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ABSTRACT OF THE DISSERTATION 

Development of cloud-free MODIS datasets for hydrologic applications  

by 

Hoang Tran 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2018 

Distinguished Professor Soroosh Sorooshian, Chair 

 

Space-based observations, emerged in the hydrology field in the last two 

decades, play a fundamental role in providing alternative information of hydrologic 

variables besides gauge measurements, especially in data scarce regions. Among all 

satellite products, products derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS) Satellite are popular due to the satellite's rapid re-visit time 

and adequate spatial resolutions. However, cloud obscuration limits the usage of 

products derived from MODIS because clouds block satellites from capturing the ground 

state of the earth surface. This dissertation aims to (1) recover two cloud-free MODIS 

datasets of snow and flood using a 3-D interpolation technique, namely, Variational 

Interpolation (VI) and (2) demonstrate their usefulness for hydrologic applications. 

In the first part of this dissertation, the computational stability of the existing VI 

method is improved, then, we apply the algorithm to produce a cloud-free snow dataset 

for CONUS from 2000 to 2017. Moreover, by taking into consideration specific 
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assumptions about the water body characteristic, we implement VI algorithm to remove 

clouds from MODIS flood maps. Promising results from a validation period over the 

Mississippi River are presented. We also couple the elevation information to derive the 

cloud-free MODIS water depth maps from the MODIS water extent maps. Water level 

maps are important for hydrological studies and can also act as references when the 

future Surface Water and Ocean Topography (SWOT) direct observations of water 

elevation are available in 2021. 

In the second part of this dissertation, we use the resulting cloud-free MODIS 

flood and water depth maps to improve a hydrological model by reducing model errors 

via calibration and data assimilation. The calibrated output inundation maps accurately 

reflect flood events for the Upper Mississippi River Basin in 2013 and 2014. Also, the 

downstream discharge via the data assimilation scheme can correctly predict flood 

events during the same validation period. The results indicate that the framework can 

be further used to monitor and forecast floods. 
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Chapter 1. Introduction 

1.1. Remote sensing hydrologic variables from satellites 

Satellites, classified into Geostationary Earth Orbit (GEO) and Low Earth Orbit 

(LEO) types, have played major roles in many aspects of life, including science, 

specifically, hydrology. Satellites provide direct and indirect observations for a wide 

range of hydrologic variables such as precipitation, surface water, and soil moisture. 

While GEO satellites travel in the same direction as the Earth's rotation, they can 

provide observations/estimates in a rapid timely manner. Their main disadvantage is 

that they are located a large distance from Earth (i.e. 35,800 kilometers above the 

equator) which increases their products spatial resolutions from 5 km to hundreds of 

km. In contrast, LEO satellites provide more flexible choices of resolution from 5 m to 1 

km depending on the re-visit time of each satellite. To study changes of hydrologic 

variables in terrain scales, products from LEO satellites are more appropriate. In the 

scope of this study, we employed images from LEO satellites, in more detail the 

Moderate Resolution Spectroradiometer (MODIS) sensor onboard of two NASA 

satellites, Terra and Aqua, to study snow cover and flood extents.  

Snow cover plays an essential part in hydrological and energy cycles. Due to its 

importance, government agencies such as NASA and NOAA have put a lot of effort in 

satellite missions to observe ground-snow properties. One of the missions has produced 

the MODIS Snow Cover Area (SCA) product (Hall, et al., 2002). Since its establishment, 
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the products have served as a reliable source of snow measurements for hydrologic 

studies as well as input in climate models. Researchers used and evaluated the product 

in various regions including the Columbia and Missouri river basins (Maurer, et al., 

2003), Austria (Parajka & Bloschl, 2006), Xinjiang, China (Wang, et al., 2009), and in 

Sierra Nevada (Rittger, et al., 2013)(Micheletty, et al., 2014). The datasets were also 

incorporated into a land surface model (Rodell & Houser, 2004) and a hydrology model 

(Andreadis & Lettenmaier, 2006) for data assimilation. 

On the other hand, floods are among the most devastating disasters. Hence, 

efforts to map floods from space have been studied extensively for more than two 

decades (Smith, 1997)(Frappart, et al., 2006)(Karlsson & Arnberg, 2009)(Stephens, et al., 

2012). Flood images derived from satellite observations are relatively straightforward 

due to the distinguishable reflectance characteristics of water. Again, among various 

satellite products, the rapid response MODIS surface reflectance products have shown 

their effectiveness in flood mapping and modeling (Brakenridge & Anderson, 2006). 

Furthermore, the products have been used as input of NASA/ Dartmouth Flood 

Observatory (DFO) Near Real Time (NRT) Global Flood Mapping product (Policelli & 

SlayBack, 2017). 

1.2. Problem statement/Research motivation 

Nevertheless, cloud obscuration limits the product's usage. Clouds block satellites 

from capturing the ground state of the earth surface (i.e. snow/water, land) (Figure 1-1).  
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Figure 1-1. Image captured by NASA Terra satellite over California on January 9, 2018. (Image 

originally courtesy of NASA and NOAA) 

Major concerns about MODIS SCA products polluted by clouds and snow/cloud 

discrimination have been repeatedly mentioned in assessment studies (Hall & Riggs, 

2007)(Riggs, et al., 2017) as well as in the product user guide (Riggs & Hall, 2015). Also, 

clouds frequently contaminate MODIS flood products during events such as hurricanes 

or storms (Figure 1-2). According to (Policelli & SlayBack, 2017), their group is also 

struggling with this problem in producing more timely flood products. 
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Figure 1-2. NASA MODIS Flood Map in two consecutive days. On Jan 5, 2014, clouds blocked an entire 

MODIS tile #090W040N 

Research that focuses on the removal of clouds from satellite images has been 

conducted for years and can be classified into two main categories: model-driven 

methods and data-driven methods. Physical models are based on the relationship 

between snow or water extent with other factors to estimate the extent beneath 

clouds. Representative studies for snow could mention: (Cline & Carroll, 1999)(Barrett, 

2003)(Molotch, et al., 2004)(Painter, et al., 2009). Alternatively, flood simulations by 

hydrological models are beneficial for both operational applications and disaster 

management due to the model’s dynamic responses (Bates & De Roo, 2000)(Begnudelli, 

et al., 2008)(Nguyen, et al., 2015)(Krajewski, et al., 2017). 

On the other hand, while data-driven methods to recover snow images polluted 

by cloud have been carried out for over a decade, studies attemping to remove clouds 
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from MODIS flood maps while preserving the product's original resolutions are still in an 

early stage. Based on snow persistent characteristics, (Dozier, et al., 2008) considered 

snow data as a sparse space-time cube that could be filled by temporal cubic spline 

interpolation. Their results demonstrated that the interpolated and smoothed product 

has more consistent snow-covered area in the Tuolumne and Merced River basins 

throughout the water year 2005 than the raw, cloud cover filtered data. However, the 

approach of Dozier et al. is limited to 1-D interpolation primarily because of frequent 

zenith angles oscillation and slow computation. Later on (Gafurov & Bardossy, 2009) 

introduced a series of six spatiotemporal filters to mitigate cloud cover from MODIS 

images in the Kokcha River basin in Afghanistan; detailed information of this study will 

be presented in subsequent sections. (Parajka & Bloschl, 2006) proposed a regional 

snow-line method (SNOWL) utilizing elevation information for de-clouding; the method 

robustly recovered snow cover maps from clouds over Austria. (Hall, et al., 2010) 

suggested a cloud-gap-filled (CGF) method to produce a snow cover map with cloud-

persistence count (CPC) for each grid where lower CPC snow grids are more likely to 

have snow. While approaches from (Parajka, et al., 2010) and (Hall, et al., 2010) are 

simple and proven to be suitable for use in hydrological and global models, persistent 

cloudy conditions during snow accumulation periods may significantly reduce their 

reliability. More recently, (Dong & Menzel, 2016) employed information from snow 

stations to estimate ground states of cloud-cover areas from MODIS in south-western 
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Germany. Although this approach is effective in areas with dense snow networks, it 

requires manually determining thresholds for each station's predicting capability of 

nearby snow cover based on station location and elevation. 

To completely remove clouds and delineate dynamic snow boundaries, (Xia, et 

al., 2012) implemented the Variational Interpolation (VI) method (Turk & O'Brien, 1999) 

for interpolating the three-dimensional space-time cube of snow cover proposed by 

Dozier et al. Evaluation results in the Sierra Nevada mountain range demonstrated that 

the method was robust and accurate since during the accumulation period of (25 - 27) 

March 2007 and the melting period of (14 - 16) March 2009. However, the main 

drawback of the original VI method is the system instability which limits its 

implementation on a larger scale. (Tran, et al., 2018) improved the algorithm stability by 

integrating MINimum RESidual (MINRES) iterations (Paige & Saunders, 1975) instead of 

the traditional LU decomposition when solving linear systems. 

From the previous success of the VI algorithm in removing clouds from MODIS-

SCA products, we propose an approach to use the algorithm in recovering flood 

inundation maps from partially cloud-covered images given an assumption of water 

bodies persistent characteristic. The cloud-free flood maps will fill the gap of missing 

data caused by cloud cover in satellite images. 
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1.3. Objectives 

The main objectives of this dissertation can be divided into three main parts: 

i. Implementing the improved VI algorithm over the Contiguous United States 

(CONUS) to create a cloud-free snow cover dataset from 2000 to 2017.  

ii. Removing clouds from MODIS images to create cloud-free flood maps. Validating 

those results with derived Landsat maps during flood events. 

iii. Improving hydrologic modeling using the resulted cloud-free flood maps from the 

previous steps through calibration and data assimilation. The main goals are to 

calibrate an inundation model via water extent maps and assimilate water level 

states of a routing model via water depth maps. In other words, this study 

demonstrates the usefulness of the cloud-free flood maps in flood simulating and 

forecasting. 

1.4. Dissertation outline 

This dissertation consists of five main chapters. Chapter 2 presents a procedure 

to create the cloud-free snow cover dataset for CONUS over 17 years. Chapter 3 details 

an implementation of the VI algorithm to create cloud-free MODIS flood maps and 

related comparison and validation. Chapter 4 provides steps in coupling flood maps to 

improve hydrologic modeling and forecasting. Chapter 5 summarizes the findings of this 

study and discusses future extensions of this work. 
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Chapter 2. Cloud-free snow cover maps over CONUS 

2.1. Review of the reference datasets: MOD10C1 and MYD10C1 

2.1.1. Technical details 

The main inputs in this study are products from MODIS/Terra Snow Cover Daily 

(MOD10C1) and MODIS/Aqua Snow Cover Daily (MYD10C1) version 6 (Hall & Riggs, 

2016) released in July 2016 by the National Snow & Ice Data Center (NSIDC). These daily 

Climate Modeling Grid (CMG) products are in a sequence of MODIS snow product suite 

(Riggs & Hall, 2015), beginning with the 500 m resolution swath product (MOD10_L2). 

As reported in (Riggs & Hall, 2015), the swath level snow mapping algorithm is 

based on the Normalized Difference Snow Index (NDSI)(Crane & Anderson, 

1984)(Dozier, 1989). NDSI is calculated for Terra/MODIS using band 4 and band 6 and 

for Aqua/MODIS using band 4 and band 7. 

���� = BAND 4 − BAND 6BAND 4 + BAND 6 (2-1) 

The global criteria for snow is NDSI greater than 0.4 and near-infrared reflectance 

(band 2) greater than 0.11 and band 4 reflectance greater than 0.10. To increase snow 

detection sensitivity in forested landscapes, the MOD10_L2 product combines the 

Normalized Difference Snow Index (NDSI) range from 0.1 to 0.4 with the Normalized 

Difference Vegetation Index (NDVI) (Riggs & Hall, 2015). After a pixel is classified as 

snow, "it is subjected to a series of screens to alleviate snow commission errors and flag 
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uncertain snow detections" (Riggs & Hall, 2015). More details about the screens can be 

found in the product user guide. Here, we only summarized the screens main 

thresholds: (1) Version 6 combines surface temperature and height screen; if snow 

pixels are in low elevation (< 1,300 m) and warm surfaces (> 283 K), they are reversed to 

no-snow. This new surface temperature screen solves the problem of detecting snow in 

mountain ranges during spring and summer brought up by (Rittger, et al., 2013); (2) If 

snow pixels have low reflectance (Very High Visible (VIS) of band 2 is ≤ 0.10 or band 4 is 

≤ 0.11) or low illumination (solar zenith angles > 70°), they will be set as no-snow or 

night pixels; (3) Low NDSI, or unusually high Short-Wave Infrared (SWIR) reflectance 

snow pixels, will be converted back to no-snow pixels. 

