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[1] This paper deals with the fourth in a sequence of canonical problems aimed toward an
understanding of the time domain (TD) behavior of wideband-excited sequentially pulsed
planar periodic finite arrays of dipoles, which play an important role in a variety of
practical applications. The present investigation of sequentially pulsed semi-infinite planar
dipole arrays extends our previous studies of sequentially pulsed infinite and semi-infinite
line dipole arrays and of infinite planar dipole arrays. The discrete element-by-element
radiations are converted collectively to radiations from a series of Floquet wave (FW)-
modulated truncated smooth equivalent aperture distributions, and to corresponding FW-
modulated edge diffraction. After a summary of necessary results from the earlier studies,
emphasis is placed on the new truncation-induced TD results and interpretations, which
are extracted via phenomenology-matched high-frequency asymptotics from rigorous
frequency and time domain formulations parameterized in terms of the dispersive FW
instantaneous frequencies and wave numbers. As in our previous studies, the outcome is a
numerically efficient, physically incisive algorithm whose accuracy is verified
preliminarily by application to a pulsed planar strip array of dipoles. INDEX TERMS: 0604

Electromagnetics: Antenna arrays; 0684 Electromagnetics: Transient and time domain; 0669

Electromagnetics: Scattering and diffraction; KEYWORDS: arrays, diffraction, floquet waves, periodic

structures, time domain, transients

Citation: Capolino, F., and L. B. Felsen, Short-pulse radiation by a sequentially excited semi-infinite periodic planar array of

dipoles, Radio Sci., 38(2), 8023, doi:10.1029/2001RS002588, 2003.

1. Introduction

[2] The prototype study of short-pulse radiation by a
semi-infinite sequentially pulsed planar periodic array of
dipoles (Figure 1) plays an important role in the efficient
modeling of time-dependent radiation from, or scattering
by, actual rectangular phased array antennas, frequency
selective surfaces and related applications. Impulsive
(delta function) excitations of the array elements, leading
to the time domain (TD) Green’s functions (GF), are

analyzed here, as well as band-limited short-pulse exci-
tations to model more realistic signals.
[3] Our approach is based on the exact equivalence

between summation over the contributions from individ-
ual sequentially pulsed elements in an array and their
collective treatment (via Poisson summation) in terms of
infinite series of time domain (TD) Floquet waves (FW).
We have already investigated the basic canonical TD-
GFs for infinite [Felsen and Capolino, 2000] and trun-
cated [Capolino and Felsen, 2002] periodic line arrays,
and that for an infinite periodic planar array [Capolino
and Felsen, 2003]. These cases have been parameterized,
respectively, in terms of nontruncated or truncated con-
ical TD-FWs [Felsen and Capolino, 2000; Capolino and
Felsen, 2002], truncation-induced TD FW-modulated tip
diffractions [Capolino and Felsen, 2002], and nontrun-
cated planar TD-FWs [Capolino and Felsen, 2003],
which furnish understanding of the corresponding FW
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critical parameters and phenomenologies pertaining to
time domain analysis of spatial periodicity. The present
contribution extends the investigation of Capolino and
Felsen [2003] to a semi-infinite periodic sequentially
pulsed planar array, which introduces new truncation-
induced TD phenomena.
[4] We proceed by accessing the time domain through

asymptotic inversion of the frequency domain (FD)
semi-infinite array results of Capolino et al. [2000b,
2000c], and obtain thereby the instantaneous frequencies
that parameterize the behavior of the constituent TD-
FWs. The problem is formulated in section 2. Section 3
contains a summary of the relevant FD results from
Capolino et al. [2000b], prepared so as to facilitate the
inversion to the TD, which is carried out in sections 4
and 5. Section 4 summarizes the TD-FW behavior for
the infinite planar array investigated by Capolino and
Felsen [2003] because these FWs play an essential role
in building up the behavior for the semi-infinite case.
Here emphasis is on the distinction between the non-
dispersive lowest-order, and the dispersive higher-order
TD-FWs. The TD-FW behavior for the semi-infinite
array is developed in section 5, using the infinite array
results in section 4 to parameterize and interpret trun-
cation-induced phenomena affecting the bulk TD-FWs
as well as giving rise to TD-FW-modulated diffractions
from the array edge. Explaining these new TD results in
section 5 in terms of band-limited (BL) problem-
matched asymptotics implemented on the inversion
integral (4) from the FD constitutes the main contribu-
tion in this paper. Preliminary numerical examples of
radiation from a two-edged strip array with pulsed
band-limited excitation in section 6 demonstrate the

accuracy of the TD-FW algorithm and illustrate the
rapid convergence of the (TD-FW)-based field repre-
sentation since only a few terms are required for
describing the off-surface field radiated by the truncated
planar array. Conclusions are presented in section 7.
Refinement and future calibration of these preliminary
results through a systematic series of numerical experi-
ments over broad ranges of parameters is reserved for a
future publication.

2. Statement of the Problem

[5] The geometry of the array of parallel sequentially
excited pulsed electric current dipole elements, oriented
along the arbitrary vector direction J0 and radiating into
free space, is shown in Figure 1. The array is infinite in
the z direction and truncated in the x direction. Both
cartesian and cylindrical reference coordinate systems
with their z-axes along the array edge are introduced
such that the array occupies the region x > 0, y = 0. The
interelement period is dx and dz along the x and z
directions, respectively. The E field component is simply
related to the J0-directed magnetic scalar potential A
which shall be used throughout. A caret ^ tags time-
dependent quantities throughout and bold face symbols
define vector quantities. With primed coordinates iden-
tifying generic source locations, any particular location is
indexed by (x0, z0) � (ndx, mdz), and the corresponding
transient current excitations are denoted by ĵ(ndx, mdz, t),
with the frequency (w) and time (t) domains related via
the Fourier transform pair

A wð Þ ¼
Z 1

�1
Â tð Þe�jwtdt; Â tð Þ ¼ 1

2p

Z 1

�1
A wð Þe jwtdw:

ð1Þ

The phased array FD and TD dipole currents J(w) and
Ĵ (t), respectively, are given by

J wð Þ
Ĵ tð Þ

�
¼

X1
m¼�1

X1
n¼0

d x0 � ndxð Þd z0 � mdzð Þ

� e�jk hxx
0þhzz

0ð Þ

d t � hxx
0 þ hzz

0ð Þ=cð Þ

� �
; ð2Þ

where k = w/c denotes the ambient wave number and c
denotes the ambient wave speed. In the m, n-dependent
element current amplitudes in the last factor in (2), whx/c
and whz/c in the FD portion account for an assumed
(linear) phase difference between adjacent elements in
the x and z directions, respectively, with hx/c and hz/c as
the interelement phase gradients normalized with respect
to w. The TD portion identifies sequentially pulsed
dipole elements, with the element at (x0, z0) = (ndx, mdz)
turned on at time tmn = (hxndx + hzmdz)/c. The important

