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ABSTRACT OF THE DISSERTATION

Modeling Human Engagement State to Lower Cognitive Burden and Increase User

Interaction Responsiveness

by

Bo-Jhang Ho

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Mani B. Srivastava, Chair

Mobile phones and wearable devices are becoming increasingly ubiquitous, and the rela-

tion between mobile sensing devices and human beings is getting more and more intimate.

Computation is no longer merely a machine’s job, where hardware executes a sequence of

operations; human beings are often involved in the process, as in medication intervention,

preference configuration, and crisis alert. Product manufacturers and service providers rely

on user engagement to make revenue, and users can benefit from these products and maxi-

mize their utility only if users are willing to engage with them. We argue that next-generation

sensing computation systems should be user-engagement aware, i.e., the systems should treat

user engagement as part of system resources to make decisions and prioritize tasks.

Although different sensing modalities and optimization techniques have been proposed,

user engagement cannot be gauged directly because it is a hidden construct. Users’ engage-

ment depends on multiple variables including environmental conditions, physical constraints,

psychological status, and self-interests. Unfortunately, the limitations in existing sensing

techniques exacerbate the difficulty of engagement measurement. For instance, sensor data

noise increases the uncertainty of inferences, battery size constrains sensor coverage both

temporally and spatially, and form factor directly impacts users’ willingness to carry these

devices. Such issues multiply the complexity of modeling user engagement.

In this dissertation, we adapt the performance-based observation approach to describe

ii



user engagement, bridge the gap between engagement measurement with sensing techniques,

and seek opportunities to further increase user engagement. We first showcase how wearable

sensing systems can increase user engagement in the workout domain by performing op-

portunistic sensing. This dissertation then discusses how to use sensory data to model user

engagement by reinforcement learning algorithms. Finally, we point out concerns specifically

in sensing systems that can negatively impact user engagement.
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CHAPTER 1

Introduction

User engagement has become an important measure for corporate revenue1,2. Internet ad-

vertising companies like Google and Facebook rely on users who are willing to use their

services to make money3. Product recommendation companies such as Amazon and Netflix

can operate only if the recommendation results can attract more customers. It is only pos-

sible for mobile phone or wearable manufacturers to sell their products if buyers find value

in these devices and are willing to use them. Hence, user engagement is the key driver to

make the products and services successful.

Engagement is also essential to end users because it augments the utility of these products.

Users can only benefit from cloud services, mobile applications, wearables, and Internet of

Things (IoT) devices when users are willing to interact with them. For example, patients

can receive timely and proper interventions if they are willing to follow instructions from

their doctors [HCD09]. Motivated users can acquire accurate and consistent self-monitoring

results to track their health status or even identify chronic diseases [MVP15]. In a critical

scenario, users can take immediate actions informed by alert messages in an emergency, if

the alert systems can grab their attention [SOM10].

User engagement, however, is an invisible mental construct and cannot be measured

or sensed directly [OT08]. Although engagement is intangible and there is no standard-

1Social jargon: how do you define “engagement” and “influence”? - https://econsultancy.com/
social-jargon-how-do-you-define-engagement-and-influence/

2App Engagement: The Matrix Reloaded - https://flurrymobile.tumblr.com/post/113379517625/
app-engagement-the-matrix-reloaded

3Online ad revenues are surging - https://www.businessinsider.com/
online-ads-revenues-going-to-google-and-facebook-the-most-2017-4
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ized definition of what human engagement is, a common aspect of engagement refers to a

certain mental status where one’s attention is so absorbed in interacting with physical or

conceptual objects [Cha03,CSW99,Kap95, SDN16], that external stimuli are no longer dis-

tracting [Csi90]. User engagement can be gauged based on subjective report or behavioral

observation. Thanks to advances in sensing technology, the latter opens the opportunity for

context-aware systems to model user engagement based on when, where, and what the user

is doing, making the sensing systems capable of becoming engagement-aware.

As computers have become more and more ubiquitous, computation is no longer just an

execution on a sequence of operations. Human beings are often involved in the computation

process. For example, a medical intervention will fail if a patient is unavailable or unwilling

to follow instructions. In an extreme scenario, a car accident can happen if a driver gets

distracted and disengages from steering. Thus, the outcome depends on whether the users

can engage in the process. In other words, user engagement should be considered as part of

the system resources in addition to the hardware utility.

Modeling user engagement is not a trivial task because engagement depends on both

physical and mental status. A physical constraint such as being in a meeting prevents a user

from answering phone calls. A mental constraint like experiencing stress may increase the

probability of ignoring or dismissing incoming notifications. Moreover, engagement relies on

whether users can spare their attention for a certain task, but user attention is finite [LFN15]

and multi-faceted [Wic02]. All of these properties increase the complexity of engagement

modeling.

The goal of this dissertation is to bridge the gap between engagement measurement and

the sensing technology. We specifically list the research questions below:

• How can we use mobile and wearable sensory data to model and infer user engagement?

• What are the opportunities to raise user engagement by leveraging mobile sensing tech-

niques?

• What are the concerns in the existing sensing techniques that may negatively impact
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user engagement?

To this end, we first formalize the definition of user engagement, point out the system design

challenges, and summarize how we address these issues.

1.1 Engagement Measurement

Engagement has been studied in a broad range of domains, such as mental health [ZMM17],

behavioral change [RKC18], games [CCC09], sports [DR85], human-computer interaction [WRS02],

education [WH97], retailing [AR03], social [PC12], and influence on self-reported data qual-

ity [HKK14]. Like other psychological attributes such as emotions, user engagement is a

hidden construct. Thus, previous studies developed different techniques to gauge engage-

ment. Exhaustive surveys on the definition of engagement have been conducted in [OT08]

and [PBW16]. Prior work can be broadly grouped into three categories: Subjective expe-

rience report, biological signal measurement, and performance-based observation. In this

section, we present approaches to measuring engagement and explore which is more compat-

ible with modern sensing technologies.

1.1.1 Subjective Experience Report

Engagement can be conceptualized as an experience that draws out one’s attention. Ac-

cording to flow theory, when people are engaged, they are “so involved in an activity that

nothing else seems to matter; the experience itself is so enjoyable that people will do it even

at great cost, for the sheer sake of doing it” [Csi90]. Similarly, Laurel defines engagement as

a notion of experiencing the willing suspension of irrelevant information [Lau13]. Reaching

such a mental status typically requires motivations, both intrinsic and extrinsic. Intrinsic

motivation emphasizes that the task is for the sake of pleasure. For instance, Jennings

suggests that “an environment that is designed from an aesthetic perspective will have the

features that inherently engage users” [Jen00]. Rieber points out that playing is voluntary,

self-motivating, and external-reward-independent [Rie96]. Unlike intrinsic motivation, ex-
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trinsic motivation stresses that people are willing to try a different action which can lead to

a separate outcome [RD00] when they believe it will enhance their well-being [HMF15].

Experiences are subjective; researchers rely on participant self report to understand what

engagement is. O’Brien and Toms conducted a qualitative study to understand the process

of (re)engagement [OT08]. In Schonau-Fog and Bjorner’s study, users reported the expe-

rience of engagement as being eager to continue playing the game [SB12]. Participants in

Henshaw’s study describe engagement as being able to concentrate [HMF15]. Lin et al.

show that customers are willing to stick on shopping websites when the experience of the

navigation is smooth and the content is clear [Lin07]. Moods and emotions can also im-

pact the engagement [BBV13, CCD13]. Besides describing experience in a free-text form,

some studies ask participants to rate their experience numerically. The Likert scale has been

applied to quantify user perception in different dimensions, including satisfaction [BRP06],

agreement [WLR14], understanding [PLJ10], and overall engagement score [HKO15].

Although this approach is arguably the most comprehensive way to measure and model

user engagement, the self-report approach entails additional user burden and does not scale

in sensing systems.

1.1.2 Biological Measurement

Engagement entails cognitive load. When the cognitive load is high, human beings emit

several biological signals unconsciously [ZF15]. Studies have shown when one is experiencing

high mental workload, the pupil dilates [IAZ05] and the body dispenses heat [HKF10]. Cog-

nitive load also associates with brain activation. When our brains are activating, the skin

surface temperature of our foreheads increases and the temperature of our noses drops due

to blood flow [AVD17]. Mathur et al. attempt to model brain activities by electroencephalo-

gram (EEG) directly to gauge engagement [MLK16]. Engagement may cause arousal, which

is reflected on galvanic skin response (GSR) [GF17]. Besides these sensing modalities, eye

gaze pattern [JCC08], facial expression [WSL14], and respiratory depth [HMT15] are also

good indicators of engagement.
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Although this approach directly fits the wearable sensing scenario, there are two concerns

with this approach: feasibility and social acceptability. Most of the aforementioned bio

markers rely on specific hardware and some can only be found in laboratory setups. Thus,

these methods are not feasible for everyday end users. Moreover, the form factors of these

devices usually do not meet social norms. For example, a user may not find it aesthetically

pleasing or comfortable to wear electrodes in public.

1.1.3 Performance-Based Observation

Performance-based measurement has been widely used in behavioral studies and human-

computer interaction (HCI). When people are engaged, they have a strong motivation to

accomplish certain goals. Hence, their performance can be used to indicate their level of

engagement. Performance-based observation techniques have been adapted in healthcare

systems to understand adherence and retention, particularly in weight loss [WSC12], al-

cohol consumption [MWV13, DDG15], clinical visit counts [RGC13,MLZ11], and exercise

load [BRP06]. User interface designers and researchers have also defined different metrics

to gauge engagement, such as error elimination [HCD12], retention rate [CGF09], browsing

time interval [CAZ10], and forum usage count [DBA06]. In game design, developers also de-

rive different instruments such as game scores [BKP07], frequency of system logins [CG12],

mouse activities [MKF14], and recovery time from distractions [MCH10] to understand how

players interact with games.

The advantage of the performance-based observation approach is that all the measures

are well defined and can be easily integrated into sensing pipelines. The caveat, however, is

whether these metrics reflect the engagement with high confidence given the potential noise

in the sensor readings. Consider the example of encouraging users to keep hydrated. Just

monitoring water consumption by number of cups may not be sufficient, because water intake

can come from other forms of liquid. Hand movements are one way to track fluid-drinking

activities, but the sensing system may confuse drinking events with other activities using

similar gestures.
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In this dissertation, we adapt the performance-based observation approach to describe

user engagement, bridge the gap between engagement measurement with sensing techniques,

and seek opportunities to further increase user engagement.

1.2 Challenges

We stand on the edge of an intimate coupling of sensing devices and human beings; com-

puters do not only perform calculation tasks, but also understand user context and track

environmental information. Many mobile sensing and persuasive techniques have been de-

veloped in the past decades [PM15]. It is time to revisit how we should apply these sensing

techniques to engage people. In this section, we identify the challenges and the opportunities

of exploiting the mobile sensing technology to augment user engagement.

1.2.1 Can Sensing Automation Increase Engagement?

Recall that the aesthetic theory [Bea70] shows that people are inherently engaged in an en-

vironment that is aesthetically designed because the experiences are intrinsically motivated.

Similarly, play theory [Ste64] shows that pursuing playfulness can grab users’ attention.

Both theories suggest that it is possible to establish a scenario that can be highly engaging

and immersive if the design integrates aesthetic or playful elements. Under such a scenario,

engagement happens naturally and effortlessly.

In this dissertation, we argue that the mobile sensing technique can augment the space

of self-motivating elements. In light of Mark Weiser’s vision that most technologies should

remain peripheral [Wei91], the computation system should keep human beings out of the

sensing pipeline when possible but can still assist users. Consequently, sensing systems can

save users from external interruptions and preserve cognitive resources.

To achieve such a seamless experience in sensing, the devices have to be available when

needed, while being portable with the right form factors. These constraints entail the ul-

timate bottleneck in battery; the energy consumption is driven by computation, network
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transmission, electronic fabrication in sensors, and the modality for notifying users. Contin-

uous sensing can drain the battery in a short time. Hence, opportunistic sensing schedules

have to be developed to preserve energy. All of these factors can increase the complexity of

the sensing systems.

1.2.2 How Can Sensory Data Model User Engagement?

Although the background process can be optimized, a mobile application has to interact

with human beings at some point—otherwise, it is just a background service. The form of

interactions can range anywhere from sending a reminder to intervening, delivering an impor-

tant message, or asking for preference configurations. The process of the interaction usually

requires an interruption from the primary task, redirecting the cognitive resources to the

secondary task, and resuming back to the primary task [OT08]. Borst et al. develop a pro-

cess model which points out that the transitions between tasks can cause overhead [BTR15].

The overhead, unfortunately, can be magnified by the dissimilarity between the primary

task and the secondary task [MGK08]. Hence, it is important to consider user context when

interrupting people. In other words, interruptibility plays an important role in keeping users

engaged.

Using sensory data to model user engagement has been preliminarily explored. Sarker

et al. exploit mobile phone sensor data to identify opportune moments to deliver interven-

tions [SSA14]. Okoshi et al. model engagement by physical activity transitions [OTT17].

Both works only develop a general model and do not consider individual variations. In this

thesis, we highlight the requirements of engagement modeling: (i) The engagement model

needs to have the capacity to learn user preference; (ii) the engagement model needs to be

adaptive because user habit may change; (iii) the learning process should minimize user in-

puts, i.e., the frequency of acquiring user feedback that indicates the desirability of decisions

and interactions made by the sensing systems.
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1.2.3 How Does Privacy Impact Engagement?

User engagement relies on the trust of the underlying sensing mechanisms, which are typically

invisible to users. Although major mobile platforms adapt to the sensor-level permission pro-

tection model—i.e., applications have to justify their intentions and users have to explicitly

grant the privilege for these apps to use certain hardware—prior work has suggested that

such mechanisms are not sufficiently secure [FHE12,CGH17]. Mobile applications may re-

quest permissions to use sensors, seemingly with a legitimate purpose, but sensitive personal

data can still be leaked by performing additional inferences without users’ awareness. Jim

Morris has provided guidelines for data collection, stating that the amount of information

collected from the user for an operation to be performed should be balanced, no more and

no less than necessary [Wei91]. Thus, it is essential to have a privacy safeguard to detect

whether unintentional information can be inferred based on the current sensor set.

1.3 Roadmap and Contribution

In the rest of the thesis, we present our work to address the aforementioned challenges in

order.

Part I: Sensing Automation. The use of smartphones and wearables as sensing de-

vices has created innumerable context inference apps, including those that track food in-

take [TEA15,KS15], emotion [LLL13,STR16], medication adherence [KAL15], indoor local-

ization [LKA15], and more. In this thesis, we pick a workout tracking app as an example

to showcase how sensing automation can lower the burden of using the system and further

engage users. Workout data generated by mobile tracking apps can assist both users and

physicians in achieving better healthcare, rehabilitation, and self-motivation. Previous ap-

proaches impose extra burdens on users by requiring them to select types of exercises or to

start/stop sessions. In Chapter 2, we introduce MiLift which is a workout tracking sys-

tem that performs automatic segmentation to remove user burdens. MiLift uses commercial
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off-the-shelf smartwatches to accurately and efficiently track both cardio and weightlifting

workouts without manual inputs from users. For weightlifting tracking, MiLift supports

both machine-based and free weight exercises, and proposes a lightweight repetition detec-

tion algorithm to ensure efficiency. A research study of 22 participants shows that MiLift can

achieve above 90% average precision and recall for cardio workout classification, weightlift-

ing session detection, and weightlifting type classification. MiLift can also count repetitions

of exercises with an average error of 1.12 reps (out of an average of 9.65). Our empirical

app study on a Moto 360 watch suggests that MiLift can extend watch battery lives by up

to 8.25x (19.13h) compared with previous approaches. Finally, our participants gave us an

average rating of 4.47 out of 5 in the poll.

One limitation in MiLift is that the system cannot track the amount of weight lifted.

However, such information is important for users engaged in regular workouts and patients

who are undergoing rehabilitation. For example, muscular dystrophy is a group of genetic

diseases that cause muscle loss or muscle weakness. A typical treatment for muscular dystro-

phy patients is routinely performing weightlifting exercises to slow this process. In Chapter 3,

we propose a sensor system called MyoBuddy, which aims to help both physical therapists

and patients keep track of the weights in workout activities based on electromyography

(EMG) sensors embedded in the Myo armband. In our study, we collected 102 sessions of

EMG data from barbell bicep curl exercises with a range of weights from 20 to 70 lbs with a

10-lb increment. Both support vector machine and random forest algorithms are explored to

classify the weight of barbells lifted. In the end, we achieved an 81.3% classification accuracy

on average.

Part II: Engagement Modeling. User interaction is an essential part of many mobile

devices such as smartphones and wrist bands, and is strongly associated with engagement.

Only by interacting with the user can these devices deliver services, enable proper configura-

tions, and learn user preferences. Push notifications are the primary method used to attract

user attention in modern devices. However, these notifications can be ineffective and even

irritating if they prompt the user at an inappropriate time. The discontent is exacerbated
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by the large number of applications that target limited user attention. In Chapter 4, we

propose a reinforcement-learning based personalization technique, called Nurture , which

automatically identifies the appropriate time to send notifications for a given user context.

Through simulations with the crowdsourcing platform Amazon Mechanical Turk, we show

that our approach successfully learns user preferences and significantly improves the rate of

notification responses.

Based on the insight of the previous simulation-based study, we develop a real system

called Quick Question to track user engagement and schedule microtasks in the wild based

on users’ interruptbility, demonstrated in Chapter 5. As we have established previously, hu-

man attention is a scarce resource in modern computing. A multitude of microtasks vie for

user attention to crowdsource information, perform ecological momentary assessment, per-

sonalize services, and execute actions with a single touch. A lot gets done when these tasks

take up the invisible free moments of the day. With Quick Question, we model the problem

as a Markov decision process and use an Advantage Actor Critic algorithm to identify in-

terruptible moments based on the context and history of user interactions. In our 5-week,

41-participant study, we compare the proposed RL algorithm against supervised learning

methods. While the mean number of responses between both methods is commensurate,

RL is more effective at avoiding dismissal of notifications and improves user experience over

time.

Part III: Privacy Concerns. Pervasive mobile devices have enabled countless context- and

location-based applications that facilitate navigation, advertisements, life-logging, and more.

Applications and web-services wishing to make use of location-identifying mobile data such

as those obtained from GPS, cell towers, and Wi-Fi must explicitly request permission from

the user to do so. Less intrusive sensors like accelerometers, gyroscopes, and barometers do

not require explicit access permission from the end user for applications on the device itself

or even on remote web servers. Though seemingly innocuous, these sensors can be combined

and analyzed to make surprising and potentially security- and privacy-breaching inferences.

To emphasize the severity of the privacy issue, we conduct two studies to demonstrate how

10



innocent sensory data can leak undesired information. In Chapter 6, we develop a mobile

application called GPSI which can, without consent and without notifying the user, use

pressure data collected from a device’s barometer in order to detect with high accuracy

likely paths along which the user has recently traveled, compromising both user privacy and

security. We further analyze the ability to predict unknown mobile trajectories in terms of

the variance in barometer pressure and geographical elevation, demonstrating cases in which

more than 70% of paths can be accurately predicted.

Chapter 7 shows how context-aware applications can open a privacy loophole. Context-

aware applications adapt their behavior based on contextual information such as user be-

havior and location. Unfortunately, the fact that context-aware apps adapt to user context

opens a side-channel that leaks private information about the user. We showcase that a ma-

licious app can monitor the adaptations triggered by authentic context-aware apps and how

much user information can be leaked. We show a concrete instantiation of a new category of

spyware apps which we refer to as Context-Aware Adaptation Based Spyware, or SpyCon.

Experimental evaluations show that SpyCon applications can predict users’ daily behavior

with an accuracy of 90.3%.

Here we summarize the contributions of this thesis:

• We showcase that increasing the system utility and eliminating unnecessary machine-

initiated queries can increase user engagement. Particularly, we develop different op-

timization mechanisms in the proposed workout sensing system which can perform

opportunistic sensing and allow the battery to last for the entire day.

• We attempt to model user engagement based on user context information to identify

the opportune moments to deliver microtasks. Particularly, we explore the feasibility

of using reinforcement learning to model user engagement due to the advantages of

temporal decision process, online learning, and exploration strategy.

• We highlight the privacy concern that sensory data may unintentionally leak sensitive

11



personal information which can hinder user engagement. We demonstrate that air

pressure information and phone settings can reveal user location.
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Part I

Sensing Automation
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CHAPTER 2

MiLift: Efficient Smartwatch-based Workout Tracking

Using Automatic Segmentation

2.1 Motivation

The emergence of mobile sensing devices such as smartphones and wearables has enabled

ubiquitous and continuous context inferences, including various types of health monitor-

ing and workout tracking apps. With rising obesity and cardiovascular diseases linked

to physical inactivity [LSL12], such workout tracking can provide quantitative data on

users’ everyday activities and assist both users and physicians in achieving better health

care [PGR08] [CBV15], rehabilitation [CMP14], and self-motivation [RLS13]. Compared

with self-reporting, the use of mobile devices for workout tracking can provide more accurate

summaries for both cardio and weightlifting exercises and avoid over- or under-estimations.

Visualizing personal workout history from sensor data can help motivate users to maintain or

improve workout plans and states of health. In health care and rehabilitation, physicians can

also maintain progressive data of patients with the help of mobile sensors [RMB10] [GTV14].

Although there are a variety of approaches for mobile workout tracking, they lack the

ability to automatically segment workout activities. This missing capability imposes sub-

stantial burdens on users, such as requiring users to manually start/stop tracking or to

select exercise types. Failure to provide timely inputs may lead to inaccurate tracking re-

sults and/or excessive energy consumption. These burdens have made prior approaches less

attractive compared with simple self-reporting. For example, smartphone apps such as Run-

Keeper [run] and Strava [str] can only track specific types of exercises (e.g. running and

biking) and require users to manually start and stop tracking. Mobile health monitoring

14
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frameworks such as Apple HealthKit [hea] and Google Fit [goo] leverage both smartphones

and wearable devices but require users to specify the type of workouts. While most pre-

vious work focus on monitoring cardio workouts, a few considered tracking weightlifting

exercises [CCC07] [MPA14] [DSY15a] [MLN16]. However, these approaches introduce extra

user burdens such as the use of multiple sensors and energy-hungry algorithms while still re-

quiring certain degrees of user inputs for accurate tracking. Recently, there have been initial

attempts to perform automatic exercise segmentation, as seen in the Pocket Track feature of

RunKeeper [poc], the VimoFit app [vim], and RecoFit [MSG14]. Nevertheless, they focus on

limited types of exercises or do not quantify the energy consumption of continuous tracking

on commercial mobile and wearable devices.

In this section, we describe the design and implementation of MiLift, a workout tracking

system that uses automatic segmentation to eliminate the burden on users. MiLift leverages

a new generation of Android smartwatches such as the Moto 360 [mota], which benefit from

powerful hardware resources, Bluetooth Low Energy radios, and a rich set of sensors. Using

a single smartwatch, MiLift can accurately and efficiently track both cardio and weightlift-

ing exercises without requiring inputs from users. Additionally, MiLift applies optimization

techniques such as context-aware duty-cycling and lightweight repetition detection to con-

tinuously inferring contexts on smartwatches. We highlight the research contributions of

MiLift as follows:

First, MiLift can automatically segment both cardio workouts and weightlifting exercises

from non-workout activities using a two-stage classification model. It is the first system to

apply and fully evaluate such an automated algorithm in workout tracking. Unlike previous

tracking approaches, users do not need to provide any manual inputs to MiLift, such as

selecting types of exercises or starting/stopping exercise sessions. MiLift runs in the back-

ground on a smartwatch and also provides a UI to visualize the workout summary of users

for management. From our user study, MiLift’s automatic segmentation feature is proven

valuable to individuals who regularly perform gym exercises.

Second, MiLift can track both weightlifting machines and free weight (dumbbell) exer-

cises, as shown in Figure 2.1. MiLift meets real-world user requirements during weightlifting
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exercises, including (1) automatically detect the start and stop of weightlifting sessions (sets);

(2) count repetitions (reps) of exercises; (3) classify the type of exercises. Our evaluation

on a dataset of 2528 sets of weightlifting exercises (24408 reps) collected by 22 users shows

that MiLift can achieve above 90% average precision and recall for both weightlifting session

detection and exercise type classification. The average error of rep counting in MiLift is 1.12

reps (out of an average of 9.65). Weightlifting detection in MiLift requires no model training

and is user-independent.

