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ABSTRACT OF THE DISSERTATION 

A Statistical Model for the Uncertainty Analysis of Satellite Precipitation Products 

by 

Sepideh Sarachi 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2015 

 

Earth observing satellites provide a method to measure precipitation from space with good 

spatial and temporal coverage. These estimates have a high degree of uncertainty associated with 

them. Understanding and quantifying the uncertainty of the satellite estimates can be very 

beneficial when using these precipitation products in hydrological applications given that these 

uncertainties will propagate throughout the hydrologic cycle. 

In this study a generalized uncertainty distribution is introduced to model the probability 

distribution of the Stage IV Multi-sensor Precipitation Estimates (MPE) as the reference 

measurement given the PERSIANN satellite-based precipitation product (Precipitation 

estimation from remotely sensed information using Artificial Neural Network). The model is 

calibrated for an area of 5° × 5°, over the southeastern United States for both summer and winter 

seasons separately from 2004-2009. The uncertainty model parameters are further extended 

across various rainfall rates and spatial and temporal resolutions. 

The method is evaluated for the period of 2006-2008 over the Illinois River watershed south of 

Siloam Springs, Arkansas. Results show that, using the proposed method, the estimation of the 

precipitation is improved in terms of percent bias and root mean squared error. 



xviii 
 

To further study the hydrological response of the satellite precipitation uncertainty; this 

uncertainty model is propagated as an input into the SAC-SMA (Sacramento Soil Moisture 

Accounting) hydrology model over the same case study watershed. The results shows that the 

proposed uncertainty model improves the simulated streamflow from the PERSIANN satellite 

precipitation product with regards to its, percent bias by more than 90 % and the root mean 

squared error by more than 30 %.  

The uncertainty model is also applied to for the new GPM satellite precipitation product using 

the IMERG algorithm and results shows improvement in estimating the precipitation. 
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Chapter 1: Introduction 

 

1.1 Satellite-precipitation products and their application 

Precipitation is one of the most important components of the water budget and plays a key role in 

connecting water and energy cycles. Too much or too little precipitation can lead to potential 

disasters, such as floods and droughts, and result in thousands of dollars of damage to people’s 

lives and properties. We can observe this in recent events around the world, e.g., the California 

drought or the Hagupit super-typhoon over the Philippines. Therefore, the task of providing 

reliable measurements of precipitation is crucial for a safer environment. 

For precipitation measurement, rainfall gauges are the most accurate instruments at point scale, 

but the lack of a dense network of gauges, especially in remote areas, is a challenge. Radars 

provide more coverage from the gauges, but radars cannot detect the precipitation that occurs 

over the mountainous regions or oceans. 

Recently, satellite instruments have become feasible for precipitation estimation at fine spatial 

and temporal scales. Unlike gauges and radars, satellite measurements can overcome limitations 

from ground sensors in terms of coverage and operation.  

A number of high-resolution, satellite-based precipitation estimates (HRSPE) are available in 

near real-time (e.g., Hsu et al., 1997; Huffman et al., 2001; Sorooshian et al., 2000; Scofield et 

al., 2003; Xie et al., 2003; Joyce et al., 2004; Okotoma et al., 2005; Huffman et al., 2007). These 

satellite-precipitation estimates are used by hydrologists, meteorologists, and decision- makers to 

study floods, droughts, and climate change and to quantify how much water is available for 

communities to use. 
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1.2 Scientific study and problem statement 

There is uncertainty associated with satellite-precipitation estimates that should be evaluated. 

Because satellites do not provide full continuous images at all times, the averaging of limited 

image samples in time also contributes to the error of the final precipitation product. In addition, 

the uncertainty of data is dependent on the spatial scale and time accumulation of the estimates. 

In general, the products in finer spatial and temporal scales are associated with higher 

uncertainty than products in coarser spatial and temporal scales (Steiner, 1996). There is also 

uncertainty associated with the satellite-precipitation retrieval algorithm and its calibration. 

These precipitation products should be studied to obtain a better understanding of how these 

uncertainties can affect the final product. 

A number of studies related to precipitation error analysis were proposed (i.e., Krajewski, 2000; 

Steiner, 1996 and 1999; Li et al., 1998; Huffman, 1997; Hossain and Anagnostou, 2004; Hong, 

2006 and 2009; Villarini, 2007; Gebregiorgis, 2011; Aghakouchak, 2011 and 2012; Maggioni, 

2014). ). An extensive discussion of the previous studies is provided in the next section 

(literature review).     

Further understanding of the uncertainty of satellite estimates is important to hydrologists and 

operational meteorologists who use satellite-precipitation products for their water-resource 

management, as well as for applications such as rainfall-runoff modeling for their river-flow 

forecasting. 

 

https://scholar.google.com/citations?user=EArs3LsAAAAJ&hl=en&oi=sra
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1.3 Literature review 

Assuming that the true measurement (RAT, rainfall for temporal accumulation of T and spatial 

resolution of A) is not available, a reference data (   
   

) is frequently used for the evaluation of 

model- or satellite-based estimates. A reference error can be assigned as: 

          
   

                 
   

                 (1.1) 

in which    
   

 is the available reference, such as radar data, and      is the satellite estimate. ref
 

is the error of the reference, and  is the error of the product that is not known because the true 

value is never available. The variance of estimate error (to the reference data) can be presented 

as: 

             
   

                           
   

                            
   

 

                                                                                                             (1.2) 

If the two (reference data and satellite estimates) are uncorrelated, the covariance of their errors 

is zero.  Eq. (1.2) can be presented as: 

                                                             
   

                                                     (1.3) 

Ciach and Krajewski (1999) and Anagnostou et al. (1999) attempted to separate the error into 

algorithm error and sampling error. Sampling error is the error associated with the infrequent 

passing of satellites over a region that causes the product to be a temporal average that is slightly 

different from its true value. Laughlin (1981) showed that the sampling error is a mean-squared 

error of the mean value of the precipitation: 

                                  

                                                                     
                                                                               (1.4) 

where RA(t) is the variance of the area-averaged rainfall rate. Laughlin studied the GATE (Global 

atmospheric research program Atlantic Tropical Experiment) data set over the Atlantic Ocean for 
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the summer of 1974. The sampling errors over the ocean, where there is the least amount of in-

situ observation (no gauges and radar data are available) as a reference for satellite estimates, 

were estimated. Similar case studies have also been done by other researchers (Seed and Austin, 

1990; Somen et al., 1995; Somen et al., 1996; Oki and Sumi 1994; Weng et al., 1994).  

Bell and Kundu (2000) showed that the sampling error is a function of the mean monthly 

precipitation and also depends on the sampling space and the number of satellite visits over one 

month. They proposed the following equation to compute the sampling error: 

 
     

 
      

 

 

 

 

 

 
 

 

    where             
  

   
  (1.5) 

where samp is the sampling error, R is the mean rainfall rate over area A, r is the mean rainfall 

rate during an event over area a, S is the number of satellite visits, is the correlation time of the 

rainfall events, and T is the length of the sample time . Additionally, there are some studies, such 

as Kunsch (1989), that used moving-block bootstrapping, which is a non-parametric method 

based on the sampling experiment. Steiner and Bell (2003) came up with the same relationship as 

in Bell and Kundu (2000) for the data over the Rocky Mountains by using the Laughlin (1981) 

formula and the resampling method. Steiner and Bell concluded that this uncertainty is a 

statistical variable and should be defined in probabilistic terms. 

Gebremichael and Krajewski (2004) compared parametric and non-parametric error estimation. 

They used Laughlin’s (1981) formula for the parametric approach and moving-block 

bootstrapping methods for the nonparametric approach. Gebremichael and Krajewski (2005) 

further defined satellite-precipitation sampling error as asymmetric distribution, such as shifted 

Gamma and shifted Weibull. They found out that, for large sampling intervals such as 12 or 24 

hours, the conditional distribution of error to rainfall rate is shifted Weibull; for smaller sampling 

intervals, such as 3 or 6 hour, the logistic distribution works better. 
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Steiner et al. (2003) proposed a relationship between radar rainfall estimates and several other 

factors; a similar relationship was used by Hong et al. (2006) to quantify the variance of the 

measurement error as a function of area coverage, time integration, sampling frequency, and 

space-time average rainfall rate. Several studies on the impact of precipitation uncertainty on 

flood prediction have been performed (Hossain and Anagnostou, 2004). In those studies, the 

effect of passive microwave and infrared-based satellite-product error on flood prediction using a 

probabilistic error model was demonstrated. In AghaKouchak et al. (2012), satellite-precipitation 

error is divided into systematic and random error, and their correlation to space and time 

accumulation is presented.  

There is significant interest in the evaluation of available satellite-precipitation products. In a 

study by Maggioni et al. (2014), the joint model of satellite vs. reference precipitation is divided 

into four regions of hit (where both reference and satellite show precipitation), miss (where 

reference shows precipitation but satellite shows zero), false alarm (where satellite shows rainfall 

but reference shows zero), and correct no-precipitation (where both show zero). They modeled 

hit and missed precipitation using a Gamma function and used a constant probability for correct- 

zero precipitation and false alarms. 

In most of the previous studies, the errors associated with satellite estimates are assumed to be 

Gaussian, where error variance is estimated (e.g., Ciach and Krajewski, 1999; Anagnostou et al., 

1999). More recent studies (e.g., Gebremichael and Krajewski, 2005) have demonstrated that 

error distribution is significantly different from Gaussian distribution. Those studies showed that 

error distribution is relevant to the spatial and temporal resolution of estimates, and shifted 

Gamma, shifted Weibull, and shifted lognormal, logistic, and normal distribution are fitted to the 

error of estimate at various spatial and temporal scales. 
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In this study, a generalized distribution function is introduced to fit the probability distribution of 

reference data given the satellite-based estimates. The proposed model consists of four different 

parts: hit precipitation, false alarm, missed precipitation, and hit-zero precipitation. It is assumed 

that the different parameters of the precipitation product uncertainty model can vary with rainfall 

rate and product resolution in space and time, which are further fitted by simple mathematical 

functions.  

 

1.4 Research motivation 

Access to a global-precipitation product with high spatial and temporal resolution is a necessity 

for climate and hydrological studies, which are now made possible using the satellite- 

precipitation products. To be able to rely on these precipitation estimates, the uncertainty 

associated with them should be quantified and used in water-resources management.  The answer 

to this need is a generalized-uncertainty model that is able to quantify different elements of the 

uncertainty with a good level of confidence. As a general approach, the model should be able to 

perform for the satellite-precipitation products at different spatial and temporal scales.  

