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ABSTRACT OF THE DISSERTATION

Thesis on Social Networks

by

Jingyu Fan

Doctor of Philosophy in Economics

University of California, Los Angeles, 2023

Professor Moritz Meyer-ter-Vehn, Chair

This dissertation consists of three independent chapters that discuss social networks

(defined in the broad sense) in different angles.

Chapter 1 studies how an agent’s propensity to accept bribes depends on the organiza-

tional structure, which we model with a broad set of random networks that contains two

canonical special cases. In hierarchies, agents’ best responses exhibit strategic substitutabil-

ity, with bribe taking being risker if others accept more bribes, for it is then easier for a

corruption investigation to trace through bribe transactions to locate bribe takers. On the

contrary, best responses in flat, two-layer networks feature strategic complementarity, as

more bribe acceptances better protect criminal subordinates from being caught, reducing

the risk of bribe taking. While incentives differ across networks, we show that for any of our

random network, in equilibrium, increasing its density always deters agents from accepting

bribes. Nevertheless, opposite results for hierarchies and two-layer networks are obtained if

we make the number of subordinates each agent monitors more evenly distributed. We use

this model to point out a corruption identification problem and propose a remedy to it.

Chapter 2 studies how parochial fairness concerns – a player’s incentives to compare

wages with those in the same group – affect group deviations. We propose a new theo-

retical framework based on the transferable-utility cooperative game through extending the
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utility space to incorporate in players’ other-regarding incentives. We then apply in the

Fehr-Schmidt utility specification to study how parochial fairness concerns govern income

redistribution outcomes after coalitional deviations and the structures of core allocations.

We find that while both disadvantageous and advantageous inequality aversion exacerbate in-

come inequality after a coalition deviates, advantageous inequality inclination ameliorates it.

In addition, if players are moderately averse to advantageous inequality, the grand-coalition

allocation most robust to coalitional deviations is the “tyranny-of-the-majority” allocation

that gives the single poorest player indefinitely small amount and equates the other players’

incomes.

Chapter 3 studies the rewards-based crowdfunding industry. We ask how a creator of a

crowdfunding project optimally designs the pricing strategies for rewards to maximize the

total fund raised. We build a structural model based on [Bre87] and estimate the project and

reward values and the distribution of backers’ preferences with data on reward prices and

the numbers of backers buying each reward. We find that backers’ preference distribution

heavily weighs towards the lower side – most backers are of low types; and that a creator

optimally employs a bow-shaped pricing strategy – they extract most of the surplus from

low- and high-type backers and charge those in the middle little to no premiums.
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CHAPTER 1

Corruption Networks

1.1 Introduction

Corruption is a huge problem. Apart from wasting public resources, it hinders crime detec-

tion, as oftentimes corruptible monitors are bribed into underreporting criminal behaviors.

Bribe exchanges of this type occur systematically in social networks. For instance, consider

the uncovering of rampant corruption in the New York Police Department (NYPD) by the

Knapp Commission in the 1970s. Immediately after the police officer Frank Serpico pub-

lished a New York Times article revealing the NYPD’s corruption, the Knapp Commission

was established to investigate into it. Within several years, it gathered testimonies from

dozens of witnesses (some were corrupt themselves), and implicated policemen from all lay-

ers accustomed to receive favors from criminals and lower-rank officers, while also covering up

crimes and each other’s bribe taking routine.1 This story implies that in large bureaucracies,

corruption is systematically organized into networks.2

This paper studies an individual’s incentive to take bribes, and how it is jointly deter-

mined by the network structure and the general corruption level. Our contribution is to

study a common social behavior in a novel angle, and to propose a new game form played

1See Wikipedia (https://en.wikipedia.org/wiki/FrankSerpico and https://en.wikipedia.org/w

iki/Knapp Commission) for a detailed description of this series of events.

2There exist rich documentations on police corruption (see, for instance, [Pun00], [Pun09] and [Ver99]),
which is both systematic and recurrent. The above example was by no means the only corruption scandal
on the NYPD – comparable scandals broke out every 20 years (1895, 1913, 1932, 1954, 1973 and 1994).
Perhaps not surprisingly, 20 years after the 1970s incident, another investigative commission – the Mollen
Commission – was summoned only to discover that pervasive corruption in the NYPD was regenerated in
novel forms [Pun00].
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on a large set of networks.

We consider a group of agents connected by a directed monitoring network, each link

pointing from a supervisor to a subordinate. The monitoring network can be any large,

random network with finite components (which implies acyclicity). All agents are criminal

and offer bribes to their supervisors.3 A supervisor can costlessly verify if her subordinates

are criminal and, upon observing a criminal subordinate, decides whether to accept the

subordinate’s bribe offer and in return withhold the crime report. All bribe acceptance

decisions are made simultaneously. An agent is caught by an external law enforcement

agency if she is directly detected by it to be criminal, reported by a supervisor, or discovered

through accepting a subordinate’s bribe.

Since a caught agent is obliged to pay a fixed punishment cost and surrender all accepted

bribes, while each additional bribe acceptance brings in constant marginal value, it imposes

increasing marginal cost. An agent thus employs a cutoff bribe acceptance strategy, that is,

accepting bribes up to an optimal desired number of bribes.

The structure of the monitoring network is the key to how others’ bribe acceptance be-

haviors translate into an agent’s bribe taking risk, thereby determining her bribe acceptance

propensity. In the first result, we analyze two canonical network structures and demonstrate

that they offer contrasting implications on that (Proposition 1.1).

One is hierarchies (the left panel of figure 1.1), where each agent has at most one supervi-

sor, and so there is no co-supervision. In a hierarchy, agents’ best responses exhibit strategic

substitutability, i.e., a rise in others’ corrupt behaviors renders bribe taking riskier and thus

less appealing to an agent. Intuitively, an agent’s bribe taking risk is only affected by the

actions of her direct and indirect subordinates. The more bribes they accept, the easier it

is for a corruption investigation to percolate up to reach the agent, should one lower-rank

opponent be directly caught as criminal. Hence, the agent accepts fewer bribes to mitigate

the higher risk. Decreasing best responses also imply the existence of a unique equilibrium.

3Later, we will consider an extended model where some agents are criminal, and some are innocent.
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The other is two-layer networks (the right panel of figure 1.1), where the agents are

divided into pure supervisors and pure subordinates, thus a supervisor has no indirect sub-

ordinates. As opposed to a hierarchy, in a two-layer network, agents’ best responses feature

strategic complementarity. This is because now an agent’s bribe taking risk is determined

by her co-supervisors’ actions. More corrupt co-supervisors tend to cover up subordinates’

crimes, creating a safer environment for the agent to accept bribes. Increasing best re-

sponses4 sometimes lead to multiple equilibria – both high and low corruption levels can be

sustainable.5

Figure 1.1: Hierarchy (Left) and Two-Layer Network (Right)

The following case helps understand how these results fit into reality:

In November 2011, a robbery at Peizhong Bai’s villa accidentally uncovered that this

chairman of Shanxi Coking Coal Group had embezzled U50 million. The case was

originally closed in haste. However, years later, it was dug out by the Standing Com-

4Though the comparison between strategic substitutability and complementarity is presented here with
best response variations, in a model extension with incorruptible agent types, it manifests itself in equilibrium
in that depending on the network structure, corruptible agents’ propensity to accept bribes rises or falls with
the proportion of incorruptible agents (Section 1.5.1, Corollary 1.1).

5This outcome accords with reality: various studies on police corruption point out that in a generally
corrupt environment, a new police officer would be easily coaxed into conforming to the corrupt norm. Thus
corruption maintains prevalent over the long run. However, in a generally incorrupt environment, threatened
by the high exposure rate, he would be deterred from corruption at the first place. Hence integrity sustains.
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mittee of the National People’s Congress (NPCSC) and prosecuted again. This time

several officials and businessmen involved were arrested, among whom were four police

officers from the local Public Security Bureau (PSB) initially in charge of the robbery

case, including even the Deputy Chief Laiwei Dai. These police officers were accused

of underreporting Bai’s amount of loss in the robbery in exchange for bribes counted in

millions. Notably, one of them, Yongping Li, also bribed his superior Dai [KW16].

One can identify two monitoring networks in this example. First, since the PSB and the

NPCSC separately monitor Bai, their relationship forms a two-layer network. The PSB’s

corruption was detected because the NPCSC reported Bai truthfully (instead of taking a

bribe), indicating strategic complementarity between their corrupt behaviors. Another net-

work is the hierarchy consisting of the Deputy Chief Dai, his subordinate Li, and the criminal

Bai that Li monitors. Dai’s outcome implies strategic substitutability, as he was investigated

and caught as corrupt only because Li was caught first through taking Bai’s bribe. This case

also suggests the prevalence of the two network structures in social organizations: hierarchies

are standard structures that organize individuals within an institution; two-layer networks

naturally arise among different institutions and divisions where co-supervision is common.

Despite the different incentives across networks, our second result shows that, given

any monitoring network, increasing its density always deters agents from accepting bribes in

equilibrium6 (Proposition 1.3). We argue that the intuitions however vary for a hierarchy and

a two-layer network. When a hierarchical monitoring network becomes denser, an agent has

more subordinates and hence receives more bribe offers, enabling her to accept more bribes.

Since corruption in hierarchies features strategic substitutability, it makes bribe taking riskier

and thus less appealing. As for a denser two-layer network, since a subordinate is monitored

by more supervisors, each receiving more bribe offers and so accepting a smaller proportion

of them, she is more vulnerable to crime detection. Therefore, bribe taking carries higher

risk and is thus less attractive.

6Wherever multiple equilibria exist, we select the most corrupt equilibrium for comparative statics, which
is Pareto optimal.
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While changes in the network density – first-order variations in the network degree dis-

tributions – lead to consistent results across hierarchies and two-layer networks, opposite

outcomes for them are brought about by second-order variations in agents’ out-degree dis-

tributions (Proposition 1.4).

In hierarchies, agents’ propensity to accept bribes falls given a more even distribution of

the number of subordinates each agent monitors. In particular, agents are the most deterred

from accepting bribes when they are arranged into a linear hierarchy, where each agent

monitors exactly one subordinate (except for the bottom agent). To see that, notice that

the risk of being caught only transmits from an agent to her direct and indirect supervisors,

and not those in the same tier. Hence, by positioning only one agent in each tier and in turn

elongating the hierarchy, the bribe taking risk is maximized.

In two-layer networks, agents are less inclined to accept bribes when the number of

subordinates each supervisor monitors is, on the contrary, less evenly distributed. Intuitively,

while some agents now receive fewer bribe offers and so are more constrained in bribe taking,

others receive more and so accept a smaller proportion of them. Overall, fewer bribe offers

are accepted, indicating larger likelihood a subordinate is reported. Hence, bribe taking

becomes riskier and so less appealing.

This model also has empirical implications. Specifically, we argue that the corruption

measure defined based on the number of bribe taking cases detected by law enforcements is

non-monotonic in and thus an unreliable indicator of the actual corruption level (Proposition

1.5). It is because the corruption detection rate is endogenous and depends on agents’ bribe

acceptance decisions, thus rampant corruption may accompany weak detection, leading to

meagre observed corruption cases (likewise, the opposite can also happen). This discovery

casts doubt on the validity of corruption measures constructed with law enforcement data

in evaluating anti-corruption policies. For instance, employing such measures, mixed empir-

ical results are obtained as to whether higher salaries for public officials curb or aggravate

corruption.7

7While evidence exists that corruption is alleviated if public officials are better paid, as shown by [GR89]
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Lastly, we consider a model extension where some agents are noncriminal (innocent).

Compared to a criminal agent, an innocent agent is more reluctant to accept bribes, as

corruption exposes her to the risk of being caught by the external law enforcement agency.

The extended model allows us to predict how the prevalence of crime affects corruption in

different network structures. First, in a linear hierarchy, a rise in criminal agents lowers

one’s bribe acceptance propensity. This is because criminal agents are strategically more

corrupt, and so their vaster presence makes a corruption investigation easier to percolate

up to endanger a bribe taker. Conversely, in a two-layer network, an increase in criminal

supervisors encourages agents to accept bribes, as criminal supervisors tend to be corrupt

and underreport subordinates’ crimes, making bribe acceptance less risky (Proposition 1.7).

These results echo the contrast between strategic substitutability and complementarity.

Literature Review

This research is most closely related to two network formation papers. Both center on the

role of a network in spreading the risk of detection by an external force among a group of

agents, and analyze individual network formation choices in this setting.

[BB08] study optimal network formation in a terrorist organization, where each agent

chooses the set of colleagues to reveal his identity to. While disclosing personal information

improves group efficiency, it renders an agent more vulnerable to external threat – once the

anti-terrorist agency detects an agent, it also detects those he holds information on. Our work

differs from theirs in both approaches and results. First, while they consider completely free

network formation, we fix the monitoring network and let the corruption subnetwork form

endogenously through bribe taking. As for results, in their model, only small networks –

singletons, binary cells or two-tier hierarchies – form to minimize risk contagion. This is

consistent with our strategic substitutability in hierarchies, where a larger corruption sub-

network raises the bribe taking risk. But we also bring in the novel strategic complementarity

and [GN98] for the US and by [SSZ16] for Russia, [AL12] find no obvious relationship between corruption
and public officials’ salaries using the same US dataset. Moreover, in a case study on the Mississippi state,
[KRS06] find that corruption is in fact more rampant when public officials’ salaries rise.

6



in two-layer networks, where more corruption reduces the contagious reporting risk and so

encourages agents to accept bribes.

[AMO16] consider the setting where a network of agents is threatened by contagious

cyberattack. Though they mainly focus on how agents invest in self immunity given an

exogenous network structure, one section allows them to sever their links, each generating

positive payoffs yet facilitating risk contagion. Similar to [BB08], their model brings about

strategic substitutability in that an agent optimally minimizes the size of the component

he is attached to. But strategic complementarity is absent. Another distinction is that

while their network is perfectly observable, our agents only know how many supervisors and

subordinates they have, and base their decisions on network parameters. This approach

allows us to compare agents’ strategies across structurally different networks.

The presence of corruptible monitors is well-documented in empirical literature ([DGP13],

[BBK21]8). In theory literature, this problem is traditionally studied as collusion between

two parties – a monitor and an agent. [Tir86] first recognizes it as a moral hazard problem.

Following that, [KL93] and [FLM03] explore various ways a principal can design contracts to

efficiently prevent such collusions. Outside the contract theory sphere, several papers discuss

welfare-improving policies in face of corruptible monitors. [CW92] and [BM93] make money

transfer designs to maximize tax revenues when evasive taxpayers can bribe their auditors.

[MP95] conduct similar studies in the context of a polluting factory and a pollution inspector.

More recently, [OC18] randomize a monitor’s wage to introduce information asymmetry

between the potentially collusive parties.

This paper is the first to study corruptible monitors in a systematic, structural way

using networks, breaking away from the confinement to two-player interactions. We also

shift attention from optimal contract and policy designs to how monitors make corrupt

decisions conditional on the network structure and each other’s strategy. While previous

papers generally assume that the probability a monitor is caught as corrupt is exogenous,

8[DGP13] find that pollution auditors paid by plants frequently underreport their pollution levels in
India. [BBK21] observe that procurement officers in the Pakistanian government report higher prices when
they are monitored.
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in our paper, it is the key endogenous variable through which the network structure alters

agents’ corrupt incentives.

As this paper points out the non-monotonic relationship between actual corruption levels

and corruption measures obtained from law enforcement data, it also contributes to the

applied economics literature on corruption where such measures are extensively used. To

cite a few examples, [MH92] and [GS06] adopt the number of convicted corrupt individuals

to study corruption in the US; [DT13] and [Zak19] utilize the number of registered corrupt

cases to measure corruption in China and Russia, respectively. Our structural approach can

help obtain more accurate measures of the underlying corruption in the future.

The paper is organized as follows. Section 1.2 delineates the baseline model. Section 1.3

provides equilibrium analysis. In 1.3.1, we derive agents’ best responses, and use them to

discuss strategic substitutability and complementarity across different network structures.

In 1.3.2, we derive the equilibria and perform comparative statics on network parameters.

Section 1.4 evaluates the performance of a commonly used corruption measure and raises

concerns for its validity. Section 1.5 considers two model extensions. Section 1.6 concludes.

1.2 Model

1.2.1 Primitives

A set of criminal agents are connected by a directed monitoring network, each edge repre-

senting a crime monitoring relationship pointing from the supervisor to the subordinate. Per

monitoring pair (edge), the supervisor has observed the subordinate’s crime, who has offered

a bribe with fixed value b > 0 back. The supervisor chooses either to accept it, or to decline

it and report the subordinate’s crime to the law enforcement agency. All bribe acceptance

decisions are made simultaneously.

There are three ways through which an agent can get caught: (i) being reported by at

least one supervisor; (ii) being directly caught as criminal by the law enforcement agency,
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which happens on each agent with independent probability q ∈ (0, 1); (iii) being detected

through accepting bribes: once an agent is caught, the law enforcement agency initiates an

investigation over her supervisors; any of them who has accepted the agent’s bribe is detected

independently with probability η ∈ (0, 1].

A caught agent pays a punishment cost c > 0 and has all the bribes confiscated, including

those she accepted from her subordinates and those she offered to her supervisors but were

declined9. Hence, if an agent with l ≥ 0 supervisors accepts n ≥ 0 bribes, her payoff is

(−c− lb) if she is caught and (n− l)b if not.

All the parameters mentioned above are public knowledge, as well as the network param-

eters to be introduced in the next section. Regarding the monitoring network, each agent

only knows her own in- and out-degrees, that is, how many supervisors and subordinates she

herself has.

1.2.2 Monitoring Network

We consider a large, random monitoring network with finite components. Let π be an

agent’s joint distribution of in- and out-degrees with finite support. The in- and out-degree

distributions are thus λ =
∫
π(·, k)dk and µ =

∫
π(l, ·)dl. Denote by λ̂ the in-degree distri-

bution for any of an agent’s subordinates, and by µ̂ the out-degree distribution for any of

her supervisors. By definition, λ̂(l) = λ(l)l/Eλ(l̃), µ̂(k) = µ(k)k/Eµ(k̃) ∀l, k.10

The underlying network can be constructed with the configuration model [Jac08]. Yet,

for the purpose of this paper, it is enough to restrict attention to one component. We use

the branching process to generate a random component – a component we uncover through

randomly picking an agent in the network:

1. Start with a node, create its l supervisors and k subordinates according to π.

9When a supervisor reports a subordinate, she also submits the bribe the subordinate offers to the law
enforcement agency. In other words, the bribes an agent offers to her supervisors are sunk cost that never
gets recovered.

10See [Jac08] for a detailed derivation of neighbors’ degree distributions.
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2. (a) If no new node is generated in the last step, terminate;

(b) otherwise, for each new subordinate, create its l̂ new supervisors from (λ̂−1), then

create its k subordinates from µ(·|l = l̂+ 1); for each new supervisor, create its k̂

new subordinates from (µ̂−1), then create its l supervisors from λ(·|k = k̂+ 1).11

3. Repeat step 2.

In this paper, we are particularly interested in hierarchies and two-layer networks (see

figure 1.1). The former is constructed by specifying suppλ = {0, 1}, the latter by setting

π(l, k) = 0 if l, k > 0.

Lastly, the following assumptions are imposed such that a component does not grow

unbounded, and the network is well-defined.

Assumption 1.1. i (finiteness) Eµ̂(k−1)·Eλ̂(l−1) <
(
1−Eµ̂

[
Eλ(l|k)

])
·
(
1−Eλ̂

[
Eµ(k|l)

])
and Eµ̂

[
Eλ(l|k)

]
< 1.

ii (consistency) Eµ(k) = Eλ(l).

(i) is the necessary and sufficient condition for a random component to be finite (see

Appendix 1.7.1 for the formal statement and its proof). To understand that, notice that a

stronger condition is max
{
Eµ̂
[
k − 1 + Eλ(l|k)

]
,Eλ̂
[
l − 1 + Eµ(k|l)

]}
< 1, which says that

the expected number of new links generated for each node is less than one. This assump-

tion ensures that the branching process terminates in finitely many steps, such that the

local structure of the underlying network indeed converges in distribution to the component

generated by the given branching process when the network gets large [Sad20]. Since the

branching process generates directed trees, it also implies that a component – and so the

network in general – is acyclic, which will greatly simplify the derivation of agents’ best

responses. (ii) states that the network has the same expected in- and out-degrees.

