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ABSTRACT OF THE DISSERTATION 

Novel Algorithms for Improving Wearable Feedback after Stroke 

by 

Shusuke Okita 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 University of California, Irvine, 2023 

Professor David J. Reinkensmeyer, Chair 

 

Stroke is a leading cause of disability, with over 80% of patients experiencing 

chronic upper extremity (UE) impairments that impede daily activities and degrade 

quality of life. While wearable sensors in the form of step counters have found 

application in stroke rehabilitation, effective home rehabilitation of the UE using 

wearable sensors remains an open question. This dissertation focuses on three 

research questions in UE rehabilitation using a wrist-worn wearable inertial 

measurement unit (IMU): (1) identifying hand movements, (2) assessing the quality of 

movement experience (QOME) in daily life, and (3) identifying ways to improve UE 

QOME with wearable feedback.  

 

We begin by reviewing existing wearable sensor technologies for at-home 

rehabilitation, setting the stage for our exploration of hand movement identification and 

arm movement quality assessment. We then introduce a spectrogram-based 

convolutional neural network (CNN) algorithm for hand movement recognition using a 

single wrist-worn inertial measurement unit (IMU). Our working hypothesis was that we 



xx	
	

could use machine learning to identify active flexion and extension of the fingers/wrist 

based on the vibrational patterns produced at the distal end of the forearm. Using wrist-

worn IMU recordings from 22 individuals with a stroke, we found we could identify the 

occurrence of finger/wrist movements with approximately 75% accuracy. Thus, ringless 

sensing of finger/wrist movement occurrence is feasible using wrist-worn IMUs, opening 

up new avenues for hand-related healthcare applications. 

 

Subsequently, we posited that it may be more effective to encourage an increase 

in beneficial patterns of movement (i.e. QOME), rather than simply the overall amount of 

movement. As a first step toward this goal, we sought to identify statistical 

characteristics of daily arm movements that become more prominent as arm impairment 

decreases. Using the same data set as for the hand movement study, we identified 

several measures that increased as UE Fugl-Meyer (UEFM) score increased: forearm 

speed, forearm postural diversity (quantified by kurtosis of the tilt-angle), and forearm 

postural complexity (quantified by sample entropy of tilt angle). Dividing participants into 

severe, moderate, and mild impairment groups, we found that forearm postural diversity 

and complexity were best able to distinguish the groups (Cohen’s D = 1.1, and 0.99, 

respectively) and were also the best subset of predictors for UEFM score. Based on 

these findings and a large body of research in motor learning that indicates the 

importance of challenging and variable movement practice, we posit that encouraging 

people to achieve more forearm postural diversity and complexity will improve QOME 

and therefore will be therapeutically beneficial. 
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Finally, we sought to identify practical ways to improve QOME with wearable 

feedback.  In an experiment with unimpaired individuals, we examined specific 

exercises, chosen from a candidate list of common exercise activities, to find which 

exercises create a high level of movement diversity and complexity. Engaging in 

conventional rehabilitation therapy exercises created high values for forearm postural 

diversity but not complexity, as measured with a wrist-worn IMU. Playing the card game 

Speed and exercising with a commercial, gamified, home exercise sensor system 

produced the highest values for both postural diversity and complexity. Then, we 

designed an implementation for providing real-time, wearable feedback based on 

diversity and complexity, working toward a randomized controlled trial to assess the 

efficacy of QOME feedback compared to quantity feedback alone. We introduced the 

concept of "Quality Time" to measure the amount of time users perform complex, 

diverse movements.  We propose an adaptive goal-setting strategy based on clinical 

scores of UE impairment and the statistics of complexity and diversity measured across 

a wide range of persons with stroke.  
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Chapter 1. Introduction 

This chapter reviews terminology and concepts relevant to the development of 

novel wearable sensing technology for upper extremity (UE) rehabilitation after stroke. 

Firstly, we review what constitutes effective rehabilitation for the UE after stroke, with a 

particular focus on the importance of movement dosage. Secondly, we review strategies 

for assessing UE function and measuring UE activities of people after stroke, with a 

focus on the emergence of wearable sensors.  Finally, we discuss how wearable 

sensors might be used to improve neurorehabilitation.  The chapter concludes by 

previewing the major contributions of the Dissertation. 

 

1.1. What constitutes effective neurorehabilitation for the UE after stroke? 

Stroke is the fourth leading cause of death across the world [1]. It is expected 

that one out of four people may experience a stroke in their lifetime globally [2], and 

about 80% of acute stroke patients experience motor impairments [3]. Stroke occurs 

due to a blockage or a rupture of blood vessels [4], typically leading to impairment of 

descending neural pathways (i.e., the efferent neuronal pathways) [5] as well as 

ascending pathways (i.e. the afferent neuronal pathways) [6]. The damage to the central 

nervous system (CNS) impairs sensorimotor control for both the lower extremity (LE) 

and the UE.  In this dissertation, we focus on remediation of UE impairments, which are 

characterized by limited dexterity due to 1) insufficient activation of agonist muscles; 

and 2) inappropriate activation of antagonistic muscles [7].  This muscle weakness and 

incoordination consequently reduces quality of life [8] and contributes to post-stroke 

depression [9]. Indeed, over 80% of persons who have experience a stroke express a 
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desire to improve UE performance in daily life [10], suggesting a strong need for more 

effective UE rehabilitation. 

Although effective neurorehabilitation is crucial for restoring UE function, it still 

remains unclear which interventions or design specifications contribute to successful UE 

rehabilitation, particularly in the home environment [11]. Maier et al. identified 15 

principles for effective neurorehabilitation [12]: massed practice, spaced practice, 

dosage, task-specific practice, goal-oriented practice, variable practice, increasing 

difficulty, multisensory stimulation, rhythmic cueing, explicit feedback/knowledge of 

results, implicit feedback/knowledge of performance, modulate effector selection, action 

observation/embodied practice, motor imagery, and social interaction.  

Of the principles suggested by Maier et al., the number of movement repetitions 

(i.e., dosage) is often considered one of the most important components for effective UE 

rehabilitation, although attempts to validate this principle have been inconsistent [13], 

[14].  In one of the clearest findings of a dose-response effect of therapy, Winstein et al. 

recently observed a linear relationship between improvements of the Motor Activity Log 

(MAL) and the amount of therapy [15]. The MAL is a self-report scale for which 

individuals rate how much and how well they are using their impaired limb from 0 to 5.  

They split 41 chronic participants into four groups with varying duration of arm therapy 

from 0, 15, 30 and 60 hours. They found a gain of 0.92 in MAL for quality of movement 

in the 60 hours group compared to the 0 hours group.  

The dose-response effect of training is also supported by work in animal models 

of stroke.  Jeffers et al. used the Montoya stair-case test [16] to compare the 

relationship between the number of reach/grasp movements practiced and the skilled 
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motor recovery gain in this task for rats with an induced stroke [17]. They found that the 

number of practice movement repetitions was nonlinearly related to skilled motor 

recovery (P<0.001, N=49).  Of particular interest here is the “hockey-stick” nature of the 

dose-response relationship they found.  Small amounts of motor practice produced 

small amounts of additional recovery up until a threshold of about 300 practice 

movements per day.  After that, additional amounts of practice were associated with 

linearly increasing skilled motor recovery.   

The relationship between dosage to the restoration of UE function has been 

suggested to be explained by the Threshold Hypothesis, which states that UE therapy 

becomes less effective if you don’t practice enough number of movements above a 

threshold. Critical to the Threshold Hypothesis is the idea of feedback loops related to 

dosage that have been called the “virtuous cycle” and “vicious cycle” [18]. The former is 

identified as the cycle where arm-use promotes the increase of UE function, and better 

UE function in turn promotes arm-use. The latter refers to the cycle where non-use of 

the UE leads to poor function of the UE, and the poor UE function promotes arm disuse. 

The virtuous cycle and the vicious cycle were first proposed in the simulation [19], [20], 

and were verified with clinical experiments [15]. Due to the vicious cycle, subjects 

experience “rehabilitation in vain”, the state that the arm therapy is not effective in 

promoting recovery [19], [20]. Thus, it is encouraged to provide a sufficient dosage over 

a threshold for effective rehabilitation. 

Previous research has shown that patients with hemiparesis after stroke may not 

receive enough movement practice in physical therapy (PT) and occupational therapy 

(OT) sessions [21]. Lang et al. found that treatment sessions averaged 36 minutes per 
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session, with an average of 39 repetitions of active-exercise movements, 34 repetitions 

of passive-exercise movements, and 12 repetitions of purposeful UE movements. This 

falls below the expectations required by the Threshold Hypothesis, suggesting that 

additional practice outside of therapy sessions is necessary to prevent ineffective 

rehabilitation. Therefore, it is encouraged to explore new ways to increase the number 

of repetitions for better recovery outside the clinic. 

Another important consideration is that multiple studies suggest there is a 

discrepancy between the clinical assessment in the lab and the performance of daily life 

activities, as measured using wrist-worn sensors [22]–[24]. For instance, a recent study 

by Lang et al. followed 138 people receiving outpatient services at 5 rehab clinics in the 

US  [25]. They found that 58% of people were able to improve their ability to complete 

upper limb and walking activities in the clinic, but did not see improvements in their 

movement performance outside of the clinic when using wearable sensors. They 

monitored the increase of the Action Research Arm Test (ARAT) score in the clinic, and 

the increase of the arm use ratio, defined as the ratio of impaired arm use to unimpaired 

arm use in daily life. They computed the arm use based on the duration of arm 

movements quantified by bilateral wrist sensors. They reported that stroke subjects 

didn’t increase the arm use although they increased significantly in ARAT score from 

the baseline to the post therapy, meaning the improvement of the clinical score did not 

directly carry over to arm use in daily life [25]. 

In summary, stroke is a leading cause of motor impairment worldwide, 

particularly in UE function. Effective neurorehabilitation is essential for restoring UE 

function, with dosage, or the number of movement repetitions, being a crucial factor for 
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successful rehabilitation. The threshold hypothesis emphasizes the need for sufficient 

practice above a certain threshold to avoid rehabilitation in vain [19]. However, existing 

physical and occupational therapy sessions may not provide enough movement practice 

[21], indicating the necessity to explore alternative methods to increase the number of 

repetitions outside the clinic. Furthermore, a discrepancy between clinical assessment 

and daily life activities has been observed, suggesting that improvements in clinical 

scores may not directly translate to increased arm use in daily life [25]. This highlights 

the importance of developing novel approaches to enhance the transferability of UE 

rehabilitation from clinical settings to everyday life and underscores the need for more 

extensive research into effective strategies for optimizing post-stroke recovery. 

 

1.2. Assessing UE function and measuring UE activities of people after stroke 

Considering the pivotal role dosage plays in the effective recovery of UE function, 

it is crucial to accurately assess patients' motor impairments and measure UL activities. 

Several popular clinical tests are used to evaluate UE function, including the UE Fugl-

Meyer (UEFM) test [26], Wolf-Motor Function Test (WMFT) [27], [28], and Action 

Research Arm Test (ARAT) [29], [30]. The UEFM comprises 33 test movements related 

to arm and hand dexterity, which are scored 0, 1, or 2 and then summed to obtain a 

score out of 66.  The WMFT consists of 21 tasks involving functional movements [27], 

while the ARAT consists of 19 tasks assessing arm function using a kit [30]. 

To detect and measure UE movements inside and outside clinical settings, two 

approaches can be employed: (1) the optical sensor approach, such as optical motion 

capture systems [31], and (2) the inertial sensor-based approach, such as inertial 
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measurement units (IMUs). The optical approach identifies the kinematic features of 

human movements by employing optical sensors primarily placed in the laboratory 

settings. While the optical sensor based approach is predominantly used in clinical or 

laboratory environments, there have been studies using cameras to monitor activities of 

daily living (ADL); for instance, Likitlersuang et al. developed a computer vision that 

identifies subjects’ impairment level based on a camera placed on a subject’s chest, 

hanging from the neck [32]. They discovered a moderate but significant correlation 

between manual-labeling and the proposed approach, suggesting this method could 

serve as an alternative to manual labeling. On the other hand, inertial sensor-based 

approaches use inertial sensors that can be attached to different parts of the body to 

measure acceleration, angular velocity, and magnetic field strength. They are not 

affected by external factors such as lighting conditions or reflective surfaces [33], 

although they are affected by sensor drift. The degree of accuracy and reliability 

depends on the site of attachment. 

In this dissertation, we focus on the use of inertial sensors for monitoring UE 

activities. Inertial sensors are versatile and can be utilized in various environments, 

making them an ideal choice for detecting and measuring UE movements. They are the 

primary sensor used for smart watches and activity trackers. They offer several 

advantages over optical sensors, such as being unaffected by lighting conditions or 

reflective surfaces and potentially providing accurate and reliable measurements 

depending on the attachment site.  

The potential of wrist-worn sensors for monitoring UE activities has garnered 

significant attention in recent years.  Research studies have provided valuable, new 
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insights into UE rehabilitation, since as the discrepancy between capacity and 

performance reviewed above, and both researchers and therapists have noted the 

potential to promote patient engagement in the rehabilitation process [34] . By 

leveraging the capabilities of these unobtrusive devices, therapists and patients alike 

can potentially access valuable information regarding movement patterns, progress, 

and areas for improvement. 

Wearable sensing is a rapidly growing field in the healthcare market [35], with 

estimates projecting an increase from $36.34 billion in 2020 to $114.36 billion in 2028. 

As the market expands, wrist-worn sensors are suggested to modulate biomarkers 

related to health outcomes. For example, monitoring the number of steps taken through 

wearable sensors can help a person lower their body mass index (BMI) [36], and blood 

pressure [36] by providing insights into their walking habits. 

Several commercially available wrist-worn devices have been developed or 

applied to facilitate UE rehabilitation at home.  The MiGo (Flint Rehabilitation Devices, 

USA) [37] is a device available for research purposes that uses a six-degrees-of-

freedom (DOF) IMU to track upper extremity movement. It has an accelerometer range 

of ± 2 G and a gyroscope range of ± 500 degrees per second with a 16-bit resolution. It 

is controlled by a system-on-a-chip (NRF52) with an ARM Cortex M4 CPU and a 

2.4gHz radio. It can stream data at 100Hz or track upper extremity active time in 15-

minute intervals for up to 37 hours. It can also be connected to a cellular gateway for 

extended logging range and to send data to a HIPAA compliant server. It has an OLED 

display and a push-button and is powered by a 90mAh LiPo battery. 
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ARYS™ me (Tyromotion GmbH, Graz, Austria) [38] is a discreet arm tracker and 

smartphone app system that helps individuals with arm impairments track and improve 

their arm movements through everyday activities. The wristband sensors measure all 

arm activities performed and the app provides a fun and motivating way to track 

progress, set daily goals and challenges, and receive reminders to move regularly. 

Additionally, the app includes a pedometer and the Tree of Recovery™ feature, which 

visualizes the progress of therapy over time. The system also includes a professional 

version, ARYS™ pro, specifically for use in clinical settings, which allows therapists to 

track and adjust therapy plans based on the patient's frequency of movement and 

progress. Both versions of ARYS™ support communication with patients, relatives, and 

insurance providers and can be used for both inpatient and home therapy. The software 

allows for objective therapy planning and coordination, making progress and limitations 

visible at a glance. 

Armeo Senso (Hocoma, Switzerland) is a sensor-based solution for arm function 

recovery that is mobile, portable, and is designed to have an intuitive user interface and 

workflow. It comprises three sensors - two for the arm and one for the chest - a hand 

module, and a software program with game-like exercises that provide highly intensive 

yet motivating therapy. A multicentric, assessor-blinded, randomized controlled trial 

used the Armeo Senso virtual reality rehabilitation system to train 37 first-time stroke 

patients and found that reward during arm training reduced impairment and increased 

activity [39]. The device allows patients to train on their own or with very little 

supervision, which increases the number of repetitions they can perform. 
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Three other devices available for monitoring UE activity, primarily for research 

purposes are the Manumeter [40], [41], Actigraph GT3X (ActiGraph LLC, USA) [42], and 

Zurich-move. The Manumeter is a wrist-worn device developed in the UCI Biorobotics 

laboratory, featuring four magnetometers on its corners, allowing users to recognize 

hand movements based on magnetic field changes produced by a magnetic ring on the 

finger [40], [41]. The Actigraph GT3X contains a three-axis accelerometer to record arm 

movement data that has been used in a wide range of research studies [42]. The 

Zurich-move is another research-oriented device that combines accelerometry and 

gyroscope measurements to obtain detailed information on arm movement and function. 

By utilizing these research-focused devices, investigators have sought to gain insight 

into the effectiveness of various rehabilitation strategies and refine their approaches to 

maximize patient outcomes in the context of upper limb recovery. 

 

1.3. How could wearable sensors be used to promote effective neurorehabilitation? 

The effectiveness of upper extremity (UE) rehabilitation using wearable sensors, 

particularly wrist-worn devices, remains an open question. Previous research by 

Brenann et al. has suggested that there are four key feedback components for digital 

biofeedback systems, such as wrist-worn devices [43]: 

 

(1) Content: Content refers to kinematic features provided as feedback to subjects. 

This can be categorized into knowledge of results (KR), and knowledge of 

performance (KP). KR refers to quantitative outcomes obtained from stroke 

subjects, and measured by wearable sensors, such as the number of movement 
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repetition. KP refers to information about the execution of a movement, like 

movement trajectory and force patterns over time [44].  

(2) Timing (Concurrent or Terminal): Feedback timing can be either concurrent 

(delivered during exercise execution) or terminal (delivered after exercise 

execution). Wearable sensors can provide real-time feedback, delayed feedback, 

or a combination of both. 

(3) Feedback Mode (Audio, Visual, and Haptic): Wrist-worn devices for UE 

rehabilitation can provide auditory, visual, and vibrotactile feedback [45]. Auditory 

feedback typically informs subjects if they have achieved a targeted movement. 

Visual feedback, often displayed on the device, can show number of movements 

completed as a progress toward daily goal.  

(4) Frequency (Constant, Reduced, Fading): Feedback frequency can be 

categorized as “constant”, “reduced”, “fading”. Providing reminders in an 

appropriate manner can powerfully modulate motor learning outcomes [46].  

 

In terms of content, as reviewed above, it is desirable for people after stroke to 

receive a large dosage of UE movement practice during rehabilitation therapy. To track 

how much movement practice has been done to reach a goal in daily life with wrist-worn 

device, it is helpful to develop algorithms that count UE movement.  The primary 

approach that has been tried to date is to detect when the integrated magnitude of wrist 

acceleration exceeds a threshold, and to designate that crossing a “activity count” [47].  

Most research studies in wearable sensing for UE stroke rehabilitation have used such 

activity counts as their primary metric [34]. 
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A criticism of the activity-count approach is that it potentially does not distinguish 

generalized UE movement, since as arm swing during walking, from functional UE use 

[40].  Functional UE use typically requires use of the hand, and thus it would be 

desirable to develop a wearable sensor for measuring finger movement as opposed to 

generalized UE activity counts.  Our laboratory previously developed sensors and 

algorithms that identify the number of finger/wrist movements a person makes 

throughout the day by detecting rotation of a magnetic field generated from a magnetic 

ring worn on the fingers using an array of magnetometers at the wrist.  We ultimately 

achieved 75-80% accuracy in a controlled environment [41], [48]. However, this 

approach requires that users wear a magnetic ring, which in some cases users found 

bothersome because of the propensity of the ring to be attracted to metal objects like 

car doors or cooking ware.  Other approaches to measuring finger movement require 

that individuals wear both a ring with an embedded accelerometer and a wrist 

accelerometer [49]. It would be desirable to be able to detect finger movement using 

wrist-worn IMUs, which are the most widely available commercial wearable sensing 

devices. Thus, an unsolved technical challenge is determining whether estimation of 

finger movement is possible using only IMU information obtained from the wrist.  