 

1.5 Objective of the study 

In this study, a generalized-distribution function is introduced to fit the probability distribution of 

reference data given satellite-based estimates. This probability distribution will quantify the 

uncertainty of satellite-precipitation products for a given rainfall rate. This probability 

distribution is divided into 4 regions of hit precipitation, false alarm, missed precipitation, and 

hit-zero precipitation. For the hit precipitation, where both satellite and radar show non-zero 

precipitation, the proposed function is in the shape of a generalized normal distribution type II. 



 

7 
 

This distribution is flexible enough to provide non-symmetric probability functions considering 

bias and variance, as well as higher-order moments of uncertainty (skewness) beyond the first 

(mean) and the 2
nd

 (standard variation) moments, because the precipitation data are skewed 

towards smaller values and are not normally distributed.  

The parameters of this generalized-statistical distribution are estimated as functions of spatial 

and temporal resolution and rainfall rate, which enables the user to model asymmetrical 

uncertainty distributions without having to choose from different distribution forms for different 

product resolutions. It is assumed that the distribution parameters of the precipitation-product 

uncertainty can vary through rainfall rate and product resolution in space and time. The 

generation of the parameter space is achieved by estimating the distribution parameters by 

aggregating the product at various spatial and temporal scales. For instance, the chosen data 

product (e.g., PERSIANN estimates) is processed from 0.25° and 3-hourly resolutions to coarser 

spatial resolutions, such as 0.5°, 0.75°, and 1°, and temporal resolutions, such as 3-hourly, 6- 

hourly, 12-hourly, and daily resolutions. 

For the false alarm percentage, where the satellite shows precipitation but radar shows zero, the 

proposed model is in the form of an exponential equation. Similar to the above, the parameters 

are estimated at different resolutions. 

For missed precipitation, where the satellite shows zero precipitation but radar shows a value, the 

percentage is calculated at different resolutions, and the uncertainty distribution is modeled using 

a fitted Gamma distribution to the reference data. 

All of the models are combined for a cohesive distribution of satellite and reference 

precipitation.  
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1.6 Scope of the research 

In Chapter 2, the general form of the uncertainty model is presented first and then each part of 

the uncertainty is introduced. Furthermore, the uncertainty modeling in different spatio-temporal 

resolutions is explored, and the parameter space is introduced. In Chapter 3, the data used and 

the study area are described. Chapter 4 shows the results of the model calibration.  In Chapter 5, 

the results of precipitation-level uncertainty analysis are presented over the validation region. 

With regard to the application, Chapter 6 presents a case study for uncertainty analysis of 

satellite precipitation products. Chapter 7 introduces the details about the hydrologic modeling 

and the propagation of precipitation uncertainty in streamflow simulation. The model is further 

calibrated and evaluated over the new GPM precipitation product using the IMERG algorithm in 

chapter 8. Conclusions and recommendations for future work are given in Chapter 9.  

 

 

 

 

 

 

 

 

 

 

 

 



 

9 
 

Chapter 2: Satellite-Precipitation Uncertainty Model  

 

The uncertainty model presented in this study is a conditional distribution of radar data as the 

reference given satellite precipitation. The parameters of this model should be defined and 

calibrated. In this chapter, the general form of the uncertainty model is defined, and each 

component is then described separately. 

 

2.1 Uncertainty model 

The scatter plot of the satellite precipitation and radar data is divided into 4 different components 

based on the ability of the satellite to capture the rainfall event and its magnitude (Figure 2.1).  

Before processing the data, a threshold is considered, and any precipitation smaller than that 

threshold is assigned to zero. The threshold should be a small value close to zero (Liu et. al. , 

2015). In this study, the value of 1 mm/day is used as the threshold for the precipitation data. The 

threshold would remove very small precipitation values that are generated as the noise by the 

precipitation estimation algorithm. It also removes the precipitation data that are smaller than the 

accuracy of the remote sensing device. In this study, we show the satellite precipitation with Rsat, 

the reference precipitation from radar with Rref and the threshold with thr. 
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Fig. 2.1. Uncertainty decomposition of satellite and reference precipitation into 4 regions: 1: hit 

precipitation, 2: false alarm, 3: missed precipitation, and 4: hit-zero precipitation. 

 

The plane of the satellite-precipitation product and the reference precipitation is divided into 4 

parts. The first region ([1]), called hit precipitation, is where both satellite and reference show 

non-zero precipitation; this part also indicates that the satellite correctly detected the 

precipitation event. This biased value should be evaluated based on its corresponding reference 

precipitation.  

The second region ([2]) of the product is false alarm, when the satellite shows precipitation, but 

the reference shows zero rainfall. The third region ([3]) shows missed precipitation, when 
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reference shows a precipitation event, but the satellite fails to detect it. The last region ([4]) is 

called hit or correct-zero precipitation, where both reference and satellite show zero 

precipitation. 

In order to generate a full model to quantify precipitation uncertainty, one needs to consider 

these different situations.  

When dealing with a time series of satellite precipitation, there are time steps in which the 

satellite shows precipitation, which might be hit precipitation or false alarm, and there are time 

steps in which the satellite shows zero precipitation, which can be either missed precipitation or 

correct-zero precipitation. 

To assign probabilities to these different situations, 1 is chosen as rainfall and 0 is chosen as no 

rainfall. Here P10  is assigned to the conditional probability of reference showing no rainfall given 

satellite shows rainfall (false alarm) and P11 is the conditional probability of reference showing 

rainfall given satellite also shows rainfall (hit precipitation). By the law of total probability, P10 + 

P11 =1.  

In addition, if P01  is assigned to the conditional probability of reference showing rainfall given 

the satellite shows no rainfall (missed precipitation) and P00 is the conditional probability of 

reference showing no rainfall given satellite also detects no rainfall (hit zero-precipitation), then 

by the law of total probability, P01 + P00 =1.  

To model the complete uncertainty, each of these conditional probabilities must be defined and 

the densities within each region must be modeled. 
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2.2 Hit precipitation 

The first part of the uncertainty addressed in this section is hit precipitation, which is the 

probability of reference data given the satellite estimate. A number of different probability 

distributions can be used as uncertainty model to model the conditional probability of the hit 

precipitation given the satellite precipitation is larger than the threshold. The most commonly 

used one is Gaussian distribution, which is a symmetric function with two parameters (mean and 

standard deviation); its skewness and kurtosis are zero. However, precipitation data are not 

shaped symmetrically (Gebremichael and Krajewski, 2004); rather, they are skewed with a larger 

occurrence of smaller rainfall rates. There are different distributions that have skewness other 

than zero, e.g., Gamma distribution, log-normal distribution (which has been shown to be 

unrealistic at high rainfall rates; Gebremichael and Krajewski, 2005), generalized-normal 

distribution (GND), etc. There are certain characteristics that make the generalized-normal 

distribution superior to the others. The GND can generate unimodal distributions, and its 

flexibility makes it possible to model the sharper peaks over the smaller values of rainfall rates 

when the data are highly skewed (Figure 2.2). The GND can also model data with smaller peaks 

at larger temporal and spatial accumulations. Furthermore, the distribution is bounded from the 

left when the shape parameter is negative, which is the case for precipitation data because they 

are skewed to the left. The GND can be modeled as a shifted distribution because it contains a 

shift parameter. This is not possible in two-parameter distributions, e.g., Gamma or Weibull. If 

the satellite precipitation is defined at      the general density function of the GND model is as 

follows: 

                          
    

        
                                (2.1) 
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with   (positive and real) as scale,   (real) as shape, and   (real) as the location parameters of the 

GND model and      as the standard normal probability-distribution function. 

The different moments of the distribution can be defined in terms of its parameters, as follows: 
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Fig. 2.2. General form of generalized-normal distribution (GND). 

 

If at time step t, Rs is the satellite precipitation estimate and thr is the threshold for zero 

precipitation, GND (                   ) shows the distribution of the reference 

precipitation given the satellite precipitation estimate equals R. 

 

2.3 False alarm 

One of the largest uncertainties of satellite-precipitation products comes in the form of false 

alarm, where the satellite detects false precipitation. False alarm contributes to a large amount of 

precipitation overestimation. For example, false alarm is detected in IR-based satellite 

precipitation products where the estimation is based on the cloud-top temperature. During the 
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winter months, when high, non-precipitating cirrus clouds are formed; the satellite often detects 

false precipitation. Many different studies have investigated false alarm (e.g., AghaKouchak et 

al., 2011; Tian et al., 2009). 

To reduce this false detection, Nasrollahi (2015) attempted to improve the PERSIANN algorithm 

by adding better classification of clouds, which is made possible using cloud profiles when 

available. To model this component of uncertainty, Maggioni et al. (2014) used an exponential 

model to quantify the percentage of false alarm. An exponential decay model is proven suitable 

(Hossain and Anagoustou, 2006) for the false alarm probability. In this work, false alarm 

probability is modeled using an exponential function of the satellite rain rate. Here, we define the 

false alarm ratio (P10 = P (Rref < thr | Rsat > thr)) as: 

                                                                                                               (2.6) 

In equation (2.6), r and b are the parameters of the exponential decay function. If the probability 

of false alarm (where reference detects no precipitation given the satellite shows precipitation 

detects precipitation larger than the threshold) is called P10, and the probability of hit 

precipitation (where reference detects precipitation given the satellite shows precipitation) is 

called P11, and we can conclude that:  

                                                                                                                                                    (2.7)     

 In the case of satellite detecting precipitation, the uncertainty distribution of the reference given 

the satellite precipitation is in the form of the mixture model: 

                                                                               (2.8) 

        is the CDF of the generalized normal distribution in the form of : 

.                                                                                                           (2.9) 
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Where Φ is the standard normal CDF and y is as described in Eq. (2.2). 

In this work, the expected value of this equation is used as a representative of the uncertainty 

range. This expected value is calculated as in Eq. (2.10): 

                                                                                

                                                                                                                    (2.10)           

      is the expected value of the generalized normal distribution.  

To make a more accurate model, the temporal correlation of satellite-precipitation products to 

model the probability of false alarm is investigated in this study. To do so, we try to determine if 

the probability of false alarm at a specific time step has any relationship to the precipitation 

estimate at the previous time step.  

Two different states are considered in this study: (1) when the satellite is showing non-zero 

precipitation at time t and t- t (previous time step), and (2) when the satellite is showing non-

zero precipitation at time t but zero precipitation at time t- t. It is expected that, when t is 

increasing, the effect of precipitation at t- t becomes less distinct, especially when there is the 

condition for short-term precipitation. 

 

2.4 Missed precipitation 

One of the largest uncertainties of satellite-precipitation products comes in the form of false 

alarm, where the satellite detects false precipitation. False alarm contributes to a large amount of 

precipitation overestimation. For example, false alarm is detected in IR-based satellite 

precipitation products where the estimation is based on the cloud-top temperature. During the 

winter months, when high, non-precipitating cirrus clouds are formed; the satellite often detects 
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false precipitation. Many different studies have investigated false alarm (e.g., AghaKouchak et 

al., 2011; Tian et al., 2009). 