Finally, to achieve efficient resource usage, MiLift employs two techniques that have not

been applied to wearable context inferences by prior work: a context-aware duty-cycle opti-

mization and a lightweight revisit-based weightlifting detection algorithm. Our experiments

on a Moto 360 smartwatch indicate that watch battery lives can be extended by up to 8.25×

(19.13h) by running MiLift instead of unoptimized tracking apps. Even with a continuous

execution of MiLift, the watch battery can last for more than a day and therefore will not

require extra charging by users.

2.2 Challenges and Design Choices

We discuss several key challenges towards an autonomous and efficient workout tracking

system and highlight the design choices made in MiLift.

2.2.1 C1: Single-device Sensing

Workout tracking apps running on smartphones cannot accurately sense user activities when

the phone is placed away from the user. Moreover, workout exercises typically involve move-

ments of different body segments such as hands, arms, waists, and legs and cannot be

accurately monitored by a single smartphone. Prior tracking algorithms either placed more

than one sensing device (e.g. a phone and a watch or multiple wearable sensors) on a

user [CCC07, CSG13,MLN16,MLN15] or required instrumentation of weightlifting equip-

ment [DSY15a]. In contrast, smartwatches are less intrusive since most users wear them for

the majority of the day. Watches can sense wrist orientations and partial torso movements
17



whereas smartphones, typically carried in pockets, can only capture body postures. There-

fore MiLift uses a single smartwatch to replace smartphones and other sensors previously

used for workout tracking.

2.2.2 C2: Automatic Segmentation

Most workout tracking apps require users to manually choose workout types and start/stop

the tracking of each session. If a user fails to mark the session end in time or even for-

gets to do so, the tracking algorithm could overestimate the current session and/or consume

excessive energy. Although prior work proposed different classification models to recognize

the presence of exercises, to identify exercise types, and/or to quantify the amount of exer-

cises, none of them combined these models in an end-to-end system on commercial devices

to automatically segment user activities. To eliminate user burdens, MiLift can detect a

user’s activity transitions and automatically segment different workout exercises using a

two-stage classification model, which is motivated by prior work on hierarchal activity clas-

sification [KLL10, ZMN10,XSW11]. Specifically, MiLift first applies a lightweight classifier

on low-power inertial sensor data to determine high-level user activities such as non-workout,

walking, running, and weightlifting. MiLift then starts the fine-grained weightlifting analysis

only upon detection of weightlifting exercises. The multi-stage model can provide detailed

information on demand and can avoid unnecessary analysis to save energy.

2.2.3 C3: Weightlifting Exercise Tracking

Medical researchers have shown that weightlifting exercises (or weight training, strength

training) can help improve metabolic function and muscle strength [PFB00, CHS05]. Al-

though free weight exercises, such as those using dumbbells and barbells, can sometimes

lead to greater muscle activities than machine-based weightlifting exercises [MF94], both

should be combined to maximize training outcome [CDS05,PFB00]. Most workout tracking

apps monitor cardio activities such as walking and running, but few can efficiently track

weightlifting exercises, including the following metrics:
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• Number of sets : each set is a workout session that includes several repetitions of the

same weightlifting exercise.

• Number of repetitions (reps) in a set: each rep is an instance and the basic unit of a

particular weightlifting exercise.

• Type of the exercise: for example, dumbbell bicep curl.

With noises such as those caused by improper exercise forms or non-workout activities in-

between exercises, it remains challenging to accurately and efficiently capture repeating

human movements during exercises. MiLift exploits repeating patterns of human arms during

weightlifting exercises as demonstrated in Figure 2.1, and performs weightlifting classification

include set detection, rep counting, and exercise type classification. MiLift considers 10 types

of weightlifting machine exercises (#1 to #10) and 5 types of dumbbell-based free weight

exercises (#11 to #15).

2.2.4 C4: Efficient Resource Usage

The limited battery capacity of mobile devices calls for a detailed study and optimization

of energy consumption of workout tracking services. We propose that the battery life of

a smartwatch should last for at least 16 hours (a full day except sleeping) even with con-

tinuous workout tracking, so that users do not need to charge the watch during the day.

Previous approaches can rapidly drain out device batteries because of the continuous nature

of inference executions and the use of complex algorithms for weightlifting tracking such

as Dynamic Time Wrapping (DTW) [PHK13]. MiLift applies two techniques to achieve

efficient resource usage on watches: 1) a context-aware duty-cycling optimization, and 2) a

lightweight algorithm for weightlifting detection.

2.3 Related Work

Apps on smartphones explore a variety of human contexts including transportation modal-

ity [RMB10,HNT13a], social interactions [XLL13,NDA13], and physical and mental health-
19



Table 2.1: Summary of prior workout tracking approaches and whether they meet our design
challenges.

Category C1 C2 C3 C4

Mobile workout tracking apps • ◦
Mobile health frameworks • ◦ •
Weightlifting tracking systems ◦ •
Emerging apps (VimoFit [vim]) • •
MiLift (this paper) • • • •
◦ indicates partial fulfillment.

iness [RMM10,LFR12,LLL13,HXZ13]. In addition, researchers have developed radio-based

systems to track human activities [CMP12,PGG13,AKK14,WHY15]. Recently, the emer-

gence of Apple Watch [app], Android smartwatches (e.g., the Moto 360 [mota]), and Mi-

crosoft Band [msb] also prompts the development of context inferences on smartwatches and

wearable devices [MPA14,SBS15,NGG15,LGM15].

We group prior approaches on workout tracking and management using mobile devices

into the following categories (summarized in Table 2.1):

Mobile workout tracking apps including RunKeeper [run], Strava [str], and MapMyRun [map]

focus on cardio exercise tracking and management using a single smartphone. Due to the

limited sensor coverage when using phones, these applications only support specific types of

cardio exercises and require users to manually start and stop workout sessions.

Mobile health frameworks such as Google Fit [goo], Apple HealthKit [hea], and Microsoft

Health [msh] provide APIs for both app developers and data scientists. Each framework also

provides an app for users to manage workout tracking. Typically built-in as part of the mobile

operating systems, the resource usage of these frameworks are well optimized. However, they

mostly focus on cardio exercises and do not support tracking of weightlifting exercises. The

front-end apps require manual selection of workout types as well.
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Weightlifting tracking systems: The weightlifting classification system in MiLift is mo-

tivated by several prior work in this space. Chang et al. [CCC07] performs free weight

exercise tracking using two wearable accelerometers, one in a user’s glove and one in a waist

pocket. Their system can automatically classify types of free weight exercises and count reps.

MyoVibe [MLN15] and Burnout [MLN16] embeds wearable sensors in fitness clothing and

leverages muscle vibrations to identify muscle activations and to estimate fatigues during ex-

ercises. RecoFit [MSG14] provides a model to segment exercises from non-exercise activities

and count weightlifting exercises, but does not study the feasibility of running continuous

tracking on user devices. NuActiv [CSG13] uses a smartwatch and a smartphone to track ex-

ercises and everyday activities by decomposing activities into semantic attributes. It applies

zero-shot attribute-based learning for recognizing newly unseen types of exercises. Pernek

et al. [PHK13] achieves repetition detection of weightlifting exercises using Dynamic Time

Wrapping. FEMO [DSY15a] tracks repeating patterns of free weight exercises by instrument-

ing dumbbells with RFID sensors and measuring frequency shifts caused by Doppler Effect.

myHealthAssistant [SBV11] employs multiple customized sensors on a user’s body and uses

a smartphone as a hub to track weightlifting exercises. Mortazavi et al. [MPA14] can count

reps of weightlifting exercises but call for manual type selection. In contrast, MiLift is the

first end-to-end system on commercial smartwatches that uses automatic segmentation to

track both cardio and weightlifting exercises without requiring users to start/stop tracking

and/or select workout types. MiLift also tackles challenges such as single device sensing and

efficient resource usage described in Section 2.2.

Emerging apps and web services including the VimoFit app [vim], the Atlas wrist-

band [atl], and the Microsoft Band API [ban] aim at autonomous workout tracking. Al-

though some of them support rep counting for guided workouts, they still require certain

manual inputs from users. Section 2.6.3 shows the high energy consumption of VimoFit

and compares it with MiLift. Other services such as JEFIT [jef], WorkoutLabs [wor], and

Gymwolf [gym] provide workout management and guidance from self-report workout data.
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Figure 2.2: State transitions of a user’s workout activities.

2.4 System Architecture

In this section, we propose the system architecture of MiLift, describe the implementation

of a two-stage classification model, and discuss optimization techniques.

2.4.1 Overview

MiLift aims to track workout activities of a user using only a smartwatch (C1). Exercises

of a user can be categorized into three groups: non-workout (still), cardio workouts such

as walking and running, and weightlifting. Figure 2.2 describes state transitions of these

exercises. A user can start weightlifting or cardio workouts from the non-workout state.

However, we assume that a user cannot perform weightlifting right after a cardio workout or

vice versa because there has to be a short transition period to non-workout first, for example,

taking a rest or preparing for the next exercise. State transitions also take place within each

group: The user can switch between walking and running during a cardio session or take

rests between weightlifting sets.

Motivated by the state transitions of user activities, MiLift uses a two-stage classification

model to accurately and efficiently track workout activities, shown in Figure 2.3. The model

contains two stages:
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Figure 2.3: MiLift architecture and state transitions.
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S1: High-level activity classification: S1 aims at detecting high-level activity state

transitions of a user shown in Figure 2.2 and tracking cardio workouts. It implements a

lightweight algorithm to label a data window with activities including non-workout, walking,

running, and weightlifting. If walking or running is detected, session duration and step counts

are logged. Once weightlifting is detected, MiLift wakes up the weightlifting classification

module described below which involves more complicated computations.

S2: Weightlifting classification: This module analyzes inertial data and performs de-

tailed weightlifting classification (C3) including set detection, rep counting, and type classi-

fication. We have implemented an autocorrelation-based algorithm and a lightweight revisit-

based algorithm to achieve efficient resource usage (C4).

To perform automatic segmentation on user activities and eliminate the burden on users

to manually start/stop tracking of sessions (C2), MiLift transits between S1 and S2 based on

current user contexts. The state transition also helps preserve battery energy of smartwatches

(C4).

2.4.2 High-level Activity Classification

In MiLift, inertial data samples from smartwatches are first labeled by a high-level activity

classifier. Motivated by prior work on mobile sensing [MSS06] [RMB10] [HNT13a], the

classifier takes a window of 3-axis accelerometer data and generates an activity label such

as non-workout, walking, running, or weightlifting. The classification pipeline includes:

Sampling and preprocessing: MiLift uses a 1s classification window on accelerometer

data sampled at 50Hz. The choice of 1s window size is also seen in previous activity recogni-

tion work [RMB10] [HNT13a] so that the data window contains enough samples for feature

functions but also keeps only one type of activity in a single window. Data is buffered for

each second and then sent to the next stage for feature extraction.
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Feature extraction: This submodule takes an 1s window of accelerometer data and reduces

its dimension by applying a set of feature functions in both time and frequency domains.

Features considered in our system are mean, variance, range, root mean square (RMS), mean

absolute deviation (MAD), magnitude, skewness, kurtosis, quartiles, median, and energy

coefficients between 1-5Hz from Discrete Fourier Transform (DFT). For each feature, MiLift

fuses three accelerometer axes by computing on each axis separately and then taking an

average. To improve performance and reduce feature calculation workload, we apply two

feature selection algorithms implemented in scikit-learn [PVG11a] including the univariate

statistical test and the tree-based feature ranking. These two selection algorithms rank

features based on their significances and select 7 of them for use in MiLift, including mean,

standard deviation, MAD, range, the 1st quartile, the 2nd quartile, and DFT at 5Hz. The

feature vector is then sent to the next stage for classification.

Classification: The classification module takes a feature vector as input and generates an

activity label for each window (i.e., every second). We have implemented two categories of

classification models. The first approach uses Conditional Random Fields (CRF) to con-

tinuously label each data window represented by a feature vector. CRF is commonly used

for sequence labeling tasks such as part-of-speech tagging and image segmentation [SM06].

Prior studies also use CRF for tasks on sensor data such as room-level occupancy infer-

ence from motion sensors and human activity recognition from wearable accelerometer read-

ings [YTS14] [LLN11] [VVL07] [NDH10].

In MiLift, CRF is used to exploit the temporal correlation among workout activities.

Each state yt in CRF corresponds to a ground truth activity label at time t, and each

accelerometer feature vector is used as an observation xt. The joint probability of a state

sequence y and an observation sequence x is modeled as:

pλ(y|x) =
1

Zλ(x)
· exp(

n∑
j=1

m∑
i=1

λifi(yj,xj))
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where n is the total time considered, f is a set of m feature functions used internally by the

CRF (not to be confused with our accelerometer features), λ is a weight vector for all feature

functions, and Z serves as a normalization term. Because most CRF implementations only

accept nominal (string) observations, accelerometer readings cannot be fed into these CRF

implementations because they are floating-point numbers. Therefore, we use the k-means

algorithm to group accelerometer readings into several clusters and use cluster IDs as the

input to the CRF. We have considered different numbers of clusters in k-means, ranging

from 4 to 20 to acquire the best CRF training performance.

In addition to the CRF, our second approach for high-level activity classification is to

first apply an instance classifier that labels each one-second (1s) window, and then uses a

Hidden Markov Model (HMM) to smooth the label series. We consider three popular instance

classifiers including Random Forest (RF), Decision Tree (DT), and Support Vector Machine

(SVM). Parameters of all models are tuned in the training stage, such as maximum depths

for DT, number of trees and size of feature subsets used for each split for RF, and kernel

types for SVM. These models label each individual 1s window independently. However,

adjacent windows are temporal-correlated as workout activities are continuous and would

not transit frequently within a short period. For example, a user may briefly raise his or her

arms while sitting in an office but an instance model may classify this action as weightlifting.

We apply an HMM classifier to smooth the output activity labels of instance classifiers and

filter out unlikely activity transitions for better accuracy. To generate the HMM model, we

use ground truth activity labels as hidden states and output labels from instance classifiers

as observations.

2.4.3 Weightlifting Classification

The second state in the two-stage classification model of MiLift is a weightlifting classifica-

tion module. It is waken up by the high-level activity classifier when users are performing

weightlifting exercises. This module achieves three tasks: (1) detecting weightlifting ses-

sions and label boundaries of sets, (2) counting number of reps (repetitions) in each set, and
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Figure 2.4: Sensor traces comparison of dumbbell single arm row performed by two users,
showing that gravity sensor can best demonstrate the repeating patterns.

27



(3) classifying type of current weightlifting exercise. The weightlifting classification module

must conserve battery energy of smartwatches (C4).

2.4.3.1 Sensor Choice

There are several available inertial sensors on a smartwatch that can capture human motions,

including but not limit to accelerometers and gyroscopes. A gravity sensor is a low-power

software sensor fusing both accelerometer and gyroscope [and]. Gravity sensor data can

reflect wrist orientations of users and can be a good indicator of repeating weightlifting

exercises with wrist movements. Using the dumbbell single arm row exercise as an example,

Figure 2.4 demonstrates the ability of different sensors to capture weightlifting exercises.

Sensor data traces collected from two users each performing one set of exercises are compared

with ground truth motion traces captured by an OptiTrack Prime 13 tracking system [opt].

For both users, the gravity data is less noisy than the accelerometer and gyroscope data

and can better highlight the repeating pattern in signal traces generated by weightlifting

exercises. Moreover, the amplitudes of the gravity data across two users are more consistent

compared with the other two sensors, indicating that gravity sensor can better identify types

of weightlifting exercises across different users. Therefore, MiLift uses the Android gravity

sensor for weightlifting detection. However, we acknowledge that single-point sensing has

limited coverage on the human body and will discuss this issue in Section 2.7.

Figure 2.5 (a) demonstrates a trace of gravity sensor data during a user’s weightlifting

exercise session (bicep curl machine). This session can be clearly identified by repeating

patterns in the gravity sensor trace. Moreover, since the corresponding gravity data are

cyclical, each rep in this session can be identified and the number of reps can be counted. In

contrast, we see arbitrary patterns recorded during non-workout periods shown in Figure 2.5

(b). Therefore, MiLift quantifies repeating patterns in gravity data to detect weightlifting

sessions and count reps, using two approaches including an autocorrelation-based algorithm

and a revisit-based algorithm. MiLift then classifies the type of the detected weightlifting

activity.
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2.4.3.2 Autocorrelation-based Weightlifting Detection

Weightlifting session detection: Autocorrelation is a technique for examining the pe-

riodicity of a signal series. It calculates correlation between a sample window at time t

and another same-size window with an offset in time known as the lag `. Prior work (e.g.,

RecoFit [MSG14]) also considers autocorrelation for detecting repeating patterns in sensor

signal. The output of an autocorrelation series can be represented as a function of `:

R` =
ST
t St−`

|St| · |St−`|

where St is a w−element vector representing a signal window with size w starting from time

t. If a sample window and another window with lag ` have similar signal patterns, the

autocorrelation value R` will be close to 1 indicating significant similarity between these two

windows. We apply a threshold value Thresac on R` to identify weightlifting sessions. In

order to capture periodicity of weightlifting exercises, we choose a small window size but

longer than the typical duration of a rep (6s from our analysis) to cover all possible rep

lengths.

For weightlifting session detection, we apply autocorrelation using 1s sliding windows

on gravity data to capture all possible sessions. Figure 2.5 (d)(e)(f) plot autocorrelation

results when applied on three different cases of sensor readings shown in Figure 2.5 (a)(b)(c).

The figures also show the threshold Thresac used for repetition detection as well as both

ground truth and detected weightlifting sessions. When autocorrelation is performed on a

weightlifting session, the output values are close to 1 and demonstrate spike patterns (shown

in (d)). A peak in autocorrelation results is aligned with a valley in raw data because this is

the beginning of a new rep and autocorrelation discovers the maximum similarity between

current window and the previous one. MiLift applies Thresac on peaks from autocorrelation

results to identify a weightlifting session. In contrast, when the input signal trace indicates no

repeating wrist motion, for example when a user is adjusting the weights, the autocorrelation

output values show no peaks and are relatively low (shown in (e)). However, one exception

exists that can lead to constant high autocorrelation values. When a user’s wrist is stationary
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during breaks and gravity readings are relatively constant, the output values can remain

close to 1 (shown in (f)). Our algorithm filters out such cases by removing sessions with

consistently high autocorrelation values but no spike patterns.

Another issue in this algorithm is which axis should be consider for autocorrelation.

From the gravity signals shown in Figure 2.1, there is no universally dominant axis with

the most obvious peak-valley patterns. In MiLift, we explored three techniques to select the

best gravity axis: (1) summing up absolute values of each axis, (2) taking absolute values of

sums of each axis, and (3) performing autocorrelation on each axis separately and choosing

the one with the best result. Our experiment indicates the last strategy is the most robust

against false positives and demonstrates the best accuracy among the three.

Rep counting: After weightlifting sessions are detected and labeled, the rep counting part

is achieved by simply performing a naive peak detection on autocorrelation results. Because

non-repeating signals are already filtered out, the number of reps can be derived by simply

counting peaks.

2.4.3.3 Revisit-based Weightlifting Detection

Although the autocorrelation-based algorithm can effectively detect repetitions in time-series

data, it can incur O(wL) overhead upon arrival of each new gravity sample where L is the

maximum lag of interest and w is the window size, leading to heavy computations (challenge

C4). We propose a lightweight algorithm which quantifies revisit events in gravity sensor data

to detect weightlifting sessions and count reps with less computation and better efficiency.

Weightlifting session detection: Figure 2.5 (a) shows that gravity signal demonstrates

repeating patterns during weightlifting sessions. This implies that gravity sensor readings

(i.e., (gravx, gravy, gravz)) with similar values can be found within a short time frame,

typically not longer than the period of a rep. For example, the gravity reading marked

as t1 has a similar value to sample t2 about one second later. A necessary condition of a
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weightlifting session is that repeating patterns of sensor readings are seen within a short

time window whose length is similar to the typical length of one rep (6s from our analysis),

indicating that the majority of gravity samples in this window have a similar sample within

the same window. However, the strategy of comparing sensor data windows whenever a new

sample arrives can cause high overhead, as seen in autocorrelation. Instead, we present a

heuristic algorithm to discover repeating patterns in the signal stream, called the revisit-based

approach:

First, each sample of sensor readings (gravx, gravy, gravz) is discretized at an interval

of I giving it a discretized value vector D where:

D =
(⌊gravx

I

⌋
· I,
⌊gravy

I

⌋
· I,
⌊gravz

I

⌋
· I
)

Therefore two similar samples will share the same D value. Our experiments indicate the

best choice of I is 0.6.

Second, we maintain a hash table H to store incoming samples where D is used as the

key and timestamp t of current sample is used as the value:

H[D ] = t

Third, we define a revisit event occurs when a hash collision happens, for instance, when

a sample with a key D and a timestamp t arrives, the key D already exists in H with a value

t′ (H[D ] = t′). The revisit time frame Trevisit of this event is defined as the time difference

between two samples with the same discretized value D :

Trevisit = t− t′

Since we only use revisit events to identify reps, we set a threshold value Thresrevisit as 6s

to cover the longest possible rep. We only consider revisit events with Trevisit < Thresrevisit.

H[D ] is then updated with value t.
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Finally, we denote revisit event generation rate to represent the number of revisit events

generated in the past 1s at a given time. A high revisit event generation rate suggests that

revisit events within a short time frame are frequently generated. Thus, it indicates the

occurrence of repeating patterns, which in turn suggests an ongoing weightlifting session.

We apply a threshold value Thresrv on the revisit event generation rate of each second to

select significant (high) values.

The above revisit-based algorithm only takes O(1) time to update the revisit event gener-

ation rate when a new sensor reading arrives and can significantly reduce computational cost

compared with the O(wL) overhead incurred for each new sample by the autocorrelation-

based algorithm.

Figure 2.5 (g)(h)(i) plot results of our revisit-based algorithm on three different input

traces shown in Figure 2.5 (a)(b)(c). The figures also show the threshold Thresrv used for

repetition detection as well as both ground truth and detected weightlifting sessions. If

input signals have cyclical patterns due to repeating motions, the revisit event generation

rate raises and remains high until the end of current weightlifting session (shown in (g)). In

contrast, revisit event generation rates are much lower if there is no repeating pattern in the

input trace (shown in (h)). However, whenever a user is stationary and the gravity readings

are relatively constant, revisit events will be generated at a high rate equal to the sensor

sampling rate. Our algorithm excludes this situation by discarding any sensor reading that

has the same discretized value D as its immediate predecessor. As shown in Figure 2.5 (i),

this effectively prevents stationary motions from being detected as weightlifting.

Rep counting: After the beginning and end of weightlifting sessions are detected, our

revisit-based algorithm performs peak detection on raw gravity sensor data to count reps.

However, this is more difficult than the peak detection step involved in the autocorrelation-

based algorithm because noises in raw data are not filtered out and therefore we cannot

simply count peaks for the number of reps.

There are three issues preventing an accurate rep counting using naive peak detection on
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raw gravity data. First, a dominant axis that presents the most distinct repeating patterns

out of three gravity axes has to be selected. Second, neither upper peaks nor bottom peaks

(valleys) always better indicate repeating patterns. As shown in Figure 2.6 left, simply

counting peaks yields double-counting errors because upper parts of bicep curl reps sink in

the middle resulting in vertically reversed w-shapes in the signal, i.e. two peaks. Third, the

weightlifting session boundaries detected above may not be precise. Figure 2.6 right shows

that if we consider bottom peak (valley) values, the valley at t = 0 satisfies all constraints

even if it is not a rep but the end of this session.

To address the first issue, we select the axis with the largest range between the maximum

and minimum value within the session to reduce ambiguities during rep counting. Next, we

have to decide whether the number of reps should be derived by counting peaks or valleys.

We use vertical displacements within a small delta time (i.e. second derivatives) to capture

spikiness of peaks/valleys where a larger displacement indicates a spikier peak/valley. For

both peaks and valleys, we compute the average vertical displacement V and count the

one with larger V as number of reps to improve the counting accuracy. In the example of

Figure 2.6 left, valleys should be considered since they have larger vertical displacements

than peaks. Finally, to reduce false rep counts from weightlifting session boundaries, we

consider the three axes as a whole when ambiguity occurs at the beginning or end. Taking

the example of Figure 2.6 right, the average reading of three gravity axes at t = 0 is different

from any other detected valleys, allowing us to remove it as a false rep count.

Both the weightlifting detection algorithms require no model training. Because neither

algorithm considers any user-specific feature, our proposed weightlifting algorithms are user-

independent as well. Note that weightlifting exercises in real life could lead to noises to

the sensed gravity signal, such as those caused by tiredness or improper exercise forms, as

discussed in Section 2.6.1.2, and therefore lead to errors of both algorithms.
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2.4.3.4 Weightlifting Type Classification

In routine weightlifting exercises, a user is not only interested in statistics about sets and

reps, but also the type of weightlifting exercises performed in each set. Once weightlifting

sessions are detected and numbers of reps are calculated, MiLift starts weightlifting type

classification and labels each detected session with an exercise type.

