state explosion [50]. Alternative approaches
that check information flow without sacrificing scalability such as static analysis and dynamic
analysis on the other hand, only provide approximations to the satisfaction of ϕ and are prone
to returning false positives for complex systems.

However, these approximations are inadequate for the class of transient execution attacks
where a lack of precise guarantees led to a multi-decade-old flaw in modern-day processor

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 21

designs. Following, we highlight some of the inadequacies of these approaches and discuss
why there is a strong need for formal methods for this class of attacks.

Static analysis. Static analysis [155] and abstract interpretation [54] are often used to
approximate the security of a system without execution or simulation. However, the downside
is that these approaches lack precision. More often than not, the execution of a system at
a given state is conditional on its state and inputs, thus without some form of simulating
execution, it’s not possible to evaluate the condition and thus determine if a state is reachable.
To preserve soundness, these methods often make coarse approximations at each step of the
analysis, often resulting in false positives (i.e., a violation of ϕ when there is no violation on
the actual implementation) and overapproximating the set of reachable states. As a result,
this class of analyses is not well suited for transient execution attacks where the vulnerability
relies on the precise semantics of software and hardware.

Dynamic analysis. On the other hand, approaches that execute or simulate a system to
determine the bad reachable states avoid false positives [12, 28, 110]. However, they come
at the cost of losing soundness because it’s often infeasible to exhaustively execute a system
under all inputs to explore all the possible execution paths. For proving the security of a
system, having soundness for non-interference properties is key to preventing these bugs,
thus dynamic analysis is ill-suited for these classes of attacks also.

Symbolic execution. Traditionally, using symbolic execution or formal methods to pro-
vide security guarantees to a system consists of three major aspects: modeling, specification,
and verification. In our context, modeling requires defining a formal model M of the system
implementation or design to precisely define the semantics of the system. Moreover, in our
context, a recurring theme will be the importance of specifying an adversary model A that
executes interleaved with M . Specification involves formalizing and specifying a property
ϕ that we would like to prove on the composition of our models, denoted M || A. Finally,
verifying that M || A satisfies ϕ is often a challenge on its own. For example, overly com-
plicated properties with many quantifiers can result in poor verification performance even
with state-of-the-art SMT solvers. Thus, careful and delicate tuning of these models (e.g.,
by using separation logic [167, 236], compositional proof systems, removing quantifiers [125,
176], proving a small model property [168], using a smaller set of theories and etc) is often
necessary to successfully verify a system. Thus, this brings us to the question of how we
can model our system M . In the following section, we describe the standard formalisms of
transition systems and their properties and build upon this definition in subsequent chapters
to prove the secure information flow of hardware platforms.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 22

3.1 Secure Information Flow

Throughout this thesis, the central class of security properties that we are concerned with are
information flow-theoretic properties such as non-interference in the form of confidentiality
and integrity. In this section, we introduce the standard non-interference property and
variations of non-interference that Chapters §4, §5 and §6 extend. We begin by defining the
modeling formalism of transition systems over which our security properties can be defined.

Labelled Transition System. Let AP be a set of atomic propositions, then a labeled
transition system – or more specifically, a Kripke structure – is of the form M = ⟨Q, I, L, δ⟩
where Q is the set of states of the system, I ⊂ Q is the set of initial states of the system,
L : Q→ 2AP is the labeling function and δ : Q×L×Q is a transition relation that describes
the valid transitions of the system. Alternatively, Q can be viewed as the set of valuations
of state variables V = {v1, v2, ..., v|V |} and thus we sometimes write M = ⟨V, I, δ⟩. The
relation between Q and V can be described by defining the domain set D(v) of values that
the variable v ∈ V can be assigned to. Then the set of states can be characterized by V in
the following way: Q

.
= D(v1)× D(v2)× ...× D(v|V |). Under this formulation, we will write

q.v to be the valuation of variable v ∈ V in state q ∈ Q. Lastly, the execution of M emits
a trace π which is a sequence of states π = π(0)π(1)π(2)...π(n) where ∀i ∈ [n]. π(i) ∈ Q and
[n] = {1, ..., n}. We write Tr(M) to be the set of all traces of M . We note that these traces
can also be infinite.

Security labels. In order to discuss whether information flows from a secret value to a
publicly visible state variable, we define a security lattice L = {l1, ..., ln} associated with an
ordering relation ⊑ that determines valid information flows.

In this thesis, we consider concurrent systems consisting of two components: an untrusted
(or public/low-security) component and a trusted (secret/high-security) component. Thus a
standard security lattice [119] that can describe these components is the one containing only
high and low labels L2 = {H, L} with the ordering relation respecting L ⊑ H. This relation
states that information can only flow from low to high at each step of the system. Each of
these labels can be used to define the sensitivity of the information contained in a given state
variable of the system. To describe the sensitivity of a given variable, we write v ⊢ l to mean
that variable v has sensitivity l. For example, in a microprocessor, the program counter is
typically assumed to be publicly visible under the constant-time programming discipline [43]
and would be labeled low under this assumption.

Self-Composition for Security. A typical requirement of the confidentiality property is
that the low component must not be able to distinguish between the secret states of the
high component. This can be formalized by defining a notion of indistinguishability, which
is captured using the operator ≈L. ≈L denotes the equivalence of all variables labeled low
between two states q and q′: q ≈L q′

.
= ∀v ∈ V. v ⊢ L ⇒ q.v = q′.v. This then allows us

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 23

to express whether an adversary can tell a difference between the two states. This notion of
equivalence is used to compare the states between two copies of a system, each containing
different secrets. Similar to system states, low-equivalence can be extended to traces in the
obvious way. Two traces π1 and π2 are low-equivalent, written π1 ≈L π2, if each i-th state
is low-equivalent: π1 ≈L π2

.
= ∀i ∈ [n]. π

(i)
1 ≈L π

(i)
2 . The composition of multiple copies

(or instances) of the platform is also known as a self-composition over the platform model
and allows one to describe hyperproperties [51], which is a class of properties that can only
be fully evaluated on a single trace. Using self-composition, we can now formally define
non-interference and observational determinism.

∀π1, π2 ∈ Tr(M), π
(0)
1 ≈L π

(0)
2 ⇒ π

(n)
1 ≈L π

(n)
2 (3.1)

Non-interference. Intuitively, non-interference [77] says that if a high user is working on
their secret data, it should not interfere with the low user who can observe the low state
variables. In other words, the low user should operate independently of the secrets. This
is formalized as Eq 3.1. One standard approach to verify this property is illustrated in
Figure 3.2, where two copies of the platform emit two traces π1 and π2, with the assumption
that they start off in low-equivalent states π

(0)
1 and π

(0)
2 , and the proof obligation is to

show that their final states π
(n)
1 and π

(n)
2 are also low-equivalent. We note that while non-

interference is also used as an umbrella term for a class of information flow properties, we
specifically refer to this formulation when we mention non-interference in this thesis.

≈
L

π
(0)
1

π
(0)
2

π
(n)
1

π
(n)
2

≈
L

Figure 3.2: Illustration of the assumptions and proof obligations for the non-interference
property depicted by the execution of two traces of the system. The initial assumption of
low equivalence is shown in blue (≈L) and the proof obligation is shown in green (≈L).

However, this classical definition of non-interference introduced by Goguen and Mesaguer
was originally applied to deterministic programs and only requires that the final states of the
traces be low-equivalent. Thus, adversaries that can execute interleaved with the program
and violate low-equivalence within intermediate states of the trace cannot be captured.

∀π1, π2 ∈ Tr(M), π
(0)
1 ≈L π

(0)
2 ⇒ π1 ≈L π2 (3.2)

Observational determinism. To deal with this inadequacy, the definition of non-interference
above was generalized by McLean [142] to traces and then later to concurrent programs by

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 24

Zdancewic and Myers [233] as observational determinism. Observational determinism for-
malized as Eq 3.2. As depicted in Figure 3.3, in contrast to the original non-interference
property (Eq 3.1) there is an obligation to prove low-equivalence at each i-th state of the
traces.

π
(0)
1

π
(0)
2

≈
L

. . .

. . .

≈
L

π
(i)
1

π
(i)
2

π
(i+1)
1

π
(i+1)
2

≈
L

π
(i+2)
1

π
(i+2)
2

≈
L

. . .

. . .

π
(n)
1

π
(n)
2

≈
L

Figure 3.3: Illustration of the assumptions and proof obligations for observational
determinism. Low equivalence is checked at each intermediate state (≈L) and assumed in

the initial state (≈L).

Having defined the security properties of interest, we now turn to describe how our
approaches use formal methods to provide strong security guarantees to secure hardware
platforms.

3.2 Formal Methods for Heterogeneous Systems

Automated formal verification has found great success in proving the functional correctness
of hardware circuit designs [37, 59] and software [114]. However, applications have focused
mostly on verifying only hardware or only software. This led verification tools to be designed
for sequential (and concurrent) software verification [16, 86, 129] or circuit verification [107,
120, 138, 150]. As a result, modeling heterogeneous systems is cumbersome [204], often
requiring the user to individually verify the hardware and software (possibly on two different
verification tools). What is more challenging, is finding the right level of abstraction to
interface the software with the hardware logic for assume-guarantee reasoning.

Desired features of verification tools for heterogeneous systems. Over the years,
the design of verification tools and languages have naturally been driven by application do-
mains. Thus, many tools have tended towards a particular paradigm, rarely integrating
different modes of computation. On the other hand, heterogeneous systems require a com-
bination of modes that is lacking in many existing verification tools. However, tools are not
only lacking in the functional aspect, but also in fidelity and robustness to changes due to
a lack of automation. Below, are some of the major traits that one would desire to have in
their verification tool for modeling and verifying heterogeneous systems.

• Diversity of Specification. Many security properties [119] are complex hyperprop-
erties [51], which require reasoning about multiple traces of a platform model. It is
important these are easy to write and maintain.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 25

• Compositionality. Heterogeneous systems consist of multiple components each with
varying designs, hence it is important that the designs can be composed. This enables
the automation of modeling combinations of designs.

• Diversity in Modeling. Each component of a system may also be more easily
expressed in a specific style. For example, hardware may be more naturally expressed
using an axiomatic model [75, 135, 153], whereas software is often imperative. Thus, a
tool that is capable of various modes of modeling would allow the seamless integration
of different components using a single tool.

• Range of Verification Techniques. Verifying properties over traces (security prop-
erties) requires bounded or inductive model checking, while functional verification is
more procedural. Thus, a tool that allows for a range of verification techniques would
allow the entire verification process to be done with one tool.

To that end, we describe Uclid5 [169, 193], a verification tool designed for modeling
and verifying heterogeneous systems. Uclid5 addresses the needs above and is the main
formal methods tool used throughout the thesis for modeling, specification, and verification.

3.3 Formal Modeling, Specification, and Verification

with Uclid5

In this section, we demonstrate how we use Uclid5 to verify observational determinism.
We provide an overview of the relevant features in Uclid5 for our work, showcase these
features by verifying an example C program, and then conclude with an explanation of how
the internals of Uclid5 work to verify the property.

3.3.1 Overview

Uclid5 implements a number of key features to enable a high degree of automation and
efficient verification for heterogeneous systems. These features include the ability to naturally
model transition systems, model sequential code, combine these two modeling approaches,
use a mix of axiomatic and operational modeling, and verify specifications using a range
of techniques. Uclid5 also incorporates algorithmic program synthesis based on inductive
learning as a core feature [192].

Concurrent modeling with modules and instances. A module in Uclid5 models a
transition system, in which one can define concurrent updates. An instance is an extended
functionality of modules that allows one to reason about multiple copies of modules, which
automates the modeling required to prove hyperproperties which are multi-trace properties.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 26

Sequential modeling with procedures. Uclid5 also allows the definition of procedures
for modeling sequential code. Procedures are defined using common programming constructs
and model control flow, assignments, etc. Procedures in Uclid5 are similar to procedures
in software verification tools such as Boogie [16]; they include the standard requires, ensures,
and modifies statements for specifying preconditions, postconditions, and a list of variables
that are modified in the procedure.

Combining concurrent and sequential modeling. Procedures can also be called in
concurrent updates of the transition systems. This enables Uclid5 to easily combine both
sequential and concurrent modeling, necessary for modeling heterogeneous systems that con-
sist of concurrent hardware and sequential software models.

Axiomatic modeling and operational modeling. The last notable feature of Uclid5
used in this thesis includes the ability to mix both operational and axiomatic styles of
modeling. An operational style of modeling is similar to traditional procedural programming
languages, whereas axiomatic encodings allow one to specify first-order logic properties that
hold at either a local level (e.g., within a procedure at a given program point) or at a global
level (as an axiom). This allows us to easily define abstract (uninterpreted) functions and
add assumptions of the platform.

Multi-modes of verification. Finally, to check properties or invariants over the platform
model, Uclid5 allows a number of verification modes such as bounded model checking,
inductive model checking, and procedural verification. On top of verification, Uclid5 also
provides native support for program synthesis through SyGuS [7].

Following, we provide an example to illustrate how these features in Uclid5 can be
used to verify memory isolation for a C program. We use a common formal modeling
paradigm [204] that models hardware platforms as a transition system. Thus, this will also
serve as a precursor to the programming models introduced in Chapters §4, §5 and §6, and
how we model hardware platforms.

3.3.2 Example Victim C Program

1 // N = 10

2 // &tmp = 0x8000 , &a = 0x8008

3 void victim_prog(int x) {

4 if (x < N) {

5 tmp = a[x];

6 }

7 }

Example 3.4: Victim program in C.

Consider the task of verifying that a
platform isolates a victim’s and adversary’s
memory regions. We assume that the adver-
sary has access to a victim-defined program
as shown in Example 3.4 named victim -

prog. In the victim’s memory region, we
have a variable tmp which is of byte length,
and a which is a byte array of length N =

10. For simplicity, let’s also assume that the

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 27

address of tmp is 0x8000 and that the address of a is 0x8008. Consequently, if these vari-
ables are the only variables accessible to our victim, then the victim’s memory region can
be defined by 0x8000 - 0x800A, assuming tmp and a[i] are byte-sized. Thus, if the victim’s
memory region is isolated from the adversary, then one would expect that no matter how
the attacker calls victim prog with their choice of x, the adversary should not observe
differences in their memory space. This property can be proven using the observational de-
terminism property defined as Eq 3.2. Now, we show how this can be encoded and proven
in Uclid5.

3.3.3 Modeling The Victim C Program

In order to verify a property such as observational determinism on the victim C program,
one needs to first formalize a model of the platform on which the program executes, a model
of the victim program, and the attacker model. We demonstrate this in Uclid5.

1 // platform.ucl

2 module M {

3 // adversary inputs and

observations

4 input x, a: bv64;

5 var obs: bv8;

6

7 // platform state variables

8 var pc: bv64;

9 var mem: [bv64]bv8;

10 const a_ptr: bv64;

11 const tmp_ptr , N: bv64;

12

13 init {

14 assume (tmp_ptr == 0x8000bv64);

15 assume (a_ptr == 0x8008bv64);

16 assume (N == 10bv64);

17 obs = 0bv8;

18 }

19

20 next {

21 havoc pc;

22 if (pc == 0x8000bv64) {

23 call victim_prog ();

24 } else {

25 call adversary_obs ();

26 }

27 }

28 }

Example 3.5: Platform model in Uclid5.

Modeling the platform. Exam-
ple 3.5 illustrates one way that a plat-
form can be modeled in Uclid5 as
a transition system M = ⟨V, I, δ⟩,
where V := {pc, mem, x, addr, obs},
I := (tmp ptr == 0x8000bv64) ∧
(a ptr == 0x8000bv64) ∧ (N ==
0x10bv64 ∧ (obs == 0bv64). δ
is defined by either an execution of
victim prog if pc == 0x8000bv64 or
adversary obs. Uclid5 allows the
definition of state variables using the
var keyword with an associated iden-
tifier for the variable and its type. Sim-
ilarly, const can be used to define the
usual constants. For instance, the pro-
gram counter variable is defined as a
variable with the identifier pc with the
64 bit-vector (bv64) type. To model
memory, we use a byte-accessible array
indexed by 64-bit addresses, declared as
mem with the array type [bv64]bv8. Fi-
nally, we use constants to declare the
address of array a as a ptr, the ad-
dress of the temporary variable tmp as
tmp ptr, and the value N is declared
using the same name.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 28

1 // platform.ucl

2 module M {

3 ...

4 procedure victim_prog () {

5 if (x < N) {

6 mem[tmp_ptr] = mem[a_ptr + x];

7 }

8 }

9 ...

10 }

Example 3.6: Continued platform model in
Uclid5 defining the victim program.

Modeling the victim program.
The program victim prog (e.g., from
Example 3.4) is modeled as a procedure
of the same name in Uclid5 at line 4 of
Figure 3.6. We omit the explanation of
the Uclid5 semantics of the program
and refer to reader to the paper [169].
The takeaway is that the procedure de-
fines sequential semantics for the pro-
gram.

1 // platform.ucl

2 module M {

3 ...

4 procedure adversary_obs () {

5 obs = mem[a];

6 }

7 }

Example 3.7: Continued platform model in
Uclid5 defining the adversary observation.

Modeling the attacker. We model
a passive attacker with an observation
function as described in Chapter 1.2.
To model this, we define a procedure
adversary obs which updates the ad-
versary’s observation obs variable with
the value it reads from memory. This
is defined at line 4 of Figure 3.7. In-
puts to the platform include adv -

x and adv addr, which correspond to
the attacker-controlled argument x of
victim function and the memory address that the attacker reads from to update its ob-
servations. Inputs to a module are read-only variables that can only be changed by an outer
module that instantiates it (i.e., the main module).

Modeling the execution model. The platform’s transition δ is then described on lines
29-36. At line 25, the pc is havoced to unconstrain the value of pc (i.e., it becomes a non-
deterministic value). This allows the platform to execute either the victim program or the
adversary at each step.

3.3.4 Specifying Observational Determinism

Instantiating platform traces. Using the platform model defined in Example 3.5, one
can specify non-interference to check whether or not the adversary’s memory regions are
disjoint from the user’s. This is encoded in Example 3.8. In this example, two instances t1
and t2 of the platform are declared at lines 7 and 8, which corresponds to the two traces π1

and π2 of the non-interference property in Eq 3.1. At each step of the main module, both
of the instances p1 and p2 synchronously take a transition defined by the next statement in
Example 3.5.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 29

Specifying the property. The property is then defined as od at line 16, which asserts
that the observable states of the two traces t1 and t2 are equal.

1 // main.ucl

2 module main {

3 // (low) attacker input

4 var adv_x: bv64;

5 var adv_a: bv64;

6 // traces

7 instance t1: M(x: (adv_x), a: (adv_a));

8 instance t2: M(x: (adv_x), a: (adv_a));

9 // programs execute in lockstep

10 axiom t1.pc == t2.pc;

11 // t1 and t2 public memories are equal

12 axiom forall (a: bv64) ::

13 (a < 0x8000bv64 ==>

14 t1.mem[a] == t2.mem[a]);

15 // observational determinism

16 invariant od: t1.obs == t2.obs;

17

18 next {

19 next(t1); next(t2);

20 }

21

22 control {

23 v = bmc(5);

24 check;

25 print_results;

26 v.print_cex ();

27 }

28 }

Example 3.8: Main proof module in Uclid5.

Control Block. Finally, we
define the verification decision
procedure used to check our
property inside a control block.
In the example, we use bounded
model checking with a horizon of
5 steps (instructed using the com-
mand bmc(5)) to check the in-
variant od. This means that the
transition system will unroll for
5 steps and for each of the 6
states, Uclid5 asserts that the
invariant holds. This is done by
generating verification conditions
for each assertion which is then
translated into SMT-LIB queries
and run on an SMT solver. We
explain theUclid5 workflow fur-
ther in section §3.3.7. In this
particular example, it checks for
the equality of the observations in
the two traces t1, t2 at each state:
t1.obs == t2.obs. The control
block can also be used to specify
other modes of verification such
as procedural verification and in-
ductive model checking which we
use heavily for the proofs in Chapter §6. The check command instructs Uclid5 to execute
the verification commands and print results instructs Uclid5 to print whether each as-
sertion (including invariants and procedure post-conditions) within the purview of the main
module successfully verified or failed to verify. Lastly, v.print cex() instructs Uclid5 to
print counter-examples to the verification queries for any assertion that fails. For bounded
or inductive model checking, the counter-example returned is in the form of a trace. For
procedural verification, a counter-example returned is a pair of pre- and post-states that
violate a post-condition.

Hyperinvariants and hyperaxioms. Uclid5 also supports a more compact way to
specify hyperproperties by using hyperinvariant and hyperaxiom that avoids having to

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 30

explicitly declare all of the traces.

1 // continued platform.ucl

2 module M {

3 ...

4 // same adversary inputs

5 hyperaxiom [2] same_adv_a: a.1 == a.2;

6 hyperaxiom [2] same_adv_x: x.1 == x.2;

7 // assume the programs execute in

lockstep

8 hyperaxiom [2] same_pc: pc.1 == pc.2;

9 // t1 and t2 public memories are equal

10 hyperaxiom [2] same_public_mem:

11 forall (a: bv64) ::

12 (a < 0x8000bv64 ==>

13 mem.1[a] == mem.2[a]);

14 // observational determinism

15 hyperinvariant [2] od: obs.1 == obs .2;

16 ...

17 }

Example 3.9: Observational determinism using
hyperinvariant and hyperaxiom in Uclid5.

This is illustrated in Exam-
ple 3.9 which extends the mod-
ule definition of M from Exam-
ple 3.5. Instead of instantiat-
ing two instances of M, one can
simply specify observational de-
terminism as a (hyper)property
within the module M as shown
on line 5. The [2] indicates
that the property contains two
traces and the suffix operator .i
(where i is an integer) used with
variable v, written v.i, indicates
variable v corresponding to the i-
th trace. In addition to the ax-
ioms in Example 3.8, we must
also add axioms that the attacker
input must be the same between
the two traces, written as same -

a and same x. In Example 3.8,
these assumptions were implicit in the model because we passed the same variables adv a

and adv x into the module definitions.

3.3.5 Verifying Observational Determinism

Executing Uclid5 then converts each assertion in the modules into an SMT query through
a series of compilation passes as described in §3.3.7, where each assertion corresponds to
a property or invariant such as od. If it holds, Uclid5 states that the property passes,
otherwise, a counter-example in the form of a trace is returned containing a valuation of the
variables adv x, adv a, t1.obs, t2.obs, t1.pc, t2.pc, etc, at each state. We note that,
as one would expect, running Uclid5 on Example 3.8 would return a counter-example to
od because there are no constraints on the address adv a that the attacker can use to read
from memory. However, if we have the assumption that the attacker can only access public
memory, e.g., we add the module-level axiom axiom (adv a < 0x8000bv64), then Uclid5
successfully verifies the property od.

3.3.6 Program Synthesis

While this thesis does not employ program synthesis for its endeavors, Uclid5 supports the
synthesis of proof artifacts [152] through the use of SyGuS [7] solvers.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 31

1 // continued platform.ucl

2 module M {

3 // ...

4 // CFG of function to synthesize

5 grammar ax_cfg(tmp: bv64): boolean = {

6 (start : boolean) ::= (expr <= expr);

7 (expr: bv64) ::= tmp | 0x7FFFbv64;

8 }

9 // Synthesis function declaration

10 synthesis function synth_axiom(tmp :

bv64): boolean grammar ax_cfg(tmp);

11 // Axiom to synthesize

12 axiom (synth_axiom(adv_a));

13 }

Example 3.10: Observational determinism using
hyperinvariant and hyperaxiom in Uclid5.

An example of the synthe-
sis feature is illustrated in Exam-
ple 3.10 through the use of syn-
thesis functions. Instead of man-
ually trying to determine system
invariants, a user can specify the
function that they want to syn-
thesize. This is demonstrated by
the declaration of synth axiom.
Optionally, the user may spec-
ify a (context-free) grammar that
defines the search space of candi-
date functions to consider, e.g.,
ax cfg. Running Uclid5 with
the synthesis feature turned on
along with these additional dec-
larations yields the result:

define synth axiom (tmp: bv64): boolean = (tmp <= 32767bv64);

Replacing synth axiom in Figure 3.10 by tmp <= 32767bv64 (i.e. adv a < 0x8000)
allows the proof of od to successfully verify.

3.3.7 UCLID5 Workflow

The check the specified observational determinism property in §3.3.5, UCLID5 goes through
a number of transformative passes from the UCLID5 language down to a SMT-LIB query
which is solved using an SMT solver such as Z3 [56] or CVC5 [15].

Front-end. First,Uclid5 parses the files shown on the left of Figure 3.11 (e.g., platform.ucl,
main.ucl) along with user configurations which specify the underlying backend SMT solver
used. During the parsing stage, Uclid5 also checks for errors that can be inferred statically
(e.g., syntax errors). From these files, the front-end builds an abstract syntax tree (AST) of
the modules defined in the files in the Uclid5 language.

AST transformative passes. The AST then goes through a number of type-checking
passes and transformative passes. The latter rewrites many of the programmatic constructs
such as switch-cases, loops, define statements, procedure calls and etc in a module such that
the resulting module is semantically equivalent to the original. Eventually, all of the modules
are flattened into one monolithic module.

CHAPTER 3. SECURE INFORMATION FLOW WITH FORMAL METHODS 32

UCLID5 Verification Tool

Front-end
parser

AST
transformation

passes

Symbolic
simulator

SMT/SMTO
solver

query model

AST AST
assert
treemain.ucl

platform.ucl

Result +
 counter-
example

SyGuS/SyMO
solver

query model

SMT-LIB
interface

SyGuS-IF
interface

Synth-Lib
interface

Figure 3.11: UCLID5 workflow for verifying the heterogeneous model from §3.3.1.

Symbolic simulator. The symbolic simulator simulates the execution of the given tran-
sition system model based on the verification commands in the control block and produces
a set of assertions solved by an SMT solver. For instance, Example 3.8 simulates bounded
model checking (i.e., bmc) for 5 steps of the transition system, where an assertion checking
the violation of a property at each step is represented by a separate assertion tree. Within
each step, are verification conditions translated according to the semantics defined in the
next block and the procedures called within the next block.

Synth-Lib Interface. Uclid5 supports both verification and synthesis using the Synth-
Lib interface. The interface constructs either a verification or synthesis query based on the
compiler options and assertions generated by the symbolic simulator. These are then passed
to either the SMT-LIB or SyGuS-IF interfaces to create a verification query in the SMT-LIB
or SyGuS-IF language. Uclid5 then calls state-of-the-art SMT and SyGuS solvers to solve
these queries. The results of the queries and any generated models are then returned to the
user.

Worthy of note, Uclid5 also has support for SMT with oracles and synthesis with
oracles. Uclid5 leverages SMTO and SyMO solvers [170] to solve SMT and synthesis
problems that would otherwise be difficult to solve without black-box oracle functions. This
is a promising new direction that enables one to replace a complex or difficult-to-encode
function to be used in an SMT-LIB- or SyGuS-IF-based query, with an oracle interface.
This oracle interface is then used during the SMT-solving phase to call executable binaries,
instead of relying on the complex encoding, to drastically reduce the burden of the SMT
solver.

33

Chapter 4

Trace Property-Dependent
Observational Determinism

One of the core contributions of this thesis that motivates the need for secure hardware plat-
forms is the idea of secure speculation. Secure speculation is a safety property that captures
the essence of transient execution attacks such as Spectre [116] and Meltdown [133]. More
generally, this property is a specialization of trace property-dependent observational deter-
minism, a novel 4-safety property formulation of observational determinism where violations
are conditional based on trace properties. These properties are the first to precisely capture
the broad class of speculation-based hardware attacks in microprocessor designs that have
materialized in recent years. In addition to capturing what it means to be secure against this
broad class of hardware attacks, we also present the first methodology to formally verify a
program’s susceptibility to these Spectre-styled attacks. This approach is further extended
in the chapter §5 to effectively capture a broad class of hardware attacks and scale to realistic
examples.

4.1 Introduction

In 2017, transient execution attacks such as Spectre and Meltdown [116, 133] were discov-
ered and the longstanding presumed security of many optimizations in microprocessors were
suddenly called into question. Over the years, these attacks [39, 87, 93, 94, 98, 99, 100,
117, 137, 215] continued to grow at an alarming rate, and have shown that side-channel
attacks are more exploitable than previously thought. While side-channel attacks [2, 105,
128, 134, 162, 165, 191] such as Prime+Probe are nothing new, transient execution attacks
are interesting because they combine side-channels with microprocessor optimizations in an
intricate and obscure way that creates a vulnerability we have not considered. A number of
software and hardware mitigations [93, 94, 95, 96, 99, 100, 149, 158, 213] have been proposed
for these vulnerabilities, many of which have also been implemented in widely-used software
such as the Linux kernel [97, 203], Microsoft Windows [38, 148] and the Microsoft Visual

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
34

Studio compilers and associated libraries [149]. However, these mitigations are not provably
secure and some (e.g., Spectre mitigations in Microsoft Visual Studio) have even been found
to be incomplete [115].

Transient execution vulnerabilities exploit microarchitectural side-channels in modern
high-performance superscalar processors. These processors contain microarchitectural opti-
mizations — e.g., branch prediction, data and instruction caching, out-of-order execution,
speculative memory address disambiguation, and data forwarding, to name a few — in order
to execute programs more efficiently [195, 200]. Many of these optimizations include specu-
lation techniques [73, 132, 139, 230] that operate on data before the microprocessor knows it
needs to. This is accomplished by using prediction structures (e.g., a pattern history table
for conditional branch prediction) to guess whether a particular execution is likely to occur
before its results are available and speculatively executes based on the prediction. If the
prediction turns out to be wrong, the microprocessor uses a rollback mechanism to revert
the architectural state – which consists of register and memory values – back to their origi-
nal values before speculative execution started on that instruction, and the execution begins
again on the correct execution path. In many cases, it is possible to build predictors that
mostly guess correctly and speculation leads to huge performance and power benefits.

The subtle issue underlying this rollback mechanism, which was previously thought to be
sufficient in preventing unintended leakage of secret information, is that only the architectural
state is restored while the microarchitectural state, such as the cache and branch predictor
state, is not. Transient execution vulnerabilities exploit this by mistraining prediction struc-
tures to speculatively execute vulnerable wrong-path instructions and exfiltrate confidential
information by examining the residual microarchitectural side-effects of misspeculation.

4.1.1 Preventing Transient Execution Attacks

The above leads to two obvious templates for preventing these vulnerabilities: (1) restrict
speculation, or (2) prevent leakage of information through microarchitectural side-channels.

Restricting speculation. A number of mitigations take the first approach by turning off
speculation in a targeted manner [38, 93, 94, 97, 148, 158, 203, 213]. While most of these
mitigations were developed through careful manual analysis of known exploitable vulnera-
bilities, automated tools for Spectre mitigation also take this approach [149]. While most
of these mitigations were developed through careful manual analysis of known exploitable
vulnerabilities, automated tools for Spectre mitigation also take this approach [149]. Un-
fortunately, the latter has been found to be incomplete [115] while the former techniques
do not come with provable security guarantees. The larger point here is that there is no
formal methodology for reasoning about the security of mitigations to transient execution
vulnerabilities.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
35

Preventing leaky side-channels. The second approach attempts to close the exfiltra-
tion side-channel by ensuring that it does not leak information to the attacker at all. For
instance, Dynamically Allocated Way Guard (DAWG) [113] closes the cache side-channel by
fully isolating memory between protection domains. Despite this, other side channels (e.g.,
prefetchers, DRAM row buffers, load-store queues, etc) potentially remain exploitable with
these solutions and partitioning comes with a significant performance penalty. Here too, it
remains unclear whether partitioning a few exfiltration channels is sufficient to prevent all
transient execution vulnerabilities.

Thus, current approaches to these vulnerabilities face two major challenges: the lack
of provable security and large performance penalties. In this context, it is noteworthy that
versions of the Linux Kernel have turned off certain Spectre mitigations by default because
performance slowdowns of up to 50% [123, 212] were observed for certain workloads. We
believe these high overheads are a result of the inability to reason about the security of the
mitigations precisely. If we could systematically and accurately capture security, it will be
possible to develop more aggressive mitigations that disable speculation in a very targeted
manner, resulting in much lower performance overheads.

The points above highlight the need for formal verification techniques for secure specu-
lation. This problem is most closely related to the secure information flow, which has been
studied by a rich body of literature [20, 51, 76, 142, 178, 206, 233]. Unfortunately, existing
work on secure information flow is not sufficient to precisely capture the class of transient
execution vulnerabilities. Specifically, it is important to note that traditional notions of
information flow security like non-interference [76] and observational determinism [142, 178,
233] are only satisfied when there is no information flow from confidential state to adver-
sary observable state. In the context of Spectre, this would imply no information flow from
confidential memory locations to microarchitectural side channels. For most programs of
interest, e.g., the Linux kernel and Microsoft Windows operating system, all modern com-
mercial processors do leak information about confidential operating system state through
microarchitectural side channels like caches, prefetchers, DRAM row buffers, etc. Therefore,
traditional formulations of secure information flow are always violated for such programs
regardless of whether they are vulnerable to transient execution attacks.

4.1.2 Challenges

Evidently, the inadequacy of these traditional properties points to a key challenge in the
verification of secure speculation: formulating the right property. It is necessary to find a
property that precisely captures the new leaks introduced by the exploitation of microar-
chitectural side-channels through speculation. These new leaks stand in contrast to the
previously known side-channel leaks which are already captured via traditional notions of
secure information flow such as noninterference/observational determinism.

A second important challenge is coming up with a general system and adversary model
that can be used to reason about the category of transient execution attacks, as opposed to

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
36

pattern-matching known vulnerabilities. Thirdly, we need a verification methodology that
can be used to prove that specific programs satisfy secure speculation.

4.1.3 Contributions

In this chapter, we address each of the above challenges. We introduce a formal methodology
for reasoning about security against transient execution attacks. Our approach is based on
the formulation of a new class of secure information flow security properties called trace
property-dependent observational determinism (TPOD) [46]. These properties, an extension
of observational determinism, are defined with respect to a trace property and intuitively
TPOD captures the following notion of security: does violation of the trace property introduce
new counterexamples to observational determinism?

We use TPOD to reason about the security of software-based Spectre mitigations. For
this, we present an assembly intermediate representation (AIR) into which machine code
can be lifted and introduce speculative operational semantics for this AIR. We introduce a
general adversary that captures transient execution attacks and we define a secure specula-
tion property for this adversary as an instance of TPOD. We verify secure speculation in an
automated fashion using bounded model checking and induction in the Uclid5 verification
tool [193, 214] on a suite of small but illustrative benchmarks, several of which are from the
literature on Spectre mitigations [115].

To summarize, the contributions of this work are the following.

• We introduce a novel methodology for reasoning about the security of microarchitec-
tural speculation mechanisms. Our methodology can prove that a program is secure
against transient execution vulnerabilities.

• We introduce a new class of information-flow security properties called trace property-
dependent observational determinism. This class of properties allows us to reason
about information leaks that occur due to interactions between microarchitectural
mechanisms.

• We introduce speculative operational semantics for an assembly intermediate repre-
sentation, an adversary model for transient execution attacks over this representation,
and a secure speculation property. Violations of the property correspond to transient
execution vulnerabilities.

• We demonstrate our methodology by automatically proving secure speculation for a
suite of illustrative programs.

The rest of this work is organized as follows. Section 4.2 presents an overview of tran-
sient execution attacks. Section 4.3 reviews observational determinism and introduces trace
property-dependent observational determinism. Section 4.4 describes the assembly interme-
diate representation and speculative operational semantics for it. The adversary model and

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
37

the secure speculation property are described in Section 4.5. Sections 4.6 and 4.7 present
our verification approach and case studies. Section 4.8 reviews related work and Section 4.9
provides some concluding remarks.

