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ABSTRACT OF THE DISSERTATION

Mean-Field Games: Computation, Modeling, and Applications

by

Siting Liu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Stanley J. Osher, Chair

Mean-field game(MFG) systems are revolutionary models to describe complex multi-agent

dynamic systems, such as competition between asset managers in finance and traffic congestion

in population dynamics. They combine mean-field approximation techniques to describe the

population with optimal control approaches to characterize a representative player.

This thesis investigates both computation and modeling aspects of the mean-field games.

We propose a computational method for nonlocal MFGs. Our approach relies on kernel-

based representations of mean-field interactions and feature-space expansions, which yields a

dimension reduction. Based on the monotone inclusion formulation, we further generalize

the splitting method for nonlocal MFGs to solve a class of non-potential MFGs. In terms of

modelings, we integrate the spatial epidemic models with mean-field control (MFC) models

to control the propagation of pandemics. We also apply MFCs to study the optimal vaccine

distribution strategy. Numerical experiments demonstrate that the proposed model effectively

separates infected patients in a spatial domain and transports vaccines efficiently. Finally, we

study an inverse MFG problem. We propose a model recovery algorithm to reconstruct the

ground metrics and interactions in the running costs with some noisy observations.

ii



The dissertation of Siting Liu is approved.

Guido Fra Montufar Cuartas

Deanna M. Hunter

Wilfrid Dossou Gangbo

Stanley J. Osher, Committee Chair

University of California, Los Angeles

2022

iii



To my parents and Qi

for their unconditional love and support.

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Review of the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computational Methods for Nonlocal Mean-field games . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The method of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A primal-dual hybrid gradient algorithm for symmetric kernels . . . . . . . . 15

2.3.1 A saddle-point problem formulation . . . . . . . . . . . . . . . . . . . 16

2.3.2 PDHG updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Modeling interactions with kernels . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Maximal spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Gaussian repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Interactions given by differential operators . . . . . . . . . . . . . . . 30

2.5 Potential applications to multi-agent trajectory planning problems . . . . . . 32

2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 The finite difference scheme and the discrete variational problem . . . 35

2.6.2 Maximal spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.3 Gaussian repulsion with static obstacles . . . . . . . . . . . . . . . . 40

2.6.4 Gaussian repulsion with dynamic obstacles . . . . . . . . . . . . . . . 42

2.6.5 Interactions in sub-regions . . . . . . . . . . . . . . . . . . . . . . . . 42

v



2.6.6 Differential-operator interactions . . . . . . . . . . . . . . . . . . . . 45

3 Splitting Methods for a Class of Non-potential Mean-field Games . . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 MFG via monotone inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 A monotone primal-dual algorithm . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 A primal-dual algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 A class of non-potential MFG with density constraints . . . . . . . . . . . . 63

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Density Splitting with Asymmetric Kernel . . . . . . . . . . . . . . . 67

3.5.2 Static Obstacles Modeled with Density Constraint . . . . . . . . . . . 68

3.5.3 Dynamic Obstacles Modeled with Density constraint . . . . . . . . . 71

3.5.4 Acceleration of PDHG . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Controlling Propagation of Epidemics via Mean-field Controls . . . . . . 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Spatial SIR variational problem . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Review of primal-dual algorithms . . . . . . . . . . . . . . . . . . . . 83

4.3.2 G-Prox PDHG on SIR variational problem . . . . . . . . . . . . . . . 84

4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



4.4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Mean-field Control Problems for Vaccine Distribution . . . . . . . . . . . 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Spatial SIR variational problem with vaccine distribution . . . . . . . 100

5.2.2 The cost functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.3 Constraints for vaccine production . . . . . . . . . . . . . . . . . . . 104

5.2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . 112

5.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 A Numerical Algorithm for Inverse Problem from Partial Boundary Mea-

surement Arising from Mean-Field Game Problem . . . . . . . . . . . . . . . 134

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 An inverse problem with a saddle point forward model . . . . . . . . . . . . 137

6.2.1 A forward saddle point problem . . . . . . . . . . . . . . . . . . . . . 138

vii



6.2.2 The inverse problem and a generic algorithm . . . . . . . . . . . . . . 138

6.2.3 A generic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 An inverse MFG problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Saddle point formulation of MFG via feature-space expansions . . . . 141

6.3.2 An inverse mean-field game problem . . . . . . . . . . . . . . . . . . 143

6.3.3 The KKT conditions of the inverse mean-field game problem . . . . . 145

6.4 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4.1 The three-operator splitting scheme . . . . . . . . . . . . . . . . . . . 147

6.4.2 Stabilizing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.1 Numerical implementation details . . . . . . . . . . . . . . . . . . . . 153

6.5.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5.4 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

viii



LIST OF FIGURES

2.1 Example of maximal spread. MFG solution ρ(x, t) at t = 0.1, 0.5, 0.9 with different

choices of λi along x1, x2 directions. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 The 3D view of MFG solutions ρ(x, 0.5) for different choice of λi. From left to

right : case a,b,c, and d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Example of Gaussian repulsion with static obstacles. MFG solution ρ(x, t) at

t = 0.1, 0.5, 0.9 with different Gaussian parameters (σ1, σ2, µ), where bright yellow

rectangles represents static obstacles. . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Example of Gaussian repulsion with dynamic obstacles. MFG solution ρ(x, t) at

t = 0.1, 0.5, 0.9 with different Gaussian parameters σ1, σ2, µ, where bright yellow

rectangles represent obstacles moving along x1 direction. . . . . . . . . . . . . . 43

2.5 Example of sub-region interactions. MFG solution ρ(x, t) at t = 0.1, 0.5, 0.9

for sub-region and global interactions kernels. Parameters are set as follows:

σ1 = σ2 = 0.2, µ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 The contours and graphs of ϕT (x, t)−
∫
Td ϕT (y, t)dy and ρT (x, t) for T = 10 and

t = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Plot of approximated kernels for example 5.1 case B. From left to right: ap-

proximated kernel with r = 52; approximated kernel with r = 152; the exact

kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for density splitting examples. . . . . . 69

3.3 MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for static obstacles examples, where the ob-

stacle (yellow) is located at Ωobs = {∥x− [0, 0.2]∥2 ≤ 0.152}∪{|x1| ≥ 0.1, |x2 + 0.15| ≤ 0.05}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



3.4 3D plots of example 5.2. From left to right: initial density distribution; final

density distribution for Case A; final density distribution for Case B . . . . . . . 71

3.5 MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for dynamic obstacles examples. . . . . 72

4.1 Experiment 1. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.1. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. The solution moves susceptible away from

the infected over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Experiment 1. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.5. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. The solution minimizes the number of

infected at time t = 1 by recovering infected population. . . . . . . . . . . . . . 90

4.3 Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.1. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.5. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.1. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.5. The first row represents susceptible, the second row represents infected,

and the last row represents recovered. . . . . . . . . . . . . . . . . . . . . . . . . 94

x



5.1 Visualization of the flow of three populations. The susceptible transforms to the

infected with a rate β and the recovered with a rate θ1. The infected transforms

to the recovered with a rate γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Experiment 1: Initial densities of ρS (left) and ρI (right). The green circle indicates

Ωfactory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Experiment 1: The comparison between the results from the simulation 1 and

the simulation 2. The first three plots (a) show the total mass of ρi (i = S, I, R)

and the fourth plot (b) shows the total mass of ρV produced at the factory area

during the production time 0 ≤ t < 0.5. . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Experiment 2: The initial densities ρS (left) and ρI (right), and the location of

the factory (indicated as a green circle). . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Experiment 2: The evolution of densities ρi (i ∈ S) without the obstacle over time

0 ≤ t ≤ 1. The first row: the susceptible density ρS. The second row: the infected

density ρI . The third row: the recovered density ρR. The fourth row: the vaccine

density ρV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Experiment 2: The evolution of densities ρi (i ∈ S) with the obstacle (indicated

as a yellow block) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS.

The second row: the infected density ρI . The third row: the recovered density ρR.

The fourth row: the vaccine density ρV . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Experiment 2: The left plot shows the total mass of vaccine density ρV during the

production time t ∈ [0, 0.5). The right plot shows the total mass of ρV at the left side

of the domain Ω ∩ {x1 < 0.5} and at the right side of the domain Ω ∩ {x1 ≥ 0.5}. . . 125

5.8 Experiment 2: The initial densities ρS (left) and ρI (right), and the location of the

factory (indicated as green circles). . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



5.9 Experiment 2: The evolution of densities ρi (i ∈ S) without the obstacle over time

0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the infected

density ρI . The third row: the recovered density ρR. The fourth row: the vaccine

density ρV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.10 Experiment 2: The evolution of densities ρi (i ∈ S) with the obstacle (colored

yellow) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS. The second

row: the infected density ρI . The third row: the recovered density ρR. The fourth

row: the vaccine density ρV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.11 Experiment 2: The top plot shows the total mass of vaccine density ρV at three

factory locations during the production time t ∈ [0, 0.5). The bottom plot shows

the total mass of ρV at the top left area of the domain Ω∩{x1 < 0.5}∩{x2 ≥ 0.5},

at the bottom left area Ω∩{x1 < 0.5}∩{x2 < 0.5}, at the top right area Ω∩{x1 ≥

0.5} ∩ {x2 ≥ 0.5}, and at the bottom right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 < 0.5}

during the distribution time t ∈ [0.5, 1]. . . . . . . . . . . . . . . . . . . . . . . . 129

5.12 Experiment 3: The initial densities ρS (left) and ρI (right), the location of the factory

(indicated as green circles), and the obstacle (colored yellow). . . . . . . . . . . . . . 130

5.13 Experiment 3: The plot shows the total mass of vaccine densities
∫ t

0

∫
Ω
ρV dx dt

during production t ∈ [0, T ′] at each factory location: left, middle, and right. The

dotted lines are from the optimal strategy from the Algorithm 1, and the solid

lines are from the fixed production rates. . . . . . . . . . . . . . . . . . . . . . . 132

6.1 Denote ρ as the solution to the mean-field game system. From left to right, the

pictures display the density distribution ρ at time t = 0.1, 0.5, 0.9. The solid red

line represents the boundary of domain Ω. In this mean-filed game, the density

travels from the right towards the left, crossing the boundary ∂Ω twice. . . . . . 144

6.2 The residual Resn and the maxx κ
n(x) at n-th iteration. . . . . . . . . . . . . . . 159

xii



6.3 From left to right: the true running cost κ(x); the reconstructed running cost

κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel K(x, y)

in vector form, where x-axis represents different Fourier mode ω and the y-axis

corresponds to the coefficients µ. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 From left to right: the true running cost κ(x); the reconstructed running cost

κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel K(x, y)

in vector form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 From left to right: the ground true running cost κ(x); the reconstructed running

cost κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel

K(x, y) in vector form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xiii



LIST OF TABLES

3.1 Comparison of adaptive PDHG and PDHG . . . . . . . . . . . . . . . . . . . . 73

5.1 Comparison of vaccine production of fixed and non-fixed rate. . . . . . . . . . . 133

xiv



ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to my advisor, Professor Stanley Osher. His

immense knowledge, invaluable guidance on research directions, and expertise in methodology

have been extraordinary to me and made me an independent researcher. His constant

encouragement, patience, passion, and humor have always been a great support throughout

my Ph.D. years.

I would like first to thank the members of my dissertation committee members, Prof.
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CHAPTER 1

Introduction

We first consider a continuous differential game, where each rational player takes actions to

minimize their own cost. When the number of players is small, the state of the system is

determined by the state of every player. A single player, by itself, may significantly change

the system’s evolution. In such a scenario, the study of Nash equilibrium requires tracking

every player and their actions. Therefore, the problem becomes intractable if we want to use

agent-based models when the number of players is large. Nevertheless, tracking the state of

the individual player usually does not provide practice insights into the model. Mean-field

games were firstly introduced independently by J-M. Lasry and P-L. Lions, and by M. Huang,

R.P. Malhamé, and P. E. Caines as a new approach to optimization problems involving a

large number of interacting players. Mean-field games study strategic decision-making in

large populations of identical rational players, where the individual agent interacts in a non-

cooperative manner through a certain quantity in the mean-field. At the Nash equilibrium,

a consensual state is reached, in which no players have further incentive to change their

strategy unilaterally. Indeed, when the number of players is significant, an individual player’s

contribution to the system state is relatively small. Mean-field games connect the microscopic

(individual player) with the macroscopic (overall system state). Such MFG systems can

be described using the system of PDEs, which consist Hamilton–Jacobi equations and a

Fokker–Planck equations.
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1.1 Review of the literature

Mean-field game was initiated by Lasry and Lions [LL06a, LL06b, LL07], and by Huang

Malhamé and Caines [HMC06, HCM07]. Since then, the research on mean-field games have

been thriving, in theory, computations, and applications.

The classical mean-field games are described using a system of a Hamilton–Jacobi equation

and a Fokker–Planck equation, which is derived by Lions and Lasry in their original paper.

The existence of solutions for the MFG systems are carefully studied. For the first order and

second order Hamilton–Jacobi equation with smooth dependence on the measure, the existence

is proved via fixed point argument [Car13a]. As for the MFG systems with local couplings,

various models are discussed [Gue09, CLL12, GPS12, Car15, BF16]. The uniqueness of

classical solution of MFGs are proved via Lions-Lasry monotonicity method. Potential

mean-field game models, which admits variational formulations that allows the use of calculus

of variations and duality techniques, are also studied in[LL07, ACC12, Car13b, BCS17]. Such

variational problems are also connected to the Benamou-Brenier formulation for the optimal

transport problem [BB00]. The linear-quadratic mean-field game that consists a linear adjoint

equation is considered in [HCM07, Bar12, NH12, BSY16]. In the probabilistic view, MFG

system can be analyzed as a backward stochastic differential equations with a mean-field

McKean-Vlasov type, see [BDL09, AD11]. Forward-backward stochastic differential equations

are also used to study NFGs [CD13a, CD13b, CL15]. A more general formulation of mean-

field games, referred as master equation, is thoroughly investigated [CD14, BFY15, CDL19].

Related research directions include well-posedness of second order master equations with

non-smooth data [MZ19], long time behavior of master equation [CP19], large deviations

principle [DLR20], and Hamilton-Jacobi equations in probability space of potential games

[GNT08, GS15, GM20]. For a detailed introduction and review of MFG theory we refer

to[LL07, GLL11, Car13a, GS14].

MFG system has a special forward-backward in time structure. Moreover, the two
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equations are coupled with nonlinear terms, making the system difficult to analyze. There-

fore, numerical methods are crucial for understanding the qualitative and quantitative

behaviors of the MFG systems. Pioneering works of numerical methods for the MFGs are

investigated using a finite difference scheme [ACC12]. Proximal point algorithm[BKS18]

and Newton’s method[AC10, ACC12, ACC13] are applied to solve the finite difference

system. The discrete approximations of the MFG model rely on monotone approxima-

tions of the Hamiltonian. The existence and uniqueness of the discretized problems are

proved[AC10]. Semi-Lagrangian approaches are studied in [CS12, CS14, CS15, CS18]. For

MFG and MFC problems with a variational structure, optimization methods are applied,

including Augmented Lagrangian [FG00, BC15b], Alternating Direction Method of Multi-

pliers (ADMM) [EB92, BB00, AL16, And17], and Primal–dual Hybrid Gradient (PDHG)

[CP11, CP16, BKS18, BKK19]. Monotone deformation flow is studied in [GS21], while basis

method for non-local interactions are handled in [NS18, LN21, LJL21, ALF22, MYZ22]. An

approach that solves the Hamilton-Jacobi equation in density space via the Hopf formula

is discussed in [CLO19]. Numerical methods for stationary MFG equations are studied

in [AFG17]. MFG systems are solved using game theory approaches, such as fictitious

play[CH17, Had17, HS19, BLP21]. Deep learning approaches are also explored in the con-

text of MFGs [ROL20, LFL21, CCS21], optimal transport [FJN20, OWL21], and optimal

control [ONL21b, ONL21a]. Reinforcement leaning methods are also developed to compute

MFG and MFC problems in a model-free fashion [YYT18, GHX20, AFL21, AFL22]. For

surveys of numerical methods of MEGs, see [AL20, Lau21, HL22].

Mean-field games offer powerful descriptions ranging from social-economical to biodiver-

sity ecology, and have brought significant impact in the understanding of finance[LLL16, CL18,

CJ19, FC17, LRS19, CJ20], economics[GLL11, ABL14, GNP15, AHL17, CL18], biology[NCM11,

SS21], epidemics[CPP20, EHT20, LLT21, ACD22], opinion dynamics[BTB16, GLB22], and

data science[WHL19, GHX19, CLT19, FJN20]. In [WHL19], they analyze deep learning by

recasting it as an optimal control problem. In population dynamics, MFGs were used to
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study crowd motions[LW11, BDM14, DTT17, AD18, AL19] and traffics[CLM15, ZYL19].

MFG models have various applications in engineering, including robotic controls[KC12,

SPB19, EB19, GLK22], demand management in power grids [MLT13, BB14, KSM19] and

others [BFY13, BLY21]. For example, in [KLZ21], they use MFG models to generate trajec-

tories for mobile vehicle networks.

1.2 Outline of the thesis

In this thesis, we study three different aspects of the mean-field games: computations,

modelings, and applications.

In Chapter 2,3, we present two projects on computational approaches for mean-field

games. This part is based on the papers [LJL21] and [LN21].

We first introduce a novel framework to model and solve first-order mean-field game

systems with nonlocal interactions extending the results in [NS18]. Our approach relies on

kernel-based representations of mean-field interactions and feature-space expansions in the

spirit of kernel methods in machine learning. We demonstrate the flexibility of our approach

by modeling various interaction scenarios between agents. Additionally, our method yields a

computationally efficient saddle-point reformulation of the original problem that is amenable

to state-of-the-art convex optimization methods such as the primal–dual hybrid gradient

method (PDHG). We also discuss the potential applications of our methods to multi-agent

trajectory planning problems.

Next, we extend the methods from [NS18, LJL21] to a class of non-potential mean-field

game (MFG) systems with mixed couplings. Up to now, splitting methods have been applied

to potential MFG systems that can be cast as convex-concave saddle-point problems. Here, we

show that a class of non-potential MFG can be cast as primal-dual pairs of monotone inclusions

and solved via extensions of convex optimization algorithms such as PDHG algorithm. A

critical feature of our approach is in considering dual variables of nonlocal couplings in Fourier
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or feature spaces.

The main contribution of this part is the numerical method for nonlocal MFGs and a

type of non-potential MFGs.

In Chapter 4,5, we address some modeling of MFGs to the epidemic model. This chapter

is based on the papers [LLT21] and [LLL21b].

We incorporate the mean-field control framework with SIR and SIRV model, and introduce

a mean-field control model for controlling the propagation of epidemics on a spatial domain.

The coronavirus disease 2019 (COVID-19) pandemic is changing and impacting lives on a

global scale. As the propagation of COVID-19 has a significant spatial characteristic, it is

crucial to have a spatial-type SIR model to study the spread of infectious diseases and the

movement of individuals. Beyond this, mean-field games (controls) provide a perspective to

study and understand the underlying population dynamics. The control variable – the spatial

velocity – is first introduced for the classical disease models, such as the SIR model. We

provide fast numerical algorithms based on proximal primal-dual methods for this proposed

model. Numerical experiments demonstrate that the proposed model illustrates how to

separate infected patients in a spatial domain effectively.

Later, with the invention of the COVID-19 vaccine, shipping and distributing is crucial in

controlling the pandemic. We extend this work by using the concept of mean-field control

to study the optimal transportation strategy for vaccine distribution. Numerical examples

demonstrate that the proposed model provides practical strategies for vaccine distribution in

a spatial domain.

The main contribution is to generalize the mean-field control problems to the epidemic

models. Numerical algorithms are derived to solve the proposed models, with experiments

demonstrating that our models can effectively control the propagation of the pandemic.

In Chapter 6, we propose a new mean-field game inverse problem. This part is based on

the paper [CFL22].

5



We aim to recover the mean-field game model parameters that govern the underlying

interactions among the population based on a limited set of noisy partial observations of the

population dynamics under the limited aperture. Due to its severe ill-posedness, obtaining

a good quality reconstruction is very difficult. Nonetheless, it is vital to recover the model

parameters stably and efficiently to uncover the underlying causes for population dynamics

for practical needs. Based on insights from [NS18, LJL21, LN21] we postulate a feature

expansion representation for the interaction kernel K and formulate the forward problem as

a convex-concave saddle point problem. Furthermore, we design a three-operator splitting

scheme [DY17] for the resulting inverse problem with a saddle-point constraint. The algorithm

reduces to a forward-backward splitting for the parameter updates, a primal-dual hybrid

gradient for the forward saddle point problem update, and a proximal-point algorithm for

the adjoint problem update.

The main contribution of this part is that we propose a novel MFG inverse problem with

non-invasive partial boundary measurements. We propose a model recovery algorithm to

recover the model coefficients numerically. Intriguingly, our algorithm applies to inverse

problems whose forward problem has a saddle point structure beyond MFG.
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CHAPTER 2

Computational Methods for Nonlocal Mean-field games

In this chapter, we propose a novel computational framework to solve nonlinear PDE arising

in mean-field games (MFG) theory. These PDEs characterize equilibria in large systems of

interacting agents that solve optimal control problems. When interactions are nonlocal, the

PDEs contain integral terms that are computationally expensive to handle with existing

algorithms. Our approach solves this problem by approximating these interactions with

suitable bases in the spirit of Fourier or feature-space expansions in machine learning. We

demonstrate the flexibility of our approach in terms of choices of bases and compatibility

with existing computational methods for MFGs with local interactions and optimal control

problems. The work builds on a theoretical analysis performed in[GS21].

This chapter has the following organization. Firstly, we introduce the nonlocal mean-field

games and discuss motivations on efficient computational method for this certain type of

MFGs in Section2.1. In Section 2.2, we provide a detailed description of our method. In

Section 2.3, we devise a PDHG algorithm to solve (2.1.1) based on our method and discuss

the computational efficiency of our approach. In Section 2.4, we show how to model and

approximate interactions using kernel methods from machine learning. Next, in Section 2.5,

we discuss potential applications of our methods to multi-agent trajectory planning problems.

Finally, in Section 2.6 we provide several numerical experiments.

The contributions in this chapter were first presented in the joint work with Matthew

Jacobs, Wuchen Li, Levon Nurbekyan, and Stanley Osher in [LJL21].
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2.1 Introduction

We study computational and modeling aspects of first-order nonlocal mean-field game systems.

Specifically, we are interested in the system
−ϕt +H(x,∇ϕ) = f

(
x,
∫
Ω
K(x, y)ρ(y, t)dy

)
ρt −∇ · (ρ∇pH(x,∇ϕ)) = 0

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g
(
x,
∫
Ω
S(x, y)ρ(y, 1)dy

) (2.1.1)

Above, Ω ⊂ Rd is either the flat torus, Td, or a closure of a domain with smooth boundary,

H : Ω × Rd → R is the Hamiltonian, K,S : Ω × Ω → R are interaction kernels, and

f, g : Ω× R→ R are interaction functions.

System (2.1.1) describes Nash equilibria in an infinite-dimensional differential game where

a continuum of agents interact through their distribution in the state-space. In (2.1.1), ρ(·, t)

represents the population density at time t, and ρ0 is an initial distribution. Furthermore,

(x, t) 7→ ϕ(x, t) is a value function that measures the optimal value of an agent at position x

and time t. Functions f, g and kernels K,S model the interaction between a single agent and

the population.

In general, (2.1.1) does not admit classical solutions, and a suitable notion of a weak

solution is necessary. A pair (ϕ, ρ) is a weak solution of (2.1.1) if ϕ is a viscosity solution for

HJB, and ρ is a distribution solution for the continuity equation with a no-flux boundary

condition. For the existence, uniqueness, and regularity theory of (2.1.1) we refer to [LL07,

Car13a] for Ω ∈ {Td,Rd} and [CC18, CCC19, CCC21] for bounded Ω with smooth boundary.

Our goal is to develop computational and modeling methods for (2.1.1). There are several

general purpose numerical methods for MFG that can be used to approximate the solutions of

(2.1.1). In [AC10, Ach13, ACC13], the authors develop and analyze finite-difference methods

for second-order versions of (2.1.1). Their approach is based on a solution of the discrete

problem applying Newton’s method. Although the authors consider second-order systems
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with a positive viscosity parameter, their numerical experiments indicate robustness with

respect to the vanishing viscosity and can be used to approximate first-order systems such as

(2.1.1) (see [AC10, Test 6] and Section 2.6.6 here).

For so-called potential MFG systems, there are several primal-dual convex optimization

methods such as alternating direction method of multipliers (ADMM) [BC15a, BCS17] and

primal-dual hybrid gradient (PDHG) [AKS18, AKK19] (the latter employing the discretization

in [AC10]). These methods are extensions of the celebrated Brenier-Benamou method for

computation of optimal transport maps [BB00] to the MFG setting. Although originally

designed for local interactions, these methods can be naturally adapted to nonlocal ones: see

Section 2.3.3 for further details.

Here, our goal is to develop computational and modeling methods specifically for nonlocal

MFG systems. The term nonlocal refers to expressions

f

(
x,

∫
Ω

K(x, y)ρ(y, t)dy

)
, g

(
x,

∫
Ω

S(x, y)ρ(y, 1)dy

)
.

Indeed, the calculation of these terms at x requires the knowledge of ρ(y, t) at all y. For general

MFG systems, these terms are replaced by f(x, ρ), g(x, ρ) where one allows local interactions

as well; that is, f(x, ρ) = f̃(x, ρ(x, t)), and g(x, ρ) = g̃(x, ρ(x, 1)) where, f̃ , g̃ : Ω× R+ → R

are some functions, and ρ(x, t) is the density of ρ. Note that for local interactions, the

calculation of f, g terms at x requires information only at x.

Existing methods in the literature discretize interaction terms directly in the state-space.

For local interactions such discretizations are economical. For the nonlocal case though, the

calculation of interaction terms requires matrix multiplication on a full grid to evaluate the

expressions
∫
Ω
K(x, y)ρ(y, t)dy,

∫
Ω
S(x, y)ρ(y, 1)dy. Our approach solves this problem by

encoding the interactions in a small number of expansion coefficients.

Furthermore, a critical feature of primal-dual methods mentioned above is that one of the

proximal steps results in a decoupled system of one-dimensional convex optimization problems

at the grid-points. Therefore, this step is parallelizable and yields a linear computational
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cost in the number of grid-points. However, direct applications of these methods to nonlocal

problems yield fully coupled systems that are not parallelizable and yield a superlinear

computational cost. Our method solves this problem as well. The expansion coefficients, that

encode the interactions, decouple the aforementioned systems. Furthermore, we update these

coefficients by an explicit proximal step that yields a linear computational cost.

Our method is also well-suited for the Lagrangian framework. Indeed, in [NS18], where

this approach was introduced, the authors solved (2.1.1) in Lagrangian coordinates. Thus,

this approach paves a way to efficient computational methods for high-dimensional MFG

problems.

Another appealing feature of our method is the flexibility of modeling interactions. We

expand K,S in a basis that can be interpreted as features from kernel methods in ML

[MRT18, Chapter 6]. This allows us to design various interactions by only manipulating

the basis. In particular, we can easily model heterogeneous regimes where agents interact

only within specific subdomains and other interesting scenarios. Additionally, we can handle

nonlocal interactions that are given by differential operators [AC10, Tests 5, 6].

Finally, we would like to point out potential applications of our methods to multi-agent

trajectory-planning. In general, even single-agent trajectory-panning problems are highly

complex. With the number of agents increasing in a system, problems quickly become

computationally overwhelming.

A critical difficulty comes from modeling and computing the interactions. MFG theory

provides a flexible framework to solve this problem. Theoretically, MFG solutions are optimal

only when the number of agents is infinite. Nevertheless, one can generate sub-optimal

trajectories that have appealing properties such as no-collision. Since our method provides a

way of encoding mean-field interactions in a few coefficients independent of the number of

agents, it is potentially applicable to large multi-agent trajectory planning problems.
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2.2 The method of coefficients

We assume that Ω is either the flat torus, Td, or a closure of a bounded domain with

C2 boundary. Additionally, we assume that f, g,K, S are C2 functions. To alleviate the

presentation, we first discuss the periodic case and assume that interactions are given by

f(x, ζ) = ζ, and g(x, ζ) = g(x). We provide remarks on the non-periodic case and more

general interactions in Remark 2.

Thus, assume that Ω = Td, ρ0 ∈ P(Ω) ∩ L∞(Ω), and H ∈ C2(Ω× Rd) is such that

1

C
Id ≤∇2

ppH(x, p) ≤ CId, ∀(x, p) ∈ Ω× Rd,

−C(1 + |p|2) ≤∇xH(x, p) · p, ∀(x, p) ∈ Ω× Rd,

for some constant C > 0. Assuming f(x, ζ) = ζ, and g(x, ζ) = g(x), (2.1.1) reduces to
−ϕt +H(x,∇ϕ) =

∫
Ω
K(x, y)ρ(y, t)dy

ρt −∇ · (ρ∇pH(x,∇ϕ)) = 0

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g(x)

(2.2.1)

It is proved in [LL07] (see also [Car13a, Car13b]) that (2.2.1) admits solutions ϕ ∈ W 1,∞(Ω×

[0, 1]) and ρ ∈ L∞(Ω× [0, 1])∩C ([0, 1];P(Ω)), where ϕ is a viscosity solution of the HJB, and

ρ is a weak-solution of the continuity equation. Additionally, when the mean-field interaction

is monotone; that is,∫
Ω2

K(x, y)(ρ2(x)− ρ1(x))(ρ2(y)− ρ1(y))dxdy ≥ 0, ∀ρ1, ρ2 ∈ P(Ω) (2.2.2)

the solution is unique.

The essence of the method of coefficients is in an expansion of K(x, y) in a family of

functions. More precisely, assume that {fi}ri=1 ⊂ C2(Ω) is an arbitrary family of functions.

Furthermore, suppose that

K(x, y) =
r∑

i,j=1

kijfi(x)fj(y) (2.2.3)
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Remark 1. In general, K may not have the form (2.2.3). In these cases, we approximate K

with kernels of such form [NS18, Section 4].

We denote by K = (kij) ∈Mr×r(R). A straightforward calculation yields that∫
Ω

K(x, y)ρ(y, t)dt =
r∑

i=1

ai(t)fi(x),

where

ai(t) =
r∑

j=1

kij

∫
Ω

fj(y)ρ(y, t)dy.

Thus, for an arbitrary probability measure ρ, the expression
∫
Ω
K(x, y)ρ(y, t)dy is a combina-

tion of {fi}ri=1 with some unknown coefficients a1, a2, · · · , ar. These coefficients encode all

necessary information about the interactions. Thus, (ai) will be our new unknowns. Note that

once we find (ai) we can solve (2.2.1) by solving decoupled HJB and continuity equations.

It turns out that (ai) are zeroes of an operator that is monotone if ρ 7→
∫
Ω
K(x, y)ρ(y)dy

is monotone, and a gradient when K is symmetric. To state the results precisely, denote by

ϕa the viscosity solution of the HJB
−ϕt +H(x,∇ϕ) =

∑r
i=1 ai(t)fi(x)

ϕ(x, 1) = g(x)

(2.2.4)

Furthermore, denote by ρa the distributional solution of the continuity equation
ρt −∇ · (ρ∇pH(x,∇ϕa)) = 0

ρ(x, 0) = ρ0(x)

(2.2.5)

The following two theorems are the basis of our approach.

Theorem 2.2.1. [NS18, Theorem 2.3] The functional a 7→
∫
Ω
ϕa(x, 0)ρ0(x)dx is concave and

everywhere Fréchet differentiable. Moreover,

δ

δai

∫
Ω

ϕa(x, 0)ρ0(x)dx =

∫
Ω

fi(x)ρa(x, ·)dx, 1 ≤ i ≤ r. (2.2.6)
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Theorem 2.2.2. [NS18, Theorem 3.1]

i. A pair (ϕ, ρ) is a solution of (2.2.1) if and only if (ϕ, ρ) = (ϕa, ρa) for some a ∈

C ([0, 1];Rr) such that

a = K
δ

δa

∫
Ω

ϕa(x, 0)ρ0(x)dx (2.2.7)

ii. If K is strictly monotone; that is, ξ⊤Kξ > 0 for all ξ ∈ Rr\{0}, then (2.2.7) is equivalent

to finding a zero of a monotone operator a 7→ K−1a − δ
δa

∫
Ω
ϕa(x, 0)ρ0(x)dx, a ∈

C ([0, 1];Rr).

iii. Additionally, if K is symmetric, (2.2.7) is equivalent to the convex optimization problem

inf
a∈C([0,1];Rr)

⟨K−1a, a⟩
2

−
∫
Ω

ϕa(x, 0)ρ0(x)dx, (2.2.8)

where ⟨a, b⟩ =
∑r

i=1

∫ 1

0
ai(t)bi(t)dt for a, b ∈ C ([0, 1];Rr).

Remark 2. Several remarks are in order.

1. Theorem 2.2.2 asserts that instead of finding (ϕ, ρ) in (2.2.1) we just need to find the

right coefficients (ai) and then solve the decoupled equations (2.2.4), (2.2.5).

2. Here, we do not concentrate on technical aspects of Theorems 2.2.1, 2.2.2, such as

well-posedness of (2.2.1), (2.2.4), (2.2.5), that are discussed for the periodic case in

[NS18]. For the non-periodic case in a bounded domain, (2.2.1) must be complemented

with a no-flux Neumann boundary condition

−∇pH(x,∇ϕ(x, t)) · ν(x) = 0, x ∈ ∂Ω ∩ supp(ρ(·, t)), t ∈ (0, 1),

where ν(x) is the outer unit normal to Ω at x, and ∇ϕ should be understood in a suitable

sense. Informally speaking, ∇ϕ is the gradient of ϕ ”from inside Ω.” Additionally,

viscosity solutions must be understood in the constrained sense. We refer to [CC18,

CCC19, CCC21] for precise definitions and statements.
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In this context, Theorems 2.2.1, 2.2.2 should be modified accordingly. Indeed, ϕa is

still well-defined as a unique constrained viscosity solution of (2.2.4). However, unlike

the unconstrained case, ϕa is not regular enough in general for (2.2.5) to be well-posed.

Consequently, the functional a 7→
∫
Ω
ϕa(x, 0)ρ0(x)dx is concave but not necessarily

Fréchet differentiable.

Hence, in Theorems 2.2.1, 2.2.2 we should replace Fréchet derivatives by superdiffer-

entials and instead of working with ρa work with probability measures supported on

minimizing trajectories as it is done in [CC18, CCC19, CCC21]. Furthermore, solu-

tions ρ(·, t) of (2.2.1) might not be absolutely continuous with respect to the Lebesgue

measure. Nevertheless, we believe that suitable extensions of Theorems 2.2.1, 2.2.2 and

the saddle-point formulation (2.3.2) are valid in the constrained case based on the results

in [CC18, CCC19, CCC21]. We will address this intriguing point in our future work.

