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ABSTRACT OF THE DISSERTATION
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Access-control misconfigurations are among the main causes of today’s security incidents.

One main reason is that access-control configurations need to be frequently changed by system

administrators (sysadmins) to accommodate dynamic information sharing. Unfortunately, to err

is human—sysadmins often make mistakes (e.g., over-granting privileges) when changing access

control configurations. Such mistakes can stay unnoticed for a long time until eventually being

exploited by attackers, causing catastrophic security incidents.

This dissertation explores two validation approaches to detect access-control miscon-

figurations at different life-cycle stages of systems. The first approach is to test access-control

configuration changes before they are deployed to production. This can help sysadmins detect
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access-control misconfigurations before they bring any real harm to production systems. The

second approach is to monitor access-control behavior changes after the configuration changes

are deployed to production. This can help sysadmins detect and diagnose potential data leaks

caused by access-control misconfigurations quickly so that they can be fixed timely.

First, this dissertation presents a new type of test programs, ACTESTs, to test access-

control configuration changes and a new approach to generate such test programs from existing

program code. ACTESTs output the impacts of access-control changes—what requests were

denied, but will be allowed after a change, and vice versa. With this, sysadmins can validate if

the changed requests are intended or not and identify potential security vulnerabilities. The key

challenges this dissertation addressed include making ACTESTs safe to run in production environ-

ments and making them performance-efficient. ACTESTs help detect 168 new misconfigurations

from 72 Docker images.

Second, this dissertation presents P-DIFF, a practical tool for monitoring access-control

behavior to help sysadmins early detect unintended access-control configuration changes and

perform postmortem forensic analysis upon security attacks. P-DIFF continuously monitors

access logs and infers access-control behavior changes from them. This dissertation devises

a novel time-changing decision tree to effectively represent access-control behavior changes,

coupled with a new learning algorithm to infer the tree from access logs. Evaluation shows that

P-DIFF can detect 76%–100% of access control behavior changes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, access-control misconfigurations have been the culprit of many security

incidents, including data leakage, website compromises and ransomware [113, 101, 66, 27]. For

example, in December 2019, a wrong configuration change to a database’s network security

rules at Microsoft leaked 250 million entries of email, IP address and support case details[36]. In

July 2020, 23000 misconfigured MongoDB databases are wiped by hackers and the victims are

asked to pay ransom[135]. Table 1.1 displays more recently-reported security incidents caused

by access-control misconfigurations.

Table 1.1. Example of recent security incidents caused by access-control misconfigura-
tions.

Time Incident Organization

2019.7 100 million customer data leaked [20] CapitalOne
2019.9 20 million citizen records exposed [134] Novaestrat
2019.12 250 million customer data leaked [36] Microsoft
2020.3 10.88 billion records leaked [120] CAM4
2020.7 23,000 MongoDB are ransomed [135] Many Orgs
2020.10 Sensitive patient data exposed [98] Pfizer
2021.1 300 million customer data leaked [73] Astoria Company
2021.3 300,000 customer data leaked [92] Hobby Lobby
2021.4 2.5 million customer file leaked [37] Bizongo

Access-control misconfigurations cause severe outcomes. First, they open doors for
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unauthorized users to access private data. As shown by the incidents in Table 1.1, attackers can

easily download a large amount of private data and sell them on the black market or ask for

ransom. To make the matter worse, these doors are often opened for a long time. Unlike service

down, opened data access would not block anyone’s work and so users have less incentive to

report it. An IBM report shows that it takes 207 days on average for companies to identify a data

breach [51]. In extreme cases, it takes years to discover a data breach [93].

A major challenge of managing access-control configuration is to accommodate constant

configuration changes. Access-control configuration is never a one-time effort but requires

continuous changes to accommodate the dynamics of data and resource sharing, as well as

high churn and updates of new protection domains and organizational roles [127, 23, 99]. The

following lists a few common cases when sysadmins need to modify access-control configurations

to accommodate user, data, functionality and domain changes.

• User change: Users may join, depart or change roles within an organization or a project.

• Data change: Some data may become sensitive or start to contain sensitive information.

• Functionality change: New features, accesses or services are added for the public or a

certain group of user to access.

• Domain change: Data need to be reorganized into different domains or subdomains.

Unfortunately, access-control configuration changes are error-prone for at least three

reasons: 1) Access-control configurations are complex and heterogeneous. The configurations

are often not “What You See Is What You Get” [86, 65], but are encoded in app-specific directives

and rules with different formats. For example, file systems use bit vector to represent permissions,

web servers take regular expressions to match URLs for deny/allow, and databases use customized

roles to define privileges. 2) Sysadmins are under time pressure to make a change when important

requests are incorrectly denied. One common case is about handling access-denied issues: when

a user complains about being denied to something that she is supposed to have access, sysadmins
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need to address the issue quickly for her. Because of the time pressure, sysadmins may perform

some quick changes as workarounds without carefully checking if the changes grant the least

requested permissions or grant additional unexpected permissions. That is, sysadmins may

prioritize availability over security without precisely understanding the consequences [115, 57].

3) Diagnosis logs for access-control are often vague and not actionable [127, 17]. As a result, it is

hard for sysadmins to precisely understand the access-control behavior without looking into the

code. In reality, sysadmins often perform a trial-and-error process to workaround problems [127].

To eliminate errors, verification and validation are two major methodologies that are

widely applied in many areas, including software and hardware systems. Verification tries to

ensure “building systems right”, namely building systems that comply with given specifications

and requirements. And validation aims to assure “building the right systems”, namely building

systems that meet the need of users or stakeholders. In the context of access-control configuration,

verification tries to ensure that a set of configurations can be correctly interpreted by the target

systems or can fulfill human-provided properties; validation, instead, aims to assure that the

configurations are what users/sysadmins need, namely the configured systems will behave as

they expected.

Previous work on detecting access-control misconfigurations mostly lies in the verifi-

cation direction [97, 35, 48, 54, 71, 53]. These techniques usually require humans to translate

actual system configurations into formal models and rely on humans to provide specifications

to verify. However, due to the diversity and complexity of access-control implementations, it

takes significant human effort to encode system configurations using modeling languages, let

alone maintain consistent models when system configurations change. In addition, it is also hard

for humans to provide a complete set of specifications for verification. As a result, verification

cannot practically eliminate all errors, and validation is still needed for sysadmins to detect errors

that cause unintended results.

The key missing piece of today’s access-control management is tools that can help

sysadmins validate their configuration changes. Validating configuration changes need to know
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the actual impacts on the access-control behavior of running systems. Without tooling support,

sysadmins can either infer access-control behavior statically from configurations or running tests

against running systems, of which both have many challenges. First, it is hard to manually infer

the access-control behavior of running systems from the static access-control configurations.

As discussed before, access-control configurations are encoded in app-specific directives with

different formats, including bit vector, regular expressions and database tables. It is non-trivial

(if not impossible) to reason about the access-control behavior by inspecting the configurations

statically. Second, it is also difficult to manually evaluate access-control behavior by running

tests against running systems. Such tests need to be system tests and cannot cause side effects to

actual system data. Therefore, running such tests need a dedicated testing environment, which is

costly and not easy to manage. In addition, such tests rely on a good coverage of possible data

requests so that access allow and deny are thoroughly exposed. These cannot be easily generated

manually, as the number of possible requests can be large and the requests can be complex.

1.2 Contribution

This dissertation presents two validation methods to help sysadmins validate their access-

control configuration changes. These two validation methods target for two different life-cycle

stages of systems. First, before an access-control configuration change is deployed to production

systems to take effect, we present ACTEST to test the changed configuration and assist sysadmins

understand its impacts on access-control behavior so that sysadmins can decide if the impacted

behavior is intended or not. Second, after an access-control configuration change has been

deployed to production systems, we present P-DIFF to infer the behavior changes from access

logs so that sysadmins can detect an unintended data exposure early and avoid further data leak.

Thesis Statement: By validating access-control configuration changes with testing and

machine learning techniques at different system life-cycle stages, sysadmins can effectively detect

access-control misconfigurations.
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1.2.1 Testing Access-control Configuration Changes with ACTEST

Chapter 2 presents ACTEST. ACTEST is a type of test programs to help sysadmins test

their access-control configuration changes before they are deployed. Every time sysadmins

change their access-control configurations, they can run ACTEST to understand the impacts on

the access-control behavior, namely what requests were denied before become allowed and vice

versa. With this, sysadmins can validate if the change impacts on behavior is intended or not. If

it is not intended, they can further modify their configurations to make them more secure.

ACTEST has three properties. First, ACTEST can be safely run with production data

and configuration. This saves sysadmins’ efforts from setting up and maintaining dedicated

testing environments, which is prohibitively costly [18, 5]. Second, ACTEST can generate a

good coverage of test requests to expose access-control behavior changes. This frees sysadmins

from learning to write test code or specifying all test requests manually. Third, ACTEST is

performance-efficient. ACTEST only runs the code logic to generate the access-control results

(i.e. allow/deny) but eliminates the part for unrelated computation and I/O. Therefore, running

ACTEST is much faster than testing with production system directly.

ACTEST can be particularly built by developers or generated from the original programs.

To minimize developers’ efforts, Chapter 2 presents a general approach to turn an original pro-

gram into an ACTEST. First, the approach runs the original program in a virtualized environment

and uses copy-on-write to avoid it causing any side effects to production data. Second, the

approach uses two ways to generate test requests: 1) using historical access logs to generate test

requests; 2) letting sysadmins specifying the target subjects (e.g., users), objects (e.g., files) and

actions (e.g. GET, PUT) and generating the Cartesian product of them to synthesize possible

requests for testing. Third, our approach trims the original program to speed up its execution.

This is based on an observation that the access-control checks are typically called before the

major computation and I/O are executed. Only executing the access-control checks is enough

to get the access-control results and the original program can be trimmed to speedup the whole
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execution.

Chapter 2 evaluates ACTESTs for various systems with configurations in public Docker

images from DockerHub. ACTESTs have helped detect 168 new vulnerabilities from 72 Docker

images. They have been reported to the image maintainers, and so far 25 of them have been

confirmed and 19 of them have been fixed by the maintainers. Chapter 2 also evaluates ACTESTs

with five real-world systems, including Wikipedia and the web proxy of a commercial company.

The results show that: 1) with replaying access logs, ACTESTs can detect up to 80% of all

the behavior impacts of injected changes; 2) by synthesizing requests, ACTESTs can detect all

the behavior impacts of injected changes. For performance, ACTESTs saves 9.09%–98.61%

execution time from testing with the original programs.

1.2.2 Inferring Access-control Behavior Changes with P-DIFF

Chapter 3 presents P-DIFF, a practical tool that can infer access-control behavior changes

from access logs. P-DIFF takes solely existing systems’ access logs as input and requires

sysadmins to record no configuration changes. Recorded configuration changes are not sufficient

for humans to reason about behavior changes as they are not “What You See Is What You Get”.

In addition, sometimes it is also hard to record as file permissions and network-level firewalls

can be modified by users and other superusers without sysadmins’ awareness.

P-DIFF can be used to assist sysadmins in two use cases: 1) Change validation: P-DIFF

can be used as a monitoring tool that continuously analyzes the access logs to detect behavior

changes. When a behavior change is detected, P-DIFF can warn sysadmins about the change and

ask sysadmins to validate if the change is intended or a misconfiguration. 2) Forensic analysis:

when a security incident has been discovered, P-DIFF can be used for postmortem analysis.

P-DIFF can detect all behavior changes happened in the history and let sysadmins examine when

and which change opened up the access.

The key contribution of P-DIFF is a novel learning algorithm for inferring behavior

changes from access logs. The algorithm uses a decision-tree to encode the access-control
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behavior of a system and stores time series in the tree leaves to record behavior changes. This

dissertation refers the decision tree as Time-Changing Decision Tree (TCDT). TCDT cannot be

inferred with traditional learning algorithms as traditional algorithms do not consider changes in

the learning data. This dissertation presents a new TCDT learning algorithm that analyzes access

logs as a sequence of access events ordered by time to capture changes.

Chapter 3 evaluates P-DIFF with access logs collected from five real-world deployed

systems, including two from industrial companies. For change validation, P-DIFF can effectively

detect 76%–100% of the behavior changes with an average precision of 89%. For forensic

analysis, P-DIFF can detect the root-cause changes for 85%–98% of the evaluated cases.
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Chapter 2

Testing Access-control Configuration
Changes with ACTEST

2.1 Introduction

With the error-proneness of configuration changes, a key missing piece of current access-

control management is tools that can help sysadmins test their configuration changes. Without

tooling support, sysadmins face two challenges to test their configurations manually. First, testing

access-control requires system-level tests to evaluate end-to-end system behavior; however,

organizations may not maintain a dedicated testing environment because it is costly and is not

easy to manage, as shown in forum discussions [95, 96]. This restricts sysadmins to only perform

limited tests on their production systems. The tests can only be the ones without side effects (e.g.

read data) but cannot be the opposite (e.g. modify data). Second, testing access-control requires

a good coverage of possible requests. These cannot be easily generated manually, as the number

of possible requests can be large and the requests can be complex. In addition, running the test

requests may need to tackle other technical challenges, like mimicking a source IP address.

This chapter presents a new type of test programs that software vendors can release for

sysadmins to validate their access-control configuration changes. Such test programs can be

released along with the main product programs so that sysadmins can easily download and use

for test. Vendors can choose to develop such test programs from scratch as an individual tool.

To help software vendors create such test programs, this chapter presents a general approach to
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generate such test programs from existing system code. We term the generated test programs as

ACTESTs.

With ACTESTs, every time sysadmins change access-control configurations, they can run

the test programs to detect the impacts of the change—what requests are changed from deny to

allow and vice versa. Such testing enables sysadmins to early detect risky changes to prevent

unexpected access that results in security incidents.

ACTESTs can be run in production. It saves sysadmins from setting up dedicated

testing environments—setting up such environments requires replicating the production systems

including production data and dependencies, which is prohibitively costly [18, 5] and thus is

not a common practice for many organizations [95, 96]. ACTESTs require minimal effort from

sysadmins. It does not require sysadmins to implement the test code or to specify every testing

inputs manually.

To generate ACTESTs, we needs to address three major challenges: 1) As ACTESTs need

to be run in production, how to avoid the target programs making side effects to production

systems? 2) How to generate testing requests without much effort from sysadmins? 3) To

achieve comprehensive tests with a high coverage of test requests, how to make ACTESTs

performance-efficient to run large-scale tests efficiently?

To address the first challenge, we leverage sandboxing techniques to avoid any unexpected

side effects. First, an ACTEST encapsulates itself inside a isolated, virtualized environment with

resource caps to avoid interference with production processes. Second, an ACTEST uses copy-on-

write for data access to avoid modifying production data. Third, an ACTEST is run in a virtualized

network with firewall rules to block the outgoing traffic so that it cannot affect production

network traffic.