In terms of timing, the most effective timing intervals for feedback in digital 

biofeedback systems depends on the individual user and the specific exercise being 

performed. Feedback timing can be concurrent, which means that feedback is given in 

real-time, or terminal, which means that feedback is given after the exercise is 

completed. Ling et al. used concurrent feedback in a digital biofeedback system for 

lower limb exercises and balance training, where a human avatar simulating the user's 
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movement performed a program of games with gamification feedback elements [50]. 

Spina et al. used both audio and visual concurrent feedback in a digital biofeedback 

system for balance training [51]. In general, concurrent feedback is more effective for 

motor learning and engagement with rehabilitation exercises [43]. However, the 

frequency of feedback should be adjusted based on the user's skill level and the 

difficulty of the exercise [43]. 

In terms of feedback mode, vibrotactile feedback provides sensory information 

using the afferent neural pathways with mechanoreceptors, such as Pacinian 

corpuscles and Ruffini endings, to the CNS [52], and has the potential to promote brain 

plasticity. Seim et al. recently developed a vibrotactile stimulation (VTS) glove that 

provides vibrotactile stimulation to the users through the skin [53], [54]. 16 chronic 

stroke survivors wore the VTS glove on the impaired hand for at least three hours 

outside the clinic to see if vibration feedback in daily life promotes UE recovery. They 

showed a statistically significant increase in Semmes-Weinstein monofilament exam 

results. As another example of vibrotactile feedback, Eagleman et al. investigated the 

ability of deaf and hard of hearing participants to identify sounds using spatiotemporal 

patterns of vibration on the skin of the wrist  [55]. The subjects wore a vibrating 

wristband that converts sound to vibration. The wristband was created by Neosensory 

(Palo Alto, California), allowing users to "feel" sound through dynamic patterns of 

vibrations on their skin. The vibrating wristband and app offered non-invasive means of 

improving outcomes for hearing-impaired listeners. With the wristband, participants 

were able to identify up to 95% and on average 70% of the stimuli in a three-alternative 

forced choice task. Performance improved significantly over a month. Younger 
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participants tended to score better. The study also tested pattern discrimination, where 

participants determined whether the word presented was the same or different from the 

previous word. Performance was best with non-minimal pairs and could reach 100%. 

The study demonstrates the specific potential for wearable sensory substitution 

technology for the deaf and hard of hearing communities, but more generally illustrates 

how information content can be delivered through vibration. 

In terms of feedback frequency, Wei et al. checked if subjects increase the 

amount of arm use by reminder them of making a movement using wearable sensor 

[56]. This study split 12 chronic stroke participants and 15 healthy participants into 

experimental group, sham group, and control group. The sham group and experimental 

group wore a wrist worn device that had the ability to provide a reminder for making a 

movement, but the sham group didn’t receive reminder feedback from the device. In 

contrast, every 10 minutes, the experimental group were required to make a movement. 

They found that the average movement amount was significantly higher in the 

experimental group, and that this group also improved arm function more, as measured 

with the Action Research Arm Test score. Further, they showed that there was a distinct 

hemodynamic response in the primary motor cortex (M1) and the dorsolateral prefrontal 

cortex (DLPFC) using fNIRS when subjects received a reminder to move in the 

laboratory environment [57].  

Finally, an important factor that has not been investigated thoroughly for 

successful at-home stroke rehabilitation with wrist-worn devices is knowledge-of-

performance based feedback, which is also called quality of movement feedback [58], 

[59]. High-quality movements in UE rehabilitation have been defined in different ways, 
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including movements that are smoother [60]–[62], faster [63], [64], that exhibit better 

arm-hand coordination [63], that do not rely on compensatory patterns such a leaning 

with the trunk [65], and that do not rely abnormal synergistic patterns of movement [66].  

As I propose in this dissertation, an alternate definition of high-quality movements in UE 

rehabilitation could focus on the statistical properties of extended periods of movement 

throughout the day. It has been suggested that an exploration of a greater variety of 

movements could promote recovery [66]. Using a cumbersome wearable system, 

Wolpert et al. found that the range of motion of human arm movements is typically 

confined to a relatively small volume [67], implying even individuals without impairment 

only explore a limited set of movements in their daily activities. This may account for the 

observation that individuals do not normally improve their arm motor skill through 

normal daily activity: they need to perform activities that challenge their arm motor skill.  

This aligns with one of the most consistent and fundamental findings in the motor 

learning research: challenging, variable task practice is necessary to promote motor 

learning [46].   

The theme of using exploration to promote UE rehabilitation was recently 

explored by Krakauer et al., who developed a robotic training system to encourage 

individuals with a stroke to perform novel movements using a neuro-animation 

environment [66]. Participants explored with making different gravity-supported UE 

movements to drive the playful motion of a virtual dolphin, making it, for example, jump 

out of the water and do a flip when they achieved a specific, desirable patterns of UE 

joint coordination. 
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However, to our knowledge, there have not yet been studies that have adopted 

this exploration approach using wearable sensing.  As detailed below, we propose that 

wearable sensing could be used to encourage individuals with a stroke to make novel 

and exploratory movements in their daily life, potentially provoking motor skill 

development.  

 

1.4. Overview of the Dissertation 

In this chapter, we reviewed what constitutes effective rehabilitation for the UE 

after stroke, highlighting the importance of movement dosage. We also reviewed 

strategies for assessing UE function and measuring UE activities of people after stroke, 

detailing several wearable sensors that are available for these purposes. Finally, we 

discussed how wearable sensors might be used to improve neurorehabilitation. 

The primary goal of this dissertation is to develop novel algorithms that can be 

applied with wrist-worn IMUs to address two of the problems we identified in the review: 

(1) the need to non-obtrusively monitor the amount of hand movement that individuals 

perform throughout the day, (2) the need to encourage individuals to perform high-

quality movements during daily life that promote UE skill learning. 

In Chapter 2, we develop a machine learning approach for identifying finger 

movements based on information from a single, wrist-worn IMU. Traditionally, it is 

necessary to use two sources of information to identify isolated finger movement: a ring 

and a wrist sensor [48]. Here, we use a convolutional neural network (CNN) [68] to learn 

to identify the occurrence of finger movements in daily activities based on the 
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spectrogram of accelerations and angular velocities those movements produce at the 

wrist. 

In Chapter 3, we posit that it may be more effective to encourage an increase in 

beneficial patterns of UE movement, rather than simply the overall amount of movement 

each day. We therefore sought to develop novel statistical measures of the quality of 

the movement experience (QOME) of the UE that individuals with a stroke experience in 

daily life.  We propose several measures of QOME based on measuring the statistical 

properties of the movement speeds and forearm postures experienced throughout the 

day from a sample of 22 persons with a stroke who wore a wrist IMU at home.  We 

show that movement diversity and complexity, computed by kurtosis and sample 

entropy, increase as motor impairment decreases following stroke.  We therefore 

propose movement diversity and complexity as potential targets for wearable feedback 

to promote QOME. 

In Chapter 4, we ask the question “What exercises are helpful in improving 

movement diversity and complexity?”  We recruited 8 unimpaired individuals and 

evaluated a set of 12 therapeutic activities for postural diversity and complexity. 

Engaging in conventional rehabilitation therapy exercises created high values for 

forearm postural diversity but not complexity. Playing the card game Speed and 

exercising with a commercial home-exercise sensor-based game system produced the 

highest values for both postural diversity and complexity. These results suggest that 

individuals with a stroke could be encouraged to practice specific exercises to increase 

QOME. 
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In Chapter 5, we describe the implementation of real-time, embedded algorithms 

for QOME feedback using a wrist-worn IMU.  The system incorporates algorithms for 

measuring sample entropy and kurtosis in order to measure the amount of “Quality 

Time” that wearers achieve during daily activities. We propose an adaptive threshold for 

movement quality scoring, based on the wearer’s UEFM score and the minimal 

detectable change for entropy and kurtosis. We also developed a robotic simulator of 

the forearm as a test bench to validate these algorithms. 

In Chapter 6, we summarize the contributions of this dissertation and suggest 

directions for future research. 
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Chapter 2. Counting finger and wrist movements using only a wrist-

worn, inertial measurement unit: Toward practical wearable sensing 

for hand-related healthcare applications 

 
 

2.1. Summary of the Chapter 

Having the ability to count finger and wrist movements throughout the day with a 

nonobtrusive, wearable sensor would be useful for hand-related healthcare applications, 

including monitoring and rehabilitation after stroke, carpal tunnel syndrome, or hand 

surgery. Previous approaches to achieving this goal have required the user to wear a ring 

that is magnetic or a ring that contains an inertial measurement unit (IMU). Here, we 

demonstrate that it is possible to identify the occurrence of finger and wrist 

flexion/extension movements with approximately 75% accuracy based on vibrations 

detected by a wrist-worn IMU, a device similar to commercial fitness trackers. We 

developed an approach we call “Hand Activity Recognition through using a Convolutional 

neural network with Spectrograms” (HARCS), that trains a CNN  to recognize finger/wrist 

movement occurrence based on the velocity/acceleration spectrograms those 

movements create. We validated this approach in two ways. First, we trained a CNN 

based on wrist-worn IMU recordings obtained from twenty stroke survivors during daily 

life, where the occurrence of finger/wrist movement was labeled using a previously-

validated algorithm called HAND that used data from a magnetic ring and a wrist-worn 

magnetometer array. The daily number of finger/wrist movements identified by HARCS 

had a strong positive correlation to the daily number identified by the HAND algorithm 
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(R2=0.76, p < 0.001).  Second, we trained a CNN on an IMU dataset recorded from nine 

unimpaired volunteers who performed finger, wrist, and arm movements, where we 

labeled the finger and wrist movements using simultaneous data recorded from an optical 

motion capture system. In this case, HARCS identified the occurrence of finger/wrist 

movement with 75% accuracy. Ringless sensing of finger/wrist movement occurrence is 

feasible using wrist-worn IMUs, opening up new avenues for hand-related healthcare 

applications. 

 
2.2. Introduction 

The hand plays a critical role in daily function. A wide variety of conditions, including 

trauma to the hand, developmental disorders such as Autism spectrum disorder [69], and 

neurologic injuries such as stroke [70] and spinal cord injury [71], diminish effective hand 

use. Overuse of the hand can also cause pain and injury, such as in carpal tunnel 

syndrome [72]. Treatment for these conditions usually relies at least in part on achieving 

targeted levels of daily hand activity, with the goal of promoting recovery by gradually 

increasing use or avoiding injury by limiting use. However, currently, there are few, non-

obtrusive wearable sensors for quantifying daily hand use. This limits the ability of 

clinicians and patients to understand if target hand use amounts are being met and to 

adapt treatment plans. 

Currently, there are several promising wearable approaches to finger movement 

sensing, including: 1) wearing a camera, typically around the neck, and inferring hand 

activity using computer vision [32]; 2) wearing a ring with an inertial measurement unit 

(IMU) and inferring hand activity from motion of the ring [73]; and 3) wearing a magnetic 

ring and inferring hand activity based on the changes in magnetic fields sensed at the wrist 
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[70], [41], [40], [48]. We recently used the last approach to confirm the hypothesis that 

real-world upper extremity (UE) hand use increases only for stroke survivors who achieve 

a threshold level of UE functional capability [48]. Here, we explored an even less intrusive 

approach that is suitable for implementation with hardware available with many 

commercial activity trackers that are worn like watches. 

Our working hypothesis was that we could use machine learning to identify the 

vibrational patterns produced at the distal end of the forearm by active flexion and 

extension of the fingers and wrist. Previous studies have shown that vibrations induced by 

tapping the forearm can be read out using sensors in an arm band, highlighting the fact 

that there is informational content in vibrations that propagate through the forearm [74]. 

Here, we studied whether finger/wrist movement produced vibrations at the wrist that could 

be used to identify the occurrence of finger/wrist movement. To this end, we propose a 

novel approach for hand activity recognition using a convolutional neural network with 

spectrograms, named Hand Activity Recognition through Convolutional neural network 

with Spectrograms (HARCS). 

 

2.3. Methods 

2.3.1. Wrist-worn sensors 

We used data from two wrist-worn sensors in this study, the Manumeter and the 

MiGo. Both devices are non-commercial devices developed in a collaboration with the 

company Flint Rehabilitation Devices, LLC (Irvine, CA, USA). 

The Manumeter  is a watch-like device with inertial and magnetic sensing 

capabilities, the latter of which we have studied extensively in several previous studies 
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[40], [41], [48], [70]. For this study, we made use of the six degrees of freedom (DOF) 

Inertial Measurement Unit (LSM6DSL) it incorporates; the range of the accelerometer was 

set to ± 4G, and of the gyroscope was set to ± 500 degrees per second, both with 16-bit 

resolution. The Manumeter is equipped with an ARM Cortex M4 CPU (NRF52, Nordic 

Semiconductor, Norway) and a real time clock (PFC2123) calculates the time and the date. 

It has a 4G flash memory (MT29F4G01ADAGDWB-IT:G TR) that records data obtained 

from the IMU. The sampling rate was set as 52.6 Hz, high enough for capturing human 

movements [75]. The Manumeter has an OLED display that can show information, such 

as the time of day, or the number of hand movements performed by a wearer. In previous 

studies, for counting finger/wrist movements, the user also wore a magnetic ring on the 

index finger. A magnetic array in the wrist unit sensed changes in the magnetic field 

produced by the ring (see [48]).  

The MiGo is also a watch-like device with IMU sensing, but it does not have 

magnetic sensing.  It uses the same IMU (LSM6DSL), but the accelerometer range was 

set to ± 2 G and gyroscope range set to ±500 degrees per second, both with a 16-bit 

resolution). It contains the same real-time clock and microcontroller as the Manumeter. An 

integrated 2.4gHz radio is used to stream data from the IMU. IMU data is read and pre-

processed at 205Hz, then streamed at 100Hz using the enhanced shock-burst wireless 

protocol. We down-sampled IMU data to 52.6Hz offline using  Scipy's resample function 

[76]. The MiGo also has an OLED display and a push-button available and is powered 

with a 90mAh LiPo battery. 
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To summarize, for all experiments we used the same IMU with the same sampling 

rate, and this was mostly achieved with the Manumeter. We only used the MiGo for seven-

subjects for the Mocap-Lab Dataset, as described in more detail below. 

 

2.3.2. Experiments and Data Sets 

For this project we needed to obtain IMU recordings taken during UE movements 

that sometimes included finger/wrist movements, and we also needed to know when a 

finger/wrist movement occurred, in order to train the network and then validate its 

capability. We relied on three datasets, where we name the dataset based on: 1) the way 

we identified whether a finger/wrist movement occurred (i.e. via the Manumeter or motion 

capture); and 2) the location of collection (at home or in the laboratory). All experiments 

were approved by the UCI Institutional Review Board and subjects provided informed 

consent. 

Manumeter-Home Dataset: For this dataset, we used IMU recordings from 20 

persons with a stroke who wore the Manumeter at home, acquired as part of a previously-

reported clinical trial on the feasibility and efficacy of hand count feedback [70]. We labeled 

movements using the HAND algorithm, which was previously developed in our laboratory 

[48]. The HAND algorithm recognizes hand movements based on fluctuations of the 

magnetic field produced from the magnetic ring on the wrist, detecting if its changes are 

over pre-set thresholds [77]. The algorithm identifies flexion-extension movements with an 

accuracy around 80%. Further details can be found in [48]. 

Manumeter-Lab Dataset: We also acquired IMU recordings in a laboratory-based 

experiment from the same subjects with a stroke who participated in generating the 



23	
	

Manumeter-Home Dataset. These subjects performed an exercise where they moved their 

hand or wrist a fixed number of times at a fixed pace by following a video prompt [70].  We 

also recruited an additional 7 unimpaired subjects to participate in a similar experiment, 

except these subjects performed an exercise where they moved their arm while keeping 

their hand still. Similar to the Manumeter-Home Dataset, we labeled finger/wrist 

movements using the HAND algorithm [48]. 

Mocap-Lab Dataset: To further validate the HARCS algorithm, we also acquired 

IMU recordings from nine, unimpaired, male volunteers who performed a series of 

structured UE movements while wearing either the Manumeter or the MiGo in the 

laboratory. For this experiment, we used an optical motion capture system (Phasespace, 

USA, nine cameras) to measure wrist and finger angles (Figure 1A). The participants 

performed six movements that involved various combinations of hand, wrist, and arm 

movement (Figure 1B). The subjects performed the same movement continuously over a 

90 second period (at a self-selected rate, typically around 0.5-1 Hz), then rested for 15 

seconds, before performing the next movement in the order shown in Figure 1B. We 

manually counted how many of each movement each subject performed. The dataset 

annotation process involved down-sampling Mocap data from 480 Hz to 52.6 Hz to match 

IMU data and calculating finger and wrist angles. Instantaneous angular rates were 

computed by differentiating these angles, and a window was labeled positive if a peak was 

found (see below for how windows were defined). Thresholds were set to match the 

number of peaks with the number of hand movements.  
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Figure 1. (A) Marker placements for inferring the wrist and the finger angle. 𝛼 represents the 

wrist angle. and 𝛽 represents the finger angle (i.e. metacarpophalangeal joint angle). Four 

markers were taped as shown in the figure to the wrist and finger to get 𝛼 and 𝛽. (B) The list of 

movements in Mocap-Lab Dataset. Subjects performed 6 movements involving arm-only 

movement, hand-only movement, and hand & arm movement. 

 

2.3.3. Data Preprocessing  

We used 6 steps to annotate and preprocess datasets, and to train the network 

(Figure 2). We used 9 features in training the network: 3-axis acceleration, 3-axis angular 

velocity, and the 3-axis gravity direction. Note that we subtracted gravity from the 

acceleration, and obtained gravity direction through the Madgwick filter [78]. In Step 1, we 

annotated the datasets using either the motion capture system or the HAND algorithm. In 

Step 2, we split data into training and testing sets (see details in the “Training the network” 

section). Then, we generated windows with 150 samples (i.e., about 2.85 seconds of data), 
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which served as inputs for the training and validation datasets. For the training set, the 

windows were generated with a stride of 50 time-samples (about 0.95 seconds of data). 