For now, we proceed informally and impose a no-flux boundary condition m · ν = 0 on

∂Ω, where m = ρv, and v = −∇pH(x,∇ϕ) is the optimal velocity field. Note that we

do not exploit the relation between m and ∇ϕ explicitly but impose the no-flux boundary

condition directly on m instead of ∇ϕ. This approach is consistent with the results

obtained in [CCC21, Section 4].

3. According to [NS18, Lemma 4.1], K is monotone if and only if the interaction is

monotone; that is, (2.2.2) holds. As mentioned above, this condition is essential for the

uniqueness of solutions of (2.2.1) [LL07, CC18].

4. K is symmetric if and only if K is symmetric; that is, K(x, y) = K(y, x) for all

x, y ∈ Ω.

5. For monotone interactions, (ai) are solutions of a monotone variational inequality or a

convex optimization problem. Therefore, one can apply powerful convex optimization

techniques to find (ai).

6. Equation (2.2.6) is critical for update rules of (ai). Indeed, it gives the ascent direction
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∫
Ω
ϕa(x, 0)ρ0(x)dx with respect to (ai). Moreover, this direction depends on ρa, which

is available once ϕa is (approximately) computed at current (ai). As we shall see below,

this property yields extremely simple update rules for (ai).

7. These previous points are also very appealing for potential applications of our methods

to multi-agent trajectory planning problems.

8. Optimization problem (2.2.8) is equivalent to the infinite-dimensional optimal control

problem (58)-(59) in [LL07].

9. There is nothing special about the choice f(x, ζ) = ζ, g(x, ζ) = g(x) except simplicity.

Analogous results are valid for general f, g as well. This topic is discussed in a companion

paper [LN21].

10. Similar theorems are valid for stochastic systems as well.

2.3 A primal-dual hybrid gradient algorithm for symmetric kernels

Here, we assume that K is symmetric and formulate (2.2.8) as a convex-concave saddle

point problem. Furthermore, we devise a primal-dual hybrid gradient (PDHG) algorithm of

Chambolle and Pock [CP11, CP16] to solve it.
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2.3.1 A saddle-point problem formulation

Introducing a Lagrange multiplier for the HJB equation in (2.2.4) we obtain

inf
a∈C([0,1];Rr)

⟨K−1a, a⟩
2

−
∫
Ω

ϕa(x, 0)ρ0(x)dx

= inf
ϕ,a

{
⟨K−1a, a⟩

2
−
∫
Ω

ϕ(x, 0)ρ0(x)dx s.t. (2.2.4) holds

}
= inf

ϕ(x,1)=g
a

sup
ρ

{
⟨K−1a, a⟩

2
−
∫
Ω

ϕ(x, 0)ρ0(x)dx

+

∫
Ω

∫ 1

0

ρ

(
−ϕt +H(x,∇ϕ)−

r∑
i=1

ai(t)fi(x)

)
dtdx

}

= inf
ϕ(x,1)=g

a

sup
ρ,v

{
⟨K−1a, a⟩

2
−
∫
Ω

ϕ(x, 0)ρ0(x)dx−
∫
Ω

∫ 1

0

(ρϕt + ρv · ∇ϕ) dtdx

−
∫
Ω

∫ 1

0

ρ

(
L(x, v) +

r∑
i=1

ai(t)fi(x)

)
dtdx

}
,

(2.3.1)

where we used the convex duality

H(x,∇ϕ) = sup
v
−v · ∇ϕ− L(x, v).

The saddle point problem in (2.3.1) is convex in (ϕ, a) but not concave in (ρ, v). Non-concavity

comes from the terms ρv · ϕ and ρL(x, v). Following [BB00], we remedy this problem by

replacing v with a flux variable m = ρv. Thus, we obtain an equivalent saddle point problem

inf
ϕ(x,1)=g

a

sup
ρ,m

{
⟨K−1a, a⟩

2
−
∫
Ω

ϕ(x, 0)ρ0(x)dx−
∫
Ω

∫ 1

0

(ρϕt +m · ∇ϕ) dxdt

−
∫
Ω

∫ 1

0

ρ

(
L

(
x,
m

ρ

)
+

r∑
i=1

ai(t)fi(x)

)
dxdt

}
= inf

ϕ(x,1)=g
a

sup
ρ,m
L(ϕ, a, ρ,m)

(2.3.2)

Note that (ϕ, a) 7→ L(ϕ, a, ρ,m) is convex, (ρ,m) 7→ L(ϕ, a, ρ,m) is concave, and the coupling

between (ϕ, a) and (ρ,m) is bilinear. Thus, we can apply PDHG [CP11, CP16] to solve
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(2.3.2). Also, note that the first-order optimality conditions for ϕ are
ρt +∇ ·m = 0 in Ω× (0, 1)

m(x, t) · ν = 0 in ∂Ω× (0, 1)

ρ(x, 0) = ρ0(x) in Ω

Therefore, the no-flux boundary condition form and the initial condition for ρ are incorporated

in (2.3.2), and no extra considerations are necessary.

Furthermore, we must add a constraint ρ ≥ 0 to account for ρ being a probability

distribution. This adjustment is coherent with the derivation (2.3.1) because the viscosity-

solution constraint (2.2.4) should be replaced by pointwise constraints −∂tϕ+H(x,∇ϕ) ≤∑r
i=1 ai(t)fi(x), ϕ(x, 1) ≤ g(x). Additionally, the expression L

(
x, m

ρ

)
must be understood

in the following sense

L

(
x,
m

ρ

)
=


L
(
x, m

ρ

)
, when ρ > 0

0, when m = 0, ρ = 0

+∞, when m ̸= 0, ρ = 0

We refer to [BCS17] for further details.

2.3.2 PDHG updates

As illustrated in [JLL19, JL20], the choices of spaces for variables are crucial when applying

PDHG. Correct choices render algorithms with grid-size-independent convergence rates. For

a, ρ,m we choose L2 spaces, whereas for ϕ we choose H1. The motivation for this choice

comes from convergence analysis of PDHG. Indeed, upper bounds on the step-sizes depend

on the inverse of the norm of the bilinear coupling∣∣∣∣∫
Ω

∫ 1

0

(ρϕt +m · ∇ϕ) dxdt
∣∣∣∣ ≤ ∥(ρ,m)∥L2 · ∥ϕ∥H1

This norm is finite if we choose L2 norm for (ρ,m) and H1 norm for ϕ. If we chose L2 norm

for ϕ, the bilinear coupling would have infinite norm. Therefore the corresponding norm
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of the finite-dimensional coupling on a grid would depend on the grid-size and converge to

infinity as grid gets finer. Consequently, the step-sizes that guarantee the convergence of the

algorithm would shrink to 0 and yield an impractically slow algorithm. The H1 norm, on the

other hand, yields convergence guarantees and rates that are grid-independent.

For step-sizes τ∇ϕ, τϕt , τϕ(0), τρ, τm, and current iterates (ak, ϕk, ρk,mk, āk, ϕ̄k) the update

rules for PDHG are

(ρk+1,mk+1) = argmax
ρ,m

{
L(ϕ̄k, āk, ρ,m)− 1

2τρ
∥ρ− ρk∥2

L2
x,t
− 1

2τm
∥m−mk∥2

L2
x,t

}
(ak+1, ϕk+1) = argmin

a,ϕ

{
L(ϕ, a, ρk+1,mk+1) + 1

2τϕ(0)
∥ϕ(·, 0)− ϕk(·, 0)∥2L2

x

+ 1
2τ∇ϕ
∥∇ϕ−∇ϕk∥2

L2
x,t

+ 1
2τϕt
∥ϕt − ϕk

t ∥2L2
x,t

+ 1
2τa
∥a− ak∥2

L2
t

}
(āk+1, ϕ̄k+1) = 2(ak+1, ϕk+1)− (ak, ϕk)

The critical observation is that the variational problems above are well-posed and easy to

solve. In what follows we discuss in details each of the updates.

The updates for (ρ,m). We have that

δL
δρ

=− ϕt − L
(
x,
m

ρ

)
+∇vL

(
x,
m

ρ

)
· m
ρ
−

r∑
i=1

ai(t)fi(x)

δL
δm

=−∇ϕ−∇vL

(
x,
m

ρ

)
Therefore, for updating (ρ,m) we must solve the following system

∇vL
(
x, m

ρ

)
· m

ρ
− L

(
x, m

ρ

)
− ρ−ρk

τρ
= ϕ̄k

t +
∑r

i=1 ā
k
i (t)fi(x)

∇vL
(
x, m

ρ

)
+ m−mk

τm
= ∇ϕ̄k

(2.3.3)

Remark 3. Once discretized, system (2.3.3) yields decoupled one-dimensional convex op-

timization problems at the grid-points. Therefore the proximal update for (ρ,m) can de

performed efficiently in parallel. This feature is one of the most appealing properties of

ADMM [BB00, BC15a, BCS17] and PDHG [AKS18, AKK19, JLL19, LRO18] algorithms

for MFG systems and related problems for local couplings. However, direct extensions of
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aforementioned methods to nonlocal MFG systems do not preserve this property. One of the

critical features of our approach is that we preserve this property. We refer to Section 2.3.3

for details.

For some Lagrangians, (2.3.3) simplifies greatly. For instance, for L(x, v) = |v|2
2

+Q(x, t)

we have that ∇vL(x, v) = v, and (2.3.3) becomes
|m|2
2ρ2
− ρ−ρk

τρ
= Q(x, t) + ϕ̄k

t +
∑r

i=1 ā
k
i (t)fi(x)

m
ρ
+ m−mk

τm
= ∇ϕ̄k

Furthermore, eliminating m from the second equation, we obtain
|mk+τm∇ϕ̄k|2

2(τm+ρ)2
− ρ−ρk

τρ
= Q(x, t) + ϕ̄k

t +
∑r

i=1 ā
k
i (t)fi(x)

m = ρmk+τm∇ϕ̄k

τm+ρ

Therefore, we just need to solve a cubic equation for ρ and update m by an explicit formula.

Remark 4. As mentioned before, we must add a constraint ρ ≥ 0 in (2.3.2). Therefore, equa-

tions above must be complemented by the condition ρ ≥ 0. The function γ(ρ) = |mk+τm∇ϕ̄k|2
2(τm+ρ)2

−
ρ−ρk

τρ
, ρ ≥ 0 is strictly decreasing. Therefore, either γ(0) ≥ Q(x, t) + ϕ̄k

t +
∑r

i=1 ā
k
i (t)fi(x) or

γ(0) < Q(x, t)+ ϕ̄k
t +
∑r

i=1 ā
k
i (t)fi(x). In the former case, there exists a unique ρk+1(x, t) ≥ 0

such that γ(ρk+1(x, t)) = Q(x, t) + ϕ̄k
t (x, t) +

∑r
i=1 ā

k
i (t)fi(x). In the latter case, we set

ρk+1(x, t) = 0. In both cases, we update m accordingly.

The updates for (a, ϕ). We have that

∂L
∂a

=K−1a−
(∫

Ω

fi(x)ρ(x, t)dx

)r

i=1

∂L
∂ϕ

=ρt +∇ ·m+ (ρ− ρ0) dx× δt=0 −m · ν d∂Ωx× dt

where ν is the outward normal of Ω, and d∂Ω is the surface measure of ∂Ω. Note that we

only consider variations that preserve the boundary condition ϕ(x, 1) = g(x). Therefore, to
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update (a, ϕ) we must solve the system

K−1a−
(∫

Ω
fi(x)ρ

k+1(x, t)dx
)r
i=1

+ a−ak

τa
= 0

ρk+1
t +∇ ·mk+1 − ϕtt−ϕk

tt

τϕt
− ∆ϕ−∆ϕk

τ∇ϕ
= 0

ρk+1(x, 0)− ρ0(x)− ϕt(x,0)−ϕk
t (x,0)

τϕt
+ ϕ(x,0)−ϕk(x,0)

τϕ(0)
= 0

ϕ(x, 1) = g(x)(
−mk+1 + ∇ϕ−∇ϕk

τ∇ϕ

)
· ν = 0

Note that the equations for a and ϕ are decoupled. Furthermore, we obtain explicit updates

for a:

ak+1 = (τaK
−1 + I)−1

(
ak + τa

(∫
Ω

fi(x)ρ
k+1(x, t)dx

)r

i=1

)
(2.3.4)

Finally, to update ϕ we must solve the space-time elliptic equation

ϕtt

τϕt
+ ∆ϕ

τ∇ϕ
= ρk+1

t +∇ ·mk+1 +
ϕk
tt

τϕt
+ ∆ϕk

τ∇ϕ
in Ω× (0, 1)

ϕt(x,0)
τϕt
− ϕ(x,0)

τϕ(0)
= ρk+1(x, 0)− ρ0(x) + ϕk

t (x,0)

τϕt
− ϕk(x,0)

τϕ(0)
in Ω

ϕ(x, 1) = g(x) in Ω

∂ϕ(x,t)
∂ν

= ∂ϕk(x,t)
∂ν

+ τ∇ϕm
k+1 · ν in ∂Ω× (0, 1)

Once discretized, this step can be efficiently performed by the Fast Fourier Transform (FFT).

2.3.3 Dimension reduction

Here, we illustrate the dimension reduction and computational efficiency obtained with our

method. Assume that Ω is bounded, and Kr, Sr are approximations of K,S in the C2 norm

[NS18, Section 4]. Then we have that∥∥∥∥∫
Ω

K(·, y)ρ(y)dy −
∫
Ω

Kr(·, y)ρ(y)dy
∥∥∥∥
C2

≤ ∥K −Kr∥C2 ,∥∥∥∥∫
Ω

S(·, y)ρ(y)dy −
∫
Ω

Sr(·, y)ρ(y)dy
∥∥∥∥
C2

≤ ∥S − Sr∥C2 ,
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for all ρ ∈ P(Ω). Therefore, if we approximate f, g by fr, gr in the C2 norm, we obtain C2

approximations of the terms

f

(
x,

∫
Ω

K(x, y)ρ(y, t)dy

)
, g

(
x,

∫
Ω

S(x, y)ρ(y, 1)dy

)
that are uniform in ρ.

In the periodic case, from the stability theory of (2.1.1) [LL07, Car13a], we have that solu-

tions of (2.1.1) corresponding to fr, gr, Kr, Sr are precompact in C(Ω×[0, 1])×C ([0, 1],P(Ω)),

and all accumulation points are solutions corresponding to f, g,K, S. Additionally, if the

operators

ρ 7→ f

(
x,

∫
Ω

K(x, y)ρ(y)dy

)
, ρ 7→ g

(
x,

∫
Ω

S(x, y)ρ(y)dy

)
(2.3.5)

are monotone, (2.1.1) admits a unique solution, (ϕ, ρ), and

lim
r→∞
∥ϕr − ϕ∥L∞ = 0, lim

r→∞
sup
t∈[0,1]

W1(ρr(·, t), ρ(·, t)) = 0,

if lim
r→∞
∥ξ− ξr∥C2 = 0, ξ ∈ {f, g,K, S}, where W1 is the 1-Wasserstein or Monge-Kantorovich

distance in P(Ω).

Thus, if we discretize (2.1.1) the approximation error of the interaction functionals

introduced by replacing f, g,K, S by fr, gr, Kr, Sr will be independent of the discretization.

Therefore, once we fix r, we can solve the r-problem as accurately as we wish without extra

cost for approximating the interactions on fine grids. Additionally, as we show below, for

fixed r, the computational cost is on par with those of existing algorithms for local couplings.

Of course, the smaller r the better, and the size of r depends on how well {fi} approximate

f, g,K, S.

Remark 5. To the best of our knowledge, the stability of (2.1.1) with respect to the data

in the non-periodic is not explicitly discussed in the literature. Nevertheless, results in

[CC18, CCC19, CCC21] indicate that such stability should be valid. In this case, (2.3.5)

guarantees the uniqueness of ϕ only [CC18, Theorem 4.1].
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We now compare the computational complexity of our method versus direct applications

of primal-dual optimization algorithms to solve (2.1.1) on the example of (2.2.1). The starting

point for these methods is to write (2.2.1) as a convex optimization problem introduced in

[LL07]. More precisely, when K is symmetric, one has that (2.2.1) is equivalent to

inf
ϕ(x,1)≤g

sup
ρ≥0,m

{
−
∫
Ω

ϕ(x, 0)ρ0(x)dx−
∫
Ω

∫ 1

0

(ρϕt +m · ∇ϕ) dxdt

−
∫ 1

0

{∫
Ω

ρL

(
x,
m

ρ

)
dx+ F(ρ(·, t))

}
dt

}
= inf

ϕ(x,1)≤g
α

sup
ρ≥0,m

L1(ϕ, ρ,m)

(2.3.6)

where

F(ρ) = 1

2

∫
Ω2

K(x, y)ρ(x)ρ(y)dxdy, ρ ∈ P(Ω). (2.3.7)

One can also work with the convex dual F∗ of F by introducing a dual variable α:

inf
ϕ(x,1)≤g

α

sup
ρ≥0,m

{∫ 1

0

F∗(α(·, t))dt−
∫
Ω

ϕ(x, 0)ρ0(x)dx−
∫
Ω

∫ 1

0

(ρϕt +m · ∇ϕ) dxdt

−
∫
Ω

∫ 1

0

ρ

(
L

(
x,
m

ρ

)
+ α

)
dxdt

}
= inf

ϕ(x,1)≤g
α

sup
ρ≥0,m

L2(ϕ, α, ρ,m),

(2.3.8)

where F∗(α) = supρ

∫
Ω
α(x)ρ(x)dx − F(ρ). Therefore, there are two options for solving

(2.2.1): (i) work directly with F and solve (2.3.6) or its variants [AKS18, AKK19], (ii) work

with the dual F∗ and solve (2.3.8) or its variants [BC15a, BCS17]. We illustrate that direct

applications of both approaches to nonlocal problems lead to computationally expensive

updates.

For concreteness, we estimate the computational complexity of the PDHG algorithm

proposed here, with and without applying the coefficients method. The analysis of other

primal-dual algorithms is analogous. First, we discuss the option of working directly with F
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and solving (2.3.6). In this case, the proximal update for (ρ,m) would be

sup
ρ≥0,m

{
−
∫
Ω

ϕ̄k(x, 0)ρ0(x)dx−
∫
Ω

∫ 1

0

(
ρϕ̄k

t +m · ∇ϕ̄k
)
dxdt

−
∫ 1

0

{∫
Ω

ρL

(
x,
m

ρ

)
dx+ F(ρ(·, t))

}
dt

}
− 1

2τρ
∥ρ− ρk∥2L2

x,t
− 1

2τm
∥m−mk∥2L2

x,t

Therefore, we must solve the following system
L
(
x, m

ρ

)
−∇vL

(
x, m

ρ

)
· m

ρ
+ ϕ̄k

t +
ρ−ρk

τρ
+ δρF(ρ) = 0

∇vL
(
x, m

ρ

)
+ m−mk

τm
= ∇ϕ̄k

(2.3.9)

For local interactions, one has that F(ρ) =
∫
Ω
F (ρ(x))dx for some F , and (2.3.9) becomes

L
(
x, m

ρ

)
−∇vL

(
x, m

ρ

)
· m

ρ
+ ρ−ρk

τρ
+ F ′(ρ) = 0

∇vL
(
x, m

ρ

)
+ m−mk

τm
= ∇ϕ̄k,

which is a decoupled system of one-dimensional equations that can be solved efficiently

at each node. Therefore, the computational complexity of solving this system for local

problems is linear in the number of grid-points. However, for nonlocal interactions such

as in (2.3.7) we have that δρF =
∫
Ω
K(x, y)ρ(y)dy, and (2.3.9) is now a fully coupled (in

space) system of nonlinear equations. Additionally, the complexity of the system grows with

the mesh-size. One could approximate the term by δρF(ρ) by δρF(ρk) and decouple the

system. Nevertheless, this would require a matrix multiplication that yields a superlinear

computational cost. Moreover, the proximal step could not be parallelized.

On the other hand, our method yields fully parallel proximal updates for (ρ,m) (2.3.3)

at the expense of solving an r × r system of equations to update the coefficients (ai). To

assemble the system for (ai), we need to evaluate terms
∫
Ω
fi(x)ρ

k+1(x, t)dx that yields a

linear cost in the number of grid-points. Therefore, once r is fixed, we obtain an overall linear

cost for updating (ρ,m) and (ai) which is the case for local interactions.
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Next, we discuss the option of working with F∗ and solving (2.3.8). In this case, the

proximal update for α would be

inf
α

∫ 1

0

F∗(α(·, t))dt−
∫
Ω

∫ 1

0

ρk+1αdxdt+
1

2τα
∥α− αk∥2L2

x,t

Therefore, we must solve the following system

δαF∗(α)(x, t)− ρk+1(x, t) +
α(x, t)− αk(x, t)

τα
= 0 (2.3.10)

For local interactions, F(ρ) =
∫
Ω
F (ρ(x))dx, we can calculate F∗(α) on the continuum level

by an explicit formula

F∗(α) =

∫
Ω

F ∗(α(x))dx,

where F ∗ is the convex dual of F . Therefore, δαF(α)(x) = (F ∗)′(α(x)), and (2.3.10) becomes

(F ∗)′(α(x, t))− ρk+1(x, t) +
α(x, t)− αk(x, t)

τα
= 0

As before, we obtain one-dimensional decoupled equations that can be solved in parallel at

grid-points.

In the nonlocal case though, the first issue is that we cannot calculate F∗ analytically on

the continuum level unless K is special. However, one can calculate F∗ on the discrete level.

Assume that {xi}Ni=1 is some space-discretization. Then we have that

F(ρ) = 1

2

∑
i,j

K(xi, xj)ρiρj, F∗(α) =
1

2

∑
i,j

Qijαiαj, δαF∗(α)i =
∑
j

Qijαj

where ρi = ρ(xi), αi = α(xi), and Q = (Qij) = (K(xi, xj))
−1. Therefore, (2.3.10) becomes

an N ×N system of linear equations

∑
j

Qijαj(t)− ρk+1
i (t) +

αi(t)− αk
i (t)

τα
= 0, i ∈ {1, 2, · · · , N}. (2.3.11)

As before, we obtain a coupled system in the nonlocal case. The solution of this system

yields a polynomial computational complexity unless (K(xi, xj)) is special. For instance, if
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(K(xi, xj)) is diagonalizable in a Fourier basis the computational cost is of order N logN via

FFT.

In our method, on the other hand, we replace dual variables (αi(t))
N
i=1 by coefficients

(ai(t))
r
i=1, and (2.3.11) is replaced by an r×r system (2.3.4). Therefore, we have to store much

less variables and, as mentioned before, obtain a linear computational cost. Additionally,

we can calculate the r × r matrix (τaK
−1 + I)−1 prior to optimization and use it afterward.

Moreover, since the size of this matrix is independent of the mesh-size, we do not have to

deal with conditioning issues for every mesh-size separately: we can do it once and for all

before optimization.

Finally, as we will see in Section 2.4, a smart choice of basis functions {fi} yields K = I.

Therefore, the updates for (ai(t))
r
i=1 are trivial and there is no need to solve linear systems at

all!

2.4 Modeling interactions with kernels

Here, we discuss modeling aspects of nonlocal MFG systems. In particular, we show how

to build kernels to enforce suitable behavior of agents. For that, we draw inspiration from

kernel methods in machine learning [MRT18, Chapter 6].

As mentioned before, (2.2.1) is well posed when ρ 7→
∫
Ω
K(x, y)ρ(y)dy is monotone. This

condition means that agents repel one another and try to minimize the cost

ϕ(x, t) = inf
z(t)=x

∫ 1

t

{
L(z(s), ż(s)) +

∫
Ω

K(z(s), y)ρ(y, t)dy

}
ds+ g(z(T ))

Therefore, K(x, y) is a similarity measure between positions x and y that agents try to

minimize. Kernel methods in ML study exactly this type of K for data separation. Different

choices of K lead to different separations.

The simplest example of K is the inner product, K(x, y) = x · y, which is amenable to

rigorous mathematical analysis. Natural extensions of the inner product are positive definite
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symmetric (PDS) kernels.

Definition 1 ([MRT18]). K : (x, y) 7→ K(x, y) is a PDS kernel if (K(xi, xj))mi,j=1 is symmet-

ric positive semidefinite matrix for all {xi}mi=1 ⊂ Rd.

Assume K is a continuous PDS kernel. Thus, its symmetric, and for arbitrary ρk =

1
N

∑
iw

i
kδxi , k = 1, 2 we have that∫

Ω2

K(x, y)(ρ2(x)− ρ1(x))(ρ2(y)− ρ1(y))dxdy

=
∑
i,j

K(xi, xj)(wi
2 − wi

1)(w
j
2 − w

j
1) ≥ 0,

and hence ρ 7→
∫
Ω
K(x, y)ρ(y)dy is monotone.

The discussion above shows that PDS kernels suit MFG models extremely well. Thus, we

will build various MFG models by choosing suitable PDS kernels. In this context, as we shall

see below, the basis {fi} corresponds to feature vectors.

The remarkable fact about PDS kernels is that all of them are inner products. More

precisely, K is PDS iff there exists a Hilbert space H and a mapping x 7→ f(x) ∈ H such that

K(x, y) = ⟨f(x), f(y)⟩H, ∀x, y

In other words, one can associate points {x} in the input space with vectors {f(x)} in a

Hilbert space so that K(x, y) is precisely the inner product of f(x) and f(y) in H [MRT18,

Theorem 6.8]. The vector f(x) is called the feature vector of x. If H is separable we can

write f(x) = (f1(x), f2(x), · · · , fn(x), · · · ) in some basis of H and f1(x), f2(x), · · · , fn(x), · · ·

will be the features of x. H is called a reproducing kernel Hilbert space (RKHS). For

K(x, y) = x · y =
∑
xiyi the features are simply the coordinates.

The RKHS theory blends very well with our coefficients method by providing the basis

we need in the form of feature vectors. Indeed, assume that K is a PDS kernel and H is its
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RKHS with a basis {ei}. Then, we obtain that

K(x, y) =⟨f(x), f(y)⟩H = ⟨
∑
i

fi(x)ei,
∑
i

fi(y)ei⟩H

=
∑
i,j

⟨ei, ej⟩Hfi(x)fj(y) =
∑
i,j

kijfi(x)fj(y),

which is the representation we need. In this case, K = (⟨ei, ej⟩H) is the Gram matrix

associated to the basis {ei} in H. Below, we present several common choices for K and

provide the basis {fi} and the matrix K.

2.4.1 Maximal spread

Assume that we want to enforce a maximal spread of the population by penalizing individual

agents for being close to the average position of the population. This means that an individual

agent faces an optimal control problem

inf
z(t)=x

∫ 1

0

ℓ(z(s), ż(s))−
d∑

i=1

λi

∣∣∣∣zi(s)− ∫
Ω

yiρ(y, s)dy

∣∣∣∣2 ds+ g(z(1))

= inf
z(t)=x

∫ 1

0

[
ℓ(z(s), ż(s))−

d∑
i=1

λi|zi(s)|2 + 2
d∑

i=1

λi

{∫
Ω

zi(s) · yiρ(y, s)dy
}

−
d∑

i=1

λi

∣∣∣∣∫
Ω

yiρ(y, s)dy

∣∣∣∣2
]
ds+ g(z(1))

Above, λ1, λ2, · · · , λd ≥ 0 signify how much we enforce spreading in each coordinate direction.

Additionally, ℓ(x, u) is some intrinsic running cost.

Since the term −
∑d

i=1 λi
∣∣∫

Rd yiρ(y, s)dy
∣∣2 does not depend on the trajectory z, the

problem above is equivalent to

inf
z(t)=x

∫ 1

0

ℓ(z(s), ż(s))−
d∑

i=1

λi|zi(s)|2 +
∫
Ω

{
2

d∑
i=1

λizi(s) · yi

}
ρ(y, s)dydt

+ g(z(1))
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Therefore, we obtain an MFG system (2.2.1) where

L(x, v) =ℓ(x, v)−
d∑

i=1

λi|xi|2

K(x, y) =2
d∑

i=1

λixiyi

H(x, p) = sup
v
{−p · v − L(x, v)}

The key point is that Rd is an RKHS for this K, and

K(x, y) =
d∑

i=1

fi(x)fi(y)

where fi(x) =
√
2λixi, 1 ≤ i ≤ d. Thus, we use these {fi} as the basis in our method. An

excellent feature of this choice is that we obtain K = K−1 = I which yields a trivial update

rule (2.3.4) for a that reads

ak+1
i (t) =

τa
∫
Ω
fi(x)ρ

k+1(x, t)dx+ aki (t)

τa + 1

2.4.2 Gaussian repulsion

Another common choice for PDS kernels are Gaussians

K(x, y) = µ
d∏

i=1

exp

(
−|xi − yi|

2

2σ2
i

)
,

for some µ, σ1, σ2, · · · , σd > 0. The parameter σi signifies how repulsive are the agents in i-th

coordinate direction.

As before, we will try to find a suitable expansion of K. Using the power series expansion

of ex one can show that

K(x, y) =
∑

α1,α2,··· ,αd≥0

{
√
µe

−
∑d

i=1
|xi|

2

2σ2
i

d∏
i=1

xαi
i

σαi
i

√
αi!

}
·

{
√
µe

−
∑d

i=1
|yi|

2

2σ2
i

d∏
i=1

yαi
i

σαi
i

√
αi!

}

=
∑

α1,α2,··· ,αd≥0

fα1,α2,··· ,αd
(x)fα1,α2,··· ,αd

(y),
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where

fα1,α2,··· ,αd
(x) =

√
µe

−
∑d

i=1
|xi|

2

2σ2
i

d∏
i=1

xαi
i

σαi
i

√
αi!

, α1, α2, · · · , αd ≥ 0.

Hence, we choose {fα1,α2,··· ,αd
} as the basis for our coefficients method and choose n to

approximate K with functions of order
∑d

i=1 αi ≤ n. As before, an excellent feature of this

basis is that K = K−1 = I.

Interactions in sub-regions

Methods described above also provide flexible framework to model interactions within sub-

regions. Assume that Ω1,Ω2 are complementary in Ω. Furthermore, assume that agents in

Ωi interact only with those in Ωi for i = 1, 2. There is a straightforward way of extending the

framework above to this setting.

Suppose that kernels modeling the interaction in Ω1,Ω2 are K1, K2, respectively. Addi-

tionally, assume that the basis for K1 is {f 1
i }, and the one for K2 is {f 2

i } that can be of a

different size. Thus, we want to construct K such that

K(x, y) =


Ki(x, y), (x, y) ∈ Ωi × Ωi

0, otherwise

Furthermore, we want to construct a basis for K out of {f 1
i } and {f 2

i }. These can be done

as follows:

K(x, y) =K1(x, y) · χΩ1(x)χΩ1(y) +K2(x, y) · χΩ2(x)χΩ2(y) =

=
∑
ij

k1ijf
1
i (x)f

1
j (y)χΩ1(x)χΩ1(y) +

∑
ij

k2ijf
2
i (x)f

1
j (y)χΩ2(x)χΩ2(y)

=
∑
ij

k1ijf
1
i (x)χΩ1(x)f

1
j (y)χΩ1(y) +

∑
ij

k2ijf
2
i (x)χΩ2(x)f

2
j (y)χΩ2(y),

where χA is the characteristic function of A. Therefore, the basis for K can be obtained from

the ones of K1, K2 by simply restricting them into subdomains and combining:{
f 1
i (x)χΩ1(x), f

2
i (x)χΩ2(x)

}
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Furthermore, we have that

K =

K1 0

0 K2

 , K−1 =

K−1
1 0

0 K−1
2

 ,

where Ki = (kiij), i = 1, 2. Therefore, low complexity matrices for K1, K2 yield a low

complexity matrix for K.

In case we have multiple regions Ω1,Ω2, · · · ,ΩN with kernels K1, K2, · · · , KN and bases

{f 1
i }, {f 2

i }, · · · {fN
i } we obtain a basis

{
f 1
i (x)χΩ1(x), f

2
i (x)χΩ2(x), · · · , fN

i (x)χΩN
(x)
}
,

and

K =



K1 0 · · · 0

0 K2 · · · 0
...

...
...

...

0 · · · KN−1 0

0 · · · 0 KN


, K−1 =



K−1
1 0 · · · 0

0 K−1
2 · · · 0

...
...

...
...

0 · · · K−1
N−1 0

0 · · · 0 K−1
N


,

where Ki is the matrix corresponding to Ki.

Formally, using restrictions violates the smoothness assumption on kernels and bases.

Thus, we can use smooth cutoff functions instead of characteristic ones. In practice though,

we obtain solid results with the latter choice.

2.4.3 Interactions given by differential operators

Finally, we demonstrate how our methods work for interactions given by differential operators.

In a seminal paper on numerical methods for MFG [AC10], the authors consider an interaction

term

V [ρ] = µ(I −∆)−2ρ,
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where µ > 0, ∆ is the Laplacian operator, and the problem is set on a flat torus Td. We have

that

V [ρ] =

∫
Td

Γ(x− y)ρ(y)dy,

where Γ is the fundamental solution; that is,

(I −∆)2Γ = µδ0. (2.4.1)

Thus, we have that K(x, y) = Γ(x− y). As pointed out in [NS18], for convolutions on a torus,

the appropriate basis is the trigonometric one. Thus, we need to expand Γ into Fourier series

with respect to functions {cos(2πα ·x), sin(2πα ·x)} where α = (α1, α2, · · · , αd). Furthermore,

by the symmetry we have that Γ(x) = Γ(−x). Therefore, the expansion of Γ contains only

even functions; that is,

Γ(x) =
∑
α≥0

γα cos(2πα · x)

Next, solving (2.4.1) in a Fourier space yields

γ0 = µ, γα =
2µ

1 + 8π2|α|2 + 16π4|α|4
, α > 0,

where |α|2 =
∑d

i=1 α
2
i . Furthermore, we have that

K(x, y) =Γ(x− y) =
∑
α≥0

γα cos(2πα · (x− y))

=
∑
α≥0

(
γα cos(2πα · x) cos(2πα · y) + γα sin(2πα · x) sin(2πα · y)

)
=
∑
α≥0

f cos
α (x)f cos

α (y) +
∑
α>0

f sin
α (x)f sin

α (y),

where

f cos
α (x) =

√
γα cos(2πα · x), f sin

α (x) =
√
γα sin(2πα · x), α ≥ 0.

Therefore, we choose {f cos
α , f sin

α } as the basis for our coefficients method and choose n to

approximate K with functions of order
∑d

i=1 αi ≤ n. Again, this choice renders K = K−1 = I.
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2.5 Potential applications to multi-agent trajectory planning prob-

lems

Here, we discuss potential applications of our methods to multi-agent trajectory planning

problems. To provide a self contained discussion and for the convenience of readership

unfamiliar with MFG, we start by a brief derivation of (2.1.1) and (2.2.1) that can be found

in [LL07, Car13a]. Assume that we have a swarm of agents where agent i ∈ {1, 2, · · · , N}

aims at minimizing a cost

inf
ui

∫ 1

t

L(zi(s), ui(s), s) + fi(zi(s), z−i(s))ds+ gi(zi(1), z−i(1))

s.t. żi(s) = c(zi(s), ui(s)), zi(t) = xi

(2.5.1)

Above, z−i = (zj)j ̸=i, and f, g model interactions between the agents. This problem leads to a

system of N coupled HJBs that is extremely challenging to solve, especially in high-dimensions

and for many agents.

