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Evaluating Functional Annotations of Enzymes Using the Gene 
Ontology

Gemma L. Holliday, Rebecca Davidson, Eyal Akiva, and Patricia C. Babbitt

Abstract

The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25–29, 2000) is a powerful tool in 

the informatics arsenal of methods for evaluating annotations in a protein dataset. From 

identifying the nearest well annotated homologue of a protein of interest to predicting where 

misannotation has occurred to knowing how confident you can be in the annotations assigned to 

those proteins is critical. In this chapter we explore what makes an enzyme unique and how we 

can use GO to infer aspects of protein function based on sequence similarity. These can range 

from identification of misannotation or other errors in a predicted function to accurate function 

prediction for an enzyme of entirely unknown function. Although GO annotation applies to any 

gene products, we focus here a describing our approach for hierarchical classification of enzymes 

in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database 

issue):D521–530, 2014) as a guide for informed utilisation of annotation transfer based on GO 

terms.
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1 Introduction

Enzymes are the biological toolkit that organisms use to perform the chemistry of life, and 

the Gene Ontology (GO) [1] represents a detailed vocabulary of annotations that captures 

many of the functional nuances of these proteins. However, the relative lack of 

experimentally validated annotations means that the vast majority of functional annotations 

are electronically transferred, which can lead to erroneous assumptions and missannotations. 

Thus, it is important to be able to critically examine functional annotations. This chapter 

describes some of the key concepts that are unique for applying GO-assisted annotation to 

enzymes. In particular we introduce several techniques to assess their functional annotation 

within the framework of evolutionarily related proteins (superfamilies).

1.1 Enzyme Nomenclature and How It Is Used in GO

At its very simplest, an enzyme is a protein that can perform at least one overall chemical 

transformation (the function of the enzyme). The overall chemical transformation is often 

described by the Enzyme Commission (EC) Number [2–4] (and see Chap. 19 [5]). The EC 

Number takes the form A.B.C.D, where each position in the code is a number. The first 

number (which ranges from 1 to 6) describes the general class of enzyme, the second two 

numbers (which both range from 1 to 99) describe the chemical changes occurring in more 
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detail (the exact meaning of the numbers depends on the specific class of enzyme you are 

looking at) and the final number (formally ranging from 1 to 999) essentially describes the 

substrate specificity. The EC number has many limitations, not least the fact that it doesn’t 

describe the mechanism (the manner in which the enzyme performs its overall reaction) and 

often contains no information on cofactors, regulators, etc. Nor is it structurally contextual 

[6] in that similarity in EC number does not necessarily infer similarity in sequence or 

structure, making it sometimes risky to use for annotation transfer, especially among remote 

homologous proteins. However, it does do exactly what it says on the tin: it defines the 

overall chemical transformation. This makes it an important and powerful tool for many 

applications that require a description of enzyme chemistry.

The Molecular Function Ontology (MFO) in GO contains the full definition of around 70 % 

of all currently available EC numbers. Theoretically, the MFO would contain all EC 

numbers available. However, due to many EC numbers not currently being assigned to a 

specific protein identifier within UniProtKB, the coverage is lower than might be expected. 

Another important difference between the EC hierarchy and the GO hierarchy is that the 

latter is often much more complex than the simple four steps found in the EC hierarchy. For 

example, the biotin synthase (EC 2.8.1.6) hierarchy is relatively simple and follows the four 

step nomenclature, while the GO hierarchy for [cytochrome c]-arginine N-methyltransferase 

(EC 2.1.1.124) is much more complex (see Fig. 1).

Formally, MFO terms describe the activities that occur at the molecular level; this includes 

the “catalytic activity” of enzymes or “binding activity”. It is important to remember that EC 

numbers and MFO terms represent activities and not the entities (molecules, proteins or 

complexes) that perform them. Further, they do not specify where, when or in what context 

the action takes place. This is usually handled by the Cellular Component Ontology. The 

final ontology in GO, the Biological Process Ontology (BPO), provides terms to describe a 

series of events that are accomplished by one or more organised assemblies of molecular 

functions. Each MFO term describes a unique single function that means the same thing 

regardless of the evolutionary origin of the entity annotated with that term. Although the 

BPO describes a collection of activities, some BPO terms can be related to their counterparts 

in the MFO, e.g. GO:0009102 (biotin bio-synthetic process) could be considered to be 

subsumed with the MFOtermGO:0004076(biotinsynthaseactivity)asGO:0009102 includes 

the activity GO:0004076, i.e. in such cases, the terms are interchangeable for the purpose of 

evaluation of a protein’s annotation. Please see Chap. 2 [7] for a more in-depth discussion of 

the differences between BPO and MFO.

As a protein, an enzyme has many features that can be described and used to define the 

enzyme’s function, from the primary amino acid sequence to the enzyme’s quaternary 

structure (biological assembly), the chemistry that is catalysed, to the localisation of the 

enzyme. Features can also denote the presence (or absence) of active site residues to confirm 

(or deny) a predicted function, such as EC class, using the compositional makeup of a 

protein amino acid sequences [8, 9]. Nevertheless, for the many proteins of unknown 

function deposited in genome projects, prediction of the molecular, biological, and cellular 

functions remains a daunting challenge. Figure 2 provides a view of enzyme-specific 

features along with the GO ontologies that can also be used to describe them. Because it 
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captures these features through a systematic and hierarchical classification system, GO is 

heavily used as a standard for evaluation of function prediction methods. For example, a 

regular competition, the Critical Assessment of Functional Annotation (CAFA) has brought 

many in the function prediction community together to evaluate automated protein function 

prediction algorithms in assigning GO terms to protein sequences [11]. Please see Chap. 10 

[12] for a more detailed discussion of CAFA.

1.2 Why Annotate Enzymes with the Gene Ontology?

Although there are many different features and methods that can (and are) used to predict the 

function of a protein, there are several advantages to using GO as a broadly applied standard. 

Firstly, GO has good coverage of known and predicted functions so that nearly all proteins 

in GO will have at least one associated annotation. Secondly, annotations associated with a 

protein are accompanied by an evidence code, along with the information describing that 

evidence source. Within the SFLD [13] each annotation has an associated confidence level 

which is linked to both the evidence code, source of the evidence (including the type of 

experiment) and the curator’s experience. For example, experimental evidence for an 

annotation is considered as having high confidence whereas predictions generated by 

computational methods are considered of lower confidence (Chap. 3 [14]). In general there 

are three types of evidence for the assignment of a GO term to a protein:

1. Fully manually curated: These proteins will usually have an associated 

experimental evidence that has been identified by human curators and who have 

added relevant evidence codes. For the purposes of the SFLD and this chapter, 

these are considered high confidence and will have a greater weight than any 

other annotation confidence level.