11In this step, neighbors’ degree distributions 〈λ̂, µ̂〉 are employed to adjust for the friendship paradox,
namely, compared with a random agent in the network, a random subordinate of an agent is more likely to
have more supervisors, and a random supervisor of an agent is more likely to have more subordinates. For
a more rigorous treatment on that, see [Sad20].
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1.3 Equilibrium Analysis

The ultimate goal of this section is to answer how the monitoring network shapes agents’

propensities to accept bribes. Specifically, we will contrast the relationships between agents’

bribe acceptance decisions across hierarchies and two-layer networks, and explore how the

equilibria are controlled by network parameters.

1.3.1 Best Response

First, we solve for the optimal bribe acceptance decision of a random agent in the monitoring

network. Suppose she has l ≥ 0 supervisors, and k > 0 subordinates who have offered bribes

to her. We consider which of these k bribe offers she optimally accepts.

This decision boils down to how many of the k bribe offers to accept, which can be

summarized with one variable. This is because all bribe offers have the same value b; and

accepting each of them brings to the agent identical risk of being caught, for the agent can

only observe her own degrees (similarly, the risk of being reported by each of the l supervisors

is equal).

Define the risk variables as follows:

Definition 1.1. Downward risk p is the probability an agent is caught through accepting

any given subordinate’s bribe; upward risk r is the probability an agent is reported by any

given supervisor.

They are endogenous and will be derived from network parameters and agents’ strategies.

We temporarily disregard how many subordinates the agent has and just think about

how many bribes she desires to accept given no upper limit. To solve for that, we first need

to know her expected utility of accepting n ∈ N bribes. Since the monitoring network is

acyclic, the risk coming from each link is independent. Therefore, if the agent accepts n

bribes, the probability she stays safe from being caught is (1− q)(1− r)l(1− p)n. Thus her

11



expected utility is:

U l(n) = (1− q)(1− r)l(1− p)n · (n− l)b

+
[
1− (1− q)(1− r)l(1− p)n

]
· (−lb− c).

(1.1)

Only when not caught can the agent keep the accepted bribes nb and avoid the punishment

cost c; lb is the cost of the bribes she offers to her supervisors.

Denote by n̂ ≡ arg maxU l(n) the agent’s desired number of bribes. The following lemma

presents an important property of the expected utility function U l(n) which allows n̂ to be

represented in a simple form.

Lemma 1.1. The expected utility function U l(n) is quasi-concave on R+; moreover, an

agent’s desired number of bribes n̂ is independent of her degrees l, k and the upward risk r,

it is a nonincreasing correspondence of the downward risk p.

U l(n) is quasi-concave because while the marginal benefit of a bribe is constant at b, its

marginal cost increases with the number of accepted bribes – each additional bribe acceptance

brings the same confiscation risk p to all bribes already accepted. To see why the agent’s

desired number of bribes n̂ is independent of her in-degree l and the upward risk r, notice

that she is subject to the same reporting risk
[
1 − (1 − r)l

]
regardless of how many bribes

she accepts; and the bribes she hands to her supervisors lb are predetermined sunk cost.

The number of subordinates the agent has k only poses a capacity constraint on how many

bribes she can accept and hence is irrelevant to how many she desires. The formal proof is

supplied in Appendix 1.7.2.

Lemma 1.1 implies that all agents desire the same number(s) of bribes, which we will

derive as a correspondence of the downward risk p. For that, we first compute the cutoff

downward risk pn(n+1) that makes an agent indifferent between accepting n and (n+1) bribes

by equalizing the expected utilities U l(n) and U l(n+ 1):

pn(n+1) =
b

c+ (n+ 1)b

12



Since pn(n+1) strictly decreases with n, the number of bribes an agent desires n̂ is a

nonincreasing correspondence of the downward risk p (the riskier bribe taking is, the fewer

bribes one accepts):

n̂(p) =



0 p ∈ (p01, 1]

n p ∈ (pn(n+1), p(n−1)n)

{n, n+ 1} p = pn(n+1)

∞ p = 0

(1.2)

n̂ is nondecreasing in the bribe value b, as an agent desires more bribes when they are more

valuable.

(1.2) implies that at optimum, an agent mixes at most between accepting two adjacent

numbers of bribes. Therefore, to capture mixed strategies, it is enough to extend the number

of bribes to accept n to the real line: let n ∈ R+ stand for accepting bnc bribes with

probability (bnc + 1 − n) and (bnc + 1) bribes with probability (n − bnc). For example,

n = 3.6 means accepting 3 bribes with probability 0.4 and 4 bribes with probability 0.6.

Next, extend the desired number of bribes correspondence n̂(p) to the real line accordingly

by letting n̂(p) = [n, n+ 1] whenever p = pn(n+1) for some n.

Since an agent with k subordinates only receives k bribe offers, the optimal number(s) of

bribes she actually accepts is min
{
k, n̂(p)

}
. As shown in figure 1.212, variations in agents’

optimal strategies come solely from their different capacity constraints.

In principle, the probabilities with which an indifferent agent (whose capacity constraint

is not binding) mixes between accepting n ∈ N and (n + 1) bribes could depend on her

degrees. In the spirit of symmetric equilibria we assume they do not by imposing the following

assumption:

Assumption 1.2. (Strong Symmetry Assumption) There is n ∈ R+ such that an agent

with k subordinates accepts min{k, n} bribes.

12Parameter values: b = 2. In this figure and all subsequent analyses, the punishment cost c is normalized
to 1.
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Figure 1.2: Optimal Strategies for Agents with Different Numbers of Subordinates (k =
1, 2, 3)

Assumption 1.2 allows us to capture all agents’ strategies with a one-dim variable n

(henceforth referred to as agents’ propensity to accept bribes). Besides, it is without loss of

generality.13

Risk Functions

Having mapped the downward risk p to agents’ propensity to accept bribes n through the

desired number of bribes correspondence n̂(p), we now do the reverse by defining the down-

ward and upward risk functions: P (n), R(n) ∈ [0, 1]. They crucially rely on the network

structure.

Due to information asymmetry, an agent treats her subordinates equally and randomly

selects a set of bribe offers to accept. We thus obtain the upward risk – the probability an

agent is reported by any given supervisor – as follows:

R(n) =
∑
k≥1

(
1− n ∧ k

k

)
µ̂(k), (1.3)

13To establish the generality of strongly symmetric equilibria, we define a symmetric equilibrium as an
equilibrium at which agents with the same in-and out-degrees (l, k) play the same mixed strategy, and show
that fixing the parameters, any symmetric equilibrium shares the same upward risk and expected utilities
with one and only one strongly symmetric equilibrium. We relegate the formal statement, its proof, and an
illustrative example to Appendix 1.7.3.1.
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where
(
1− (n ∧ k)/k

)
is the probability that a supervisor with k subordinates declines the

agent’s bribe offer and reports her.

Given R(n), the downward risk function P (n) is recursively defined14 by the following

equation:

p = η ·
∑
k

∑
l≥1

[
1− (1− q)

(
1−R(n)

)l−1

· (1− p)bn∧kc
(
1− (n ∧ k − bn ∧ kc)p

)]
λ̂(l)µ(k|l).

(1.4)

An agent is caught through accepting any given subordinate’s bribe if and only if that

subordinate is caught, and their bribe transaction is consequently detected (with probability

η). Specifically,
[
1−(1−q)(1−R(n))l−1(1−p)bn∧kc

(
1−(n∧k−bn∧kc)p

)]
is the probability

a subordinate with degrees (l, k) is caught conditional on the agent’s having accepted her

bribe. It generalizes the similar expression in equation (1.1) to mixed strategies.

Strategic Substitutability/Complementarity

We now discuss whether an agent optimally acts against (strategic substitutability) or follows

(strategic complementarity) her opponents’ bribe acceptance decisions in two network struc-

tures – hierarchies and two-layer networks (see figure 1.1). We show that as each network

class features a distinctive driving force, they provide opposite answers to this question:

Proposition 1.1. In a hierarchy, the downward risk function P (n) is strictly increasing;

in a two-layer network, it is strictly decreasing.

The proof is supplied in Appendix 1.7.5. The rising downward risk function P (n)15 in a

hierarchy implies strategic substitutability between agents’ bribe acceptance decisions – an

agent accepts fewer bribes when her opponents accept more. Intuitively, if a subordinate

14P (n) is well-defined because any component in the monitoring network is finite, as ensured by Assump-
tion 1.1(i). For the formal proof, see Appendix 1.7.4.

15More precisely, P (n) is strictly monotone on [0, k̄] and stays constant on [k̄,∞), where k̄ ≡ suppµ is
the largest number of bribes an agent can accept.
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accepts more bribes, the chance she gets caught through bribe taking rises, and so does the

risk of accepting her bribe. This effect is further intensified by risk transmission through the

corruption subnetwork 16, namely, the fact that an indirect subordinate of an agent accepts

more bribes also increases the agent’s bribe taking risk.17

In a two-layer network, since the downward risk function P (n) is decreasing15, agents’

bribe acceptance decisions exhibit strategic complementarity – an agent accepts more bribes

when her opponents accept more. This is because when an agent’s co-supervisors accept

more bribes, the risk her subordinates are reported, thus caught, falls. Hence, accepting

bribes becomes less dangerous for her.18

While the two opposite forces – strategic substitutability/complementarity – are demon-

strated with best responses here, with slight modifications on the model, they can be easily

transformed into equilibrium results. See Corollary 1.1, Section 1.5.1.

1.3.2 Equilibrium

Fixing a set of parameters, the equilibria are found at the intersecting points of the downward

risk function P (n) and the desired number of bribes correspondence n̂(p). The Intermediate

Value Theorem then implies:

Proposition 1.2. An equilibrium n∗ ∈ R+ exists.

The shape of the downward risk function P (n) has implications on equilibrium multi-

plicity. In a hierarchy, since P (n) is strictly increasing while the desired number of bribes

correspondence n̂(p) is weakly decreasing, they must intersect exactly once, producing a

16The corruption subnetwork is derived from the monitoring network by preserving only the links where
bribe transactions successfully occur.

17To understand that, let us pick three agents in the network. Suppose agent 1 monitors agent 2, who
monitors and colludes with agent 3. When 3 accepts more bribes, 2 becomes more likely to get caught
through colluding with her. As a result, the risk for 1 to accept 2’s bribe also increases.

18We have analyzed two special cases. In a more general network, both forces are present: an agent’s
bribe acceptance strategy is substitutable to the strategies of those in lower tiers, and complementary to the
strategies of those in the same tier. Hence, the downward risk function P (n) is generally non-monotonic.
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unique equilibrium (see figure 1.3a). On the contrary, in a two-layer network, the strictly

decreasing downward risk function P (n) may cross the desired number of bribes correspon-

dence n̂(p) more than once. Figure 1.3b illustrates that in this case, we may have multiple

equilibria.

(a) Hierarchy19 (b) Two-Layer Network20

Figure 1.3: Finding the Equilibria

Comparative Statics on the Network Parameters

In this section, we analyze how agents’ equilibrium bribe acceptance propensity n∗ is affected

by both the network density – first-order differences in the network degree distributions –

and constrained allocations of monitoring resources – second-order differences in the network

degree distributions. We show that while the former generates consistent results across

hierarchies and two-layer networks, the latter brings about opposite implications for them.

To tackle the equilibrium multiplicity problem, we restrict attention to the largest bribe

acceptance propensity n∗, which is the one that maximizes any agent’s expected utility (see

Appendix 1.7.6). We also make the simplifying assumption: µ(·|l̃ = l) = µ(·|l̃ ≥ 1) ∀l ≥ 1,

19Parameter values: λ(0) = 0.1, λ(1) = 0.9, µ(0) = 0.7, µ(3) = 0.3, λ ⊥ µ; q = 0.5, η = 0.8, b = 1. In
this network, an agent has at most 3 subordinates and so can accept at most 3 bribes. Hence, to find the
equilibrium, it suffices to truncate the desired number of correspondence n̂(p) at 3. We will apply the similar
truncation to all following graphs.

20Parameter values: π(1, 0) = π(0, 1) = 0.4, π(2, 0) = π(0, 2) = 0.1; q = 0.5, η = 0.8, b = 1.
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such that all agents monitored by at least one supervisor share the same conditional out-

degree distribution. Notice that this assumption is satisfied by the two special cases –

hierarchies and two-layer networks.

We define network density as follows:

Definition 1.2. Network 1 is denser than network 2 if their degree distributions satisfy:

λ1 �MLRP λ2, µ1 �MLRP µ2, µ1(·|l ≥ 1) �FOSD µ2(·|l ≥ 1).

Notice that the in- and out-degree distributions 〈λ, µ〉 are connected via Assumption

1.1(ii). Here we compare them in the MLRP (monotone likelihood ratio property) manner,

as MLRP ordering implies FOSD ordering for both the base degree distributions and their

corresponding neighbors’ degree distributions: λ1 �MLRP λ2 implies λ1 �FOSD λ2 and

λ̂1 �FOSD λ̂2.21

Proposition 1.3. If the monitoring network becomes denser, agents’ propensity to accept

bribes n∗ decreases.

The proof is supplied in Appendix 1.7.7. While Proposition 1.3 holds for general networks,

the underlying intuition depends on the network structure. To gain more insight into it,

consider first a hierarchy. When the network becomes denser, an agent has more subordinates

and so can accept more bribes – the capacity constraint is relaxed. She is thus more likely

to get caught through bribe taking, which in turn makes her bribes riskier to accept. Hence,

agents tend to accept fewer bribes. Mathematically, an FOSD shift of monitored agents’

out-degree distribution µ(·|l ≥ 1) shifts the downward risk function P (n) right, pushing

down the bribe acceptance propensity n∗.

Next, we look at a two-layer network. When the network becomes denser, not only is

a subordinate monitored by more supervisors, but her risk of getting reported by each of

them rises. To see the second point, notice now a supervisor has more subordinates and

21See [BV21] for other ways of treating comparative statics on network parameters when the friendship
paradox is present.
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so receives more bribe offers. She thus accepts a smaller proportion of them.22 Again, a

subordinate becomes more likely to get caught, deterring supervisors from accepting bribes.

At a mathematical level, FOSD shifts of neighbors’ degree distributions 〈λ̂, µ̂〉 shifts the

downward risk function P (n) right, thus lowering agents’ propensity to accept bribes n∗.

The same applies for any network, for it preserves the characteristics of both hierarchies

and two-layer networks, namely, a subordinate of an agent can get caught either through

accepting bribes (as manifested in hierarchies), or through being reported by others (as

manifested in two-layer networks). As the network becomes denser, both events are more

likely to happen, making the subordinate’s bribe riskier to accept.

Notice that the bribe acceptance propensity n∗ represents how many bribes one desires to

take, but an agent with k subordinates can actually only accept min{k, n∗} bribes. Hence, in

subsequent studies, we also consider a more objective corruption indicator – the corruption

level κ∗ ≡ Eµ
[
min{k, n∗}

]
, which measures the average number of bribes an agent accepts.

Proposition 1.3 suggests the bribe acceptance propensity n∗ falls with the network density,

yet the same does not necessarily apply for the corruption level κ∗, as it is confounded by

the direct increase in the out-degree distribution µ. In other words, although densifying the

monitoring network facilitates corruption detection and thus deters people from accepting

bribes, it simply creates more bribe taking opportunities. Hence, whether it reduces the

corruption level κ∗ is ambiguous.

In particular, since the desired number of bribes correspondence n̂(p) is a step function,

when the network becomes denser, agents’ propensity to accept bribes n∗ either drops or

stays constant. In both two-layer networks (figure 1.423) and hierarchies (figure 1.524), a

rise in the network density that does not affect the bribe acceptance propensity n∗ raises

22For example, fix agents’ bribe acceptance propensity n = 1. If each supervisor has one subordinate, then
all bribes are accepted. Hence the upward risk r = 0. Now let each supervisor monitor two subordinates,
then she randomly accepts one out of the two bribes. r thus rises to 1/2.

23Parameter values: suppπ =
{

(1, 0), (4, 0), (0, 1), (0, 4)
}

; q = 0.3, η = 0.8, b = 1. In this example, the
network finiteness assumption (Assumption 1.1(i)) is violated when the network density becomes large. But
it is innocuous for the model performance.

24Parameter values: suppλ = {0, 1}, suppµ = {0, 2}, λ ⊥ µ; q = 0.4, η = 0.8, b = 1.
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the corruption level κ∗ through relaxing agents’ capacity constraints
(
1.4a and 1.5a plot

the bribe acceptance propensity n∗ (blue) and the corruption level κ∗ (orange) against the

network density; 1.4b and 1.5b plot the corruption level κ∗ against the bribe acceptance

propensity n∗
)
. Yet increases in the network density that do reduce the bribe acceptance

propensity n∗ also lower the corruption level κ∗ – it is obvious for two-layer networks, as the

bribe acceptance propensity n∗ drops discontinuously; in a hierarchy, the corruption level

κ∗ falls continuously along with n∗, for agents’ reduced propensity to accept bribes always

dominates their expanded freedom in doing so.25

(a) n∗, κ∗ on the Network Density (b) κ∗ on n∗

Figure 1.4: Comparing n∗ with κ∗ when Varying the Network Density in a Two-Layer
Network

Since first-order increases in the network degree distributions raise the average number

of subordinates each agent monitors Eµ(k), Proposition 1.3 cannot speak to constrained

allocations of monitoring resources. We now fill in this gap by performing second-order

analyses on the network degree distributions.

Our goal is best illustrated with a network design question: given a large set of agents,

suppose we have some fixed number of monitoring links
(
fixing Eµ(k)

)
, and would like to

allocate them to monitor a fixed proportion of the agents
(
fixing 1−λ(0)

)
, how do we better

25In Appendix 1.7.8, we formalize this result for hierarchies (Proposition 1.12) and generalize it to any
network where the in- and out-degrees are independent (λ ⊥ µ).
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(a) n∗, κ∗ on the Network Density (b) κ∗ on n∗

Figure 1.5: Comparing n∗ with κ∗ when Varying the Network Density in a Hierarchy

design the network structure to reduce corruption?

In the following proposition, we show that when the number of subordinates each agent

monitors is less evenly distributed, corruption is alleviated in a two-layer network, yet ag-

gravated in a hierarchy.

Proposition 1.4. i In a two-layer network, a mean-preserving spread of unmonitored

agents’ out-degree distribution µ(·|l = 0) decreases agents’ bribe acceptance propensity

n∗ and the corruption level κ∗.

ii In a hierarchy with independent in- and out-degrees (λ ⊥ µ), a mean-preserving spread

of the out-degree distribution µ increases agents’ bribe acceptance propensity n∗.

Proof: See Appendix 1.7.9.

We explain the intuitions with small networks. Consider first a two-layer network with

two supervisors, three subordinates and four monitoring links (figure 1.6). When the number

of subordinates each supervisor monitors becomes less evenly distributed (from 1.6a to 1.6b),

the bribe taking risk rises. To see that, suppose each agent desires to take n = 2 bribes. Then

all bribes are accepted in 1.6a, making a subordinate unlikely to be reported. In comparison,

in 1.6b, while agent 2’s capacity constraint is binding, agent 1 receives three bribe offers and
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so reports one subordinate. Hence, accepting bribes from subordinates becomes riskier, thus

less appealing. Mathematically, a mean-preserving spread of unmonitored agents’ out-degree

distribution µ(·|l = 0) shifts the downward risk function P (n) right, thus lowering agents’

bribe acceptance propensity n∗.

(a) More Even Allocation (b) Less Even Allocation

Figure 1.6: Constrained Allocation of Out-Links in a Two-Layer Network

Next, we look at a four-agent hierarchy with three monitoring links (figure 1.7). Com-

pared with the linear hierarchy (1.7a), in 1.7b, the number of subordinates each agent moni-

tors becomes less evenly distributed, reducing the bribe taking risk. Intuitively, suppose each

agent desires to accept n = 1 bribe. In 1.7a, agent 1 can be caught through bribe taking if

any of 2, 3 and 4 is caught directly. In comparison, in 1.7b, she is in danger only if either

2 or 3 is caught directly (w.l.o.g. assume 2 accepts 3’s bribe and reports 4). Thus bribe

taking becomes less risky for 1. A similar analysis reveals that it also becomes less risky

for 2. Mathematically, contrary to a two-layer network, a mean-preserving spread of the

out-degree distribution µ shifts the downward risk function P (n) left, raising agents’ bribe

acceptance propensity n∗. This example suggests that in a linear hierarchy, risk percolates

up most smoothly, implying maximum deterrence on corruption.