Our intuition for weightlifting type classification is that wrist positions of a user during

different weightlifting exercises will lead to unique orientations of a smartwatch. To quantify

watch positions, MiLift aggregates 3-axis gravity sensor readings from the current weightlift-

ing session and computes a set of features for each axis, including mean, standard deviation,

minimum, maximum, and range. MiLift then applies an SVM classifier to label the type of

the current session. We choose SVM here because of the relative simplicity of this classifi-

cation problem and the ability of SVM to generate confidence scores for each class of types,

which can be used to determine if an exercise type is unseen. To enhance the performance of

the SVM classifier, we have considered different kernels such as a linear kernel, a Gaussian

kernel (with different radius r), and a polynomial kernel (with different degree d).

Another significant aspect of type classification is the ability to determine whether a new

sample instance belongs to known exercise types during training or a new type of exercise.

To identify new types, MiLift takes advantage of confidence scores reported by the SVM

classifier. For each incoming instance, a vector of confidence scores is calculated by the

SVM, representing the probability that this instance belongs to each known type class. If

the maximum probability in this vector falls below a certain threshold Thresconf , MiLift

determines this instance belongs to a new type of weightlifting exercise and asks the user for

a correct label. This also enables MiLift to perform active learning by re-training the model

once a new exercise type is seen. We plan to address this topic in the future (Section 2.7).

2.4.4 Context-aware Optimization

To achieve both automatic segmentation (C2) and efficient resource usage (C4), MiLift takes

advantage of available user contexts and applies a context-aware state transition mechanism.
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Table 2.2: Summary of data collection in our user study.

Number of participants 22 Time of non-workout 14.88 hours
Number of weightlifting types 15 Time of walking 9.22 hours
Number of weightlifting sets 2528 Time of running 7.95 hours
Number of weightlifting reps 24408 Time of weightlifting 36.15 hours

Total duration: 68.20 hours

Figure 2.3 shows the transition among two classification states, S1 and S2.

S1: MiLift executes the high-level activity classification in this state. It involves sampling

of low-power accelerometer and incurs only lightweight computation and low energy con-

sumption. Because a user typically keeps the same activity for a period of time and will not

switch activities frequently within seconds, MiLift duty-cycles the execution of S1 by a 20%

schedule. MiLift classifies a 1s window every 5s so that it is able to capture most activity

transitions while conserving battery energy. Note we design the 20% duty-cycle schedule as

a system parameter and it can be changed based on user preferences and current battery

states.

Moreover, to prevent everyday activities from being mis-classified as gym exercises (i.e.

reducing false positives), S1 opportunistically leverages coarse location contexts such as those

inferred from network accesses or WiFi signatures. For a given user, workout exercises mostly

take place near similar locations (e.g. a gym) or WiFi networks (e.g. gym WiFi hotspots).

MiLift can automatically learn the typical exercise location of a user after the first few app

uses and from WiFi connection histories. If a coarse location is known from recent queries

or WiFi scans initiated by the OS or other apps, it can be compared with the user’s typical

exercise locations. Once weightlifting is detected by S1, only when the two locations match

will MiLift transit to S2. The opportunistic use of coarse locations as opposed to querying

exact GPS coordinates ensures no additional energy is consumed.

S2: MiLift performs the more sophisticated weightlifting classification in this state. Al-
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though S2 is designed to be lightweight and efficient, the complexity of this state is relatively

higher than S1 because of the computation incurred by each new sensor reading. Therefore it

is triggered by S1 and only starts executing upon detection of weightlifting exercises. When

no new weightlifting exercise is detected for a certain timeout (e.g. 5min), MiLift transits

back to S1 and performs the simpler high-level activity classification.

Although performing duty-cycled classification will not prevent the watch from being

waken up frequently, i.e. the watch will still have to perform sensing and classification in

S1 every 5 seconds, Section 2.6.2 and Section 2.6.3 have proven such an optimization to be

effective since the watch can last for more than a full day with this two-stage classification

model running continuously. This is because most of watch battery energy is spent on

data sampling and computation rather than simply remaining power-on. Nevertheless, we

acknowledge that the use of low-power co-processors (e.g. DSPs and dedicated sensor hubs)

for always-on sensing and computation tasks will further reduce the energy consumption of

context inferences, as discussed in Section 2.7.

2.5 Implementation

Hardware device: The commercial off-the-shelf watches we used for data collection include

Moto 360 [mota], Moto 360 Sport [motb], LG G Watch R [lgw], and ASUS ZenWatch 2 [asu].

For experiments on energy profiling we used the Moto 360 which has a 1GHz OMAP3 CPU,

512MB RAM, 4G flash storage, and a 3.8V/320mAh Lithium-ion battery. We have imple-

mented a smartwatch data recording app that logs accelerometer and gravity sensors from

the watch. Users were also assisted by Google Nexus 5 phones during data collection. Al-

though we used four different watch models for data collection, the recording app implements

the same sampling frequency even when running on different models.

User study: Our data collection campaign was performed as part of a user study that

involves 22 participants, approved by UCLA IRB. Participants are aged from 19 to 27 and

consist of both males and females. All participants regularly engage in gym exercises. We
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Figure 2.7: Screenshots of the MiLift Android app. Left: a calender for workout management;
Right: a workout activity summary of a given date.
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have collected 68.2 hours of workout data in total, including 2528 weightlifting sets (24408

reps), as summarized in Table 2.2. For ground truth recording, we used the Moves app [mov]

to log cardio activities and let participants manually record set/rep counts in weightlifting

exercises. In addition, we asked each participant to finish a post-completion survey on

workout tracking (Section 2.6.3).

Offline analysis: With the collected data, we first conducted an offline analysis to train

classification models. The high-level activity classifier and the weightlifting type classifier

were implemented using the scikit-learn library [PVG11a] in Python. The HMM smoothing

of high-level activities and weightlifting classification algorithms including session detection

and rep counting were implemented in Matlab.

Android implementation: We implemented MiLift as an Android app using Android 5.1.1

(API 22). MiLift contains two components: a watch app that performs workout tracking

and a phone app that provides visualization and assistance for workout management. The

watch app executes real-time classifications as a background service and does not require

user inputs. Multiple open-source projects were used to port trained classification model to

Android, including CRF++ [crf] and jahmm [jah]. Figure 2.7 left shows the MiLift workout

calendar where users can choose a particular day to view their progresses. Figure 2.7 right

displays workout activities performed in a given day showing durations for cardio workouts

and rep counts for weightlifting exercises.

2.6 Evaluation

We first evaluate MiLift using a set of micro-benchmarks including accuracy (Section 2.6.1)

and power (Section 2.6.2) profiling of classification models. We then use a macro-benchmark

to analyze the effect of MiLift on required user tasks and smartwatch battery lives compared

with previous approaches (Section 2.6.3).

40



0.6 0.7 0.8 0.9 1

SVM + HMM

SVM

DT + HMM

DT

RF + HMM

RF

CRF
C

la
s
s
if
ie

r

Average Precision

0.79
0.76

0.87
0.85

0.88

0.85
0.84

0.6 0.7 0.8 0.9 1

Average Recall

0.78
0.70

0.87
0.78

0.89

0.79
0.85

Figure 2.8: Weighted average precision and recall of high-level activity classification (10-fold
cross validation).
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2.6.1 MiLift Tracking Accuracy

2.6.1.1 Accuracy of High-level Activity Classification

The high-level activity classifier is the first state of the two-stage classification model and

aims at detecting high-level activities of users before triggering the weightlifting classifier.

To select the best model for this classification task, we first used a 10-fold cross validation

with data from all users to examine the performance of the four classifiers, including the
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Table 2.3: Memory footprints of high-level classifiers.

CRF RF+HMM DT+HMM SVM+HMM

1.6 MB 105.1 MB 45 KB 5.6 MB

continuous graph model CRF and three instance classifiers RF+HMM, DT+HMM, and

SVM+HMM. The best parameters selected for each classifier include maximum depth of 8

for DT, 64 classifiers and 4 features used at each split for RF, and linear kernel for SVM. For

CRF, input feature values are first transformed to integers using cluster centers trained from

k-means clustering algorithm, and our parameter tuning has chosen the use of 16 clusters

for best CRF performance. Figure 2.8 plots the weighted average precision and recall for all

four models from the cross validation, including results before and after HMM smoothing

for the three instance classifiers. Among the four models DT+HMM and RF+HMM has the

best overall performance (nearly 90%) but CRF only performs slightly worse (around 85%).

As discussed in Section 2.4.2, the results suggest that HMM smoothing is crucial in reducing

false positives and increasing the overall performance of all three instance classifiers.

We then used the best model parameters selected from cross validation to showcase

real-world performances of the high-level activity classifiers. We had one user collected

an all-day data trace consisting of 15 hours of continuous accelerometer data. This trace

includes the user walking around school, sitting during classes and study, running in a gym,

and performing weightlifting exercises. Our entire dataset described in Section 2.5 is divided

into two parts: all but this 15-hour data trace is used to train the high-level classifiers and this

trace itself is used as the testing set. Figure 2.9 plots the resulting weighted average precision

and recall for classifications on the all-day trace. All four models achieve above 90% average

precision and recall. Among them, DT+HMM and CRF have the best overall accuracy

but the other two models perform only slightly worse. The results above have proven that

the high-level activity classification models in MiLift can successfully separate non-workout

activities from gym exercises in real-world user scenarios. Moreover, continuous graphical

models (e.g., CRF, HMM) can effectively increase the accuracy of time-series classification
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tasks by exploiting temporal correlations in data.

Finally, with RAM becoming another power-hungry component in mobile SoC as RAM

power can exceed CPU power in certain workloads [CH10], another factor in choosing clas-

sification models is the memory footprint. Table 2.3 compares the size of the four trained

models. DT+HMM and CRF have much smaller model sizes compared with the other two

because of the relative simplicity of their model structures. Considering both their clas-

sification precision/recall performances and the memory footprints, we have chosen to use

DT+HMM and CRF for implementation in MiLift.

2.6.1.2 Accuracy of Weightlifting Classification

Session (set) detection and rep counting: We first evaluate the accuracy of weightlifting

session detection and rep counting using our two proposed algorithms. Figure 2.10 (a)

illustrates the weighted average precision and recall of session (set) detection based on users.

In general, both algorithms demonstrate high overall accuracy, as autocorrelation-based

approach achieves 97.5% precision and 90.7% recall while revisit-based approach yields 95.7%

precision and 92.6% recall. Figure 2.11 shows three common cases seen in our user study that

lead to errors in weightlifting set detection: (a) some users tend to take short pauses within a

set, possibly because of tiredness; (b) users can sometimes finish the last rep in an incorrect

posture; (c) some users may adjust their body postures (including wrist orientations) during

a set. All three cases can cause irregular patterns in sampled gravity data and set detection

errors from both approaches.

For rep counting, both the autocorrelation-based and the revisit-based approach have

similar average errors, shown in Figure 2.10 (b). Here the rep counting error is defined

as the difference between the true number of reps and the number of reps counted by our

algorithms in each set. On average the autocorrelation-based algorithm and the revisit-based

algorithm report errors of 1.125 and 1.122 reps per set, respectively. Some rep counting

errors are caused by cases shown in Figure 2.11, because inaccurately detected session (set)

boundaries can lead to rep miscounts as well. Other errors are results of unconventional
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postures and actions performed by some users during weightlifting exercises. Participants

can sometimes incorrectly log ground truth leading to errors as well. Nevertheless, the rep

counting errors are insignificant considering a user performs 9.65 reps on average within each

set. In addition, the errors are only slightly greater than user expectations from our survey

(Table 2.5).

To study the root cause of errors, we report session (set) detection and rep counting results

based on the type of weightlifting exercises. Figure 2.10 (c) plots the recall or detection rate

of each exercise type shown in Figure 2.1. Note that the precision metric is not applicable

here since a workout trace may contain multiple types of exercises and therefore we cannot

identify false positive sessions for each exercise type. Both algorithms can nearly perfectly

identify all sessions of bicep curl (#1), tricep extension (#2), tricep dip (#9), and dumbbell

lateral raise (#14). However, seated row (#6), pec fly (#7), and rear deltoid (#8) are not

well captured by either approach. This is because the vertical displacements in gravity data,

i.e. the range between peaks and valleys, are small in all three axes for these exercises,

making both algorithms susceptible to noises. Seated row does not involve substantial wrist

motions and will not affect gravity readings much. Though both pec fly and rear deltoid

require large forearm movements, the wrist trajectories of users fall into a horizontal plane

and the watch rotates around z-axis in the global frame (perpendicular to the ground). Such

rotation will not cause significant changes in gravity readings.

Although free weight exercises can in general cause more complicated body movements

than machine-based exercises, MiLift’s performances on session detection and rep counting

for free weight exercises are similar to those for machine-based exercises. For free weight

exercises, MiLift has high errors detecting dumbbell bench press (#15) due to similar reasons

stated above. It is also worth noting that keeping body motions stable while performing

dumbbell bench press exercises is known to be difficult even for experienced gym users,

which adds more noises to the sampled gravity data.

Figure 2.10 (d) reports rep counting errors by exercise types and shows similar error

trends as seen in Figure 2.10 (c): type #6−#8 and #15 have higher rep counting errors

than others. Lat pulldown (#3) and dumbbell single arm row (#13) also have relatively
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Figure 2.11: Three common error sources of weightlifting session (set) detection seen in our
user study.
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high errors due to unclear repetition patterns shown in gravity data traces from some users.

Weightlifting Type Classification: We have chosen a Gaussian SVM with r = 0.05

for MiLift to determine the type of weightlifting exercises in a session and identify unseen

exercise types. We used a 10-fold cross validation on the entire weightlifting dataset to test

the performance of this classifier, which shows a precision of 89.71%, a recall of 89.53%, and

an F1-score of 89.48% (all weighted average) for all 15 exercise type classes. Figure 2.12

left plots the confusion matrix of all exercise types from cross validation, suggesting that

our SVM model has good performance on all classes and does not bias towards certain

weightlifting types.

Another important benchmark of weightlifting type classification is the accuracy of iden-

tifying newly unseen types. Section 2.4.3.4 proposes our algorithm in MiLift to identify new

types by applying a threshold value Thresconf on confidence scores generated by the SVM.

We evaluated the performance of this approach by conducting a leave-one-type-out cross val-

idation. For each weightlifting type, we trained an SVM model using data from all other 14

types, and used this model to classify the entire dataset including instances of the 14 known

types and the 1 unknown type. Because an instance of an unknown type can be similar to

instances of one or more of the known types, the accuracy of identifying unknown types de-

pends on the value of Thresconf . A smaller Thresconf will allow more instances of unknown

types to be correctly identified but will also lead to more false positives. Figure 2.12 right

plots the ROC curve (true positive rate over false positive rate) of identifying unknown types

obtained by adjusting Thresconf from 0.1 to 0.8. The results illustrate our SVM model can

achieve a true positive rate of 85% with about 10% false positive rate indicating an effective

classifier in determining new types.

The micro-benchmark results show that MiLift can accurately track both cardio and

weightlifting workouts (C3).
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Figure 2.12: Left: confusion matrix of weightlifting type classification. Right: ROC curve
of leave-one-type-out experiments.

2.6.2 Energy Efficiency of MiLift Models

Table 2.4 compares the average power consumptions of MiLift at different classification

states and the battery life estimations if each state is executed continuously on a Moto 360

smartwatch. We also measured the sleeping power of the watch (S0) for comparison. There

are two conclusions we can draw from the results:

First, the two high-level classification models DT+HMM and CRF are energy efficient

after the 20% duty-cycle optimization discussed in Section 2.4.4. If only executing these two

models, the watch battery can last for more than 16 hours meeting the efficiency challenge

(C4). This is achieved even with the duty-cycle executions frequently waking up the watch,

indicating that sampling and classification are more energy hungry for the watch than re-

maining awake. Out of the two models, DT+HMM is about 25.96% more energy efficient

than CRF in terms of watch battery life because of DT’s lower classification complexity than

CRF.

Second, in terms of watch battery life, our revisit-based weightlifting classification algo-

rithm is 41.34% more energy efficient compared with the autocorrelation-based approach,

due to less computation incurred by each new sensor sample (O(1) compared with O(wL)

as discussed in Section 2.4.3). Note that our micro-benchmarks estimate watch battery lives
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Table 2.4: Average power consumption and battery life benchmarks of Moto 360. Showing
battery life estimations if executing each state continuously.

State Description Power
(mW)

Battery
Life (h)

S0 Sleep 13.10 97.47
S1-D High-level activity classification (DT+HMM) 47.08 25.83
S1-C High-level activity classification (CRF) 58.83 20.67
S2-A Weightlifting classification (autocorrelation) 159.58 7.62
S2-R Weightlifting classification (revisit) 112.91 10.77

assuming each state is executed continuously. During real-world executions, weightlifting

classification S2-A or S2-R does not need to be executed continuously but will only be trig-

gered by the high-level activity classifier S1-D or S1-C. Section 2.6.3 presents an empirical

study showing how our two-stage model improves the battery life of smartwatches.

2.6.3 User Task and Battery Life Analysis

To evaluate MiLift in real-world scenarios, we conducted a macro-benchmark by empirically

comparing MiLift with previous approaches using two metrics: (1) number of tasks a user

needs to perform for accurate workout tracking, and (2) the battery life of a smartwatch

running continuous tracking. We assumed the watch is used only during the day (16h), and

the user performs weightlifting exercises for 12.5% of the time every day (2h). Each approach

is described as follows:

Baseline app 1: To continuously track cardio workout activities, app 1 runs an always-on

cardio activity classifier during the entire day. However, users have to manually start and

stop weightlifting classification before and after each weightlifting session (12.5% of the day).

Users need to manually select workout types and manually count sets/reps for weightlifting

exercises as well. This app is similar to previous mobile workout tracking apps.

Baseline app 2: To reduce manual input from users, app 2 continuously executes both the

cardio activity classifier and the weightlifting classifier all day. Users still have to manually
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Table 2.5: Survey questions and answers. For scale questions, 5 stands for strongly agree,
and 1 stands for strongly disagree.

Linear Scale Question (1 to 5) Score

Do you find it useful that MiLift can automatically detect ongoing exercises
(cardio and weightlifting)?

4.13± 0.83

Do you find it useful that MiLift can detect the type of exercises you are per-
forming?

4.47± 0.74

Do you find it useful that MiLift can automatically detect and count weightlifting
sessions (sets)?

4.67± 0.62

Do you find it useful that MiLift can count number of reps (repetitions) in
weightlifting exercises?

4.73± 0.59

Short Answer Question # of Rep

Max rep counting error you can tolerate. 0.8± 0.49

select workout types and manually count sets/reps for weightlifting exercises. This app is

similar to existing weightlifting tracking systems.

Baseline app 3: The VimoFit workout tracking app [vim] executes continuously for the

entire day. Users need to manually start and stop tracking but the type of exercises and

set/rep counts can be automatically determined.

MiLift: MiLift automatically segments exercises from non-workout activities and does not

require any manual input from users. It uses a two-stage classification model to duty-cycle

the executions for efficient resource usage.

We used power profiles from Section 2.6.2 to estimate watch battery lives for baseline

app 1, app 2, and MiLift. For app 3 (VimoFit) we performed a separate experiment to

log its battery usage. For app 1, app 2 and MiLift, we used the more efficient DT+HMM

approach as the high-level (cardio) activity classifier. App 1 and 2 implemented the more tra-

ditional autocorrelation-based algorithm for weightlifting detection, while MiLift considered

the revisit-based algorithm.

User tasks: We first present the results of our user survey (Section 2.5) in Table 2.5.

50



Users find the features of MiLift valuable, including automatic exercise segmentation, exer-

cise type detection, weightlifting set detection, and weightlifting rep counting. This proves

that tracking approaches without automatic exercise segmentation can be less attractive to

active exercisers. Next, Table 2.6 compares the user tasks required in different approaches,

suggesting that all three baseline apps rely on certain user tasks to accurately track exer-

cises. Although baseline app 3 can automatically detect types of weightlifting exercises, the

detection accuracy was poor. In our experiments, VimoFit was only able to correctly classify

3 of the 15 exercise types. In contrast, MiLift removes the burden on users and can provide

fully autonomous workout tracking for both cardio and weightlifting exercises.

Energy efficiency: MiLift can extend watch battery life by 18.25% (3.31h), 241.56%

(15.17h), and 824.57% (19.13h) compared with these three baseline apps, respectively. For

baseline app 2 and app 3 the watch battery will run out before the end of the day forcing

users to charge the watch. The VimoFit app used for baseline app 3 currently also keeps

the watch screen on during executions therefore greatly exacerbating its power consumption.

The energy saving of MiLift is achieved by the low-power weightlifting detection algorithm

and the context-aware optimization.

The macro-benchmark suggests that MiLift can significantly better preserve battery

power of smartwatches than previous approaches (C4) and remove user burdens (C2).

2.7 Discussion

We discuss potential improvements for future work:

Sensing scope and system generalization: Although MiLift can detect a variety of

weightlifting exercises including both machine workouts and free weights, exercises which do

not involve wrist motions cannot be tracked. This includes both single-arm exercises not

performed on the watch-wearing hand and other types of exercises such as leg-based ones.
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Table 2.6: User task and watch battery life comparisons of MiLift and baseline approaches.

Approach User Tasks Battery
Life

Baseline 1 (1) Manually start/stop weightlifting sessions; (2) Manually
select workout types; (3) Count weightlifting sets and reps.

18.14h

Baseline 2 (1) Manually select workout types; (2) Count weightlifting sets
and reps.

6.28h

Baseline 3 (1) Manually start/stop weightlifting sessions. 2.32h
MiLift None 21.45h

We argue that incorporating other non-intrusive sensors such as shoe motion sensors can

cover more exercise types. Beyond cardio and weightlifting exercises, algorithms proposed

in MiLift can be generalized to detect any exercise or human activity that involves repeating

motions, including but not limited to rock climbing, hiking, and racket sports. However,

tracking exercises with mild body movements such as yoga may require coordination of

multiple sensors.

Energy optimization: We plan to leverage strategies proposed by prior work to further

optimize the energy consumption of MiLift, such as offloading sensing and prepossessing from

the main processor in mobile SoCs to low-power co-processors [PLL11] [GLR14] [LGQ15], ex-

ploiting the coordination of multiple mobile devices and the cloud [MVS15] [SSP15] [CZW15],

and exploring the correlation among possible user contexts [Nat12] other than the coarse lo-

cation used in this paper. These optimization techniques will help save energy budgets of

smartwatches for other possible workloads.

Active learning: The weightlifting type classification in MiLift can determine if an instance

belongs to an unknown type class. However, currently MiLift does not use such new instances

to reinforce its classification model. We plan to implement an active learning system similar

to [CSG13] where MiLift would query users for a ground truth label whenever it detects a

new type of exercise and then improve the model.
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Weight tracking and quality assessment: Prior work has shown that incorrect usages

of weightlifting equipment can lead to ineffective training or even injuries. Researchers have

proposed several metrics to indicate exercise quality [SBV11] [DSY15a]. Currently MiLift

cannot track the amount of weights used in each exercise. However, we observed that users

demonstrate different inertial patterns with different weights. This includes changes of peak-

to-peak intervals and noise patterns in the accelerometer/gravity data traces. Therefore a

similar quality assessment module can be added to MiLift to track weights and to provide

exercise feedbacks.

2.8 Summary

In MiLift the combination of a two-stage classification model and a lightweight weightlift-

ing detection algorithm has enabled autonomous and efficient tracking of both cardio and

weightlifting workouts. MiLift automatically segments exercises from non-workout activities

so that users do not need to manually start/stop tracking or select exercise types. Our eval-

uations indicate that MiLift can achieve above 90% precision and recall for tracking both

cardio workouts and weightlifting exercises. MiLift can also extend the battery life of a Moto

360 watch by up to 8.25× (19.13h) compared with previous approaches. Finally, our user

study suggests MiLift’s automatic segmentation ability is valuable to individuals actively

engaging in gym exercises.
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CHAPTER 3

MyoBuddy: Detecting Barbell Weight Using

Electromyogram Sensors

3.1 Motivation

Muscle dystrophy is an umbrella term for genetic diseases whose major symptom is dramatic

loss of muscle mass. According to an investigation by the Centers for Disease Control and

Prevention, 1 out of 7, 250 males aged 5 to 24 suffer from muscle dystrophy1. As of today

(April 2017), there is no cure for muscle dystrophy. Steroids are used as major medical

treatment for severe patients, however, steroids can disrupt normal hormone production or

levels in a patient’s body. Daily weightlifting routine is a natural and effective physical

therapy to reduce the rate of muscle loss. To help physical therapists monitor the degree of

muscle dystrophy, we propose a system called MyoBuddy that monitors and classifies the

weights that patients lift during weightlifting exercises.