The next product in the sequence, MOD10A1, only selects one 'best' observation 

from all the MOD10_L2 swaths over a location using strict criteria including solar 

elevation, distance from nadir, and observation cover. Selecting an observation closest 

to nadir with maximum coverage of the cell (Hall & Riggs, 2007) could solve problems 

from the off nadir viewing from the MODIS reflectance product (MOD09) mentioned by 

(Dozier, et al., 2008). 

The main input of the study, MOD10C1/MYD10C1, "maps 500 m MOD10A1 

observations into 0.05o CMG cells, outputs for a grid cell are determined by the 

percentage of counts of observations, snow or cloud, mapped in the cell" (Riggs & Hall, 

2015).  
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It should be noted that the launch dates of the two satellites, Terra and Aqua, are 

different with December 18, 1999 and May 4, 2002 for Terra and Aqua respectively. In 

this study, the term MODIS-SCA product will be used to represent both products, 

MOD10C1 and MYD10C1, from Terra and Aqua whenever the text refers to 2002 or 

later. When referencing prior to 2002, the term only represents products from the Terra 

satellite.  

2.1.2. Product's usage and evaluation 

The daily MODIS snow product suite proves its usefulness in snow studies by an 

increasing number of citations in recent years. Different research employed the product 

to directly study change of snow cover in time from various continents of the world: 

Africa (Wunderle, et al., 2016), Asia (Tekeli, et al., 2016)(Yi, et al., 2016)(Li, et al., 

2016)(Tang, et al., 2017)(Zhang, et al., 2017), Europe (Krajci, et al., 2016)(Harer, et al., 

2018), North America (Marcil, et al., 2016)(Schneider & Molotch, 2016)(Verbyla, et al., 

2017), and South America (Perez, et al., 2018)(Malmros, et al., 2018).  

The product suite has "an overall accuracy of about 93%, lower accuracy is found 

in forested areas" (Hall & Riggs, 2007). More recent studies from (Liu, et al., 2008) and 

(Rittger, et al., 2013) also highlighted scenarios in which dense canopy limits the product 

ability to detect snow cover. 
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2.1.3. Problem statement 

It is clear that cloud covers severely and frequently hinder MODIS snow data. 

Figure 2-1 shows an example of cloud cover over most of the contiguous United States 

(CONUS) on January 2nd, 2017. Section 2.6 below will demonstrate the effect of cloud 

hindrance on the original dataset.  

 

Figure 2-1. Merged snow cover image from MODIS Terra and Aqua satellites on January 2nd, 2017 

Therefore, as mentioned in Section 1.2, research on removing clouds from 

satellite snow cover images has been carried out for decades. While approaches based 

on physical models can couple other information to provide accurate estimates of snow 

cover, it is difficult and computationally expensive to implement these models on a 

global scale. On the other hand, data-driven methods are more robust in the sense of 
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using available information both in time and space to interpolate data in missing areas. 

(Xia, et al., 2012) introduced the Variational Interpolation (VI) method which accurately 

and completely removed clouds from snow cover images over the Sierra Nevada 

mountains. This study will continue to develop the algorithm in order to implement it on 

a much larger scale (i.e. CONUS). 

2.2. Study domain 

The spatial domain of the dataset developed in this study is the contiguous 

United States (CONUS) which covers about 8,080,464.3 km2, ranges between 24o30N 

and 49o25N in latitude and from 66o57W to 124o46W in longitude. During winter 

seasons, from November to the end of February, the snow cover extent for CONUS 

varies from one million km2 to four million km2. This snow cover plays a crucial role in 

energy and hydrological cycles. 

2.3. Methodology 

Overall, the process of creating a cloud-free product from MOD10C1/MYD10C1 

starts with reclassifying MODIS into one of three categories, namely snow, land (no-

snow), and cloud based on the threshold of 50% fractional: if a grid has a percentage of 

snow greater than 50%, it is set as snow. If the sum of the snow and cloud fractions in 

one location is smaller than 50%, a grid is marked as land (no-snow). If neither snow nor 

no-snow, a grid is set as cloud. Next, the reclassified MODIS images are passed through 
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two subsequent steps based on a series of filters and the VI algorithm. These two steps 

are discussed in the following subsections. 

2.3.1.1. Mitigated filters 

The filters are used as a first step to retrieve cloud-free snow cover images. This 

method has been adopted from (Gafurov & Bardossy, 2009) and it consists of five filters 

to mitigate cloud obstruction: (1) combining Terra and Aqua snow cover images in a 

same day, (2) short-term temporal filter, (3) elevation filter, (4) neighborhood spatial 

filter, and (5) long-term temporal filter. Figure 2-2 illustrates the flow of cloud polluted 

images through the filters and the functions applied by the filters. The importance of 

using the filters is that they provide the necessary information about snow boundaries 

in order for the VI algorithm to be applied. 
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Figure 2-2. Flow chart of cloud mitigation filters. The process consists of five filters: (1) combining 

Terra and Aqua snow cover images in a same day, (2) short-term temporal filter, (3) elevation filter, 

(4) neighborhood spatial filter, and (5) long-term temporal filter. 

The first filter implies an assumption that no snowmelt or snowfall occurred 

within two observations of MODIS in one day. Thus, as long as one satellite views a pixel 

as snow (or land), this ground status will be assigned to the pixel in the combined image. 

The formula is given as follows in equation (2-2): 

�(�,�,�) = ��� (�(�,�,�)� , �(�,�,�)� ) (2-2) 
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Where x and y are spatial (i.e. longitude and latitude) coordinates of pixel S; t is 

the day index of pixel S. SA and ST represent pixels from Aqua and Terra respectively. The 

second filter assigns the cloud grids as snow (or land) if the cloud covered pixel shows 

both snow (or land) in the preceding and succeeding days. This step is formulated as 

equation (2-3): 

�(�,�,�) = 1 �� (S(�,�,���) = 1 � ! S(�,�,�"�) = 1) (2-3) 

In the third filter, maximum and minimum elevation lines defined as the highest 

and lowest elevation of snow grids in the image are determined. To ensure the snow 

lines are correctly determined, the condition of this filter is that at least 70% of the 

image is cloud free. Otherwise this filter will be skipped. The filter assigns grids with a 

lower elevation than the minimum elevation line #$%&' (() as land. Likewise, grids with a 

higher elevation than the maximum elevation line #$)�' (() are assigned as snow. The 

formulas are given as follows in equations (2-4) and (2-5): 

�(�,�,�) = 0 �� (#(�,�) < #$%&' (()) (2-4) 

�(�,�,�) = 1 �� (#(�,�) > #$)�' (()) (2-5) 

where H(x,y) is the elevation of a pixel (x,y) location. The last two filters apply 

spatial and temporal processing respectively. First, the fourth filter merges two 

neighborhood spatial filters of Gafurov and Bardossy into one. Specifically, if three out 

of four direct "side-bordering" pixels of the cloudy pixel indicate snow/land, the cloudy 

pixel will be set as snow/land. Second, when considering all eight neighboring pixels, if 
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any pixel both has lower elevation than the center elevation and shows snow, the 

center pixel will also be assigned as snow. This step is formulated as equation (2-6): 

�(�,�,�) = 1 �� (S(�"-,�"-,�) = 1 � ! H(�"-,�"-)/- ∈(��,�)1 < H(�,�)) (2-6) 

In the last filter, a new long-term temporal filter was developed based on the fact 

that the annual snow-status time series can be separated into three types of periods: 

snow, land, and transition periods. For a snow period, the grids either show snow or 

cloud, therefore, cloudy pixels would be assigned as snow. On the other hand, for a land 

period, the grids either show land or cloud, therefore, cloudy pixels would be assigned 

as land. The selection of length of the period is subjective, but must be long enough to 

avoid phase change or long-lasting cloudy periods. For this study, we chose a 30-day 

window period. Interested readers should refer to (Gafurov & Bardossy, 2009) for 

detailed information about the filters. 

2.3.1.2. Variational Interpolation algorithm 

The time-varying snow cover boundaries resulted from previous filters are 

modeled by the VI algorithm (Turk & O'Brien, 1999) using a three-dimensional implicit 

function formulated as: 

�(�2) 3 > 0= 0 < 0   
� 4�!5 4 67 8695:�( 4 67 ;6< !�:�546<(4�!5 4 67 8695:  (2-7) 

where �2 = (�� �= ()� ∈ >?, x1 and x2 are spatial coordinates on the projection 

plane, and t is the time. In three spatial dimensions, implicit functions deliver relatively 
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simple techniques to generate complicated but useful surfaces (Gomes, et al., 2009). 

Once the snow cover implicit surface in space and time is determined, cloud-free images 

from selected days can then be obtained through cross sections of the surface(Xia, et 

al., 2012). 

One thing to note is that interpolation from implicit surfaces depends heavily on 

the surface smoothness. In order to apply VI for snow cover, we have to make a 

hypothesis about the dynamic property of snow cover boundaries.  Numerous theories 

in Physics such as the Principle of Least Action (De Maupertuis, 1744), Principle of Least 

Forcing (Gauss, 1829), and the Variational Principle (Lanczos, 1970) proved that a 

natural process always operates in its most efficient way. As energy cost is one of the 

most crucial factors of efficiency, a natural surface should hold the minimum energy 

cost. Hence, it can be represented as a linear combination of the radial-basis function 

established at selected constraint points on the surface according to the following 

equation (Xia, et al., 2012)(Duchon, 1977): 

�(�2) = 0 ⟹ A 7%>(�2 − �BCCC2) = 0
D

%E�
 (2-8) 

where F is a set of � weights and >(�2 − �BCCC2) is a selected radial-basis function 

established at � constraints points. We decided to use the thin plate function  

>(. ) = := log : with : = ‖�2 − �BCCC2‖ to present the radial-basis function. With constraint 
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points collected on snow boundaries in discrete times, the weights of those points can 

be computed by solving the linear system to create the implicit surface. 

To provide VI with necessary constraint points, the Douglas-Peucker algorithm 

has been used (Douglas & Peucker, 1973). This one parameter method is simple and 

widely used in vector graphics simplification and cartographic generalization. Given a 

relative distance dimension ε (0 < L < 1) and a starting curve of an ordered set of 

points, the algorithm recursively divides the curve to discard points closer than ε to line 

segments. The larger ε, the less points will be kept (Douglas & Peucker, 1973). After 

experimenting with a wide range of ε,  a value of L = 0.2 has been chosen to preserve 

shapes of snow boundaries and reduce the number of points fed into the VI algorithm. 

2.3.1.3. Improving the system stability for the VI algorithm 

The performance of the original VI algorithm (Xia, et al., 2012) is unstable when a 

massive amount of constraint points is collected. The default method for solving the 

linear system (2-8) is LU (lower-upper) decomposition introduced by Tadeusz 

Banachiewicz in 1938(Schwarzenberg-Czerny, 1995). According to (Schwarzenberg-

Czerny, 1995), LU decomposition, used to solve linear equations by factoring a matrix as 

the product of a lower triangular matrix and an upper triangular matrix, which is 

subjected to singular symmetric systems. For example, if constraint points were 

collected for the CONUS region in January 2009 (i.e., ~130,000 points), the linear system 

(2-8) will become singular and the whole system will break down. A proposed solution 
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for this problem is using MINRES algorithm by (Paige & Saunders, 1975). MINRES is a 

Krylov subspace method for solving large symmetric systems. When applied to an 

inconsistent system (i.e., a singular symmetric linear problem), (Paige, et al., 1995) and 

(Choi, 2006) reported that MINRES maintains the system stability and provides a least-

squares solution.  

Paige et al. (1995) analyzed the convergence behavior of the MINRES method in 

singular systems and concluded its residual monotonically decreases toward the origin 

satisfying several convergence properties.  