We labeled a window as positive if at least one time-sample was designated as positive 

for hand movement within the last 50 time-samples of that window. We adopted this 

approach to provide the network with adequate context to determine if a hand movement 

has taken place; i.e. the network evaluated a window of 150 time-samples to predict if a 

hand movement took place in the last 50 time-samples in the window. As a result, for every 

50 time-samples, we assigned a label of either positive or negative for hand movement 

occurrence, and defined those 50 time-samples, as well as the previous 100 time-samples 

as the “data-sample” for performing identification (see Figure 3 for an example of a data-

sample). In Step 3, we converted the samples of raw sensor signals for each data-sample 

into spectrograms by applying a Short-Time Fourier Transform (STFT). In Step 4, we 

applied a non-linear transformation, the Box-Cox transform [79]–[82]) to the spectrogram 

variables for normalization, which we found improved network performance. During the 

generation of the training set, the parameter 𝜆 for the Box-Cox transform was selected 

using the SciPy scalar optimizer [76]. After the normalization, we applied standardization 

by subtracting out the mean and dividing by the standard deviation. Further details are 

found in the Supplementary Material. 
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Figure 2. 6 steps in training and assessing the neural network. 
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Figure 3. An example of processing a data-sample where the HAND algorithm predicted there 

exists a hand movement. This sample contains 150 time-samples from the IMU. (A) 

Acceleration, gyro, and gravity vector measures (B) The heatmaps of the spectrograms 
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computed from this sample for each measurement. (C) The heatmaps of the normalized 

spectrograms. 

 

2.3.4. Convolutional Neural Network Design 

In Step 5, we trained a Convolutional Neural Network (CNN), a network architecture 

often used in image recognition tasks (Figure 4) [68]. Spectrogram classification can be 

effectively executed with CNNs [83], and there are various studies available on the 

application of spectrograms for classification tasks, specifically within the realms of voice 

[84] and human activity recognition [85]. The CNN we used consisted of 7-8 repeated 

convolutional layers with L2 regularization and dropout layers. The dropout layers were 

inserted to avoid overfitting [86]. A sigmoid activation function was used to output final 

predicted probabilities.	For the loss function, we used a binary cross-entropy loss function 

with the Adam optimizer [87]. 

Each data-sample was formatted as 131 x 9 x 11, which is a transformed version 

of the original 150 time samples data with 9 sensor variables. The Short-Time Fourier 

Transform (STFT) was applied using a window size of 20, shifting one-time sample at a 

time. This analysis produced 131 windows from the initial 150 time-samples. 

Tensorflow and Keras 2.0 were used to implement the CNN [88], [89]. We manually 

tuned the following parameters depending on a network: (1) the number of convolution 

layers; (2) the convolution kernel size; (3) the number of convolution filters; (4) whether 

layer norm layers are present; (5) l2 regularization lambda. We trained the network using 

either the Mocap-Lab Dataset or Manumeter-Home Dataset. A summary of the 

parameters in each case is provided in the Supplementary Material. 
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Figure 4. An example of the CNN architecture trained by Manumeter-Home Dataset.  

 

2.3.5. Training the Network 

We trained the CNN with the different IMU datasets, which, to review, were taken in 

different settings and with finger/wrist movements identified in different ways. We asked 

the following questions: 
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Q1. How well can we identify in-the-wild hand movements made by people with varying 

levels of hand impairment due to stroke? Our largest dataset was the one obtained 

across a day during home activities by persons with a stroke, i.e. the Manumeter-

Home Dataset. We asked: can a CNN trained on IMU recordings obtained from 

daily use of the UE at home by persons with stroke recognize when finger/wrist 

movement occurred?  To answer this question, we used leave-one category-out-

cross-validation (LOOCV) based on subjects' impairment levels. We trained 

HARCS by splitting the data into training and testing sets according to the subjects' 

Fugl-Meyer Upper Extremity (UEFM) scores. The UEFM score is a clinical scale 

ranging from 0 (severe impairment) to a maximum of 66 (no impairment), assessing 

motor function and joint functioning in individuals with post-stroke [26]. For instance, 

we trained HARCS using subjects’ data in 30 ≤ UEFM score < 66, when we 

assessed subjects’  data in the range of UEFM score < 30. We labeled the 

occurrence of a finger/wrist movement using the previously-validated HAND 

algorithm implemented with the magnetic sensing capability of the Manumeter, 

which is about 80% accurate [48]. In addition to the LOOCV method based on 

subjects' impairment level, we also implemented an alternative approach to 

evaluate the performance of the CNN, which we called random 5-fold cross 

validation grouped by participants. In this method, we randomly divided the dataset, 

allocating 80% of the subjects for training and 20% for testing, without taking into 

account the subjects' UEFM scores. This approach aimed to assess the robustness 

and generalizability of our CNN model when mixing a diverse range of hand 

impairments due to stroke into training data. We performed 6 iterations of this 
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random fold process, each time creating a new training and testing data split. We 

also compared HARCS to three other machine learning approaches: the support 

vector machine (SVM), k-nearest neighbor (kNN), and a multi-layer perceptron, 

following the approaches by [90], [91], and implementing the algorithms in scikit-

learn [92].  See the Supplemental Material for parameter selection for the other 

approaches. We also studied how the identification accuracy depended on finger-

wrist movement speed. To do this, we calculated the mean of the acceleration 

amplitude across the 150 data points in each window. After we created a validation 

set, we split the data with respect to the amplitude of movements to compute a 

weighted confusion matrix in each range to average the effect of skewness. We 

averaged based on the number of actual positives and actual negatives. 

Q2. Is HARCS Sensitive to Isolated Hand Movement?: A second question we asked 

was: Can a CNN trained using the Manumeter-Home Dataset accurately count hand 

movements when a person performs structured movements comprised of hand-only 

movement, and, conversely, not count movements comprised of arm-only 

movement?  To answer these questions, we used the Manumeter-Lab Dataset. 

Since hand and arm movements often occur together in the “wild”, our goal here 

was to understand the unique sensitivity of the algorithm to isolated hand movement, 

and, conversely, it’s susceptibility to arm-only movement.  

Q3. Identifying Structured Hand Movements with Accurate Labeling: Using the 

Manumeter to label movements introduces error because the HAND algorithm is 

about 80% accurate [48]. Therefore we asked: Can a CNN trained on movements 

counted accurately using motion capture recognize when a finger/wrist movement 
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occurred? We also varied the type of movement (hand only, arm only, and hand-

arm together) to study accuracy for these movement types. To answer these 

questions, we trained and evaluated the CNN using the Mocap-Lab Dataset with 

LOOCV. We first removed one subject’s data as the validation data set, and then 

trained the CNN on the data from the remaining eight subjects. We repeated the 

same process 9 times, using each subject’s data for validation. We used the testing 

set to evaluate how well the CNN detected the presence or absence of finger/wrist 

movement for each of the six movements shown in Figure 1B. Moreover, for the 

Mocap-Lab Dataset, we implemented two distinct training approaches to evaluate 

the potential impact of different labeling methods on the network’s performance. In 

the first approach, we only labeled hand-only movements as positives; that is, we 

labeled combined hand/arm movements as negative. This tested how well the 

network could identify when hand-only movements occurred, in isolation from arm 

movement. In the second approach, we labeled combined hand/arm movement as 

positives. This tested how well the network could identify when hand movement 

occurred, with or without arm movement. 

 

2.3.6. Statistical Analysis and Performance Analysis 

To characterize the network performance, we used Accuracy, Precision, Recall, 

and F1-Score, as defined in Equations 1-4, all widely used metrics [44], Additionally, we 

generated receiver operating characteristic (ROC) curves and associated Area Under the 

Curve (AUC) values to assess the performance of the model’s binary predictions [94]. We 
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also computed the Pearson correlation to compare hand counts between HARCS and the 

HAND algorithm. 

 

Precision = 
True Positive

True Positive + False Positive (1) 

Recall = 
True Positive

True Positive + False Negative (2) 

F1 score = 2 × 
 Precision × Recall 
 Precision + Recall  (3) 

Accuracy = 
True Positive	+ True Negative

True Positive + False Positive + False Negative + True Negative  × 100 (4) 
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2.4. Results 

We tested the ability of HARCS to identify finger/wrist movement from wrist-worn 

IMU data sets obtained at home from people with hand impairment after a stroke and in 

the lab from both stroke and unimpaired subjects. HARCS uses a CNN to recognize 

finger/wrist movement occurrence based on the velocity/acceleration spectrograms those 

movements create. 

 
2.4.1. HARCS can identify unstructured hand movements of people with stroke in-the-

wild across a wide range of impairment levels 

We divided the 20 stroke subjects into groups according to a standard clinical 

measure of UE movement ability, the UEFM Score. For reference, an UEFM score less 

than 20 means severe UE paresis, a score of 30-40 means hand function is just emerging; 

and a score of 66 means normal movement ability [95]. HARCS accuracy was 81% for the 

two subjects in the range of 0-20 in the UEFM score, and 74% for 15 subjects in the range 

50-60; that is, the accuracy did not vary substantially with level of hand impairment (Figure 

5A). Across all participants, using random 5-fold CV, the average accuracy was 77%. 

Further, the number of HARCS counts identified across a days’ worth of wear time was 

strongly correlated with the number of HAND counts, which were the counts identified in 

the previous study that used additional information from a magnetic ring, instead of just 

IMU data (r=0.874, p=0.00, R2 = 0.763) (Figure 5B). 
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Figure 5. (A) Accuracies and AUCs for HARCS-based identification of finger/wrist movement in-

the-wild for 20 stroke subjects with varying UEFM scores. (B) The correlation between HARCS 

and HAND counts of finger/wrist movement occurrence, where HAND counts were produced in 

previous study using information from a magnetic ring. 

 
Using the same Manumeter-Home Dataset, we compared four machine learning 

approaches (see Supplemental Material for details). The various measures of network 

performance we examined were highest for HARCS, including the R2 value for the 

regression between HARCS  and HAND counts (Figure 5B). 

 
Table 1. Summary of performances by four different machine learning approaches.  

  
          
KNN 

          
SVM 

Perceptr
on 

      
HARCS 

Accura
cy 61.82 66.87 72.35 77.19 
F1 
score 44.22 61.37 70.71 77.98 
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Precisi
on 82.03 73.61 75.18 76.02 
Recall 30.51 52.81 66.98 80.62 
R2 0.648 0.31 0.533 0.763 

 

Again using the same Manumeter-Home Dataset, we analyzed how the HARCS 

classification performance depended on the average speed of limb movement in the data-

sample window (Figure 6). Accuracy and precision decreased with increasing average 

speed, while Recall increased. The decrease in precision could be attributed to an 

increase in false positives as speed increased (Figure 6F), while the increase in recall was 

due to a reduction in false negatives as speed increased (Figure 6G). Despite the balanced 

metrics, this outcome indicates that the network had a tendency to predict positive 

outcomes when the mean of accelerations was high. In other words, as the acceleration 

increases, the network is more likely to identify a movement as positive, leading to a higher 

rate of false positives and consequently lowering Precision. Conversely, the decrease in 

false negatives contributed to the increase in Recall, demonstrating that the network more 

effectively recognized actual positive cases.  
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Figure 6. The relationship between the network performance and the mean linear acceleration 

across the data-sample window of duration ~2.8 sec. In (A), the proportions of actual positives 

and total data-samples are shown on the top of each bar. 
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2.4.2. HARCS sensitivity to hand-only and arm-only movement  

After we trained HARCS on the Manumeter-Home Dataset, we tested its abilities 

on the data set from impaired and unimpaired subjects in which subjects performed hand-

only or arm-only movements. This was of interest because hand and arm movements 

often occur naturally together in-the-wild, and we wanted to understand how sensitive 

HARCS is to isolated hand movement. HARCS was able to count hand-only movements, 

but underestimated the actual number of hand movements performed by both impaired 

and unimpaired subjects by 45% and 66% respectively. This performance was less 

accurate than the HAND algorithm, which overestimated the counts by 26 and 5%, 

respectively (Figure 7A and B). For the arm-only exercise, HARCS should not have 

counted any hand movements, but counted 36% of arm movements as having also had a 

hand movement, a false-positive rate that was again larger than HAND (Figure 7C). 

 

 

Figure 7. Comparison of HARC algorithm counts versus HAND counts and the true number of 

hand movements for (A) hand-only exercise by persons with stroke (B) hand-only exercise by 

unimpaired subjects, (C) arm-only exercise by unimpaired subjects.  For A and B, perfect 

counting would result in 100% movement counts.  For C, perfect counting would result in 0% 

movement counts, since C is arm-only exercise. 100% represents 50 hand movements for 

hand-only exercise and 200 movements for arm-only exercise. 
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2.4.3. HARCS can identify structured hand movements, but accuracy depends on 

movement type 

As a further test of the core idea of identifying hand movement from wrist IMU 

recordings, we performed a laboratory experiment that generated the Mocap-Lab Dataset. 

For this experiment, subjects repeatedly made different types of movements involving the 

hand and/or arm (Figure 1B). Hand movement occurrence was identified based on an 

optical motion capture system, removing any labeling error that resulted from depending 

on the HAND algorithm for labeling. The average accuracy for HARCS for the Mocap-Lab 

Dataset when combined hand/arm movements were treated as actual positives was 75%, 

but the accuracy varied depending on the type of movement that the subject performed 

(Figure 8A). HARCS performed well in identifying isolated finger/wrist movement (80 and 

76% accuracy, see Figure 8A), and in ignoring vibrations created by arm movement only 

(81 and 91% accuracy). HARCS struggled to accurately identify finger/wrist movements 

combined with arm/hand movement (59 and 65% accuracy). Across all movement types, 

the average AUC was 0.88 (Figure 8C). In contrast, the average accuracy for HARCS for 

the Mocap-Lab Dataset when combined hand/arm movements were treated as negative 

was 92% on average, showing the ability of the network to more accurately identify hand-

only movement (Figure 8B and D). 
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Figure 8. (A, B) Average accuracy of HARCS when trained and tested on the Mocap-Lab 

Dataset obtained from nine unimpaired subjects. (C, D) The mean of ROC Curve (solid line) in 

which the shaded area represents ± 1 standard deviation. In A and C, combined hand/arm 

movements were treated as actual positive. In C and D, combined hand/arm movements were 

treated as actual negative. 

 
 
2.5. Discussion 

Our goal in this study was to determine if we could identify the occurrence of hand 

movements using only a wrist-worn IMU. The algorithm that we designed, called HARCS, 
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focuses on recognizing vibrational patterns produced by flexion and extension of the 

fingers and wrist. Using a dataset obtained from twenty stroke survivors during daily life, 

the daily number of finger/wrist movements identified by HARCS had a strong positive 

correlation with the number identified by a previously developed hand-movement 

recognition algorithm that used a magnetic ring and magnetometer. This was true across 

a wide range of hand impairment levels after stroke. Further experiments in the lab found 

HARCS has an accuracy of ~75% and was sensitive to the occurrence of hand-only 

movement, although it tended to undercount hand-only movement. These results 

demonstrate the feasibility of ringless sensing of hand movement using wrist-worn IMUs. 

We discuss the performance of HARCS as well as limitations and directions for future 

research. 

 

2.5.1. Performance Analysis 

In contrast to existing approaches of hand activity detection [48], [49], one of the 

advantages of HARCS is it doesn’t require any other components or devices except a 

wrist-worn IMU. Thus, HARCS could potentially be deployed immediately with a wide 

range of existing smart watches.  Encouragingly, hand counts produced by HARCS were 

strongly correlated with the HAND algorithm, which required additional hardware, including 

a magnetic ring and magnetometer array. This strong correlation was present even though 

the HAND algorithm is known to be susceptible to false positives due to stray magnetic 

fields in the environment [48], introducing noise in the labeling.  

In the laboratory experiments, the overall recognition accuracy of ~75% was 

comparable to accuracy rates of some commercial step counters [96], [97], which have 
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been shown to be valuable for encouraging walking activity and improving body mass 

index and blood pressure, [36]. An analysis of 42 studies in real-world settings found that 

58% of step trackers had more than 10% inaccuracy for step counts [97]. Step count error 

rates are even higher for impaired populations [98]. Despite not being perfectly accurate, 

HARCS may be reliable enough to encourage rehabilitation outcomes for stroke patients 

when used consistently. In fact, our previous study involving the Manumeter, which had 

an accuracy of about 80%, demonstrated that subjects increased their daily frequency of 

hand movements in response to the display feedback from the device [70]. 

Two key design features of HARCS are to convert IMU data to the frequency 

domain before using in classification, and to use a CNN network, an architecture that has 

been previously found useful for  image recognition tasks [68].  Essentially, HARCS can 

be viewed as performing image recognition on the 9 spectrograms corresponding to the 9 

types of features produced by finger, wrist, and arm movement. 

In the first laboratory experiment, we found that HARCS was sensitive to isolated 

hand movement but undercounted it by ~30%. Further, HARCS assigned false positives 

at a rate of about 40% to arm-only movement.  In this experiment, we trained the network 

using the in-the-wild data from the stroke subjects, which may account for some of the 

inaccuracy. As mentioned above, we labeled the in-the-wild data with the HAND algorithm, 

which is imperfect. Further, the movements types performed in the lab were only a small 

subset of the ones the network was trained on (i.e. daily life movements), and this may 

have biased the network in a suboptimal way for the laboratory tests.  Finally, the testing 

data for arm-only movement were from unimpaired subjects, while the training data were 

from stroke subjects. Stroke subjects tend to move more slowly, and we found that the 
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network was sensitive to the average movement speed in the data-window. It may be 

possible to improve HARCS performance for specific applications by better matching 

training data to the application. 

In the second laboratory experiment that used the motion capture system to 

accurately label data, we found that network performance was excellent when we trained 

the network to identify when hand-only movement occurred. Network performance 

decreased when we trained the network to identify when any type of hand movement 

occurred, including those occurring simultaneously with an arm movement.  This highlights 

that there is a confounding nature to the vibrations produced by arm movement when 

trying to identify hand movement, as was also evident by the algorithm producing false 

positives for arm-only movement.  This confound may present a fundamental limit to the 

accuracy possible with HARCS, although this remains an open question. 

 

2.5.2. Limitations and Future Work 

A key limitation of the current work is that the in-the-wild data analysis relied on the 

magnetometer-based HAND algorithm for labeling, which we know from previous studies 

has some inaccuracies.  It may be possible to improve performance by generating a more 

accurately labeled, in-the-wild dataset with a more obtrusive method, such as wearing 

instrumented gloves [41], wearable cameras [32], [99], or stretchable e-textile sensors 

[100], [101] to obtain a more accurate ground truth for annotating the dataset. 