There are several infrastructure-based solutions for weight detection, for instance, attach-

ing RFID tags on each weight or using computer vision techniques to identify numbers on the

weights. However, the deployments of these methods are time consuming and require high

installation cost. Moreover, since these techniques rely on external sensing facilities, users

have little control how their weightlifting activities are monitored and stored, and hence user

privacy becomes a concern. MyoBuddy, on the other hand, seeks for a single-point sensing

approach that only requires users to wear a Myo armband [myo]. Myo is composed of 8

electromyography (EMG) sensors, and each EMG sensor measures the change of electrical

1The source of the statistics: https://www.cdc.gov/ncbddd/musculardystrophy/research.html
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Figure 3.1: Two traces of EMG signals measured from 4th channel of Myo armband, each is
measured when performing barbell bicep curl with a different weight.

signals from skeletal muscles. These electrical signals allow MyoBuddy to distinguish the

degree of muscle activation. Two time series of EMG data are demonstrated in Figure 3.1

when a user lifts two different weights. In both cases, EMG signals show high frequency, but

when lifting a heavier weight, the amplitude of EMG sensor signals is larger.

Previous work has shown that detecting the weight lifted is challenging. In Zhou et al’s

work [ZSC16], only 43% accuracy is achieved where weights are grouped into 4 categories

based on participants’ body strength. In our work, MyoBuddy aims at achieving a high

accuracy in weight detection and targets finer-grained weight recognition. In our experiment,

we collected one week of EMG data when performing barbell bicep curl exercise from both

authors2. By using machine learning models, Support Vector Machine (SVM) and Random

Forest, MyoBuddy can train a personal model which achieves up to 80% accuracy with

2The data is collected from the authors and thus does not require approval from IRB.
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four weight categories and 66% accuracy with six weight categories. We also create user-

independent models that achieve 63% accuracy on average.

Our contributions in this work are:

• We develop a system to systematically collect and analyze workout data.

• We collect one week’s worth of EMG data from two authors.

• We explore both user-specific and user-independent models and report their perfor-

mance.

The rest of paper is organized as follows: We first discuss the background of EMG sensors

and the Myo armband in Section 2. Then, we talk about related work in Section 3. In Section

4 and 5, we describe the details of our experiments and present an evaluation of our system.

We mention the limitations of our work in Section 6. Finally, we provide possible extensions

for future work and conclude our work in section 7.

3.2 Background

Electromyography sensors (EMG). Similar to electroencephalogram sensors (EEG),

EMG sensors are used to capture the electrical activities of skeletal muscles. EMG sensor is

made of electromyograph that can detect the bio-potential of muscle cells. When a person

needs to use his muscles, the neurons in the brain release electrical signals to control the

movement, causing potential changes in muscle cells. The potential changes can be captured

by an EMG sensor.

Myo armband. Myo [myo] armband is one of the cheapest commercial EMG sensors

(∼$200), and it features capturing hand gestures through analyzing the EMG and inertial

(IMU) signals from a user. Myo armband, as shown in figure 3.2, consists of 8 pods, each

pods equips an EMG sensor. The 4th pod additionally contains a Bluetooth Low Energy

hardware module and a 9-axis IMU. Each EMG sensor is made by noise filters and one quad
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Figure 3.2: Myo Armband is composed of 8 units, each is equipped with an EMG sensor
inward of the band. The numbers above the band show the channel identifier.

precision op-amp. The theoretical sampling rate of each EMG sensor is 200 Hz3.

3.3 Related Work

Weightlifting tracking. FitBit [DKC15] and Nike+ [nik] are commercialized devices

that have abilities to track cardio exercise. Several previous researches discussed how

the weightlifting activities can be sensed. MyoVibe [MLN15] leverages mechanomyogram

(MMG) sensors to sense muscle activation for session segmentation. Repetitions can be

counted by processing inertial sensor signals [PHK13,MPA14,vim] or observing the Doppler

3The expected sampling rate is clarified in this thread https://developer.thalmic.com/forums/topic/
1945/
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Figure 3.3: Overview of MyoBuddy system.

Effect from RFID sensors [DSY15b]. Prior work also explored exercise type recognition

through machine learning algorithms [ZSC16,CSG13]. RecoFit [MSG14] and myHealthAs-

sistant [SBV11] are complete systems which automate the weightlifting tracking process,

including repetition counting and type detection. Burnout [MLN16] exploits wearable sen-

sors to quantify muscle fatigue index to prevent injury. Among aforementioned work, only

Zhou et al. [ZSC16] tackles the weight usage detection. However, the accuracy of distin-

guishing four groups of weights in their work is only 43%. Our work aims at distinguishing

different weights in a finer grained categories with a higher accuracy.

Electromyography sensor. Electromyography (EMG) sensor has been studied for more

than two decades [De 97], and has been widely applied in medical domain for identifying

neuromuscular diseases such as back pain [San10] or muscle fatigue level [MLN16]. In human-

computer interaction domain, EMG sensor has been used for gaming [PK11], capturing hand

gesture [PK11,myo], idenfication [YWZ16], and an controlling wheelchair [AG06]. Our work

further extend the capability of EMG sensors for weight detection.

3.4 Experiment Design

The system overview of MyoBuddy is shown in figure 3.3. A Myo armband measures EMG

signals from users. A mobile phone application serves as a proxy to receive EMG data from
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Myo via Bluetooth Low Energy, and forwards the data to the server over TCP. All the

computation and feedback are done in the server.

3.4.1 Data Collection Application

We implemented an Android application to receive and log EMG data from Myo armband

through Bluetooth Low Energy (BLE). Our experimental sampling rate of EMG data in our

application ranges between 130 and 170Hz, which is close to the theoretical sampling rate

of 200Hz stated by the manufacturer. The fluctuation in the data sampling rate is caused

by crowded Bluetooth communication and stability. In fact, several other BLE devices were

found in the experimental area.

The packet format of EMG data from Myo is partially open-sourced by ThalmicLab4.

Each packet contains two consecutive samples, and each sample includes 8 bytes, and each

byte represents a EMG sensor reading whose value ranges from −128 to 127. The values

indicate the relative bio-potentials, but the unit is not defined.

3.4.2 Experimental Procedure

Each EMG sensor in Myo senses electrical signals corresponding to the muscle groups the

EMG sensor is attached to. To reduce ambiguity in data analysis, we described a fixed way

to wear the Myo armband, i.e., the orientation and the position of the Myo armband with

respect to the forearm is always the same when the device is worn. Figure 3.4 shows the

expected way to wear a Myo armband. A user should wear the Myo device on her left forearm

close to the elbow, with the logo (printed on 4th EMG sensor) aligned with the center of the

fist.

We chose barbell bicep curl as the exercise in our experiment5. Figure 3.5 presents the

4Myo armband Bluetooth packet format: https://github.com/thalmiclabs/myo-bluetooth/blob/
master/myohw.h

5A standard barbell exercise is described in https://www.bodybuilding.com/exercises/main/popup/
name/barbell-curl
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5 4 3

Figure 3.4: The left picture shows that the band should be worn on the middle of a left
arm. The right picture shows the direction of the Myo armband. The Myo logo should point
outward and align with the left thumb.
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Figure 3.5: The motion of one repetition of the barbell curl exercise and its corresponding
EMG data from one EMG sensor.
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procedure of a standard barbell curl. Both authors tried their best to complete each barbell

curl repetition in 2 seconds: 1 second for lifting the barbell and 1 second for returning to the

start position. We define a repetition as one cycle of the barbell motion, and a session to

be several consecutive repetitions. In our experiments, both authors performed a maximum

of 10 repetitions per session. To minimize the impact of muscle fatigue in our experimental

results, the authors rested for at least 1 minute between sessions.

Because of the variation in each individual’s body strength, the maximum weight the

first author can lift is 70 lbs, and the second author can lift up to 50 lbs. Both authors

performed barbell curls starting from 20 lbs to their respective limits, incrementing by 10

lbs in each experiment.

3.4.3 Weight Classification

The data processing server leverages machine learning algorithms for weight detection. Since

EMG signals are time series data, MyoBuddy first segments the time series data and then

extracts features in each window. We consider each window to be 2 seconds long because

it includes a full-cycle of barbell bicep curl motion. Then, MyoBuddy computes several

amplitude-based features in each window including absolute mean, variance, percentiles, and

percentage of samples within certain ranges. All features are computed separately for the 8

channels of Myo device. We use Support Vector Machine (SVM) with RBF kernel [CL11]

and Random Forest (RF) [Bre01] as our learning classifiers.

3.5 Evaluation

We collected 102 sessions of data over a week. Table 3.1 summarizes the characteristics

of our dataset. We conduct several evaluation scenarios based on this dataset to analyze

different aspects of our system, which is reported in the following subsections.
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Table 3.1: Summary of dataset.

Items User 1 User 2

Number of sessions 60 42
Number of repetitions 593 409
Weight range 20-70 lbs 20-50 lbs
Number of different weights 6 4
Total length 40.9 minutes in total
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Figure 3.6: Repetition-level weight classification accuracy when applying SVM and RF al-
gorithms

3.5.1 Personal Model

We first train a model for each person separately. To evaluate the sensitivity of our personal

models to the weight increments, we selectively choose data points in our dataset based on

predefined weight increments. For instance, in the 10-pound increment case, we keep the

data points corresponding to 20 lbs, 30 lbs, up to the maximum weight each author can lift.

Similarly, in the 20-pound increment case, we keep the data points corresponding to 20 lbs,

40 lbs, and 60 lbs, and discard the rest. For our analysis, we consider 10, 20, and 30-pound

increment cases. The resultant datasets corresponding to each case are partitioned into 80%

and 20% for training and testing data, respectively.

Figure 3.6 shows the classification accuracy of all repetitions. Generally, the performance

of RF is better than SVM. One possible explanation that RF gives a better result is that
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Figure 3.7: Session-level weight classification accuracy when applying SVM and RF algo-
rithms

it employs a better feature selection algorithm and leverages ensemble techniques which are

more resilient to over-fitting. Moreover, since the weight range that Author 2 can lift is

smaller and hence fewer classification labels, the overall classification accuracy of Author 2

is higher than Author 1.

Our classifier gets a higher accuracy when the weight increment increases. For Author

1, the classifier achieves higher than 80% in both the 20-pound and the 30-pound increment

case. The accuracy drops to slightly lower than 60% in the 10-pound increment case. On

the other hand, for Author 2, the accuracy of 10-pound increment case is close to 80%, and

is higher than 96% in both the 20-pound and the 30-pound increment cases.

We apply majority voting on estimated weights of all repetitions within a session because

the weight within a session will not change. This session-level optimization strategy improves

the accuracy to 68% for Author 1’s 10-pound increment case. Figure 3.7 summaries the

session-level weight classification accuracy.

3.5.1.1 Training Data Size

To determine the minimum amount of data to achieve an acceptable accuracy, we increment

the training data size and evaluate the classification accuracy. Figure 3.8 summarizes the

results. For Author 1, the accuracy does not converge until 9 sessions of all 6 weights are

63



0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9

Ac
cu
ra
cy

Number	of	sets

A1	Rep A1	Set A2	Rep A2	Set

Figure 3.8: The accuracy increases when there are more number of sessions of each weight
in the training set. We report both authors’ (A1 and A2) repetition (rep) and session (set)
accuracies.

included in the training set. The accuracy for Author 2 achieves 82% in just 3 sessions of 4

weights. As a result, our model only needs a few sessions to achieve an acceptable accuracy,

and will achieve better performance if more training data are provided.

3.5.2 User-Independent Model

Our application will be much more useful if we can train the classifier from one group of

people and apply to other people. We simulate this situation by training on one author’s

data and applying the model on the other author. The EMG signals can differ a lot for

two people lifting the same weight due to the difference in muscle strength. However, EMG

signals have similar amplitude when both authors lift a weight close to their strength limits.

Based on this observation, the weights are partitioned into 2 to 4 categories. Figure 3.9

demonstrates that when the result is binary (2-category case), both models can achieve an

accuracy higher than 85%. However, when there are more weight categories, the accuracy

drops to below 65%.

We also utilize Author 1’s model without grouping any weight and apply it on Author

2’s dataset. The prediction result is interpolated based on their weight limits, i.e., mapping

70 lbs to 50 lbs. The average predicted weight error is 5.2 lbs.
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Figure 3.9: Accuracy of user independent model. X → Y means we take X’s data as the
training set and apply on Y’s data. Both repetition and session accuracy are reported.
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Figure 3.10: The repetition accuracies if we only consider one particular EMG channel from
Myo.

3.5.3 Muscle Groups Matter

To evaluate the necessity of the 8 EMG sensors in Myo, we simulate the situation by keeping

the data from one EMG channel at a time for classification. Figure 3.10 shows the results

that only one EMG sensor data is used. As we can see, the 5th EMG sensor is the most
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Figure 3.11: The result of the leaving-one-out experiment for each EMG channel. The y-axis
presents the accuracy loss compared to the original personal models.
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Figure 3.12: The result of the leaving-one-out experiment for features including absolute
mean, variance, percentile, and percentage of samples within certain ranges (distribution).
The y-axis presents the accuracy loss compared to the original personal models.

significant channel because the greatest amount of force is exerted where the sensor resides.

In contrast, the 2nd EMG sensor gives the lowest accuracy because the muscles under it do

not play a key role in bicep exercises. However, the accuracy of each EMG sensor does not

drop dramatically compared to when all the 8 EMG channels are used, suggesting all the

EMG sensors can sense activated muscles.

66



To examine the importance of each channel, we conducted a leave-one-out experiment

for every channel. Figure 3.11 presents the accuracy loss when the data of one EMG channel

is absent. The results show that none of the channels significantly affect the classification

performance. In addition, the accuracy increases after removing the 1st and 4th channels

because they cause noise in the model. After removing these two noisy channels, the accuracy

can improve by 2.5% and 1.3% for Author 1 and Author 2, respectively.

3.5.4 Feature Analysis

Similar to the previous experiment, we conducted a leave-one-out experiment for the follow-

ing feature groups: absolute mean, variance, percentiles, and percentages of samples within

certain ranges, as mentioned in Section 3.4.3. Figure 3.12 shows that the accuracy increases

the most when the variance feature is removed. The final accuracy increases to 66% and

80% for Author 1 and Author 2, respectively.

3.6 Discussions and Limitations

Orientation of Myo. One limitation of our experiments is that the Myo armband must be

worn in a specific orientation on the forearm. However, this orientation can be automatically

acquired using the built-in inertial sensors in Myo. Once the device orientation is measured,

the angular difference between the measured versus expected orientation can be detected,

and EMG data can be calibrated by shifting the EMG channels.

Arm motion pace. EMG measurements capture the electrical signals sent out from mus-

cles, which is an indicator of how much force is being exerted. However, a person may use

a different amount of force when lifting the same weight because of the pace of the motion.

Generally, one needs to use more force to complete a workout session more quickly. Our

experiment avoids this complication by constraining the duration of each bicep curl rep.

However, this restriction could be removed by measuring the duration of each repetition
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from inertial sensors [PHK13,MPA14].

The sensing scope of workout. In our study, we choose barbell bicep curl for our appli-

cation evaluation. However, the methodology can be generalized to other workout activities

as well, such as all upper body exercises because arms are always needed to coordinate for

upper body exercises. In the future, the weight detection model should consider the work-

out type as a prior [ZSC16,CSG13] because the muscle activation can vary among different

exercises.

3.7 Summary and Future Work

We designed a practical system called MyoBuddy using EMG sensors to estimate the weights

of the barbell exercise. Our results show that MyoBuddy can distinguish weights with a 10-

pound increment with 73.4% repetition-level and 77.1% session-level accuracy.

Although we only collected one week of data from two authors, in the future, we plan

to recruit more volunteers and to test our system in different weightlifting exercises such as

tricep ropes, bench dips, etc. We further aim to migrate the data processing program to

smartphone so that users can obtain real-time feedback and see the performance improve-

ment. Our system has potential to enable different interesting applications, such as a tool

for bodybuilders to track their weight limits and adjust their training plan accordingly.
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Engagement Modeling
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CHAPTER 4

Nurture: Notifying Users at the Right Time Using

Reinforcement Learning

4.1 Motivation

Edge devices depend upon human interaction for numerous functionalities. Crowd-sourcing

apps such as Waze1 and Yelp2 bank on user input to deliver services; intervention-based

apps such as Apple Watch Activity app3 prompt users to exercise; and apps such as Google

Now4, Medisafe5 send useful context-based reminders. User engagement with edge devices

is leveraged to learn preferences, label activities and configure devices.

The usefulness of edge devices diminishes significantly if users do not want to interact

with them [MCD18]. For instance, a medical therapy may not work if the patients do not

read the intervention messages. We can imagine another case where the quality and strength

of a survey research study can suffer if participants do not consistently respond to the in-situ

survey questions. In a more critical example, users may not have the time to react if they

ignore warnings and alerts preceding a natural disaster. footnoteNotifications can also lead

to negative effects if they distract the user at the wrong time. For example, interacting with

a handheld device while driving increases the crash risk 3.6 times [DGL16].

Most edge devices currently employ a simplistic interaction model that assumes the user

1Waze - https://www.waze.com/

2Yelp - https://www.yelp.com/

3Use the Activity app on your Apple Watch - https://support.apple.com/en-us/HT204517

4Google Now - https://en.wikipedia.org/wiki/Google_Now

5https://medisafe.com/
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Figure 4.1: The proposed reinforcement learning agent interacts with the user to learn the
right time to send notifications. Nurture aims to empower different applications. In this
paper, the user is simulated by underlying models.

is always available to engage with the device. In reality, user attention is a limited cogni-

tive resource [LFN15]. Users get over 60 notifications a day [PCD14], so it is natural to

skip notifications when feeling overwhelmed and to dismiss all communications when distur-

bances are undesirable6. Nevertheless, there is no systematic way to infer user availability

yet, and identifying the ideal time for human interaction remains a challenging problem as

user engagement depends on a wide range of variables such as context [ORN15], environ-

ment [WVK16], hardware status [OTT17], and content of messages [MMH15].

Here we approach notification timing as a reinforcement learning problem, and propose a

notification time selection technique, Nurture, which learns user preferences through interact-

ing with users over time without any prior knowledge. Figure 4.1 illustrates the learning flow.

Nurture obtains the user state via sensors, decides if it should notify the user, and observes

user reaction after sending the notification. By considering accepted notifications as positive

signals and dismissed notifications as negative signals, the agent learns the appropriate times

to notify the user. Previous studies on intelligent notification systems mostly approached the

6https://www.wired.com/story/turn-off-your-push-notifications/
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problem as a supervised learning problem. We evaluated Nurture with both a synthetic and

an online interactive crowdsourcing-based simulation. Our results show that reinforcement

learning is able to capture notification preferences from real users and significantly improves

user response rate compared against previous supervised learning methods.

4.2 Related Work

For mobile applications, push notifications are a convenient way to interact with users.

However, it has been shown that push notifications can reduce work performance and increase

stress especially if they arrive at inappropriate times. Hence, there is a growing interest on

how to make notification systems more intelligent [MM17a].

There are two main approaches to identify opportune moments for notifying users. The

first category is to show notifications when the user is transitioning between activities. An

activity transition usually indicates that the former activity is completed, hence, it is a good

time to interrupt users before they start another task. Oasis [IB10] is the first system to

exploit breakpoints between computer tasks to interrupt users. Attelia [ORN15] detects

physical activity transitions using both smartphones and wristbands, and identifies which

transitions indicate user availability. The downside of this approach is that the changes

in sensor readings do not always reflect activity transitions, hence, high false positive rate

becomes a concern.

The second category is to infer user interruptibility from context. Sarker et al. [SSA14]

showed that factors such as location, activity type, stress, time, and day of the week affect

user participation in medical interventions. PrefMiner [MHM16] analyzes the content of

notifications and learns to filter out those notifications that a user will not pay attention to

based on her preferences. Goyal et al. [GF17] show that users are likely to pay attention to the

notifications which are shown at times of increasing arousal detected from the electro-dermal

activity. Aminikhanghahi et al. [AFS17a] proposed a combined activity recognition and

intelligent notification framework based on supervised learning which improves notification

response rate.
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Prior works have primarily focused on supervised learning and manual labeling to under-

stand the relationship between the user state and notification response. Here we approach

the problem as a reinforcement learning/contextual bandit problem where the agent learns

when to notify the user merely by interacting with the user and observing the context of

the interaction. The strength of our approach comes from the fact that we do not have

an explicit training phase and gradually improve notification timing over time. In the re-

inforcement learning setting, we treat the problem as a sequential decision problem, which

implicitly takes the daily routine of the user into account. We do not require users to provide

explicit feedback and can adapt to changing user habits.

4.3 Design and Implementation

4.3.1 Problem Setup

In a typical reinforcement learning (RL) setting, an agent interacts with an environment

to achieve certain goals. At each step, the environment is in a certain state and the agent

takes an action. The environment reacts to the action by transitioning into another state

and returns a reward to the agent. The strategy with which the agent selects its actions is

referred to as its policy. To this end, the RL agent tries to find an optimum policy by trying

different actions which maximizes the cumulative reward over successive iterations.

In our setup, Nurture is the RL agent which empowers applications on smartphones

or other edge devices, and the environment is the user. At every pre-defined time interval

(e.g. 10 minutes), Nurture senses the user state based on sensor readings. The user

context we have considered are time, location, physical activity, and last notification usage,

summarized in Table 4.1. Nurture performs one of the following actions - remain silent or

send a notification to the user. The reward is based on the reaction of the user: A positive

reward is received if the user responds to the notification, a negative reward is received if

the notification is dismissed, and zero reward is received if the user delays the notification

to respond later.
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4.3.2 Learning Strategies

4.3.2.1 Contextual Bandit

We first approach our problem as a contextual bandit problem which is a special case of

reinforcement learning where the agent does not keep track of sequence of states visited. In

a bandit problem, the agent can take a set of actions with unknown rewards. Similar to

reinforcement learning, the agent maximizes cumulative reward over successive iterations.

The bandit agent explores the rewards associated with the each action (i.e, arm) and aims to

learn the best action. Contextual bandit is a type of bandit problem where the agent receives

observations as context, and the context is used to learn the state in which the environment

is in.

In our setup, the two arms of the bandit problem are (i) to send a notification, or (ii)

to remain silent. The context is the information about the user sensed by the application.

The reward from the first arm is stochastic and depends on the response from the user. The

reward from the second arm is always zero as no feedback is received when a notification is

not sent.

4.3.2.2 Reinforcement Learning

We also consider our problem as a Markov Decision Process (MDP) which we solve using

reinforcement learning. Different from the contextual bandit problem, reinforcement learn-

ing approach implicitly learns transitions between states. Similar to the contextual bandit

problem, the aim is to maximize the long term reward.

The expected long term cumulative reward for taking an action from a given state under

a specific policy is referred to as Q-value. We use the standard Q-learning algorithm [WD92]

where the agent updates the Q-value as it visits different states using a random exploration

policy. Across iterations, the Q-value converges to its optimum value, and we get the final

policy by picking the actions with the highest Q-value at each state.
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Table 4.1: The state categorical values. Each state is presented by the combination of these
five categories, so there are 144 different states in total.

Category Values

Time of the day morning, afternoon, evening
Day of the week weekday, weekend

Location home, work, others
Motion activity stationary, walking, running, driving
Last notification within / beyond 1 hour

4.3.3 Experimental Setup

We conducted a simulation-based experiment using crowdsourced data as a proof-of-concept

study. Our experimental procedure is approved by UCLA IRB. The simulation process

is depicted in Figure 4.1. In our simulator, we imitate a user in her daily routine. The

mobile application senses the user context through her mobile phone and wearables, and

Nurture decides whether to send a notification or to remain silent. Once our agent sends

a notification, the simulated user can respond to the notification, explicitly dismiss the

notification, or perform no action to skip it. Nurture then obtains the reward according to

the user’s reaction and adjusts the strategy.

A simulated user is driven by a behavior model and a response model. The behavior

model reflects the daily routine of the user, i.e., the location and the activity of the user

during a week. We derived the behavior model from the ExtraSensory dataset [VEL17],

which includes daily traces of 60 participants for improving context recognition in-the-wild.