4.2 Overview

In this section, we present an overview of transient execution vulnerabilities as exemplified
by Spectre and review the verification challenges posed by these vulnerabilities.

4.2.1 Introduction to Transient Execution Attacks

(S1) Prepare
exfiltration channel,

branch predictors

(S2) Invocation of
(trusted) victim code

(S3) Attacker
triggered

misspeculation

(S4) Extract secret
from exfiltration

channel

Figure 4.1: Four stages of a speculative execution attack. The execution of untrusted code
is shown in red, while the execution of trusted code is in blue. We show the
attacker-triggered misspeculation in the trusted code in the violet dotted box.

Transient execution attacks involve two security domains represented as the following
components of the platform: an untrusted/low component (the attacker) that interacts with
a trusted/high component (the victim) over some communication interface. The attacker
exfiltrates confidential information from the victim by exploiting microarchitectural artifacts
of misspeculation in high-performance processors. As shown in Figure 4.1, a transient exe-
cution attack has four stages. We explain these four stages using the code snippet shown in
Figure 4.4(a), which is vulnerable to Spectre variant 1.

(S1) Prepare. In the first stage of the attack, the attacker makes the necessary prepa-
rations to (a) trigger code that leaks information to a side-channel in the next stage of the
attack and (b) flush or prime the side-channel. One commonly used exfiltration side channel
is the data cache. To accomplish the former, the attacker must construct or find a snippet of
code that can transmit secret(s) from the victim domain to the cache. One such type of code
snippet consists of conditional branch-guarded memory accesses. For this particular type of
gadget, the attacker needs to train the branch predictor by repeatedly executing the victim
code snippet with carefully chosen input arguments so that the branch predictor learns to
always take (or not take) the branch. To complete the preparation, the attacker can use
existing methods to flush [228] the cache (e.g., using clflush in x86 architectures) so that
all entries are invalidated or prime [134] the cache by accessing a specific range of addresses
to evict cache entries.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
38

(S2) Invocation of victim code. In the second stage of the attack, the attacker invokes
victim code with carefully chosen input arguments to trigger misspeculation. This invocation
occurs over some communication interface between the untrusted and trusted code. One such
interface is through system calls and returns; here the attacker is an untrusted user-mode
process while the victim is the operating system kernel. Another example in the context of
browser-based sandboxing, e.g. Native Client [229], would be function calls and returns. The
attacker is untrusted code running within the sandbox while the victim is NaCl’s trusted API.
Many other vulnerable interfaces exist: hypercalls, enclave entry, software interrupts, etc.
The victim may not even be explicitly invoked: implicit invocation is possible by mistraining
the branch predictor or by causing a hardware interrupt to occur! For simplicity, we focus on
a function call/return interface but our techniques are easily generalized to other interfaces.

(S3) Exploiting misspeculation. In the third stage of the attack, the victim code ex-
ecutes, typically through a call by the attacker. At some point, it will misspeculate in an
attacker-controlled manner resulting in the execution of “wrong path” instructions. These
wrong path instructions update speculative architectural state – register and memory values
– and microarchitectural state including caches, branch predictors, and prefetchers. Even-
tually, the wrong path is resolved and its instructions are flushed. Speculative updates to
the architectural state (registers and memory) are flushed, but the microarchitectural state
(e.g., cache updates) is not restored.

While many past attacks have exploited microarchitectural side channels to extract con-
fidential data [2, 105, 128, 134, 162, 165, 191], the difference with transient execution vul-
nerabilities is that the latter only manifest due to misspeculation in the processor. Even
programs whose architectural (non-speculative) execution is carefully designed to not have
any side-channel leaks could be vulnerable to transient execution attacks.

(S4) Exfiltration. Finally, control returns to the attacker who examines the microarchi-
tectural side-channel state to exfiltrate confidential data from the victim. In cache-based
side channel attacks, this involves reloading or probing the cache in order to infer secrets.

4.2.2 Spectre Variants and Associated Verification Challenges

1 uint8_t a1[M];

2 uint8_t a2[P];

3 uint8_t foo(unsigned i) {

4 if (i < N) {

5 uint8_t v = a1[i];

6 return a2[v*S];

7 }

8 return 0;

9 }

Figure 4.2: Spectre v1 vulnerability.

We now describe Spectre variant 1, the bounds
check bypass attack, as the running example of tran-
sient execution vulnerabilities. We will then use this
example to explore various modifications of the code
to explain a standard approach to mitigate the vulner-
ability and how the vulnerability can be conditional.
These examples will provide a sense of how powerful
these vulnerabilities are and how precise the analysis
needs to be for secure speculation.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
39

Each of the examples contains a victim function named foo, similar to Figure 4.2. This
function is trusted but it is invoked by an untrusted attacker with an arbitrary attack-chosen
i. foo has access to two arrays: a1 and a2. Note that any architectural execution of these
functions should never see accesses to a1[i] for i ≥ N. Therefore, one might expect that no
information could possibly leak about these values in the array through any side-channel. As
we will see, the Spectre attack shows how these values can be inferred by a clever attacker.
In the following code snippets, we assume M > N and the argument i is an untrusted (low-
security) input to the trusted (high-security) function foo. For simplicity, we also assume
that the cache is direct-mapped.

Spectre Variant 1 Walkthrough

Figure 4.2 shows a snippet of code that demonstrates vulnerability to the Spectre variant 1
attack [116]. To help explain the vulnerability, we show how the cache state evolves during
each stage of the attack in Figure 4.3.

(S1) Prepare. First, the attacker sets up (i.e., “primes”) the cache by bringing two ad-
dresses A and B into the cache. These addresses are carefully chosen so that they reside in the
same cache set as the subsequently-accessed addresses a2[0] and a2[S] respectively. Next,
the attacker mistrains the branch predictor so that in a subsequent execution of the branch
if (i < N) at line 4, the microprocessor will take the branch regardless of the actual value
of i < N. This completes the preparations for the attack.

(S2) Invocation of victim code. The attacker then invokes foo with the argument
i = N + 2. We note that the +2 is used to bring the first memory access outside of what is
considered the public part of memory and thus, the value accessed a1[N+2] is potentially a
secret.

(S3) Exploiting misspeculation. The argument i = N + 2 along with branch predic-
tor mistraining in S1 triggers a misspeculation on line 4. This results in a1[N+2] and
a2[a1[N+2]*S] being speculatively brought into the cache. Eventually, the processor real-
izes that the branch prediction was incorrect and “undoes” modifications to the architectural
state, but the cache state is not restored.

(S4) Exfiltration. In the final stage, the attacker exploits the fact that the address
brought into the cache on line 6 depends on the value (not address) of a1[N+2]. The
attacker determines this address by loading A and B. One of these will miss in the cache and
this timing channel allows the attacker to infer the value of a1[N+2].

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
40

Attacker primes cache, mistrains branch predictor(S1)

A B . . .

Invoke victim code: call foo(N+ 2)(S2)

A B . . .

Exploitable misspeculation: predict taken on if(i < N)(S3)

A B . . .

load v = a1[i]

A a1[i] . . . B . . .

load a2[v ∗ S]

a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

v == 0? v == 1?

Squash misprediction

(note cache

unchanged)
a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Return to caller

(attacker)

a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Attacker probes A and B in cache to infer a1[N+ 2](S4)

Figure 4.3: Cache state evolution in Spectre variant 1. The rectangular boxes show the
addresses that are cached. Untrusted accesses are red while accesses by trusted code are

blue. For simplicity, we show the attack on a direct-mapped cache.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
41

1 uint8_t a1[M];

2 uint8_t a2[P];

3 uint8_t foo(unsigned i) {

4 if (i < N) {

5 _mm_lfence ();

6 return a2[a1[i]*S];

7 }

8 return 0;

9 }

(a) Fix for Spectre v1.

1 uint8_t a1[M], a2[P];

2 uint8_t foo(unsigned i) {

3 if (i < N) {

4 uint8_t v = a1[i];

5 _mm_lfence ();

6 return a2[v*S];

7 }

8 return 0;

9 }

(b) Another fix for Spectre v1.

Figure 4.4: Illustrative examples of fixes to vulnerable snippet in Figure 4.2.

Fixes to Spectre Variant 1

As the leaks in Spectre are due to interactions between the branch predictor and the
cache, a straightforward fix is to prevent speculation. Figure 4.2 is made secure by inserting
a load fence [94, 95] as shown in Figures 4.4a and 4.4b. In Figure 4.4a, the load fence on
line 5 ensures that no memory accesses are made until the processor is sure that the branch
will be taken.

Figure 4.4b on the other hand, is slightly more involved. The load fence executes after the
first load and before the second load. At first glance, it may appear to be insecure, because
a1[i] can still be brought into the cache speculatively. However i is attacker-chosen while
the base address of a1 can also be inferred by the attacker. Therefore, bringing a1[i] into
the cache leaks no additional information. Figure 4.4b is secure.

A Conditionally Vulnerable Variant of Spectre

1 uint8_t a1[M], a2[P];

2 uint8_t foo(unsigned i) {

3 if (i < N) {

4 return a2[a1[0]*S]+i;

5 }

6 return 0;

7 }

Figure 4.5: Conditional variant.

Figure 4.5 presents an interesting variation of Fig-
ure 4.2. In this case, the first memory load always
accesses a1[0]. Since this value is leaked through the
cache (when i < N) even without misspeculation, it
would seem that this code is not vulnerable to tran-
sient execution attacks. However, if N= 0, then a1[0]

should not be accessed. But the attacker can mis-
train the branch predictor to predict that the branch
on line 4 is taken∗ and then infer the value of a1[0].
This code exhibits transient execution vulnerabilities
when N = 0 but not when N > 0.

∗One way to do this might be to exploit aliasing in branch predictor indexing by training a different
branch which maps to the same predictor index.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
42

Verification Challenges

In Figure 4.2, information about a1[i] leaked when i = N + 2. For this value of i, foo
should not have performed any memory/cache accesses. This points to one challenge in
verifying secure speculation: the verification model needs to capture interactions between
microarchitectural side-channels to detect leaks.

Another challenge is demonstrated by Figures 4.4a, 4.5 and 4.4b. Identifying the vulner-
ability requires precise semantic analysis of program behavior. Static analysis and dynamic
analysis of code are often not sufficient because they result in a number of false positives
and negatives.

It is also important to note that the secure versions foo in Figures 4.4a and 4.4b do not
satisfy traditional notions of information flow security [51]: noninterference [76] or observa-
tional determinism [142, 178, 233] because there is information flow from a1 to the cache
side-channel even if the function is executed on a processor without a branch predictor.

Finally, work on formally verifying practical programs at the instruction level often does
not come without sacrificing accuracy or running into the path explosion problem. As a
result, one needs to be delicate in using the appropriate theorem provers and have a clever
encoding of the model with the right logical theories to avoid these issues.

4.2.3 Scope and Assumptions

Considering these challenges, we reduce our approach to a particular scope and make several
simplifying assumptions. We list these below:

• Basic blocks of programs make up the atomic transitions of the platform model as
our work targets verifying speculative in-order processors. While this can accurately
capture the semantics of in-order programs, we acknowledge that practical platforms
execute instructions out of order aggressively.

• While the adversary can exploit the cache side channel, its capabilities are not om-
nipotent, and reading from the LLC cache [134] can be difficult. However, we elide
the detail that observations are probabilistic. This allows us to over-approximate the
observations of the adversary to preserve soundness and simplify the logic required to
model the attack.

4.3 Specification using Trace Property-Dependent

Observational Determinism

To address the challenges raised in § 4.2.2, we formulate a secure speculation property
that precisely captures transient execution vulnerabilities. Toward this end, we first review
observational determinism in the context of this model. We will discuss the shortcomings of
observational determinism for capturing transient execution attacks. We then motivate and

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
43

describe trace property-dependent observational determinism: a novel class of information
flow properties that includes secure speculation.

4.3.1 Programming Model

We begin by introducing the programming model under which observation determinism will
be defined. This is necessary to precisely capture the execution patterns of the adversary
and victim, as well as what parts of the system are trusted and untrusted. Naturally, we can
introduce the components based off the definition of L2 consist of two parts: the operations
that the platform executes and the system state that can be read and written.

Low and high components. To specify these components, we formalize them as two
distinct operations, opL and opH. The low component consists of the untrusted adversary
and public components of the platform. The high component consists of the trusted victim
program and confidential memory owned by the victim. We formalize this difference in
security domains using the following operations. We write opL(q) to denote the operation
executed by the low component in a particular state q; opL(q) is ⊥ if the low component
is not being executed in state q. Similarly, the operation executed by the high component
in the state s is denoted by opH(q). We overload notation and refer to opL(π) and opH(π)
to denote the trace of operations executed by the low and high components respectively in
π. Formally, this is defined as opL(π) = opL(π

(0))opL(π
(1))opL(π

(2))...opL(π
(n)) and similarly

defined for opH.

Execution with the adversary. To generalize to a wide range of programming models,
our programming model allows an adversary to execute interleaved with the victim. At any
point during the adversary execution, it is allowed to execute for a potentially unbounded
number of steps to observe or tamper the platform variables. We provide details on the
specifics of the adversary model we use for the Spectre attack in section §4.5.1.

4.3.2 Low Operation-Equivalent Extension of Observational
Determinism

We extend the observational determinism for the programming model presented above, which
introduced low and high operations corresponding to the operations of the adversary and the
trusted victim program respectively. This allows us to filter traces where different untrusted
operations are the reason for a violation of the property. This extension is described as
Eq. 4.1, which specializes Eq. 3.2 by adding an assumption to constrain the low operations
of the two traces. This assumption is based on the constant-time programming discipline [42].

∀π1, π2.
(
π
(0)
1 ≈L π

(0)
2 ∧ opL(π1) = opL(π2)

)
=⇒

(
π1 ≈L π2

)
(4.1)

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
44

π
(0)
1

π
(0)
2

≈
L

. . .

. . .
≈

L

π
(i)
1

π
(i)
2

π
(i+1)
1

π
(i+1)
2

≈
L

π
(i+2)
1

π
(i+2)
2

≈
L

. . .

. . .

≈
L

π
(j)
1

π
(j)
2

≈
L

π
(j+1)
1

π
(j+1)
2

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

Figure 4.6: Illustrating observational determinism in the context of the low attacker and
high (trusted) program: low instructions are labeled L, while high instructions are labeled

H1 and H2, proof obligations are shown in green and assumptions are shown in blue.

Figure 4.6 depicts observational determinism, along with the initial assumptions and
proof obligations required for it to hold on a platform. Initially, the traces start in low-
equivalent states π

(0)
1 and π

(0)
2 . In each subsequent step of the two instances, the low opera-

tions are assumed to be identical denoted by L above the state transition arrows. However,
when the trusted program is executing, each instance may execute different high operations
H1 and H2. Similar to Eq. 3.2, this variant of observational determinism holds if every corre-
sponding pair of states in the two traces are low-equivalent. Thus, a violation of this property
would correspond to some execution of the instances that end in states being distinguishable
from each other.

Limitations of Observation Determinism for Secure Speculation

4

4

5

a1

5

a1

6

a2 + v1 · S

6

a2 + v2 · S

8

8

4

4

5

a1 + 5

5

a1 + 5

6

a2 + v1 · S

6

a2 + v2 · S

8

8

foo(0) foo(5)

Figure 4.7: Illustrating the strawman observational determinism property for Figure 4.2.
Numbers within each state refer to program counter values (shown as line numbers).

Labels above each state indicates the data memory address accessed (if any). States shown
in dotted circles are specuative states.

As a strawman proposal, consider an observational determinism property that attempts
to capture secure speculation by requiring that the trace of memory accesses by the function
foo in Figure 4.2 be identical for all pairs of invocations where the untrusted argument i is
equal.

Two such pairs of traces are shown in Figure 4.7. N=4 in both pairs; in (a), i=0 and the
program does not misspeculate while in (b), i=5 and the program misspeculates. The values

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
45

v1 and v2 correspond to the confidential data stored at the location a1[i]. We see that the
property is violated in (b) as the traces of memory addresses differ if v1 ̸= v2. This violation
is due to the transient execution vulnerability. It is also violated in (a) because the program
leaks a1[i] even though there is no misspeculation. The larger point is that observational
determinism can capture transient execution vulnerabilities only if the program satisfies the
observational determinism property – has zero violations of the property – in the absence
of misspeculation. Most programs of interest (e.g., the Linux kernel) do not satisfy such
a property. Applying the strawman methodology to these programs results in a flood of
counterexamples to observational determinism that are completely unrelated to speculation,
rendering the methodology useless.

We wish to isolate violations of observational determinism solely caused by the satisfac-
tion/violation of a particular property of the trace (e.g., misspeculation). As noted above,
observational determinism does not allow us to do this generally for different programs.†

In the following, we capture this security requirement in the form of a 4-safety property to
isolate these trace property-dependent violations.

4.3.3 Trace Property-Dependent Observational Determinism

π0
1

π0
2

≈
L

. . .

. . .

≈
L

πi
1

πi
2

πi+1
1

πi+1
2

≈
L

πi+2
1

πi+2
2

≈
L

. . .

. . .

≈
L

πj
1

πj
2

≈
L

πj+1
1

πj+1
2

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

π0
3

π0
4

≈
L

. . .

. . .

≈
L

πi
3

πi
4

πi+1
3

πi+1
4

≈
L

πi+2
3

πi+2
4

≈
L

. . .

. . .

≈
L

πj
3

πj
4

≈
L

πj+1
3

πj+1
4

L

L

H1

H2

L

L

H1

H2

L . . .

L . . .

π1, π2 ∈ T

π3, π4 ̸∈ T

Figure 4.8: Illustrating trace property-dependent observational determinism. As in
Figure 4.6 low instructions are labelled L, while high instructions are labelled H1 and H2,

proof obligations are shown in green and assumptions are shown in blue.

In a processor that never misspeculates – either because it does not speculate or because
speculation is perfect – there is no information leakage due to transient execution. Therefore,
finding transient execution vulnerabilities is equivalent to finding information leaks that
would not have occurred in the absence of misspeculation.

†We explain this further in Section 4.6.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
46

To formulate the notion of information leakage above, we introduce a class of informa-
tion flow properties called trace property-dependent observational determinism (TPOD), a
hyperproperty over four traces π1, π2, π3, π4 that is defined with respect to a trace property
T .

Definition 4.1 (Trace Property-Dependent Observational Determinism). Suppose the
following assumptions hold:

1. traces π1 and π2 satisfy the trace property T ,

2. traces π3 and π4 do not satisfy the trace property T ,

3. all four traces execute the same low operations,

4. traces π3 and π4 execute the same high operations as π1 and π2 respectively,

5. traces π1 and π2 are low-equivalent and the initial states of π3 and π4 are low-
equivalent.

Then, TPOD is satisfied if π3 and π4 are low-equivalent. High operations in π1, π3 and
π2, π4 respectively must be identical; they are not necessarily identical in π1, π2 or π3,
π4. This is formalized as Eq 4.2 below.

∀π1, π2, π3, π4 ∈ Tr(M).

π1 ∈ T ∧ π2 ∈ T ∧ π3 ̸∈ T ∧ π4 ̸∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π

(0)
3 ≈L π

(0)
4 =⇒

π3 ≈L π4 (4.2)

TPOD is shown in Equation 4.2‡ and depicted in Figure 4.8. A violation of TPOD
corresponds to a sequence of low operations that were unable to distinguish between high
states when the trace property T was satisfied, but are able to distinguish between high
states when T is not satisfied. In other words, violation of the trace property T introduced a
new counterexample to observational determinism. Naturally, whether a platform speculates
can be expressed as a trace property. We use this insight to define secure speculation by
specializing TPOD in §4.4.

‡We follow the convention that the implication operator is right-associative.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
47

Refinement and TPOD

In general, hyperproperties may not be preserved by refinement [178]. However, as we show
below TPOD is subset-closed: if any set of traces satisfies TPOD, then every subset of this
set also satisfies TPOD.

Lemma 4.1. TPOD is a subset-closed hyperproperty.

Proof. Assume some instance of TPOD, say φ, is not subset-closed. There must exist some
sets of traces T1 and T2 such that T1 ⊂ T2, T1 ̸|= φ and T2 |= φ. Then there exists a
tuple of traces π ∈ T1 that violates φ. Since T1 ⊂ T2 then π ∈ T2 and thus T2 ̸|= φ.
Contradiction.

Subset-closed hyperproperties are important because they are preserved by refinement [51].
This means that one can prove TPOD on an abstract system, and through iterative refine-
ment show that TPOD holds on a concrete system that is a refinement of the abstract
system. Therefore, TPOD can potentially be scalably verified on complex systems.

Corollary 4.1. TPOD is preserved by refinement.

A minor extension to the template shown in Equation 4.2 is to consider an antecedent
trace property U that must be satisfied by all traces. The trace property U may be used to
model constraints on valid executions.

∀π1, π2, π3, π4 ∈ Tr(M).

π1 ∈ U ∧ π2 ∈ U ∧ π3 ∈ U ∧ π4 ∈ U =⇒
π1 ∈ T ∧ π2 ∈ T ∧ π3 ̸∈ T ∧ π4 ̸∈ T =⇒
opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π

(0)
3 ≈L π

(0)
4 =⇒

π3 ≈L π4 (4.3)

This version of TPOD is shown in Equation 4.3. This extension is also subset-closed and
preserved by refinement.

4.4 Formal Modeling of Speculation

We now focus on formulating and reasoning about secure speculation. This requires formal-
izing a platform that can capture the relevant hardware-software states to model speculation.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
48

We accomplish this by introducing the speculative platform model along with an instruction
set assembly intermediate representation associated speculative operational semantics which
combines updates to hardware and software state.

4.4.1 The Speculative Platform Model

A platform model that can reason about secure speculation must be capable of interfacing
a platform’s software components with its hardware components. The former instructs
how one orchestrates an attack, and the latter makes up the components being exploited.
This means that the platform must model programs with at least some notion of assembly
language instructions, where the behavior of hardware can be incorporated as a side-effect
of the instructions.

The other consideration for our platform model is the level of abstraction it is described.
While one can attempt to be precise and implement the model at the RTL or implementation
level, this is not scalable and existing literature on generating sound models from RTL
has seen limited success in formal verification. Modeling specific architectures can also
be cumbersome and gives limited insight into the underlying causes of transient execution
vulnerabilities. Moreover, modeling at this level of detail prevents one from capturing secure
speculation for a class of platform designs and becomes somewhat ad-hoc.

Thus, we present an abstract instruction interface, assembly intermediate representation
(AIR), which ISAs can be lifted into. We encode speculation as part of the semantics of the
instructions provided by this interface. We refer to this as speculative operational semantics§.

Formally, the speculative platform model can be defined as a specialization of the state-
transition system model in §3.1 where the operation set is Op

.
= {RegisterUpdate,Load,

Store,T-Pred,T-Mispred, NT-Pred, NT-Mispred,Goto, SpecFence,Resolve}.
These operations correspond to the instructions defined in AIR and are explained below.

Assembly Intermediate Representation (AIR)

The AIR is shown in Figure 4.9. A program is a list of instructions. Instructions are one of
the following types: updates to registers, loads from memory, stores to memory, conditional
and unconditional jumps, and speculation fences.

The first five types of instructions are standard. We introduce a speculation fence in-
struction which causes the processor to not fetch any more instructions until all outstanding
branches are resolved. The load fence instructions in Figures 4.4a and 4.4b are modeled as
speculation fences because the relevant aspect of these fences is that they stop speculation.

Note that jump targets must be constants in AIR. This is intentional and precludes
the verification of programs using indirect jumps and returns in the current version of our
verification tool. We do this to simplify the operational semantics for speculative execution.

§The AIR is based on the binary analysis platform (BAP) intermediate language (IL) [34]; the speculative
operational semantics is the first to be introduced for an instruction-level interface. “Lifters” from x86 and
ARM binaries to BAP can be found at [25].

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
49

⟨program⟩ ::= ⟨instr⟩*

⟨instr⟩ ::= ⟨reg⟩ := ⟨exp⟩
| ⟨reg⟩ := mem[⟨exp⟩]
| mem := mem[⟨exp⟩ → ⟨exp⟩]
| if ⟨exp⟩ goto ⟨const⟩
| goto ⟨const⟩
| specfence

⟨exp⟩ ::= ⟨const⟩ | ⟨reg⟩ | ♢u⟨exp⟩ | ⟨exp⟩ ♢b⟨exp⟩

Figure 4.9: The Assembly Intermediate Representation (AIR). ♢u and ♢b are typical unary
and binary operators respectively.

Modeling speculative execution of indirect jumps and returns requires modeling indirect
branch predictors, branch target buffers and the return address stack. Introducing these
structures into our operation semantics is conceptually straightforward but runs into scala-
bility limitations during verification. We plan to extend the operational semantics to include
these instructions while addressing scalability in future work.¶

Const
∆, n ⊢ c ⇓ c

Reg
∆[n, r] = v

∆, n ⊢ r ⇓ v

UnOp
∆, n ⊢ e ⇓ v′ ♢uv′ = v

∆, n ⊢ ♢ue ⇓ v

BinOp
∆, n ⊢ e1 ⇓ v1 ∆, n ⊢ e2 ⇓ v2 v1♢bv2 = v

∆, n ⊢ e1♢be2 ⇓ v

Figure 4.10: Semantics of expression evaluation

“Flattening” indirect jumps and returns into a sequence of direct jumps is similar in
principle to control-flow integrity (CFI) checks [1, 207]. Since secure programs will likely be
implementing CFI anyway, we assert compilers can be modified in straightforward ways to
produce code without indirect jumps and returns (with some performance cost).

Operational Semantics for AIR

In Figures 4.10 and 4.11, we introduce operational semantics for speculative in-order
processors. We model speculation in the branch predictor for direct conditional branches.

¶It is important to note that our exclusion of indirect jumps does not mean our verifier leaves programs
vulnerable to Spectre variant 2. In programs without indirect branches, all indirect branch mispredictions
will be redirected at decode, long before execution or memory access.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
50

RegisterUpdate

∆, n ⊢ e ⇓ v ∆′ = ∆[(n, r)→ v] ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.⟨ρ,⊥⟩ ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, r := e ⇝ Π,∆′, µ, pc′, ω′, β, n, ι′

Load

∆, n ⊢ e ⇓ a µ[n, a] = v ∆′ = ∆[(n, r)→ v] ρ = pc[n] pc′ = pc[n→ ρ+ 1]
ι = Π[ρ] ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.⟨ρ, a⟩ ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, r := mem[e] ⇝ Π,∆′, µ, pc′, ω′, β, n, ι′

Store

∆, n ⊢ e1 ⇓ a ∆, n ⊢ e2 ⇓ v µ′ = µ[(n, a)→ v] ρ = pc[n] pc′ = pc[n→ ρ+ 1]
ι = Π[ρ] ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.⟨ρ, a⟩ ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, mem := mem[e1 → e2] ⇝ Π,∆, µ′, pc′, ω′, β, n, ι′

T-Pred

∆, n ⊢ e ⇓ true mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.⟨ρ,⊥⟩ β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c ⇝ Π,∆, µ, pc′, ω′, β′, n, ι′

T-Mispred

∆, n ⊢ e ⇓ true mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ]
n′ = n+ 1 pc′ = pc[n′ → ρ+ 1, n→ c] ρ′ = pc′[n′]
ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

∀m, r ∈ N. ∆′[m, r] = ite(m = n′,∆[n, r],∆[m, r])
∀m ∈ N, a ∈ A. µ′[m, a] = ite(m = n′, µ[n, a], µ[m, a])

Π,∆, µ, pc, ω, β, n, if e goto c ⇝ Π,∆′, µ′, pc′, ω′, β′, n′, ι′

NT-Pred

∆, n ⊢ e ⇓ false mispred(n, β, pc) = false ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ ρ+ 1]
ρ′ = pc′[n] ι′ = Π[ρ′] ω′ = ω.⟨ρ,⊥⟩ β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, if e goto c ⇝ Π,∆, µ, pc′, ω′, β′, n, ι′

NT-Mispred

∆, n ⊢ e ⇓ false mispred(n, β, pc) = true ρ = pc[n] ι = Π[ρ]
n′ = n+ 1 pc′ = pc[n′ → c, n→ ρ+ 1] ρ′ = pc′[n′]
ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

∀m, r ∈ N. ∆′[m, r] = ite(m = n′,∆[n, r],∆[m, r])
∀m ∈ N, a ∈ A. µ′[m, a] = ite(m = n′, µ[n, a], µ[m, a])

Π,∆, µ, pc, ω, β, n, if e goto c ⇝ Π,∆′, µ′, pc′, ω′, β′, n′, ι′

Goto

ρ = pc[n] ι = Π[ρ] pc′ = pc[n→ c] ρ′ = pc′[n]
ι′ = Π[ρ′] ω′ = ω.⟨ρ,⊥⟩ β′ = update(n, ρ, ι, β) ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, goto c ⇝ Π,∆, µ, pc′, ω′, β′, n, ι′

SpecFence
n′ = 0 ρ′ = pc[n′] ι′ = Π[ρ′] ¬resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, ι ⇝ Π,∆, µ, pc, ω, β, n′, ι′

Resolve
n′ = n− 1 n > 0 ρ′ = pc[n′] ι′ = Π[ρ′] β′ = update(n, ρ, ι, β) resolve(n, β, pc)

Π,∆, µ, pc, ω, β, n, ι ⇝ Π,∆, µ, pc, ω, β′, n′, ι′

havoc

n = 0 pc[0] ̸∈ Tρ ρ′ = pc′[0] ι′ = Π[ρ′]
∀a ∈ A. a ̸∈ Uwr

µ =⇒ µ′[0, a] := µ[0, a] ∀m ∈ N, a ∈ A. m > 0⇒ µ′[m, a] = µ[m, a]

Π,∆, µ, pc, ω, β, n, havoc (∆, mem[Uwr
µ], β) ⇝ Π,∆′, µ′, pc′, ω′, β′, n, ι′

Figure 4.11: Operational Semantics for Statements in AIR.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
51

Other sources of misspeculation such as value prediction and memory address disambiguation
are not considered in this model. Extending the semantics to include these is conceptually
straightforward. However, this could result in models that are difficult to analyze using auto-
mated verification tools because the verification engine would need to explore exponentially
more instruction orderings.

Types of the variables in our platform model can be built upon three standard sets of
values. These are the set of words W, the set of instructions I, and the set of addresses A.
We assume that all such sets are finite.

Machine state s is the tuple ⟨Π,∆, µ, pc, ω, β, n, ι⟩. Π : A→ I is the program memory:
a map from program counter values to instructions. ∆ : N → W and µ : A → W are
the states of the registers and data memory respectively while pc : A contains the program
counter. ω : W∗ is the trace of program and data addresses accessed so far (i.e., the trace
of observations). β is the branch predictor state, which we leave abstract and ι : I is the
instruction that will be executed next.

The main novelty in these semantics is modeling misspeculation. n is an integer that
represents speculation level : it is incremented each time we misspeculate on a branch and
decremented when a branch is resolved. Speculation level 0 corresponds to architectural
(non-speculative) execution. ∆, µ and pc – registers, memory and program counter respec-
tively – are also indexed by the speculation level. ∆[n, r] refers to the value of the register r
at speculation level n. ∆[(n, r)→ v] refers to a register state which is identical to ∆ except
that register r at speculation level n has been assigned value v. We adopt similar notation
for µ and pc.

Expression Semantics are shown in Figure 4.10. Expressions are defined over the
register state ∆. Notation ∆, n ⊢ e ⇓ v means that the expression e evaluates to value v
given register state ∆ at speculation level n. These are standard except for the additional
wrinkle of the speculation level.

Statement Semantics are shown in Figure 4.11. The semantics of a transition from the
machine state s = ⟨Π,∆, µ, pc, ω, β, n, ι⟩ to the machine state s′ = ⟨Π′,∆′, µ′, pc′, ω′, β′, n′, ι′⟩
by executing an operation from AIR is described using the big-step operational semantics
judgment ⇝: ⟨Π,∆, µ, pc, ω, β, n, ι⟩ ⇝ ⟨Π′,∆′, µ′, pc′, ω′, β′, n′, ι′⟩. We now describe the
judgment rules shown in Figure 4.11.

TheRegisterUpdate rule models the execution of statements of the form r := e, where
expression e is written to the register r. This involves: (i) updating the value of register
r at speculation level n to have the value of the expression e: ∆′ = ∆[(n, r) → v], (ii)
incrementing the pc at speculation level n: pc′ = pc[n→ ρ+1] and (iii) appending ⟨ρ,⊥⟩ to
the trace of memory addresses accessed by the program: ω′ = ω.⟨pc,⊥⟩. The ⊥ in the second
element of the tuple indicates that no data memory access is performed by this instruction.
This rule is only executed when a branch is not being resolved: ¬resolve(n, β, pc) and the

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
52

next instruction to be executed is ι′ = Π[ρ′] where ρ′ = pc[n].
The Load and Store rules are similar. Load updates the register state with value

stored at memory location a at speculation level n: v = µ[n, a] while Store leaves register
state ∆ unchanged and updates memory address a at speculation level n: µ′ = µ[(n, a)→ v].
Both Load and Store append ⟨ρ, a⟩ to the trace of memory addresses signifying accesses to
program address ρ and data address a. As with RegisterUpdate, these rules only apply
when a branch is not being resolved in this step: ¬resolve(n, β, pc).

The T-Pred rule applies when a conditional jump if e goto c should be taken and is
also predicted taken. In the semantics, we model misspeculation through an uninterpreted
function mispred(n, β, pc) where β is the branch predictor state (left abstract in our model),
n is the speculation level and pc is a map from speculation levels to program counter values.
This rule only applies when mispred evaluates false. The rule sets the program counter at
speculation level n to c: pc′ = pc[n→ c] and updates the branch predictor state β′ using the
uninterpreted function update. Just like the other rules discussed so far, this applies only
when the predicate resolve does not hold.

The T-Mispred rule applies when a conditional jump if e goto c should be taken but
is predicted not taken (mispred evaluates to true). This rule changes system state in the
following ways. First, the speculation level is incremented: n′ = n + 1. Second, the state
of the registers at level n in ∆ is now copied over to level n′ in ∆′ while all other levels are
identical between ∆ and ∆′. The memory state µ is also modified in a similar way. The
program counter at level n gets the correct target c, while the program counter at level n′

gets the mispredicted fall-through target ρ+ 1. Execution continues at speculation level n′.
NT-Pred, NT-Mispred handle the case when the conditional branch should not be

taken. These are similar to T-Pred and T-Mispred. Goto applies to direct jumps. Note
we do not consider misprediction of direct jumps as they have constant targets and will be
redirected at decode.

The rule SpecFence resolves all outstanding speculative branches by setting the spec-
ulation level back to zero. Note that pc, ∆ and µ at level zero already have the “correct”
values, so nothing further needs to be done.

The rule Resolve applies when a mispredicted branch is resolved. Resolution occurs
when the uninterpreted predicate resolve(n, β, pc) holds. At the time of resolution, branch
predictor state β′ is updated using the uninterpreted function update and the speculation
level n′ is decremented. As in SpecFence, nothing else need be done as the other state
variables have the correct values at the decremented level.

Rule Havoc will be described in § 4.5.4.

4.5 Formulating Secure Speculation

This section formulates the secure speculation property. First, we formalize an adversary
model that captures arbitrary transient execution attacks. Next, we present the secure specu-
lation property. Violations of this property correspond to transient execution vulnerabilities.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
53

4.5.1 Formal Adversary Model

Recall system state s is the tuple ⟨Π,∆, µ, pc, ω, β, n, ι⟩‖ and evolves according to the tran-
sition relation δ, where the semantics are defined in Figure 4.11. As discussed in § 4.3,
the system has an untrusted low-security component and a trusted high-security component
that execute concurrently. Our verification objective is to prove that confidential states of
a specified trusted program are indistinguishable to an arbitrary untrusted program. This
verification task requires the definition of: (i) the trusted program to be verified and the
family of untrusted adversary programs, (ii) confidential states of the trusted program, (iii)
how the adversary tampers with system state, and (iv) what parts of state are adversary
observable.