The MFG framework provides a solution to this problem by assuming symmetric in-

teractions and considering the continuum limit N = ∞. More precisely, if we suppose

that

fi(zi, z−i) = f

(
zi,

1

N − 1

∑
j ̸=i

δzj

)
, gi(zi, z−i) = g

(
zi,

1

N − 1

∑
j ̸=i

δzj

)
,

and formally pass to the limit when N →∞ we obtain a system where a generic agent solves

an optimal control problem

ϕ(x, t) = inf
u

∫ 1

t

L(z(s), u(s), s) + f(z(s), ρ(·, s))ds+ g(z(1), ρ(·, 1))

s.t. ż(s) = c(z(s), u(s)), z(t) = x,

where ρ(·, s) is the distribution of population at time s. We have that ϕ solves the HJB

equation 
−ϕt + supu {−∇ϕ(x, t) · c(x, u)− L(x, u, t)} = f(x, ρ(x, t))

ϕ(x, 1) = g(x, ρ(x, 1)),
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and the optimal control, u∗, is given by the Pontryagin Maximum Principle:

u∗(x, t) ∈ argmaxu {−∇ϕ(x, t) · c(x, u)− L(x, u, t)}

Furthermore, ρ satisfies the continuity equation
ρt(x, t) +∇ · (ρ(x, t)c(x, u∗(x, t))) = 0

ρ(x, 0) = ρ0(x),

where ρ0 is the initial distribution of the agents. Collecting all equations together we obtain

the MFG system

−ϕt + supu {−∇ϕ · c(x, u)− L(x, u, t)} = f(x, ρ(x, t))

ρt(x, t) +∇ · (ρ(x, t)c(x, u∗(x, t))) = 0

u∗(x, t) ∈ argmaxu {−∇ϕ(x, t) · c(x, u)− L(x, u)}

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g(x, ρ(x, 1))

(2.5.2)

Remark 6. Equations (2.1.1), (2.2.1) correspond to the case c(x, u) = u, and u 7→ L(x, u)

convex, for which we have a rigorous mathematical analysis [LL07].

The appealing feature of MFG systems is that instead of solving a highly coupled system

of N HJBs in d × N dimensions we have to solve a single HJB coupled with a continuity

equation in d dimensions. More importantly, the MFG optimal control, u∗, yields near

optimal controls for the N agent problem (2.5.1).

Of course, the performance of the MFG control in (2.5.1) depends on N and gets better

as N grows. Nevertheless, it still makes sense to apply MFG controls because they are faster

to generate and provide appealing properties such as no-collision trajectories. For instance, if

c(x, u) = u, and L(x, u) = |u2|
2

+Q(x, t) for some smooth Q, one can show that trajectories

corresponding to u∗(x, t) do not intersect [Car13a, Lemma 4.13].

In the context above, our method may provide a flexible way of augmenting existing

solution methods for single-agent trajectory planning problems to generate MFG optimal

controls for multi-agent problems.
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Indeed, Theorem 2.2.2 asserts that, under the settings of Section 2.2, we have that (2.5.2)

is equivalent to the optimization problem

inf
a∈C([0,1];Rr)

⟨K−1a, a⟩
2

−
∫
Ω

ϕa(x, 0)ρ0(x)dx (2.5.3)

where ϕa solves the HJB
−ϕt + supu {−∇ϕ(x, t) · c(x, u)− L(x, u, t)} =

∑r
i=1 ai(t)fi(x)

ϕ(x, 1) = g(x),

(2.5.4)

In Section 2.3, we showed how to apply a PDHG algorithm to solve (2.5.3). Here, we argue

that virtually any HJB solver (single-agent trajectory-planner) can be augmented to solve

(2.5.3).

We propose solving (2.5.3) by some type of gradient descent on a = (ai). For that, we fix

an iterate acurrent and run any single-agent trajectory planning algorithm to solve (2.5.4) for

a = acurrent and generate an optimal control ucurrent. Then we solve the forward continuity

equation 
ρt(x, t) +∇ · (ρ(x, t)c(x, ucurrent(x, t))) = 0

ρ(x, 0) = ρ0(x),

and generate ρcurrent. Finally, we update a = (ai) by a gradient descent step using (2.2.6):

anewi (t) = acurrenti (t)− h
r∑

j=1

kija
current
j (t) + h

∫
Ω

fi(x)ρ
current(x, t)dx,

where h > 0 is the descent step-sizes.

Remark 7. Several remarks are in order.

1. Explicit gradient descent steps and exact solutions ucurrent can be replaced by implicit

(proximal) steps and approximate solutions as in the PDHG here and [NS18].

2. The approach above works for both Eulerian and Lagrangian solvers. For latter, the

terms
∫
Ω
fi(x)ρ

current(x, t) are simply averages of fi-s on the trajectories of particles

[NS18].
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3. The number of coefficients, r, does not depend on the number of agents, and we always

need to (approximately) solve one decoupled HJB at each iteration.

Finally, we observe that the methods discussed here also work the other way around; that

is, optimal control solvers can be easily adapted to solve MFG problems.

2.6 Numerical experiments

Here, we present several numerical experiments in a two-dimensional case for kernels and

bases discussed in Section 2.4.

2.6.1 The finite difference scheme and the discrete variational problem

We consider rectangular domains Ω× [0, T ] = [b1, b2]
2× [0, 1] and choose a regular space-time

grid with Nx = Nx1 ×Nx2 = 64× 64 points in space and Nt = 32 points in time.

We employ the finite difference scheme introduced in [AKK19] (see also [AC10, AKS18]).

Given Nx1 , Nx2 , Nt, we have ∆x1 = b2−b1
Nx1

, ∆x2 = b2−b1
Nx2

, ∆t = 1
Nt
. For x1 = i∆x1, x2 =
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j∆x2, tl = l∆t, define

ρli,j = ρ(xi, xj, tl) 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 0 ≤ l ≤ Nt

ml
1,i,j = (mx1(xi, xj, tl))

+ 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

ml
2,i,j = − (mx1(xi, xj, tl))

− 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

ml
3,i,j = (mx2(xi, xj, tl))

+ 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

ml
4,i,j = − (mx2(xi, xj, tl))

− 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

ϕl
i,j = ϕ(xi, xj, tl) 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

alk = ai(tl) 1 ≤ l ≤ Nt, 1 ≤ k ≤ r

fk,i,j = fk(xi, xj) 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ k ≤ r

ρ0i,j = ρ0(xi, xj) 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2

gi,j = g(xi, xj) 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2

where u+ := max(u, 0) and u− = u+ − u.

We define the first order finite difference operators

(D1u)i,j :=
ui+1,j − ui,j

∆x1
, and (D2u)i,j :=

ui,j+1 − ui,j
∆x2

[Du]i,j :=
(
(D1u)i,j , (D1u)i−1,j , (D2u)i,j , (D2u)i,j−1

)
̂[Du]i,j = ((D1u)

−
i,j ,− (D1u)

+
i−1,j , (D2u)

−
i,j ,− (D2u)

+
i,j−1

)
To satisfy the Neumann boundary condition, we set

(D1m1)
l
i−1,j =

ml
1,i,j − 0

∆x1
i = 1, 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

(D1m2)
l
i,j =

0−ml
2,i,j

∆x1
i = Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ l ≤ Nt

(D2m3)
l
i,j−1 =

ml
3,i,j − 0

∆x2
1 ≤ i ≤ Nx1 , j = 1, 1 ≤ l ≤ Nt

(D2m4)
l
i,j =

0−ml
4,i,j

∆x2
1 ≤ i ≤ Nx1 , j = Nx2 , 1 ≤ l ≤ Nt

The Fokker-Planck equation discretized with forward difference in time as follows:

1

∆t

(
ρl+1
i,j − ρli,j

)
+ (D1m)l1,i−1,j + (D1m)l1,i,j + (D2m)l3,i,j−1 + (D2m)l4,i,j = 0.
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The HJB equation is discretized with backward difference in time as follows:

− 1

∆t

(
ϕl
j − ϕl−1

j

)
+H

(
xj, [̂Dϕ]

l

i,j

)
=

r∑
k=1

ak,lfk,i,j,

With above finite difference scheme, we are ready to define the objective function of our

min-max problem L(ϕ, a, ρ,m) in discrete form:

L(ϕ, a, ρ,m) =
∆t

2

Nt∑
l=1

r∑
k1,k2=1

alk1a
l
k2
qk1k2 −∆x1∆x2

Nx1 ,Nx2∑
i,j=1

ϕl
i,jρ

0
i,j

−∆x1∆x2∆t

Nx1 ,Nx2∑
i,j=1

Nt∑
l=1

{(
ρli,j

(
ϕl+1
j − ϕl

j

)
∆t

+ml
i,j · [̂Dϕ]

l

i,j

)

+ ρli,j

(
L(x,

ml
i,j

ρli,j
) +

r∑
k=1

(
alkfk,i,j

))}
,

where (qk1k2) = K−1, ml
i,j =

[
ml

1,i,j,m
l
2,i,j,m

l
3,i,j,m

l
4,i,j

]T
.

For discretized ρ,m, a, the updates are straightforward. For ϕ, we provide details here.

For the following discretized system,(
1

τϕt

∆t +
1

τ∇ϕ

∆x

)
ϕl
i,j = ∇tρ

l,k+1
i,j +∇x ·ml,k+1

i,j +

(
1

τϕt

∆t +
1

τ∇ϕ

∆x

)
ϕl,k
i,j ,

where the ∆x,∆t,∇x,∇t are finite difference Laplace and finite-difference operators in space

and time, respectively. Next, we apply Discrete Fourier Transform (in space) to the system.

Specifically, we use Discrete Cosine Transform, due to the Neumann type boundary condition.

For each Fourier mode µ, we have the following:(
1

τϕt

∆t +
c(µ)

τ∇ϕ

)
F(ϕ)lµ = F(h)lµ,

where hli,j represents the right hand side of the previous equation and c(µ) = F(∆x)µ is the

Discrete Cosine transform of the finite difference Laplace operator. This is a tridiagonal

system that can be solved easily. Note that at the t = 0, T , the equation can be modified

accordingly. Finally, we apply an inverse cosine transform to get the ϕl,k+1
i,j at the (k + 1)th

iteration.
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For the rest of this section, we present four sets of numerical results of nonlocal MFG

models presented in section 2.4. For each example, we run the algorithm for 5, 000 iterations

using Matlab, which takes around 3 minutes.

2.6.2 Maximal spread

We consider a maximal spread model on from Section 2.4.1 in the domain Ω × [0, T ] =

[0, 1]2 × [0, 1]. We denote by ρG(c1, c2, σ
2
G) the density of a homogeneous normal distribution

centered at (c1, c2) with variance σ2
G. We set the initial-terminal conditions for our MFG

system to be

ρ0 = ρG(0.5, 0.9, 0.04
2)

g(x1, x2) = 2 exp
(
−10 (x1 − 0.5)2 − (x2 − 0.1)2

) (
(x2 − 0.1)2 − 1

)
.

Furthermore, we set

L(x, v) =
1

2
∥v∥2 + 103 (max (|x1 − 0.5|, |x2 − 0.5|))8 −

2∑
i=1

λi|xi|2

We have computed the MFG solutions for four choices of parameters

(λ1, λ2) ∈ {(0.1, 0.1), (0.1, 4), (4, 0.1), (4, 4)}

The results are shown in Figure 2.1. We can see that, in accordance to theory, larger λi

prompt larger spread in xi directions. Additionally, we see the flexibility of our method for

modeling interactions that are heterogeneous in different directions. We provide a 3 D view

of the solutions in Figure2.2.
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(a) λ1 = 0.1, λ2 = 0.1
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(b) λ1 = 0.1, λ2 = 4
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(d) λ1 = 4, λ2 = 4

Figure 2.1: Example of maximal spread. MFG solution ρ(x, t) at t = 0.1, 0.5, 0.9 with different

choices of λi along x1, x2 directions.
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Figure 2.2: The 3D view of MFG solutions ρ(x, 0.5) for different choice of λi. From left to

right : case a,b,c, and d.

2.6.3 Gaussian repulsion with static obstacles

We consider a MFG model with Gaussian repulsion from Section 2.4.2 on the domain

Ω× [0, T ] = [−1, 1]2× [0, 1]. We set the initial-terminal conditions for our MFG system to be

ρ0 = ρG(0,−0.9, 0.042)

g(x1, x2) = 2 exp
(
−5x21 − 0.25 (x2 − 0.9)2

) (
(x2 − 0.9)2 − 1

)
+ x21

We fix this g for all examples with Gaussian repulsion. Furthermore, we set

L(x, v) =
1

2
∥v∥2 +Q(x)

where Q(x) takes on extremely high values on the four rectangular regions in Figure 2.3 and

0 elsewhere. Thus, Q models four static rectangular obstacles. Finally, we choose n = 3

to approximate the Gaussian kernel in later examples. Larger n will give a more accurate

approximation of the Gaussian repulsion kernel. Here we choose n = 3 such that, when

varying the kernel parameters σ1, σ2, µ, we can observe quantitatively different behavior in

our numerical examples.

We have computed the MFG solutions for four choices of parameters

(σ1, σ2, µ) ∈ {(0.8, 0.8, 0.1), (0.2, 0.2, 5), (0.5, 0.2, 5), (0.2, 0.5, 5)}
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-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

0

5

10

15

20

25

-1 0 1

x
2

-1

0

1

x
1

(b) σ1 = 0.2, σ2 = 0.2, µ = 5
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(c) σ1 = 0.5, σ2 = 0.2, µ = 5
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Figure 2.3: Example of Gaussian repulsion with static obstacles. MFG solution ρ(x, t) at

t = 0.1, 0.5, 0.9 with different Gaussian parameters (σ1, σ2, µ), where bright yellow rectangles

represents static obstacles.
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The results are shown in Figure 2.3. As we can see, agents travel through the channels created

by Q(x) to avoid high cost. Recall that small σi yields strong repulsion in xi direction, which

results in different behavior by agents. For instance, in Figure 2.3 (C) we impose a strong

repulsion in x2 direction and see horizontally elongated density evolution.

2.6.4 Gaussian repulsion with dynamic obstacles

Next we consider a MFG model with Gaussian repulsion on Ω× [0, T ] = [−1, 1]2 × [0, 1] with

dynamic obstacles. We set

ρ0 =
1

5

5∑
j=1

ρG(cj,−0.9, 0.042), cj = −1.2 + 0.4j, 1 ≤ j ≤ 5.

To model dynamic obstacles, we set

L(t, x, v) =
1

2
∥v∥2 +Q(x, t)

where Q now represents time-dependent rectangular obstacles that move vertically. The

center of each obstacles (from left to right) are moving with position z(t) = [1.5t− 0.7, 1.5t−

0.7,−1.5t+ 0.6,−t+ 0.5] along x1 direction. The rest of the parameters are the same as in

the previous section. The results are shown in Figure 2.4. Again, values of σ1, σ2 control how

spread is the solution in x1, x2 directions.

We also note that the computational cost for the static obstacles and dynamic obstacles

models is the same.

2.6.5 Interactions in sub-regions

Next, we consider a MFG model with a Gaussian repulsion on Ω×[0, T ] = [−1, 1]2×[0, 1] where

agents interact only within domains Ω1 = {(x1, x2) : x1 ≤ 0} and Ω2 = {(x1, x2) : x1 > 0}.
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(b) σ1 = 0.2, σ2 = 0.2, µ = 5
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(c) σ1 = 0.5, σ2 = 0.2, µ = 5
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Figure 2.4: Example of Gaussian repulsion with dynamic obstacles. MFG solution ρ(x, t) at

t = 0.1, 0.5, 0.9 with different Gaussian parameters σ1, σ2, µ, where bright yellow rectangles

represent obstacles moving along x1 direction.
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This means that agents in Ωi interact only with those in Ωi. We set

ρ0 =
1

2
ρG(0.2,−0.9, 0.12) +

1

2
ρG(−0.2,−0.9, 0.12)

g(x1, x2) = −4 exp
(
−5
(
x1 − 0.0)2 − 2.5(x2 − 0.5)2

))
The rest of the parameters are the same as for previous examples with Gaussian repulsion.

We apply the basis modification explained in Section 2.4.2 to compute the solution. The
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(a) Kernel with sub-region interactions.
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(b) Kernel with global interactions.

Figure 2.5: Example of sub-region interactions. MFG solution ρ(x, t) at t = 0.1, 0.5, 0.9 for sub-

region and global interactions kernels. Parameters are set as follows: σ1 = σ2 = 0.2, µ = 5.

results are shown in Figure 2.5 where we have also included the solution with same data but

full interaction. In both cases, densities spread before concentrating at the desired location.

However, in the sub-region interaction case, Figure 2.5 (A), there is a concentration of agents

along the common boundary of Ω1,Ω2. The reason is that agents on different sides of this

boundary do not interact with each other, so they do not mind congestion.
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2.6.6 Differential-operator interactions

Throughout this section, we set V = µ(I −∆)−2, µ > 0 and Ω = Td. In [AC10], the authors

solve a stationary MFG system
H(x,∇ϕ) = V [ρ] + λ

−∇ · (ρ∇pH(x,∇ϕ)) = 0∫
ρ = 1, ρ ≥ 0, λ ∈ R

(2.6.1)

by approximating it with its second-order version
−σ∆ϕ+H(x,∇ϕ) = V [ρ] + λ

−σ∆ρ−∇ · (ρ∇pH(x,∇ϕ)) = 0∫
ρ = 1, ρ ≥ 0, λ ∈ R

for small σ > 0. Here, we recover the results in [AC10] using our method. Since we consider

first-order time-dependent systems instead of second-order stationary ones, we apply a

different approximation procedure for (2.6.1).

To approximate (2.6.1) we use the long-time convergence, or the turnpike property, of

MFG systems discussed in [Car13b]. More precisely, we approximate (2.6.1) by
−ψt +H(x,∇ψ) = V [ν]

νt −∇ · (ν∇pH(x,∇ψ)) = 0

ν(x, 0) = ρ0(x), ψ(x, T ) = g(x)

(2.6.2)

where ρ0 ∈ L∞(Td), g ∈ C2(Td) and T > 0 is large. To formulate the convergence results,

we need to scale the time variable in (2.6.2) and obtain a problem on a time-interval [0, 1].

For that, we write ψ(x, t) = ϕ(x, t
T
), ν(x, t) = ρ(x, t

T
), and (2.6.2) becomes

−ϕt + T ·H(x,∇ϕ) = TV [ρ]

ρt −∇ ·
(
ρ∇p(T ·H(x,∇ϕ))

)
= 0

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g(x)

(2.6.3)
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Furthermore, a triple (ϕ̄, ρ̄, λ̄) is solution of (2.6.1) if ϕ̄ is a Lipschitz viscosity solution of the

HJB in (2.6.1), ϕ̄ is differentiable ρ̄ a.e., and the continuity equation in (2.6.1) is satisfied in

the sense of distributions. We summarize the results from [Car13b] in the following theorem.

We omit assumptions and technicalities and refer to the original paper for details.

Theorem 2.6.1 ([Car13b]). Under suitable assumptions,

1. system (2.6.1) has at least one solution. Moreover, if (ϕ̄1, ρ̄1, λ̄1) and (ϕ̄2, ρ̄2, λ̄2) are

solutions, then λ̄1 = λ̄2, and V [ρ̄1] = V [ρ̄2].

2. for a solution (ϕ̄, ρ̄, λ̄) of (2.6.1) one has that

sup
t∈[0,1]

∥∥∥∥ϕT (·, t)
T

− λ̄(1− t)
∥∥∥∥
L∞(Td)

≤ C

T
1
2

,

and ∫ 1

0

∥V [ρT (·, t)]− V [ρ̄]∥L∞(Td)dt ≤
C

T
1
2

,

where (ϕT , ρT ) is the solution of (2.6.3).

Therefore, to approximate solutions of (2.6.1) we need to solve (2.6.3). We take H(x, p) =

|p|2
2
−Q(x) where Q is a smooth periodic function. In this case, one can easily verify that

assumptions in [Car13b] are fulfilled.

As mentioned in the theorem above, a solution ϕ̄ in (2.6.1) is not necessarily unique even

up to constants, whereas λ̄ and V [ρ̄] are. However, for V = µ(I − ∆)−2 the uniqueness

of V [ρ̄] implies that of ρ̄. Furthermore, lim
T→∞

∥V [ρT (·, t)] − V [ρ̂]∥L∞(Td) = 0 implies a weak

convergence ρT (·, t) ⇀ ρ̄. Hence Theorem 2.6.1 guarantees that for a large set of times

t ∈ [0, 1] the solution ρT (·, t) of (2.6.3) converges weakly to a well defined limit ρ̄.

As in [AC10] we take d = 2, µ = 200, and

Q(x1, x2) = − sin(2πx2)− sin(2πx1)− cos(4πx1)

We approximate V as in Section 2.4.3 using trigonometric polynomials up to order n = 2.

Additionally, we set T = 10, ρ0(x) = 1, g(x) = 0 . The results are shown in Figure 2.6
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where we plot ρT (x, t). We also plot ϕT (x, t)−
∫
Td ϕT (y, t)dy to test whether it approximates

a solution ϕ̄ of (2.6.1). Latter holds for second-order problems but not the first-order ones.

As we can see, we obtain accurate reconstructions of Tests 5, 6 in [AC10]. Our solutions

are slightly less diffused because we consider first-order equations as opposed to second-order

ones in [AC10]. Additionally, we use H(x, p) = |p|2
2
−Q(x) whereas the examples in [AC10]

are computed for H(x, p) = |p| 32 −Q(x). Nevertheless, we believe that qualitative properties

and shapes of the solutions do not alter much due to this difference.

Figure 2.6: The contours and graphs of ϕT (x, t)−
∫
Td ϕT (y, t)dy and ρT (x, t) for T = 10 and

t = 0.4.
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CHAPTER 3

Splitting Methods for a Class of Non-potential

Mean-field Games

We extend the methods from Chapter1 to a class of non-potential mean-field game (MFG)

systems with mixed couplings. Up to now, splitting methods have been applied to potential

MFG systems that can be cast as convex-concave saddle-point problems. Here, we show

that a class of non-potential MFG can be cast as primal-dual pairs of monotone inclusions

and solved via extensions of convex optimization algorithms such as the primal-dual hybrid

gradient algorithm. A critical feature of our approach is in considering dual variables of

nonlocal couplings in Fourier or feature spaces.

This chapter is organized as follows. In Section3.1, we review computational methods for

potential mean-field games and introduce a class of non-potential MFGs with mixed couplings

in form of 3.1.1. In Section 3.2, we present our approach and derive the monotone-inclusion

formulation of (3.1.1) with formal derivations. In Section 3.3, we propose a primal-dual

algorithm based on this formulation. Furthermore, in Section 2.4, we consider a concrete

class of non-potential models with density constraints. Finally, in Section 3.5, we provide

numerical examples.

The contributions in this chapter were first presented in the joint work with Levon

Nurbekyan in [LN21].
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3.1 Introduction

Our goal is to develop computational methods for the mean-field games (MFG) systems of

the form
−ϕt +H(t, x,∇ϕ) = f0(t, x, ρ(x, t)) + f1

(
t, x,

∫
Ω
K(x, y)ρ(y, t)dy

)
ρt −∇ · (ρ∇pH(t, x,∇ϕ(x, t))) = 0

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g0(x, ρ(x, 1)) + g1
(
x,
∫
Ω
S(x, y)ρ(y, 1)dy

) (3.1.1)

This system characterizes Nash equilibria of a differential game with a continuum of agents.

For a detailed introduction and description of these models we refer to seminal papers

[LL06a, LL06b, LL07, HMC06, HCM07], manuscripts [GLL11, Car13a, GS14], and references

therein.

In (3.1.1), x ∈ Ω represents the state of a generic agent, and t ∈ [0, 1] represents the time.

We assume that Ω ⊂ Rd is a smooth bounded domain. Furthermore, ϕ is the value function of

a generic agent, ρ is the distribution of the agents in the state-space, H is the Hamiltonian of

a single agent, and f0, f1, g0, g1 are the terms that model interactions between a single agent

and the population. These interactions can be either local, f0, g0 terms, or nonlocal, f1, g1

terms. In the latter case, one needs to assemble information across the whole population

using interaction kernels K,S. More specifically, K(x, y), S(x, y) signify how agents located

at y affect the decision-making of an agent at x. Finally, we impose a no-flux condition on

the boundary

ν(x) · (ρ∇pH (t, x,∇ϕ(x, t))) = 0 (t, x) ∈ [0, 1]× ∂Ω, (3.1.2)

where ν(x) is the outer normal to ∂Ω at x. This assumption ensures that agents do not leave

Ω. Throughout the chapter, we assume (3.1.2) and often do not write it explicitly.

Computational methods for (3.1.1) can be roughly divided into two groups. The first

group of methods applies to a specific class of MFG systems that are called potential and

can be cast as convex-concave saddle-point problems. In this case, (3.1.1) can be efficiently
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solved via splitting methods such as alternating direction method of multipliers (ADMM)

[BC15a, BCS17] and primal-dual hybrid gradient (PDHG) algorithm [AKS18, AKK19]. These

methods are mostly applicable to systems with only local couplings because only a limited

class of problems with nonlocal ones are potential: see Section 1.2 in [CH17].

The second group of methods are general purpose and do not rely on a specific structure

of (3.1.1). We refer to [AC10, Ach13, ACC13] for finite-difference, [CS12, CS14, CS15, CS18]

for semi-Lagrangian, [AFG17, GS21] for monotone flow, and [CH17, Had17, HS19] for game-

theoretic learning methods.

Systems considered in Chapter 1([NS18, LJL21]) have only nonlocal interactions and are

potential. Here, we extend these results to systems of the form (3.1.1) that are non-potential

in general and contain both local and nonlocal interactions. Our method relies on a monotone-

inclusion formulation of (3.1.1) where inputs from different interaction terms are split via

dual variables. In this context, our approach is analogous to [BC13] where the authors find

Nash equilibria for non-potential games with finitely many players. A critical feature of our

method is that dual variables corresponding to nonlocal terms are set up in Fourier spaces.

We list a number of advantages of our method. Firstly, the Fourier approach yields a

dimension reduction: see Chapter 1 Section 2.3.3 for a detailed discussion. Secondly, any

number of local and nonlocal interactions can be added to the system bearing minimal and

straightforward changes on the algorithm. Furthermore, the algorithm is highly modular and

parallelizable. Indeed, the updates of dual variables corresponding to different interactions

are decoupled. Finally, the monotone inclusion formulation readily provides the convergence

guarantees for the algorithm.

Here, we do not concentrate on theoretical aspects of (3.1.1) and our derivations are

mostly formal. For purely nonlocal interactions; that is, f0, g0 = 0, existence and uniqueness

of suitable weak solutions was established in [LL07] (see also [Car13a, Car13b]). For purely

local interactions; that is, f1 = g1 = 0, we refer to [GM18] for a detailed exposition on the

subject and higher-order regularity of solutions. To the best of our knowledge, the regularity
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theory for (3.1.1) in the presence of both local and nonlocal interactions is not explicitly

discussed in the literature. However, nonlocal terms in (3.1.1) are regularizing and separated

from local ones. In this context, (3.1.1) can be considered as a smooth perturbation of purely

local system with an analogous regularity theory. For an analysis of second order problems

with mixed and not necessarily separated interactions we refer to [FGT21]. See Remark 10

for further comments.

3.2 MFG via monotone inclusions

We solve (3.1.1) in two steps. Firstly, we approximate (3.1.1) by a lower-dimensional system

via orthogonal projections of nonlocal terms. Next, we formulate the lower-dimensional

system as a monotone inclusion problem.

Assume that {ζi}ri=1 ⊂ C2(Ω) is an orthonormal system with respect to the L2(Ω)

inner product. Then the system of functions {ζi ⊗ ζj}ri,j=1 is also orthonormal, where

ζi ⊗ ζj(x, y) = ζi(x)ζj(y). Furthermore, denote by Pr and Pr,r the orthogonal projection

operators in L2(Ω) and L2(Ω2) onto span{ζi}ri=1 and span{ζi ⊗ ζj}ri,j=1, respectively. Now

consider the following approximation of (3.1.1)
−ϕt +H(t, x,∇ϕ) = f0(t, x, ρ(x, t)) + Pr

(
f1
(
t, ·,
∫
Ω
Kr(·, y)ρ(y, t)dy

))
(x),

ρt −∇ · (ρ∇pH(t, x,∇ϕ(x, t))) = 0,

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g0(x, ρ(x, 1)) + Pr

(
g1
(
·,
∫
Ω
Sr(·, y)ρ(y, 1)dy

))
(x),

(3.2.1)

where Kr = Pr,r(K), Sr = Pr,r(S). For smooth K,S, f1, g1 and a suitable choice of {ζi}ri=1,

solutions of (3.2.1) approximate those of (3.1.1): see Remark 12. Furthermore, we solve

(3.2.1) by the coefficients method proposed in [Nur18, NS18, LJL21]. The key observation is
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that for any ρ we a priori have that

Pr

(
f1

(
t, ·,
∫
Ω

Kr(·, y)ρ(y, t)dy
))

(x) =
r∑

i=1

ai(t)ζi(x)

Pr

(
g1

(
·,
∫
Ω

Sr(·, y)ρ(y, 1)dy
))

(x) =
r∑

i=1

biζi(x),

where

ai(t) =

∫
Ω

f1

(
t, x,

∫
Ω

Kr(x, y)ρ(y, t)dy

)
ζi(x)dx,

bi =

∫
Ω

g1

(
x,

∫
Ω

Sr(x, y)ρ(y, 1)dy

)
ζi(x)dx.

Therefore, introducing variables

α(x, t) = f0(t, x, ρ(x, t)), β(x) = g0(x, ρ(x, 1)), m(x, t) = −ρ∇pH(t, x,∇ϕ),

we obtain that (3.2.1) is equivalent to
−ϕt +H(t, x,∇ϕ) = α(x, t) +

∑r
i=1 ai(t)ζi(x),

m(x, t) = −ρ∇pH(t, x,∇ϕ),

ρ(x, 0) = ρ0(x), ϕ(x, 1) = β(x) +
∑r

i=1 biζi(x),

(3.2.2)

supplemented with compatibility conditions

ai(t) =
∫
Ω
f1
(
t, x,

∫
Ω
Pr,r(K)(x, y)ρ(y, t)dy

)
ζi(x)dx, ∀i

bi =
∫
Ω
g1
(
x,
∫
Ω
Pr,r(S)(x, y)ρ(y, 1)dy

)
ζi(x)dx, ∀i

α(x, t) = f0(t, x, ρ(x, t))

β(x) = g0(x, ρ(x, 1))

ρt(t, x) +∇ ·m(t, x) = 0

m(t, x) · ν(x) = 0, x ∈ ∂Ω

(3.2.3)

Thus, our goal is to formulate (3.2.2)-(3.2.3) as a monotone inclusion problem. For that,

we start by casting (3.2.2) as a convex duality relation between variables (a, b, α, β, ϕ) and
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(ρ,m). We omit the domains in the notation of Lebesgue and Sobolev spaces when there is

no ambiguity. Recall that

L(t, x, v) = sup
p
−v · p−H(t, x, p)

is the convex dual of H. The indicator function of a convex set A is defined as

1A(x) :=


0 if x ∈ A

+∞ if x /∈ A

We assume that p 7→ H(t, x, p) is convex and lower-semicontinuous. For detailed assumptions

on H for various instances of (3.1.1) we refer to [Car13b, GM18].

Proposition 1. For (a, b, α, β, ϕ) ∈ L2
t × l2 × L2

x,t × L2
x ×H1

x,t define

Ψ(a, b, α, β, ϕ) = inf
ρ,m

Ξ(ρ,m) +

∫ 1

0

∫
Ω

(
α(x, t) +

r∑
i=1

ai(t)ζi(x)

)
ρ(x, t)dxdt

+

∫
Ω

(
β(x) +

r∑
i=1

biζi(x)

)
ρ(x, 1)dx

+

∫ 1

0

∫
Ω

ϕtρ+∇ϕ ·mdxdt−
∫
Ω

ϕ(x, 1)ρ(x, 1)dx

+

∫
Ω

ϕ(x, 0)ρ(x, 0)dx,

(3.2.4)

where

Ξ(ρ,m) =

∫ 1

0

∫
Ω

ρL

(
t, x,

m

ρ

)
dxdt+ 1ρ(x,0)=ρ0(x)(ρ) + 1ρ≥0(ρ) + 1m<<ρ(ρ,m)

Then (ϕ, ρ) satisfy (3.2.2) if and only if (ρ,m) is a solution of the optimization problem in

(3.2.4). Furthermore,

Ψ(a, b, α, β, ϕ) = −Ξ∗ (C(a, b, α, β, ϕ)) ,

where

C(a, b, α, β, ϕ) =


−
∑

i ai(t)ζi(x)− α(x, t)− ϕt

−∇ϕ

−ϕ(x, 0)

−
∑

i biζi(x)− β(x) + ϕ(x, 1)

 , (3.2.5)
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and Ξ∗ is the convex dual of Ξ; that is,

Ξ∗(ρ̂, m̂, ρ̂(·, 0), ρ̂(·, 1)) = sup
ρ,m

∫ 1

0

∫
Ω

ρ̂ρ+ m̂ ·mdxdt+
∫
Ω

ρ̂(x, 0)ρ(x, 0)dx

+

∫
Ω

ρ̂(x, 1)ρ(x, 1)dx− Ξ(ρ,m).

In particular, (ρ,m) is a solution of the optimization problem (3.2.4) if and only if

C(a, b, α, β, ϕ) ∈ ∂Ξ(ρ,m), or (ρ,m) ∈ ∂Ξ∗ (C(a, b, α, β, ϕ))

Proof. Calculating the first variation with respect to ρ,m in (3.2.4), we obtain
L
(
t, x, m

ρ

)
− m

ρ
∇vL

(
t, x, m

ρ

)
+ α(x, t) +

∑r
i=1 ai(t)ζi(x) + ϕt = 0

∇vL
(
t, x, m

ρ

)
+∇ϕ = 0

β(x) +
∑r

i=1 biζi(x)− ϕ(x, 1) = 0

Additionally, ρ(x, 0) = ρ0(x) as Ξ(ρ,m) <∞. From the properties of the Legendre transform,

we obtain that 
m
ρ
= −∇pH(t, x,∇ϕ)

H(t, x,∇ϕ) = m
ρ
∇vL

(
t, x, m

ρ

)
− L

(
t, x, m

ρ

)
which yields (3.2.2). Rest of the proof readily follows from the convex duality relation between

Ξ and Ξ∗.