2. Computational with some curator input: These are computationally based 

annotations that have been propagated through curator derived rules, and are 

generally considered to be of medium confidence by the SFLD. Due to the huge 

proportion of sequences in large public databases now available, over 98 % of 

GO annotations are inferred computationally [15].

3. Computational with no curator input: These annotations that have been 

computationally inferred from information without any curator input into the 

inference rules and are considered to be of the lowest confidence by the SFLD.

All computationally derived annotations rely upon prior knowledge, and so if the rule is not 

sufficiently detailed, it can still lead to the propagation of annotation errors (see 
Misannotation Section 1.4).

Assigning confidence to annotations is highly subjective [16], however, as one person may 

consider high-throughput screening, which more frequently is used to predict protein-

binding or sub-cellular locations rather than EC number, of low confidence. This is because 

such experiments often have a relatively high number of false positives that can generate 

bias in the analysis. However, depending on what your research questions are, you may 

consider such data of high confidence. It all depends on what field you are in and what your 

needs are. Generally speaking, the more reproducible the experiment(s), the higher 
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confidence you can have in their results. Thus, even low-to-medium confident annotations 

(from Table 1) may lead to a high-confidence annotation.

For example the GO Reference Code GO_REF:0000003 provides automatic GO annotations 

based on the mapping of EC numbers to MFO terms, so although annotated as IEA, these 

annotations can be considered of higher confidence [18]. Some examples of high-, medium- 

and low-confidence annotations are shown in Table 1, along with reference to the approach 

used in SwissProt and the SFLD to describe their reliability.

1.3 Annotation Transfer Under the Superfamily Model

We define here an enzyme (or protein) superfamily as the largest grouping of enzymes for 

which a common ancestry can be identified. Superfamilies can be defined in many different 

ways, and every resource that utilises them in the bioinformatics community has probably 

used a slightly different interpretation and method to collate their data. However, they can be 

broadly classified as structure- based, in which the three-dimensional structures of all 

available proteins in a superfamily have been aligned and confirmed as homologous, or 

sequence based, where the sequences have been used rather than structures. Many resources 

use a combination of approaches. Examples of superfamily based resources include CATH 

[19], Gene3D [20], SCOP and SUPERFAMILY [21], which are primarily structure based, 

and Pfam [22], PANTHER [23] and TIGRFAMs [24], which are primarily sequence based. 

A third definition of a superfamily includes a mechanistic component, i.e. a set of sequences 

must not only be homologous, but there must be some level of conserved chemical 

capability within the set, e.g. catalytic residues, cofactors, substrate and/or product 

substructures or mechanistic steps. An example of such a resource is the SFLD and we will 

focus on this resource with respect to evaluating GO annotations for enzymes that are 

members of a defined superfamily.

The SFLD (http://sfld.rbvi.ucsf.edu/) is a manually curated classification resource describing 

structure-function relationships for functionally diverse enzyme superfamilies [25]. 

Members of such superfamilies are diverse in their overall reactions yet share a common 

ancestor and some conserved active site features associated with conserved functional 

attributes such as a partial reaction or molecular subgraph that all substrates or products may 

have in common. Thus, despite their different functions, members of these superfamilies 

often “look alike” which can make them particularly prone to misannotation. To address this 

complexity and enable reliable transfer of functional features to unknowns only for those 

members for which we have sufficient functional information, we subdivide superfamily 

members into subgroups using sequence information (and where available, structural 

information), and lastly into families, defined as sets of enzymes known to catalyse the same 

reaction using the same mechanistic strategy and catalytic machinery. At each level of the 

hierarchy, there are conserved chemical capabilities, which include one or more of the 

conserved key residues that are responsible for the catalysed function; the small molecule 

subgraph that all the substrates (or products) may include and any conserved partial 

reactions. A subgroup is essentially created by observing a similarity threshold at which all 

members of the subgroup have more in common with one another than they do with 

members of another subgroup. (Thresholds derived from similarity calculations can use 
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many different metrics, such as simple database search programs like BLAST [26] or 

Hidden Markov Models (HMMs) [27] generated as part of the curation protocol to describe 

a subgroup or family.)

1.4 Annotation Transfer and Misannotation

Annotation transfer is a hard problem to solve, partly because it is not always easy to know 

exactly how a function should be transferred. Oftentimes, function and sequence similarity 

do not track well [28, 29] and so, if sequence similarity is the only criterion that has been 

used for annotation transfer, the inference of function may have low confidence. However, it 

is also very difficult to say whether a protein is truly misannotated, especially if no fairly 

similar protein has been experimentally characterised that could be used for comparison and 

evaluation of functional features such as the presence of similar functionally important 

active site residues. As we have previously shown [30–32] there is a truly staggering amount 

of protein space that has yet to be explored experimentally and that makes it very difficult to 

make definitive statements as to the validity of an annotation.

Misannotation can come from many sources, from a human making an error in curation, 

which is then propagated from the top down, to an automated annotation transfer rule that is 

slightly too lax, to the use of transitivity to transfer annotation, e.g. where protein A is 

annotated with function X, protein B is 70 % identical to A, and so is also assigned function 

X, protein C is 65 % identical to protein B, and so is also assigned function X. Whilst this 

may be the correct function, protein C may have a much lower similarity to protein A, and 

thus the annotation transfer may be “risky” [33]. As in the example shown in Fig. 3, 

sequence similarity networks (SSNs) [34] offer a powerful way to highlight where potential 

misannotation may occur. In this network, all the nodes are connected via a homologous 

domain, the Radical SAM domain. Thus, the observed differences in the rest of the protein 

mean that the functions of the proteins may also be quite different. For details on the 

creation of SSNs, see Subheading 2.1. Cases where annotations may be suspect can often be 

evaluated based on a protein’s assigned name, and from the GO terms inferred for that 

protein.

Not all annotations are created equal, even amongst experimentally validated annotations, 

and it is important to consider how well evidence supporting an annotation should be trusted. 

For example, in the glutathione transferase (GST) superfamily, the cognate reaction is often 

not known as the assays performed use a relatively standard set on non-physiological 

substrates to infer the type of reaction catalysed by each enzyme that is studied. Moreover, 

GSTs are often highly promiscuous for two or more different reactions again complicating 

function assignment [32]. That being said, the availability of even a small amount of 

experimental evidence can help guide future experiments aimed at functional 

characterisation. A new ontology, the Confidence Information Ontology (CIO) [16], aims to 

help annotators assign confidence to evidence. For example, evidence that has been 

reproduced from many different experiments may have an intrinsically higher confidence 

than evidence that has only been reported once.