The dataset consists of 29 locations and 15 activity contextual labels, and the participants

marked the applicable labels at a granularity of one minute. We group these labels to fit

our simulation settings and pick four user traces which have distinct lifestyles. Important

statistics regarding the weekly routines of these users are summarized in Table 4.2. The

response model simulates how a user responds to a notification at a given context, and the

user context is determined by the behavior model.

Each question in the mTurk survey describes a scenario that specifies the time of the
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day, day of the week, location and activity of the user, and when the last notification was

responded to. We provide a sample survey question below:

It is 10:30 AM on Saturday. You’re sitting in a shopping mall. You responded to

a notification 1 hours 15 minutes ago. Now you receive a notification from our

app to complete a 10-second task. What action will you take?

The responders pick an answer from the following:

a) Dismiss this notification

b) Leave the notification and answer it later

c) Take ten seconds to respond the notification

We performed two different types of simulations to imitate human responses: a synthetic

simulation and an online interactive simulation. In the synthetic simulation, we deployed a

survey on the Amazon Mechanical Turk7 (MTurk) prior to running Nurture to collect data

on how users will respond to notifications given different context. The crowdsourced data is

used to synthesize the response of a single user. Specifically, the user response is determined

by looking up the survey response describing the same situation.

In contrast, in the online interactive simulation case, we do not collect data a priori.

Nurture interactively sends notifications in the form of an mTurk survey to model a “pseudo-

user”. Depending on the responses collected in an iteration, Nurture updates the notification

scheduling policy either using the contextual bandit or the Q-learning algorithm. The up-

dated policy is used to generate a new mTurk survey so as to maximize the likelihood of

positive response from the workers. We create two pseudo-user profiles where each user has

a different daily routine, and we collect each of their responses from a different region, e.g.,

the U.S. vs India.

7Amazon Mechanical Turk - https://www.mturk.com/
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Figure 4.2: The performance of contextual bandit and Q-learning algorithms over weeks,
compared with SVM as our baseline.
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Table 4.2: Statistics for four users, showing the number of hours each user spends at each
location and activity

Attributes/Routings User1 User2 User3 User4

Staying workplace 2.81 2.96 9.74 3.89
Staying outdoor 2.76 7.29 3.80 6.96

Walking+running 1.32 0.54 1.57 1.34
Driving 0.37 1.20 0.43 2.05

4.4 Evaluation

We first performed synthetic simulation in which the human responses are approximated.

This gives us the advantage of repeatedly and systematically iterating over our algorithms.

We then tested our algorithm on online interactive simulation where the user responses are

collected in the wild over a crowdsourced platform. This gives us insight on whether our

agents can adapt to user preferences over time.

4.4.1 Synthetic Simulation Results

We collected 3,019 survey responses from MTurk across 123 workers. 44.1% notifications

were accepted, 26.6% were dismissed, and the rest were marked as ‘answer it later’.

We use the response rate and notification volume as performance metrics. Response rate

is defined as the fraction of accepted notifications over notifications sent without considering

those marked as skipped. High response rate implies our agent can accurately identify when

to approach users. However, an agent may increase the response rate by avoiding interaction

with users. Thus, we use number of notifications to balance this effect. A well-behaved agent

should keep a high response rate while maintain a high notification volume.

We consider the following two supervised algorithms as our baseline: Support Vector

Machine (SVM) with Radial Basis Function kernel, and 2-layer Neural Network (NN) with

32 neurons in each layer. The models apply one-hot encoding to represent contextual user

data (i.e. the user state shown in Table 4.1) as a feature vector, and an anticipated action
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(i.e. user response) as the predicted label. We created training and testing schedules that

last 4 weeks and 10 weeks, respectively. During the training phase, each algorithm randomly

sends 15 notifications a day, and obtains the responses from MTurk as the training dataset.

During the testing phase, both algorithms predict an action every 10 minutes to determine

whether to send a notification or not. We apply the baseline algorithms to the four users

weekly routines as described in Section 4.3.3. SVM and NN achieve a mean response rate of

77.4% and 77.1% each, and send an average of 17.8 and 6.7 notifications per day, respectively.

We choose SVM as our baseline for the rest of the paper.

Figure 4.2 shows the performance of Nurture. We apply contextual bandit and Q-learning

algorithms on the four different weekly routings. We found that these two algorithms take

opposite strategies: Contextual bandit starts conservatively, whereas Q-learning sends more

notifications in the first two weeks. Both algorithms are able to achieve higher response rate

over time, and converge at 89.6% and 93.8% response rate respectively. Therefore, both

algorithms demonstrate that they can achieve better response rate compared against the

baseline in less than 4 weeks; Q-learning only takes two weeks to achieve the response rate

over 80%. Q-learning is superior because it considers the state transition, whereas contextual

bandit does not consider pursuing future rewards.

4.4.2 Online Interactive Simulation Results

To demonstrate Nurture can interact with real users and adapt to their preferences, we

update our model online based on the crowdsourced responses from MTurk. We choose Q-

learning algorithm because it performed better in the offline case. We started two simulations

which obtain notifications from the U.S. and India. Each simulation is assigned to a different

behavior model. We removed the responses from abusive workers that take unreasonably

short amount of time to finish the survey, or those who enter a single option for more than

95% of their total responses. At the end, we recruited 223 workers from the U.S. and 67

workers from India that collectively completed this experiment.

The simulation result is shown in Figure 4.3. In the first two weeks, Q-learning aggres-
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Figure 4.3: Performance of interacting with MTurk workers using Q-learning.

sively sends notifications to explore user preferences under different contexts. The devel-

opment of the two simulations deviate there onward. In the simulation of India, Nurture

still cannot find the opportune moments to interrupt users, hence, it becomes conservative

while continuing to learn, and the response rate improves after week 6. In contrast, in the

simulation of the U.S., Nurture converged to a high response rate on week 3, and reaches out

to the user more often. The agent then realizes the user starts to show disagreement with

the notification schedule, and adjusts the strategy to carefully choose when to approach the

user. As we can see, the response rate increases in the end after learning from its mistakes.
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4.5 Limitations and Future Work

In our experiments, we have used crowdsourced data to emulate user response to approx-

imate what may happen in a real deployment. Although we have only considered user

context that can be inferred from mobile phone sensors, our proposal can make use of other

sensing modalities. For example, acoustic sensors such as Alexa can be a rich channel to

infer user emotion, or electro-dermal activity from a watch can be used to detect arousal or

stress [GF17], which are closely related to user availability. Additionally, instead of treating

all notifications uniformly, Nurture can consider the importance of the message by manip-

ulating the reward associated with each notification, e.g., a large reward for a high priority

message. Building upon these preliminary experiments, we plan to do a human subject study

to evaluate the performance of the proposed algorithms.

4.6 Summary

We have designed a reinforcement learning based algorithm to improve notification response

rate, which in turn increases the quality of interactions from edge devices and reduces dis-

turbance. Our algorithm takes several factors into account such as the activity of the user,

location, and time of the day to optimize user engagement via push notifications. We

have conducted experiments using crowdsourced data to evaluate the performance of our

algorithm. The experimental results show that our algorithm improves the notification re-

sponse rate significantly with respect to a supervised learning benchmark, while balancing

the amount of notifications. Therefore, our proposed approach improves the quality of in-

teraction between the user and the applications running on edge devices by providing more

timely notifications.
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CHAPTER 5

Quick Question: Interrupting Users for Microtasks with

Reinforcement Learning

5.1 Motivation

Human computer interaction has evolved over the years from desktop-only machines to

wearables that interface at a glance. Modern services in navigation, commute, local busi-

ness discovery, crowdsourcing, [ASS10], participatory medicine [LPS10] depend upon such

on-demand interaction, where the user can access the services wherever they go. Push no-

tifications exploit this interaction to proactively seek user attention. Notifications are used

to check mail, remind users, nudge behavior [NHS15] get feedback1, label datasets2, etc.

However, human attention is a limited resource [LFN15], and serving content irrelevant

to the context leads to annoyance, reduces productivity [BK06] and diminishes engage-

ment [MPV16].

User interruptibility has been extensively studied in literature [MM17b]. We categorize

prior works into two approaches - rule-based and data-based policies. The rule-based policy

relies on human behavior analysis and identifies the moments that people are likely available.

Proposed policies include identifying breakpoints between two tasks [IB10] and using events

such as unlocking the phone as a heuristic [VWC14]. As the policy is fixed, it does not fit users

who have different preferences. Data-based approach leverages machine learning [PM14,

MMH15, SSA14, PDP15]. Prior works used supervised learning that learns the non-linear

1Yelp review - https://www.yelp.com/

2Google Maps: Question About a Place - https://goo.gl/Jf9mTq
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relationships between user context and availability using dataset collected from an existing

policy. Thus, the data-based policy learns preferences for each user based on observed

behavior.

While prior works use supervised learning (SL) methods, we propose using reinforcement

learning (RL) to identify user interruptibility. We identify the following advantages of RL:

(i) Sequential decision process: SL assumes data samples are independent from each

other, whereas RL models each sample a function of previous samples. Users can get annoyed

if they get too many notifications, and RL will capture this effect.

(ii) Exploration: SL methods passively collect data based on an existing policy, while RL

algorithms actively explore the problem space to learn policies that are robust.

(iii) Online learning: SL methods need a training dataset to learn whereas RL is designed

for online learning.

We focus on identifying interruptibility for microtasks [CTI15], where we ask the user a

“quick question” that can be answered in a few seconds. Microtasks have several use cases -

crowdsourcing, personalization [OTD14], labeling datasets [GNW14], ecological momentary

assessment [PHM17]. We seek to identify appropriate moments of the day to maximize

microtask responses. We collect user context using a smartphone and periodically send the

information to the cloud. Our web server uses SL and RL to determine whether to send a

microtask to user. User interactions over time are used to train the learning models.

We conducted a 5-week, 41-participant user study to compare SL and RL methods. Our

results indicate the microtask responses vary dramatically from person to person and both

data-based methods capture the individual preferences. We penalized notification dismissals

with a negative reward for RL, and it effectively learned to avoid dismissals while ensuring

number of responses commensurate to SL. Users indicated they were available to answer

quick questions when the RL agent interrupted them 73% of the time compared to 56%

for SL. Users expressed improved experience over time with RL and data indicates that RL

adapts to changing preferences within a few days.

The following are the contributions of this work:
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• This is the first work to exploit reinforcement learning technique to identify user in-

terruptibility.

• We implemented a cloud service that collects user context from a smartphone app and

determines interruptibility using both supervised learning and reinforcement learning.

• We conducted a 5-week user study and recruited 41 participants to compare supervised-

learning and reinforcement-learning based microtask scheduling policy in the wild.

5.2 Related Work

5.2.1 Microtask

A microtask typically refers to a simple task that can be done within seconds [CTI15]. The

microtask technique is widely used in crowdsourcing context: This technique aims to lower

the mental burden [KCS08] and to improve response quality [CTI15]. Microtasks have also

been applied to solve big, complex tasks by partitioning them into multiple independent

microtasks [KSK11]. A more sophisticated approach is to automatically decompose a task

based on domain ontology [LSN14]. Microtask techniques have been successfully applied to

high-complexity tasks such as domain-specific language annotation [GNW14], article writ-

ing [KSK11], and software development [LTA14]. In this paper, we address an orthogonal

issue how to schedule microtasks to increase user responses.

5.2.2 Interruptibility Modeling

Machine-to-human interruptibility has been extensively studied in Human Computer In-

teraction (HCI). One major interruption source from mobile and wearable devices is push

notifications; prior studies have shown that scheduling notifications at an improper time

increases anxiety [PCD14] and reduces productivity [BK06]. We broadly categorize inter-

ruptibility modeling techniques into rule-based and data-based. Rule-based techniques rely

on prior knowledge to estimate opportune moments of interacting with people. For example,
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opportune moments can be identified based on mobile phone usage pattern such as after

phones are unlocked [VWC14], after phone calls or text messages are finished [FGB11], or

when a user reviews an application [BBM14]. Scheduling microtasks at the task boundaries

(i.e. breakpoints) can reduce mental effort [AB04], and this technique has been applied to

the desktop domain [IB10] and mobile platforms [ORN15]. Goyal et al. [GF17] observes that

it would be the most effective to schedule a notification when electrodermal activity (EDA)

reading increases under a high-stress context. All these techniques rely on a fixed policy and

cannot be generalized to all the users or adapted for changes in user preference.

A more sophisticated approach is to derive a classification model based on the user con-

text, which is sensed by mobile or wearable devices. Besides the common mobile phone sen-

sor data such as time, location, and motion activity, Sarker et al. [SSA14] further considers

stress level and social engagement and uses SVM to detect when a user is available. Inter-

ruptMe [PM14] takes emotion as an additional feature to infer if sending an instant message

is appropriate at the moment. Mehrotra et al. [MMH15] leverages the content of notifications

to infer how likely the notifications will be responded. Pielot et al. [PDP15] delivers news

feeds when a user gets bored by training a random forest classifier. PrefMiner [MHM16]

mines the notification usage patterns and users can pick some of those patterns to effectively

filter out undesired notifications. Thyme [AFS17b] shares the same goal with us to maximize

user responses to microtasks. They use SVM to identify interruptibility. Our work differs

from these works by applying reinforcement learning techniques to address the interruptibil-

ity problem. As opposed to supervised learning, reinforcement learning is an online learning

process and it learns user preference from interacting with users without a separate training

phase.

5.2.3 Human-in-the-Loop Reinforcement Learning

Reinforcement learning (RL) has recently achieved several accomplishments in artificial intel-

ligence. For example, RL agents are able to master more than 50 Atari games without prior

training [MKS15]. In 2017, DeepMind developed a Go play system called AlphaGo which
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Figure 5.1: Reinforcement learning Setup.

defeated the world champion [SSS17]. These breakthroughs demonstrate the capability of

reinforcement learning. Besides playing games, there are several works that apply RL to help

humans. Sentio [ETS18] uses a variant of Q-learning to prompt forward collision warnings in

cars. Rafferty et al. [RBG16] develops a tutor system based on Partially Observable Markov

Decision Process (POMDP). Greenewald et al. [GTM17] exploits contextual bandit to en-

hance a mobile health system. Silver et al. [SNB13] uses RL to maximize an objective of a

company (e.g., revenue) by performing actions to customers (e.g., offering a discount). Our

work aligns with these works and uses RL to optimize notification response performance.

5.3 Background

In a typical RL setting, there is an agent and an environment whose relationship is depicted

in Figure 5.1. At each step, the agent first makes an observation to obtain a representation

of the environment called state. The agent then takes an action based on its policy. As a

result of the action, the environment moves to a new state and returns a reward. The agent

maximizes the discounted sum of future rewards accumulated over successive steps.

The policy π indicates which action at should be performed given the current state st.

Let the discounted sum of future rewards Rt =
∑∞

k=0 γ
krt+k where ri is the reward received
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Figure 5.2: Neural network structure of A2C.

at the ith step and γ is the discount factor between 0 to 1. The state-value function V π(s)

is the expected value of discounted future rewards from a given state s following a policy π:

V π(s) = E[Rt|st = s]. (5.1)

Similarly, the action-value function is defined as the expected value of taking an action a at

a state s following a policy π:

Qπ(s, a) = E[Rt|st = s, at = a]. (5.2)

Then, the advantage function which is defined as

Aπ(s, a) = Qπ(s, a)− V π(s) (5.3)

indicates how advantageous it is to take an action at a given state compared to other actions.

Quick Question uses the Advantage Actor-Critic (A2C) [MBM16] as the RL algorithm.

A2C uses two neural networks - an actor network and a critic network. The actor network

generates actions by approximating the policy π(a|s, θ) with parameters θ, while the critic

network learns the value function to assess the benefit of an action. The network structure
87



is depicted in Figure 5.2. In policy gradients methods, θ is updated in the direction of

∆θ log π(at|st; θ)Rt where Rt is the accumulated reward after a policy run. To reduce the

variance of updates, an unbiased baseline is subtracted from the accumulated reward as

∆θ log π(at|st; θ)(Rt − b(t)). In A2C, the baseline is the state-value function: b(t) = V π(s).

Hence, the estimate of the value function as given by the critic network is used in computing

the gradient.

In our framework, the agent is our system Quick Question, and the environment is

the smartphone user. The agent observes the user context as a representation of the user

state, and takes an action: either to send a notification or to keep silent. The agent

gets a positive reward when the notification is answered, and a negative reward when the

notification is dismissed.

5.4 System Design and Implementation

Figure 5.3 shows our server-client architecture with: a phone client app and a web server.

Our phone app senses user context data and sends it to the server every minute. Our server

determines if the user is interruptible at the moment based on the current user context along

with the past user daily routing and response history, and returns the binary decision back

to the client app, indicating to prompt a microtask (i.e., a short question) or to keep silent.

Once the app displays the microtask, the app tracks how the user responds to the question

and sends the response by piggybacking on the next request.

5.4.1 Client App

Our app is composed of three components: A sensing module to monitor user context, a

microtask pool to store a list of short questions, and a user interface module.

Sensing Module It collects time of the day, day of the week, location, motion status,

screen status, ringer mode and the elapsed time since last prompt (see Table 5.1). To

minimize battery impact, we use Android’s AlarmManager to schedule sensing tasks, use
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Figure 5.3: Quick Question system overview.

Table 5.1: Features considered in Quick Question as user context.

Sensing modality Category Values
Time of the day Continuous 00:00 to 23:59
Day of the week Continuous Sunday (0) to Saturday (6)

Location Discrete Home, Work, Others
Motion Discrete Stationary, Walking, Running, Biking, Driving

Ringtone mode Discrete Silent, Vibration, Normal
Screen mode Discrete On, Off

Notification elapsed time∗ Continuous 0 to 120 (minutes)
∗Defined as how many minutes has elapsed since last notification.

ActivityRecognition API for motion activities and the Geofencing API for location.

Microtask Pool We use ecological momentary assessment (EMA) questions, commonly

used in human behavioral studies [SS94]. All the questions are designed in the micro-EMA

style [PHM17] in multiple choice form and can be answered within a few seconds.

The questions can be partitioned into: (i) Self-monitoring questions that track user’s men-

tal and physical status such as stress and diet; (ii) Participatory sensing questions collect the

environmental information, e.g., noise level at the current location; (iii) The crowdsourcing

questions, e.g., image ground truth labeling. We have nine question types listed in Table 5.2.

For some questions, correctness can be verified.
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Figure 5.4: The microtask answering interface in the client app, through a notification (left)
or in the app (right).

Notification Interface We embed the questions into the push notification (Figure 5.4).

The notification is displayed heads-up style with the possible options right below (with

Android 7.0 or later version). Alternatively, users can also answer the questions by manually

launching our app and selecting a choice in the task view. A microtask is timed out after an

hour, or when a new microtask is scheduled.

5.4.2 Server

Our server is composed of a standard web server, a database system, and several learning

agents. When the web server receives a request (i.e., the user reaction of the previous action
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and the current user context), it restores the learning agent by retrieving the learning policy

from the database. The agent updates the policy by considering the user reaction if necessary.

The agent then makes an inference of user interruptibility and decides if it is appropriate to

prompt a task at the moment based on the revised policy. The policy is dumped back to

the database.

HTTPS Server It serves as the frontend for our mobile client app to query user inter-

ruptibility through the RESTful API. We implement a dashboard to identify if the data is

not collected as anticipated due to a connection loss from the user side. We use Django3

to develop our web application, which follows the standard model-view-controller (MVC)

design pattern.

Database The database stores logs including the interruptibility request records, task

response time and results, and the sensor data. These logs are for data analysis and are not

part of the interruptibility inference. The policy of each learning agent is also kept in the

database.

Supervised Learning (SL) Agent The SL agent converts the user context into a feature

vector and the user response as a classification label. To convert a user context into a vector,

the agent normalizes sensing modalities which output a continuous value (e.g., time of the

day) into a number between 0 and 1, and uses one-hot encoding to represent sensors with

discrete values (see Table 5.1). As a result, the user context can be represented by a 15-

dimensional vector. To produce a classification label, the supervised learning agent creates

a positive label if the notification is answered, and a negative label otherwise.

There are two stages in the supervised learning: A training phase for the data collection

and a testing phase to finalize the notification scheduler. In the training phase, the agent

first receives a sample frequency as a hyper parameter. For example, if the sample frequency

is configured as 30 minutes per notification, the agent will schedule a notification every 30

3Django Web Framework: https://www.djangoproject.com/
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minutes but the actual prompt time will be randomized. The training phase lasts for three

weeks4. The agent trains a classifier before moving into the testing phase. We use Random

Forest as our supervised learning algorithm because it outperforms Support Vector Machine

and Neural Network in our empirical study. Our implementation is based on Scikit-Learn

library [PVG11b].

Reinforcement Learning (RL) Agent Similar to SL, the RL agent uses the same feature

representation to encode user context. Different from SL, RL maps the user response to

different reward values: A positive reward that decays exponentially based on response time

to encourage scheduling a microtask that can get an immediate response; a strong negative

reward if a user dismisses the notification to avoid negative user experience; a small penalty

if the user ignores the notification (i.e., does not answer it within one hour because the

user overlooks it or forgets to reply). To achieve this design principle, we define the reward

function as:

reward =


1× t0.9, if answered,

−0.1, if ignored,

−5, if dismissed

where t is the notification response time in minutes (i.e., the time difference between the

prompt and when the answer is received). Although the hand-picked reward values work

well in our study, the reward function can be fine-tuned by Inverse Reinforcement Learn-

ing [BWJ17].

Our RL agent implementation is built upon Coach [CLN17], a reinforcement learning

library. Integrating an RL algorithm into a web framework is not a trivial task due to the

sequential nature of RL, but connections in web applications are stateless. To this end, we

enforce a breakpoint after an action is determined.

4Prior work on training personal models using SL demonstrates that the classification accuracy converges
in two weeks, e.g., [PM14,MMH15]
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Our RL algorithm is selected based on an empirical study. The procedure is similar

to [nur], but we additionally tested other neural-network based RL algorithms including

Deep Q-learning Network (DQN) [MKS15], Advantage Actor-Critic (A2C) [MBM16], and

Proximal Policy Optimization (PPO) [SWD17]. A2C achieves the best performance among

these algorithms and converges in the shortest time. Hence, we choose A2C for the real user

study. We employ a fully-connected neural network with one hidden layer (256 units). We

set the discount factor γ = 0.99. The algorithm uses categorical exploration strategy which

performs a stochastic action based on the probability distribution of both actions.

5.5 User Study

We conducted a user study to evaluate Quick Question. We were guided by the following

inquiries:

• What was the relative notification response amount, rate, and accuracy (for notifica-

tions with correct answers) collected from the reinforcement learning (RL) method and

how is it compared to the supervised learning (SL) method?

• How did the user experience resulting from the RL method compare to the SL method?

To make a meaningful comparison, this comparison study emphasizes the aspect of ma-

chine learning algorithms, i.e., the SL method vs. the RL method, while maintaining consis-

tency in other aspects, such as the same user study procedure, the same qualification criteria

for selecting participants, and the same analysis method on the collected notifications.

5.5.1 Participants

This study was approved by University IRB. In total, we recruited 41 participants (24 fe-

males, 17 males) from a major research university. Among these participants, 38 were

students and 3 were staff. Ages ranged from 17 to 29 (mean=21.1). The inclusion criteria of

our study are active Android users with OS version 7 or higher. Participant phone models

included Samsung (N=19), OnePlus (N=7), Google Pixel/Nexus (N=7), Sony (N=2), HTC
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(N=2), LG (N=2), Motorola (N=1), and Xiaomi (N=1). Additionally, Android OS 7, 8, 9

accounted for 12, 25, and 4 participants respectively. The participants received gratuity of

$50 for each completed week, and an additional $50 if they complete the entire study.

5.5.2 Procedure

15 participants took part in the reinforcement learning method, and 26 in the supervised

learning method. One user dropped out after 3 weeks since her phone constantly killed our

app and prevented the app from working in the background. The procedure consists of two

phases: (1) a screening phase to select qualified participants, and (2) an experimental phase.

Participants were recruited via university mailing lists and snowball sampling.

In the screening phase, interested candidates completed a questionnaire regarding the

phone model they were using, its OS version, and whether they would have network reception

during the entire study even if WiFi is not available. After they passed the screening phase,

candidates were asked to fill out a pre-study questionnaire with their personal information.

Finally, qualified participants were asked to attend an orientation on how to use the Quick

Question app. During the orientation, we emphasized that (1) our study app will send no

more than 150 notifications5 in each day between 10am to 10pm, and each question can be

answered within a few seconds, and (2) participants were asked to not change the way they

respond to notifications, hence, answering all questions is not necessary. We then helped the

participants to install our app and complete the location configuration (i.e., user’s home and

work location) for the classifier.