For future work, we aim to incorporate non-obtrusive hand movement sensing into 

home rehabilitation after stroke, allowing for real-time feedback and analysis of patient 

hand movements, an approach that already showed promise with a more cumbersome 
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magnetic sensing approach [70] . To achieve this goal, we will seek to embed HARCS into 

a wrist-worn sensor to provide real time hand activity recognition. Such a real-time version 

of HARCS could potentially be useful for other healthcare applications where monitoring 

the real-time use of the hand in daily life is relevant, including developmental disorders, 

spinal cord injury, hand trauma, and repetitive stress injuries. 
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Chapter 3. Movement diversity and complexity increase as arm 

impairment decreases after stroke: Quality of movement experience 

as a possible target for wearable feedback 

 
3.1. Summary of the Chapter 

Over 80 percent of people who have experienced a stroke incur upper extremity 

(UE) impairment resulting in reduced arm use in daily life. A few studies have examined 

the use of wearable feedback of the quantity of arm movement in order to promote 

recovery, but with limited success. We posit that it may be more effective to encourage an 

increase in beneficial patterns of movement – i.e. the quality of the movement experience 

– rather than simply the overall amount of movement. As a first step toward this goal, here 

we sought to identify statistical characteristics of daily arm movements that become more 

prominent as arm impairment decreases, based on data obtained from a wrist IMU worn 

by 22 chronic stroke participants during their day. We identified several measures that 

increased as UE Fugl-Meyer (UEFM) score increased: forearm speed, forearm postural 

diversity (quantified by kurtosis of the tilt-angle), and forearm postural complexity 

(quantified by sample entropy of tilt angle). Dividing participants into severe, moderate, 

and mild impairment groups, we found that forearm postural diversity and complexity were 

best able to distinguish the groups (Cohen’s D = 1.1, and 0.99, respectively) and were also 

the best subset of predictors for UEFM score. Based on these findings, we posit that 

encouraging people to achieve more forearm postural diversity and complexity might 

improve the quality of their movement experience and therefore might be therapeutically 

beneficial. 
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3.2. Introduction 

Stroke is one of the most prevalent diseases across the world [1]. It is reported that 

80 percent of people experience upper extremity (UE) motor impairments following stroke 

[102]. Due to these impairments, people rely more on their less-impaired UE for daily 

activities [103], although the activity level of both UEs decreases as the impairment of the 

paretic arm increases [104], [105]. This phenomenon relates to the concept of “learned 

non-use” [106] and may contribute to poor adherence to home exercise programs [107] 

and reduce gains from home rehabilitation [18].  

Following on these concepts, Han et al. suggested that people following stroke can 

be categorized as either “users”, or “non-users” based on how much they use their 

impaired arm in daily activities [19]. “Users” are hypothesized to enter a “virtuous cycle”, 

in which they actively use their impaired arm, resulting in an improvement of arm function 

[18]. “Non-users”, in contrast, are hypothesized to enter a “vicious cycle”, in which their 

arm non-use leads to reduced arm function [18].   

Escaping this vicious cycle is challenging due to multiple factors. Firstly, people 

generally don't begin to use their impaired arm voluntarily unless its function reaches at 

least half of its normal capacity [70], which aligns with the threshold hypothesis proposed 

by Schweighofer et al [19]. Secondly, even when individuals show improvement on clinical 

functional tests, such as the Action Research Arm Test (ARAT), this progress doesn't 

necessarily translate to increased arm use in daily life, indicating a "translation gap" 

between arm functionality and actual use [108]. For example, a recent study found that a 

majority of stroke patients improved the capacity for UE activity as they recovered; 
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however, they did not improve the actual performance of UE activity in daily life, as 

measured with a wearable sensor [109]. Further, patients typically spend limited time in 

therapeutic activities compared to non-therapeutic activities, with stroke patients spending 

only about 28% of their available time on therapeutic activities even in rehabilitation 

centers [110]. Finally, patients tend to overestimate the amount of their activity in home 

exercise programs [111]. 

We recently studied the potential of wearable feedback of amount of hand use to 

help address several of these issues. We developed the Manumeter, a wrist-worn 

magnetic array that senses the movement of a magnetic ring worn on a finger, indicating 

the number of hand movements on a display [40], [41], [48], [70]. We used the Manumeter 

to test the hypothesis that real-time, daily feedback could promote hand use in daily 

activities [48]. We found that providing three weeks of such feedback promoted a small 

but a statistically significant increase in the amount of hand movements. Further, UE 

movement ability, measured by the UE Fugl-Meyer (UEFM) Test and the Box and Block 

Test (BBT), modestly increased. Other studies of wearable feedback have also found 

modest benefits to providing wearable feedback of amount of hand use [112], [113], 

leaving open the question of whether there is a way to build on these results and increase 

the benefit of wearable feedback. 

Here, we reason that people with a stroke not only use their UE less, but also have 

an impoverished daily movement experience because they don’t use their UE for a variety 

of tasks. This idea of impoverishment can be considered to relate to the idea of “movement 

quality”, but is somewhat different than how movement quality has typically been 

conceived in wearable sensor research. For instance, previous studies have found that 
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people after stroke exhibit decreased movement smoothness both during supervised 

movement in the clinic [60] and during daily activities [114]. Therefore, movement 

smoothness has been suggested as a measure of movement quality, or, alternately, 

measures such as increased movement speed and range of motion, or decreased 

curvature of reaching movements have been suggested [115]. However, these measures 

of movement quality focus on the quality of individual movements rather than the overall 

quality of the daily movement experience.  

The idea of impoverishment we propose here relates to the idea that severely 

impaired stroke subjects appear “stuck” in stereotypical, abnormal synergistic movement 

patterns due to reduced capability of the corticospinal tract and/or the presence of 

spasticity [116]. If one only ever practices the same thing, it is difficult to improve in skill. 

Thus, we postulate that it is important for non-users to practice a more diverse set of 

challenging movements frequently throughout the day to enter a virtuous cycle that 

improves movement ability. 

 But what should this diverse set of more challenging movements look like, and how 

might it be sensed by a wrist-worn inertial measurement unit (IMU)? This study sought to 

identify statistical characteristics of daily arm movements, quantifiable with a wrist-worn 

IMU, that become more prominent as arm impairment decreases. We reasoned that 

better-recovered persons move in ways that would be advantageous for less well-

recovered persons to attempt. Thus, we analyzed IMU data obtained from 22 persons with 

a stroke wearing a wearable sensor on the wrist, using statistical methods to infer 

tendencies of natural movements in daily activities. Here, we focused on three categories 

of statistical quantification: 1) those relating to distributions of acceleration and angular 
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velocity magnitudes of the forearm movement throughout the day; 2) those relating to the 

distribution of forearm postures experienced throughout the day; and 3) those related to 

the complexity of forearm movements performed throughout the day. 

 

3.3. Methods 

3.3.1. Wearable Sensor and Experimental Protocol 

The Manumeter is a wrist-worn device consisting of a six degrees-of-freedom 

(DOF) IMU with an accelerometer and a gyroscope (LSM6DSL; STMicrosystems, 

Switzerland), four magnetometers on four corners of the device, and an OLED display [40], 

[41]. For this study, we analyzed sensor signals from the IMU, sampled at 52.6 Hz obtained 

from a previous pilot study of the effectiveness of hand count feedback versus 

conventional home exercise [70]. Twenty-two participants (see overview of participants in 

Table I) wore the Manumeter once before the three-week intervention and then once after 

the intervention. 10 data sets were lost because of data acquisition problems [48], [77]. 

Thus, in total, 34 data sets were used for the study. The level of impairment of these 

participants was quantified using two common clinical measures. The Box and Blocks Test 

(BBT) requires participants to pick up small blocks from a box and transfer them over a 

divider, transferring as many blocks as possible in one minute [117].  The Upper Extremity 

Fugl Meyer (UEFM) test measures the ability of participants to perform 33 different test 

movements, rating each 0, 1, or 2 and summing the points to get a total possible score of 

66 [118]. 
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Table 2. Characteristics of the 22 participants 

Age 57 ± 15 

Gender (Male[M])/Female([F]) 16 M / 4 F 

Time since stroke (months) 40 ± 33 

Side of hemiparesis (Right [R]/Left [L]) 12 R / 10 L 

Type of stroke (Ischemic [I]/Hemorrhagic [H]) 12 I / 10 H 

Box and Blocks Test (Number of blocks transferred in 

60 seconds) 

21 ± 18 

Upper Extremity Fugl-Meyer (UEFM) Score (0-66) 40 ± 13 

 
 
3.3.2. Processing of the IMU Data 

 We used the Madgwick filter to subtract the gravity components from acceleration 

[78]. To identify the statistical properties of the participant’s arm activity, we needed to filter 

out periods of arm inactivity, which was done in the following way (Figure 9). First, we 

removed any time periods when sensor values remained constant for over three minutes 

(cf. [119], [120]). Second, we introduced two measures of arm activity: (1) the 

instantaneous upper limb use score 𝑢(𝑡) , and (2) the mean arm use score 𝒰(𝑡). 𝑢(𝑡) is a 

binary number where 1 represents that the magnitude of the arm acceleration is over a 

small threshold, chosen as described below.  

𝑢!(𝑡) ≜ .0, 				 UL is not in use at time 𝑡
1, 				 UL is in use at time 𝑡 (5) 

𝒰(𝑡) is the average of u(t) over a sliding window with D = 10 seconds long:  
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𝒰!(𝑡; 𝐷) ≜
1
𝐷
5

"#$

"
 𝑢!(𝑥)𝑑𝑥, 	𝑡 ∈ [𝐷, 𝑇] (6) 

 We identified a threshold for  𝒰(𝑡) such that if  𝒰(𝑡) were below that threshold, we 

considered the arm to be inactive at that movement and removed that data from our 

analysis.  We will use the terms “total inactive time” for the total amount of time that we 

removed, and “total active time” for the time periods we kept. To choose thresholds for 

𝑢(𝑡) and 𝒰(𝑡), we conducted a grid search in the range of [0.05, 0.30] for the threshold of 

𝑢(𝑡), and [0.05, 0.30] for the threshold of 𝒰(𝑡), checking a combination of parameters that 

achieved a statistically significant correlation (see Supplementary Material).  Our goal was 

to make the thresholds as lenient as possible to retain as much data as possible for 

analysis. However, we imposed the constraint that the chosen thresholds should produce 

a total inactive time that was as strongly correlated as possible with the impairment level 

measured by UEFM score. As a result, we chose a threshold of 𝑢(𝑡) = 0.1 G and a 

threshold of 𝒰(𝑡) = 10 % as parameters for the rest of the analysis. 
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Figure 9. Preprocessing of data to find active periods. (A) Overview of the preprocessing steps. 

The gravity component was subtracted using the Madgwick Filter and the periods of active arm 

use were identified. (B) Example of signals for one participant at different stages of 

preprocessing.  From top to bottom: Raw amplitude of acceleration; Periods of active arm 

movement identified by the first threshold; Moving averages of filtered movements with a 

window size of 1000; Filtered acceleration using the second threshold. 

 

3.3.3. Forearm Orientation 

Leuenenberger et al. previously used an estimate of the orientation of an IMU worn on 

the wrist to quantify functionally relevant arm movement of stroke patients, proposing it as 
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a measure of movement quality [121].  Motivated by their approach and the principles in 

[122], [123], we similarly estimated device orientation using the law of cosines [122]: 

Θ = arccos E
−𝑎%&

H𝑎%'( + 𝑎%)( + 𝑎%&(
J (7) 

where 𝑎%', 𝑎%) , and 𝑎%& represent the components of the measured acceleration vector 

along the x, y, and z axes, respectively, with respect to a sensor coordinate frame S, before 

Madgwick filtering (Figure 10). We normalize this vector to obtain a unit vector with a 

magnitude of 1. Equation 7 computes the angle Θ between the projection of the normalized 

acceleration vector in the sensor coordinate frame S, and a normal vector (0,0,1) with 

respect to a world coordinate W. 
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Figure 10. The derivation of the device orientation with respect to acceleration vectors. 

The algorithm compares the tilt angle Θ between a vector in the world coordinate frame 

W and a vector in the sensor coordinate frame S. 

 

3.3.4. Sample Entropy 

 To quantify the complexity of movement, we used Sample Entropy (SampEn), an 

established measure that quantifies the signal complexity of physiological measurements 
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[124]–[126], such as EEG signals [127] and EMG signals [128]. SampEn is defined as 

follows: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = − ln T
𝐵*+,(𝛾)
𝐵*(𝛾)

W

= − ln T
(N −m− 1)#, ∑  -#.#,

/0, B/.+,(𝛾)
(N −m)#, ∑  -#*

/0, B/.(𝛾)
W
	 (8) 

where Bm+1 represents the number of matches of length m+1 with i+1 th template, and Bm 

represents the number of matches of length m with i th template. We need to choose two 

key parameters to assess movements: (1) a template length m, and (2) a tolerance r. m 

represents a length of template to compare the signal to the rest of the data. SampEn 

computes the number of matchings with a template having a length m (i.e., 𝐵*(𝛾)), and 

m+1 (i.e., 𝐵*+,(𝛾)), and then computes the ratio of matching counts between 𝐵*+,(𝛾) 

and 𝐵*+,(𝛾). The tolerance r checks if a difference between a template and an inspected 

window is acceptable. In addition, we optimized the following additional parameters: (3) 

the segmentation length N, (4) the sampling rate, and (5) the type of sensor signals. The 

sampling rate is important because SampEn may not be good at identifying a complexity 

of high-resolution sensor measurements due to the nature of the algorithm [129]. To 

assess quality of movement with a smaller sampling rate than an original rate (i.e., 52.6 

Hz), we down sampled IMU signals from 52.6 Hz to 26, and 13 Hz, respectively. We 

applied SampEn to (i) the amplitude of acceleration, (ii) the amplitude of angular velocity, 

and (iii) the tilt angle computed by Equation 7. 

To decide a best combination of parameters for (1)-(5) that maximizes a correlation 

between the sample entropy and UEFM scores, we chose parameters for each variable 

we studied (see Supplementary Material). 
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Figure 11. Overview of the Sample Entropy (SampEn) calculation. SampEn checks if there is a 

similar sequence in the sliding window compared to the template window.  

 

3.3.5. Identifying Measure Dependence on Arm Impairment 

 We hypothesized that subjects have a different statistical pattern of daily movement 

depending on their level of arm impairment and analyzed this dependence in two ways.  

First, we examined whether putative statistical measures of arm movement varied with 

UEFM score using regression analysis. Second, we compared groups of subjects divided 

into three discrete levels of impairment.  A previous study [130] used Rasch analysis to 

propose that subjects could be split into severe, moderate, and mild groups based on 

UEFM cutoff scores of 19 and 47 out of 66.  Here, we used a variant of this three-group 

approach based on our own analysis of clinical and wearable sensing data that we 

previously acquired, which allowed us to assign a distinct meaning for each group. Group 

1 (severely impaired) and Group 2 (moderately impaired) are distinguished by their inability 

or ability to use their hand. Figure 12A shows the relationship between UEFM score and 

BBT score, a measure of hand function. We can see that the group of subjects with UEFM 
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score < 30 pts only scored 0-2 blocks on the BBT test, meaning they had little to no hand 

function.  Groups 2 (moderately impaired) and 3 (mildly impaired) are distinguished by 

whether they use their hand in daily life. Figure 12B shows the relationship between hand 

use, measured with the Manumeter, and UEFM score, replotted from [48]. Subjects with 

UEFM score ≥ 50 points (approximately) show a greater amount of hand use in the real 

world. Thus, we used UEFM scores of 30 and 50 as thresholds to split subjects into three 

groups with distinct meanings, for whom we then compared the statistical properties of 

arm movement. 

 

 

Figure 12. Basis for selecting severe, moderate, mild impairment groups based on UEFM score 

thresholds (defined by the vertical dashed lines) (A) The relationship between BBT Score and 

UEFM Score, replotted from [131]. Hand function emerges around UEFM = 30 (first dashed 

line) (B) The relationship between hand use intensity and the UEFM score (replotted from [70]). 

The hand use intensity is the number of hand counts detected from the Manumeter. Daily hand 

use emerges around UEFM = 50. 
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3.3.6. Statistical analysis of movement experience quality features 

The left column of Table 1 provides a list of sensor variables (or “movement 

experience quality features”) that we created, based on distributions of acceleration or 

speed, parameters describing the distribution of forearm postures, and signal complexity 

measures. We performed linear regression between each metric and the UEFM score. To 

compare statistical differences between the three groups assigned by impairment level, 

we used analysis of variance (ANOVA). In order to find a feature that distinguished one 

group from another, we conducted an unpaired t-test. To assess how much a group was 

different from another by a selected measure, we computed an effect size using Cohen’s 

D [132]. 

We also used a multiple linear regression model to predict UEFM score. To check 

the multi collinearity between candidate features, we computed the variance inflation factor 

(VIF) between the variables: 

𝑉𝐼𝐹 =
1

1 − 𝑅!(
	 (9) 

where 𝑅!(  represents the coefficient of determination. We conducted variable selection 

using the backward elimination [133]. In the ordinary least square (OLS) regression, we 

removed the variable having a highest p-value one by one until the model has a single 

variable. Then, we chose the model having a minimum Akaike Information Criterion (AIC), 

a measure assessing the quality of the model [134], [135]. AIC is often favored over R² 

because it takes into account both the goodness of fit and the complexity of the model, 

helping to avoid overfitting and select a more parsimonious model that is likely to 
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generalize better to new data [136], [137]. By minimizing AIC, moreover, we can select a 

model that provides a good balance between fitting the data well and having a lower 

complexity [138]. To compare the models, we computed differences between each AIC 

and the minimum AIC in backward elimination: 

AIC = 2k − 2 lnfLhi (10)
Δ = AIC − AIC./1 (11)

 

where k represents a number of estimated parameters in the model, Lh  represents the 

maximum value of the loglikelihood function of the model, and AICmin denote the minimum 

AIC from a model. The minimum AIC is the value of AIC that corresponds to the best 

model among a set of candidate models. The difference between the minimum AIC and 

each AIC determines how acceptable it is to select a model; it is expected there is too 

much difference if AIC is larger than 2.0; Burnham and Anderson stated that there is a 

substantial empirical support if the delta of AIC is small enough (i.e., Δ < 2.0) [139]. 
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Table 3. Summary of movement experience quality features calculated across the recorded 

movement experiences. 

Kind Sub kind Correlation R2 
Effect size (p-value in t-test) 

ANOVA 

(Group 1,2,3) 

Group 1 – 
Group 2 

Group 2 – 
Group 3 

Group 1 – 
Group 2,3 

Group 1,2 – 
Group 3 f p-value 

Tilt 
Angle 

Kurtosis 0.383 
(p=0.025) 0.147 1.145(0.028) 0.199(0.611) 1.529(0.054) 0.605(0.068) 6.399 0.005 

Skewness 0.314 
(p=0.07) 0.099 0.292(0.548) 0.563(0.158) 0.616(0.156) 0.663(0.064) 2.049 0.146 

Standard 
Deviation 

0.389 
(p=0.023) 0.151 0.438(0.369) 0.395(0.348) 0.734(0.093) 0.592(0.096) 2.049 0.146 

Ratio 
Acceleration 0.435 

(p=0.01) 0.189 0.561(0.255) 0.830(0.042) 0.791(0.072) 1.037(0.005) 4.699 0.016 

Angular 
Velocity 

0.171 
(p=0.333) 0.029 0.841(0.095) 0.445(0.261) 0.644(0.139) 0.079(0.821) 1.69 0.201 

Mean 
Acceleration 0.341 

(p=0.049) 0.116 0.664(0.180) 0.553(0.166) 0.778(0.076) 0.772(0.032) 2.964 0.066 

Angular 
Velocity 

0.188 
(p=0.286) 0.035 0.116(0.810) 0.401(0.310) 0.340(0.429) 0.471(0.182) 0.926 0.407 

Samp
En 

Acceleration 0.405 
(p=0.017) 0.164 0.119(0.806) 0.805(0.048) 0.525(0.225) 0.862(0.018) 3.041 0.062 

Angular 
Velocity 

0.41 
(p=0.016) 0.168 0.610(0.217) 0.611(0.127) 0.868(0.049) 0.835(0.021) 3.579 0.04 

Tilt Angle 0.5 
(p=0.003) 0.25 0.047(0.922) 0.993(0.017) 0.576(0.184) 1.106(0.006) 4.971 0.013 

 

3.4. Results 

3.4.1. Total active time 

The 22 participants with a stroke donned the wrist-worn IMU after they left the 

laboratory following several hours of clinical evaluations (i.e. usually in the late morning or 

afternoon). The average duration of IMU recording for the rest of the day was about six 

hours. During this time, participants performed active movements for 1.8 hours on average, 

as detected by the activity filter described in the Methods section. Total inactive time 

computed with respect to wear time for the impaired arm decreased significantly from 

about 80% to 60% as a function of the UEFM score (See figure in Supplementary Material).   
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3.4.2. Distributions of acceleration and angular velocity magnitudes 

The distributions of the magnitude of acceleration and angular velocity differed for 

the groups of individuals in the three levels of impairment (Figure 13). Although the 

distributions were similar between groups, there were visible differences between groups 

for the lowest acceleration range [0-1 m/s2], with the difference reversing in direction for 

the next highest acceleration range [1-2 m/s2].  Specifically, the more impaired subjects 

spent more time at low accelerations, and less time at higher accelerations. To determine 

how strongly these differences related to UEFM score, we computed the ratio of the 

number of observations in the ranges, using a similar approach for angular velocity 

magnitude as well. There was a statistically significant correlation between the 

acceleration ratio and UEFM score (Figure 14A), but not the angular velocity ratio (Figure 

14B). Less impaired subjects displayed a higher acceleration ratio, meaning they spent 

relatively more time at a higher acceleration magnitude range. 