Holliday et al. Page 5

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Using GO Annotations to Visualise Data in Sequence Similarity Networks

Sequence similarity networks (SSNs) are a key tool that we use in the Structure-Function 

Linkage Database (SFLD) as they give an immediately accessible view of the superfamily 

and the relationships between proteins in this set. This in turn allows a user to identify 

boundaries at which they might reasonably expect to see proteins performing a similar 

function in a similar manner. As was shown in Fig. 3, the GO annotation for BioB covered 

several different SFLD families. These annotation terms have been assigned through a 

variety of methods, but mostly inferred from electronic annotation (i.e. rule-based annotation 

transfer as shown in Fig. 4).

From the networks shown previously, a user may intuitively see that there are three basic 

groups of proteins. Further, it could be hypothesised that these groups could have different 

functions (which is indeed the case in this particular example). Thus, the user may be left 

with the question: How do I know what boundaries to use for high confidence in the 

annotation transfer? Figure 5 shows another network, this time coloured by the average bit-

score for the sequences in a node against the SFLD HMM for BioB. This network 

exemplifies how (1) sequence similarity (network clusters) corresponds with the sequence 

pattern generated by SFLD curators to represent the BioB family, and (2) HMM true-

positive gathering bit-score cut-off can be fine-tuned. By combining what we know about 

the protein set from the GO annotation (Fig. 3) with the HMM bit-score (Fig. 5) it is 

possible to be much more confident in the annotations for the proteins in the red/brown 

group in Fig. 5.

2.1 Creating Sequence Similarity Networks

SSNs provide a visually intuitive method for viewing large sets of similarities between 

proteins [34]. Although their generation is subject to size limitations for truly large data sets, 

they can be easily created and visualised for several thousand sequences. There are many 

ways to create such networks, the networks created by the SFLD are generated by 

Pythoscape [35], a freely available software that can be downloaded, installed and can be run 

locally. Recently, web servers have been described that will generate networks for users. For 

example, The Enzyme Similarity Tool (EFI-EST) [36] created by the Enzyme Function 

Initiative will take a known set of proteins (e.g. Pfam or InterPro [37] groups) and generate 

networks for users from that set. A similarity network is simply a set of nodes (representing 

a set of amino acid sequences as described in this chapter, for example) and edges 

(representing the similarity between those nodes). For the SSNs shown in this chapter, edges 

represent similarities scored by pairwise BLAST E-values (used as scores) between the 

source and target sequences. Using simple metrics such as these, relatively small networks 

are trivial and fast to produce from a simple all-against-all BLAST calculation. However, the 

number of edges produced depends on the similarity between all the nodes to each other, so 

that for comparisons of a large number of closely related sequences, the number of edges 

will vastly exceed the number of nodes, quickly outpacing computational resources for 

generating and viewing networks. As a result, some data reduction will eventually be 

necessary. The SFLD uses representative networks where each node represents a set of 

highly similar sequences and the edges between them represent the mean E-value similarity 
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between all the sequences in the source node and all the sequences in the target node. As 

shown in Fig. 3, node graphical attributes (e.g. shape and colour) used to represent GO terms 

for the proteins shown are a powerful way to recognise relationships between sequence and 

functional similarities. Importantly, statistical analyses must be carried out to verify the 

significance of these trends, as we show below.

2.2 Determining Over- and Under- represented GO Terms in a Set of Species- Diverse 
Proteins

A common use of GO enrichment analysis is to evaluate sets of differentially expressed 

genes that are up- or down-regulated under certain conditions [38]. The resulting analysis 

identifies which GO terms are over- or under-represented within the set in question. With 

respect to enzyme superfamilies, the traditional implementation of enrichment analysis will 

not work well as there are often very many different species from different kingdoms in the 

dataset. However, there are several ways that we can still utilise sets of annotated proteins to 

evaluate the level of enrichment for GO terms.

The simplest method and least rigorous, is to take the set of proteins being evaluated, count 

up the number of times a single annotation occurs (including duplicate occurrences for a 

single enzyme, as these have different evidence sources) and up-weight for experimental (or 

high confidence) annotations. Then, by dividing by the number of proteins in the set, any 

annotation with a ratio greater than one can be considered “significant”.

A more rigorous treatment assumes that for a set of closely related proteins (i.e. belonging to 

a family) a specific GO term is said to be over-represented when the number of proteins 

assigned to that term within the family of interest is enriched versus the background model 

as determined by a probability distribution. Thus, there are two decisions that need to be 

made, firstly, identifying the background model and then which probability function to use. 

The background model is dependent on the dataset and the question that is being asked. For 

example in the SFLD model, we might use the subgroup or superfamily and a random 

background model that gives us an idea of what annotations could occur purely by chance. 

The lack of high (and sometimes also medium) confidence annotations is another 

complication in examining enrichment of terms. If one is using IEA annotations to infer 

function, the assertions can quickly become circular (with inferred annotations being 

transferred to other proteins which in turn are used to annotate yet more proteins), leading to 

results which themselves are of low confidence. Similarly, if very few proteins are explicitly 

annotated with a high/medium confidence annotation, the measure of significance can be 

skewed due to low counts in the dataset. The choice of the probability function is also going 

to depend somewhat on what question is being asked, but the hypergeometric test (used for a 

finite universe) is common in GO analyses [39, 40]. For more detail on enrichment analysis, 

see Chap. 13 [41].

2.3 Using Semantic Significance with GO

Instead of simply transferring annotations utilising sequence homology and BLAST scores, 

many tools are now available (e.g. Argot2 [42] and GraSM [43]) that utilise semantic 

similarity [42–46]. Here, the idea is that in controlled vocabularies, the degree of relatedness 
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between two entities can be assessed by comparing the semantic relationship (meanings) 

between their annotations. The semantic similarity measure is returned as a numerical value 

that quantifies the relationship between two GO terms, or two sets of terms annotating two 

proteins.

GO is well suited to such an approach, for example many children terms in the GO directed 

acyclic graph (DAG) have a similar vocabulary to their parents. The nature of the GO DAG 

means that a protein with a function A will also inherit the more generic functions that 

appear higher up in the DAG; this can be one or more functions, depending on the DAG. For 

example, an ion transmembrane transporter activity (GO:0015075) is a term similar to 

voltage-gated ion channel activity (GO:0005244), the latter of which is a descendent of the 

former, albeit separated by the ion channel activity (GO:0005216) term. Thus, the ancestry 

and semantic similarity lends greater weight to the confidence in the annotation.

Such similarity measures can be used instead of (or in conjunction with) sequence similarity 

measures. Indeed, it has been shown [47] that there is good correlation between the protein 

sequence similarity and the GO annotation semantic similarity for proteins in Swiss-Prot, the 

reviewed section of UniProtKB [17]. Consistent results, however, are often a feature not 

only of the branch of GO to which the annotations belong, but also the number of high 

confidence annotations that are being used. For a more detailed and comprehensive 

discussion of the various methods, see Pesquita et al. [44] and Chap. 12 [48].