Figure 1. Physical configuration and coordinates for a
planar periodic semi-infinite array of sequentially pulsed
dipoles which excite a wavefront progressing along the
u1 coordinate on the array. hk (with h = (hx2 + hz2)

1/2),
phase gradient of the excitation along the direction u1;
vu1
(p) = c/h, phase speed along u1; k = w/c, c = ambient
wave speed.
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nondimensional single parameter, which is tied to the
rotated coordinate system defined by u1 (see Figure 1),

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2z

q
¼ cgu1 ¼ c=v pð Þ

u1
; ð3Þ

combines both phasings hx and hz. In (3), gu1 = h/c = 1/vu1
(p)

is the normalized (with respect to w) phase gradient along
u1, and vu1

(p) = c/h is the corresponding impressed phase
speed. The TD cutoff condition h = 1 (vu1

(p) = c) separates
two distinct wave dynamics. For h < 1 the excitation phase
speed vu1

(p) = c/h along u1 is larger than the ambient wave
speed c, and the projected phase speeds c/hx and c/hz
along directions x and z are greater than c. Conversely, for
h > 1, the excitation phase speed vu1

(p) = c/h of the array
along u1 is slower than c and will not be considered in this
paper [see Felsen and Capolino, 2000; Capolino and
Felsen, 2003] for some details about the more intricate but
practically less important h > 1 case).
[6] Let the total (m, n)-summed frequency domain

field at r � (x, y, z), due to an array whose individual
elements are excited by unit amplitude harmonic currents
with phasing exp[�jk(hxndx + hzndz)] be represented by
Atot(r, w). The total time-dependent electric field excited
by a band-limited (BL) signal is then given by

Âtot;BL r; tð Þ ¼ 1

2p

Z 1

�1
Atot r;wð ÞG wð Þejwtdw; ð4Þ

in which G(w) is the weight assigned to each frequency
component. In our applications (see section 6), the pulse
spectrum G(w) is bounded away from w = 0 in such a
manner as to render the high-frequency asymptotic
expressions for Atot(r, w) by Capolino et al. [2000b] valid
over the entire bandwidth. Therefore the integral in (4) has
portions that can be regarded as amplitude functions
which vary slowly with frequency and as phase functions
which oscillate rapidly, denoted by F(w) and ŷ(w),
respectively, in (16), (32), and (36). This establishes the
prerequisites for asymptotic evaluation in the w domain.
Since the composite phase function in (4) depends on
space, time, and frequency, the asymptotic TD fields are
parameterized by space-time-dependent saddle point
frequencies found explicitly in the following sections.

3. Frequency-Domain Radiated FW Field:

Preparation for TD Inversion

[7] It may be recalled that by Poisson summation, the
sum of discretized element-by-element excitations in (2)
can be converted into a sum of FW-modulated smoothly
continuous equivalent source distributions covering the
infinite (or semi-infinite) array aperture [see Capolino et
al., 2000b]. For convenience, we summarize below the
relevant results of the FD-FW asymptotics for the mag-
netic vector potential, including FW-modulated dif-

fracted fields, that were presented by [Capolino et al.,
2000b, Equations (14)–(16)] for the electric field. Also,
we exhibit explicitly the w dependences in anticipation of
the TD inversion from the FD. Without loss of generality,
due to symmetry, we restrict our analysis to the upper
half-space y > 0. The radiated field (with a suppressed
time dependence exp( jwt)) is expressed as

Atot r;wð Þ ¼
X1

p;q¼�1
AFW
pq r;wð ÞU fSB

pq�f
� �

þ
X1
q¼�1

Ad
q r;wð Þ;

ð5Þ

which contains infinite series of ( pq)-indexed FW
contributions Apq

FW (r, w), and q-indexed diffracted fields
Aq
d(r, w) arising from the edge of the array. The pqth FW

in (5) is given by

AFW
pq r;wð Þ ¼ e�j kxpxþkypqyþkzqzð Þ

2jdxdzkypq
; ð6Þ

and U(a) = 1 or 0 for a > 0 or a < 0, respectively. The
spectral wave numbers

kxp ¼ hx
w
c
þ ap; ap ¼

2pp
dx

; p ¼ 0;
1;
2; . . .

ð7Þ
and

kzq ¼ hz
w
c
þ aq; aq ¼

2pq
dz

; q ¼ 0;
1;
2; . . .

ð8Þ

represent the FW propagation coefficients (wave num-
bers) along x and z, respectively. Furthermore,

kypq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2xp � k2zq

q
; ð9Þ

with the branch chosen to render =m(kypq) � 0 on the top
Riemann sheet; furthermore, <e(kypq)� 0 or<e(kypq)� 0
for w > 0 or < 0, respectively, consistent with the
radiation condition at y = 1 for positive or negative
frequencies. In (6), kxp

2 + kzq
2 < k2 characterizes propagat-

ing FW while kxp
2 + kzq

2 > k2 characterizes evanescent FWs.
It is worth noting that the FW representation in (6) is
the same as that for the infinite array, except for the
Heaviside unit step function U in (5) that confines the
domain of existence of the FWs to the region f < fpq

SB

[see Capolino et al., 2000c, Figures 1 and 2]. The angle
fpq
SB denotes the shadow boundary (SB) of the pqth FW

and, for propagating FWs, is given by Capolino et al.
[2000b, equation (24)]:

fSB
pq ¼ fpq ¼ cos�1 kxp

krq

	 

; ð10Þ
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which also specifies the direction of the azimuthal
component (in the (x, y) plane) of the pqth FW vector. In
(10),

krq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2zq

q
ð11Þ

specifies the amplitude of the azimuthal (transverse-to-z)
component of the pqth FWwave vector (see also the phase
factor in (12)). As in (9), the branch is chosen to render
=m(krq)� 0 on the top Riemann sheet, while <e(krq)� 0
or <e(krq) � 0 for w > 0 or < 0, respectively. The
asymptotic evaluation of the qth diffracted FW field in (5),
carried out by [Capolino et al. [2000b, section III-B],
leads to

Ad
q r;wð Þ � e�j krqrþkzqzð Þ

2dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjkrqr

p
� �Bq wð Þ þ

XP
p¼�P

F d2pq
� �

� 1

jdxkrq cosfpq � cosf
�  ;

0@ 1A
ð12Þ

in which �Bq(w) = 1
2

+ ( j/dx)Sp=�1
1 [krq(w) cos f �

hxw/c � ap]
�1 = [1 � e jdx[krq(w)cosf�hxw/c]]�1, and F is the

transition function of the Uniform Theory of Diffraction
(UTD) [Kouyoumjian and Pathak, 1974],

F xð Þ ¼ 2j
ffiffiffi
x

p
e jx

Z 1ffiffi
x

p e�jt2dt; with � 3p
2

< arg xð Þ � p
2
;

ð13Þ

whose arguments in (12) are given by

dpq wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2krq wð Þr

q
sin

f� fpq wð Þ
2

	 

: ð14Þ

In (12), P denotes the number of poles extracted in the Van
der Waerden procedure [see Capolino et al., 2000b,
equation (25)]. Owing to the exponential attenuation of
the evanescent Floquet waves along y, the convergence of
the ( p, q) sum of FWs is very rapid away from the array
plane. Furthermore, owing to the exponential decay along
r of the evanescent diffracted FWs, the convergence of the
q-sum of diffracted FWs is rapid away from the edge.
Thus, in practice, only a few terms have to be retained in
(5) to provide excellent approximations of the FD radiated
field [see Capolino et al., 2000c, section II-B].