 

Figure 13. The proportion of participants’ movements as a function of magnitude of A) 

acceleration magnitude and B) angular velocity  
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Figure 14. Correlation between UEFM score and various sensor variables. The shaded regions 

represent the 95% confidence interval. The correlation between the UEFM score and: (A) the 

ratio of acceleration in [1-3] m/s2 relative to [0-1] m/s2, (B) The ratio of angular velocity in [5-15] 

deg/s relative to [0-5] deg/s. (C) the mean of acceleration, (D) the mean of angular velocity and 

the UEFM score, (E) Kurtosis of tilt angle, (F) skewness of tilt angle, (G) standard deviation of 

tilt angle, (H) SampEn of acceleration (I) SampEn of angular velocity, (J) SampEn of tilt angle. 
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3.4.3. Forearm posture with respect to gravity 

The distribution of forearm postures varied depending on group, with the severely 

impaired group showing a narrower distribution (Figure 15).  To compare the shape of the 

statistical distribution of forearm posture, we used three standard statistical measures: 

kurtosis, skewness, and standard deviation. Kurtosis relates to the sharpness of the 

distribution; the distribution becomes more rounded as kurtosis increases [140]. Kurtosis 

decreased significantly as a function of UEFM score (Figure 14E). Skewness also 

decreased as a function of UEFM score, but this decrease only approached significance 

(Figure 14F). Finally, standard deviation increased significantly as a function of UEFM 

score (Figure 14G). 
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Figure 15. The distribution of the device tilt angle and corresponding forearm postures with 

respect to the gravity, using 91 bins in range of 0-180 degrees (i.e., 2 degrees for one bin). The 

below three figures (B-D) correspond to the device orientation. The red, green, and blue lines 

represent the mean of distribution for Group 1, Group 2, and Group 3, respectively. The shaded 

areas represent the confidence interval for each group. The proportions represent the 

probability density distribution, such that the integration from 0-180 degrees is 100%. 

 

3.4.4. Sample entropy 

We also tested a measure of movement complexity – the sample entropy – applied 

to the acceleration magnitude, the angular velocity magnitude, and the estimated forearm 
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posture.   For each of these measures, movement complexity increased significantly as a 

function of UEFM score (Figure 14H, I, and J). 

 

3.4.5. Identifying the measures that most effectively distinguished impairment level 

Table 3 summarizes which of the studied measures most effectively distinguished 

impairment level when subjects were grouped into the severe, moderate and mild 

impairment groups.  Briefly, as a reminder, the group definitions were: Group 1: UEFM < 

30, no hand function; Group 2: 30 ≤ UEFM < 50, hand function but low hand use; Group 

3: UEFM ≥ 50, regular hand use. To distinguish Group 1 and Group 2, it was most useful 

to use kurtosis of the tilt angle distribution (Cohen’s D = 1.1, t-test, p=0.028). To distinguish 

Group 2 and Group 3, it was most useful to use SampEn from tilt angle (Cohen’s D = 0.99, 

t-test, p=0.017). 

 

3.4.6. Variable selection for the multivariable model that predicts the UEFM Score 

We sought to develop a multivariate linear model that predicted UEFM score.  We 

first removed variables that were not statistically significantly correlated with the UEFM 

score (Ratio of Angular Velocity, p=0.333; Mean of Angular Velocity, p=0.286). Then we 

conducted a backward elimination process with the remaining variables (as described in 

detail in the Methods) to understand which combination of features best distinguished 

groups, removing variables from the mode l one by one (Table 4). We observed the lowest 

AIC when we selected the number of variables to be two (Figure 16A). In this case, the 

selected variables were the kurtosis of the tilt distribution (i.e. forearm postural diversity) 

and the sample entropy of tilt (i.e., forearm postural complexity). We further examined the 
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correlation coefficients between the variables (Figure 8B), seeking to identify if there was 

multicollinearity between any variables, which is a statistical phenomenon that occurs 

when two or more independent variables in a multiple regression model are highly 

correlated; a high correlation makes it difficult to determine the individual contribution of 

each variable to the dependent variable. To assess multicollinearity, we used the criterion 

that the Variance Inflation Factor (VIF) should be less than 5 [141]. The VIF measures the 

extent to which the variance of the estimated regression coefficients is increased due to 

multicollinearity. A VIF value less than 5 is considered acceptable, indicating that 

multicollinearity is not a significant concern. In our analysis, the correlation between 

Kurtosis and SampEn of tilt angle was weak (Pearson Correlation Coefficient= 0.22), and 

the VIF in Step 8 was 1.05 for both variables. These results suggest that multicollinearity 

is not a major issue for these variables in the model.  

 

Table 4. Steps of the backward eliminations 

Step Variable Coefficient Standard Error T P-value [0.025 0.975] Variance Inflation Factor (VIF) 

1 

Constant 21.07 10.74 1.96 0.06 -1.06 43.2 26.48 

Kurtosis of Tilt Angle -1.96 2.93 -0.67 0.51 -7.99 4.08 2.25 

Skewness of Tilt Angle -2.57 8.73 -0.29 0.77 -20.55 15.42 2.24 

Standard Deviation of 
Tilt Angle 0.01 0.01 0.84 0.41 -0.01 0.03 1.37 

Ratio of Acceleration 24.53 20.26 1.21 0.24 -17.19 66.25 2.08 

Mean of Acceleration -12.08 12.02 -1 0.33 -36.83 12.68 3.04 

Sample Entropy 
(Acceleration) -5.84 24.48 -0.24 0.81 -56.26 44.58 4.17 

Sample Entropy 
(Angular Velocity) 1.88 2.2 0.86 0.4 -2.65 6.42 2.39 
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Sample Entropy (Tilt) 11.64 10.2 1.14 0.27 -9.37 32.65 4.22 

2 

Constant 20.53 10.31 1.99 0.06 -0.67 41.73 25.31 

Kurtosis of Tilt Angle -1.98 2.88 -0.69 0.5 -7.89 3.94 2.25 

Skewness of Tilt Angle -2.83 8.5 -0.33 0.74 -20.31 14.64 2.2 

Standard Deviation of 
Tilt Angle 0.01 0.01 0.86 0.4 -0.01 0.02 1.37 

Ratio of Acceleration 24.24 19.85 1.22 0.23 -16.56 65.04 2.07 

Mean of Acceleration -12.18 11.79 -1.03 0.31 -36.42 12.06 3.03 

Sample Entropy 
(Angular Velocity) 1.74 2.08 0.84 0.41 -2.54 6.03 2.22 

Sample Entropy (Tilt) 9.91 7.03 1.41 0.17 -4.55 24.37 2.08 

3 

Constant 19 9.07 2.09 0.05 0.39 37.61 20.25 

Kurtosis of Tilt Angle -2.61 2.13 -1.23 0.23 -6.98 1.76 1.27 

Standard Deviation of 
Tilt Angle 0.01 0.01 0.85 0.4 -0.01 0.02 1.36 

Ratio of Acceleration 23.28 19.31 1.21 0.24 -16.35 62.91 2.03 

Mean of Acceleration -11.34 11.33 -1 0.33 -34.59 11.91 2.89 

Sample Entropy 
(Angular Velocity) 1.87 2.01 0.93 0.36 -2.26 6 2.14 

Sample Entropy (Tilt) 9.67 6.88 1.41 0.17 -4.44 23.79 2.06 

4 

Constant 22.25 8.18 2.72 0.01 5.51 39 16.61 

Kurtosis of Tilt Angle -3.31 1.95 -1.7 0.1 -7.31 0.69 1.08 

Ratio of Acceleration 25.35 19.06 1.33 0.19 -13.69 64.4 2 

Mean of Acceleration -11.05 11.27 -0.98 0.34 -34.13 12.03 2.89 

Sample Entropy 
(Angular Velocity) 1.83 2 0.92 0.37 -2.27 5.94 2.14 

Sample Entropy (Tilt) 10.29 6.81 1.51 0.14 -3.66 24.23 2.04 

5 
Constant 22.72 8.14 2.79 0.01 6.08 39.36 16.55 

Kurtosis of Tilt Angle -3.47 1.94 -1.79 0.08 -7.43 0.5 1.07 
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Ratio of Acceleration 22.65 18.78 1.21 0.24 -15.76 61.06 1.95 

Mean of Acceleration -6.2 9.92 -0.63 0.54 -26.5 14.09 2.25 

Sample Entropy (Tilt) 12.48 6.36 1.96 0.06 -0.52 25.48 1.79 

6 

Constant 21.15 7.66 2.76 0.01 5.5 36.79 14.97 

Kurtosis of Tilt Angle -3.39 1.91 -1.77 0.09 -7.3 0.52 1.07 

Ratio of Acceleration 16.88 16.19 1.04 0.31 -16.18 49.94 1.48 

Sample Entropy (Tilt) 10.82 5.71 1.89 0.07 -0.85 22.49 1.47 

7 

Constant 22.04 7.62 2.89 0.01 6.49 37.59 14.79 

Kurtosis of Tilt Angle -3.64 1.9 -1.91 0.07 -7.52 0.24 1.05 

Sample Entropy (Tilt) 14.02 4.83 2.9 0.01 4.17 23.87 1.05 

8 
Constant 18.58 7.71 2.41 0.02 2.88 34.29 13.96 

Sample Entropy (Tilt) 16.03 4.91 3.27 0 6.04 26.02 1 

 

 

Figure 16. The variable selection analysis. (A) Model comparison through the AIC. (B) 

Correlations between features. 
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3.5. Discussion 

The objective of this study was to identify statistical characteristics of daily arm 

movements that became more prominent as arm impairment decreased, based on data 

obtained from a wrist IMU worn by 22 chronic stroke participants during their day. Our 

focus here was on the statistical distributions of movement features across many arm 

movements made during the period the wearable sensor was worn. We hypothesize these 

features relate to the “quality of the movement experience” (which we will abbreviate 

QOME for this Discussion) over a period time. We identified several QOME-related 

measures that increased as UE Fugl-Meyer (UEFM) score increased: forearm speed, 

forearm postural diversity (quantified by kurtosis of the tilt-angle), and forearm postural 

complexity (quantified by sample entropy of tilt angle). Dividing participants into severe, 

moderate, and mild impairment groups, we found that forearm postural diversity and 

complexity were best able to distinguish the groups. Specifically, to distinguish between 

severe and moderate impairment, kurtosis of the tilt angle, our measure of forearm 

postural diversity, was most effective. To distinguish between moderate and mild 

impairment, SampEn of the tilt angle, our measure of movement complexity, was most 

effective. The application of a multivariate modeling approach confirmed that these were 

also the best variables from among the ones we considered for predicting UEFM score. 

We discuss now these results as well as limitations and future directions. 

 

3.5.1. Quantifying movement diversity based on forearm posture (tilt angle) distribution 

We did not attempt to estimate the three angles that are needed to fully describe 

forearm posture over time, which is challenging with an IMU, but rather examined the 
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simpler idea of tilt angle analysis with respect to gravity direction, first proposed by 

Leuenberger et al. [121] in the context of wearables for stroke rehabilitation. They found 

that the impaired arm had lower tilt angle (or “elevation”) during performance of activities 

of daily living, found different probability distributions between the impaired arm and 

unimpaired arm, and suggested forearm posture as a potential target for improving 

patients’ upper arm dexterity. We found that tilt angle was distributed across a broad range 

of angles for participants in each impairment level, but more narrowly concentrated for the 

most severely impaired group. We found that the established statistical concept of kurtosis 

of a distribution was useful to quantify this narrowing. 

A narrow tilt-angle concentration is consistent with the concept of “postural 

stagnation” – i.e. that persons with severe impairment after stroke tend to keep their arm 

in a stereotypical posture when not using it. Previous studies have identified five different 

arm postures that stroke patients adopt, with two being most prevalent [142], [143].  

Further, postural stagnation in severe impairment is consistent with the observation of 

stereotypical, abnormal synergistic movement patterns due to reduced capability of the 

corticospinal tract and/or the presence of spasticity [116].  A study of the ability of people 

with stroke to reach in a wide range of directions found that severely impaired individuals 

were constrained to reach in a narrow range [144].  Based on these results and the 

experimental findings, it seems probable that postural stagnation is a valuable concept for 

QOME metrics.  As mentioned in the Introduction, if one only ever practices the same thing 

(i.e. holds the arm in a limited set of postures), it is difficult to improve in skill (i.e. learn to 

activate muscles for a wide range of arm postures and activities). 
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Limitations of the tilt angle approach are that it cannot distinguish forearm 

supination/ pronation from shoulder internal/external rotation, and it doesn’t consider the 

posture of the whole body.  Thus periods spent lying or reclining might introduce noise into 

the distribution. Nevertheless, we found tilt-angle to be a valuable feature for distinguishing 

severely and moderately impaired participants. 

In the context of motor disorders, there is often an imbalance in movement patterns. 

On one hand, you have conditions like stroke-induced paralysis, which often result in 

reduced movement complexity and diversity due to partial or complete loss of motor 

function. On the other hand, conditions like Parkinson's Disease (PD) and dystonia are 

often characterized by excessive, uncontrolled, and complex movements. For instance, 

patients with PD might experience tremors or other involuntary movements, while those 

with dystonia might have abnormal, often complex, postures due to sustained muscle 

contractions. In these cases, the goal is often to reduce the complexity and diversity of 

movements, aiming to gain more control and move back towards the "normal" spectrum. 

Thus, this study may suggest the goal of rehabilitation in these contexts could be seen as 

calibrating the motor control functions of the nervous system to maintain operation within 

an optimal range. 

 

3.5.2. Quantifying movement complexity 

To quantify movement complexity we focused on one of the many possible 

measure of signal complexity – entropy, a measure that has found application in human 

movement science for analyzing postural control, walking activity, spontaneous leg activity 

in infants, and finger force production (see review: [124]). Entropy features, specifically 
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sample entropy, have been increasingly utilized in studies with wearable sensors, 

analyzing various biological signals to improve detection and prediction of motor 

impairments. In Parkinson's disease research, Shawen et al. applied sample entropy to 

acceleration and angular velocity signals from skin-mounted sensors and smartwatches, 

enhancing tremor detection accuracy [145]. In autism studies, Konrad et al. used sample 

entropy to analyze wrist accelerometer acceleration signals, finding a moderate relation to 

motor coordination [146]. For post-stroke rehabilitation, O'Brien et al. applied sample 

entropy to both acceleration and rotational velocity signals from inertial measurement unit 

(IMU) sensors, linking higher sample entropy values to higher ambulation levels [147]. 

After stroke, sample entropy has been used to gain insight into UE muscle activity changes 

following robotic rehabilitation [148].  To our knowledge, this is the first report of showing 

the potential value of sample entropy of forearm posture, measured from a wristworn IMU, 

for gaining insight into UE impairment after stroke. SampEn best distinguished participants 

with moderate and mild impairment, with the more mildly impaired group showing more 

complexity in their movements. This seems indicative that they typically achieved a richer 

daily movement experience, perhaps because they could use the arm in a wider variety of 

activities. 

A limitation of the use of sample entropy is that it is strongly dependent on parameter 

selection [124]. To address this, we used a grid search to find the best combination of 

parameters (see Supplementary Material). Another potential limitation, particularly with a 

view toward implementation in a wearable sensor, is that SampEn can be computationally 

costly, with a complexity of 𝑂 l𝑁(# !
"#!n, where N is the segmentation length and m is the 
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template length [125]. Nevertheless, at least one study was able to implement SampEn in 

a wearable sensor for sleep research [149]. 

 

3.5.3. Other considerations: movement activity and speed 

Based on the inactivity filtering results, we found that participants with more severe 

impairment exhibited reduced UE activity. This finding is consistent with the theory of 

learned non-use [106]  as well as previous studies using wearable sensing (e.g. [48], [150]).  

It was unexpected to us that movement diversity (quantified by kurtosis of tilt angle) and 

complexity (quantified by sample entropy) were the best features for distinguishing groups 

and predicting UEFM score, as opposed to movement speed. Nevertheless, distributions 

of movement speed did have some power to discriminate impairment level.  In a study 

relevant for considering the potential of QOME wearable feedback, Dejong et al. examined 

the effect of instructing individuals with a stroke to move the UE more quickly as they 

reached and grasped a cup. They found that not only could the participants move their 

upper arm more quickly, but also that movement quality improved, as assessed by 

straighter reach paths and larger hand grip apertures [151]. Thus, by focusing on an easily 

instructed variable, other benefits related to movement quality could be obtained. 