2.4 Use of Orthogonal Information to Evaluate GO Annotation

In the example shown in Fig. 3, it is clear that many more nodes in the subgroup are 

annotated as biotin synthase by GO than match the stringent criteria set within the SFLD, 

which not only require a significant E-value (or Bit Score) to transfer annotation, but the 

presence of the conserved key residues. As mentioned earlier, one key advantage to using 

GO annotations over those of some other resources is the evidence code (and associated 

source of that evidence) as shown in Fig. 4. As indicated by that network, when using GO 

annotations, it is important to also consider the associated confidence level for the evidence 

used in assigning an annotation (see Table 1). In Fig. 4, only a few annotations are supported 

by high-confidence evidence. Alternatively, if a protein has a high confidence experimental 

evidence code for membership in a family of interest yet is not included by annotators in that 

family, then the definition of that family may be too strict, indicating that a more permissive 

gathering threshold for assignment to the family should be used.

Another way of assessing the veracity of the annotation transferred to a query protein is to 

examine both the annotations of the proteins that are closest to it in similarity as well as 

other entirely different types of information.

One example of such orthogonal information is the genomic context of the protein. It can be 

hypothesised that if a protein occurs in a pathway, then the other proteins involved in that 

pathway may be co-located within the genome [49]. This association is frequently found in 

prokaryotes, and to a lesser extent in plants and fungi. Genomic proximity of pathway 

components is infrequent in metazoans, thus genomic context as a means to function 

prediction is more useful for bacterial enzymes. Additionally, other genes in the same 

Holliday et al. Page 8

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genomic neighbourhood may be relevant to understanding the function of both the protein of 

interest and of the associated pathway. A common genomic context for a query protein and a 

homologue provides further support for assignment of that function. (However, the genomic 

distance between pathway components in different organisms may vary for many reasons, 

thus the lack of similar genomic context does not suggest that the functions of a query and a 

similar homologue are different.)

Another type of orthogonal information that can be used can be deduced from protein 

domains present in a query protein and their associated annotations—what are the predicted 

domains present in the protein, do they all match the assigned function or are there 

anomalies. A good service for identifying such domains is InterProScan [50]. Further, any 

protein in UniProtKB will have the predicted InterPro identifiers annotated in the record 

(along with other predicted annotations from resources such as Pfam and CATH), along with 

the evidence supporting those predictions. Such sequence context can also be obtained using 

hidden Markov models (HMMs) [51], which is the technique used by InterPro, Pfam, 

Gene3D, SUPERFAMILY and the SFLD to place new sequences into families, subgroups 

(SFLD-specific term) and superfamilies (see Fig. 6).

3 Challenges and Caveats

3.1 The Use of Sequence Similarity Network

A significant challenge with using SSNs to help evaluate GO annotations is that SSNs are 

not always trivial to use without a detailed knowledge of the superfamilies that they 

describe. For example, choosing an appropriate threshold for drawing edges is critical to 

obtaining network clustering patterns useful for deeper evaluation. In Fig. 3, HydE (the blue 

nodes) are not currently annotated as such in GO, but are annotated instead as BioB. Thus, 

the evaluation of the network becomes significantly more complex. It is also not always 

clear what signal is being picked up in the edge data for large networks. It is usually 

assumed that all the proteins in the set share a single domain, but this is often only clear 

when the network is examined in greater detail.

3.2 Annotation Transfer Is Challenging Because Evolution Is Complex

Even using the powerful tools and classifications provided by GO, interpreting protein 

function in many cases requires more in-depth analysis. For several reasons, it is not always 

easy to confidently determine that a protein is not correctly annotated. Firstly, how closely 

related is the enzyme to the group of interest? Perhaps we can only be relatively certain of 

its superfamily membership, or maybe we can assign it to a more detailed level of the 

functional hierarchy. If it fits into a more detailed classification level, how well does it fit? 

At what threshold do we begin to see false positives creeping into the results list? Using 

networks, we can also examine the closest neighbours that have differing function and ask 

whether there are similarities in the function (e.g. Broderick et al. [52] used sequence 

similarity networks to help determine the function of HydE). Another complicating issue is 

whether a protein performs one or more promiscuous functions, albeit with a lesser efficacy.
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Another important piece of evidence that can be used to support an annotation is 

conservation of the key residues, so it is important to assess if the protein of interest has all 

the relevant functional residues. Although GO includes an evidence code to handle this 

concept (Inferred from Key Residues, IKR), it is often not included in the electronic 

inference of annotations. It is important to note, however, that there are evolutionary events 

that may “scramble” the sequence, leaving it unclear to an initial examination whether the 

residues are conserved or not. A prime example is the case in which a circular permutation 

has occurred. Thus, it is important to look at whether there are other residues (or patterns of 

residues) that could perform the function of the “missing” residues. It is also possible that 

conservative mutations have occurred, and these may also have the ability to perform the 

function of the “missing” residues [53].

Another consideration with function evaluation is the occurrence of moonlighting proteins. 

These are proteins that are identical in terms of sequence but perform different functions in 

different cellular locations or species; for example argininosuccinate lyase (UniProtKB id 

P24058) is also a delta crystalline which serves as an eye lens protein when it is found in 

birds and reptiles [54]. A good source of information on moonlighting proteins is MoonProt 

(http://www.moonlightingproteins.org/) [55]. Such cases may arise from physiological use in 

many different conditions such as different subcellular localisations or regulatory pathways. 

The full extent of proteins that moonlight is currently not known, although to date, almost 

300 cases have been reported in MoonProt. Another complicating factor for understanding 

the evolution of enzyme function is the apparent evolution of the same reaction specificity 

from different intermediate nodes in the phylogenetic tree for the superfamily, for example 

the N-succinyl amino acid racemase and the muconate lactonising enzyme families in the 

enolase superfamily [56, 57].

Finally, does the protein have a multi-domain architecture and/ or is it part of a non-covalent 

protein-protein interaction in the cell? An example of a functional protein requiring multiple 

chains that are transiently coordinated in the cell is pyruvate dehydrogenase (acetyl-

transferring) (EC 1.2.4.1). This protein has an active site at the interface between pyruvate 

dehydrogenase E1 component subunit alpha (UniProtKB identifier P21873) and beta 

(UniProtKB identifier P21874), both of which are required for activity. Thus, transfer of 

annotation relating to this function to an unknown (and hence evaluation of misannotation) 

needs to include both proteins. Similarly, a single chain with multiple domains, e.g. biotin 

biosynthesis bifunctional protein BioAB (UniProtKB identifier P53656), which contains a 

BioA and BioB domain, has two different functions associated with it. In this example, these 

two functions are distinct from one another so that annotation of this protein only with one 

function or the other could represent a type of misannotation (especially as a GO term is 

assigned to a protein, not a specific segment of its amino acid sequence).