Notice that a mean-preserving spread of the out-degree distribution µ also has a direct

negative effect on the corruption level κ∗, as then more agents’ capacity constraints bind,

forcing agents to accept fewer bribes on average.26 Hence, in a two-layer network, it causes

the corruption level κ∗ to drop together with the bribe acceptance propensity n∗; nevertheless,

in a hierarchy where the bribe acceptance propensity n∗ rises with a mean-preserving spread

26The intuition can be illustrated with figure 1.6. When each agent desires to accept n = 2 bribes, in
1.6a, both 1 and 2 have relaxed capacity constraints, and so the corruption level κ = 4/5. In comparison, in
1.6b, 2’s capacity constraint binds, leading to κ = 3/5. The same intuition plays out in figure 1.7.

22



(a) More Even Allocation

(b) Less Even Allocation

Figure 1.7: Constrained Allocation of Out-Links in a Hierarchy

of the out-degree distribution µ, changes in the corruption level κ∗ is ambiguous. Indeed,

in a linear hierarchy where agents are the most discouraged from bribe taking (figure 1.7a),

full corruption is nevertheless easily arrived at whenever an agent desires to accept at least

one bribe.

This issue for hierarchies can be circumvented by shifting monitored agents’ out-degree

distribution µ(·|l ≥ 1) instead of the unconditional one. In Appendix 1.7.10, we illustrate

its intuition and supply the formal statement.

1.4 Identifying Corruption

We now delve into the identification of the corruption level κ∗, which can be interpreted as

the per person number of corruption cases, where a corruption case refers to an incident of

successful bribe exchange. Since it is hard to observe the corruption level κ∗ in reality, many

empirical studies instead adopt the per person number of corruption cases detected by law

enforcements (denoted by κ̂∗) to measure corruption.27 As the probability each corruption

case is detected is given by the downward risk p∗ (henceforth referred to as the detection

27Such measures are particularly popular for studying corruption in non-US countries. To cite a few
examples: [DT13], [KS14], [SSZ16], [MO19], [Zak19], etc.
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rate), we have

κ̂∗ = p∗ · κ∗.

An immediate problem of the corruption measure κ̂∗ is underestimation (κ̂∗ < κ∗), as

corruption detection is rarely perfect (p∗ < 1). This issue is widely acknowledged in applied

economics literature and formally addressed by [KS14].28 Another problem is the non-

monotonic relationship between the corruption measure κ̂∗ and the corruption level κ∗, so

that the former does not even capture the trend of the latter:

Proposition 1.5. The corruption measure κ̂∗ is not generally monotonic in the corruption

level κ∗: a change in exogenous parameter values can raise (lower) κ∗ and lower (resp., raise)

κ̂∗.

We prove Proposition 1.5 by examples. Figure 1.8a illustrates what happens in a hierarchy

when the external monitoring success rate q is enhanced from 10% to 80%. Since now one’s

subordinates are more likely to be caught directly, it becomes more dangerous to accept

bribes, i.e., the downward risk function P (n) shifts right. Hence, agents’ bribe acceptance

propensity n∗ drops, resulting in reduction in the corruption level κ∗ from 0.8 to 0.33 (figure

1.8b). However, thanks to the higher corruption detection rate p∗, the corruption measure

κ̂∗ rises from 0.08 to 0.17. This example is consistent with the finding in [GN11] that

the corruption conviction rate in the US is positively and significantly correlated with law

enforcement strength.

More generally, figure 1.8b plots the corruption level κ∗ (blue) and corruption measure κ̂∗

(orange) against the external monitoring success rate q when it varies between 0 and 1. We

can see that only when the corruption level κ∗ strictly decreases with q does the corruption

measure κ̂∗ follow its trend, for the detection rate p∗ is constant in this range; otherwise, if

the corruption level κ∗ stays constant, the detection rate p∗ rises with q, and so does the

corruption measure κ̂∗.

28They estimate the “reporting rate of corruption” and divide the observed number of corruption cases
by it to obtain a relatively unbiased corruption measure.

29Parameter values: λ(0) = 0.2, λ(1) = 0.8, µ = λ, λ ⊥ µ; η = 0.6, b = 1.
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(a) Equilibria at Different q’s29 (b) κ∗, κ̂∗ on q

Figure 1.8: Discrepancies between κ∗ and κ̂∗ when Varying q in a Hierarchy

To cite another example, consider changing the bribe value b in a two-layer network

(it is equivalent to varying the punishment cost c). In figure 1.9a, when the bribe value b

increases from 0.324 to 0.38, bribes become more desirable – the desired number of bribes

correspondence n̂(p) shifts right. Thus, agents’ propensity to accept bribes n∗ rises from 1

to 2, as well as the corruption level κ∗ from 0.5 to 0.6 (figure 1.9b). Nevertheless, since the

downward risk function P (n) is decreasing (strategic complementarity), the detection rate

p∗ drops with the bribe acceptance propensity n∗, resulting in falling corruption measure κ̂∗

from 0.122 to 0.12. In a more general manner, figure 1.9b demonstrates the non-monotonic

relationship between the corruption level κ∗ (blue) and the corruption measure κ̂∗ (orange)

when the bribe value b varies on a larger scale.

Lastly, when network parameters change, while the corruption measure κ̂∗ follows exactly

the same trend as the corruption level κ∗ in both hierarchies and two-layer networks (see

figure 1.4a for the “discrete jumps” in two-layer networks and figure 1.5a for the “zigzag

pattern” in hierarchies31), wrong prediction can still arise around the turning points.32 For

30Parameter values: π(1, 0) = π(0, 1) = 0.4, π(2, 0) = π(0, 2) = 0.1; q = 0.2, η = 1.

31Wherever the corruption level κ∗ increases, the detection rate p∗ also rises, and so does the corruption
measure κ̂∗; wherever the corruption level κ∗ drops, the detection rate p∗ stays constant, thus the corruption
measure κ̂∗ drops along with κ∗.

32We use a hypothetical example to illustrate the intuition. In a hierarchy, suppose we keep increasing
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(a) Equilibria at Different b’s30 (b) κ∗, κ̂∗ on b

Figure 1.9: Discrepancies between κ∗ and κ̂∗ when Varying b in a Two-Layer Network

instance, in a hierarchy where one has either 0 or 2 subordinates, if the network becomes

denser, that is, if the probability of having 2 subordinates, µ(2), rises from 0.044 to 0.087,

the corruption level κ∗ drops from 0.0872 to 0.0868, whereas the corruption measure κ̂∗ rises

from 0.0289 to 0.0290.

The measurement exercise fails because the corruption detection rate p∗ is endogenous: a

corruption case is detected only if the involved criminal subordinate is caught, which depends

on the bribe acceptance strategies of the agents elsewhere in the network.

One tentative approach to solve this problem is to trim off the endogenous part of the

detection rate p∗. Suppose we know the sources of detection for all observed corruption cases,

that is, given any observed corruption case, we know whether the briber is (1) reported by

a supervisor, (2) detected directly by the law enforcement agency, or (3) caught through

accepting bribes (notice that the three cases are not mutually exclusive). Then we can

construct the per person number of corruption cases detected through source (2) (denoted by

κ̂∗e) as a new measure for the corruption level κ∗.

the network density and find three equilibrium points along the way: (κ∗, κ̂∗) = (0.4, 0.2), (0.43, 0.21),
(0.41, 0.18), where (0.43,0.21) is a local maximum, then the surrounding points (0.4,0.2) and (0.41,0.18)
form an instance of non-monotonicity.
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Define the probability any given corruption case is detected through source (2):

pe = ηq,

which says that a corruption case is detected directly if and only if the subordinate is directly

caught as criminal (with probability q), and the supervisor who has accepted her bribe

is caught through the subsequent corruption investigation (with probability η). The new

corruption measure can thus be expressed as

κ̂∗e = pe · κ∗ = ηq · κ∗.

Since pe is exogenous, so long as the law enforcement strength (q, η) is controlled for,33 the

new measure κ̂∗e correctly reflects the trend of the corruption level κ∗.34

1.5 Extensions

1.5.1 A Model with Corruptible and Incorruptible Agents

In Section 1.3.1, we show that while agents’ bribe acceptance decisions are strategically

substitutable in hierarchies, they are strategically complementary in two-layer networks.

This section reformulates the discovery as comparative statics.

We achieve it by making modest extensions on the baseline model. Suppose now an agent

is corruptible with independent probability γ ∈ (0, 1], and incorruptible with probability

(1 − γ). A corruptible agent makes strategic bribe acceptance decisions; an incorruptible

33For details on how it is typically addressed in applied economics research, see, for instance, [GR89],
[SSZ16], and [MO19].

34The term “law enforcement agency” should not be taken at face value. More precisely, it refers to
any anticorruption agency exerting influence on but sufficiently independent from the object of study. For
instance, if we are interested in studying police corruption, this term fails to apply as the police system
itself is a law enforcement agency. Instead, to circumvent the endogeneity problem, we can focus on those
corruption cases independently discovered by an external investigative commission, i.e., they are detected
neither thanks to a whistleblower nor through tracing up bribe transactions.
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agent is a crazy type that never accepts bribes.35

This extended model gives the following result as a corollary for Proposition 1.1:

Corollary 1.1. When the proportion of corruptible agents γ increases, their bribe accep-

tance propensity n∗ decreases in a hierarchy, and increases in a two-layer network.

Proof: When the proportion of corruptible agents γ rises, in a hierarchy, the downward

risk function P (n) shifts right, lowering the bribe acceptance propensity n∗; in a two-layer

network, the upward risk function R(n) decreases, hence P (n) shifts left, elevating the bribe

acceptance propensity n∗.

Q.E.D.

1.5.2 A Model with Criminal and Innocent Agents

Each agent is criminal with independent, publicly known probability s ∈ (0, 1), so the chance

she is innocent is (1 − s). An agent is guilty if she is either criminal or corrupt – having

accepted at least one bribe. Guilty agents are subject to conviction by the external law

enforcement agency and offer bribes to their supervisors.

Agents simultaneously choose how many bribes to accept maximally n ≥ 0. The game

then clears starting from the agents with no subordinate.

1.5.2.1 Best Response

Criminal agents’ incentives are the same as before. Their expected utilities remain unaltered(
equation (1.1)

)
, and so do their optimal strategies depending only on the downward risk p

(figure 1.2).

In comparison, innocent agents are less inclined to accept bribes, as keeping away from

corruption protects them against being caught. An innocent agent’s optimal strategy can

35Equilibria are derived in the same way as those for the baseline model, though the risk functions
P (n), R(n) are slightly different, as displayed in Appendix 1.7.11.1.
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be derived from that of a criminal agent with the same degrees. Suppose they both have

l supervisors and j > 0 guilty subordinates. Their expected utilities when accepting any

positive number of bribes coincide; if accepting 0 bribe, the innocent agent is not guilty

and so derives strictly higher expected utility than the criminal agent does
(
0 > U l(0) =

(1−q)(1−r)l ·(−lb)+[1−(1−q)(1−r)l] ·(−lb−c)
)
. Hence, while the criminal agent accepts

min{j, n} bribes at optimum (recall that n ∈ R+ is a criminal agent’s bribe acceptance

propensity), the innocent agent accepts either 0 or min{j, n} bribes depending on which

option generates larger payoff.36

This binary choice can be captured by a convenient expression. Suppose the bribe ac-

ceptance propensity n ≥ 1. Since the expected utility function U l is quasi-concave (Lemma

1.1), before the optimal number of bribes to accept n is reached, the more bribes one accepts,

the higher her payoff is. Construct the cutoff policy jl ∈
{

1, ..., bnc,∞
}

to be the smallest

number of bribes an innocent agent with l supervisors is willing to accept. Given that her

utility of accepting no bribe is 0, jl must be the smallest number of bribes that generates

nonnegative expected utility:

jl =


min

U l(j)≥0, j∈{1,...,bnc}
j if U l(bnc) ≥ 0

∞ if U l(bnc) < 0

(1.5)

So the optimal strategy for an innocent agent with l supervisors and j > 0 guilty subordinates

is to accept min{j, n} bribes if min{j, n} ≥ jl, and to decline all bribes otherwise. Notice

that when the bribe acceptance propensity n < 1, the agent optimally accepts no bribe –

the cutoff policy jl = ∞, as the fact that criminal agents are indifferent between accepting

0 and 1 bribe suggests innocent agents strictly prefer the former
(
0 > U l(0) = U l(1)

)
.

The following lemma presents some illustrative properties of the cutoff policy jl:

Lemma 1.2. i An innocent agent’s cutoff policy jl increases in the number of supervisors

36We insist on the Strong Symmetry Assumption, that is, all agents share the same bribe acceptance
propensity n ∈ R+. For the formal statement, see Definition 1.4(i), Appendix 1.7.3.2.
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she has l and the downward and upward risks p, r.

ii An innocent agent strictly prefers not to accept bribes if the number of her supervisors is

at least the same as that of her guilty subordinates (l ≥ j > 0).

To see (i), notice that if an innocent agent has more supervisors – l gets larger, then

once she becomes corrupt, not only does she need to pay more bribes, but she is also more

likely to get reported. Similarly, larger upward risk r elevates her chance of getting reported

through each link. Both deter her from engaging in corruption. Larger downward risk p

makes accepting bribes riskier and thus less attractive. (ii) can be understood with a simple

reasoning: suppose an innocent agent has no fewer supervisors than guilty subordinates

(l ≥ j > 0). If she decides to engage in corruption, her most optimistic outcome is to accept

all the bribes while remaining safe from being caught, which however gives her nonpositive

payoff (j − l)b ≤ 0. Since the agent has a strictly positive chance of getting caught through

accepting bribes (a subordinate is caught directly with probability q > 0), she would rather

stay away from corruption.

Lemma 1.2(i) implies that compared with a criminal agent whose bribe acceptance de-

cision only depends on the behaviors of her co-supervisors (strategic complementarity) and

direct and indirect subordinates (strategic substitutability), an innocent agent also bases the

bribe acceptance decision on her direct supervisors’ behaviors – the more inclined they are to

accept bribes, the less likely the innocent agent is reported should she engage in corruption,

and the more she tends to do so (the cutoff policy jl decreases when the upward risk r gets

smaller), suggesting a new complementary force between agents’ strategies.

1.5.2.2 Equilibrium

Since only guilty agents offer bribes, we prune non-guilty agents from the network. Let g be

the probability any given subordinate of an agent is guilty, and µg be the distribution of the

number of guilty subordinates a random agent has. g and µg are interdependent and can be

jointly solved as functions of agents’ strategies 〈n, (jl)l〉. Given these statistics, we can then
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define the risk functions P
(
n, (jl)l

)
, R
(
n, (jl)l

)
∈ [0, 1].37

Since innocent agents’ optimal strategies depend on both risk variables (p, r), in finding

the equilibria, it is necessary to employ a more advanced technique: we construct a self-map

Γ : (p, r) 7→ (p, r) and show that the equilibria are found at its fixed points: (p∗, r∗) ∈

Γ(p∗, r∗). Specifically, given the downward and upward risks (p, r), we solve for all optimal

strategies with the form 〈n, (jl)l〉 through the desired number of bribes correspondence n̂(p)

and condition (1.5) that characterizes innocent agents’ cutoff policies (jl)l. We then map

the optimal strategies back to the risk variables (p, r) using the risk functions P,R.

For the self-map Γ to be well-defined, we need to incorporate in innocent agents’ mixed

strategies between accepting zero and some positive number of bribes: if at some downward

and upward risks (p, r) an innocent agent is indifferent between these two choices, that is,

if U l
(
bn̂(p) ∧ jc

)
|p,r = 0 for some l, j, we extend the domain of the risk functions P,R to

include in all the induced optimal mixed strategies.38

Figure 1.1039 illustrates how the equilibria are reached in a two-layer network. In this

case, since supervisors who make bribe acceptance decisions are not monitored, their opti-

mal strategies, thus the self-map Γ, are defined on the downward risk p alone. 1.10a depicts

agents’ optimal strategies. Innocent agents’ cutoff policy j0 (red) increases with the down-

ward risk p, for they are more reluctant to engage in corruption when accepting bribes is

more dangerous. If p is sufficiently large, j0 goes to infinity, indicating they never accept

bribes. 1.10b visualizes the self map Γ : p 7→ p (blue) and characterizes the equilibrium p∗

at its fixed point.

Figure 1.1140 demonstrates agents’ optimal strategies in a hierarchy. Now, since innocent,

monitored agents base their bribe acceptance decisions on both the downward and upward

37For the formal expressions of the statistics for the network of guilty agents 〈g, µg〉 and the risk functions
P,R, see Appendix 1.7.11.2.

38As part of the Strong Symmetry Assumption, we impose that all innocent agents indifferent between
accepting bribes and not mix them with the same probabilities (Definition 1.4(ii), Appendix 1.7.3.2).

39Parameter values: π(1, 0) = π(0, 1) = 0.4, π(2, 0) = π(0, 2) = 0.1; q = 0.4, η = 0.6, b = 1, s = 0.5.

40Parameter values: max suppµ = 2; q = 0.1, b = 3.
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(a) Optimal Strategies (b) Self-Map Γ and the Equilibrium

Figure 1.10: Equilibrium for a Two-Layer Network

risks (p, r), in each of 1.11a and 1.11b, we fix one risk variable and plot the optimal strategies

on the other. As reflected in both graphs, among the innocent agents, compared with those

at the top, monitored agents incur the additional risk of being reported and thus adopt a

more stringent cutoff policy (j1 ≥ j0, j1 in yellow, j0 in red). This result is consistent with

Lemma 1.2(i) that the cutoff policy jl increases with the number of supervisors one has l.

(a) Optimal Strategies on p (Fixing r = 0.2) (b) Optimal Strategies on r (Fixing p = 0.1)

Figure 1.11: Optimal Strategies in a Hierarchy

The self-map Γ is upper hemicontinuous, and convex and closed at each point (p, r), thus

equilibrium existence is proved with Kakutani’s Fixed Point Theorem.
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Proposition 1.6. An equilibrium exists.

1.5.2.3 Comparative Statics on the Crime Rate

In this model, corruption is triggered by crime, hence a natural question to ask is how the

prevalence of crime influences agents’ bribe acceptance decisions. We focus on two network

structures – linear hierarchies and two-layer networks – and show that changes in the crime

rate s have different implications within and across networks.

We analyze agents’ propensities to accept bribes 〈n∗, (jl∗)l〉, as well as the corruption

level κ∗ defined again as the average number of bribes an agent accepts.41 A linear hierarchy

produces a unique equilibrium,42 yet multiple equilibria43 can exist for a two-layer network.

We thus select the largest equilibrium as before.44

Unlike hierarchies in general, in a linear hierarchy, only top agents’ cutoff policy j0∗

matters, as innocent, monitored agents never accept bribes – they have weakly more super-

visors than guilty subordinates
(
Lemma 1.2(ii)

)
. The irrelevance of monitored agents’ cutoff

policies is necessary in producing clear-cut results, justifying our restriction.

In a linear hierarchy, when the crime rate s increases, agents’ propensities to accept

bribes fall: n∗ decreases, j0∗ increases. This is because when there are more criminals who

41See Appendix 1.7.11.2 for the formal expression of the corruption level κ in this extended model.

42In a linear hierarchy, the downward risk function P depends only on criminal agents’ bribe acceptance
propensity n (see Footnote 45). Since P (n) is increasing in a hierarchy, we have equilibrium uniqueness.

43Remember that we impose the Strong Symmetry Assumption. In Appendix 1.7.3.2, we argue that even
in this extended model, in a two-layer network, it is without loss of generality to restrict attention to the
strongly symmetric equilibria.