In our implementation of the MINRES algorithm, to ensure both system stability 

and accuracy, besides setting the tolerance threshold to 1e-08 (i.e. the smaller the 

threshold is, the more reliable the results become), we also specified the maximum 

number of iterations to be 1000. Hence, when either these conditions were reached, 

the algorithm terminated. In a small experiment, we compared the system stability of VI 

using both traditional LU decomposition and the MINRES method over the CONUS 

region in January 2009. The performance was measured by the time elapsed over the 

increment of the interpolation period. Both methods started by using five consecutive 

days as a calculation unit. However, as more points were collected, the ordinary LU 

decomposition resulted in a system breakdown (Figure 2-3). In contrast, the MINRES 

method demonstrated its superiority by maintaining the system stability and 

accelerating the computation time. It is worth noting that, in all singular cases, the 
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MINRES method terminated before reaching the maximum number of iterations which 

indicated that system accuracy was also guaranteed. 

 

Figure 2-3. Results of computational efficiency comparison between the VI algorithm integrated with 

LU decomposition and the MINRES iteration. Computation time to solve a linear equation using LU 

decomposition (red) and MINRES iteration (blue) regarding the number 

2.3.1.4. Discovering the most efficient interpolation period 

(Xia, et al., 2012) claimed that five-day time series expose enough snow cover 

boundaries as inputs for the VI algorithm and are efficient for the computation. 

However, since the integration of the MINRES method to the VI algorithm, 

computational efficiency has greatly improved, the experiment showed that longer time 

series have the tendency in better accuracies. Nevertheless, once again, we have to 
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balance between accuracy and cost efficiency: how many more days need to be 

included to increase the POD by 0.1, or is it worth it to have a much higher 

computational cost in order to make a small improvement in accuracy. 

The experiment was carried out by choosing results of only the middle day of 

interpolation periods as it contained the most information of snow cover boundaries. 

Four different numbers of consecutive days were taken into account, namely, 9 days, 19 

days, 29 days (about one month), and 59 days (about two months). The results were 

evaluated in two separate winter periods (in 2014-2015 winter and 2015-2016 winter) 

by the SNOTEL network using three categorical verification scores of FAR, POD, and HK. 

 

Figure 2-4. Compare the FAR, POD, and HK between different interpolation periods. (Left) The period 

from January 1, 2015 to February 6, 2015. (Right) The period from November 16, 2015 to January 26, 

2016 
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When we increased the number of days, there was a noticeable gap in FAR and 

POD between the 19-day calculation unit and the 29-day calculation unit in the first 

period (January 1, 2015 - February 6, 2015). The FAR third quartile of the 29-day 

calculation unit was 0.026, which was nearly the 19-day calculation unit FAR first 

quartile of 0.027; in contrast, the median increased by 0.05 from 0.85 to 0.9 of 19-day 

POD and 29-day POD, respectively. In general, when using the 29-day interpolation 

period, the VI algorithm had much better results than using shorter interpolation 

periods. Furthermore, the 29-day interpolation period had results close to the 59-day 

interpolation period, which required doubled the computational time. 

All in all, in considering the number of consecutive days as a calculation unit, 29 

consecutive days seemed to capture most of the dynamical changes and exposure of 

snow cover, and hence produced satisfactory results when applied to the VI method. 

Moreover, this time frame is also productive for computational efficiency. From now on, 

the 29-consecutive-day unit is used as a calculation unit for all the VI implementations. 

2.3.1.5. Assessing the accuracy of different days in the interpolation 

period 

The MODIS-SCA products have a lag time of around 2 days with respect to real 

time. Despite that, the products are very useful in near real-time snow monitoring (Hall, 

2002). Naturally, one might raise the question: How accurately can the VI algorithm 
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provide clear-cloud snow images in near real-time? To answer this question, we made 

an experiment to compare the accuracy of different days in the interpolation period. 

We used 15 days from the middle day to the last day of the interpolation period 

for comparison. The results of the above study period were validated using snow 

records from around 950 stations over CONUS. Three categorical verification scores 

were used for the above experiment. 

 

Figure 2-5. Compare the FAR, POD, and HK for different days in the interpolation periods. (Left) The 

period from January 1, 2015 to February 6, 2015. (Right) The period from November 16, 2015 to 

January 26, 2016 

The experiment clearly demonstrated that middle days had the best results, and 

the accuracy decreased when approaching the end of the interpolation periods as the 

snow cover information became more scarce. Yet, both scores from the last days were 
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still considered as adequate as the middle days output from VI algorithm using the 19-

day interpolation period. For example, the last day of the period had medians of 0.035, 

0.86, and 0.68 with FAR, POD, and HK, respectively, in comparison with 0.04, 0.86, and 

0.79 from the middle days of VI algorithm using the 19-day interpolation period. We 

suggest to use the last days for near real-time snow monitoring; later on, when there is 

enough information of snow cover boundaries, these days will be updated by re-running 

the VI method and treating them as middle days of the interpolation periods. 

2.4. Dataset creation 

The cloud-free dataset was developed by applying the mitigating filters and the 

VI algorithm introduced in the previous subsections. Regarding the use of VI algorithm, 

wide ranges of interpolation periods were examined to obtain the optimum results in 

terms of accuracy; a period of 30 days has been selected. This interpolation period is 

used in a moving window approach such that the window is centered around the day 

under consideration in order to efficiently utilize information about snow boundaries. 

The interpolation period started from February 24, 2000; the whole dataset was created 

in more than one month, using the High Performance Clusters (HPC) of the University of 

California, Irvine. 
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2.5. Validation 

2.5.1. MODIS-SCA validation using the SNOTEL network 

MODIS-SCA products have been evaluated in numerous studies and proven their 

accuracy. Nonetheless, due to cloud obscuration, most of the research only selected 

days with little or no clouds. This may lead to data interruption, especially during snow 

accumulation periods, when clouds appear more frequently in snow areas. In this study, 

we decided to count all the numbers of snow stations from November 2016 to the end 

of February 2017 which fall into five categories: (1) Hit stations, (2) Miss stations, (3) 

False stations, (4) Correct Negative stations, and (5) Cloud-hindered stations. We took 

consecutive days in a relatively long period to not only show the dynamic change of 

cloud and snow, but more importantly to validate the MODIS-SCA accuracy. 
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Figure 2-6. Number of SNOTEL stations in five categories: Hit, Miss, False, Correct Negative, and Cloud-

hindered with respect to the merged MODIS images. 

Figure 2-6 demonstrates that, in the first two weeks of winter, the merged 

MODIS images failed to capture around 30 to 40 stations that showed snow. This is due 

to a fairly large area (0.05o-by-0.05o) covered by one pixel of MODIS; when snow started 

accumulating, the snow proportion of that pixel may still be smaller than 50%, which 

leads to miss detection. Fortunately, after these two weeks the merged MODIS captured 

the hit stations quite well. Although the number of miss stations throughout the period 

is low, 2.66% in total number of stations, they located consistantly in complex land 

surface terrain of the Sierra Nevada Mountains (Xia, et al., 2012). This problem of 

MODIS-SCA products has been discussed in (Hall, 2002) (Klein & Barnett, 2003) which 
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show that MODIS fractional snow cover using NDSI needs major adjustments for 

multifarious land cover types areas. 

One more thing to notice from the experiment is a very high percentage of cloud-

hindered stations (74,608 stations; i.e., around 66%) throughout the period (Table 2-1), 

which illustrates the limited usage of the products. The last experiment would mention 

this aspect again in comparing the merged MODIS images with results from the VI 

algorithm. 

Table 2-1. Total number of stations for validation the merged MODIS from November 2016 to 

February 2017 

 Total number of stations 

 Hit Miss False Correct 

Negative 

Cloud 

Hinder 

Total 

Merged 

MODIS 
25,869 3,001 579 8,960 74,608 113,017 

2.5.2. Landsat validation 

2.5.2.1. Region selection 

In this study, Landsat 7 ETM+ was used as a baseline to validate the spatial 

continuity of the snow cover dataset since Landsat has high spatial resolution (30m) and 

full coverage of the dataset time range (2000 to 2017). To avoid a potential saturation of 

ETM+ visible bands (Painter, et al., 2009), only Landsat 7 Tier 1 images have been 

utilized. Data from October to March of each year with a cloud threshold of less than 

15% was obtained from the U.S. Geological Survey website (https://landsat.usgs.gov). 

Landsat 7 Tier 1 product ensures the highest available data quality for time-series 
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processing analysis (LEDAPS; (Masek, et al., 2006)). Tier 1 Landsat data has RMSE no 

greater than 12 m and can be considered consistent and inter-calibrated across the full 

collection (https://landsat.usgs.gov). 

In order to map snow cover from Landsat images, the SNOWMAP algorithm 

(Dozier, 1989)(Hall, et al., 1995) was used. It is based on NDSI index which is calculated 

for Landsat using band 2 and band 5: 

���� = BAND 2 − BAND 5BAND 2 + BAND 5 (2-9) 

When NDSI is greater than or equal to 0.4 and the band 4 reflectance value is 

greater than 11%, the pixel is classified as snow (Huang, et al., 2011). The resolution of 

the Landsat snow cover is then up-scaled to 0.05o and re-projected into the geographic 

coordinate system with the spheroid of WGS84 to match with the MODIS-SCA product 

resolution and projection. The evaluation was conducted in four regions with different 

climate conditions, elevations, and land cover, namely, the Seattle region, the 

Minneapolis region, the Rocky Mountain, and the Sierra Nevada of California. The 

following paragraphs illustrate the four regions and their characteristics. 

A total of 50 samples of Landsat images from March 28, 2000 to February 15, 

2017 were used for validation (See Table 2-2). The four selected regions for validation in 

this study include two high altitude regions, namely the Rocky and Sierra Nevada 

Mountains. The Rocky Mountains are located between 40.80o and 42.73o N in latitude, 
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and 105.51o and 108.25o W in longitude. This area has a high average altitude of 2500m 

with a large amount of grasslands. The region's snow regime is "predominantly 

continental with some pockets of intermountain characteristics" (Painter, et al., 2009). 

On the other hand, the Sierra Nevada Mountains (37.95o to 39.89o N, 118.84o to 121.45o 

W) is under great influence of maritime snow climates. Elevation ranges from 2m at the 

foothills to around 2800m on the mountain (in the sample area) with equal portions of 

needle leaf forest, savannas, and grasslands. 

Moreover, two additional regions were selected for validation. Firstly, a region 

around Seattle located between 46.46o and 48.42o N in altitude, and 123.32o and 

123.04o W in longitude was selected. The region is known for its rainy climate with the 

Cascade Mountain range located on the east side; winters in this region are typically wet 

with significant snow accumulation in the mountain area. Land cover is mostly 

evergreen needle leaf forest and mixed forest. Secondly, a region around Minneapolis 

located between 43.62o and 45.60o N in latitude, and 92.09o and 94.97o W in longitude 

was selected. It has an average elevation of 330 m and a land use pattern primarily 

consisting of cropland/natural vegetation mosaic and urban. Snow is the main form of 

precipitation from November through March with an annual state-wide average of 110 

snow-cover days. 
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2.5.2.2. Results 

Table 2-2. Landsat validation for the performance of cloud-free dataset 

Region Landsat no. 
and 
path/row 

Date POD FAR Initial cloud 
ratio in 
MODIS 

Seattle L7: 46/27 

03/28/2004 0.886 0.280 0.035 

10/04/2009 0.896 0.130 0.012 

03/24/2014 0.886 0.236 0.133 

03/29/2016 0.882 0.280 0.027 

Minneapolis L7: 27/29 

01/10/2001 1.000 0.130 0.063 

02/27/2001 0.999 0.019 0.285 

03/15/2001 0.988 0.005 0.762 

02/17/2003 0.864 0.063 0.288 

12/23/2005 0.996 0.210 0.223 

01/27/2007 0.994 0.270 0.777 

01/14/2008 1.000 0.195 0.103 

01/30/2008 0.982 0.220 0.856 

12/15/2008 0.999 0.245 0.858 

02/01/2009 1.000 0.186 0.001 

01/06/2011 0.993 0.268 0.110 

03/27/2011 0.959 0.208 0.110 

03/06/2015 0.916 0.246 0.140 

12/03/2015 1.000 0.269 0.021 

Rocky L7: 35/31 

01/02/2001 0.994 0.111 0.021 

03/07/2001 0.948 0.168 0.179 

01/13/2005 1.000 0.178 0.113 

12/15/2005 0.995 0.175 0.440 

12/18/2006 1.000 0.228 0.250 

01/22/2008 0.998 0.086 0.046 

03/10/2008 0.981 0.192 0.164 

12/23/2008 0.999 0.215 0.358 

03/29/2009 0.950 0.246 0.389 

11/24/2009 0.993 0.215 0.083 

12/10/2009 0.991 0.134 0.052 

02/15/2011 0.964 0.149 0.115 

02/18/2012 0.998 0.095 0.104 

01/03/2013 1.000 0.134 0.063 

12/05/2013 0.995 0.092 0.072 

01/06/2014 1.000 0.222 0.265 

03/30/2015 0.903 0.149 0.011 
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12/27/2015 1.000 0.120 0.024 

02/15/2017 0.860 0.240 0.169 

Sierra 

Nevada 
L7: 43/33 

03/28/2000 0.924 0.127 0.183 

02/27/2001 0.904 0.144 0.033 

03/05/2003 0.909 0.204 0.033 

03/21/2003 0.923 0.202 0.652 

03/07/2004 0.935 0.135 0.023 

03/10/2005 0.940 0.162 0.023 

02/15/2008 0.909 0.250 0.039 

03/02/2008 0.902 0.151 0.100 

03/18/2008 0.933 0.181 0.221 

03/05/2009 0.985 0.155 0.176 

03/16/2013 0.928 0.230 0.040 

03/19/2014 0.878 0.224 0.256 

03/24/2016 0.889 0.164 0.464 

   
0.955 0.179 0.199 

 

We compared the performance of the cloud-free dataset with Landsat using two 

categorical validation indices, Probability of Detection (POD) and False Alarm Ratio 

(FAR). 