3.3 Plurality Vote May Not Be the Best Route

In some cases, proteins are annotated by some type of “plurality voting”. Plurality voting is 

simply assuming that the more annotations that come from different predictors, the more 

likely these are to be correct. As we have shown in this chapter (and others before us [58]), 

this is not always the case. An especially good example of where plurality voting fails is in 
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the case of the lysozyme mechanism. For over 50 years, the mechanism was assumed to be 

dissociative, but a single experiment provided evidence of a covalent intermediate being 

formed in the crystal structure, calling into question the dissociate mechanism. If plurality 

voting were applied in ongoing annotations, the old mechanism would still be considered 

correct. That being said, it is more difficult to identify problems of this type if experimental 

evidence challenging an annotation is unavailable. In such cases, we must always look at all 

the available evidence to transfer function and where there are disagreements between 

predicted functions, a more detailed examination is needed. Only when we have resolved 

such issues can we have any true confidence in the plurality vote. Work by Kristensen et al. 

[59] provides a good example of the value of this approach. By using three-dimensional 

templates generated using knowledge of the evolutionarily important residues, they showed 

that they could identify a single most likely function in 61 % of 3D structures from the 

Structural Genomics Initiative, and in those cases the correct function was identified with an 

87 % accuracy.

4 Conclusions

Experimentalists simply can’t keep up with the huge volume of data that is being produced 

in today’s high-throughput labs, from whole genome and population sequencing efforts to 

large-scale assays and structure generation. Almost all proteins will have at least one 

associated GO annotation, and such coverage makes GO an incredibly powerful tool, 

especially as it has the ability to handle all the known function information at different levels 

of biological granularity, has explicit tools to capture high-throughput experimental data and 

utilises an ontology to store the annotation and associated relationships. Although over 98 % 

of all GO annotations are computationally inferred, with the ever-increasing state of 

knowledge, these annotation transfers are becoming more confident [15] as rule-based 

annotations gain in specificity due to more data being available. However, there is still a long 

way to go before we can simply take an IEA annotation at face value. Confidence in 

annotations transferred electronically has to be taken into account: How many different 

sources have come to the same conclusion (using different methods)? How many different 

proteins’ functions have been determined in a single experiment? Similarly, whilst burden of 

evidence is a useful gauge in determining the significance of an annotation, there is also the 

question of when substantially different annotations were captured in GO and other 

resources—perhaps there has been a new experiment that calls into question the original 

annotation. It is also important to look at whether other, similar proteins were annotated long 

ago or are based on new experimental evidence. There is a wealth of data available that 

relates to enzymes and their functions. This ranges from the highest level of associating a 

protein with a superfamily (and thus giving some information as to the amino acid residues 

that are evolutionarily conserved), to the most detailed level of molecular function. We can 

use all of these data to aid us in evaluating the GO annotations for a given protein (or set of 

proteins), from the electronically inferred annotation for protein domain structure, to the 

genomic context and protein features (such as conserved residues). The more data that are 

available to back up (or refute) a given GO annotation, the more confident one can be in it 

(or not, as the case may be).

Holliday et al. Page 11

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

GLH and PCB acknowledge funds from National Institutes of Health and National Science Foundation (grant NIH 
R01 GM60595 and grant NSF DBI1356193). Open Access charges were funded by the University College London 
Library, the Swiss Institute of Bioinformatics, the Agassiz Foundation, and the Foundation for the University of 
Lausanne.

References

1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight 
SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, 
Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene 
Ontology Consortium. Nat Genet. 2000; 25(1):25–29. DOI: 10.1038/75556 [PubMed: 10802651] 

2. Nomenclature committee of the international union of biochemistry and molecular biology (NC-
IUBMB), Enzyme Supplement 5. European J Biochem/FEBS. 1999; 264(2):610–650.

3. McDonald AG, Boyce S, Tipton KF. ExplorEnz: the primary source of the IUBMB enzyme list. 
Nucleic Acids Res. 2009; 37(Database issue):D593–D597. DOI: 10.1093/nar/gkn582 [PubMed: 
18776214] 

4. Fleischmann A, Darsow M, Degtyarenko K, Fleischmann W, Boyce S, Axelsen KB, Bairoch A, 
Schomburg D, Tipton KF, Apweiler R. IntEnz, the integrated relational enzyme database. Nucleic 
Acids Res. 2004; 32(Database issue):D434–D437. DOI: 10.1093/nar/gkh119 [PubMed: 14681451] 

5. Furnham, N. Complementary sources of protein functional information: the far side of GO. In: 
Dessimoz, C., Škunca, N., editors. The gene ontology handbook. Methods in molecular biology. 
Vol. 1446. Humana Press; 2016. Chapter 19

6. Babbitt PC. Definitions of enzyme function for the structural genomics era. Curr Opin Chem Biol. 
2003; 7(2):230–237. [PubMed: 12714057] 

7. Thomas, PD. The gene ontology and the meaning of biological function. In: Dessimoz, C., Škunca, 
N., editors. The gene ontology handbook. Methods in molecular biology. Vol. 1446. Humana Press; 
2016. Chapter 2

8. Bray T, Doig AJ, Warwicker J. Sequence and structural features of enzymes and their active sites by 
EC class. J Mol Biol. 2009; 386(5):1423–1436. DOI: 10.1016/j.jmb.2008.11.057 [PubMed: 
19100748] 

9. Dobson PD, Doig AJ. Predicting enzyme class from protein structure without alignments. J Mol 
Biol. 2005; 345(1):187–199. DOI: 10.1016/j.jmb.2004.10.024 [PubMed: 15567421] 

10. Cozzetto, D., Jones, DT. Computational methods for annotation transfers from sequence. In: 
Dessimoz, C., Škunca, N., editors. The gene ontology handbook. Methods in molecular biology. 
Vol. 1446. Humana Press; 2016. Chapter 5

11. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C, 
Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S, Souza ML, Piovesan D, 
Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P, Toronen P, Nokso-Koivisto J, Holm 
L, Cozzetto D, Buchan DW, Bryson K, Jones DT, Limaye B, Inamdar H, Datta A, Manjari SK, 
Joshi R, Chitale M, Kihara D, Lisewski AM, Erdin S, Venner E, Lichtarge O, Rentzsch R, Yang H, 
Romero AE, Bhat P, Paccanaro A, Hamp T, Kassner R, Seemayer S, Vicedo E, Schaefer C, Achten 
D, Auer F, Boehm A, Braun T, Hecht M, Heron M, Honigschmid P, Hopf TA, Kaufmann S, 
Kiening M, Krompass D, Landerer C, Mahlich Y, Roos M, Bjorne J, Salakoski T, Wong A, 
Shatkay H, Gatzmann F, Sommer I, Wass MN, Sternberg MJ, Skunca N, Supek F, Bosnjak M, 
Panov P, Dzeroski S, Smuc T, Kourmpetis YA, van Dijk AD, ter Braak CJ, Zhou Y, Gong Q, Dong 
X, Tian W, Falda M, Fontana P, Lavezzo E, Di Camillo B, Toppo S, Lan L, Djuric N, Guo Y, 
Vucetic S, Bairoch A, Linial M, Babbitt PC, Brenner SE, Orengo C, Rost B, Mooney SD, 
Friedberg I. A large-scale evaluation of computational protein function prediction. Nat Methods. 
2013; 10(3):221–227. DOI: 10.1038/nmeth.2340 [PubMed: 23353650] 

12. Friedberg, I., Radivojac, P. Community-wide evaluation of computational function prediction. In: 
Dessimoz, C., Škunca, N., editors. The gene ontology handbook. Methods in molecular biology. 
Vol. 1446. Humana Press; 2016. Chapter 10

Holliday et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Akiva E, Brown S, Almonacid DE, Barber AE 2nd, Custer AF, Hicks MA, Huang CC, Lauck F, 
Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, 
Ferrin TE, Holliday GL, Babbitt PC. The Structure-Function Linkage Database. Nucleic Acids 
Res. 2014; 42(Database issue):D521–D530. DOI: 10.1093/nar/gkt1130 [PubMed: 24271399] 

14. Gaudet, P., Škunca, N., Hu, JC., Dessimoz, C. Primer on the gene ontology. In: Dessimoz, C., 
Škunca, N., editors. The gene ontology handbook. Methods in molecular biology. Vol. 1446. 
Humana Press; 2016. Chapter 3

15. Skunca N, Altenhoff A, Dessimoz C. Quality of computationally inferred gene ontology 
annotations. PLoS Comput Biol. 2012; 8(5):e1002533.doi: 10.1371/journal.pcbi.1002533 
[PubMed: 22693439] 

16. Bastian, FB., Chibucos, MC., Gaudet, P., Giglio, M., Holliday, GL., Huang, H., Lewis, SE., 
Niknejad, A., Orchard, S., Poux, S., Skunca, N., Robinson-Rechavi, M. Database. 2015. The 
Confidence Information Ontology: a step towards a standard for asserting confidence in 
annotations; p. bav043

17. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(Database 
issue):D204–D212. DOI: 10.1093/nar/gku989 [PubMed: 25348405] 

18. Hill DP, Davis AP, Richardson JE, Corradi JP, Ringwald M, Eppig JT, Blake JA. Program 
description: strategies for biological annotation of mammalian systems: implementing gene 
ontologies in mouse genome informatics. Genomics. 2001; 74(1):121–128. DOI: 10.1006/geno.
2001.6513 [PubMed: 11374909] 

19. Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, 
Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA. CATH: comprehensive structural and 
functional annotations for genome sequences. Nucleic Acids Res. 2015; 43(Database issue):D376–
D381. DOI: 10.1093/nar/gku947 [PubMed: 25348408] 

20. Lees J, Yeats C, Perkins J, Sillitoe I, Rentzsch R, Dessailly BH, Orengo C. Gene3D: a domain-
based resource for comparative genomics, functional annotation and protein network analysis. 
Nucleic Acids Res. 2012; 40(Database issue):D465–D471. DOI: 10.1093/nar/gkr1181 [PubMed: 
22139938] 

21. Fox NK, Brenner SE, Chandonia JM. SCOPe: structural classification of proteins--extended, 
integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res. 
2014; 42(Database issue):D304–D309. DOI: 10.1093/nar/gkt1240 [PubMed: 24304899] 

22. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, 
Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam: the protein families database. Nucleic 
Acids Res. 2014; 42(Database issue):D222–D230. DOI: 10.1093/nar/gkt1223 [PubMed: 
24288371] 

23. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, 
and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013; 
41(Database issue):D377–D386. DOI: 10.1093/nar/gks1118 [PubMed: 23193289] 

24. Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. TIGRFAMs and genome 
properties in 2013. Nucleic Acids Res. 2013; 41(Database issue):D387–D395. DOI: 10.1093/nar/
gks1234 [PubMed: 23197656] 

25. Gerlt JA, Babbitt PC. Divergent evolution of enzymatic function: mechanistically diverse 
superfamilies and functionally distinct suprafamilies. Annu Rev Biochem. 2001; 70:209–246. 
DOI: 10.1146/annurev.biochem.70.1.209 [PubMed: 11395407] 

26. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: 
architecture and applications. BMC Bioinformatics. 2009; 10:421.doi: 10.1186/1471-2105-10-421 
[PubMed: 20003500] 

27. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. 
Nucleic Acids Res. 2011; 39(Web Server issue):W29–W37. DOI: 10.1093/nar/gkr367 [PubMed: 
21593126] 

28. Brown SD, Babbitt PC. New insights about enzyme evolution from large scale studies of sequence 
and structure relationships. J Biol Chem. 2014; 289(44):30221–30228. DOI: 10.1074/
jbc.R114.569350 [PubMed: 25210038] 

Holliday et al. Page 13

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: 
misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol. 2009; 
5(12):e1000605.doi: 10.1371/journal.pcbi.1000605 [PubMed: 20011109] 

30. Pieper U, Chiang R, Seffernick JJ, Brown SD, Glasner ME, Kelly L, Eswar N, Sauder JM, 
Bonanno JB, Swaminathan S, Burley SK, Zheng X, Chance MR, Almo SC, Gerlt JA, Raushel FM, 
Jacobson MP, Babbitt PC, Sali A. Target selection and annotation for the structural genomics of 
the amidohydrolase and enolase superfamilies. J Struct Funct Genom. 2009; 10(2):107–125. DOI: 
10.1007/s10969-008-9056-5

31. Gerlt JA, Babbitt PC, Jacobson MP, Almo SC. Divergent evolution in enolase superfamily: 
strategies for assigning functions. J Biol Chem. 2012; 287(1):29–34. DOI: 10.1074/
jbc.R111.240945 [PubMed: 22069326] 

32. Mashiyama ST, Malabanan MM, Akiva E, Bhosle R, Branch MC, Hillerich B, Jagessar K, Kim J, 
Patskovsky Y, Seidel RD, Stead M, Toro R, Vetting MW, Almo SC, Armstrong RN, Babbitt PC. 
Large-scale determination of sequence, structure, and function relationships in cytosolic 
glutathione transferases across the biosphere. PLoS Biol. 2014; 12(4):e1001843.doi: 10.1371/
journal.pbio.1001843 [PubMed: 24756107] 