4. Time Domain Floquet Waves for the

Infinite Array

[8] Here we select from Capolino and Felsen [2003]
those TD-FWpq results which bear directly on the trun-

cation studies in section 5. Thus, for the present, we shall
ignore the truncation SBs represented by the step func-
tion U in (5).

4.1. Nondispersive TD-FW00

[9] The case p = q = 0 is nondispersive. This implies
that the wave numbers in (7), (8), and (9) reduce for the
p = q = 0 case to kx,0 = whx/c, kz,0 = whz/c, ky,00 = w(1 �
h2)1/2/c; i.e., they are all linearly dependent on w and
therefore not amenable to saddle point evaluation. Inver-
sion from the FD through the second relation in (1) with
use of A00

FW(r, w) from (6) yields the closed form (we only
treat radiating FWs, for which h < 1, throughout this
paper)

ÂFW
00 r; tð Þ ¼ cU t � t0ð Þ

2dxdz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p ; ð15Þ

with t0 = (hxx + hzz +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
y)/c as has also been

demonstrated after Capolino and Felsen [2003, equation
(29)]. The TD-FW00 is a planar step pulse turned on at
time t = t0.

4.2. Dispersive TD-FWpq, With p 6¼ 0 or q6¼ 0

[10] For p 6¼ 0 or q 6¼ 0, the TD-FWpq inversion
integral becomes

ÂFW
pq r; tð Þ ¼

Z 1

�1
FFW wð Þe�jŷ wð Þdw; ð16Þ

in which FFW(w) = (4pjdxdzkypq)
�1, from (6), is

considered slowly varying as a function of the radian
frequency w. The exponential term with

ŷ wð Þ ¼ kxpxþ kzqzþ kypqy� wt; ð17Þ

in which kxp, kzq, and kypq are functions of w as stated in
(7), (8), and (9), is rapidly oscillatory. For these
dispersive FWs with p 6¼ 0 or q 6¼ 0, the dominant
contributions to the integral in (16) arise from the
stationary (saddle) points wpq,i of ŷ (w) which satisfy
(d/dw) ŷjwpq,i

= 0. For p or q 6¼ 0, the real wpq,i solutions
are found to be [see Capolino and Felsen, 2003, equation
(44)],

wpq;i r; tð Þ ¼ �wpq þ �1ð Þi~wpq

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t20

p ; i ¼ 1; 2; t > t0;

ð18Þ

with �wpq =
c

1� h2
(hxap + hzaq), ~wpq =

c

1� h2
[(hxap +

hzaq)
2 + (ap

2 + aq
2)(1 � h2)]1/2, and

t ¼ t � hxxþ hzzð Þ=c ð19Þ

t0 ¼ t0 � hxxþ hzzð Þ=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
y=c: ð20Þ
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Evaluation of the pqth TD-FW integral in (16) via the
standard asymptotic formula [Felsen and Marcuvitz,
1993, pp. 382]

ÂFW
pq r; tð Þ �

X2
i¼1

ÂFW
pq;i ð21Þ

ÂFW
pq;i � FFW wpq;i

�  ffiffiffiffiffiffi
2p

p
e�jŷ wpq;i tð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j d2=dw2ð Þŷjwpq;i

q U t� t0ð Þ ð22Þ

yields explicitly,

ÂFW
pq;i r; tð Þ � ce�j apxþaqzð Þe�j �ið Þip=4

dxdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1� h2ð Þ

p
� e

j �wpqtþ �1ð Þi~wpq

ffiffiffiffiffiffiffiffiffi
t2�t2

0

p
ð Þffiffiffiffiffiffiffi
~wpq

p
t2 � t20
� 1=4 U t� t0ð Þ: ð23Þ

The unit step function U(t� t0) arises because real
saddle point frequencies wpq,i are restricted to t > t0
(t > t0). The range of validity of the FD-inverted
asymptotic TD-FW in (23) is inferred from the analytic
nondimensional estimator from Capolino and Felsen
[2003, equation (55)] and plotted by Capolino and
Felsen [2003, Figure 9]. Furthermore, (23) is the
asymptotic version of the exact TD-FW evaluated by
Capolino and Felsen [2003, equation (27)], and all
interpretations relating to it apply here as well. The
dispersive TD-FWpq has the same turn on time t0 as the
nondispersive TD-FW00.
[11] As shown by Capolino and Felsen [2003,

equation (57)], the observation point r � (x, y, z),
together with the local instantaneous frequencies and

their corresponding local instantaneous wave numbers in
(7)– (9), kxp(wpq,i(t)), kzq(wpq,i(t)) and kypq(wpq,i(t)),
define localized points of ‘‘emergence’’ Q0

pq,i(t) =
[x0pq,i(t), z

0
pq,i(t)] � [x � ykxp(wpq,i(t))/kypq(wpq,i(t)), z � y

kzq(wpq,i(t))/kypq(wpq,i(t))] from the FW-modulated
equivalent continuous source distribution on the array
plane (a few such points are shown in Figure 2). Thus
the first signal arrival at the observation point r � (x, y, z)
originates at the earlier point Q0(t0) = [x0(t0), z

0(t0)]� [x�
yhx(1 � h2)�1/2, z � yhz(1 � h2)�1/2]. Successively, for t
> t0, these Q0

pq,i(t) points all lie on the t-instantaneous
‘‘equal delay’’ ellipse defined by Capolino and Felsen
[2003, equation (58)] and schematized in Figure 2. At
each time t, all TD-FWpq propagate toward the observer
along a t-dependent cone with the same group velocity
c. For the semi-infinite array, the observer is reached only
by those TD-FWs that were launched from points with
xpq,i
0 (t) > 0 on the actual array, i.e., when the launch points

lie on the solid part of the ellipse (Figure 2). The
corresponding phenomenology is schematized in sections
5.2 and 5.3.