To reduce this false detection, Nasrollahi (2015) attempted to improve the PERSIANN algorithm 

by adding better classification of clouds, which is made possible using cloud profiles when 

available. To model this component of uncertainty, Maggioni et al. (2014) used an exponential 

model to quantify the percentage of false alarm. An exponential decay model is proven to be 

suitable (Hossain and Anagoustou, 2006) for the false alarm probability. In this work, false alarm 

probability is modeled using an exponential function of the satellite rain rate. We define the false 

alarm ratio (P10 = P (Rref < thr | Rsat > thr)) as: 

                                                                                                               (2.6) 

In equation (2.6), r and b are the parameters of the exponential decay function. If the probability 

of false alarm (where reference detects no precipitation given the satellite shows precipitation 

detects precipitation larger than the threshold) is called P10, and the probability of hit 

precipitation (where reference detects precipitation given the satellite shows precipitation) is 

called P11, and we can conclude that:  

                                                                                                                                                    (2.7)     

 In the case of satellite detecting precipitation, the uncertainty distribution of the reference given 

the satellite precipitation is in the form of the mixture model: 

                                                                               (2.8) 

        is the CDF of the generalized normal distribution in the form of : 

.                                                                                                           (2.9) 
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Where Φ is the standard normal CDF and y is as described in Eq. (2.2). 

In this work, the expected value of this equation is used as a representative of the uncertainty 

range. This expected value is calculated as in Eq. (2.10): 

                                                                                

                                                                                                                    (2.10)           

      is the expected value of the generalized normal distribution.  

To make a more accurate model, the temporal correlation of satellite-precipitation products to 

model the probability of false alarm is investigated in this study. To do so, we try to determine if 

the probability of false alarm at a specific time step has any relationship to the precipitation 

estimate at the previous time step.  

Two different states are considered in this study: (1) when the satellite is showing non-zero 

precipitation at time t and t- t (previous time step), and (2) when the satellite is showing non-

zero precipitation at time t but zero precipitation at time t- t. It is expected that, when t is 

increasing, the effect of precipitation at t- t becomes less distinct, especially when there is the 

condition for short-term precipitation. 

 

2.6 The complete uncertainty model 

For a complete model, all of the different components must be combined. Given a time series of 

satellite precipitation, if the satellite detects a rainfall rate larger than the threshold at each time 

step, there is the possibility of hit precipitation or false alarm at that time step. The uncertainty of 

that point is in the form of Eq. (2.8). If the satellite detects zero precipitation, at that time step, 

there exists the possibility of missed precipitation or hit-zero precipitation. From Eq. (2.15), the 

uncertainty distribution of that detection can be obtained.  
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2.7 Parameter space at various spatiotemporal resolutions 

After introducing the general form of the model, the goal is to calibrate the model so that it 

provides the ability to capture the uncertainty of satellite-precipitation products at different 

spatial and temporal resolutions. The resolution of the satellite-precipitation data directly affects 

their uncertainty. When data are provided in high resolution, there is larger uncertainty 

associated with the estimates, and their distribution is highly skewed. On the other hand, when 

the observations are estimated at a coarser resolution, the associated uncertainties are less 

skewed, and their distribution is closer to a random process represented by a normal distribution. 

To study this uncertainty at different resolutions, both the satellite and the reference data are 

aggregated into different spatial and temporal resolutions, and the uncertainty model is calibrated 

for each of them separately. The result is used to generate a parameter space for the parameters 

of the uncertainty distribution at each of those different resolutions.   

The ultimate goal is that, at any spatial and temporal resolution, the parameters of the uncertainty 

model can be quantified based on those resolutions, and the uncertainty model is generated. 

The temporal resolutions used in this study are 3-hourly, 6-hourly, 12-hourly, and daily, and the 

spatial resolutions are 0.25°, 0.5°, 0.75°, and 1°. The model is calibrated for 16 different pairs of 

temporal and spatial resolutions. For cases where the desired resolution falls between these 

resolutions, a linear interpolation to find the model parameters is used. It is recommended that, 

for all of the other resolutions, extrapolation of the parameters be done with care. 
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Chapter 3: Study Area and Data 

 

Information on the study area and the data products that are used in this study are provided in 

this chapter. First, the satellite-precipitation product is introduced, followed by describing the 

radar product and the study domain. 

 

3.1 Satellite-precipitation data 

In this study, PERSIANN (Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks) is used at the satellite precipitation estimation. PERSIANN uses an 

artificial neural-network algorithm to estimate the rainfall rate from the infrared images of the 

Geostationary Environmental Satellite (GOES) (Hsu et al., 1997, Figure 3.1). The reliable but 

less-frequent instantaneous precipitation rates from microwaves sensors are used in an algorithm 

that estimates rainfall rates from the IR GEO satellite images. The input to this artificial-neural 

network is the set of features that are extracted from the long-wave IR images (10.2-11.2 μm). 

The process to obtain the rainfall rate is as follows: (1) calculate the mean and variance of the 

brightness temperature of the pixels of the IR image as the features of the image, (2) A neural 

network–based classification scheme (self-organizing feature map algorithm) is used to classify 

these features into different groups associated with different cloud surface characteristics and (3) 

Using a linear multivariate function, those classes are related to the surface rainfall rate using the 

available rainfall. The parameters of this neural network are updated whenever passive 

microwave-based rainfall is available. These data are produced in 0.25° resolution every 30 

minutes and are then integrated to different spatial and temporal resolutions. The PERSIANN 

algorithm is running in two modes. The first one is rainfall estimation using only the GEO 
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infrared images every 30 minutes, and the second mode is the updated version using the PMW 

instantaneous rainfall rates whenever they are available. The IR images are from GOES-8, 

GOES-10, GMS-5, and MeteoSat-6&7, and the PMW rainfall is from the information provided 

by TRMM, NOAA-15, -16, -17, DMSP F-13, F-14, and F-15. There are multiple factors upon 

which the accuracy of the PERSIANN product is dependent. Among those factors are the error 

and frequency of the PMW data to update, the error of the input and output functions, or the 

feature detection and classification algorithm.  

 

 

Fig. 3.1. Rainfall estimation from the PERSIANN system using GEO and LEO 

satellite information (Sorooshian et. al, 2000). 
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3.2 Reference-precipitation data 

The Next-Generation radar (NEXRAD), a network of 178 Doppler weather radars (WRS-88D) 

operated by the National Weather Service (NWS) across the United States, measures 

precipitation at a high-spatial resolution. To measure precipitation, a relationship between 

reflectivity and the rainfall rate (Z-R relationship) is used, which is calibrated differently for 

different types of precipitation (Rinehart, 2004). To create the NEXRAD stage-IV data, the 

gauge observations and their conditioning are also added to the data using the Multisensor 

Precipitation Estimation (MPE), where the values of the rainfall gauges are taken from the 

weather service stations in the NWS Hydrometeorological Automated Data System network. 

These data are in a grid format of 4-km resolution pixels, and they are most accurate after 2002 

(Westcott et al., 2008).  These radar-rainfall data are adjusted for various biases using rainfall-

gauge measurements (Lin and Mitchell, 2005) and can be considered as the best radar-rainfall 

data available (AghaKouchak et al., 2010; AghaKouchak et al., 2010 c,d), but these data also 

have their own uncertainty (Smalley et al., 2014). However, in this study, the product is 

considered as the reference and thus is assumed perfect. 

The radar data are re-gridded into 0.25° and averaged into 3-hourly resolutions to be comparable 

to the PERSIANN data. 

 

3.3 Study area 

The study area to calibrate the precipitation uncertainty model is a 5° ×  5° region over the 

southeast United States bounded between 30°N-35°N and 85°W-90°W, as shown in Figure 3.2. 

Data include the months of June, July, and August for the summer season and December, 

January, and February for the winter season for a 5-year period from 2005-2009. 
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Both satellite and radar data are available in binary format and are converted to text format. All 

of the data from both satellite and radar that are smaller than the threshold of 1 mm/day are 

assigned to zero rainfall pixels, which construct the false alarm, missed precipitation, and hit 

zero precipitation parts.  

Both data sets are averaged temporally into 3-, 6-, 12-, and 24-hourly resolutions and spatially 

into 0.25° ×  0.25°, 0.5° ×  0.5°, 0.75° ×  0.75°, and 1° ×  1° resolutions to construct the parameter 

space. 

 

 

Fig. 3.2. Model-calibration domain (red box) and DMIP2 study watershed’s location (red area). 
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3.4 Seasonality of the uncertainty 

The study region has a humid subtropical climate, and precipitation patterns vary greatly 

between the summer and winter seasons. During the summer, precipitation is almost entirely 

convective and caused by mesoscale complexes and thunderstorms. Wintertime precipitation is 

mostly stratiform and tied to synoptic-scale systems. Days with measurable snowfall are very 

rare in the region, but the warm moist air coming from the Gulf of Mexico during the winter 

could cause frontal freezing rainfall, resulting in ice cover, which usually lasts for several days. 

These different precipitation patterns result in the difference in the satellite-precipitation data for 

the two seasons. 

Investigating the precipitation products shows that these data are statistically different in the 

winter vs. the summer (Anagnostou et al., 2010). During the summer, data are more scattered, 

and satellite images show a wider range of values, whereas in the winter, satellite images show a 

narrower range of change in rainfall values, as seen in Figure 3.3. 

The seasonal differences are also apparent in the three first moments of the data (expected value, 

standard deviation, and skewness). 
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Fig. 3.3. Seasonal differences in distribution of satellite-precipitation data with respect to the 

corresponding radar data for summer (left panel) and winter (right panel) from the calibration 

domain with temporal resolution of 6-hourly and spatial resolution of 0.25°. 

From the graphs of the mean of the data (Figure 3.4, left column), we can see that, for winter, the 

mean is closer to a 1-1 linear function and, for summer, it looks like a power function, and the 

satellite data are overestimating the amount of precipitation. This shows that treating summer 

and winter data separately would result in a more accurate estimation of uncertainty. 
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FIG. 3.4. Comparison of the three moments of radar data vs. the mean satellite rainfall rate 

temporal resolution of 6 hourly and spatial resolution of 0.25°: The scatter plot in blue is satellite 

rainfall rate (x-axis) vs. radar rain rate (y-axis) for June, July, and August 2005-2009 in the upper 

panel and December, January, and February for 2005-2009 in the lower panel. The dotted lines 

in red from the left column to the right are, consecutively, the mean (mm/6hour), standard 

deviation (mm/6hour), and skewness (no unit) of radar rainfall rate (y-axis) vs. the mean of the 

satellite precipitation bins (x-axis).  
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Chapter 4: Calibration of the Model 

 

Each part of the uncertainty model should be calibrated separately. For calibration, the data are 

grouped in 16 pairs of spatial and temporal resolutions, and the results of the parameter 

calibrations are presented in the form of a function of the resolutions. 