The experimental phase ran for 5 weeks, during which participants went about their

everyday activities with their app-installed phone. A weekly survey was sent out at the end

of each week to gauge user perception towards the notification schedule on a 1-5 point Likert

scale. At the end of 5 weeks, a post-study survey consisting of open-ended questions was

conducted to gather participant feedback on the overall user experience.

5To test the limit of how many notifications one can handle, we choose a number twice larger than the
number of daily notifications (53.8) [PVP18].
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5.6 Evaluation

In total, we collected 24,029 hours of data with 1,441,772 data points. Among these data,

our system sent out 70,933 notifications. 22,569 (31.8%) notifications were answered, 2,541

(3.6%) were dismissed, and 45,823 (64.6%) were ignored. We compare the performance

of reinforcement learning (RL) and supervised learning (SL) from different dimensions. In

SL, we report the results in the training phase (SL-train) and the testing phase (SL-test)

separately.

5.6.1 Task Response

Table 5.3 compares the task response performance of both algorithms. We list five metrics

in the table: the number of notifications answered in a week, the number of notifications

dismissed in a week, the ratio of answered notifications, the ratio of dismissed notifications,

and the weekly accumulative rewards.

RL makes more microtasks answered, but SL achieves better answer rate. On

average, RL is able to get 155.4 microtasks answered per week, which is slightly higher than

SL with 143.7 microtasks per week. To break down, RL outperforms SL-train (130.5/week)

but slightly lower than SL-test (163.4/week). SL achieves a higher answer rate (41% in SL-

train and 33% in SL-test) than RL (27%). The reward function of RL incentivizes answering

microtasks and discourages dismissals with a heavy penalty. However, the penalty for an

ignored microtask is low. In addition, we only show one micro-task at a time, the prior

micro-task notifications are removed before sending a new one. Given this design, RL agent

learned to send lot of microtasks based on the observed that users ignored most notifications

but dismissed very few of them. Hence, RL agent gets a lot of questions answered, but its

response rate is low.

RL can effectively suppress dismissed notifications. The above hypothesis is

confirmed by the fact that RL keeps the task dismiss rate low (3%) and participants only

dismissed 15.3 notifications per week. In contrast, both SL-train and SL-test exhibit higher

numbers of dismissed notifications (18.8/week) and dismiss rate (6%). Note that RL agent’s

96



Ta
bl
e
5.
3:

T
he

co
m
pa

ri
so
n
of

th
e
re
sp
on

se
pe

rf
or
m
an

ce
of

sh
or
t
qu

es
ti
on

s
be

tw
ee
n
a2

c
an

d
su
pe

rv
is
ed

le
ar
ni
ng

al
go

ri
th
m
s.

R
L
al
go
ri
th
m

(1
5
pa
rt
ic
ip
an

ts
)

SL
al
go
ri
th
m

(2
6
pa
rt
ic
ip
an

ts
)

N
A

N
D

A
R

D
R

R
E
W

D
N

A
N

D
A

R
D

R
R

E
W

D
W

ee
k

1
22
4.
0

13
.0

0.
41

0.
03

14
5.
7

W
ee

k
1

12
8.
4

11
.5

0.
47

0.
06

38
.5

W
ee

k
2

18
1.
4

27
.1

0.
28

0.
04

-2
6.
1

W
ee

k
2

13
4.
4

17
.9

0.
38

0.
07

3.
5

W
ee

k
3

14
0.
3

20
.3

0.
23

0.
06

-3
4.
4

W
ee

k
3

12
8.
7

20
.5

0.
37

0.
05

-4
8.
8

A
vg

(S
L
-t

ra
in

)
13
0.
5

16
.6

0.
41

0.
06

-2
.3

W
ee

k
4

12
1.
0

8.
4

0.
22

0.
02

69
.1

W
ee

k
4

15
9.
8

19
.4

0.
35

0.
04

33
.8

W
ee

k
5

11
0.
3

7.
9

0.
20

0.
02

32
.6

W
ee

k
5

16
7.
0

24
.6

0.
31

0.
07

12
.6

A
vg

(R
L
)

15
5.
4

15
.3

0.
27

0.
03

37
.4

A
vg

(S
L
-t

es
t)

16
3.
4

22
.0

0.
33

0.
06

23
.2

∗ N
A

=
nu

m
be

r
of

ac
ce
pt
ed

no
ti
fic

at
io
ns
,N

D
=

nu
m
be

r
of

di
sm

is
se
d
no

ti
fic

at
io
ns
,A

R
=

an
sw

er
ra
te
,

D
R

=
di
sm

is
s
ra
te
,R

E
W

D
=

to
ta
lr
ew

ar
d.

97



1 2 3 4 5
Week

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ap
pr

op
ria

te
 ti

m
e 

ra
tin

g

RL
SL-train
SL-test

Figure 5.5: Weekly rating of both algorithms.

dismiss rate is low despite the fact that it sends larger number of notifications. RL has

been incentivized to avoid dismisses has a sequential decision making process, whereas the

loss function in vanilla SL algorithms pick actions based on probability distribution of past

data and do not learn the impact of their actions on the user state. SL sends 50% more

notifications in testing compared to the training phase.

RL improves by maximizing the reward. The improvement of RL is reflected

in weekly reward. Users are highly engaged at the beginning of the study resulting in

higher rewards. They lose interest in the 2nd and 3rd weeks hence we observe lower rewards.

However, the RL agent learns from user interaction and can distinguish when is a better

time to reach out to people, hence returns positive rewards in the last two weeks.

5.6.2 User Experience of Interruptibility

User experience in RL trends towards improvement, but is inconsistent in SL.

Figure 5.5 shows the weekly survey result in which we ask participants to rate the appropri-

ateness of the timing of the prompted tasks with a 5 point Likert scale. The result shows

that SL starts with a high rating (3.9 ± 0.8 in SL-train), and the rating remains relatively

flat in the testing phase (3.7± 1.0 in SL-test). RL starts with a low rating (3.6± 0.9 in the

98



1 2 3 4 5
Weeks

0.75

0.80

0.85

0.90

0.95

1.00

Re
sp

on
se

 a
cc

ur
ac

y

RL SL-train SL-test

Figure 5.6: The task response accuracy over weeks.

first two weeks). This is likely due to the fact that RL sends more notifications to explore

the problem space, and this causes disturbance. However, the rating in RL improves over

weeks (4.0 ± 0.7 in the last week) and outperforms SL starting week 3. One-way ANOVA

between the first week and the last week of RL gives p=0.12, where p=1 means they are

equivalent.

5.6.3 Microtask Response Analysis

RL trends toward higher response accuracy Figure 5.6 shows the response correctness

of microtasks. We define response accuracy as number of correctly answered microtasks over

number of tasks with correct answers (marked in Table 5.2). Both algorithms achieve over

90% of response accuracy of all the 5 weeks. SL starts with a high response accuracy in

the training phase 94.6%± 8.8%. When moving to the testing phase, the response accuracy

remains about the same at 93.1%± 4.4%. On the other hand, RL starts with a lower rating

(92.6%± 11.4% in the first two weeks), but we can see that the variance steadily decreases

over weeks (94.6%± 3.8% at week 5).

RL can better identify available moments. Prior work [PCK17] has identified that

users respond to microtasks even when their perception is that they are not available. Our
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(b) The RL agent can quickly adapt to user preference change.

Figure 5.7: Probability of sending a microtask across time by the reinforcement learning
(RL) agent for two different users.

result shows that 73% of the responses from RL participants are yes which indicate the

users were available when they answered the questions. However, only 54% of the responses

in SL indicates users were available, suggesting that RL achieves a better job of finding

100



0 1 2 3 4 5 6
Accepted durations (Minute)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

RL
SL-train
SL-test

(a)

0 1 2 3 4 5 6
Dismissed durations (Minute)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RL
SL-train
SL-test

(b)

Figure 5.8: CDF of time intervals for (a) answering and (b) dismissing notifications.

interruptible moments.

People dismiss notifications much faster in SL-test. Another measure of interrupt-

ibility can be to observe how long users take to respond to microtasks. Figure 5.8a displays

the time intervals that users take to answer a notification since prompted. The result shows

that at least 58% of the microtasks are answered within one minute in both algorithms.

SL-test achieves the shortest answer time but the answer time in both algorithms do not

differ too much. Figure 5.8b shows that 34%, 24%, and 65% of the notifications are instantly

dismissed in RL, SL-train, and SL-test (i.e., within 5 seconds) right after they are scheduled.

5.6.4 Learning Algorithm Analysis

A2C converges in a week. To understand when the RL agent starts to learn something

meaningful, we pick one user as an example and plot the confidence scores of all the inter-

ruptibility queries in Figure 5.7a. The confidence is defined as the likelihood for the learning

algorithm to send a microtask, which is part of the output of A2C. We provide daily re-

ward on the bottom for comparison. Since the agent receives bigger rewards for the first 7

days possibly due to high user interest in the beginning, the agent gets more confident in

prompting notifications. As the user behavior changes around 10th day, the daily reward
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and the confidence drops. It can be explained that as time progresses, the agent adapts to

the changing user behavior.

RL can adapt to user preference change and capture the weekly pattern.

Figure 5.7b presents another user who actively dismissed notifications in the middle of the

study. The amount of dismissed notifications significantly increased after day 20. The

confidence drops when RL starts receiving negative reward which in turn suppresses the

microtasks to this user. However, the confidence raises on day 28 and day 35 which are

Sundays. We ask the user about this pattern after the study and they confirmed that they

were only available during weekends.

Users can be categorized into four coherent groups. We observed that response

behavior varied widely between users. We analyzed the learned behaviors of both RL and SL

agents for each user. For RL, we use the probability of sending a notification as given by the

policy network. For SL, we use the Random Forest confidence, which is the number of votes

it gets for sending a notification from the tree ensemble. Figure 5.9 depicts typical user from

the four groups we have identified. The first group follows a high-confidence pattern because

of the high answer rate, and the second follows a low-confidence pattern as users dismiss

or ignore majority of the microtasks. The third pattern shows the points are vertically

separated into two clouds. We observed that both RL and SL increase the confidence of

sending a microtask when screen is turned on. The final pattern shows the confidence

varies significantly within a day. We found that it is because there are several factors that

impact the decision. For example, we found that the agent becomes more confident when

either the screen is on or ringtone mode is adjusted to normal in Figure 5.9d, and the

confidence increases when screen is on or non-stationary motion is detected in Figure 5.9h.

The combination of multiple variables cause different confidence levels. We checked the

learned patterns with each of the users response patterns and they aligned well.

102



21
28

35
Da

y

0.
00

0.
25

0.
50

0.
75

1.
00

Confidence

(a
)
O
ve
ra
ll
hi
gh

co
nfi

de
nc
e
in

R
L
(4

ca
se
s)

28
29

30
31

32
33

34
35

Da
y

0.
0

0.
5

1.
0

Confidence

(e
)
O
ve
ra
ll
hi
gh

co
nfi

de
nc

e
in

SL
(9

ca
se
s)

21
28

35
Da

y

0.
00

0.
25

0.
50

0.
75

1.
00

Confidence

(b
)
O
ve
ra
ll
lo
w

co
nfi

de
nc
e
in

R
L
(6

ca
se
s)

28
29

30
31

32
33

34
35

Da
y

0.
0

0.
5

1.
0

Confidence

(f
)
O
ve
ra
ll
lo
w

co
nfi

de
nc

e
in

SL
(1
1
ca
se
s)

21
28

35
Da

y

0.
00

0.
25

0.
50

0.
75

1.
00

Confidence

(c
)
Se
pa

ra
te
d
co
nfi

de
nc
e
in

R
L
(3

ca
se
s)

28
29

30
31

32
33

34
35

Da
y

0.
0

0.
5

1.
0

Confidence

(g
)
Se

pa
ra
te
d
co
nfi

de
nc

e
in

SL
(1

ca
se
)

21
28

35
Da

y

0.
00

0.
25

0.
50

0.
75

1.
00

Confidence

(d
)
D
iff
us
ed

co
nfi

de
nc
e
in

R
L
(2

ca
se
s)

28
29

30
31

32
33

34
35

Da
y

0.
0

0.
5

1.
0

Confidence

(h
)
D
iff
us
ed

co
nfi

de
nc

e
in

SL
(5

ca
se
s)

F
ig
ur
e
5.
9:

E
xa

m
pl
es

of
co
nfi

de
nc
e
ch
an

ge
in

R
L

(l
ef
t
co
lu
m
n)

an
d
SL

(r
ig
ht

co
lu
m
n)
.
Fo

ur
co
m
m
on

pa
tt
er
ns

ar
e
fo
un

d
in

bo
th

al
go
ri
th
m
s.

Fo
r
SL

,w
e
pr
ov

id
e
th
e
co
nfi

de
nc
e
di
st
ri
bu

ti
on

on
th
e
si
de

to
as
si
st

vi
su
al
iz
at
io
n.

103



5.6.5 System Performance

Client App Battery Impact The battery consumption was measured on a new Pixel 2

phone with Android 8.0 with a sim card equipped. We factory reset the phone to minimize

measurement noise. We measured the battery consumption with and without our app in-

stalled separately. With a fully charged phone, our results show that the battery level drops

to 84% after 12 hours without our app installed, and to 77% when our app is running in the

background. Hence, our app only increases 7% battery overhead during a day.

Server Request Handling Our server is hosted on a desktop with a 4-core Intel CPU

@ 3.5 GHz and 32 GB DDR3 memory. We benchmarked the overhead of both algorithms

when processing an interruptibility query. Supervised learning consumes 163 MB and takes

1.27 ± 0.07 seconds to complete a query, and RL consumes 243 MB and takes 2.28 ± 0.16

seconds. The major cause of the time overhead is for loading and initializing the agents in

both algorithms. Our results suggest RL introduces higher overhead.

5.6.6 Post-Study Survey

We collected 26 effective post-study surveys, 14 from the RL group and 12 from the SL

group. We first present whether participants perceived any difference during the 5-week

duration of the study. 13 participants in RL group and 11 in SL observed difference. These

users were subsequently asked to rate the change of the task schedule with a 5-point Likert

scale where 1 (5) means noticeably worse (better). The rating is 4.23± 0.58 and 3.45± 1.44

in RL and SL, respectively, implying participant perception that RL can more effectively

learn the opportune moment to engage with users. Participants in RL express “started

getting more/fewer notifications during specific times of the day”. Participants mentioned

receiving less undesired notifications during work (N=3)6, studying (N=1), in the morning

and evening (N=1), or receiving more notifications at opportune times such as when they are

“sitting down” (N=1). A few SL participants observed a polarizing change when transitioning

6We use N=? to denote number of people.
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to the testing phase: one participant received significantly more tasks, while two participants

received significantly less amount of tasks (N=2). Two users indicated the app gave more

notifications when they were studying (undesirable, N=2) while one user experienced less

notifications when at work (N=1).

Participants were asked to identify the reasons behind certain notifications being per-

ceived as disruptive. We observe that RL and SL users have different concerns. RL partici-

pants indicated that the tasks were sent out far too often than they expected (N=6). Some

also reported that the app is unaware when they are engaged with other phone activities such

as watching videos or playing games (N=5). On the other hand, the major concern of SL

participants is that microtasks were delivered at inopportune moments in which they could

not answer (e.g., driving, at work) (N=5). The frequency of notifications also heightens the

disturbance (N=4).

In both algorithms, prompting at an inopportune moment is the major reason for dis-

missed notifications (N=8). However, participants sometimes dismissed notifications when

they found the microtasks to be too challenging (N=4). 16 users reported arithmetic ques-

tions to be more difficult than other questions (N=16). However, one user chose to randomly

select answers instead of dismissing notifications (N=1).

5.7 Discussion, Limitation, and Future Work

The goal of an RL agent is to maximize the long term reward, and the reward function

is designed to achieve the desired outcome. In Quick Question, we investigate a simple

objective which optimizes for the number of completed microtasks while minimizing the

number of dismissed notifications to reduce disturbance. However, we do not claim such a

reward mechanism is universal and should be redesigned based on the requirement of the

target application. For example, the reward function can be augmented to discourage when a

high-priority notification is missed. Also, our reward function can potentially incorporate the

response rate and the response accuracy. In Quick Question, we hand picked the reward ratio

of answering and dismissing a notification to be 1 to 5, but a better reward mechanism can be

105



explored based on behavioral models, or automatically optimized by Inverse Reinforcement

Learning algorithm [BWJ17]. Designing a reward function that can generalize to all types

of notifications is challenging, we will explore this in future work.

Although we keep the microtasks as homogeneous as possible in our study (i.e., length

and task style), some questions do cause bias for certain users. For example, one user

reported that he did not want to answer the diet questions because they made him feel self

conscious. This bias, however, can be explicitly modeled in RL by augmenting the action

space, i.e., the agent can decide which question to prompt based on user preference [GTM17].

Another direction to be explored in the future is to consider a different workload based on

the intensity of interruptibility [YGL17]. For example, a system can prompt more than one

microtasks in a row [CIT16] when a user is more available.

One limitation in our user study is that we only focus on Android population. Since the

ecosystem of Android and iOS platforms are different (for example, swiping gesture means

to dismiss a notification in Android but to engage it in iOS), a separate study has to be

conducted to confirm that the results can be generalized to iOS users. Quick Question,

however, can interface with an iOS app if the implementation is ready. Our system currently

computes interruptibility on the server side and encounter two seconds of overhead. In

the future, the learning pipeline can be optimized to reduce the computation time and the

memory overhead.

5.8 Summary

We presented our system Quick Question which is a reinforcement learning based microtask

scheduling method. To understand the trade-off between supervised learning and reinforce-

ment learning for identifying user interruptibility, we conducted a 5-week user study with

41 participants recruited to collect user interactions with notifications in the wild. Our re-

sults suggest that RL is able to get more microtasks completed and effectively reduce the

dismissed notifications. RL can achieve better user experience and more accurately iden-

tify interruptible moments. Moreover, RL can smoothly adapt based on user preference and
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lower the burden for users to handle microtasks. Thus, reinforcement learning is a compelling

technique to model user interruptibility.
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CHAPTER 6

GPSI - From Pressure to Path: Barometer-based Vehicle

Tracking1

6.1 Motivation

The increasing ubiquity of mobile computing devices has been accompanied by new sensing

modalities and data fusion methods to sense or infer a wide array of physical phenomena

and stimuli. The result of this is a distributed mobile sensor network whose sensors can

yield information about users’ behaviors and surrounding environments. Inferences made

from these mobile sensors often provide valuable services such as accelerometer-based motion

tracking, camera-based heart rate monitors, and life-logging or quantified-self services. These

services have also proven to be integral components for environmental monitoring [ATP12],

traffic analyses [MPR08,ME12], event discovery [OST14], and population-level analytics in

general in what are increasingly referred to as smart cities.

Recent mobile devices have introduced yet another sensing modality in the form of baro-

metric pressure sensors. These sensors can already be seen on mobile devices such as the

Apple iPhone 6, Google Nexus 5, and Nexus 6. Barometric pressure sensors introduce a level

of geographical dependency unseen in previous sensors, including magnetometers. While a

magnetic compass might behave differently in different geographical locations, a barometric

sensor is designed to differentiate between different pressures and thus, to a large degree, dif-

ferent elevations. In this paper, we show that the high correlation between pressure sensors

and elevation allow for accurate tracking of driving patterns based on pressure from mobile

1The idea behind the project name is to infer location data (GPS) from air pressure information (PSI,
an air pressure unit), hence GPSI.
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devices collected by a centralized computer. Tracking vehicles in this manner provides a low

power method for analyzing a user’s driving behavior over long periods of time, while the

power consumption associated with GPS, cellular, or WiFi positioning methods may prove

prohibitively high.

In addition, both Apple’s iOS and Google’s Android OS treat the barometer as a non-

private sensor such as an accelerometer or gyroscope. In other words, an application that

wishes to read a mobile device’s barometer can do so without alerting the device user. We

demonstrate how this public data access model, while easing data collection for city-level

traffic analytics, can compromise a user’s privacy and security, allowing malicious third

parties to estimate a user’s location over time, undetected by the user. There have been

a number of similar efforts that have demonstrated such nefarious inferences made from

mobile sensory data. Several notable works in this vein include accelerometer touch-type

keystroke identification [MVB12a, OHD12a] and gyrophone-based microphones [MBN14a]

for identifying spoken digits, such as credit card or social security numbers. These privacy

and security threats are only made worse by the increasing tendency towards wearable and

pervasive sensing [RGK11a]. In the face of these unceasing efforts to record and analyze

personal user data, mobile computing and users thereof can no longer remain agnostic to the

security ramifications of this data deluge.

In this work, mobile devices are treated as distributed sensors collecting pressure data

and storing it locally. These sensors then opportunistically transmit their pressure data to

a remote server whenever power and connectivity (e.g. WiFi) permit. This pressure data

is then analyzed by a more capable and less power-constrained server to reveal the traffic

patterns of each user. To do this, a user’s coarse-grained location estimate is obtained by

associating the device’s IP Address with an ISP’s geolocation. From there, the user’s time-

series pressure data is compared against a database of possible road segments and their

corresponding elevation signatures. Under certain conditions regarding the uniqueness of

the observed pressure data with respect to the elevation of the underlying map, this allows

us to obtain a series of ‘ranked’ paths, ordered by descending likelihood. When a high

confidence path can be obtained, the estimated path can be treated as an approximation of
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the user’s driving route. This provides mobile devices with a low power path logging utility

for scenarios where power consumption is an important consideration.

Though many factors affect the pressure reported by barometer sensors (not the least

of which are weather, air movement, and sensor drift), mobile barometric sensors can still

be correlated with elevation changes with surprising precision. Using a simple linear model

(the details of which are discussed in Section 6.3), height can be predicted to within an

error of several meters. An example of this correlation is shown for 30 minutes of driving

data in Figure 6.1, where the error rarely exceeds ±2 m. This correlation, however, is made

difficult due to several important factors: first, the conversion from pressure to elevation is

time-varying and unknown a priori. Second, the user’s vehicle is traveling at an unknown

speed, essentially ‘sampling’ elevation points at variable and unknown rates. This makes it

difficult to directly correlate pressure data to the elevation of a given road segment. Third

and most importantly, the search space of possible paths against which to compare the user’s

collected pressure data is immense, even given coarse grained location estimates such as those

obtained from IP Address geolocation.

6.1.1 Contributions

In order to elucidate the degree to which pressure can be used to determine a user’s driving

path in the face of the difficulties mentioned above, we make the following contributions:

• We evaluate the accuracy with which pressure data can be used to predict the correct

path from a fixed database of candidate paths using dynamic time warping (DTW).

We also describe an algorithm for pressure-based path prediction using dynamic pro-

gramming and DTW to find a jointly minimal cost path through an arbitrary graph

of road segments.

• We evaluate the performance of our path estimation algorithms over a number of real

test cases totaling 150 km and 4.6 hours of driving data.

• By modeling errors in barometer sensors and elevation estimates, we simulate path
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estimation results for random driving paths selected across a large number of cities

with varying geographical landscapes.

• We evaluate the accuracy of our path prediction algorithms in terms of the distinctness

of the pressure data with respect to the surrounding landscape, offering insights into

the conditions under which driving paths can be accurately predicted.

6.2 Related Work

Related work in this area can roughly be divided into two categories: low power GPS, cellular,

& WiFi positioning methods, and location- or transportation-specific inference mechanisms

using low power sensor data.

Low Power GPS, Cell, & WiFi Positioning: Considerable work has gone into

decreasing the power consumption of global (GPS) and regional (Cell & WiFi) positioning

schemes. This includes the numerous assisted GPS (A-GPS) techniques [DT09] and cloud-

offloaded (CO) post-processing of raw GPS [LPH12]. These technologies range from power

consumption in the hundreds of milliwats (traditional GPS) to milliwatts (A-GPS) and

even hundreds of microwatts (CO-GPS), while the latter requires highly customized GPS

receiver hardware. By comparison, barometer power consumption is typically less than 10

µW [bmp], requiring no specialized hardware and providing a very practical tradeoff between

traditional high power, high accuracy positioning techniques and ultra-low power mobile path

estimation and analytics, where highly robust positioning may not be a hard requirement.

As a comparison, a GPS module like the GlobalSat EM-506 would consume 170 mW even

during a hot start measurement (acquisition recently acquired) and requiring up to 1 second

to achieve a new fix [gps]. Duty cycling such a GPS receiver to achieve 10 µW average power

consumption would allow for just 1 reading every 4 hours.