OP� = #�(#�( + Q�44 (2-10) 

RS> = R�T45#�( + R�T45 (2-11) 

Over the validation scenarios, POD ranged from 0.860 to 1.000 with an average 

of 0.955. Modest results of POD with a mean of 0.888 came from the Seattle region 

since this area has a complex topography and dense forests which hindered the original 

MODIS-SCA product snow detection. Meanwhile, regions in high elevations or frequent 

snow areas showed high POD. Since the VI algorithm retrieved ground states of cloud 

hindered pixels, it is also important to validate FAR of the cloud-free dataset. Across 50 
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validation scenes, the dataset yielded a reasonable average FAR of 0.179 with the 

highest FAR of 0.28 for 2 days, March 28, 2004 and March 29, 2016, in the Seattle 

region. The dataset's modest performance in the Seattle region is justified by the rapidly 

varying topography and dense needle leaf forests in this region. These characteristics 

impose difficulties in mapping snow for this region from satellites (Rittger, et al., 

2013)(Hall & Riggs, 2007)(Liu, et al., 2004)(Liu, et al., 2008). 

 

Figure 2-7. A validation example over the Sierra Nevada region on March 21, 2003. First row, left to 

right: a base map with state lines in red and a cyan rectangle to indicate the validation region, a table 

showing Probability of Detection (POD) and False Alarm Ratio (FAR) results for the Merged MODIS 

image (second row, left) and the Cloud-free MODIS image (second row, center), validated with the 

Landsat7 Image (second row, right). 

In Table 2-2, we also computed the percentage of clouds in the combined MODIS 

images from Terra and Aqua for each region to demonstrate the effect of the VI 
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algorithm. In general, since we only selected Landsat images with little or no cloud 

percentage, the corresponding merged MODIS images are likely to contain less clouds 

(Table 2-2). However, days when cloud cover polluted heavily the merged MODIS 

images (e.g., January 30 and December 15, 2008 in Minneapolis or March 21, 2003 in 

Sierra Nevada), the VI algorithm effectively recovered snow boundaries to correlate well 

with the Landsat snow-cover maps. Figure 2-7 shows an example of the snow boundary 

recovered from cloud cover using VI to match with the Landsat image. 

2.5.3. Bootstrap testing 

In order to evaluate the accuracy of the mitigated filters and the VI algorithm, a 

cross-validation method is used. The validation process consists of three steps. First, a 

record of synthetic cloud-covered images was developed. This was performed by 

selecting combined MODIS snow images over CONUS that satisfies two conditions, 

namely 20% or less cloud cover area and 4% or more snow cover area. Subsequently, 

these images were overlaid by cloud cover extracted from MODIS images with a cloud 

pollution rate higher than 80% to create the synthetic record. Second, each filter and 

the VI algorithm was applied sequentially to remove clouds from images in the synthetic 

record. Third, the resulting image after each step was evaluated using the previously 

selected low cloud cover MODIS images. Table 2-3 shows the evaluation results for each 

filter and the VI algorithm for each day averaged across different cloud cover scenarios. 
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Table 2-3. Cross validation for each filter 

Days Filters 
Percentage of  
Cloud 
Elimination 

POD FAR 

Jan 24, 2006 

Short-term temporal filter 0.071 0.985 0.016 

Elevation filter 0.021 0.983 0.017 

Spatial filter 0.105 0.981 0.017 

Long-term temporal filter 0.465 0.970 0.025 

VI algorithm 0.339 0.826 0.028 

Jan 26, 2007 

Short-term temporal filter 0.101 0.983 0.012 

Elevation filter 0.021 0.981 0.013 

Spatial filter 0.104 0.980 0.013 

Long-term temporal filter 0.397 0.981 0.013 

VI algorithm 0.376 0.953 0.017 

Jan 31, 2009 

Short-term temporal filter 0.135 0.984 0.013 

Elevation filter 0.025 0.981 0.014 

Spatial filter 0.080 0.980 0.014 

Long-term temporal filter 0.447 0.979 0.014 

VI algorithm 0.313 0.944 0.016 

Mar 18, 2009 

Short-term temporal filter 0.317 0.964 0.031 

Elevation filter 0.049 0.956 0.031 

Spatial filter 0.017 0.954 0.031 

Long-term temporal filter 0.530 0.949 0.031 

VI algorithm 0.087 0.867 0.035 

Jan 18, 2013 

Short-term temporal filter 0.234 0.988 0.010 

Elevation filter 0.037 0.988 0.010 

Spatial filter 0.050 0.986 0.011 

Long-term temporal filter 0.422 0.978 0.016 

VI algorithm 0.256 0.932 0.025 
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Mar 13, 2014 

Short-term temporal filter 0.066 0.986 0.021 

Elevation filter 0.012 0.982 0.022 

Spatial filter 0.116 0.980 0.022 

Long-term temporal filter 0.453 0.965 0.049 

VI algorithm 0.353 0.917 0.051 

Mar 6, 2015 

Short-term temporal filter 0.146 0.986 0.012 

Elevation filter 0.035 0.981 0.013 

Spatial filter 0.090 0.979 0.014 

Long-term temporal filter 0.418 0.976 0.012 

VI algorithm 0.310 0.931 0.018 

Mar 7, 2015 

Short-term temporal filter 0.451 0.980 0.030 

Elevation filter 0.065 0.975 0.031 

Spatial filter 0.000 0.973 0.031 

Long-term temporal filter 0.377 0.971 0.028 

VI algorithm 0.107 0.933 0.029 

Nov 23, 2015 

Short-term temporal filter 0.107 0.985 0.013 

Elevation filter 0.020 0.980 0.014 

Spatial filter 0.094 0.979 0.014 

Long-term temporal filter 0.416 0.973 0.056 

VI algorithm 0.364 0.863 0.063 

 

The metrics used for evaluation include POD, FAR and cloud removal ratio. The 

results shown in Table 2-3 demonstrate that each filter contributes to the cloud removal 

while maintaining high accuracy (i.e. POD and FAR). After complete removal of clouds, 

the average accuracy metrics of the images are 0.907 and 0.031 for POD and FAR 

respectively. Furthermore, it can be seen that the VI algorithm generally is the main 
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factor in cloud removal with an average percentage of 0.278. Despite this high cloud 

removal ratio, the VI algorithm maintains high accuracy with an average change of -

0.075 and +0.014 in POD and FAR respectively. 

2.6. Case studies 

The dataset produced in this study is useful in hydrological studies due to its 

adequate resolutions and validated accuracy as discussed in the previous section. In this 

section, we provide two simple applications of the dataset to serve as an example of the 

potential usages. 

2.6.1. CONUS Snow Cover Extent 

The annual average snow cover extent over CONUS, measured in million square 

kilometers, from both the merged MODIS and cloud-free snow cover datasets was 

compared. The comparison was performed from 2001 to 2016. Results show that 

statistics of snow cover using the merged MODIS could be substantially different from 

the cloud-free maps. As shown in Figure 2-8, the merged MODIS images (blue) show 

significantly less snow cover extent than the cloud-free dataset (red). The cloud-free 

dataset maintains an average snow cover of 1.342 million km2 in the period (2001-2016) 

compared to 0.462 million km2 from merged MODIS. This shows that using this dataset 

has major implications in quantifying the amount of snow for different hydrologic 

processes. 
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Figure 2-8. Comparison of annual average snow cover extent area over the CONUS computed from 

merged MODIS and the cloud-free snow cover product. The figure compares the annual average snow 

cover extent area over CONUS (in million km2) as computed from (a) the cloud-free snow cover 

product developed in this study (red bars) and (b) merged MODIS product (blue bars). The time period 

of the comparison is from 2001 to 2016. 

2.6.2. Annual number of snow days 

In order to examine the differences in the two datasets beyond the yearly and 

monthly average of snow extent, we also studied the number of snow days over CONUS. 

From this perspective, we could compare the snow spatial distribution of the two 

products. As shown in Figure 2-9, during the period (2001 – 2016), the merged MODIS 

estimates 100 days as the annual number of snow days in the mountainous area of the 

Western US which has an altitude range of (910 - 1830 m). However, the cloud-free 
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images estimate the number of snow days in the mountain states and the Sierra Nevada 

area as 160 to 200 days per year. 

In two drought years, 2002 and 2003, there was considerably less snow days in 

the western mountains and the Midwest states, such as Colorado, Wyoming, and South 

Dakota, as illustrated by the cloud-free maps. Moreover, the images also show shorter 

snow seasons from the Northeast to the Northwest of CONUS. 
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Figure 2-9. Comparison of the annual number of snow days over CONUS computed from merged 

MODIS and the cloud-free snow cover product. The figure compares the annual number of snow days 

over CONUS during the period 2001-2016 as computed from (a) Merged MODIS product and (b) the 

cloud-free snow cover product developed in this study. 
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The cloud-free dataset provides considerably different estimates regarding both 

the amount of snow as well as the number of snowy days. This has considerable 

implications in the results of hydrologic and climate modeling studies. 

2.7. Chapter Summary and Conclusion 

The VI algorithm introduced by (Xia, et al., 2012) is an automatic and robust 

approach to remove all of the clouds from the global MODIS snow cover area product 

(MODIS-SCA). However, the main drawback of their method is computational stability. 

When applying the original algorithm to larger scales (i.e., over CONUS with respect to 

the California region or 29 days instead of 5 days for calculation unit), the linear system 

of the method would likely become ill-conditioned, leading to undesirable "time-varying 

snow cover boundary" surfaces. This study proposed the MINRES iteration in place of 

the traditional LU decomposition in determining the 3-d implicit surface to overcome 

this computational deficiency. Experiments on calibrating both original and modified VI 

algorithms demonstrate that the latter was more stable, perform more efficiently than 

the former one. In this study, we fulfilled all experiments using the modified VI 

algorithm. 

Before conducting further experiments, we evaluated the merged MODIS images 

(i.e., merged products from Terra and Aqua snow cover images of the same day) for 

their accuracy over the CONUS region using around 950 snow stations from the SNOTEL 

network since results of the VI algorithm directly inherit from the merged MODIS visible 
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snow cover boundaries. Two conclusions can be made from the evaluation. First, when 

snow starts accumulating, due to the product spatial resolution (0.05o), if the snow 

proportion in one merged MODIS pixel is lower than 50%, the pixel will be classified as 

no snow. This resulted in a fairly high number of missed stations at the beginning of 

snow seasons. Second, the NDSI algorithm applied for retrieving the MODIS-SCA 

products required major adjustments in complex land surface areas, as discussed in 

(Hall, 2002). The problem resulted in systematic errors found in the Mountain states and 

the Sierra Nevada mountain regions of the merged MODIS images. In general, the 

average POD of the merged MODIS throughout the study period is 0.807, which is 

reasonably high, although we have to keep in mind that all the disadvantages of the 

merged MODIS maps will also affect the resulting accuracy of the VI algorithm. 