33. Rentzsch R, Orengo CA. Protein function prediction using domain families. BMC Bioinformatics. 
2013; 14(Suppl 3):S5.doi: 10.1186/1471-2105-14-S3-S5

34. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for 
visualization of relationships across diverse protein superfamilies. PLoS One. 2009; 
4(2):e4345.doi: 10.1371/journal.pone.0004345 [PubMed: 19190775] 

35. Barber AE II, Babbitt PC. Pythoscape: a framework for generation of large protein similarity 
networks. Bioinformatics. 2012; doi: 10.1093/bioinformatics/bts532

36. Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL. Enzyme 
Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence 
similarity networks. Biochim Biophys Acta. 2015; 1854(8):1019–1037. DOI: 10.1016/j.bbapap.
2015.04.015 [PubMed: 25900361] 

37. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, 
Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, 
Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, 
Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, 
Finn RD. The InterPro protein families database: the classification resource after 15 years. Nucleic 
Acids Res. 2014; doi: 10.1093/nar/gku1243

38. Webber C. Functional enrichment analysis with structural variants: pitfalls and strategies. 
Cytogenet Genome Res. 2011; 135(3–4):277–285. DOI: 10.1159/000331670 [PubMed: 21997137] 

39. Thomas PD, Wood V, Mungall CJ, Lewis SE, Blake JA. Gene Ontology C. On the use of gene 
ontology annotations to assess functional similarity among orthologs and paralogs: a short report. 
PLoS Comput Biol. 2012; 8(2):e1002386.doi: 10.1371/journal.pcbi.1002386 [PubMed: 22359495] 

40. Cao J, Zhang S. A Bayesian extension of the hypergeometric test for functional enrichment 
analysis. Biometrics. 2014; 70(1):84–94. DOI: 10.1111/biom.12122 [PubMed: 24320951] 

41. Bauer, S. Gene-category analysis. In: Dessimoz, C., Škunca, N., editors. The gene ontology 
handbook. Methods in molecular biology. Vol. 1446. Humana Press; 2016. Chapter 13

42. Falda M, Toppo S, Pescarolo A, Lavezzo E, Di Camillo B, Facchinetti A, Cilia E, Velasco R, 
Fontana P. Argot2: a large scale function prediction tool relying on semantic similarity of weighted 
Gene Ontology terms. BMC Bioinformatics. 2012; 13(Suppl 4):S14.doi: 10.1186/1471-2105-13-
S4-S14

43. Couto FM, Silva MJ, Coutinho PM. Measuring semantic similarity between Gene Ontology terms. 
Data Knowl Eng. 2007; 61(1):137–152. DOI: 10.1016/j.datak.2006.05.003

44. Pesquita C, Faria D, Falcao AO, Lord P, Couto FM. Semantic similarity in biomedical ontologies. 
PLoS Comput Biol. 2009; 5(7):e1000443.doi: 10.1371/journal.pcbi.1000443 [PubMed: 19649320] 

45. Benabderrahmane S, Smail-Tabbone M, Poch O, Napoli A, Devignes MD. IntelliGO: a new vector-
based semantic similarity measure including annotation origin. BMC Bioinformatics. 2010; 
11:588.doi: 10.1186/1471-2105-11-588 [PubMed: 21122125] 

Holliday et al. Page 14

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Wu X, Pang E, Lin K, Pei ZM. Improving the measurement of semantic similarity between gene 
ontology terms and gene products: insights from an edge- and IC-based hybrid method. PLoS One. 
2013; 8(5):e66745.doi: 10.1371/journal.pone.0066745 [PubMed: 23741529] 

47. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, 
Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS. UniProt: the 
Universal Protein knowledge-base. Nucleic Acids Res. 2004; 32(Database issue):D115–D119. 
DOI: 10.1093/nar/gkh131 [PubMed: 14681372] 

48. Pesquita, C. Semantic similarity in the gene ontology. In: Dessimoz, C., Škunca, N., editors. The 
gene ontology handbook. Methods in molecular biology. Vol. 1446. Humana Press; 2016. Chapter 
12

49. Huynen M, Snel B, Lathe W, Bork P. Exploitation of gene context. Curr Opin Struct Biol. 2000; 
10(3):366–370. [PubMed: 10851194] 

50. Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. The 
EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015; doi: 
10.1093/nar/gkv279

51. Meng X, Ji Y. Modern computational techniques for the HMMER sequence analysis. ISRN 
Bioinformatics. 2013; 2013:252183.doi: 10.1155/2013/252183 [PubMed: 25937944] 

52. Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, 
Shepard EM, Broderick JB. [FeFe]-hydrogenase maturation: insights into the role HydE plays in 
dithiomethylamine biosynthesis. Biochemistry. 2015; 54(9):1807–1818. DOI: 10.1021/bi501205e 
[PubMed: 25654171] 

53. Wellner A, Raitses Gurevich M, Tawfik DS. Mechanisms of protein sequence divergence and 
incompatibility. PLoS Genet. 2013; 9(7):e1003665.doi: 10.1371/journal.pgen.1003665 [PubMed: 
23935519] 

54. Sampaleanu LM, Yu B, Howell PL. Mutational analysis of duck delta 2 crystallin and the structure 
of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of 
argininosuccinate lyase. J Biol Chem. 2002; 277(6):4166–4175. DOI: 10.1074/jbc.M107465200 
[PubMed: 11698398] 

55. Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, Thakkar J, Jeffery CJ. 
MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res. 2015; 
43(Database issue):D277–D282. DOI: 10.1093/nar/gku954 [PubMed: 25324305] 

56. Song L, Kalyanaraman C, Fedorov AA, Fedorov EV, Glasner ME, Brown S, Imker HJ, Babbitt PC, 
Almo SC, Jacobson MP, Gerlt JA. Prediction and assignment of function for a divergent N-
succinyl amino acid race-mase. Nat Chem Biol. 2007; 3(8):486–491. DOI: 10.1038/nchembio.
2007.11 [PubMed: 17603539] 

57. Sakai A, Fedorov AA, Fedorov EV, Schnoes AM, Glasner ME, Brown S, Rutter ME, Bain K, 
Chang S, Gheyi T, Sauder JM, Burley SK, Babbitt PC, Almo SC, Gerlt JA. Evolution of enzymatic 
activities in the enolase superfamily: stereochemically distinct mechanisms in two families of cis, 
cis-muconate lac-tonizing enzymes. Biochemistry. 2009; 48(7):1445–1453. DOI: 10.1021/
bi802277h [PubMed: 19220063] 

58. Brenner SE. Errors in genome annotation. Trends Genet. 1999; 15(4):132–133. [PubMed: 
10203816] 

59. Kristensen DM, Ward RM, Lisewski AM, Erdin S, Chen BY, Fofanov VY, Kimmel M, Kavraki 
LE, Lichtarge O. Prediction of enzyme function based on 3D templates of evolutionarily important 
amino acids. BMC Bioinformatics. 2008; 9:17.doi: 10.1186/1471-2105-9-17 [PubMed: 18190718] 

Holliday et al. Page 15

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example of the GO hierarchy (taken from the ancestor chart of the QuickGo website (http://

www.ebi.ac.uk/QuickGO/) showing the relative complexity of the GO hierarchy for two 

distinct EC numbers). (a) Shows the GO hierarchy for biotin synthase, EC 2.8.1.6; (b ) 

shows the GO hierarchy for [cytochrome c]-arginine N -methyltransferase, EC 2.1.1.24. The 

colours of the arrows in the ontology are denoted by the key in the centre of the figure. 