Inferring Location and Transportation: In the realm of location discovery tech-

niques, recent work has demonstrated trajectory identification through inertial navigation
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(dead-reckoning) for both pedestrians [PPC12] and vehicles [GPL10]. Han et al. further

demonstrate in [HON12a] that accelerometer time-series data can be used to constrain a

user’s driving path to a subset of possible candidate paths within a given map. Hemminki

et al. [HNT13b] demonstrate methods for inferring transportation modes using mobile ac-

celerometer data, and Sankaran et al. demonstrates methods for inferring transportation

modes using barometer data [SZG14a]. Finally, Zhou et al. demonstrate in [ZDH13a] that

app usage statistics, network address-resolution, and speaking detection can be used to infer

user identity, coarse geo-location, and even whether or not a person has a certain disease.

The methods presented in this paper demonstrate how pressure data collected from mo-

bile barometers can be used to predict driving paths. Unlike methods like those presented

in [GPL10] and [HON12a], the proposed methods allow for accurate absolute path predic-

tions, benefiting from the high correlation between barometer and elevation, as detailed

in [MKM14].

6.3 Estimating Elevation

Though barometric sensors are strong indicators of geographic elevation, they are sensitive

to a host of other pressure changes as well, making the conversion from pressure to elevation

non-trivial. As elevation changes, changes in air density due to Earth’s gravitational pull and

many other factors cause a pressure gradient dictated by the barometric formula. Ignoring

the effects of temperature change as a function of altitude, this formula is given in [usa76]

as

P = P0 · exp

[
−gM(h− h0)

RT0

]
(6.1)

where P is the pressure in hecto-pascals (hPa) at height h meters above reference level h0,

g is the gravitational acceleration constant, M is the molar mass of Earth’s air, and R is

the universal gas constant for air. P0 is the pressure measured at the reference height h0

with temperature T0, all of which can be measured beforehand. From (6.1), we can derive

the equation (h − h0) = log(P0)RT0
gM

− RT0
gM

log(P ). For relatively small changes in elevation

(hundreds of meters), this can be approximated by a simple linear function in P . Because
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the reference pressure P0 is in general a function of time, height h can be more generally

approximated as

h(t) ≈ α(t)− βP (6.2)

for scalar β and time-varying offset α(t). Over short periods of time (less than 1 hour), this

prediction can be quite accurate. In fact, though the Bosch BMP280 pressure sensor used in

both the iPhone 6 and Nexus 5 specifies a vertical pressure resolution of about 1 m [bmp],

we have experimentally validated relative pressure sensitivity closer to 10-20 cm. Despite

this strong correlation, determining the parameters α(t) and β can be challenging, especially

given the time-varying aspect of the offset α(t) due to, among other things, weather.

6.3.1 Elevation Model Estimation

The model parameters α(t) and β in (6.2) dictate the accuracy of absolute elevation predic-

tion. Thankfully, the scaling term β can be considered constant over very large ranges in

elevation, due to the relative flatness of earth’s surface with respect to its diameter. The

offset α(t), on the other hand, varies wildly with time and coarse location. This can be

seen in Figure 6.2(a), where pressure collected at a static location over a 70-hour period

exhibits pressure changes nearing 7 hPa or nearly 60 m estimation error. Muralidharan et

al. describe this problem in detail in [MKM14]. Note, however, if we look at the pressure

change over 1 hour periods, the change rarely exceeds ±1 hPa (or roughly 8.3 m). Further-

more, a survey of hourly pressure data from 2,309 cities in the U.S. provided by the National

Oceanic and Atmospheric Administration (NOAA) Climatic Data Center [noa] shows that,

the pressure change in 1-hour periods is below 1 hPa over 99% of the time. Additionally,

analyzing these changes in the frequency domain indicates that the vast majority of pressure

changes happen at the scale of 1 or more days, rather than hourly. This is shown in Figure

6.2(b). Given the slow dynamics of weather, pressure data provided by weather stations can

be used to calibrate the offset term α(t) to within 1 hPa error—the typical resolution of

pressure reported by weather stations. If such a station does not exist in close proximity to

a user’s coarse location, in some scenarios relative elevation can still be used to estimate a
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user’s driving path with some reduction in estimation accuracy. This is discussed in more

detail in Section 6.4.

6.3.2 Pressure Events & Noise Sources

In addition to model dynamics caused by weather, mobile barometers experience ‘noise’ from

a number of events causing changes in air flow. This includes opening and closing doors and

windows as well as changing air conditioning. Examples of this are shown in Figure 6.2(c).

The largest magnitude pressure change is 0.5 hPa (or 4.2 m error) when air conditioning is

turned completely on or off. Our path detection algorithm must be resilient to these slight

perturbations.

Finally, barometer sensors themselves are not perfect and typically exhibit (small) drift

over time. This error is in general non-gaussian, exhibiting temporary drifts from the true

pressure while periodically returning to accurate estimates. We propose modeling this error

using an Ohnstein-Uhlenbeck diffusion process, which is similar to a low-pass-filtered white

noise process [Enr08]. This error model will be used to generate realistic barometric pressure

traces for simulations, as outlined in Section 6.5.2.

6.4 System Overview

Our path prediction system is composed of two main components: (1) a low power mobile app

that continually monitors barometer data, periodically sending the data back to the second

component: (2) a centralized analytics server that maintains road maps and elevation data

and uses the collected sensory data together with the map and elevation database to estimate

likely paths. This is shown in more detail in Figure 6.3.

Each server for a given city contains the corresponding road maps and elevation data from

publicly available online databases. Specifically, the server downloads and manipulates data

from (i) Open Street Map (OSM) [Ope15], providing road topologies including segments and

intersections, and (ii) the Google Elevation API [Goo15], which provides a database from
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which to query the elevation of individual latitude and longitude points. Upon receiving the

barometer data from a mobile device, the server’s elevation conversion module converts the

pressure readings to an estimate of absolute elevation values. If the sensor data is collected

in a region close to a weather station, the pressure from that station can be used to calculate

the offset α(t) in (6.2) and absolute pressure can be obtained. Otherwise, the system reduces

to comparing relative elevation changes instead. Finally, we perform a number of pattern

recognition routines including dynamic time warping (DTW) to perform path matching.

These estimation routines are the main contribution of this work and the subject of the

following sections.

6.4.1 Elevation Map Generation

In order to estimate the path along which a user has driven, the server must first generate

a database of possible road segments and their corresponding elevations. To do this, we

combine the OSM road topologies with Google’s publicly available Elevation API. Road maps

are downloaded from OSM in an XML format composed of 64-bit unique node identifiers and

their corresponding latitude and longitude values. These ‘nodes’ are connected by elements

termed ways—ordered lists of connected road nodes. In general, either endpoint of a way

aligns with road intersections. Ways composed of more than 2 nodes are often used to better

represent road curvatures between intersections. From the OSM road nodes and ways, we

construct a graph G = (V,E) where V is the set of road nodes such as intersections and

dead ends on the map, and each edge in E represents a road segment. The elevation of each

segment is then queried every 10 meters, creating new internal nodes belonging to set N

and extending the original graph to G′ = (V,E,N). All nodes n ∈ N are augmented with

latitude, longitude, and elevation attributes.

6.4.2 Dynamic Time Warping

Because the user is traveling at an unknown and variable speed, the corresponding pressure

data behaves as a sampled version of the true elevation with variable sampling rate. In other

119



Distance (Km, bottom) and Time (Sec, top)
0 1 2 3 4 5

R
e

la
ti
v
e

 e
le

v
a

ti
o

n
 (

m
)

-60

-40

-20

0

20

Map
Barometer

0 100 200 300 400 500

(a) Map elevation vs. barometer-based elevation.

M
a
p
 p

o
in

t 
in

d
e
x

Barometer sample index

(b) DTW matrix D with min-cost path.
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words, the collected pressure may be of a short duration, long duration, or it may contain

pauses (when the vehicle is not in motion) or increased speeds. To compute the similarity of

two signals which could potentially be scaled by time, we use dynamic time warping (DTW)

algorithms like those developed for speech recognition (where the same word may be spoken

with variable durations) [Vin68]. DTW is a time-series alignment algorithm in which two

signals are compared against each other by means of a cost matrix. If the two series are

denoted by column vectors sp = {spi } ∈ RNp , representing the elevation corresponding to a

candidate path in G′, and sb = {sbj} ∈ RNb , corresponding to the barometer-based elevation

estimate, the cost matrix C contains Np × Nb elements where element ci,j = f(spi , s
b
j). The

function f(·) serves as a distance function to represent the difference between the two signals

at given indices and is typically defined by an `2-norm. The goal of DTW is to find the

minimum-cost path through cost matrix C starting at c0,0 and ending at cNp,Nb
The details

of the DTW algorithm are given in Algorithm 1. For each element di,j in a DP matrix

D, we store the minimum cost of all possible paths from c0,0 to ci,j. Each element ψi,j in

a traceback matrix Ψ records the last transition which leads to the minimum cost of di,j.

Thus, the final similarity between sp and sb is embedded in dNp,Nb
. If sp and sb are similar,

their corresponding DTW score will be low, and if they are dissimilar their cost will be

high, regardless of variable lengths or sampling rates. An example of the DTW procedure

is illustrated in Figure 6.4(a) for example map path- and barometer-based elevation data

collected from Los Angeles, CA, with the corresponding DP matrix D in Figure 6.4(b).

Following Algorithm 1, the complexity of the DTW algorithm is O(Np ·Nb).

DTW can correctly identify paths using barometer measurements provided that the errors

in the barometer sensor and Model (6.2) are sufficiently smaller than the variance in the

traversed path elevation—i.e. when the path elevation is sufficiently distinct in the presence

of noise. The result of an initial experiment performed over 29 road segments using DTW

to compare measured pressure to “candidate” path elevations is shown in Figure 6.5. Here

the true path is correctly identified by the minimum DTW score for all test cases, and the

runner-up paths have anywhere from 10× to 10000× higher cost.
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Figure 6.5: Normalized DTW scores for 29 barometer traces collected while driving. False
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6.4.3 Candidate Path Generation

DTW provides the means for comparing measured pressure data against candidate path

elevations: the server must search for a path p̂ through G′ such that the elevation along p̂,

denoted by sp̂, and and the elevation converted from barometer data, denoted by sb, are

similar, i.e.,

p̂ = arg min
p
DTW (sp, sb)

Unfortunately, the search space of all candidate paths can be quite large. In fact, if we allow

for path loops, the search space can be infinite—i.e., there are infinite combinations of paths

in G′. Because of this, the server must perform DTW while traversing G′ in an efficient

manner. In the following sections we present two potential methods for doing so: (i) a naive
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Algorithm 1: Dynamic Time Warping via Dynamic Programming with traceback.
Data: Signals sp ∈ RNp , sb ∈ RNb

Result: similarity score Rscore and traceback vectors vp ∈ ZNp

+ and vb ∈ ZNb
+

1 Cost matrix: C = {ci,j} = |spi − sbj|2;
2 DP matrix: D = {di,j} = 0;
3 d0,j ←∞, ∀j = 1 . . . Nb;
4 di,0 ←∞, ∀i = 1 . . . Np;
5 Traceback matrix: Ψ = {ψi,j} ← φ;
6 for r in 1 . . . Np do
7 for c in 1 . . . Nb do
8 dr,c ← min

t=(∆r,∆c)
(dr−∆r,c−∆c) + cr,c;

9 ψr,c ← arg min
t=(∆r,∆c)

(dr−∆r,c−∆c);

10 end
11 end
12 Rscore ← dNp,Nb

;
13 traceback: r ← Np, c← Nb;
14 while r > 1 or c > 1 do
15 vpr ← c; vbc ← r;
16 (∆r,∆c)← ψr,c;
17 r ← r −∆r; c← c−∆c;
18 end

breadth-first graph traversal method with pruning heuristics, and (ii) a joint optimization

approach using dynamic programming.

6.4.3.1 Greedy Path Finding

In order to determine which of all possible candidate paths would most likely generate an

observed series of pressure data, we can use an agent-based approach in which each agent

traverses G′ beginning at one specific node in V . Because G′ is not necessarily (and in

general is not) free of cycles, a breadth-first traversal will quickly escalate into an exponential

problem. To combat this, each agent ensures that no path it explores creates a loop of

length less than a threshold Γloop. If Γloop is large enough, this allows for reasonable driving

trajectories while greatly limiting the search space.

At each iteration, agents perform an exploration phase and a pruning phase. Pruning

occurs in three stages: (1) after all agents have finished exploring new nodes, the solver
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Figure 6.6: Snapshots of an agent from greedy pathfinding, exploring 4 possible paths.
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calculates all candidate path scores using a path-length-normalized version of Algorithm 1.

These scores are sorted and a threshold Tscore is computed so that (2) any path whose DTW

score exceeds Tscore is pruned, and finally (3) all agents are instructed to prune their worst

paths until they contain no more than Γmaxpath paths. This allows for diversity in possible

path starting locations and reduces the complexity of the search algorithm to polynomial

time. The solver terminates if the minimum cost of all candidate paths does not change

by more than ε (1%) across a recent period of W (10) iterations. Upon terminating, the

greedy solver returns the top ranked (lowest cost) paths and their corresponding scores.

A series of snapshots from the operation of a single agent in the greedy solver is shown

in Figure 6.6. Here we have set Γmaxpath to 4, so that at each iteration only 4 paths are

being considered (labeled by green squares). For each iteration, the minimum cost path is

displayed by a string of magenta triangles, while other candidate paths are displayed with

a dashed blue line. At each iteration, there are at most |V | · Γmaxpath · dmaxout paths, where

dmaxout is the maximum out-degree of any node in V . As a result, the time complexity can be

bounded by O(|V |) ·O(DTW ) = O(|V | ·Np ·Nb). In practice, we truncate the map elevation

segment to at most length Nb, giving a final complexity of O(|V | ·Nb
2). These calculations

are performed over a number of iterations, but by setting a maximum number of iterations

(30 in our experiments), the computational complexity remains unchanged.

6.4.3.2 DP-based Path Finding

The greedy search algorithm explained in the previous section is intuitive and can search

efficiently over large maps. However, the pruning heuristics and search space reduction

can easily lead to local minima and non-optimal path prediction. Additionally, the greedy

search heuristics do not consider path timing information, reducing estimation accuracy once

more. To overcome these drawbacks, we instead consider an approach inspired by Dijkstra’s

shortest path search algorithm, whose underlying algorithm is again solved via dynamic

programming. We call this the DP-based path finding algorithm.

Intuitively, we would like to use a shortest path algorithm such as Dijkstra’s, where the
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Figure 6.7: Path prediction errors for real driving data
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cost of each edge is calculated by DTW. However, there are two obstacles in doing this:

first, the cost of each edge cannot be determined statically, as the cost of traversing a road

segment depends on what segments were crossed previously. For example, road segment A

might be a poor match for the start of our collected pressure data, but it may be a very close

match if the user passed through segment B first on their way to A. Second, we must have

some notion of time—e.g., for each node vi ∈ V , what is the minimum cost of visiting that

node given arrival time ti? This adds an additional dimension to our dynamic cost shortest

path algorithm.

To provide a notion of time, we consider a path to be not just a series of locations

but also a series of corresponding timestamps. Thus, we redefine path p to encompass a

series of states [q0, q1, . . . , qk] where each state qi is a 2-tuple (vi, ti) indicating that the user

has reached intersection vi at time ti. Rather than define cost in terms of the DTW score

between two entire paths, we can now define the marginal cost in transitioning from state

qi to qj. Specifically, if we have already discovered a portion of the true path, say q′ =

[(v0, t0), (v1, t1), . . . , (vi, ti)] whose matching cost thus far is δqi , then the cost of transitioning

to qj = (vj, tj) is defined as cost(qi, qj), so that δqj = δqi + cost(qi, qj).

Thus, for each state q = (v, t), the optimal δq is defined as a partial path ending at vertex

v at time t and can be determined by the following recursive function:

δq = min
t-<t,〈v-,v〉∈E

(δq- +DTW (sp, sb)) (6.3)

δq=(v,0) = 0,∀ v ∈ V

where t- and v- specify the time and node corresponding to the previous state q-, sp =

Elev(〈v-, v〉) is the elevation along the edge 〈v-, v〉, and sb = [sbt- , . . . , s
b
t ] is the barometer-

based elevation estimate from time t- to t. This recursive definition successfully reduces

the exponential number of candidate paths to a polynomial time search algorithm: the

complexity is decided by (1) the table size of δ, (2) the number of state transitions, and

(3) the complexity of DTW, leading to the final complexity of O(|N |2 · Nb
3). This does

not scale to large maps as well as the greedy approach discussed in Section 6.4.3.1, but the
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jointly minimal solution provided by dynamic programming provides a drastically increased

accuracy in path prediction.

6.4.3.3 Improving DP-based Search Complexity

The DP-based path finding algorithm suffers from high complexity due to many redundant

calculations, both across time and location (i.e., vertex). For example, state δq=(v,t) is up-

dated by any prior state q- with edge 〈v-, v〉 ∈ E. As described in (6.3), DTW is performed

for each possible transition to q. It is possible to amortize this DTW cost by flattening out

this recursive relation.

The root cause of this redundancy is that we treat each node v ∈ V as a ‘checkpoint’

representing a temporary path. Traveling from va to vb requires enumerating possible arrival

times tb. If, however, we consider intermediate nodes n ∈ N and treat adjacent nodes as

‘micro’ edges, the cost of computing each edge cost by DTW is reduced since each edge

length is always 1. Furthermore, we can assume that it takes at least one time unit to travel

to any adjacent node if the barometer sampling rate is sufficiently low. This removes our

dependency on time, and the number of possible state transitions reduces to

δq = δq- + min
〈n,n-〉

|spn − sbt |2 (6.4)

which is bounded by the constant O(dmaxout ), yielding a final complexity of O(|N | ·Nb). The

runtime of the DP-based prediction algorithm written in MATLAB and running on an Intel

i7 laptop takes roughly 7-15 minutes for a 92 km2 map running on a single thread, while the

greedy algorithm typically completes in 5-10 minutes.

6.4.3.4 Additional Pruning Metrics

In addition to pressure data, a number of other inertial sensors can be used to further

improve path prediction accuracy and prune improbable paths to increase runtime efficiency.

Most notably, mobile accelerometers, gyroscopes, and magnetomers can be combined to give
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accurate turn estimation as described in [HON12a]. These additional metrics can be easily

integrated into both the greedy and DP-based path discovery algorithms at the cost of

increased power consumption on the mobile devices.

6.4.3.5 Elevation estimation robustness

As described in Section 6.3.1, it is not always possible to achieve a high accuracy absolute

elevation estimate. Our path search routines remain robust to errors in elevation estimation

in two ways: first, the path search algorithm can be operated in relative elevation mode,

in which only relative pressure changes are considered. Additionally, the DP-based search

routine can be instructed to search over a range of possible elevation offset values, α(t). In

doing so, the minimum score of all paths from all offset values is reported. This inevitably

reduces the accuracy of the prediction algorithms, but it allows for some error margin in Eq.

(6.2).

6.5 Evaluation

In order to evaluate the performance of our path prediction algorithms, we collected real

driving data and performed extensive simulations over a wide range of geographical land-

scapes.

6.5.1 Tests on Real Driving Data

We collected real driving data across 150 km, totaling 4.6 hours of driving time and covering

a range of different map topologies. Data was collected using a Nexus 5 smartphone with

barometer pressure data sampled at 30 Hz and GPS sampled at 1 Hz for ground truth

analysis.

The results of the two path prediction algorithms over all driving data are shown in Figure

6.7. For each, we plot the CDF of prediction root-mean-square errors (RMSE) for a number

of ranked paths versus the average error induced by a random walk. More specifically, for
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each point on the predicted path we calculate the squared distance to the corresponding

point on the true path, averaging the squared errors and taking the square root to give us

our final RMSE value. The result from ‘5 paths’ represents the best result from the 5 lowest

cost paths as estimated by the solver, the result from ‘1 path’ represents the single lowest

cost path from the solver, and so forth. The random results represent the minimum error

from 5 random walks of G′. Figure 6.7(a) shows that the Greedy solver demonstrates a

median of around 800 m error, versus the random walk’s median error of 1600 m—only a

marginal improvement over a random guess. On the other hand, the median error reduces

to less than 60 m by using the dynamic programming algorithm, as shown in Figure 6.7(b).

Additionally, in 80% of the cases the lowest cost path has an average error of just 200 m—

roughly the length of a standard city block—and in 90% of cases one of the 5 lowest cost

paths is correct to within 200 m.

6.5.2 Simulation

In lieu of collecting driving data across multiple cities for many hours, we conducted a

series of simulated test cases. To begin, we downloaded 92 km2 regions of road data and

corresponding elevation data for 26 high-population cities in the U.S with, on average, 1046

km of roads per map. For each city, we conducted a series of random walks of variable lengths

and speeds and with barometer noise modeled using an Ohnstein-Uhlenbeck diffusion process

as stated in Section 6.3.2. This random process simulates a signal with periodic deviations

from a mean µ (true pressure). The frequency and magnitude of these deviations are dictated

by a volatility constant σ and reversion time θ describing how quickly disturbances return

to the mean. For barometric sensors, we determined empirically that values of σ = 0.04 and

θ = 150 accurately simulate the errors observed in our collected data sets. These simulated

barometer pressures and map/elevation databases were passed to our estimation algorithms

in an identical manner to solving the real driving cases. The results of path estimations

over these simulated data are summarized in Figure 6.8. Here, the greedy solver shows

an improvement over the real driving data, but the DP-based algorithm shows a reduced

estimation performance. On average over more than 500 simulated test cases, the greedy
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solver can predict paths to within about 200 m with 50% probability while the DP-based

algorithm can predict paths to within 100 m with 50% probability and to within 300 m with

around 80% probability.

6.5.3 Analysis of Parameters

The results from real and simulated experiments demonstrated in the previous section in-

dicate that under certain circumstances, driving paths can be quite accurately predicted

from pressure alone. In this section, we provide some intuition into factors that affect this

prediction accuracy.

6.5.3.1 Path Length

As more barometer data is collected, the probability of distinguishing the correct path from

the set of all candidate paths increases. In other words, increased path length typically

(though not always) leads to increased path uniqueness. This can be seen in Figure 6.9 for

a city with low elevation variation (a particular 9.5 km× 9.5 km block in Chicago) and one

with high variation (a 9.5 km × 9.5 km block in Seattle). For each iteration, we generate

two random paths pa and pb with the same length. Path p̃a is generated by adding modeled

barometer noise over pa. A confusion error is defined when DTW fails to distinguish the

correct, noisy path p̃a from the incorrect path pb. Over multiple iterations of simulation, we

observe that an increase in length decreases this confusion error.

6.5.3.2 Map Size

Surprisingly, there does not seem to be a high correlation between map size and path error,

as shown in Figure 6.10. This is most likely due to variations in the underlying map’s

elevation—if absolute elevation estimates can be accurately made, increasing the map size

is unlikely to add potential paths whose starting points are of a similar elevation and who

exhibit similar relative elevation signatures.
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133



0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Path Error (m)

P
ro

b
a

b
ili

ty

 

 

10 km
2

23 km
2

41 km
2

64 km
2

92 km
2

Figure 6.10: Path prediction errors vs. map size.

6.5.3.3 Geographical Landscape

The elevation variation of the underlying map also plays a significant role in the ability to

accurately predict paths based on pressure. The variations in elevation for the 26 city maps

tested in this work are shown sorted in Figure 6.11. Revisiting Figure 6.9, we see that high

variation cities like Seattle have a much lower % Error than low variation cities like Chicago.

This trend was also observed in general over the 26 cities studied in this paper. For example,

Figure 6.12 shows the probability of confusing a given random path with any other path in

a particular map. As the elevation variation of the underlying map increases (cross-listing

again with Figure 6.11), there is an increased chance for path confusion, i.e. an increased

probability that any given path may exhibit non-unique elevation signatures.

6.6 Discussion

We have shown through extensive tests in real driving experiments and simulated test-cases

that it is often possible to predict a user’s driving path with high accuracy from a time-series

of barometer data. This prediction, however, is not without its limitations, as discussed be-
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Figure 6.11: Elevation variations for sampled city maps.

low.

6.6.1 Prediction Robustness

As discussed in Section 6.3, the process of converting pressure to elevation depends largely

on determining the pressure offset α(t). When this cannot be determined by nearby weather

stations, the accuracy will be greatly decreased. This can be counteracted by including addi-

tional sensor data such as turn-detection using accelerometers, gyroscopes, and magnetome-

ters. For example, the greedy path estimation algorithm can operate on relative elevation

rather than absolute, obviating the need for α(t) entirely. If in addition to using relative

elevation estimates we use information from mobile inertial sensors such as accelerometers
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and gyroscopes, the solver is still able to predict 50% of paths to within 500 m RMSE. This

may be further improved by considering metrics such as driving speed estimation, driving

mobility models, high traffic/highly probable routes, etc.