Regarding the accuracy of the VI algorithm, the collection of constraint points on 

snow cover boundaries and the selection of number of consecutive days as a calculation 

unit play crucial roles. We applied the Douglas-Peucker method to choose appropriate 

representative constraint points of the snow cover boundaries to feed into the VI 

algorithm. Moreover, we carried out the test to determine an effective interpolation 

period. Four interpolation periods, namely 9, 19, 29, and 59 consecutive days, were 

taken into account. Results from different scenarios were validated using the SNOTEL 

network. In conclusion, the 29-day period has proven its efficiency in both accuracy and 

computational cost. 
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From the 3-d implicit surface created by the VI algorithm, results for any day in 

the period can be deducted. It is logical that the middle day of the period has the most 

information about snow cover boundaries and hence has the highest accuracy. 

However, other days in the middle to the end of the period have less information on 

snow boundaries. Therefore, how accurate are the images for these days? In this study, 

the experiment shows that the last day of the interpolation period had reasonable 

results in POD, FAR, and HK. This could be an important application for near real-time 

snow monitoring. 

While the accuracy of the VI algorithm was tested using the bootstrapping 

method in Section 2.5.3, the accuracy of the whole dataset was validated against snow 

images derived from Landsat. Overall, the dataset produced in this study is useful in 

hydrological studies due to its adequate resolutions and validated accuracy as discussed 

in the previous section. 

The future extension of this study involves applying the VI algorithm for near 

real-time global snow recovery. With the improvement in computational efficiency, the 

VI algorithm can be implemented in large Climate Zone regions (Kottek, et al., 2006) and 

then merged into the whole global map. Parallel processing of multiple regions at the 

same time should be adequate for near real-time global snow recovery. 
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Chapter 3. Cloud-free MODIS flood maps 

3.1. Reviews of flood mapping from space 

Flood mapping from space has been used extensively for more than two decades 

due to its global coverage and accuracy (Smith, 1997)(Frappart, et al., 2006)(Alsdorf, et 

al., 2007)(Karlsson & Arnberg, 2009)(Stephens, et al., 2012). Low Earth Orbiting 

satellites often image the entire Earth at a daily or weekly temporal resolution. 

Moreover, obtaining flood maps from direct satellite observations is relatively 

straightforward due to the distinguishable reflectance characteristics of water. Among 

various satellite products, the rapid response NASA MODIS surface reflectance product 

has proven its effectiveness in flood mapping and modeling(Brakenridge & Anderson, 

2006). The product's high resolutions (250 m and daily in spatial and temporal 

resolutions) enable capturing occurrences of flood events. Various studies have used 

MODIS to study floods all over the continents: Africa(Wolski, et al., 2017), Asia (Ahamed 

& Bolten, 2017), Australia (Mohammadi, et al., 2017), Europe (Li, et al., 2015), North 

America (Zheng, et al., 2017), and South America (Houspanossian, et al., 2018).  

However, cloud cover is a major problem which limits the product's usage. Clouds 

block satellites from capturing images, especially in events such as hurricanes or storms, 

whose aftermath is flood. Therefore, cloud removal using interpolation algorithms is of 

utmost importance for accurate flood mapping. Despite the essence of cloud removal, 

studies attempting to remove clouds from MODIS flood maps while preserving the 
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product's original resolutions are still in an early stage. The only effort that we found to 

remove clouds from flood maps came from the same group of (Policelli & SlayBack, 

2017) when they create composite flood maps of 2,3, and 7 days. While this approach is 

appropriate in some cases, it increases the product’s latency (Nigro, et al., 2014). 

Given an assumption of water bodies persistent characteristic, we used VI to 

remove clouds from the MODIS flood maps. The resulting cloud-free flood maps and 

their derived information cloud-free water depth maps, will be continuous, reliable data 

sources for flood studies. More detail on the implementation of the VI will be discussed 

in the following sections. 

3.2. Study domain and available data 

The study domain is the Upper Mississippi River Basin (Figure 3-1) which has an 

area of 308,810.2 km2 that ranges between 40o20N and 47o50N in latitude and from 

97o20W to 88o12W in longitude. The basin includes 7 rivers (Mississippi River, 

Minnesota River, St. Croix River, Chippewa River, Wisconsin River, Rock River, and Cedar 

River), and 11 United States Geological Survey (USGS) stations (Brainerd - USGS 

05242300, Henderson - USGS 0532700, St. Paul - USGS 05331000, Hasting - USGS 

05331580, Winona - USGS 05378500, McGregor - USGS 05389500, Clinton - USGS 

05420500, Joslin - USGS 05446500, Conesville - USGS 05465000, and Keokuk - USGS 

05474500). 
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Figure 3-1. The Upper Mississippi River Basin 

The Upper Mississippi River Basin is one of major basins in the United States 

which has a population of 30 million people. According to (UMRBA, 2006), over 60 

percent of the basin is cropland or pasture. The general width is large, according to 

(UMRBA, 2006) "On the upper reaches near the Minnesota-Wisconsin border, the river's 

floodplain is between 1.5 and 5 kilometers (between 1 and 3 mi) wide. South of St. 

Louis, Missouri, the alluvial floodplain is approximately 80 kilometers (50 mi) wide.". 
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NASA MODIS products: MOD09GQ/MYD09GQ version 6 - MODIS Surface 

Reflectance Daily L2G Global 250m SIN Grid and MOD09GA/MYD09GA version 6 - 

MODIS Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid (Vermote, 2015) 

were used in this research. While the former products provide the surface spectral 

reflectance of MODIS bands 1 and 2 at 250 m spatial resolution, the latter products 

provide surface reflectance from MODIS bands 1 through 7 at 500 m and 1 km spatial 

resolutions. Both surface reflectance products are corrected for atmospheric conditions 

such as gasses, aerosols, and Rayleigh scattering. Band 1 and 2 of the GQ products were 

main inputs to produce 250 m resolution MODIS flood maps when band 3 through band 

7, azimuth and zenith angles information from GA products were used to detect and 

remove cloud shadows from resulting flood maps. (For more details refer to sections 

3.3.1.1 and 3.3.1.2). 

The NASA’s MWP uses MOD09GQ as input to produce flood maps. Water pixels 

are classified based on the reflectance ratio between NIR band and Red band, if the 

ratio is smaller than 0.7, pixels are classified as water.  

In addition, (Policelli & SlayBack, 2017) employ the MOD44W (Carroll, et al., 

2017) as the reference water layer, if a water pixel falls outside of the reference water 

layer, it will be considered as flood pixel. They also used a daily cloud mask from MODIS 

which has spatial resolution of 1-km to mask out cloud pixels before land/water 

discrimination. 
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Landsat 8 satellite images were used to validate MODIS flood maps and 

inundation maps produced by the model. Landsat 8 satellite captures the entire Earth 

every 16 days and provides high spatial resolutions (i.e. around 30m), better 

characterization of land cover images. The employed L1T product has been corrected 

radiometrically and geometrically using all two spacecraft's sensors, Ground Control 

Points (CGPs), and DEMs (Landsat 8 Users Handbook). Data from June to September 

each year (i.e., during flood seasons of the basin) which has less than 15% area covered 

by clouds was obtained from the U.S. Geological Survey website 

(https://landsat.usgs.gov).  

3.3. Methodology 

3.3.1. Classified MODIS flood maps 

Flood inundation maps from satellites which are crucial for flood studies are 

limited by cloud obscuration.    Figure 3-2 presents a sequence of steps 

to develop cloud-free flood maps.  These steps are illustrated in the subsequent 

subsections. 
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   Figure 3-2. Flow chart of the cloud removal algorithm 

3.3.1.1. Cloud masking 

From the original MODIS reflectance products, we start by masking all the cloud 

pixels thus keeping only ground pixels in the satellite images. Due to the distinguishable 

reflectance of clouds at different wave bands (Figure 3-3), we propose a threshold of 

reflectance between 0.8 and 0.9 in the Red Band (Band 1) of MODIS to mask clouds. This 

threshold guarantees low false positive rates in identifying cloud pixels.  
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Figure 3-3. Cloud and surface reflectance in the Visible and Shortwave Infrared. (Image originally 

courtesy of NASA-JPL and NOAA) 

Afterwards, the obtained images with non-cloud pixels are used as inputs for the 

next step of classifying water pixels. 

3.3.1.2. Identifying of water pixels 

We use Brakenridge's algorithm to detect water based on empirically derived 

reflectance ratio MODIS (Band 2 / Band 1) threshold(Brakenridge & Anderson, 2006).  

(Nigro, et al., 2014) reported that the classified MODIS flood maps generated by this 

algorithm captured 44% of the 53 flood events from various sites in the world in 2013 

and 2014.  The results demonstrated that the main source of error in the algorithm is 

that it flags most cloud shadows as water due to their similar reflectance values. 
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In order to overcome the problem of mistakenly identifying cloud shadows as 

water, we adopted a scheme that combines geometric and spectral approaches to 

determine cloud shadow locations (Luo, et al., 2008). According to their approach, from 

a cloud position on the image (xcloud, ycloud), the nadir projection (xnadir, ynadir) of cloud on 

the ground is determined based on height of cloud above the surface (hc), viewing 

zenith and azimuth angles (θv and φv, clockwise from the true North), and the azimuth 

angle of the true North from the y axis (γ): 

�&)U%V = �WXYZU + ℎW(� θ\  SIN (φV+γ) _&)U%V = _WXYZU + ℎW(� θ\  COS (φV+γ) 
(3-1) 

Then the projection of cloud shadow (xshadow, yshadow) is determined by solar 

zenith and azimuth angles (θs and φs): 

�bc)UYd = �&)U%V + ℎW(� θe  SIN (φS+γ) _bc)UYd = _&)U%V + ℎW(� θe  COS (φS+γ) 
(3-2) 

The classified MODIS flood maps generated from this step are still polluted by 

cloud pixels that were masked in the first step. Next, we illustrate the final process to 

completely remove clouds. 
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Figure 3-4. (a) MODIS image at 250 m spatial resolution, where some clouds and their shadows can be 

visually seen. (b) Cloud (white) and cloud shadow (blue) mask derived by the Canada Centre for 

Remote Sensing (CCRS) scheme. Example taken from (Luo, et al., 2008). 

3.3.2. Cloud-free MODIS flood maps 

3.3.2.1. Variational Interpolation 

In the scope of this study, the VI algorithm is implemented to remove clouds 

from the classified MODIS flood maps. VI has been effectively used in (Xia, et al., 2012) 

and (Tran, et al., 2018) to remove cloud from MODIS's SCA product. These studies are 

based on the hypothesis that the interpolation algorithm works best with smooth three-

dimensional implicit surfaces.  

�(�2) 3 > 0= 0 < 0   
� 4�!5 7�(5: ;6!_�( 7�(5: ;6< !�:�546<(4�!5 7�(5: ;6!_  (3-3) 
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Hence, an assumption about the dynamic property of water body boundaries has 

to be made. Given two reasons: (1) MODIS provides two images of a place in one day 

and, (2) its Red and Near-Infrared (NIR) bands have high spatial resolutions, we 

hypothesized that MODIS can capture gradual changes of water bodies. Thus, water 

bodies represented in three dimensional spaces have smooth implicit surfaces and can 

be approximated as a linear combination of radial-basis functions established at 

selected constraint points on the surface (Duchon, 1977), as equation (3-4). 

�(�2) = 0 ⟹ A 7%>(�2 − �BCCC2) = 0
D

%E�
 (3-4) 

Here, f7%g is a set of � weights and f>(�2 − �BCCC2)g is a selected radial-basis function 

established at � constraints points. As in (Xia, et al., 2012) and (Tran, et al., 2018), we 

decided to use the thin plate function >(. ) = := log : with : = ‖�2 − �BCCC2‖ to present the 

radial-basis function. 

With constraint points collected on water body boundaries in discrete time, the 

weights of those points can be computed by solving the linear system to create the 

implicit surface. 

3.3.3. Determining the flooded area 

The obtained images after applying the VI algorithm are completely cloud-free, in 

other words, each grid either represents water or land.  To effectively identify flooded 

areas, we compare water grids in the map with the static water layers (MOD44W) 
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obtained from NASA. Specifically, if a water grid falls outside the boundary of static 

water bodies, it is identified as a flooded grid. 