44The largest equilibrium is the one with the smallest downward risk p∗, which must accompany the
largest bribe acceptance propensity for criminal agents n∗ (the desired number of bribes correspondence
n̂(p) is nonincreasing), and the smallest cutoff policy for innocent agents j0∗ (the smaller the downward risk
p∗ is, the more incentivized innocent agents are to accept bribes). We claim that in this extended model,
in a two-layer network, the largest equilibrium maximizes any agent’s expected utility. The
proof is similar to that for Proposition 1.11, Appendix 1.7.6, except that the upward risk r∗ is now irrelevant
to supervisors’ expected utilities, and unlike in the baseline model, innocent supervisors now have the option
to decline all bribes and achieve 0 payoff. Multiple equilibria at the smallest downward risk p∗ can occur if
both criminal and innocent agents employ mixed strategies, though they share the same expected utilities
and are thus virtually equivalent. In this case, we make the further refinement by selecting the equilibrium
with the largest bribe acceptance propensity for criminal agents n∗.
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offer and (may) accept bribes, the corruption subnetwork expands, making a corruption

investigation easier to percolate up to endanger a bribe taker. Thus, agents are deterred

from corrupt behaviors.45 This result echoes the strategic substitutability in a hierarchy.

The comparative statics for the corruption level κ∗ is ambiguous, as it is confounded by

two forces that counteract the reduction in agents’ bribe acceptance propensities – more crim-

inals induce more bribe taking opportunities, relaxing agents’ capacity constraints; besides,

criminal agents who are more prone to bribe taking now constitute a larger population.

Now look at two-layer networks. We distinguish between the crime rate among supervi-

sors and that among subordinates, for they generate different results.

Proposition 1.7. In a two-layer network, when supervisors’ crime rate increases, agents’

propensities to accept bribes and the corruption level both rise: n∗ increases, j0∗ decreases,

κ∗ increases; when subordinates’ crime rate increases, agents’ propensities to accept bribes

fall: n∗ decreases, j0∗ increases.

Proof: When supervisors’ crime rate increases, the upward risk function R shifts down,

and so does the downward risk function P as well as the self-map Γ : p 7→ p. Hence,

the equilibrium downward risk p∗ falls, implying larger bribe acceptance propensities and,

consequently, larger corruption level κ∗. The opposite happens when subordinates’ crime

rate increases, leading to smaller bribe acceptance propensities.

Q.E.D.

Intuitively, if there are more criminals among the supervisors who tend more to accept

bribes, criminal subordinates are less likely to be reported. Hence, accepting bribes from

them is less risky and thus more attractive. This result is reminiscent of the strategic

complementarity in a two-layer network. This increase in agents’ propensity to accept bribes,

45Mathematically, since innocent, monitored agents never accept bribes, the downward risk function P
depends only on criminal agents’ bribe acceptance propensity n. When the crime rate s increases, P (n)
shifts right, resulting in smaller bribe acceptance propensity for criminal agents n∗ and larger downward risk
p∗, which in turn raises innocent, top agents’ cutoff policy j0∗.
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together with the rising population of criminal supervisors more susceptible to bribe taking,

elevates the corruption level κ∗.

In contrast, if there are more criminals among the subordinates, more bribes are offered

and thus fewer are accepted. As a result, it is more dangerous and so less appealing to accept

criminal subordinates’ bribes. Nevertheless, just like in a linear hierarchy, increases in the

supply of bribe offers also relax supervisors’ capacity constraints. Hence, it is hard to say

whether the corruption level κ∗ rises or falls.

1.6 Conclusion

In this paper, we study the bribe acceptance decisions of corruptible monitors when they

are placed in a monitoring network that propagates bribe taking risk. All networks are

in between two extreme cases – hierarchies and two-layer networks – that predict opposite

relationships between an agent’s bribe taking risk and her opponents’ bribe acceptance be-

haviors. In equilibrium, while first-order increases in network degree distributions (densifying

the network) deter agents from accepting bribes in any network, second-order increases in

out-degree distributions (allocating monitoring resources more evenly) generate contrasting

outcomes across hierarchies and two-layer networks.

For simplicity, we assume away bribers’ strategic decisions, cyclic networks (which al-

low mutual monitoring), and the possibility of being caught through bribing a supervisor.

All are meaningful directions future research could advance in. Besides, it remains to be

tested whether this model can be implemented in empirical studies, and whether the issue

it uncovers on corruption measurement is evident in reality.
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1.7 Appendix

1.7.1 Network Finiteness Assumption

In this section, we prove that Assumption 1.1(i) is a necessary and sufficient condition for a

component of the monitoring network to be finite. The formal statement is given below:

Proposition 1.8. Any component of a random monitoring network is finite in expectation

iff Assumption 1.1(i) is satisfied.

Proof: Define by n1 the expected number of (direct and indirect) neighboring nodes we

get through tracing down an out-link, and by n2 that through tracing up an in-link. By

definition, they are recursively expressed as follows:

n1 = 1 + Eλ̂
[
(l − 1)n2 + Eµ(k|l) · n1

]
(1.6)

n2 = 1 + Eµ̂
[
(k − 1)n1 + Eλ(l|k) · n2

]
(1.7)

When we trace down an out-link, we first count in the direct subordinate. Suppose she has

degrees (l, k), we add in all the nodes we get by tracing through each of her other in-links

(l − 1)n2, and each of her out-links kn1. We then take expectation of her degrees (l, k) to

get an expression for n1. That for n2 is similarly defined.

Rearranging (1.6) and (1.7), we get explicit expressions for n1, n2:

n1 =
1− Eµ̂

[
Eλ(l|k)

]
+ Eλ̂(l − 1)(

1− Eµ̂
[
Eλ(l|k)

])(
1− Eλ̂

[
Eµ(k|l)

])
− Eµ̂(k − 1) · Eλ̂(l − 1)

(1.8)

n2 =
1− Eλ̂

[
Eµ(k|l)

]
+ Eµ̂(k − 1)(

1− Eµ̂
[
Eλ(l|k)

])(
1− Eλ̂

[
Eµ(k|l)

])
− Eµ̂(k − 1) · Eλ̂(l − 1)

(1.9)

A random component is finite in expectation iff n1, n2 are well-defined, that is, positive

and finite. From equations (1.8) and (1.9), it is straightforward to see that Assumption

1.1(i) implies n1, n2 are well-defined. We now show the other direction.
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First, suppose Eµ̂(k− 1) ·Eλ̂(l− 1) >
(
1−Eµ̂

[
Eλ(l|k)

])
·
(
1−Eλ̂

[
Eµ(k|l)

])
. Then n1, n2

have negative denominators. So they must have negative nominators to be well-defined,

which requires:

1− Eµ̂
[
Eλ(l|k)

]
< −Eλ̂(l − 1) ≤ 0 and 1− Eλ̂

[
Eµ(k|l)

]
< −Eµ̂(k − 1) ≤ 0.

It then implies Eµ̂(k − 1) · Eλ̂(l − 1) <
(
1− Eµ̂

[
Eλ(l|k)

])
·
(
1− Eλ̂

[
Eµ(k|l)

])
, contradicting

our assumption.

Now suppose Eµ̂(k− 1) ·Eλ̂(l− 1) =
(
1−Eµ̂

[
Eλ(l|k)

])
·
(
1−Eλ̂

[
Eµ(k|l)

])
. We only need

to check the case when the numerator for n2 is zero:

1− Eλ̂
[
Eµ(k|l)

]
= −Eµ̂(k − 1), (1.10)

for otherwise n2 explodes. Rearranging equation (1.6) and substituting in equation (1.10),

we obtain:

(
1− Eλ̂

[
Eµ(k|l)

])
· n1 − Eλ̂(l − 1) · n2 = 1 ⇒

−Eµ̂(k − 1) · n1 − Eλ̂(l − 1) · n2 = 1 (1.11)

Apparently, for equation (1.11) to hold, n1, n2 cannot be both positive.

Lastly, suppose Eµ̂(k − 1) · Eλ̂(l − 1) <
(
1 − Eµ̂

[
Eλ(l|k)

])
·
(
1 − Eλ̂

[
Eµ(k|l)

])
, but

Eµ̂
[
Eλ(l|k)

]
≥ 1. Together, they imply Eµ̂

[
Eλ(l|k)

]
,Eλ̂
[
Eµ(k|l)

]
> 1. For n1, n2 to be

positive, their numerators must be positive:

0 > 1− Eµ̂
[
Eλ(l|k)

]
> −Eλ̂(l − 1) and 0 > 1− Eλ̂

[
Eµ(k|l)

]
> −Eµ̂(k − 1).

However, it implies Eµ̂(k − 1) · Eλ̂(l − 1) >
(
1 − Eµ̂

[
Eλ(l|k)

])
·
(
1 − Eλ̂

[
Eµ(k|l)

])
. We run

into contradiction again.

Hence, overall, if Assumption 1.1(i) is not satisfied, then n1, n2 are not well-defined.
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Q.E.D.

1.7.2 Proof of Lemma 1.1

Suppose the downward and upward risks p, r < 1. We first show that the expected utility

function U l(n) extended on R+ is quasi-concave. For that, we compute its derivative:

∂U l(n)

∂n
= (1− q)(1− p)n(1− r)l

[
b+ (nb+ c) log(1− p)

]
.

If p = 0, it is positive, and so U l(n) is an increasing function. When p > 0, if c ≥

−b/ log(1 − p), it is nonpositive, thus U l(n) is nonincreasing; otherwise, it is positive when

n < −1/ log(1 − p) − c/b and negative when n > −1/ log(1 − p) − c/b, and so U l(n) first

increases, then decreases. In any case, U l(n) is quasi-concave.

We now derive an agent’s desired number of bribes correspondence n̂(p), which furnishes

the proof of the rest of Lemma 1.1. Since the expected utility function U l(n) is quasi-concave,

accepting n ∈ N+ bribes is optimal iff U l(n) ≥ max
{
U l(n+ 1), U l(n− 1)

}
, which yields

b

c+ (n+ 1)b
≤ p ≤ b

c+ nb

Similarly, declining all bribes is optimal iff U l(0) ≥ U l(1), which gives p ≥ b/(c + b). These

conditions characterize the desired number of bribes n̂ as a nonincreasing correspondence

of the downward risk p. They also suggest that n̂ is irrelevant of the degrees k, l and the

upward risk r.

Lastly, we incorporate in the left-out boundary cases: p = 1 or r = 1. Notice that the

downward risk p = 1 if and only if any subordinate of an agent is monitored by someone else,

any agent desires to accept zero bribe (such that the upward risk r = 1), and the contagion

rate η = 1. Hence, we must have n̂(1) = 0.

Now consider the case when the upward risk r = 1, but the downward risk p < 1. r = 1 if

and only if any agent desires to accept no bribe: n̂(p) = 0. Hence, this case is captured by the
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desired number of bribes correspondence n̂(p) when the downward risk is large: p ≥ b/(c+b).

Q.E.D.

1.7.3 Strong Symmetry Assumption

1.7.3.1 Baseline Model

In this section, we divide the set of mixed-strategy symmetric equilibria into different groups,

each including one and only one strongly symmetric equilibrium defined in Assumption 1.2.

We then show that all equilibria in the same group share the same expected utility for

any agent, such that it is without loss of generality to select only the strongly symmetric

equilibrium.

Define a symmetric equilibrium by n∗ ≡ (n∗lk), where n∗lk ∈ R+ is the number of bribes an

agent with l supervisors and k subordinates accepts. We only consider the symmetric equi-

libria where some agents adopt strictly mixed strategies (pure-strategy symmetric equilibria

are strongly symmetric), and classify them in the following way:

Definition 1.3. An equivalence class C(m,xm) is the set of symmetric equilibria n∗ for

which the associated downward risk p∗ = pm(m+1) and Eπ[n∗lk|k > m] = xm ∈ (m,m+ 1).

In words, at any equilibrium in an equivalence class C(m,xm), agents are indifferent

between accepting m and (m+ 1) bribes, and the expected number of bribes agents with re-

laxed capacity constraints accept is xm. C(m,xm) must include a unique strongly symmetric

equilibrium n∗ = xm.

The following proposition establishes the similarity between all equilibria in an equiva-

lence class, justifying our sole selection of the strongly symmetric one.

Proposition 1.9. All equilibria in the same equivalence class entail the same upward risk

and thus the same expected utilities.

Proof: We first show that all equilibria in an equivalence class C(m,xm) share the same
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upward risk. Consider any equilibrium n∗ ∈ C(m,xm). Its upward risk is expressed as:46

R(n∗) =
∑
l

∑
k≥1

(
1− n∗lk

k

)
µ̂(k)λ(l|k)

=
∑
l

∑
k≥1

k − n∗lk
k

· kµ(k)

k̄
λ(l|k)

(
k̄ ≡ Eµ(k̃)

)
=
∑
l

∑
k>m

k − n∗lk
k

· kµ(k)

k̄
λ(l|k) (n∗lk = k ∀k ≤ m)

=

∑
k>m kµ(k)− xm · Pr(k > m)

k̄

Since it only relies on (m,xm), all equilibria in the equivalence class C(m,xm) share the same

upward risk. Because they also share the same downward risk p∗ = pm(m+1), the expected

utility function U l(n)
(
equation (1.1)

)
is the same across them. An agent with degrees (l, k)

thus obtains the same expected utility maxkn=0 U
l(n) at any equilibrium in C(m,xm).

Q.E.D.

Here we present a numerical example where multiple equilibria exist in an equivalence

class. Consider a hierarchy with the out-degree distribution given by µ(0) = 1/2 and µ(1) =

µ(2) = 1/4. Set parameter values: η = 1, q = 1/2, b = 4/3, c = 1. This game has an

equivalence class C(0, 1/2), which includes, for instance, three equilibria: (n∗01, n
∗
11, n

∗
02, n

∗
12) =

(1, 1, 0, 0), (0, 0, 1, 1) and (1/2, 1/2, 1/2, 1/2) (apparently, n∗00 = n∗10 = 0), where the last

one is strongly symmetric. It is easy to verify that they share the same downward risk

p∗ = p01 = 4/7 and upward risk r∗ = 1/3. Consequently, agents’ expected utilities are also

the same across them: -1/2 for those with no supervisor and -2 for those with one supervisor.

1.7.3.2 Model with Criminal and Innocent Agents

This section presents the definition of strongly symmetric equilibrium for the extended model

introduced in Section 1.5.2, and show that it is without loss of generality to restrict attention

46This expression is adapted from the upward risk function R(n) defined by equation (1.3).
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to the strongly symmetric equilibria in a two-layer network – the main focus of study in our

comparative statics.

Definition 1.4. In a strongly symmetric equilibrium,

i there is n∗ ∈ R+ such that an agent with j > 0 guilty subordinates accepts either

min{j, n∗} or 0 bribe;

ii all innocent agents indifferent between accepting bribes and not mix them with the same

probabilities.

To establish the generality of strongly symmetric equilibria in a two-layer network, we

first group the symmetric equilibria47 in the following way:

Definition 1.5. An equivalence class C(p∗) is the set of symmetric equilibria with the

same downward risk p∗.

Since in a two-layer network, supervisors who make bribe acceptance decisions are not

monitored, their expected utilities are irrelevant to the upward risk r. Thus all equilibria in

the same equivalence class C(p∗) produce the same expected utility for any agent, indicating

that they are virtually equivalent. Hence, the following proposition implies that it is without

loss of generality to focus only on the strongly symmetric equilibria:

Proposition 1.10. In a two-layer network, each equivalence class C(p∗) contains at least

one strongly symmetric equilibrium.

Proof: In a two-layer network, subordinates do not make bribe acceptance decisions, so

any given subordinate of an agent is guilty if and only if she is criminal: g = s, and the

distribution of the number of guilty subordinates an agent has µg is fixed at µs. Hence,

the more prone supervisors are to accept bribes, the smaller the upward risk r is, and

the smaller the downward risk p is
(
for this derivation, the fixation of 〈g, µg〉 at 〈s, µs〉 is

47A symmetric equilibrium is an equilibrium in which agents of the same type (criminal/innocent) and
with the same numbers of supervisors and guilty subordinates (l, j) adopt the same mixed strategy.
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essential; otherwise, if they vary with agents’ strategies, changes in the risk variables (p, r)

are ambiguous
)
. Therefore, among the optimal symmetric strategies at some equilibrium

downward risk p∗, the function P that maps from agents’ strategies to the downward risk

p obtains its maximum pM ≥ p∗ (minimum pm ≤ p∗) when any innocent agent indifferent

between accepting bribes and not declines all bribes (resp., accepts bribes) with certainty, and

all criminal agents and innocent ones who accept bribes desire min n̂(p∗)
(
resp., max n̂(p∗)

)
bribes. Since both the maximizer and the minimizer are strongly symmetric, if they do not

coincide
(
otherwise, they define the unique element of the equivalence class C(p∗)

)
, we can

easily construct a continuum of optimal strongly symmetric strategies at the downward risk

p∗ for which they are the two boundary points and on which the mapping P is continuous.48

Since the downward risk p∗ ∈ [pm, pM ], the Intermediate Value Theorem suggests that it must

be achieved by some optimal strongly symmetric strategies in this domain. By definition, it

belongs to the equivalence class C(p∗).

Q.E.D.

1.7.4 Downward Risk Function P (n)

In this section, we show that the downward risk function P (n) solved implicitly by equation

(1.4) is well-defined. Denote the RHS of (1.4) as a function:

f(n, p) ≡ η ·
∑
k

∑
l≥1

[
1− (1− q)

(
1−R(n)

)l−1

· (1− p)bn∧kc
(
1− (n ∧ k − bn ∧ kc)p

)]
λ̂(l)µ(k|l).

48For this construction, restriction to a subset of the optimal strongly symmetric strategies at the down-
ward risk p∗ is only necessary if the following two types of mixed strategies can coexist: criminal agents
may mix between accepting two adjacent numbers of bribes, i.e., min n̂(p∗) < max n̂(p∗) and some agents’
capacity constraints do not bind; and some innocent agents may mix between accepting bribes and not –
there exists some j such that U0(bn̂(p∗) ∧ jc)|p∗ = 0. In this case, we reduce the space to the optimal
strongly symmetric equilibria for which the two types of mixed strategies share the same probabilities: there
is r ∈ [0, 1] such that all innocent agents indifferent between accepting bribes and not accept bribes with
probability r, and all agents likely to accept bribes desire max n̂(p∗) bribes with probability r and min n̂(p∗)
bribes with probability (1− r).
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Thus the downward risk function P (n) is implicitly solved by

f(n, p)− p = 0. (1.12)

We first show given any bribe acceptance propensity n ≥ 0, there must exist a downward

risk p ∈ (0, 1) such that equation (1.12) holds. Notice that the function f(n, p) − p is

continuous. Since f(n, p) ∈ [0, 1] for any n ≥ 0 and p ∈ [0, 1], we have f(n, 0) − 0 ≥ 0 and

f(n, 1) − 1 ≤ 0 at any n ≥ 0. Hence, the Intermediate Value Theorem suggests for any

n ≥ 0, there exists p ∈ [0, 1] such that f(n, p)− p = 0.

Next, we prove this solution is unique. For that, we need to show ∂f/∂p− 1 < 0 for any

n ≥ 0 and p ∈ [0, 1], such that given any n ≥ 0, f(n, p) − p strictly decreases on p ∈ [0, 1],

and so must cross 0 exactly once.

First, we show ∂f/∂p decreases on p ∈ [0, 1]. Define function

g(k, n, p) ≡
∂
[
(1− p)bn∧kc

(
1− (n ∧ k − bn ∧ kc)p

)]
∂p

Then
∂f

∂p
= −η(1− q) ·

∑
k

∑
l≥1

(
1−R(n)

)l−1 · g(k, n, p)λ̂(l)µ(k|l). (1.13)

Now notice that

∂g

∂p
=



2(n− 1) 1 ≤ n < 2 ≤ k

−
(
bnc − 1

)[
− n+

(
bnc+ 1

)(
n− bnc

)
p
]
·

(1− p)bnc−2 +
(
bnc+ 1

)(
n− bnc

)
(1− p)bnc−1

2 ≤ n < k

k(k − 1)(1− p)k−2 2 ≤ k ≤ n

0 o.w.

(1.14)
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where

−n+
(
bnc+ 1

)(
n− bnc

)
p ≤ −n+

(
bnc+ 1

)(
n− bnc

)
= n · bnc −

(
bnc
)2 − bnc

=
(
n− bnc − 1

)
· bnc

≤ 0.