We begin by calibrating the parameters of the GND model for modeling the reference rainfall 

given satellite is larger than the threshold (hit precipitation, region [1] in figure 2.1) and find its 

parameters as a function of rainfall rate and spatial and temporal resolution. The results are 

presented in the form of a parameter space. Then, moving on to false alarm, the probability of 

false alarm as a function of rainfall rate for different resolutions is calibrated. Finally, for missed 

precipitation, both the probability and the rainfall rate in the form of a Gamma function are 

calibrated. These processes are performed on both summer and winter data separately. 

 

4.1 Calibration of hit precipitation 

4.1.1 Fitting the GND model to the data at a specific spatial and temporal resolution 

After choosing a general-distribution model to fit to the data, the maximum-likelihood method is 

often the logical choice for the estimation of the distribution parameters. However, this may not 

be the case for distributions with a threshold that is a function of the parameters. In that case, the 

likelihood function may have multiple modes or reach an infinite value when the estimated 

parameter values are no longer suitable for data. In this work, the distribution is being fitted to 

the data using least-squares estimates of the cumulative-distribution functions. The idea is that 

the scatterplot of the empirical cumulative distribution function (CDF) of the data and the CDF 

of the fitted distribution fall along the 1:1 line from zero to one. 
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The CDF of the GND is in the form of: 

                                                                                                                        (4.1) 

                                                        
 

 

 
       

      

 
                   

   

 
                                                 

                                    (4.2) 

 where Φ(y) is the standard normal CDF defined as: 

                                                                             
      

   
                                                     (4.3) 

The empirical CDF of the data is in the form of: 

                                                                   
 

 
          

                               (4.4) 

To obtain this fitted distribution, the objective function of the sum of the squared differences 

between those two CDFs must be minimized. To compensate for the variance of the fitted 

functions, higher weights are given to the tails and lower weights to the center. The objective 

function is defined in Eq.(4.5):  

                                                                     
         (4.5) 

                                                             
 

                          
                                       (4.6) 

To find the parameters for each specific pair of spatial and temporal resolutions, the data are 

divided into different bins (with the same bin size) with respect to their corresponding satellite-

estimated rainfall rates, and a distribution is fitted to each bin of data. For example, if the 

resolution of interest is 1° × 1° and 3-hourly accumulated rainfall and assuming the range of 

satellite estimates from 0-50 mm/day, data can be divided into 10 groups with an interval of 5 

mm/day. As an example, we assign all of the satellite precipitation between 5 mm/day-10 

mm/day to bin (2). Then, using Eq. (4.5), a GND is fitted to the radar rainfall corresponding to 
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the satellite precipitation of the bin (2)                 
  

   
        

   

   
  ). Same 

process is applied to the radar rainfall of all the other bins (Figure 4.1). 

 

 

Fig. 4.1. Left panel: Daily satellite estimate vs. daily radar-rainfall observation. Right panel: 

Fitted distribution for a specific spatial and temporal distribution over different bins of satellite-

estimated rainfall rates (schematic view). 

 

4.1.2 Distribution Parameters at Various Spatiotemporal Scales 

The three estimated parameters from each of the bins are modeled as a function of the satellite 

rainfall rate (mean bin value) using simple functions. For the shift and shape parameters, a linear 

function is used; for the scale parameter, a power function is used. 

                                                                                                                                     (4.7) 

                                                                                                                                (4.8) 

                                                                                           
      

                                     (4.9) 
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where       (mm/day) is the mean value of the satellite precipitation at each bin of the specific 

time accumulation Δt (e.g., 3-hr) and spatial resolution Δs (e.g., 0.25° × 0.25° latitude-longitude 

scales). Using these three functions, the parameters of the uncertainty distribution at each rainfall 

rate are calculated, and the distribution can be formed. 

In order to expand this method for different spatial and temporal resolutions, our data must be 

aggregated into those resolutions. The satellite-precipitation product and its corresponding radar 

data are accumulated into lower-temporal resolutions from 3-hourly, 6-hourly, 12-hourly, and 

daily resolutions by obtaining the sum of the data for each interval. For spatial resolutions, the 

average of the rainfall rates is calculated from 0.25° × 0.25°, 0.5° × 0.5°, 0.75° × 0.75°, and 1° × 

1°. For each of the 16 different pairs of spatial and temporal resolutions, the distribution is fitted 

to the bins of the precipitation, and the distribution parameters as a function of rainfall rate are 

modeled as ζ(Δt,Δs), α(Δt,Δs) and κ(Δt,Δs) (as in Eqs. (4.7), (4.8), and (4.9)). The six parameters 

from Eqs. (4.7), (4.8), and (4.9) construct parameter space for different spatial and temporal 

resolutions.  

Previously, it was stated that Eqs. (4.7), (4.8), and (4.9) represent the parameters of the selected 

generalized-probability distribution as a function of rainfall rate and that each equation contains 

two distinct parameters (a total of six), which need to be identified.  Figures 4.2-4.3 represent the 

3-dimensional parameter spaces for each of the six parameters (a, b, c, d, e, and f) as a function 

of spatial and temporal resolutions. For better visualization, each of the six panels is plotted so 

that the front center shows the lowest point in the space and gradually increases towards the far 

back center.  For the sake of clarity, if, for example, one chooses a specific spatial and temporal 

resolution (e.g., 3-hourly and 0.25°), the corresponding six parameters are obtained from each of 

these planes for summer and winter separately. By inserting those parameters into Eqs. (4.7), 
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(4.8), and (4.9), we have the three parameters of the product’s uncertainty distribution as a 

function of the rainfall rate, which now allows for the construction of the uncertainty model. For 

any other desired spatial and temporal resolution, these parameters can be interpolated linearly in 

the 3-dimensional planes. A word of caution: Any extrapolation of the parameters beyond the 

spatial and temporal resolutions used in this study should be evaluated further.   

Figures 4.4-4.5 show the joint probability of the PERSIANN product and the reference data in 16 

different pairs of spatial and temporal resolutions for summer and winter, respectively. These 

plots are generated using the uncertainty model presented in this work. In both plots, the upper-

left corner displays the highest spatial and temporal resolution, and the lower-right corner 

represents the coarsest resolution. The joint probability shows that products with the highest 

resolution have the highest amount of randomness because the distributions are scattered in the 

plane with low probability over almost the entire space. Moving from right to left in the lower 

panels of Figures 4.4-4.5, more concentration on a line in the plane can be observed, which 

shows a higher peak and a more pronounced mode of the distribution and less randomness. 

Additionally, as mentioned before in the literature (Hong et al., 2006), the spread of the 

uncertainty increases in each plot along with the rainfall rate, which shows that standard 

deviation is an increasing function of rainfall rate. 

In the distributions for summer, there is an obvious bias where the peak of the distribution is 

tilted towards the lower radar value, which shows that the satellite overestimates during the 

summer. The distributions are less biased during the winter, when the darker points with higher 

probabilities are closer to a 1:1 line. 
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Fig. 4.2. GND parameter space for summer data. 
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Fig. 4.3. GND parameter space for winter data. 
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Fig. 4.4. Joint probability of radar rainfall and satellite data for summer. 
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Fig. 4.5. Joint probability of radar rainfall and satellite data for winter. 
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4.2 Calibration of false alarm 

To calibrate the model for the false alarm ratio, we refer to that section of the calibration data 

where the satellite precipitation is larger than the threshold (1 mm/day) and its corresponding 

radar precipitation is smaller than the threshold (see region [2] in figure 2.1).  

The false alarm (FA) ratio is the conditional probability of radar showing zero precipitation when 

the satellite shows precipitation amounts larger than the threshold. 

                                                                                                                       (4.10) 

Here, this probability is defined as the number of false alarm samples to the number of samples 

where the satellite detects non-zero precipitation: 

                                                              
                                    

                        
                                    (4.11) 

To better model the false alarm, the data are divided into two different categories: one is when 

the satellite precipitation from the previous time step is also larger than the threshold; the other 

category is when the satellite precipitation from the previous time step is smaller than the 

threshold. 

Condition 1: 

                                              
                                                             

                                           
                         (4.12) 

 

Condition 2: 

                                               
                                                           

                                          
                         (4.13) 

The FA is the highest for smaller-satellite rainfall rates and it decreases quickly. Eq.(2.6) is used 

to model the ratio of the false alarm, which is the conditional probability of the reference 

detecting precipitation smaller than the threshold given the satellite is showing a rain rate larger 
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than the threshold. Similar to the calibration of the GND model, for false alarm ratio we also bin 

the satellite data into different intervals of 5 mm/day. For each bin, we find the FA ratio from the 

Eqs. (4.12) and (4.13) for P( Rrad (t) < thr | Rsat(t) > thr & Rsat(t-1) > thr) and P( Rrad(t) < thr | Rsat 

(t) > thr & Rsat (t-1) < thr) consecutively. Then using the maximum likelihood method, we fit Eq. 

(2.6) to the FA ratios as a function of the mean satellite rain rate of each bin. We are careful that 

the parameter b of Eq. (2.6) is always smaller than one. Investigating the effect of the temporal 

correlation of satellite precipitation with the precipitation from the previous time step on the FA 

ratio shows that, during the summer, the FA ratio is higher when the previous time step also 

shows rainfall; during the winter, this pattern is reversed. This can be concluded from different 

precipitation types during the summer and winter. In the summer, when short, convective 

precipitation ceases, clouds remain in the sky, which results in a false detection of precipitation 

by the satellite, but this is not the case during the winter. Results show that the FA ratio 

difference between the two cases is less distinct than for larger time steps. Similar to the 

parameter spaces for modeling the hit precipitation presented in the previous section, the 

exponential model is fitted to data with different spatial and temporal resolutions, and the 

parameter spaces are generated for the two parameters of the model. 
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Fig. 4.6.  False alarm ratio for summer data over the calibration domain for 2005-2009, in 3-

hourly and 0.25° resolution. 
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Fig. 4.7.  False alarm ratio for winter data over the calibration domain for 2005-2009, in 3-hourly 

and 0.25° resolution. 
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The data from Figures 4.6-4.7 show how the false alarm is different in the summer and winter in 

that it decreases faster during the winter. Additionally, the false alarm dependence on the satellite 

precipitation from the previous time step is more distinct during the summer, whereas there is 

very little difference in the winter each figure contains the FA ratio and the fitted function in the 

form of the exponential decay.  