For the second challenge, we develop two approaches to generate test inputs. First,

ACTESTs can take historical access logs specified by sysadmins to generate test requests. As

shown in [125], most server programs record requests in access logs. Second, if historical access

logs are not available or have a low coverage on possible requests, ACTESTs allow sysadmins to
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specify target subjects (e.g., the database table of user names), objects (e.g., the root directory of

all HTML files) and actions (e.g. GET, PUT). Then ACTESTs synthesize testing requests based

on the Cartesian product of the subjects, objects and actions.

To address the third challenge, we propose an approach to modify the target system to

speed up its request handling. This is based on an observation that access-control checks are

usually executed in an early phase of the data paths, before major disk I/O and network that

take up most the request handling time. Since these early-phase access-control checks have

already evaluated the access-control results, the subsequent procedures can be skipped without

affecting the test results. We present two trimming methods to accelerate ACTESTs by skipping

the data-related procedures.

We evaluate ACTESTs by using them to detect the change impacts in public Docker images

of five widely-used web systems. With the detected change impacts, 168 new vulnerabilities are

identified from 72 Docker images. We report them to the image maintainers. So far 25 of them

have been confirmed and 19 of them have been fixed by the maintainers.

We also evaluate ACTESTs with five real-world deployed systems, including Wikipedia

and the web proxy of a commercial company with millions of customers. The results show

1) by synthesizing testing requests, ACTESTs can detect all the impacts of randomly injected

changes to these systems; 2) by replaying historical requests, ACTESTs can detect up to 80% of

all the injected impacts. ACTESTs also perform efficiently. Our trimming methods can reduce

9.09%–98.61% running time over testing with the original programs.

2.2 Motivating Examples

We present how change impacts detected by ACTESTs can help sysadmins validate their

access-control configuration changes and identify security vulnerabilities. We use two real-world

access-control misconfigurations ACTESTs detected from Docker images as examples.
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Dangerous web interfaces exposed by installing PHP extensions.

ACTESTs can detect unexpected interfaces and resources introduced by configuration

changes. This helps sysadmins validate a change when they install third-party plugins or

extensions, a common practice for web applications [121, 116, 33]. As exemplified by both

real-world incidents [108] and our evaluation on Docker images, installing extensions could

incur security risks.

Figure 2.1 shows a new vulnerability detected by ACTESTs in a Docker image of Me-

diaWiki [117], a popular open-source wiki system. In this example, the sysadmin installed a

third-party PHP extension “MW-OAuth2Client” that introduced several dangerous PHP files,

including “eval-stdin.php”. These files exposed web interfaces that should only be used for

testing environments and can be exploited for remote code execution attacks in production. How-

ever, sysadmins were not aware of these files and failed to apply any access-control rules to limit

the access, making the dangerous interfaces in the files publicly accessible. ACTESTs effectively

detect that these files were not accessible before the installation, but become accessible after.

It warns sysadmins so they can double check if the exposed interfaces in the files are safe and

make appropriate configurations to prevent requests to the dangerous interfaces before they are

exploited.

Openly-accessible database dump due to rule misconfigurations.

ACTESTs can also detect access-control misconfigurations that lead to unexpected im-

pacts. Oftentimes, access-control configurations are complex and error-prone—they are not

“What You See Is What You Get,” but use bit vector (e.g. file permissions), regular expressions

(e.g. URL match) and database roles. Therefore, it is necessary to test the actual impacts in terms

of system behavior for sysadmins to validate if the behavior change meets their intention.

Figure 2.2 shows a new vulnerability detected by ACTESTs in a Docker image of Drupal

(a widely-used CMS system). In a change, the sysadmin adds a few database files, such as

“vov 500.sql” and “db/light.sql.gz”. She adds a customized access-control rule to prevent
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Figure 2.1. A new vulnerability detected by ACTESTs in a Docker image of Medi-
aWiki [117]. This vulnerability has been confirmed by the image maintainer. ACTESTs
detect that anonymous users cannot access phpunit/eval-stdin.php by default, but can
access it after the change.

these files from being accessed publicly. The rule is in the form of a regular expression “*sql”.

However, the added rule only blocks files with “.sql” but not with “.sql.gz”. This makes the

file “db/light/sql.gz” open to public access. Note that this file is a database dump, including

both users data and admins account info. ACTESTs effectively detect only the “.sql” files are

blocked but the “.sql.gz” files are still accessible. It can warn sysadmins so that they can

further change their configurations to block requests to the “.sql.gz” files.

2.3 ACTEST Overview

ACTESTs are test programs for helping sysadmins analyze the impact of access-control

changes in terms of end-to-end system behavior. A sysadmin can run ACTESTs for each change

of access-control configurations. ACTESTs output the impact of the configuration change, in the

form of the difference of access-control behavior, before and after the target change. Based on

ACTESTs’ output, the sysadmin can examine whether the configuration change results in intended
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Figure 2.2. A new vulnerability detected by ACTESTs in a Docker image of Drupal [32].
ACTESTs detect that anonymous users cannot access the database dump file db/light.sql.gz
before but can access it after the change. ACTESTs can warn sysadmins so they can restrict the
access before the data is leaked.

access-control behavior. ACTESTs can help sysadmins to identify incorrect or unintended access-

control that either leads to security vulnerabilities such as data breaches (misconfigurations that

grant more access than what is intended) or accessibility issues (misconfigurations that do not

grant sufficient access for the desired functionality).

2.3.1 ACTEST Definitions

For a target system, an ACTEST is a system-level test program, denoted as t(C,D,∆C).

It takes inputs: 1) the current system configuration C, 2) the configuration change ∆C, and 3)

the current system data, D. Note that C and D are the entire set of system configurations and

data, not limited to access-control related ones. In a typical deployment scenario, C and D are

production configurations and data of the system is operating on, and the ACTEST runs before

13



∆C is rolled out to production. As discussed above, the entire set of configurations and data are

needed to achieve high-fidelity of the testing results and ease the deployment.

After testing a configuration change ∆C, the ACTEST outputs the change impact as the set

of requests that have different results before the change and after the change—namely, requests

that were denied by C, but become allowed after applying ∆C to C, and vice versa. A request

can be defined as a tuple < s,o,a,r >, which represents a subject s (e.g., a user) performs an

action a (e.g., an HTTP GET/PUT request) to an object o (e.g., a file) and gets a result r (either

ALLOW or DENY). Therefore, the impact of the change is a set of tuples < s,o,a,r,r′ >, where

r is the access results with C, r′ is the result with ∆C and r 6= r′. Our definition of access-control

change impact is consistent with prior work [125].

2.3.2 Testing Principle

Conceptually, an ACTEST calculates the change impact by testing and comparing the

access-control behavior with C and C+∆C. The ACTEST sets up the system with the production

configuration C and data D and the system with C+∆C and D, respectively. Then, the ACTEST

issues a set of access requests to both of the setups and observes their access-control behavior.

The access-control behaviors are recorded in two separate logs L and L′, each of which records

a sequence of access tuples < s,o,a,r > as defined in §2.3.1. Each line l in L and L′ should

have si = s′i, oi = o′i, and ai = a′i, but may differ in ri 6= r′i. ACTEST then computes a “diff”,

∆L = L′−L, which contains all line l with ri 6= r′i, as the change impact.

ACTESTs provide two ways to generate the test inputs, in the form of < s,o,a >, i.e.,

requests. First, ACTESTs allow sysadmins to provide access logs which record the historical

requests. The access logs help ACTESTs cover the common requests. Second, ACTESTs also

allow sysadmins to specify the subjects, objects, and actions, which will be used to generate all

possible combinations to achieve a complete coverage.
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2.3.3 Usage and Deployment Model

ACTESTs can be effectively generated for any software system. We discuss how to

generate ACTESTs in §2.4.

ACTESTs target to be run in production. As discussed in §2.1, this is necessary because

both production environments and data are needed to decide the end-to-end access-control

behavior. Without in-production test, it then requires to maintain a full copy of production

environments as well as data and make sure the test environment in sync with the production

environment, which is known as impractical and prohibitively costly [18, 5].

To run ACTESTs in production, sysadmins only need to specify a few inputs for ACTESTs:

(1) the location of the production configuration C and data D; (2) the target configuration change

∆C; (3) a set of access logs, and/or a specification of target subjects, actions and objects (e.g.,

the root directory of all HTML files to test); and (4) optionally, the limit of CPU and memory

that ACTESTs are expected to take.

Multiple ACTEST instances may need to be deployed to test different programs. For

these cases, all the ACTEST instances can be placed in a single virtualized subnet so they can

communicate with each other but do not affect production processes (cf. §2.4.1).

ACTESTs target on testing a configuration change ∆C to help sysadmin reason about the

impact of ∆C. ACTESTs do not evaluate the absolute security of a system configuration (e.g., C

or C′)—absolute security is hard to measure [15, 69]. Moreover, given the common distribution

practice of secure and deployable images (e.g., those on DockerHub [28]), sysadmins can use

ACTESTs to evaluate their configurations against the vendor-distributed configurations.

2.4 ACTEST Generation

We present a general technique to help developers build ACTESTs for their programs.

The idea is to transform an original program into an ACTEST. To achieve this, there are four

challenges to address:
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• How to transform an original program into a safe ACTEST to run in production? Since the

ACTEST will be run in production, it cannot incur side effects to the production system or

the environment.

• How to make ACTESTs performance-efficient? ACTESTs may need to test a large number

of requests (the combination space of subjects, objects and actions can be large) and so

take a long time to run.

• How to generate ACTESTs with minimal input from sysadmins to increase usability?

• How to present the test results in a way that is easy for sysadmins to validate? A small

configuration change may lead to a large number of impacted requests.

To generate safe ACTESTs, we adopt virtualization technologies to isolate the test program

from the production environment while using file system copy-on-write to allow safe data sharing.

As many of today’s systems have been deployed with containers, we build an automated tool

that can transform the widely-used container specifications, Dockerfiles, into ACTESTs in the

form of Docker images.

To improve test performance, we propose trimming methods to accelerate the program

execution. The key idea is that access-control checks are usually run before the main task in

a program execution. Therefore, the main task execution can be removed without impacting

access-control checks. We developed a dynamic analysis tool to trace the program execution

path and extract the candidate code to trim.

To minimize sysadmins’ effort and improve usability, we design two methods for sysad-

mins to specify how to generate test requests, namely using access logs and enabling sysadmins

to specify subjects, objects and actions.

To ease validation, we present an aggregation technique to group impacted requests by

attributes of subjects, objects and actions, so the validation efforts are largely reduced.
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2.4.1 Transforming Programs into Safe ACTESTs

The best way to achieve high fidelity is to reuse the code logic of the target system

program to test access-control configurations. The test program can take the configurations

and data of the deployed system and then evaluate the system behavior. However, the original

program cannot be directly used because it is unsafe to run it in the production environment. First,

running a copy of the original program could have side effects to the production instances of the

same program. It may write to the same data files or content for the same network ports. Second,

the tests may have side effects to the production instances of other programs. For example, it

may write to a database or make an RPC call to a remote server. Third, running such tests in

production may have unbounded performance impact on the production instances on the same

physical machine.

To transform an original program into a safe test case, one could take two possible

approaches. The first one is an extracting approach—starting with the access-control related

code in the original program and extract only the code necessary for access-control but not other

unrelated functionalities. This can be done either manually or using automated program analysis.

We conducted a feasibility study of three popular programs: httpd, lighttpd and HBase and found

it difficult to do either manually or with a program analysis tool. From these programs, we

manually identified 9-30 access-control check functions, these check functions take in total 53-76

parameters and the parameters can be defined in up to 321 program locations. The depended

code path can be exponential to the parameter definition locations. Therefore, it would take

large human effort to extract all the depended code manually. It would also require accurate and

scalable slicing techniques for an automated tool to do the extraction. As pointed in [31], such

static slicing usually cannot precisely extract the depended code path and cannot scale to a large

code region as in real-world programs.

The second approach is to trim the original program down. Developers can take the

whole original program as a starting point and trim the dangerous side effects it may cause to
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production systems. We take this approach and build a tool to apply transformations to make the

original program safe for in-production test.

Isolation

Three types of isolation are necessary to make ACTESTs safe to run in production:

• Namespace isolation: ACTESTs should only see their own namespace for PID, file system,

network and IPC. This can avoid ACTESTs from interfering with production processes, like

writing to the same file, contending for the same port and sending a signal to a production

process. Namespace isolation is necessary based on the assumption that ACTESTs may

collocate with production processes on the same host machine. As discussed before,

allocating host machine exclusively for testing can be prohibitively costly.

• Network isolation: An ACTEST may need to communicate with another process to obtain

the data it needs. However, it is problematic to let the ACTEST talk with a production

process as this may cause an expected state change of the production process, like writing

to a database. To address this, the ACTEST should only communicate with another ACTEST

for the target production process. This makes it necessary to place all ACTESTs into an

isolated subnetwork so that they can only communicate with each other but can neither

send nor receive packets from production processes. Note different ACTESTs may run on

different host machines and so it is not enough to have the aforementioned namespace

isolation for the network on a single machine.

• Performance isolation: Running ACTESTs can occupy a large amount of CPU time and

memory space, which can affect largely the performance of the collocated production

processes. To control the performance impact to an expected level, it is necessary to allow

sysadmins to set a usage limit of CPU and memory for ACTESTs.

We adopt existing system deployment techniques in cloud environment to achieve iso-

lation. In cloud environment, systems are usually packed into virtualized environments (e.g.
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virtual machine or container images) to be deployed. We adopt a similar approach to generate

ACTESTs. First, ACTESTs are run in either a virtual machine or container to make namespace

isolation. Second, multiple ACTESTs are placed in a single virtualized subnetwork (i.e. Virtual

LAN) so that they can communicate with each other but not with production processes out of

the subnetwork. Third, the resource allocation functionality of virtual machine and container is

leveraged for sysadmins to allocate resources for ACTESTs.

Safe Data Sharing

ACTESTs need to access both production configurations and data to evaluate access-

control decisions. Many systems have access-control configurations coupled with production

data. For instance, in a web server system, the web page’s file permissions are stored together

with the web page content. In a database system, user permissions are stored in multiple tables.

Since it is prohibitively costly to maintain a whole copy of the production data, our design

lets ACTESTs directly access production data. Therefore, we have to make sure ACTESTs do not

pollute the production data.

We use Copy-On-Write techniques [61, 88] to address the challenge. The production

configurations and data are directly shared to ACTESTs for all read requests, while a copy is

made when ACTESTs try to modify any production configurations and data. The modification is

only applied to the copied version, which is invisible to production systems, so it does not affect

the execution of production systems. Any future read of ACTESTs will also go to the copied

version so ACTESTs can always work with the newest data they generated.

The copy-on-write mechanism may slow down ACTESTs’ execution as write to files may

need to copy them first. Luckily, read operations dominate most server workloads [74, 7, 13, 43,

109, 34]. In addition, we will present in §2.4.2 our method for removing I/O related code that is

irrelevant to access-control from the original program.