Next step is to find a map M such that the relation (3.2.3) can be written as

− (C∗(ρ,m, ρ(·, 0), ρ(·, 1))) ∈M(a, b, α, β, ϕ),

where C∗ is the adjoint operator of C, and M is a maximally monotone map. We have that

Kr(x, y) =
r∑

p,q=1

kpqζp(x)ζq(y), kpq =

∫
Ω2

K(x, y)ζp(x)ζq(y)dxdy,

Sr(x, y) =
r∑

p,q=1

spqζp(x)ζq(y), spq =

∫
Ω2

S(x, y)ζp(x)ζq(y)dxdy,
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and we denote by K = (kpq), S = (spq). Without loss of generality, we assume that K, S are

invertible.

Additionally, assume that f0(t, x, ·), g0(x, ·), f1(t, x, ·), g1(x, ·) are increasing. This as-

sumption means that agents are crowd averse that leads to a well posed system (3.1.1) [LL07].

Furthermore, denote by

U0(ρ) =

∫ 1

0

∫
Ω

F0(t, x, ρ(x, t))dxdt, V0(µ) =

∫
Ω

G0(x, µ(x))dx

U1(c) =

∫ 1

0

∫
Ω

F1

(
t, x,

∑
p

cp(t)ζp(x)

)
dxdt, V1(w) =

∫
Ω

G1

(
x,
∑
p

wpζp(x)

)
dx,

(3.2.6)

where ∂z♢i(t, x, z) = ♢i for ♢ ∈ {f, g} and i ∈ {0, 1}. Then we have that Ui, Vi are convex,

and we can consider their dual functions

U∗
1 (a) = sup

c

∫ 1

0

∑
p

ap(t)cp(t)dt− U1(c), V ∗
1 (b) = sup

w
b · w − V1(w),

U∗
0 (α) = sup

ρ

∫ 1

0

∫
Ω

αρdxdt− U0(ρ), V ∗
0 (β) = sup

µ

∫
Ω

βµdx− V0(µ).

Proposition 2. Assume that C is defined as in (3.2.5). Then we have that

C∗(ρ,m, ρ(·, 0), ρ(·, 1)) =



(−
∫
Ω
ρ(x, t)ζi(x)dx)i

(−
∫
Ω
ρ(x, 1)ζi(x)dx)i

−ρ(x, t)

−ρ(x, 1)

−L−1(ρt +∇ ·m, m · ν, 0, 0)


, (3.2.7)

where L =
(
∆t,x, ∂ν⌊[0,1]×∂Ω, (Id−∂t) ⌊Ω×{0}, (Id+∂t) ⌊Ω×{1}

)
. Furthermore, (3.2.3) is equiva-

lent to

− (C∗(ρ,m, ρ(·, 0), ρ(·, 1))) ∈M(a, b, α, β, ϕ), (3.2.8)
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where

M(a, b, α, β, ϕ) =



K−1 ∂aU
∗
1 (a)

S−1 ∂bV
∗
1 (b)

∂αU
∗
0 (α)

∂βV
∗
0 (β)

0


Proof. The components of C∗ corresponding to variables a, b, α, β are straightforward to

calculate as they are in L2 spaces. As for the component corresponding to ϕ, we have to find

h = h(ρ,m) such that for all ϕ one has that

⟨h, ϕ⟩H1 =−
∫ 1

0

∫
Ω

ϕtρ+∇ϕ ·mdxdt+
∫
Ω

ϕ(x, 1)ρ(x, 1)dx−
∫
Ω

ϕ(x, 0)ρ(x, 0)dx

=

∫ 1

0

∫
Ω

ϕ (ρt +∇ ·m) dxdt−
∫ 1

0

∫
∂Ω

ϕ m · ν dxdt

We have that

⟨h, ϕ⟩H1 =

∫
Ω

ϕ(x, 0)h(x, 0)dx+

∫
Ω

ϕ(x, 1)h(x, 1)dx+

∫ 1

0

∫
Ω

∇t,xϕ · ∇t,xhdxdt

=−
∫ 1

0

∫
Ω

ϕ∆t,xhdxdt+

∫ 1

0

∫
∂Ω

ϕ ∂νh dxdt

+

∫
Ω

ϕ(x, 1) (h(x, 1) + ht(x, 1)) dx+

∫
Ω

ϕ(x, 0) (h(x, 0)− ht(x, 0)) dx

Therefore h must satisfy the conditions

∆t,xh = − (ρt +∇ ·m)

∂νh = −m · ν

h(x, 0)− ht(x, 0) = 0

h(x, 1) + ht(x, 1) = 0

(3.2.9)

and we obtain (3.2.7). Next, we prove (3.2.8). We have that

U∗
0 (α) =

∫ 1

0

∫
Ω

F ∗
0 (t, x, α(x, t))dxdt, ∂αU

∗
0 (α(x, t)) = ∂αF

∗
0 (t, x, α(x, t)),
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where F ∗
0 (t, x, α) = supρ αρ − F0(t, x, ρ). Therefore, the α-entry inclusion in (3.2.8) is

equivalent to

ρ(x, t) ∈ ∂αF ∗
0 (t, x, α(x, t))⇐⇒ α(x, t) ∈ ∂ρF0(t, x, ρ) = f0(t, x, ρ)

Similarly, the β-entry inclusion is equivalent to

ρ(x, 1) ∈ ∂αG∗
0(x, β(x))⇐⇒ β(x) ∈ ∂ρG0(x, ρ(x, 1)) = g0(x, ρ(x, 1))

Next, the ϕ-entry inclusion means that h = 0 in (3.2.9) that is equivalent to

ρt +∇ ·m = 0

The a-entry inclusion in (3.2.8) is(∫
Ω

ρ(x, t)ζi(x)dx

)r

i=1

∈ K−1∂aU
∗
1 (a)⇐⇒ K

(∫
Ω

ρ(x, t)ζi(x)dx

)r

i=1

∈ ∂aU∗
1 (a)

Applying the properties of the Legendre transform again, we obtain that this previous

inclusion is equivalent to

a ∈ ∂cU1

(
K

(∫
Ω

ρ(x, t)ζi(x)

)r

i=1

)
(3.2.10)

On the other hand, we have that

∂ciU1(c) =

∫ 1

0

∫
Ω

f1

(
t, x,

r∑
p=1

cp(t)ζp(x)

)
ζi(x)dxdt

and therefore

∂ciU1 (K (ρ(x, t)ζi(x))
r
i=1)

=

∫ 1

0

∫
Ω

f1

(
t, x,

r∑
p=1

r∑
q=1

kpq

∫
Ω

ρ(y, t)ζq(y)dyζp(x)

)
ζi(x)dxdt

=

∫ 1

0

∫
Ω

f1

(
t, x,

∫
Ω

Kr(x, y)ρ(y, t)dy

)
ζi(x)dxdt

Hence, (3.2.10) is equivalent to the first equation in (3.2.3). The derivation for the b-entry in

(3.2.8) is similar.
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Remark 8. The inverse Laplacian operator appears in C∗ because we consider ϕ as an

element of H1 space rather than L2. As an inner product in H1 we set

⟨ϕ, h⟩H1 =

∫
Ω

ϕ(x, 0)h(x, 0)dx+

∫
Ω

ϕ(x, 1)h(x, 1)dx+

∫ 1

0

∫
Ω

∇t,xϕ · ∇t,xhdxdt

where we slightly abuse notation by using dx for the surface measure of ∂Ω. As pointed out in

[JLL19, JL20], the choice of spaces is crucial for grid-independent convergence of primal-dual

algorithms. We come back to this point below when we discuss the algorithms: Remark 13.

Combining Propositions 1, 2 we obtain the following theorem.

Theorem 3.2.1. The pair of systems (3.2.2)-(3.2.3), and so (3.2.1), can be written as a

primal-dual pair of inclusions

0 ∈M(a, b, α, β, ϕ) + C∗(N(C(a, b, α, β, ϕ))) (P)
(ρ,m, ρ(·, 0), ρ(·, 1)) ∈ N(C(a, b, α, β, ϕ))

−C∗(ρ,m, ρ(·, 0), ρ(·, 1)) ∈M(a, b, α, β, ϕ)

(D)
(3.2.11)

where N = ∂Ξ∗. Furthermore, if c 7→ ∂cU1(Kc) and w 7→ ∂wV1(Sw) are maximally monotone,

then M is maximally monotone, and (3.2.11) is a primal-dual pair of monotone inclusions.

Proof. The equivalence of (3.2.11) and (3.2.2)-(3.2.3) is simply a combination of assertions

in Propositions 1 and 2. Furthermore, assume that c 7→ ∂cU1(Kc) and w 7→ ∂wV1(Sw) are

maximally monotone. We have that

(∂cU1 (Kc))
−1 = K−1∂aU

∗
1 (a), (∂wV1 (Sw))

−1 = S−1∂bV
∗
1 (b)

Therefore a 7→ K−1∂aU
∗
1 (a) and b 7→ S−1∂bV

∗
1 (b) are maximally monotone. Next, α 7→

∂αU
∗
0 (α) and β 7→ ∂βV

∗
0 (β) are maximally monotone by the convexity of U∗

0 , V
∗
0 . Hence, M

is maximally monotone.

Remark 9. The monotonicity of c 7→ ∂cU1(Kc) and w 7→ ∂wV1(Sw) yields that the mean-field

coupling in (3.2.1) satisfies the Lasry-Lions monotonicity condition [LL07, Theorems 2.4,

2.5], and hence (3.2.1) is well-posed.
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Remark 10. Throughout the chapter, we embed a, b, α, β, ϕ, ρ,m in suitable Hilbert spaces.

In general, (3.2.1) and (3.1.1) do not admit smooth solutions, and a suitable notion of a weak

solution is necessary. Thus, a natural question arises whether (3.2.11) admits solutions in

these Hilbert spaces and can be regarded as a weak formulation of (3.2.1). This question is a

subject of our subsequent work, and we do not address it here. Nevertheless, we provide some

comments on possible methods and expected results below.

When (3.2.1) has only nonlocal smoothing interactions; that is, f0, g0 = 0, and f1, g1, K, S, ζi ∈

C2, one can prove that (3.2.1) admit weak solutions (ϕ, ρ) ∈ W 1,∞ × L∞ if ρ0 ∈ L∞

[LL07, Car13b]. Here, weak solutions are understood in the viscosity sense for ϕ and

distributional sense for ρ. In this case, we solutions of (3.2.1) and (3.2.11) coincide [NS18,

Theorem 3.1].

In the presence of local interactions, the theory of weak solutions is more peculiar and

depends on the growth of p 7→ H(t, x, p), ρ 7→ f0(t, x, ρ), ρ 7→ g0(t, x, ρ) and the variational

structure of the problem. Typically, one obtains suitably defined weak solutions (ϕ, ρ) ∈

W 1,q × Lr for some q, r related to these previous growth rates. We refer to [GM18, GMS19]

for a thorough discussion on the topic. In this case, rigorous connections between (3.2.11) and

weak solutions of (3.2.1) is an interesting question remaining to be understood. For related

analyses of monotone inclusions methods for non-potential MFG systems see [FG18, FGT21].

Remark 11. On the discrete level, there is no obstruction to Hilbert-space embedding caused

by the lack of regularity, which is then relevant for the convergence-rate analysis of the discrete

solution to the continuous one. In this context, the choice of Hilbert spaces corresponds to

metric chosen for discrete variables which can affect the convergence rate of primal-dual

algorithms: see Remarks 8, 13 and [JLL19, JL20]. Rigorous analysis of discrete versions of

(3.2.1), (3.2.11) and their convergence to continuous counterparts is a subject of our future

studies.

Remark 12. Another important question is whether solutions of (3.2.1), and consequently

of (3.2.11), converge to those of (3.1.1). This question reduces to the stability of solutions
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under smooth, C2, perturbations of the nonlocal smoothing coupling. In the absence of local

interactions, solutions are indeed stable under such perturbations: see [Car13a, Section 4.3]

and the discussion in [NS18, Sections 2, 4]. As before, systems that involve local interactions

remain to be analyzed. Nevertheless, stability results in [CGP15, Section 6] and the fact that

perturbations are only in the nonlocal smoothing terms suggest that solutions will be stable.

3.3 A monotone primal-dual algorithm

We apply the monotone primal-dual algorithm in [V 13] to solve (3.2.11) (and thus (3.2.1)).

We start by an abstract discussion of the algorithm. Following [V 13], assume that H,G

are real Hilbert spaces, M : H → 2H, N : G → 2G are maximally monotone operators, and

C : H → G is a nonzero bounded linear operator. Furthermore, consider the following pair of

monotone inclusion problems

find s s.t. 0 ∈Ms+ C∗(N(Cs)) (P)

find q s.t. q ∈ N(Cs), − C∗q ∈Ms, for some s (D)
(3.3.1)

When M = ∂f , N = ∂g (3.3.1) reduces to a convex-concave saddle-point problem

inf
s
f(s) + g(Cs) = inf

s
sup
q
f(s) + ⟨Cs, q⟩ − g∗(q)

Accordingly, one can solve (3.3.1) by a monotone-inclusion version of the celebrated primal-

dual hybrid gradient (PDHG) method [CP11, CP16]. In its simplest form, the algorithm in

[V 13] reads as follows 
sn+1 = JτsM(sn − τsC∗qn)

s̃n+1 = 2sn+1 − sn

qn+1 = JτqN−1(qn + τqCs̃
n+1),

(3.3.2)

where JτF = (I + τF )−1 is the resolvent operator, and τs, τq > 0 are such that τsτq∥C∥2 < 1.

Note that when M = ∂f , N = ∂g (3.3.2) reduces to the standard PDHG [CP11, CP16].
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3.3.1 A primal-dual algorithm

Applying (3.3.2) to (3.2.11) we obtain the following algorithm to solve the MFG system

(3.2.1):

(an+1, bn+1, αn+1, βn+1, ϕn+1)

= JτM

(
(an, bn, αn, βn, ϕn)− τC∗(ρn,mn, ρn(·, 0), ρn(·, 1))

)
(ãn+1, b̃n+1, α̃n+1, β̃n+1, ϕ̃n+1)

= 2(an+1, bn+1, αn+1, βn+1, ϕn+1)− (an, bn, αn, βn, ϕn)

(ρn+1,mn+1, ρn+1(·, 0), ρn+1(·, 1))

= Jσ∂Ξ

(
(ρn,mn, ρn(·, 0), ρn(·, 1)) + σC(ãn+1, b̃n+1, α̃n+1, β̃n+1, ϕ̃n+1)

)
(3.3.3)

Remark 13. The time-steps in (3.3.3) must satisfy the condition τσ∥C∥2 < 1. Note that

|⟨C(a, b, α, β, ϕ), (ρ,m, ρ(·, 0), ρ(·, 1))⟩| ≤
(
∥a∥L2

t
+ ∥b∥2 + ∥α∥L2

x,t
+ ∥β∥L2

x
+ ∥ϕ∥H1

)
(
∥ρ∥L2

x,t
+ ∥m∥L2

x,t
+ ∥ρ(·, 0)∥L2

x
+ ∥ρ(·, 1)∥L2

x

)
Therefore, ∥C∥ is finite, and independent of the grid-size.

The updates for (a, b, α, β, ϕ). Note that the updates for a, b, α, β, ϕ are decoupled. Indeed,

(3.3.3) yields

an(t) + τ
(∫

Ω
ρn(x, t)ζi(x)dx

)
i
∈ an+1(t) + τK−1∂aU

∗
1 (a

n+1(t))

bn + τ
(∫

Ω
ρn(x, 1)ζi(x)dx

)
i
∈ bn+1 + τS−1∂bV

∗
1 (b

n+1)

αn(x, t) + τρn(x, t) ∈ αn+1(x, t) + τ∂αU
∗
0 (α

n+1(x, t))

βn(x) + τρn(x, 1) ∈ βn+1(x) + τ∂βV
∗
0 (β

n+1(x))

ϕn(x, t) + τL−1(ρnt +∇ ·mn, 0, 0) = ϕn+1(x, t)

To update a, we need to solve an r× r system for every fixed t. Next, to update b we need to

solve an r × r system. Once r is fixed the sizes of these systems do not depend on the mesh.
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Next, we observe that

U∗
0 (α) =

∫ 1

0

∫
Ω

F ∗
0 (t, x, α(x, t))dxdt, ∂αU

∗
0 (α(x, t)) = ∂αF

∗
0 (t, x, α(x, t)),

V ∗
0 (β) =

∫
Ω

G∗
0(x, β(x))dx, ∂βV

∗
0 (β(x)) = ∂βG

∗
0(x, β(x)),

where

F ∗
0 (t, x, α) = sup

ρ
αρ− F0(t, x, ρ), G∗

0(x, β) = sup
ρ
βρ−G0(x, ρ).

Therefore, the updates for α, β correspond to decoupled one-dimensional proximal steps; that

is, 
αn+1(x, t) ∈ argminα F

∗
0 (t, x, α) +

|α−αn(x,t)−τρn(x,t)|2
2τ

βn+1 ∈ argminβ G
∗
0(x, β) +

|β−βn(x)−τρn(x,1)|2
2τ

Therefore, the updates for α, β can be efficiently performed in parallel yielding linear-in-grid

computational cost. Finally, recalling the definition of L, we obtain that to update ϕ we need

to solve a space-time elliptic equation
∆t,xϕ = ∆t,xϕ

n + τ(ρnt +∇ ·mn)

ϕ(x, 0)− ϕt(x, 0) = ϕn(x, 0)− ϕn
t (x, 0)

ϕ(x, 1) + ϕt(x, 1) = ϕn(x, 1) + ϕn
t (x, 1)

This step can be efficiently performed via Fast Fourier Transform (FFT).

The updates for (ρ,m). The resolvent operator Jσ∂Ξ is the proximal operator proxσΞ.
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Therefore, (ρ,m) updates reduce to an optimization problem

inf
ρ,m

∫ 1

0

∫
Ω

ρL

(
t, x,

m

ρ

)
dxdt+ 1ρ(x,0)=ρ0(x) + 1ρ≥0 + 1m<<ρ

+
1

2σ

∫
Ω

(
ρ(x, 0)− ρn(x, 0) + σϕ̃n+1(x, 0)

)2
dx

+
1

2σ

∫
Ω

(
ρ(x, 1)− ρn(x, 1) + σ

∑
i

b̃n+1
i ζi(x) + σβ̃n+1(x)− σϕ̃n+1(x, 1)

)2

dx

+
1

2σ

∫ 1

0

∫
Ω

(
ρ(x, t)− ρn(x, t) + σ

∑
i

ãn+1(t)ζi(x) + σα̃n+1(x, t) + σϕ̃n+1
t (x, t)

)2

dxdt

+
1

2σ

∫ 1

0

∫
Ω

∣∣∣m(x, t)−mn(x, t) + σ∇ϕ̃n+1(x, t)
∣∣∣2 dxdt

Again, we obtain decoupled one-dimensional optimization problems

(ρn+1(x, t),mn+1(x, t)) ∈ argmin
ρ,m

ρL
(
t, x, m

ρ

)
+ 1ρ≥0 + 1m<<ρ

+
|ρ−ρn(x,t)+σ

∑
i ã

n+1(t)ζi(x)+σα̃n+1(x,t)+σϕ̃n+1
t (x,t)|2

2σ

+
|m−mn(x,t)+σ∇ϕ̃n+1(x,t)|2

2σ

ρn+1(x, 0) ∈ argmin
ρ

1ρ=ρ0(x) +
|ρ−ρn(x,0)+σϕ̃n+1(x,0)|2

2σ

ρn+1(x, 1) ∈ argmin
ρ

|ρ−ρn(x,1)+σ
∑

i b̃
n+1
i ζi(x)+σβ̃n+1(x)−σϕ̃n+1(x,1)|2

2σ
+ 1ρ≥0

3.4 A class of non-potential MFG with density constraints

Here discuss an instance of (3.1.1) that is non-potential and incorporates pointwise density

constraints for the agents. We illustrate that our method handles mixed couplings in an

efficient manner. Assume that

f1(t, x, z) =z, f0(t, x, z) = ∂z1h(x,t)≤z≤h̄(x,t)

g1(x, z) =0, g0(x, z) = ∂z1e(x)≤z≤ē(x) + g(x)

Functions h, h̄ ≥ 0 and e, ē ≥ 0 are density constraints; that is, the solution to the MFG

problem must satisfy the hard constraints h(x, t) ≤ ρ(x, t) ≤ h̄(x, t), (x, t) ∈ Ω× (0, 1) and

e(x) ≤ ρ(x, 1) ≤ ē(x), x ∈ Ω. Next, g is a terminal cost function.
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Remark 14. We can model static and dynamic obstacles in this framework. Indeed, assume

that Ωt ⊂ Ω is a dynamic obstacle and set h(x, t) = h̄(x, t) = χΩt(x). Then the hard constraint

h(x, t) ≤ ρ(x, t) ≤ h̄(x, t) is equivalent to suppρ(·, t) ∩ Ωt = ∅, which means that there are

no agents in Ωt. One can also use the lower bounds on ρ to maintain a minimal fraction of

agents at specific locations.

From (3.2.6), we obtain

U1(c) =

∫ 1

0

∫
Ω

(∑r
j=1 cj(t)ζj(x)

)2
2

dxdt =
1

2

∫ 1

0

r∑
j=1

c2j(t)dt

U0(ρ) =

∫ 1

0

∫
Ω

1h(x,t)≤ρ(x,t)≤h̄(x,t)dxdt

V0(µ) =

∫
Ω

1e(x)≤µ(x)≤ē(x) + g(x)µ(x)dx

Note that we do not need V1 and b since g1 = 0. Furthermore, the dual functions are

U∗
1 (a) =

1

2

∫ 1

0

r∑
j=1

a2j(t)dt,

U∗
0 (α) =

∫ 1

0

∫
Ω

max
{
α(x, t)h(x, t), α(x, t)h̄(x, t)

}
dxdt

V ∗
0 (β) =

∫
Ω

max {(β(x)− g(x)) e(x), (β(x)− g(x)) ē(x)} dx
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Accordingly, the algorithm (3.3.3) reduces to

an+1 = (I+ τK−1)
−1
(
an + τ (ρn(x, t)ζj(x))j

)
αn+1(x, t) = min

{
max

{
0, αn(x, t) + τρn(x, t)− τ h̄(x, t)

}
, αn(x, t) + τρn(x, t)− τh(x, t)

}
βn+1(x) = min {max {g(x), βn(x) + τρn(x, 1)− τ ē(x)} , βn(x) + τρn(x, 1)− τe(x)}

∆t,xϕ
n+1 = ∆t,xϕ

n + τ(ρnt +∇ ·mn)

ϕn+1(x, 0)− ϕn+1
t (x, 0) = ϕn(x, 0)− ϕn

t (x, 0)

ϕn+1(x, 1) + ϕn+1
t (x, 1) = ϕn(x, 1) + ϕn

t (x, 1)(
ãn+1, α̃n+1, β̃n+1, ϕ̃n+1

)
= 2 (an+1, αn+1, βn+1, ϕn+1)− (an, αn, βn, ϕn)

(ρn+1(x, t),mn+1(x, t)) ∈ argmin
ρ,m

ρL
(
t, x, m

ρ

)
+ 1ρ≥0 + 1m<<ρ

+
|ρ−ρn(x,t)+σ

∑
i ã

n+1(t)ζi(x)+σα̃n+1
1 (x,t)+σα̃n+1

2 (x,t)+σϕ̃n+1
t (x,t)|2

2σ

+
|m−mn(x,t)+σ∇ϕ̃n+1(x,t)|2

2σ

ρn+1(x, 0) = ρ0(x)

ρn+1(x, 1) = max{ρn(x, 1)− σβ̃n+1(x) + σϕ̃n+1(x, 1), 0}

We have that K = (kpq) where kpq =
∫
Ω2 K(x, y)ζp(x)ζq(y)dxdy. Therefore, K may

not be symmetric if K is not. In this case, (3.1.1) is non-potential. Nevertheless, if K is

monotone then such is K, and our methods apply. Below we discuss a class of non-symmetric

interactions that are monotone but non-symmetric. For δ−, δ+ > 0 consider

γδ−,δ+(x) = e
− x2

2δ2−χx<0 + e
− x2

2δ2+χx≥0, x ∈ R

The cosine transform of γ is∫
R
cos (2iπζx) γ(x)dx =

√
π

2

(
δ−e

−2π2ζ2δ2− + δ+e
−2π2ζ2δ2+

)
> 0, ζ ∈ R.

Therefore, K(x, y) = γ(y − x) is a monotone kernel. Therefore, for δ−, δ+ ∈ Rd
+

Kδ−,δ+(x, y) =
d∏

i=1

γδi,−,δi,+(yi − xi)
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is a monotone kernel. Furthermore, for any non-singular linear transformation Q we have that

Kδ−,δ+(Q
−1x,Q−1y) is a monotone kernel. Therefore, for a basis ν = {ν1, ν2, · · · , νd} ⊂ Rd

we have that

Kν,δ−,δ+(x, y) = Kδ−,δ+(Q
−1x,Q−1y) =

d∏
i=1

γδi,−,δi,+(y
′
i − x′i) (3.4.1)

is a monotone kernel, where Q = (ν1 ν2 · · · νd) is the coordinates transformation matrix and

x′ = Q−1x are the coordinates in ν.

Kernels in (3.4.1) model interactions that have different strengths of repulsion along lines

parallel to νi. Moreover, these interactions are not symmetric as they depend on the sign

of y′i − x′i that tells us whether y is in the front or back of x relative to νi. We can think of

crowd motion models where people mostly pay attention to the crowd in front of them.

3.5 Numerical experiments

In this section, we present three sets of numerical examples for MFG with mixed couplings

using Algorithm (3.3.3). In these MFG systems, we have the running cost L(t, x, v) = |v|2
2

which leads to

ρL

(
t, x,

m

ρ

)
=



|m|2
2ρ

if ρ > 0

0 if (ρ,m) = (0, 0)

+∞ otherwise.

We take Ω × [0, T ] = [−1, 1]2 × [0, 1], with a uniform space-grid Nx = 64 and a uniform

time-grid Nt = 32 in all examples. The finite difference scheme follows [AC10]. As for the

orthonormal system, we use the Legendre polynomials and set the number of coefficients

r = 152 to get a suitable approximation of the kernel. Figure 3.1 shows the quality of

approximated kernels.
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Figure 3.1: Plot of approximated kernels for example 5.1 case B. From left to right: approxi-

mated kernel with r = 52; approximated kernel with r = 152; the exact kernel.

3.5.1 Density Splitting with Asymmetric Kernel

We consider a MFG problem where the density splits into 8 parts at final time. For this

non-potential MFG with density constraints (3.5.3), we set

ρ0(x) = N ([0, 0], 0.12)

g(x) =
1

2

8∑
j=1

(
1− exp

(
20∥x− xj∥2

))
, where xj = 0.75

[
sin

2πj

8
, cos

2πj

8

]
ē(x) = 4,

where N (x, σG) is the density of a homogeneous normal distribution centered at x with

variance σ2
G. As for the Gaussian type Kernel K(x, y) in (3.4.1), we choose the three following

set-up:

• Case A, symmetric kernel

K(x, y) = 4 exp

(
−∥x− y∥

2

2δ2

)
δ = δi,− = δi,+ = 0.1 for i = 1, 2
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• Case B, asymmetric kernel

K(x, y) = 4γδ−,δ(x1 − y1)γδ,δ(x2 − y2)

δ = 0.1, δ− = 0.4.

• Case C, asymmetric kernel (coordination transform)

K(x, y) = 4 exp

(
−(x− y)TQ(x− y)

2δ2

)

Q =

 1
δ2

c
δ2

c
δ2

1
δ2

 , c = 0.95, δ = 0.2

The results are shown in Figure 3.2. As we can see nonlocal kernel affect how the density

moves and have different final distributions. In case A, a symmetric kernel leads to an even

splitting of the initial density. Comparing case A and B, we see that the large δ1,− causes

density to favor a motion towards x1,− direction. As a result, the final density has more

concentration in x1,− domain. As for a comparison between A and C, we see that agents in

case C have a preference to move along x1 = x2 direction, which is consistent with the shape

of the kernel K(x, 0).

3.5.2 Static Obstacles Modeled with Density Constraint

Here we provide a MFG problem where the the density moves while avoiding the obstacles,

which is modeled using density constraint. We also include a small local interaction term in

this example:

f0(t, x, z) = ∂z1h(x,t)≤z≤h̄(x,t) + ϵ log z, ϵ = 0.01,

h̄(x, t) = 0, ē(x) = 0 for x ∈ Ωobs,

K(x, y) = 4γδ−,δ(x1 − y1)γδ,δ(x2 − y2), δ = 0.1, δ− = 0.4

As for the initial-terminal conditions, we have

ρ0(x) =
1

2
N ([−0.8, 0.5], 0.12) + 1

2
N ([−0.8, 0.5], 0.12)

g(x) = x21 + (x2 − 0.85)2 − 2e−10(x2−0.75)2 .

68



-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Symmetric kernel

-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

-1 0 1

x
2

-1

0

1

x
1

0

0.5

1

1.5

2

2.5

3

3.5

4
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(c) Asymmetric kernel (coordination transform)

Figure 3.2: MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for density splitting examples.
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Under above setup, we consider the following 2 cases: case A, h̄(x, t) = 20; case B, h̄(x, t) = 10

for all (x, t), x /∈ Ωobs.
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(a) h̄(x, t) = 20
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(b) h̄(x, t) = 10

Figure 3.3: MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for static obstacles examples, where the ob-

stacle (yellow) is located at Ωobs = {∥x− [0, 0.2]∥2 ≤ 0.152}∪ {|x1| ≥ 0.1, |x2 + 0.15| ≤ 0.05}

The numerical results are shown in Figure 3.3. As we see the density moves from left to

the right and avoids both the rectangle and round obstacles. It avoids the round obstacles

via an uneven splitting, which is caused by the asymmetric kernel. Comparing Case A and B,

we see that the density constraint make the agents spread more. We present 3D plots of final

density distribution for both cases in Figure 3.4
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Figure 3.4: 3D plots of example 5.2. From left to right: initial density distribution; final

density distribution for Case A; final density distribution for Case B

3.5.3 Dynamic Obstacles Modeled with Density constraint

In the last example, we model an Optimal-Transport-like problem with dynamic obstacles

via density constraint. Our mean field game system is as follows:

K(x, y) = exp

(
−∥x− y∥

2

2δ2

)
, δ = 0.1

ρ0(x) =
5∑

j=1

1

5
N (xj, 0.1

2), for xj = [−0.9 + 0.3j,−0.85]

g(x) = x21 + 5|x2 − 0.85|1.5.

We use the density constraint h̄(x, t) to model 4 rectangles moving vertically. As for the density

constraint at final time, we choose e(x) to be exactly a density distribution. Specifically,

e(x) = ce, for ∥x− xj∥ ≤ 0.08, for xj = [−0.9 + 0.3j, 0.85], j = 1...5,

where ce is a constant that normalized e(x). This setup is equivalent to specifying the final

density distribution ρ(x, 1) = e(x). This is case A that is shown in Figure 3.5.

We also relax the density constraint at t = 1, by setting

e(x) =
1

2
ce, for ∥x− xj∥ ≤ 0.08, for xj = [−0.9 + 0.3j, 0.85], j = 1...5.
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2ce

Figure 3.5: MFG solution ρ(x, 0.3), ρ(x, 0.6), ρ(x, 1) for dynamic obstacles examples.
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That is, we decrease the lower bound of ρ(x, 1) by half. This is Case B shown in Figure 3.5.

As we can see, unlike case A, the agents do not completely fill the support of e(x). The

aspect of modeling dynamic obstacles also works well as agents avoid the prohibited regions.

3.5.4 Acceleration of PDHG

To accelerate the convergence of PDHG, we have modified the algorithm following the idea

of balance residual and the adaptive PDHG from [GLY13]. To show the improvement, we

conduct the following experiment. We initiate a pair of stepsizes (τ0, σ0) that guarantee

the convergence of the algorithm. During the PDHG iteration, we update the step sizes

by (τk, σk) according to Algorithm 2 in [GLY13]. We obtain faster convergence in terms of

primal-dual residuals pk, dk as defined in [GLY13]. In Table 3.1, we present the number of

iterations required to satisfy the stopping criteria pk, dk < ϵ. We run examples for a set of

(τ0, σ0) values and report the best number of iterations achieved. We see that the adaptive

PDHG shows better performance than the PDHG with constant stepsizes.

Table 3.1: Comparison of adaptive PDHG and PDHG

ϵ 1.00e-3 1.00e-4 1.00e-5 1.00e-6 1.00e-7

PDHG 393 955 3030 9108 >2e4

adaptive PDHG 295 701 2033 6200 17842
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CHAPTER 4

Controlling Propagation of Epidemics via Mean-field

Controls

In this chapter, we focus on modeling perspective of mean field controls. We introduce a

mean-field control model in controlling the propagation of epidemics on a spatial domain.

The control variable, the spatial velocity, is first introduced for the classical disease models,

such as the SIR model. For this proposed model, we provide fast numerical algorithms based

on proximal primal-dual methods. Numerical experiments demonstrate that the proposed

model illustrates how to separate infected patients in a spatial domain effectively.

This chapter is organized as follows. We review studies on epidemic models, especially

recent ones on COVID-19 in Section 4.1. In Section 4.2, we introduce the mean field control

model for propagation of epidemics. We introduce a primal-dual hybrid gradient algorithm

for this model in Section 4.3. In Section 4.4, several numerical examples are demonstrated.

We discuss some potential directions in Section 4.5.

The contributions in this chapter were presented in the joint work with Wonjun Lee,

Hamidou Tembine, Wuchen Li, and Stanley Osher in[LLT21].

4.1 Introduction

The outbreak of COVID-19 epidemic has resulted in over millions of confirmed cases and

hundred thousands of deaths globally. It has a huge impact on global economy as well

as everyone’s daily life. There has been a lot of interest in modeling the dynamics and
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propagation of the epidemic. One of the well-known and basic models in epidemiology is the

SIR model proposed by Kermack and McKendrick [KM27] in 1927. Here, S, I, R represent

the number of susceptible, infected and recovered people respectively. They use an ODE

system to describe the transmission dynamics of infectious diseases among the population.

As the propagation of COVID-19 has significant spatial characteristic, actions such as travel

restrictions, physical distancing and self-quarantine are taken to slow down the spread of

the epidemic. It is important to have a spatial-type SIR model to study the spread of the

infectious disease and movement of individuals [Ken65, Kal84, HI95].

Since the epidemic has affected the society and individuals significantly, mean-field controls

(MFC) provide a perspective to study and understand the underlying population dynamics.