The Trusted and Untrusted Programs

We assume that the trusted program resides in the set of instruction memory addresses
denoted by Tρ. The trusted program itself is defined by Π[ρ] for each ρ ∈ Tρ. Every address
ρ ̸∈ Tρ is part of the untrusted component and Π[ρ] is unconstrained for these addresses to
model all possible adversarial programs.

We assume that untrusted code can invoke trusted code only by jumping to a specific
entrypoint address EP ∈ Tρ. Tρ, EP and instructions Π[ρ] for all ρ ∈ Tρ are known to the
adversary. Note that the adversary may speculatively attempt to invoke addresses other
than the entrypoint, only the non-speculative invocations are restricted. Without such an
assumption, the adversary may be able to jump past defensively placed instructions.

In the example shown in Figure 4.4a, Tρ contains all instruction addresses that are part
of the function foo. The entrypoint EP is the address of the first instruction in foo. Note
that if the adversary can directly jump to line 6 (i.e., skip the fence on line 5), the program
is vulnerable – this is why the restriction on invocation of only the entrypoint is required.

Such restrictions are implemented in all typical scenarios: system calls, software fault
isolation, etc. To consider another example, if we are verifying secure speculation for system
calls in an operating system kernel, Tρ contains all kernel text addresses and the entrypoint
EP is the syscall trap address.

Public States

Given the above definitions, the low operation executed in a state s = ⟨Π,∆, µ, pc, ω, β, n, ι⟩
is defined by the projection of memory that is publicly visible and the low instruction being
executed. Public memory is defined as the projection of memory down to the parts that are
not in the set of public addresses AP , i.e., P(µ)

.
= λa. ite(a ∈ AP , µ[0, a],⊥). These regions

of memory are adversary accessible. We define the low instruction as instP(s)
.
= s.Π[s.pc[0]]

if s.pc[0] ̸∈ Tρ and ⊥ otherwise. This definition refers to the non-speculative state – we are
looking at pc[0], not higher speculation levels. The instruction being speculatively executed

‖Note: We will use the notation s.field to refer to elements of the tuple.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
54

may be different, and may in fact be from the trusted component. This is important because
we use opL to constrain adversary actions to be identical across traces, and these constraints
can only refer to non-speculative state. Together, these define the low component opL(s)

.
=

⟨instP(s),P(µ)⟩.

Confidential States

The secret states that need to be protected from an adversary are the values stored in
memory addresses a that belong to the set AS

.
= A/AP , where A refers to the set of all data

memory addresses. For Figure 4.4, AS contains all addresses that are outside of the arrays
a1 and a2. Similar to public memory, confidential memory is defined as the projection of
memory to the values at secret addresses S(µ) .

= λa. ite(a ∈ AS , µ[0, a],⊥).
The high instruction executed in a state is denoted instS(s) and has the value s.Π[s.pc[0]]

when pc[0] ∈ Tρ and ⊥ otherwise. Intuitively, the high instruction is most recently non-
speculative instruction being executed by the trusted program. The high operation executed
in state s is then defined as a tuple of the high instruction and the public memory: opH(s)

.
=

⟨instS(s),S(s.µ)⟩. We include the values of secret memory in this tuple because the high-
program may be non-deterministic and we need to constrain the non-determinism to be
identical across certain traces.

General Adversary Tampering (G)

The adversary G tampers with system state by executing an unbounded number of opera-
tions from Op to modify architectural and microarchitectural state. Adversary tampering is
constrained in only two ways.

1. (Conformant Store Addresses) For every non-speculative state in which an un-
trusted store is executed, the target address of the store must belong to the set of
adversary-writeable addresses: Uwr

µ . We denote a trace π where every state satisfies
this condition by the predicate conformantStoreAddrs(π), defined as follows.

∀i. πi.n = 0 ∧ πi.pc[0] ̸∈ Tρ =⇒
πi.ι = mem := mem[e1 → e2] ∧ πi.∆[0, e1] ⇓ a =⇒
a ∈ Uwr

µ

Constraining adversary stores is necessary in order to prevent the adversary from
changing the trusted program’s architectural (non-speculative) state arbitrarily.

2. (Conformant Entrypoints) Non-speculative adversary jumps to trusted code must
target the entrypoint EP . A trace π where every transition from untrusted to trusted

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
55

code satisfies this condition is denoted by the predicate conformantEntrypoints(π).
This is defined as follows:

∀i, j. i < j ∧ πi.n = πj.n = 0 =⇒
(∀k. i < k < j =⇒ πk.n ̸= 0) =⇒
πi.pc[0] ̸∈ Tρ ∧ πj.pc[0] ∈ Tρ =⇒
πj.pc[0] = EP

The above constraints says that if πi and πj are non-speculative states, all states
between πi and πj are speculative, and πi is part of the untrusted component while
πj is part the trusted component, then πj must necessarily be at the entrypoint. Note
this does not preclude speculative execution of “gadgets” in the trusted code that do
not begin at the entrypoint.

The condition conformant store addresses captures the fact that the adversary cannot
write to arbitrary memory locations. Conformant entrypoints ensures that execution of the
trusted code starts at the entrypoint.

Conformant Traces

A trace π where: (i) π(0) is a non-speculative state and the trusted component has been ini-
tialized: π(0).n = 0∧ initT (π(0)), (ii) every state π(i) satisfies the conformant stores condition
and (iii) every pair of states π(i) and π(j), where i < j, satisfy the conformant entrypoints
condition is called a conformant trace, denoted by conformant(π).

conformant(π)
.
= π(0).n = 0 ∧ initT (π

(0)) ∧
conformantStoreAddrs(π) ∧
conformantEntrypoints(π) (4.4)

Adversary Observations

We model an adversary who can observe all architectural state and most microarchitectural
state when executing; i.e. when n = 0 and pc[0] ̸∈ Tρ. Specifically, the adversary can observe
the following:

1. non-speculative register values: ∆[0, r] for all r.

2. non-speculative values stored at all memory addresses in the set U rd
µ : µ[0, a] for all

a ∈ U rd
µ .

3. the trace of instruction and data memory accesses: ω.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
56

4. the branch predictor state β.

The above implies that two states s = ⟨Π,∆, µ, pc, ω, β, n, ι⟩ and s′ = ⟨Π,∆′, µ′, pc′,
ω′, β′, n′, ι′⟩ are low-equivalent, denoted s ≈L s

′, iff (n = 0 ∧ pc[0] ̸∈ Tρ) =⇒ (∀r. ∆[0, r] =
∆′[0, r]) ∧ (∀a. a ∈ U rd

µ =⇒ µ[0, a] = µ′[0, a]) ∧ ω = ω′ ∧ β = β′.
We do not allow the adversary to observe ∆[n, r] and µ[n, a] for n > 0 because there

is no way to “output” speculative state except through a microarchitectural side-channel.
These side-channels are captured by the trace of memory accesses ω which models leaks
via caches, prefetches, DRAM and well as other structures in the memory subsystem. The
branch predictor state β captures all leaks caused by the branch predictor side-channel. Note
that the adversary can observe the non-speculative values stored in memory for the addresses
in the range U rd

µ , and non-speculative values of the registers when adversary code is being
executed.

4.5.2 Formalization of the Security Property

∀π1, π2, π3, π4.

conformant(π1) ∧ conformant(π2) =⇒
conformant(π3) ∧ conformant(π4) =⇒
∀i. ¬mispred(πi

1.n, π
i
1.β, π

i
1.pc) =⇒

∀i. ¬mispred(πi
2.n, π

i
2.β, π

i
2.pc) =⇒

∃i. mispred(πi
3.n, π

i
3.β, π

i
3.pc) =⇒

∃i. mispred(πi
4.n, π

i
4.β, π

i
4.pc) =⇒

opL(π1) = opL(π2) = opL(π3) = opL(π4) =⇒
opH(π1) = opH(π3) ∧ opH(π2) = opH(π4) =⇒
π1 ≈L π2 ∧ π0

3 ≈L π
0
4 =⇒

π3 ≈L π4 (4.5)

Using the above definitions, we are now ready to formalize the secure speculation prop-
erty, shown in Equation 4.5.

This is an instantiation of the TPOD property shown in Equation 4.3. The trace property
T is satisfied when no misspeculation occurs: π ∈ T ⇐⇒ ∀i. ¬mispred(πi.n, πi.β, πi.pc).∗∗

The trace property U requires that all traces be conformant as defined in Equation 4.4.
This ensures we only search for violations among traces representing valid executions of our
system/adversary model.

A violation of Equation 4.5 occurs when there exists a sequence of adversary instructions
such that traces π1 and π2 are low-equivalent, but π3 and π4 are not low-equivalent. In other
words, we have an information leak that only occurs on a speculative processor; i.e. a
transient execution vulnerability.

∗∗Or equivalently in linear temporal logic: π |= □¬mispred.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
57

. . .

. . .

π1

π2

4

4

4

4

4

4

a2 + v1S

8

8

. . .

. . .

4

4

4

4

4

4

8

8

. . .

. . .

. . .

. . .

4π3

π4 4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

foo(0) foo(1)

(a) Violation of secure speculation when
N=0 in Figure 4.5.

. . .

. . .

π1

π2

4

4

5

5

a1

a1

6

6

a2 + v1S

a2 + v2S

8

8

. . .

. . .

4

4

4

4

4

4

8

8

. . .

. . .

. . .

. . .

π3

π4

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

4

4

5

a1

5

a1

6

a2 + v1S

6

a2 + v2S

8

8

. . .

. . .

foo(0) foo(1)

(b) Secure speculation satisfied when
N=1 in Figure 4.5.

Figure 4.12: Illustrating the secure speculation property for the code in Figure 4.5. The
numbers within each state refer to program counter values (shown as line numbers from
the figure). A label above each state indicates the data memory address accessed by that

instruction (if any). States shown in dotted circles are specuative states. Note the
non-speculative traces “stutter” when the other traces are speculating. The values v1 and
v2 refer to the contents of memory address a1 in their respective traces. Note that traces π1

and π2 do not speculate while traces π3 and π4 do.

4.5.3 Illustrating Violation/Satisfaction of Secure Speculation

Let us consider the conditionally vulnerable Spectre variant shown in Figure 4.5. A quadruple
of traces for this program is shown in Figure 4.12a. Two calls to foo are made with arguments
i = 0 and i = 1. The two non-speculative traces π1 and π2 do not execute the if statement
and so they have the same adversary observations (i.e., are low-equivalent). However, traces
π3 and π4 speculatively execute the if statement and the adversary can observe differences in
the memory addresses corresponding to the second array access: a2[v1 ∗S] and a2[v2 ∗S]. All
traces have the same adversary operations with one pair low-equivalent and non-speculative
while the other pair is not low-equivalent and speculative. This is a violation of secure
speculation.

Now consider the scenario when N > 0, say N = 1. This is shown in Figure 4.12b. The
key difference here is that the non-speculative traces also make the second array access when
i = 0. The second memory access reads from the addresses a2 + v1 ∗ S and a2 + v2 ∗ S in
traces π1 and π2 respectively. There are two scenarios possible. Either v1 = v2 or v1 ̸= v2.
Suppose v1 = v2, then traces π1 and π2 are low-equivalent, but so are traces π3 and π4!
Conversely, if v1 ̸= v2, then the π1 and π2 are not low-equivalent and the secure speculation
property holds vacuously.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
58

4.5.4 Adversary Reduction Lemma

The general adversary’s tampering described in § 4.5.1 allows the adversary to execute an
unbounded number of arbitrary instructions. While this is fully general, directly modeling
this makes formal verification infeasible. In addition, finding inductive invariants to charac-
terize these changes is also not feasible in general for an automated approach. To address
this problem, we introduce a simpler “havocing adversary” H and prove that this adversary
is as powerful as the general adversary G. We denote the platform model executing with
the general adversary as MG = ⟨Q, I, δG,Op⟩ and the platform model executing with the
havocing adversary as MH = ⟨Q, I, δH,OpH⟩. The difference between these two models is
that the former model executes operations from Op and the latter executes operations from
OpH

.
= Op ∪ {Havoc}. To indicate a transition from state p ∈ Q to q ∈ Q in MG, we write

δG(p, op, q). We similarly define δH(p, op, q) for MH. The goal is to simplify MG using MH

by introducing an additional operation Havoc for the adversary, which abstracts away the
unbounded execution of G.
H executes only one instruction that modifies non-speculative state, havoc (∆, mem[Uwr

µ], β).
The semantics of this instruction are shown in Figure 4.11; it sets the registers, program
counter, data at adversary writable memory addresses, trace of observations, and branch
predictor to unconstrained values (i.e. “havocs” them). The set of writable memory ad-
dresses is denoted by Uwr

µ which is a subset of the set of all addresses, denoted as A. The
speculative platform model executing with the H is defined with the transition relation
δH ⊂ Q × OpH × Q. In other words, the adversary has access to an additional – and more
abstract – Havoc operation.

We begin by proving a simpler result, that the execution of an operation in Figure 4.11
can be simulated by the Havoc operation. In other words, each operation op ∈ Op executed
by the adversary G in MG can be replaced by the more abstract operation Havoc. We later
use this result to prove that any number of operations can be simulated by a single Havoc
operation and consequently, that MG can be simulated by MH.

Lemma 4.2. A non-speculative adversary execution in MG(op) where op ∈ Op, can be
simulated by an adversary execution in MH(Havoc). More specifically, for all reachable
states p ∈ Q of MG, if n = 0, instP(q) ̸= ⊥ and δG(p, op, q), then there exists some q′

such that δH(p, op, q′) and q = q′.

Proof. Assume that n = 0 and δG(p, op, q) and let q′ be the post state after executing
Havoc, i.e., δH(p,Havoc, q′). We also assume that during the adversary execution of
op, the only writable and readable memory locations are a ∈ Uwr

µ . Note that since we
assume n = 0, we can ignore the operations T-Mispred, NT-Mispred, and Resolve,
as the premises in the operations’ respective judgments require that n′ ̸= 0. Define Qop

A :
(p, v) 7→ {q.v | δA(p, op, q)} as the set of values variable v can assume after adversary A
executes operation op in state p. To prove simulation, it suffices to show that Qop

G (p, v) ⊂
QHavoc

H (p, v) for all variable v ∈ V , operation op ∈ Op and reachable state p. Since Havoc

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
59

allows the variables ∆, ω, pc and β to be any value (i.e., q′.v ∈ D(v),∀v ∈ {∆, ω, pc, β}),
then Qop

G (p, q, v) ⊂ D(v) = QHavoc
H (p, v),∀v ∈ {∆, ω, pc, β}. Thus, it remains to show that

Qop
G (p, v) ⊂ QHavoc

H (p, v) for v ∈ {µ, ι}. Since the execution of Store is only to the set
Uwr
µ during adversary execution, then Qop

G (p, µ) = QStore
G (p, µ) ⊂ {µ[(0, a) → c] | a ∈

Uwr
µ , c ∈ T (µ[a])} ⊂ {µ′ | ∀a ∈ A. a ̸∈ Uwr

µ ⇒ µ′[0, a] = µ[0, a],∀m ∈ N, a ∈ A. m > 0 ⇒
µ′[m, a] = µ[m, a]} = QHavoc

H (p, µ). In other words, the execution of Store only sets one
memory location µ[0, a] inside the adversary space to a new value and Havoc unconstrains
all values in the adversary space. Lastly, all operations assign ι to µ[pc ′[0]], so we have
Qop

G (p, ι) = {Π[pc[n]] | pc[n] ∈ A} = {Π[pc[0]] | pc[0] ∈ A} = QHavoc
H (p, ι).

Lemma 4.3. Every sequence of states qi, . . . , qk with instP(qj) ̸= ⊥ and qj.n = 0 for
every i ≤ j ≤ k can be simulated by a single havoc (∆, mem[Uwr

µ], β) instruction. That
is, G can be simulated by H.

Proof. Lemma 4.2 states that each operation op ∈ Op can be simulated by Havoc, thus it
suffices to show that a sequence of Havoc operations can be simulated by a single Havoc
operation. By transitivity, this implies Lemma 4.3.

Let Qop
G ,QHavoc

H be defined as in the proof of Lemma 4.2 and define the set of values of a

variable v after executing k − i operations as Qopi,...,opk−1

G : (p, v) 7→ {qk.v | ∃qi, . . . , qk ∈ Q.

p = qi ∧
∧j=k−1

j=i δG(qj, opj, qj+1)}. We show that Qopi,...,opk−1

G (p, v) ⊂ QHavoc
H (p, v) for all

v ∈ V . By assumption, the platform is not speculating and so ∀j ∈{i, . . . , k}. qj.n = 0.
Thus, Qopi,...,opk−1

G (p, n) = {0} = QHavoc
H (p, v). For all v ∈ {∆, ω, pc, β}, we know that

Qopi,...,opk−1

G (p, v) = {qk.v | qk.v ∈ D(v)} = D(v) = QHavoc
H (p, v). For µ, realize that the

conjunction of constraints imposed by the premises related to µ is identical to a single
constraint. In other words, if we let P (µ)

.
=

(
(∀a ∈ A. a ̸∈ Uwr

µ =⇒ µ′[0, a] := µ[0, a]∧(∀m ∈
N, a ∈ A. m > 0 ⇒ µ′[m, a] = µ[m, a])

)
, the final constraint imposed on µ gives the set of

values Qopi,...,opk−1

G (p, µ) = {qk.µ | P (qi.µ) ∧ . . . ∧ P (qk.µ)} = {p.µ | P (p.µ)} = QHavoc
H (p, µ).

Lastly, Qopi,...,opk−1

G (p, ι) = {Π[pc[0]] | pc[0] ∈ A} = QHavoc
H (p, ι).

The adversary reduction Lemma 4.2 lets us replace all sequences of non-speculative in-
structions executed by the adversary with havoc’s and helps scale verification. It is important
to note that we cannot replace instruction sequences that contain speculative instructions
because these may contain exploitable transient execution gadgets.

4.5.5 Discussion and Limitations

An important implication of the secure speculation property is that if a program satisfies
Equation 4.5, then all observational determinism properties where low-equivalence is defined
over ω, µ and β that hold for non-speculative execution of the program also hold for spec-
ulative executions. For instance, a tool like CacheAudit [61, 62] can be used to verify that

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
60

the cache accesses of a program are independent of some secret. Note that even though a
program’s non-speculative execution may not leak information through cache (this is what
CacheAudit verifies) that does not mean that its speculation execution will have the same
properties. This is because CacheAudit does not model speculative execution. However, if
we do prove Equation 4.5 for a program, then all properties proven by tools like CacheAudit
also apply to the program’s speculative execution.

Our operational semantics are for in-order processors only. Nevertheless, the secure
speculation property can be used to analyze out-of-order execution and other speculation
(e.g., memory address disambiguation) in a conceptually straightforward way by extending
the semantics to model these features.

Specific programs may need additional constraints on the traces to avoid spurious coun-
terexamples, especially if the set of secrets ST is over-specified. For example, in Figure 4.4(b),
a tuple of traces where the i < N never occurs would cause a violation of Equation 4.5 if ST
also contained the addresses that point to a1 and a2.

4.6 Verification Approach

We have implemented an automated verifier to answer the following question: Given a pro-
gram (e.g., C code) as input, does it satisfy the secure speculation property in Equation 4.5?

Our approach is fairly standard, based on the method of self-composition (see, e.g., [21]).
For lack of space, we present only the essential aspects. Given the input program, we trans-
late it into a transition system based on the adversary model and operational semantics
presented in the previous section. The secure speculation property is a 4-safety property,
meaning that we can turn it into a safety property to be checked on a 4-way self-composition
of the transition system. We use term-level model checking [35] based on satisfiability mod-
ulo theories (SMT) solving to check whether the safety property holds for this 4-way self-
composition. The model checker uses either bounded model checking (to find violations of
the property) or k-induction (to prove the property).

The main new aspect of our verifier is the implementation of the transformation of
the program into a transition system. We rely on two tools: the Binary Analysis Plat-
form (BAP) [34] to translate x86 binaries into an intermediate format called BIL, and
Uclid5 [193], an SMT-based model checking tool supporting both bounded model check-
ing (BMC) and k-induction. BIL is an assembly-like intermediate language similar to AIR
(described in Sec. 4.4). Overall, our workflow for each input program is as follows:

1. Compile C source code containing the victim function into an x86 binary file.

2. Translate the x86 binary file using BAP into the BIL intermediate language.

3. Translate the BIL into Uclid5 models and check the secure speculation property
via self-composition. For each program, we first obtain a counterexample via BMC

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
61

demonstrating the vulnerability; then, we insert an lfence at an appropriate point and
prove the secure speculation property via k-induction.

We note that this workflow may be abstracted to a more general TPOD property.
The translation from BIL to Uclid5 implements the operational semantics given earlier,

with the following key steps:

1. Datatypes in the BIL program such as addresses, memories, and words are converted
to uninterpreted types for more scalable analysis and to obtain a more portable model
that is not specific to 32-bit/64-bit architectures.

2. Each basic block of the BIL program is considered an atomic step of the transition
system in the Uclid5 model after which the safety property is checked on the 4-
way self-composition. This suffices as the deviations in behavior between the 4 traces
happen at branch points.

3. At any speculative transition step, the program can resolve a misspeculation as per
the Resolve rule.

4. All state variables are initialized to symbolic constants with the exception of the mem-
ory, where it is initialized to have the same value at every address except the program-
specific secret address that stores the secret.

Given the model, the implication chain of the secure speculation property is translated
into a number of assumptions and invariants. The invariants which we wish to check are
whether the speculative program traces diverge in control flow, branch prediction or memory
access observations, but only in the cases that they do not for the non-speculative traces.
Proofs by induction require a few additional auxiliary invariants, whereas bounded model
checking does not.

For a particular proof of the secure speculation property on one of the examples from
Section 4.7 in Uclid5, we first instantiate four programs as instances. In Uclid5, this is
a composition of four transition systems within the main proof script. Next, we define a
speculation flag that determines if a program is allowed to speculate or not and instantiate
the program pairs t1, t2 and t3, t4 with their speculation flags turned off and on respec-
tively. For initialization, we set the program counters, registers, and rollback states of the
programs to be the same. We also set the memories of the program pairs t1,t3 and t2, t4
to be the same except for a confidential memory address represented by a symbolic constant,
which corresponds to the conformant conditions. Note that only allowing one (symbolic)
memory address to differ is sufficient because any counterexample with a larger difference
can be extended to one in the single address case. Additionally, we make the assumption
that the program counter and observational states, such as prior memory read addresses and
the branch predictor state, are initially equal across the non-speculating programs t1 and
t2. During a transition step of the main proof, we step both of the non-speculative traces
t1 and t2 only if t3 and t4 are not currently speculating and they ”stutter” otherwise.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
62

This is to prevent any spurious counter-examples from divergent observational states caused
by mismatching steps in the non-speculating and speculating programs. At each of these
program transitions, a basic block of the program is executed. This abstraction is sound in
the sense that the traces considered are a strict subset of the permissable traces of an out of
order processor and if out of order execution is the cause of the observational determinism
violation, then it should not be captured in our property. The secure speculation property is
then encoded as equality across the program counter and observational states in the speculat-
ing programs t3 and t4. This property was proven inductively and through bounded model
checking in all of our examples. For inductive invariant checking, various auxiliary invariants
were required to constrain the attacker input, rollback states, entry points, memories, and
speculating states of the programs.

As a remark on the formulation of the 4-safety property, traces t1 and t2 are used
to constrain which addresses are public and private. This allows us to generalize over the
various examples for variant 1 of the spectre attack instead of encoding this specifically for
each program example. More concretely, in the N > 0 case of Figure 4.4c, this constrains
the value at the confidential memory address to be the same.

4.7 Case Studies

We used our verifier for a proof-of-concept demonstration to detect whether or not a snippet
of C code is vulnerable to the Spectre class of attacks. As benchmarks, we rely on Paul
Kocher’s list of 15 victim functions vulnerable to the Spectre attack [115] in addition to the
examples we presented earlier.

In particular, we show here the results on examples 1, 5, 7, 8, 10, 11, and 15 from Paul
Kocher’s list, along with the example from Figure 4.4 (c), and an example with nested if
statements. We chose these based on what we believe are illustrative of a wide range of
victim functions that are not easily detectable using the current static analysis tools such as
Qspectre [147], which was only able to detect the first two examples in Kocher’s list. In each
example, we also add a fence at an appropriate location to illustrate how one can mitigate
the attack. We begin with a brief explanation of some of the examples and then discuss the
results from applying bounded model checking and induction with our secure speculation
property on our Uclid5 models.

Bounds-Check-Bypass Variations 1 void victim_fn_v01(unsigned x) {
2 if (x < array1_size) {
3 __mm_lfence ();
4 temp &= array2[array1[x] * 512];
5 }
6 }

Figure 4.13: Example 1: Original Spectre
BCB (bounds check bypass) example.

Example 1 (Figure 4.13): The first ex-
ample of Paul Kocher’s list is the original
bounds check bypass variant of the Spectre
attack discovered [116].

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
63

1 void victim_fn_v05(unsigned x) {
2 if (x < array1_size)
3 for (size_t i = x - 1; i > 0; i--)

{
4 _mm_lfence ();
5 temp &= array2[array1[i] * 512];
6 }
7 }

Figure 4.14: Example 5: BCB with a for
loop.

Example 5 (Figure 4.14): This exam-
ple is similar to the first variant but imple-
mented within a for loop. The untrusted
argument x may be larger than the array
size, which causes the vulnerability, but if x
is within the bounds of the array, note that
condition i > 0 is also potentially vulnera-
ble to the attack.†† Inserting a fence at line
4 prevents the subsequent memory accesses
at each iteration of the loop and mitigates
the attack. Alternatively, inserting the fence between lines 2 and 3 will also mitigate the
attack.

1 void victim_fn_v07(unsigned x) {
2 static unsigned last_x = 0;
3 if (x == last_x) {
4 _mm_lfence ();
5 temp &= array2[array1[x] * 512];
6 }
7 if (x < array1_size)
8 last_x = x;
9 }

Figure 4.15: Example 7: BCB with unsafe
static variable check.

Example 7 (Figure 4.15): This example
is interesting because it depends on the value
of a static variable updated from a previous
call of the function victim function v07.
Every call to the function should not make
the second array access at line 5 unless x ==

last x. An attacker can exploit this func-
tion by first calling with x < array1 size

repeatedly to train the predictor to predict
true at line 3, and then subsequently make a
call with an arbitrary value of x. This would
then trigger the execution of the second array access. Inserting a fence at line 4 requires
the condition at line 3 to be evaluated and thus prevents speculatively executing the second
array access.

1 void victim_fn_v08(unsigned x) {
2 result = (x < array1_size);
3 unsigned ind = result ? (x + 1) : 0;
4 _mm_lfence ();
5 temp &= array2[array1[ind] * 512];
6 }

Figure 4.16: Example 8: BCB with the
ternary conditional operator.

Example 8 (Figure 4.16): The ternary
operator is interesting because the program
counter is allowed to jump to two different
basic blocks for the computation of the sec-
ond array memory access as opposed to one
block as in Example 1. Eventually, it returns
to the basic block represented by line 5. The
placement of the fence is also right before the
second array access, similar to Figure 4.13.

††Kocher’s code has the condition x >= 0 which causes an infinite loop.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
64

1 void victim_fn_v10(
2 unsigned x, unsigned k
3) {
4 if (x < array1_size) {
5 __mm_lfence ();
6 if (array1[x] == k)
7 temp &= array2 [0];
8 }
9 }

Figure 4.17: Example 10: BCB using an
additional attacker-controlled input.

Example 10 (Figure 4.17): This is the
first example where a second load dependent
on a secret is not required for a leak. This
is because whether array2[0] is cached is
dependent on the result of array1[x] ==

k. To accomplish determine the value of
array1[x], the attacker can repeatedly call
the function and iterate over the values of k.
Thus, knowing whether or not array2[0]

was accessed is enough to leak the secret at
array1[x].

1 void victim_fn_v11(unsigned x) {
2 if (x < array1_size) {
3 _mm_lfence ();
4 temp = memcmp (&temp , array2 + (

array1[x] * 512), 1);
5 }
6 }

Figure 4.18: Example 11: BCB using the
memory comparison function.

Example 11 (Figure 4.18): Ideally,
an approach to checking secure specu-
lation should also be able to capture
leakage through various function calls.
This example uses a function call to
memcpy to leak the secret. However,
because of the single byte access, it
gets optimized into a single load and
store.

1 void victim_fn_v15(unsigned *x) {
2 if (*x < array1_size) {
3 _mm_lfence ();
4 temp &= array2[array1 [*x] * 512];
5 }
6 }

Figure 4.19: Example 15: BCB using
attacker-controlled pointer.

Example 15 (Figure 4.19): This example
is interesting because it passes a pointer in-
stead of an integer as the attacker-controlled
input. We assume the value stored in the
pointer is constant across traces to ignore
cases where the attacker forces a secret de-
pendent branch during non-speculative exe-
cution.

1 void victim_fn_nested_ifs(unsigned x) {
2 unsigned val1 , val2;
3 if (x < array1_size) {
4 val1 = array1[x];
5 if (val1 & 1) {
6 _mm_lfence ();
7 val2 = array2 [0];
8 }
9 }

10 }

Figure 4.20: Example NI: BCB with nested if
statements.

Example NI (Figure 4.20) In this exam-
ple, nested if statements cause the attack to
occur even without a second address load de-
pendent on a secret. If the programs specu-
latively choose not to execute the second if
statement, the value array2[0] will not be
cached, but if a program eventually executes
the second if statement as a result of a reso-
lution, then a leak can occur as determined
by the cached array2[0] value.

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
65

ex1 ex5 ex7 ex8 ex10 ex11 ex15 Fig. 4.5 NI

BMC 6.6 9.0 10.2 5.7 9.6 6.4 5.8 6.6 12.9
Ind 5.0 5.0 5.7 4.6 5.8 5.9 4.8 4.8 5.4

Table 4.1: Runtime (sec.) of each example using 5 steps for bounded model checking to
find vulnerabilities and 1 step induction to prove correctness after inserting a memory fence.
These experiments were run on a machine with an 2.20GHz Intel(R) Core(TM) i7-2670QM
CPU with 5737MiB of RAM.

Runtime Results

Table 4.1 lists the runtime (in seconds) required for each verification task with the memory
fences implemented. As can be seen, the verifier is able to prove the correctness of these
programs within a few seconds. Although these programs are small, this exercise gives us
confidence that the method could be useful on larger programs. We assert that with the
use of a stronger software model-checking engine and the development of TPOD-specific
abstractions, it will be possible to prove secure speculation for larger programs.

4.8 Related Work

The most closely related past work to ours is CheckMate [209] which uses happens-before
graphs to analyze transient execution vulnerabilities. The insight in CheckMate is that
happens-before graphs encode information about the orders in which instructions can be
executed. By searching for patterns in the graph where branches are followed by dependent
loads, an architectural model can be analyzed for susceptibility to Spectre/Meltdown. A
key difference between CheckMate and our approach is that we are not matching patterns of
vulnerable instructions. Our verification is semantic, not pattern-based. In particular, the
example showing conditional vulnerability in Figure 4.4(c) cannot be precisely captured by
CheckMate.

Another closely related effort is by McIlroy et al. [140] who introduce a formal model of
speculative execution in modern processors and analyze it for transient execution vulnera-
bilities. Similar to our work, they too introduce speculative operational semantics and their
model includes indirect jumps and a timer. An important difference between their semantics
and ours is that their semantics are based on a microarchitectural model of execution. In
contrast, our semantics capture an abstract notion of speculation that: (i) does not prescribe
any specific microarchitectural implementation and (ii) is more amenable to verification due
to its abstract nature. Further, they do not present an automated verification approach for
finding transient execution vulnerabilities.

In concurrent work to ours, Guarnieri et al. [82] introduce Spectector which is also
a principled verification methodology for the detection of Spectre-like vulnerabilities. They
introduce the notion of speculative non-interference which is defined as follows: for every

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
66

pair of initial configurations of the program, if these configurations are low-equivalent and
their non-speculative traces have the same observations, then their speculative traces must
also have the same observations. This is similar to our secure speculation property. Note
that we also introduce TPOD which is a generalization of secure speculation/speculative
non-interference and could be used to reason about the interaction between arbitrary mi-
croarchitectural side-channels: e.g. prefetching and value prediction.

One difference between our work and Spectector is that the latter only considers
terminating programs while our methodology is applicable to non-terminating programs.
This is because Spectector analyzes only finite-length traces. This also implies that in
the case of non-terminating programs, Spectector can only find violations, not prove the
absence of vulnerabilities. In contrast, our verification methodology can indeed prove the
absence of vulnerabilities. A important insight in the Spectector work is that is that non-
speculative traces are sub-sequences of the speculative traces for in-order processors. The
allows Spectector to convert the 4-safety secure speculation property into into a 2-safety
property. While this is an important and useful optimization that improves scalability, it
does not appear to be applicable to out-of-order speculative semantics. While our current
implementation and semantics do not model out-of-order execution, they are built to be
extensible to this scenario.

The Spectre vulnerability was discovered by Kocher et al. [116] while Meltdown was dis-
covered by Lipp et al. [133]. Their public disclosure has triggered an avalanche of new tran-
sient execution vulnerabilities, notable among which are Foreshadow [215] which attacked
enclave platforms and virtual machine monitors, SpectreRSB [117] and Ret2Spec [137]. A
thorough study of transient execution vulnerabilities was done by Canella et al. [39]. These
vulnerabilities build on the rich literature of microarchitectural side-channel attacks [2, 79,
80, 105, 128, 134, 162, 165, 166, 191, 197]. Verification of mitigations to these “traditional”
side-channel attacks is well-studied [4, 5, 6, 19, 22, 26, 61, 62, 65, 66, 173].

TPOD in general and secure speculation in particular are examples of hyperproper-
ties [51]. A large body of work has studied hyperproperties that encode secure information
flow. Influential exemplars of this line of work include noninterference [76], separability [180]
and observational determinism [142, 178, 233]. Our verification method is based on self-
composition which has been well-studied; see, for example, Barthe et al. [20, 21]. While we
take a straightforward approach to using self-composition, more sophisticated approaches
are also possible in some cases (e.g., [201]).

4.9 Summary

This chapter presented a formal approach for secure speculative execution on modern pro-
cessors, a key part of which is a formal specification of secure speculation that abstracts
away from the particulars of specific vulnerabilities. Our secure speculation formulation is
an instance of trace property-dependent observational determinism, a new class of informa-
tion flow security properties introduced by this work. We introduced an adversary model

CHAPTER 4. TRACE PROPERTY-DEPENDENT OBSERVATIONAL DETERMINISM
67

and an automated approach to verifying secure speculation and demonstrated the approach
on several programs that have been used to illustrate the Spectre class of vulnerabilities. To
the best of our knowledge, the material from this chapter presents the first effort to formalize
and automatically prove secure speculation.

68

Chapter 5

Compositional Proofs of Information
Flow Properties for
Hardware-Software Platforms

Chapter §4 presented a methodology to prove secure speculation of programs for select
variants of speculative attacks. This means that the speculative platform model only contains
components relevant to those attacks. It does not explore the malleability of the approach
to extend to classes of hardware attacks. Related existing work [68, 82, 83] is similar in
that regard. Thus, it is not clear how one would extend the platform model beyond the
specific abstraction and platform semantics introduced in prior work. Moreover, existing
approaches have not developed an approach that prevents the path explosion problem to
which instruction-level program models and microprocessor models are prone.

This chapter describes a proof system for compositional information flow analysis and
formalism for compositional models to tackle this problem. More specifically, we focus on
exploiting taint- and symbolic-based representations of information flow in our compositional
methods.