19



Implementation

We develop a tool to transform existing containers into ACTESTs for container-based

production environments [24, 25, 87, 14]. Our tool takes a container specification, i.e. Dockerfile,

as the input and generates an ACTEST in the form of a Docker image. This takes two steps:

First, an overlay network [29] is set up for the image to make it run in an isolated subnet.

Similar techniques, like VXLAN [52], exist for virtual machines. The name and IP address of

the overlay network are generated as configurable parameters that allow sysadmins to set later –

this is necessary for sysadmins to flexibly place multiple ACTESTs in a single subnet.

Second, an overlayfs file system [61] is configured to enable Copy-on-Write of production

configurations and data. Overlayfs is a union mount file system provided in Linux. It combines

two file systems – an upper layer and a lower layer, into one. Every read to the combined file

system first goes to the upper layer and then the lower layer. Every write only goes to the upper

layer. And if the write target does not exist in the upper layer but only in the lower layer, it will

be copied from the lower layer to the upper layer to be written. The lower layer would never be

modified. In our implementation, the source production configurations and data are mount as a

lower layer and a temporary file system is mount as an upper layer.

Our tool focuses on containers, but similar tools can be built for transforming existing

virtual machines. The relied techniques are also available in virtual machines: VXLAN [52] can

be set for network isolation and overlayfs [61] can also be set for file system Copy-on-Write.

2.4.2 Making ACTEST Performance-efficient

Running the whole original program for testing can take a long time and consume a

large number of resources. We propose a new technique to trim the program to accelerate the

execution. The main idea is that most part of the target program is not about access-control

checking. Therefore, these unrelated parts can be trimmed to accelerate the execution.
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//entry handler of requests

void ap_process_async_request(request_rec *r)

{

...

// do access checks

access_status = ap_process_request_internal(r);

if (access_status == OK) {

//sub-handler that executes the request task

access_status = ap_invoke_handler(r);

}

...

}
access_status = ap_run_access_checker(r);

call

httpd-2.4.46

Figure 2.3. Request handling code pattern. Each request is processed by an entry handler,
which first checks access and then calls a sub-handler to execute the specific task. Basic trimming
removes the sub-handler call entirely. Note: it may not be always correct because the sub-handler
could do additional task-specific checks.

Basic Idea

Intuitively, a server program has a request handler that is executed for every incoming

request. Inside the request handler, it should perform access-control checks in the beginning

and then only execute the actual request task when the checks pass. We validate this intuition

with five widely used server programs, including Httpd, Nginx, Mediawiki, vsftpd and MySQL

and it holds with all of them. Specifically, all these programs share the same code pattern as

shown in Figure 2.3. Every time a request comes, the entrance request handler first performs

some preprocessing as well as access-control checks and then dispatches the request to a specific

sub-handler.

Following the intuition, our first attempt is to find the function call to the sub-handler and

then removing it entirely. The sub-handler call is easy to find and remove for all five programs

we studied. However, removing the sub-handler could lead to wrong access-control results. The

reason is that the sub-handler also performs additional task-specific access-control checks. Our
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study shows that there are two types of task-specific checks: 1) file permissions—programs

typically check file permissions only when they try to open files; 2) task-specific configurations

– depending on what kind of tasks to execute, a sub-handler may have further access-control

checks differing from the global check in the entrance request handler. For example, different

HTTP requests in Apache need to check for different permissions like for proxy redirection, cgi

script execution and directory listing.

We experimented with this approach. As we will present in §2.5.3, this approach only

works for one system and for three other systems, the trimmed programs can generate false

access results so that only 46.4% - 52.7% of the result changes can be detected. For the remaining

one system, the trimmed programs can detect no result changes.

Advanced Trimming

In order to have the trimmed program to generate the correct access-control results, it is

necessary to delve into each sub-handler to find out the last access-control checks. One possible

way to do this is to statically analyze the code either manually or with static analysis tools. We

investigated this approach and found both difficult if not impossible. First, the sub-handlers

perform the major functionality of a program and so the execution path explodes after the

sub-handlers. It requires large efforts and is not scalable for developers to manually analyze.

Second, there are many usages of function pointers and polymorphism inside the sub-handlers,

which makes it hard to build an effective static analysis tool. The static analysis technique

needed is interprocedural and whole-program-wide, which brings challenges on both accuracy

and scalability.

Therefore, we propose a dynamic analysis approach to help developers trim their pro-

grams for ACTESTs. The idea is to run two instances of a program with two different configura-

tions: one allowed access and one denied access to the same request. This request is issued to

each of the instances and two execution traces are collected: one for access allow (allowed trace)

and one for access deny (denied trace). Figure 2.4 shows an example of an allowed and denied
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trace. By comparing the two execution traces, we can find code snippets that are only executed

in one of the traces but not both. Most of these code snippets contain no access-control checks

because they are only executed in one trace while access-control checks need to be executed

in both traces. Therefore, the found code snippets can be safely trimmed without affecting

access-control results.

We build a tool to implement this idea. Our tool first instruments a target program and

runs it with different configurations provided by developers to obtain an allowed and a denied

traces. Then our tool compares the two traces to find the trace diff that only exists in the allowed

trace but not the denied trace. Our tool maps the trace back to source code to generate the

candidate code snippet for trimming.

Our tool adopts code coverage analysis for tracing. Specifically, our current implementa-

tion uses gcov [40] for tracing C/C++ programs and uses Xdebug [123] for tracing PHP programs.

Our tool can be extended to other languages as code coverage analysis is a general technique

available for most programming languages.

Our tool relies on developers for two pieces of information. First, it relies on developers

to provide a few test requests as well as the corresponding configurations that allow and deny it.

The provided test requests may not get all sub-handlers executed and so some of them may not be

trimmed. However, this is acceptable because this only misses some acceleration opportunities

and brings no other harm to the access results. Second, it also needs developers to validate and

tune the generated code snippet to trim. The generated code snippets may still contain some

access checks if the denied trace does not include the last check in the execution path. In this

case, it requires developers’ knowledge on the code semantics to prevent the remaining access

check from being trimmed. From our experience, the generated code snippets are usually short

(less than 100 LOC) and it is easy to tune.
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2.4.3 Minimizing Sysadmin Involvement

ACTEST needs to generate test requests as test input to exercise access-control configura-

tions. We divide this challenge into generation policy and mechanism.

• The generation policy decides what requests < s,o,a > should be generated, which can

vary with concrete system deployments and configuration changes made. We provided

policy templates for sysadmins to specify the requests they want to test.

• The generation mechanism is the implementation that turns an < s,o,a > into an actual

access request and sends it to the testing program, which is usually program specific.

Therefore, we provide a mechanism skeleton and leave developers to implement the

specific request generation logic.

Policy Template

ACTESTs provide two policy templates for sysadmins to specify what requests to generate.

First, the first policy template accepts a set of previous access logs along with an annotation of

the subject, object and action fields. The template then parses access logs into < s,o,a > tuples

and uses them as the test requests. As shown in previous work [125], existing systems’ access

logs usually record the essential information of subject, object and action. Such an access log

policy then can help ACTESTs cover the common requests. Second, the second policy template

accepts the locations to collect subjects, objects and actions. Such locations include database

tables to collect users (S), directories to collect all file (URL) (O) paths and self-written lists to

collect all actions (A). The template then traverses the Cartesian product of them S×O×A to

synthesize the test requests. Depending on sysadmins’ specification, the synthesized requests

can be either the one related to a change or be all possible requests.

Mechanism Skeleton

Our mechanism skeleton provides two general features for developers. The first one is

simulating requests from various IP addresses. This is commonly needed as many access-controls
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are based on IP addresses, like blocking certain ones. We implement this with the AnyIP [60]

feature provided by Linux Kernel. This feature enables our testing container binding its the

whole IPv4 or IPv6 address space to its loopback device. In this case, a request sent to any

third-party IP address will be routed back to itself and will be recognized as from the third-party

IP address. This enables the server program to do access-control with the correct source IP. The

second one is concurrent requests. Sending concurrent requests is essential for accelerating

the testing, besides the trimming method we proposed. We implement a concurrency skeleton

which adopts multiple processes and multiple threads to sends requests. We take into account

the potential dependencies between requests from the same IP or the same user so that these

requests will not be concurrently sent.

2.4.4 Presenting ACTEST Results

The number of impacted requests can be large even with a small configuration change.

Such examples include allowing access to a directory with many files. The configuration change

may only be a small change to the directory permission, but the impacted requests include

the ones to all the files under the directory. Asking sysadmins to validate every access is

time-consuming.

ACTESTs provide two ways to present the impacted requests in an efficient way for

sysadmins to validate. First, ACTESTs aggregate impacted requests based on the common

attributes of subject (user name and group), object (directory name and file suffix) and action

(action type). For example, if requests to all files under a directory are impacted, ACTESTs only

show the directory name to sysadmins. ACTESTs also show the file suffix impacted under the

directory, which may raise sysadmins’ attention to dig more. The aggregation can be easily

extended to other attribute types and makes the validation efficient. Second, ACTESTs also rank

the impacted requests based on their likelihood to be vulnerable. This allows sysadmins to

only validate top ranked impacts if they have limited time. Currently, ACTESTs only use simple

heuristics, like if a file name starts with a dot (i.e. hidden system files), to calculate the likelihood.
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We keep better ranking methods as our future work.

2.5 Evaluation

2.5.1 Methodology and Testing Environment

We conduct three sets of experiments to measure ACTESTs’ effectiveness and efficiency:

1. Detecting Real-world vulnerabilities: We use ACTESTs to analyze the impacts of configu-

ration changes in public Docker images and inspect how many of them are vulnerable.

2. Controlled experiments: We replicate five real-world system environments, including

Wikipedia and the web proxy of a commercial company. We inject access-control configu-

ration changes to them and use ACTESTs to detect the change impacts.

3. Performance: We run ACTESTs with different trimming options to test the real systems as

in the controlled experiments and compare their performance.

We run our experiments on an Intel Xeon 2.84GHZ machine with 4 cores, 16 GB memory

and 2TB HDD.

2.5.2 Detecting Real-world Vulnerabilities

This experiment aims to evaluate how effective ACTESTs are when being used to detect

misconfiguration vulnerabilities. We choose five widely-used web systems and download

their container images from Dockerhub [28] as the evaluation targets. As shown in Table 2.1,

the chosen systems include Wordpress [122], Drupal [32], Joomla [55], Dokuwiki [30] and

Mediawiki [117], of which each was downloaded for more than 10 million times on Dockerhub.

We mainly choose web systems as they are the only publicly available systems we can find that

have access-control configurations.

For each system, we download the container images updated recently (in one year) and

extract their configurations as well as data as the testing targets. These configurations include
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Table 2.1. New vulnerabilities detected by ACTESTs in public Docker images of popular
web systems. 25 of the detected vulnerabilities have been confirmed and 19 of them have been
fixed by the image maintainers.

Systems # of Images Vulnerable images Vulnerabilities

Dokuwiki 57 19 67
Mediawiki 47 23 56
Wordpress 42 18 28
Drupal 29 8 11
Joomla 18 4 6

Total 193 72 168

Apache configurations, Nginx configurations and file permissions of web pages. We use the

official images’ configurations as the initial version and the third-party images’ configurations as

the changed version. We generate ACTESTs for each systems and use the generated ACTESTs

to test the change impact of each changed version against the initial version. As we do not

have historical logs for these systems, we set ACTEST to synthesize requests regarding to all the

combinations of users, actions and resources.

These experiments focus on risky change impacts—requests that are not allowed in the

official images but are allowed in the third-party images. As not all reported access changes are

vulnerabilities, we manually validate if they are vulnerabilities or not. We use a conservative

standard to make the decision: if the same type of allowed requests is identified as a vulnerability

in other systems or in public vulnerability databases, we count the corresponding change as

a vulnerability. When multiple requests are impacted by the same change (e.g. multiple file

requests are allowed because of a change in their parent directory), we only count it once. We

also report our detected vulnerabilities to image maintainers for confirmation and for them to do

a fix timely.

Results

With the risky changes detected by ACTESTs, we identified 168 vulnerabilities from 72

public Docker images. We reported 135 vulnerabilities to image maintainers with their contacts
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available. So far, 25 of the vulnerabilities have been confirmed and 19 of them have been fixed

by the image maintainers.

In total, ACTESTs detected 874 risky access changes from 193 tested images. 706 of the

changes are not identified as vulnerabilities by us but they can be potentially vulnerable. These

changes expose resources that are newly-added and system-specific, and we cannot decide if they

expose sensitive information or not. As discussed before, our identification of vulnerabilities

is conservative. We identify access changes as vulnerabilities only if the same type of allowed

requests is identified as vulnerabilities in other systems before. In practical usage, the changes

that we do not identify as vulnerabilities are also worth reporting to sysadmins for validation.

These requests are exposed for the first time. As we have presented in §2.2 Figure 2.1, the

newly-introduced resources can be dangerous to expose and sysadmins may not be aware of the

exposure.

Table 2.2 shows the common types of our detected vulnerabilities. The most common

type is the exposure of dangerous web interfaces. Such examples include the exposure of PHP

interfaces under directory “phpunit” and “vendor” to public access. These interfaces may

disclose sensitive data and allow arbitrary code execution [42, 41]. Our experiment results show

that these interfaces are located in third-party extensions and are introduced when sysadmins

install the extensions. As sysadmins have no knowledge of what a third-party extension may

introduce, it is hard for them to be aware of the exposure of these interfaces. However, with

ACTESTs reporting the change impacts, sysadmins can learn about the changed requests when

they install an extension and can disable the access before they are exploited by attackers.

2.5.3 Detecting the Impacts of Injected Changes

This experiment aims to evaluate how effectively ACTESTs can detect the impacted

requests of various access-control configuration changes in real-world deployed systems. We

collect configurations and data from five real-world deployed systems, including Wikipedia, a

web proxy for a commercial company with millions of users, a department course website, a
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Table 2.2. Common types of vulnerabilities detected.

Types of vulnerability Examples # of vulnerability

Dangerous interface Internal PHP interfaces for testing 46
exposure such as phpunit/* are exposed.
Sensitive system System settings like composer.json 40
settings exposure and .htaccess are exposed.
Sensitive metadata Version control data like .git/* 16
exposure are exposed 16
Dangerous access HTTP diagnostic method TRACE is 14
method enabled enabled for public access.
Database files. *.sql files are allowed to public 10
exposure download. 10

Table 2.3. Real-world systems and access logs collected for evaluation. For Wikipedia, only
edit requests are collected but read requests are not (see Wikipedia’s logging policy [119]). This
does not affect ACTESTs as all Wikipedia pages are publicly readable.