Therefore, we have ∂g/∂p ≥ 0 for any k, n ≥ 0 and p ∈ [0, 1]. Thus equation (1.13) suggests

∂2f/∂p2 ≤ 0 for any n ≥ 0, p ∈ [0, 1], and so give any n ≥ 0, ∂f/∂p decreases on p ∈ [0, 1].

It remains to show (∂f/∂p)|p=0 < 1. Equation (1.14) implies

g(k, n, 0) =


−k k ≤ n

−n k > n

Hence,

∂f

∂p

∣∣∣∣
p=0

= η(1− q) ·
∑
k

∑
l≥1

(
1−R(n)

)l−1
(n ∧ k) · λ̂(l)µ(k|l)

≤ η(1− q) ·
∑
k

∑
l≥1

k · λ̂(l)µ(k|l)

< η(1− q)

< 1,

where the second inequality holds because Assumption 1.1(i) (the network finiteness as-

sumption) implies Eλ̂
[
Eµ(k|l)

]
< 1.

Hence, ∂f/∂p − 1 < 0 for all n ≥ 0 and p ∈ [0, 1]. So f(n, p) − p = 0 has a unique

solution p ∈ [0, 1] at any n ≥ 0, and thus the downward risk function P (n) is well-defined.
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1.7.5 Proof of Proposition 1.1

We show that the downward risk function P (n) is strictly monotonic on [0, k̄] given a hier-

archy or a two-layer network, where k̄ ≡ suppµ is the largest number of bribes an agent can

accept.

In a two-layer network, from equation (1.4), the downward risk function can be explicitly

expressed as:

P (n) = η ·
∑
l≥1

[
1− (1− q)

(
1−R(n)

)l−1
]
λ̂(l).

Since the upward risk function R(n) is strictly increasing on [0, k̄], as easily seen from equa-

tion (1.3), so is the downward risk function P (n).49

In a hierarchy, the downward risk function P (n) is implicitly solved by p = f(n, p), where

the function f(n, p) is given by:

f(n, p) = η ·
∑
k

[
1− (1− q)(1− p)bn∧kc

(
1− (n ∧ k − bn ∧ kc)p

)]
µ(k|l = 1). (1.15)

Given any two bribe acceptance propensities n1, n2 with 0 ≤ n1 < n2 ≤ k̄, we want to

show P (n1) < P (n2). Denote them as p1, p2. From equation (1.15), we get f(n, 0) = η ·q > 0

(remember the contagion rate η > 0, and the probability of being directly caught q > 0).

Hence, P (n) > 0 for any n ≥ 0,50 and so p1 > 0. Since (1.15) also implies f(n, p) strictly

increases on n ∈ [0, k̄] at any p ∈ (0, 1), we have f(n2, p1) > f(n1, p1) = p1
50. Since f(n, p)

is continuous, and f(n2, 1) − 1 ≤ 0, the Intermediate Value Theorem suggests there exists

some p ∈ (p1, 1] such that f(n2, p) = p, which by definition must be equal to p2.50 In other

words, P (n1) < P (n2).

Q.E.D.

49We rule out the trivial network where each supervisor monitors one subordinate, which gives λ̂(1) = 1.

50Here we are using the fact that p = f(n, p) has a unique solution p ∈ [0, 1] for any n ≥ 0. See Appendix
1.7.4 for the proof.
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1.7.6 Equilibrium Selection

In the baseline model, in face of equilibrium multiplicity, we select the largest equilibrium.

More precisely, denote by N∗ the set of all strongly symmetric equilibria given certain pa-

rameter values. The largest equilibrium n∗M = maxN∗. Here we justify this selection by

showing the following:

Proposition 1.11. The largest equilibrium n∗M maximizes any agent’s expected utility out

of all the equilibria in N∗.

Proof: When there are multiple equilibria, pick any two n∗1, n
∗
2 ∈ N∗ that satisfy n∗1 >

n∗2. We want to show that any agent obtains higher expected utility at n∗1 than at n∗2.

Denote the downward and upward risks at n∗i by p∗i , r
∗
i . Since the desired number of bribes

correspondence n̂(p) is nonincreasing, we have p∗1 ≤ p∗2. Moreover, the strictly decreasing

upward risk function R(n) implies r∗1 < r∗2. Therefore, the expected utility for an agent

with l supervisors and k subordinates satisfies U l
(
bn∗1 ∧ kc

)
|p∗1,r∗1 ≥ U l

(
bn∗2 ∧ kc

)
|p∗1,r∗1 ≥

U l
(
bn∗2 ∧ kc

)
|p∗2,r∗2 , such that the larger equilibrium n∗1 generates larger expected utility than

n∗2 does. The first inequality holds because n∗1 is the optimal choice at downward risk p∗1.

The second is true for p∗1 ≤ p∗2 and r∗1 < r∗2.

Q.E.D.

1.7.7 Proof of Proposition 1.3

Given two network degree distributions π1, π2 such that π1 is denser than π2, we want to

show their downward risk functions satisfy P1(n) ≥ P2(n).

We first show the upward risk function R1(n) ≥ R2(n). Notice that µ1 �MLRP µ2 implies

µ̂1 �FOSD µ̂2. Since 1 − (n ∧ k)/k is an increasing function of k, equation (1.3) suggests

R1(n) ≥ R2(n) at any n ≥ 0.

The downward risk function P (n) is implicitly solved by equation (1.4), which we rear-
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range as:

p = η − η(1− q) · Eλ̂
(
1−R(n)

)l−1 · Eµ
[
h(k, n, p)|l ≥ 1

]
(1.16)

where h(k, n, p) ≡ (1− p)bn∧kc
(
1− (n ∧ k − bn ∧ kc)p

)
.

Notice that we have used the assumption µ(·|l̃ = l) = µ(·|l̃ ≥ 1) ∀l ≥ 1.

Since the function h(k, n, p) decreases in k and µ1(·|l ≥ 1) �FOSD µ2(·|l ≥ 1), we have

Eµ1
[
h(k, n, p)|l ≥ 1

]
≤ Eµ2

[
h(k, n, p)|l ≥ 1

]
(1.17)

at any n ≥ 0 and p ∈ [0, 1]. Since λ1 �MLRP λ2 implies λ̂1 �FOSD λ̂2, and
(
1− R(n)

)l−1
is

a decreasing function of l, we have

Eλ̂1
(
1−R1(n)

)l−1 ≤ Eλ̂2
(
1−R1(n)

)l−1 ≤ Eλ̂2
(
1−R2(n)

)l−1
(1.18)

at any n ≥ 0, where the second inequality holds because R1(n) ≥ R2(n). Denote the RHS

of equation (1.16) as function f(n, p). Then (1.17-1.18) suggest f1(n, p) ≥ f2(n, p) at any

n ≥ 0 and p ∈ [0, 1].

Fix any n ≥ 0. Denote the corresponding downward risks for the two network degree

distributions P1(n), P2(n) as p1, p2. Since f1(n, p2) ≥ f2(n, p2) = p2
50, f1(n, 1) − 1 ≤ 0, and

f1 is continuous in p, the Intermediate Value Theorem suggests there exists some p ∈ [p2, 1]

such that f1(n, p) − p = 0, which by definition must be equal to p1.50 In other words,

P1(n) ≥ P2(n) at any n. Therefore, the equilibrium bribe acceptance propensity n∗1 ≤ n∗2.

Q.E.D.

1.7.8 Comovement of n∗ and κ∗

In this section, we formalize the comovement of the bribe acceptance propensity n∗ and the

corruption level κ∗ in a hierarchy in the baseline model, and generalize it to any network
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with independent in- and out-degrees.

Proposition 1.12. In a hierarchy with independent in- and out-degrees (λ ⊥ µ), if the bribe

acceptance propensity n∗ strictly drops with a local FOSD shift of the out-degree distribution

µ, so does the corruption level κ∗.

Proof: Given a local FOSD shift of the out-degree distribution µ, the downward risk func-

tion P (n) shifts right, causing the bribe acceptance propensity n∗ to drop. Observe that it

strictly drops only if the downward risk p∗ is fixed at some cutoff pm(m+1) ∈ (0, 1), where

m ∈ N and the bribe acceptance propensity n∗ ∈ (m,m+ 1]. Therefore, employing equation

(1.4) that defines the downward risk function P (n), we get:

p∗ = η ·
∑
k

[
1− (1− q)(1− p∗)bn∗∧kc(1− (n∗ ∧ k − bn∗ ∧ kc)p∗

)]
µ(k)

= η
∑
k≤m

[
1− (1− q)(1− p∗)k

]
µ(k)

+ η
∑
k>m

[
1− (1− q)(1− p∗)m

(
1− (n∗ −m)p

)]
µ(k).

Rearranging it, we obtain:

∑
k>m

n∗µ(k) =
1

p∗

∑
k≤m

(1− p∗)k−mµ(k) +
mp∗ + 1

p∗

∑
k>m

µ(k) + C, (1.19)

where C =
p∗ − η

η(1− q)p∗(1− p∗)m

Since the corruption level κ∗ = Eµ
[
n∗ ∧ k

]
=
∑

k≤m kµ(k) +
∑

k>m n
∗µ(k), plugging (1.19)

in, it can be expressed as:

κ∗ = Eµ
[
g(k)

]
+ C,

where g(k) = 1{k ≤ m} ·
(
k +

(1− p∗)k−m

p∗

)
+ 1{k > m} ·

(
m+

1

p∗

)
It is easy to verify that the function f(k) ≡ k+(1−p∗)k−m/p∗ is strictly decreasing on [0,m]

and f(m) = m + 1/p∗, such that g(k) is decreasing. Hence, a local FOSD shift of the out-
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degree distribution µ decreases the corruption level κ∗. κ∗ strictly decreases because f(k)

is strictly decreasing and µ(k) > 0 for some k ≤ m. To see that, notice that agents’ bribe

acceptance propensity n∗ strictly drops with an FOSD shift of the out-degree distribution

µ only if some agents have binding capacity constraints, such that they indeed accept more

bribes when offered more, rendering bribe acceptance strictly more dangerous.

Q.E.D.

Proposition 1.12 can be generalized to any network with independent in- and out-degrees:

λ ⊥ µ. Formally, if some equilibrium bribe acceptance propensity n∗ (not necessarily the

largest one) is in (m,m+1) for some m ∈ N, and the derivative of the downward risk function

P ′(n∗) > 0, then given a local FOSD shift of the out-degree distribution µ, both n∗ and the

corresponding corruption level κ∗ fall. κ∗ falls strictly whenever n∗ does.

The bribe acceptance propensity n∗ falls because the downward risk function P (n) shifts

right when the out-degree distribution µ increases.51 To see why the corruption level κ∗ falls,

notice that, just like in a hierarchy, it can be expressed as κ∗ = Eµ
[
g(k)

]
+ C(n∗), where

g(k) is the same as before, and

C(n∗) =
p∗ − η

η(1− q)p∗(1− p∗)m · Eλ̂
[
1−R(n∗)

]l−1

Since the upward risk function R(n) is decreasing, and the downward risk p∗ is by defini-

tion no larger than the contagion rate η, C(n∗) ≤ 0 falls given a smaller bribe acceptance

propensity n∗. The rest of the proof follows that for Proposition 1.12.

1.7.9 Proof of Proposition 1.4

Proof for 4(i): Given a joint degree distribution for two-layer networks π1, we perform a

mean-preserving spread on unmonitored agents’ out-degree distribution µ1(·|l = 0) to obtain

51For this result, the assumption P ′(n∗) > 0 – the downward risk function P (n) is strictly increasing at
n∗ – is necessary. Otherwise, if P ′(n∗) < 0, then the bribe acceptance propensity n∗ ∈ (m,m + 1) in fact
rises when the downward risk function P (n) shifts right.
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a new degree distribution π2. We want to show the upward risk function increases after the

shift: R2(n) ≥ R1(n).

First, notice that the out-degree distribution for a supervisor of an agent can be written

as:

µ̂(k) =
k · µ(k)

Eµ(k̃)
=
k · Pr

(
k̃ = k|k̃ > 0

)
Eµ
(
k̃|k̃ > 0

)
where the second equality holds because µ(k) = Pr

(
k̃ = k|k̃ > 0

)
·Pr

(
k̃ > 0

)
for any k > 0,

and Eµ(k̃) = Eµ
(
k̃|k̃ > 0

)
· Pr

(
k̃ > 0

)
.

Hence, we can rearrange the upward risk function as follows:

R(n) =
∑
k≥1

(
1− n ∧ k

k

)
µ̂(k)

= 1−
∑
k≥1

n ∧ k
k
·
k · Pr

(
k̃ = k|k̃ > 0

)
Eµ
(
k̃|k̃ > 0

)
= 1−

Eµ
(
n ∧ k̃|k̃ > 0

)
Eµ
(
k̃|k̃ > 0

) (1.20)

Since µ2(·|l = 0) 4SOSD µ1(·|l = 0), by definition of SOSD,
∑k̄

k=0 Pr
(
k̃ ≤ k|l = 0

)
|µ2 ≥∑k̄

k=0 Pr
(
k̃ ≤ k|l = 0

)
|µ1 for any out-degree k̄. Letting k̄ = 0, we also obtain µ2(0|l = 0) ≥

µ1(0|l = 0).

Now, notice that

Pr
(
k̃ ≤ k|k̃ > 0

)
|µ2 = Pr

(
k̃ ≤ k|k̃ > 0, l = 0

)
|µ2

=
Pr
(
0 < k̃ ≤ k|l = 0

)
|µ2

Pr
(
k̃ > 0|l = 0

)
|µ2

=
Pr
(
k̃ ≤ k|l = 0

)
|µ2 − µ2(0|l = 0)

1− µ2(0|l = 0)

= 1 +
Pr
(
k̃ ≤ k|l = 0

)
|µ2 − 1

1− µ2(0|l = 0)
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Hence, given any out-degree k̄,

k̄∑
k=0

Pr
(
k̃ ≤ k|k̃ > 0

)
|µ2 = k̄ + 1 +

∑k̄
k=0 Pr

(
k̃ ≤ k|l = 0

)
|µ2 − (k̄ + 1)

1− µ2(0|l = 0)

≥ k̄ + 1 +

∑k̄
k=0 Pr

(
k̃ ≤ k|l = 0

)
|µ1 − (k̄ + 1)

1− µ1(0|l = 0)

=
k̄∑
k=0

Pr
(
k̃ ≤ k|k̃ > 0

)
|µ1

In other words, Pr
(
k̃ = ·|k̃ > 0

)
|µ2 4SOSD Pr

(
k̃ = ·|k̃ > 0

)
|µ1 . Since (n ∧ k) is a concave

function of the out-degree k, it implies Eµ2
(
n ∧ k̃|k̃ > 0

)
≤ Eµ1

(
n ∧ k̃|k̃ > 0

)
.

Also, Eµ2
(
k̃|l = 0

)
= Eµ1

(
k̃|l = 0

)
implies

Eµ2
(
k̃|k̃ > 0

)
= Eµ2

(
k̃|k̃ > 0, l = 0

)
=

Eµ2
(
k̃|l = 0

)
1− µ2(0|l = 0)

≥
Eµ1
(
k̃|l = 0

)
1− µ1(0|l = 0)

= Eµ1
(
k̃|k̃ > 0

)
.

Therefore, from equation (1.20), we obtain that the upward risk function increases after

the shift:

R2(n) = 1−
Eµ2
(
n ∧ k̃|k̃ > 0

)
Eµ2
(
k̃|k̃ > 0

) ≥ 1−
Eµ1
(
n ∧ k̃|k̃ > 0

)
Eµ1
(
k̃|k̃ > 0

) = R1(n).

Thus, the downward risk function also increases: P2(n) ≥ P1(n), and so agents’ bribe accep-
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tance propensity drops: n∗2 ≤ n∗1. Additionally, the corruption level falls:

κ∗2 = Eµ2
(
n∗2 ∧ k̃

)
≤ Eµ2

(
n∗1 ∧ k̃

)
= Eµ2

(
n∗1 ∧ k̃

∣∣l = 0) · λ(0)

≤ Eµ1
(
n∗1 ∧ k̃

∣∣l = 0) · λ(0)

= κ∗1.

Q.E.D.

Proof for 4(ii): Define function

fn(x, y) ≡


(1− x)n∧y n ∈ N

(1− x)bnc∧y ·
(
1− (n ∧ y − bnc ∧ y)x

)
n ∈ R+/N

where n is the bribe acceptance propensity.

In a hierarchy with independent in- and out-degrees (λ ⊥ µ), the downward risk function

P (n) is recursively defined by:

p = η ·
∑
k

[
1− (1− q)fn(p, k)

]
µ(k)

= η ·
{

1− (1− q)Eµ
[
fn(p, k)

]}
(1.21)

We want to show the function fn(x, y) is convex in y ∈ R+ given any n ∈ R+ and

x ∈ (0, 1). This is obvious when n ∈ N. If n ∈ R+/N, we compute the partial derivative of

fn(x, y) w.r.t. y:

∂fn
∂y

=


ln(1− x) · (1− x)y y < bnc52

−x · (1− x)bnc bnc < y < n

0 y > n
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It strictly increases on
[
0, bnc

)
and remains constant on

(
bnc, n

)
and (n,∞). Notice that

∂fn/∂y is not well-defined at y = bnc and y = n. However, since limy→bnc− ∂fn/∂y <

limy→bnc+ ∂fn/∂y and limy→n− ∂fn/∂y < limy→n+ ∂fn/∂y, they are two wedge points. There-

fore, fn(x, y) is convex in y ∈ R+, and so given any downward risk p ∈ (0, 1), bribe acceptance

propensity n ∈ R+ and two out-degree distributions µ1, µ2 such that µ2 4SOSD µ1, we have

Eµ2
[
fn(p, k)

]
≥ Eµ1

[
fn(p, k)

]
.

Now we include in the two endpoints for the downward risk p. If p = 0, then fn(0, k) = 1

for any out-degree k, thus Eµ2
[
fn(0, k)

]
= Eµ1

[
fn(0, k)

]
= 1. If p = 1, then Eµ

[
fn(1, k)

]
=

µ(0) +
[
1 − µ(0)

]
· max{0, 1 − n}. Since µ2 4SOSD µ1 implies µ2(0) ≥ µ1(0), we have

Eµ2
[
fn(1, k)

]
≥ Eµ1

[
fn(1, k)

]
.

Thus Eµ2
[
fn(p, k)

]
≥ Eµ1

[
fn(p, k)

]
holds for all p ∈ [0, 1] and n ∈ R+. Equation (1.21)

then implies that the downward risk function P2(n) ≤ P1(n). Hence, the equilibrium bribe

acceptance propensity n∗2 ≥ n∗1.

Q.E.D.

1.7.10 Second-Order Shifts of µ(·|l ≥ 1)

This section explains why altering monitored agents’ out-degree distribution µ(·|l ≥ 1) in

a hierarchy brings about consistent changes in agents’ bribe acceptance propensity n∗ and

the corruption level κ∗. We then supply the formal statement generalized to any networks,

and argue that it offers an effective way in network design of separating the opposite effects

second-order changes in out-degree distributions bring to hierarchies and two-layer networks.

We illustrate the difference between altering the unconditional out-degree distribution µ

and that for monitored agents µ(·|l ≥ 1) in a hierarchy through the following example. Start-

ing with a hierarchical network where an agent can monitor zero, one or two subordinates

(figure 1.12a), we shift the out-degree distribution µ in the SOSD manner (the opposite way

of a mean-preserving spread), such that agents are now arranged into linear hierarchies (fig-

52This range only exists if n ≥ 1.
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ure 1.12b). Though this alteration lowers the bribe acceptance propensity n∗, it is subject to

ambiguous changes in the corruption level κ∗. Instead, a more robust improvement would be

to fix the unconditional out-degree distribution µ, and only perform an SOSD shift on that

for monitored agents µ(·|l = 1)
(
it implies a simultaneous spread of top agents’ out-degree

distribution µ(·|l = 0)
)
. In the resulting network, while a top agent monitors either zero

or two subordinates, the lower-tier structures are linear which maximize risk transmission

(figure 1.12c). Hence, not only does this alteration reduce agents’ bribe acceptance propen-

sity n∗ to the same extent as in 1.12b, but the fixation of the out-degree distribution µ also

suggests falling corruption level κ∗.