5.1 Introduction

The rise of user-friendly, high-level hardware design frameworks [14, 92, 118] has made agile
development and optimization of hardware computation platforms more accessible. These
designs range from general-purpose computers and domain-specific computation engines (ac-
celerators), to platforms designed with security as the guiding principle [10, 52, 69, 70, 101,
111, 112, 127]. The usage of ever more efficient hardware systems, however, has been plagued
by the existence of hardware execution attacks [29, 40, 41, 116, 133, 186, 215, 216, 224]. For-
mal methods can provide strong security guarantees about system behaviour in the context
of these attacks, thus building trust in the system.

Most hardware execution attacks exploit microarchitectural features such as caches,

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 69

branch predictors, and load/store buffers. While reasoning over the architectural state (e.g.,
program counter, registers) suffices for proving functional correctness of software, one also
has to account for the microarchitectural state when proving security properties. Since the
microarchitectural state is more detailed than the architectural state, software semantics at
the microarchitectural result in especially challenging verification queries. This problem is
made more severe given that vulnerable software fragments are typically nested in large pieces
of code. In this work, we develop a concerted approach to make verification of information-
flow-style properties scale. On the software side, our approach uses Hoare-style reasoning
tailored to security properties, while on the hardware side we leverage compositionality of
the platform model.

Fundamental contributions such as Hoare-logic [85], interpolants [136] have enabled tech-
niques such as interpolation-based reasoning [144], and invariant inference (e.g. [48, 60])
which have improved the scalability of software verification. These techniques have been
predominantly used for checking single-trace properties such as safety and functional correct-
ness. Security properties such as non-interference on the other hand are hyperproperties [51]
defined over sets of traces. While some hyperproperties can be compiled to single-trace
safety properties (over the self-composition), and hence permit the above approaches, such
encodings do not make use of the specialized nature of security properties. This informs our
first research question:

(RQ1) How can we tailor Hoare-style proof techniques to better scale verification of
information-flow-based properties such as non-interference?

We answer this question by developing a proof system called SymboTaint, which com-
bines the symbolic representation of state, with taint-like equivalences over system variables.
These equivalences align with security properties such as non-interference which prescribe
equivalence between two executions w.r.t. certain variables. The symbolic state allows for
more precise reasoning than pure taint analysis.

Security verification of software is closely tied with the microarchitectural semantics
of the underlying hardware. Additionally, the capabilities of an adversary also vary with
the microarchitecture, as some microarchitectural features create new side channels [205],
leading to modified security specifications. While microarchitectural semantics are much
more detailed, verification can benefit from frameworks that leverage compositionality of
hardware. The choice of modelling framework also impacts whether one is able to easily
instrument the model with proofs. Hence, we ask:

(RQ2) What modeling formalisms allow compositionality and parameterizability, and
connect better with the software-side proof techniques?

We answer this question by developing an abstract operational model called the In-
formation Flow State Machine (IFSM). Intuitively, an information flow state machine
augments the underlying platform model with the joint symbolic-taint analysis from the
proof system. This enables better interoperability between the proof and the model. Addi-
tionally, under some conditions, the transition relation of an IFSM can be decomposed. This
allows the proof to reason about only those components of the platform that are relevant to
the security property.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 70

To evaluate the efficacy of our approach, we introduce a speculative platform model
and verify the security of several safe and vulnerable programs. These are representative
of a broad class of transient execution attacks [40, 89] targeting various microarchitectural
features. Our verification approach is based on IFSMs which instrument the speculative
platform with the proof. We compare the performance of our technique with prior work on
verifying transient execution attacks [46] and observe improved performance across safe and
unsafe examples. In summary, we make the following main contributions in this chapter:

1. SymboTaint Proof System. We introduce SymboTaint, a sound proof system that
specializes pre- and post-conditions from Hoare-style proofs to capture invariants com-
mon to security proofs for programs.

2. Information Flow State Machines. We introduce IFSMs, an operational model
that allows us to connect proofs from SymboTaint with the platform model. We
develop conditions under which IFSMs can be decomposed for more efficient analysis
of security properties.

3. Speculative Abstract Platform Model. We introduce the SAP parameterized
platform model which abstractly models a speculative microprocessor. The model
captures a wide combination of microarchitectural features and attack vectors, beyond
what models in the literature capture. We use IFSMs in this modelling, demonstrating
the compositionality of microarchitectural features.

4. Evaluation on Transient Execution Attacks. We evaluate our methodology -
the model and proof system - by verifying transient execution attacks on the SAP
model. We check a broad class of transient execution attack examples against the
secure speculation [46, 82] property. We observe performance improvements over the
monolithic proof approach from [46].

Outline. In §5.2 we motivate the problem by considering an example of an attack vector.
In §5.3 we introduce the platform and attacker model, and security properties of interest.
In §5.4 we develop the SymboTaint proof-system which enables Floyd-Hoare-style proofs for
verification of security properties. In §5.5, we introduce IFSMs, an operational formalism
that allows instrumenting the platform model with proofs written in SymboTaint. We also
develop a notion of composition for IFSMs that enable concise proofs. In §5.6 we present
a speculative abstract platform (SAP) model that is capable of capturing a broad class of
transient execution attacks from [40, 89] and perform experimentation on this model in §5.7.
We discuss related work in §5.9 and conclude in §5.10.

5.2 Motivation

We motivate our methodology and abstractions with the problem of verifying classes of
transient execution attacks. In recent literature, secure speculation [46] has been consistently

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 71

1 int victim_func(int x) {
2 // A: Init secret pointer
3 int* a = &secret;
4 // B: Secret dependent code
5 ...
6 // C: Spectre V1 / BCB
7 a = arr1;
8 if (x < N)
9 tmp = arr2[a[x] * 512];

10 }

Figure 5.1: Victim program executing in
the trusted user’s domain with input x
which is adversary controlled. This
function is vulnerable to Spectre V1

(BCB), Spectre V4 (store-bypass), their
combination and leakage from segment

B.

1 // C1: lines 7-8
2 addi a3 , gp , -88
3 store a3 , s0 , -24
4 bge a0 , a1 , END
5 // C2: line 9, a[x]
6 load a3 , s0 , -24;
7 load a3 , a3 , 0
8 add a4 , a0 , a3
9 load a4 , a4 , 0

10 // C3: line 9, arr2[a[x]*512]
11 muli a4 , a4 , 512
12 addi a3 , gp -48
13 load a3 , a3 , 0
14 add a4 , a4 , a3
15 load a5 , a4 , 0

Figure 5.2: Instruction level translation of
lines 4-6 of the program in Figure 5.1.

used to capture speculation dependent vulnerabilities in micro-architectures. This property is
an extension of observational determinism [233] which itself is a flavor of the non-interference
property [51]. Our work is based on using non-interference style properties to identify a broad
class of transient execution attacks. We begin by presenting a motivating example of such
an attack.

Figure 5.1 illustrates victim func, a function that is owned by a victim process and
is callable by an adversary process. Ignoring for the moment the first two segments labeled
A and B (lines 2-5), segment C (lines 7-9) shows the first discovered transient execution
attack called Spectre V1 (bounds check bypass) [116]. The way Spectre V1 works is that
the adversary can train the branch predictor to mispredict the condition (x < N), thereby
coercing the processor to transiently execute line 9. This results in a memory access to a
potential victim’s secret using a[x] and then a secret dependent access arr2[a[x] * 512].
This access leaves observable side effects in the data cache covert channel. The adversary
can observe these side effects and hence infer the secret.

Complexity in software. A vulnerable code segment such as the one above does not often
appear in isolation. It may appear alongside other complex code segments, such as A and B
in Figure 5.1. Segment A may non-trivially interact with segment C, with potential security
implications. For example, even if the adversary was unable to mistrain the branch predictor,
a faulty store-to-load forwarding of the secret address a from line 3 to line 9 could result
in a variation of the Spectre V4 (speculative store bypass) attack [40]. Similarly, segment
B can contribute its own secret dependent effects to an exploitable side channel, such as
the line fill buffer [186], resulting in data leakage. This example illustrates the challenges in
verifying large pieces of code monolithically and motivates approaches that decompose the
proof. In §5.4 we develop such an approach which takes the form of a proof system. In §5.6

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 72

we apply this proof system to an abstract speculative microprocessor model that can execute
assembly-like code.

Complexity in hardware. Another aspect that complicates the verification of software
such as victim func is the necessity to model the hardware at the microarchitectural level,
resulting in a massive model. Hence, developing modeling approaches that facilitate com-
positionality is desirable. While this is true, reasoning over subsets of components in an
unguarded manner can lead to false guarantees.

Memories

L1D Cache

Memories

L1D Cache LFB

(A) (B)
Figure 5.3: Different levels of modeling detail.

Figure 5.3, illustrates such an example
inspired by the CacheOut attack [187], This
attack exfiltrates in-flight data (potentially
containing secrets) from the line-fill-buffer
(LFB) into the cache, which then serves as
the side channel. An analysis on the model
in Figure 5.3A, sans the LFB, can be impre-
cise. Hence, compositionality though useful
requires care. In §5.5.1, we present an oper-
ational modeling framework that enables composition under certain conditions. The spec-
ulative platform model from §5.6.1 has a wide range of microarchitectural components and
satisfies these conditions, resulting in efficient verification.

5.2.1 Approach Overview: Efficient Proofs with Interpolants

Security properties such as non-interference [77] are based on a notion of observation that
identifies when two states are considered to be equivalent. Non-interference in particular
requires that two executions which start in equivalent states must also end in equivalent
states. One prominent approach [46] used to verify such properties for a program is bounded
model checking (BMC) [145]. This is presented in Eq. 5.1, which is a relation over traces
of two instances of the same transition system. It states that if the two instances of the
system start in some initial states (say q

(0)
1 of the first instance and q

(0)
2 of the second)

that are low-equivalent (q
(0)
1 ≈L q

(0)
2), and each instance takes k steps (i.e., δk(q(0), q(k)) =

δ(q(0), q(1))∧...∧δ(q(k−1), q(k))) to transition from the initial states to the final states (q
(k)
1 , q

(k)
2),

then the final states should be low-equivalent (q
(k)
1 ≈L q

(k)
2).

q
(0)
1 ≈L q

(0)
2 ∧ δk(q

(0)
1 , q

(k)
1) ∧ δk(q

(0)
2 , q

(k)
2)⇒ q

(k)
1 ≈L q

(k)
2 (5.1)

However, a monolithic proof of non-interference (such as a direct translation of the Eq. 5.1
into a BMC query) results in a large verification query. One way to address the complexity
of a monolithic proof is to decompose it into smaller proofs, using intermediate properties,
or what we refer to as interpolants, to connect them. This can be intuitively conceptualized

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 73

through the following three equations.

q
(0)
1 ≈L q

(0)
2 ∧ δ(q

(0)
1 , q

(1)
1) ∧ δ(q

(0)
2 , q

(1)
2)⇒ J1(q

(1)
1 , q

(1)
2) (5.2)

∀i ∈ {1, ..., k − 1}. Ji(q(i)1 , q
(i)
2) ∧ δ(q

(i)
1 , q

(i+1)
1) ∧ δ(q

(i)
2 , q

(i+1)
2)⇒ Ji+1(q

(i+1)
1 , q

(i+1)
2) (5.3)

Jk(q
(k)
1 , q

(k)
2)⇒ q

(k)
1 ≈L q

(k)
2 (5.4)

Instead of a single query, one may break down the proof into a set of smaller verification
conditions. This is possible by identifying intermediate conditions J1, · · · , Jk such that: (a)
the initial conditions and transition constraints implies J1 (Eq. 5.2), (b) Ji and transition
constraints imply Ji+1 (Eq. 5.3), and (c) the final interpolant Jk(q

k
1 , q

k
2) implies that the final

states are low-equivalent (Eq. 5.4).
So far this is just standard interpolant-based reasoning. The crux of effectively using this

approach to address the complexity issues mentioned lies in the shape of the interpolants
Ji used, and how the system model (i.e., δ) is represented. One type of property that
can naturally serve as part of these interpolants Ji for non-interference-style properties,
is the class of relational properties of variables between the two system instances in a non-
interference proof. Namely, this is the information described by the set of equality constraints
{q(i)1 (v) = q

(i)
2 (v)}v∈Vi

for Vi ⊆ V , where q(v) denotes the value of variable v in state q. One
can view this as a summary of which variables between the two instances are still low-
equivalent after the i-th step. This intuition is formalized in §5.4 as the SymboTaint proof
system. On the modeling side, it is highly desirable to be able to decompose or separate
a system into simpler components. Exploiting the simpler proof obligations from Eq. 5.2-
5.4, one can then hope that a smaller system recomposed from the decomposed components
is sufficient for sound analysis of the property. This intuition is materialized in §5.5.1 as
Information State Flow Machines.

5.3 Security Model

In this section we begin by introducing our programming model in §5.3.1 followed by the
attacker model in §5.3.2. We provide background on security properties in §5.3.3. We
consider in this work the following security properties: non-interference [77], observational-
determinism [233], and trace-property observational determinism [46].

5.3.1 Programming Model

We start by developing the system model based on which security properties are defined.
We adopt a standard state-transition system, M = ⟨Q, I, δ,Op⟩ with states Q, initial states
I ⊂ Q and transition relation δ ⊆ Q×Op×Q with transitions labelled by operations from Op.
It is often useful to view states as assignments to the variables in the system. In this view,
q ∈ Q is map from variables v ∈ V to values from some domain D(v), i.e., q : V → D(v).

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 74

A program is a word over Op (i.e. P ∈ Op∗) which generates an execution. The execution
on a program P = op1 · · · opn is a trace of states πP = q(0)...q(n) ∈ Tr(M), where the initial
state belongs to I and (b) consecutive states q(i), q(i+1) have a valid transition under opi+1:
δ(q(i), opi+1, q

(i+1)). For trace π, we write π(i) for the i-th state of the trace. Tr(M) represents
valid traces of M (across programs in Op∗), while TrP (M) represents traces corresponding to
program P . A program can lead to several traces (e.g. if the system is non-deterministic).

Example 5.1 (Simple platform model). Figure 5.4 illustrates a simple platform model.
The model state variables consist of the register file and the memory. The model consists
of operations add and load. The load operation accesses the memory through the mem.load

function. Throughout our exposition, we add more detail to this model (e.g. a cache, branch
predictor, etc.), leading up to the SAP model in §5.6.1. The modeling syntax loosely follows
Uclid5 [169] which we use to implement the verification techniques discussed later.

5.3.2 Adversary Model

1 // Core variables and operations
2 core {
3 // System state variables
4 var pc : word_t;
5 var regs : [regindex_t]word_t;
6 ...
7

8 // Operations
9 operation add (rs1 , rs2 , rd) {

10 regs[rd] = regs[rs1] + regs[rs2];
11 }
12

13 operation load(rs1 , rd , imm) {
14 // regs[rd] = mem[regs[rs1]+imm];
15 var addr = regs[rs1]+imm;
16 regs[rd] = mem.load(addr);
17 }
18 }

Figure 5.4: A simple platform model.

In this section, we characterize the
capabilities of the adversary/attacker
by defining a parameterized adversary
model. The adversary model deter-
mines which behaviors constitute a vul-
nerability and hence influence the secu-
rity specification. A common adversary
model [46, 119, 204] is one that can pas-
sively observe and actively write to sub-
sets of variables. Our approach addi-
tionally endows the adversary with the
ability to transmit data between vari-
ables. This choice is motivated by mi-
croarchitectural mechanisms that move
data between variables without neces-
sarily making it visible, as illustrated in
Example 5.2.

Example 5.2. In Figure 5.5, we illustrate how a transmit operation can abstractly model
the effect of adversary code in the case of the Lazy-FP [202] vulnerability. In Lazy-FP, the
flow of information from the secret to cache state made possible by the adversary’s capabil-
ity to leak information from the xmm register to the general purpose register rax using the
advflow(xmm, rax) operation (and eventually the observable cache) indicated by the solid red
arrows. The victim program enables information flow from the secret to the xmm register
(indicated by the dotted line).

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 75

secret cachexmm rax

Figure 5.5: Information flow in the Lazy-FP vulnerability.

Formally, we characterize our adversary as a triple, A = ⟨VO, VT , F ⟩. The components
indicate the set of observable state variables VO ⊆ VL, tamperable variables VT ⊆ V and
a set of transmitting pairs F ⊆ V × V . Observable variables determine when two states
are considered to be distinguishable. The tampering operations OpT = {optamp(v) | v ∈ VT}
change the value of the tampered variable to an arbitrary value: δ(q, optamp(v), q

′) ⇐⇒ ∃x ∈
D. q′ = q[v ← x]. Our adversary model augments these tampering operations from [125,
204] with transmitting operations Opflow = {advflow(v1, v2) | (v1, v2) ∈ F}. A transmitting
operation advflow(v1, v2) establishes a flow of data from v1 to v2: δ(q, advflow(v1, v2), q

′) ⇐⇒
q′ = q[v2 ← q(v1)]. These adversary operations are a subset of the complete operation set:
OpO ∪ OpT ∪ Opflow ⊂ Op. The adversary executes asynchronously with the system using
interleaving semantics∗.

5.3.3 Security Properties

Observation. We base our security properties on a notion of observation that dictates
when two states lead to different observations (e.g. timing/power-based side-channels [205]).
Our instantiation of observation identifies a subset of variables VL ⊆ V denoted as low
variables. These are required to have equivalent values in the two states:

q1 ≈VL q2
.
= ∀v ∈ VL. q1(v) = q2(v) (5.5)

In the context of an entire execution, the adversary-visible §5.3.2 should be tagged as low.
Using this definition we define the standard non-interference property.

Definition 5.1 (Non-Interference). A system M executing program P satisfies non-
interference (w.r.t. low variables VL) if

∀π1, π2 ∈ TrP (M). π
(0)
1 ≈VL

π
(0)
2 ⇒ π

(n)
1 ≈VL

π
(n)
2 (5.6)

In words, this property requires that states which start out being observationally equivalent
should end up being observationally equivalent after executing P .

We also consider observational determinism [233] which states that executing program
P from indistinguishable states should result in indistinguishable states at every step. We
first extend the definition of low-equivalence to traces: π1 ≈VL π2

.
= ∀i ∈ N. π

(i)
1 ≈VL π

(i)
2 .

Observational determinism can be formalized as follows:

∗Note that the adversary and system can take an arbitrary number of steps.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 76

Definition 5.2 (Observational Determinism). A system M executing program P satisfies
observational-determinism (OD) w.r.t low variables VL if

∀π1, π2 ∈ TrP (M). π
(0)
1 ≈VL

π
(0)
2 ⇒ π1 ≈VL

π2 (5.7)

An extension of observational determinism [46] captures trace property-dependent viola-
tions of observational determinism. While OD requires that any two traces that are initially
equivalent be always equivalent, Trace-Property Observational Determinism (TPOD) relaxes
this condition in two ways. First, TPOD restricts these traces (π3, π4) to a trace set T2. Sec-
ondly, TPOD only enforces their equality when two other traces (π1, π2) from trace set T1

are equivalent. We refer the reader to [46] for details.

Definition 5.3 (TPOD). Given trace properties T1 ⊂ TrP (M) and T2 ⊂ TrP (M), a
system M satisfies trace property-dependent observational determinism when executing
program P if

∀π1, π2 ∈ T1.π3, π4 ∈ T2.
(
π1 ≈VL

π2 ∧ π
(0)
3 ≈VL

π
(0)
4

)
⇒ π3 ≈VL

π4 (5.8)

Taint contexts. Taint analysis [188] is an approach that can perform an approximate
(typically over-approximate) analysis of the system w.r.t. security properties. These ap-
proaches generally consider a set L of security labels [58, 183]. A taint-context Γ maps
variables to taint-labels, Γ : V → L. When the label set consists of two labels low and high,
{L, H}, we can view Γ(v) = L to mean that the variable v is untainted (by any high - H -
values). Consequently, this interpretation of taint can be related to the notion of equivalence
of variables. In particular, when the taint assigned to v is low at some point in the execu-
tion, Γ(v) = L, v only depends on variables that had initially had L taint. If the latter were
observationally equal then v is as well. Hence, the taint can be thought of as a relational
property marking variables that take identical values across executions. We make use of this
when developing the SymboTaint proof system. We can define indistinguishability in terms
of the taint-context:

q1 ≈Γ q2
.
= ∀v ∈ V. Γ(v) = l⇒ q1(v) = q2(v) (5.9)

Eq. 5.5 relates to this as: q1 ≈{v | Γ(v)=L} q2 ⇐⇒ q1 ≈Γ q2. We also use δτ as the transition
relation over taint-contexts: δτ ⊆ Q× (V → L)× Op× (V → L).

5.4 The SymboTaint Proof System

In this section, we develop a methodology to verify a given program running on a platform
model with respect to security properties from §5.3.3. Our technique is a proof-system based

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 77

on Hoare-logic [85] and interpolant-based reasoning [144]. Standard Hoare-logic inductively
builds a proof for a program by composing Hoare-triples defined for atomic statements to
get a pre-post condition for the full program. The pre-post conditions are typically state
sets (predicates) that over-approximate the actual set of states reached. This is adequate
when one is concerned with proving properties over individual executions. However, the
security properties of interest (§5.3.3) are hyperproperties defined over pairs of executions.
This requires us to augment the shape of the interpolants used in the proof-system, which
we now discuss.

5.4.1 Joint Symbolic-Taint Interpolants

Our proof system uses interpolants of the form {S,Γ} where S is a set of states and Γ is
a collection of relation equality constraints. While standard Hoare-logic/interpolant-based
approaches use formulae that hold over individual states, {S,Γ} holds on a pair of states.
This is defined through a judgement (q1, q2) |= {S,Γ} (where q1, q2 ∈ Q):

(q1, q2) |= {S,Γ}
.
= (q1 ∈ S) ∧ (q2 ∈ S) ∧ q1 ≈Γ q2

We define the SymboTaint-triple {S,Γ} M(op) {S ′,Γ′} over an individual operation op
similar to Hoare-logic. If two states satisfying {S,Γ} transition on op, then any pair of
post-states satisfy {S ′,Γ′}:

{S,Γ} M(op) {S ′,Γ′} .
= ∀q1, q2, q′1, q′2.

((q1, q2) |= {S,Γ} ∧ δ(q1, op, q
′
1) ∧ δ(q2, op, q

′
2)) =⇒ (q′1, q

′
2) |= {S ′,Γ′}

We observe that the symbolic-taint interpolants can be composed, giving us proof rules
for sequential composition and iteration similar to Hoare-logic. We provide the full set of
proof rules in the Appendix. Then starting with the triple for a single operation as the
base case, we can build proofs for larger programs. This key feature allows us to decompose
proofs for large programs into a set of verification conditions (VC) over small sequences of
operations. Each of these VCs can be discharged more effectively than a single VC for the
full program.

Self-composition vs. SymboTaint. Hyper-properties such as non-interference can be
thought of as (single trace) safety properties over the self-composition of the system [51].
Following this observation, one could build a self-composition of the system and use inter-
polants defined over two copies of the variables. However, this approach defines symbolic
constraints on twice the variables, putting strain on the underlying model-checker. We de-
velop a different route.

Our choice of interpolants is based on the observation that the properties in §5.3.3
mention equality over pairs of variables from the copies of the system. We encode this as a
taint-context Γ : V → L which marks whether a variable takes equal values. When Γ(v) = L

then v takes the same value across both executions.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 78

1 core {
2 ...
3 operation load(rs1 , rd , imm) {
4 // mem[regs[rs1]+imm] = rd;
5 var addr = regs[rs1]+imm;
6 // Redefined model semantics
7 if (cache.is hit(addr, dom))
8 regs[rd] = cache.load(addr, dom)
9 else

10 regs[rd] = mem.load(addr);
11 }
12 ...
13 }

14
15 // Cache component
16 cache {
17 var mdata : [set_index_t]word_t;
18 var data : [set_index_t]word_t;
19 // Internal functions
20 get_index(addr , dom): set_index_t =
21 addr [63:22] ++ dom;
22 get_tag(addr) : tag_t = addr [21:8];
23 is_hit(addr ,dom): bool = get_tag(addr

)
24 == mdata[get_index(addr , dom)];
25 }

Figure 5.6: Modified platform model from Figure 5.4 with a partitioned cache.

Example 5.3. In Figure 5.6 we depict a snippet from a model extending Ex. 5.1. In this
model, before a load operation invokes mem.load to fetch an address from the memory it
checks for the address in the cache (cache.is hit). The model performs cache partitioning
[113] by dividing the cache into partitions each of which is only accessible by a single process
domain (dom). The model partitions the cache by set index (line 19); the index depends on
the address and the process domain. Suppose the victim domain 0 is allocated indices ≤ k
while the attacker domain 1 is allocated the rest.

An access made by the victim (domain 0) on address addr, results in the satisfaction of
the Hoare-triple {Q,Γ0} M(load) {S1,Γ1} where Γ0 = [λi > k.i ← L] is the taint context
with domain 1 accessible indices marked low. Additionally, the symbolic state captures the
fact that domain 0 is making the access. Then following the partitioning semantics encoded
in M(load), we can infer a post-judgement where Γ1 = Γ0. That is after performing the load
operation, domain 1 visible state remains low-equivalent. This proves that a victim executed
load does not modify attacker-visible state.

5.4.2 Connecting the Proof System with Security Properties

In this section, we connect the proof system developed in §5.4.1 with security properties.
This connection is based on the fact that we can develop SymboTaint-triples which, under
some conditions, are sound with respect to the properties defined in §5.3.3. We now discuss
these conditions, starting with non-interference.

Non-interference. When proving non-interference with respect to the low variables VL

and program P , we generate a valid triple of the form: {I,Γ0} M(P) {Q,Γf} with the
following condition, denoted as CondNI:

CondNI : ∀v ̸∈ VL. Γ0(v) ̸= L ∧ ∀v ∈ VL. Γf (v) = L (5.10)

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 79

In the pre-condition, we allow a low (L) assignment to variables in VL. This ensures that
the antecedent of the non-interference property is implied. We require that the final taint
context Γf assign L to VL, which implies the consequent of non-interference.

Observational determinism. The difference between observational determinism and non-
interference is that in the former, all taint contexts must assign L to VL. Hence, in this case,
we want to generate valid triples where CondObsDet holds:

{I,Γ0} M(op1) {S1,Γ1} M(op2) · · · {Sn,Γn}
CondObsDet : ∀v ̸∈ VL. Γ0(v) ̸= L ∧ ∀i ∈ [1..n]. ∀v ∈ VL. Γi(v) = L (5.11)

The first judgement (pre-condition) is identical to the case of non-interference. However, in
this case, we need to choose the intermediate interpolants such that each of the taint-contexts
assign the L label to the variables in VL.

Trace property-dependent observational determinism. While non-interference and
observational determinism are properties over two traces, TPOD is over four traces. This
requires us to consider a self-composition of the platform transition system. Additionally,
TPOD only enforces observational-equivalence when the traces belong to T1 and T2. This
allows us to strengthen the proof system for TPOD with auxiliary invariants that over-
approximate T1 and T2. We call these invariants cover-invariants. We now briefly discuss
these concepts.

Self composition of M . The self-composition of M is the transition system M2 =
⟨Q2, δ2, I2⟩. The new state space is Q2 = Q × Q, the transition relation δ2 enforces δ
on both the first and second copies of the state, and I2 = I × I. We also consider the paired
state as an assignment to two copies of variables: V 1 = {v1}v∈V and V 2 = {v2}v∈V .

Cover invariants for trace-properties. In order to capture the trace-properties T1, T2

that TPOD enforces, we allow invariants I tpod1 , I tpod2 ⊆ Q that are implied by T1 and T2

respectively. That is, if π ∈ T1 then ∀i. πi ∈ I tpod1 , and similarly for T2 and I tpod2 . While cover
invariants can just be True, tighter invariants can lead to stronger proofs.

For TPOD, we require the following valid triples to hold over the self-composed system
M2 and program P = op1 · · · opn such that CondTPOD holds:

{S0,Γ0} M(op1) {S1,Γ
′
1}, {S1,Γ1} M(op2) {S2,Γ

′
2}, · · · , {Sn−1,Γn−1} M(opn) {Sn,Γ

′
n}

CondTPOD : S0 = (I ∩ I tpod1)× (I ∩ I tpod2) ∧ (5.12)

∀i. ∀v ̸∈ V 1
L . Γi(v) ̸= L ∧ ∀v ̸∈ V 2

L . Γ0(v) ̸= L ∧
∀i ∈ [1..n]. ∀v ∈ V 2

L . Γ′
i(v) = L ∧ ∀i ∈ [1..(n− 1)]. ∀v ∈ V 2. Γi(v) = Γ′

i(v)

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 80

Theorem 5.1 (Soundness). If there is a Hoare-triple for M under program P that is
valid w.r.t. conditions CondNI (resp. CondObsDet, CondTPOD) then the system M
satisfies non-interference (resp. observational-determinism, TPOD) on program P .

Proof rules. We provide the full set of proof rules in Figure 5.7. In addition to the
sequential composition of the proof rules, we also define a proof rule for strengthening the
pre-condition and weakening the post-condition of judgments. This is analogous to the
consequence rule in the classical Floyd-Hoare system (e.g. [85]). We denote this as rule (3)
in Figure 5.7.

RBase

∀q1, q2, q′1, q′2.
(
(q1, q2) |= {S,Γ} ∧

δ(q1, op1 · · · opn, q′1) ∧
δ(q2, op1 · · · opn, q′2)

)
=⇒ (q′1, q

′
2) |= {S ′,Γ′}

{S,Γ} M(op1 · · · opn) {S ′,Γ′}

RSeq

{S,Γ} M(op1 · · · opk) {S ′′,Γ′′}
{S ′′,Γ′′} M(opk+1 · · · opn) {S ′,Γ′}
{S,Γ} M(op1 · · · opn) {S ′,Γ′}

RCons

(S1 ⊆ S ′
1 ∧ Γ1 ⊑ Γ′

1)
(S ′

2 ⊆ S2 ∧ Γ′
2 ⊑ Γ2)

{S ′
1,Γ

′
1} M(op1 · · · opn) {S ′

2,Γ
′
2}

{S1,Γ1} M(op1 · · · opn) {S2,Γ2}

Figure 5.7: Proof rules for joint symbolic-taint judgments.

With these rules, we can now prove the soundness theorem 5.1.

Proof. In the case of non-interference (NI), if 5.10 holds then, we also have

{I,Γ∗} M(P) {Q,Γf} (5.13)

where Γ∗ = [VL → L, VH → H] (by RCons). Now consider any pair of traces π1, π2 ∈ TrP (M).

If π
(0)
1 ≈VL π

(0)
2 (precondition of NI, Defn. 5.6) then (π

(0)
1 , π

(0)
2) |= {I,Γ∗}. Consequently (by

Eq. (5.13), every pair of final states satisfy (π
(n)
1 , π

(n)
2) |= {Q,Γf}. Then, by the condition

on Γf (in Eq. (5.10)), we get π
(n)
1 ≈VL π

(n)
2 as desired. The proof for OD is similar, however,

we use the intermediate taint-contexts to show equivalence π
(i)
1 ≈VL π

(i)
2 for each step i.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 81

We now provide a proof for TPOD. Suppose there exist traces π1, π2, π3, π4 ∈ TrP (M)
that satisfy the preconditions of TPOD. That is (A) π1, π2 ∈ T1, (B) π3, π4 ∈ T2, (C) π1 ≈VL

π2 and (D) π
(0)
3 ≈VL π

(0)
4 . Then we proceed by induction to show that ((π

(i)
1 , π

(i)
3), (π

(i)
2 , π

(i)
4)) |=

{Si,Γi} holds for each i. The base case follows by (Eq. (5.12)) since π
(0)
1 , π

(0)
2 ∈ I ∩ I tpod1

(since I tpod1 is a cover invariant for T1), and similarly π
(0)
3 , π

(0)
4 ∈ I ∩ I tpod2 .

Now assume (inductive case) that it holds for some i. The ((π
(i+1)
1 , π

(i+1)
3), (π

(i+1)
2 , π

(i+1)
4)) |=

{Si+1,Γ
′
i+1} holds by (F) and RBase. Now, the fact that Γi and Γ′

i agree on V 2
L and that

(π
(i)
1 ≈V 1

L
π
(i)
2) implies ((π

(i+1)
1 , π

(i+1)
3), (π

(i+1)
2 , π

(i+1)
4)) |= {Si+1,Γi+1}. This shows the induc-

tive case. Finally, this implies π
(i)
3 ≈V 2

L
π
(i)
4 for each i since Γi(v) = L for v ∈ V 2

L .

5.5 IFSMs: Operational Encoding of SymboTaint

In this section, we discuss an operational approach to encode the proof-based reasoning
developed in §5.4. This allows us to represent proofs in the form of executions of a stan-
dard symbolic transition system. This has the following prominent advantages. Firstly, it is
easier to connect (by way of instrumentation) an operationally encoded proof with a plat-
form model that is represented as a transition system. Then, off-the-shelf model-checking
tools can be used to perform verification on the proof-instrumented platform model (e.g.
bounded/unbounded model checking, invariant inference, etc.). We apply this to secure
and insecure cases in §5.7 where we analyze an abstract platform model. Additionally, an
operational encoding allows us to perform structural composition (§5.5.2) of parts of the
platform. In particular, this allows projecting away components that are not relevant to the
proof of a certain property. This is advantageous since platforms (over which we evaluate
our techniques) are built hierarchically.

5.5.1 Information Flow State Machine

At a high level, an IFSM is a state-transition system that encodes a joint symbolic-taint
({S,Γ}) judgement in its state. This encoding is performed by augmenting the state from
the system §5.3.1 with a taint-context (Γ : V → L). Consequently, IFSM creation can be
thought of as instrumenting a platform model with taint-tracking variables.

The transitions of the IFSM update the system state following the transition relation
δ ⊂ Q× Op×Q from §5.3.1, and update the taint-context following its transition relation,
δτ . If a transition is allowed in the IFSM, then the corresponding Hoare-triple holds in the
proof system of §5.4. This key feature implies the soundness of safety proofs that use IFSMs.
The IFSM is also parameterized by the initial taint-context, Γ0. The choice of initial taint
context depends on the property being proved. For example, if one is concerned with proving
non-interference with VL as the set of low variables, the initial taint-context assigning H to all
non-low variables provides the correct antecedent: Γ0 = [VL → L, VH → H]. We now formally
define an IFSM.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 82

Definition 5.4 (Information Flow State Machine). An IFSM is a transition system
⟨Q,∆, I⟩, with a set of configurations Q, the transition relation ∆, and a set of initial
states I. Each configuration pairs a platform state with a taint context: Q = Q×(V → L).
The transition relation combines the platform variable updates with taint transitions:
∆((q1,Γ1), op, (q2,Γ2)) ⇐⇒ δ(q1, op, q2) ∧ δτ ((q1,Γ1), op,Γ2). where δ is the platform
transition relation and δτ is the taint-context transition relation. Finally the set of initial
configurations is defined as: I = I × Γ0.

5.5.2 Composing IFSMs

In this section, we discuss structural compositionality of IFSMs. Our notion of composition
is based on the observations that (a) hardware platforms are typically hierarchical in nature
and (b) only some components in the design hierarchy transition for certain operations. We
define a composition of two IFSMs as follows.

Definition 5.5 (Composition of IFSMs). The composition of M1 = ⟨Q,∆1, I1⟩ and
M2 = ⟨Q,∆2, I2⟩ is M1||M2 = ⟨Q,∆, I⟩, where: ∆ = ∆1 ∧∆2 and I = I1 ∧ I2.

The composition conjoins transition relations and starting states of M1 and M2. The
new transition relation enforces constraints from both component IFSMs. This may lead
to the new IFSM not having any valid transitions (e.g. when M1, M2 require conflicting
updates to a variable). We identify the conditions under which this does not happen.