Real-world systems System type Access log time span # Requests in logs

Wikipedia Wiki Application 18 years 217 thousand
Comp-A Nginx proxy 1.4 days 10 million
Course Nginx web server 1 year 3.8 million
Center Apache web server 3 years 9 million
Group Apache web server 1 year 2.5 million

research center website and a research group website. We also collect access logs from them

to use as input for ACTESTs’ test request generation. Table 2.3 shows the time span of the logs

as well as the number of requests in them for each system. For Wikipedia, because the whole

website is too big for our testing environment, we use a part of it, called cowiki, as our testing

target. Based on the collected configurations, we randomly inject configuration changes and then

run ACTESTs to detect their impacts.

The injected configuration changes are generated based on the access-control mechanisms

each system is configured with. Table 2.4 shows the three types of access-control mechanisms

used in the target systems and the corresponding types of changes injected to them. Note these

change types are also used in previous work [125]. We use two change types from previous work
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Table 2.4. Different types of access-control configuration changes injected in our experi-
ments. These changes are also used in previous work [125].

Access-control Injected Changes Systems Applied

File permission allow/block file access Course, Group, Center
Web server allow/block URL Course, Group, Center
access-control allow/block IP Comp-A
App access-control allow/block pages edit Wikipedia

and add a new change type for web application permissions. For each change type, a number

of the change targets (e.g. file, directory, URL) are randomly chosen to apply the change. The

number of the change targets is set to be 10% of all the available resources.

Two sets of experiments are conducted to measure ACTESTs’ effectiveness under different

settings: different trimming methods and different ways to generate test inputs.

Different trimming methods

We use basic trimming and advanced trimming methods as discussed in §2.4.2 to generate

ACTESTs for different systems. Then we use randomly injected changes to evaluate their

effectiveness on detecting the impacted requests.

To better understand the limit of trimming methods alone and avoid the disturbance of

historical logs, synthesizing requests is used to generate test requests with good coverage of

subjects, objects and actions. For Wikipedia, users and pages in database tables are automatically

extracted to synthesize requests. For Comp-A, URLs and IPs in the configuration file are

automatically extracted to generate requests. For Course, Center and Group, the combination of

all web pages and HTTP access methods are iterated to synthesize all requests.

Results

The advanced trimming works effectively on all systems in terms of detecting impacted

requests. Table 2.5 shows that with advanced trimming ACTESTs can detect all the 303-4861

impacted requests of injected changes in different systems. This indicates that the advanced

trimming keeps all the necessary access-control checks while removing the computation and
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Table 2.5. Detecting change impacts with ACTESTs generated by different trimming meth-
ods.

Real-world # of Total # (%) of detection
systems injections Basic trim Advanced trim

Wikipedia 930 0 (0) 930 (1)
Comp-A 4861 4861 (1) 4861 (1)
Course 303 142 (0.47) 303 (1)
Center 710 329 (0.46) 710 (1)
Group 178 94 (0.53) 178 (1)

I/O unrelated to access checks. Therefore, the generated ACTESTs can always return correct

access-control results as well as detect correct impacts.

The basic trimming’s effectiveness varies on different systems. As shown in Table 2.5,

Wikipedia’s ACTEST with basic trimming can detect none of the impacted requests, while Comp-

A’s ACTEST with basic trimming can detect all the impacted requests. For Course, Center and

Group, the ACTESTs can detect 46%-53% of the impacted requests. The reason is that different

systems are configured with different access-control mechanisms. Wikipedia’s access-control

mechanism is implemented by PHP code, which is done mostly in request sub-handlers that are

removed by the basic trimming (cf. Section 2.4.2). Comp-A only uses Nginx’s access-control,

which is performed out of request sub-handlers and so is not removed by the basic trimming.

For Course, Center and Group, they rely on both Nginx/Apache web server’s access-control and

file permissions checks. Nginx/Apache’s access checks are kept with the basic trimming but file

permission checks are all removed by the basic trimming.

Different test input generations

We evaluate ACTESTs’ effectiveness with test inputs generated by replaying historical

logs and synthesizing requests separately. For replaying logs, we use the one we collected for

the five real-world systems, as shown in Table 2.3. For synthesizing requests, we specify the

corresponding source of subjects, objects and actions (e.g., database tables and file directories)

for ACTESTs to automatically extract the possible value and iterate all the combinations, as
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Table 2.6. Detecting change impacts with different ways of generating test inputs.

Real-world # of total # (%) of detection
systems injections Replay logs Synthesize requests

Wikipedia 930 739(0.80) 930(1)
Comp-A 4861 0(0) 4861(1)
Course 303 242(0.80) 303(1)
Center 710 106(0.15) 710(1)
Group 178 19(0.11) 178(1)

discussed in Section 2.5.3. Advanced trimming is used to avoid the inaccuracy introduced by

trimming method.

Results

By synthesizing requests, ACTESTs detect all the impacts of the injected changes, as

shown in Table 2.6. This illustrates that access synthesis can generate a comprehensive set of

test requests. We admit that this depends on sysadmins’ knowledge on the subjects, objects

and actions. From our experience, most of them can be specified with database tables and file

directories, and ACTESTs can automatically extract the possible values for synthesis.

By replaying historical logs, ACTESTs can detect up to 80% of the injected change

impacts, as shown in Table 2.6. ACTESTs work best for Wikipedia and Course, because their

logs have a good coverage of possible requests. For Wikipedia, the logs are of 18-years long and

cover requests to most pages. For Course, the logs are 1-year span and the web pages host is also

about classes in the last one year; so the logs have a good coverage of web pages. For Center

and Group, the logs fail to cover many obsolete web pages that were never modified in the last

five years. For Comp-A, replaying log can detect no change, as the time span is only 1.4 days.

This illustrates that for systems with actively-accessed resources and complete historical logs,

sysadmins may choose access logs to generate test requests for ACTESTs; otherwise, they may

choose to synthesize requests to have a better coverage.
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2.5.4 Performance

We measured how long time it takes to run ACTESTs against the five real systems.

Synthesizing requests are used to make sure ACTESTs have a good coverage of the possible

requests. The results show that for Comp-A, Course, Center and Group, it only takes less than

10 minutes to finish all the tests. For Wikipedia, it takes a relatively longer time, 1.2 hours. The

main bottleneck for Wikipedia is the executions and database queries that are not trimmed. We

plan to further optimize the performance in the future.

We compared ACTESTs’ performance with different trimming methods: no trim, basic

trim and advanced trim. No trim means the original program runs the whole request handling

code to perform the test, which is our baseline. Basic trim only keeps the global access checking

and removes the majority of request handling code. Basic trim does not ensure correct access-

control results all the time but can be treated as the upper bound performance that may be

achieved by trimming. Advanced trim precisely removes the code for I/O and computation that

are not related to access checking and always ensures correct access-control results.

As shown in Figure 2.5, advanced trim can achieve comparable speedup as basic trim

(upper bound). Advanced trim reduced 9.09%-98.61% running time compared with no trim,

while basic trim reduced 9.09%-98.64%. Both advanced trim and basic trim work best (98.61%

and 98.64% reduction) on the Course system. The reason is that Course has more large files in

PDF and MP4 formats. This takes a lot of time to do I/O with no trim, while advanced trim and

basic trim eliminate the necessity to do I/O. Both advanced trim and basic trim have only a small

speedup on the Comp-A system. This is because the tested system is a web proxy, which only

redirects requests but does not handle the requests. As a result, each request handling in it is

already simple and fast, and there is not much code for I/O or computation to trim.
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Figure 2.5. Normalized test running-time by different trim methods.

2.6 Discussions

The generation and distribution of ACTESTs can be merged into software vendors’ release

process of their main program. When a new version of the main program is ready to release,

vendors take two steps to generate a new ACTEST for it. First, they provide a new Dockerfile

and use our transformation tool to turn it into an ACTEST container image. Note that most of

the time previous Dockerfile can be reused and it has been a common practice for vendors to

compose Dockerfiles to build Docker images for release [24, 25, 87, 14]. Second, they run

our trimming tools to generate a trimmed program and validate if the trimmed program keeps

the correct access-control checking. This process is not fully automated. However, from our

experience, it does not take much effort to validate if access checks are mistakenly trimmed or

not. And this needs not to be done frequently as access-control checks do not evolve often. Some

access-control checks in Apache httpd have not been changed for 19 years [6].

We plan to further automate our trimming method(§2.4.2). Our current trimming tool

is based on dynamic analysis, which is neither sound nor complete and thus needs developers’

validation. We plan to further incorporate static analysis [138] to make it sound. With a dynamic
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analysis extracting the candidate code to trim that likely calls no access check, a static analysis can

be adopted to make sure the candidate code does not call any access checks. The incompleteness

of trimming is acceptable as it only affects testing performance, but not correctness. Developers

can provide more inputs (e.g. configurations and test requests) to make the dynamic analysis

cover more execution paths.

For test request generation, the choice between using access logs and synthesizing

requests can be made based on the specific scenario. Access logs provide a convenient way to

generate test requests, but the effectiveness of testing depends on the comprehensiveness and

coverage of historical requests, On the other hand, test request synthesis provides a complete set

of test inputs. It requires sysadmins to specify the subjects, objects and actions.
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Chapter 3

Inferring Access-control Behavior Change
with P-DIFF

3.1 Introduction

3.1.1 Motivation

Despite a number of efforts on testing and verifying access control configurations [97,

35, 63, 23, 10, 11, 70], it is still prohibitively difficult to eliminate all access control miscon-

figurations in real-world systems (§4). Specifically, state-of-the-art detection tools for access

control misconfiguration [23, 10, 11] mostly detect inconsistencies of configurations and cannot

understand configurations at a higher policy level. As noted in [23], given frequent configuration

changes and their ad-hoc, one-off nature, it is very difficult for automated tools to deduce the

exact and complete list of access control misconfigurations.

As a consequence, without continuous validation on access control behavior changes,

access control misconfigurations often stay unnoticed for a long time until being exploited by

malicious users on an attack. The reason is unlike other types of misconfigurations [130, 132],

access control misconfigurations cannot be manifested through observable symptoms (e.g.,

crashing behavior, dysfunctions, or performance degradation). According to a recent report [62],

it takes 206 days on average for US companies to detect a data breach, which is too late for any

remedies.
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Unfortunately, there is little tooling support for access control behavior validation. One

potential approach is to track all the configuration changes with a version control system, and

let sysadmins validate all the changes. However, there is still a gap between the static access

control configurations and the actual running system behavior. In many systems, the access

control behavior is determined by multiple heterogeneous components and their configurations.

As shown in Figure 3.1, access control is typically implemented in heterogeneous configurations

and code across multiple different components in large-scale, complex systems. It is non-trivial

(if not impossible) to reason about the end-to-end access control behavior by inspecting the

configurations and code statically. This chapter proposes to infer the access control behavior

and behavior changes from the access logs that record the end-to-end access results (typically

the output by the top-tier components). Once a behavior change is detected, sysadmins will be

notified to validate if the change is intended. Once an unintended change is detected, sysadmins

can fix the access control timely and avoid potential security incidents (such as data leakage) in

the future.

3.1.2 Contributions

This chapter presents P-DIFF, a practical tool for inferring access control behavior and

behavior changes from access logs. As we will show in §3.2, existing access logs generated

by most software systems contain enough information for inferring the changes. Therefore,

P-DIFF does not require any modifications to existing systems other than enabling access logs. In

addition, P-DIFF also does not require sysadmins to record access control configuration changes,

which can be tedious and also sometimes impossible (some changes, e.g., file permissions and

network-level firewalls can be done by users or other superusers without sysadmins’ awareness).

By detecting access control behavior changes, P-DIFF effectively assists sysadmins in the

following two important tasks:

• Change validation. When P-DIFF observes changes of access control behavior, it notifies

sysadmins with the observed changes. This enables sysadmins to examine the changes to
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identify and fix access control misconfigurations that open up security vulnerabilities.

• Forensic analysis. For postmortem analysis upon a security incident, P-DIFF can backtrack

all the behavior changes related to a malicious access. This provides clues for sysadmins to

understand when and what changes opened up the access. Those clues can help sysadmins

narrow down the changes record they need to investigate in their logbooks or the version

control systems.

There are two major challenges for designing and implementing P-DIFF. The first

challenge is to represent access control behavior in a generic and informative way. As different

systems take different access attributes to control access (such as IP, user, and URL), it is

necessary to provide the access-decisive attributes together with the behavior changes so that

sysadmins can make informative validations. However, it is non-trivial to provide a general

abstraction for representing different attributes.

To handle the first challenge, we adopt a decision-tree representation to encode access

control behaviors in an organized and condensed rule-like format (referred to as inferred policies).

This design decision is made based on two reasons. First, we observed that access control

decisions are made by a set of binary decisions (cf. §3.2). Therefore, a decision-tree structure is

capable of encoding them. Second, the decisive attributes of access control may inherently have

a hierarchical structure, such as the hierarchical namespace of active directory domains, files and

directories, IP addresses, and URLs. A tree-based structure is a natural fit to effectively encode

those hierarchical attributes.

The second challenge is to handle behavior changes while inferring the decision tree.

Existing decision-tree inference algorithms all rely on an assumption that the encoded rules

always have constant results (e.g. ALLOW or DENY for access control). However, this assumption

is not true in the case of access control rules. For example, a web server administrator disabled

public access to a directory “ABC” on May 1st, thus accesses to this directory before May are

allowed, and accesses after May 1st are denied. In this case, existing inference algorithms cannot
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decide whether “ABC” is a decisive attribute in the rules because of the related result changes (cf.

§3.8).

To address the second challenge, we extend the traditional decision tree to support time-

series information, referred in this chapter as Time-Changing Decision Tree (TCDT). In TCDT,

each rule result is represented as a time series instead of a single binary value (ALLOW or DENY).

We design a new TCDT learning algorithm to infer the new decision tree by treating access logs

as a sequence of access events ordered by access time instead of an unordered set of events (cf.

§3.8). TCDT not only can precisely model access control rules at any given time, but also can

capture the evolution of access control rule changes.

We evaluate P-DIFF with datasets collected from five real systems, including two from

industrial companies. For change validation, P-DIFF can detect 76%–100% of the rule changes

with an average precision of 89%. For forensic analysis, P-DIFF can pinpoint the root-cause

change that is responsible for permitting the target access in 85%–98% of the evaluated cases.

3.2 Observations of Real-World Access Control Systems

The design of P-DIFF is driven by a few important observations of real-world access

control implementations. This section discusses these observations and explains the rationales

behind our design decisions.

3.2.1 Access-Control Configurations

Despite the uniform model of access control (e.g., access-control matrix [58]), real-

world access-control implementations are highly customized to specific applications, resulting in

distinct access-control configurations in terms of syntax, semantic, and schema.

First, different software systems implement various access control models. For instance,

the Unix file system adopts discretionary access control (DAC) [82] to restrict access to files

based on the identity of users and groups. The Apache web server adopts attribute-based access

control (ABAC) [50], e.g., any access from a certain IP address should be denied (the address is
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treated as an attribute). MySQL uses role-based access control (RBAC) [89] where privileges are

granted by assigning one or more roles to each user. Different access control implementations

require distinct access control configurations.