(a) Benchmark53 (b) SOSD shifts on µ

(c) SOSD shifts on µ(·|l = 1)

Figure 1.12: Second-Order Variations in Out-Degree Distributions for a Hierarchical Network
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This result can be generalized to any network, as exhibited below:

Proposition 1.13. Fixing the unconditional out-degree distribution µ, a mean-preserving

spread of monitored agents’ out-degree distribution µ(·|l ≥ 1) increases the bribe acceptance

propensity n∗ and the corruption level κ∗.

Proposition 1.13 also provides an effective way of separating the opposite forces mani-

fested in hierarchies and two-layer networks in network design. In a general network, since

an agent can have both indirect subordinates and co-supervisors, while an SOSD shift of the

out-degree distribution µ (the opposite way of a mean-preserving spread) makes it easier for

the risk of being caught to transmit up the network (as in a hierarchy), it also renders a

subordinate less likely to be reported by co-supervisors (as in a two-layer network), leading

to ambiguous implications on the bribe taking risk. However, by shifting monitored agents’

out-degree distribution µ(·|l ≥ 1) in the SOSD manner while fixing the unconditional one µ

(and so a supervisor’s out-degree distribution µ̂), we can facilitate risk transmission through

the network without altering co-supervisors’ incentives. Thus, bribe taking becomes un-

ambiguously riskier – the downward risk function P (n) shifts right, making corruption less

rampant.

1.7.11 Expressions for Extended Models

1.7.11.1 Model with Corruptible and Incorruptible Agents

Risk Functions P (n), R(n)

The upward risk function is:

R(n) =
∑
k≥1

{
(1− γ) + γ

(
1− n ∧ k

k

)}
µ̂(k).

53The networks are simulated using MATLAB. The parameters are given as follows: λ(0) = 1/3, λ(1) =
2/3, µ(0) = 4/9, µ(1) = 4/9, µ(2) = 1/9, λ ⊥ µ for 1.12a; λ(0) = 1/3, λ(1) = 2/3, µ = λ, λ ⊥ µ for 1.12b;
λ(0) = 1/3, λ(1) = 2/3, µ(0|l = 0) = 2/3, µ(2|l = 0) = 1/3, µ(0|l = 1) = 1/3, µ(1|l = 1) = 2/3 for 1.12c.
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To understand the expression, suppose a supervisor of an agent has k subordinates. If the

supervisor is incorruptible
(
with probability (1−γ)

)
, she never accepts bribes and so reports

the agent with certainty; if she is corruptible (with probability γ), she accepts (n ∧ k) out

of the k bribe offers, thus the chance the agent is reported by her is
(
1− (n ∧ k)/k

)
.

The downward risk function P (n) is recursively defined by:

p = η ·
∑
k

∑
l≥1

{
1− (1− q)

(
1−R(n)

)l−1
[
(1− γ)+

γ · (1− p)bn∧kc
(
1− (n ∧ k − bn ∧ kc)p

)]}
λ̂(l)µ(k|l).

An agent is caught through accepting a subordinate’s bribe if and only if the subordinate

is caught, and their bribe transaction is subsequently detected (with chance η). Consider a

subordinate with degrees (l, k). Conditional on the agent’s having accepted her bribe, if the

subordinate is incorruptible
(
with chance (1− γ)

)
, she remains safe if not directly caught or

being reported, that is, with probability (1− q)
(
1−R(n)

)l−1
; otherwise, if the subordinate

is corruptible (with chance γ), since she may also be caught through accepting bribes, her

chance of being safe is further discounted by (1− p)bn∧kc
(
1− (n ∧ k − bn ∧ kc)p

)
.

As in the baseline model, the network finiteness condition
(
Assumption 1.1(i)

)
ensures

that the downward risk function P (n) is well-defined.

1.7.11.2 Model with Criminal and Innocent Agents54

Statistics for the Network of Guilty Agents 〈g, µg〉

The probability any given subordinate of an agent is guilty g and the distribution of the

number of guilty subordinates an agent has conditional on her having l supervisors µg(·|l)

54For ease of exposition, these expressions disregard the likelihood for innocent agents to mix between
accepting zero and some positive number of bribes.
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are jointly solved by the following two equations:

g = s+ (1− s)
∑
j

∑
l≥1

X{j ≥ jl} · λ̂(l)µg(j|l), (1.22)

µg(j|l) =
∑
k≥j

Ck
j g

j(1− g)k−jµ(k|l) ∀j, l. (1.23)

(1.22) says that a random subordinate is guilty if she is either criminal (with probability

s), or innocent and corrupt, where X{j ≥ jl} is the indicator that a subordinate with l

supervisors and j guilty subordinates is corrupt. To understand (1.23), notice that if an

agent has k subordinates, j ≤ k of them are guilty with probability Ck
j g

j(1− g)k−j.

Since any component of the monitoring network is finite
(
Assumption 1.1(i)

)
, equations

(1.22-1.23) pin down the unique solutions for g and µg(·|l) for each l.

Hence, the unconditional distribution of the number of guilty subordinates an agent has

µg is derived from:

µg(j) =
∑
k≥j

Ck
j g

j(1− g)k−jµ(k) ∀j.

Risk Functions P,R

The upward risk function is expressed as:

R
(
n, (jl)l

)
=
∑
l

∑
j≥1

{
s
(

1− n ∧ j
j

)
+ (1− s)·

(
1− X{j ≥ jl} · n ∧ j

j

)}
µ̂g(j)λg(l|j),

where µ̂g(j) ≡
j · µg(j)
Eµg(j̃)

and λg(l|j) ≡
µg(j|l) · λ(l)

µg(j)
∀l, j.

By definition, µ̂g is the distribution of the number of guilty subordinates any supervisor

of a guilty agent has, and λg(·|j) is an agent’s in-degree distribution conditional on her

having j guilty subordinates. While a criminal supervisor of a guilty agent who has degrees

(l, j) reports the agent with probability
(
1 − (n ∧ j)/j

)
, an innocent one reports her with

probability
(
1− X{j ≥ jl} · (n ∧ j)/j

)
.
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The downward risk function P
(
n, (jl)l

)
is recursively defined by:

p =
η

g

∑
j

∑
l≥1

{[
s+ (1− s) · X{j ≥ jl}

][
1− (1− q)

(
1−R

(
n, (jl)l

))l−1

· (1− p)bn∧jc
(
1− (n ∧ j − bn ∧ jc)p

)]}
λ̂(l)µg(j|l).

It measures the probability a subordinate of an agent is caught and their bribe transaction

is consequently detected (with probability η) conditional on the subordinate’s being guilty

(with probability g) and the agent’s having accepted her bribe. Specifically, for a subordinate

with degrees (l, j),
[
s + (1 − s) · X{j ≥ jl}

]
is the probability she is guilty, and

[
1 − (1 −

q)
(
1 − R(n, (jl)l)

)l−1
(1 − p)bn∧jc

(
1 − (n ∧ j − bn ∧ jc)p

)]
is the probability she is caught

conditional on her being guilty and the agent’s having accepted her bribe.

Just like in the baseline model, the downward risk function P
(
n, (jl)l

)
is well-defined due

to the finiteness of any component in the monitoring network
(
Assumption 1.1(i)

)
.

Corruption Level κ

The corruption level κ – the average number of bribes an agent accepts – is given by:

κ = Eπg
[(
s+ (1− s) ·X{j ≥ jl}

)
(n ∧ j)

]
where πg(l, j) = λ(l)µg(j|l) ∀l, j.

πg is the joint distribution of the numbers of supervisors and guilty subordinates an agent

has. While a criminal agent with degrees (l, j) accepts (n∧j) bribes, an innocent one accepts

(n ∧ j) bribes only if her number of guilty subordinates reaches the cutoff policy: j ≥ jl;

otherwise, she accepts 0 bribe.
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CHAPTER 2

Cooperative Games with Parochial Fairness Concerns

2.1 Introduction

There is strong evidence that people compare wages with their coworkers,1 and that it has

direct impact on workers’ job separation choices. Using survey data, [CMM12] find that

employees for the University of California respond higher intention to search for new jobs

after being informed about their coworkers’ wages. [DGL19] find that rises in the average peer

wages increase job separations, and that this effect is triggered solely by fairness concerns.

Wage comparison affects separation choices of not only individual workers, but also

groups. Numerous partnership dissolutions are driven by unfair profit distribution. Be-

sides, financial dispute is oftentimes a main factor that propels a state to seek independence

from a country. A highly relevant case is the separation of Andersen Consulting from its

former parent company Arthur Andersen in 2000. Before that, Andersen Consulting had

been sharing its much higher profits with its founding firm under contract [Leo00].

In this paper, we propose a novel, tractable theoretical framework to study group devia-

tion behaviors driven by wage comparison. Our model answers important questions such as

what profit sharing rules are the most robust to group deviation, and how group members

redistribute incomes after the separation. We show that at the center of our results are the

differences in group members’ fairness concerns before and after the separation.

Our model is naturally built upon the standard transferable-utility (TU) cooperative

game [NM04]. We extend the utility space to allow players’ payoffs to be dependent on their

1See, for example, [CP22], etc.
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coalition members’ earnings. We then generalize the definitions of profitable coalitional

deviations and the core accordingly.2

To model players’ fairness concerns, we borrow the specification proposed by [FS99].3

In their model, a player’s utility depends on her own income as well as the differences

between her income and other players’. She is averse to disadvantageous inequality and

derives negative payoffs from comparing incomes with the richer, but may derive positive (if

she is competitive, namely, likes advantageous inequality) or negative (if she is benevolent,

namely, dislikes advantageous inequality) payoffs from comparing incomes with the poorer.

We select the Fehr-Schmidt model to account for players’ fairness concerns because it is an

affine function, thus easily adaptable to the cooperative game structure; and because it is

rich enough to distinguish between different types of fairness concerns, generating nontrivial

results and allowing for interesting comparative statics.

Two underlying assumptions are essential in driving our main results. First, we assume

that players’ fairness concerns are parochial, that is, they only compare incomes with those

in the same coalition. Parochialism finds its strong empirical support in evolutionary theo-

ries. In a field experiment on indigenous groups in Papua New Guinea, [BFF06] find that

punishers tend to exert more serious punishment on outgroup social norm violators than

ingroup ones. More relevantly, another paper, [FBR08], directly links fairness concerns with

parochialism. They observe that an overwhelming majority of children at age 7-8 favor egal-

itarian allocations over unequal ones, whether they hold advantageous or disadvantageous

stakes in the latter. Moreover, a child is roughly 20% more likely to choose the egalitarian

allocation if their peer is an ingroup member.

As parochialism is broadly observed in human behaviors, it is only reasonable to claim

its existence in economics, and specifically, in wage comparison. Indeed, in [DGL19], in

contrast to the finding that wage comparison with higher-paid colleagues pushes workers to

resign and look for new jobs, market wage comparison exerts influence statistically indistin-

2We rely on the original notion of the core developed by [Gil59] and [SS53].

3There are several other representative models for fairness concerns. See [BO00], [CFG07], etc.
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guishable from zero. In a similar spirit, we define coalitional deviations based on parochial

income comparison: in evaluating if a potential deviation is profitable, a player only com-

pares incomes with the other members of the deviating coalition, in contrast to her income

comparison prior to the deviation, which she does with everyone else in the grand coalition

(GC).

Our second assumption is that fairness concerns are invariant with the coalition size, and

depend only on the income distribution. The Fehr-Schmidt specification that we adopt in

the model already takes care of this aspect through normalizing a player’s disutility from

income comparison with the group size, so that proportionally altering the numbers of the

others with whom a player compares incomes does not change her utility level. This is not a

peculiar feature, as another preference model for fairness concerns proposed by [BO00] also

controls for the group size. They do so by summarizing income comparison into one variable

that enters a player’s utility function – the group average income.

In fact, only after controlling for the coalition size can a player reasonably compare

income distributions drawn from groups with different populations, which is commonly en-

countered in real-world scenarios.4 In the baseline model, we assume away heterogeneity

among players and coalitions,5 and study how changes in the coalition size after coalitional

deviations interact with players’ parochial fairness concerns to govern the results of income

redistribution for deviating coalitions and the structures of core allocations.

In the first result, we discuss how income redistribution after a coalition deviates is af-

fected by the three different types of fairness concerns: aversion to disadvantageous inequal-

ity, inclination to advantageous inequality (when players are competitive), and aversion to

advantageous inequality (when players are benevolent). For this purpose, for each GC allo-

cation and coalition, we characterize the unique associated shadow allocation – the allocation

for the coalition that makes each member indifferent between blocking the GC allocation

4We can think about the situation where a worker job-hops from a large company to a small startup, or
mergers and acquisitions cases.

5Specifically, we assume that all players share the same preference parameters, and all the coalitions of
the same size produce the same worth.
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and not. We then analyze the coalition’s income redistribution outcomes by comparing the

shadow allocation with the initial GC allocation.

We find that while aversion to inequality, be it disadvantageous or advantageous, en-

larges the income gaps among players after a coalition deviates, inclination to advantageous

inequality narrows them. This is because a deviating coalition consists of the poorest play-

ers at the initial GC allocation. In terms of disadvantageous inequality, it implies that by

deviating, the coalition members are freed from comparing incomes with the richer, and so

can tolerate larger income gaps among themselves. As for advantageous inequality, it means

any coalition member finds all those poorer than her also recruited by the coalition. Suppose

players are benevolent. Since now one is in a smaller coalition and so pays more attention to

comparing incomes with the poorer, thus suffering from higher disutility from advantageous

inequality aversion, she demands higher income as compensation.6 This in turn widens the

income gaps. The intuition is flipped if players are otherwise competitive.

Our second result characterizes the GC allocations that are the most robust against

coalitional deviations under different magnitudes of fairness concerns. Though most cases

generate the same outcome as the TU game (where players are completely self-interested)

does – the equal allocation; curiously, if players are moderately benevolent, we arrive at

the “tyranny-of-the-majority” allocation that features a unique poorest player, a group of

advantageous equal income earners, and an infinitely large gap between their income levels.7

This drastically unequal allocation is robust despite the absence of heterogeneity among

players’ preferences and the fact that the equal allocation maximizes any deviating coalition’s

total income.

The intuition for the robustness of the “tyranny-of-the-majority” allocation is twofold

6We inherit the assumption made by [FS99] that a player is not so benevolent as to being willing to
discard money to feel better. In other words, a rise in one’s income brings her more utility from self-interest
than disutility from advantageous inequality aversion.

7Upper constraints on the degree of advantageous inequality aversion are necessary in achieving this
result. If players are so benevolent that they are willing to donate to the poorer, the only Pareto optimal
allocation for a coalition becomes the equal allocation, and so the most robust GC allocation is again the
equal one.
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and concerns both disadvantageous and advantageous inequality aversion. On one hand,

disadvantageous inequality aversion diminishes players’ incomes after a coalition deviates,

thereby making a shadow allocation cheaper, thus more likely to be feasible. This is because

now that the members of the deviating coalition have gotten rid of the richer players in

the GC, they can tolerate lower income levels. Nevertheless, only at the “tyranny-of-the-

majority” allocation is this force completely wiped out, as the poorest player, the only one

suffering from disadvantageous inequality aversion, does not fare better from the deviation –

she faces the same peer income distribution before and after the move. In other words, the

“tyranny-of-the-majority” allocation blocks the channel conducive to coalitional deviations.

On the other hand, advantageous inequality aversion elevates players’ income levels after

coalitional deviations, for in a smaller coalition, players pay more attention to their poorer

peers, thus deriving higher disutility from comparing incomes with them. Hence, they desire

higher incomes as compensation, making a shadow allocation more expensive and so less

likely to be feasible. The “tyranny-of-the-majority” allocation takes this effect to extremes

by indefinitely widening the income gap between the rich and the poor, so as to elevate the

cost of the associated shadow allocation to infinity to maximally prevent the coalition from

deviating.

The paper is organized as follows. Section 2.2 posits the general cooperative game with

other-regarding preferences, and defines the stability concept. Section 2.3 analyzes parochial

fairness concerns in this framework: 2.3.1 introduces the Fehr-Schmidt preference model;

2.3.2 derives the core, characterizing shadow allocations along the way; 2.3.3 presents the

main results. Section 2.4 concludes.

2.2 Model

We define the game as follows:

Definition 2.1. A cooperative game with other-regarding preferences consists of
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i a finite set of players N ;

ii a worth function v that assigns to every coalition C ⊆ N a total worth v(C) ∈ R+;

iii for each player i in coalition C ⊆ N , a utility function ui,C that for every allocation

x ∈ RC returns player i’s utility ui,C(xi; x−i).

Notice that the standard TU game is a special case of this game: let ui,C(xi; x−i) = xi

for any coalition C ⊆ N and player i ∈ C.

For each coalition C ⊆ N , we denote by V (C) the set of its feasible allocations
{
x ∈

RC
∣∣∑

i∈C xi ≤ v(C)
}

. We call an allocation x ∈ RN for the grand coalition N an income

profile.

Coalitional deviations are formalized below.

Definition 2.2. A coalition C ⊆ N blocks an income profile x ∈ V (N) if there exists

an allocation y ∈ V (C) at which all players in C are strictly better off: ui,C(yi; y−i) >

ui,N(xi; x−i) for all i ∈ C.

Notice that we allow the grand coalition N to block an income profile too. In the TU

game, the grand coalition N never blocks an income profile that uses up the total worth

v(N), for it is Pareto optimal; in general, though, this is not always the case.

Define the core of the game as follows.

Definition 2.3. The core is the set of income profiles x ∈ V (N) that are not blocked by

any coalition C ⊆ N .

2.3 Parochial Fairness Concerns

In this section, we let agents’ utilities assume a specific functional form to study how parochial

fairness concerns influence income redistribution outcomes after coalitional deviations, as well

as how they shape the characteristics of core allocations. We discuss the chosen preference
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model in 2.3.1, propose an efficient way of solving for the core in 2.3.2, and present the main

results in 2.3.3.

2.3.1 Fehr-Schmidt Preference for Fairness

We adopt the preference model for fairness proposed by [FS99], and adapt it to our frame-

work: for each coalition C ⊆ N and allocation x ∈ RC , the utility for player i ∈ C is given

by:

ui,C(xi; x−i) = xi −
1

|C| − 1

∑
j∈C,
j 6=i

[
αi · (xj − xi, 0)+

+ βi · (xi − xj, 0)+
] if |C| ≥ 2, (2.1)

ui,C(xi) = xi if |C| = 1.

Player i derives linear payoffs from her own income xi, as well as disutility from comparing

incomes with the other players in coalition C. Each unit of income difference with a richer

player gives i disutility αi ≥ 0, that with a poorer player giving her disutility βi. If βi ≥ 0, i

is benevolent and dislikes comparing incomes with the poorer; otherwise, if βi < 0, she enjoys

the presence of poorer members and thus is considered competitive. The total disutility from

income comparison is normalized by the size of the coalition net of i herself – divided by(
|C| − 1

)
.

To better match with reality, [FS99] impose two assumptions on a player’s preference

parameters (αi, βi). We carry them over to this paper: (1) a player is more averse to

disadvantageous income inequality than advantageous one, i.e., αi ≥ βi; (2) the highest

income earner(s) in a coalition is (are) not so benevolent as to being willing to throw money

away, i.e., βi < 1.8

8To see that, notice that from equation (2.1), a richest player i’s utility can be rearranged as (1−βi)xi +
βi/(|C|−1)

∑
j∈C,j 6=i xj . If βi ≥ 1, it weakly decreases in i’s income xi. Hence, if i is the only richest player,

she prefers to throw some money away as long as she remains the richest after doing that. Likewise, if there
are multiple richest players, they are better off throwing away some equal amount of money provided they
still earn the highest income after it.
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2.3.2 Solving for the Core

This section proposes a convenient tool for finding core allocations, which also paves the

way for understanding income redistribution after coalitional deviations (to be discussed in

Section 2.3.3).

To simplify analysis, we make the following symmetry assumptions on the worth function

v and the utility functions ui,C .

Assumption 2.1 (Symmetry). i Any two coalitions C, T with the same size
(
|C| = |T |

)
produce the same worth: v(C) = v(T ).

ii All agents share the same preference parameters: (αi, βi) = (α, β) ∀i ∈ N .