These data are modeled using an exponential formula in the form of the Eq. (2.6): 

                                                                                                                          (4.14)  

This model is fitted to summer and winter separately using the least squared error method. It is 

also fitted separately in each season to the situations when the previous time step detects rainfall 

or detects zero precipitation. The results of these fitted parameters in space are shown in Figures 

4.8-4.9 below: 
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Fig. 4.8. Parameter space for parameters r and b from Eq. (4.14) for summer data for Rsat (t-1) > 

thr (left panel) and Rsat (t-1) < thr (right panel). 
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Fig. 4.9. Parameter space for parameters r and b from Eq. (4.14) for winter data for Rsat (t-1) > 

thr (left panel) and Rsat (t-1) < thr (right panel). 
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4.3 Calibration of missed precipitation 

To calibrate the model for missed precipitation (see region [3] in Figure 2.1), we used data when 

the satellite precipitation detects rainfall smaller than the threshold and its corresponding 

reference precipitation shows rainfall larger than the threshold. In this case, because the only 

information available is zero rainfall for the product at a specific season and a specific spatial 

and temporal resolution, a single value for probability is assigned to the percent of missed 

precipitation, which is: 

                                                                                                     (4.15)  

In this study, this probability is defined as:  

                                                                
                                    

                        
                                       (4.16) 

In the case of missed precipitation, a Gamma distribution is used to model the distribution of the 

missed radar rainfall given the satellite rain rate is smaller than the threshold as shown in Eq. 

(2.10).  

Here, we also use satellite precipitation from the previous time step as another source of 

information and define the probability of missed precipitation as: 

Condition 1: 

                                                     
                                                           

                                             
                      (4.17) 

 

Condition 2: 

                                                  
                                                             

                                          
                  (4.18) 

Data show that, for both summer and winter, the missed precipitation ratio is 10% or less when 

the satellite from the previous time step shows zero precipitation. Because of the very low 
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percentage of missed rainfall, we consider these cases as hit-zero precipitation. When the 

satellite from the previous time step shows rainfall, uncertainty is sampled from the fitted 

Gamma distribution. Figures 4.10-4.11 show the parameter space for the missed precipitation 

ratio for summer and winter, respectively. 

 

 

 

 

 

Fig. 4.10. Missed precipitation ratio over the region for 2005-2009 for summer. Left panel: when 

precipitation at the previous time step is not zero. Right panel: when precipitation at the previous 

time step is zero.  
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Fig. 4.11. Missed precipitation ratio over the region for 2005-2009 for winter. Left panel: when 

precipitation at the previous time step is not zero. Right panel: when precipitation at the previous 

time step is zero.  

 

 

 

 

 

The two examples given in Figures 4.12-4.13 show how the missed radar data are distributed. To 

model these data, at each pair of spatial and temporal resolutions, a Gamma function is fitted to 

the data, and its two parameters are estimated. The parameter spaces for summer and winter are 

shown in Figures 4.14-4.15, respectively. 
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Fig. 4.12. Histogram of missed radar rainfall over the study domain for the summer for 2005-

2009 in 3-hourly and 0.25° resolution. Top panel: The satellite from (t-1) shows rainfall. Bottom 

panel: The satellite from (t-1) shows no rainfall. 
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Fig. 4.13. Histogram of missed radar rainfall over the study domain for the winter for 2005-2009 

in 3-hourly and 0.25° resolution. Top panel: The satellite from (t-1) shows rainfall. Bottom 

panel: The satellite from (t-1) shows no rainfall. 
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Fig. 4.14. Parameter space for Gamma distribution fitted to the missed radar precipitation over 

the region for 2005-2009 for summer, when the satellite from the previous time step shows 

rainfall. Left panel: Parameter Theta. Right panel: Parameter k.  
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Fig. 4.15. Parameter space for Gamma distribution fitted to the missed radar precipitation over 

the region for 2005-2009 for winter, when the satellite from the previous time step shows 

rainfall. Left panel: Parameter Theta. Right panel: Parameter k. 
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Chapter 5: Model Evaluation over the Southeastern United States 

 

An evaluation of this uncertainty model is presented in two different cases. The first case only 

evaluates the performance of the GND model to model the hit precipitation. In this case, it is 

assumed that, if the satellite shows a non-zero rainfall rate, it definitely rained, and the only 

source of uncertainty is bias in the value of the rainfall rate. The second case considers the 

probability of false alarm and missed precipitation. 

 

5.1 GND model evaluation 

To evaluate the GND model, the comparison of root mean squared error (RMSE) of fitting the 

uncertainty of PERSIANN and the corresponding Stage-IV data for different pairs of spatial and 

temporal resolutions is shown in Figure 5.1. The RMSE is calculated at each specific resolution 

as: 

                                                                              
               

(5.1) 

Where       is the mean rainfall of each bin of the satellite precipitation product, x is any of the 5 

different distributions that are mentioned below.                   is the CDF of the fitted 

distribution to the reference data corresponding the each bin and                    is the 

empirical CDF of the reference data. Here, several types of distributions are used, including 

GND, normal, Gamma, log-normal, and Weibull distributions. The results show that the GND 

model fits better to those data than others. GND distribution is also able to model the skewness 

of the joint distribution associated with satellite- and Stage-IV precipitation products that cannot 

be estimated by symmetrical distribution, such as Gaussian. 
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Fig. 5.1. Comparison between the RMSE of fitting the proposed distribution and Gamma, 

normal, log-normal, and Weibull distributions for the resolutions of 0.25°, 24-hourly (upper- 

left), 0.5°, 12-hourly (upper-right), 0.75°, 6-hourly (lower left), and 1°, 3-hourly (lower right) 

for the joint probability of PERSIANN and Stage-IV radar data during the summer and winter 

of 2004-2006. Black: GND, Blue: Gamma distribution, Purple: normal distribution, Red: log-
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normal distribution, Green: Weibull distribution. 

From Figure 5.1, we conclude that the Gamma distribution is also a very good fit to the data in 

competition with the GND. One might argue that, because the latter has one more parameter than 

the Gamma distribution, it possesses more flexibility to fit to the data. To further compare the 

goodness-of-fit between these two models, we looked at the Bayesian Information Criterion 

(BIC). The BIC will examine if the GND is a better fit compared to the Gamma distribution by 

reducing the effect of the number of parameters. BIC is calculated from Eq. (5.2): 

                                                                                                                     (5.2) 

In this equation,    is the likelihood function of the fitted distribution at observation points, k is 

the number of parameters, and n is the number of observation points (here, the number of data in 

each bin). The model with a smaller BIC value is a better fit to the data. Here, similar to Figure 

5.1, we compared the BIC values for the GND and the Gamma models at each bin of data for 

different combinations of spatial and temporal resolutions. 



 

53 
 

 

Fig. 5.2. Comparison between the BIC of fitting the proposed distribution and Gamma 

distribution for the resolutions of 0.25°, 24-hourly (upper- left), 0.5°, 12-hourly (upper-right), 

0.75°, 6-hourly (lower left), and 1°, 3-hourly (lower right) for the joint probability of 

PERSIANN and Stage-IV radar data during the summer and winter of 2004-2006. Black: 

GND, Blue: Gamma distribution. 
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Figure 5.2 shows the comparison of the BIC value for fitting the GND and the Gamma 

distributions at different spatial and temporal resolutions. From the figure, we conclude that the 

GND always has a smaller BIC value compared to the Gamma distribution, which shows its 

superiority in modeling the conditional probability of the reference given the satellite-

precipitation rainfall rate. 

The proposed approach models the non-Gaussian joint distribution of the satellite and radar 

estimates when both are larger than the threshold, which enables us to estimate the range of the 

uncertainty of the satellite estimates (e.g., upper and lower bounds of the 90% interval). To 

further evaluate the uncertainty range obtained from the model, for the year 2010, the 80% and 

90% uncertainty intervals (10%-90% and 5%-95% uncertainty ranges) are calculated for a 

domain from 30°N-40°N and 85°W-95°W. This domain also contains our calibration domain. 

The data are at 0.25° and 3- hourly resolutions and, for all of the year 2010 that equals 2,920 

images of 40 × 40 pixels. For each pixel, using Δt= 3-hourly and Δs= 0.25° and the rainfall rate 

of that pixel, the parameters of the GND model are estimated, and the uncertainty model is 

generated. Using the inverse CDF of the distribution, the 10% and 90% rainfall rates and the 5% 

and 95% rainfall rates are estimated. For each pixel, the percentage of the images in which the 

radar falls in the uncertainty range is calculated, and the result is illustrated below. Figure 5.3 

shows the percentage of detection for and the year 2010. From the figure, we see how the 

uncertainty range of the model is able to capture the radar rainfall rate for more than 75% 

(average of the percentages of all the pixels) of the time for the 90% uncertainty ranges and 65% 

(average of the percentages of all the pixels) of the time for the 80% uncertainty ranges. This 

difference between the uncertainty range and the percent range of the data detected is because at 

this stage, the model does not cover the the missed precipitation and false alarms. These parts 
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will be added to the model in section 5.2. 

 

 

 

Fig. 5.3. Percentage of radar data which falls into 80% of the uncertainty range (left) and 90% 

of the uncertainty range (right) for 0.25 and 3-hourly data for 2010. 

 

5.2 Complete model evaluation 

Similar to the previous section, the complete model is evaluated over the calibration domain 

(30°N-40°N and 85°W-95°W) for 2010, and the 10% and 90% rainfall rates and the 5% and 95% 

rainfall rates are estimated. The percentage of the images in which the radar falls in the 

uncertainty range is calculated, and the result is illustrated in Figure 5.4. From these figures, we 

see how the uncertainty range of the model is able to capture the radar rainfall rate for more than 

85% of the time for the 90% uncertainty ranges and 80% of the time for the 80% uncertainty 

ranges. This improvement in the detection of the correct rainfall is because of the addition of 

other parts of the uncertainty to the model. 
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Fig. 5.4. Percentage of radar data which falls into 80% of the uncertainty range (left) and 90% 

of the uncertainty range (right) for 0.25° and 3-hourly data for 2010. 

 

To further investigate the results, we also looked at the pattern of the radar rainfall over the year 

2010. To do so, we got the mean value of all the 3 hourly radar images over the region and 

presented in Figure 5.4. 
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Fig. 5.5. Annual average of the 3 hourly Stage IV radar rainfall over the valibration domain for 

0.25° and 3-hourly data for 2010. 