 

3.5.4. Limitations and Future Work 

Besides the specific limitations mentioned above with respect to the diversity and 

complexity measures, there are several other limitations to this work. First, we studied a 

relatively small list of potential measures related to QOME. Other measures are certainly 
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possible and may be more powerful predictors. Second, the motivation for this work was 

to identify potential QOME measures that could be provided by a wrist-worn sensor to 

enhance rehabilitation. However, we have not shown there is a causal relationship 

between providing QOME measures and recovery. It may not be useful for patients to 

practice a movement that increases QOME, although a large body of motor learning 

research does support the idea that challenging and variable task practice is beneficial 

[46]. Further, we have not identified whether and how people with a stroke can volitionally 

change a QOME measure. We aim to address these questions by embedding real-time 

QOME metrics in a wearable sensor and studying the effect of providing QOME feedback 

in future clinical trials. 
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Chapter 4. Quantifying movement complexity and diversity during 

upper extremity activities 

 

4.1. Summary of the Chapter 

Over 80 percent of people who have experienced a stroke incur upper extremity 

(UE) impairment resulting in reduced arm use in daily life. A few studies have examined 

the use of wearable feedback of the daily quantity of arm movement in order to promote 

recovery, but with limited success. We posit that it may be more effective to encourage an 

increase in beneficial movement experiences, rather than simply the overall amount of 

movement each day. In the last chapter, we identified two key measures that increased 

as UE Fugl-Meyer (UEFM) score increased: forearm postural diversity (quantified by 

kurtosis of the tilt-angle), and forearm postural complexity (quantified by sample entropy 

of tilt angle). Based on these findings, we posit that encouraging people to achieve more 

forearm postural diversity and complexity might be therapeutically beneficial. But what 

activities could one suggest helping patients achieve this goal? We recruited 7 unimpaired 

individuals and evaluated a set of 12 therapeutic activities for postural diversity and 

complexity. The activities were performed while seated and included: a set of conventional 

rehabilitation therapy exercises for the hand and arm, ping-pong, the card games Speed 

and Klondike, American Sign Language, Tai-chi, Cornhole, Nintendo Switch sports, 

balloon volleyball, cup stacking, and FitMi exercises, where FitMi is a commercial sensor 

system designed to guide upper extremity rehabilitation exercises. The participants 

performed each exercise for 10 minutes while wearing a wrist accelerometer and we 

computed sample entropy and kurtosis of the forearm tilt angle with sliding windows of 1, 
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3, and 5 minutes. Engaging in conventional rehabilitation therapy exercises created high 

values for forearm postural diversity but not complexity. Playing the card game Speed and 

exercising with the commercial sensor system produced the highest values for both 

postural diversity and complexity. Values for diversity and complexity were consistent 

across participants and data analysis window sizes of 1, 3, and 5 minutes. These results 

suggest that different candidate activities cause movement experiences with differing 

levels of movement diversity and complexity. Diversity and complexity can be accurately 

estimated with a 1minute window. 

 

4.2. Introduction 

The aftermath of a stroke can be a challenging time for patients, particularly for 

those who experience upper extremity (UE) impairment, resulting in limited ability to use 

the arm in daily life. Several studies have explored the potential of using wearable 

feedback to promote recovery by increasing daily arm movement [48], [70]. However, 

these studies have had limited success in substantially reducing in arm impairment as 

measured by clinical scales [70].  This leads us to hypothesize that it may be more 

beneficial to encourage beneficial patterns of movement rather than simply increasing 

overall arm movement. 

In the last chapter, we presented forearm postural diversity (quantified by kurtosis 

of the tilt-angle), and forearm postural complexity (quantified by sample entropy of tilt 

angle) as measures that can be implemented on a wrist-worn Inertial Measurement Unit 

(IMU) to track whether the daily movement experienced by people with stroke is 

impoverished by their impairment.  Then, we propose to use wearable sensing to increase 
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forearm postural diversity and complexity as a means of promoting post-stroke 

rehabilitation. 

To achieve this goal, it would be desirable to be able to suggest beneficial activities 

to people with stroke that they could engage in to increase their experience of postural 

diversity and complexity. To that end, we evaluated a set of 12 therapeutic activities to 

identify which cause the highest values of postural diversity and complexity. We analyzed 

data obtained from wrist IMUs worn by 7 unimpaired patients as they performed the 

activities in the laboratory. We also explored the length of time needed to acquire enough 

data to sufficiently identify how each activity affects forearm postural diversity and 

complexity. 

 

4.3. Methods 

4.3.1. Metrics for quantifying movement complexity and diversity 

In this study, we used two metrics to analyze the arm movement of the participants: 

sample entropy and kurtosis of forearm tilt angle (see Chapter 3). We measured tilt angle 

using the method introduced by [123], [152].  Sample entropy measures the predictability 

of a time series, with higher values indicating more irregular data [124], [125], [129]. 

Kurtosis measures the sharpness of the peak of a frequency-distribution curve, with higher 

values indicating a sharper peak [140]. 
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4.3.2. Participants and equipment 

Participants in this study were instructed to wear an  IMU wrist-band (MiGo, Flint 

Rehabilitation Devices LLC, Irvine, CA, USA). The device contains a six-axis IMU with a 

sampling frequency of 200 Hz. The device streamed data at 100 Hz to a receiver (nrf52840, 

Nordic Semiconductor, Norway) connected to a PC. Seven unimpaired participants 

without any history of neurological disorders, musculoskeletal injuries or surgeries, or other 

conditions that could affect their upper limb movements, were recruited for this study.  All 

participants were aged 20-25 and were male. The study was deemed exempt by the UCI 

Institutional Review Board and participants provided informed consent.  

 

4.3.3. Experimental protocol 

The participants were asked to perform 12 different activities while wearing the 

MiGo on their dominant hand. These activities were selected based on their potential to 

promote postural diversity and complexity. we included: Ping-pong, a table tennis game 

that requires hand-eye coordination and reflexes; Playing cards Speed, a fast-paced card 

game that requires users’ reaction time and dexterity; Playing cards Klondike, a solitaire 

card game that requires strategy and concentration, and Speed, another fast-paced card 

game that tests players' reaction time and hand dexterity; American Sign Language, which 

involves learning and practicing sign language requiring fine motor skills and hand 

dexterity; Cornhole, a lawn game that involves throwing bean bags at a raised platform 

with a hole, requiring hand-eye coordination and targeting skills; Tai-chi, a form of exercise 

that promotes relaxation, balance, and coordination through slow, controlled movements; 

Nintendo Switch sports Chambara and Tennis, virtual reality video games that involve 
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physical movements and coordination, to engage participants in a fun and interactive way; 

FitMi exercises, a commercial sensor system for guiding upper extremity exercises after 

stroke, promoting rehabilitation and recovery [153]; Standard therapy exercises, which 

involve conventional rehabilitation therapy exercises for the hand and arm to regain 

strength, flexibility, and function; Balloon volleyball, a low-impact game that encourages 

hand-eye coordination and upper body movement by volleying a balloon back and forth; 

Cup stacking, a timed sport that challenges participants to stack and unstack cups in 

specific sequences. 

Table 5 shows the number of participants who performed each activity.  

 

Table 5. Number of participants who performed each of the 12 activities 

Task Number of Participants 

Ping-Pong 7 

Playing Cards (Speed) 6 

Playing Cards (Klondike) 7 

Sign Language 7 

Cornhole 7 

Tai-Chi 6 

Switch Sports (Chambara) 7 

Switch Sports (Tennis) 7 

FitMi 6 

Standard Therapy 6 
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Balloon Volleyball 7 

Cup Stacking 7 

 

Participants were given a brief introduction to each activity and allowed to practice 

for a few minutes to ensure their comfort with the task. They were then instructed to 

perform each activity for 10 minutes while seated except for ping-pong and cornhole. The 

MiGo was worn on the dominant side of the wrist throughout each exercise. 

For ping-pong, a portable ping-pong court (FBSPORT, California, USA) was used, 

as it was easily adaptable to different environments. The motivation for choosing this 

portable ping-pong court was the recognition that most people do not have access to a 

full-size ping-pong table at home. By using a portable court, the study aimed to simulate a 

more realistic scenario, reflecting the typical conditions in which participants might engage 

in the activity. 

For the conventional rehabilitation exercise activity, four exercises from a list of 20 

provided to patients participating in a control group in a previous clinical trial of sensor-

assisted therapy were selected for the standard therapy exercises provided to the clinical 

trial with another wrist-worn tracker, the Manumeter [70]. These exercises were designed 

by experience rehabilitation therapists and encompass various aspects of arm 

rehabilitation, targeting the shoulder, elbow, wrist, and fingers, with the overarching aim of 

improving range of motion, minimizing stiffness and pain, and providing sensory input to 

the weaker arm. The chosen four exercises were hypothesized to generate significant 

complexity and diversity in movement. The selected exercises included Weight Bearing 

From Sitting (Elbow/Wrist/Finger Extension), Arm Flip (Forearm Supination/Pronation), 
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Chopping Wood (Elbow Flexion/Extension), and Forearm Supination/Pronation at 

Tabletop. 

For the exercise segment that used the sensorized rehabilitation exercise device 

(FitMi), participants performed a series of arm exercises using the device in a randomized 

order. Each exercise took approximately 1-2 minutes to complete, and the entire set of 

exercises lasted for a total of 10 minutes. We chose the following FitMi exercises as they 

involve arm movements; Reach to Target #1, Clapping, Reach to Target #2, Reach to 

Target #3, Wrist Supination, Bicep Curls, Shoulder Flexion, Shoulder Abduction, and Fly 

Out. 

 

4.3.4. Data Analysis 

Data from the MiGo were collected at a sampling rate of 100 Hz, then downsampled 

to 52.6 Hz using the scipy.resample function [76]. Data were segmented into 1-minute, 3-

minute, and 5-minute windows, shifting by one second (i.g., 52 samples at a time). For 

each window, the tilt angle of the forearm was computed, and then sample entropy and 

kurtosis were calculated from the tilt angle (see previous chapter for parameter selection). 

The tilt angle was defined as the angle between the forearm and the horizontal plane (see 

the previous chapter). Due to data acquisition issues, one data set was lost for Switch 

Sports (Chambara) and Switch Sports (Tennis).  

For every window, sample entropy and kurtosis of the tilt angle were calculated. We 

initially obtained sample entropy and kurtosis using an N-minute sliding window; for 

example, a 1-minute window corresponds to 3,120 samples (1 minute = 60 seconds x 52 

Hz). Likewise, the 3- and 5-minute windows had 9,360 and 15,600 samples, 
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respectively.We shifted this window with 1 second stride (i.e., 52 data samples), and the 

mean values of sample entropy and kurtosis were computed for each activity and each 

window size. These mean values were then compared across different activities and 

window sizes to assess the potential of each activity in promoting postural diversity and 

complexity. 

 

4.3.5. Results 

Figure 17 shows the mean of sample entropy and kurtosis of the tilt angle using 

sliding windows of 1, 3, and 5 minutes, with a 1-second stride (where stride is how far the 

window moves in every step) quantified from 12 exercises. Conventional rehabilitation 

therapy exercises generated high values for forearm postural diversity but did not 

significantly contribute to its complexity. The activities that yielded the highest values for 

both postural diversity and complexity were playing the card game Speed and exercising 

with the FitMi. 
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Figure 17. The mean of kurtosis and sample entropy varying the window length from 1, 3, 5 

minutes from 12 activities. 

In order to analyze the between-participant variability in complexity and diversity for 

each activity, we used box plots for both sample entropy and kurtosis (Figure 18). For 

sample entropy, certain tasks, such as playing cards speed, switch sports chambara, and 

FitMi, displayed a larger interquartile range, indicating higher, between-participant 

variability in the data. In contrast, other tasks such as Tai-Chi and standard therapy 

revealed more consistent values with smaller interquartile ranges, suggesting a more 

uniform behavior across participants. For kurtosis, switch sports (Tennis and Chambara) 

and cup stacking, displayed a larger interquartile range, indicating higher variability in the 

data. In contrast, other tasks such as standard therapy revealed more consistent values 

with smaller interquartile ranges. 
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With the increase in the time window size from 1 to 5 minutes, we observed small 

changes in interquartile ranges for most tasks. However, some tasks, such as Tai-Chi and 

Cup Stacking, demonstrated a noticeable change depending on the window size. This 

finding implies that the complexity and structure of the underlying signals may mildly 

influenced by the task's duration across the window lengths we studied. 
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Figure 18. Boxplots illustrating the distribution of sample entropy and kurtosis of tilt angle for 12 

different tasks at 1, 3, and 5-minute time windows across participants (i.e., one point per 

participant). The box color represents the window size: white (1 min), light gray (3 min), and 

dark gray (5 min). The solid black line within each box represents the median value, while the 

whiskers extend to the minimum and maximum values within 1.5 times the interquartile range. 

 

4.4. Discussion 

This experiment aimed to investigate the extent to which various activities promote 

forearm postural diversity and complexity in unimpaired individuals. The participants 

engaged in each activity for 10 minutes, wearing a wrist IMU on their dominant hand. The 

study analyzed the sample entropy and kurtosis of the tilt angle using sliding windows of 

1, 3, and 5 minutes. The results indicated that different candidate activities caused 

movement experiences with differing levels of movement diversity and complexity. Further, 

diversity and complexity were consistently estimated with all three window sizes. In the 

following, we discuss these results as well as limitations and future directions. 

 

4.4.1. Interpretation of movement complexity and diversity depending on exercises 

The conventional rehabilitation therapy exercises we selected generated high 

values for forearm postural diversity but not for complexity. In contrast, playing the card 

game Speed and conducting exercises with the FitMi exercise system produced the 

highest values for both postural diversity and complexity. Both Speed and FitMi require 

the player to try to move as fast as possible.  The broader range of speeds experience 

with these activities compared to conventional rehabilitation therapy may have resulted in 
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higher complexity values.  Consistent with this concept, seated Tai-Chi, which is performed 

slowly and deliberately, also had low complexity values. 

Not all sensor-based exercise were equal however: playing sports with the 

Nintendo Switch created relatively low values of postural complexity and diversity although 

playing the game Chambara did exhibit a high complexity. Low complexity with the 

Nintendo Switch sports may be due to fact that the Nintendo switch likely limits the speed 

and range of movement required with the joystick controller in order to prevent repetitive 

stress injury. 

Cup stacking showed the lowest diversity of any activity as measured by the high 

kurtosis values.  This makes sense because it required use of a repetitive reach/grasp 

motion without much variability. 

 

4.4.2. Consistency of metric estimates across participants and window lengths 

An important finding was that different activities produced relatively consistent 

values of diversity and complexity across different participants.  This supports the idea that 

diversity and complexity are inherent to activities, rather than solely dependent on the way 

activities are performed. Thus, in a wearable feedback scenario, prescription of different 

activities does seem like a viable approach to challenge the patient to increase diversity 

and complexity. That said, different activities did have different levels of variability (with 

Playing Cards and doing FitMi exercises having the highest inter-subject variability), 

indicating a contribution of the way individuals performed the activities to these metrics as 

well. 
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The computed values of diversity and complexity were consistent across different 

window lengths (1, 3, and 5 minutes) as well, where the window length determined the 

amount of data that went into the kurtosis and sample entropy calculations.  The fact that 

consistent metrics of diversity and kurtosis can be obtained with a 1 minute window is 

promising in the context of real-time feedback, where it would be desirable to alert the 

person when their activities are becoming diverse and complex. 

 

4.4.3. Limitations 

This study has several limitations. First, our sample size (n=7) was limited and 

consisted of only unimpaired individuals; we should confirm our findings by obtaining data 

from people with a stroke. Second, we only evaluated a limited set of therapeutic activities 

(n=12). Additional research on a larger set of activities is encouraged to determine the 

most effective therapeutic activities for promoting forearm postural diversity and 

complexity in stroke patients. Our findings underscore the potential value of integrating 

movement complexity and diversity into stroke rehabilitation, especially for UE 

impairments for people after stroke. We suggest that, moving forward, a formal 

examination of movement complexity and diversity in guided occupational therapy could 

yield significant insights. It could be interesting to investigate the differential impacts of low 

versus high complexity exercises on patient outcomes. In line with this, further data 

analysis should include analyzing age and handedness dependency. 

Further research is needed to determine the optimal design of feedback systems 

for the quality of the movement experience (QOME).  We speculate that users would favor 

a shorter length of window for analyzing and receiving feedback on the QOME, as it could 
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let users perceive the change quickly and assign credit to the activity they are doing. A 

long analysis window would make it difficult for a user to perceive the change of QOME 

due to their specific activities. The present results suggest that a 1 minute feedback is 

feasible, and future work should test if even shorter windows are possible.  Most 

importantly, future work should test the hypothesis that quantitative assessments of 

forearm posture diversity and complexity are beneficial in designing wearable feedback 

systems for post-stroke rehabilitation, because they can encourage patients to practice 

specific exercises or activities that challenge the patient in a desirable way. 
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Chapter 5. Tools for implementing and validating algorithms for 

movement complexity and diversity: quality time and a robotic 

simulator 

 

5.1. Summary of the Chapter 

This chapter presents work toward implementing a real-time diversity and 

complexity detection system to provide wearable feedback to people with stroke about 

the quality of movement experience (QOME) of the upper extremity (UE). First, we 

propose the concept of Quality Time (QT) to provide feedback about QOME.  QT is a 

measurement of the number of seconds each day that UE diversity and complexity 

exceed threshold values.  We propose a method to choose appropriate thresholds for 

each wearer, based on a clinical measurement of their UE impairment level (the Upper 

Extremity Fugl-Meyer score) and the Minimal Detectable Change (MDC) values for 

kurtosis and sample entropy measured across a sample of 22 people with stroke. 

Second, we describe the design and initial testing of a robotic simulator for validating 

QOME feedback algorithms. The robotic simulator incorporates dual servo motors to 

emulate human arm supination/pronation and elbow flexion/extension. Experiments 

were conducted using the test bench to implement movement sequences with known 

values of complexity and diversity. We then quantified how well an IMU worn on the 

robot wrist measured these values of complexity and diversity.   
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5.2. Introduction 

Real-time feedback is a valuable tool in physical rehabilitation after stroke, 

providing patients with immediate information on their performance, allowing them to 

make necessary adjustments and improve their overall rehabilitation outcomes. In the 

previous two chapters, we identified potential metrics for providing real-time feedback 

on the quality of the movement experience (QOME) of the upper extremity after stroke.  

These chapters showed that diversity (measured with kurtosis) and complexity 

(measured with sample entropy) of the forearm tilt angle can be used for assessing 

QOME during activities that might be included as part of clinical or home rehabilitation. 

The next step to enable real-time QOME feedback is to embed the diversity and 

complexity metrics on a wearable sensor, since, to this point, all metrics were calculated 

off-line. This chapter discusses work toward implementing and validating the diversity 

and complexity algorithms on a wrist-worn IMU.  

First, we propose the concept of Quality Time (QT) to provide real-time feedback 

about QOME. We design a patient-adaptive threshold strategy that sets a threshold for 

counting time spent in movements with high-than-normal QOME, based on the user’s 

UEFM score and the Minimal Detectable Change (MDC) values for diversity and 

complexity. Second, we present the design and initial validation of a robotic simulator 

capable of emulating human forearm supination-pronation and elbow flexion-extension. 

This simulator allows us to implement movement patterns with known complexity and 

diversity, and then assess the accuracy of a wrist-worn IMU (mounted on the robot 

wrist) and associated algorithms to estimate these values.  
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5.3. Methods 

5.3.1. An Adaptive Goal Setting Strategy for Measuring Quality Time 

We first focused on developing a way to calculate the duration of time that users 

of the wearable sensor are engaging in high quality movement experiences, a variable 

we call “Quality Time” (QT).  We were inspired by Demers et al., who previously devised 

an Active Time (AT) algorithm that computes the amount of time the UE is active, 

without regard for movement quality. They demonstrated a positive correlation between 

AT and the number of arm movements that participants with a stroke performed 

throughout the day [37]. We propose QT as a feedback metric because it is easily 

interpretable by patient-users, similar to AT.   

The QT algorithm we propose here quantifies the amount of time when UE 

movement is deemed sufficiently complex and diverse using user-specific thresholds 

defined in such a way as to identify periods of time when complexity and diversity are 

“greater than normal”. The reason it is necessary to assign thresholds on a user-specific 

basis is that different users have different levels of movement ability.  If a threshold for 

assessing periods of QT is too high, then users who are more severely impaired will not 

be able to make movements that exceed this threshold and increase their amount of 

QT.  Conversely, if the threshold for assessing QT is too low, then all movement 

throughout the day will contribute to QT, insufficiently challenging the user. 