In this chapter, we combine the above ideas of spatial SIR model and MFG. In other

words, we introduce a mean-field control model for controlling the virus spreading within a

spatial domain. Here the goal is to minimize the number of infectious agents and the amount

of movement of the population. In short, we formalize the following constrained optimization

problem

inf
(ρi,vi)i∈{S,I,R}

E(ρI(T, ·)) +
∫ T

0

∫
Ω

∑
i∈{S,I,R}

αi

2
ρi∥vi∥2 +

c

2
(ρS + ρI + ρR)

2dxdt

subject to 

∂tρS +∇ · (ρSvS) + βρSρI −
η2S
2
∆ρS = 0

∂tρI +∇ · (ρIvI)− βρSρI + γρI −
η2I
2
∆ρI = 0

∂tρR +∇ · (ρRvR)− γρI −
η2R
2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

Here ρi represents population density and vi describes the movement, with i ∈ {S, I, R}

corresponding to the susceptible, infected and recovered compartmental state or class. We

consider the spatial SIR model with nonlocal spreading modeled by an integration kernel K

representing the physical distancing and a spatial diffusion of population, and set it as dynamic
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to our mean-field control problem, which is the constraint to the minimization problem. The

minimization objective include both the movement and the congestion of the population.

The kinetic energy terms describes the situation that, if population (the susceptible, infected

or recovered) needs to be moved to alleviate local medical shortage, there is a cost behind it.

The congestion term models the fact that government don’t want the population gets too

concentrated in one place. This might increase the risk of disease outbreaks and their faster

and wider spread. Note that Kendall [Ken65] introduced this kernel for modeling pandemic

dynamics and took the nonlocal exposure to infectious agents into consideration. Due to

the multiplicative nature of the interaction term between susceptible and infectious agents

βρSρI , the mean-field control problem is a non-convex problem. With Lagrange multipliers,

we formalize the mean-field control problem as an unconstrained optimization problem. Fast

numerical algorithms are designed to solve the non-convex optimization problem in 2D with

G− prox preconditioning [JLL19].

In the literature, spatial SIR models in the form of a nonlinear integro-differential [Aro77,

Die79, Thi77] and reaction-diffusion system [Kal84, HI95] have been studied. Traveling

waves are studied to understand the propagation of various type of epidemics, such as

Lyme disease, measles etc, and recently, COVID-19 [CGC02, GBK01, WW10, BRR20]. In

[BRR20], they introduce a SIRT model to study the effects of the presence of a road on

the spatial propagation of the epidemic. For surveys, see [Mur01, Rua07]. As for numerical

modelling of epidemic model concerning spatial effect, finite-difference methods are used

to discretize the reaction-diffusion system and solve the spatial SIR model and its various

extensions [CC10, JC14, FH16]. Epidemic models have been treated using optimal control

theory, with major control measures on medicare (vaccination) [SS78, LES18, JKL20]. In

[JKL20], a feedback control problem of SIR model is studied to help determine the vaccine

policy, with the goal to minimize the number of infected people. In [LZM19], they introduce

a nonlinear SIQS epidemic model on complex networks and study the optimal quarantine

control. Compared to previous works, our model is the first to consider an optimal control
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problem for SIR on a spatial domain. In particular, we formulate velocity fields among S, I,

R, populations as control variables.

4.2 Models

In this section, we briefly review the classical epidemics models, e.g. SIR dynamics. We then

introduce a mean field control model for SIR dynamics on a spatial domain. We derive a

system to find the minimizer of the proposed model.

4.2.1 Review

We first review the classical SIR model.

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI

where S, I,R : [0, T ]→ [0, 1] represent the proportion of the susceptible population, infected

population, and recovered population, respectively, given time t. The nonnegative constants

β and γ represent the rates of susceptible becoming infected and infected becoming recovered.

SIR has an interpretation in terms of stochastic processes of agent-based models. The

SIR model can be obtained as a motion of the law of a three-state Markov chain with the

transition from S to I and I to R. The simplicity of this model allows people to predict an

infectious disease epidemic by only estimating a few parameters. However, it has limitations

by assuming the population is homogeneous-mixing, which means that every individual has

an equal probability of disease-causing contact. As a result, the predictions will lack spatial

information and may not help the (local) governments make policies or relocate medical

resources. Therefore, we are motivated to study the spatial SIR model. On the other hand,

the SIR model does not consider the latent period between when a person is exposed to
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a disease and when they become infected. This leads to the extension of the SIR model,

such as the SEIR model. Our proposed model has a flexible structure and can naturally be

generalized to such epidemiological models.

4.2.2 Spatial SIR variational problem

We then consider the spatial dimension of the S, I, R functions. Let Ω ⊂ Rd be a bounded

domain. Consider the following functions

ρS, ρI , ρR : [0, T ]× Ω→ R+, (i ∈ {S, I, R})

Here, ρS, ρI , and ρR represent susceptible, infected, and recovered populations, respectively.

We assume ρi for each i ∈ {S, I, R} moves on a spatial domain with velocities vi. We can

describe these movements by continuity equations.

∂tρS +∇ · (ρSvS) + βρSρI −
η2S
2
∆ρS = 0

∂tρI +∇ · (ρIvI)− βρSρI + γρI −
η2I
2
∆ρI = 0

∂tρR +∇ · (ρRvR)− γρI −
η2R
2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

(4.2.1)

where vi : [0, T ]×Ω→ Rd (i ∈ {S, I, R}) are vector fields that represent the velocity fields for

ρi (i ∈ {S, I, R}) and nonnegative constants ηi (i ∈ {S, I, R}) are coefficients representing for

viscosity terms. In addition, we will assume zero flux conditions by the Neumann boundary

conditions. These systems of continuity equations satisfy the following equality:

∂

∂t

∫
Ω

ρS(t, x) + ρI(t, x) + ρR(t, x)dx = 0,

i.e., the total mass of the populations will be conserved for all time.

Lastly, we introduce the proposed mean field control models. Consider the following
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variational problem:

inf
(ρi,vi)i∈{S,I,R}

E(ρI(T, ·)) +
∫ T

0

∫
Ω

∑
i∈{S,I,R}

αi

2
ρi∥vi∥2 +

c

2
(ρS + ρI + ρR)

2dxdt

subject to (4.2.1) with fixed initial densities.

Here E is a convex functional and αi (i ∈ {S, I, R}) and c are nonnegative constants.

The minimizers of the above variational problem will provide the optimal movements for

each population while minimizing the terminal cost functional with respect to the infected

population ρI . The last term in the running cost, c
2
(ρS + ρI + ρR)

2, penalizes congestion of

the total population.

We note that the function (ρi, vi) 7→ ρi∥vi∥2 is not convex. By introducing new variables

mi := ρivi, we convert the cost function to be convex.

min
ρi,vi

P (ρi,mi)i∈{S,I,R}

subject to 

∂tρS +∇ ·mS + βρSρI −
η2S
2
∆ρS = 0

∂tρI +∇ ·mI − βρSρI + γρI −
η2I
2
∆ρI = 0

∂tρR +∇ ·mR − γρI −
η2R
2
∆ρR = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) are given.

Here

P (ρi,mi)i∈{S,I,R} =E(ρI(T, ·)) +
∫ T

0

∫
Ω

F (ρi,mi)i∈{S,I,R}dxdt

F (ρi,mi)i∈{S,I,R} =
αS∥mS∥2

2ρS
+
αI∥mI∥2

2ρI
+
αR∥mR∥2

2ρR
+
c

2
(ρS + ρI + ρR)

2.

From an optimization viewpoint, we note that the minimization problem is not a convex

problem since the coupling terms, βρSρI , in constraints make the feasible set nonconvex. To

regularize the nonconvex coupling term βρSρI , we replace products by convolutions.

min
(ρi,vi)i∈{S,I,R}

P (ρi,mi)i∈{S,I,R}
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subject to

∂tρS(t, x) +∇ ·mS(t, x) + βρS(t, x)

∫
Ω

K(x, y)ρI(t, y)dy −
η2S
2
∆ρS(t, x) = 0

∂tρI(t, x) +∇ ·mI(t, x)− βρI(x)
∫
Ω

K(x, y)ρS(t, y)dy + γρI(t, x)−
η2I
2
∆ρI(t, x) = 0

∂tρR(t, x) +∇ ·mR(t, x)− γρI(t, x)−
η2R
2
∆ρR(t, x) = 0

ρS(0, ·), ρI(0, ·), ρR(0, ·) given.

Here K(x, y) is a symmetric positive definite kernel representing the physical distancing

between a susceptible agent located at position x and infectious agent at position y, and∫
Ω
K(x, y)ρI(t, y)dy is the exposure of a susceptible located at x to infectious agents. Here,

we focus on a Gaussian kernel

K(x, y) =
1√
(2π)d

d∏
k=1

1

σk
exp

(
−|xk − yk|

2

2σ2
k

)
.

In modeling, the variance σ of Gaussian kernel can be viewed as a parameter for modeling

the spatial spreading effect of virus.

Remark 15. The formulation is not limited to the SIR model. It can be used to solve any

types of spatial epidemiological models.

4.2.3 Properties

We next derive the mean field game system, i.e. the minimizer system associated with spatial

SIR variational problem (4.2.3).

Define the Lagrangian functional

L((ρi,mi, ϕi)i∈{S,I,R})

=P (ρi,mi)i∈{S,I,R} −
∫ T

0

∫
Ω

∑
i∈{S,I,R}

ϕi

(
∂tρi +∇ ·mi −

η2i
2
∆ρi

)
dxdt

+

∫ T

0

∫
Ω

βϕIρIK ∗ ρS − βϕSρSK ∗ ρI + γρI(ϕR − ϕI)dxdt.

80



Using this Lagrangian functional, we convert the minimization problem into a saddle problem.

inf
(ρi,mi)i∈{S,I,R}

sup
(ϕi)i∈{S,I,R}

L((ρi,mi, ϕi)i∈{S,I,R}). (4.2.4)

Because of the nonconvex functional (ρS, ρI) 7→ ρSρI , the feasible set here is nonconvex.

Thus, we cannot guarantee that the dual gap is zero for this problem. Swapping infimum

and supremum will only provide us a lower bound for the minimization problem. Here we

hope that we can gain good information from the bound.

inf
(ρi,mi)i∈{S,I,R}

sup
(ϕi)i∈{S,I,R}

L((ρi,mi, ϕi)i∈{S,I,R}) ≥ sup
ϕi

inf
(ρi,mi)i∈{S,I,R}

L((ρi,mi, ϕi)i∈{S,I,R}).

The following propositions are the properties of the saddle point problem derived from

optimality conditions (Karush-Kuhn-Tucker (KKT) conditions).

Proposition 3 (Mean field game SIR system). By KKT conditions, the saddle problem

(4.2.4) satisfies the following equations.

∂tϕS −
αS

2
|∇ϕS|2 +

η2S
2
∆ϕS + c(ρS + ρI + ρR) + β (K ∗ (ϕIρI)− ϕSK ∗ ρI) = 0

∂tϕI −
αI

2
|∇ϕI |2 +

η2I
2
∆ϕI + c(ρS + ρI + ρR)

+ β (ϕIK ∗ ρS −K ∗ (ϕSρS)) + γρ(ϕR − ϕI) = 0

∂tϕR −
αR

2
|∇ϕR|2 +

η2R
2
∆ϕR + c(ρS + ρI + ρR) = 0

∂tρS −
1

αS

∇ · (ρS∇ϕS) + βρSK ∗ ρI −
η2S
2
∆ρS = 0

∂tρI −
1

αI

∇ · (ρ∇ϕI)− βρIK ∗ ρS + γρI −
η2I
2
∆ρI = 0

∂tρR −
1

αR

∇ · (ρ∇ϕR)− γρI −
η2R
2
∆ρR = 0.

(4.2.5)

where ρS(0, ·), ρI(0, ·), ρR(0, ·) are given and

ϕI(T, x) = δE(ρI(T, x)).
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Proof. Via integration by parts, we reformulate the Lagrangian function (4.2.4) as follows.

L((ρi,mi, ϕi)i∈{S,I,R})

=E(ρI(T, ·)) +
∫ T

0

∫
Ω

βϕIρIK ∗ ρS − βϕSρSK ∗ ρI + γρI(ϕR − ϕI)dxdt

+
∑

i∈{S,I,R}

∫ T

0

∫
Ω

αi∥mi∥2

2ρi
+ ρi∂tϕi +mi · ∇ϕi +

η2i
2
ρi∆ϕi +

c

2
(ρS + ρI + ρR)

2dxdt

+
∑

i∈{S,I,R}

∫
Ω

ρi(0, x)ϕi(0, x)− ρi(T, x)ϕi(T, x)dx

Let the differential of Lagrangian with respect to ρi, mi, ϕi (i ∈ {S, I, R}), ρI(T, ·), equal to

zero. We have 

δ

δρi
L = 0

δ

δmi

L = 0

δ

δϕi

L = 0.

Hence −∇ϕi = αi
mi

ρi
. And we derive the result.

We note that dynamical system (4.2.5) models the optimal vector field strategies for S,I,R

populations. It combines both strategies from mean field games and SIR models. For this

reason, we call (4.2.5) Mean field game SIR system.

4.3 Algorithm

In this section, we implement optimization methods to solve the proposed SIR variational

problems. Specifically, we use G-Prox Primal Dual Hybrid Gradient (G-Prox PDHG) method

[JLL19]. This is a variation of Chambolle-Pock primal-dual algorithm [CP11, CP16].
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4.3.1 Review of primal-dual algorithms

The PDHG method solves the minimization problem

min
x
f(Ax) + g(x)

by converting it into a saddle point problem

min
x

sup
y
{L(x, y) := ⟨Ax, y⟩+ g(x)− f ∗(y)} .

Here, f and g are convex functions with respect to a variable x, A is a continuous linear

operator, and

f ∗(y) = sup
x
x · y − f(x)

is a Legendre transform of f . For each iteration, the algorithm finds the minimizer x∗

by gradient descent method and the maximizer y∗ by gradient ascent method. Thus, the

minimizer and maximizer are calculated by iterating
xk+1 = argminx L(x, y

k) + 1
2τ
∥x− xk∥2

yk+1 = argmaxy L(x
k+1, y) + 1

2σ
∥y − yk∥2

where τ and σ are step sizes for the algorithm.

Here G-Prox PDHG is a modified version of PDHG that solves the minimization problem

by choosing the most appropriate norms for updating x and y. Choosing the appropriate

norms allows us to choose larger step sizes. Hence, we get a faster convergence rate. In

details, 
xk+1 = argminx L(x, y

k) + 1
2τ
∥x− xk∥2H

yk+1 = argmaxy L(x
k+1, y) + 1

2σ
∥y − yk∥2G

where H and G are some Hilbert spaces with the inner product

(u1, u2)G = (Au1, Au2)H.
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In particular, we use G-Prox PDHG to solve the minimization problem (4.2.3) by setting

x = (ρS, ρI , ρR,mS,mI ,mR), g(x) = F (ρi,mi)i∈{S,I,R}, f(Ax) =


0 if Ax = (0, 0, γρI)

∞ otherwise.

Ax = (∂tρS +∇ ·mS −
η2

2
∆ρS + βρSK ∗ ρI ,

∂tρI +∇ ·mI −
η2

2
∆ρI − βρIK ∗ ρS + γρI ,

∂tρR +∇ ·mR −
η2

2
∆ρR).

Note that the operator A is not linear. In the implementation, we approximate the operator

with the following linear operator

Ax ≈ (∂tρS +∇ ·mS −
η2

2
∆ρS + βρS,

∂tρI +∇ ·mI −
η2

2
∆ρI + (γ − β)ρI ,

∂tρR +∇ ·mR −
η2

2
∆ρR).

4.3.2 G-Prox PDHG on SIR variational problem

In this section, we implement G-Prox PDHG to solve the saddle problem (4.2.4). For

i ∈ {S, I, R},

ρ
(k+1)
i = argmin

ρ
L(ρ,m(k)

i , ϕ
(k)
i ) +

1

2τi
∥ρ− ρ(k)i ∥2L2

m
(k+1)
i = argmin

m
L(ρ(k+1),m, ϕ

(k)
i ) +

1

2τi
∥m−m(k)

i ∥2L2

ϕ
(k+ 1

2
)

i = argmax
ϕ
L(ρ(k+1),m

(k+1)
i , ϕ)− 1

2σi
∥ϕ− ϕ(k)

i ∥2H2

ϕ
(k+1)
i = 2ϕ

(k+ 1
2
)

i − ϕ(k)
i

where τi, σi (i ∈ {S, I, R}) are step sizes for the algorithm and by G-Prox PDHG, L2 norm

and H2 norm are defined as

∥u∥L2 =

∫ T

0

∫
Ω

u(t, x)2dxdt
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∥u∥H2 =

∫ T

0

∫
Ω

(∂tu)
2 + ∥∇u∥2 + η4

4
(∆u)2dxdt

for any u : [0, T ]× Ω→ [0, 1].

By formulating these optimality conditions, we can find explicit formulas for each variable.

ρ
(k+1)
S = root+

(
τS

1 + cτS

(
∂tϕ

(k)
S +

η2S
2
∆ϕ

(k)
S −

1

τS
ρ
(k)
S + β

(
K ∗ (ϕ(k)

I ρ
(k)
I )− ϕ(k)

S K ∗ ρ(k)I

)
+ c(ρI + ρR)

)
, 0,−τSαS(m

(k)
S )2

2(1 + cτS)

)

ρ
(k+1)
I = root+

(
τI

1 + cτI

(
∂tϕ

(k)
I +

η2I
2
∆ϕ

(k)
I −

1

τI
ρ
(k)
I + β

(
ϕ
(k)
I K ∗ ρ(k)S −K ∗ (ϕ

(k)
S ρ

(k)
S )
)

+ γ(ϕR − ϕI) + c(ρS + ρR)

)
, 0,−τIαI(m

(k)
I )2

2(1 + cτI)

)

ρ
(k+1)
R = root+

(
τR

1 + cτR

(
∂tϕ

(k)
R +

η2R
2
∆ϕ

(k)
R −

1

τR
ρ
(k)
R + c(ρS + ρI)

)
, 0,−τRαR(m

(k)
R )2

2(1 + cτR)

)

m
(k+1)
i =

ρ
(k+1)
i

ταi + ρ
(k+1)
i

(
m

(k)
i − τ∇ϕ

(k)
i

)
, (i ∈ {S, I, R})

ϕ
(k+1)
S = ϕ

(k)
S + σS(A

T
SAS)

−1

(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I +

η2S
2
∆ρ

(k+1)
S

)

ϕ
(k+ 1

2
)

I = ϕ
(k)
I + σI(A

T
I AI)

−1

(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
I K ∗ ρ(k+1)

S

− γρ(k+1)
I +

η2I
2
∆ρ

(k+1)
I

)

ϕ
(k+ 1

2
)

R = ϕ
(k)
R + σR(A

T
RAR)

−1

(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I +

η2R
2
∆ρ

(k+1)
R

)
where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx+ c = 0 and

AT
SAS = −∂tt +

η4S
4
∆2 − (1 + 2βηS)∆ + β2

AT
I AI = −∂tt +

η4I
4
∆2 − (1 + 2(γ − β)ηS)∆ + (γ − β)2

AT
RAR = −∂tt +

η4R
4
∆2 −∆.
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We use FFTW library to compute (AT
i Ai)

−1 (i ∈ {S, I, R}) by Fast Fourier Transform (FFT).

Computing these inverse operators is O(n log n) operations per iteration where n is the

number of points. Here calculation of convolution is also realized by FFT.

In all, we summarize the algorithm as follows.

Algorithm 1 Algorithm: G-proximal PDHG for mean field game SIR system

Input: ρi(0, ·) (i ∈ {S, I, R})

Output: ρi,mi, ϕi (i ∈ {S, I, R}) for x ∈ Ω, t ∈ [0, T ]

while relative error > tolerance do

ρ
(k+1)
i = argminρ L(ρ,m

(k)
i , ϕ

(k)
i ) + 1

2τi
∥ρ− ρ(k)i ∥2L2

m
(k+1)
i = argminm L(ρ(k+1),m, ϕ

(k)
i ) + 1

2τi
∥m−m(k)

i ∥2L2

ϕ
(k+ 1

2
)

i = argmaxϕ L(ρ(k+1),m
(k+1)
i , ϕ)− 1

2σi
∥ϕ− ϕ(k)

i ∥2H2

ϕ
(k+1)
i = 2ϕ

(k+ 1
2
)

i − ϕ(k)
i

end while

Here, the relative error is defined as

relative error =
|P (ρ(k+1)

i ,m
(k+1)
i )− P (ρ(k)i ,m

(k)
i )|

|P (ρ(k)i ,m
(k)
i )|

.

4.4 Numerical Experiments

In this section, we present two sets of numerical experiments using the algorithm with various

parameters and all algorithms are coded in C++. Let Ω = [0, 1]2 be a unit cube in R2 and
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T = 1. The domain Ω is discretized with the regular rectangular mesh

xkl =

(
k + 0.5

Nx

,
l + 0.5

Ny

)
, k = 0, · · · , Nx − 1, l = 0, · · · , Ny − 1

tn =
n

Nt − 1
, n = 0, · · · , Nt − 1.

where Nx, Ny are the number of data points in space and Nt is the number of data points in

time. For all the experiments, we use the same set of parameters,

Nx = 128, Ny = 128, Nt = 32

σ = 0.01, c = 0.01 β = 0.7, ηi = 0.01 (i ∈ {S, I, R})

αS = 1, αI = 10, αR = 1

and a terminal cost functional

E(ρI(1, ·)) =
1

2

∫
Ω

ρ2I(1, x)dx.

By setting higher value for αI , we penalize the movement of infected population more than

other populations. Considering the immobility of infected individuals, this is a reasonable

choice in terms of real-world applications.

To minimize the terminal cost functional E(ρI), a solution needs to minimize the number

of infected population. There are mainly two ways of reducing the number of infected. First

way is to transition infected to recovered population. However, it may not be feasible if a

rate of recovery γ is small. Another way to reduce the number of infected is by separating

susceptible population from infected population. The number of infected doesn’t increase if

there are no susceptible people near infected. However, the total cost increases when densities

move due to ρi∥vi∥2 (i ∈ {S, I, R}) terms in the running cost. A solution needs to find the

optimal balance between the terminal cost and the running cost. The following two sets of

experiments show that the algorithm finds the proper solutions based on values of γ given

different initial densities.
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4.4.1 Experiment 1

In this experiment, initial densities for susceptible, infected, and recovered populations are

ρS(0, x) = 0.5 exp
(
−10

(
(x1 − 0.5)2 + (x2 − 0.5)2

))
ρI(0, x) = 15

(
0.03− (x1 − 0.6)2 − (x2 − 0.6)2

)
+

ρR(0, x) = 0

where

(x)+ =


x if x > 0

0 otherwise.

Susceptible population is a Gaussian distribution centered at (0.5, 0.5) and infected population

is concentrated at (0.6, 0.6).

We show two different numerical results with a low rate of recovery γ = 0.1 (Figure 4.1)

and a high rate of recovery γ = 0.5 (Figure 4.2). In both figures, the evolution of densties ρi

(i ∈ {S, I, R}) are shown at t = 0, 0.21, 0.47, 0.74, 1. The total population of each density is

indicated as sum in the subtitle of each plot.

When γ is small (Figure 4.1), the solution separates susceptible population from infected

population. By separating susceptible from infected, the solution minimizes the terminal cost

at t = 1. When γ is large (Figure 4.2), susceptible population barely moves over time. The

solution minimizes the terminal cost by converting infected to recovered population which is

considered to be cheaper than moving susceptible away from infected.

4.4.2 Experiment 2

In this experiment, initial densities for susceptible, infected, and recovered populations are

ρS(0, x) = 0.5

ρI(0, x) = 70

(
0.005−

(√
(x− 0.5)2 + (y − 0.5)2 − 0.25

)2)
+

ρR(0, x) = 0.
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Figure 4.1: Experiment 1. The evolution of populations from t = 0 to t = 1 with β = 0.7 and

γ = 0.1. The first row represents susceptible, the second row represents infected, and the last

row represents recovered. The solution moves susceptible away from the infected over time.

Susceptible population is a uniform distribution on Ω and infected population is a ring shaped

density centered at (0.5, 0.5). We again show that two different numerical results with a low

rate of recovery γ = 0.1 (Figure 4.3) and a high rate of recovery γ = 0.5 (Figure 4.4). Similar

to Experiment 1, we see that the solution minimizes the number of infection by moving

susceptible away from infected when γ is small. By separating these two populations, it

minimizes the rate of contacts between susceptible and infected. When γ is large, the solution

converts infected to recovered population rather than moving susceptible population.
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Figure 4.2: Experiment 1. The evolution of populations from t = 0 to t = 1 with β = 0.7

and γ = 0.5. The first row represents susceptible, the second row represents infected, and the

last row represents recovered. The solution minimizes the number of infected at time t = 1

by recovering infected population.
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Figure 4.3: Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.7

and γ = 0.1. The first row represents susceptible, the second row represents infected, and the

last row represents recovered.

4.4.3 Experiment 3

In this experiment, we consider nonsymmetric initial densities.

ρS(0, x) = 0.45
(
exp
(
−15((x− 0.3)2 + (y − 0.3)2)

)
+ exp

(
−25((x− 0.5)2 + (y − 0.75)2)

)
+ exp

(
−30((x− 0.8)2 + (y − 0.35)2)

))
ρI(0, x) = 10

(
0.04− (x− 0.2)2 − (y − 0.65)2

)
+

+ 12
(
0.03− (x− 0.5)2 − (y − 0.2)2

)
+

+ 12
(
0.03− (x− 0.8)2 − (y − 0.55)2

)
+

ρR(0, x) = 0.
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Figure 4.4: Experiment 2. The evolution of populations from t = 0 to t = 1 with β = 0.7

and γ = 0.5. The first row represents susceptible, the second row represents infected, and the

last row represents recovered.

Susceptible population is the sum of three Gaussian distributions and infected population is

the sum of positive part of quadratic polynomials. We conduct this experiment to show that

the algorithm works for nonsymmetric initial densities. Using the same set of parameters,

the experiment is repeated twice with γ = 0.1 and γ = 0.5. The same behavior of solutions

can be observed from Figure 4.5 and Figure 4.6.
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Figure 4.5: Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.7

and γ = 0.1. The first row represents susceptible, the second row represents infected, and the

last row represents recovered.

4.5 Discussion

In this paper, we chapter a mean-field control model for controlling the virus spreading of

a population in a spatial domain, which extends and controls the current SIR model with

spatial effect. Here the state variable represents the population status, such as S, I, R, etc

with a spatial domain, while the control variable is the velocity of motion of the population.

The terminal cost forms the goal of government, which balances the total infection number

and maintain suitable physical movement of essential tasks and goods. Numerical algorithms

are derived to solve the proposed model. Several experiments demonstrate that our model
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Figure 4.6: Experiment 3. The evolution of populations from t = 0 to t = 1 with β = 0.7

and γ = 0.5. The first row represents susceptible, the second row represents infected, and the

last row represents recovered.

can effectively demonstrate how to separate the infected and susceptible population in a

spatial domain.

Our model opens the door to many questions in modeling, inverse problems and com-

putations, especially during this COVID-19 pandemic. On the modeling side, first, we are

interested in generalize the geometry of the spatial domain. Second, our current model only

focuses on the control of population movement. The control of the diffusion operator among

populations is also of great interests in future work. Third, the government can also put

restrictions on the interaction for different class of populations, depending on their infection

status. Fourth, in real life, the spatial domain is often inhomogeneous, containing airports,
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schools, subways etc. We also need to formulate our mean-field control model on a discrete

spatial graph (network). In addition, our model focus on the forward problem of modeling

the dynamics of the virus. In practice, real time data is generated as the virus spreading

across different regions. To effectively model this dynamic, a suitable inverse mean-field

control problem needs to be constructed. On the computational side, our model involves

a non-convex optimization problem, which comes from the multiplicative term of the SIR

model itself. In future work, we expect to design a fast and reliable algorithm for these

advanced models. We also expect to develop and apply AI numerical algorithms to compute

models in high dimensions.
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CHAPTER 5

Mean-field Control Problems for Vaccine Distribution

This chapter studies mathematical modeling of mean-field controls. With the invention of

the COVID-19 vaccine, shipping and distributing are crucial in controlling the pandemic. We

build a mean-field variational problem in a spatial domain, which controls the propagation of

pandemics by the optimal transportation strategy of vaccine distribution. Here, we integrate

the vaccine distribution into the mean-field SIR model discussed in Chapter4. Numerical

examples demonstrate that the proposed model provides practical strategies for vaccine

distribution in a spatial domain.

We organize this chapter as follows. In Section 5.1, we review some recent mathematical

models proposed to predict and control COVID-19 epidemic, with a focus on optimal control

problems. Section 5.2 proposes a novel multi-population mean-field control model and

explains how population movement and vaccine distribution are integrated into a constrained

optimization problem. Section 5.3 discusses the challenges in numerically solving this mean-

field control model, proposes a first-order primal-dual algorithm to solve it, and shows the

local convergence of the algorithm. Lastly, in Section 5.4, we present numerical experiments

with different model parameter choices and discuss their implications on mean-field controls.

The contributions in this chapter were presented in the joint work with Wonjun Lee,

Wuchen Li, and Stanley Osher in[LLL21b].
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5.1 Introduction

The COVID-19 pandemic has affected society significantly. Various actions are taken to

mitigate the spread of the infections, such as the travel ban, social distancing, and mask-

wearing. The recent invention of the vaccine yields breakthroughs in fighting against this

infectious disease. According to the recent effectiveness study [FGG21], vaccines including

Pfizer, Moderna, and Janssen (J&J) show approximately 66%-95% efficacy at preventing

both mild and severe symptoms of COVID-19. Therefore, the deployment of COVID-19

vaccines is an urgent and timely task. Many countries have implemented phased distribution

plans that prioritize the elderly and healthcare workers getting vaccinated. Meanwhile, the

shipping of vaccines is expensive due to the cold chain transportation [LZL20]. An effective

distribution strategy is necessary to eliminate infectious diseases and prevent more death.

In this work, we propose a novel mean-field control model based on [LLT21]. We consider

two approaches (controls) to control the pandemic: relocation of populations and distribution

of vaccines. The first one has been discussed thoroughly in [LLT21], where we address the

spatial effect in pandemic modeling by introducing a mean-field control problem into the

spatial SIR model. By applying spatial velocity to the classical disease model, the model

finds the most optimal strategy to relocate the different populations (susceptible, infected,

and recovered), controlling the epidemic’s propagation. We considered several aspects of

the vaccine in our model for vaccine distribution, including manufacturing, delivery, and

consumption. Our goal is to find an optimal strategy to move the population and distribute

vaccines to minimize the total number of infectious, the amount of movement of the people,

and the transportation cost of the vaccine with limited vaccine supply. To tackle this question,

we ensemble these two controls and propose the following constrained optimization problem:

min
(ρi,vi)i∈{S,I,R,V },f

G
(
(ρi, vi)i∈{S,I,R,V }, f

)
(G defined from (5.2.7))

97



subject to

∂tρS +∇ · (ρSvS) = −βρSK ∗ ρI +
η2S
2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ · (ρIvI) = βρSK ∗ ρI − γρI +
η2I
2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ · (ρRvR) = γρI +
η2R
2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ · (ρV vV ) = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

and 
0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory

ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

In our model, different populations are described using ρi (i ∈ {S, I, R}), representing the

susceptible, infectious, and recovered. The term ρV (x, t) describes the density distribution

of the vaccine over the spatial domain at location x and time t. The control variables vi

(i ∈ {S, I, R}) create velocity fields over time-space domain that move the corresponding

populations. As for vaccines, the control variable vV represents the vaccine’s transportation

strategy, and the control variable f(t, x) describes how many vaccines are produced at a

specific time and location. The optimization objective function G is the sum of terminal costs

Efinal and running costs Erunning. The terminal costs Efinal represent the goal of our control

to achieve at the terminal time, such as minimizing the total number of infectious individuals

and maximizing the total number of recovered (immune) persons. The running costs Erunning

include the costs of transportation of vaccines and different classes of the populations, etc.

We will discuss more details of cost functionals in Section 5.2.2. As for constraints of our

optimization problem, the five partial differential equations of ρi, vi (i ∈ {S, I, R, V }) describe

the dynamics of the different classes of population and vaccines in terms of densities and

velocities. The inequalities of f(t, x) model the limitation of vaccine manufacturing. Vaccines

are produced at particular factory locations Ωfactory with a daily maximal production rate

98



fmax. The dynamics of the vaccine density ρV share some similar aspects to the unnormalized

optimal transport [LLL21a]. Specifically, they both study mass transportation with a source

term that creates masses.

We solve the main problem using the algorithm based on the first-order Primal-Dual

Hybrid Gradient (PDHG) method [CP11, CP16]. Due to the multiplicative interaction

terms, ρSK ∗ ρI , ρIK ∗ ρS, ρV ρS, the optimization problem is based on nonlinear PDE

constraints, whereas the PDHG only considers linear constraints. We use the extension of

the PDHG [CV17] that solves nonsmooth optimization problems with nonlinear operators

between function spaces. We extend the method utilizing the preconditioning operator

from [JLL19] which provides a suitable choice of variable norms to achieve a convergence rate

independent of the nonlinear operator. As a result, the algorithm converges to the saddle

point locally with step length parameters independent of the finite-difference mesh size.

Lots of mathematical models have been invented to predict the future of COVID-19

epidemics. Recently proposed models take more real-world situations into consideration and

tend to be more effective in quantitative forecasting. Specifically, there have been studies on

the impact of actions such as lockdown, social distancing, wearing a mask [DPT20, DPS20,

FMG20]. Data-driven approach and machine learning techniques are also integrated to

estimate the parameters for the epidemic better and boost the prediction of the trend of

the pandemic model [Ses20, NTS20]. Meanwhile, optimal control serves as an important

tool in pandemic control. They seek the optimal strategy to minimize the total number

of infected people while keeping certain costs at a minimum. There are work focused on

mitigating the epidemic with limited medical supply, such as ICU capacity [CEL20], face

masks [LW20], and vaccines [ZKJ08, HD11, KKL16, LLP20, JKL20]. In [JKL20], an optimal

vaccine distribution strategy is proposed with a limited total amount of vaccines and maximal

daily supply. [LLP20] first uses an inverse problem to determine the parameters of the SIR

model. Then it formulates two optimal control problems, with mono- and multi-objective,

and solves for the optimal strategy of vaccine administration. Other non-pharmaceutical
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interventions are also considered in the scope of optimal control of epidemics, including social

distancing, closing schools, and lockdown [GHH21, KK20, SCT21]. [KK20] computes the

optimal non-pharmaceutical intervention strategy based on an extended SEIR model with

the absence of the vaccine. The mean-field control problem can be viewed as a particular

type of optimal control applied to an individual in terms of population density.

Multi-population mean-field game (control) problems have also drawn lots of attention

[BHL18, Cir15, Fel13]. This type of problem studies the interactions on two levels: between

agents of the same population and between populations. Our model is a multi-population

mean-field control problem with population dynamics described using reaction-diffusion

equations adopted from the epidemic model and the controls over the vaccine production

and distribution. Therefore, we obtain a novel mean-field control problem.