(ii) implies a utility function ui,C(xi; x−i) is player-independent. It is also coalition-

independent, as an allocation x ∈ RC contains information on the coalition size |C|. We

thus drop the subscripts and write u(xi; x−i).

We now derive the conditions for examining if an income profile x ∈ V (N) is in the core.

First, notice that Assumption 2.1(ii), coupled with the parameter restriction β < 1 (which

ensures the richest players never want to throw money away), suggests that a richer player

derives higher utility: given coalition C and allocation x ∈ RC , if the incomes for some

two players i, j ∈ C satisfy xi > xj, then their utilities satisfy u(xi; x−i) > u(xj; x−j) (see

Lemma 2.1, Appendix 2.5.1). Also, Assumptions 2.1(i -ii) imply any two coalitions with the

same size induce the same set of achievable utility vectors. Hence, at any income profile

x ∈ V (N), out of all the coalitions with the same size t ∈
{

1, ..., |N |
}

, the one consisting

of the t poorest players (who derive the lowest utilities) is the most likely to block x. This

property greatly reduces the computational burden for deriving core allocations.

We simplify the notations prior to presenting coalitions’ deviation constraints. For any

coalition C and allocation x ∈ RC , w.l.o.g., we index the players’ incomes in ascending order:

x1 ≤ ... ≤ x|C|. Denote the grand coalition size by n ≡ |N | ≥ 3. Let vt be the total worth

produced by a coalition with size t ∈ {1, ..., n}, and Ct ≡ {1, ..., t} be the coalition formed

by the t poorest players (applicable to any income profile x ∈ Rn). Thus, to check if an
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income profile x ∈ V (N) is in the core, it suffices to check if coalition Ct blocks x for each

t ∈ {1, ..., n}, adding up to n constraints.

Quite straightforwardly, the singleton C1 – the poorest player – does not block an income

profile x ∈ V (N) if and only if she finds it not worthwhile to produce alone: u(x1; x−1) ≥ v1.

Group deviations generate more complexity. To examine if a multiplayer coalition Ct (t ≥ 2)

is willing to block the income profile x, we discuss two cases: when players are benevolent

enough – when the parameter β is positive and large, and when they are not.

Suppose players are sufficiently benevolent, in particular, suppose β ≥ (t − 1)/t. We

consider the set of Pareto optimal allocations for coalition Ct, as they are the ones Ct is

most willing to deviate to. First, notice that equation (2.1) suggests any allocation not

using up the entire worth vt is not Pareto optimal, for we can give each player some equal

amount to make them strictly better off – it makes everyone richer without altering the

income differences. Now pick any allocation y ∈ V (Ct) that does not waste resources:∑t
i=1 yi = vt. Then so long as income inequality persists in coalition Ct, i.e., yt > y1, the

richest players can do better by donating to poorer members while remaining the richest.

Hence, the only (weakly) Pareto optimal allocation – and so the only allocation coalition Ct

is most likely to deviate to – is the equal allocation where each player gets income as well

as utility vt/t (see Lemma 2.2, Appendix 2.5.2), thus Ct does not block an income profile

x ∈ V (N) if and only if the highest income earner belonging to it – player t – is reluctant

to deviate to the equal allocation: u(xt; x−t) ≥ vt/t.
9

The more interesting case is when players are either moderately benevolent or compet-

itive: β < (t − 1)/t. Notice that now any allocation that uses up the total worth vt is

Pareto optimal, for no one – not even the richest players – is willing to make a donation (see

Lemma 2.2, Appendix 2.5.2). Hence, to check if an income profile x ∈ V (N) is blocked by

coalition Ct, we employ a new technique. In particular, we link x to an allocation y ∈ Rt for

coalition Ct and examine the latter’s feasibility. The specifics are formalized in the following

9It implies that if β > (n − 1)/n, the only income profile likely to be in the core is the equal income
profile where each player gets vn/n, as the others are not (strongly) Pareto optimal, and are thus blocked
by the grand coalition N .
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proposition.

Proposition 2.1. Given coalition Ct with t ∈ {2, ..., n}, if β < (t− 1)/t, then

i any income profile x ∈ Rn is associated with a unique shadow allocation y ∈ Rt that

satisfies u(yi; y−i) = u(xi; x−i) for all players i = 1, ..., t;10

ii an income profile x ∈ V (N) is not blocked by coalition Ct iff the associated shadow

allocation y(x, Ct) ∈ Rt satisfies
∑t

i=1 yi(x, Ct) ≥ vt.

Proof: See Appendix 2.5.3.

In other words, if players are not too benevolent: β < (t − 1)/t, then coalition Ct does

not block an income profile x ∈ V (N) if and only if it cannot afford the unique shadow

allocation y(x, Ct) ∈ Rt that gives each member the same payoff as at x.1112

2.3.3 Comparative Statics

This section presents the main results. We discuss how parochial fairness concerns shape

income redistribution outcomes after a coalition deviates, and characterize and compare

across the income profiles most robust to coalitional deviations under different degrees of

parochial fairness concerns.

The following proposition shows that there exists a simple, explicit relationship between

an income profile and its shadow allocations.

10Since the ordering of players’ preferences in a coalition is always the same as that of their income levels,
players’ identity indices do not change after coalitional deviations. See the proof for details.

11Notice that in a TU game where players ignore income differences – the special case where the preference
parameters (α, β) = ~0, given any income profile x ∈ Rn and coalition Ct, the associated shadow allocation
y(x, Ct) = (xi)

t
i=1. Hence, to ensure that an income profile x ∈ V (N) is not blocked by a coalition Ct, we

are back at the familiar constraint
∑t

i=1 xi ≥ vt.
12Clearly, if β <

(
n − 1

)
/n, then at any income profile x ∈ Rn, the shadow allocation for the grand

coalition N – y(x, N) – is just x. Hence, Proposition 2.1(ii) suggests that the grand coalition N does not
block an income profile x ∈ V (N) if and only if

∑n
i=1 xi = vn, i.e., no resource is wasted at x. It is consistent

with the fact that when β <
(
n − 1

)
/n, the Pareto optimal income profiles are those that use up the total

worth vn (Lemma 2.2, Appendix 2.5.2).
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Proposition 2.2. Given income profile x ∈ Rn and coalition Ct with t ∈ {2, ..., n}, if

β < (t− 1)/t, then the associated shadow allocation y ∈ Rt satisfies:

yj+1 − yj = θtj · (xj+1 − xj) ∀j = 1, ..., t− 1

where θtj ≡
1 + α · (n− j)/(n− 1)− β · j/(n− 1)

1 + α · (t− j)/(t− 1)− β · j/(t− 1)
> 0.

Proof: See Appendix 2.5.3.

Proposition 2.2 has implications on how players’ parochial fairness concerns govern in-

come redistribution outcomes after a coalition deviates. We measure income redistribution

with the parameter θtj = (yj+1 − yj)/(xj+1 − xj) – changes in the income gap between two

adjacent players after they deviate to a smaller coalition, and separately discuss the three

different parochial fairness concerns: disadvantageous inequality aversion, advantageous in-

equality inclination, and advantageous inequality aversion.

First, suppose α > 0 and β = 0, i.e., a player dislikes comparing incomes with the richer,

and ignores the poorer. In this scenario, θtj > 1, indicating that income gaps enlarge after

players deviate to a smaller coalition. Intuitively, deviating to coalition Ct means getting

rid of the other (n− t) richer players in the grand coalition N . Hence, a player derives less

disutility from comparing incomes with the richer, and so to maintain the same payoff as

before, she can tolerate larger income gaps.

Now assume α = 0 and β < 0: players disregard richer members, and enjoy comparing

incomes with the poorer, i.e., they are competitive. This time we arrive at θtj < 1, that

is, income gaps shrink after a coalitional deviation. To understand that, notice that when

a player deviates, so do all those poorer than her. As they are now in a smaller coalition,

the player pays more attention to her poorer members, thus obtaining higher payoff from

comparing incomes with them (remember, in the Fehr-Schmidt preference specification, the

payoff from income comparison is normalized by the coalition size). Therefore, to reach the

same utility as before, she desires smaller income gaps.
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Although fairness concerns towards the poorer drive opposite outcomes from those to-

wards the richer when players are competitive; if they are benevolent, the two incentives

align. To see that, suppose α ≥ β > 0, so that players dislike comparing incomes with any-

one. In this case, income gaps enlarge after a coalition deviates: θtj > 1, and is even larger

compared to when β = 0. This is because now not only can a player tolerate larger income

gaps with the richer (as discussed before), but she also demands larger income gaps with the

poorer. Intuitively, the deviating coalition enlists all those poorer than her. As reduction

in the coalition size makes the presence of these poorer members more conspicuous and so

the income comparison with them more unpleasant, the player demands higher income as

compensation (remember, β < 1, so that a unit increase in one’s income brings more joy

from self-interest than unhappiness from benevolence). This increases her income gaps with

the poorer.

We now characterize the income profiles most robust to coalitional deivations, which have

direct implications on core nonemptiness. Define them as follows:

Definition 2.4. x ∈ V (N) is a critical income profile for coalition Ct (t = 1, ..., n− 1)

if Ct blocks x implies it blocks any income profile in V (N).13

In other words, a coalition is most reluctant to block its critical income profiles.

To understand the structure of a critical income profile, we first work through a few

simple cases. The critical income profile for the singleton C1 is obviously the equal income

profile, as it guarantees the poorest player the highest income and utility vn/n. Likewise,

for any multiplayer coalition Ct, if players are so benevolent
(
β ≥ (t − 1)/t

)
that the only

Pareto optimal allocation they can deviate to is the equal one that gives each player income

vt/t, the critical income profile is again the equal income profile, for it ensures that player

t – the richest and thus the most reluctant to deviate – gets the highest income and utility

vn/n.

13This definition only makes sense for strict subcoalitions of the grand coalition Ct ⊂ N , as the grand
coalition N never blocks its (strongly) Pareto optimal income profiles, and always blocks the others.
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Nevertheless, the following theorem shows that in some cases the equal income profile

fails to be a critical one.

Theorem 2.1. Given any coalition Ct with t ∈ {2, ..., n − 1}, there exists a cutoff βt ∈(
0, (t−1)/t

)
such that if β 6= βt, the unique critical income profile x ∈ V (N) for Ct satisfies

x1 → −∞, x2 = ... = xn, and
∑n

i=1 xi = vn when βt < β < (t−1)/t, and is the equal income

profile where each player gets vn/n otherwise; if β = βt, any income profile x ∈ V (N)

satisfying x1 ≤ x2 = ... = xn and
∑n

i=1 xi = vn is a critical income profile.

Proof: See Appendix 2.5.4.

To put into words, for any multiplayer coalition Ct, if players are sufficiently benevolent

(β > βt > 0), but not so much as to being willing to donate to their poorer members after

deviation
(
β < (t− 1)/t

)
, then the “tyranny-of-the-majority” income profile supersedes the

equal one as the critical income profile, namely, there is a single poorest player who earns

indefinitely small amount, and the others split the rest of the worth evenly.

This is surprising for two reasons. First, naivete suggests that benevolence should induce

fair outcomes, while in fact it can lead to considerably more unequal results than pure self-

interest does (just consider the TU game with α, β = 0, where the critical income profile

is the equal income profile). Second, it seems natural to claim that a coalition is the most

reluctant to block the equal income profile. Indeed, for any multiplayer coalition Ct, the

equal income profile where everyone gets vn/n not only maximizes the coalition members’

total income, but also cancels their disutility from income comparison completely.

Below we explain this puzzle. In particular, we show how both disadvantageous and ad-

vantageous inequality aversion work together to induce the “tyranny-of-the-majority” income

profile as the critical income profile.

Notice that when players are not too benevolent, a coalition does not block an income

profile if and only if the associated shadow allocation is not feasible
(
Proposition 2.1(ii)

)
.

It implies that the income profiles the coalition is the most reluctant to block – the critical

income profiles – must be those associated with the most expensive shadow allocations.
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Consider first players’ disadvantageous inequality aversion (governed by the parameter

α ≥ 0). We argue that under this force, a critical income profile assumes the particular

shape where except for the poorest player, everyone else earns equal amount.

First, notice that income comparison with the richer drives down the total value of a

shadow allocation. To see that, remember that a deviating coalition Ct ⊂ N only enlists the

t poorest players, while ousting the other richer ones. Hence, players in Ct now derive less

disutility from comparing incomes with the richer, and thus can tolerate lower incomes.14

However, if everyone except for the poorest player earns the same amount, this effect is

completely shut off, as the poorest player – the only player suffering from income comparison

with the richer – does not find her condition better after deviating to a smaller coalition.

More precisely, consider any income profile x ∈ V (N) with x1 ≤ x2 = ... = xn. If coalition

Ct spins off from the grand coalition N , and each member of Ct earns the same as before,

then player 1’s utility does not change: u(x1;x2, ..., xt) = u(x1;x2, ..., xn), leaving no space

for depreciating the shadow allocation y(x, Ct).

Now look at players’ advantageous inequality aversion (governed by the parameter β).

We argue that if players are benevolent enough (β > βt > 0), this force widens the income

gap between the poorest player and the others to infinity, leading us to the “tyranny-of-the-

majority” income profile as the critical income profile.

First, we show that when players are benevolent: β > 0, then at any income profile

x ∈ V (N) with x1 < x2 = ... = xn, i.e., where the poorest player earns strictly less than

the others do, the shadow allocation for a deviating coalition assigns to each member higher

income than before. Specifically, suppose coalition Ct (1 < t < n) deviates. Then its richer

members – players 2 through t – suffer more from comparing incomes with player 1, for

her presence in a smaller coalition is more conspicuous. They thus desire higher incomes

14To gain more insights into it, we work through a simple example. In a three-player game (n = 3), suppose
players only compare incomes with the richer (α > 0, β = 0). Consider any income profile x ∈ V (N). After
the two-player coalition C2 deviates, player 2 no longer compares incomes with the richest player – player
3, and so to achieve the same utility as before, she demands lower income: y2 ≤ x2. It in turn shortens
the income gap between 1 and 2. Since 1 now stops comparing incomes with 3 too, she also demands lower
income: y1 ≤ x1.
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as compensation: y2 = ... = yt > x2 = ... = xt. Since it in turn enlarges the income gap

between player 1 and the others, elevating 1’s disutility from comparing incomes with the

richer, 1 also demands higher income as compensation: y1 ≥ x1.

In a word, at an unequal income profile x ∈ V (N) with x1 < x2 = ... = xn, benevolence

boosts up the total value of the shadow allocation for a coalition Ct. Nevertheless, since the

equal income profile where everyone gets vn/n maximizes the total income for Ct members

(at tvn/n), only when players are benevolent enough (β > βt > 0) does the first force

dominate to make coalition Ct’s shadow allocation at the unequal income profile x more

expensive than that at the equal income profile. In this case, the larger the initial income

gap between player 1 and the others (x2 − x1) is, the more expensive the shadow allocation

becomes. Thus, to obtain the critical income profile featuring the most expensive shadow

allocation, we increase the income gap to infinity.

2.4 Conclusion

In a cooperative game setting, this paper studies how parochial fairness concerns shape

income redistribution outcomes after coalitional deviations and the structures of core allo-

cations. We generalize the TU game through extending the utility space to allow for other-

regarding incentives, and apply in the Fehr-Schmidt utility specification to analyze parochial

fairness concerns. Given any income profile, we characterize the associated shadow allocation

for each coalition that makes the coalition members indifferent between blocking the income

profile and not.

One preliminary result shows that shadow allocations have implications on how parochial

fairness concerns affect income redistribution results following coalitional deviations: while

aversion to both disadvantageous and advantageous inequality exaggerates income inequal-

ity after a coalition deviates, advantageous inequality inclination reduces it. Built upon its

intuition, our second result states that when players are sufficiently and moderately benevo-

lent, the critical income profile most robust to coalitional deviations is the “tyranny-of-the-
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majority” income profile where a single poorest player earns indefinitely small amount, and

all the others share the same income.

We plan to carry this research further by exploring how the structure of the worth function

and parochial fairness concerns jointly determine the characteristics of core allocations. We

will also push beyond the symmetry assumption, asking how heterogeneity in players’ fairness

concerns and coalitions’ productivities may alter the main results.

2.5 Appendix

2.5.1 Ordering of Players’ Preferences

Lemma 2.1. Given any coalition C with |C| ≥ 2 and allocation x ∈ RC, the income

levels for some two players i, j ∈ C satisfy xi > xj if and only if their utilities satisfy

u(xi; x−i) > u(xj; x−j).

Proof: Given any multiplayer coalition C and two players i, j ∈ C with xi > xj, we show

that the difference in i and j’s utilities ∆uij ≡ u(xi; x−i)− u(xj; x−j) > 0. Notice that it is

equal to their positive income difference (xi − xj > 0) plus the difference in their disutilities

from income comparison (denoted by ∆disuij).

If i and j are the only two players in coalition C, then ∆disuij = (−β +α)(xi− xj) ≥ 0,

such that the utility difference ∆uij > 0. The inequality holds because agents are assumed

to be more averse to disadvantageous inequality than advantageous one: α ≥ β.

Now suppose coalition C includes players other than i and j. Pick any player k ∈

C/{i, j}, she could earn more than i does, less than j does, or something in between i

and j’s income levels. The difference in i and j’s disutilities from comparing incomes with

k (denoted by ∆disukij) is, respectively, α(xi − xj)/
(
|C| − 1

)
, −β(xi − xj)/

(
|C| − 1

)
, and[

− β(xi − xk) + α(xk − xj)
]
/
(
|C| − 1

)
. If players are competitive: β ≤ 0, then ∆disukij ≥ 0

in all three cases. Hence, the total difference in i and j’s disutility from income comparison

∆disuij ≥ 0, indicating that their utility difference ∆uij > 0. If players are benevolent:
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β > 0, then ∆disukij is minimized at −β(xi − xj)/
(
|C| − 1

)
when k earns lower than both i

and j do. It indicates that the total difference in i and j’s disutility from income comparison

∆disuij is minimized if i, j are the two richest players in coalition C. In this case, their

utility difference ∆uij is still positive, as shown below:

∆uij = (xi − xj) +
1

|C| − 1
· (−β + α)(xi − xj)−

|C| − 2

|C| − 1
· β(xi − xj)

=
(

1− β +
α

|C| − 1

)
(xi − xj)

> 0,

where we obtain the inequality from the “no-discarding” assumption: β < 1. Hence, ∆uij >

0 always holds.

Q.E.D.

2.5.2 Pareto Optimality

Lemma 2.2. Given any coalition Ct with t ∈ {2, ..., n}, if β ≥ (t − 1)/t, the set of weakly

Pareto optimal allocations contains only the equal allocation where each player gets vt/t;

otherwise, it is
{
y ∈ V (Ct)

∣∣∑t
i=1 yi = vt

}
.

Proof: Given any multiplayer coalition Ct ⊆ N , we first prove that if players are benevolent

enough: β ≥ (t−1)/t, then the only weakly Pareto optimal allocation is the equal allocation

where each player gets income vt/t. It is easy to see that the equal allocation is weakly Pareto

optimal, as moving to any other feasible allocation results in some players – the ones who

end up to be the poorest – doing strictly worse. We now show any other feasible allocation

is not weakly Pareto optimal.

It is clear that a wasteful allocation is not weakly Pareto optimal, for we can give each

player some equal amount to make all strictly better off. Pick any non-wasteful allocation

y ∈ V (Ct) with income inequality:
∑t

i=1 yi = vt and yt > y1, we show that there exists

another allocation y′ ∈ V (Ct) at which all players are weakly better off than at y, and some
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are strictly better off.

Denote bym the number of richest players at allocation y. Then yt−m < yt−m+1 = ... = yt.

Pick any positive scalar ∆ ≤ (yt−m+1− yt−m) · (t−m)/t, and construct an allocation y′ ∈ Rt

as follows:

y′i =


yi −∆ if i > t−m,

yi + ∆ ·m/(t−m) if i ≤ t−m.

It is easy to verify that allocation y′ is feasible, and that the ordering of players’ income

levels follows that at allocation y: y′1 ≤ ... ≤ y′t.

We now show all players are better off at allocation y′ than at allocation y. It is obvious

that any player i ≤ t −m is strictly better off at y′, for she now earns strictly more than

before. Besides, her income difference with anyone poorer than her does not change, and

that with anyone richer than her either remains the same, or drops.