Separability. To allow composability, we require that the overall transition relation is
separable into per-variable components: δ(q, op, q′) ⇐⇒ ∧v δv(q, op, q′(v)). Intuitively, the
relation δv ⊆ Q×Op×D localizes the effect of δ on an individual variable v. The post-values
admitted by all individual δvs can be combined to generate valid next-state assignments. We
define δvτ similarly, by replacing δ with δτ , q with q

.
= (q,Γ) and q′(v) with Γ′(v) in the above

equation: δτ (q, op,Γ
′) ⇐⇒

∧
v δvτ (q, op,Γ

′(v)).

Definition 5.6 (Separability). An IFSM M is separable if the following hold:

∀q, q′ ∈ Q, ∀v ∈ V, ∃δv, s.t. δ(q, op, q′) ⇐⇒ δv(q, op, q′(v)) (5.14)

∀q ∈ Q,Γ′ ∈ (V → L),∀v ∈ V, ∃δv, s.t. δτ (q, op,Γ
′) ⇐⇒ δvτ (q, op,Γ

′(v)) (5.15)

Projection Consistency. In addition to separating the effects of a transition, we also
need to identify when a particular component drives a certain variable. We denote this by
the guard predicate Cv(q, op) which is true when v is driven by the component and false
otherwise. Formally, we can write this as follows:

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 83

Definition 5.7 (Projection Consistent). A decomposition of δ into a collection of local-
ized {δv}v∈V is projection consistent if

Cv(q, op) ∨ ∀x ∈ D(v). δv(q, op, x) (5.16)

When Cv(q, op) is true, the component enforces specific next values for variable v. Oth-
erwise, δv holds for all the next values, i.e., the component does not enforce any constraints
on the new value. This allows the localized effects of v, i.e., δv, to be consistent under the
composition definition such that if a system was decomposed into sub-systems, the compo-
sition of the sub-systems is equivalent to the original system. When composing two or more
components, we require that at each step the guard of at most one component be true. This
ensures non-conflicting updates.

5.5.3 Compositional Verification with IFSM

Compositionality allows us to view the full platform model as a set of separable constraints
imposed on each variable. We can make full use of this separability, by composing constraints
from only necessary models. Consider the task of verifying the compositionM = M1||...||MN .
Then it suffices to compose only those components that drive some variable v. For operation
op, we denote such components as I(op)

.
= {i ∈ [N] | ∃q ∈ Q, v ∈ V. Cv

i (q, op)}. Then we
have the following corollary.

Corollary 5.1 (Minimal Composition). If each IFSM {Mi}i∈[N] of a composition
M = M1|| · · · ||MN is separable, is projection consistent and the guards of each {Mi}i∈[N]

are pairwise-disjoint, that is ∀i, j ∈ [N], v ∈ V, q ∈ Q. i ̸= j ⇒ ¬
(
Cv

i (q, op) ∧Cv
j (q, op)

)
,

then we have (where I(op) = {j1, · · · , jk}):

{S,Γ} M(op) {S ′,Γ′} ⇐⇒ {S,Γ} (Mj1||Mj2 || · · · ||Mjk) (op) {S ′,Γ′} (5.17)

Proof. Let M = ⟨Q,∆, I⟩, M ′ = (Mj1||Mj2|| · · · ||Mjk) = ⟨Q,∆′, I′⟩ be the minimal compo-
sition as defined above and let Mi = ⟨Q,∆i, Ii⟩. We show that if {S,Γ} M(op) {S ′,Γ′} and
{S,Γ} M ′(op) {S ′′,Γ′′}, then {S ′,Γ′} = {S ′′,Γ′′}.

By Eq. (5.14) and Eq. (5.15), it suffices to prove that the execution of op in M and M ′

both permit or forbid the transition from state q to the next state with variable v assigned to x
in the same way, i.e., ∆v(q, op, x) ⇐⇒ ∆′v(q, op, x). Without loss of generality, consider an
arbitrary v ∈ V . By assumption, each pairwise guard satisfies ¬(Cv

i (q, op)∧Cv
j (q, op) for any

q ∈ Q and i ̸= j. Thus, for a given v ∈ V and q ∈ Q, ¬Cv
1 (q, op)∧· · ·Cv

i (q, op) · · · ¬Cv
N(q, op).

This means that only one guard is true for a given execution of operation op in any state
q ∈ Q. With this, the assumption Eq. (5.16), and definition of I(op), we know that only one
component of M assigns to v, giving us ∆v(q, op, x) = ∆v

1(q, op, x) ∧ · · · ∧ ∆v
N(q, op, x) =

true ∧· · ·∧∆v
i (q, op, x)∧· · ·∧ true = ∆v

i (q, op, x). Since the right-hand side of the preceding

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 84

equation is precisely the behavior of ∆′ for variable v, i.e., ∆′v(q, op, x)
.
= ∆v

i (q, op, x), this
completes the proof.

In the following sections, we utilize this notion of minimal composition when verifying
transient execution attacks on the platform model of a microprocessor.

5.6 Verifying Speculative Platforms with IFSMs

Existing works on modeling and verifying security properties for processor platforms com-
monly develop the platform model based on speculative semantics [46, 68, 82, 83]. These
platform models specify instruction semantics at the microarchitectural level. These map-
pings from instructions to micro-architectural effects are often hard-coded making extensions
to these semantics difficult. A modeling language that allows flexible specification of micro-
architectural features can address these challenges. We present the Speculative Abstract
Platform (SAP), which models a general class of microprocessor designs. The SAP model
is implemented using the modeling and verification language Uclid5 [169] which allows for
parameterization and composition of model components. While we model a wide range of
microarchitectural features, for space reasons, we only present the cache and branch predic-
tion components of the SAP model in this section. For full details, we refer the reader to
the repository at https://github.com/ifsm-sp2023/sap.

5.6.1 The Speculative Abstract Platform

Model State Var. Description

CPU

pc The program counter.
regs Registers.
mem Physical memory.
excp Exception register.
pid Current executing process.

Cache
cache valid Cache index to valid bit.
cache tag Cache index to entry tag.

Branch
prediction

pht Pattern history table.
btb Branch target buffer.

Figure 5.8: CPU, cache, and branch prediction
components of the SAP model.

The SAP model consists of several
abstract components represented
as IFSMs. The model includes a
CPU core, a data cache, a line
fill buffer, load and store buffers,
a page table, a translation looka-
side buffer, a pattern history ta-
ble, a branch target buffer and a
power state. We note that the SAP
model serves as an initial abstrac-
tion which one may use for the
analysis of speculative programs.
To exemplify our methodology, we
describe the following three IFSM components of the SAP in more detail and describe their
composition: the CPU, cache and branch predictor models. We omit details about virtual-
ization from this example for simplicity.

Abstract CPU model. The CPU model Mcore, is an abstraction of architectural states,
which include the variables in the first row of Table 5.8. The program counter, registers,

https://github.com/ifsm-sp2023/sap

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 85

1 // Branch prediction
2 branch_prediction {
3 var pht : [addr_t]counter_state_t;
4

5 // internal functions
6 ctr_to_dir(ctr_state) : boolean;
7 predict_dir(addr) : boolean =
8 ctr_to_dir(pht[addr]);
9 ...

10

11 operation bge(rs1 , rs2 , addr) {

12 // speculatively predict branch
13 if (predict_dir(pc)) {
14 pc = pc + 4;
15 } else {
16 pc = addr;
17 }
18 }
19
20 guard bge() { return *; }
21 ...
22 }

Figure 5.10: Branch prediction in the SAP model

physical memory, and exception registers† are denoted by pc, regs, mem, excp respectively.
We use pid to denote the domain of the executing process (adversary or victim). The set
of operations (Op) define the transition relation semantics δ. For the CPU, these operations
are load (load), store (store), conditional branch (bge), add (add), jump (jmp) and other
instructions containing only the ISA level semantics. This model was described earlier as
Figure 5.4.

1 // Cache model continued
2 cache {
3 ...
4 operation load(addr , dom) {
5 return data[get_index(addr , dom)];
6 }
7 guard load(addr , dom) {
8 return is_hit(addr , dom);
9 }

10 }

Figure 5.9: Continued cache model from
Figure 5.6 with the load operation and guard.

Abstract cache model. The second row
in Table 5.8 describes the cache model
Mcache, which contains a map of cache in-
dexes to valid bits and tags of cache lines
(this is abstracted away in Figure 5.6).
In addition to the internal functions as
shown in Figure 5.6, the cache model con-
tains the load operation which reads from
data variable. The cache model rede-
fines the semantics of the CPU’s load op-
eration and thus we associate the guard
Cregs[rd](q, load) := is hit(addr,pid),
where addr := q.regs[rs1]+ imm. Figure 5.9 expands on Figure 5.6 to illustrate this.

Abstract branch predictor model. The abstract branch predictorMBP , redefines branch
instructions with speculative semantics by using a pattern history table (pht). It takes the
conventional always mispredict semantics common in existing models [68, 82]. For example,
the branch-if-greater-equal (bge) operation makes a branch decision based on the pht using
an uninterpreted function ctr to dir. This takes as argument the state of the counter
for a given address and returns a branch direction. The guard associated to this operation,

†We note that the number of exceptions is not comprehensive and only includes page faults, abort pages
and device-not-available exceptions to accommodate the variants we verify.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 86

Cpc
BP (q, bge) := ∗, allows the model to non-deterministically choose (indicated by ∗) between

executing bge in the branch prediction or the core. Figure 5.10 further expands on
Figure 5.9 to illustrate the extended model with the abstract branch predictor.

5.6.2 Composing IFSM Models

1 // Branch prediction
2 program {
3 operation block_C1 () {
4 addi(a3 , gp , -88);
5 store(a3 , s0 , -24);
6 bge(a0 , a1 , END);
7 }
8 ...
9 operation block_C3 () {

10 ...
11 load(a3 , a3 , 0);
12 add(a4 , a4 , a3);
13 load(a5 , a4 , 0);
14 }
15 }

Figure 5.11: Program
composed with the SAP model.

Composing SAP components. To verify our prop-
erties efficiently, we compose the abstract models from
§5.6.1 using Def. 5.5. In addition, the models are de-
signed such that the transitions satisfy Eq. 5.16 and the
collection of guards are disjoint. Subsequently, we make
use of Cor. 5.1 to verify “minimal” compositions with the
interpolant-based approach. To illustrate this, consider
the task of verifying non-interference for Figure 5.2. Fig-
ure 5.11 shows the program component that contains three
operations corresponding to the blocks in Figure 5.2. Each
instruction level operation within the block corresponds
to a composition of the operations from Mcore, Mcache and
MBP .

Executing the victim program on the SAP model.
First, by construction, our models Mcore, Mcache, and MBP

satisfy Eq. 5.16 because when the guard of a variable v evaluates to false, we do not update
variable v. Second, each guard is written to be disjoint. This allows us to use Corollary 5.1
to compose only the necessary models for computing the symbolic-taint interpolants. For ex-
ample, computing the post-interpolant for block C1(), the compositionMcore||Mcache||MBP

is used because of the store and bge instructions. On the other hand, computing the post-
interpolant of block C3() only requires Mcore||Mcache. This results in a shorter compilation
time of the models for each computation of an interpolant and a smaller model to reason
about.

5.7 Case Studies

While several approaches [46, 82, 153] perform verification w.r.t. secure speculation, vulnera-
bilities such as ÆPIC [29] transcend secure speculation, due to which we check observational
determinism (Eq. 5.11), which in turn implies secure speculation.

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 87

Transient execution attacks and their adversary model parameterization.

Execution VO VT F Spec. Feature Exploited

V
u
ln
e
ra
b
il
it
y

A
sy

n
ch

ro
n
o
u
s

E
n
tr
y
P
o
in
ts

L
1
D

A
V
X
2
P
o
w
e
r

P
H
T

R
S
B
/
B
T
B

P
a
g
e
T
a
b
le
s

S
to
re

B
u
ff
e
r

L
1
D

C
a
ch

e
L
o
a
d
P
o
rt

L
F
B

v
1

v
2

B
ra
n
ch

P
re
d
.

B
T
B
/
R
S
B

P
re
d
.

S
T
L

F
o
rw

a
rd

R
e
g
.
P
e
rm

.

M
e
m
.
P
e
rm

.

Spectre v1 [116] × × × × ×
Spectre v2 [116] × × × × ×
Spectre v4 [116] × × × × ×
Meltdown [133] × × × ×
Foreshadow [215] × × × × ×
LVI [216] × × × × × × × × × × ×
NetSpectre [190] × × × × × ×
LazyFP [202] × × × XMM L1D ×
RIDL [186] × × × × × LFB L1D ×

Table 5.1: The execution column indicates whether the adversary is allowed to execute
asynchronously or only before and after the victim program (at entry points). VO, VT and
F represent the observable states, tamperable states and the flow transmit pairs (§5.3.2) of
the adversary.

5.7.1 Speculative Examples

Table 5.1 shows the list of transient execution attacks that we check for observational de-
terminism when executing on the SAP model. The execution column indicates the setting
in which the vulnerabilities may occur: either when the adversary executes asynchronously
(e.g., using simultaneous multi-threading) or only before and after the victim program exe-
cution (entry points). We try to choose asynchronous execution whenever possible because
it is a more restrictive model. The three columns VO, VT , and F describe our parameter-
ization of the adversary model (§5.3.2) used to capture the attacks. VO shows two covert
channels that are used in the list of attacks, which include the L1D cache and the AVX2
power state. VT indicates the states that we consider tamperable. Lastly, F describes the
adversary’s capability to leak information from the state in column v1 to the state in column
v2. For example, in the case of the LazyFP vulnerability, we assume the setting in which
the adversary can leak information from the XMM registers to the L1D cache, and for the
MDS-based attacks, we assume that the adversary can leak information from the line fill
buffer (LFB) to the L1D cache. The remaining column indicates the speculative features be-
ing exploited at a high level. We note that these columns are not intended to be exhaustive
of the speculative features, buffers, and covert channels that can potentially be exploited.
We emphasize that the table stresses the need for a more holistic approach that considers all

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 88

components of the platform and an adversary model that can parameterize the system state.
Each vulnerability shown only exploits a specific combination of speculative features and
covert channels, yet there is potentially a combinatorial space of features one could exploit
and thus sound analysis would require reasoning about all these combinations in a scalable
manner.

Verifying Observational Determinism on the SAP Model

Vulnerability
OD (BMC) TOD (BMC) TOD (Interpolants)

Insecure Partitioned
Cache

Insecure Partitioned
Cache

Insecure Partitioned
Cache

Spectre v1 150.7 125.9 7.1 35.3 5.2 6.2
Spectre v2 223.0 242.8 8.2 25.3 4.2 4.3
Spectre v4 20.8 49.2 5.6 6.872 4.2 4.0
Meltdown 12.7 92.1 4.1 4.1 3.8 3.7
Foreshadow 11.9 81.7 4.5 9.3 3.9 3.8

LVI 15.1 33.6 7.0 5.1 4.0 4.3
NetSpectre 17.6 - 7.0 - 3.7 -
LazyFP 6 - 3.7 - 3.8 -
RIDL 14.37 20.2 4.3 3.5 4.3 3.9

Spectre v1 (St.=4) TLE TLE 94.7 155.0 4.8 4.3
Spectre v1 (St.=5) TLE TLE 466.2 297.2 5.8 4.7
Spectre v1 (St.=6) TLE TLE 874.8 TLE 6.1 5.7

Table 5.2: Time (in seconds) to verify OD using the 2-safety encoding with BMC, the trace
property encoding of OD (TOD) with BMC and TOD with interpolants. Examples are
checked using Uclid5, and marked with TLE (time limit exceeded) if it takes longer than
15 minutes.

5.7.2 Verification Results

We model instruction-level program snippets representative of the transient execution attack
vulnerabilities from Table 5.1 and verify the programs by composing it with the SAP. The
results of the approaches used are described in Table 5.2. Specifically, we first verify that the
program snippets violate the secure speculation property using (1) bounded model checking
(BMC) with the 2-safety observational determinism-based encoding (OD), (2) using bounded
model checking with the symbolic taint analysis (TOD) encoding (which is a trace property
with taint contexts modeled using ghost variables as explained in §5.5.1) and (3) using the
interpolant-based approach with the symbolic taint analysis encoding. For the interpolant-
based approach, we prove pre-post properties corresponding to the taint context. These
results are listed under the Insecure columns. We also verify that the programs are secure
with an abstract partitioned cache [113] model, with the exception of NetSpectre and LazyFP

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 89

because the model of the former leaks to the AVX2 side-channel and the latter leaks secrets
into cache after the execution of the victim. These results are listed under the columns
labeled Partitioned Cache. We note that the disparity in runtimes between the different
vulnerabilities can be explained by the number of atomic blocks we separate the program
P into (and hence require more steps for BMC), the number of instructions and varying
platform model complexity. The last three examples are extensions of the Spectre v1 attack
where the system takes a varying number of steps (annotation (St.=i) means the system
takes i steps). As expected, the interpolant-based approach outperforms BMC because each
check is localized to small sequences of instructions. The experiments were run on a 2.6 GHz
6-Core Intel Core i7 machine with 16 GB RAM.

5.8 Discussion

5.8.1 Limitations

Compositional Verification of CondTPOD. While CondNI (Eq. 5.10) and CondObsDet
(Eq. 5.11) can be checked by checking each Floyd-Hoare triple locally, CondTPOD (Eq. 5.12)
requires checking trace properties over entire traces. Consequently, this means we lose the
ability to check each Floyd-Hoare triple locally for general trace properties. However, trace
properties that can be expressed as invariants over the triples naturally does allow our proof
system to also check whether the system satisfies the trace properties in a localized manner.
In fact, many useful properties, including the ones used to instantiate TPOD to derive secure
speculation [46], can indeed be written as invariants (e.g. whether a program is allowed to
speculate). Thus we defer the exploration of compositionally checking trace properties to
existing and future work.

In-order Execution of Programs. Similar to existing approaches [46, 68, 82] that use
symbolic execution, our verification methodology using the SAP model only considers in-
order program instruction fetch. Thus, there may exist vulnerabilities on an out-of-order
microprocessor that are not captured using our model alone. Proving properties about fully
out-of-order processors would thus require modeling a component akin to a reorder buffer.
Alternatively, one could potentially synthesize sound abstractions such that any violation of
an information flow property in the out-of-order implementation model is preserved by the
abstraction.

Soundness of Abstractions. While the SAP model is capable of capturing a broad class
of attacks, we emphasize that every component is necessary for sound verification of any
system. Thus while our SAP model is capable of capturing a broad class of vulnerabilities
on a class of micro-architectures, ideally each micro-architecture should tailor the model
to accommodate all components that could potentially be exploited. For more fine-grain

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 90

analysis, one should use sound abstract models derived from the RTL implementation, as
direct formal verification of RTL often does not scale.

5.9 Related Work

Our main contribution in this work is demonstrating two forms of composition: (a) tem-
poral composition which builds Hoare-style proofs for sequences of instructions, and (b)
spatial composition which allows reasoning only over relevant slices of the hardware de-
sign. This is most closely related to work on information flow checking; more specifically,
lazy self-composition [227]. The SymboTaint proof system used in temporal composition
combines symbolic state with taint-based relational atoms. Lazy self-composition devel-
ops an abstraction-refinement approach, also using relational atoms. However, their core
focus is on performing symbolic reasoning lazily (by default relying only on taint-based re-
lational atoms). In contrast, our focus is on proof decomposition. Consequently, a lazy
self-composition-based approach can be used with ours for identifying optimal interpolants.
Additionally, lazy self-composition does not consider the modeling and compositional rea-
soning of the hardware platform.

Other related works that combine program and platform models to verify security in-
clude Covern [154] which defines composition over a specific type of shared resource system
with locks, compositional information flow-aware refinement [23] which introduces the no-
tion of ignorance-preservation, is developed over an abstract system which can be used our
formalisms to develop more accurate models. Lastly, work on modeling hardware platforms
using happens-before graphs [153, 209] proposes a pattern-based approach for checking se-
curity, however, non-interference is beyond the scope of this work.

The emergence of transient execution attacks has also led to the use of information flow
checking for proving the security of programs [81, 82, 83], but they are limited in their
ability to extend to different attacker and platform models and lack a systematic method of
spatial composition. While previous work [68] provides a systematic approach to combine
speculative attacks, they are attack-centric and retrospective, requiring knowledge about the
precise attack mechanisms, and are limited in their ability to combine attacks.

5.10 Summary

In this work, we considered the problem of verifying information-flow-based security prop-
erties for software running on hardware platforms. This is challenging owing to complex
microarchitectural-level system models and vulnerable code fragments nestled within large
software. We introduced SymboTaint, a proof-system that specializes Hoare-style reason-
ing to properties such as non-interference and observational determinism. We developed
Information Flow State Machines as an operational framework that allows parameterizable
modeling of microarchitectural features. Additionally, IFSMs allow instrumenting the plat-

CHAPTER 5. COMPOSITIONAL PROOFS OF INFORMATION FLOW PROPERTIES
FOR HARDWARE-SOFTWARE PLATFORMS 91

form model with SymboTaint based proofs. We presented an abstract model of a speculative
microprocessor called the Speculative Abstract Platform (SAP) with several microarchitec-
tural features. We use our methodology to verify observational- determinism for a broad
class of transient execution attacks beyond what is possible with existing approaches.

92

Chapter 6

Designing Secure and Efficient
Trusted Execution Environments

While proving properties such as non-interference, observational determinism, secure specu-
lation, and TPOD described in chapters 4 and 5 can assist in proving memory isolation. It
is sometimes impractical to prove this on-demand for programs that are constantly changing
on a platform. For these programs that require additional security, often in the form of
data confidentiality, secure computation is desirable. One method to provide secure compu-
tation is through the use of TEEs. However, TEEs are limited in the number of features
they support and their programming model. More importantly, TEEs support little to no
memory sharing for the enclave programs they manage, which is one of their most inhibiting
limitations.

In this chapter, we present the first formally verified TEE design to support memory
sharing to expand the use case of enclave programs. Together with the previous chapters,
this aims to provide secure information flow from the hardware level, to the firmware and
software levels of hardware platforms.

6.1 Overview

The hardware enclave [10, 53, 70, 111, 112, 127, 141] is a promising method of protecting a
program [157, 171, 172, 210] by allocating a set of physical addresses accessible only from
the program. The key idea of hardware enclaves is to isolate a part of physical memory by
using hardware mechanisms in addition to a typical memory management unit (MMU). The
isolation is based on a disjoint memory assumption, which constrains each of the isolated
physical memory regions to be owned by a specific enclave. A hardware platform enforces
the isolation by using additional in-memory metadata and hardware primitives. For exam-
ple, Intel SGX maintains per-physical-page metadata called the Enclave Page Cache Map
(EPCM) entry, which contains the enclave ID of the owner [52]. The hardware looks up the
entry for each memory access to ensure that the page is accessible only when the current

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 93

enclave is the owner.
However, the disjoint memory assumption also significantly limits enclaves in terms of

their performance and programmability. First, the enclave needs to go through an expensive
initialization whenever it launches because the enclave program cannot use shared libraries
in the system nor clone from an existing process [131]. Each initialization consists of copying
the enclave program into the enclave memory and performing measurements to stamp the
initial state of the program. The initialization latency proportionally increases depending
on the size of the program and the initial data. Second, the programmer needs to be aware
of the non-traditional assumptions about memory. For instance, system calls like fork or
clone no longer rely on efficient copy-on-write memory, resulting in significant performance
degradation [171, 210].

A few studies have proposed platform extensions to allow memory sharing of enclaves.
Yu et al. [231] proposes Elasticlave, which modifies the platform such that each enclave can
own multiple physical memory regions that the enclave can selectively share with other en-
claves. An enclave can map other enclaves’ memory regions to its virtual address space by
making a request, followed by the owner granting access. Elasticlave improves the perfor-
mance of enclave programs that relies on heavy inter-process communication (IPC). Li et
al. [131] proposes Plug-In Enclave (PIE), which is an extension of Intel SGX. PIE enables
faster enclave creation by introducing a shared enclave region, which can be mapped to an-
other enclave by a new SGX instruction EMAP. EMAP maps the entire virtual address space
of a pre-initialized plug-in enclave. PIE improves the performance of enclave programs with
large initial code and read-only data (e.g., serverless workloads). Although the prior work
shows that memory sharing can substantially improve performance, they do not provide
formal guarantees about security.

Unsurprisingly, the disjoint memory assumption of enclaves is crucial for the security
of the enclave platforms. Previous studies [70, 156, 184, 204] formally prove high-level
security guarantees of enclave platforms such as non-interference properties, integrity, and
confidentiality based on the disjoint memory assumption. However, to our best knowledge,
no model formally verifies the security guarantees under the weakened assumption that the
enclaves can share memory.

Practical formal verification requires choosing the right level of abstraction to model and
apply automated reasoning. Verification on models that conform to the low-level implemen-
tation [156] or source-level code [8, 47, 114, 194, 198] is often platform-specific in that it only
provides security guarantees to those implementations and thus does not apply generally. If
one seeks to verify that a memory-sharing approach on top of a family of enclave platforms
is secure, it is not easy to reuse verification efforts for specific implementations. We seek an
approach that is incremental and also applicable to existing platforms.

Moreover, there are many ways one could design a memory-sharing model, each varying
in complexity and flexibility. Complex models can provide more flexibility to optimize the
applications for performance, but this often comes at the cost of increasing the complexity
of formal verification. However, if memory sharing is too restrictive, it also becomes hard for
programmers to leverage it for performance improvements. Thus, we seek a simple sharing

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 94

model with a balance between flexibility and ease of verification.
To this end, this chapter presents Cerberus, a formal approach to secure and efficient

enclave memory sharing. Cerberus chooses single-sharing model with read-only shared mem-
ory, which allows each enclave to access only one read-only shared memory. We show that
this design decision significantly reduces the cost of verification by simplifying invariants,
yet still provides a big performance improvement for important use cases. We formalize an
enclave platform model that can accurately capture high-level semantics of the extension
and formally verify a property called Secure Remote Execution (SRE) [204]. We perform
incremental verification by starting from an existing formal model called Trusted Abstract
Platform (TAP) [204] for which the SRE property is already established. Finally, we show the
feasibility of Cerberus by implementing it in an existing platform, RISC-V Keystone [127].
Cerberus can substantially reduce the initialization latency without incurring significant
computational overhead.

To summarize, the contributions of this chapter include the following:

• Provide a general formal enclave platform model with memory sharing that weakens
the disjoint memory assumption and captures a family of enclave platforms

• Formally verify that the modified enclave platform model satisfies SRE property via
automated formal verification

• Provide programmable interface functions that can be used with existing system calls

• Implement the extension on an existing enclave platform and demonstrate that Cer-
berus reduces enclave creation latency

6.2 Motivation and Background

6.2.1 Use Cases of Memory Sharing in Enclaves

Many programs these days take advantage of sharing their memory with other programs.
For example, shared libraries allow a program to initialize faster with less physical memory
than static libraries because the operating system can reuse in-memory shared libraries for
multiple processes. Similarly, sharing large in-memory objects (e.g., an in-memory key-value
store) can be shared across multiple processes. Running a program inside an enclave disables
memory sharing because of the disjoint memory assumption. This section introduces a few
potential use cases of memory sharing in enclaves to motivate Cerberus. Memory sharing
can significantly improve the performance of enclave programs that require multiple isolated
execution contexts with shared initial code and data.

Serverless workloads. Serverless computing is a program execution model where the
cloud provider allocates and manages resources for a function execution on demand. In
the model, the program developer only needs to write a function that runs on a language

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 95

runtime, such as a specific version of Python. Many serverless frameworks [71, 160] reduce
the cold-start latency of the execution with pre-initialized workers containing the language
runtime. As described earlier by Li et al. [131], the workers will suffer from an extremely long
initialization latency (e.g., a few seconds) when they run in enclaves, as the language runtimes
are typically a few megabytes (e.g., Python is 4 MB). Because the difference between worker
memories (e.g., heap, stack, and the function code) can be as small as a few kilobytes, a
large amount of initialization latency and memory usage can be saved by sharing memory.

Inference APIs. Machine learning model serving frameworks [13, 90, 175] allow users
to send their inputs and returns the model’s inference results. Serving different users with
separate enclaves will have a longer latency as the model size increases. As of now, the five
most popular models in Huggingface [90] have a number of parameters ranging from a few
hundred million to a few hundred billion, which would occupy at least hundreds of megabytes
of memory. Sharing memory will drastically reduce the latency and memory usage of such
inference APIs in enclaves.

Web servers. Multi-processing web servers handle requests with different execution con-
texts while sharing the same code and large objects. For example, a web server or an API
server that provides read access to a large object (e.g., front-end data or database) will suffer
from long latency and memory usage running in an enclave. If enclaves can share a memory,
they can respond with lower latency and smaller memory usage.

6.2.2 The Secure Remote Execution Property

As mentioned earlier, much of the prior work identifies integrity and confidentiality as key
security properties for enclave platforms. As a result, we aim to prove a property that is at
least as strong as these two, which is the SRE property [204]. To provide intuition behind
the property, the typical setting for an enclave user is that the user wishes to execute their
enclave program securely on a remote enclave platform. The remote platform is largely
untrusted, with an operating system, a set of applications, and other enclaves that may
potentially be malicious. Thus it is desirable to create a secure channel between the enclave
program and the user in order to set up the enclave program securely. Consequently, in
order to have end-to-end security, we need to ensure that the enclave platform behaves in
the following three ways:

• The measurement of an enclave on the remote platform can guarantee that the enclave
is set up correctly and runs in a deterministic manner

• Each enclave program is integrity-protected from the untrusted entities and thus exe-
cutes deterministically,

• Each enclave program is confidentiality-protected to avoid revealing secrets to un-
trusted entities.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 96

These three behaviors manifest as the secure measurement, integrity, and confidentiality
properties as defined in Section §6.5 and are ultimately what we guarantee for our platform
model extended with Cerberus.

6.2.3 Formal Models of Enclave Platforms

Prior work has formally modeled and verified enclave platform models for both functional
correctness and adherence to safety properties similar to the SRE property. While verification
at the source code level (e.g., Komodo [70]) provides proofs of functional correctness and
noninterference of enclaves managed by a software security monitor, existing verification
efforts are often closely tied to the implementation, making it difficult to apply existing
work to our extension. A binary- or instruction-level verification (e.g., Serval [156]) on the
other hand, focuses on automating the verification of the implementation. Working with
binary-level models is often difficult and tedious because the binary often lacks high-level
program context (e.g., variable names). However, this chapter aims to verify the enclave
memory sharing on general enclave platforms and thus binary-level verification is not a goal.
Our approach complements binary-level verification by reducing the problem to showing
refinement from our model the the binary-level model.

The Trusted Abstract Platform model [204] is an abstraction of enclave platforms that
was introduced with the SRE property. The SRE property states that an enclave execution
on a remote platform follows its expected semantics and is confidentiality-protected from a
class of adversaries defined along with the TAP model. This property provides the end-to-
end verification of integrity and confidentiality for enclaves running on a remote platform.
It has also been formally proven that the state-of-the-art enclave platforms such as Intel’s
SGX [52, 141] and MIT’s Sanctum [53, 124] refine the TAP model and hence satisfy SRE
against various adversary models. To our best knowledge, the TAP is the only model for
formal verification that has been used to capture enclave platforms in a general way. The
level of abstraction also makes it readily extensible. For these reasons, we extend the TAP
model.

6.3 Design Decisions: Memory Sharing in Enclave

Platforms

Several design decisions were made in our approach to conform to our design goals. The
memory-sharing model and interface designs are crucial for modeling, verification, and imple-
mentation. This section discusses the details of how we chose to design the memory-sharing
model and interface.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 97

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

1 2 3 4

No sharing

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

1 2 3 4

Arbitrary sharing

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

1 2 3 4

Capped sharing

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

1 2 3 4

Single sharing

Figure 6.1: Memory sharing models with varying flexibility. Blue (and white) boxes
indicate shareable (and non-shareable) physical memory regions, and circles indicate

enclaves. An edge from an enclave to physical memory is an access relation stating that an
enclave can access the memory it points to. The figure only depicts cases where the

number of memory regions m is the same as that of enclaves n, but m can be greater than
n in practice.

6.3.1 Writable Shared Memory

Some programs use shared memory for efficient inter-process communication (IPC), which re-
quires any writes to the shared memory to be visible to the other processes. Elasticlave [231]
allows an enclave to grant write permissions for a memory region to the other enclaves such
that they can communicate without encrypting or copying the data. However, the authors
also show that such writable shared memory requires the write permission to be dynamically
changed to prevent interference between enclaves. As formal reasoning on memory with dy-
namic permission will introduce a non-trivial amount of complexity, we leave this direction
as future work. Thus, Cerberus does not support use cases based on IPC or other muta-
ble shared data. Similarly, PIE [131] also only enables read-only memory sharing among
enclaves.

6.3.2 Memory Sharing Models

Figure 6.1 shows four different memory-sharing models with varying levels of flexibility. We
discuss the implications for the implementation and the feasibility of formal verification for
each model. For this discussion, we use the number of access relations between enclaves and
memory regions as a metric for the complexity of both verification and implementation.

No sharing. We refer to the model that assumes the disjoint memory assumption as the
no-sharing model, which is implemented in state-of-the-art enclaves [70, 127, 141]. The
no-sharing model strictly disallows sharing memory and assigns each physical address to
only one enclave. As a result, the number of access relations is O(max(m,n)) = O(m),
where m is the number of physical memory regions, and n is the number of enclaves. Thus,
implementations with no-sharing will require metadata scaling with O(m) to maintain the
access relations. For instance, each SGX EPC page has a corresponding entry in EPCM,
which contains the owner ID of the page. The no-sharing model has been formally verified
at various levels [70, 156, 204].

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 98

Enclave 1
libX

Enclave 2
libY

Enclave 3
objZ

Enclave 10

Enclave 11

Enclave 12

Enclave 1

libX

libY

Enclave 10

Enclave 11

Enclave 12

Enclave 2

libY

objZ

Capped sharing Single sharing

Figure 6.2: Difference between capped- and single-sharing models in use cases. libX, libY,
and objZ are the large libraries or objects that enclaves want to share. Enclave 10 and 11

relies on libX and libY, while Enclave 12 relies on libY and objZ.

Arbitrary sharing. One can completely relax the sharing model and allow any arbitrary
number of enclaves to share memory (as in Elasticlave). We refer to this sharing model as
the arbitrary-sharing model. In this case, the number of access relations between enclaves is
O(mn). Consequently, arbitrary sharing requires metadata scaling with O(mn).

Capped sharing. To achieve scalability in the number of access relations, one can con-
strain the sharing policy such that each enclave can only access a limited number of shared
physical memory regions. We refer to this sharing model as the capped-sharing model. In
Figure 6.1, capped sharing shows an example where each enclave is only allowed to access at
most two additional shared physical memory regions. As an example, PIE [131] introduces
a new type of enclave called plug-in enclave, which can be mapped to the virtual address
space of a normal enclave. This reduces the number of relations to O(kn+m), where k is the
number of shared physical memory regions that are allowed to be accessed by an enclave.

Single sharing. The single-sharing model is a special case of the capped sharing with
k = 1. Thus, the model only allows enclaves to access the shared memory regions of a
particular enclave. Single sharing reduces the complexity to O(m).

6.3.3 Formal Verification of Sharing Models

Formally verifying arbitrary- or capped-sharing models are challenging due to the flexibility
of the models. Verifying security properties such as SRE requires reasoning about safety
properties with multiple traces and platform invariants with nested quantifiers. In our expe-
rience, modeling an arbitrary number of shared memory would add to this complexity. For
example, one inductive invariant needed to prove SRE on TAP is that if a memory region is
accessible by an enclave, the region is owned by the enclave. To allow an arbitrary number

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 99

of memory regions to be shared, the invariant should be extended such that it existentially
quantifies over all relations, for example, stating that the owner of the memory is one of the
enclaves that shared their memory with the enclave (See §6.5 and Eq. (6.8) for details). The
encoding of the invariant in TAP uses first-order logic with the theory of arrays and, in gen-
eral, is not decidable [27]. As a result, the introduction of this quantifier further complicates
the invariant. Despite the limiting constraint in capped sharing, a formal model capturing
any arbitrary limit k would still require modeling an arbitrary number of the shared memory
as in the arbitrary sharing scheme and face the same complication.