5.2 Models

In this section, we introduce a variational problem to control the SIRV dynamics.

5.2.1 Spatial SIR variational problem with vaccine distribution

Now we consider the optimization problem for the distribution of vaccines. We add an extra

function ρV : [0, T ] × Ω → [0,∞) which represents the vaccine density in Ω at each time

t ∈ [0, T ]. The vaccine distribution will be described as the following PDE:

∂tρV = f(t, x)− θ2ρV ρS t ∈ (0, T ′)

∂tρV +∇ ·mV = −θ2ρV ρS t ∈ [T ′, T ), 0 < T ′ < T,
(5.2.1)

where mV : [T ′, T )× Ω→ Rd is a momentum, θ2 represents the utilization rate of vaccines,

and f : (0, T ′)×Ω→ [0,∞) represents the production rate of vaccines in x ∈ Ω at 0 < t < T ′.

During 0 < t < T ′, the vaccines are produced with a production rate f and used at a rate

θ2ρV ρS. During T ′ ≤ t < T , the vaccines are delivered to the area where the susceptible
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population is located, and they are used at a rate of θ2ρV ρS. In summary, the first part of the

PDE describes vaccines’ production, and the second part describes the delivery of vaccines.

For all time 0 < t < T , the susceptible population is vaccinated if the vaccines are available

in the same area. Now we are ready to introduce the new system of equations for the SIRV

model.

∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2S
2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI +
η2I
2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2R
2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρV (0, ·) are given.

(5.2.2)

In the first and third equations, we add the terms −θ1ρV ρS and +θ1ρV ρS, respectively. The

constant θ1 represents the vaccine efficiency and θ1ρV (t, x)ρS(t, x) represents the vaccinated

population at (t, x) ∈ (0, T )× Ω. We denote a set S := {S, I, R, V } and define a nonlinear

operator A as follows

A((ρi,mi)i∈S, f) := (∂tρS +∇ ·mS −
η2S
2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

∂tρI +∇ ·mI −
η2I
2
∆ρI − βρSK ∗ ρI + γρI ,

∂tρR +∇ ·mR −
η2R
2
∆ρR − γρI − θ1ρSρV ,

∂tρV − fX[0,T ′)(t) +∇ ·mVX[T ′,T ](t) + θ2ρSρV ),

(5.2.3)

where XC : [0, T ]→ R is a step function that equals 1 on C and 0 otherwise.

5.2.2 The cost functional

We design the cost functional so that the solution (ρi,mi), i ∈ S satisfies the following criteria:

(i) minimize the transportation cost for moving each population;
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(ii) minimize the total number of infected people and the total number of susceptible people

by maximizing the usage of the vaccines at time T ;

(iii) maximize the total number of recovered people at time T ;

(iv) avoid high concentration of population and vaccines at each time t ∈ (0, T );

(v) minimize the amount of vaccines produced during t ∈ (0, T ′);

(vi) minimize the transportation cost for delivering vaccines during t ∈ (T ′, T ).

Item (i) can be described by∫ T

0

∫
Ω

Fi(ρi(t, x),mi(t, x))dx dt,

for i ∈ {S, I, R} where

Fi(ρi,mi) =



αi|mi|2
2ρi

if ρi > 0

0 if ρi = 0 and |mi| = 0

∞ if ρi = 0 and |mi| > 0,

(5.2.4)

which is convex, lower semi-continuous, and 1-homogeneous with respect to (ρi,mi). The

parameter αi characterizes the cost of moving ρi with velocity mi

ρi
. Larger αi means it is more

expensive to move ρi. Note that this function comes from the quadratic kinetic energy. To

see this, we use the definition mi = ρivi and plug into the formula (5.2.4):

Fi(ρi,mi) =
αi|mi|2

2ρi
=
αi

2
ρi|vi|2.

Item (ii) and (iii) can be described by the terminal costs of the cost functional

Ei(ρi(T, ·)) =
∫
Ω

ei(ρi(T, x)) dx (i = S, I, V ),

ER(ρR(T, ·)) =
∫
Ω

eR (1− ρR(T, x)) dx,
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where functions e : [0,∞)→ [0,∞) are convex and lower semi-continuous functions. We also

minimize the terminal cost for ρV because maximizing the usage of vaccines is equivalent

to minimizing the number of vaccines left at the terminal time T . The total number of the

recovered can be maximized by penalizing the density at the terminal time if the value of

ρR(T, x) is far away from 1 for x ∈ Ω. Here, we use a quadratic cost function

ei(t) =
ai
2
t2, (t ∈ [0,∞)) (5.2.5)

where ai is some constant.

For Item (iv), the cost functional for the concentration of the total population and vaccines

can be represented by∫ T

0

GP (ρS(t, ·) + ρI(t, ·) + ρR(t, ·)) dt,
∫ T

0

GV (ρV (t, ·)) dt,

where

GP (u) =
∫
Ω

gP (u(x)) dx, GV (u) =
∫
Ω

gV (u(x)) dx, (5.2.6)

for u : Ω→ [0,∞) and convex and lower semi-continuous functions gP , gV : [0,∞)→ [0,∞).

Similar to ei (5.2.5) from Item (ii), we use quadratic functions for gP and gV .

Items (v) and (vi) are criteria specific to the vaccine distribution. From the PDE (5.2.1),

the vaccines are produced during 0 < t < T ′ by a function f . We use the similar func-

tional (5.2.6) to minimize the amount of vaccines produced by f . Thus, we set the functional∫ T ′

0

G0(f(t, ·)) dt =
∫ T ′

0

∫
Ω

g0(f(t, x)) dx dt

where g0 : [0,∞)→ [0,∞) is a convex and lower semi-continuous function.

The vaccines are delivered during T ′ < t < T . Similar to the Item (i), we set∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt,

where FV has the same definition as (5.2.4).
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The total cost functional we consider is then

G((ρi,mi)i∈S, f) =
∑
i∈S

Ei(ρi(T, ·))

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

GP ((ρS + ρI + ρR)(t, ·)) + GV (ρV (t, ·)) dt

+

∫ T ′

0

G0(f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f 2 +
∑
i∈S

ρ2i + |mi|2 dx dt.

(5.2.7)

In the perspective of a control problem, the first term at the right-hand side in (5.2.7) is

the terminal cost, while the rest of the terms accounts for the running costs. The quadratic

terms in the last line is a λ-strongly convex functional. The functional F is λ-strongly convex

if for any u = ((ρi,mi)i∈S, f), F satisfies

F (ũ) ≥ F (u) + ∂F (u)(ũ− u) + λ

2
∥ũ− u∥2L2 , for all ũ = ((ρ̃i, m̃i)i∈S, f̃)

where ∥ũ− u∥2L2 is defined as∫ T

0

∫
Ω

(f̃ − f)2 +
∑
i∈S

(ρ̃i − ρi)2 + |m̃i −mi|2 dx dt

and ∂F denotes the convex subdifferential of F . Since Ei, Fi, Gi are convex and lower-

semicontinuous, G is λ-strongly convex as the sum of convex and λ-strongly convex functionals.

5.2.3 Constraints for vaccine production

In addition to the constraint from (5.2.2), we adapt the following constraints to reflect the

limited vaccination coverage:

0 ≤ f(t, x) ≤ fmax (t, x) ∈ [0, T ′]× Ωfactory

f(t, x) = 0 (t, x) ∈ [0, T ′]× Ω\Ωfactory

ρV (t, x) ≤ Cfactory (t, x) ∈ [0, T ′]× Ωfactory

(5.2.8)
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where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced and fmax is

a nonnegative constant representing the maximum vaccine production rate. In the third

inequality, a nonnegative constant Cfactory limits the total number of vaccines produced

during 0 < T < T ′. ∫ T ′

0

∫
Ω

ρV (t, x) dx dt ≤ CfactoryT
′|Ωfactory|.

The constraints (5.2.8) can be imposed by having the following functionals for GV and G0.

GV (ρV (t, ·)) =
∫
Ω

gV (ρV (t, x)) dx+ i[−∞,Cfactory)(ρV (t, ·))

G0(f(t, ·)) =
∫
Ω

g0(f(t, x)) + iΩfactory
(x)f(t, x) dx+ i[−∞,fmax)(f(t, ·))

(5.2.9)

where Ωfactory ⊂ Ω indicates the factory area where vaccines are produced. The functionals

i[−∞,Cfactory ] and i[−∞,fmax] are defined as

i[a,b](u) =


0, a ≤ u(x) ≤ b for all x ∈ Ω

∞, otherwise

where a, b are constants and u : Ω→ R is a function. The function iΩfactory
(x) is defined as

iΩfactory
(x) =


0, x ∈ Ωfactory

∞, x ∈ Ω\Ωfactory.

This function forces f(t, x) = 0 if (t, x) ∈ (0, T ′)× (Ω\Ωfactory), thus vaccines are produced

only in Ωfactory.

Remark 16. The formulation is not limited to SIR epidemic model. For example, we can

describe the SIRD (Susceptible-Infected-Recovered-Deceased) epidemic model by adding an
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extra population ρD for the deceased population with a mortality rate µ.

∂tρS +∇ ·mS = −βρSK ∗ ρI +
η2S
2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI +∇ ·mI = βρSK ∗ ρI − γρI − µρI +
η2I
2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR +∇ ·mR = γρI +
η2R
2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρD = µρI +
η2D
2
∆ρD (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω

ρS(0, ·), ρI(0, ·), ρR(0, ·), ρD(0, ·), ρV (0, ·) are given.

5.2.4 Properties

From the definition of the cost functional and the constraint (5.2.2), we have the following

minimization problem:

inf
(ρi,mi)i∈S,f

{
G((ρi,mi)i∈S, f) : subject to (5.2.2)

}
.

We first define the inner product of vectors of functions in L2. Given vectors of functions

u = (u1(t, x), u2(t, x), · · · , uk(t, x)) and v = (v1(t, x), v2(t, x), · · · , vk(t, x)) with ui, vi : [0, T ]×

Ω→ R, the L2 inner product of vectors u and v and L2 norm of u are defined by

⟨u, v⟩L2 =
k∑

i=0

(ui, vi)L2 , ∥u∥2L2 = ⟨u, u⟩L2 (5.2.10)

where (·, ·)L2([0,T ]×Ω) is a L
2 inner product such that

(u, v)L2([0,T ]×Ω) =

∫ T

0

∫
Ω

u(t, x)v(t, x) dx dt.

We introduce dual variables (ϕi)i∈S for each continuity equation from (5.2.3). Using the dual

variables and the definitions of the inner products, we convert the minimization problem into

a saddle point problem.

inf
(ρi,mi)i∈S,f

sup
(ϕi)i∈S

L((ρi,mi, ϕi)i∈S, f), (5.2.11)
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where L is the Lagrangian functional defined as

L((ρi,mi, ϕi)i∈S, f)

= G((ρi,mi)i∈S, f)− ⟨A((ρi,mi)i∈S, f), (ϕi)i∈S⟩L2

= G((ρi,mi)i∈S, f)

−
∫ T

0

∫
Ω

ϕS

(
∂tρS +∇ ·mS + βρSK ∗ ρI + θ1ρSρV −

η2S
2
∆ρS

)
dx dt

−
∫ T

0

∫
Ω

ϕI

(
∂tρI +∇ ·mI − βρSK ∗ ρI + γρI −

η2I
2
∆ρI

)
dx dt

−
∫ T

0

∫
Ω

ϕR

(
∂tρR +∇ ·mR − γρI − θ1ρSρV −

η2R
2
∆ρR

)
dx dt

−
∫ T

0

∫
Ω

ϕV

(
∂tρV − fX[0,T ′)(t) +∇ ·mVX[T ′,T ](t) + θ2ρSρV

)
dx dt.

For brevity, we denote

u = ((ρi,mi)i∈S, f), p = (ϕi)i∈S.

We can rewrite the Lagrangian as

L(u, p) = G(u)− ⟨A(u), p⟩L2

where the nonlinear operator A(u) is defined as

A(u) = (AS(u), AI(u), AR(u), AV (u)) (5.2.12)

AS(u) = ∂tρS +∇ ·mS −
η2S
2
∆ρS + βρSK ∗ ρI + θ1ρSρV ,

AI(u) = ∂tρI +∇ ·mI −
η2I
2
∆ρI − βρIK ∗ ρS + γρI ,

AR(u) = ∂tρR +∇ ·mR −
η2R
2
∆ρR − γρI ,

AV (u) = ∂tρV − fX[0,T ′)(t) +∇ ·mVX[T ′,T ](t) + θ1ρSρV .

As noted in [LLT21], the dual gap, the difference between the primal solution and dual solution,

may not be zero because the nonconvex functions (ρS, ρI) 7→ ρSK ∗ ρI and (ρS, ρV ) 7→ ρSρV

make the feasible set nonconvex. We circumvent the problem by linearizing the nonlinear
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operator at a base point ū

A(u) ≈ Āū(u) = A(ū) + [∇A(ū)](u− ū).

In our formulation, the linearlized operator Āū(u) can be written as follows.

Āū(u) = (ĀSū(u), ĀIū(u), ĀRū(u), ĀV ū(u))

ĀSū(u) = ∂tρS +∇ ·mS −
η2S
2
∆ρS + βρSK ∗ ρ̄I + θ1ρS ρ̄V ,

ĀIū(u) = ∂tρI +∇ ·mI −
η2I
2
∆ρI − βρIK ∗ ρ̄S + γρI ,

ĀRū(u) = ∂tρR +∇ ·mR −
η2R
2
∆ρR − γρ̄I ,

ĀV ū(u) = ∂tρV − fX[0,T ′)(t) +∇ ·mVX[T ′,T ](t) + θ1ρV ρ̄S

where ū = u = ((ρ̄i, m̄i)i∈S, f̄). We define a linearized Lagrangian as

L̄ū(u, p) = G(u)− ⟨Āū(u), p⟩L2 .

By the first-order optimality conditions (also known as KKT conditions), the saddle point

satisfies

[∇A(u∗)]Tp∗ ∈ ∂G(u∗)

A(u∗) = 0.
(5.2.13)

In the next proposition, we present the equations derived from the KKT conditions (5.2.13).

Proposition 4 (Mean-field control SIRV system). By KKT conditions, the saddle point

((ρi,mi, ϕi)i∈S, f) of (5.2.11) satisfies the following equations.

∂tϕS −
αS

2
|∇ϕS|2 +

η2S
2
∆ϕS +

δGP
δρ

(ρS + ρI + ρR) + β(ϕI − ϕS)K ∗ ρI

+ ρV
(
θ1(ϕR − ϕS)− θ2ϕV )

)
= 0 (t, x) ∈ (0, T )× Ω

∂tϕI −
αI

2
|∇ϕI |2 +

η2I
2
∆ϕI +

δGP
δρ

(ρS + ρI + ρR)

+ βK ∗ (ρS(ϕI − ϕS)) + γ(ϕR − ϕI) = 0 (t, x) ∈ (0, T )× Ω
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∂tϕR −
αR

2
|∇ϕR|2 +

η2R
2
∆ϕR +

δGP
δρ

(ρS + ρI + ρR) = 0 (t, x) ∈ (0, T )× Ω

∂tϕV +
δGV
δρ

(ρV ) + ρS
(
θ1(ϕR − ϕS)− θ2ϕV )

)
= 0 (t, x) ∈ (0, T ′)× Ω

∂tϕV −
αV

2
|∇ϕV |2 +

δGV
δρ

(ρV ) + ρS
(
θ1(ϕR − ϕS)− θ2ϕV )

)
= 0 (t, x) ∈ (T ′, T )× Ω

∂tρS −
1

αS

∇ · (ρS∇ϕS) + βρSK ∗ ρI + θ1ρSρV −
η2S
2
∆ρS = 0 (t, x) ∈ (0, T )× Ω

∂tρI −
1

αI

∇ · (ρI∇ϕI)− βρSK ∗ ρI + γρI −
η2I
2
∆ρI = 0 (t, x) ∈ (0, T )× Ω

∂tρR −
1

αR

∇ · (ρR∇ϕR)− γρI − θ1ρSρV −
η2R
2
∆ρR = 0 (t, x) ∈ (0, T )× Ω

∂tρV − f + θ2ρSρV = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV −
1

αV

∇ · (ρV∇ϕV ) + θ2ρSρV = 0 (t, x) ∈ (T ′, T )× Ω

δG0
δf

(f) + ϕV = 0 (t, x) ∈ (0, T ′)× Ω

ϕi(T, ·) =
δEi

δρ(T, ·)
(ρi(T, ·)), i ∈ S.

The terms δGP

δρ
, δGV

δρ
, δGP

δρ
, δG0

δf
, and δEi

δρ(T,·) are the functional derivatives. In other words, given

F : H → R be a smooth functional where H is a separable Hilbert space and ρ ∈ H, we say a

map δF
δρ

is the functional derivative of F with respect to ρ if it satisfies

lim
ϵ→0

F (ρ+ ϵh)− F (ρ)
ϵ

=

∫
Ω

δF

δρ
(ρ(x))h(x) dx,

for any arbitrary function h : Ω→ R.

The dynamical system models the optimal vector field strategies for S, I, R populations

and the vaccine distribution. It combines both strategies from mean field controls and SIRV

models. For this reason, we call it Mean-field control SIRV system.

Proof of Proposition 4. From the saddle point problem (5.2.11), we can rewrite the problem
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as

inf
(ρi,mi)i∈S,f

sup
ϕ

G((ρi,mi)i∈S, f)−
∫ T

0

∫
Ω

∑
i∈{S,I,R}

ϕi

(
∂tρi +∇ ·mi −

η2i
2
∆ρi

)
dx dt

+

∫ T

0

Q((ρi, ϕi)i∈S) dt−
∫ T

0

∫
Ω

ϕV ∂tρV dx dt+

∫ T ′

0

∫
Ω

fϕV dx dt−
∫ T

T ′

∫
Ω

ϕV∇ ·mV dx dt

(5.2.14)

where a function Q : (0, T )× Ω→ R is defined as

Q((ρi, ϕi)i∈S) =

∫
Ω

βρS(ϕI − ϕS)K ∗ ρI + γρI(ϕR − ϕI) + ρSρV
(
θ1(ϕR − ϕS)− θ2ϕV )

)
dx.

If ((ρi,mi, ϕi)i∈S, f) is the saddle point of the problem, the differential of Lagrangian with

respect to ρi, mi, ϕi (i ∈ S), f and ρi(T, ·) (i ∈ {S, I, V }) equal to zero. Thus, from δL
δϕi

= 0

we have

∂tρi +∇ ·mi −
η2i
2
∆ρi +

δQ
δϕi

((ρi, ϕi)i∈S) = 0 (t, x) ∈ (0, T )× Ω, i = S, I, R

∂tρV − f +
δQ
δϕV

((ρi, ϕi)i∈S) = 0 (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV +
δQ
δϕV

((ρi, ϕi)i∈S) = 0 (t, x) ∈ (T ′, T )× Ω.

Using integration by parts, we reformulate the Lagrangian function (5.2.14) as follows.

L((ρi,mi, ϕi)i∈S, f)

=
∑
i∈S

Ei(ρi(T, ·)) +
∫ T

0

GP (ρS + ρI + ρR) + GV (ρV ) dt+
∫ T ′

0

G0(f(t, ·)) dt

+
∑

i=S,I,R

∫ T

0

∫
Ω

αi|mi|2

2ρi
+mi · ∇ϕi +

η2i
2
ρi∆ϕi dx dt+

∑
i∈S

∫ T

0

∫
Ω

ρi∂tϕi dx dt

+

∫ T

T ′

∫
Ω

αV |mV |2

2ρV
+mV · ∇ϕV dx dt+

∫ T ′

0

∫
Ω

fϕV dx dt+

∫ T

0

Q((ρi, ϕi)i∈S) dt

+
∑

i=S,I,R,V

∫
Ω

ρi(0, x)ϕi(0, x)− ρi(T, x)ϕi(T, x)dx

From δL
δρi

= 0 (i ∈ {S, I, R}),

δGP
δρi

(ρS + ρI + ρR) +
δQ
δρi

((ρi, ϕi)i∈S)−
αi|mi|2

2ρ2i
+
η2i
2
∆ϕi + ∂tϕi = 0 (t, x) ∈ (0, T )× Ω
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From δL
δρV

= 0,

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, ϕi)i∈S) + ∂tϕV = 0 (t, x) ∈ (0, T ′)× Ω

δGV
δρV

(ρV ) +
δQ
δρV

((ρi, ϕi)i∈S)−
αV |mV |2

2ρ2V
+ ∂tϕV = 0 (t, x) ∈ (T ′, T )× Ω.

From δL
δρi(T,·) = 0 (i ∈ S),

δE
δρi(T, ·)

(ρi(T, ·)) = ϕi(T, ·).

From δL
δf

= 0,
δG0
δf

(f) + ϕV = 0, (t, x) ∈ (0, T ′)× Ω.

From δL
δmi

= 0 (i ∈ S),
αimi

ρi
= −∇ϕi (t, x) ∈ (0, T )× Ω, i ∈ {S, I, R}

αVmV

ρV
= −∇ϕV (t, x) ∈ (0, T ′)× Ω.

By replacing αimi

ρi
= −∇ρi in δL

δρi
= 0 and δL

δϕi
= 0, we derive the result.

5.3 Algorithm

In this section, we propose an algorithm to solve the proposed SIRV variational problem. The

algorithm follows the Algorithm 1 proposed in Section 4.3 as a variation of G-Prox PDHG

method.

The algorithm takes the following iterative updates:

u(k+
1
2
) = argmin

u
g(u) + ⟨u,AT

u(k)p
(k)⟩L2 +

1

2τ (k)
∥u− u(k)∥2L2

u(k+1) = 2u(k+
1
2
) − u(k)

p(k+1) = argmax
p
⟨A(u(k)) + Au(k)(u(k+1) − u(k)), p⟩L2 − f ∗(p)− 1

2σ(k)
∥p− p(k)∥2H(k) .

where the norm ∥ · ∥H(k) is defined as

∥p∥2H(k) = ∥AT
u(k)p∥2L2 .

and A(u) defined in Equation 5.2.12.
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5.3.1 Implementation of the algorithm

To implement the algorithm to the minimization problem (5.2.7), we set

u = ((ρi,mi)i∈S, f)

p = (ϕi)i∈S

g(u) = G(u)

f(A(u)) =


0 if A(u) = 0

∞ otherwise

f ∗(p) = 0.

We use (5.2.12) for the definition of the operator A. Define the Lagrangian functional as

L(u, p) := G(u)− ⟨A(u), p⟩L2

where ⟨·, ·⟩L2 is defined in (5.2.10). We summarize the algorithm as follows.

Here, L2 and H
(k)
i norms are defined as

∥u∥2L2 = (u, u)L2 =

∫ T

0

∫
Ω

u2dx dt, ∥p∥2
H

(k)
i

= ∥[∇Ai(u
(k))]Tp∥2L2 , i ∈ S

for any u : [0, T ]× Ω→ [0,∞). Moreover, the relative error is defined as

relative error =
|G(ρ(k+1)

i ,m
(k+1)
i )−G(ρ(k)i ,m

(k)
i )|

|G(ρ(k)i ,m
(k)
i )|

.

In the section 5.4, We use quadratic functions for Ei (i ∈ {S, I, V }), GP , GV , G0. With the

definitions (5.2.9), we use

Ei(ρi(T, ·)) =
∫
Ω

ai
2
ρi(T, x)

2 dx, i = S, I, V

GP (ρ(t, ·)) =
∫
Ω

dP
2
ρ(t, x)2 dx

GV (ρ(t, ·)) =
∫
Ω

dV
2
ρ(t, x)2 dx+ i[−∞,Cfactory ](ρ(t, ·))

G0(f(t, ·)) =
∫
Ω

d0
2
f(t, x)2 + iΩfactory

(x)f(t, x) dx+ i[−∞,fmax](f(t, ·))
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Algorithm 2 Algorithm: G-prox PDHG for mean-field control SIRV system

Input: ρi(0, ·) (i ∈ S)

Output: ρi,mi, ϕi (i ∈ S), f

while relative error > tolerance for i ∈ S do

ρ
(k+1)
i = argminρ L((ρ,m(k), f (k)), ϕ(k)) + 1

2τ
∥ρ− ρ(k)i ∥2L2

m
(k+1)
i = argminm L((ρ(k+1),m, f (k)), ϕ

(k)
i ) + 1

2τ
∥m−m(k)

i ∥2L2

f (k+1) = argminf L((ρ(k+1),m(k+1), f), ϕ(k)) + 1
2τ
∥f − f (k)∥2L2

ϕ
(k+ 1

2
)

i = argmaxϕ L((ρ(k+1),m(k+1), f (k+1)), ϕ)− 1
2σ
∥ϕ− ϕ(k)

i ∥2H(k)
i

ϕ
(k+1)
i = 2ϕ

(k+ 1
2
)

i − ϕ(k)
i

end while
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Thus, we can write the cost functional as follows

G((ρi,mi)i∈S, f) =

∫
Ω

∑
i=S,I,V

ai
2
ρi(T, ·)2 dx

+

∫ T

0

∫
Ω

∑
i=S,I,R

Fi(ρi,mi) dx dt+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt

+

∫ T

0

∫
Ω

dP
2
(ρS + ρI + ρR)

2 +
dV
2
ρ2V dx dt

+

∫ T ′

0

∫
Ω

d0
2
f 2 + iΩfactory

f dx dt

+

∫ T

0

i[−∞,Cfactory ](ρ(t, ·)) + i[−∞,fmax](f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f 2 +
∑
i∈S

ρ2i + |mi|2 dx dt.

(5.3.1)

where ai, dP , dV , d0 are nonnegative constants. With this cost functional, we find explicit

formula for each variable ρ
(k+1)
i ,m

(k+1)
i , ϕ

(k+1)
i (i ∈ S), f (k+1).

Proposition 5. The variables ρ
(k+1)
i ,m

(k+1)
i , ϕ

(k+1)
i (i ∈ S), and f (k+1) from the Algorithm 2

satisfy the following explicit formulas:

ρ
(k+1)
S = root+

(
τ

1 + τ(dP + λ)

(
∂tϕ

(k)
S +

η2S
2
∆ϕ

(k)
S −

1

τ
ρ
(k)
S + β

(
ϕ
(k)
I − ϕ

(k)
S

)
K ∗ ρ(k)I

+ ρ
(k)
V

(
θ1(ϕ

(k)
R − ϕ

(k)
S )− θ2ϕ(k)

V

)
+ dP (ρ

(k)
I + ρ

(k)
R )

)
, 0,− ταS|m(k)

S |2

2(1 + τ(dP + λ))

)

ρ
(k+1)
I = root+

(
τ

1 + τ(dP + λ)

(
∂tϕ

(k)
I +

η2I
2
∆ϕ

(k)
I −

1

τ
ρ
(k)
I + βK ∗

(
ρ
(k)
S (ϕ

(k)
I − ϕ

(k)
S )
)

+ γ(ϕ
(k)
R − ϕ

(k)
I ) + dP (ρ

(k)
S + ρ

(k)
R )

)
, 0,− ταI |m(k)

I |2

2(1 + τ(dP + λ))

))

ρ
(k+1)
R = root+

(
τ

1 + τ(dP + λ)

(
∂tϕ

(k)
R +

η2R
2
∆ϕ

(k)
R −

1

τ
ρ
(k)
R + dP (ρ

(k)
S + ρ

(k)
I )

)
, 0,− ταR|m(k)

R |2

2(1 + τ(dP + λ))

)

ρ
(k+1)
V = min

(
Cfactory,

τ

1 + τ(dV + λ)

(
−∂tϕ(k)

V − ρ
(k)
S (θ1(ϕ

(k)
R − ϕ

(k)
S )− θ2ϕ(k)

V ) +
1

τ
ρ
(k)
V

))
,

(t, x) ∈ [0, T ′]× Ω
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ρ
(k+1)
V = root+

(
τ

1 + τ(dV + λ)

(
∂tϕ

(k)
V + ρS(θ1(ϕR − ϕS)− θ2ϕV )−

1

τ
ρ
(k)
V

)
, 0,− ταV |m(k)

V |2

2(1 + τ(dV + λ))

)
,

(t, x) ∈ (T ′, T ]× Ω

m
(k+1)
i =

ρ
(k+1)
i

ταi + (1 + τλ)ρ
(k+1)
i

(
m

(k)
i − τ∇ϕ

(k)
i

)
, (i ∈ S)

f (k+1) = min

(
fmax,

τ

1 + τ(d0 + λ)

(
1

τ
f (k) − ϕ(k)

V

))
XΩfactory

(x)

ϕ
(k+ 1

2
)

S = ϕ
(k)
S + σ(ASA

T
S )

−1
(
−∂tρ(k+1)

S −∇ ·m(k+1)
S − βρ(k+1)

S K ∗ ρ(k+1)
I − θ1ρ(k+1)

S ρ
(k+1)
V +

η2S
2
∆ρ

(k+1)
S

)
ϕ
(k+ 1

2
)

I = ϕ
(k)
I + σ(AIA

T
I )

−1
(
−∂tρ(k+1)

I −∇ ·m(k+1)
I + βρ

(k+1)
S K ∗ ρ(k+1)

I − γρ(k+1)
I +

η2I
2
∆ρ

(k+1)
I

)
ϕ
(k+ 1

2
)

R = ϕ
(k)
R + σ(ARA

T
R)

−1
(
−∂tρ(k+1)

R −∇ ·m(k+1)
R + γρ

(k+1)
I + θ1ρ

(k+1)
S ρ

(k+1)
V +

η2R
2
∆ρ

(k+1)
R

)
ϕ
(k+ 1

2
)

V = ϕ
(k)
V + σ(AVA

T
V )

−1
(
−∂tρ(k+1)

V + f (k+1)X[0,T ′)(t)−∇ ·m(k+1)
V X[T ′,T ](t)− θ1ρ(k+1)

S ρ
(k+1)
V

)

where root+(a, b, c) is a positive root of a cubic polynomial x3 + ax2 + bx + c = 0 and we

approximate the AiA
∗
i as follows

ASA
T
S = −∂tt +

η4S
4
∆2 − (1 + (β + θ1)η

2
S)∆ + (β + θ1)

2

AIA
T
I = −∂tt +

η4I
4
∆2 − (1 + (γ + β)η2I )∆ + (γ + β)2

ARA
T
R = −∂tt +

η4R
4
∆2 −∆

AVA
T
V = −∂tt −∆+ θ22.

Similar to Algorithm 1, we use FFTW library to compute (AiA
T
i )

−1 (i ∈ S) and convolution

terms by Fast Fourier Transform (FFT), which is O(n log n) operations per iteration with

n being the number of points. Thus, the algorithm takes just O(n log n) operations per

iteration.
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5.4 Numerical Experiments

In this section, we present several sets of numerical experiments using the algorithm 1 with

various parameters. We wrote C++ codes to run the numerical experiments. Let Ω = [0, 1]2

be a unit square in R2 and the terminal time T = 1. The domain [0, 1] × Ω is discretized

with the regular Cartesian grid below.

∆x1 =
1

Nx1

, ∆x2 =
1

Nx2

, ∆t =
1

Nt − 1

xkl = ((k + 0.5)∆x1, (l + 0.5)∆x2) , k = 0, · · · , Nx1 − 1, l = 0, · · · , Nx2 − 1

tn = n∆t, n = 0, · · · , Nt − 1

where Nx1 , Nx2 are the number of discretized points in space and Nt is the number of

discretized points in time. For all the experiments, we use the same set of parameters,

Nx1 = 128, Nx2 = 128, Nt = 32

αS = 10, αI = 30, αR = 20, αV = 0.005

aS = 2, aI = 2, aR = 0.001, aV = 0.1

T ′ = 0.5, σ = 0.01, dP = 0.4, dV = 0.4, d0 = 0.01

θ2 = 0.9 ηi = 0.01 (i ∈ S).

By setting a higher value for αI , we penalize the infected population’s movement more than

other populations. Considering the immobility of the infected individuals, this is a reasonable

choice in terms of real-world applications. By setting T ′ = 1/2, the solution will produce the

vaccines during 0 ≤ t < 1/2 and deliver them during 1/2 ≤ t ≤ 1. Furthermore, we fix the

parameters for the infection rate and recovery rate

β = 0.8, γ = 0.1.

The Chapter 3 describes how the parameters β and γ affect the propagation of the populations.

In this chapter, we focus on the vaccine productions and distributions. Recall that from the
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S I R

βρSρI γρI

θ1ρSρV

Figure 5.1: Visualization of the flow of three populations. The susceptible transforms to

the infected with a rate β and the recovered with a rate θ1. The infected transforms to the

recovered with a rate γ.

formulation (5.3.1), we have terminal functionals

Ei(ρi(T, ·)) =
∫
Ω

ai
2
ρi(T, x)

2 dx, i ∈ {S, I, V }.

Thus, the solution to the problem has to minimize the total number of susceptible, infected,

and vaccines at the terminal time T . The solution reduces the total number of infected by

recovering them with a rate γ and decreases the total number of susceptible by transforming

the susceptible to the infected with a rate β or to the recovered with a rate θ1 (Figure 5.1). If

the β is large and γ is small, the number of infected will grow since there are more inflows from

susceptible than the outflows to the recovered. To minimize the total number of the infected,

the solution has to vaccinate the susceptible as much as possible to avoid the susceptible

becoming infected. Thus, the vaccines need to be produced and delivered to the susceptible

efficiently while satisfying the constraint conditions (5.2.8).

We present two experiments that demonstrate how the various factors in the formulation

affect the production and the distribution of vaccines.
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5.4.1 Experiment 1

In this experiment, we show how the parameters related to ρV affect the solution. We set the

initial densities for the ρi (i ∈ S) and the factory location Ωfactory as

ρS(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.5

)
+

ρI(0, x) =
(
2 exp(−5[(x1 − 0.7)2 + (x2 − 0.7)2])− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.1(0.3, 0.3)

(5.4.1)

where (x)+ = max(x, 0) and Brx is a ball of a radius r centered at x.

Figure 5.2: Experiment 1: Initial densities of ρS (left) and ρI (right). The green circle

indicates Ωfactory.

With the initial densities (5.4.1), we run two simulations with different values for θ1, θ2,

and fmax.

Parameters Sim 1 Sim 2 Description

θ1 0.5 0.9 Vaccine efficiency

fmax 0.5 10 Maximum production rate of vaccines

Cfactory 0.5 2
Maximum amount of vaccines that can be

produced at x ∈ Ω during 0 ≤ t ≤ 1
2
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Figure 5.3 shows the comparison between the results from the simulation 1 and the simulation 2.

The first three plots (Figure 5.3a) show the total mass of ρi (i = S, I, R), i.e.∫
Ω

ρi(t, x) dx, i = S, I, R, t ∈ [0, 1].

and the last plot (Figure 5.3b) shows the total mass of ρV during 0 ≤ t ≤ 1
2∫

Ω

ρV (t, x) dx, t ∈
[
0,

1

2

]
.