3.4. Flood extent validation 

In order to map floods from Landsat images, as in Xia et al. (2012), we followed a 

process outlined in (Brakenridge, et al., 2014). The process was based on Landsat 8 

green and near-infrared bands (band 3 and band 5, respectively): 

���� = BAND 3 − BAND 5BAND 3 + BAND 5 (3-5) 

When the NDSI is smaller than or equal to -0.04 the pixel is classified as water. By 

using this combination, the resulting flood products from Landsat avoid misclassifying 

cloud shadow as water(Brakenridge, et al., 2014). The resolution of the Landsat flood 

products is then up-scaled into 250-m and re-projected into the geographic coordinate 

system with the spheroid of WGS84 to match with the other two MODIS products 

resolution and projection.  

For validation, we compared the MWP product with the developed cloud-free 

flood maps (Cloud-free). The results are shown in Table 3-1 
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Table 3-1. Categorical validation of NASA MODIS Water Product (MWP) and the cloud-free flood map 

Date 

POD FAR HK Cloud 

percentage 
MWP 

Cloud-

free  
MWP 

Cloud-

free  
MWP 

Cloud-

free  

06-07-2013 0.49 0.57 0.35 0.49 0.48 0.51 70.42 

07-25-2013 0.26 0.52 0.07 0.06 0.26 0.52 79.15 

08-01-2013 0.24 0.33 0.26 0.07 0.23 0.33 31.37 

08-10-2013 0.27 0.54 0.30 0.16 0.27 0.53 60.61 

08-26-2013 0.38 0.43 0.13 0.27 0.38 0.43 36.07 

07-28-2014 0.18 0.68 0.09 0.18 0.18 0.60 80.15 

08-13-2014 0.36 0.50 0.06 0.21 0.36 0.50 17.22 

08-29-2014 0.17 0.38 0.08 0.27 0.17 0.38 73.78 

*Bold values represents better metric performance  

 

 Throughout two validation periods of 2013 and 2014, the cloud free flood extent 

derived in this study has higher POD and HK than the NASA's MWP. While the VI 

algorithm helped to increase the POD, it also falsely classified some cloud pixel as water 

which resulted in higher FAR of cloud free flood maps than NASA's MWP in more than 

half of the test cases. The main reason for this overestimation compared to MWP and 

explained by higher FAR values is the following. First, it is important to realize that this 

overestimation is relative to MWP. Second, since in MWP, all cloud grids are masked 

from the flood inundation map and taking into consideration that clouds will tend to 

cover most of the flooded area during a storm, the probability that the remaining grids 

be classified mistakenly as water is relatively low. On the contrary, in our product, there 

is a higher probability of mistakenly identified water grids. By careful examination of the 

cloud percentage masked in MWP, one will find that our product relatively 

overestimates flooded area in days where cloud percentage in MWP is very high. 
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Figure 3-5 visualizes the flood maps before and after removing clouds on July 28, 

2014. When dense clouds prevented satellites from capturing images in NASA's MWP, VI 

recovered most of the Upper Mississippi river hindered by cloud. 

 

Figure 3-5. Cloud-free MODIS flood map detection in the Upper Mississippi River Basin on July 28, 

2014 

3.5. Cloud-free MODIS water depth maps 

3.5.1. Water depth creation 

We adopted the Regression and Elevation-based Flood Information eXtraction 

(REFIX) method from (Schumann, et al., 2007) to derive water depth maps from the 

resulting cloud-free MODIS water extent. Here we only give some summary information, 

and refer the reader to read this article for further details. 
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The water depth creation procedure is illustrated in Figure 3-6. Firstly, given the 

essence of high resolution in flood mapping, we upscaled the original MODIS maps from 

original resolution of 250 m to 30 m in order to match with the SRTM elevation ones. 

 

Figure 3-6. Water depth flowchart -- REFIX methodology(Schumann, et al., 2007)) 

For the REFIX best performance, information of flood boundaries must be 

accurate (Schumann, et al., 2007). Hence, we also combined the cloud-free MODIS maps 

with an existing water body data from SRTM project (SWBD; USGS). The cloud-free 

MODIS maps are main factors in the combined products in detecting flooded areas. 

Secondly, the DEM for floodplain is used to extract water heights for both 

riverbanks at critical sections of the Mississippi river (Schumann, et al., 2007). It is worth 

noting that, if there is a systematic altitudinal difference between the left and right 
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riverbank, the pre-processing step need to be reviewed. Next, if all seems adequate 

(Figure 3-7), we will generate a water line for that day based on a simple liner regression 

model based on a relation between water height and distance downstream. The linear 

regression is formulated as equation (3-6): 

# = �. ! + ; (3-6) 

Where H is an estimated water height (m), a is a slope of the regression line 

which based on the stream characteristics (m/m), d is a downstream distance (m), and b 

is an intercept (m). 

 

Figure 3-7. Scatter plot of the DEM-derived water levels for both riverbanks for one part of the 

Mississippi river flows from Winona to McGregor in June 26, 2014 
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We decided to implement the REFIX method for one part of the Mississippi river 

from Winona to McGregor for two reasons: (1) although having 11 USGS stations in the 

basin, only two of them have measurements of the river water level (i.e. Winona and 

McGregor stations), and (2) through experiments, we found that the stream 

characteristics for this river part are adequate for deriving an almost linear relationship 

between water height and downstream distance as equation (5). While the former 

reason is necessary for validating the estimated water heights, the latter reason is prone 

more to a practical aspect. 

Once the validation results with observed water levels are satisfied, the 

Triangulated Irregular Network (TIN) mesh will be used to generate the water height 

map. (Schumann, et al., 2007) stated that: the TIN approach helps both keeping water 

level horizontal at each cross section and respecting changes in river flow directions. 

Finally, we subtract the DEM from the water height map to obtain the actual water 

depth map. 

The whole process is automated to ensure creating water depth map for each 

corresponding cloud-free MODIS flood map. Since we in cooperated in situ water levels 

validation in creating satisfactory water depth maps, in next step we will only 

demonstrate the result of the water depth creation process during a flood event from 

June 26 to July 7, 2014. 
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3.5.2. Water depth results 

 

Figure 3-8. Water depth level for one part of the Mississippi river flows from Winona to McGregor  

from June 26 to July 7, 2014 
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Figure 3-8 shows the dynamic change of both water extent and water depth over 

the period of flood. At the start day of the flood period, June 26, 2014, the average 

water depth for the river part was at the flood stage level of 3.96 m and there was not 

any flood excess from the water body. Along the period, as the water depth increased, 

number of places that excess normal water body was also increased. These flooded 

places were mostly in narrow channels and floodplain areas which lie between two river 

branches. At the peak day of July 2, 2014, when the water depth at Winona station was 

4.72 m (Figure 3-9), there were multiple places that the water extent excess the water 

body. Moreover, we can clearly see the water depth decreased (the blue color became 

less) from July 2 to July 7, 2014 in the lower part near McGregor station. 



61 

 

 

Figure 3-9. Gage height in feet at Winona station from May 1 to July 31, 2014 

3.6. Chapter Summary and Conclusion 

Through comparison against Landsat 8 observations, we found that the VI 

algorithm can effectively remove clouds from MODIS flood maps. After comparing with 

NASA's MWP which also uses the same water detection algorithm, VI removed most of 

the cloud-hindered parts of the Upper Mississippi River thus providing information 

about the dynamics of flood events. In the validation period, the recovered MODIS flood 

maps have on average higher scores of POD and HK, 0.49 and 0.48, respectively, in 

comparison with ones from NASA's MWP of 0.29 and 0.29, respectively.  
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While VI correctly estimated the states of most cloud pixels, it also falsely 

classified some cloud pixels as water which caused the final products often to have 

higher FAR than the original ones.  This problem is under further investigation and might 

possibly be mitigated by incorporating new geographical information as another 

dimension of the VI algorithm to improve its interpolation ability. Moreover, during our 

experiment in some scenarios, if cloud cover occurs over a long period (e.g., more than 

5 days), VI cannot gather enough information to reconstruct water bodies accurately. 

We will propose a quality control screen which filters out parts of rivers or streams 

where clouds remain there over a certain amount of time. The screen masks these areas 

as missing data to ensure the overall accuracy. The missing information will then be 

retrieved by model simulations. 

The VI method has already proven its capability in cloud-free snow cover and 

flood extent recovery.  Hence, we can implement the VI in other remote sensing fields 

such as ocean color or water-mass distribution to break the major barrier, cloud 

obscuration, which limits the potential of satellite observations. 

The REFIX method demonstrated its capability in deriving accurate water depth 

from water extent in river Alzette, Luxembourg and river Mosel, France (Schumann, et 

al., 2007). We adopted the method to produce the cloud-free MODIS water depth maps 

from the cloud-free MODIS water extent maps. The results seem to reflect dynamic 

changes in river height during a flood event from June 26 to July 7, 2014 for one part of 
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the Mississippi River flows from Winona and McGregor. Since there were only two 

stations provide water height measurements which were used to decide the function 

between downstream distance and water height, it was difficult to validate the resulting 

water depth maps.  

Finally, it should be noted that the MODIS water depth maps could be validated 

using the future Surface Water and Ocean Topography (SWOT) direct observations of 

water elevation. SWOT is an anticipated, advanced satellite mission which is scheduled 

to be launched in 2021. SWOT uses a state-of-the-art Ka-band radar interferometer 

(KaRIn) to provide a set of water body surface elevations with expected high height 

accuracy ((Rodriguez, 2015); (Biancamaria, et al., 2016)). 
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Chapter 4. Improving hydrologic modeling using cloud-free flood maps 

4.1. Overview of flood modeling studies 

While being an important part of the hydrological cycle, floods are also 

considered as one of the most destructive natural disasters. Hence, flood modeling has 

emerged since the 1970s within the research community (Teng, et al., 2017). (Teng, et 

al., 2017) recently provided a thorough review of up-to-date flood inundation models. In 

this chapter, we only summarize main ideas from their study and refer readers to their 

paper for more detail. 

Hydrodynamic models, including one-dimensional (1D)(DHI, 2003) (Brunner, 

2016), two-dimensional (2D)(Sanders, et al., 2010)(Moulinec, et al., 2011)(Nguyen, et 

al., 2016), and three-dimensional (3D)(Vacondio, et al., 2012)(Prakash, et al., 2014),  

models "simulate water movement by solving equations derived from applying physical 

laws to fluid motion with varying degrees of complexity" (Teng, et al., 2017).  They are 

the most widely used tools to simulate detailed flood dynamics thanks to the versatility 

in adjusting input in order to "investigate the impact of changes in initial conditions, 

boundary conditions". While 1D models are computationally efficient, (Teng, et al., 

2017) pointed out a number of their drawbacks: "the inability to simulate lateral 

diffusion of the flood wave, the discretization of topography as cross sections rather 

than as a continuous surface and the subjectivity of cross-section location and 

orientation". On the other hand, 2D and 3D models are able to simulate inundation with 
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high accuracy, however, they are computationally expensive. Recent advances in 2D 

model studies focused on improving the computational efficiency by simplification of 

the two-dimensional shallow water equations (Bates & De Roo, 2000), shared memory 

multiprocessing programming (Sanders, et al., 2010)(Flamig, et al., 2015), and graphics 

processing units (GPU) utilization (DHI, 2012). 

Furthermore, a main uncertainty source of those hydrodynamic models comes 

from assumptions of the physical characteristics of the rivers and floodplains 

(Andreadis, et al., 2007)(Munier, et al., 2015). Two approaches can be taken to reduce 

the effect of model errors, namely, calibration of hydrological parameters and 

assimilation of observations. More details about these two approaches will be discussed 

in Section 4.3.2. 

The scope of this study is twofold which includes the use of cloud-free products 

developed from Chapter 3. First, we used the cloud-free MODIS flood maps to calibrate 

inundation parameters of a hydrological model in order to produce accurate inundation 

maps. Second, we used the derived cloud-free water depth to correct the states of a 

routing model in order to have a better forecast of downstream discharge. 

4.2. Study domain and available data 

The study domain is the Upper Mississippi River basin (Figure 4-1) as in Chapter 3. 
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Figure 4-1. The Upper Mississippi River Basin 

Streamflow data were available in both hourly and daily time scales, quality-

controlled by USGS (USGS 2016). Meteorological data, precipitation and 

evapotranspiration were from the National Oceanic and Atmospheric Administration 

(NOAA) and the Famine Early Warning System Network (FEWSNET). NOAA's multi-

sensor precipitation data Stage IV  (Lin, 2011), produced by integrating data from 12 

Contiguous U.S. River Forecast Centers, has 0.04o spatial resolution and hourly and daily 

temporal resolutions. Evapotranspiration data, on the other hand, is important for 

drought and water resource management but not for rainfall-driven flooding events. 
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Hence, to reduce computing resources, we chose the monthly mean evapotranspiration 

data from FEWSNET with spatial resolution of 1o, calculated on a spatial basis using the 

Penman-Monteith equation. 