5. Time Domain Floquet Waves for the

Semi-Infinite Array: Truncation of TD-FWs

and Truncation-Induced TD Diffraction

[12] ‘‘Bulk’’ TD-FWs for the truncated planar array
behave in the same way as those for the infinite planar
array except for the presence of shadow boundaries that
delimit their region of existence. Additionally, a dif-
fracted field arising from the edge truncation at x = 0
exhibits FW-modulated q-dependent dispersive (q 6¼ 0)
and nondispersive (q = 0) behavior. Inversion from the
FD total radiated field in (5) leads to

Âtot r; tð Þ ¼
X1
q¼�1

1

2p

Z 1

�1

� X1
p¼�1

AFW
pq r;wð Þ

�U fSB
pq wð Þ � f

� �
þ Ad

q r;wð Þ
�
e jwtdw: ð24Þ

Three distinct cases are distinguished, based on the p,q-
dependent FD dispersion relations for FWs and dif-
fracted fields which are summarized in Table 1 and
analyzed in sections 5.1, 5.2, and 5.3, respectively. In
Table 1, the azimuthal angle fpq

SB(w) defined in (10)
denotes the SB and direction of propagation of the pqth
propagating FW, and krq(w) is the radial wave number, in
(11), of the q-th diffracted field. We focus here only on
propagating FWs since all the impulsively excited FD-
FWpq in (6) are propagating when evaluated at their
instantaneous frequencies wpq,i(t) in (18), as shown in
(23).

Figure 2. Propagating TD-FW phenomenology, based
on radiation from the FW-modulated equivalent
smoothly continuous source distribution on the infinite
or semi-infinite array ‘‘aperture.’’ u1 points in the
direction u1 � (hx, 0,hz) of the advancing excitation
wavefront on the array (see Figure 1).
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[13] For p = q = 0, the SB angle and direction of
propagation of FD-FW00 do not depend on w, and the
radial wave number is linearly dependent on w. This case
is therefore nondispersive. For q = 0 and p 6¼ 0, FWs are
dispersive since the SB angle and direction of propaga-
tion vary with w as shown in Table 1. The q = 0
diffracted field is nondispersive because its radial wave
number kr0(w) still depends linearly on w (however, this
field becomes ‘‘weakly dispersive’’ in the transition
region surrounding the SB so as to match the phase
speed there of the dispersive FD-FWp0). For q 6¼ 0 (and
arbitrary p), both the FW and diffracted fields are
dispersive since their directions of propagation vary with
w (the FW and diffracted wave numbers depend
nonlinearly on w).
[14] For frequency-dependent SBs (i.e., q 6¼ 0 and/or p

6¼ 0) and a fixed observer at f, there is a particular
frequency wpq

SB such that

fSB
pq wSB

pq

� �
¼ f; ð25Þ

which is determined by squaring and rearranging the
expression cos fpq

SB(w) = cos f (see (10)). One obtains
w2

c2
[(1 � hz

2)cos2 f � hx
2] � 2w

c
(hxap +hzaq cos2 f) �

(ap
2+aq

2 cos2 f) = 0, with solutions

wSB
pq ¼ c

hxap þ hzaq cos
2 f

� 

 cosf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
p þ a2

q cos
2 f� hxaq � hzap

� 2q
1� h2z
� 

cos2 f� h2x
:

ð26Þ

The illuminated region constraint f < fpq
SB(w) on the FD-

FWs in (24) implies that for p and/or q 6¼ 0, the FD-FWs
and diffracted fields are individually w-discontinuous at
w = wpq

SB, although their sum Apq
FW (r, w)U(fpq

SB(w) � f) +
Aq
d(r, w) is continuous there. The wpq

SB radian frequencies
will play an important role in the discontinuity-induced
compensation mechanisms discussed in section 5.3.
[15] The three FWpq dispersion regimes in Table 1

parameterize subsequent high-frequency asymptotics for
the FD-FW and diffracted fields in (24) away from the
transition regions near the shadow boundaries where w �
wpq
SB. Nonuniform asymptotics leads to the FW-modu-

lated ray optical interpretation of the relevant wave
phenomenology. Near the SBpq one needs to employ
uniform asymptotics for the diffracted fields, given in

(12). Far from SBs, i.e., for w substantially different from
wpq

SB, the temporal dispersion of the diffracted field (12)
is dominated by exp[�jkrq(w)r], as noted in Table 1,
since dpq

2 (w) � 1 and thus F[dpq2 (w)] � 1. However, in
the pqth transition region, the diffracted field assumes a
transitional behavior so as to match the phase speed of
the FD-FWpq at the SBpq, thereby changing its dispersion
properties. We recall that the expression for the qth
diffracted field in (12) compensates for the SB-
discontinuity of all propagating pqth FD-FWs that have
been regularized via the Van der Waerden procedure (i.e.,
those with extracted poles in �P � p � P). Approaching
the SBpq, dpq

2 (w) � 0, whence F(dpq
2 � 0) �

ffiffiffiffiffiffiffiffiffiffi
pjd2pq

q
exp( jdpq2 ) � 0. This locally dispersive transitional
behavior permits the qth FD diffracted field to
compensate for the discontinuity of the pqth FD-FW at
the SBpq, as explained by Capolino et al. [2000c, section
III-A]. One finds that Aq

d(r,w) � 1
2
sgn[f � fpq

SB(w)]AFW
pq(r,

w) / exp[�j(kxpx + kypqy + kzqz)], which matches the
dispersive exponent of the FD-FW. This transitional
phenomenology pertains to the cases treated in sections
5.2 and 5.3.

5.1. Nondispersive TD Diffracted Field q = 0
and p = 0

[16] As shown in Table 1, the SB f00
SB is independent of

w and the Fourier inversion (24) is carried out separately
for the two terms A00

FW(r, w)U(f00
SB � f) and A0

d(r, w).
Fourier inversion of A00

FW(r, w) produces the TD-FW in
(15). A few steps have to be carried out before the
inversion of A0

d(r, w). Referring to (12) we write (with
explicit insertion of the w-dependence), �B0(w) = 1

2
+ ( j/dx)