The total number of vaccines produced from the simulation 1 is smaller than that from the

simulation 2 because the solution cannot produce a large amount of vaccines due to the low

production rate fmax. Furthermore, the solution from the simulation 1 cannot vaccinate a

large number of susceptible due to a small θ1. Thus, there are more susceptible and less

recovered at the terminal time in the simulation 1.

5.4.2 Experiment 2

This experiment includes the spatial obstacles and shows how the algorithm effectively finds

the solution that utilizes the vaccine production and distribution given spatial barriers.

Denote a set Ωobs ⊂ Ω as obstacles. We use the following functionals in the experiment.

GP (ρ(t, ·)) =
∫
Ω

∑
i∈{S,I,R}

di
2
ρ2i (t, x) + iΩobs

(x)

 ∑
i∈{S,I,R}

ρi(t, x)

 dx

GV (ρ(t, ·)) =
∫
Ω

dV
2
ρ2V (t, x) + iΩobs

(x)ρV (t, x) dx

Ei(ρ(1, ·)) =
∫
Ω

ai
2
ρ2i (1, x) + iΩobs

(x)ρi(1, x) dx, i ∈ {S, I, V }

ER(ρ(1, ·)) =
∫
Ω

aR
2
(ρR(1, x)− 1)2 + iΩobs

(x)ρR(1, x) dx.

The densities ρi (i ∈ S) cannot be positive on Ωobs due to iΩobs
. Thus, the densities transport

while avoiding the obstacle Ωobs. We show two sets of experiments based on this setup.
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(a) The total populations of ρS , ρI , ρR.

(b) The total mass of vaccines produced during 0 ≤ t ≤ 0.5.

Figure 5.3: Experiment 1: The comparison between the results from the simulation 1 and the

simulation 2. The first three plots (a) show the total mass of ρi (i = S, I, R) and the fourth

plot (b) shows the total mass of ρV produced at the factory area during the production time

0 ≤ t < 0.5.
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5.4.2.1 Single factory

We set the initial densities and Ωfactory as follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.5)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.5)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.5)

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 5.4.

Figure 5.4: Experiment 2: The initial densities ρS (left) and ρI (right), and the location of

the factory (indicated as a green circle).

Figure 5.5 and Figure 5.6 show the evolution of densities with and without obstacles,

respectively. In both simulations, the density of vaccines ρV (the fourth row) transports

to the areas where the susceptible people are present. In Figure 5.6, ρV transports while

avoiding the obstacle at the right. Figure 5.7 shows the comparison between these two

solutions and how the presence of the obstacle affects the production and delivery of vaccines
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ρS

ρI

ρR

ρV

Figure 5.5: Experiment 2: The evolution of densities ρi (i ∈ S) without the obstacle over

time 0 ≤ t ≤ 1. The first row: the susceptible density ρS. The second row: the infected

density ρI . The third row: the recovered density ρR. The fourth row: the vaccine density ρV .
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ρS

ρI

ρR

ρV

Figure 5.6: Experiment 2: The evolution of densities ρi (i ∈ S) with the obstacle (indicated

as a yellow block) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS. The second

row: the infected density ρI . The third row: the recovered density ρR. The fourth row: the

vaccine density ρV .
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quantitatively. Figure 5.7a shows the total mass of the vaccines in the factory area Ωfactory

during the production time ∫
Ωfactory

ρV (t, x) dx, t ∈ [0, 0.5).

Figure 5.7b shows the total mass of the vaccines during the delivery time at the left side and

the right side of the domain ∫
Ω∩{x1<0.5}

ρV (t, x) dx, Left∫
Ω∩{x1≥0.5}

ρV (t, x) dx, Right

during t ∈ [0.5, 1]. When there is no obstacle, the vaccines are delivered more to the right

than to the left (Figure 5.7b). The number of susceptible people at the left decreases very

fast because there are infected people with a high infection rate. When ρV starts to transport

at time t = 0.5, the number of susceptible is lower at the left. Thus, the solution distributes

fewer vaccines to the left with less susceptible people. When there is an obstacle, ρV has to

bypass the obstacle to reach the susceptible areas. Thus, the kinetic energy cost during the

delivery time t ∈ [0.5, 1] increases at the right. The solution cannot deliver the vaccines as

much as the case without the obstacle. It results in a fewer number of vaccines produced

during t ∈ [0, 0.5) (Figure 5.7a) and delivered to the right during t ∈ [0.5, 1] when there is an

obstacle (Figure 5.7b).

5.4.2.2 Multiple factories

Similar to the previous experiment, we show how the obstacles in the spatial domain affect

the production and distribution of the vaccines. We use more complex initial densities, an

obstacle set Ωobs, and three factory locations in this experiment. We set the initial densities

and Ωfactory as follows

ρS(0, x) =
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.8)2))− 1.6

)
+
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(a) The total mass of ρV during t ∈ [0, 0.5)
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(b) The total mass of ρV during t ∈ [0.5, 1]

Figure 5.7: Experiment 2: The left plot shows the total mass of vaccine density ρV during the

production time t ∈ [0, 0.5). The right plot shows the total mass of ρV at the left side of the domain

Ω ∩ {x1 < 0.5} and at the right side of the domain Ω ∩ {x1 ≥ 0.5}.

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.8)2 + (x2 − 0.3)2))− 1.6

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.6

)
+

ρI(0, x) =
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.7)2))− 1.8

)
+

+
(
2 exp(−15((x1 − 0.2)2 + (x2 − 0.2)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.075(0.5, 0.2) ∪ B0.075(0.5, 0.5) ∪ B0.075(0.5, 0.8)

and fix the parameters

θ1 = 0.9, fmax = 10, Cfactory = 2.

The initial densities are shown in Figure 5.8.

Figure 5.9 and Figure 5.10 show the evolution of densities with and without obstacles,

respectively. The experiment demonstrates that even with the complex initial densities, the

algorithm successfully converges to the reasonable solution that coincides with the previous
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Figure 5.8: Experiment 2: The initial densities ρS (left) and ρI (right), and the location of the

factory (indicated as green circles).

ρS

ρI

ρR

ρV

Figure 5.9: Experiment 2: The evolution of densities ρi (i ∈ S) without the obstacle over time

0 ≤ t ≤ 1. The first row: the susceptible density ρS . The second row: the infected density ρI . The

third row: the recovered density ρR. The fourth row: the vaccine density ρV .
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ρS

ρI

ρR

ρV

Figure 5.10: Experiment 2: The evolution of densities ρi (i ∈ S) with the obstacle (colored

yellow) over time 0 ≤ t ≤ 1. The first row: the susceptible density ρS. The second row: the

infected density ρI . The third row: the recovered density ρR. The fourth row: the vaccine

density ρV .
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experiments. The density of vaccines ρV (the fourth row) transports to the areas where the

susceptible people are present while avoiding the obstacles.

Figure 5.11a shows the total mass of the vaccines produced during the production time at

each factory location. Without the obstacles, the total mass of ρV at the middle is the lowest

at time 0.5 because the factory at the middle is the farthest away from the susceptible people.

It is more efficient to produce the vaccines at the factories closer to the susceptible (the

top and the bottom) to reduce the kinetic energy cost during the delivery time t ∈ [0.5, 1].

However, the vaccines are produced the most at the middle factory with the obstacles. Since

the obstacles block the paths between the top and the bottom factories and the susceptible

people, ρV has to bypass them to reach the target area. The pathways from the middle

factory to the susceptible people are not blocked as much as from the top and the bottom

factories. Thus, producing more vaccines at the middle factory is more efficient.

Figure 5.11b shows the total mass of the vaccines during the delivery time at different

locations. The lines in the plot represent the following quantities:∫
Ω∩{x1<0.5}∩{x2≥0.5}

ρV (t, x) dx, Top Left

∫
Ω∩{x1≥0.5}∩{x2≥0.5}

ρV (t, x) dx, Top Right∫
Ω∩{x1<0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Left

∫
Ω∩{x1≥0.5}∩{x2<0.5}

ρV (t, x) dx, Bottom Right

over t ∈ [0.5, 1]. With the obstacles, the kinetic energy cost increases since ρV has to bypass

to reach to the targets when it transports from the top and the bottom factories. As a result,

the vaccines are not produced as much as the simulation without the obstacles, and there are

less vaccines reached to the targets.

5.4.3 Experiment 3

This experiment compares the vaccine production strategy generated by the algorithm and

the strategy with the fixed rates of production without using the algorithm. The initial
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Top w/ obstacle
Middle w/o obstacle
Middle w/ obstacle
Bottom w/o obstacle
Bottom w/ obstacle

(a) The total mass of ρV during t ∈ [0, 0.5)

(b) The total mass of ρV during t ∈ [0.5, 1]

Figure 5.11: Experiment 2: The top plot shows the total mass of vaccine density ρV at three

factory locations during the production time t ∈ [0, 0.5). The bottom plot shows the total

mass of ρV at the top left area of the domain Ω∩ {x1 < 0.5} ∩ {x2 ≥ 0.5}, at the bottom left

area Ω ∩ {x1 < 0.5} ∩ {x2 < 0.5}, at the top right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 ≥ 0.5}, and at

the bottom right area Ω ∩ {x1 ≥ 0.5} ∩ {x2 < 0.5} during the distribution time t ∈ [0.5, 1].
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densities and Ωfactory are set as follows

ρS(0, x) =
(
4 exp(−15((x1 − 0.5)2 + (x2 − 0.55)2))− 1.6

)
+

ρI(0, x) =
(
4 exp(−15((x1 − 0.5)2 + (x2 − 0.55)2))− 1.8

)
+

ρR(0, x) = 0

ρV (0, x) = 0

Ωfactory = B0.04(0.1, 0.3) ∪ B0.04(0.5, 0.3) ∪ B0.04(0.9, 0.4).

We fix the parameters

θ1 = 0.9, fmax = 5, Cfactory = 1.

The initial densities and locations of factories are shown in Figure 5.12.

Figure 5.12: Experiment 3: The initial densities ρS (left) and ρI (right), the location of the factory

(indicated as green circles), and the obstacle (colored yellow).

To fairly compare the effect of the optimal vaccine production strategy, we remove the

momentum of S, I, R groups; thus, removing the spatial movements defined by mS, mI , mR.
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We consider the following PDEs:

∂tρS = −βρSK ∗ ρI +
η2S
2
∆ρS − θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρI = βρSK ∗ ρI − γρI +
η2I
2
∆ρI (t, x) ∈ (0, T )× Ω

∂tρR = γρI +
η2R
2
∆ρR + θ1ρV ρS (t, x) ∈ (0, T )× Ω

∂tρV = f(t, x)− θ2ρV ρS (t, x) ∈ (0, T ′)× Ω

∂tρV +∇ ·mV = −θ2ρV ρS (t, x) ∈ [T ′, T )× Ω.

Furthermore, by taking out the momentum terms from S, I, R groups, the cost functional

for this experiment is

G((ρi,mi)i∈S, f) =

∫
Ω

aV
2
ρV (T, ·)2 dx+

∫ T

T ′

∫
Ω

FV (ρV ,mV ) dx dt+

∫ T

0

∫
Ω

dV
2
ρ2V dx dt

+

∫ T ′

0

∫
Ω

d0
2
f 2 + iΩfactory

f dx dt

+

∫ T

0

i{ρ(t,·)≤Cfactory}(ρ(t, ·)) + i{f(t,·)≤fmax}(f(t, ·)) dt

+
λ

2

∫ T

0

∫
Ω

f 2 + ρ2V + |mV |2 dx dt.

With the PDEs and the cost functionals above, we compare two results. The first result is

using the optimal vaccine production and distribution strategy generated by the algorithm 1.

The second result is using the fixed vaccine production rate and the algorithm’s distribution

strategy. In the second result, the factory variable f is fixed as

f(t, x) =


1.2, (t, x) ∈ [0, T ′]× Ωfactory

0, (t, x) ∈ [0, T ′]× Ω\Ωfactory.

Figure 5.13 shows the comparison between these two results. The result from the fixed

production rate is “without control”, and the result from the optimal vaccine production

strategy is “with control”. The labels “left”, “middle”, and “right” are the locations of the

factories in Figure 5.12. The solid lines, the result with the same fixed rates of production,

show that all three factories produce identical amounts of vaccines. The dotted lines show the
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least amount of vaccines in the middle factory and much more in the left and right factories.

When vaccines produce at the middle factory, one needs to pay more transportation costs

because they bypass the obstacles. The obstacle does not block the paths from the left and

right factories to the susceptible. Thus, it’s an optimal choice to utilize the left and right

more than the middle to minimize the transportation costs.

0.0 0.1 0.2 0.3 0.4 0.5
Time t

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

To
ta
l m
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s o

f p
ro
du

ce
d 
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cc
in
es w/o control right

w/  control right
w/o control middle
w/  control middle
w/o control left
w/  control left

Figure 5.13: Experiment 3: The plot shows the total mass of vaccine densities
∫ t

0

∫
Ω
ρV dx dt

during production t ∈ [0, T ′] at each factory location: left, middle, and right. The dotted

lines are from the optimal strategy from the Algorithm 1, and the solid lines are from the

fixed production rates.

Table 5.1 is the quantitative comparison between the two results.

The first row of the table shows that more vaccines are produced with a fixed rate of

production. However, the result of the fixed-rate vaccinizes fewer susceptible people; as a

result, more infected people at the terminal time. Furthermore, the result from the fixed rate

shows higher transportation costs. The algorithm finds the more efficient strategy with fewer

vaccines produced.
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Quantity Description Algorithm 1 Fixed rates

∫
Ω
ρV (

1
2
, x) dx

The total amount of vaccines pro-

duced.
7.997× 10−3 8.411× 10−3

∫
Ω
ρS(1, x) dx

The number of susceptible people

at the terminal time.
1.520× 10−2 1.525× 10−2

∫
Ω
ρI(1, x) dx

The number of infected people at

the terminal time.
5.133× 10−3 5.134× 10−3

∫ 1
1
2

∫
Ω

|mV |2
2ρV

dx dt The transportation cost of vaccines. 7.339× 10−3 7.544× 10−3

Table 5.1: Comparison of vaccine production of fixed and non-fixed rate.
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CHAPTER 6

A Numerical Algorithm for Inverse Problem from

Partial Boundary Measurement Arising from

Mean-Field Game Problem

This chapter considers a new inverse problem arising from mean-field games. We aim to

recover the MFG model parameters that govern the underlying interactions among the

population based on a limited set of noisy partial observations of the population dynamics

under the fixed aperture. Due to its severe ill-posedness, maintaining high quality in the

reconstruction is very difficult. Nonetheless, it is vital to recover the model parameters stably

and efficiently to uncover the underlying causes of population dynamics for practical needs.

Our work focuses on the simultaneous recovery of running cost and interaction energy in the

MFG equations from a finite number of boundary measurements of population profile and

movement. We formalize the inverse problem as a constrained optimization problem of a

least squared residual functional under suitable norms to achieve this goal. Then we develop

a fast and robust operator splitting algorithm to solve the optimization using techniques

including harmonic extensions, the three-operator splitting scheme, and the primal-dual

hybrid gradient method. The numerical experiments illustrate the effectiveness and robustness

of the algorithm.

This chapter is organized as follows. Firstly in Section 6.1, we discuss the motivation

for studying inverse mean-field games and related studies. In Section 6.2, we introduce an

abstract inverse problem with a saddle point constraint and a generic algorithm to solve it.
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In Section 6.3, we present the inverse MFG formulation. Next, in Section 6.4 we discuss the

implementation of the algorithm in Section 6.2 for the inverse MFG in Section 6.3. Section 6.5

contains three numerical examples to demonstrate the robustness and effectiveness of our

algorithm. Finally, Section 6.6 contains a discussion and concluding remarks.

The contributions in this chapter were first presented in the joint work with Yat Tin

Chow, Samy Wu Fung, Levon Nurbekyan, and Stanley Osher in[CFL22].

6.1 Introduction

The basis for the MFG framework is the concept of Nash equilibrium, where agents cannot

unilaterally improve their objectives. Under suitable regularity assumptions, a common MFG

model reduces to the following system of partial differential equations (PDE):
−∂tϕ(x, t)− ν∆ϕ(x, t) +H(x,∇xϕ(x, t)) = F (x, ρ(·, t)), in Ω′ × (0, 1),

∂tρ(x, t)− ν∆ρ(x, t)−∇x · (ρ(x, t)∇pH(x,∇xϕ(x, t))) = 0, in Ω′ × (0, 1),

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g(x), in Ω′.

Here, ρ(·, t), t ∈ [0, 1] represents the population distribution over the state space Ω′ at time

t satisfying a Fokker-Planck equation, and ϕ(x, t) is the value function of each player that

satisfies a Hamilton-Jacobi equation and governs optimal actions of players. The Hamiltonian,

H, is the Legendre transform of the Lagrangian, L, representing the running cost for each

agent. Furthermore, F represents an interaction between the agents and the population.

Typical choices for H,L, F in crowd motion applications are

H(x, p) =
1

2
κ(x)|p|2 , L(x, v) = 1

2κ(x)
|v|2 , F (x, ρ) =

∫
Ω′
K(x, y)ρ(y)dy . (6.1.2)

MFG is an actively growing field that provides a flexible tremendously powerful descriptions

ranging from socioeconomics to biodiversity ecology, and have recently gained enormous

attention. They significantly advancing the understanding of social cooperation and economics
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[ABL14, CL18, GNP15], biological systems [SB18], election dynamics [YYT18], population

games [LT20], robotic control [LWL18], machine learning [ROL20, LFL21], dynamics of

multiple populations [Cir15]. Recently, they are utilized to understand pandemic modeling

and control such as COVID-19 [LLT21].

With the significant descriptive power of MFGs, it is vital to consider inverse problems

arising in MFGs. We aim to reconstruct MFG parameters for a class of nonlocal problems,

including the geometry of the underlying space and the interactions between large crowds,

based on partial population observations. More specifically, we are interested in the following

problem.

Problem 1. Given a part of the solution to an MFG system (6.1.1), (6.1.2), for instance,(
ρ (x, s) ,−ρ (x, s)∇pH(x,∇xϕ(x, t))

)
|∂Ω×(0,T ),

for finitely many examples of ρ0 and terminal cost g, can we numerically recover the speed

field κ(x) and the interaction kernel K(x, y) from observations?

Such a model-recovery algorithm can help understand the underlying population dynamics

in numerous problems, such as migration flow or contagious rate of COVID-19. We further

envision applications to include rescue and exploration team management, policymaking,

diplomacy, election modeling, catastrophe management, and evacuation planning.

Note that m(x, s) = −ρ (x, s)∇pH(x,∇xϕ(x, s)) represents the flux of the agents through

the state x at time s as a result of optimal actions. The interpretation of the flux is

straightforward for crowd-dynamics models and can be measured by counting people crossing

checkpoints or parts of the border. For such models, the value function ϕ(x, s) could represent

the travel cost for a traveller who is at location x at time s. Hence, one could also consider

an inverse problem where one observes the value function, instead of the flux, by looking at

travel companies’ expenses or consumer ticket prices (discounted for the companies’ profit

margins).
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For economic and finance models [GPV16, ABL14, CL18] the state variables typically

represent asset (wealth, income, inventory) levels instead of a physical location. Hence, the

value function represents maximal utility for agents with a given asset level, and the flux

represents the total amount of transactions performed by them. Interestingly, in economic

models one often has implicit mean-field interactions reflected in market-clearing type

conditions instead of an explicit interaction functional F (x, ρ). Hence, a related inverse

problem is to find an appropriate market-clearing condition or tune its parameters for a given

economy. This chapter addresses explicit models with flux data leaving the implicit ones

with other data types for future work.

6.1.1 Related work

Despite of the large body of work on theory, numerical methods, and applications [ACD20],

inverse problems arisen from MFG is still quite an unexplored terrain. To the best of our

knowledge, only [DLO20, KAS15, BPW20] study such problems. The work in [DLO20] is the

closest to our objective but considers the case with a full space-time measurement of data in

the sampling domain. However, most inverse problems in practice only have partial boundary

measurements available, either obtained via non-invasive measurement methods or because

of the limited access to the sampling domain. Compared with the case with full space-time

measurement in the domain, inverse problems with only partial boundary measurements are

generally known to be more severely ill-posed. In this work, we focus on the recovery problem

with only boundary measurements coming from several measurement events.

6.2 An inverse problem with a saddle point forward model

In this section, we formulate an abstract inverse problem with a saddle point forward model.

We discuss suitable Karush-Kuhn-Tucker (KKT) conditions and a generic algorithm to solve

such inverse problems.
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6.2.1 A forward saddle point problem

Consider a saddle point problem

min
x∈X

max
y∈Y

F (u, x, y, c), (6.2.1)

where F : U ×X × Y ×D → R
⋃
{±∞} a smooth functional such that (x, y) 7→ F (u, x, y, c)

is strongly convex-concave. Here, x is the primal variable, and y is the dual variable in the

forward problem. Commonly, y is either used to handle constraints in the forward problem

or linearize nonlinear components via some splitting scheme. The variable c represents model

parameters associated with the functional F , while u represents boundary and initial-terminal

conditions. Given model parameters c, we define a boundary measurement map Λc as follows:

Λc : U → ΠBX × ΠBY

u 7→ (ΠB,x (x) ,ΠB,y (y)) where (x, y) ∈ argmin
x

argmax
y

F (u, x, y, c),

where ΠB,x,ΠB,y denote a projection operator that represent the partial boundary measure-

ments of x, y available. We note that u corresponds to boundary conditions of the forward

problem, whereas B is the subset of the domain where the partial measurements are collected.

6.2.2 The inverse problem and a generic algorithm

Assume that

(r̃B,i, s̃B,i) ≈ Λc(ui) = ([ΠB,x (x)] (ui) , [ΠB,y (y)] (ui))

are noisy measurements for a given {ui}Ni=1 ∈ U . Our goal is to recover c ∈ D. We formulate

this problem as a constrained optimization problem

inf
{xi,yi}Ni=1,c

{ N∑
i=1

1

2
∥ΠB,x(xi)− r̃B,i∥2 +

N∑
i=1

1

2
∥ΠB,y(yi)− s̃B,i∥2 +R(c) :

(xi, yi) ∈ argmin
x

argmax
y

F (ui, x, y, c)

}
,

(6.2.2)
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where R is a suitable regularizer and ∥ · ∥ are suitable choices of (semi)-norms. Introducing

Lagrange multipliers (dual variables) (λxi
, λyi), (6.2.2) reduces to

inf
{xi,yi}Ni=1,c

sup
{λxi ,λyi}

N
i=1

{ N∑
i=1

1

2
∥ΠB,x(xi)− r̃B,i∥2 +

N∑
i=1

1

2
∥ΠB,y(yi)− s̃B,i∥2 +R(c)

+
N∑
i=1

⟨∂xi
F (ui, xi, yi, c), λxi

⟩ −
N∑
i=1

⟨∂yiF (ui, xi, yi, c), λyi⟩
}
.

(6.2.3)

Thus, the KKT condition for (6.2.2), (6.2.3) are as follows:

Π∗
B,x[ΠB,x(xi)− r̃B,i] + ∂2xi,xi

F (ui, xi, yi, c)λxi
= 0,

Π∗
B,y[ΠB,x(yi)− s̃B,i]− ∂2yi,yiF (ui, xi, yi, c)λyi = 0,

∂cR(c) +
N∑
i=1

⟨∂c∂xi
F (ui, xi, yi, c), λxi

⟩ −
N∑
i=1

⟨∂c∂yiF (ui, xi, yi, c), λyi⟩ = 0,

∂xi
F (ui, xi, yi, c) = 0,

−∂yiF (ui, xi, yi, c) = 0,

for i = 1, . . . , N . Here, Π∗
B,x,Π

∗
B,y are the adjoints of ΠB,x,ΠB,y, respectively.

Finally, we formulate these KKT conditions as an inclusion problem

0 ∈ A (c, (x, y), (λx, λy)) + C (c, (x, y), (λx, λy)) ,

where

A (c, (x, y), (λx, λy)) =



∂cR(c)

(0, 0)

(0, 0)


,

and

C (c, (x, y), (λx, λy))
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=



∑N
i=1⟨∂c∂xi

F (ui, xi, yi, c), λxi
⟩ −

∑N
i=1⟨∂c∂yiF (ui, xi, yi, c), λyi⟩(

∂xi
F (ui, xi, yi, c),−∂yiF (ui, xi, yi, c)

)
(
∂2xi,xi

F (ui, xi, yi, c)λxi
+Π∗

B,x[ΠB,x(xi)− r̃B,i],

−∂2yi,yiF (ui, xi, yi, c)λyi +Π∗
B,y[ΠB,x(yi)− s̃B,i]

)


.

Note that A is monotone but C is not known to be monotone in general.

6.2.3 A generic algorithm

Here, we outline an iterative algorithm for solving (6.2.3). At (n+ 1)-th iteration, we first

update the adjoint variables {(λxi
, λyi)}Ni=1 using the Chambolle-Pock method [CP11]; then

we update c for the inverse problem by taking a proximal gradient step; next we use the

Chambolle-Pock method again to compute forward problems {(xi, yi)}Ni=1. Summarizing, a

high level description of the (n+ 1)-th iteration is as follows:


λn+1
yi

= [1− αλyi
∂2yi,yiF (ui, x

n
i , y

n
i , c

n)]−1
(
λnyi − αλyi

Π∗
B,y[ΠB,y(y

n
i )− s̃B,i]

)
λn+1,temp
xi

= [1 + αλxi
∂2xi,xi

F (ui, x
n
i , y

n
i , c

n)]−1
(
λnxi
− αλxi

Π∗
B,x[ΠB,x(x

n
i )− r̃B,i]

)
λn+1
xi

= 2λn+1,temp
xi

− λn,temp
xi

cn+1 = (I + αc∂cR)
−1
[
cn − αc

∑N
i=1⟨∂c∂xi

F (ui, x
n
i , y

n
i , c

n), λn+1
xi
⟩

+αc

∑N
i=1⟨∂c∂yiF (ui, xni , yni , cn), λn+1

yi
⟩
]

xn+1
i = [1 + αxi

∂xi
F (ui, ·, yni , cn+1)]−1(xni )

yn+1,temp
i = [1− αyi∂yiF (ui, x

n+1
i , ·, cn+1)]−1(yni )

yn+1 = 2yn+1,temp
i − yn,temp

i ,

where (αλxi
, αλyi

, αc, αxi
, αyi) are the corresponding time steps.

In what follows, we specify the MFG inverse problem and the implementation of the

algorithm above for it.
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6.3 An inverse MFG problem

Here, we explain the saddle point problem formulation of nonlocal MFG [NS18, LJL21, LN21]

and formulate the inverse MFG problem of our interest.

6.3.1 Saddle point formulation of MFG via feature-space expansions

Consider the following MFG system with nonlocal couplings:

−ϕt(x, t)− ν∆ϕ(x, t) + κ(x)
2
∥∇ϕ(x, t)∥2 =

∫
Ω′ K(x, y)ρ(y, t)dy in Ω′ × (0, 1),

ρt(x, t)− ν∆ρ(x, t)−∇ · (κ(x)ρ(x, t)∇ϕ(x, t)) = 0 in Ω′ × (0, 1),

(κ(x)ρ(x, t)∇ϕ(x, t)) · n = 0 on ∂Ω′ × (0, 1),

ρ(x, 0) = ρ0(x), ϕ(x, 1) = g(x) in Ω′.

(6.3.1)

We assume that K is positive definite and translation invariant, which yields that the

mean-field interaction satisfies the Lasry-Lions monotonicity condition [LL07] and agents are

crowd averse. Moreover, (6.3.1) admits a saddle point formulation

inf
ϕ
sup
ρ,m

{
−
∫
Ω′
ϕ(x, 0)ρ0(x)dx−

∫
Ω′

∫ 1

0

(ρϕt + νρ∆ϕ+m · ∇ϕ) dtdx

−
∫
Ω′

∫ 1

0

1

2κ(x)

∥m∥2

2ρ
dtdx− 1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dxdy − χρ≥0 + χϕ(x,1)=g(x)

}
(6.3.2)

Here, χZ(z) is the indicator function over the set Z defined by

χZ(z) =


0, if z ∈ Z

∞, otherwise.

Modeling the interaction term

1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dxdy
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directly is costly for both forward model and the inverse problem. Moreover, based on

the works from [NS18, LJL21, LN21, ALF22], we model and approximate this term using

feature-space expansions. More specifically, based on Bochner’s theorem [Ron98], we postulate

that

K(x, y) =
r∑

k=1

µ2
k cos(ωk · (x− y))

=
r∑

k=1

(
µ2
k cos(ωk · x) cos(ωk · y) + µ2

k sin(ωk · x) sin(ωk · y)
)

for some {ωk} ⊂ Rd, and {µ2
k} ⊂ R+. Denoting by

µ =
(
µ1,1, µ1,2, µ2,1, · · · , µr,1, µr,2

)
ω =

(
ω1,1, ω1,2, ω2,1, · · · , ωr,1, ωr,2

)
Codd=even =

{
(x1,1, x1,2, x2,1, · · · , xr,1, xr,2) : xi,1 = xi,2

}
ζ(x;µ, ω) =

(
µ1,1 cos(ω1,1 · x), µ1,2 sin(ω1,2 · x), · · · , µr,1 cos(ωr,1 · x), µr,2 sin(ωr,2 · x)

)
we obtain

K(x, y) = ζ(x;µ, ω) · ζ(y;µ, ω), µ, ω ∈ Codd=even.

Using this representation, we obtain

1

2

∫
Ω′×Ω′

K(x, y)ρ(x, t)ρ(y, t)dt =
1

2

∥∥∥∥∫
Ω′
ζ(x;µ, ω)ρ(x, t)dx

∥∥∥∥2
=sup

a

{
a(t) ·

∫
Ω′
ζ(x;µ, ω)ρ(x, t)dx− 1

2

∫ 1

0

∥a(t)∥2dt
}
,

where a(t) = (a1,1 (t) , a1,2 (t) , .., ar,1 (t) , ar,2 (t)) are auxiliary dual variables. The last equality

is a result from [NS18]. Hence, (6.3.2) transforms to

inf
ϕ,a

sup
ρ,m

{
1

2

∫ 1

0

∥a(t)∥2dt−
∫
Ω′
ϕ(x, 0)ρ0(x)dx−

∫
Ω′

∫ 1

0

(ρϕt + νρ∆ϕ+m · ∇ϕ) dtdx

−
∫
Ω′

∫ 1

0

(
1

2κ(x)

∥m∥2

2ρ
+ ρ a(t) · ζ(x;µ, ω)

)
dtdx− χρ≥0 + χϕ(x,1)=g(x)

}

:= inf
ϕ,a

sup
ρ,m

{
− L

(
(ρ0, g), (ρ,m), (ϕ, a), (κ, µ)

)}
,

(6.3.3)
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For more details on representation of nonlocal MFG interactions via a basis and computational

methods, see [NS18, LN21, LJL21, ALF22]. We also attach an example Algorithm 3 here for

calculating the nonlocal mean-field game problem.

Algorithm 3 Iterative algorithm for the nonlocal mean-field game system

Input: (ρ0, g), (κ, µ), a set of initial guess (ρ0,m0, ϕ0, a0), etol, a set of stepsizes

(αj
ρ, α

j
m, α

j
ϕ, α

j
a)

Output: (ρ∗,m∗, ϕ∗, a∗)

while iteration j < Jmax and primal-dual gap PD(ρj,mj, ϕj, aj) ≥ etol do

(ρj+1,mj+1) = argmin(ρ,m)

{
L
(
(ρ0, g), (ρ,m), (aj, ϕj), (κ, µ)

)
+ 1

2αj
ρ
∥ρj − ρ∥2L2

x,t
+ 1

2αj
m
∥mj −m∥2

L2
x,t

}
(ϕj+1,temp, aj+1,temp) = argmin(a,ϕ)

{
− L

(
(ρ0, g), (ρ

n+1,mn+1), (a, ϕ), (κ, µ)

)
+ 1

2αj
ϕ

∥ϕj − ϕ∥2
H1

x,t
+ 1

2αj
a
∥aj − a∥2

L2
t

}
(ϕj+1, aj+1) = 2(ϕj+1,temp, aj+1,temp)− (ϕj, aj)

j ← j + 1

end while

return (ρj,mj, ϕj, aj)

6.3.2 An inverse mean-field game problem

Denoting by

u = (ρ0, g), x = (ρ,m), y = (ϕ, a), c = (κ, µ),

F
(
(ρ0, g), (ρ,m), (ϕ, a), (κ, µ)

)
= L

(
(ρ0, g), (ρ,m), (ϕ, a), (κ, µ)

)
,

we place the MFG forward model in the abstract framework (6.2.1). Next,we assume that

Ω ⊂ Ω′ and κ(x) is known in the domain Ω′\Ω. We refer to Ω and Ω′ as sampling and
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computational domains, respectively. An example is shown in Figure 6.1, where the Ω′ is the

large square domain, while Ω is the inner square with its boundary highlighted in red.

Figure 6.1: Denote ρ as the solution to the mean-field game system. From left to right,

the pictures display the density distribution ρ at time t = 0.1, 0.5, 0.9. The solid red line

represents the boundary of domain Ω. In this mean-filed game, the density travels from the

right towards the left, crossing the boundary ∂Ω twice.

Next, we take

ΠB,(ρ,m) (ρ,m) := (ρ,m · n) |[0,T ]×∂Ω+ , ΠB,(a,ϕ)(a, ϕ) := (0, 0) ,

for the partial boundary measurement along the boundary ∂Ω. Here, ∂Ω+ means that the

normal vector n is pointing outward. Measuring the density and flux through ∂Ω is reasonable

based on physical meaning of the variables. We cannot measure a directly because it is

a non-physical auxiliary variable introduced specifically for an efficient representation of

nonlocal interactions.

We assume that the ground truth parameters (κ, µ) represent a disturbance of background

parameters (κ0, µ0). Therefore, given an additional parameter ε ≥ 0, we would also like to have

a regularization term in the form of Rβ = χβ≥ε(β). We also write R(κ, µ) = R1(κ, µ)+R2(κ, µ),

where

R1(κ, µ) = R̃1(κ) + R̃2(µ) := γκ∥κ− κ0∥L1 + γµ∥µ− µ0∥L1 ,
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R2(κ, µ) := χκ≥ε1(κ) + χµ2≤ε2(µ).

It is also possible to have other choices of regularization for (κ, µ), such as TV,H1, Wavelet

norms.

Now, we can formulate the inverse MFG as follows:

inf
{(ρi,mi),(ϕi,ai)}Ni=1,

κ,µ

{
N∑
i=1

1

2
∥ΠB(ρi,mi)− r̃B,i∥2 +R(κ, µ) :

(ρi,mi), (ϕi, ai) ∈ argmin
ρ,m

argmax
ϕ,a

F ((ρ0,i, gi), (ρ,m), (ϕ, a), (κ, µ))

}
.