The elevation data used in this chapter is from the Shuttle Radar Topography 

Mission (SRTM) version 3.0 published in 2013. The product has 30 m spatial resolution 

with all voids eliminated. 

4.3. Methods 

4.3.1. Hydrological model framework 

The Ensemble Framework for Flash Flood Forecasting (EF5;(Flamig, et al., 2015)) 

is a C++ based framework for conducting research and operational distributed 

hydrologic simulations. EF5 consists of multiple components including water balance, 

river routing and inundation models that can be jointly implemented to simulate flood 

processes. The whole framework takes advantage of multiple computing cores and 

parallel computing strategies for faster simulations. 
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 Figure 4-2. EF5 framework. (Image originally courtesy of University of Oklahoma) 

Three models of EF5 have been used for this study: The Coupled Routing and 

Excess STorage (CREST) (Wang, et al., 2011) as a water balance model, the kinematic 

wave routing (Lighthill & Whitham, 1955) as a routing model and, the simple mass-

conserving inundation as an inundation model. They are summarized below. 

The CREST is a distributed water balance model developed to simulate the spatial 

and temporal variation of land surface, and subsurface water fluxes and storage by cell-

to-cell simulations. CREST’s distinguishing characteristics include: (1) distributed 

rainfall–runoff generation and cell-to-cell routing; (2) coupled runoff generation and 
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routing via three feedback mechanisms; and (3) representation of sub-grid cell 

variability of soil moisture storage capacity and sub-grid cell routing (via linear 

reservoirs). 

The kinematic wave routing is used in "many models of open channel flow 

routing of runoff hydrographs" (Hromadka & DeVries, 1988) because of its simplicity 

and accuracy. Given solving the momentum and continuity equations for the 1-D full 

shallow water equations (4-1) and (4-2): 

ij�i(k
XYW)X )WWlXlV)�%Y&

+ ii( mj�=S nopqpr
WY&slW�%sl )WWlXlV)�%Y&

+ tS i(ℎ + u)i�opppqpppr
d)�lV bXYvl

+ t =j�=>w ?⁄ Soqr
yV%W�%Y& bXYvl

= zj{|
�}

 (4-1) 

iSi� + ij�i� = 0 (4-2) 

where Qx is volumetric flow rate in the x Cartesian direction, A is the cross 

sectional area of flow, h the water depth, z the bed elevation, g gravity, n the Manning’s 

coefficient of friction, R the hydraulic radius, t time and x the distance in the x Cartesian 

direction. The kinematic wave routing only includes friction slope and water slope, and 

water slope only includes bed gradient (dz/dx). The water slope neglects local and 

convective accelerations and free surface gradient (dh/dx). 

The last model, mass-conserving inundation is a simple model that computes 

inundation based on stream flows and cross-sectional area and has been used widely in 
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many studies ((Bates & De Roo, 2000); (Horritt & Bates, 2002); (Bates, et al., 2003); 

(Jian, et al., 2009)). 

Computing cross-sectional area in mass-conserving inundation model is defined 

as follows: 

S = zj{|
�}

 (4-3) 

Where A is the cross-sectional area (m2), Q is the discharge (m3/s), α and β are 

parameters governing routing and overland flow. 

Parameters of the three models are described in Table 4-1. 

Table 4-1. EF5 parameters 

Model Parameter Unit Description 

CREST 

WM mm Maximum soil water capacity 

B -- Exponent of the variable infiltration curve (VIC) 

IM -- Impervious area ratio 

KE -- 

Multiplier to convert between input Potential Evapotranspiration 

(PET) and local actual Evapotranspiration (ET) 

FC mm/h Soil saturated hydraulic conductivity 

IWU % Initial value of soil water 

Kinematic 

TH -- 

Threshold for how many cells must drain into a cell for it to 

become part of a river in the model 

UNDER -- Interflow flow speed multiplier 
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LEAKI % 

Amount of water leaking out of the interflow reservoir at each 

time step 

ISU mm Initial value of the interflow reservoir 

ALPHA -- Multiplier in the equation Q = αA� governs routing 

BETA -- Exponent in the equation Q = αA� governs routing 

ALPHA0 -- Multiplier in the equation Q = αA�.� governs overland flow 

Mass 

conservation 

ALPHA -- 
Multiplier in the equation A = ��

����
 used for computing cross-

sectional area 

BETA -- 
Exponent in the equation A = ��

����
 used for computing cross-

sectional area 

4.3.2. Overview of error correction methods 

4.3.2.1. Parameter optimization/ Model calibration 

The Shuffled Complex Evolution algorithm - University of Arizona (SCE-UA) (Duan, 

et al., 1992) has been used widely in water resources management ((Sorooshian, et al., 

1993)(Yapo, et al., 1996)(Madsen, 2000)(Toth, et al., 2000)(Eckhardt & Arnold, 

2001)(Liong & Atiquzzaman, 2004)(Ajami, et al., 2004)(Lin, et al., 2006)(Barati, et al., 

2014)(Yang, et al., 2015)), as well as other fields of study, such as pyrolysis modeling 
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((Ding, et al., 2016)(Hasalova, et al., 2016)) and artificial intelligence (Yang, et al., 2017). 

(Naeini, et al., 2018) summarized the SCE-UA as: 

The SCE-UA framework employs Nelder-Mead simplex (Nelder & Mead, 1965) 

technique along with the concept of controlled random search (Price, 1987), clustering 

(Rinnooy Kan & Timmer, 1987), competitive evolution (Hollan, 1975) and complex 

shuffling (Duan, et al., 1993) to offer a global optimization strategy. By employing these 

techniques, the SCE-UA algorithm provides a robust optimization framework and has 

shown numerically to be competitive and efficient comparing to other algorithms for 

calibrating rainfall-runoff models ((Gan & Biftu, 1996)(Wagener, et al., 2004)(Wang, et 

al., 2009)(Beven, 2012)). 

4.3.2.2. Data assimilation 

The Kalman Filter (Kalman, 1960) and the Ensemble Kalman Filter (EnKF) 

(Evensen, 1994) are summarized in numerous studies, including (Biancamaria, et al., 

2011) and (Munier, et al., 2015). Hence, we refer the reader to the original papers for 

further details, (Munier, et al., 2015) summarized those two methods as: 

The Kalman Filter (Kalman, 1960) is a sequential data assimilation scheme widely 

used in hydrological sciences. At each time step, new observations are combined with 

the model outputs derived from the simulated state (forecast) to compute an update 

state (analysis). The latter is obtained by optimally accounting for observation and 
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model errors. Here the system state includes water levels, while observations are the 

cloud-free MODIS water levels. The original Kalman filter, based on linear systems and 

Gaussian errors, has been extended to nonlinear models. One of the most popular 

extension is the EnKF described by (Evensen, 1994). It is based on a Monte Carlo 

approach to approximate the error covariance matrix, which usually is not known: 

Ol = (S − S̅)(S − S̅)����������������������� (4-4) 

where A is the forecast state ensemble, Ol the ensemble covariance matrix, and 

the superscript T the transposition operator. Each column of matrix A represents a 

specific ensemble member state. 

We implemented the square root analysis algorithm developed by (Evensen, 

2004) in order to avoid measurements perturbations. With the same notation as above, 

the analysis step is given by: 

SY = S + Ol#�(#Ol#� + >)��(� − #S) (4-5) 

where SY is the analysis state ensemble, D the observation matrix (columns are 

identical and represent the observation vector), H the observation operator, and R the 

measurement covariance matrix. Note that R is always assumed diagonal, i.e., each 

observation error is assumed independent. 
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4.3.3. Calibration scheme 

4.3.3.1. Surface runoff and routing parameters calibration using stream 

flow gauges 

Calibration of surface runoff and routing models is necessary to ensure the 

accuracy of the flood inundation model. The year 2012 has been selected as the 

calibration period with calibration cascading from upstream to downstream stations. 

We used NSE as the objective function in the SCE-UA (Duan, et al., 1992) algorithm. The 

calibration scheme is described in Figure 4-3. 

 

Figure 4-3. Surface runoff and routing parameters calibration 

4.3.3.2. Inundation parameters calibration using cloud-free flood maps 

In a four-month period from June to September 2012, we calibrated inundation 

parameters using the cloud-free flood maps as benchmarks. Inundation maps simulated 
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by the model are classified into water/no water maps. One thing to note here, since the 

inundation model is solely based on the altimetry data, parameters which govern 

overland flows are not uniformly distributed (i.e. each floodplain region is assigned by 

specific parameters). Model simulations tend to overestimate inundation areas. Thus, 

when we validated these maps with the observed benchmarks, the FAR scores were 

frequently high which indicates a large number of false pixels. Hence, the objective of 

this calibration process is to minimize the FAR of the output water depth maps.  

With regard to the calibration of inundation models, spatial distribution of 

stations plays an important role since the total flood map is constrained by the flooding 

extent of each event. Therefore, we took into account all parameters of the basin 

stations in the optimization scheme so that the "observed" cloud free flood maps can 

help to reduce simulated overflows. 
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4.3.4. Assimilation scheme 

We applied the assimilation scheme to the kinematic wave routing model. At 

daily time steps, the cloud-free MODIS water depth maps were used to update the river 

height using EnKF (Figure 4-5). 

 

Figure 4-5. Data assimilation framework 
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4.3.4.1. Ensemble Member Generation 

(Munier, et al., 2015) summarized the ensemble member generation step as: 

The ensemble of model states is intended to represent model uncertainties, 

including uncertainties in the meteorological forcings, the model structure, and the 

parameters. As in (Andreadis, et al., 2007); (Biancamaria, et al., 2011); (Munier, et al., 

2015), only the first category is considered here. To generate the ensemble, the forcings 

of the hydrological model (precipitation, mean and range temperature and wind) were 

corrupted using the methodology initially developed by (Auclair, et al., 2003) which 

consists of perturbing the most statistically significant modes. Each forcing field is first 

decomposed into Empirical Orthogonal Functions (EOFs), then the first modes that 

explain 95% of the variance are multiplied by a white noise with a 0.2 standard 

deviation before the signal is reconstructed. The main advantage of the method is that 

the corrupted fields have coherent spatial and temporal patterns. To limit 

computational costs, we used 20 ensemble members, which means that 20 corrupted 

fields of each model forcing have been generated. The example of the spatially averaged 

precipitation of the 20 members is shown in Figure 4-6. 
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Figure 4-6. Spatial average of precipitation for the 20 members and comparison with the original 

measurements. 

4.3.4.2. Ensemble Kalman Filter (EnKF) 

More details on updating the water levels in the kinematic wave routing model 

using EnKF can be found from (Biancamaria, et al., 2011)(Munier, et al., 2015). Although 

we did not use the smoother since the water depth was available at every time step, we 

adopted the scheme from (Biancamaria, et al., 2011) and (Munier, et al., 2015) for the 

updating/analysis step as from Section 4.3.2.2. 
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4.4. Results 

4.4.1. Model calibration 

4.4.1.1. Surface runoff and routing parameters calibration 

After calibration of runoff and routing parameters, the EF5 was run for the period 

of (2013-2014). Simulated discharges from 9 stations were validated with observed 

values (Error! Reference source not found.).  

For six stations along the Upper Mississippi River (Brainerd, St. Paul, Hasting, For six stations along the Upper Mississippi River (Brainerd, St. Paul, Hasting, 

Winona, Clinton, and Keokuk) from upstream to downstream, the correlation coefficient 

and NSE increased as the discharge increased (six graphs on the left of Error! Reference 

source not found.). For the other three stations in tributary rivers, the average 

correlation coefficient and NSE are 0.80 and 0.54 respectively (three graphs on the right 

of Error! Reference source not found.). 
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4.4.1.2. Inundation parameters calibration 

After calibration using the cloud free flood maps, the resulting inundation maps 

have much lower FAR than the ones simulated with prior distribution (i.e. less 

overestimate). From Table 4-2, the post calibration maps have an average FAR of 0.49 in 

comparison with 0.65 from maps in the other scenario. Also, the inundation maps from 

the calibrated model detected more water pixels than the inundation maps from model 

with parameters chosen from prior distributions which resulted in higher POD and FAR. 