Sp=�1
1 [w

c
(1 � hz

2)1/2(cos f � cos f00) � ap]
�1. We also

decompose the ‘‘quasi nondispersive’’ q = 0 diffracted
field in (12) into A0

d (r, w) = A00
d (r, w) + Sp6¼0Ap0

d (r, w),
with

Ad
00 r;wð Þ ¼

ffiffiffi
c

p
e�jwtd

2dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjw

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
r

q
� 1

2
þ

c F d200
� 

jdxw
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
cosf00 � cosfð Þ

" #
ð27Þ

Table 1. Dispersive Behavior of the pqth FW and Associated Diffracted Fields

FD-FW Direction of Propagation FD-Diffracted Field Radial Wave Number

q = p = 0 cos f00(w) = hx/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
nondispersive FW kr0(w) = (w/c)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
nondispersive diffracted field

q = 0 and p 6¼ 0 cos fp0(w)= (whx + ap)/kr0(w) dispersive FW kr0(w) = (w/c)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
nondispersive diffracted field

q 6¼ 0 cos fpq(w)= (whx + ap)/krq(w) dispersive FW krq(w) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw=cÞ2 � ðwhz=cþ aqÞ2

p
dispersive diffracted field
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arising from the 1/2 and p = 0 terms in �B0(w), and
Sp6¼0Ap0

d taking into account all higher-order p-terms as
shown later on in section 5.2. In (27), td = (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
r +

hzz)/c, d00
2 = 2 wc�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
r sin2[(f � f00)/2] = w (td �

t0). The last identity is obtained using cos f = x/r, cosf00

= hx/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
, observing that 2r sin2[(f � f00)/2] = r �

r cos(f � f00) = (r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
� xhx � y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
)/ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2z
p

, and recalling (20). The Fourier inversion of
(27) can be carried out in closed form via an exact
transform based on the formula (see expression before
(23) and (50) of Capolino and Felsen [2002] followed by
a convolution),

Î tð Þ ¼ 1

2p

Z 1

�1

F w td � t0ð Þ½ �
jw

ffiffiffiffiffi
jw

p ejw t�tdð Þdw

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
td � t0

p ffiffiffi
p

p sin�1

ffiffiffiffiffiffiffiffiffiffiffi
t � td

pffiffiffiffiffiffiffiffiffiffiffi
t � t0

p
	 


U t � tdð Þ;
ð28Þ

which leads to

Âd
00 r; tð Þ ¼ 1

2pdz
ffiffiffiffiffiffiffi
2td

p

� 1=2ffiffiffiffiffiffiffiffiffiffiffi
t � td

p þ
2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
td � t0

p
sin�1

ffiffiffiffiffiffiffiffiffiffiffi
t � td

pffiffiffiffiffiffiffiffiffiffiffi
t � t0

p
	 


dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z
� q

cosf00 � cosfð Þ

2664
3775

� U t � tdð Þ; ð29Þ

with

td ¼ td � hzz=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

q
r=c: ð30Þ

Near the SB f = f00 (where td = t0) we have
ffiffiffiffiffiffiffiffiffiffiffiffiffi
td � t0

p
=ffiffiffiffiffiffiffi

2td
p

sin((f � f00)/2)! 0, which compensates for the

discontinuity in the denominator of the second term
in (29) (see Figure 3). The TD Fourier inversion of
all the other p-terms (with q = 0) Ap0

d (r, w) is treated
next.

5.2. ‘‘Weakly Dispersive’’ TD Diffracted Fields
With q == 0 and p 6¼6¼6¼6¼ 0

[17] To perform the asymptotic inversion of Ap0
T � Ap0

FW

(r, w) U[fp0
SB(w) � f] + Ap0

d (r, w) for q = 0 and p 6¼ 0, we
treat FW portion as in section 4.2 and use an
approximate form of the diffracted field valid when the
space-time position of the observer is in the vicinity of
the SB. The relevant expression for the FD diffracted
field

Ad
p0 r;wð Þ � e�j kr0rþkz0zð Þ

2dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjkr0r

p F d2p0
h i

jdxkr0 cosfp0 � cosf
� � ð31Þ

arises from the higher-order p-terms in �B0(w) (above
(27)), combined with (12), in which kr0(w), kz0(w), fp0(w)
and dp0

2 (w) are all functions of w. The corresponding
inverted TD-FW, valid away from and near the SB, is
obtained as in section 4.2 for the infinite array, using the
dominant instantaneous frequencies wp0,i(t) also in the
shadow boundary truncation functions U[fp0(wp0,i(t)) �
f], i = 1, 2. A simple expression for the TD diffracted
fields Âp0

d (r, t) can be derived when the observer is close
to the moving SBp0 where w � wp0

SB. Therefore f �
fp0(w) in (31). and the argument of the transition
function F becomes dp0(w � wp0

SB) � 0 (see (14)),
yielding F �

ffiffiffiffiffiffiffiffiffiffi
pjd2p0

q
exp( jdp02), as verified from the

relations F(d2) = ±
ffiffiffi
p

p
e jp=4de jd

2

erfc(±e jp/4d), erfc(z) =
(2/

ffiffiffi
p

p
)
R
z
1e�u2du, with the upper/lower signs applying

for <e(e jp/4d) >< 0 [Capolino et al., 2000b; Rojas, 1987].
Noting that �kr0(w)r + dp0

2 (w) = �[kxp(w)x + kyp0(w)y]
(using (10)), the resulting inversion of Ap0

T (r, w) near the
SB becomes

ÂT
p0 r; tð Þ �

Z 1

�1
FT wð Þe�jby wð Þdw; ð32Þ

were ŷ(w), defined in (17), takes into account the phase
terms, and

FT wð Þ ¼
U fSB

p0 wð Þ � f
h i
4pjdxdzky;p0

þ 1

4pjdxdz
ffiffiffiffiffiffiffiffiffiffi
2kr0r

p 
dp0erfc 
ejp=4dp0
� 

kr0 cosfSB
p0 � cosf

h i ð33Þ

is the slowly varying part of Ap0
T (r, w) near the SB.

[18] As in section 4.2, the dominant contributions to
the integral in the high-frequency range arise from the
stationary (saddle) points wp0,i(t) of ŷ (w) given in (18).

Figure 3. p = q = 0 TD-FW and diffracted wavefront
phenomenologies in the transverse x-y plane. The planar
TD-FW wavefront of Â00

FW and the conical diffracted field
wavefront of Â0

d reach the observer at t = t0 and t = td � t0,
respectively. Adding the TD-diffracted field to the
truncated TD-FW restores continuity at the SB along
and behind the wavefront.
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In (33), erfc is considered as an amplitude function as did
Capolino and Felsen [2002], [Carin and Felsen [1993],
and Felsen and Carin [1994] because over its effective
range fp0(w) � f (in the proximity of the SB), its phase
varies slowly. (Away from the SB, the phase varies
rapidly; there, however, the FW field is not discontin-
uous and the diffracted field may either be neglected
without appreciable loss of accuracy or evaluated by
other techniques. Better approximations for the diffracted
field away from the shadow boundaries are beyond the
scope of the present investigation). The asymptotic
evaluation of (32) is carried out via the formula in (21),
with (33), and (d2/dw2)ŷjwp0,i = y(1 � h2)2c�4~wp0

2 kyp0,i
�3 .