6.6.2 Privacy Implications

This work demonstrates real driving data in which 80% of tested paths can be predicted

to within 200 m RMSE using barometer data alone. Additionally, this accuracy considers

only single prediction instances—by combining data across multiple days it is likely that

commonly traveled routes can be predicted with a much higher accuracy. With increasingly

tight integration of social media applications in mobile devices, the potential privacy risks

escalate from associating an anonymous user with an estimated driving path to associating

a specific, personally identified user with a given driving path. When user anonymity, loca-

tion, and behavior are compromised, the potential for breaches in security and privacy are

all-the-more impressive. Additionally, mitigating privacy leaks through innocuous sensors

like barometers may not be as simple as implementing stricter access controls—balancing
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usability with utility is a non-trivial task, both technically and philosophically.

6.6.3 Future Work

This work demonstrates methods for accurately predicting driving paths based on baro-

metric pressure data, resulting in a very low power method for large scale traffic analysis

in emerging smart cities. The high correlation between pressure and elevation and the in-

clusion of these sensors on modern mobile devices raises a number of additional research

questions. For example, can barometer pressure be leveraged to improve location-services in

real-time to aid in spotty GPS coverage or to further reduce power consumption of location

services? In addition, can similar methods to those discussed in this work be used to predict

pedestrian paths in an unconstrained environment, such as for hikers? Finally, leveraging

results describing pressure changes as a function of vertical motion indoors (i.e. elevators,

escalators, and stairs) [MKM14], is it possible to infer which building or subset of buildings

a user may be walking through based on unique patterns of floor changes, enhancing path

estimation and occupancy detection algorithms? In future work, we plan to explore these

questions in an attempt to further evaluate the benefits of a city-wide, distributed network

of pressure sensors.

6.7 Summary

We have demonstrated methods by which barometric pressure data collected on mobile

phones can be used to infer driving paths with surprisingly high accuracy. Specifically, we

described both a greedy graph traversal approach and a dynamic-programming approach to

estimating likely driving paths given pressure-based elevation estimates and a map of poten-

tial road segments. These methods leverage results from dynamic time warping literature to

calculate a rate-independent similarity score between estimated and candidate path elevation

signatures. Pressure data collected over a total of 4.6 hours and 150 km demonstrates that

these algorithms can predict upwards of 90% of paths with less than 100 m error. Addition-

ally, we illustrated the accuracy of these prediction methods for more than 500 simulated
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test cases across 26 cities. The results of these simulations show that across all cities more

than 70% of paths can be predicted to within an error of 200 m. We further evaluated the

ability to estimate a user’s driving path as a function of several variables, including length

of barometer data, map size, and the elevation variance of the underlying map.

The results of the methods described in this paper serve to emphasize the importance

of distributed networks of smart devices in emerging smart cities as well as the growing

problem of personal data privacy, lending credence to research efforts focused on treating

data in a privacy-preserving and security-aware manner. Finally, all sensor data and software

described in this paper is open source and available at https://github.com/nesl/mercury.
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CHAPTER 7

SpyCon: Context-Aware Adaptation Based Spyware

7.1 Motivation

Context-awareness is the capability of software systems to sense and adapt to the surround-

ing environment. Many contemporary mobile applications provide adaptations to users in

different ways based on contexts such as locations [SSH15], connectivity states [SJP14],

energy resources [EGG14], and proximity to other users and devices [JGC13], to name a

few. As we stand on the edge of an explosion of data from these sensory devices, there

has been a corresponding increase in applications [UMP14] and dedicated sensing frame-

works [LYL10,JLY12,EWS15] targeting the integrity between contexts (sensing) and corre-

sponding adaptations (actions).

Unfortunately, the same act of adapting to user context often leads to systems where

increased sophistication comes at the expense of more privacy weaknesses. At the heart

of mobile privacy is the notion that information collected from the physical world through

sensors poses a significant privacy risk on inferring user sensitive information like behavior

and location [ASB12,MVB12b,SZG14b,HMS15]. While there exists a recent body of work

on identifying malicious apps which if granted access to sensory data can perform unwanted

inferences, the question of whether a malicious app can still perform inferences without having

direct access to sensory data remains unanswered. In other words, we ask the following

questions: (1) Do context-based actions taken by authentic context-aware applications—

which are granted access to sensory data—open side channels for malicious apps which do

not have direct access to such data? That is, by monitoring actions triggered by authentic

context-aware apps, can a malicious app still be able to perform unwanted inferences about
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user sensitive information like behavior and location. (2) What software mechanisms can be

deployed to detect and mitigate such privacy leak? Answering these questions becomes of

critical importance in assessing the privacy of these context-aware applications.

In this paper, we introduce a new type of spyware that exploits the privacy leaks in

context-aware adaptation which we call SpyCon.

7.1.1 Related Work

Context Monitoring Malware on Mobile Platforms: While mobile users benefit from

sensing technologies, there are increasing privacy and security concerns. The permission

systems on both Android and iOS become the first line of defense to protect users from

leaking sensitive information. However, the traditional grant-all-or-none policy allows third-

party apps to have all permissions [HHJ11]. Even worse, most users have trouble with

realizing the potential privacy hazards after granting such permissions. For example, though

seems innocuous, ACCESS_WIFI_STATE becomes a heavily privacy intrusive permission since

local MAC address can serve as a unique device identifier [ACR14]. Felt et al. [FHE12] shows

that as little as 17% of users pay attention to the permissions during app installation phase.

Different side-channel attacks have been proposed, for example, using inertial sensors and

touch screen to infer user input such as passwords [HON12b,MVB12b,OHD12b,MVC11].

Besides, we witnessed how to exploit cellular signal strengths or air pressure for loca-

tions [MSV15,HMS15], gyroscope for eavesdropping conversations [MBN14b], system-level

aggregate statistics for user’s real world identity [ZDH13b], and the state of shared memory

for foreground apps, and even, activity transition sequences [NYY15]. There is a trend that

malicious apps are adapting to wearable devices [RGK11b]. For example, MoLe [WLR15]

exploits the wrist motion derived from smartwatches to infer keystroke inputs. So far we’ve

provided many examples showing “Your apps are watching you” [KT10] in a broad spectrum

which a majority of users will never realize, and for sure “These aren’t the droid you’re

looking for” [HHJ11].

Contrary to the aforementioned side-channel attacks, we consider a spyware does not have
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access to sensor information like inertial or gyroscope sensors. Instead, a spyware can only

monitor actions made by other apps, and these actions are triggered based on the changes in

sensory data. Similar to the spyware considered in this work, [ZDH13b] demonstrates some

information leaking channels in Android (e.g. phone speaker status) that a malicious app

can monitor without any permission to acquire sensitive information about the user.

7.1.2 Paper Contribution

The primary innovation of this paper is to identify a new category of spyware apps. Specif-

ically, we list the contributions of this paper below:

• We exploit a new side channel attack vector arising from monitoring changes of phone

adaptations by context-aware applications. We call this new set of attacks a context-

aware adaptation based spyware, or in short, SpyCon.

• We show a concrete instantiation of a SpyCon which can maliciously infer user’s behav-

ior by monitoring context-based adaptions. We assess the performance of the developed

SpyCon through a one-month user study.

7.2 System Overview

This section introduces the Context-aware Adaptation based Spyware (SpyCon) and illus-

trates how it works and its potential negative outcomes. To this end, we show an exemplar

of SpyCon app that stealthily learns user locations inferred by those adaptions made by

other context-aware apps. Though we use location as an example, the same concept can be

generalized and applied to collecting other types of sensitive user data.
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Table 7.1: Phone settings (PS) considered in our apps.

PS Description PS Description
R Ringer mode P Wallpaper
H Touch sound D Dialpad sound
W Enable WiFi A Alarm volume
I Ringer volume M Media volume
T Display timeout B Screen brightness
V Vibration on touch L Screen locking sound

7.2.1 Popular Phone Manager Apps

Location-based phone setting management is one of the most popular context-aware applica-

tions1. Due to their capability to adapt to user contexts, apps like Llama [lla], Tasker [tas],

and Locale [loc] have gained more than one million downloads from Google Play Store.

These context-aware apps can change phone settings such as ringer volume or screen bright-

ness based on the current GPS location. Traditional configurations in these apps are, for

instance, muting the ringer volume when a user is in a class or a conference room or enabling

WiFi whenever the user enters home. Motivated by the popularity of these location-based

context-aware apps, we choose user location as the sensitive data for which our SpyCon leaks.

7.2.2 Spyware Description

As described before, we are interested in designing a SpyCon that monitors changes in phone

settings—which are triggered by a location-based context aware app—and uses these changes

to leak user’s location. We start by making the following two important remarks:

No user permissions: Many phone settings can be monitored without seeking user

permissions. For example, SpyCon can easily get current screen brightness or alarm volume

without user consent.

Ambiguity on setting changes: Manual adjustment can make changes in phone set-

tings through physical buttons. Although SpyCon can not discriminate a priori between the

1By the time this paper was written, context-aware phone settings management applications ranked 3rd

in the Productivity category in the Android Developer Challenge [tas].
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settings’ change that are triggered by location change and by the changes that are manually

performed, machine learning algorithms can be handy in discovering repetitive patterns in

the data.

The operation of the designed SpyCon is divided into two phases as follows:

Logging: SpyCon monitors all the changes in phone settings and records a timestamped

value upon a change is detected. A list of phone settings that we consider in our SpyCon is

given in Table 7.1.

Data Mining: Once enough data is collected, SpyCon analyzes these data to discover

repeated patterns and hence infers user’s daily behavior. More details about the implemented

data mining algorithm are given in Section 7.2.4 after we discuss the user study setup.

7.2.3 SpyCon User Study

We developed two applications, an authentic context-aware app and a SpyCon. Both apps

are developed on Android 5.0.1 and run on Nexus 4 and Nexus 5. Totally we recruited 7

participants including 4 males and 3 females. We asked all participants to carry a phone

with them for four weeks on which our apps are installed. Based on the data we collected

during the user study, we perform clustering algorithm and explore what information we can

mine maliciously.

7.2.3.1 Context-Based Adaptation Application

We developed an application that resembles popular context-based adaptation apps such

as Tasker [tas] and Locale [loc]. Our app provides a friendly UI for users to define their

profiles. A profile contains a trigger condition and a set of actions. A condition is specified

by a fixed-radius circular geofence. The corresponding actions are media settings, such as

adjusting screen brightness to 60% or setting ringer mode to vibration. The full phone
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settings we considered are listed in Table 7.1. When a user enters a registered region, our

app changes the phone settings accordingly. Our app maintains the golden output from our

users by passively sensing their location. The golden output is packed as records; each record

contains a timespan and a profile. The golden output is used for the evaluation of SpyCon.

7.2.3.2 SpyCon Application

We developed a SpyCon whose only task is to stay in the background and log phone settings

without any interaction with all the other apps, including the previous one2. All of the

settings collected by the SpyCon app can be accessed without permissions on Android OS.

However, we should mention that any SpyCon app may require the knowledge of the

installed applications to know whether the phone settings—or any other context-based

adaptations—are triggered as a consequence of context changes. For example, the Spy-

Con we describe here can not reason that the change in phone settings come from a change

in user’s location unless it knows a priori that this phone has a location-based application

that adapts the settings based on location. This knowledge can be done in two steps. First,

a malicious app needs to know what other apps are running on the same phone. This infor-

mation can be easily retrieved by Android API getInstalledApplications which requires no

permission. Second, the malicious app needs to know the nature of the context adaptions

that are triggered by such apps. Typically, this can be known from the context-aware ap-

plication store (“Google Play”) page. For example Tasker [tas] and Locale [loc] apps specify

that phone settings are adapted based on user location.

7.2.4 Experiment 1: Data Mining by Clustering

Revealing the semantics of user location, or equivalently, active profile sequences from phone

settings is challenging since the profile and the phone settings do not have a one-to-one

mapping. This lack of one-to-one correspondence is due to the following factors (1) users

2In the real world, this SpyCon can provide some functionality but collect data stealthily, which is a
typical way a spyware hides its true intention.
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can manually change some phone settings regardless of their location, (2) users usually set

only a subset of the 12 settings (listed in Table 7.1), and (3) two different profiles may update

different sets of phone settings, which means some settings from the first action may still

exist after the second action is applied. Thus, we use a clustering technique to approach the

user data mining problem, and in particular, we use k-means algorithm.

Deciding the number of clusters in k-means algorithm is known to be hard in general and

is usually application dependent. Since our SpyCon does not know how many profiles are

defined by users, we brute-forcedly set k to be any value between 2 through 7 (selected based

on the maximum number of profiles defined by our participants). Our algorithm returns the

clustering result with the highest silhouette score.

7.2.4.1 Critical Phone Settings

Inspired by how most unsupervised machine learning algorithms work, we implement a

greedy algorithm to find dominant phone settings. The algorithm procedures are provided

below:

1. Initialize the selected feature set S = φ.

2. We examine every other setting f not in S by performing k-means with feature set

S ∪ {f}. The silhouette score hf is computed accordingly.

3. Denote ĥ as the maximum hf from the previous step. If ĥ is larger than previous

silhouette score, then S = S ∪ {f} and go back to step 2. Otherwise, the algorithm

terminates.

7.2.4.2 Privacy Implications

The clustering result of one participant in our study is demonstrated in Figure 7.1. Figure

7.1a shows the actual user profile changes across the day (the golden output as explained in

Section 7.2.3.1). Figure 7.1b shows the k-means clustering result (using an adaptive number

of clusters) and demonstrates similar patterns with the golden output in Figure 7.1a. Our
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Table 7.2: Clustering accuracy of all users compared to the baseline accuracy by applying
k-means using the settings from Table 7.1.

# clusters using all features Dominant
UID base 2 3 2-7 features
1 0.752 +0.189 +0.229 +0.191 +0.218 W,R,V
2 0.560 +0.172 +0.240 +0.183 +0.241 R,B,W
3 0.805 +0.129 +0.144 +0.136 +0.167 R
4 0.456 +0.373 +0.342 +0.356 +0.359 W,R,L
5 0.420 +0.240 +0.352 +0.240 +0.418 T,R,A
6 0.579 +0.044 +0.360 +0.044 +0.407 A,R,B,W
7 0.780 +0.150 +0.155 +0.150 +0.156 R,O

Avg. 0.622 +0.185 +0.258 +0.182 +0.281

algorithm is able to capture subtle events, for example, learning that the user regularly went

to a certain place (which turns out to be the child care) after leaving or before returning

home, despite the portion of time this user spent in child care is short. Clustering result

derived by dominant features from our feature selection algorithm is shown in Figure 7.1c.

Figure 7.1b and Figure 7.1c indicate the ability of the developed SpyCon to reconstruct user

context (switching profiles in this case) by just monitoring its side effect (changes in phone

settings).

The overall accuracy of our clustering algorithm is reported in Table 7.2. We report

the baseline accuracy which is the accuracy that the SpyCon can have without making any

inference based on random guesses, such as assuming that the user is at home. The results in

the rest of the columns are the additional information (the increase in accuracy) the SpyCon

gains over the baseline accuracy if an inference is used using different number of clusters.

The accuracy derived from dominant features is slightly higher because the feature selection

algorithm excludes noisy features leading to a better result. We report dominant features for

each user in the last column of Table 7.2. We observed that the ringer mode is a dominant

feature in all the users’ data.

In summary, this study shows that the designed SpyCon can estimate and learn with an

average accuracy of 90.3% the user behavior, in particular:

1. Average commuting time between home and work.
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Figure 7.1: One example of profile timeline from user #2.
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Figure 7.2: The percentage of apps from top 100 downloaded free Android apps that use the
APIs in Table 7.1.

2. Average time spent at work and at home.

3. Weekend behavior, such as if a specific place is frequently visited on Sundays and

average time spent at home.

7.2.5 Experiment 2: Significance of SpyCon

We performed static analysis on the top 100 downloaded free apps from the Google Play

store to see if they can exploit this side channel. Our analysis shows that around 60% of

the sampled applications use 4 or more APIs from Table 7.1. In particular, 80% of the

apps checks if WiFi is turned on using the same API in the proposed phone-setting SpyCon.

Similarly, 82% of the apps get the current audio volume. The results of the overall analysis

are shown in Figure 7.2.

We examined the information possessed by these real applications, and due to the space

limitation, we report the details of 5 of them in Table 7.3. Our results show that any of

these 100 apps has information that is enough to exploit this side channel and act as an

undetected SpyCon.

To conclude, in this section, we showed a full instantiation of a SpyCon that leaks infor-
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Table 7.3: Clustering accuracy by information possessed by real apps on user’s behavior
whenever apps like Locale [loc] and Tasker [tas] are installed on the same phone.

App name APIs used Accuracy
Don’t Tap the White Tile RWAIMB 85.4%

Hulu Plus RWAIM 86.1%
Skype RHWAIM 83.0%

Power Battery RWTBV 85.0%
Yahoo Mail RW 81.9%

mation by monitoring an authentic context-aware application.

7.3 Discussion

7.3.1 Beyond phone settings

While the study in Section 7.2.4 shows that the proposed SpyCon is practical, SpyCon is not

limited only to the phone settings listed in Table 7.1. In general, SpyCon can take advantage

of any pair of get and set methods. More specifically, Android framework APIs has many

examples of this kind of get-set pairs existing in PackageManager, ClipboardManager, and

others.

7.4 Summary

We examined a new class of privacy threatening spyware that are designed to snoop around

adaptations made by context-aware apps which we called SpyCon. We showed through user

study that by monitoring the context-based adaptations triggered by authentic context-aware

apps, a malicious app could infer information about the current user behavior and location.

To exacerbate the situation, our experiments show that this new spyware is undetectable

using off-the-shelf antivirus and moreover many of the top 100 downloadable free Android

apps have access to enough information to extract sensitive information about user.
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CHAPTER 8

Conclusion and Future Work

8.1 Conclusion

This dissertation attempted to bridge the gap between user engagement and existing sensing

techniques. User engagement is equally essential for both product providers and users them-

selves. The utility of smartphones and wearables is maximized when people use them; users

can enjoy the services provided by mobile devices only if the users are willing to explore the

features and functionalities offered. Having a notion of user engagement in modern sensing

computational systems helps prioritize tasks, allocate resources, and reach out to users at

opportune moments. To this end, we exploited the performance-based observation approach

to gauge user engagement. Following this definition, we explored how the advances of sens-

ing techniques can increase user engagement and how user engagement can be modeled by

sensor data from edge devices, and raised the privacy concerns that can hinder the trust

between users and technologies, which consequently discourages user engagement.

We used a workout application to demonstrate how sensing techniques can optimize ser-

vice utility, which in turn encourages people to engage with exercise activities. The workout

app is composed of a MiLift system and a MyoBuddy system. MiLift features a single-

device, automatic, and hardware-resource efficient weightlifting workout sensing technique.

MyoBuddy offers the weight measurement algorithm, which completes the entire weightlifting

exercise tracking pipeline. Our users rated the proposed workout tracking system, which is

capable of accurately identifying exercise sessions and counting repetitions while minimizing

battery drain, with an average overall score of 4.47 out of 5.

We studied how to model user engagement from sensor data by first conducting a crowd-
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sourced user study called Nurture. In the study, we developed both a generative simulator

and an online interactive simulation to evaluate the capability and feasibility of using re-

inforcement learning to model interruptibility. In this pilot study, reinforcement learning

demonstrated the adaptiveness and increased user responsiveness with an acceptable model

converging time. Based on these insights, we developed a real system called Quick Question

that aims to identify opportune moments to deliver microtasks in a natural, interfere-less,

and in-the-wild setup. We compared the performance of the reinforcement learning approach

with the supervised learning approach, and our findings suggest that while the average num-

ber of responses between both methods is commensurate, the reinforcement learning is more

effective at avoiding dismissal of notifications and improves user experiences over time.

It is natural to assume that acquiring more sensory data leads to higher accuracy in

modeling engagement, which in turn increases the user engagement. However, in the last

part of this dissertation, we showcased that although some sensors seem harmless, they

can still open side channels that allow attackers to access sensitive personal information

and create great privacy concerns. We built GPSI and SpyCon systems to demonstrate

that sensor-based side-channel attacks are practical. Such a privacy breach can significantly

decrease user engagement when the trust between the sensing technology and human beings

vanishes.

The implementations of the projects presented in this thesis are open source and available

from the repositories listed below:

• MiLift: https://github.com/nesl/WorkoutTracking

• MyoBuddy: https://github.com/nesl/MyoBuddy

• Nurture: https://github.com/nesl/Nurture-UbiTtention18

• Quick Question: https://github.com/nesl/EngagementService

• GPSI: https://github.com/nesl/mercury
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8.2 Future work

Below, I outline opportunities for further investigation on increasing user engagement and

user experience enhancement.

8.2.1 Mobile-Application Initiated User Engagement Enhancement

User engagement can be modeled by considering user context, as extensively discussed in

this dissertation. But application developers are always eager to engage their users. Such a

contribution from the developer side is hindered by the huge gap between high-level applica-

tion logic and low-level sensor data, i.e., implementing user context classifiers from scratch

in order to infer the appropriateness of interrupting a user at a certain time is challenging for

most app developers. As a result, most applications fall back on a simple periodic scheduling

strategy to interact with users. We hereby point out a future research direction: How can

we place application developers into the equation for user engagement modeling, making it

not only consider user context, but also application context?

Ultimately, a high-level context-aware language to express when to reach out to people

and what to expect from users should be offered to ease development efforts. Figure 8.1

attempts to illustrate the vision. We believe that to accomplish this goal, there are two

challenges to be addressed. First, a programming language that bridges the semantic context

and the raw sensory data has to be developed and also has to be sufficiently expressive.

Second, a conflict resolver between application requirements and user preferences has to

be studied. For example, sending a medication reminder is a legitimate motivation, but

users may decline to follow the instruction. In contrast, applications that excessively deliver

low-priority messages can reduce productivity, which is not desirable. We have drafted a

complex-event based language, called Emu [HBN17], which aims to concisely and precisely

describe when to engage users (see the example in Figure 8.2), but additional improvements

are necessary to reach this vision.
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Figure 8.1: Examples of specifying context triggers and action compliance in different ap-
plications from different domains. We envision that the system should provide a high-level
context language to express the context triggers and the compliances, symbolized as the
black icons.

8.2.2 On-Device Engagement Computation

Since the benefit of having an “engagement meter” is universal across all the mobile appli-

cations, we foresee the need for integrating user engagement measurement as part of the

system services in mobile operating systems. A service offered at the system level requires

high availability. Although this dissertation has explored a server-client architecture to gauge

user engagement as demonstrated in the Quick Question system, it is for easing the prototyp-

ing effort and does not optimize for availability. For example, our client app does not receive

engagement information during network outages. We argue that migrating the computation

logic from the server side to local mobile phones is one of the future directions to explore,
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1 Task taskBP = TaskBuilder.create ()
2 .repeat(‘every day’)
3 .when(‘walking for 1 hours
4 or running for 15 minutes’
5 .then(‘nearBPMachine within 1 hours’)
6 .notify(‘Measure blood pressure ’,
7 PRIORITY_MEDIUM ,
8 ‘snooze 2 times’, ‘every 15 mins’)
9 .launch(bpActivity)

10 .report(bpCallBack , ‘timeout 2 hours’)
11 .startTask(BP_TASK_ID);

Figure 8.2: Example code of registering a task in Emu. The bold font are reserved keywords
in Emu.

given the computational performance and hardware accelerators equipped in modern mobile

phones (e.g., hardware-supported neural network computation1,2). We believe that comput-

ing user engagement locally can potentially reduce measurement processing time and battery

consumption because network communication is no longer required. Additionally, it reduces

the chance of personal information leaks because the data does not leave the phones. Con-

sequently, it reduces privacy concerns and can positively affect user engagement. However,

local computation increases memory usage. Hence, there will need to be further analysis in

terms of overall system performance.

8.2.3 Toward a Seamless Engagement Modeling Experience

One challenge in user engagement modeling is that the process of modeling can decrease

engagement. For example, in Quick Question, the learning agent learns when interrupting

users will annoy them. This usually happens in the beginning of the learning process, e.g.,

within the first couple of days, since the learning agent starts to interact with users. We

1Neural Engine in iPhones - https://www.apple.com/iphone-xs/a12-bionic/

2Edge TPU by Google: https://cloud.google.com/edge-tpu/
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observe that a model with low complexity can usually boost the modeling accuracy in a

short span of time, but it saturates at a low accuracy after the warm-up period. In contrast,

a high-complexity model achieves better accuracy, but it takes more time to converge. We

think that a possible approach is to develop a hybrid model that benefits from the advantages

of both models, and we believe that shortening the learning time necessary to ramp up the

agent and reach a reasonable performance is yet another direction to explore.
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