To establish optimal rehabilitation goals, we propose a user-adaptive threshold-

setting strategy based on clinical scores and historical IMU data obtained from people 

with a stroke who wore the IMU during daily activities. This strategy allows us to create 



92	
	

goals that are adapted to each individual's impairment level, aiming to keep patients 

engaged and motivated throughout their at-home rehabilitation.  

We set user-specific goals for sample entropy and kurtosis using the same 

dataset that we used in Chapter 3, obtained from a pilot clinical trial of wearable 

feedback which contains the movements of 22 participants during their daily activities 

recorded with a wrist-worn IMU (the Manumeter) [70]. First, we computed the sample 

entropy and kurtosis for each of three groups of participants within the dataset, where 

the groups were defined by the level of UE impairment (severe, moderate, mild, see 

Chapter 3). We defined the MDC using a confidence interval formula: 

 𝐶𝐼 = 𝑥̅ ± 𝑧
𝑠
√𝑛

 (12) 

where x = sample mean, z = confidence interval, s = sample standard deviation, and n = 

sample size. We calculated MDCs for the three groups (n = 7, 12, and 15, for severe, 

moderate, and mild groups, respectively) and then fit a second-order polynomial curve 

to the data in the range of the UEFM score from 15 – 60. We adjusted z from MDC50 to 

MDC99, dividing it into 100 elements, where MDC50 and MDC99 represent the MDC 

with a statistical power of 0.5 and 0.99, respectively, to detect the change. 

 

5.3.2. The Robotic Simulator for Algorithm Validation 

A critical aspect of implementing QOME algorithms is the absence of ground 

truth.  We can perform calculations to estimate kurtosis and complexity from IMU data 

obtained from human subjects, but how do we know these calculations are accurate?  

Validation becomes especially important when implementing the calculations in real-

time embedded software. To address this validation challenge, we developed a robotic 



93	
	

simulator that allows us to create human-like movements with known levels of 

movement complexity and diversity.  

The robotic simulator incorporates two servo motors (FS5103B, FEETECH, 

China) configured to simulate human forearm supination/pronation and elbow 

flexion/extension (Figure 19). The simulator is composed of the following components: 

1) a dual servo motor system, which uses two servo motors to generate rotational 

motions during experiments, achieving the desired movement complexity; 2) an ABS 

arm, which connects the motors or actuators to the platform in a configuration that 

mimics the human forearm; 3) a wrist-worn IMU can be attached to the arm, just like to 

a human forearm; 4) a 3D printed ABS platform which supports the servo motors 

enabling rotational movements; 5) ABS frames are fastened to a wooden board with 

screws for added stability; 6) a microcontroller (Arduino Uno, Italy), which controls the 

dual servo motor system during tests. The arm and the platform were both printed by 

the 3D printer (Flashforge Pro, China). The simulator was clamped onto a bench-top 

table to ensure stability during experiments. 

 

5.3.3. The Wrist-Worn IMU 

To estimate the posture of the robotic forearm and calculate complexity and 

diversity, we used the MiGo, a wrist-worn inertial sensor developed by Flint 

Rehabilitation Devices LLC (Irvine, California, USA). The MiGo has a six-degrees-of-

freedom (DOF) inertial measurement unit (IMU, LSM6DSL, accelerometer range set to 

± 2 G and gyroscope range set to ± 500 degrees per second, both with a 16-bit 

resolution). Time and date are managed by a real-time clock (PFC2123). A system-on-
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a-chip (NRF52, Nordic Semiconductor) with an ARM Cortex M4 CPU and an integrated 

2.4gHz radio is used to read and handle the data from the IMU. The MiGo supports a 

streaming mode, in which sensor data can be streamed at 100Hz using the enhanced 

shock-burst wireless protocol. Alternatively, it can be operated in tracker mode, in which 

it runs an algorithm to track upper extremity active time. 

 

5.3.4. Assessing Movement Complexity and Diversity 

We utilized sample entropy and kurtosis algorithms to evaluate and analyze the 

movement quality of the robotic simulator. We employed tilt angle as a variable, 

calculating the angle between the normalized acceleration vector in the sensor 

coordinate frame and the gravity vector (see Chapter 3), inspired by Leuenberger et al 

[121]. Sample entropy, a measure quantifying the regularity and complexity of time 

series signals, was computed using a formula that involved the number of matches of 

length m and m+1 with their respective templates (we chose m to be 3; see Chapter 3). 

Kurtosis, a statistical measure representing the "tailedness" and "sharpness" of a 

probability distribution, was determined by dividing the fourth central moment (𝜇2) by the 

standard deviation (σ) raised to the fourth power. The fourth central moment and 

standard deviation were calculated using their respective formulas. By computing 

kurtosis and sample entropy, we repeatedly evaluated the movement diversity and 

complexity of the robotic simulator as it moved.  We chose the evaluation window to be 

1 minute in duration based on the results in Chapter 4, sliding the window by 1 second 

intervals to produce continuous measures of diversity and complexity based on the 

previous 1 minute of IMU data. 
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Figure 19. Top: The robotic forearm simulator as a test bench to validate wearable sensing 

algorithms for diversity and complexity. The simulator emulates elbow flexion/extension and 

forearm supination/pronation. Bottom: Schematic of control system for the robotic simulator. For 

validating kurtosis, the distribution generator was used. For validating sample entropy, the 

synthetic signal generator was used. 
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5.3.5. Experimental protocol 

Experimental protocols using the robotic simulator were designed to validate the 

ability of the wrist-worn IMU to estimate kurtosis and sample entropy. The servomotor 

simulating arm supination/pronation was programmed to move along trajectories with 

various diversity and complexity using the microcontroller. The robot 

pronation/supination angle varied from 0 to 180 degrees to match the range of the 

human forearm.   

The following hierarchical control architecture was used. The microcontroller 

waits in standby until it receives a command from the host PC. Once it starts, the host 

PC uses a Python program to send a movement instruction to the microcontroller, which 

in turn drives the servo motor to execute the specified movement. After the 

microcontroller receives the instruction, it sends a confirmation message back to the 

Python program. If the Arduino does not send a response within a specified timeout, the 

computer will attempt to resend the combination up to a predetermined number of 

times. This architecture allows the movement sequences to be easily modified on the 

host PC by editing the Python program.  

For validation of the kurtosis measurement, three sets of joint angle targets with 

different kurtosis values were generated: uniform, normal, and Laplace distributions 

(Figure 20).  Each set contained 250 joint angle targets. The robot was programmed to 

execute each targeted movement within a span of 3-4 seconds each. This resulted in a 

total experimental duration of approximately 10 minutes, during which the robot cycled 

through the targets, returning to the initial resting position between each movement.  



97	
	

The movements were orchestrated using a minimum jerk trajectory model, which 

mimics smooth, human-like motion trajectories [154]: 

 𝑥(𝑡) = 6𝑡3 − 15𝑡2 + 10𝑡4 (13) 

where t is time, and x is the function of position. Kurtosis was calculated for each 

dataset and compared to the known kurtosis value of the distribution used to generate 

the joint angle target set.  

For validation of the sample entropy measurement, target joint angle trajectories 

were generated to vary sample entropy values, and the servo motor was programmed 

to try to follow these trajectories. Three trajectories based on three types of noise with 

different entropy levels were created: brown noise, pink noise, and white noise (Figure 

21). 

During the robot movements, the MiGo streamed IMU data to a desktop 

computer at 100 Hz.. We down-sampled signals offline from 100 Hz to 52.6 Hz using 

the scipy.resample_poly function, in order to match the sampling rate we used in 

Chapters 3 and 4. 

 

 

Figure 20. Examples of three target distributions of robotic forearm posture (Uniform, Laplace, 

and Normal) for validation of the diversity measure (i.e. Kurtosis). 
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Figure 21. Example of target forearm postural trajectories (White, Pink, and Brown Noise) used 

for the validation of the complexity metric (i.e. SampEn). 

 

5.3.6. Data Analysis 

In some cases, we applied a Butterworth low-pass filter on both the simulated 

data and actual data, using a 5 Hz cutoff frequency. We calculated the tilt angle of the 

robotic forearm as the arccosine of the normalized filtered acceleration vector (see 

Chapter 3). We calculated the distribution of the tilt angle signals for both the planned 

and actual trajectories. To evaluate differences between planned and experimental 

trajectories, we calculated the median of the sample entropy and kurtosis of the tilt 

angle signals. To further assess the discrepancies between the planned and 

experimental, we applied the Manhattan distance. The Manhattan distance 𝑑5 is 

calculated as follows: 

 𝑑T(𝐩, 𝐪) = |𝐩 − 𝐪| = ∑𝑖 = 16|𝑝𝑖 − 𝑞𝑖| (14) 
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In ℝ(, 𝑑5, between two vectors 𝐩 = (𝑝,, 𝑝(, … , 𝑝6) and 𝐪 = (𝑞,, 𝑞(, … , 𝑞6) in an n-

dimensional real vector space is the sum of the lengths of the projections of the line 

segment between the points onto the coordinate. Here we employed 𝑑5 having two 

dimensional vectors 𝐩 = (𝑝,, 𝑝() and 𝐪 = (𝑞,, 𝑞(). The difference was computed 

between the point where (𝑝,, 𝑝() = (the median of the simulation data, and the median of 

the actual data), and the closest point (𝑞,, 𝑞() on the y = x. This point on the y = x line 

represents the ideal condition if there is no bias between the simulation data and the 

actual data. 

We also utilized Power Spectral Density (PSD) analysis to examine the 

frequency content of the tilt angle signals obtained from the robotic simulator, using 

Welch’s method. The PSD is a widely used method in signal processing and analysis 

for characterizing the frequency content of a time series signal. It represents the 

distribution of power over various frequency components, providing valuable insights 

into the dominant frequencies present in the signal and the relative contribution of each 

frequency to the overall signal. We compared the PSD of the actual data and the 

simulation data, allowing us to gain insights into the dominant frequencies and any 

noise present in the datasets. Subsequently, we computed the Mean Squared Error 

(MSE) to measure the difference between the PSDs of the actual and simulation data.  

 

5.4. Results 

5.4.1. Estimating Quality Time 

We used wrist-worn IMU data recorded from 22 people with a stroke during daily 

life to estimate user-specific thresholds for identifying periods of movement with high-
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than-usual complexity and diversity. The thresholds for sample entropy and kurtosis are 

shown in Figure 22, plotted as a function of UE impairment level and the statistical 

power required to designate a change as significant.  As UE impairment becomes less 

severe, the thresholds become more challenging to exceed. 

 

Figure 22. The proposed, user-specific, goal setting strategy for the sample entropy and kurtosis 

thresholds. The idea is to choose threshold values for sample entropy and kurtosis for each 

user, based on their UEFM score. The colored lines show the Minimal Detectable Change for 

sample entropy (left) and kurtosis (right) at different levels of statistical power (denoted by 

“Percentage” on the x-axis), and for different levels of UE impairment (denoted by the line 

color). We set the user-specific threshold based on the MDC90, denoted by the vertical dashed 

line (i.e the MDC with 0.9 statistical power). When the sample entropy and kurtosis, calculated 

over a time window, exceed this threshold, then the Quality Time counter is incremented.  For 

sample entropy, more severely impaired users have a lower threshold, since a higher sample 

entropy denotes more complex movement.  For kurtosis, more severely impaired users have a 

higher threshold, since lower kurtosis values denote a more diverse movement experience.  
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We also used the historic wearable sensor data set obtained from the 22 

participants with a stroke to estimate how many seconds of QT were achieved over a 12 

hour period for people with different impairment levels, using this user-adaptive 

threshold strategy. Each user achieved a daily QT between 500 and 10000 seconds 

(Figure 23).  Thus, defining a user-adaptive threshold made it so no user had 0 seconds 

of QT, and no user had 43,200 seconds of QT, which would occur if all 12 hours of wear 

time were counted. 

 

 

Figure 23. Estimated Quality Time (QT) over a 12 hour period as a function of UEFM score for 

34 data sets of IMU recordings obtained from 22 people with stroke who wore the IMU on their 

wrist in daily life.  The QT calculation uses the user-adaptive threshold.   
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5.4.2. Measuring complexity and diversity of movements generated with a robotic 

forearm 

We observed differences between the planned robotic forearm angle distribution 

and the experimentally measured distribution, particularly for the pink and white noise 

distributions (Figure 24). The possible sources of error were: 1) the robot did not have 

high enough bandwidth to accurately track the planned tilt angle distributions; and 2) the 

estimation of tilt angle from the IMU data was inaccurate.    

To further investigate the bandwidth issue, we analyzed the power spectral 

density (PSD) of the tilt angle (Figure 25). Before applying the 5 Hz low pass filter, we 

observed a large mean squared error and a more considerable distance between the 

distributions. This indicated that the robot did not have sufficient bandwidth to keep up 

with the higher frequency components in the planned signals. Further analysis therefore 

focused on signals after they had been filtered with the 5 Hz low pass filter. 

Upon comparing the tilt angle distributions between the planned and 

experimental trajectories after low pass filtering, we also found that the differences in 

medians were all larger than 5.0 degrees. This suggest there was an offset between the 

forearm angle at rest in the simulation and the experiments (Figure 24).  

The experimentally measured kurtosis and sample entropy values, based on the 

signals from the IMU mounted on the robotic forearm, with the planned kurtosis and 

sample entropy values were compared (Figure 26). Recall, these values were 

calculated using a 1 minute window sliding in one 1 second increments across 10 

minutes of robotic movement. As the planned kurtosis and entropy increased, the 

experimentally measured kurtosis and entropy increased, although there were some 
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inaccuracies, particularly for the experimentally measured entropy for the pink and white 

noise. This is likely due to the inability of the robot to keep up with the high frequency 

content of the pink and white noise.   

 

 

 

Figure 24. Comparison of planned and experimental tilt angle after low-pass filtering. The 

differences in the median values were all larger than 5.0 degrees, suggesting an offset between 

the angle at rest in the simulation and experiments. 
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Figure 25. Comparison of Power spectral density (PSD) of tilt angle signals for the planned and 

experimental trajectories. (Left) Before 5 Hz low pass filter was applied, (Right) After 5 Hz low 

pass filter was applied 
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Figure 26. Left: Mean values for the experimentally measured entropy compared to the 

simulated (or “theoretical”) entropy. Error bars show ± one standard deviation for entropy and 

kurtosis evaluated over 1 minute windows. Right: Experimental and simulated kurtosis. 

 

5.5. Discussion 

In this chapter, we proposed and evaluated two tools for assisting in real-time 

implementation of Quality of Movement Experience (QOME) feedback. First, we 

proposed Quality Time as a feedback metric for quantifying time when subjects are 

performing higher-quality-than-usual movements. The adaptive threshold for movement 

quality scoring was based on the UEFM score and MDC values derived from 

distributions of sample entropy and kurtosis obtained from 22 persons with a  stroke in 

previous study.  We also designed a robotic simulator as a tool to validate the metrics of 

QOME obtained from a wearable sensor.  The simulator allowed us to create 

movements similar to human forearm movements, but with planned and varying values 

of kurtosis and complexity. This allowed us to validate the measures of kurtosis and 

complexity calculated from experimental data obtained with the wrist-worn IMU, 
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although there were some inaccuracies still to be overcome. We briefly discuss these 

results, including limitations and directions for future work. 

 

5.5.1. Quality Time as a goal setting strategy 

We introduced a user-adaptive goal-setting strategy based on patients' functional 

capacities and utilizing MDCs of kurtosis and entropy estimated from a data set of 22 

people who wore an wrist-IMU in daily life. The idea of Quality Time aligns with the non-

task-specific training philosophy proposed by Krakauer et al. [66], emphasizing the 

exploration of more complex and diverse movements for stroke rehabilitation. To refine 

this goal-setting strategy, future research could explore the impact of sample size on the 

confidence interval calculations.  

 

5.5.2. A robotic simulator for validating embedded quality of movement measurements 

The robotic simulator enabled us to validate the proposed algorithms for 

measuring QOME by providing a controlled environment for testing arm movements. 

Specifically, it allows us to pre-program planned trajectories with known values of 

complexity and diversity, and then check that our algorithms can reproduce these 

values based on IMU recordings.  However, we experienced difficulties with having the 

robot reproduce the planned trajectories, due to limited bandwidth of the motor and a 

bias in the motor angle. These issues will be addressed in future experiments by 

ensuring that the planned trajectories are achievable by the robotic simulator, and by 

better calibration of the robot simulator angles.  
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5.5.3. Future work 

Future work should implement and assess the proposed goal-setting strategy 

using the robotic forearm simulator. The effectiveness of the quality time concept can be 

validated using the robotic simulator to design the optimal difficulty level for simulated 

users. By tailoring the difficulty and goal setting to individual users, we can contribute to 

improved stroke rehabilitation outcomes and personalized therapy plans. 
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Chapter 6. Conclusion 

 
The aim of this dissertation was to develop new algorithms that can improve the 

effectiveness of wearable technology for UE rehabilitation for people after stroke. This 

chapter summarizes the contributions and discusses future work for the use of wearable 

sensors for people after stroke. 

In Chapter 1, we reviewed key concepts in stroke rehabilitation and therapies 

using wearable sensors. We discussed existing rehabilitation technologies and 

emphasized the problem of non-use in stroke patients, who often fall into a vicious cycle 

[18] of not using their impaired arm, leading to a decline in UE function. We also 

discussed the potential of wearable sensors to provide feedback and promote the 

therapeutic use of the impaired arm in daily life. 

In Chapter 2, we described the development of the HARCS algorithm, a 

convolutional neural network trained on spectrogram data from a wrist-worn IMU to 

identify hand movement occurrence. We found that counts obtained using the HARCS 

and the previously-developed HAND algorithm that requires magnetic sensing were 

highly correlated. This indicates that is possible to identify hand movements of people 

after stroke in daily activities without an external source of information such as a 

magnetic ring on the index finger. However, the HARCS is not perfect, suffering from 

both false positives and negatives.  It is unclear if this is a fundamental limit of the 

approach or whether HARCS could be further improved by refining the strategy. 

Regardless, and important contribution of this dissertation is to show for the first-time 

how wrist-worn IMU data can be used to estimate the amount of finger movements, 
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opening up new avenues of existing wearable watches for hand-related healthcare 

applications. 

In Chapter 3, we investigated what statistical variables related to the quality of 

movement experience (QOME) distinguished persons with a stroke impairment level to 

understand differences in movement quality between mildly, moderately, and severely 

impaired patients. We identified kurtosis and sample entropy (SampEn) of tilt angle are 

having a highest effect size (Cohen’s D = 1.1, and 0.99 for group 1 vs group 2, and 

group 2 vs group 3, respectively), suggesting they can be used as a measure of 

movement diversity and complexity. Furthermore, we utilized a variable selection 

method [133] with a backward elimination to identify the optimal set of variables for 

predicting UEFM score. We again obtained kurtosis and sample entropy as suggested 

variables. Identifying metrics of the quality of the movement experience is a novel 

contribution of this dissertation. 