In contrast, the single-sharing model significantly reduces the efforts of formal reasoning
and implementation. First, the formal reasoning no longer requires the complex invariant
because the memory accessible to an enclave either belongs to the enclave itself or only
another enclave that is sharing memory. Second, the implementation becomes much simpler
as it requires only one per-enclave metadata to store the reference to the shared memory.
The platform modification also becomes minimal as it only checks one more metadata per
memory access.

Despite its simplicity, the single-sharing model can still improve the performance of
programs by having all of the shared contents (e.g., shared library, initial code, and initial
data) in a shared enclave. Figure 6.2 depicts the difference between capped- and single-
sharing models. With the capped-sharing model, each shareable content can be initialized
with a separate enclave, allowing each enclave to map up to k different enclave memory
regions (i.e., Plug-In enclaves in PIE). Single-sharing model only allows each enclave to
map exactly one other enclave, leaving potential duplication in memory when heterogeneous
workloads have shared code (e.g., libY). We claim that the benefit of the model’s simplicity
outweighs the limitation, as the single sharing does not have notable disadvantages over
capped-sharing when there is no common memory among heterogeneous workloads.

6.3.4 Interface

Enclave programs need interface functions to share memory based on the sharing model.
Elasticlave and PIE introduce explicit operations to map or unmap the shareable physical
memory region to the virtual address space of the enclave. For example, Elasticlave requires
an enclave program to explicitly call map operation to request access to the region, which
will be approved by the owner via share operation. Similarly, PIE allows an enclave to use
EMAP and EUNMAP instructions to map and unmap an entire plug-in enclave memory to the
virtual address of the enclave.

Elasticlave and PIE allow an enclave program to map shareable physical memory regions
to its virtual address space. However, there are a few downsides to the approaches. First, the
programmers must manually specify which part of the application should be made shareable.
In most cases, the programmers must completely rewrite a program such that the shareable
part of the program is partitioned into a separate enclave memory. Second, a dynamic
map or unmap requires local attestation, which verifies that the newly-mapped memory is

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 100

in an expected initial state. Thus, the measurement property of a program relies on the
measurement property of multiple physical memory regions.

Cerberus takes an approach similar to a traditional optimization technique, which clones
an address space with copy-on-write, as in system calls like clone and fork. This approach
fits Cerberus use cases where the shareable regions include text segments, static data seg-
ments, and dynamic objects (e.g., a machine learning model). In general, programmers
expect such system calls to copy the entire virtual address space of a process – no matter
what it contains – to a newly-created process. A similar interface will allow the program-
mers to write enclave programs with the same expectation. Also, such an interface will not
require additional properties or assumptions on measurements of multiple enclaves. Since
the initial code of an enclave already contains when to share its entire address space, the
initial measurement implicitly includes all memory contents to be shared.

To this end, Cerberus introduces two enclave operations, which are Snapshot and Clone.
Snapshot freezes the entire memory state of an enclave, and Clone creates a logical dupli-
cation of an enclave. We make Snapshot only callable from the enclave itself, allowing the
enclave to decide when to share its memory. The adversary can call Clone any time, which
does not break the security because it can be viewed as a special way of launching an enclave
(See §6.4.4). When the adversary calls Clone on an existing enclave, a new enclave is created
and resumes with a copy-on-write (CoW) memory of the snapshot. Thus, any changes to
each of the enclaves after the Clone are not visible to each other. The following sections
formally discuss the sharing model and the interface of Cerberus.

6.4 Formal Model of An Enclave Platform with

Memory Sharing

We first introduce a threat model in Section §6.4.1 that is consistent with these goals and
the current state-of-the-art enclave threat models. Then, we list and justify our assumptions
in Section §6.4.2, introduce our formal models of the platform and adversary based on these
assumptions in Section §6.4.3 and then introduce the two new operations Snapshot and
Clone of Cerberus in Section §6.4.4.

In section §6.5, we use these formal models to define the SRE [204] property, which is a
critical security property used to prove that enclaves executing in the remote platform are
running as expected and confidentially. These properties are then formally verified using
incremental verification on TAP. In other words, our formal models extend the TAP model
introduced by Subramanyan et al. [204]. While SRE has been proven on the extended TAP
model, Cerberus design weakens the disjoint memory assumption to allow memory sharing.
In addition, it is not immediately clear that the two additional operations clearly preserve
SRE. Thus, we prove that SRE still holds under our extended model with the operations.
For the rest of the literature, we refer to the original formal platform model defined by
Subramanyan et al. [204] as TAP and our extended model as TAPC .

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 101

Privileged SW
(OS/Hypervisor)

Other
Apps

Other
EnclavesEnc e

Enclave Platform /
Trusted Platform

Remote Enclave Platform

I/O

User

Trusted Untrusted

Figure 6.3: A user provisions their (protected) enclave e in the remote enclave platform
isolated from untrusted software. Green/red boxes indicate trusted/untrusted components.

6.4.1 Threat Model

Our extension follows the typical enclave threat model where the user’s enclave program e
is integrity- and confidentiality-protected over the enclave states (e.g. register values and
data memory owned by the enclave program) against any software adversary running in
the remote enclave platform. The software adversaries of an enclave include the untrusted
operating system, user programs, and the other enclaves as shown in Figure 6.3.

With Cerberus, enclaves may share data or code that were common between enclaves
before the introduction of the Clone. We assume that the memory is implicitly not confi-
dential among these enclaves with shared memory. However, each enclave’s memory should
not be observable by the operating system or other enclaves and applications. We ensure
that the enclaves are still write-isolated, which means that any modification to the data from
one enclave must not be observable to the other enclaves, even to the enclave that it cloned
from. Thus, any secret data needs to be provisioned after the enclave is cloned. It is the
enclave programmer’s responsibility to make sure that the parent enclave does not contain
any secret data that can be leaked through the children.

We do not consider the program running in the enclave to be vulnerable or malicious by
itself. For example, a program can generate a secret key in the shared memory, and encrypt
the confidential data of the child with the key. This would break confidentiality among
children enclaves write-isolated from each other because the children will have access to the
key in the shared memory. We do not consider such cases, but this could be easily solved
by having programs load secrets to their memory after they have created the distrusting
children.

Since our main goal is to design a generic extension, we also do not consider any type

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 102

of side-channel attack or architecture-specific attack [41, 116, 126, 133, 140, 151, 186, 191,
215, 216, 219, 226]. We leave side-channel resilient interface design as future work. We
note that since the base TAP model has also been used to prove side-channel resiliency on
some enclave platforms [53, 127], it is not impossible to extend our proofs to such adversary
models. Denial of service against the enclave is also out of the scope in this thesis; this is
consistent with the threat models for existing state-of-the-art enclave platforms.

A formal model of the threat model is described in more detail in Section §6.4.3 after
the formal definition of the platform.

6.4.2 TAPC Model Assumptions

Below, we summarize a list of assumptions about the execution model of TAPC that we
make for the purpose of simplifying and abstracting the modeling. These assumptions are
consistent with the adversary model described above:

• TAPC inherits the assumptions and limitations of TAP [204], which include assuming
that every platform and enclave operation is atomic relative to one another, assum-
ing the DRAM is trusted, no support for demand paging, assuming a single-core and
single-process model, and assuming properties of cryptographic functions used for mea-
surement.

• If an enclave operation returns with an error code, we assume that the states of the
platform are entirely reverted to the state prior to the execution of that operation.

• State continuity of enclaves is out-of-scope in our models, consistent with prior work
TAP [204], and can be addressed using alternative methods [106, 163].

• The memory allocation algorithm (e.g. for copy-on-write) is deterministic given that
the set of unallocated memory is the same. This means that given any two execution
sequences of a platform, as long as the page table states are the same, the allocation
algorithm will return the same free memory location to allocate.

Next, we introduce our formal models describing the platform which extends the existing
TAP model with Snapshot and Clone under these assumptions.

6.4.3 Formal TAPC Platform Model Overview

As mentioned, a user of an enclave platform typically has a program and data that they
would like to run securely in a remote server, isolated from all other processes as shown in
Figure 6.3. Such a program can be run as an enclave e. The remote server provides isolation
using its hardware primitives and software for managing the enclaves, where the software
component is typically firmware or a security monitor. This software component provides
an interface for the enclave user through a set of operations, denoted by O, for managing

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 103

e. The goal is to guarantee that this enclave e is protected from all other processes on the
platform and running as expected. For the purpose of understanding the proofs, we refer to
the enclave we would like to protect as the protected enclave e. We make this distinction to
differentiate it from adversary-controlled enclaves.

Platform and Enclave State

The platform can be viewed as a transition system M = ⟨S, I,⇝⟩ that is always in some
state denoted by σ ∈ S. Alternatively, σ can be viewed as an assignment of values to a
set of state variables V . The platform starts in an initial state in the set I and transitions
between states defined by a transition relation ⇝⊂ S × S. We write (σ, σ′) ∈⇝ to mean a
valid transition of the platform from σ to σ′. An execution of the platform therefore emits
a (possibly infinite) sequence of states π = ⟨σ0, σ1, ...⟩, where (σi, σi+1) ∈⇝ for i ∈ N. We
write πi = σi interchangeably, but will usually write πi whenever referencing a specific trace.
When an enclave is initially launched, it is in the initial state prior to enclave execution,
which we indicate using the predicate inite(σ) : S → Bool. We describe the set of variables
V and enclave state Ee(σ) for TAPC in the following Section §6.4.3.

TAPC State Variables

Each of the variables V in TAPC are shown in Table 6.1. pc : V A∗ is an abstraction of
the program counter whose value is a virtual address from the set of virtual addresses V A.
∆rf : N → W is a register file that is a map† from the set of register indices (of natural
numbers) N to the set of words W . Π : PA → W is an abstraction of memory that
maps the set of physical addresses PA to a set of words. We write Π[a] to represent the
memory value at a given physical address a ∈ PA. A page table abstraction defines the
mapping of virtual to physical addresses aPA and access permissions aperm : V A → ACL,
where ACL is the set of read, write, and execute permissions. ACL can be defined as the
product V A → Bool × Bool × Bool, where Bool

.
= {true, false} and the value of the map

corresponds to the read, write, and execute permissions for a given virtual address index‡.
ecurr : Eid represents the current enclave that is executing. Eid = N ∪ {OS} ∪ {einv} is the
set of enclave IDs represented by natural numbers and a special identifier OS representing
the untrusted operating system. We reserve the identifier einv to refer to the invalid enclave
ID which can be thought of as a default value that does not refer to any valid enclave. For
the ease of referring to whether an enclave is valid and launched, we define the predicate
valid(eid)

.
= eid ̸= einv ∧ eid ̸= OS that returns whether or not an ID is a valid enclave ID.

The active predicate returns true for an enclave e whenever it is launched or cloned and not
yet destroyed in state σ. o is a map that describes the ownership of physical addresses, each

∗We write v: T to mean variable v ∈ V has type T
†of type L→ R, where the index type is L and value type is R.
‡We use

.
= to mean by definition to differentiate between the equality symbol =.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 104

State Var. Type Description
pc V A The program counter.
∆rf N→W General purpose registers.
Π PA→W Physical memory.
aPA V A→ PA Page table abstraction; virtual to physical address map.
aperm V A→ ACL Page table abstraction; virtual to their permissions.
ecurr Eid Current executing enclave ID (or ecurr = OS if the OS is

executing).
o PA→ Eid Map from physical addresses to the enclave that owns it.
M Eid → EM Map of enclave IDs to enclave metadata. emd[OS] stores a

checkpoint of the OS.

Table 6.1: TAPC State Variables V .

of which can be owned by an enclave (with the corresponding enclave ID) or the untrusted
operating system.

Lastly, each enclave e has a set of enclave metadata M, which is a record of variables
described in Table 6.2. We abuse notation and writeMpc[e] to represent the program counter
Mpc of e in the record stored in the metadata mapM. We use the enclave index operator [·]
similarly for the other metadata fields defined in Table 6.2 to refer to a particular enclave’s
metadata. MEP [e] is the entry point of the enclave that the enclave e starts in after the
Launch and before Enter. MAM

PA [e] is the virtual address map of the enclave program.
MAM

perm[e] is the map of address permissions for each virtual address. MEV [e] is the map
from virtual addresses to Boolean values representing whether an address is allocated to the
enclave. Mpc[e] is the current program counter of the enclave. Mregs[e] is the saved register
file of the enclave. Mpaused[e] is a Boolean representing whether or not the enclave has been
paused and is initially false at launch.

These variables were introduced in the base TAP model and are unmodified in TAPC .
We introduce the remaining four metadata variables required for Cerberus in Section §6.4.4,
which are additional state variables in TAPC that are not defined in the base TAP model.

The state Ee(σ) is a projection of the platform state to the enclave state of e that
includes MEP [e], MAM

PA [e], MAM
perm[e], MEV [e], Mpc[e], Mregs[e], and the projection of en-

clave memory λv ∈ V A.ITE(MEV [e][v],Π[MAM
PA [v]],⊥). In the last expression, λv ∈ VA.E

is the usual lambda operator over the set of virtual addresses v and expression body E,
ITE(c, expr1, expr2) is the if then else operator that returns expr1 if condition c is true and
expr2 otherwise. ⊥ is the constant bottom value which can be thought of as a don’t-care or
unobservable value. This projection of memory represents all memory accessible to enclave
e, including shared memory and memory owned by enclave e as referenced by the virtual
address mapMAM

PA .

Enclave Inputs and Outputs

Communication between an enclave e and external processes for a given state σ are controlled
through e’s inputs Ie(σ) and its outputs Oe(σ). Ie(σ) includes the arguments to the opera-

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 105

State Var. Type Description of each field
MEP V A Enclave entrypoint.
MAM

PA V A→ PA Enclave’s virtual address map.
MAM

perm V A→ ACL Enclave’s address permissions.
MEV V A→ Bool Set of private virtual addresses.
Mpc V A Saved program counter.
Mregs N→W Saved registers.
Mpaused Bool Whether enclave is paused.

MIS†
Bool Whether the enclave is a snapshot.

MCC† N Number of children enclaves.

MRS† Eid Enclave’s root snapshot.

MPAF †
PA→ Bool Map of free physical addresses.

Table 6.2: Record of TAPC enclave metadata EM . Additional state variables were added to
the TAP model support Snapshot & Clone, as indicated by the † superscript.

tions that manage enclave e, areas of memory outside of the enclave that the enclave may
access and an untrusted attacker may write to, and randomness from the platform. Oe(σ)
contains the outputs of enclave e that are writable to by e and accessible to the attacker and
the user.

Platform and Enclave Execution

An execution of an enclave e is defined by the set of operations fromO, in which the execution
of an operation is deterministic up to its input Ie(σ) and current state Ee(σ). This means that
given the same inputs Ie(σ) and enclave state Ee(σ), the changes to enclave state Ee(σ) is
deterministic. The set of operations for the base TAP model is Obase

.
= { Launch, Destroy,

Enter, Exit, Pause, Resume, AdversaryExecute}. TAPC extends the base set with two
additional operations: O .

= Obase ∪ {Snapshot, Clone}. We use the predicate curr(σ) = e
to indicate that enclave e, which may be adversary controlled, is executing at state σ and
curr(σ) = OS to indicate that the operating system is executing.

Formal Adversary Model

In our model, untrusted entities such as the OS and untrusted enclaves are represented
by an adversary A that can make arbitrary modifications to state outside of the protected
enclave e, denoted by Ae(σ). Consistent with the base TAP model, the untrusted entities
and protected enclave e takes turn to execute under interleaving semantics in our formal
TAPC model, as illustrated in Figure 6.4. Under these semantics, the adversary is allowed to
take any arbitrary number of steps when an enclave is not executing. Likewise, the protected
enclave is allowed to take any number of steps when the adversary is not executing without
being observable to the adversary.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 106

Conventionally, we define an adversary with an observation and tamper function that
describes what the adversary can observe and change in the platform state during its execu-
tion to break integrity and confidentiality. The execution of the adversary is the operation
AdversaryExecute in Obase during which either the tamper or observation functions can be
used by the adversary. Figure 6.4 describes these two functions for our model.

π0
1

π0
2

≈
L

. . .

. . .

≈
L

πi
1

πi
2

πi+1
1

πi+1
2

≈
L

πi+2
1

πi+2
2

≈
L

. . .

. . .

op0

op0

A

A

opi+1

opi+1

Figure 6.4: Illustrating the execution of two traces of the platform in the secure
measurement, integrity and confidentiality proofs. Proof obligations for each property are
checked as indicated by ≈L and equal initial condition indicated as ≈L. op

i indicates
enclave execution of an operation from O at step i and A indicates an adversary execution.

Tamper Function. The tamper function is used to model these malicious modifications
to the platform state by the adversary and is defined over Ae(σ) which includes any mem-
ory location that is not owned by the protected enclave e and page table mappings. The
semantics of the model allows the adversary to make these changes whenever it is executing.
We allow all tampered states to be unconstrained in our models, which means they can take
on any value. This type of adversary tamper function over-approximates what the threat
model can change and is typically referred to as a havocing adversary [46, 204].

Observation Function. The adversary’s observation function is denoted obse(σ). In our
model, we allow the adversary to observe locations of the memory that are not owned by
the protected enclave e, described by the set obse(σ)

.
= Oe(σ)

.
= λp ∈ PA.ITE(σ.o[p] ̸=

e, σ.Π[p],⊥). Intuitively, obse is a projection of the platform state that is observable by the
adversary whose differences should be excluded by the property. For example, if the same
enclave program operating over different secrets reveals secrets through the output, that is
a bug in the enclave program and we do not protect from this. The adversaries may try to
modify or read the enclave state during the lifetime of the enclave.

Under this threat model, we prove that the TAPC model still satisfies the SRE property
described in Section §6.5.

6.4.4 The Extended Enclave Operations

Cerberus is the extension of enclave platforms with two new operations Snapshot and Clone

to facilitate memory sharing among enclaves. Intuitively, Snapshot converts the enclave
executing the operation into a read-only enclave and Clone creates a child enclave from the

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 107

Physical Memory

000 011 1 1 OS

1

0

OS

Memory Ownership

Enclave

Enclave

Operating system

Write scheme

Copy-on-writable

(a) Clone

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
00 00

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

00 00

00 00

11 11<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

Clone

…

11 11<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

…

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

(b) Snapshot

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
00 00

…

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
00 00

Snapshot

(c) Clone after Snapshot

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0
00 00

Snapshot
<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

00 00

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

<latexit sha1_base64="GAHOTWYSkq79I6RRyJyllA3d42U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH23X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/AZjZU=</latexit>e0

00 00

00 00

11 11<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

Clone

…
11 11<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

…

Write

Figure 6.5: The physical memory layout of the three scenarios: using (a) Snapshot-only,
(b) Clone-only, and (c) Clone-after-Snapshot. Each column represents a region of memory

allocated to enclave e0, enclave e1, or the operating system (OS). Each region either
respects the permissions based on the regular platform semantics or is snapshot memory

which is writable only using the copy-on-write scheme.

parent enclave being cloned so that the child enclave can read and execute the same memory
contents as the parent at the time of clone.

This extension requires four new metadata state variables that are indicated in Table 6.2
with the † symbol. MIS[e] is a Boolean valued variable indicating whether or not Snapshot
has been called on the enclave e. MCC [e] is the number of children e has, or in other words,
the number of times a clone has been called on the enclave e where e is the parent of Clone.
MRS[e] is a reference to the root snapshot of e if one exists, and MPAF [e] is a map of
addresses that have been assigned to e but are not yet allocated memory.

We now define the semantics of the two new operations introduced in Cerberus.

Clone

Clone creates a clone of an existing logical enclave such that there exist two enclaves with
identical enclave states. Clone alone provides a functionality similar to fork and clone

system calls, no matter whether the platform enables memory sharing. More concretely,
the Clone takes in three arguments: the ID of the existing parent enclave epid ∈ Eid to
clone, the enclave ID of the child enclave ecid ∈ Eid and a set of physical addresses assigned
to the child enclave xp ⊂ PA. The assigned physical addresses are marked as free (i.e.,
MPAF [ec][p] = true, ∀p ∈ xp) so that the parent’s memory can be copied to them. The child
enclave ec with corresponding enclave ID ecid is used to create a clone of the parent ep such
that Eep(σ) = Eec(σ). In other words, the virtual memory of both enclaves is equal. The

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 108

physical memory ownership of this scenario is depicted in Figure 6.5(a). We write Eep(σ0)
to denote the initial state of the parent such that init(Eep(σ)).

We view the Clone as a special way of creating an enclave; instead of starting from
the initial enclave state Eep(σ0), we start from an existing enclave ep, which is effectively
identical to creating two enclaves with the same initial state and then executing the same
sequence of inputs up until the point clone was called.

To prevent the malicious use of clones, we require the condition Eq. 6.1 to hold during
state σ when Clone is called.

σ.ecurr = OS ∧ valid(epid) ∧ active(epid, σ) ∧ (6.1)

valid(ecid) ∧ ¬active(ecid, σ) ∧
ecid ̸= epid ∧
∀p ∈ PA.p ∈ xp ⇒ σ.o[p] = OS ∧
sufficient mem(σ.o)

This condition states that the Clone succeeds if and only if the operating system (and
hence not an enclave) is currently executing, the parent is a valid and active enclave, the
child enclave ID is valid but it doesn’t point to an active enclave, both the parent and child
enclave IDs are distinct, all physical addresses in xp are owned by the OS (and thus can be
allocated to the enclave), and there is sufficient memory to be allocated to the enclave.

If the condition passes, Clone copies all of the data in the virtual address space of ep to
ec to ensure write isolation. For each virtual address v mapped by ep (mapped), Clone first
selects a physical address p owned by ec, copies the contents from Π[MAM

PA [ep][v]] to Π[p],
and update the page table of ec such thatMAM

PA [ec][v] = p. This can be implemented in the
platform itself (i.e., the security monitor firmware in Keystone) or in a local vendor-provided
enclave (i.e., similar to the Quoting Enclave in Intel® SGX).

In Eq. 6.1, sufficient mem : PA → Eid → Bool, sufficient mem can be viewed as a
predicate that determines whether there is enough memory to copy all data. sufficient mem
is modeled abstractly in the TAPC model to avoid an expensive computation to figure out
whether there is enough memory.

Clone is only called from the untrusted OS because it requires the OS to allocate re-
sources for the new enclave. Thus, if an enclave program needs to clone itself, it needs to
collaborate with the OS to have it call Clone on its behalf. As the newly-created enclave
is still an isolated enclave, the SRE property on both parent and child enclaves should hold
even with a malicious OS.

Snapshot

Clone by itself still requires copying the entire virtual memory to ensure isolation. To
enable memory sharing, Snapshot makes the caller enclave e to be an immutable image.
After calling Snapshot, e becomes a special type of enclave referred to as a snapshot enclave
or the root snapshot of its descendants. e is no longer allowed to execute at this point because

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 109

all of its memory becomes read- or execute-only (Figure 6.5(b)). On the other hand, e can
be cloned by Clone, where the descendants of e are allowed to read directly from the e’s
shared data pages. Any writes from the descendants to physical addresses p ∈ PA owned by
e (i.e., σ.o[p] = e) trigger copy-on-write (CoW). This scheme ensures that the descendant
enclaves are still write-isolated from each other.

Like Clone, Snapshot has a success condition described in Eq. (6.2). The condition
checks that the current executing enclave is valid valid(σ.ecurr) and active active(σ.ecurr , σ),
e is not already a snapshot, and the enclave cannot have a root snapshot in the current state.

valid(σ.ecurr) ∧ active(σ.ecurr , σ) ∧ (6.2)

¬σ.MIS [e] ∧ ¬valid(σ.MRS [σ.ecurr])

If Snapshot is called successfully in a state that satisfies this condition, e is marked as a
snapshot enclave. In the formal model, the metadata stateMIS[e] is to true.

Clone after Snapshot

In order to make Clone work with Snapshot, Clone additionally increments ep’s child count
MCC [ep] by 1, and sets the root snapshot of ec (i.e., MRS[ec]) to either ep or ep’s root
snapshotMRS[ep] if it has one.

With the single-sharing model, arbitrarily nested calls of Clone should still keep only
one shareable enclave. As shown in Figure 6.6, there will be only one root snapshot e1,
whose memory is shared across all the descendants. This means that even though cloning
can be arbitrarily nested, the maximum height of the tree representing the root snapshot to
the child enclave is one.

To maintain the same functionality, the virtual address space of the parent and the child
should be the same right after Clone. Thus, a descendant enclave memory will diverge
from the shared memory when the descendant writes. Depicted in Figure 6.5(c), writing
to snapshot memory in the child enclave results in a copy-on-write that allocates memory
for the write. Unfortunately, there is no better way than to have Clone copy the diverged
memory from the parent to the child. This is a limitation of Cerberus because the benefit
of sharing memory will gradually vanish as the memory of the descendant diverges from the
snapshot. However, we claim that Cerberus is very effective when the enclaves mostly write
to a small part of the memory while sharing the rest. It is the programmer’s responsibility
to optimize their program by choosing the right place to call Snapshot.

6.5 Formal Guarantee of Secure Remote Execution

To recap, one of our goals is to prove that our extension applied to an enclave platform does
not weaken the high-level security property SRE. We accomplish this by reproving SRE on
TAPC . As per Theorem 3.2 [204] (restated below as Theorem 6.1), it suffices to show that
the triad of properties – secure measurement, integrity, and confidentiality – hold on TAPC

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 110

<latexit sha1_base64="9JrekfqhWusU0UW6QSzyJzGKj4M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/GdjZY=</latexit>e1

<latexit sha1_base64="ltGGdE1lFa7C6a582pK0rzLUjNo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle+zX+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHzIY2X</latexit>e2
<latexit sha1_base64="rGzjF7nci0ALDN+J9Wn2plc4VlI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6x/55v1xxq+4c5C/xclKBHI1++bM3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmxyoCEsbIlDZmrPycyGmk9iQLbGVEz0sveTPzP66YmvPIzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+iWrurVerXeRxFOIJjOAUPLqEOt9CAJjAYwhO8wKsjnGfnzXlftBacfOYQfsH5+Ab0pY2Y</latexit>e3

<latexit sha1_base64="dbuUAUdgcBNjhllAS/ivlGg0Ui4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gP1av1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD2KY2Z</latexit>e4

Parent Enclave

Root Snapshot

Figure 6.6: Parent-child relationship and root snapshot-child relationship of four enclaves
in Cerberus. Enclave e1 is a snapshot and the parent enclave of e2, which is the parent of
e3, which is the parent of e4. Despite the nested parent relationship, the root snapshot of

e2, e3, and e4 are e1.

to prove SRE. In this section, we formally define SRE, the decomposition theorem, and
each of the properties along with informal justification as to why they hold in the TAPC

model against the adversary described in Section §6.4. Each of these properties has been
mechanically proven on the base TAP model [204] without Snapshot and Clone, and in our
work, we extend these proofs to provide the same guarantees for the memory adversary on
the extended TAPC model. For brevity, we leave out some of the model implementation
details and refer the reader to the GitHub repository for the proofs. We also provide a list of
additional inductive invariants required to prove the properties in the TAPC model in §6.5.2.

While there are several flavors of non-interference properties, the following properties
are based on the observational determinism (OD) [51, 233] definition of non-interference
generalized for traces of concurrent systems. OD commonly shows up in several formalisms
of confidentiality and integrity including the classic work on separability by Rushby [179]
among other work [46, 83, 119, 204]. At a high level, OD states that if the initial states are
low-equivalent and low inputs are the same, all states including intermediate states must
also be low-equivalent (i.e., observationally deterministic functions of the low state/inputs).
Whereas the classic non-interference property has an obligation [233] to prove termination
and does not reason about intermediate states. We find OD to be more appropriate be-
cause we desire to show that every state of execution is observationally deterministic and
indistinguishable.

6.5.1 Secure Remote Execution

Definition 6.1 (Secure Remote Execution). Let π = {σ0, σ1, ...} be a possibly unbounded-
length sequence of platform states and π′ = {σ′

0, σ
′
1, ...} be the subsequence of π con-

taining all of the enclave executing states (i.e. ∀i ∈ N.curr(σ′
i) = e). Then the set

[[e]] = {⟨Ie(σ′
0), Ee(σ

′
0), Oe(σ

′
0)⟩, ...|inite(Ee(σ0))} describes all valid enclave execution

traces and represents the expected semantics of enclave e. A remote platform performs
SRE of an enclave program e if any execution trace of e on the platform is contained
within [[e]]. In addition, the platform must guarantee that a privileged software attacker
can only observe a projection of the execution trace defined by obs.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 111

To prove SRE, the following theorem from prior work [204] allows us to decompose the
proof as follows.

Theorem 6.1. An enclave platform that satisfies secure measurement, integrity, and
confidentiality property for any enclave program also satisfies secure remote execution.

Secure measurement. In any enclave platform, the user desires to know that the enclave
program running remotely is in fact the program that it intends to run. In other words,
the platform must be able to measure the enclave program to allow the user to detect any
changes to the program prior to execution. The first part of the measurement property
stated as Eq. (6.3) requires that the measurements µ(e1) and µ(e2) of any two enclaves e1
and e2 in their initial states are the same if and only if the enclaves have identical initial
enclave states. µ is defined to be the measurement function that the user would use to check
that their enclave e is untampered with in the remote platform.

∀σ1, σ2 ∈ S.
(
init(Ee1(σ1)) ∧ init(Ee2(σ2))

)
⇒ (6.3)(

µ(e1) = µ(e2) ⇐⇒ Ee1(σ1) = Ee2(σ2)
)

The second part of measurement ensures that the enclave executes deterministically given
an initial state. This is formalized as Eq. (6.4), which states that any two enclaves e1 and
e2 starting with the same initial states, executing in lockstep and with the same inputs at
each step, should have equal enclave states and outputs throughout the execution. Together,
these properties help guarantee to the user that their enclave is untampered with.

∀π1, π2.
(
Ee1(π

0
1) = Ee2(π

0
2) ∧ (6.4)

∀i ∈ N.(curr(πi
1) = e1) ⇐⇒ (curr(πi

2) = e2) ∧

∀i ∈ N.(curr(πi
1) = e1)⇒ Ie1(π

i
1) = Ie2(π

i
2)
)
⇒(

∀i ∈ N.Ee1(π
i
1) = Ee2(π

i
2) ∧Oe1(π

i
1) = Oe2(π

i
2)
)

With the addition of the Clone and Snapshot, the measurement of enclaves does not
change for two reasons. Equation 6.3 is satisfied because the measurement of a child is
copied over from the parent, and has an equivalent state as the parent. In addition, because
each enclave child executes in a way that is identical to the parent without Clone, the child
enclave ec is still deterministic up to the inputs Iec(σ).

Integrity. The second property, integrity, states that the enclave program’s execution
cannot be affected by the adversary beyond the use of inputs Ie at each step and initial state
Ee(π

0
1), formalized as Equation 6.5.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 112

∀π1, π2.
(
Ee(π

0
1) = Ee(π

0
2) ∧ (6.5)

∀i ∈ N.(curr(πi
1) = e) ⇐⇒ (curr(πi

2) = e) ∧

∀i ∈ N.(curr(πi
1) = e)⇒ Ie(π

i
1) = Ie(π

i
2)
)
⇒(

∀i ∈ N.Ee(π
i
1) = Ee(π

i
2) ∧Oe(π

i
1) = Oe(π

i
2)
)

Clone creates a logical copy of the enclave whose behavior matches the parent enclave
had it not been cloned and thus clone does not affect the integrity of the enclave. Snapshot
freezes the enclave state and thus does not affect the integrity vacuously because the state
of e after calling snapshot does not change until its destruction.

Confidentiality. Lastly, the confidentiality property states that given the same enclave
program with different secrets represented by e1 and e2 in traces π1 and π2 respectively, if
the adversary starts in the initial state Ae1(π1[0]) and the protected enclave(s) e1 (and e2) is
operated with a (potentially malicious) sequence of inputs Ie1 , the adversary should not learn
more than what’s provided by the observation function obs and hence its state Ae1(σ) and
Ae1(σ) should be the same. The fourth line of Equation 6.6 requires that any changes by the
protected enclave e do not affect the observations made by the adversary in the next step.
This is to avoid spurious counter-examples where secrets leak through obvious channels such
as the enclave output which is a bug in the enclave program as explained in Section 6.4.3.

∀π1, π2.
(
Ae1(π

0
1) = Ae2(π

0
2) ∧ (6.6)

∀i ∈ N.(curr(πi
1) = curr(πi

2) ∧ Ie1(σ
i
1) = Ie2(σ

i
2)) ∧

∀i ∈ N.(curr(πi
1) = e)⇒ obs(πi+1

1) = obs(πi+1
2)

)
⇒(

∀i ∈ N.Ae1(π
i
1) = Ae2(π

i
2)
)

Snapshot alone clearly does not affect the confidentiality of the enclave. Clone on the
other hand also does not affect confidentiality because it creates a logical duplicate of an
enclave. Had the adversary been able to break the confidentiality of the child ec, it should
have been able to break the confidentiality of the parent ep because both should behave in
the same way given the same sequence of input.

6.5.2 Cerberus Platform Invariants

We describe a few key additional platform inductive invariants that were required to prove
the SRE property on TAPC . Although the following list is not exhaustive§, it provides a

§We refer the reader to the formal models in the Uclid5 code for the complete list of inductive invariants
in full detail.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 113

summary of the difference between the invariants in the base TAP model and the TAPC

model and explains what precisely makes the other sharing models more difficult to verify.
The invariants are typically over the two traces π1 and π2 in the properties previously men-
tioned. However, there are single-trace properties, and unless otherwise noted, it is assumed
that single-trace properties defined over a single trace π hold for both traces π1 and π2 in
the properties.

Memory Sharing Invariants. We first begin with the invariants related to the memory-
sharing model. As explained earlier, allowing the sharing of memory weakens the constraint
that memory is strictly isolated. This means that the memory readable and executable by
an enclave can either belong to itself or its root snapshot. This is true for the entrypoints of
the enclave and the mapped virtual addresses. These are described as Eq. (6.7) and Eq. (6.8)
respectively.

Eq. (6.7) states that all enclaves have an entrypoint that belongs to e itself or its snapshot
πi.MRS[e].

∀e ∈ Eid,∀i ∈ N.
(
valid(e) ⇒ (6.7)(
πi.o[πi.MEP [e]] = e ∨

πi.o[πi.MEP [e]] = πi.MRS [e]
))

Eq. (6.8) states that every enclave e whose physical address p ∈ PA corresponding to
virtual address v ∈ VA in the page table that is mapped mappede(π[i].aPA[v])

¶ either belongs
to e itself or the root snapshot πi.MRS[e].

To illustrate the potential complexity of the capped and arbitrary memory-sharing mod-
els, the antecedent of this invariant would need to existentially quantify over all the possible
snapshot enclaves that own the memory as opposed to the current two (the enclave itself
or its root snapshot). This would introduce an alternating quantifier[176] in the formula,
making reasoning with SMT solvers difficult.

∀e ∈Eid, v ∈ VA,∀i ∈ N.((
valid(e) ∧ active(e, πi) ∧mappede(π

i.aPA[v])
)
⇒(

πi.o[πi.aPA[v]] = e ∨ (6.8)

πi.o[πi.aPA[v]] = πi.MRS [e]
))

Lastly, a memory that is marked free for an enclave e is owned by that enclave itself,
represented by Eq. (6.9).