Second, even for the same access control model, different software systems often imple-

ment the model differently with customized syntax and formats. For instance, many web servers

(e.g., Apache, Nginx, and IIS) adopt the attribute-based access control model; however, each of

them implements its own configuration directives and parameters.

The heterogeneity of access control configurations imposes significant challenges for

building generic, automated tools to directly interpret and validate configurations. Implementing

specific parsers or interpreters for every target software project requires significant engineering

and maintenance effort.

3.2.2 Access Logs

We observe that access logs of different software systems tend to have a unified format

and are easy to parse. No matter how complex the configurations are, access logs record identical

information—the results (either ALLOW or DENY) of an access request— represented as a

tuple < S,O,A,R > where S, O, A, and R denote subject, object, action, and result respectively.

Within a system, access logs are typically generated by a few unified logging statements.

Table 3.1 shows access log formats of nine different software systems of various

types [110, 19, 4, 76, 94, 81]. It shows that most access logs of the studied systems encode the

required information. Therefore, it is straightforward to build a uniform parser that takes a few

simple format annotations to work with different systems.

Furthermore, the access results (ALLOW or DENY) recorded in the access logs of one

software component reflect the end-to-end access control behavior which includes the access

control of all the downstream components. For example in Figure 3.1, the access logs of the web

server reflect the end-to-end access control behavior of the entire Wikipedia system including

the web server itself as well as the downstream app server and database server. If the request is
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Table 3.1. Information encoded in access logs of different software. S = subject, O = object,
A = action, R = result.

Software Type S O A R

Apache2 Web server Y Y Y Y
Jetty Web server Y Y Y Y
Squid Proxy Web cache Y Y Y Y
MySQL Database Y Y Y Y
HDFS File system Y Y Y N
SELinux Kernel sec. Y Y Y Y
pureftpd FTP server Y Y Y N
iptables Firewall Y Y Y Y
openssh SSH server Y N N Y

denied at the app server or the database server, a DENY will also be recorded in the access log

of the top-level web server.

In order to make our solution practical, we explore the feasibility of building a solution

on top of the end-to-end access logs only, instead of attempting to understand the complex,

heterogeneous access control configurations of every single component in the system (which

may not be feasible for closed-source, proprietary software or hardware components).

3.2.3 Access-Control Policies

An access-control policy is composed of a set of rules. Each rule can be represented by

an IF-THEN statement that evaluates a subject attribute and an object attribute, and the concrete

action in order to make a decision (ALLOW or DENY). Within the same subject/object attribute,

all the subjects/objects are treated as identical. For instance, an access control rule for a web

server could be:

1 IF ($method is "GET") THEN

2 IF ($url is "/confidential/*") THEN

3 IF (group($user) is "admin") THEN

4 ALLOW
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The observation drives the following two design decisions of P-DIFF: (1) We are able

to encode the access control policy using a decision tree based on the IF-THEN representation.

Certainly, traditional decision trees cannot deal with time-series sequences and cannot encode

policy changes. Therefore, we design a novel decision tree named Time-Changing Decision Tree

in §3.6; (2) The policy inference should work at the granularity of subject/object attributes rather

than each individual subject/object for efficiency and scalability.

3.3 Design Decisions

3.3.1 Inferring Policy from Access Logs

There are two information sources from which access control policy changes can be

inferred: (1) configuration change history and (2) access logs. We decide to build P-DIFF on top

of the access logs for the following considerations.

In our experience, inferring the policy changes from the configuration change history is

difficult with non-technical barriers. First, as access control policy is implemented and enforced

by multiple components as exemplified in Figure 3.1, the configurations of each component could

be managed by different teams (e.g., web server administrators, app developers, and database

administrators) without a holistic authoring system [99, 100]. It is technically challenging to

keep track of every single configuration change in a large-scale, complex system, not to mention

the cultural challenges of enforcing the practice of tracking everything. On the other hand, access

logs are the output of the running systems and can be collected without much extra overhead.

Second, as discussed in §3.2.2, access logs reflect the precise end-to-end access control

behavior of the entire system. We only need to collect the access logs of the top-tier components.

Instead, a configuration based solution requires to understand the interactions among multiple

components which could be challenging in large-scale, complex systems. Furthermore, due to

misconfigurations and bugs in the configuration handling code, the configuration settings may

not be consistent with the policy or the mental model of sysadmins [129, 128]. Access logs, as
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the output of the access control system, precisely records the end-to-end behavior.

Third, comprehension and analysis of various configuration and code are challenging,

especially for closed-source, proprietary software and hardware components. As shown in [114],

reverse engineering of an application’s access-control configurations is challenging and requires

non-trivial human efforts. Oftentimes, understanding the access control configurations of a single

component is non-trivial [39], let alone analyzing the interactions between multiple components.

On the other hand, access logs have simple and clear semantics, as discussed in §3.2.2.

3.3.2 Using Decision Tree Based Models

As discussed in §3.2.3, an access control policy is essentially a “classifier” that labels an

access to be either allowed or denied. There are many machine learning algorithms that can infer

such classifiers from data, such as Decision Tree [83], Association rule learning [1], Logistic

Regression [45] and Neural Networks [44]. We choose Decision Tree for two reasons:

• Decision trees are easy to interpret. As our goal is to inform human administrators of

policy changes for validation, it is important to use a machine learning algorithm that

generates human-understandable classifiers. Many algorithms, such as Logistic Regression

and Neural Networks, generate classifiers with hard-to-understand weights and thus are

not suitable for our use case.

• Decision trees can effectively represent access control policies. As discussed in §3.2.3,

an access control policy consists of multiple steps of decision-making and may contain

decisions on hierarchical attributes, which can naturally be represented by a decision

tree. Figure 3.2 gives an example of how decision trees can effectively represent policies

implemented in different access control models, including DAC, RBAC, and ABAC. Some

other algorithms, such as Association Rule Learning can only infer correlations between

attributes but cannot deal with hierarchical relations of them.
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(a) DAC: Unix file

permissions

IF $dir==“/homework”

Allow

DenyIF $file==

“que.pdf”

Deny

!"#$ %&'($

%&'($!"#$

IF $role==“director”

Allow

Allow IF $role ==

“engineer”

Deny

!"#$ %&'($

%&'($!"#$

(b) RBAC: hierarchal

roles in a tech company
(c) ABAC: web server

access control

IF $url == “/private.htm”

Allow

AllowIF $IP ==

“127.0.0.1”

Deny

!"#$ %&'($

%&'($!"#$

Figure 3.2. Decision tree representations of three access control models. The tree structure
can effectively represent access control hierarchies for (a) files, (b) roles, and (c) URLs with
multiple decision steps based on different attributes.

3.3.3 Dealing with Sparse Logs

A key challenge of inferring access control policies from access logs is to deal with

sparse logs that only contain a fraction of all possible requests. Access logs are often sparse

because users typically do not request every resource in a system in a short period, which has

been reported in prior studies [21] as well as the access logs we collected from real-world

deployments (used for evaluation).

Given that access logs are often sparse, one cannot assume every possible tuple of

< S,O,A,R > (§3.2.2) can be observed from historical logs. In other words, one cannot train

a classifier with the complete dataset of every < S,O,A,R > tuple. To address this challenge,

we design a decision tree learning algorithm to infer the result R of unobserved requests from

observed access records. As shown in Figure 3.3, our learning algorithm groups observed and

unobserved requests and uses the observed request results to infer the group policies. The

detailed algorithm is described in §3.7.

3.4 Threat Model

P-DIFF targets on detecting the attacks that aim to steal data by exploiting access control

vulnerabilities. The typical cases include that a sysadmin mistakenly over-grant the permissions
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Figure 3.3. Example of sparse accesses to a course website and the decision tree inferred
from them. In (a), a green—red mark means the access was allowed—denied. A vacancy means
the access did not happen, and thus the policy is not reflected in the accesses. To address it, our
learning algorithm groups vacancy with green—red marks and infers a group policy as shown in
(b).

of resources, e.g., make a private web page accessible to unexpected users (e.g. anonymous)

and then the attackers steal the data by acting as those users. As reported by a number of recent

studies [127, 100, 99, 11, 10, 9, 91, 23], such misconfigurations of access control are among the

most common and severe security risks in modern information systems.

However, P-DIFF does not target on password attacks or spoofing attacks in which

attackers try to guess a password and pretend to be a normal user. In those cases, P-DIFF cannot

differentiate a malicious access from a normal access because they have the same access-decisive

attribute (i.e. user name) in the log.

The correctness and effectiveness of P-DIFF rely on that the access logs faithfully reflect

the system behavior. This is based on three specific assumptions. First, we assume the sysadmins

enable access logs in the system settings. This is a reasonable assumption because the default

settings of most programs (e.g. web server) have access logs enabled. In addition, since only

one log entry needs to be recorded for each access, this will not cause too much performance or

storage overhead. Second, we assume that the monitored system can always correctly generate

access logs. If the system is modified by attackers so that no log or fake logs are generated,

P-DIFF may not be able to detect the behavior changes. Third, we assume that there is no rootkit
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or malware at the storage layer which can modify the generated logs.

3.5 P-DIFF Overview

P-DIFF is a tool that infers access control policies from access logs. P-DIFF is able to

detect policy changes, when it observes deviation of access results from its known policy. P-DIFF

supports two use cases, change validation and forensics, by (1) detecting new policy changes

and (2) extracting historical changes.

Figure 3.4 illustrates the end-to-end workflow of P-DIFF. P-DIFF infers access control

policies and maintains the policy change history in internal decision-tree like data structure.

When P-DIFF observes a new access result, it checks whether or not the result adheres to the

latest known policy. If not, P-DIFF treats the violation as a policy change.

Change validation is done by asking sysadmins to validate the policy change whenever

a change is detected. To avoid over-alarming, by default, P-DIFF only notifies system admins

when an access that previous was denied is now granted. This is the common pattern of illegal

accesses caused by over-granting misconfigurations, as discussed in §3.1.1. P-DIFF presents both

the changed rules, together with the accesses that were affected by the rule changes to make the

validation effective.

For forensic analysis, given an access of interest (e.g., illegal access that caused security

incidents like data breaches), P-DIFF searches the change history and identifies the rule change

that causes a previously denied access to be granted. If the access is allowed from the beginning,

P-DIFF outputs the initial state as the root cause.

P-DIFF needs to address three main challenges: (1) How to effectively maintain the

evolution of access control policies? (2) How to accurately learn access control policies from

access logs? and (3) How to manage the policy changes?

To address the first challenge, we design a novel data structure named Time-Changing

Decision Tree (TCDT) to encode rule changes as time series. In a TCDT, each leaf node of the
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tree is no longer associated with a percentage of ALLOW/DENY as in the traditional decision tree,

but with the history of all the access results related to the rule. In this way, TCDT not only can

precisely model access-control policies at any given time, but also can capture the evolution of

policy changes.

For the second challenge, we design a decision-tree-based learning algorithm to automat-

ically infer policies from access logs. As discussed in §3.2.3, access-control policies have an

IF-THEN form and inherent namespaces hierarchies, which can be encoded in a decision tree

model with each internal node representing a condition associated with an attribute and each

path from the root node to a leaf node representing an access control rule.

Addressing the third challenge requires a learning algorithm that can infer access control

rules alone with its evolution history. Traditional decision tree learning cannot deal with time-

series sequences and thus cannot be used by P-DIFF (cf. §4 for details). We design a new data

structure named Time-Changing Decision Tree (TCDT) and the learning algorithm which is

capable of learning access control policy changes over time and encoding the change history in a

TCDT.

P-DIFF is implemented with Python based on the NumPy and Pandas data analysis

libraries [75, 77]. It can be deployed on different platforms that support Python.

3.6 Policy Representation

Access control policies can be naturally represented using a series of IF-THEN statements

and be maintained in decision-tree-based data structures (cf. §3.2.3). In this section, we first

present how to use traditional decision trees to encode static access control policies. We then

present a novel data structure called Time-Changing Decision Tree (TCDT) to encode the

evolution history of access control policies.
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Decision Tree (DT)

A decision tree is a predictive model that generates a result value based on the observed

attributes of an item [83]. It encodes the result generation rule in each tree path that walks from

the root node to a leaf node. A DT has two types of nodes: internal nodes and leaf nodes. An

internal node encodes a pair of (AttributeName,AttributeValue) and has two outgoing edges

corresponding to a predicate whether or not an item with an attribute name has the corresponding

attribute value. A leaf node encodes (r, pr) where r ∈ {True|False} is the final decision result

and pr ∈ [0,1] is the probability of the result.

A decision tree can encode access control policies by treating subjects (e.g., IP), objects

(e.g., file), and actions (e.g., GET or SET) as access attributes, and access results (ALLOW or

DENY) as result values. Each internal node encodes (Access Attribute Name, Access Attribute

Value), each leaf node encodes the access result with the probability, and each path from the root

node to a leaf node represents an access rule. An access attribute name refers to “IP”, “file” and

“GET”, etc., and the corresponding access attribute value is a binary value deciding whether an

access is allowed or denied at the point. Figure 3.5 illustrates how an access rule is encoded in a

decision tree based on Apache web server’s access control implementation.

The IF-THEN structure of DT can also effectively encode rules with regular expressions.

For example, a rule that allows access to “/proj/*/1.htm” can be encoded as:

1 IF ($prefix1 is "/proj") THEN

2 IF ($prefix2 is "1.htm") THEN

3 ALLOW

Time-Changing Decision Tree (TCDT)

One key limitation of the traditional decision tree is that it cannot work with time-series

data where policies change over time, and thus cannot represent access control policy changes.

As a result, P-DIFF cannot be built using traditional DT techniques.

In order to maintain the evolution history of access control policies, we design TCDT. A
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Access logs

T1, GET, /proj/1.htm ALLOW

T2, PUT, /proj/2.htm DENY

T3, GET, /proj/3.htm ALLOW

T4, PUT, /proj/4.htm DENY

T5, GET, /proj/5.htm ALLOW

T6, PUT, /proj/6.htm DENY

... 

IF $prefix1==✁/proj�

IF $method==✁GET�

100% DENY

True False

Decision Tree RepresentationConfiguration

<Location /proj>

  AllowMethods GET

</Directory>

...

100% ALLOW

True False

Figure 3.5. An example of access-control policies in configuration files, access logs, and a
decision tree. T1-T6 are the timestamps.

TCDT has a similar exterior structure as a traditional DT. Differently, TCDT makes each leaf

node encodes a time series T :

T = ((τ1,r1),(τ2,r2), · · · ,(τn,rn)) (3.1)

which represents the result values during the time period (ri represents the result value of the

interval [τi,τi+1]).

Figure 3.6 shows a TCDT generated from access logs in Figure 3.4 and compares it with

a traditional DT generated from the same logs. We can see that with the time series in each

leaf node, historical rule changes can be easily represented. For applications like continuous

access control monitoring, the precision can be largely improved by learning from recent results

instead of aggregating all the results, as shown in our evaluation result in §3.10.4. Note that the

application of TCDT is not limited to access control monitoring and forensics. The TCDT data

structure and the TCDT learning algorithm can be used in other works that need to infer rules

from continuously changing time-series data.