 

When we compare Figures 5.4 and 5.5, we can conclude that the detection of the radar by the 

uncertainty model is dependent of the pattern of the rainfall. Those parts of the region given in 

Figure 5.5 with smaller amounts of mean precipitation have a higher percentage of detection 

from those regions shown in Figure 5.4. This pattern is not recognizable from Figure 5.4, which 

does not take into account the false alarm ratio and the missed precipitation parts of the 

uncertainty. The results confirm that adding that information will better model the uncertainty of 

the satellite precipitation and better capture the radar precipitation as the reference point. 
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Chapter 6: Model Evaluation over a Case Study Watershed: Illinois River 

Basin, South of Siloam Springs, AR 

 

After calibrating the model and constructing the parameter space, we evaluated it over a 

watershed as a case study.  

 

6.1 Case study 

The model is evaluated for a case study using 3 years of data from 2006-2008 over the Illinois 

River basin located upstream of the U.S. Geological Survey (USGS) gauging station (07195430) 

south of Siloam Springs, AR (Figure 6.1). The watershed has been used as a test basin for the 

Distributed Modeling Intercomparison Project (DMIP). The size of the Siloam watershed is 

1,489 km
2
. The elevation ranges from 285 m at the outlet to 590 m at the highest, and the basin’s 

land cover can be described as uniform, with approximately 90% of the basin area being covered 

by deciduous broadleaf forest and the remainder being mostly wood. The dominant soil types in 

the basin are silty clay (SIC), silty clay loam (SICL), and silty loam (SIL). The average annual 

rainfall and runoff of the basin are about 1,200 and 300 mm/year, respectively (Smith et al., 

2004). The Illinois River basin is free of major complications, such as orographic influences, 

significant snow accumulation, and stream regulations (Smith et al., 2004). 

For this experiment, the PERSIANN data over the domain are used as the precipitation data, and 

Stage-IV radar data are used as the reference data. The data are averaged over the domain to 

determine the mean areal precipitation and aggregated from 3- to 6-hourly. The area is 1,480 

km
2
, which is approximately 0.35° × 0.35° (each degree is considered to be about 111 km). For 

each point of the PERSIANN time series, considering its temporal resolution (6-hourly), spatial 
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resolution (0.35°), and rainfall rate, the uncertainty-distribution parameters are calculated using 

the parameter spaces introduced in this study. The season of the precipitation should also be 

considered here, namely events from May-October for the summer precipitation and November-

April for the winter precipitation. 

 

 

Fig. 6.1.  The Illinois River basin south of Siloam Springs, AR (Behrangi et al., 2011). 

 

6.2 Uncertainty analysis and results 

The uncertainty of satellite precipitation over this watershed is analyzed in two forms. First, the 

hit precipitation was studied separately because this is the topic of most of the precipitation- 

uncertainty studies. Then, in the next section, the complete model is examined, considering also 

the missed precipitation and false alarm. 
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6.2.1 Uncertainty analysis for hit precipitation 

Using the spatial and temporal resolutions and the rainfall rate, the uncertainty distributions are 

formed to model the hit precipitation. From each distribution, 1,000 samples are drawn randomly 

to estimate the uncertainty range of each satellite-precipitation point using a Monte Carlo 

approach.  

 For the period of November-April, the parameters are linearly interpolated from Figure 4.3 

(winter) and, for the remainder of the year, the parameters are calculated from Figure 4.2 

(summer). For winter, the parameters are: a = -0.7011, b = 1.7992, c = 0.0085, d = -0.9032, e = 

7.7719, and f = 0.3979; for summer, the parameters are: a = 0.1867, b = 0.912, c = 0.0031, d = -

0.9904, e = 3.1023, and f = 0.5446. The parameters are then incorporated into Eqs. (4.7), (4.8), 

and (4.9) to estimate the three parameters (shape, scale, and shift) of the uncertainty distribution. 

From each time step of the PERSIANN time series over the region, the three parameters of the 

uncertainty distribution are calculated based on the rainfall rate at the given time. This will result 

in the final form of the uncertainty distribution.  

To evaluate the uncertainty model, the 90% uncertainty range is calculated using the CDF of the 

distribution. The rainfall rates corresponding to the 5
th

 and 95
th

 percentiles of the range are 

estimated and used as the lower and upper bounds of the uncertainty range, respectively. The 

mean of the satellite-precipitation uncertainty distribution is calculated using Eq. (8). The 5
th

 and 

95
th

 percentiles of the uncertainty range are plotted for winter and summer in Figure 6.2, along 

with the scatterplot of the PERSIANN and Stage-IV radar rainfall over the watershed. 

Furthermore, the mean of the uncertainty model vs. the satellite-rainfall rate is plotted in black. 

The calculated results show that 68% of the summer reference-precipitation data and 70% of the 

winter reference precipitation data (blue-scattered dots) fall into the range, which means that the 
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calibrations for both seasons are efficient by covering the range of the variability in the data. In 

both seasons, the spread of the distributions increases with an increase in the rainfall rate. The 

summer season shows a more skewed distribution because the mean of the distribution is close to 

the lower bound; for winter, the mean is almost in the middle of the lower and upper bounds. 

 

 

 

Fig. 6.2. Uncertainty range and the model mean for summer (right panel) and winter (left 

panel). The blue scatterplot shows the Stage-IV radar data (reference) vs. the PERSIANN 

rainfall data over the Illinois River basin south of Siloam Springs, AR, for 2006-2008. The 

green-scattered line represents the 5% of the uncertainty range, the red line gives the 95% of 

the uncertainty range, and the black line indicates the mean of the uncertainty distribution vs. 

the satellite-rainfall rate. 
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In Figure 6.3, the 6-hourly time series of the Stage-IV rainfall (top panel), PERSIANN (middle 

panel), and the mean of the uncertainty model (bottom panel) for 2006 are presented. The 

uncertainty model performs very well in reducing the overestimation from the PERSIANN 

product while keeping its pattern. In this work, the focus is to introduce a method to estimate the 

uncertainty range of the satellite-precipitation product. Specifically, the proposed model not only 

provides a range for the uncertainty, it also serves as a bias-correction method. In Table 1, the 

mean of the distribution is compared to the Stage-IV radar 6-hourly time series in terms of 

RMSE, %bias, and the correlation coefficient. If in each case, we call the Stage-IV radar as Rrad 

and the other timeseries as Rsat, the RMSE is calculated as: 

                                                          
                    

   

 
                                             (6.1) 

Similarly the %bias and the correlation coefficient are calculated as below: 

                                                              
                    

 
   

         
   

                                             (6.2) 

                                                     
                               

 
   

                   
                     

   

                                (6.3) 

The same statistics are calculated for the PERSIANN satellite estimates and radar data. By 

comparing the statistics for the summer and winter periods, respectively, as well as for the entire 

3-year period, the mean of the uncertainty improves the satellite-precipitation estimates. In all 

three cases, the RMSE and %bias are improved. The improvement is more distinct in %bias 

when the two seasons are analyzed separately. Generally speaking, satellite-precipitation 

products have a larger bias in the summer (AghaKouchak et al., 2012), and the proposed method 

decreases this bias by 47%. For winter, the bias is decreased by 23%. The correlation coefficient 

remained the same in most of the cases because the mean is a function of satellite precipitation, 

and the transformation would not significantly change the correlation coefficient. In all three 
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cases for the respective summer and winter seasons, as well as the entire 3-year period, the 

RMSE of the satellite vs. radar rainfall improved. This improvement is 23% for the summer data, 

6% for the winter data, and 18% for the entire 3-year period. 

 

 

 

 

Fig 6.3. Six-hour, basin-average precipitation intensity for (a) Stage-IV radar data, (b) 

PERSIANN, and (c) mean of the uncertainty model over the Illinois River basin south of 

Siloam Springs, AR, for 2006. 
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6.2.2 Uncertainty analysis for the complete model 

To implement the complete model to our case study, we need to calculate all of the parameters of 

the different components of the model and combine them together as a complete model using the 

spatial and temporal resolutions of the satellite-precipitation time series and the rainfall rates. 

At each time step: (1) If the satellite shows rainfall, then the uncertainty comes from Eq. (2.8), 

and (2) If the satellite shows no rainfall, then the uncertainty comes from Eq. (2.15), that is: If 

the time step shows rainfall, then the GND distribution is formed., Then, using the rainfall rate, 

and considering if the previous time step also shows rainfall or no rainfall the false alarm ratio is 

calculated from Eq. (4.14), and its parameters are interpolated from Figures 4.8-4.9 for summer 

and winter, respectively. Then by constructing the Eq. (2.8), 1000 samples is randomly drawn 

from the inverse of the function. 

If the current time step shows no rainfall, then the previous time step is checked. If the previous 

time step also says no rainfall, then zero is assigned to the rainfall; if the previous time step 

shows rainfall, then the missed precipitation ratio is defined using the spatial and temporal 

resolutions from Figures 4.10-4.11 and also parameters of the Gamma distribution that the 

missing radar precipitation will be drawn from using the Gamma parameters drawn from Figures 

4.14-4.15. Then by constructing the Eq. (2.15), 1000 samples are randomly drawn from the 

inverse of the function. 

To demonstrate how well the model captures the uncertainty of the PERSIANN estimates over 

the case study watershed, the uncertainty model is generated for the 6-hourly, basin-averaged 

time series of precipitation over the Illinois River basin. 

The temporal resolution of the data is 6-hourly, and the spatial resolution is approximately 0.35° 

× 0.35° (each degree is considered to be about 111 km). Parameters of the GND model are the 
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same as mentioned in the previous section, where only the uncertainty of the hit precipitation 

was modeled. In order for Eq. (4.14) to estimate the false alarm ratio, for the summer data and 

the case where the satellite from the previous time step shows no precipitation, b = 0.6 and r = 

0.035.  When the satellite at the previous time step shows rainfall, b = 0.68 and r = 0.024. The 

same parameters for the winter season are, respectively: b = 0.77, r = 0.38, b = 0.58 and r = 

0.0356. For the summer data, the missed-precipitation ratio is 0.13 and, for the winter data, it is 

0.22. The parameters of the Gamma distribution for summer are: k = 0.94 and theta = 9.44; for 

winter, the parameters are: k = 1.01 and theta =1 1.04. Using the satellite-rainfall rate at each 

time step, the uncertainty distribution for that time step is quantified.  

Similar to the evaluation of the GND model, here also for evaluation of the uncertainty model, 

the 90% uncertainty range (between 5%-95%) is calculated. The results are plotted for summer 

and winter separately in Figure 6.4, along with the scatterplot of the PERSIANN and Stage-IV 

radar rainfall over the watershed. In each panel of the figure, there are two sets of plots. One set 

is in a square shape, which shows the condition when the rainfall rate from the previous time step 

is not zero (in a darker shade of the colors).  Also shown in Figure 6.4 are the circles for when 

the rainfall rate from the previous time step is zero (in a lighter shade of the colors). 