This leads to Âp0,i
T (r, t) = Si=1

2 Âp0,i
T , with

ÂT
p0;i r; tð Þ � ÂFW

p0;i r; tð ÞU fp0;i tð Þ � f
� �

þ Âd
p0;i r; tð Þ;

ð34Þ

in which Âp0,i
FW (r, t) is the same as in (23). The Heaviside

function U terminates the TD-FWp0 domain of existence
at the moving shadow boundary plane f = fp0,i(t) �
fp0(wp0,i(t)) with cos fp0(wp0,i(t)) = kxp(wp0,i(t))/
kr0(wp0,i(t)) = [hx +apc/wp0,i(t)]/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
. The diffracted

field is

Âd
p0;i r; tð Þ � ejwp0;i tð Þ� t�tdð Þ

2dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjkr0;i tð Þr

p
�

F d2p0;i tð Þ
h i

jdxkr0;i tð Þ cosfp0;i tð Þ � cosf
� 

�
e �1ð Þi jp=4t0

ffiffiffiffiffiffiffiffiffiffiffiffi
2p~wp0

p
t2 � t20
� 3=4 U t � t0ð Þ; ð35Þ

where wp0,i(t), and therefore fp0,i(t), kr0,i(t) �ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2z

p
wp0,i(t)/c and dp0,i(t) � dp0(wp0,i(t)), are func-

tions of t. We refer to Figure 4 and its caption for the
moving SB behavior for t � t0. At a time t, an arbitrarily
located observer is always reached by the diffracted
fields Âp0,i

d , i = 1,2 but only by those truncated FWs Âp0,i
FW

that originate at points xp0,i
0 (t) > 0 and illuminate the

observation point (see schematic in Figures 2 and 4).

5.3. Strongly Dispersive Diffracted Fields With q 6¼6¼6¼6¼ 0

[19] Due to the dispersive behavior of the diffracted
fields with q 6¼ 0, inversion into the TD is carried out via
local instantaneous diffracted frequencies. As previously,
‘‘far’’ from the SBpq (with arbitrary p), the diffracted
field dispersion is dominated by exp[�j krq(w)r], (see
(12) and Table 1). In that domain, where w differs
substantially from wpq

SB, the Fourier inversion (24) of the
Aq
d (r, w) term in (12) yields

Âd
q r; tð Þ �

Z 1

�1
Fd wð Þe�jŷd wð Þdw; q 6¼ 0; ð36Þ

where

ŷd wð Þ ¼ kzqzþ krqr� wt; ð37Þ

with kzq(w) and krq(w) given in (8) and (11), respectively,
takes into account the phase terms, whereas Fd(w) =
D(w)/[4p dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjkrq wð Þr

p
] is the slowly varying part of

Aq
d (r, w), with D(w) denoting the expression inside the

brackets in (12). The dispersion relation in (37)
coincides with that of the different but analogous
canonical problem of Felsen and Capolino [2000]. For
these dispersive diffracted fields, the dominant con-
tributions to the integral in (36) arise from the real
stationary (saddle) point solutions wq,i

d of ŷd(w), which
satisfy (d/dw)ŷdjwd

q;i
¼ 0 [see Felsen and Capolino, 2000,

Appendix A],

wd
q;i r; tð Þ ¼ c

1� h2z
aqhz þ

�1ð Þijaq

""t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � t2d

q
0B@

1CA;

i ¼ 1; 2; t0 > td

ð38Þ

with

t0 ¼ t � hzz=c ð39Þ

Figure 4. Moving shadow boundaries for dispersive
FWs and moving transition regions (parabolas around
SBs) for diffracted fields. At the instant t0, the SBs of all
FWs coincide with SB(t0), i.e., fpq,1(t0) = fpq,2(t0) = f00.
At later instants t > t0, they separate into SBpq,i(t), i = 1,
2, forming angles fpq,i(t) � fpq

SB(wpq,i(t)) with the x-axis,
such that fpq,1(t) > f00 > fpq,2(t). Observing that krq =
(kxp

2 + kzq
2 )1/2 and thus jcos fpq,i(t)j � 1 (see (10)), implies

that the angles fpq,i(t) are real for any p and any t > t0 and
that all the TD-FWpq are propagating toward the
observer. According to (43), the FWpq,i are confined to
the right side of SBpq,i(t) for i = 1, 2, respectively.
Recalling Figure 2, the observer is reached only by those
FWs Âpq,i

FW that originate at points xpq,i
0 (t) = x � y

cotfpq,i(t) > 0. The FW-existence conditions xpq,i
0 (t) > 0

or f < fpq,i(t) are equivalent, i.e., U(fpq,i(t) � f) �
U(xpq,i

0 (t)).
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and td defined in (30). For each FW order q, the two
real solutions i = 1, 2 yield the two field contributions
shown in Figure 5. These diffracted field local
instantaneous frequency solutions wq,i

d (r, t) are the same
as those of Felsen and Capolino [2000, equation (28)]
and they match the order of the wpq,i(r, t) solutions in
(18) at a given point r and a given instant t in the causal
domain t0 > td or t > td = hz z/c + td. At turn-on t = td,
jwq,i

d j ! 1 for all q (see Figure 6). The frequencies
increase with FW mode index q, decrease with time t,
and approach their cutoff value wq,i

d (t ! 1) = wq,i
d,cutoff =

c(1 � hz
2)�1[aqhz +(�1)i jaqj], defined by jkzq(w)j =

jk(w)j or, alternatively, by krq(w) = 0 (see (11)). The
corresponding instantaneous wave numbers kq,i

d (t) �
k(wq,i

d (r, t)), kzq,i
d (t) � kzq(wq,i

d (r, t)), and krq,i
d (t) �

krq(wq,i
d (r, t)), obtained from (8) and (11), are all real for

t > td, and the FD diffracted fields are all propagating
when evaluated at wd

q,i(r, t) since jkq,id (t)| > jkzq,id (t)j [see
Felsen and Capolino, 2000, section V-B]. The points of
emergence zq,i

0d (t) located on the edge (see Figure 5) are
defined by zq,i

0d (t) = z � rkzq,i
d (t)/krq,i

d (t) = z � (1 �
hz)

�1[hzt
0 + (�1)isgn(aq)

ffiffiffiffiffiffiffiffiffiffi
t02t2d

q
] which depend only on

the sign of q. The asymptotic evaluation of the integral
(36) is carried out via the formula in (21)–(22) (adapted to

the Âd
q format). From (17) and (38), one finds ŷd (wd

q,i(t)) =

aqzq,i
0d (t) and (d2/dw2) ŷdjwd

q;i
=�raq

2/[c2(krq,i
d (t))3], which

yields Âq
d(r, t) = Si=1

2 Âq,i
d , with

Âd
q;i r; tð Þ � e�jaqz

d
q;i
0 tð ÞU t0 � tdð Þ

4pdz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � t2d

q D wd
q;i tð Þ

� �
; i ¼ 1; 2;