∀e ∈ Eid, p ∈ PA, ∀i ∈ N.
(
πi.MPAF [e][p]⇒ πi.o[p] = e

)
(6.9)

¶mapped is a function that returns whether a physical address is mapped in enclave e and is equivalent
to the valid function in the CCS’17 paper [204]

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 114

Snapshot Invariants. The next invariants relate to snapshot enclaves. First, the root
snapshot of an enclave is never itself as follows:

∀e ∈ Eid, ∀i ∈ N.(valid(e)⇒ πi.MRS [e] ̸= e) (6.10)

Snapshots also do not have root snapshots Eq. (6.11). This invariant reflects the property
that the root snapshot to ancestor enclave relationship has a height of at most 1. This
is stated as all enclaves that are snapshots have a root snapshot reference pointing to the
invalid enclave ID einv.

∀e ∈ Eid,∀i ∈ N. (6.11)((
valid(e) ∧ active(e, πi) ∧ πi.MIS [e]

)
⇒

πi.MRS [e] = einv

)

Next, if an enclave has a root snapshot that is not invalid
(i.e. πi.MRS[e] ̸= einv), then the root snapshot is a snapshot and the child count is positive.
This is represented as Eq. (6.12).

∀e ∈ Eid,∀i ∈ N. (6.12)(
(valid(πi.MRS [e]) ∧ active(πi.MRS [e], πi))⇒(

πi.MIS [πi.MRS [e]] ∧

πi.MCC [πi.MRS [e]] > 0
))

The last notable invariant says that the currently executing enclave cannot be a snapshot
as described in Eq. (6.13).

∀i ∈ N.(¬πi.MIS [πi.ecurr]) (6.13)

We conclude this section by noting that coming up with the exhaustive list of inductive
invariants for TAPC took a majority of the verification effort.

6.6 Implementation in RISC-V Keystone

To show the feasibility of our approach, we implement Cerberus on Keystone [127]. Key-
stone is an open-source framework for building enclave platforms on RISC-V processors. In
Keystone, the platform operations Obase are implemented in high-privileged firmware called
security monitor. We implemented additional Snapshot and Clone based on our specifica-
tions. All fields of the enclave metadata are stored within the security monitor memory. We
extended the metadata with the variables corresponding toMIS,MCC ,MRS, andMPAF .
All implementations are available at https://github.com/cerberus-ccs22/TAPC.git.

https://github.com/cerberus-ccs22/TAPC.git

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 115

The implementation complies with the assumptions of the model described in §6.4.2.
First, Keystone enclave operations are atomic operations, and it updates the system state
only when the operation succeeds. Second, we implement a deterministic memory allocation
algorithm for copy-on-write, by leveraging Keystone’s free memory module.

For memory isolation, Keystone uses a RISC-V feature called Physical Memory Pro-
tection (PMP) [220], which allows the platform to allocate a contiguous chunk of physical
memory to each of the enclaves. When an enclave executes, the corresponding PMP region
is activated by the security monitor. We implemented the weakened constraints (i.e., Equa-
tion 6.8) by activating the snapshot’s memory region when the platform context switches
into the enclave.

In the model, the platform would need to handle the copy-on-write. In Keystone, an
enclave can run with supervisor privilege, which allows the enclave to manage its own page
table. This was very useful when we prototype this work because the platform does not need
to understand the virtual memory mapping of the enclave. Letting the enclave handle its
own write faults does not hurt the security because the permissions on physical addresses are
still enforced by the platform. One implementation challenge was that the enclave handler
itself would always trigger a write fault because the handler requires some writable stack to
start execution. We were able to implement a stack-less page table traverse, which allows the
enclave to remap the page triggering the write fault without invoking any memory writes.
The final copy-on-write handler is similar to the on-demand fork [235].

6.7 Evaluation

Our evaluation goals are to show the following:

• Verification results: Our incremental verification approach enables fast formal rea-
soning on enclave platform modifications.

• Start-up latency: The Cerberus interface can be used with process-creation system
calls to reduce the start-up latency of enclaves

• Computation overhead: Our copy-on-write implementation does not incur signifi-
cant computation overhead.

• Programmability: Cerberus provides a programmable interface, which can be easily
used to improve the end-to-end latency of server enclave programs.

Throughout the performance evaluation, we used SiFive’s FU540 [84] processor running
at 1 GHz and an Azure DC1s v3 VM instance with an Intel® Xeon® Platinum 8370C
running at 2.4 GHz to run Keystone and SGX workloads respectively. Each experiment was
averaged over 10 trials.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 116

6.7.1 Verification Results

The TAPC model and proofs can be found at https://github.com/cerberus-ccs22/TAPC.git.

Porting TAP from Boogie to Uclid5. One other contribution of this work includes the
port of the original TAP model from Boogie [16] to Uclid5 [193]. Uclid5 is a verification
toolkit designed to model transition systems modularly, which provides an advantage over
the previous implementation written in the software-focused verification IR Boogie. We also
find that Uclid5 is advantageous over other state-of-the-art tools [15, 56, 129, 208] because
of modularity and because it provides flexibility in modeling systems both operationally and
axiomatically. This effort took 1.875 person-months working approximately 40 hours a week
to finish‖.

Verifying TAPC . The modeling and verification took roughly three person-months to
write the extensions to the TAP model and verify using a scalable approach. We note that
this time is substantially less than it would have taken to rebuild the model from scratch
without an existing abstraction.

Model/Proof
Size Verif.

Time (s)#pr #fn #an #ln
TAP Models

TAP 43 14 225 2100 140
Integrity 2 0 52 525 285
Mem. Conf 3 0 44 838 342

TAPC Models
TAP 45 16 466 3689 1380
Integrity 2 0 109 937 934
Mem. Conf 3 0 119 1307 944

Figure 6.7: Model Statistics and Verif. Times

Figure 6.7 shows the number of proce-
dures #pn, the number of (uninterpreted)
functions #fn, the number of annota-
tions #an (which include pre- and post-
conditions, loop invariants, and system in-
variants), and the number of lines of code
#ln. The last column shows the verifica-
tion time which includes the time it took
Uclid5 to generate verification conditions
and print them out in SMTLIB2.0 and ver-
ify them using Z3/CVC4∗∗. The time dis-
crepancy between the original proofs [204]
and the ones in this effort can be explained by the way we generate all the verification con-
ditions as SMTLIB on disk before verifying as a way to use other SMT solvers. We also use
Uclid5 instead of Boogie [16]. We note that the number of lines for Snapshot and Clone

is 1110, which means only 489 lines were used to extend the existing TAP operations and
platform model.

Despite the added complexity, each operation for each proof took only a few minutes to
verify individually as shown in the last column of Figure 6.7. This demonstrates that our
incremental verification methodology is practical and consequently reduces the overall time
to verify additional operations at a high level.

‖We note that these statistics in this section are estimates and numbers may have slight inaccuracies.
∗∗For one of the properties, we observed that Z3 would exceed our timeout limit of 30 minutes whereas

CVC4 wouldn’t.

https://github.com/cerberus-ccs22/TAPC.git

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 117

As evident by the results, we emphasize that the single-sharing model is practical to
formally encode and verify. We also confirm that introducing invariants with alternating
quantifiers and existential quantifiers in our models degraded the verification time and would
likely do the same for alternative models. These attempts heavily influenced our decisions
and we strongly encourage the use of our sharing model.

6.7.2 Start-up Latency

1 int main() {
2 char* buf = malloc(SIZE);
3 clock_t start = clock();
4 // fork child
5 if (!fork()) {clock_t end = clock ();}
6 // parent
7 else { return; }
8 }

Figure 6.8: C code to measure fork latency

To show the efficacy of Cerberus inter-
face, we implement fork and clone system
calls based on Cerberus. When the system
calls are invoked in the enclave program, it
calls Snapshot to create an immutable im-
age and cooperates with the OS to clone two
enclaves from the snapshot using Clone. We
compare the latency of fork on two different
platforms: SGX-based Graphene [210] (now
Gramine Linux Foundation project [78]) and
RISC-V Keystone [127] with Cerberus. Figure 6.8 shows the program that calls fork after
allocating memory with SIZE.

100 200 300 400
Allocation Size (MB)

0

2

4

6

La
te

nc
y

(s
)

Graphene (SGX)
Ceberus (Keystone)

Figure 6.9: The latency of fork with respect
to the size of the allocated memory.

The baseline (Graphene-SGX) latency
increases significantly as the allocation size
increases (Figure 6.9). With a 400 MB
buffer, it takes more than 6 seconds to com-
plete. Also, each of the enclaves will take
400 MB of memory at all times, even when
most of the content is identical until one of
the enclaves writes. With Cerberus, the la-
tency does not increase with respect to the
allocation size. This is because we are not
copying any of the parent’s memory includ-
ing the page table. It only took 23 millisec-
onds to fork on average, with a standard de-
viation of 16 microseconds.

6.7.3 Computation Overhead

We measure the computation overhead incurred by CoW invocation. In order to see the
overhead for various memory sizes and access patterns, we use RV8 [181] benchmark. RV8
consists of 8 simple applications that perform single-threaded computation. We omit bitint
as we were not able to run it on the latest Keystone, because of a known bug on their side.
Since RV8 does not use the fork system call, we have modified RV8 such that each of them

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 118

forks before the computation begins. Note that all of the application starts with allocating a
large buffer, so we inserted fork after the allocation. Thus, copy-on-write memory accesses
are triggered during the computation depending on the memory usage.

As you can see in Figure 6.10, the average computation overhead of copy-on-write mem-
ory over Keystone was only 3.9%. The worst overhead was 19.0% incurred in qsort, which
uses the largest memory (about 190 MiBs). We argue that the benefit of cloning an enclave
is small for such workloads that have a large buffer that is not shared across enclaves.

6.7.4 Programmability

To show the programmability of Cerberus interface, we showcase how server programs can
leverage memory sharing to improve their end-to-end performance.

Although Snapshot or Clone are not directly related to fork or clone, their behavior
maps well with Snapshot and Clone. For example, those system calls create a new process
with exactly the same virtual memory, which can be mapped to Clone and optimized by
Snapshot. Thus, we provided two co-authors with the modified fork and clone that use
Cerberus interface and asked to make the server programs leverage memory sharing.

An author modified darkhttpd, a single-threaded web server, to fork processes to han-
dle new HTTP requests inside the event loop. This allowed darkhttpd to serve multiple
requests concurrently and continue listening for new requests. We measure the latency of
an HTTP request using wget to fetch 0.5 MB of data. The resulting program incurs only
a 2.1x slowdown over the native (non-enclave) execution, in contrast to a 33x slowdown in
corresponding Intel SGX implementation (the exact same program ran with Graphene). The
2.1x overhead is mainly due to the slow I/O system calls, which is a well-known limitation
of enclaves [127, 223].

Another author implements a simple read-only database server application using Sqlite3,
which is a single-file SQL library that supports both in-memory and file databases. The

dhrystone norx sha512 qsort aes miniz primes0

5

10

15

La
te

nc
y

(s
)

native fork keystone our work

Figure 6.10: Computation Overhead on RV8. native: native execution of the original RV8,
fork: native execution of the modified RV8 with fork, keystone: enclave execution of the

original RV8, and our work: enclave execution of the modified RV8 with Cerberus.

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 119

resulting program serves each query with a fresh child created by fork. We measure the
latency of 1,000 SELECT queries served by separate enclaves. The resulting program incurs
a 36x slowdown over the native execution, compared to a 262x slowdown in corresponding
Intel SGX implementation. SGX overhead is much worse than in Darkhttpd because there
is more data to copy over (the entire in-memory database). The 36x slowdown is mainly
due to limited concurrency in Keystone: since Keystone implements memory isolation with
a limited number of PMP entries, it can support only up to 3-4 concurrent enclaves. This is
not an inherent limitation of Cerberus.

Both authors did not have any difficulties in allowing enclaves to share a memory, because
they were already familiar with the expected behavior of the system calls. However, they did
not have any knowledge of the codebase of Darkhttpd nor Sqlite3 prior to the modification.
Darkhttpd required modification of less than 30 out of 2,900 lines of code, which took less
than 10 person-hours, and Sqlite3 consists of 103 lines of code, which took less than 20
person-hours. This shows that the Cerberus extension can be easily used to improve the
end-to-end performance of server programs.

6.8 Discussion

Low-equivalent states. Our security model contains the notion of low states as in stan-
dard observational determinism type properties, even though they are not explicitly stated
in section § 6.5. Instead, the low states are constrained to be equal in the antecedent of the
implication of the properties. The traditional non-interference or observational determinism
properties most closely resemble the confidentiality Eq. 6.6. In this property, the low states
include the inputs Ie1(σ), Ie2(σ) to the enclaves and platform operations controlled by the
untrusted OS, all of the adversary controlled enclaves’ state Ee(σ), where e is not the pro-
tected enclave (i.e., e1, e2), and the adversary state Ae1(σ), Ae2(σ). The idea is to prove that
under the same sequence of adversarial controlled inputs, the adversary cannot differentiate
between the two traces which have the same enclave (i.e. e1, e2) with differing high data in
memory. Similarly, the low states of the integrity property (Eq. 6.5) includes the untrusted
inputs Ie1(σ), Ie2(σ). However, instead of constraining the adversary inputs to be the same,
we want to show that an enclave executes deterministically regardless of the state outside the
enclave. As a result, the remaining low states include the protected enclaves Ee1(σ), Ee2(σ).
Lastly, secure measurement can be viewed as a form of integrity proof and contains the same
low states as the integrity property.

Performance comparison with previous work. The evaluation section does not make
direct performance comparisons with previous work such as PIE, which is based on x86.
However, based on our calculations, Cerberus’s overhead is on par with PIE. For example,
PIE incurs about 200ms startup latency on serverless workloads [131] whereas Cerberus in-
curs 23ms on clone system calls. We analyze that Cerberus is faster mainly because it
leverages Keystone’s ability to quickly create an enclave with zero-filled memory without

CHAPTER 6. DESIGNING SECURE AND EFFICIENT TRUSTED EXECUTION
ENVIRONMENTS 120

measurement, which SGX does not support. PIE’s copy-on-write introduces 0.7-32ms over-
head on serverless function invocations taking 144-1153ms (the paper did not provide relative
overhead over native execution), which can be roughly translated into less than a few percent
of overhead, which is similar to Cerberus.

Verifying the implementation. We do not verify the implementation of Cerberus in
Keystone. Unsurprisingly, any discrepancy between the model and the implementation can
make the implementation vulnerable. In particular, the enclave page table is abstracted as
enclave metadata in TAP and TAPC , where it is actually a part of memory Π. Cerberus in
Keystone does not create any security holes because the page table management is trusted
(the enclave manages it). However, this does not mean that we can apply the same argument
to the other implementations. To formally verify the implementation, we can construct the
model for Keystone implementation and do the refinement proof to show that the model
refines the TAP model as described by Subramanyan et al. [204]. We leave this as future
work.

In-enclave isolation. Instead of modifying the platform, a few approaches [3, 121, 146,
196] use in-enclave isolation to create multiple security domains within a single enclave.
However, security guarantees of such solutions rely on the formal properties of not only the
enclave platform, but also the additional techniques used for the isolation. For example, the
security of software fault isolation (SFI) [218] based approaches [3, 196] depends on the cor-
rectness and robustness of the SFI techniques including the shared software implementation
and the compiler, which should be formally reasoned together with the enclave platform.
Thus, such approaches will result in a significant amount of verification efforts.

6.9 Summary

We showed how to formally reason about modifying the enclave platform to allow memory
sharing. We introduce the single-sharing model, which can support secure and efficient
memory sharing of enclaves. We also proposed two additional platform operations similar
to existing process-creation system calls. In order to formally reason about the security
properties of the modification, we defined a generic formal specification by incrementally
extending an existing formal model. We showed that our incremental verification allowed
us to quickly prove the security guarantees of the enclave platform. We also implemented
our idea on Keystone open-source enclave platform and demonstrated that our approach can
bring significant performance improvement to server enclaves.

121

Chapter 7

Conclusion

Every year, new hardware attacks are discovered, resulting in an ever-increasing attack
surface for hardware platforms with no end in sight as there is no one-size-fits-all solution.
Moreover, programs often have varying security criteria with vastly different attacker or plat-
form models. Ideally, security should be guaranteed in all of these situations in an automated
way that is agnostic to the details of the attack. Thus, it is beneficial to have formal security
properties and parameterized models that are parameterizable and composable because it
offers a standardized methodology for reasoning about security guarantees for a combination
of attacker and platform models. In this thesis, we have shown how we accomplish this by
formalizing hardware-attack-based properties and parameterized hardware platform models,
and by extending the methodology to compositionally verify programs.

This concluding chapter summarizes the thesis contributions and discusses the limita-
tions and suggested directions for future work.

7.1 Summary of Contributions

Chapter §4 presented a formalization of secure speculation to capture the newly dis-
covered transient execution attacks that became one of the predominant classes of hardware
attacks in the last several years. To capture hardware attacks in general (not due to specula-
tion), the property was generalized as the trace property-observational determinism property.
In addition, the methodology of combining an instruction-level program with speculative se-
mantics defined by the Assembly Intermediate Representation was introduced as a way to
model the behavior of a speculative microprocessor. Using this model, the chapter presented
a model checking-based approach that combined hardware and software to verify secure
speculation for a given program executing on a given platform against an adversary with the
capability to observe the cache.

Chapter §5 acknowledged the limitations of the approach presented in Chapter §4 and
focused on presenting methods of composition through a proof system and a modeling for-
malism. The proof system SymboTaint provides a way to compositionally reason about the

CHAPTER 7. CONCLUSION 122

information flow of a platform by localizing analyses to contiguous subsequences of a plat-
form’s run. Coupled with IFSMs, which implement SymboTaint, one can compositionally
reason about an instruction sequence to avoid state explosion when using symbolic execution-
based approaches. Moreover, IFSMs allow platform models to be composed, enabling pa-
rameterizable platform models. Lastly, the SAP model was introduced as a starting point
for checking classes of hardware attacks and demonstrating the practicality of the approach.

Chapter §6 revisited the question of providing secure information flow but by using an
alternative method that builds on top of a robust TEE platform model. A limitation of
existing TEEs was the lack of ability to allow enclave programs to share memory. This
limited adoption in addition to the lack of security guarantees on the platform model. This
chapter discussed the need for memory sharing and presented proof of confidentiality and
integrity for Cerberus, the first formally verified abstract TEE platform model that supports
memory sharing.

To summarize these contributions, this thesis presents a formal approach to secure infor-
mation flow by formalizing security properties for hardware attacks, modeling and verifying
abstract hardware platform models, and improving compositional techniques for formally
verifying information flow-based properties.

7.2 Future Work

This thesis introduced methods and directions for information flow-driven verification of
vulnerabilities in hardware platforms. Unsurprisingly, they come with a number of caveats
that open up a range of possible directions for future work. We sample a few potential
directions to conclude the thesis.

7.2.1 Lifting Sound Models of Hardware Platforms

While abstractions are more practical to verify and can provide security for a family of
platforms that refine it, they are often written manually by platform designers and formal
verification experts. For larger systems, this task itself is already a lot of work. In addition
to this, some proof of soundness is typically required for security. We discuss three following
directions to address these challenges.

Lifting sound models of hardware platforms. Without the details of the implemen-
tation or a refinement proof, it’s difficult to guarantee that proofs of secure information flow
transfer from an abstract model to the implementation, which is . One standard method to
address this gap is to show a refinement relation from the abstract model to the implemen-
tation (or less abstract model of the implementation) [70, 114, 204]. However, because of the
necessity to model hardware, handwritten models are impractical, necessitating automated
approaches to lifting implementations into more abstract models that preserve the soundness
of desired secure information flow properties.

CHAPTER 7. CONCLUSION 123

Verifying out-of-order microprocessors. One other long-standing problem and a stretch
goal of a lifting-based approach is the verification of out-of-order microprocessors. To the
best of our knowledge, existing approaches [55, 109, 122, 199] for out-of-order verification
have not been applied to RTL-level implementation accurate models. There is also the ques-
tion of how SymboTaint and IFSMs in Chapter §5 can be applied to verify secure information
flow on out-of-order processors.

Attacker Models. Although the attacker model we are considering is general and param-
eterized, it is not without limitations. Specifically, we have observed in Chapter §5 that an
attacker who is only capable of observing and tampering with the system state is weaker
than one who can also transfer sensitive data from one state to another. When the attacker
lacks this capability, it is necessary to model more specific functions available to the adver-
sary. Therefore, we stress the importance of exploring different attacker models for various
attacks in order to conduct a thorough analysis of the platform.

7.2.2 Building Upon SymboTaint

In Chapter §5, we introduced SymboTaint, an interpolant-based method for efficiently ver-
ifying information-flow-based properties. However, a number of aspects were not discussed
that could be improved upon. We list these below.

Generating Interpolants. While finding interpolants for reachable states has been stud-
ied extensively in work such as McMillan’s approach to finding Craig interpolants [144] and
PDR/IC3 [31, 64], finding precise interpolants remains mostly an open problem for this class
of applications. While in our specific examples, it was sufficient to assume that the set of
reachable states S in each interpolant {S,Γ} is the entire set of states Q (i.e., S = Q), this
results in false positives. A potential direction to explore is which class of programs and
interpolants not only guarantee the soundness but also the completeness of the approach.

Optimizing Temporal Decomposition in SymboTaint. On the other hand, the tem-
poral partitioning of a platform execution in SymboTaint can also introduce false positives.
Let us refer to the maximum partition of a run (of the platform) as the partitioning of the
program operations Prog into opMAX

.
= {{op1}, {op2}, . . . , {opn}}, where element of opMAX

is a separate run. This partition is the largest partition of a sequence of operations (i.e., there
is no partition with more elements), where the platform executionM(opMAX) in SymboTaint
results in each run in opMAX to be symbolically modeled independently from one another
as M(ri), ri ∈ opMAX . Alternatively, one can consider evaluating a smaller partition of
the run that separates Prog into two runs, i.e, opTWO

.
= {{op1, . . . , opk}, {opk+1, . . . , opn}},

k ∈ [n], resulting in the trace given by executing M(op1 . . . opk) M(opk+1 . . . opn), which can
be more precise than pMAX , but less precise than opMIN

.
= {Prog} .

= {{op1, · · · , opn}}. The
challenge is to develop a sound and complete method to find a partition from the set of all

CHAPTER 7. CONCLUSION 124

partitions of the program Prog , say p ∈ Partitions(Prog), such that p is easiest to verify
while preserving equisatisfiability of the desired property. To formalize this problem, let
µ(M, p, θ) be a measure of “verification difficulty” based on the platform model, partitioning
of Prog and other relevant parameters θ for the measure µ. Intuitively, one can attempt to
find the partitioning p∗ in 7.1.

p∗
.
= argminp∈Partitions(Prog) µ(M, p, θ) s.t. M(p) |= T ⇐⇒ M({Prog}) |= T (7.1)

where T is the non-interference property we desire to prove.

7.2.3 Trusted Execution Environments

Lastly, in Chapter §6, we proved secure remote computation for the single-memory sharing
model, Cerberus, by formalizing an extension to the platform model and manually coming
up with inductive invariants.

Formalizing features of TEEs. One natural next step is to extend Cerberus to sup-
port alternative sharing models, such as writable-memory sharing schemes, capped memory-
sharing models [131], and uncapped memory-sharing models [231]. This need not be limited
to sharing models, but other features supported by TEEs that are part of the TCB. Formal-
izing extensions to the API interface or specific implementations of trusted hardware such
as Physical Memory Protection in RISC-V [221] would also advance the frontier of TEE
security, where it has become almost standard to rely on informal arguments of security.

Automatically generating inductive invariants. Recall that the inductive invariants
for Cerberus were found manually and took time in terms of person months. For more com-
plicated systems (e.g., a model with less abstraction), the amount of effort required does not
scale well in our experience. Thus, it would be valuable if one could automatically generate
these inductive invariants. As introduced in §3.3.6, semantic-based program synthesis is one
mechanism that can be used to generate these invariants.

125

Bibliography

[1] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow In-
tegrity”. In: Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security. CCS ’05. 2005, pp. 340–353.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. “Predicting secret keys via
branch prediction”. In: Cryptographers’ Track at the RSA Conference. Springer. 2007,
pp. 225–242.

[3] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungyoung
Lee. “Chancel: efficient multi-client isolation under adversarial programs”. In: Proc.
of Network and Distributed System Security Symposium (NDSS). 2021.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. “Ver-
ifiable side-channel security of cryptographic implementations: constant-time MEE-
CBC”. In: International Conference on Fast Software Encryption. Springer. 2016,
pp. 163–184.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. “Verifying constant-time implementations”. In: 25th USENIX Se-
curity Symposium (USENIX Security 16). 2016, pp. 53–70.

[6] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and Bárbara Vieira. “For-
mal verification of side-channel countermeasures using self-composition”. In: Science
of Computer Programming 78.7 (2013), pp. 796–812.

[7] Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Tor-
lak, and Abhishek Udupa. “Syntax-guided synthesis”. In: FMCAD. IEEE, 2013, pp. 1–
8.

[8] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. “Cogent:
Verifying High-Assurance File System Implementations”. In: Proc. of Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS).
2016.

BIBLIOGRAPHY 126

[9] ARM Instruction Reference. https://developer.arm.com/documentation/dui
0068/b/ARM-Instruction-Reference. 2022. url: https://developer.arm.com/
documentation/dui0068/b/ARM-Instruction-Reference (visited on 12/14/2022).

[10] ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone.
2013.

[11] Krste Asanović and David A Patterson. “Instruction Sets Should Be Free: The Case
For RISC-V”. In: EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2014-146 (2014).

[12] Thomas H. Austin and Cormac Flanagan. “Efficient purely-dynamic information flow
analysis”. In: Proceedings of the 2009 Workshop on Programming Languages and
Analysis for Security, PLAS 2009, Dublin, Ireland, 15-21 June, 2009. Ed. by Stephen
Chong and David A. Naumann. ACM, 2009, pp. 113–124.

[13] AWS SageMaker. https://aws.amazon.com/pm/sagemaker.

[14] Jonathan Bachrach, Huy D. Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanović. “Chisel: Constructing hard-
ware in a Scala embedded language”. In: DAC Design Automation Conference 2012
(2012), pp. 1212–1221.

[15] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai
Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli,
Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and
Yoni Zohar. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In: Proceedings
of the 28th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’22). Lecture Notes in Computer Science. Springer,
Apr. 2022. url: http://www.cs.stanford.edu/~barrett/pubs/BBB+22.pdf.

[16] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLIne, Bart Jacobs, and Rustan Leino.
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs”. In: FMCO
2005. Springer Berlin Heidelberg, Nov. 2005. url: https://www.microsoft.com/
en-us/research/publication/boogie-a-modular-reusable-verifier-for-

object-oriented-programs/.

[17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org. 2016.

[18] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satisfiability
Modulo Theories”. In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn Heule,
Hans van Maaren, and Toby Walsh. Second. IOS Press, 2021. Chap. 33, pp. 1267–
1329.

[19] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.
“System-level non-interference for constant-time cryptography”. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM.
2014, pp. 1267–1279.

https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference
https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference
https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference
https://developer.arm.com/documentation/dui0068/b/ARM-Instruction-Reference
https://www.arm.com/products/security-on-arm/trustzone
https://aws.amazon.com/pm/sagemaker
http://www.cs.stanford.edu/~barrett/pubs/BBB+22.pdf
https://www.microsoft.com/en-us/research/publication/boogie-a-modular-reusable-verifier-for-object-oriented-programs/
https://www.microsoft.com/en-us/research/publication/boogie-a-modular-reusable-verifier-for-object-oriented-programs/
https://www.microsoft.com/en-us/research/publication/boogie-a-modular-reusable-verifier-for-object-oriented-programs/

BIBLIOGRAPHY 127

[20] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. “Secure Information Flow
by Self-Composition”. In: 17th IEEE Computer Security Foundations Workshop,
(CSFW-17). 2004, pp. 100–114.

[21] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. “Secure Information Flow by
Self-Composition”. In: Mathematical Structures in Computer Science 21.6 (2011),
pp. 1207–1252.

[22] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. “Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time””. In: 2018 IEEE
31st Computer Security Foundations Symposium (CSF). IEEE. 2018, pp. 328–343.

[23] Christoph Baumann, Mads Dam, Roberto Guanciale, and Hamed Nemati. “On Com-
positional Information Flow Aware Refinement”. In: 2021 IEEE 34th Computer Se-
curity Foundations Symposium (CSF). 2021, pp. 1–16.

[24] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. “Symbolic
Model Checking without BDDs”. In: International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems. 1999.

[25] Binary Analysis Platform (BAP) Repository. 2019. url: https://github.com/
BinaryAnalysisPlatform/bap.

[26] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K Rustan M Leino, Jacob R Lorch,
Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. “Vale: Verifying high-
performance cryptographic assembly code”. In: 26th USENIX Security Symposium
(USENIX Security 17). 2017, pp. 917–934.

[27] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. “The Undecidability of
First-Order Logic”. In: Computability and Logic. 5th ed. Cambridge University Press,
2007, pp. 126–136.

[28] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl,
Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van
Geffen, and Andrew Warfield. “Using lightweight formal methods to validate a key-
value storage node in Amazon S3”. In: SOSP 2021. 2021.

[29] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and
Michael Schwarz. “ÆPIC Leak: Architecturally Leaking Uninitialized Data from the
Microarchitecture”. In: 31st USENIX Security Symposium (USENIX Security 22).
2022.

[30] Matko Botincan, Matthew J. Parkinson, and Wolfram Schulte. “Separation Logic
Verification of C Programs with an SMT Solver”. In: International Workshop on
Systems Software Verification. 2009.

[31] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Proceedings
of the 12th International Conference on Verification, Model Checking, and Abstract
Interpretation. VMCAI’11. Austin, TX, USA: Springer-Verlag, 2011, pp. 70–87.

https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap

BIBLIOGRAPHY 128

[32] Bryan A. Brady, Randal E. Bryant, Sanjit A. Seshia, and Bryan A. Brady. “Ab-
stracting RTL Designs to the Term Level”. In: UCB/EECS-2008-136. Oct. 2008. url:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-136.pdf.

[33] Bryan A. Brady, Randal E. Bryant, Sanjit A. Seshia, and John W. O’Leary. “ATLAS:
Automatic Term-Level Abstraction of RTL Designs”. In: Proceedings of the Eighth
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE). July 2010, pp. 31–40.

[34] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. “BAP: A
Binary Analysis Platform”. In: Proceedings of the 23rd International Conference on
Computer Aided Verification. CAV’11. Snowbird, UT, 2011, pp. 463–469.

[35] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. “Modeling and Verifying Systems using a
Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions”.
In: Computer-Aided Verification (CAV’02). LNCS 2404. July 2002, pp. 78–92.

[36] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. James Hwang. “Symbolic Model Checking: 1020 States and Beyond”. In: Infor-
mation and Computation 98 (1992), pp. 142–170.

[37] Jerry R. Burch and David L. Dill. “Automatic verification of Pipelined Microprocessor
Control”. In: International Conference on Computer Aided Verification. 1994.

[38] John Cable. Update on Spectre and Meltdown security updates for Windows devices.
https://blogs.windows.com/windowsexperience/2018/03/01/update- on-

spectre-and-meltdown-security-updates-for-windows-devices/. 2018. url:
https://blogs.windows.com/windowsexperience/2018/03/01/update- on-

spectre-and-meltdown-security-updates-for-windows-devices/.

[39] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. “A Systematic
Evaluation of Transient Execution Attacks and Defenses”. In: CoRR abs/1811.05441
(2018). arXiv: 1811.05441. url: http://arxiv.org/abs/1811.05441.

[40] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. “A Systematic
Evaluation of Transient Execution Attacks and Defenses”. In: 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 249–266.

[41] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck,
and Yuval Yarom. “Fallout: Leaking Data on Meltdown-resistant CPUs”. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM. 2019.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-136.pdf
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://blogs.windows.com/windowsexperience/2018/03/01/update-on-spectre-and-meltdown-security-updates-for-windows-devices/
https://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441

BIBLIOGRAPHY 129

[42] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Deian Stefan, Tamara
Rezk, and Gilles Barthe. “Constant-time foundations for the new spectre era”. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (2019).

[43] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby,
John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.
“FaCT: a DSL for timing-sensitive computation”. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (2019).

[44] Kevin Cheang, Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia. Composi-
tional Proofs of Information Flow Properties for Hardware-Software Platforms. Tech.
rep. UCB/EECS-2023-204. EECS Department, University of California, Berkeley,
Aug. 2023. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-
2023-204.html.

[45] Kevin Cheang, Cameron Rasmussen, Dayeol Lee, David W. Kohlbrenner, Krste
Asanović, and Sanjit A. Seshia. Verifying RISC-V Physical Memory Protection. 2022.
url: https://arxiv.org/abs/2211.02179.

[46] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. “A
Formal Approach to Secure Speculation”. In: 32nd IEEE Computer Security Founda-
tions Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. 2019, pp. 288–
303.

[47] Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot Heiser. “The
Cogent Case for Property-Based Testing”. In: Proc. of Workshop on Programming
Languages and Operating Systems (PLOS). Shanghai, China, 2017.

[48] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. “Infinite-
state invariant checking with IC3 and predicate abstraction”. In: Formal Methods in
System Design 49 (2016), pp. 190–218.

[49] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model checking and ab-
straction”. In: ACM Trans. Program. Lang. Syst. 16 (1994), pp. 1512–1542.

[50] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. “Model
Checking and the State Explosion Problem”. In: Workshop on Learning from Au-
thoritative Security Experiment Results. 2011.

[51] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: 2008 21st IEEE
Computer Security Foundations Symposium. 2008, pp. 51–65.

[52] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR Cryptol.
ePrint Arch. (2016), p. 86. url: http://eprint.iacr.org/2016/086.

[53] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation”. In: 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, 2016, pp. 857–874.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-204.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-204.html
https://arxiv.org/abs/2211.02179
http://eprint.iacr.org/2016/086

BIBLIOGRAPHY 130

[54] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. POPL ’77. Los Angeles, California: Association for Computing
Machinery, 1977, pp. 238–252.

[55] Werner Damm and Amir Pnueli. “Verifying out-of-order executions”. In: Advances in
Hardware Design and Verification: IFIP TC10 WG10. 5 International Conference on
Correct Hardware and Verification Methods, 16–18 October 1997, Montreal, Canada.
Springer. 1997, pp. 23–47.

[56] Leonardo De Moura and Nikolaj Bjorner. “Z3: An Efficient SMT Solver”. In: Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. TACAS’08/ETAPS’08.
Budapest, Hungary: Springer-Verlag, 2008, pp. 337–340.

[57] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. rep. MSR-TR-2005-70. Microsoft Research, 2005.

[58] Dorothy E. Denning. “A lattice model of secure information flow”. In: Commun. ACM
19 (1976), pp. 236–243.

[59] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. “Protocol verification
as a hardware design aid”. In: Proceedings 1992 IEEE International Conference on
Computer Design: VLSI in Computers & Processors (1992), pp. 522–525.

[60] Işil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. “Inductive invari-
ant generation via abductive inference”. In: Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages & appli-
cations (2013).

[61] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke.
“CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13). Washington,
D.C.: USENIX, 2013, pp. 431–446.

[62] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. “CacheAudit: A
tool for the static analysis of cache side channels”. In: ACM Transactions on Infor-
mation and System Security (TISSEC) 18.1 (2015), p. 4.

[63] Jules Drean, Miguel Gomez-Garcia, Thomas Bourgeat, and Srinivas Devadas.
“Citadel: Side-Channel-Resistant Enclaves with Secure Shared Memory on a Specula-
tive Out-of-Order Processor”. In: CoRR abs/2306.14882 (2023). arXiv: 2306.14882.
url: https://doi.org/10.48550/arXiv.2306.14882.