Based on the findings of Chapter 3, we hypothesized that encouraging people to 

achieve more forearm postural diversity and complexity may be therapeutically 

beneficial, as it challenges the patient to make more challenging and variable 

movements. But the following question remained unclear: what exercises could one 

suggest to help patients achieve this goal? To answer this question, in Chapter 4, we 

recruited 8 unimpaired individuals and evaluated a set of 12 therapeutic activities for 

postural diversity and complexity. The activities were performed while seated and 

included: a set of conventional rehabilitation therapy exercises for the hand and arm, 

ping-pong, the card game Speed, American Sign Language, Tai-chi, Cornhole, 

Nintendo Switch sports, balloon volleyball, cup stacking, and FitMi exercises, where 
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FitMi is a commercial sensor system that guides upper extremity exercises. The 

participants performed each exercise for 10 minutes while wearing a wrist 

accelerometer, and we computed sample entropy and kurtosis of tilt angle with sliding 

windows of 1, 3, and 5 minutes. Engaging in conventional rehabilitation therapy 

exercises created high values for forearm postural diversity but not complexity. Playing 

the card game Speed and exercising with FitMi produced the highest values for both 

postural diversity and complexity. Measures of diversity and complexity were 

reasonably consistent for each activity, highlighting that they are a property of the 

activity rather than the way persons perform the activity.  These measures were also 

consistent across 1, 3, and 5 minute data analysis windows, which may be helpful for 

providing timely feedback to patients when they start to perform diverse, complex 

activities. 

In Chapter 5, we provided an overview of work in developing an algorithm for 

providing feedback on QOME in a real-time. We designed the algorithms to quantify 

“quality time” when users are in active in terms of high movement complexity and 

diversity. We also designed and performed pilot testing with a robotic simulator of the 

human forearm for validating movement complexity and diversity.  

Future work will focus on further developing and refining the algorithms and 

technologies discussed in this dissertation, as well as implementing them in a robust, 

user-friendly way in a wrist-worn IMU. For the HARCS algorithm, it may be possible to 

improve its accuracy with further optimization of parameters or better selection of 

training data sets. For QOME wearable feedback, important questions to address are: 

1) what is the optimal duration for the data analysis window to give consistent but also 
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timely, real-time feedback on activities? 2) Should we provide feedback on both kurtosis 

and complexity, or will providing feedback on one metric suffice?  Providing feedback on 

complexity is more computationally expensive than kurtosis, and it is still an open 

question which metric is more motivating and relevant. 3) Are there other measures of 

QOME that are relevant? 4) What is the best strategy for providing feedback about 

diversity and complexity, in terms of frequency and use of visual and haptic cues? 5) 

How can we combine wearable sensing with remote assessment that is monitored by a 

rehabilitation professional? 6) Can we develop computational models to predict 

recovery using wearable sensor data? And 7) Are there potential synergies between 

QOME wearable feedback and other rehabilitation strategies in post-stroke patients? 

Finally, this work lays the foundation for  a forthcoming clinical trial to examine 

the effects of QOME feedback with a wrist-worn IMU. The study will be conducted in an 

outpatient rehabilitation unit, and will offer the wrist-worn IMU as an "add-on" to patients' 

therapy. The target population consists of individuals approximately 1-3 months post-

stroke. The goal is to enroll 30 stroke patients over a 1.5-year period, randomized into 

two groups: 

1. Quantity feedback: The wrist-worn IMU informs patients of the daily duration of 

their arm movement. 

2. Quality of Movement Experience (QOME) feedback: The wrist-worn informs 

patients of the daily duration of their "high-quality" arm movement and vibrates 

when they achieve a 1-minute period of high-quality movement (i.e., good 

forearm postural diversity and complexity). 
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Both groups will receive a suggested set of activities, selected from the activities we 

tested in Chapter 4, including playing cards, balloon volleyball, learning sign language, 

seated tai-chi, conventional book of exercises, and cup stacking. Each group will 

receive different instructions for engaging in these activities, with the quantity group 

focusing on increasing arm movement activity and the QOME group aiming to find 

activities that trigger the wrist-worn sensors vibration. Both groups will also have 

personalized daily goals for the number of seconds spent on arm movement. We will 

test which wearable feedback strategy most improves participant’s ability to move their 

UE (capacity), as well as their use of their UE in daily life (performance). 
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Supplementary material 

 

1.1. Supplementary material for Chapter 2 

1.1.1. Inactivity Filtering 

In the Manumeter-Home Dataset and Manumeter-Lab Dataset, there existed 

significant periods of inactivity during which all measurements remained approximately 

constant. Participants most likely took off the Manumeter during this time, or rested with 

their hand on a table or their lap, suggesting it was inappropriate to assess the 

network’s performance on these intervals. We excluded windows where the inactive 

regions were detected, where we defined an inactive sample as a time-sample during 

which the difference between the minimum and maximum values of all 9 measurements 

- the x, y, z components of the acceleration, angular velocity, and gravity direction - 

failed to exceed their respective thresholds, thus being approximately constant. The 9 

thresholds were calculated based on 4 of the data files in the Manumeter-Home 

Dataset, which were selected due to having long intervals of continuous inactivity. The 

largest difference in minimums and maximums was computed across the intervals in the 

4 files for each of the 9 measurements, yielding the thresholds. 

 

1.1.2. Resampling for Imbalanced Dataset 

Generally, there were significantly more negatively labeled samples than 

positively labeled samples, which was particularly true for the Manumeter-Home 

Dataset as the participants were not performing specific movements during a pre-set 

amount of time. For validation sets, we under sampled negatively labeled samples to 
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weigh each class equally in the calculation of accuracy. We also did this for the training 

sets, as otherwise the network was biased towards classifying a sample negatively.  

 

1.1.3. Transformation to the Frequency Domain 

We computed spectrograms of data-samples by applying a Short-Time Fourier 

transform (STFT), a signal analysis technique for determining the sinusoidal frequency 

and the phase content of local parts of a signal. We selected 20 time-samples as the 

FFT size and utilized a Tukey window with a shape parameter of 0.25. The FFT size for 

the time sampling rate 52.6Hz produced 2.63 Hz increments in generating a spectrum, 

resulting in the generation of 11 frequencies from 0 Hz to the Nyquist frequency 26.3 

Hz. The windows had an overlap of 19 time-steps in order to convey as much 

information as possible within the resulting spectrogram. Spectrograms were generated 

for each measurement type, resulting in each sample containing 9 spectrograms 

stacked along the last axis, resulting in a sample with a shape of (131 time steps, 11 

frequencies, and 9 measurements) (Figure 3). 

STFT{𝑥[𝑛]} (𝑚,𝜔) = 𝑋(𝑚,𝜔) =�
60#7

7
 𝑥[𝑛]𝜔[𝑛 − 𝑚]𝑒#896	 (15) 

where x[n] represents the signal, and 𝜔[𝑛 −𝑚] represents the adapted Tukey window.  

 



115	
	

 

Figure 27. (Left) An illustration of data processing for a single subject using the Short-Time 

Fourier Transform (STFT). The STFT creates a (9 features x 11 variables) window to form a 

spectrogram in 150-time samples. 131 windows were generated from 150 samples. 

 

1.2. Non-Linear Transformation of the Spectrograms 

The generated spectrograms did not have normal distributions in values and had 

a significantly larger density of low amplitudes. After converting all the samples in the 

datasets to spectrograms, therefore, we applied a Box-Cox transformation that 

converted skewed distributions to normal distributions [82], [79]–[81]. Equation 16 

shows the formula we used to convert time series signals: 

𝑥: = �
𝑥: − 1
𝜆 				 if 𝜆 ≠ 0

log	 𝑥				  if 𝜆 = 0
(16) 

where x and 𝜆 represent the input value and the parameter varying a scaling of data 

distribution, respectively. 𝜆 was chosen independently for every combination of 

frequency and measurement type, resulting in an array of lambdas with a shape of (11 

frequencies, 9 measurements). During the generation of the training set, 𝜆 was chosen 
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to maximize the log likelihood function using the SciPy scalar optimizer [76]. Afterwards, 

the mean and standard deviations (SDs) of the dataset were calculated along the 

sample and time axes, again resulting in arrays with shapes of (11 frequencies, 9 

measurements). The computed mean and SDs normalized the entire dataset. Same 𝜆, 

means, and SDs from training sets were used in generating the validation set.  

 

Figure 28. An example of data conversion using the Box-Cox transformation. (A) The 

distribution of the amplitude of the spectrum for each sensor measurement. The X-axis 

represents the amplitude of the signal generated by 9 sensor variables at the selected 

frequency of 7.89 Hz (I.e., 3-axis acceleration without gravity, 3-axis angular velocity from 

Gyroscope, and 3-axis vector in the gravity). This frequency is one of the 11 discrete 

frequencies obtained by dividing the frequency range up to the Nyquist frequency (26.3 Hz) into 

equal intervals. The Y-axis shows the density distribution of in the value, the integral over the x-

axis become 1.0. (B) The distributions of the amplitude of the spectrum after the Box-Cox 

transformations. 
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Figure 29. An example of the heat map of the chosen parameters in Box-Cox transformation. 

(A) the combination of the lambdas parameters. The lambda parameters were optimally 

selected to make each distribution close to the normal distribution. The X-axis represents 9 

features used in training, and y-axis represents the frequencies determined by the FFT size. (B) 

The post Box-Cox spectrogram means. (C) The post Box-Cox spectrogram standard deviations.  
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1.2.1. Model Comparisons 

We compared the performances of the CNN to three other machine learning 

methods: (1) k-nearest neighbor (KNN), (2) Support Vector Machine (SVM), and (3) 

multi-layer perceptron. A KNN classifies a given data point by finding the majority class 

of its k nearest neighbors, and we use the Scikit-learn implementation of the KNN. We 

experimentally set k equal to 11, which yielded the best results for the KNN. An SVM 

attempts to linearly separate the two classes of points while maximizing the margin 

between them, and we used the Scikit-learn SGDClassifier implementation of SVM. To 

speed up the training of the SVM, we applied the Scikit-learn implementation of the 

Nystroem approximation with RBF kernel to the training data, which reduces the 

dimension of the data to 100. The perceptron consists of four 100-unit dense layers with 

the ReLU activation and a dropout rate of 0.5 applied after each layer, as well as a 

single-unit output layer with sigmoid activation. L2 regularization with a lambda of 

0.0005 is applied to the weights and biases of the multi-layer perceptron. 

Table 6 displays the selected parameters for each network trained using the 

Manumeter-Home dataset and Mocap-Lab dataset. For the network trained with the 

Mocap-Lab dataset, we made adjustments to the parameters, such as modifying the 

convolutional layer size, incorporating a normalization layer alongside the convolutional 

and dropout layers to enhance learning stability. 
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Table 6. Parameter settings for proposed Networks 

Data set used for 
training 

The number 
of 
Convolutional 
layers and 
Dropout 
layers 

The 
convolution 
kernel size 

The 
number of 
filters for 
the first 
convolution 
layer 

The 
normalization 
layer was 
used 

L2 
regularization 
lambda 
parameter 

Manumeter-Home 
Dataset 8 (5, 5) 128 No 0.001 

Mocap-Lab Dataset 
(Hand/Arm 
movement set as 
actual positive) 

7 (3, 3) 100 Yes 0.004 

Mocap-Lab Dataset 
(Hand/Arm 
movement set as 
actual negative) 

7 (3, 3) 100 Yes 0.004 

 

In this study, we compared the performance of four machine learning methods: 

K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Multi-layer Perceptron, 

and Convolutional Neural Networks (CNN). For the KNN, SVM, and Perceptron 

methods, we tested their performances on (A) the raw samples, where we created one-

dimensional vectors using raw sensor IMU signals, and (B) the samples after 

spectrogram preprocessing and Box-Cox normalization. To use these methods with 

spectrogram data, we reshaped the spectrograms into one-dimensional vectors by 

flattening the two-dimensional matrices, allowing them to be used as input for KNN, 

SVM, and Perceptron. However, the proposed CNN was designed to work specifically 

with spectrograms, as they provide a two-dimensional representation of the time-varying 

frequency content of the signals, allowing the CNNs to effectively capture local patterns. 

As a result, we only tested the custom CNNs on the spectrogram data. Therefore, our 
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comparison includes a total of 7 combinations of machine learning model and data 

processing options, the accuracies of which on each test are displayed in Table 2. 

To evaluate the performance of our models, we used two different data splitting 

methods. The first method, called Random 5-Fold Cross Validation (CV) grouped by 

participants, involved randomly partitioning the dataset into training and testing data 

without considering the UEFM score of the subjects. This approach aimed to assess the 

robustness and generalizability of our CNN model when mixing a diverse range of hand 

impairments due to stroke into the training data. We performed 6 iterations of this 

random fold process, each time creating a new training and testing data split. The 

second method, which we refer to as UEFM folds (i.e., LOOCV in the main text), 

involved splitting the data into training and testing data based on subjects' impairment 

levels, as determined by their UEFM scores. For instance, we trained HARCS using 

subjects' data in the range of 30 ≤ UEFM score < 66 when assessing subjects' data in 

the range of UEFM score < 30. This approach allowed us to evaluate the performance 

of the models across different impairment levels. 
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Table 7. Model comparison with accuracy (%) for Random 5-fold CV and UEFM folds (i.e., 

LOOCV in the main text) based on subjects' impairment levels. The table shows the mean 

accuracy for Random 5-fold CV, where the dataset is randomly partitioned into training and 

testing data without considering the UEFM score of the subjects (6 iterations), and the mean 

accuracy for specific UEFM folds, where the data is split based on subjects' impairment levels. 

 

(A) Spectrograms not used (B) Spectrograms used 

KNN SVM 
Percept

ron 
KNN SVM 

Percept

ron 
CNN 

Random 5-

Fold CV 

(6 Iterations, 

Overall Mean) 

61.82 66.87 72.35 73.86 74.54 76.46 77.19 

UEFM  Folds  

[0, 20) 61.14 62.1 70 78.38 78.1 79.81 81.05 

[20, 30) 60.71 68.8 76.97 74.94 77.27 78.46 78.69 

[30, 40) 58.46 65.92 71.94 69.64 73.92 76.3 76.68 

[40, 50) 61.77 72.8 75.23 77.43 79.66 80.56 80.61 

[50, 60) 58.99 62.36 64.31 71.97 73.38 74.59 74.44 

Mean 60.21 66.4 71.69 74.47 76.47 77.94 78.29 
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1.3. Supplementary Material for Chapter 3 

In this supplementary material, we present detailed information on two critical 

optimizations in our study: (1) Optimization of the Sample Entropy Calculation Parameters, 

and (2) Optimization of Inactivity Filtering. These optimizations were necessary to ensure 

a more accurate and unbiased analysis of stroke patients' upper extremity impairment. If 

not optimized, inactivity filtering may introduce significant bias, and unoptimized sample 

entropy parameters may hinder our ability to fully benefit from the sample entropy 

calculation. By addressing these optimizations, we aimed to obtain meaningful statistical 

features that are related to subjects' clinical scores, which in turn can contribute to a better 

understanding of arm movement patterns in stroke recovery and potentially the 

development of more effective therapeutic interventions. 

 

1.3.1. Optimization of the Sample Entropy Calculation Parameters 

SampEn is a powerful tool for measuring the complexity and predictability of time 

series data for analyzing the intricate movements and postures of stroke patients' arms, 

and for quantifying the complexity of physiological measurements, such as EEG and EMG 

signals . It computes the number of matchings with a template having a length m (i.e., 

𝐵*(𝛾)), and m+1 (i.e., 𝐵*+,(𝛾)), and then computes the ratio of matching counts between 

𝐵*+,(𝛾) and 𝐵*+,(𝛾). 

To optimize the SampEn calculation for our application, we selected the following 

parameters: (1) template length (m), (2) tolerance (r), (3) segmentation length (N), (4) 

sampling rate, and (5) type of sensor signals. Template length (m) represents a length of 

the template to compare the signal to the rest of the data, while tolerance (r) checks if the 
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difference between a template and an inspected window is acceptable. Sampling rate is 

also important, as SampEn may not be good at identifying the complexity of high-resolution 

sensor measurements due to the nature of the algorithm. 

In our analysis, we applied SampEn to (i) the amplitude of acceleration, (ii) the 

amplitude of angular velocity, and (iii) the tilt angle computed by Equation 3 in the main 

text. We tested template lengths of m = [2, 3, 4, 5] and tolerances of r = [0.1 – 0.3], and 

downsampled IMU signals from 52.6 Hz to 26, and 13 Hz, respectively. The parameters 

were determined based on previous studies and computational complexity considerations. 

Our optimization criterion was to maximize the correlation between entropy features 

and the UEFM score. We then evaluated the best parameter combinations for acceleration, 

angular velocity, and tilt angle. Figures 30-32 display the parameter optimization for 

SampEn with acceleration, angular velocity, and tilt angle, respectively. An ordinary least 

square fit was conducted for each combination, and an R2 was derived from the linear fit. 

Consequently, different parameters were used for each variable (Table 9). 
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Figure 30. Parameter optimization of SampEn with acceleration signals. 



125	
	

 
Figure 31. Parameter optimization of SampEn with angular velocity signals 
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Figure 32. Parameter optimization of SampEn with tilt angle signals 
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Table 8. Parameter selection for three variables. 

 Acceleration Angular velocity Tilt angle 
Template length  2 5 3 
Tolerance 0.25 0.4 0.35 
Segmentation 
length 

250 750 250 

Sampling rate 26 52.6 52.6 
 
1.3.2. Optimization of inactivity filtering 

This section describes the optimization process for inactivity filtering in the context 

of stroke patients' upper extremity (UE) impairment analysis. Inactivity filtering is essential 

to remove periods of rest or non-movement from the dataset, as these periods may not 

contribute meaningfully to the analysis. We used the Madgwick filter to subtract the gravity 

components from acceleration and introduced two measures of arm activity: (1) the 

instantaneous upper limb use u(t), and (2) the average arm use U(t). 

To find the optimal thresholds for inactivity filtering, we conducted a grid search in 

the range of [0.05, 0.30] for the threshold of u(t) and [0.05, 0.30] for the threshold of U(t). 

This approach allowed us to identify the best combination of parameters that yielded a 

statistically significant correlation with the UE Fugl-Meyer (UEFM) score. 

Throughout the optimization process, we maintained the same parameters to 

eliminate inactivity consistently across all participants. Our goal was to make the 

thresholds as lenient as possible to retain as much data as possible for analysis. However, 

we imposed the constraint that the chosen thresholds should produce a total inactive time 

that was as strongly correlated as possible with the impairment level measured by UEFM 

score. 
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Our goal was to make the thresholds as lenient as possible to retain as much data 

as possible for analysis. However, we imposed the constraint that the chosen thresholds 

should produce a total inactive time that was as strongly correlated as possible with the 

impairment level measured by UEFM score. 

We observed a highly statistically significant difference when the threshold for u(t) = 0.1 

and the threshold for U(t) = 0.1 (Figure4A, p=0.01). To retain as much information as 

possible, we selected this combination as the threshold for inactivity filtering. 

 

 
Figure 33. Optimization of thresholds. 
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Figure 34. The best selection of percentage of the inactive time versus the UEFM score with 

chosen thresholds. (A) Percentage of the inactivity obtained from a black solid line represents a 

linear regression line (y=-0.53x + 92.03; Pearson correlation, r = 0.43, p=0.01, 𝑅!=0.19) and the 

shaded area represents a confidence interval. (B) The amount of data and UEFM score without 

filtering. (C) The amount of data after filtering. 
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