ð40Þ

where D(w) is the expression inside the brackets in (12).
The resulting expression in (40) is restricted to early
observation times because it is based on the inversion of
the high-frequency representation of the FD-FW on the
right side of (24) and (36) [see Felsen and Marcuvita,
1973]. TD-FW with q 6¼ 0 are evaluated via their local
instantaneous frequencies wpq,i(t) in (18), as in section 4.2
when wpq,i(t) differs substantially from wSB

pq. The only
addition is that the U function in (24) is also evaluated
at the FW instantaneous frequency leading to Si=1

2 Âpq,i
FW

(r, t)U[fpq,i(t) � f], in which the TD-FW Âpq,i
FW (r, t) is

the same as in (23) and the moving shadow boundary
fpq,i(t) � fpq(wpq,i(t) with cosfpq(wpq,i(t)) = kxp(wpq,i(t))/
krq(wpq,i(t)). We refer to Figure 4 and its caption for the
moving SB behavior for t� t0. We show hereafter that the
condition ‘‘wpq,i(t) substantially different from wpq

SB’’ is
equivalent to ‘‘wq,i

d (t) substantially different from wSB
pq.’’

[20] In the SBpq transition region, where the local
instantaneous frequencies wq,i

d (t) are close to wpq
SB, the

simple asymptotics above cannot be applied because
Fd(w) in (36) is now rapidly oscillating for w � wpq

SB, one
has dpq

2 (w) �0 and F �
ffiffiffiffiffiffiffiffiffiffi
pjd2pq

q
exp( jdpq

2 ), which introduces
the additional phase term exp( jdpq2 ). Recalling (14) and
that dpq

2 = krqr[1 � cos(f � fpq)] = krq r � kxp x � kypqy
(using (10)), one observes that

yd wð Þ � d2pq wð Þ ¼ y wð Þ; ð41Þ

where y(w) given in (17) represents the total phase
(including exp( jw t)) of Aq

d(r, w), for w � wpq
SB. This

Figure 5. Edge-diffracted field phenomenology. At the
turn-on time t = td, all diffracted fields Âq,i

d (t) arriving at
the observation point P were generated at an earlier time
point zq,10

d (td) = zq,20
d (td) � z0

d. For t > td, the two points
zq,10
d (t) and zq,20

d (t) are the earlier points of emergence of
all diffracted fields which arrive simultaneously.

Figure 6. Normalized local instantaneous frequencies
Twpq,i(t) and Twq,i

d (t) for FWs for and diffracted fields,
respectively, with i = 2 (positive frequencies), q = 1 and
p = 0, 1, 2, versus normalized time t/T, with T = dz/c.
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equality states that in the transition region, the dominant
frequencies must satisfy dy/dw = 0, leading to wpq,i(t) in
(18). This is not surprising since we have already
encountered the same phenomenology in section 5.2 for
q = 0 and p6¼ 0; therefore, the asymptotic evaluation for
an observer in the space-time-dependent pqth transition
region can be carried out in a similar fashion. Here,
however, we note that ddpq

2 /dw = 2dpq�(ddpq/dw) = 0 for
w = wpq

SB and thus from (41), dyd/dw = dy/dw for w = wpq
SB.

This demonstrates that if for a certain t = tpq
SB, one has

wpq,i(tpq
SB ) = wpq

SB, then also

wd
q;i tSBpq

� �
¼ wpq;i tSBpq

� �
¼ wSB

pq : ð42Þ

In other words, the asymptotic evaluation carried out
above for wq,i

d (t) substantially different from wpq
SB

automatically patches onto the asymptotic evaluation in
the transition region w � wpq

SB, when the observer is
located in space-time at the SBpq (see section 5.2).
Therefore the solution for Âq

d(r, t) in (40) can be used for
all (r, t), inside and outside the transition regions.
[21] Behavior of local instantaneous frequencies:

Space limitations prevent coverage of all possible com-
binations of phasing hx and hz, and FW indexes p, q<0.
We only consider positive frequencies, i.e., those with
i = 2. The behavior of negative frequencies (i = 1) is
inferred by noting that wpq,1(r, t) = �w�p,�q,2(r, t) and
wq,1
d (r, t) = �wd

�q,2(r, t) (see (18) and (38), respectively).
Since td � t0, the diffracted signal reaches the observer
always later than (or simultaneously with, for f = f00)
the TD-FW signal, as is also confirmed observing the
domain of the real instantaneous frequencies in Figure 6.
There, the dynamics of both FWand diffracted field local
instantaneous frequencies is compared for the simple but
representative nonphased case hx = hz = 0. Width dz used
for normalization, the x-domain interelement spacing is
dx = 0.1 dz, the observer is placed at r � (x, y, z) =
(�0.05dz, 8dz, 0) and time and frequency are normalized
through T = dz/c. As predicted above, for certain t = tpq

SB,
one has wq,i

d (t SB ) = wpq,i(t
SB ) = wpq

SB, which means that at
t = tpq

SB the pqth moving SB intercepts the stationary
observer at r. In that vicinity, the Âq

d behavior undergoes
a dispersive transition that compensates for the trunca-
tion of the TD-FWpq, and restores total field continuity at
time t = tpq

SB. Except for the moving SBs, the
compensation mechanism in the TD is equal to that in
the FD [see Capolino et al., 2000c, section III-A], for
q 6¼ 0.

6. Total ‘‘Observable’’ Field With

Band-Limited Excitation

[22] We now construct the total field radiated by a
planar semi-infinite array due to a physically realizable

band-limited (BL) pulsed dipole excitation Ĝ(t) with
spectrum G(w). Accordingly, the factor multiplying d(x0

� ndx)d(z
0 � mdz) in (2) becomes G(w) exp(�jk(hxx

0 +
hzz

0)) for the FD dipole currents and Ĝ(t � (hxx
0 + hzz

0)/c)
for the TD dipole currents. The total BL response
Âtot,BL(r, t) of the semi-infinite planar array is then
obtained by (4) or by convolving the total TD impulse
response with the BL signal, Âtot,BL(r, t) = Âtot(r, t) �
Ĝ(t), with � denoting the convolution Â � Ĝ �
1/(2p)

R
�1
1 Ĝ(t0)Â(t � t0) dt0. The total field radiated by

the semi-infinite array is thus represented as

Âtot;BL r; tð Þ
¼ Â

FW ;BL
00 U f00 � fð Þ þ Â

d;BL
00

n o
þ

X2
i¼1

X1
p6¼0

Â
FW ;BL
p0;i U fp0;i tð Þ � f

� �
þ Â

d;BL
p0;i

( )

þ
X2
i¼1

X
q6¼0

X1
p¼�1

Â
FW ;BL
pq;i U fpq;i tð Þ � f

� �
þ Â

d;BL
q;i

( )
;