TCDT is fundamentally different from Time-Series Decision Tree in machine learning

literature [131]. A time-series decision tree classifies a sequence (attributes of a period) into

different categories. However, TCDT classifies a “point” (attributes at a single time) into different
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IF $method==✁PUT�

Traditional Decision Tree 

Representation

50% ALLOW

50% DENY

True False

IF $method==✁PUT�

Time-Changing Decision Tree 

Representation

True False

ALLOW

DENY

Timestamp

Status

T2 T3 T4 T5

......

IF $prefix1==✁/proj�

True

IF $prefix1==✁/proj�

True

Figure 3.6. A traditional decision tree and a Time-Changing Decision Tree (TCDT) gen-
erated from the logs in Figure 3.4. Both decision trees have the same internal nodes; however,
in a traditional decision tree, the leaf nodes are associated with proportional results; in a TCDT,
the leaf nodes are associated with the time-series results which can be used to represent policy
changes.

categories. We position TCDT in the machine learning literature and discuss the related work in

detail in §4.

Unknown attributes and values

The attributes and values in both DT and TCDT are limited to the one observed in the

access logs. However, when a decision-tree is adopted to classify the access result of a new-

coming access, the related attributes and values may not be seen before. In a traditional decision

tree, classification will be done with the probability in a leaf node of the False branches. This

may cause false classifications and thus miss changes. We address this problem by adjusting our

TCDT to explicitly classify such an access as UNKNOWN. When an access is detected as UNKNOWN,

P-DIFF will conservatively notify system admins to validate if there is a change. Then P-DIFF

will build a new TCDT so that those unknown attributes and values can be encoded. We show in

§3.10.6 that building a new TCDT is efficient. It takes 19 minutes to build a TCDT from 320

million log entries collected from the Wikipedia website (cf. Figure 3.12 in §3.10.7).
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Table 3.2. Annotations of the log format. P-DIFF requires users to annotate the access log
format, which is a one-time effort for a given system.

Field Annotation Semantics

Timestamp %t Timestamp of each access
Hierarchical feature %h(*) Features with hierarchical namespace,

such as IP address, URL, etc. * is a delim-
iter character.

Normal feature %n Non-hierarchical features
Access result %l ALLOW or DENY
Irrelevant %o Irrelevant fields

3.7 Policy Inference

This section describes the algorithms and mechanisms for inferring access control policies

from access logs. Note that we do not consider policy changes in this section and thus do not

differentiate a traditional decision tree versus a TCDT. We discuss policy change management in

§3.8.

3.7.1 Parsing Access Logs

P-DIFF parses logs based on sysadmins’ annotations on the log format. To reduce the

manual work and to make it general, P-DIFF does not require detailed annotation of each field’s

semantics, such as URL, IP, user and group etc. Instead, P-DIFF abstracts fields into five types:

timestamp, hierarchical features, normal features, access results, and other non-related fields.

Table 3.2 shows the meaning of each type. P-DIFF recognizes the timestamp for time-series

ordering and access results as a label of each access. P-DIFF differentiates hierarchical features

and normal features to further exploit the inherent hierarchical namespace of access rules

(cf. §3.7.3).
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3.7.2 Policy Learning Algorithm

P-DIFF uses a classic decision tree learning algorithm [83] to build the tree structure

based on the access logs, described in Algorithm 1. Before starting the algorithm, the access log

needs to be transformed into the algorithm’s input format

L = {(xi1, . . . ,xin,y)|i ∈ [1,m]} (3.2)

where (xi1, . . . ,xin) is the feature vector generated from the access attributes (subject, object,

action), y is the prediction label from access result r, and m is the number of log entries. Each

subject, object and action attribute could have more than one feature, respectively and each

feature is transformed into a unique field in (xi1, . . . ,xin). For instance, a subject can have features

of both username and group, so two fields are created in the feature vector. P-DIFF expands the

hierarchical features using the methods described in §3.7.3 and transforms the expanded features

into a feature vector with one-hot encoding [118].

Algorithm 1 takes L as input and grows the tree recursively. In each recursive step, the

algorithm splits one node into two child nodes, by selecting a feature j and its value xi j that split

L into two subsets with the purest labels, i.e. subsets with as large proportion of ALLOW or

DENY as possible. The two generated subsets are

Ll = {(xk1 , . . . ,xkn ,y)|k ∈ [1,m]∧ xk j = xi j} (3.3)

Lr = L−Ll (3.4)

To find the feature j and its value xi j , a metric function is adopted to measure the label purity

of a set. Traditional DT learning algorithms use either entropy or Gini Impurity [12, 83] as

the metric. We will show that those metrics cannot handle policy changes in §3.8, and the new

metric we design for P-DIFF to learn TCDTs.
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Algorithm 1. Decision Tree Learning
1: function DTL(L) a

2: root← treenode()
3: i,xi j ← best split(L) b

4: Ll,Lr← split(L, i,xi j)
c

5: mg← metric gain(L,Ll,Lr)
d

6: if mg! = 0 then
7: root.left← DTL(Ll)
8: root.right← DTL(Lr)

9: return root
aL = {(xi1 , . . . ,xin ,y)|i ∈ [1,m]}, the training data.
bFind the feature j and its value xi j that split L into two purest subsets, i.e. subsets with as
large proportion of ALLOW or DENY as possible.

cSplit L into Ll = {(xk1 , . . . ,xkn ,y)|k ∈ [i,m]∧ xk j = xi j} and Lr = L−Ll .
dCalculate metric(Ll)+metric(Lr)-metric(L), where metric is a function measures the label
purity of a set, e.g. entropy or Gini Impurity.

3.7.3 Namespace Inference

Decision trees inherently have the capability of representing hierarchical namespaces

in access-control rules. Unfortunately, traditional decision tree learning algorithms (e.g., Algo-

rithm 1) do not recognize hierarchical features well and thus cannot generate the inherent hierar-

chical structure. For instance, given a file path as a feature, such as "/projects/proj1.html",

it is treated as a single string; therefore, a node may be generated with a decision condition

"path==/proj/1.html" but not with "prefix1==/proj". To extend that, P-DIFF generates

rules not only for the path, but also for its parent directory "/proj".

P-DIFF makes two efforts to generate hierarchical rules. First, P-DIFF adopts Quinlan-

encoding [3] to expand the hierarchical features. P-DIFF takes the annotations of hierarchical

features (Table 3.2) with a delimiter and expands a string with all its prefixes. In the case

of file path, once the feature is annotated as hierarchical and delimited with "/", then prefix

features will be generated, such as "prefix0==/" and "prefix1==/projects". Note that the

annotation is a one-time effort.

Second, P-DIFF adopts a hierarchy aware mechanism [137] for the best-split step (Algo-
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rithm 1, Line 3) during decision tree learning. P-DIFF follows the hierarchical order to choose a

feature that best-splits the input data in the tree learning phase. Let us assume that there exist

three attributes ["user","method", "file path"]. P-DIFF will expand the three attributes

to five features in the feature vector: ["user","method","prefix0", "prefix1","file

name"].

P-DIFF first tries to choose a best-splitting feature from ["user",

"method","prefix0"] and if no feature results in change reduction, it tries ["prefix1"] and

["file name"] in order. Once P-DIFF finds a feature with metric gain, it ensures that features

at a higher level of the hierarchy are considered before features at a lower level.

3.8 Policy Change Management

3.8.1 Algorithm

Algorithm 1 and the other traditional decision tree (DT) learning algorithms cannot deal

with policy changes for two reasons. First, traditional DTs cannot encode changes over time.

P-DIFF addresses this by using TCDT (§3.6).

Moreover, traditional algorithms (e.g., CART, ID3 and C4.5 [12, 83, 84]) cannot directly

work with TCDT. This is because the splitting metrics (Gini Impurity and entropy) employed by

traditional algorithms do not consider rule changes over time—both Gini Impurity and entropy

are calculated based on the aggregated results and fail to take the time information into account.

Figure 3.7 shows two cases that the splitting metrics in traditional DT learning cannot decide

whether to split or not in Algorithm 1’s split step, because all the “purity metrics” are same

before and after the split (Row 3). On the other hand, the correct split decision can be made if

the “time series” information is taken into account (Row 4).

Therefore, we design a TCDT learning algorithm. Learning a TCDT requires different

training input and splitting metric from Algorithm 1. For TCDT, the training input is a time-series
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sequence:

L = ((τ1,x11 . . .x1n,y1), . . . ,(τm,xm1 . . .xmn,ym)) (3.5)

where τi < τ j for i < j, xi1, . . . ,xin is the feature vector generated from timestamped access

attributes denoted as (timestamp,sub ject,

ob ject,action), and yi ∈ {0,1} is the prediction label from the access result r. For splitting

metric, we propose a new metric, change-count, to effectively differentiate multiple unchanged

rules from one changed rule only based on logs, as shown in Figure 3.7.

Intuitively, the change-count of a time-series sequence is how many times the end result

is changed. Mathematically, for the time series L , the change-count is defined as:

CC(L ) =
n−1

∑
i=1
|yi+1− yi| (3.6)

When splitting L into two sequences Ll and Lr, the algorithm tries to find the feature j and its

value xi j in the way:

i, j = argmax
i∈[1,m], j∈[1,n]

(CC(L )− ∑
Lk∈split(L , j,xi j )

CC(Lk)) (3.7)

where split(L , j,xi j) is a function that splits a sequence L by examining whether xi′j
= xi j ,

where i′ ∈ [1,m].

We set the splitting goal to be generating the least changes possible—generating a new

rule should reduce the total change-count as many as possible. The goal can effectively decide

when to split in both cases of a single rule change and multiple rule changes, as shown in

Figure 3.7. Also, in the case that there is no rule change, the goal can also make the correct

splitting so that different rules are generated, as shown in Figure 3.8.
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Multiple rules without change (should split)

Policy 

Access 

log

subset

Time 

Series

T1, GET, /proj/1.htm DENY

T2, GET, /proj/2.htm ALLOW

T3, GET, /proj/1.htm DENY

T4, GET, /proj/2.htm ALLOW

 

GET, /proj/1.htm DENY 

GET, /proj/2.htm ALLOW

allow

deny

Timestamp

Status

T1 T2 T3 T4

ChangeCount: 3

allow

deny

Timestamp

Status

T1 T2 T3 T4

ChangeCount: 0

If not split If split

Figure 3.8. An example that demonstrates TCDT learning algorithm can infer rules
even there is no rule change. In this case, a splitting is required on the condition: if
prefix2=="/proj/1.htm". The time-series change count favors this splitting as the change
count decreases from 3 to 0 after splitting.

3.8.2 Optimizations

Calculating change-counts, CC(L ), defined in Equation (6) has a significant impact on

the training time for model generation, as it needs to be calculated many times for every feature j

and value xii in Equation (7). Note that the change-counts are different for different features and

values, and the results cannot be directly reused. Therefore, without an efficient implementation

of change-counts, P-DIFF cannot build the model in a short amount of time for large volumes of

access logs (e.g., the Wikipedia dataset evaluated in §3.10 has more than 300 million log entries).

Our initial change-count implementation is to loop through the entire access result array

that stores the access result (with 0 to represent ALLOW and 1 to represent DENY), as shown in

Figure 3.9. However, we find that this straightforward implementation is inefficient. It takes 51

minutes to train a model from 20 million log entries, and more than 2 hours for 40 million log

entries. Hence, it cannot work with datasets at the similar scales of our Wikipedia dataset (369

million entries).
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To accelerate the training time, we design and implement the following two optimizations

as illustrated in Figure 3.9:

1. We observed that in typical cases, ALLOW is much more frequent than DENY. Therefore,

looping through the entire access result array is unnecessary. To improve it, our first

optimization only loops through all the DENYs and checks for possible changes next to

each DENY. Note that given that the change-count needs to be calculated many times, we

generate an index of all the 1 values after the first change-count calculation and use the

index in the subsequent ones.

2. We further adopt discrete convolution [85] to calculate the sum of every two adjacent

result numbers: if the sum is 1, there is a change. We use the implementation of discrete

convolution as efficient vectorized operations in the Numpy library [75].

With these two optimizations, our implementation of P-DIFF is able to handle the entire

Wikipedia dataset. Our evaluation in §3.10.7 shows P-DIFF only takes 19 minutes to train a

model from 320 million log entries.

3.9 Use Cases

P-DIFF supports two use cases, change validation and forensics diagnosis, on top of its

TCDT-based access control policy learning described in §3.6–§3.8. In this section, we show how

to use the learned TCDT as a policy evolution representation for supporting the two use cases.

3.9.1 Change Validation

P-DIFF continuously monitors the new-coming access results from the access logs. For

each access, P-DIFF calculates the expected access results (ALLOW or DENY) based on the

policy maintained in the TCDT. When P-DIFF observes that the access results deviate from the

policy it currently maintains, P-DIFF treats the deviation as the result of a policy change. P-DIFF
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Figure 3.9. Two optimizations to efficiently calculate change-count. The naı̈ve implemen-
tation is to loop through the whole access result array and count the changes. Optimization 1
improves it by only looping through the seldom occurred DENYs (value 1). Optimization 2 uses
discrete convolution [85] ( f ∗g)[n] to calculate the sum of every two adjacent numbers (if the
sum is 1, there is a change).
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IF $method ==✁PUT�

True False

...

IF $prefix1==✁/proj�

True

IF $method ==✁GET�

True False

...

IF $prefix1==✁/proj�

True

New-coming access: 
T5, PUT, /proj/1.htm ALLOW

Access of interest: 
T4, GET, /proj/1.htm ALLOW

ALLOW

DENY

Timestamp

Status

T1 T2

T3 T4

Policy change to validate: 
T4-T5, PUT, /proj DENY      ALLOW

Change forensics: 
T2-T3, GET,  /proj DENY      ALLOW

ALLOW

DENY

Timestamp

Status
T1 T2

T3

T5T4

Figure 3.10. Two use cases with P-DIFF: (a) change validation and (b) forensic analysis.
For (a), P-DIFF detects a policy change based on the deviation of the access results at T5 and
the policy maintained in TCDT. P-DIFF then notifies the sysadmins with the policy change for
validation. For (b), P-DIFF backtracks the time series at the leaf node to pinpoint the root-cause
change between T2 and T3 that permitted the access.

then notifies sysadmins with the changed access control rules and asks sysadmins to validate

the changes. If the sysadmins confirm the change to be expected, P-DIFF updates the TCDT to

incorporate the policy changes. Otherwise, P-DIFF detects access control misconfigurations. It

discards the access results and keeps monitoring new access results (after the misconfigurations

get fixed by the sysadmins).