Furthermore, the mean of the uncertainty model vs. the satellite- rainfall rate is plotted in black. 

Calculations show that this 90% of the uncertainty in both seasons covers more than 85% of the 

data, which is an improvement compared to the results described in the previous chapter, where 

only the hit precipitation was corrected.  

In Figure 6.5, the 6-hourly time series for the Stage-IV rainfall (top panel), PERSIANN (middle 

panel), and the mean of the uncertainty model (bottom panel) for 2006 are presented. The 

uncertainty distribution reduces the overestimation of the PERSIANN by reducing the %bias of 
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the hit precipitation and false alarm and adding the missed precipitation. 

 

 

 

Fig. 6.4. Uncertainty range and the model mean for summer (right panel) and winter (left 

panel). The blue scatterplot shows the Stage-IV radar data (reference) vs. the PERSIANN 

rainfall data over the Illinois River basin south of Siloam Springs, AR, for 2006-2008. The 

green-scattered line represents the 5% of the uncertainty range, the red line gives the 95% of 

the uncertainty range, and the black line indicates the mean of the uncertainty distribution vs. 

the satellite-rainfall rate. The graphs in the square and in a darker shade of the colors represent 

the condition when the rainfall rate from the previous time step is not zero; the circles in a 

lighter shade of the colors indicate when the rainfall rate from the previous time step is zero. 
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We further compared the time series of the PERSIANN, Stage IV, and mean of the uncertainty 

model for 2006 using the correlation coefficient, RMSE, and %bias for 2006-2008 for summer 

and winter separately, as well as for the whole period. In terms of the mean of the distribution, 

the complete model improves the statistics slightly, because most of the modifications occur at 

the small rainfall-rate values (FA decreases exponentially with an increase in the rainfall rate, 

and the mean of the missed precipitation Gamma distribution is very small). 

 

 

 

Fig 6.5. Six-hour, basin-average precipitation intensity for (a) Stage-IV radar data, (b) 

PERSIANN, and (c) mean of the uncertainty model over the Illinois River basin south of 

Siloam Springs, AR, for 2006. 
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Chapter 7: Application in Hydrologic Modeling 

 

Development of high-resolution satellite-precipitation products that are available globally 

opened a new realm of possibility for hydrometeorological applications. Access to reliable 

precipitation data as the most important input for hydrological modeling and flood prediction is 

very crucial for scientists and the decision-makers because, in several populated countries around 

the world, e.g., developing countries, access to accurate ground-precipitation measurements is 

very limited or does not exist.  

To ensure the reliability of hydrological modeling, the uncertainty inherent in the satellite-

precipitation products should be taken into the account; hence, there are a large number of 

studies on the assessment of the uncertainty of these products and how this uncertainty is 

propagated into the hydrological modeling. 

If the physics of the hydrology model and the calibration of its parameters are assumed to be 

perfect, the variability from the streamflow simulation can be attributed to their input data, e.g., 

precipitation. 

In several studies, satellite-precipitation products are used for hydrological modeling (Hong et 

al., 2006; Yilmaz et al., 2005). In 1999, Tsintikidis et al. used the mean areal precipitation from 

satellites for hydrologic modeling over northern Africa. Grimes and Diop (2003) showed that, 

using the precipitation data from Meteosat improves streamflow prediction. The error of these 

remotely sensed precipitation data in streamflow simulation also has been investigated in several 

studies, e.g., Nijssen and Lettenmaier (2004) studied how the sampling error of precipitation 

estimates from satellites can affect the streamflow simulation, and Behrangi et al. (2011) 

evaluated the uncertainty in streamflow simulation from different satellite-based precipitation 
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products. 

In this chapter, we investigate how the uncertainty in the PERSIANN product will result in the 

variability in streamflow simulation. To study this effect, the satellite-precipitation uncertainty 

model presented here is propagated through the SACramento Soil Moisture Accounting model, 

and the results are presented in the following sections. 

 

7.1 Hydrologic model and calibration 

The SACramento Soil Moisture Accounting (SAC-SMA) model (Burnash et al., 1973; Burnash, 

1995) is used as the hydrology model to model the rainfall-ruffoff process. The SAC-SMA 

model (Figure 7.1) is a lumped conceptual model used at the National Weather Service River 

Forecasting System (NWSRFS) for hydrological modeling at the basin scale. The input to the 

model is the mean areal precipitation and potential evapotranspiration. This model has an upper 

zone representing the upper soil layer and a lower zone for the deeper layers of the soil profile, 

and each zone has a tension storage and a free-water storage. The deficiency of moisture in the 

lower zone and the free-water storage in the upper zone determine the percolation rate from the 

upper to the lower region. The model has 13 parameters, which should be calibrated to generate 

five response components, including: (1) direct runoff resulting from precipitation, (2) surface 

runoff when the precipitation rate is larger than the percolation rate, (3) interflow (the lateral 

outflow from the upper,-zone free-water storage), (4) supplementary baseflow, which is the 

lateral drainage from the lower-zone supplementary free-water storage, and (5) primary 

baseflow, which is the lateral drainage from the lower-zone primary free-water storage. The 

summation of these five runoffs is convolved with the unit hydrograph of the basin to result in 

the streamflow at the basin’s outlet. 
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Fig. 7.1. Schematic view of the SAC-SMA model. 

 

 

The SAC-SMA model should be calibrated for accuracy before streamflow simulation. In this 

study, the model is calibrated using the 6-hourly, Stage-IV precipitation data averaged over the 

basin. The monthly potential-evaporation rates and the unit hydrograph of the basin are obtained 

from the DMIP II study website. To calibrate the parameter, a global-search algorithm, termed 

the Shuffled Complex Evolution from University of Arizona (SCE-UA) (Duan et al., 1992) is 

used to find the minimum value of the objective function below:   
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                                               (7.1)   

where Qsim,t is the simulated, and Qobs,t is the observed streamflow at time step t. 

This method is an effective and efficient search algorithm that combines the non-linear simplex 

method of Nelder and Mead (1965), a random-search procedure, and complex shuffling (Duan et 

al., 1992) to direct the parameter space towards the global optimal. 

 

7.2 Uncertainty propagation and results 

The hydrologic evaluation of the proposed uncertainty model is investigated two-fold. Similar to 

Chapter 6, only the uncertainty of the PERSIANN product is considered initially due to the bias 

in the hit precipitation in streamflow simulation. This part is modeled using a GND model. For 

the second part, the complete uncertainty model, considering all four parts of hit, false alarm, 

missed, and hit-zero precipitation is used to study the variability in the streamflow simulation 

due to the uncertainty in the satellite-precipitation product 

The precipitation-uncertainty model is propagated in the hydrological modeling by drawing 

random time series from the uncertainty distributions to be used as the input to the hydrology 

model. The simulated streamflow from using the mean of the satellite-precipitation uncertainty 

model is compared to the mean from the original PERSIANN product. 

In all of the streamflow simulations, the calibrated parameters from the Stage-IV radar data were 

used because that product is used as the reference in this study. 

Figure 7.2 shows the simulated streamflow using the Stage-IV radar data and the simulated 

streamflow using the PERSIANN product as input to the SAC-SMA model. The difference 

between the two streamflows is due to the uncertainty in the PERSIANN product. The figure 

also displays how the overestimation in the PERSIANN product contributes to the very large 
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peaks and inability to capture the low flows. 

 

Fig. 7.2. Comparison of simulated streamflow between Stage-IV radar and PERSIANN 

satellite precipitation data. 

 

7.2.1 Hydrologic evaluation of the satellite uncertainty model for hit precipitation  

In order to estimate the streamflow variability due to the satellite-precipitation uncertainty, the 

GND uncertainty model must be propagated into the hydrologic model. This will result in a 

range where the streamflow simulation would change due to the precipitation uncertainty. To 

calculate this variability the following steps should be taken:  

1. Given a precipitation time series with specific temporal and spatial resolutions of Δt and 

Δs respectively, for each point with a specific rainfall rate, there is an uncertainty 
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distribution associated with that precipitation estimate. First, we must determine if the 

time step (in this study, 6-hourly) falls in the summer (May-October) or winter 

(November-March). Then, from Figures 4.2-4.3, the parameters for estimating the GND 

parameters are obtained for Δt and Δs By using the rainfall rate at that time step, the 

parameters of the uncertainty distribution and, eventually the PDF and CDF of the 

distribution, become available. 

2. From each uncertainty distribution at each time step, N (in this study N = 1,000) random 

rainfall rate is generated using the inverse of the distribution CDF, which will result in N- 

precipitation time series. 

3. The N-precipitation time series are used separately as input to the SAC-SMA model, and 

the simulated streamflow is calculated, which results in N-streamflow time series. 

4. The variability of the streamflow simulation is studied using the characteristics of the N- 

streamflow simulation at each output time step (in this study, daily). 

Using the 1,000 precipitation samples as input for the hydrologic model will result in a range of 

streamflows at each time step. To quantify this variability, the 5% and 95% of each time step of 

the streamflow simulation are chosen for the 90% uncertainty range. This uncertainty range is 

compared to the simulated streamflow using the reference precipitation to investigate if the 

streamflow simulated from the uncertainty model can capture its variability. 

Figure 7.3 shows the uncertainty ranges of 90% of the streamflow simulation from the GND 

model and how they compare to the Stage-IV simulated streamflow. For clarity, we only show 

the results from 2008. From this figure, we also see how the streamflow uncertainty model offers 

a range of uncertainty that can capture the variability of streamflow. 
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Fig. 7.3. Ninety percent of the uncertainty range of the streamflow simulation using the 

satellite- precipitation uncertainty model (grey-shaded areas) and the Stage-IV simulated 

streamflow (blue area) for 2008 over the case study watershed. 

 

In Figure 7.4, the streamflow simulated from PERSIANN, Stage-IV, and the mean of the 

uncertainty model is presented. To enable a more clear comparison, we plotted the streamflows 

separately compared to the Stage-IV simulated streamflow (Figure 7.5). Further, the performance 

of the mean of the uncertainty distribution is compared to the original satellite- precipitation 

product in terms of correlation coefficient, RMSE, and %bias (Table 3). From both the plots and 

the statistics, the good performance of the model is very clear. The uncertainty model drastically 

improved the bias of the streamflow simulation. This improvement is 52% for the whole period 

and 60% and 88% for summer and winter and cannot change the correlation coefficient 
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significantly because the model is still based on the satellite precipitation and only changes its 

values. The RMSE also improved for the whole period, as well as for the summer and winter 

separately, with 20% for the first two and 10% for winter. 