ð43Þ

with terms in brackets pertaining to the results in sections
5.1, 5.2, and 5.3, respectively. In particular, Â00

FW,BL(r, t) =
Ĝ � Â00

FW and Â00
d ,BL(r, t) = Ĝ � Â00

d are obtained by
numerical integration since they do not have a dominant
frequency. All other terms with p 6¼ 0 and/or q 6¼ 0, in the
second and third brackets in (43) have a dominant
instantaneous frequency which allows the convolution to
be replaced by sampling the excitation G(w) in (4) at that
frequency. In particular, Âp0,i

FW,BL(r, t) = G[wp0,i(t)]Âp0,i
FW

and Âp0,i
d,BL(r, t) = G[wp0,i(t)] Âp0,i

d in the second bracket,
while Âpq,i

FW,BL (r, t) = G[wpq,i(t)] ÂFW
pq,i and Âq

d,BL(r, t)
= G[wq,i

d (t)]Âq,i
d in the third bracket. As noted in section

5.2, the term Âp0,i
d has been evaluated using its

dispersion relation inside the moving SB transition
region, and therefore it is set equal to zero outside,
where it is subdominant (see also Capolino and Felsen
[2002, section VI] for an equivalent argument).
[23] We have so far avoided the ‘‘dilemma’’ posed by

the presence of exponential phase factors (already
observed and resolved by Felsen and Capolino [2000]
and Capolino and Felsen [2002, 2003]) which render all
( pq, i) TD wavefields in (43) complex. Guided by those
earlier resolutions of the dilemma, we construct a real TD
‘‘observable’’ field by (+p, +q, 1), (�p, �q, 2) pairing.
This is suggested by the symmetry property wpq,1(t) =
�w�p,�q,2(t) and wq,1

d (t) = �w�q,2
d (t) for FW and

diffracted field instantaneous frequencies, respectively
(see (18) and (38)). While for FW one can follow the
arguments of Capolino and Felsen [2003], for diffracted
fields the situation is more involved since the argument
of the Fresnel function F in (35) and (40) (inside D(w)) is
negative for negative frequencies, i.e., for i = 1, and the
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property F(�x) = F*(x) for x real must be used. In
particular, referring to the impulse-radiated field, one
obtains Âp0,2

FW + Â�p0,1
FW = 2<eÂp0,2

FW , Âp0,2
d + Â�p0,1

d =
2<e Âp0,2

d , for the second bracket, and Âpq,2
FW + Â�p,�q,1

FW

= 2<eÂpq,2
FW , Âq,2

d + Â�q,1
d = 2<eÂq,2

d , for the third
bracket. Analogous relations hold for the BL field
counterparts in (43), since G(�w) = G*(w), as
required due to the real excitation Ĝ(t). Thus in
(43) one should formally replace Si=1

2 by 2<e.

6.1. Numerical Examples

[24] Preliminary numerical experiments have been
carried out for broad band, but band-limited, pulsed
dipole excitation of a nonphased truncated dipole array

in order to test the accuracy of the asymptotic solutions
(43), and to compare the results with a reference solution
obtained by element-by-element summation over the
pulsed BL radiations from all dipoles, i.e., the (m, n)
sum over the BL Green’s functions Ĝ(t � Rmn/c)/
(4pRmn), with Rmn = ((x � ndx)

2 + (z � mdz)
2 + y2)1/2, m,

n = 0, ±1, ±2,. . . The array is ‘‘infinite’’ along z but
truncated along x at x = 0 and x = 139 dx. The (m, n)-
series has been truncated at jmj, jnj < 139, which
includes all nonnegligible element radiations along z.
Interelement spacings are such that dz = 10 dx in order to
highlight the new phenomena (with respect to the semi-
infinite line array of Capolino and Felsen [2002]) due to
the z-dispersion relation for diffracted fields (since
dz � dx, all fields with p 6¼ 0 are negligible for the
chosen BL excitation). Both x = 0 and x = 139dx
truncation effects have been accounted for, treating the
actual strip array as the difference between two semi-
infinite arrays. BL excitation: normalized Rayleigh pulse
Ĝ(t) = <e[ j/( j + wMt/4)

5] (i.e., Ĝ(0) = 1); G(w) =
p(6wM)

�1 (j4w/wM)
4 exp(�4jwj/wM); central radian

frequency wM = pc/dz (lM � 2pc/wM = 2dz) in Figure
7a, and wM = 2pc/dz (lM = dz) in Figure 7b. Observer
location: r � (x, y, z) = (�0.05dz, 8dz, 0) so that f =
93.6�; since f0q = 90�, diffracted fields are in transition.
Since U(f0q � f) = 0, no FW0q are present. Fields
Âtot,BL(r, t) in (43) are plotted versus normalized time t/T,
with T = dz/c. The near coincidence, at the observer, of
the FW turn-on times t0/T = 8 and the (x = 0) edge-
diffracted arrival td/T = 8.02 also implies that diffracted
fields are in transition. The included asymptotic terms
p = 0 and jqj � 1 (solid curve) adequately reproduce
the reference solution (dotted curve), demonstrating
good convergence of the TD-FW representation in both
cases a) and b). To verify the compensation mechanism
discussed in sections 5.1 and 5.3, a second numerical
test has been performed with the observer at r �
(+0.05dz, 8dz, 0) slightly to the right of the SB0q (now f =
86.4�), and therefore reached by the TD-FW0q. The
resulting fields agree with those in Figures 7a and 7b, thus
confirming field continuity across the SB.

7. Conclusions

[25] The motivation and methodologies for the present
study having been summarized in the abstract and
introduction, we re-affirm that our basic approach to
parameterizing and understanding periodicity-induced
FW-based TD dispersion can be extended to successively
more complicated planar array configurations. The
results are again appealingly expressed in terms of
periodicity-modulated TD GTD-like wave phenomena,
nonuniform outside and uniformized inside transition
regions, with novel interpretations of the truncation-
induced edge diffractions. Work is in progress to refine

Figure 7. Radiated fields versus normalized time t/T,
with T = dz/c. The initial spikes are due to the q = 0
diffracted field from x = 0. The second spike in the edge-
dominated response (a) is the q = 0 diffracted field
arriving later from the edge at x = 139dx; the chirped tail
at the higher frequency in (b) is typical of a dispersive
FW (here q = �1, 1).
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and extend the present preliminary asymptotic results
beyond the parameter ranges included here, and to
perform comprehensive numerical tests over broad
parametric excursion, with emphasis on validation and
error estimates. The outcomes will be submitted for
separate publication. The final canonical problem to be
addressed is the TD counterpart of the FD plane
sectoral array of Capolino et al. [2000a] and Maci et
al. [2001], which through inclusion of corner diffraction,
lays the foundation for treating polygonal periodic planar
array configurations.
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