P-DIFF presents the change policy by extracting it from the corresponding path in the

TCDT. Figure 3.10 (left) shows an example of change validation. When monitoring a new

access at timestamp T5, P-DIFF calculates its access result based on the TCDT (which is DENY);

however, P-DIFF finds that the access was actually ALLOWed in the access log. The deviation

leads to the validation request.
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3.9.2 Forensic Analysis

Given an access of interest (e.g., an illegal access that steals confidential information),

P-DIFF can pinpoint the policy change that permitted the access by searching the policy evolution

history maintained in the TCDT. This is achieved by finding the path in the TCDT that determines

the result of the access and searching for the change that started permitting the target access in

time series encoded at the leaf node. Figure 3.10 (right) shows an example of forensic analysis.

Given a target access at T4, P-DIFF finds the corresponding leaf node in TCDT and backtracks

through the time series to find out the root-cause policy change happened between T2 and T3.

Note that forensic analysis can be done in-situ or serve as an independent tool postmortem

to any security incidents in which P-DIFF reads historical access logs and builds the TCDT by

analyzing the history.

3.10 Evaluation

We evaluate P-DIFF using controlled experiments based on datasets collected from five

real-world deployments of various systems with different scales, including firewalls of a software

company, an online Wikipedia service, and three websites hosted in academic organizations.

Table 3.3 describes these datasets.

3.10.1 Systems and Datasets

• Wikipedia. An online encyclopedia website for public access and has 33 million regis-

tered users. We collect access logs from a public dataset of request traces to Wikipedia

in September 2007 [112] (which is the only online dataset available). Access control is

implemented by the MediaWiki application. The protected resources including protected

pages of different protection levels, such as full-protected and semi-protected pages, which

can only be modified by sysadmins and registered users respectively.
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• Center A multi-node web server hosting home page, online tools and personal pages for a

research center with more than 10 faculty members and 50 graduate students in a research

university. Resource protection is done with Apache HTTPD web server’s access control

configurations (Figure 3.1). The protected resources include a public website for news

and personal pages, and an internal website for group-internal resources. The protection

policies of the whole server are maintained by a sysadmin, but each member can modify

the protection policies of their own pages.

• Course A department-wide course web server hosting 200+ courses in the past 5-6 years

for more than 2000 undergraduate and graduate students. Resources are mainly protected

by file permissions based on operating system level access control mechanisms. The pro-

tected resources include public and private web pages of course materials. The protection

policies of different course pages are maintained by the corresponding instructors and

teaching assistants. Course materials can be changed from private to public during the

semester and changed back to private after the semester.

• Company Firewall logs used by a software company serving millions of users. The policies

specify blocking IPs and IP ranges to protect the company network against Internet-based

attacks.

• Group A website hosting group pages and personal pages for a research group with more

than 20 researchers. Resource protection (mostly for private web pages) is done through

file permissions. The access policies are maintained by one sysadmin.

3.10.2 Experimental Design

To evaluate the effectiveness of P-DIFF requires two pieces of information: (1) the access

logs recording access requests and access results, and (2) the access control policy changes that

resulted in the access results (the ground truth).
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Table 3.3. Datasets used in our evaluation. The datasets cover a variety of systems, protection
mechanisms, access control configurations at different scales (§3.10.1).

Dataset Configuration Time Span # Access

Wikipedia Application logic 2 weeks 369M
Center Web server configuration 11 months 5.9M
Course File permission 11 months 3.8M
Company Firewall 3 hours 100K
Group File permission 1 month 32K

The Wikipedia dataset [112] includes both of the two pieces of information. The

policy changes can be obtained based on Wikipedia’s page protection change history [67],

which records the protection changes of each page (e.g., changed from publicly editable to only

accessible by specific users).

For Center, Course, Company and Group, we do not have the policy change history

(configuration changes in these systems were not tracked). Therefore, we only use the requests

recorded in the access logs and generate new access results by synthesizing the access control

policies (the original access results are ignored). As shown in Table 3.4, we generate different

types of policy changes to cover different scenarios; for each type, different attributes (subject,

object, and actions) are selected to be changed. We also selectively change policies that affect

objects with different access frequencies, categorized as “rare”, “normal”, and “frequent” based

on the frequency they are accessed. The experiment design allows us to study how access

frequency affects P-DIFF’s policy learning. We randomly choose a time to make a policy change

for a given dataset. In total, each dataset contains 60 policy changes across its time span, with 15

changes in each type, as detailed in Table 3.4. With the policies and their changes, all the access

results before and after the change are set accordingly.

All the experiments are conducted on an AWS instance, with Intel(R) Xeon(R) CPU

E5-2686 v4 @ 2.30GHz CPU (16 cores), 64GB memory, and Ubuntu 16.04.
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Table 3.4. Different types of access control policy changes used in the experiments for
the Center, Course, Company, and Group datasets. The detailed experiment design can be
referred to in §3.10.2.

Category Change Types Dataset
(# Changes) Applied

File Type 1: allow file access (15) Course

permission Type 2: block file access (15) Group

Type 3: allow directory access (15)
Type 4: block directory access (15)

Web server Type 5: allow user access (15) Center

ACL Type 6: block user access (15)
Type 7: allow GET/PUT method (15)
Type 8: block GET/PUT method (15)

Iptable Type 9: allow ip access (15) Company

ACL Type 10: block ip access (15)
Type 11: allow subnet (15)
Type 12: block subnet (15)

3.10.3 Overall Results

Change Validation.

We evaluate P-DIFF’s effectiveness in detecting policy changes. For each dataset, we

divide the time span (cf. Table 3.3) of the access logs into two parts: the first part is used for

training (observed accesses) and the second part is used for testing (upcoming accesses). The

first part takes 7
10 of the time span, and the second part takes the rest 3

10 . If a real policy change

is not detected, we count it as a false negative. If a detected policy change is incorrect, we count

it as a false positive.

Table 3.5 shows the number and percentage of policy changes P-DIFF detects from each

dataset. In total, P-DIFF detects 93 (94%) out of 99 rule changes with 12 false positives and 6

false negatives. For each dataset, P-DIFF generates less than 6 false positives and less than 3 false

negatives. For Wikipedia and Group datasets, P-DIFF generates 0 false positives and negatives.

This shows that P-DIFF works effectively on small education systems (Group, Course, Center),

medium commercial systems (Company with millions of users) as well as large-scale popular
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Table 3.5. Policy changes detected by P-DIFF. FP stands for false positive and FN stands for
false negative.

Dataset # Total # Detected Precision Recall
changes changes (FP) (FN)

Wikipedia 25 25 (100%) 1.0 (0) 1.0 (0)
Center 18 16 (89%) 0.76 (5) 0.89 (2)
Course 18 17 (94%) 0.85 (3) 0.94 (1)
Company 21 18 (86%) 0.81 (4) 0.86 (3)
Group 17 17 (100%) 1.0 (0) 1.0 (0)
Total 99 93 (94%) 0.89 (12) 0.94 (6)

websites (Wikipedia ranked the 7th popular website in the world [2]).

Forensic Analysis.

To evaluate the effectiveness of forensic analysis, we select an access of interest after

each policy change. The access of interest is an access that was supposed to be denied based on

the policy before the change, but is allowed after the policy change. In other words, if the policy

change is misconfigured, the access could be illegal. We feed the access of interest into P-DIFF

and evaluate whether P-DIFF can pinpoint the root-cause policy change that permits the access.

As shown in Table 3.6, P-DIFF pinpoints the root-cause policy change for 283 (93%)

out of 303 accesses of interest. For the Wikipedia and Center datasets, TCDT correctly

encodes 114 out of 123 changed rules on the normal objects (i.e. user and method). For the

Course, Company and Group datasets, TCDT correctly encodes 169 out 180 changed rules on

the hierarchical objects (i.e. directory and subnet). Once the rule is correctly encoded, P-DIFF

can always correctly backtrack the time series.

We investigate the 18 accesses of interest for which P-DIFF fails to pinpoint the root-

cause policy changes. In 50% of the cases (9 out of 18), the objects being accessed are rarely

accessed in the history (refer to §3.10.2 for the experiment design). In these cases, P-DIFF fails to

generate any rules and thus cannot pinpoint the rules. In the remaining 9 cases, P-DIFF generated

inaccurate rules (i.e. on the parent directory instead of on the child directory), and therefore fails
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Table 3.6. Effectiveness of forensic analysis. P-DIFF can pinpoint the root-cause policy changes
that permit the access of interest in the evaluation.

Dataset # Access Pinpointing
of interest root-cause changes

Wikipedia 63 61 (97%)
Center 60 53 (88%)
Course 60 59 (98%)
Company 60 51 (85%)
Group 60 59 (98%)
Total 303 283 (93%)

to pinpoint the precise root cause change.

Effectiveness Discussion.

For policy change detection, the goal of P-DIFF is to detect as many true changes as

possible while minimizing the reports of false changes. Our evaluation result in Table 3.5 shows

P-DIFF detects 93 out of 99 changes, which means only six (7%) changes are missed. P-DIFF

generates 12 positives which increase sysadmins’ validation overhead. Overall, the validation

overhead is reasonably small. Taking Wikipedia, one of the most popular online services, as an

example, the sysadmins of Wikipedia only need to validate 25 changes in 4.2 days (which is the

testing period).

For forensic analysis, as shown in Table 3.6, P-DIFF successfully pinpoints root-cause

changes of 283 out 303 accesses of interest, This means that sysadmins can use P-DIFF to

efficiently diagnose 93% of the target access event. Without P-DIFF, the sysadmins may have to

go through either a large number of access logs or various configuration and code in different

components as discussed in §3.2.

3.10.4 Precision, Recall, and F-Score

The detection of policy changes is based on detecting the deviation of access results. We

look into how well Time-Change Detection Tree (TCDT) can serve as a classifier to decide the
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access results by whether the decision matches the actual access results. Higher accuracy means

more accurate policy learning. We compare TCDT with an implementation of the traditional

decision tree implemented using Apache Spark MLlib [102] denoted as Spark-DT.

The experiment is conducted on the Center and Course datasets as they have longer

duration of logs and enable a comparison between different testing sets. Every three months of

logs are used as training set and the last month of logs are used as testing set.

Figure 3.11 shows that P-DIFF’s TCDT achieves a precision of 0.997, a recall of 0.92, and

a F-score of 0.94, while Spark-DT achieves a precision of 0.83, a recall of 0.86, a F-score of 0.80.

P-DIFF-TCDT improves precision by 19.5%, recall by 6.5%, and F-score by 17.3%. P-DIFF’s

TCDT improves the prediction precision of Spark-DT for all testing sets, and the improvement is

more prominent when the training set contains more rule changes, e.g. the training set for the

February testing set in the Center dataset. P-DIFF-TCDT also improves the prediction recall for

the other testing sets.

P-DIFF-TCDT does not increase the prediction accuracy on accesses happened in Nov

in Figure 3.11 (a). We consulted the sysadmin and learned that this month the website had a

major change: it is ported to another server and many new pages are added. P-DIFF has no

knowledge of these new pages and so reports accesses to them as UNKNOWN (cf. §3.6). Although

this hurts the accuracy in our evaluation, in real usage P-DIFF will retrain a new TCDT with

the new accesses and gets good accuracy. As shown from the result of Dec, Jan, and Feb in

Figure 3.11 (a), after training TCDT with the new accesses, P-DIFF gets precision and recall both

above 0.9.

3.10.5 False Positive and False Negative

P-DIFF generates false positives and negatives when the training set does not have enough

information. For false positives, P-DIFF may generate wrong rules. In one case, P-DIFF generates

a rule that access to ‘‘/proj1’’ should be denied based on the observation that accesses

to ‘‘/proj1/1.htm’’ and ‘‘/proj1/2.htm’’ are all denied in the training phase. In the
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Figure 3.11. Precision, recall, and F-score of TCDT classifying access results for the
Center and Course datasets. The x-axis shows the time of the testing data, which is a month
of logs in the dataset. The training data is the three continuous months of logs before the testing
month.

detecting phase, P-DIFF observes accesses to ‘‘/proj1/3.htm’’ are allowed and then decides

a rule change on ‘‘/proj1’’. But in fact, the access rules are in the file level instead of the

directory level and accesses to ‘‘/proj1/3.htm’’ are always allowed. P-DIFF generates a

wrong rule because there is no access to ‘‘/proj1/3.htm’’ in the training set.

False negatives are mainly because of “rare” objects (§ 3.10.2). P-DIFF fails to infer the

rules and thus cannot detect the change. For example, in the training phase, P-DIFF observes all

accesses from an IP ‘‘192.168.1.1’’ are allowed and so infers an allow rule for this IP. In the

detecting phase, P-DIFF observes accesses from ‘‘192.168.1.2’’ are denied. Since P-DIFF

has no rule for ‘‘192.168.1.2’’, it cannot detect the change and the change is actually access

to subnet ‘‘192.168.1.*’’ has been modified from ALLOW to DENY.
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Table 3.7. Performance of P-DIFF: training time, and time for validation and forensics per
access.

Dataset # Log entries Training Validation Forensics
for training time (per access) (per access)

Wikipedia 11.4M 188s 240 µs 143ms
Wikipedia 258 M 746 s 963 µs 12.8 ms
Center 4.13 M 43.7 s 10.8 µs 2.7 ms
Course 1.73 M 20.3 s 13.0 µs 4.8 ms
Company 70.0 K 2.46 s 26.1 µs 2.8 ms
Group 17.6 K 9.93 s 38.2 µs 3.7 ms

3.10.6 Execution Time

Table 3.7 shows the execution time of P-DIFF for training, validation, and forensics,

respectively in previous validation and forensic experiments (cf. §3.10.3). P-DIFF’s training is

very efficient. For the largest dataset (Wikipedia) with 258 million log entries, the training that

learns the TCDT only takes 12 minutes. For smaller datasets, P-DIFF takes less than 1 minute

for training. Note that the training is an offline process without the need of being real-time.

The validation and forensics can be done in microseconds and milliseconds per access.

The efficiency is decided by the depth of the TCDT—the deeper the TCDT is, the more time

it takes. Therefore, the time taken for validation and forensics in Wikipedia dataset is larger

than the others. Forensics takes a longer time for backtracking the time series. The performance

for forensics is satisfying, given that forensics is typically postmortem to the security incidents

and is done offline. For validation, P-DIFF needs to validate every access recorded in the access

log. Note that this does not need to be done sequentially but can be done in parallel as each

access is independent. Therefore, we conclude that the execution time of P-DIFF is acceptable in

real-world settings.

3.10.7 Scalability

To understand how P-DIFF scales with real-world access log data, we evaluate P-DIFF

with different numbers of log entries using the Wikipedia dataset. We use the continuous log
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entries of 10 million, 20 million, and all the way up to 320 million logs as different training sets.

Note that 320 million is the number of logs from Wikipedia for 12 days out of the total 14 days

of logs, which is the largest real-world dataset we can collect by far (the remaining 2 days of

logs are used as the testing set). The results in §3.10.3 show that less than 320 million of logs

have already been effective for P-DIFF to do an accurate change detection (100% precision and

recall) and forensic analysis (97% success). Therefore, in practice, we can only maintain the

most recent 12 days of logs for P-DIFF to be effective for Wikipedia.