[64] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. “Efficient implementation of
property directed reachability”. In: 2011 Formal Methods in Computer-Aided Design
(FMCAD) (2011), pp. 125–134.

https://arxiv.org/abs/2306.14882
https://doi.org/10.48550/arXiv.2306.14882

BIBLIOGRAPHY 131

[65] Hassan Eldib, Chao Wang, and Patrick Schaumont. “Formal verification of software
countermeasures against side-channel attacks”. In: ACM Transactions on Software
Engineering and Methodology 24.2 (2014), p. 11.

[66] Hassan Eldib, Chao Wang, and Patrick Schaumont. “SMT-based verification of soft-
ware countermeasures against side-channel attacks”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. 2014, pp. 62–77.

[67] Steve Ellis, Ari Juels, and Sergey Nazarov. “Chainlink 2.0: Next Steps in the Evolution
of Decentralized Oracle Networks”. In: Whitepaper v2.0 (2021). https://research.
chain.link/whitepaper-v2.pdf.

[68] Xaver Fabian, Marco Patrignani, and Marco Guarnieri. “Automatic Detection of
Speculative Execution Combinations”. In: Proceedings of the 29th ACM Conference
on Computer and Communications Security. CCS 2022. ACM, 2022.

[69] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang,
and Haibo Chen. “Scalable Memory Protection in the PENGLAI Enclave”. In: 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, July 2021, pp. 275–294.

[70] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. “Komodo:
Using verification to disentangle secure-enclave hardware from software”. In: Proc. of
Symposium on Operating Systems Principles (SOSP). 2017.

[71] Fission.io. https://fission.io/.

[72] Pranav Gaddamadugu. “Formally Verifying Trusted Execution Environments with
UCLID5”. MA thesis. EECS Department, University of California, Berkeley, Aug.
2021. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-
200.html.

[73] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal,
and Wenmei Hwu. “Dynamic Memory Disambiguation Using the Memory Conflict
Buffer”. In: Proc. of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS VI. San Jose, California,
USA, 1994, pp. 183–193.

[74] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Symposium
on the Theory of Computing. 2009.

[75] Adwait Godbole, Yatin Manerkar, and Sanjit A. Seshia. “Automated Conversion of
Axiomatic to Operational Models: Theoretical and Practical Results”. In: Proceedings
of the IEEE International Conference on Formal Methods in Computer-Aided Design
(FMCAD). Oct. 2022.

[76] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”. In:
IEEE Symposium on Security and Privacy. 1982, pp. 11–20.

https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v2.pdf
https://fission.io/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-200.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-200.html

BIBLIOGRAPHY 132

[77] Joseph A. Goguen and José Meseguer. “Unwinding and Inference Control”. In: 1984
IEEE Symposium on Security and Privacy (1984), pp. 75–75.

[78] Gramine. https://github.com/gramineproject/gramine. 2021.

[79] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018, pp. 955–972.

[80] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Mangard.
“Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: Proc. of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS
’16. 2016, pp. 368–379.

[81] Roberto Guanciale, Musard Balliu, and Mads Dam. “InSpectre: Breaking and Fixing
Microarchitectural Vulnerabilities by Formal Analysis”. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. CCS ’20.
Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1853–1869.

[82] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
“Spectector: Principled Detection of Speculative Information Flows”. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020. IEEE, 2020, pp. 1–19.

[83] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. “Hardware-Software Con-
tracts for Secure Speculation”. In: 2021 IEEE Symposium on Security and Privacy
(SP). 2021, pp. 1868–1883.

[84] HiFive Unleashed. https://www.sifive.com/boards/hifive-unleashed. 2020.

[85] Charles Antony Richard Hoare. “An axiomatic basis for computer programming”. In:
Commun. ACM 12 (1969), pp. 576–580.

[86] Gerard J. Holzmann. “The SPIN Model Checker”. In: 2003. url: https://api.
semanticscholar.org/CorpusID:53932627.

[87] Jann Horn. Read privileged memory with a side-channel. 2018. url: https://goo
gleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-

side.html.

[88] Ravi Hosabettu, Mandayam K. Srivas, and Ganesh Gopalakrishnan. “Decomposing
the Proof of Correctness of pipelined Microprocessors”. In: International Conference
on Computer Aided Verification. 1998.

[89] Guangyuan Hu, Zecheng He, and Ruby B. Lee. “SoK: Hardware Defenses Against
Speculative Execution Attacks”. In: 2021 International Symposium on Secure and
Private Execution Environment Design (SEED). 2021, pp. 108–120.

[90] Huggingface. https://huggingface.co/.

https://github.com/gramineproject/gramine
https://www.sifive.com/boards/hifive-unleashed
https://api.semanticscholar.org/CorpusID:53932627
https://api.semanticscholar.org/CorpusID:53932627
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://huggingface.co/

BIBLIOGRAPHY 133

[91] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. “Chiron: Privacy-preserving Machine Learning as a Service”. In: CoRR
abs/1803.05961 (2018). arXiv: 1803.05961. url: http://arxiv.org/abs/1803.
05961.

[92] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genç, and Jonathan
Ragan-Kelley. “Exocompilation for productive programming of hardware accelera-
tors”. In: Proceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (2022).

[93] Intel. Branch Target Injection / CVE-2017-5715 / INTEL-SA-00088. 2018. url: ht
tps://software.intel.com/security-software-guidance/software-guidance/

branch-target-injection.

[94] Intel. Bounds Check Bypass / CVE-2017-5753 / INTEL-SA-00088. 2018. url: https:
//software.intel.com/security- software- guidance/software- guidance/

bounds-check-bypass.

[95] Intel.Deep Dive: Analyzing Potential Bounds Check Bypass Vulnerabilities. 2018. url:
https://software.intel.com/security-software-guidance/insights/deep-

dive-analyzing-potential-bounds-check-bypass-vulnerabilities.

[96] Intel. Deep Dive: Managed Runtime Speculative Execution Side Channel Mitigations.
2018. url: https://software.intel.com/security-software-guidance/ins
ights/deep-dive-managed-runtime-speculative-execution-side-channel-

mitigations.

[97] Intel. Deep Dive: Mitigation Overview for Side Channel Exploits in Linux. 2018. url:
https://software.intel.com/security-software-guidance/insights/deep-

dive-mitigation-overview-side-channel-exploits-linux.

[98] Intel. L1 Terminal Fault / CVE-2018-3615 , CVE-2018-3620,CVE-2018-3646 /
INTEL-SA-00161. 2018. url: https://software.intel.com/security-software-
guidance/software-guidance/l1-terminal-fault.

[99] Intel. Rogue System Register Read / CVE-2018-3640 / INTEL-SA-00115. 2018. url:
https://software.intel.com/security-software-guidance/software-guidanc

e/rogue-system-register-read.

[100] Intel. Speculative Store Bypass / CVE-2018-3639 / INTEL-SA-00115. 2018. url:
https://software.intel.com/security-software-guidance/software-guidanc

e/speculative-store-bypass.

[101] Intel Trust Domain Extensions. https://www.intel.com/content/dam/develop/
external/us/en/documents/tdx-whitepaper-v4.pdf. 2020.

[102] Intel® 64 and IA-32 Architectures Software Developer Manual Volume 3. url: htt
ps://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-

ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf.

https://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

BIBLIOGRAPHY 134

[103] Intel® 64 and IA-32 Architectures Software Developer Manuals. url: https://
www.intel.com/content/www/us/en/developer/articles/technical/intel-

sdm.html (visited on 12/14/2022).

[104] Interactive guide to speculative execution attacks. url: https://mdsattacks.com
(visited on 08/03/2023).

[105] G. Irazoqui, T. Eisenbarth, and B. Sunar. “S$A: A Shared Cache Attack That Works
across Cores and Defies VM Sandboxing – and Its Application to AES”. In: IEEE
Symposium on Security and Privacy. May 2015, pp. 591–604.

[106] Mohit Kumar Jangid, Guoxing Chen, Yinqian Zhang, and Zhiqiang Lin. “Towards
Formal Verification of State Continuity for Enclave Programs”. In: Proc. of USENIX
Security Symposium. 2021. url: https://www.usenix.org/conference/usenixsec
urity21/presentation/jangid.

[107] Jasper Formal Verification Platform. url: https://www.cadence.com/en_US/home/
tools/system-design-and-verification/formal-and-static-verification/

jasper-gold-verification-platform.html (visited on 12/30/2022).

[108] Ranjit Jhala and Kenneth L. McMillan. “Microarchitecture Verification by Compo-
sitional Model Checking”. In: International Conference on Computer Aided Verifica-
tion. 2001.

[109] Robert B Jones, Jens U Skakkebaek, and David L Dill. “Reducing manual abstraction
in formal verification of out-of-order execution”. In: Formal Methods in Computer-
Aided Design: Second International Conference, FMCAD’98 Palo Alto, CA, USA,
November 4–6, 1998 Proceedings 2. Springer. 1998, pp. 2–17.

[110] Hari Kannan, Michael Dalton, and Christos Kozyrakis. “Decoupling Dynamic Infor-
mation Flow Tracking with a dedicated coprocessor”. In: 2009 IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks. 2009, pp. 105–114.

[111] David Kaplan. AMD SEV-ES. http://support.amd.com/TechDocs/Protecting
VMRegisterStatewithSEV-ES.pdf. 2017.

[112] David Kaplan, Jeremy Powell, and TomWoller. http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-

Public.pdf. 2016.

[113] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel
Emer. “DAWG: A Defense Against Cache Timing Attacks in Speculative Execution
Processors”. In: 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 2018, pp. 974–987.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://mdsattacks.com
https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://www.usenix.org/conference/usenixsecurity21/presentation/jangid
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf
http://support.amd.com/TechDocs/ProtectingVMRegisterStatewithSEV-ES.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

BIBLIOGRAPHY 135

[114] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. “seL4: Formal Verification
of an OS Kernel”. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operat-
ing Systems Principles. SOSP ’09. Big Sky, Montana, USA, 2009, pp. 207–220. url:
http://doi.acm.org/10.1145/1629575.1629596.

[115] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler. Feb. 2018. url: h
ttps://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html.

[116] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (2019), pp. 19–37.

[117] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack
Buffer”. In: 12th USENIX Workshop on Offensive Technologies (WOOT 18). Bal-
timore, MD: USENIX Association, 2018.

[118] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Lenny Truong, Gedeon Nyengele,
Kecheng Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, Maxwell Strange,
Ross G. Daly, Caleb Donovick, Alex Carsello, Taeyoung Kong, Kathleen Feng, Dillon
Huff, Ankita Nayak, Rajsekhar Setaluri, James J. Thomas, Nikhil Bhagdikar, David
Durst, Zachary Myers, Nestan Tsiskaridze, Stephen Richardson, Rick Bahr, Kayvon
Fatahalian, Pat Hanrahan, Clark W. Barrett, Mark Horowitz, Christopher Torng,
Fredrik Kjolstad, and Priyanka Raina. “AHA: An Agile Approach to the Design of
Coarse-Grained Reconfigurable Accelerators and Compilers”. In: ACM Transactions
on Embedded Computing Systems (TECS) (2022).

[119] Elisavet Kozyri, Stephen Chong, and Andrew C. Myers. “Expressing Information
Flow Properties”. In: Foundations and Trends in Privacy and Security 3.1 (2022),
pp. 1–102. url: http://dx.doi.org/10.1561/3300000008.

[120] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. “Circuit-based Boolean
reasoning”. In: Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232) (2001), pp. 232–237.

[121] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod Bha-
totia, Pascal Felber, and Christof Fetzer. “SGXBOUNDS: Memory safety for shielded
execution”. In: Proc. of the Twelfth European Conference on Computer Systems (Eu-
roSys). 2017.

[122] Shuvendu K. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. “Modeling and Verifica-
tion of Out-of-Order Microprocessors in UCLID”. In: Formal Methods in Computer-
Aided Design, 4th International Conference, FMCAD 2002, Portland, OR, USA,
November 6-8, 2002, Proceedings. Ed. by Mark D. Aagaard and John W. O’Leary.

http://doi.acm.org/10.1145/1629575.1629596
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://dx.doi.org/10.1561/3300000008

BIBLIOGRAPHY 136

Vol. 2517. Lecture Notes in Computer Science. Springer, 2002, pp. 142–159. url:
https://doi.org/10.1007/3-540-36126-X%5C_9.

[123] Michael Larabel. Benchmarking The Work-In-Progress Spectre/STIBP Code On The
Way For Linux 4.20. 2018. url: https://www.phoronix.com/scan.php?page=
article%5C&item=linux-420wip-stibp%5C&num=1.

[124] Ilia Lebedev, Kyle Hogan, Jules Drean, David Kohlbrenner, Dayeol Lee, Krste
Asanović, Dawn Song, and Srinivas Devadas. “Sanctorum: A lightweight security
monitor for secure enclaves”. In: Proc. of Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). 2019.

[125] Dayeol Lee, Kevin Cheang, Alexander Thomas, Catherine Lu, Pranav Gaddamadugu,
Anjo Vahldiek-Oberwagner, Mona Vij, Dawn Song, Sanjit A. Seshia, and Krste
Asanovic. “Cerberus: A Formal Approach to Secure and Efficient Enclave Memory
Sharing”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’22. Los Angeles, CA, USA: Association for Comput-
ing Machinery, 2022, pp. 1871–1885.

[126] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada Popa. “An
Off-Chip Attack on Hardware Enclaves via the Memory Bus”. In: Proc. of USENIX
Security Symposium. 2020.

[127] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.
“Keystone: An Open Framework for Architecting Trusted Execution Environments”.
In: Proceedings of the Fifteenth European Conference on Computer Systems. EuroSys
’20. Heraklion, Greece: Association for Computing Machinery, 2020.

[128] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. “Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing”. In: CoRR abs/1611.06952 (2016). url: http://arxiv.org/abs/1611.
06952.

[129] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Correct-
ness”. In: Proc. of Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). Dakar, Senegal, 2010.

[130] Rebekah Leslie-Hurd, Dror Caspi, and Matthew Fernandez. “Verifying Linearizabil-
ity of Intel® Software Guard Extensions”. In: Computer Aided Verification. Cham:
Springer International Publishing, 2015, pp. 144–160.

[131] Mingyu Li, Yubin Xia, and Haibo Chen. “Confidential Serverless Made Efficient with
Plug-in Enclaves”. In: Proc. of International Symposium on Computer Architecture
(ISCA). 2021.

[132] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. “Value Locality
and Load Value Prediction”. In: Proc. of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems. 1996.

https://doi.org/10.1007/3-540-36126-X%5C_9
https://www.phoronix.com/scan.php?page=article%5C&item=linux-420wip-stibp%5C&num=1
https://www.phoronix.com/scan.php?page=article%5C&item=linux-420wip-stibp%5C&num=1
http://arxiv.org/abs/1611.06952
http://arxiv.org/abs/1611.06952

BIBLIOGRAPHY 137

[133] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and
Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018.

[134] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. “Last-Level
Cache Side-Channel Attacks Are Practical”. In: Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, 2015, pp. 605–622.

[135] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. “PipeCheck: Specifying
and Verifying Microarchitectural Enforcement of Memory Consistency Models”. In:
2014 47th Annual IEEE/ACM International Symposium on Microarchitecture (2014),
pp. 635–646.

[136] Roger Lyndon. “An interpolation theorem in the predicate calculus.” In: Pacific Jour-
nal of Mathematics 9 (1959), pp. 129–142.

[137] Giorgi Maisuradze and Christian Rossow. “Ret2Spec: Speculative Execution Using
Return Stack Buffers”. In: Proc. of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. 2018.

[138] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer.
“RTLCheck: Verifying the Memory Consistency of RTL Designs”. In: 2017 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2017),
pp. 463–476.

[139] Scott McFarling. Combining branch predictors. Tech. rep. Technical Report TN-36,
Digital Western Research Laboratory, 1993.

[140] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest. Spec-
tre is here to stay: An analysis of side-channels and speculative execution. 2019. url:
https://arxiv.org/abs/1902.05178.

[141] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. “Innovative Instructions and Soft-
ware Model for Isolated Execution”. In: HASP. 2013.

[142] John Mclean. “Proving Noninterference and Functional Correctness Using Traces”.
In: Journal of Computer Security 1 (1992), pp. 37–58.

[143] Kenneth L. McMillan. “Interpolation and Model Checking”. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Rod-
erick Bloem. Springer, 2018, pp. 421–446.

[144] Kenneth L. McMillan. “Interpolation and SAT-Based Model Checking”. In: Interna-
tional Conference on Computer Aided Verification. 2003.

[145] Kenneth L. McMillan. “Symbolic model checking”. In: International Conference on
Computer Aided Verification. 1993.

https://arxiv.org/abs/1902.05178

BIBLIOGRAPHY 138

[146] Marcela S Melara, Michael J Freedman, and Mic Bowman. “EnclaveDom: Privi-
lege separation for large-TCB applications in trusted execution environments”. In:
ArXiv:1907.13245 (2019).

[147] Microsoft. /Qspectre. Oct. 2018. url: https://docs.microsoft.com/en-us/cpp/
build/reference/qspectre?view=vs-2017.

[148] Microsoft. ADV180012 — Microsoft Guidance for Speculative Store Bypass. 2018.
url: https://portal.msrc.microsoft.com/en-US/security-guidance/advisor
y/ADV180012.

[149] Microsoft. Spectre mitigations in MSVC. 2018. url: https://devblogs.microsoft.
com/cppblog/spectre-mitigations-in-msvc/.

[150] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K. Brayton.
“FRAIGs: A Unifying Representation for Logic Synthesis and Verification”. In: 2005.

[151] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “CacheZoom: How SGX
Amplifies the Power of Cache Attacks”. In: CHES. 2017.

[152] Federico Mora, Kevin Cheang, Elizabeth Polgreen, and Sanjit A. Seshia. Synthesis in
Uclid5. 2020. arXiv: 2007.06760 [cs.PL].

[153] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. “Axiomatic
Hardware-Software Contracts for Security”. In: Proceedings of the 49th Annual In-
ternational Symposium on Computer Architecture. ISCA ’22. New York, New York:
Association for Computing Machinery, 2022, pp. 72–86.

[154] Toby Murray, Robert Sison, and Kai Engelhardt. “COVERN: A Logic for Composi-
tional Verification of Information Flow Control”. In: 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). 2018, pp. 16–30.

[155] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Control”. In:
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’99. San Antonio, Texas, USA: Association for Comput-
ing Machinery, 1999, pp. 228–241.

[156] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi
Wang. “Serval: Scaling Symbolic Evaluation for Automated Verification of Systems
Code”. In: Proc. of Symposium on Operating Systems Principles (SOSP). 2019.

[157] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian Nowozin,
Kapil Vaswani, and Manuel Costa. “Oblivious Multi-Party Machine Learning on
Trusted Processors”. In: Proc. of USENIX Security Symposium. 2016.

[158] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof Fet-
zer. “You shall not bypass: Employing data dependencies to prevent bounds check
bypass”. In: arXiv preprint arXiv:1805.08506 (2018).

[159] Open Portable Trusted Execution Environment. 2020. url: https://www.op-tee.
org/.

https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180012
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV180012
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://arxiv.org/abs/2007.06760
https://www.op-tee.org/
https://www.op-tee.org/

BIBLIOGRAPHY 139

[160] OpenFaaS. https://www.openfaas.com/.

[161] OpenTitan: Open Source Silicon Root of Trust. url: https :/ / opentitan. org/
(visited on 12/13/2022).

[162] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis.
“The Spy in the Sandbox - Practical Cache Attacks in Javascript”. In: CoRR
abs/1502.07373 (2015). url: http://arxiv.org/abs/1502.07373.

[163] Bryan Parno, Jacob R. Lorch, John R. Douceur, James Mickens, and Jonathan M.
McCune. “Memoir: Practical State Continuity for Protected Modules”. In: Proc. of
IEEE Symposium on Security and Privacy (S&P). 2011.

[164] David A. Patterson and John L. Hennessy. “Computer Architecture: A Quantitative
Approach”. In: 1969.

[165] Colin Percival. Cache missing for fun and profit. 2005. url: https://www.daemonol
ogy.net/papers/htt.pdf.

[166] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: 25th
USENIX Security Symposium (USENIX Security 16). 2016, pp. 565–581.

[167] Ruzica Piskac, Thomas Wies, and Damien Zufferey. “Automating Separation Logic
Using SMT”. In: International Conference on Computer Aided Verification. 2013.

[168] Amir Pnueli, Yoav Rodeh, Ofer Strichman, and Michael Siegel. “The Small Model
Property: How Small Can It Be?” In: Inf. Comput. 178 (2002), pp. 279–293.

[169] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin
Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia.
“UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis”. In: Computer
Aided Verification. Ed. by Sharon Shoham and Yakir Vizel. Cham: Springer Interna-
tional Publishing, 2022, pp. 538–551.

[170] Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia. “Satisfiability and Syn-
thesis Modulo Oracles”. In: Verification, Model Checking, and Abstract Interpreta-
tion - 23rd International Conference, VMCAI 2022, Philadelphia, PA, USA, January
16-18, 2022, Proceedings. Ed. by Bernd Finkbeiner and Thomas Wies. Vol. 13182.
Lecture Notes in Computer Science. Springer, 2022, pp. 263–284. url: https://
doi.org/10.1007/978-3-030-94583-1%5C_13.

[171] Nelly Porter and Jason Garms. Advancing confidential computing with Asylo and the
Confidential Computing Challenge. https://cloud.google.com/blog/products/
identity- security/advancing- confidential- computing- with- asylo- and-

the-confidential-computing-challenge. Feb. 2019.

[172] Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB - A Secure Database
using SGX”. In: Proc. of IEEE Symposium on Security and Privacy (S&P). 2018.

https://www.openfaas.com/
https://opentitan.org/
http://arxiv.org/abs/1502.07373
https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://doi.org/10.1007/978-3-030-94583-1%5C_13
https://doi.org/10.1007/978-3-030-94583-1%5C_13
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge
https://cloud.google.com/blog/products/identity-security/advancing-confidential-computing-with-asylo-and-the-confidential-computing-challenge

BIBLIOGRAPHY 140

[173] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananan-
dro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cătălin
Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, et al. “Verified low-level program-
ming embedded in F”. In: Proceedings of the ACM on Programming Languages
1.ICFP (2017), p. 17.

[174] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“CrossTalk: Speculative Data Leaks Across Cores Are Real”. In: 2021 IEEE Sympo-
sium on Security and Privacy (SP). 2021, pp. 1852–1867.

[175] Ray Serve. https://www.ray.io/ray-serve.

[176] C. R. Reddy and D. W. Loveland. “Presburger Arithmetic with Bounded Quanti-
fier Alternation”. In: Proceedings of the Tenth Annual ACM Symposium on Theory
of Computing. STOC ’78. San Diego, California, USA: Association for Computing
Machinery, 1978, pp. 320–325.

[177] John C. Reynolds. “Separation logic: a logic for shared mutable data structures”.
In: Proceedings 17th Annual IEEE Symposium on Logic in Computer Science (2002),
pp. 55–74.

[178] A. W. Roscoe. “CSP and Determinism in Security Modelling”. In: Proceedings of
the 1995 IEEE Symposium on Security and Privacy, Oakland, California, USA, May
8-10, 1995. 1995, pp. 114–127.

[179] John Rushby. “Proof of Separability: A Verification Technique for a Class of Security
Kernels”. In: Proc. 5th International Symposium on Programming. Vol. 137. Lecture
Notes in Computer Science. Turin, Italy: Springer-Verlag, Apr. 1982, pp. 352–367.

[180] John M. Rushby. “Proof of separability: A verification technique for a class of a
security kernels”. In: Proceedings of the International Symposium on Programming,
5th Colloquium, Torino, Italy. 1982, pp. 352–367.

[181] RV8 Benchmark. https://github.com/michaeljclark/rv8-bench. 2017.

[182] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. “F1: A Fast and Programmable
Accelerator for Fully Homomorphic Encryption”. In: MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO ’21. Virtual
Event, Greece: Association for Computing Machinery, 2021, pp. 238–252.

[183] Ravi S. Sandhu. “Lattice-based access control models”. In: Computer 26 (1993), pp. 9–
19.

[184] Muhammad Usama Sardar, Saidgani Musaev, and Christof Fetzer. “Demystifying
Attestation in Intel Trust Domain Extensions via Formal Verification”. In: IEEE
Access 9 (2021), pp. 83067–83079.

https://www.ray.io/ray-serve
https://github.com/michaeljclark/rv8-bench

BIBLIOGRAPHY 141

[185] Jun Sawada and Warren A. Hunt. “Processor Verification with Precise Exeptions
and Speculative Execution”. In: International Conference on Computer Aided Veri-
fication. 1998.

[186] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue In-
flight Data Load”. In: S&P. May 2019.

[187] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. “CacheOut: Leaking Data on Intel CPUs via Cache Evictions”. In: 2021
IEEE Symposium on Security and Privacy (SP) (2020), pp. 339–354.

[188] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. “All You Ever Wanted
to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask)”. In: 2010 IEEE Symposium on Security and Privacy
(2010), pp. 317–331.

[189] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data
Sampling”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’19. London, United Kingdom: Association for Com-
puting Machinery, 2019, pp. 753–768.

[190] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. “NetSpectre: Read
Arbitrary Memory over Network”. In: ArXiv abs/1807.10535 (2018).

[191] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: Proc.
of Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). 2017.

[192] Sanjit A. Seshia. “Combining Induction, Deduction, and Structure for Verification and
Synthesis”. In: Proceedings of the IEEE 103.11 (2015), pp. 2036–2051. url: http:
//dx.doi.org/10.1109/JPROC.2015.2471838.

[193] Sanjit A. Seshia and Pramod Subramanyan. “Uclid5: Integrating Modeling, Verifi-
cation, Synthesis and Learning”. In: Proceedings of the 16th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE). Oct.
2018.

[194] Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein. “Translation
validation for a verified OS kernel”. In: Proc. of ACM SIGPLAN Conference on
Programming language design and implementation (PLDI). 2013.

[195] J. P. Shen and M. Lipasti. Fundamentals of Superscalar Processor Design. McGraw-
Hill, 2003.

http://dx.doi.org/10.1109/JPROC.2015.2471838
http://dx.doi.org/10.1109/JPROC.2015.2471838

BIBLIOGRAPHY 142

[196] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin Xia,
and Shoumeng Yan. “Occlum: Secure and Efficient Multitasking Inside a Single En-
clave of Intel SGX”. In: Proc. of Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 2020.

[197] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom Hur.
“Unveiling Hardware-based Data Prefetcher, a Hidden Source of Information Leak-
age”. In: Proc. of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security. CCS ’18. 2018, pp. 131–145.

[198] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. “Moat: Verify-
ing Confidentiality of Enclave Programs”. In: Proc. of ACM SIGSAC Conference on
Computer and Communications Security (CCS). 2015.

[199] Jens Ulrik Skakkebæk, Robert B. Jones, and David L. Dill. “Formal Verification of
Out-of-Order Execution Using Incremental Flushing”. In: CAV. 1998.

[200] J. E. Smith and G. S. Sohi. “The Microarchitecture of Superscalar Processors”. In:
Proc. IEEE 83.12 (Dec. 1995), pp. 1609–1624.

[201] Marcelo Sousa and Isil Dillig. “Cartesian Hoare Logic for Verifying K-safety Proper-
ties”. In: Proc. of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’16. Santa Barbara, CA, USA, 2016, pp. 57–69.

[202] Julian Stecklina and Thomas Prescher. “LazyFP: Leaking FPU Register State using
Microarchitectural Side-Channels”. In: CoRR abs/1806.07480 (2018). arXiv: 1806.
07480. url: http://arxiv.org/abs/1806.07480.

[203] Ben Stuart. “Current state of mitigations for spectre within operating systems”. In:
Proceedings of the 4th Wiesbaden Workshop on Advanced Microkernel Operating Sys-
tems. 2018.

[204] Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev, Srinivas Devadas, and Sanjit
A. Seshia. “A Formal Foundation for Secure Remote Execution of Enclaves”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. Ed. by
Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM, 2017,
pp. 2435–2450.

[205] Jakub Szefer. “Survey of Microarchitectural Side and Covert Channels, Attacks, and
Defenses”. In: Journal of Hardware and Systems Security 3.3 (2019), pp. 219–234.

[206] Tachio Terauchi and Alexander Aiken. “Secure Information Flow as a Safety Prob-
lem”. In: Static Analysis, 12th International Symposium, SAS 2005, London, UK,
September 7-9, 2005, Proceedings. Ed. by Chris Hankin and Igor Siveroni. Vol. 3672.
Lecture Notes in Computer Science. Springer, 2005, pp. 352–367. url: https://doi.
org/10.1007/11547662%5C_24.

https://arxiv.org/abs/1806.07480
https://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1806.07480
https://doi.org/10.1007/11547662%5C_24
https://doi.org/10.1007/11547662%5C_24

BIBLIOGRAPHY 143

[207] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlings-
son, Luis Lozano, and Geoff Pike. “Enforcing Forward-edge Control-flow Integrity in
GCC & LLVM”. In: Proceedings of the 23rd USENIX Conference on Security Sym-
posium. SEC’14. San Diego, CA, 2014, pp. 941–955.

[208] Emina Torlak and Rastislav Bodik. “Growing Solver-Aided Languages with Rosette”.
In: Proc. of ACM International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming; Software. Indianapolis, Indiana, USA, 2013.

[209] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. “CheckMate: Automated
Synthesis of Hardware Exploits and Security Litmus Tests”. In: 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 2018, pp. 947–
960.

[210] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX”. In: Proc. of USENIX Anual Technical
Conference (ATC). 2017.

[211] Harvey Tuch and Gerwin Klein. “A Unified Memory Model for Pointers”. In: Logic
Programming and Automated Reasoning. 2005.

[212] Liam Tung. Linus Torvalds: After big Linux performance hit, Spectre v2 patch needs
curbs. 2018. url: https://www.zdnet.com/article/linus-torvalds-after-big-
linux-performance-hit-spectre-v2-patch-needs-curbs/.

[213] Paul Turner. Retpoline: a software construct for preventing branch-target-injection.
2018. url: https://support.google.com/faqs/answer/7625886.

[214] UCLID5 Verification and Synthesis System. 2022. url: http://github.com/uclid-
org/uclid/.

[215] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution”. In: Proceedings of the 27th USENIX Security Symposium. See also
technical report Foreshadow-NG. USENIX Association, Aug. 2018.

[216] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. “LVI: Hijacking
Transient Execution through Microarchitectural Load Value Injection”. In: 41th IEEE
Symposium on Security and Privacy (S&P’20). 2020.

[217] Miroslav N. Velev and Randal E. Bryant. “Formal verification of superscalar micro-
processors with multicycle functional units, exceptions, and branch prediction”. In:
Proceedings 37th Design Automation Conference (2000), pp. 112–117.

[218] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. “Efficient
software-based fault isolation”. In: Proc. of Symposium on Operating Systems Prin-
ciples (SOSP). 1993.

https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/
https://www.zdnet.com/article/linus-torvalds-after-big-linux-performance-hit-spectre-v2-patch-needs-curbs/
https://support.google.com/faqs/answer/7625886
http://github.com/uclid-org/uclid/
http://github.com/uclid-org/uclid/

BIBLIOGRAPHY 144

[219] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A. Gunter. “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX”. In: Proc. of ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2017.

[220] Andrew Waterman and Krste Asanović. The RISC-V Instruction Set Manual Volume
II: Privileged Architecture. https : / / github . com / riscv / riscv - isa - manual /
releases/download/Priv-v1.12/riscv-privileged-20211203.pdf. Dec. 2021.

[221] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and Krste
Asanović. The RISC-V Instruction Set Manual Volume II: Privileged Architecture
Version 1.9. Tech. rep. UCB/EECS-2016-129. EECS Department, University of Cal-
ifornia, Berkeley, July 2016. url: http : / / www2 . eecs . berkeley . edu / Pubs /

TechRpts/2016/EECS-2016-129.html.

[222] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The
RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Tech. rep.
UCB/EECS-2014-54. EECS Department, University of California, Berkeley, May
2014. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
54.html.

[223] Ofir Weisse, Valeria Bertacco, and Todd Austin. “Regaining lost cycles with HotCalls:
A fast interface for SGX secure enclaves”. In: ISCA. 2017.

[224] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
“Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient Out-
of-Order Execution”. In: Technical report (2018). See also USENIX Security paper
Foreshadow.

[225] Johannes Wikner and Kaveh Razavi. “RETBLEED: Arbitrary Speculative Code Ex-
ecution with Return Instructions”. In: 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp. 3825–3842.

[226] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems”. In: Proc. of IEEE
Symposium on Security and Privacy (S&P). 2015.

[227] Weikun Yang, Yakir Vizel, Pramod Subramanyan, Aarti Gupta, and Sharad Malik.
“Lazy Self-composition for Security Verification: 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part II”. In: July 2018, pp. 136–156.

[228] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack”. In: Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014. 2014, pp. 719–732.

https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

BIBLIOGRAPHY 145

[229] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Or-
mandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. “Native Client: a sand-
box for portable, untrusted x86 native code”. In: Communications of the ACM 53.1
(2010), pp. 91–99.

[230] Tse-Yu Yeh and Yale N. Patt. “Two-level Adaptive Training Branch Prediction”. In:
Proc. of the 24th Annual International Symposium on Microarchitecture. MICRO 24.
1991, pp. 51–61.

[231] Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and Prateek Saxena. “Elasticlave:
An Efficient Memory Model for Enclaves”. In: Proc. of USENIX Security Symposium.
2022.

[232] Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and Jan Xie. “ShadowEth: Pri-
vate Smart Contract on Public Blockchain”. In: Journal of Computer Science and
Technology 33 (May 2018), pp. 542–556.

[233] Steve Zdancewic and Andrew C Myers. “Observational Determinism for Concurrent
Program Security”. In: Proc. of the 16th IEEE Computer Security Foundations Work-
shop. IEEE. 2003, pp. 29–43.

[234] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. “Town Crier:
An Authenticated Data Feed for Smart Contracts”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16. Vienna,
Austria: Association for Computing Machinery, 2016, pp. 270–282.

[235] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. “On-Demand-Fork: A Microsec-
ond Fork for Memory-Intensive and Latency-Sensitive Applications”. In: Proc. of the
Sixteenth European Conference on Computer Systems (EuroSys). 2021.

[236] Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolfgang Grieskamp, Sam Blacks-
hear, Junkil Park, Yoni Zohar, Clark Barrett, and David L. Dill. “The Move Prover”.
In: Computer Aided Verification: 32nd International Conference, CAV 2020, Los
Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I. Los Angeles, CA, USA:
Springer-Verlag, 2020, pp. 137–150.

	Contents
	List of Figures
	List of Tables
	Introduction
	The Rise of Insecure Hardware Platforms
	Secure Information Flow
	Challenges
	Thesis Statement
	Acknowledgements

	Hardware Platforms
	Speculative Microprocessors
	Trusted Execution Environments
	Security for Hardware Platforms

	Secure Information Flow with Formal Methods
	Secure Information Flow
	Formal Methods for Heterogeneous Systems
	Formal Modeling, Specification, and Verification with Uclid5

	Trace Property-Dependent Observational Determinism
	Introduction
	Overview
	Specification using Trace Property-Dependent Observational Determinism
	Formal Modeling of Speculation
	Formulating Secure Speculation
	Verification Approach
	Case Studies
	Related Work
	Summary

	Compositional Proofs of Information Flow Properties for Hardware-Software Platforms
	Introduction
	Motivation
	Security Model
	The SymboTaint Proof System
	IFSMs: Operational Encoding of SymboTaint
	Verifying Speculative Platforms with IFSMs
	Case Studies
	Discussion
	Related Work
	Summary

	Designing Secure and Efficient Trusted Execution Environments
	Overview
	Motivation and Background
	Design Decisions: Memory Sharing in Enclave Platforms
	Formal Model of An Enclave Platform with Memory Sharing
	Formal Guarantee of Secure Remote Execution
	Implementation in RISC-V Keystone
	Evaluation
	Discussion
	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