Table 4-2. Categorical validation of inundation maps before and after calibration 

Date 

POD FAR HK 

Before After Before After Before After 

06-14-2013 0.88 0.89 0.58 0.46 0.86 0.87 

06-30-2013 0.69 0.92 0.74 0.63 0.56 0.90 

07-16-2013 0.63 0.83 0.40 0.32 0.57 0.81 

08-01-2013 0.59 0.77 0.48 0.38 0.54 0.75 

08-10-2013 0.71 0.91 0.67 0.57 0.69 0.89 

08-26-2013 0.70 0.84 0.63 0.55 0.67 0.81 

06-26-2014 0.63 0.82 0.86 0.31 0.59 0.78 

07-28-2014 0.68 0.87 0.68 0.52 0.65 0.85 

08-13-2014 0.71 0.89 0.66 0.56 0.68 0.86 

08-29-2014 0.71 0.93 0.81 0.61 0.66 0.89 

*Bold values represents better metric performance  
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Figure 4-8. Categorical validation for inundation maps before and after calibration in June 14, 2013 

Figure 4-8 illustrates how cloud free flood maps help simulate inundation maps 

accurately. On June 14, 2013, inundation parameters in three stations, namely, Winona, 

Muscoda, and McGregor, after calibration, reduced the FAR from 0.58 to 0.46. 

4.4.2. Data assimilation 

We analyzed the effects of the cloud-free MODIS data assimilation on the 

downstream discharge of the basin. We compared simulations by (1) open loop (OL; i.e. 
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no data assimilation) and (2) EnKF. A six-month simulation was performed (from January 

1 to July 10, 2014), results are shown in Figure 4-9. 

 

Figure 4-9. Discharge in downstream station 

The OL results show that meteorological forcing corruption led to the ensemble 

mean overestimation of 66.76 % with respect to the observed flow. The application of 

the EnKF efficiently corrects the water levels and consequently the discharge. Since the 

cloud-free MODIS is available at daily time steps, which matches with the simulation 

time step, no smoother needed to propagate the error covariance through time. 

Quantitatively, the NSE of the ensemble mean were 0.698, 0.998 for the OL and 

the EnKF respectively, showing the high efficiency of the EnKF algorithm. The mean 
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ensemble standard deviation were 568.98, 76.48 m3/s for the two simulations, 

respectively. 

One thing to note is that the assimilation was more persistent during the high-

flow period than the low-flow period. 

4.5. Chapter Summary and Discussion 

With regard to calibrating hydrological parameters, the overall results over the 

validation periods are satisfactory. Stream flow validations for 2013 and 2014 yield 

average scores of 0.77, 0.51, and 376.05 for correlation coefficient, NSE, and RMSE 

respectively in nine stations. More importantly, calibrated flood inundation maps match 

more closely with images retrieved from Landsat 8 than ones generated from models 

using prior estimated parameters. From Table 4-2, the average FAR decreased sharply 

from 0.65 to 0.49 before and after calibration while the average POD increased from 

0.69 to 0.87 after calibration. These sufficient results and the fact that MODIS is a global 

product encourage the use of cloud free flood maps to calibrate hydrological models in 

remote and ungauged regions. 

Nevertheless, an important aspect about the computational efficiency during the 

flood inundation calibration process should be highlighted. Since the calibration of flood 

inundation parameters was done for all stations in the basin at the same time, we 

acknowledge that this process required a lot of computational power. We will use actual 
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numbers of one calibration iteration to illustrate this idea. We used SCE-UA optimization 

algorithm which was proven as accurate and robust in calibrating hydrological 

parameters. We calibrated using 11 stations and each station had two parameters, 

hence there were 22 parameters to be tuned. According to the SCE-UA, then the 

number of points in each simplex is as follow: 

�vY%&�(�) = 2�v)V)$b + 1 (4-6) 

Where �vY%&�(�)
 is a number of points in the first simplex, �v)V)$b is the number of 

parameters that need to be optimized. Given �v)V)$b = 22, �vY%&�(�) = 2 ∗ 22 + 1 = 45 

points. Furthermore, if we use a typical number of 5 simplexes, the total number of 

points will be 225 points. For each iteration of the algorithm, if we ran the model to 

simulate inundation maps for four summer months in 2012, the computation time could 

take up to 3 hours. With 100 iterations, if running was done using normal for loops, the 

calibration process could take two weeks to finish. Therefore, we are parallelizing the 

SCE-UA to be able to work with a larger number of iterations in order to find the global 

optimum. 

Furthermore, we demonstrated the positive effect of cloud-free MODIS water 

depth assimilation on simulating and forecasting downstream discharge. We compared 

the simulation performance with and without data assimilation, and showed that the 

assimilation of cloud-free MODIS water depth into the hydrodynamic model greatly 

improved the results. 
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As in (Munier, et al., 2015), one of the main limitations of this study is the 

assumption as to the nature errors from input forcings, observations (the cloud-free 

MODIS water depth), and the model. Here errors in meteorological forcings were 

accounted for in the ensemble member’s generation step, and cloud-free MODIS water 

depth errors are assumed to be zero-mean Gaussian with a 15 cm standard deviation. 

Other errors related to observations are neglected. Studies to analyze the effects of 

such errors are important for the simulation and forecast results. They are scheduled to 

be done in the future. 

To conclude, the purpose of this chapter is to introduce two of the many 

potential applications of cloud-free MODIS flood products. Furthermore, hydrologic 

modeling will also help the general public to get a full picture of flood forecasts. 
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Chapter 5. Conclusions and Future directions 

5.1. Summary of findings 

The main thrust behind this dissertation is to improve the usefulness of satellite 

observations in hydrological study. For either monitoring snow covers or water bodies 

using satellites, the major problem is cloud obstruction. (Xia, et al., 2012) successfully 

applied the VI method from image processing field to remove clouds from MODIS-SCA 

products. We improved their algorithm in computational stability in order to apply VI on  

a much larger scale both in time and space for both MODIS snow and flood products.  By 

making an assumption of the persistent characteristic of water bodies, we created the 

cloud-free MODIS flood maps. The results are promising. 

Furthermore, these space-based observations will also help improve hydrologic 

modeling by reducing model uncertainties. Also, due to some unresolved problems 

related to remote sensing such as: cloud persistence and cloud shadow mixing, 

hydrological models will also help us to get a full picture of flood mapping and 

forecasting. We used the resulting cloud-free MODIS flood products to reduce model 

uncertainties through model calibration and data assimilation. During the validation 

periods, dynamic outputs of the hydrologic model matched closely with observations. 

Following is a summary of the key findings addressed in this dissertation. 
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5.1.1. Cloud-free snow cover maps over CONUS 

The second chapter presents a cloud-free snow cover dataset with a daily 

temporal resolution and 0.05° spatial resolution from March 2000 to February 2017 

over the contiguous United States (CONUS). The dataset was developed by completely 

removing clouds from the original NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) Snow Cover Area product (MOD10C1) through a series of 

spatiotemporal filters followed by the Variational Interpolation (VI) algorithm; the filters 

and VI algorithm were evaluated using bootstrapping. The dataset was validated over 

the period with the Landsat 7 ETM+ snow cover maps in the Seattle, Minneapolis, Rocky 

Mountains, and Sierra Nevada regions. The resulting cloud-free snow cover accurately 

captured dynamic changes of snow throughout the period in terms of Probability of 

Detection (POD) and False Alarm Ratio (FAR) with average values of 0.955 and 0.179 for 

POD and FAR, respectively. The dataset provides continuous inputs of snow cover area 

for hydrologic studies for almost two decades. The VI algorithm can be applied in other 

regions given that a proper validation can be performed. 

5.1.2. Cloud-free MODIS flood products 

Flood mapping from satellites has major advantages, primarily, global land 

coverage and direct observation. However, cloud pollution in satellite images limits their 

practical usability. Cloud removal techniques are popular for snow cover satellite 

products due to snow persistent characteristic. Among all approaches, the Variational 
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Interpolation (VI) algorithm, a method that constructs three dimensional space-time 

surfaces from continuous and adjacent satellite images, proved its robustness and 

effectiveness in removing clouds from the NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) Snow Cover Area (SCA) products. In Chapter 3, we 

implemented the VI method to remove clouds from the MODIS flood images while 

preserving the product's original resolutions. The resulting cloud-free flood maps 

showed an improvement of nearly 70% in average Probability of Detection (POD) (from 

0.29 to 0.49) when validated with flood images from Landsat 8. Furthermore, the cloud-

free flood maps have been used to derive the cloud-free water depth by using the REFIX 

method. The cloud-free water depth and the cloud-free flood extent will be used to 

improve the hydrologic model performance in the next chapter. 

5.1.3. Improving hydrologic modeling using cloud-free MODIS flood maps 

Hydrologic models are crucial for hydrological studies and water resources 

management. However, model errors are inevitable due to assumptions of the nature 

physical characteristics. In order to reduce the effects of errors, two approaches can be 

taken. The first one is to calibrate parameters of the hydrologic model using 

observations. The second is to assimilate observations so as to correct the effects of 

model errors (Munier, et al., 2015). Model calibration and data assimilation using gauge 

observations have been employed for decades due to the availability of gauge 

observations. On the other hand, satellite observations and their derived products just 
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emerged from the last decade and immediately proved their importance in improving 

hydrologic modeling. Many studies have used existing/expected satellite observations to 

improve the performance of hydrologic models ((Matgen, et al., 2007)(Andreadis, et al., 

2007)(Di Baldassarre, et al., 2009)(Schumann, et al., 2009)(Biancamaria, et al., 

2011)(Munier, et al., 2015)).  In Chapter 4, we utilized the usefulness of the cloud-free 

MODIS flood products to improve hydrologic modeling. The cloud-free flood maps have 

been used to calibrate a hydrologic model; the resulting simulated inundation maps had 

an average POD of 0.87 over the validation period. Moreover, the cloud-free water level 

maps have been used for data assimilation, hence, greatly improve flood modeling. 

During the validation period, from January 1 to July 10, 2014, the NSE and the standard 

deviation were 0.998 and 76.48 m3/s respectively. 

5.2. Future Extensions 

This dissertation focused on (1) the developments of cloud-free snow cover maps 

and cloud-free flood maps, and (2) the improvement of hydrologic modeling when using 

the resulted cloud-free flood maps to calibrate and assimilate. 

Needless to say that further extensions and improvements can be made and 

following are some of the recommended areas for future studies. 
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5.2.1. Global cloud-free snow cover maps 

The future extension of this study involves applying the VI algorithm for near 

real-time global snow recovery. With an improvement in computational efficiency, the 

VI algorithm can be implemented in large Climate Zone regions (Kottek, et al., 2006) and 

then merged into the whole global map. Parallel processing of multiple regions at the 

same time should be adequate for near real-time global snow recovery. 

5.2.2. Integration with SWOT data product 

The soon-to-come Surface Water and Ocean Topography (SWOT) direct 

observations of water elevation is an advanced satellite mission which is scheduled to 

be launched in 2021. SWOT uses state-of-the-art Ka-band radar interferometer (KaRIn) 

to provide a set of water body surface elevations with expected high height accuracy 

(Rodriguez, 2015)(Biancamaria, et al., 2016). Hence, we can greatly extend and improve 

the MODIS flood maps using SWOT. 

We can, first, use the SWOT data to validate the cloud-free MODIS water depth 

maps, and then, second, combine those sources to create a timely and accurate water 

level product. 
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5.2.3. Near real-time cloud-free global flood map 

We plan to build an operational real-time cloud-free global flood mapping using 

available satellite data resources, currently the Terra and Aqua satellites. The system 

will be fully automated, ingesting new MODIS images from NASA's ftp website and 

delivering products on completion via a website. Our goal is that the daily products will 

be available within 8 hours of Aqua overpass (~8:00 PM local time). 

The expected latency will result from product available (3-6 hours), data 

processing and quality control (2-5 hours), and product display on website (5-10 

minutes). 

5.2.4. An automated framework for flood forecasting 

The assimilation framework proposed in Chapter 4 shown great potential in 

predicting floods. We plan to apply this framework in other data-scarce regions to utilize 

more from satellite images. Along with section 5.2.3, whenever a cloud-free MODIS 

water depth map is available, it will be automatically used to update water levels in the 

hydrological model. 
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