  

 

Fig. 7.4. Streamflow simulation from Stage-IV radar (blue), PERSIANN (red,) and the mean 

of the uncertainty model (green) for 2006-2008 over the case study watershed. 
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Fig. 7.5. Comparison of Stage-IV simulated streamflow with PERSIANN simulated 

streamflow (upper panel) and mean of the uncertainty model simulated streamflow (lower 

panel). 
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7.2.2 Hydrologic evaluation of the satellite uncertainty model for hit precipitation  

As in the previous section, the same evaluation is performed but this time using the complete 

precipitation-uncertainty model. In this case, the random time series come from the complete-

uncertainty model, considering the hit precipitation, false alarm, missed precipitation, and hit-

zero precipitation. 

Similar to Section 7.2.1, the 90% streamflow uncertainty range for 2008 is calculated and 

compared to the Stage-IV simulated streamflow provided in Figure 7.6. 

 

 

Fig. 7.6. Ninety percent of the uncertainty range of the streamflow simulation using the 

satellite- precipitation uncertainty model (grey-shaded areas) and Stage-IV simulated 

streamflow in (blue areas) for 2008 over the case study watershed. 
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Streamflow simulated using the mean of the uncertainty model is compared to the PERSIANN 

simulated streamflow and the Stage-IV simulated streamflow. The results are given in Figures 

7.-7.8 and Table 4. Adding the false alarm and missed-precipitation probabilities helped produce 

a more complete model. A very important point to mention is that, in the modeling of the missed 

precipitation, adding the information from the previous time step is critical, especially in 

streamflow simulation. If all of the zero-precipitation time steps from the satellite estimates are 

assigned with the probable-missed precipitation values, non-zero precipitation at all of the time 

steps would remain, which is unrealistic. This also results in overestimation in streamflow 

simulation. 

Also similar to the previous section, in this case, the correlation coefficient of the streamflow is 

slightly improved, but the improvement is more distinct in RMSE and %bias. 
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Fig. 7.7. Streamflow simulation from Stage-IV radar (blue), PERSIANN (red), and the mean 

of the uncertainty model (green) for 2006-2008 over the case study watershed. 
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Fig. 7.8. Comparison of Stage-IV simulated streamflow with PERSIANN-simulated 

streamflow (upper panel) and mean of the uncertainty model-simulated streamflow (lower 

panel). 
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Chapter 8: Uncertainty Analysis of the New GPM Precipitation Product 

Using the IMERG Algorithm 

 

To extend this work, the model is calibrated and evaluated on NASA’s Integrated Multi-Satellite 

Retrieval for GPM (IMERG) data product, which is a part of their Global Precipitation Mission 

(GPM). Because this product is very new and in development, it has limited availability. Here, 

we show some preliminary results of the uncertainty quantification of the product and are hoping 

that, in the future, we can extend this work when more data are available. 

 

8.1 IMERG product 

The GPM core observatory was launched in 2014 as collaboration between NASA and JAXA 

and consists of a core satellite and a network of 12 different satellites to measure precipitation on 

a global scale. IMERG combines the data from all 12 satellites into one uniform product. Some 

of these satellites are passive-microwave satellites, and some are geostationary. 

The algorithm is as follows: different satellite PMW precipitations are combined into half-hourly 

resolutions and are used as input to both the CPC Morphing-Kalman Filter (CMORTH-KF; 

Joyce and Xie, 2011) Lagrangian time interpolation scheme and the Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks–Cloud Classification 

System (PERSIANN-CCS; Hong et al., 2004) re-calibration scheme. Parallel to that, CPC will 

correct the zenith angle and intercalibrate the geo-IR fields and send them for use in CMORPH-

KF and PERSIANN-CCS. Then, PERSIANN-CCS estimates are computed and sent to the 

CMORPH-KF Lagrangian time interpolation to use the PMW and IR estimates to create the final 

product. 
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This product will be available at this level with 4-hour and 12-hour time latency. Then, the 

estimates are bias-adjusted using GPCC monthly gauge data, and the calibrated product is 

available with 2-month time latency. The resolution of the data is in 0.1° and half-hourly. The 

calibrated product is also available in monthly and 0.1° resolutions. 

This product uses state-of-the-art technology and science in satellite-precipitation estimation and 

can revolutionize precipitation-data availability in terms of global coverage and real-time 

products. 

 

8.2 Uncertainty analysis of the IMERG product 

Because the real-time data with 18 hours of time latency have been available only recently (less 

than 10 days), for this study, we used the data with a 2-month time latency, which is available 

from April 2014-November 2014. Because the available data are very limited, the calibration is 

done using the months of June, July, and August and, for evaluation, the months of September, 

October and November are used. These data are available in both GPCC-calibrated and non- 

calibrated forms. Because the ultimate goal is to use the model for the real-time product when 

gage measurements are not available. 

For consistency with the research that is already done in this area, the data were re-gridded from 

0.1° to 0.25° and from half-hourly to 3-hourly resolutions. For reference data, Stage-IV radar 

data are used. The study domain is the same as the one used in the uncertainty analysis of 

PERSIANN product. 

The results of the uncertainty analyses are presented in two different forms in Figures 8.1-8.2. 

The first figure compares the satellite precipitation and the mean of the uncertainty model with 

the Stage-IV radar data. This comparison is in the form of RMSE and %bias in the 3-hourly time 



 

87 
 

series for September, October, and November 2014. 

 

 
 

Fig. 8.1. Left panel: RMSE between IMERG and Stage-IV radar data; right panel: RMSE 

between the mean of the uncertainty distribution and the Stage-IV radar data for 3-hourly and 

0.25° time series for September, October, and November 2014. 
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Fig. 8.2. Left panel: %bias between IMERG and Stage-IV radar data; right panel: %bias 

between the mean of the uncertainty distribution and the Stage-IV radar data for 3-hourly and 

0.25° time series for September, October, and November 2014. 

 

From both figures, we can see that the mean of the uncertainty model can be used as a bias 

correction for the satellite precipitation because it reduces both the %bias and the RMSE of the 

satellite-precipitation estimates. 
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Fig. 8.3. Percentage of the time steps from for the 3-hourly and 0.25° time series for 

September, October, and November 2014, which falls into the 90% uncertainty range of the 

model. 

 

Figure 8.3 shows that more than 75% of the time steps during the evaluation period will fall into 

the 90% uncertainty range for the whole evaluation domain. 

The IMERG product opens a new realm in satellite-precipitation products by producing global, 

near real-time precipitation data, and it is very important to evaluate the uncertainty of this 

product. The results so far show that the proposed method can measure this uncertainty and bias 

and adjust the product to a good extent.  
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Chapter 9: Summary, Conclusions, and Future Work 

 

9.1 Summary and Conclusions 

With the increasing emphasis on development and improvement of satellite-precipitation 

estimates for various applications, it is of paramount importance that the uncertainties associated 

with such products be evaluated and quantified carefully. This research aims to develop and 

validate an uncertainty model to answer this need. This model is in the form of a conditional 

probability distribution of the Stage-IV radar rainfall (used as the reference) given the satellite-

precipitation product and for various spatial and temporal resolutions and rainfall rates. An 

application of this uncertainty model in hydrological modeling is tested over a mid-sized basin 

by propagating the uncertainty distribution into the SAC-SMA model to investigate the 

variability in the simulated streamflow resulting from the satellite-precipitation data. 

 The main conclusions drawn from the testing and comparison studies reported in this 

dissertation are as follows:   

1. A generalized-uncertainty model is developed to model the probability of the radar 

precipitation as the reference given the satellite-precipitation product. This model 

consists of four different parts for modeling the hit precipitation: false alarm, missed 

precipitation, and hit-zero precipitation in the form of a mixed conditional-probability 

distribution.  

2. The Generalized Normal Distribution is a skewed version of normal distribution, which is 

able to better model the hit-precipitation uncertainty. The model is evaluated in terms of 

the goodness-of-fit compared to the normal, Gamma, log-normal, and Weibull 

distributions. It is shown that, over different resolutions, this model always produces a 
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better fit.   

3. The parameters of the uncertainty model are calibrated so that they cover a range of 

spatial and temporal resolutions, which will remove the confusion of probability 

distribution choice when dealing with the uncertainty of satellite-precipitation products at 

different resolutions.   

4. The uncertainty model is evaluated over a 10° × 10° region in the southeastern United 

States for 2010 and is shown in two different forms: 

(a) First, it is assumed that the uncertainty of the satellite-precipitation product is 

only in the form of the bias of the hit precipitation and that the GND model is 

evaluated. The results show that the uncertainty range of 90% covers more than 

75% of the pixels, and the uncertainty range of 80% covers more than 65% of the 

pixels. This result supports the suggestion that the model can simulate the range 

of uncertainty to a good degree.  

(b) The complete uncertainty model is then evaluated considering all four 

components of the uncertainty. The results show that the uncertainty range of 

90% covers more than 85% of the pixels, and the uncertainty range of 80% covers 

more than 80% of the pixels. Furthermore, this result indicates the importance of 

the analysis of the false alarm and missed precipitation in the study of the 

uncertainty of satellite-precipitation products.  

5. The uncertainty model is evaluated over the Illinois River watershed, south of Siloam 

Springs, AR. The precipitation data are in 6-hourly and 0.35° resolution. The results 

show that the uncertainty model reduced the %bias of the precipitation estimation by 

18% and the RMSE by 20%.  
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6. In addition, the effect of the uncertainty of the satellite-precipitation estimation is 

evaluated in hydrological modeling. The proposed uncertainty model can reduce the 

%bias in streamflow simulation by 90% and the RMSE by 35%. 

The general framework of the proposed uncertainty model allows for its application to other 

satellite-precipitation products with the proper calibration of the model parameters, as was done 

for the PERSIANN data.  

To extend the model to other satellite-precipitation products, the model is calibrated for the 

IMERG product, and the preliminary results show improvement in the uncertainty analysis of 

this new precipitation product. 

 

9.2 Future Work 

Although the initial development, validation, and implementation of this precipitation- 

uncertainty model are completed in this research, there is still an ongoing effort to further test the 

applicability of this model in different regions, climates, and applications. 

1. In the future, the model should be tested on different basins with different climatology to 

investigate how different components of the uncertainty change in response to changes in the 

climate. 

2. The emphasis should be on investigating the limitation of the model calibration while 

reference data are limited because there are several regions of the world where a complete 

network of ground observation or precipitation data is not available. 

3. The effect of the seasonality of the model should be evaluated in regions with different 

seasons than the study area, e.g., tropical regions, the Southern Hemisphere. 

4. The uncertainty model should be further calibrated and evaluated using satellite-precipitation 
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data other than PERSIANN. As shown in Chapter 8, the model is calibrated for the IMERG 

product with limited data availability. The evaluation of the model for the IMERG product 

should be investigated when more data become available in the near future. 
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