(6.3.4)

6.3.3 The KKT conditions of the inverse mean-field game problem

We denote by

L(·) := L
(
(ρ0,i, gi), (ρi,mi), (ai, ϕi), (κ, µ)

)
,

the function L defined in Equation 6.3.3 for simplicity. The KKT conditions for the inverse

mean-field game problem are then

Π∗
B,(ρ,m)[ΠB,(ρ,m)(ρi,mi)− r̃B,i] + ∂2(ρi,mi),(ρi,mi)

L(·)λ(ρi,mi) = 0, i = 1, ..., N,

Π∗
B,(a,ϕ)[ΠB,(a,ϕ)(ai, ϕi)− s̃B,i]− ∂2(ai,ϕi),(ai,ϕi)

L(·)λ(ai,ϕi) = 0, i = 1, ..., N,

∂(κ,µ)R1(κ, µ) + ∂(κ,µ)R2(κ, µ) +
∑N

i=1

〈
∂(κ,µ)∂(ρi,mi)L(·), λ(ρi,mi)

〉
,

−
∑N

i=1

〈
∂(κ,µ)∂(ai,ϕi)L(·), λ(ai,ϕi)

〉
= 0,

∂(ρi,mi)L(·) = 0, i = 1, ..., N,

−∂(ai,ϕi)L(·) = 0, i = 1, ..., N.

Furthermore, the derivatives of L are given by

∂(ρi,mi)L =

(
∂tϕ+ ν∆ϕ− 1

2κ

|m|2

ρ2
+ a · ζ(·;µ, ω),∇ϕ+

1

κ

m

ρ

)
∂(ai,ϕi)L =

(
−a+

∫
Ω′
ρ(y) ζ(y;µ, ω)dx,−∂tρ+ ν∆ρ−∇ ·m

)
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∂2(ρi,mi),(ρi,mi)
L =


1
κ
|m|2
ρ3

− 1
κ
m
ρ2

− 1
κ
m
ρ2

1
κρ
I



∂2(ai,ϕi),(ai,ϕi)
L =

I 0

0 0



∂(κ,µ)∂(ρi,mi)L =


1

2κ2(x)
|m|2
ρ2
− 1

κ2(x)
m
ρ

Λ1(ω, ·) a 0



∂(κ,µ)∂(ai,ϕi)L =

 0 0

∫
Ω′ ρ(y) Λ1(ω, y)dy 0


where the variable Λ1(ω, x) is defined as follows

Λ1(ω, x) =



cos(ω1 · x) 0

0 sin(ω1 · x)

 . . . 0

...
. . . 0

0 . . .

cos(ωr · x) 0

0 sin(ωr · x)





.

6.4 The algorithm

We propose an inverse algorithm adapted from the three-operator splitting method [DY17],

which has also been shown to predict Nash equilibria in traffic flows [HML21]. We also discuss

stabilizing techniques that are essential in practice.
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6.4.1 The three-operator splitting scheme

Denoting by λ(ρ,m) := (λρ, λm) and λ(a,ϕ) := (λa, λϕ) and applying the framework in Section

6.2 to (6.3.4) we obtain the following inclusion formulation of the inverse MFG problem:

0 ∈ A (κ, µ) +B (κ, µ) + C
(
(κ, µ), ((ρ,m), (a, ϕ)), (λ(ρ,m), λ(a,ϕ))

)
,

where

A (κ, µ) =



∂R1(κ, µ)

(0, 0)

(0, 0)


, B (κ, µ) =



∂R2(κ, µ)

(0, 0)

(0, 0)


,

and

C
(
(κ, µ), ((ρ,m), (a, ϕ)), (λ(ρ,m), λ(a,ϕ))

)

=



∑N
i=1

〈
∂(κ,µ)∂(ρi,mi)L, λ(ρi,mi)

〉
−
∑N

i=1

〈
∂(κ,µ)∂(ai,ϕi)L, λ(ai,ϕi)

〉
(
∂(ρi,mi)L,−∂(ai,ϕi)L

)
(
∂2(ρi,mi),(ρi,mi)

Lλ(ρi,mi) +Π∗
B,(ρ,m)[ΠB,(ρ,m)(ρi,mi)− r̃B,i],

−∂2(ai,ϕi),(ai,ϕi)
Lλ(ai,ϕi)

)



.

The three-operator splitting scheme in [DY17] applies to optimization problems of the

form

find z ∈ H such that 0 ∈ Az +Bz + Cz, (6.4.2)

147



where A,B,C are maximal monotone operators defined on a Hilbert space H, and C is

cocoercive. Denote by IH the identity map in H, and JS := (I + S)−1 the resolvent of a

monotone operator S. The splitting scheme for solving (6.4.2) can be summarized as follows

zk+1 := (1− λk)zk + λkTz
k,

T := IH − JγB + JγA ◦ (2JγB − IH − γC ◦ JγB),

where γ is a scalar. If an operator S is of the sub-differential forms; that is, S = ∂fS for some

functional fS, the resolvent JS reduces to the proximal map x 7→ argmin
y

fS(y) +
1
2
∥x− y∥2.

Overall, the algorithm for (6.4.1) follows three components of the generic framework in

Section 6.2.3, upon some modification. In what follows, we discuss each component separately.

6.4.1.1 Update of the adjoint problem

Firstly, we choose ∥ · ∥(ρ,m) and ∥ · ∥(a,ϕ) with L2([0, T ], H−1/2(∂Ω)) × L2([0, T ], H1/2(∂Ω))

semi-norm, and L2
t × L2

x,t norms, respectively. Here the H
1
2 (∂Ω) and H− 1

2 (∂Ω) semi-norm

are taken as follows:

|v|2
H

1
2 (∂Ω)

:= min
v0∈H1(Ω) , v0=v on ∂Ω

|v0|2H1(Ω) ,

|v|2
H− 1

2 (∂Ω)
:= min

v0∈H1
0 (Ω) , ∂nv0=∂nv on ∂Ω

|v0|2H1(Ω) ,

where the right hand side denotes the standard H1(Ω) semi-norm.

Assuming appropriate regularity of (ρ,m), we recall that the operator ΠB,(ρ,m) is the

restriction/trace operator onto the appropriate Sobolev space on the boundary L2
(
[0, T ],

H−1/2(∂Ω)
)
× L2

(
[0, T ], H1/2(∂Ω)

)
ΠB,(ρ,m) (ρ,m) := (ρ,m · n) |[0,T ]×∂Ω+ .

With the aforementioned choice of the semi-norms, we naturally have the (formal) adjoint of

ΠB,(ρ,m), Π
∗
B,(ρ,m), as the Dirichlet and Neumann harmonic extension operators by definition;

that is,

(ηi,∇ξi) := Π∗
B,(ρ,m)[ΠB,(ρ,m)(ρ

n
i ,m

n
i )− r̃B,i],
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where (ηi, ξi) satisfy


∆ηn+1

i = 0 in Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω

+
∆ηn+1

i = 0 in Ω′\Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω

−

ηn+1
i = 0 on ∂Ω′




∆ξn+1

i = 0 in Ω

∂nξ
n+1
i = mn

i · n− pr2r̃B,i on ∂Ω
+

∆ξn+1
i = 0 in Ω′\Ω

∂nξ
n+1
i = mn

i · n+ pr2r̃B,i on ∂Ω
−

∂nξ
n+1
i = 0 on ∂Ω′

(6.4.3)

Here we use pr1, pr2 to denote the projection from the noisy data. The harmonic extension

is taken at each time t ∈ [0, 1] independently. In the implementation, we use a standard

finite difference scheme to compute the harmonic extension on spatial grids for each time grid

point. Note that if we assume κ = κ0 to be known outside of domain Ω, the measurements of

m and ∇ϕ are equivalent, as −κ0(x)ρ(x)∂nϕ(x) = m(x) · n on ∂Ω+.

We remark that the techniques of harmonic extension have been applied to various other

problems, e.g. over point clouds and in machine learning [SST18].

It is clear to see that λϕ is redundant and λa = 0 whenever 0 ∈ A+B+C. Hence, we can

consider only C
(
(κ, µ), ((ρ,m), (a, ϕ)), (λ(ρ,m), (0, 0))

)
. In this case, we preform a primal-dual

hybrid gradient method for updating λ(ρ,m):

λn+1,temp
ρi

λn+1,temp
mi

 =

I + αn
λ(ρi,mi)

ρni

 1
κn

|mn
i |2

(ρni )
3 − 1

κn

mn
i

(ρni )
2

− 1
κn

mn
i

(ρni )
2

1
κnρni

I




−1
 λnρi

λmn
i

− αn
λ(ρi,mi)

ρni

 ηn+1
i

∇ξn+1
i




λn+1
ρi

λn+1
mi

 = 2

λn+1,temp
ρi

λn+1,temp
mi

−
λn,temp

ρi

λn,temp
mi


(6.4.4)
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6.4.1.2 Update of the inverse problem

In this part, we focus on the update for the inverse problem variables (κ, µ).


κn+1,temp = Sαn

κγ

(
2κn − κ̃n − αn

κ

∑N
i=1 Λκ(κ

n,mn
i , ρ

n
i , λ

n+1
ρi

, λn+1
mi

)− κ0
)
+ κ0

κ̃n+1 = κ̃n + κn+1,temp − κn

κn+1 = max {ε1, κ̃n+1}
µn+1,temp = Sαn

µγ

(
2Π∗

µ(µ
n)− µ̃n − αn

µ

∑N
i=1 Λµ(λ

n+1
ρi

, ani )− Π∗
µ(µ0)

)
+Π∗

µ(µ0)

µ̃n+1 = µ̃n + µn+1,temp − µn

µn+1 = Πµ (min {ε2, µ̃n+1})
(6.4.5)

where Sα(r) is the shrinkage operator given as Sα(r) = sign(r)max{|r| − α, 0}, and

Λκ(κ,m, ρ, λρ, λm) =

∫ T

0

1

2(κ)2
∥m(·, s)∥2

(ρ(·, s))2
λρ(·, s)−

1

(κ)2
m(·, s)
ρ(·, s)

λm(·, s)ds,

Λµ(λρ, a) =

∫ T

0

∫
Ω′
Λ1(ω, y)λρ(y, s)a(s)dyds.

Since we have the µ, ω ∈ Codd=even := {(x1,1, x1,2, x2,1, x2,2, ..., xr,1, xr,2) : xi,1 = xi,2∀i =

1, ..., r}, we write the projector ∂χCodd=even
(where we identify Codd=even with Rr) as

Πµ : R2r → Codd=even
∼= Rr

(x1,1, x1,2, x2,1, x2,2, ..., xr,1, xr,2) 7→ (
x1,1 + x1,2

2
,
x2,1 + x2,2

2
, ...,

xr,1 + xr,2
2

)

and its adjoint as

Π∗
µ : Rr → R2r

(x1, x2, ..., xr) 7→ (x1, x1, x2, x2, ..., xr, xr).

6.4.1.3 Update of the forward problem

As for the forward problem, we use primal–dual hybrid gradient method (PDHG) [CP11]

to update ((ρi,mi) , (ϕi, ai)) for each event i, for 1 ≤ i ≤ N . The iterative updates contains
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three parts: firstly a proximal gradient descent step for (ρi,mi) with stepsizes (αn
ρi
, αn

mi
); then

a proximal gradient ascent step for (ϕi, ai) of stepsizes (α
n
ϕi
, αn

ai
); lastly an extrapolating step

for (ϕi, ai). Note that we make the choice of norm ∥ϕ∥2
H1

x,t
= ∥ϕt∥2L2

x,t
+∥∇xϕ∥2L2

x,t
for ϕ, based

on the General-proximal Primal-Dual Hybrid Gradient (G-prox PDHG) method [JLL19] that

can be interpreted as a preconditioning step for obtaining a mesh-size-free convergence rate

for the algorithm. Overall, the computation for the forward model follows the computational

method proposed in [LJL21, LN21].



(ρn+1
i ,mn+1

i ) = argmin(ρ,m)

{
L
(
(ρ0,i, gi), (ρ,m), (ani , ϕ

n
i ), (κ

n+1, µn+1)

)
+ 1

2αn
ρi

∥ρni − ρ∥2L2
x,t

+ 1
2αn

mi

∥mn
i −m∥2L2

x,t

}
(ϕn+1,temp

i , an+1,temp
i ) = argmin(a,ϕ)

{
− L

(
(ρ0,i, gi), (ρ

n+1,mn+1), (a, ϕ), (κn+1, µn+1)

)
+ 1

2αn
ϕi

∥ϕn
i − ϕ∥2H1

x,t
+ 1

2αn
ai

∥ani − a∥2L2
t

}
(ϕn+1

i , an+1
i ) = 2(ϕn+1,temp

i , an+1,temp
i )− (ϕn

i , a
n
i )

(6.4.6)

Assembling all three components described above, we arrive at the following Algorithm 4

for solving the inverse problem (6.4.1).

6.4.2 Stabilizing techniques

Here, we discuss key numerical strategies for stabilizing Algorithm 4. We refer to Algorithm 5

for more implementation details.

While the change of κn+1 is made from the accumulation of all measurement events

(through (λn+1
ρi

, λn+1
mi

)), there is sometimes unexpected change of κn+1(x) that makes the

algorithm highly unstable. For instance, there may be a large κn+1(x) at a single grid point.

Moreover, we are using harmonic expansion method to update (λn+1
ρi

, λn+1
mi

), which causes

large variances of κ(x) along the boundary ∂Ω. Therefore, we add a cut-off function and
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Algorithm 4 Inverse method for the nonlocal mean-field game system

Input: (ρ0,i, gi, r̃B,i) for i = 1, ..., N , (κ0, µ0)

Output: (κn, µn) for n = 1, ...,Nmax

while iteration n < Nmaximal do

1.Update for the adjoint problem:

compute (λn+1
ρi

, λn+1,
mi

) use (6.4.3)(6.4.4) for i = 1, ..., N .

2. Update for the inverse problem:

compute (κn+1, µn+1) use (6.4.5)

3. Update forward problem:

compute (ρn+1
i ,mn+1

i , ϕn+1
i , an+1

i ) use (6.4.6) for i = 1, ..., N .

n← n+ 1

end while

a convolution kernel to the step (6.4.5) to have a smoother change in κn+1(x) in space.

Specifically, we have 
κ̃n+1 = κ̃n + Tmask(κ

n+1,temp, κ0)− κn

κn+1 = max {ε1, κ̃n+1 ∗ ψ}
,

where Tmask is a cut–off function that truncates the change of κ near ∂Ω given by

Tmask(κ, κ0)(x) = ξ(x)(κ− κ0)(x) + κ0(x),

for a function ξ(x) vanishing near ∂Ω. As for the convolution

κn+1(x) = max

{
ε1,

∫
Ω′
κ̃n+1(y)ψ(x− y)dy

}
,

where the convolution kernel ψ(x) satisfies
∫
Ω
ψ(x)dx = 1.

On the other hand, after the inverse problem parameters (κn+1, µn+1) are updated, we get

new pair of parameters for a set of mean-field game problems. It is unclear whether starting
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from (ρni ,m
n
i , ϕ

n
i , a

n
i ) and taking the update rule (6.4.6) once produces physical solutions for

the new mean-field game system due to highly nonlinear dependence of the solution on the

system parameters. Therefore, instead of preforming one iteration for the forward problem, we

apply the PDHG algorithm for the forward problem until its error reaches a preset tolerance.

More specifically, at every iteration n, with new system parameters (κn+1, µn+1), we use

(ρni ,m
n
i , ϕ

n
i , a

n
i ) as an initial guess and calculate the mean-field game solution accurately so

that the primal–dual gap is smaller than residual the preset tolerance.

We summarize the inversion algorithm for the nonlocal mean-field game system in details

in Algorithm 5.

6.5 Numerical examples

This section demonstrates the efficiency and robustness of the inverse mean-field game

algorithm with three examples. We also discuss details on the rule we used to choose the

best reconstruction parameters.

6.5.1 Numerical implementation details

In this section, we present several numerical examples to illustrate the effectiveness of the

new algorithm for the reconstruction of parameters in the mean-field game problem.

We consider the spatial-time domain Ω′ × [0, T ] = [−1, 1]2 × [0, 1]. In the following

examples, the partial boundary measurements are taken along the domain Ω = [−0.5, 0.5]2,

we refer as ∂Ω. The Figure 6.1 gives an example of the forward measurement event.

In order to collect our observed data of the forward problem, we solve a set of mean-field

game problem (6.3.3) with given (ρ0,i, gi) and (κ, µ) by finite difference method with a mesh of

size (0.05, 0.04) in space-time. Each problem is solved via primal-dual optimization approach

with primal-dual gap etol < 2e − 3. The initial density function ρ0,i is the average of two
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Algorithm 5 A detailed inversion algorithm for the nonlocal mean-field game system

Input: (ρ0,i, gi, r̃B,i) for i = 1, ..., N , (κ0, µ0)

Output: (κn, µn) for n = 1, ...,Nmax

while iteration n < Nmaximal do

1.Update for the adjoint problem by computing (λn+1
ρi

, λn+1,
mi

)


∆ηn+1

i = 0 in Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω

+
∆ηn+1

i = 0 in Ω′\Ω

ηn+1
i = ρni − pr1r̃B,i on ∂Ω

−

ηn+1
i = 0 on ∂Ω′
∆ξn+1

i = 0 in Ω

∂nξ
n+1
i = mn

i · n− pr2r̃B,i on ∂Ω
+

∆ξn+1
i = 0 in Ω′\Ω

∂nξ
n+1
i = mn

i · n+ pr2r̃B,i on ∂Ω
−

∂nξ
n+1
i = 0 on ∂Ω′

λn+1,temp
ρi

λn+1,temp
mi

 =

I + αn
λ(ρi,mi)

ρni

 1
κn

|mn
i |2

(ρni )
3 − 1

κn

mn
i

(ρni )
2

− 1
κn

mn
i

(ρni )
2

1
κnρni

I




−1
 λnρi

λmn
i

− αn
λ(ρi,mi)

ρni

 ηn+1
i

∇ξn+1
i




λn+1
ρi

λn+1
mi

 = 2

λn+1,temp
ρi

λn+1,temp
mi

−
λn,temp

ρi

λn,temp
mi
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2. Update for the inverse problem by computing (κn+1, µn+1)


κn+1,temp = Sαn

κγ

(
2κn − κ̃n − αn

κ

∑N
i=1 Λκ(κ

n,mn
i , ρ

n
i , λ

n+1
ρi

, λn+1
mi

)− κ0
)
+ κ0

κ̃n+1 = κ̃n + Tmask(κ
n+1,temp, κ0)− κn

κn+1 = max {ε1, κ̃n+1 ∗ ψ}
µn+1,temp = Sαn

µγ

(
2Π∗

µ(µ
n)− µ̃n − αn

µ

∑N
i=1 Λµ(λ

n+1
ρi

, ani )− Π∗
µ(µ0)

)
+Π∗

µ(µ0)

µ̃n+1 = µ̃n + µn+1,temp − µn

µn+1 = Πµ(min{ε2, µ̃n+1})

3. Update forward problem by computing (ρn+1
i ,mn+1

i , ϕn+1
i , an+1

i ) with the forward

mean-field game algorithm for i = 1, ..., N .

Apply the iterative Algorithm 3 given input (ρ0,i, gi), (κ
n+1, µn+1), etol with initial

guess (ρni ,m
n
i , ϕ

n
i , a

n
i ), and assign

(ρn+1
i ,mn+1

i , ϕn+1
i , an+1

i ) := (ρ∗i ,m
∗
i , ϕ

∗
i , a

∗
i )

n← n+ 1

end while
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Gaussian functions with centers xG ∈ Ω′\Ω. The final cost function g(x) is smooth and has a

smaller value around a single point xg ∈ Ω′\Ω such that densities are concentrated in the

neighborhood of xg at the final time. We want to point out that there is room to improve

the initial density function and final cost function choices. We choose this set of (ρ0,i, gi) to

ensure that the density’s movement covers the domain Ω as completely as possible. We also

expect the nonlocal interaction among agents to be better reflected at the partial boundary

measurements by setting the initial density as two Gaussians rather than one.

We only take 16 forward measurement events for each of the following numerical examples.

The partial boundary measurement means that we only collect the ρ,m along the boundary

∂Ω in each event. Therefore, the resulting inverse problem is severely ill-posed.

To test the robustness of our reconstruction algorithm, we add some random noise to the

measurements as follows:

(ρ,m · n)δ (ti, xj) = ((1 + ϵnδij,1)ρ, (1 + ϵnδij,2)m · n) (ti, xj) ,

where {(ti, xj)}i=1,..,I,j=1,...,J ∈ [0, T ]× ∂Ω+ represents sampling points on the measurement

boundary [0, T ] × ∂Ω+, {δij,1, δij,2}i=1,..,I,j=1,...,J are i.i.d. random variables uniformly dis-

tributed on the interval [−0.5, 0.5] and ϵn corresponds to the noise level in the data, which is

always set to be ϵn = 10% in all our examples.

From the noisy observed data {(ρ,m · n)δ (ti, xj)}i=1,..,I,j=1,...,J on the sampling points of

the measurement surface, we then use the algorithm to reconstruct the forward problem

parameters (κ, µ). Recall that we paramatrized the running cost L(x, v) := 1
2κ(x)
|v|2 by κ

and nonlocal kernel K(x, y) := ζ(x;µ, ω) · ζ(y;µ, ω) by µ. Since we aim at recovering the

model on a given domain with fixed grid points, we fix the choice of ω, and only seek sparse

recovery of µ.

In the following examples, we use a set of parameters uniformly, without tuning. γc =

0.2, γµ = 0.1, αc = 0.1, αµ = 0.1, αλ = 10. We set the lower-bound projection parameter

ε1 = κc, this is based on the additional assumption of the model parameters that κ(x) ≥
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κc for x ∈ Ω′. The projection parameter for kernel coefficient is ε2 = 1.

To account for unknown ground truth of the model parameters, we introduce Res to

quantify the quality of the reconstructed parameters.

Resn =
∑
i

∫
∂Ω+

(
∥ρni − pr1r̃B,i∥2 + ∥mn

i · n− pr2r̃B,i∥2
)
,

where ρni ,m
n
i are the solution of the forward mean-field game problem with i-th choice of

initial density and final cost function with the reconstructed parameter (κn, µn) at the n-th

iteration of the algorithm. The boundary residual Res measures how much the new boundary

measurements of the mean-field game model with the recovered parameters deviate from the

given partial measurements. If (κ, µ) = (κtrue, µtrue), we would expect that Res is close to 0.

Therefore, we pick the reconstructed parameters at nopt-th iteration by taking

nopt = argmin
n

Resn,

(κopt, µopt) = (κnopt , µnopt).

When we implemented the algorithm, we observed that the quantity Resn first decreased then

increased with respect to the iteration. We also observed that with large enough number of

iterations, (for example, 1500), the inverse problem is contaminated and the reconstruction of

mean-field game coefficients are very bad. In the following examples, we take fixed number of

iterations N = 1500 for the inverse algorithm, and pick the reconstructed model parameters

accordingly.

6.5.2 Example 1

This example tests a running cost κ(x) with a bump at point (0.25, 0.25), which means the

density that travel crossing near this point has a lower cost than other routes. The density are

also expected to accelerate when they travel across this point. The nonlocal kernel K(x, y) is

constructed via a Gaussian function plus some sparse terms in forms of µ2
k cos(ωk · x). The

nonlocal kernel, in general, penalizes being too concentrated. The amplify of certain Fourier
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frequencies determines the agents’ particular interaction preferences. Specifically, we have

the following:

κ(x) = 2 + 4 exp

(
−(x1 − 0.25)2 + (x2 − 0.25)2

0.12

)
,

κ0(x) = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

Ks(x, y) = 0.20942 (cos (π(x1 − y1)) + cos (π(x2 − y2)))

+ 0.26132 (cos (π(x1 − y1) + π(x2 − y2)) + cos (−π(x1 − y1) + π(x2 − y2))) ,

where x = [x1, x2], y = [y1, y2]. We have µ0, which represents K0(x, y) via the expansions

form µ2
k cos(ωk · x), known. The variable k0 is a given constant value that makes the kernel

integration
∫ ∫

K(x, y)dxdy = 1. Varying this constant corresponding to changing the

coefficient of the zero Fourier mode (0, 0). This constant k0 does not change the intensity of

repulsion effect among the agents, since
∫
k0ρ(y)dy = k0

∫
ρ0(y)dy is uniform over the domain

Ω′. With K(x, y) = ζ(x;µ, ω) · ζ(y;µ, ω) for µ, ω ∈ Codd=even, we omit the even entries (eg.

µk,2, ωk,2) and express the kernel Ks as follows:

µs = (0.2094, 0.2094, 0.2613, 0.2613),

ωs = ((π, 0), (0, π), (π, π), (−π, π)).

Here, we also assume that κc = 2 and κ(x) = 2 for x ∈ Ω′\Ω is known.

Given (κ0, µ0) and the noisy partial boundary measurements with corresponding event

parameters (ρ0,i, gi, r̃B,i), we apply our inverse algorithm.The results are shown in Figure

6.2,6.3. In Figure 6.2, we plot the residual Resn and the maxx κ
n(x) along the iteration. We see

that the residual oscillates and decreases first, then bounces back and increases. In Figure 6.3,

we show the reconstruction of model parameters by taking nopt = argminnRes
n, (κopt, µopt) =

(κnopt , µnopt). We see that the reconstructed κopt(x) has a single bump sits near (0.25, 0.25).
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Figure 6.2: The residual Resn and the maxx κ
n(x) at n-th iteration.
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Figure 6.3: From left to right: the true running cost κ(x); the reconstructed running cost

κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel K(x, y) in vector

form, where x-axis represents different Fourier mode ω and the y-axis corresponds to the

coefficients µ.
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The shape of the bump is not as sharp as the ground truth κ. The maximal value of running

cost maxx κtrue(x) = 6; while maxx κopt(x) = 4. As for the non-local kernel, we have µopt

nicely reconstructed, where µtrue = µ0 + µs ≈ µopt. This example shows that our inverse

algorithm is robust to noise and can recover the model parameters (κ, µ) simultaneously.

6.5.3 Example 2

In this example, we make the κ(x) more complicated by having two bumps sitting diagonally.

We except that if the density travels across these two bumps, it will accelerate twice. The

model set-up is as follows:

κ(x) = 2 + 4 exp

(
−(x1 + 0.25)2 + (x2 − 0.25)2

0.12

)
+ 4 exp

(
−(x1 − 0.25)2 + (x2 + 0.25)2

0.12

)
,

κ0(x) = 2, κc = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

µs = (0.3374, 0.3374, 0.2942, 0.2942),

ωs = ((π, 0), (0, π), (2π, 0), (0, 2π)).

We can see from the Figure 6.4 that recovered bumps are well separated, and their

locations are accurately captured. Reconstructed bumps are more spread compared to the

ground truth, and there is some noise on upper left and bottom right corners of the domain

Ω′. The nonlocal kernel is reconstructed nicely as shown in Figure 6.4(right). A precise

sparse representation of Ks(x, y) is recovered. Considering the severe ill-posedness of the

inverse problem with 10% multiplicative noise added to the boundary measurements, the

reconstruction quality is quite satisfactory.
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Figure 6.4: From left to right: the true running cost κ(x); the reconstructed running cost

κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel K(x, y) in vector

form.

6.5.4 Example 3

In this example, we modify the κ(x) by having two bumps sitting in parallel. Similar to the

Example 2, the density would prefer to move crossing these bumps. We set the nonlocal

kernel with Ks containing Fourier modes with higher frequency.

κ(x) = 2 + 4 exp

(
−(x1 − 0.25)2 + (x2 − 0.25)2

0.12

)
+ 4 exp

(
−(x1 − 0.25)2 + (x2 + 0.25)2

0.12

)
.

κ0(x) = 2, κc = 2,

K(x, y) = K0(x, y) +Ks(x, y) + k0,

K0(x, y) =
1

5
exp

(
−1

2

x2 + y2

0.42

)
,

µs = (0.2973, 0.2973, 0.2973, 0.2973),

ωs = ((2π,−π), (2π, π), (π, 2π), (π,−2π)).

We have the reconstruction result shown in Figure 6.5. The two parallel sitting bumps are

well separated and located with reasonable accuracy. Again, the bumps are diffused with

some noise near the upper boundary of Ω. The nonlocal kernel is recovered very nicely.
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Figure 6.5: From left to right: the ground true running cost κ(x); the reconstructed running

cost κopt(x) at iteration nopt; the coefficient representation of nonlocal kernel K(x, y) in vector

form.

6.6 Conclusion

In this chapter, we formulate a new class of inverse mean-field game problems given only

partial boundary measurements. A novel model recovery algorithm is proposed based on the

saddle point formulation of MFGs. We demonstrate the robustness and effectiveness of the

numerical inverse algorithm with several examples, where the MFG model parameters are

reconstructed accurately. Our algorithm can be further generalized to other inverse problems

with saddle point structure in the forward problem.
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[CD14] René Carmona and Francois Delarue. “The master equation for large population
equilibriums.” In Stochastic analysis and applications 2014, pp. 77–128. Springer,
2014.

[CDL19] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions.
The master equation and the convergence problem in mean field games. Princeton
University Press, 2019.

[CEL20] Arthur Charpentier, Romuald Elie, Mathieu Laurière, and Viet Chi Tran. “COVID-
19 pandemic control: balancing detection policy and lockdown intervention under
ICU sustainability.” Mathematical Modelling of Natural Phenomena, 15:57, 2020.

[CFL22] Yat Tin Chow, Samy Wu Fung, Siting Liu, Levon Nurbekyan, and Stanley Osher.
“A numerical algorithm for inverse problem from partial boundary measurement
arising from mean field game problem.” arXiv:2204.04851, 2022.

[CGC02] Thomas Caraco, Stephan Glavanakov, Gang Chen, Joseph E Flaherty, Toshiro K
Ohsumi, and Boleslaw K Szymanski. “Stage-structured infection transmission
and a spatial epidemic: a model for Lyme disease.” The American Naturalist,
160(3):348–359, 2002.

[CGP15] Pierre Cardaliaguet, P Jameson Graber, Alessio Porretta, and Daniela Tonon.
“Second order mean field games with degenerate diffusion and local coupling.”
Nonlinear Differential Equations and Applications NoDEA, 22(5):1287–1317, 2015.

[CH17] Pierre Cardaliaguet and Saeed Hadikhanloo. “Learning in mean field games:
the fictitious play.” ESAIM: Control, Optimisation and Calculus of Variations,
23(2):569–591, 2017.

167



[Cir15] Marco Cirant. “Multi-population mean field games systems with Neumann bound-
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model based on mean-field games.” In 2015 American Control Conference (ACC),
pp. 1983–1988. IEEE, 2015.

[CLO19] Yat Tin Chow, Wuchen Li, Stanley Osher, and Wotao Yin. “Algorithm for
Hamilton–Jacobi equations in density space via a generalized Hopf formula.”
Journal of Scientific Computing, 80(2):1195–1239, 2019.
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[GBK01] Bryan T Grenfell, Ottar N Bjórnstad, and Jens Kappey. “Travelling waves and
spatial hierarchies in measles epidemics.” Nature, 414(6865):716–723, 2001.

[GHH21] Prakhar Godara, Stephan Herminghaus, and Knut M Heidemann. “A control
theory approach to optimal pandemic mitigation.” PloS one, 16(2):e0247445,
2021.

[GHX19] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. “Learning mean-field games.”
In Advances in Neural Information Processing Systems, pp. 4967–4977, 2019.

[GHX20] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. “A General Framework for
Learning Mean-Field Games.” arXiv preprint arXiv:2003.06069, 2020.

[GLB22] Hao Gao, Alex Lin, Reginald Banez, Wuchen Li, Zhu Han, Stanley Osher, and
Vincent Poor. “Opinion Evolution in Social Networks: Connecting Mean Field
Games to Generative Adversarial Nets.” IEEE Transactions on Network Science
and Engineering, 2022.

[GLK22] Hao Gao, Wonjun Lee, Yuhan Kang, Wuchen Li, Zhu Han, Stanley Osher, and
Vincent Poor. “Energy-Efficient Velocity Control for Massive Numbers of UAVs:
A Mean Field Game Approach.” IEEE Transactions on Vehicular Technology,
2022.

[GLL11] Olivier Guéant, Jean-Michel Lasry, and Pierre-Louis Lions. “Mean field games
and applications.” In Paris-Princeton Lectures on Mathematical Finance 2010,
volume 2003 of Lecture Notes in Math., pp. 205–266. Springer, Berlin, 2011.

[GLY13] Tom Goldstein, Min Li, Xiaoming Yuan, Ernie Esser, and Richard Bara-
niuk. “Adaptive primal-dual hybrid gradient methods for saddle-point problems.”
arXiv:1305.0546, 2013.

[GM18] P. Jameson Graber and Alpár R. Mészáros. “Sobolev regularity for first order
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[JL20] Matt Jacobs and Flavien Léger. “A fast approach to optimal transport: The
back-and-forth method.” Numerische Mathematik, 146(3):513–544, 2020.
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[NS18] Levon Nurbekyan and J. Saúde. “Fourier approximation methods for first-order
nonlocal mean-field games.” Port. Math., 75(3-4):367–396, 2018.

[NTS20] Babacar Mbaye Ndiaye, Lena Tendeng, and Diaraf Seck. “Analysis of the COVID-
19 pandemic by SIR model and machine learning technics for forecasting.” arXiv
preprint arXiv:2004.01574, 2020.

[Nur18] Levon Nurbekyan. “One-dimensional, non-local, first-order stationary mean-field
games with congestion: a Fourier approach.” Discrete Contin. Dyn. Syst. Ser. S,
11(5):963–990, 2018.

[ONL21a] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,
and Lars Ruthotto. “A neural network approach applied to multi-agent optimal
control.” In 2021 European Control Conference (ECC), pp. 1036–1041. IEEE,
2021.

176



[ONL21b] Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher,
and Lars Ruthotto. “A Neural Network Approach for High-Dimensional Optimal
Control.” arXiv preprint arXiv:2104.03270, 2021.

[OWL21] D Onken, S Wu Fung, Xingjian Li, and L Ruthotto. “OT-Flow: Fast and Accurate
Continuous Normalizing Flows via Optimal Transport.” In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, 2021.

[ROL20] Lars Ruthotto, Stanley J Osher, Wuchen Li, Levon Nurbekyan, and Samy Wu
Fung. “A machine learning framework for solving high-dimensional mean field
game and mean field control problems.” Proceedings of the National Academy of
Sciences, 117(17):9183–9193, 2020.

[Ron98] Xiaochun Rong. “A Bochner theorem and applications.” Duke mathematical
journal, 91(2):381–392, 1998.

[Rua07] Shigui Ruan. “Spatial-temporal dynamics in nonlocal epidemiological models.” In
Mathematics for life science and medicine, pp. 97–122. Springer, 2007.

[SB18] Leonardo Stella and Dario Bauso. “Mean-field games for bio-inspired collective
decision-making in dynamical networks.” arXiv preprint arXiv:1802.03435, 2018.

[SCT21] Cristiana J Silva, Carla Cruz, Delfim FM Torres, Alberto P Muñuzuri, Alejan-
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