Black connections between terms represent an is_a relationship, blue connections represent 

a part_of relationship. The A, B, C and D in red boxes denote the four levels of the EC 

nomenclature
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Fig. 2. 
Hierarchical view of enzyme features. The GO ontologies which describe proteins and their 

features are highlighted in light green. Other ontologies available in OBO and BioPortal are 

shown in the following colours: light yellow represents the Amino Acid Ontology, purple 
represents the Enzyme Mechanism Ontology, blue represents the ChEBI ontology and grey 
represents the Protein Ontology. See also Chap. 5 [10]. The terms immediately beneath the 

parent term are those terms that are covered by ontologies, and required for a protein to be 

considered an enzyme
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Fig. 3. 
Example of identifying misannotation using an SSN in the biotin synthase- like subgroup in 

the SFLD. Nodes colours represent different families in the subgroup, where red represent 

those sets of sequences annotated as canonical biotin synthase in the SFLD, blue represent 

the HydE sequences, green the PylB sequences and magenta the HmdB sequences. The 

nodes shown as large diamonds are those annotated as BioB in GO, clearly showing that the 

annotation transfer for BioB is too broad. The network summarizes the similarity 

relationships between 5907 sequences. It consists of 2547 representative nodes (nodes 

represent proteins that share greater than 90 % identity) and 2,133,749 edges, where an edge 

is the average similarity of pairwise BLAST E-values between all possible pairs of the 

sequences within the connected nodes. In this case, edges are included if this average is 

more significant than an E-value of 1e-25. The organic layout in Cytoscape 3.2.1 is used for 

graphical depiction. Subheading 2.1 described how such similarity networks are created
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Fig. 4. 
Biotin synthase-like subgroup coloured by confidence of evidence (as shown in Table 1). 

The diamond shaped nodes are all annotated as Biotin Synthase in GO. Red nodes are those 

that only have low confidence annotations, the orange nodes are those that have at least one 

medium-confidence annotations and the green are those that have at least one high-

confidence annotation. Grey nodes have no BioB annotations. Node and edge numbers, as 

well as e-value threshold are as in Fig. 3
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Fig. 5. 
Example of a sequence similarity network to estimate subgroups for use in initial steps of 

the curation process and to guide fine-tuning the hidden Markov model (HMM) true-positive 

detection threshold of an enzyme family (here for the Biotin synthase (BioB) family). Node 

colours represent the average Bit-score of the BioB family HMM for all sequences 

represented by the node. The mapping between colours and average Bit scores is given in the 

legend. Nodes with thick borders represent proteins that belong to the BioB family 

according to SFLD annotation. Diamonds represent nodes that include proteins with BioB 

family annotation according to GO. The final BioB HMM detection threshold was achieved 

for the SFLD by further exploration of more strict E -value thresholds for edge 

representation, and was set to 241.6. Node and edge numbers, as well as E-value threshold, 

are as in Fig. 3
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Fig. 6. 
Biotin synthase-like subgroup SSN showing where the biotin synthase GO annotations are 

shown as large diamonds . Two proteins, one from the BioB set (red nodes, top right ) and 

one from the HydE set (blue nodes), bottom left , are shown with some associate orthogonal 

information: genomic context highlighted in light cyan boxes, their HMM match results for 

the query protein against the three top scoring families in the subgroup are shown in the 

tables, and family membership (according to InterProScan) shown in coloured text (blue for 

HydE and red for BioB). Node and edge numbers, as well as E-value threshold are as in Fig. 

3. All the proteins are connected via a homologous domain (the Radical SAM domain). 

Thus, the observed differences in the rest of the protein mean that the functions of the 

proteins may also be quite different
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Table 1

Some example proteins (listed by UniProtKB accession) with their associated annotations, source of the 

annotation (the SFLD is the Structure-Function Linkage Database, Swiss-Prot is the curated portion of 

UniProtKB) and the confidence of those annotations along with the reason that confidence level has been 

assigned

Protein ID 
from 
UniProtKB 
[17]

Annotated protein 
function (source) SFLD confidence level Types of evidence or reasoning used to annotate the function

Q9X0Z6 [FeFe]-hydrogenase 
maturase (From SFLD and 
Swiss-Prot)

High Inferred from experimental analysis of protein structures, 
genomic context and results from spectroscopic assay.

Q11S94 Biotin Synthase (BioB) 
(From SFLD and Swiss-
Prot)

Medium Inferred from similarity to other BioB enzymes. Matched by 
similarity to other BioB sequences and catalytic residues are fully 
conserved.

Q58692 Biotin Synthase (BioB) 
(From Swiss-Prot)

Low Inferred from similarity to other BioB enzymes. Matched by 
similarity to other BioB sequences. Whilst all residues required 
for binding the iron-sulphur clusters are conserved, all the 
catalytic residues (those required for the BioB reaction to occur) 
are not. Also has no biotin synthase genomic context.

Methods Mol Biol. Author manuscript; available in PMC 2018 March 05.


	Abstract
	1 Introduction
	1.1 Enzyme Nomenclature and How It Is Used in GO
	1.2 Why Annotate Enzymes with the Gene Ontology?
	1.3 Annotation Transfer Under the Superfamily Model
	1.4 Annotation Transfer and Misannotation

	2 Using GO Annotations to Visualise Data in Sequence Similarity Networks
	2.1 Creating Sequence Similarity Networks
	2.2 Determining Over- and Under- represented GO Terms in a Set of Species- Diverse Proteins
	2.3 Using Semantic Significance with GO
	2.4 Use of Orthogonal Information to Evaluate GO Annotation

	3 Challenges and Caveats
	3.1 The Use of Sequence Similarity Network
	3.2 Annotation Transfer Is Challenging Because Evolution Is Complex
	3.3 Plurality Vote May Not Be the Best Route

	4 Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1