Figure 3.12 shows the training, validation and forensics time respectively. When the

number of log entries increases from 10 million to 320 million, the training time increases

linearly from 2 seconds to 19 minutes, as shown in Figure 3.12 (a). The linear increase of the

training time is due to the fact that P-DIFF needs to go through every log entry to infer policies

and policy changes. Considering training is an offline process, it is acceptable to take 19 minutes

to train a TCDT once a while. Training is only necessary for the first time usage of P-DIFF or

when P-DIFF encounters too many UNKNOWN accesses (cf. §3.11).

The validation and forensics time for an access only takes a few milliseconds, as shown

in Figure 3.12 (b). Both validation and forensics need to search the decision tree to find the

leaf node applies for a given access. Therefore, the depth of the leaf node decides the execution

time of the validation and forensics. The average validation and forensics time are decided by

the depth of the leaf node that encodes a dominant policy, which applies to most accesses. In

Wikipedia, there is a dominant policy that “all page read should be allowed”. This dominant

policy node can be located in different depth based on the training set. This explains the variation

of the execution time for validation and forensic analysis in Figure 3.12(b). Overall, the variance

is small enough for efficient validation and forensics.

3.10.8 Validation Overhead

There are two types of validation that sysadmins need to perform. The first one is when

P-DIFF detects a change, it would inform sysadmins to validate whether the change is intended
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Figure 3.12. Scalability analysis in terms of execution time for training, validation, and
forensics with the increasing numbers of log entries from the Wikipedia dataset. Training
time is linear to the number of log entries; it takes 19 minutes to train a model from 320 million
log entries. Validation and forensics time are always low (1–10 milliseconds).

or not. Our evaluation results show the overhead for this type of validation is acceptable. Take

Wikipedia dataset as an example, only 25 validation needs to be done for the tested 111 million

accesses during the test period.

The second type of validation is when P-DIFF reports an UNKNOWN access after a new

object (e.g., a file) is added to the system. In the five datasets used in the evaluation, only 12 new

objects were unobserved during the training period. Therefore, only 12 validations need to be

done for those UNKNOWN cases (shown as false positives in Table 3.5). Intuitively, popular objects

should be observed during the training period, while rare objects, even not observed during the

training period, would not incur too much overhead for validation because of its rareness.

Moreover, the overhead for importing new objects (e.g., files) should not be excessive,

because sysadmins typically do not need to validate every single new object but can validate the

higher level hierarchy. For example, typically all the files in the same directory have the same

permission settings and so the directory can be validated in total, avoiding validating individual

new files. Certainly, in a case that every file under the same directory has distinct permission
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settings, the sysadmin needs to validate them one by one (but this also reflects a pathological

practice in the security management).

3.11 Discussions and Limitations

P-DIFF learns access control policies from access logs, and thus is limited to the infor-

mation recorded in access logs. As discussed in §3.6, if a new access with an unseen attribute

or value in logs, P-DIFF explicitly classifies it as UNKNOWN and notify sysadmins to validate it.

There are two cases that could cause UNKNOWN. First, some new attributes or values are added to

the access control policies, such as the creation of new users, roles, and files, etc. In this case, the

UNKNOWN is a real change and so is desirable to be validated. Second, if the resource is extremely

cold (there are very few accesses), P-DIFF may not be able to learn the related rules due to

the lack of information. We observe in our datasets that public resources are more frequently

accessed than private resources. In a few extreme cases, the private resources are only accessed

once a month. In this case, the validation request on UNKNOWN is also acceptable because a rarely

accessed resource is desired to be manually examined and it will not cause too much burden for

sysadmins for its rareness. In addition, in both cases, P-DIFF will retrain a new TCDT so that

the unknown attributes and values can be learned for future classification. As shown in §3.10.6,

the training time of a TCDT in real-world datasets is in the range of 2 seconds to 19 minutes.

Therefore, it is acceptable to retrain a new TCDT in a normal frequency like once an hour or

once a day.

P-DIFF cannot work with access logs that miss important information (i.e., subject, object,

action, and result). As shown in Table 3.1, although most of the studied software systems record

the required information in their access logs, there do exist some systems that missing certain

key information, such as subject and access results. P-DIFF cannot infer rules from access logs of

those systems before the logs are enhanced. As discussed in [17, 127], incomplete access logging

is a significant flaw that impairs auditing and forensics and thus should be fixed. Enhancing
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logging is beyond the scope of P-DIFF. Future work in automatically enhancing access logs

would be a valuable direction to be explored.
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Chapter 4

Related Work

4.1 Access-control Misconfiguration

4.1.1 Access-control Configuration Testing and Verification

Testing and verification techniques for access-control policies were previously explored

mainly by the software engineering community, as a promising approach to detect access-control

misconfigurations [63, 64, 80, 46, 35, 48, 54, 71, 53]. The basic idea is to write or generate test

cases that assert on the access results of test requests (i.e., test inputs). With comprehensive test

inputs and oracles, misconfigurations will fail the tests.

Prior techniques on access-control testing and verification are based on formal modeling

(e.g., using ACML). However, it is non-trivial to encode the actual system configurations using the

modeling language, due to the diversity and complexity of access-control implementations [125].

Furthermore, it takes significant effort to maintain the consistency between the model and system

configuration changes, which has been reported as one of the main reason that impair access-

control in real world [99]. Another major obstacle is that the prior approaches require sysadmins

to provide oracles or specifications (to check the test results). With the velocity of access-control

changes [99, 23], it is untenable to maintain consistency or oracles/specifications.

ACTESTs address the fundamental limitations of prior access-control testing and verifica-

tion approaches—it requires neither formal policy models nor oracles/specifications: 1) ACTESTs

take advantage of the original program to test its own access-control configurations to achieve
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high fidelity; 2) ACTESTs focus on the impact of access-control changes and flags high-impact

changes, without the need for sysadmins to write test oracles or specifications.

4.1.2 Access-control Misconfiguration Detection

Prior work proposes to detect access-control misconfigurations based on the heuristic

that users tend to have similar permissions to similar resources [23, 11, 97]. So, those techniques

classify users and resources into groups and identify misconfigurations when the same group

of users has different permissions to the same group of resources. Such techniques can only

detect limited types of misconfigurations where the heuristic applies. As noted by Das et al. [23],

“We do not claim that techniques will find all misconfigurations, as the notion of policy itself

is not defined in most of our deployment settings. Also, given that access permissions change

very organically over time and several of these changes are linked to adhoc and one-off access

requirements, it is very difficult for an automated system to deduce the exact and complete list

of all misconfigurations.” Our work presents a complementary approach to focus on detecting

changes of dynamic system behaviors instead of the similarity of static permissions.

4.1.3 Characteristic Study of Access-deny Issues

Xu et al. [127] studied the access-deny issues from a Human-Computer Interaction (HCI)

perspective by looking at the practices of how sysadmins resolving access-deny issues from

online forums. Even though their study shed light on the important problem that many current

server programs do not provide adequate feedback information, but they did not study further

into the details. In particular, no solution was proposed and evaluated in their study. Our work

not only provides additional insights to their findings (e.g., Finding 3 on commit history) but

also provides a solution to enhance access-deny log messages and insert new log statements.
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4.2 Other Types of Misconfiguration

4.2.1 Configuration Testing

A few recent works also propose to use testing techniques to detect misconfigurations,

e.g., Ctest [105] and PCheck [126]. We share the same view that testing is a practical and

effective approach for misconfiguration detection; however, ACTESTs are fundamentally different.

First, no prior work can be applied to access-control configurations, because they rely on

failure symptoms to determine the correctness of configuration values (e.g., crashing behavior,

exceptions, and performance degradation). However, access-control misconfigurations do not

lead to clear failure symptoms. For the same reason, most of the existing misconfiguration

detection techniques for functional correctness and performance cannot address access-control

misconfigurations [136, 107, 47, 79, 90, 8, 68, 16, 124]. Moreover, existing configuration testing

techniques are limited to unit-level tests [126, 105]. Differently, ACTESTs focus on system-level

tests in order to reason about end-to-end access-control. This requires addressing the system

challenges to run expensive tests efficiently.

4.2.2 Misconfiguration Detection

Previous work proposed many novel techniques [136, 107, 47, 79, 90, 8, 68, 16, 124]

for detecting misconfigurations that cause reliability issues. These techniques mainly infer

correctness rules from source code, other systems’ configurations and documents, and then use the

rules to check target configurations. Though effective on detecting reliability misconfigurations,

these techniques may not suit for detecting access-control misconfigurations. Unlike other types

of configurations, access-control configurations are typically flexibly customizable and so it is

hard to infer general rules on what configurations are correct from either source code, other

systems’ or documents. For example, source code may encode the valid range of a thread number

parameter as an if condition, but source code itself will not decide which user permission is valid

or not as it needs to provide as much flexibility as possible for sysadmins to make the decision.
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Therefore, instead of checking configurations against static rules, ACTEST run access-control

configurations with a modified program and observe how the running program behave differently.

4.3 Other Related Techniques

4.3.1 Access-control Bug Detection

Besides misconfigurations, vulnerabilities can also be introduced by software bugs, e.g.

the software could miss permission checks. Sun et al. [104] use static analysis to infer the

protected domains from the source code of a web applications, and then detect any unchecked

accesses to these pages. RESIN [133] is a runtime system that enforces data-flow assertions

to prevent exploits of web application security vulnerabilities. Nemesis [22] is a runtime

system for preventing authentication and access control bypass attacks. SPACE [72] is a tool

to find access control bugs in web application based on a catalog of patterns. Our work has a

complementary focus on access control misconfigurations—even if we have a correct coded

software, misconfigurations can still introduce security holes.

4.3.2 Intrusion Detection

One related research area on security-related log analysis is intrusion detection [26]. An

intrusion detection system (IDS) monitors system or network events, detects malicious activities,

and reports them to sysadmins. Previous works on IDS can be classified into signature-based

and anomaly-based methods. Signature-based IDS detects known attacks by recognizing their

patterns, such as a specific sequence of network traffic. Anomaly-based IDS detects unknown

attacks by heuristics or rules [59]. P-DIFF aims at detecting access control policy changes (that

may open up to attacks) instead of detecting the attacks. It can help backtrack the configuration

change that permitted the detected intrusions.
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4.3.3 Decision Tree Algorithms

Handling time-changing data, known as concept drift adaption in the literature, has been

one of the main challenges in machine learning [38]. Concept drift means the underlying model

of the data is changed along with time, i.e., an access control policy is changed from ALLOW

to DENY in our case. Previously most works propose to build concept drift decision tree by

learning multiple trees, each with the data in a time window [49, 103, 78]. However, it is hard to

apply those approaches in the access-control policy change problem, due to the challenges of

choosing the appropriate time window length, as different policies change can be performed by

sysadmins at some random time. To address this problem, we propose a new TCDT learning

algorithm which treats the whole dataset as a consecutive time series instead of discrete time

windows and encodes all the policies along with their changes in a single decision tree. Although

the TCDT is designed for the access-control policy change problem, it can be applied to other

binary classification problem with concept drift.

4.3.4 Execution Acceleration

Existing techniques [111, 56, 106, 31] for accelerating execution focus on reducing the

number of requests to execute. They aggregate similar requests, execute them in one round for

the most parts and only split the executions when there are divergences on control or data flow.

ACTESTs take an orthogonal approach. It minimizes the execution time of each individual request

by trimming server programs. We observe that server programs typically perform access-control

checks at the beginning of a request handling; therefore, we can skip the costly operations after

the access-control checks. To make ACTESTs easy to deploy, our approach does not introduce

any new dependency or record-and-replay systems as prior approaches. Combining our trimming

and previous deduplication approaches may further reduce the testing execution time.
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Chapter 5

Conclusion

This dissertation presents two validation methods for access-control configurations. This

dissertation presents ACTESTs to help sysadmins test their access-control configuration changes

before the changes are deployed and presents P-DIFF to help sysadmins detect access-control

behavior changes after configuration changes are deployed in production.

ACTESTs are a new type of test programs for testing access control configuration changes.

ACTESTs can detect what requests are impacted by access-control configuration changes and

warn sysadmins to validate if the impacts are intended. This can help sysadmins detect mis-

configuration vulnerabilities before they are exploited by attackers. To help developers build

ACTESTs, we present a general technique to transform a target program into an ACTEST. Our

evaluation on real-world Docker images shows that ACTESTs detect 168 new vulnerabilities

from 72 images. So far 25 of these vulnerabilities have been confirmed and 19 of them have

been fixed by image maintainers. Our evaluation on five real-world deployed systems shows that

ACTESTs can effectively and efficiently detect all the change impacts.

P-DIFF is a practical tool for continuously monitoring access logs to help sysadmins

detect unintended access-control policy changes as well as help identify historical policy changes

for a known security incident. We propose a novel TCDT structure and learning algorithm to

automatically infer access policies and changes from access logs. We evaluate P-DIFF with access

logs from five real-world systems. The results show that P-DIFF is effective in both detection
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of access control policy changes and forensic investigation of security incidents. In addition,

although our TCDT learning algorithm is only used for inferring access control policies in this

dissertation, it can be generally adopted to address the challenges in inferring other policies with

result changes.

Lessons Learned

Throughout the execution of this dissertation, a few lessons are learned that may be

helpful to guide future works:

First, there is no single silver bullet to solve all access-control misconfiguration issues.

This dissertation explores two approaches that aim to detect misconfigurations both before and

after the production deployment of configurations. Though we try to make each approach as

complete as possible, each of them definitely cannot catch all the misconfigurations. Therefore,

future work may consider to further solve the problem from different perspectives instead of

pushing one solution to the end. For enterprise, it may be a more effective strategy to adopt a

variety of solutions instead of relying on one major solution.

Second, more work needs to be done on the “human side” for access-control validation.

This dissertation focuses on detecting the behavior changes of systems after a configuration

change. Along with our study of the topic, a new challenge emerges—how to present the behavior

changes to humans so that the validation takes as little human effort as possible. This dissertation

presents heuristics to rank the changes for validation. However, more human computer interaction

studies need to be done on how to make the validation process effective and efficient.

Third, access logs need to be improved. Our study found that many programs still do

not have complete access logs—they either miss important information (e.g., subject, object

or action) or only record access denial events. This makes it hard for humans or tools to do

auditing. To improve access logs, we present three guidelines: 1) To have a complete auditing,

all access-related information needs to be logged. As the subject, object and action in different

system layers are different, every layer may need to keep its own access logs. 2) As the amount of
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information to be logged can be large, the performance penalty of logging needs to be understood.

Future work needs to be done on measuring and reducing the performance overhead of recording

access logs. 3) Access log formats should be designed for machines to read instead of for humans

to read. As access logs are usually of a large amount, it is impossible for humans to manually

analyze logs without a tool.
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