The utility for any player i > t−m also weakly increases after moving from allocation y

to allocation y′:

u(y′i; y
′
−i)− u(yi; y−i) = −∆ +

β

t− 1
· (t−m)

(
1 +

m

t−m

)
∆

= −∆ +
β

t− 1
· t∆

≥ 0,

where the inequality results from the fact that β ≥ (t − 1)/t. Hence, any non-wasteful,

unequal allocation y ∈ V (Ct) is not weakly Pareto optimal.

Next, suppose players are not too benevolent: β < (t− 1)/t. We prove that the weakly

Pareto optimal allocations are the non-wasteful ones. Specifically, take any non-wasteful

allocation y ∈ V (Ct), and perform a random perturbation on players’ incomes: pick any

non-zero vector z ∈ Rt for which
∑t

i=1 zi = 0, and consider the new non-wasteful allocation

y′ = y + z.15 We show that at least one player does strictly worse at y′ than at y.

15Notice that at allocation y′ we may encounter abuse of notation: the indexing may not be consistent
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If players are benevolent: β > 0, let j be the highest index for which zj < 0, i.e., the

highest income earner at allocation y who earns strictly less after the perturbation. We show

that j is strictly worse off at y′ than at y. Let ∆ be the total decrease in j’s income |zj|, then

the total increase in other players’ incomes
∑

i 6=j zi = ∆. Notice that since j is benevolent,

the best perturbation outcome for her is when all this total increase in other players’ incomes

∆ is applied to those who are initially poorer, and that they are still poorer than j after

the perturbation, for this arrangement minimizes the increase in j’s total income differences

with the richer at (t− j)∆ (coming solely from the drop in j’s income level), and maximizes

the decrease in her total income differences with the poorer at ∆ + (j− 1)∆ (where the first

and the second parts come from the total increase in the poorer’s incomes and the drop in

j’s earnings, respectively). However, even in this most optimistic scenario, j is still strictly

worse off after the perturbation, as the total changes in her utility

−∆− α

t− 1
· (t− j)∆ +

β

t− 1
· [∆ + (j − 1)∆]

≤ −∆ +
β

t− 1
· t∆

< 0,

where the first inequality is obtained by letting j = t, and the second by invoking β <

(t− 1)/t.

If players are competitive: β ≤ 0, pick a player whose income decreases the most:

k ∈ arg mini zi. We show that k is strictly worse off after the perturbation. It is easy

to see that k now derives higher disutility from comparing incomes with anyone else, as

her income difference with anyone initially weakly richer than her increases, and that with

anyone initially strictly poorer than her decreases (if their positions are not interchanged,

which is even worse for k). Since k also derives strictly less payoff from self-interest, she is

strictly worse off.

Lastly, at any wasteful allocation, we can distribute the wasted worth equally to the

with the ordering of players’ income levels after the perturbation. But this is innocuous.
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players to make all strictly better off. As the resulting non-wasteful allocation, if not allo-

cation y, features at least one player being strictly worse off than at y, so does the wasteful

allocation we start with. Hence, y is weakly Pareto optimal.

Q.E.D.

2.5.3 Proof of Proposition 2.1 & 2.2

Suppose β < (t − 1)/t. Given any income profile x ∈ Rn and multiplayer coalition Ct, we

solve for the associated shadow allocation y ∈ Rt, which furnishes the proof for its existence

and for Proposition 2.2.

By definition, at a shadow allocation y ∈ Rt for income profile x ∈ Rn, members of

coalition Ct derive the same utilities as at x. Thus Lemma 2.1 suggests the ordering of their

income levels also remains the same as at x, and so do their identity indices. Take any two

adjacent players j, (j + 1) ∈ Ct. Their equivalence conditions are:

u(xj; x−j) = u(yj; y−j), (2.2)

u
(
xj+1; x−(j+1)

)
= u

(
yj+1; y−(j+1)

)
. (2.3)

Subtracting (2.3) with (2.2), we obtain:

(xj+1 − xj) +
α

n− 1
· (n− j)(xj+1 − xj)−

β

n− 1
· j(xj+1 − xj) =

(yj+1 − yj) +
α

t− 1
· (t− j)(yj+1 − yj)−

β

t− 1
· j(yj+1 − yj)

⇒ yj+1 − yj =
1 + α · (n− j)/(n− 1)− β · j/(n− 1)

1 + α · (t− j)/(t− 1)− β · j/(t− 1)
· (xj+1 − xj)

= θtj · (xj+1 − xj). (2.4)

Notice that the condition β < (t− 1)/t guarantees θtj > 0, so that indeed we have yj+1 ≥ yj.

Next, we compute the explicit expressions for the shadow allocation y. Notice that the
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income for any player k = 2, ..., t can be expressed as:

yk = y1 +
k−1∑
i=1

(yi+1 − yi)

= y1 +
k−1∑
i=1

θti(xi+1 − xi), (2.5)

where the second inequality is obtained from equation (2.4). Now we derive player 1’s income

y1 from her equivalence condition:

u(y1; y−1) = u(x1; x−1) ⇒

y1 −
α

t− 1

t∑
k=2

(yk − y1) = x1 −
α

n− 1

n∑
k=2

(xk − x1) ⇒

y1 −
α

t− 1

t∑
k=2

k−1∑
i=1

θti(xi+1 − xi) = x1 −
α

n− 1

n∑
k=2

k−1∑
i=1

(xi+1 − xi) ⇒

y1 = x1 −
α

n− 1

n∑
k=2

k−1∑
i=1

(xi+1 − xi) +
α

t− 1

t∑
k=2

k−1∑
i=1

θti(xi+1 − xi), (2.6)

where the second step is derived from equation (2.5). Plugging (2.6) back into (2.5), we

obtain the income levels for the other players y2, ..., yt.

The fact that y is the unique shadow allocation for income profile x is directly implied by

Lemma 2.2. Specifically, let coalition Ct’s total worth vt =
∑t

i=1 yi, then Lemma 2.2 suggests

y is a weakly Pareto optimal allocation, such that any other allocation for coalition Ct with

total income weakly below
∑t

i=1 yi features at least one player being strictly worse off than

at allocation y, and thus cannot be a shadow allocation. Now, consider any allocation with

total income strictly higher than that at allocation y: z ∈ Rt with
∑t

i=1 zi >
∑t

i=1 yi. Let

coalition Ct’s total worth vt =
∑t

i=1 zi, then Lemma 2.2 suggests z is weakly Pareto optimal.

Hence, at least one player is strictly better off at allocation z than at allocation y, indicating

that z is not a shadow allocation.

Lastly, we prove Proposition 2.1(ii). That
∑t

i=1 yi < vt implies income profile x is

blocked by coalition Ct is obvious: take any positive scalar ∆ <
(
vt −

∑t
i=1 yi

)
/t, then Ct
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can profitably deviate from income profile x to the feasible allocation where each player i

gets yi + ∆. We now prove the other direction: if
∑t

i=1 yi ≥ vt, we show that it is not

profitable for coalition Ct to deviate from income profile x to any allocation in V (Ct). Let

∆ =
(∑t

i=1 yi− vt
)
/t ≥ 0, and define allocation y′ ∈ V (Ct) by letting each player i’s income

y′i = yi − ∆. Apparently, all players are weakly worse off at y′ than at y. Since they are

indifferent between allocation y and income profile x, deviating from x to y′ is not profitable.

Since y′ is a non-wasteful allocation, Lemma 2.2 implies that it is weakly Pareto optimal.

Hence, any other allocation in V (Ct) features at least one player doing strictly worse than

at allocation y′, and so strictly worse than at income profile x. As a result, coalition Ct does

not find it profitable to deviate from income profile x to any allocation in V (Ct).

Q.E.D.

2.5.4 Proof of Theorem 2.1

Given coalition Ct with t = 2, ..., n−1, we first show that if β ≥ (t−1)/t, the unique critical

income profile for Ct is the equal income profile where each player gets vn/n. Since the only

weakly Pareto optimal allocation for coalition Ct is the equal one where each member gets

vt/t (Lemma 2.2), Ct blocks an income profile x ∈ V (N) if and only if at x, its richest player

– player t – is willing to deviate to the equal allocation: u(xt,x−t) < vt/t. Now, notice

that the equal income profile where each player gets vn/n is the unique one that maximizes

player t’s utility u(xt,x−t): it removes inequality (remember, players are benevolent, so any

inequality makes them worse off), and is the only income profile that maximizes player t’s

income. Therefore, on one hand, if coalition Ct blocks the equal income profile, it also blocks

any other income profile: u(xt,x−t) ≤ vn/n < vt/t for all x ∈ V (N), indicating that the equal

income profile is critical; on the other hand, given any unequal income profile x ∈ V (N), if

coalition Ct’s total worth vt satisfies u(xt,x−t) < vt/t ≤ vn/n, then Ct blocks x, but not the

equal income profile, suggesting that x is not critical.

Next, we solve for the critical income profiles for the case where β ≥ (t− 1)/t. We first

establish two lemmas that greatly shrink the set of income profiles we need to consider. See
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below.

Lemma 2.3. If β < (t − 1)/t, a critical income profile x ∈ V (N) for coalition Ct (t =

2, ..., n− 1) satisfies xt = xi ∀i = t+ 1, ..., n and
∑t

i=1 xi = vt.

Proof: First, we show that any non-wasteful income profile x ∈ V (N) for which xj < xj+1

for some j ≥ t is not critical, as there exists another income profile x′ ∈ V (N) that coalition

Ct is strictly more reluctant to block. Specifically, take any positive scalar ∆ < (xj+1 −

xj)/(j + 1), and let

x′i =


xi + ∆ if i ≤ j,

xi − j∆ if i = j + 1,

xi if i > j + 1.

Since j ≥ t, the new income profile x′ makes all members of coalition Ct strictly happier

– each has strictly higher income, smaller total income differences with the richer, and the

same total income differences with the poorer. Hence, its shadow allocation must be strictly

more expensive:
∑t

i=1 y(x′, Ct) >
∑t

i=1 y(x, Ct).
16 If coalition Ct’s total worth vt satisfies∑t

i=1 y(x, Ct) < vt ≤
∑t

i=1 y(x′, Ct), then Ct does not block x′, but blocks x
(
Proposition

2.1(ii)
)
. Thus x cannot be a critical income profile.

It is easy to see that any wasteful income profile is not critical, as we can split the

wasted worth equally among the players, and the resulting non-wasteful income profile makes

everyone strictly better off. Hence, coalition Ct is strictly more reluctant to block the latter.

This prevents the former to be a critical income profile.

Q.E.D.

Lemma 2.4. At a critical income profile x ∈ V (N) for coalition Ct (t = 2, ..., n− 1),

i if β < −α, then x1 = xi ∀i = 2, ..., t− 1;

16Otherwise, set coalition Ct’s total worth vt =
∑t

i=1 y(x, Ct), then Lemma 2.2 suggests y(x, Ct) is weakly
Pareto optimal, contradicting the fact that y(x′, Ct) ∈ V (Ct) and makes all players strictly better off.
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ii if −α < β < (t− 1)/t, then xi = xt ∀i = 2, ..., t− 1.

Proof for (i): We show that if β < −α, then given any income profile x ∈ V (N) not

satisfying x1 = xi ∀i = 2, ..., t − 1, there exists another income profile x′ ∈ V (N) that

coalition Ct is strictly more reluctant to block.

Denote by j < t − 1 the poorest player who earns strictly less than the adjacent player

above: x1 = xj < xj+1. Take any positive scalar ∆ ≤ (xj+1 − xj) · (t − 1 − j)/(t − 1), and

construct a new income profile x′ ∈ V (N) as follows:

x′i =


xi + ∆ i ≤ j

xi − j/(t− 1− j) ·∆ i = j + 1, ..., t− 1

xi i ≥ t

(2.7)

It is easy to verify that
∑n

i=1 xi =
∑n

i=1 x
′
i. Our goal is to show that the shadow allocation

for x′ – y(x′, Ct) – is strictly more expensive than that for x – y(x, Ct).

Let y′ ≡ y(x′, Ct), y ≡ y(x, Ct). In the next few steps, we express a player’s income at

the new shadow allocation y′i as a function of her income at the old one yi. By Proposition

2.2:

y′t − y′t−1 = θtt−1(x′t − x′t−1)

= θtt−1

(
xt − xt−1 +

j

t− 1− j
·∆
)

= yt − yt−1 +
j

t− 1− j
· θtt−1∆, (2.8)

y′j+1 − y′j = θtj(x
′
j+1 − x′j)

= θtj

(
xj+1 − xj −

t− 1

t− 1− j
·∆
)

= yj+1 − yj −
t− 1

t− 1− j
· θtj∆, (2.9)

y′i+1 − y′i = θti(x
′
i+1 − x′i) = θti(xi+1 − xi) = yi+1 − yi ∀i 6= t− 1, j. (2.10)

Notice that player t is indifferent between income profiles x and x′: she earns the same, and

faces the same total income differences with the richer and the poorer. Therefore, she is also
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indifferent between the two associated shadow allocations:

u(yt; y−t) = u(y′t; y
′
−t)

⇒ yt −
β

t− 1

t−1∑
i=1

(yt − yi) = y′t −
β

t− 1

t−1∑
i=1

(y′t − y′i)

= y′t −
β

t− 1

t−1∑
i=j+1

(
yt − yi +

j

t− 1− j
· θtt−1∆

)
− β

t− 1

j∑
i=1

(
yt − yi +

j

t− 1− j
· θtt−1∆− t− 1

t− 1− j
· θtj∆

)
⇒ y′t = yt +

j

t− 1− j
· β(θtt−1 − θtj)∆, (2.11)

where the first step follows from equations (2.8-2.10), and the second is a direct algebraic

rearrangement. Hence, for any player i = j + 1, ..., t − 1, her income at the new shadow

allocation

y′i = y′t −
t−1∑
k=i

(y′k+1 − y′k)

= y′t −
t−1∑
k=i

(yk+1 − yk)−
j

t− 1− j
· θtt−1∆

= yi +
j

t− 1− j
· β(θtt−1 − θtj)∆−

j

t− 1− j
· θtt−1∆, (2.12)

where the second equality follows from equations (2.8) and (2.10), the third obtained by

plugging in equation (2.11). Likewise, we compute the new income for any player i = 1, ..., j:

y′i = y′t −
t−1∑
k=i

(y′k+1 − y′k)

= y′t −
t−1∑
k=i

(yk+1 − yk)−
j

t− 1− j
· θtt−1∆ +

t− 1

t− 1− j
· θtj∆

= yi +
j

t− 1− j
· β(θtt−1 − θtj)∆−

j

t− 1− j
· θtt−1∆ +

t− 1

t− 1− j
· θtj∆. (2.13)

Now equation (2.9) is also used in deriving the second equality. Lastly, adding up equations
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(2.11-2.13), we arrive at the total income for the new shadow allocation:

t∑
i=1

y′i =
t∑
i=1

yi +
j

t− 1− j
·
[
βt− (t− 1)

]
(θtt−1 − θtj)∆. (2.14)

Notice that β < −α implies θtt−1 < θtj (derived from a straightforward derivative computa-

tion), thus
∑t

i=1 y
′
i >

∑t
i=1 yi, indicating that x is not a critical income profile – any total

worth vt satisfying
∑t

i=1 yi < vt ≤
∑t

i=1 y
′
i renders coalition Ct block x but not x′.

Proof for (ii): The proof logic is similar to that for (i): we show that if β > −α, then

given any income profile x ∈ V (N) not satisfying xi = xt ∀i = 2, ..., t−1, there exists another

income profile x′ ∈ V (N) that coalition Ct is strictly more reluctant to block.

Denote by j < t the richest player who earns strictly less than the adjacent player above:

xj < xj+1 = xt. Take any positive scalar ∆ ≤ (xj+1 − xj), and construct a new income

profile x′ ∈ V (N) as follows:

x′i =


xi − (j − 1)∆ i = 1

xi + ∆ i = 2, ..., j

xi i ≥ j + 1

It is easy to verify that
∑n

i=1 xi =
∑n

i=1 x
′
i. Our goal is to show that the shadow allocation

for x′ – y(x′, Ct) – is strictly more expensive than that for x – y(x, Ct).

Let y′ ≡ y(x′, Ct), y ≡ y(x, Ct). In the next few steps, we express a player’s income at

the new shadow allocation y′i as a function of her income at the old one yi. By Proposition

2.2:

y′j+1 − y′j = θtj(x
′
j+1 − x′j) = θtj(xj+1 − xj −∆) = yj+1 − yj − θtj∆, (2.15)

y′2 − y′1 = θt1(x′2 − x′1) = θt1(x2 − x1 + j∆) = y2 − y1 + jθt1∆, (2.16)

y′i+1 − y′i = θti(x
′
i+1 − x′i) = θti(xi+1 − xi) = yi+1 − yi ∀i 6= 1, j. (2.17)
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Since xj+1 = ... = xt, equation (2.17) suggests yj+1 = ... = yt and y′j+1 = ... = y′t. We now

compute player (j + 1)’s income at the new shadow allocation y′j+1. Notice that (j + 1) is

indifferent between income profiles x and x′: she earns the same, and faces the same total

income differences with the richer and the poorer. Therefore, she is also indifferent between

the two associated shadow allocations:

u
(
yj+1; y−(j+1)

)
= u

(
y′j+1; y′−(j+1)

)
⇒ yj+1 −

β

t− 1

j∑
i=1

(yj+1 − yi) = y′j+1 −
β

t− 1

j∑
i=1

(y′j+1 − y′i)

⇒ yj+1 −
β

t− 1

j∑
i=1

(yj+1 − yi) = y′j+1 −
β

t− 1

j∑
i=2

(yj+1 − yi − θtj∆)

− β

t− 1
(yj+1 − y1 − θtj∆ + jθt1∆)

⇒ y′j+1 = yj+1 −
j

t− 1
· β(θtj − θt1)∆

⇒ y′i = yi −
j

t− 1
· β(θtj − θt1)∆ ∀i = j + 1, ..., t (2.18)

where the first and the last steps hold because yj+1 = ... = yt and y′j+1 = ... = y′t, the second

follows from equations (2.15-2.17), and the third is a direct algebraic rearrangement. Hence,

for any player i = 2, ..., j, her income at the new shadow allocation

y′i = y′j+1 −
j∑
k=i

(y′k+1 − y′k)

= y′j+1 −
j∑
k=i

(yk+1 − yk) + θtj∆

= yi −
j

t− 1
· β(θtj − θt1)∆ + θtj∆, (2.19)

where the second equality follows from equations (2.15) and (2.17), the third obtained by

substituting y′j+1 out with equation (2.18). Likewise, we compute the new income for player
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1:

y′1 = y′j+1 −
j∑

k=1

(y′k+1 − y′k)

= y′j+1 −
j∑

k=1

(yk+1 − yk) + θtj∆− jθt1∆

= y1 −
j

t− 1
· β(θtj − θt1)∆ + θtj∆− jθt1∆. (2.20)

Now equation (2.16) is also used in deriving the second equality. Lastly, adding up equations

(2.18-2.20), we arrive at the total income for the new shadow allocation:

t∑
i=1

y′i =
t∑
i=1

yi + j
(

1− tβ

t− 1

)
(θtj − θt1)∆.

Notice that β > −α implies θtj > θt1 (derived from a straightforward derivative computation).

Since also β < (t−1)/t, we have
∑t

i=1 y
′
i >

∑t
i=1 yi, indicating that x is not a critical income

profile – any total worth vt satisfying
∑t

i=1 yi < vt ≤
∑t

i=1 y
′
i renders coalition Ct block x

but not x′.

Q.E.D.

Lemma 2.3 and Lemma 2.4(i) suggest that when β < −α, a critical income profile

x ∈ V (N) for coalition Ct (1 < t < n) satisfies x1 = ... = xt−1 ≤ xt = ... = xn and∑n
i=1 xi = vn. We now show that out of all the income profiles satisfying the conditions

stated above, the equal one where each player gets vn/n is the only critical income profile.

This part is the easiest to be proved by graph. Suppose α > 0, then figure 2.1 completely

captures the proof. Below we offer a verbal explanation on the graphical outcome. Notice

that any candidate income profile x ∈ V (N) can be pinpointed in a two-dimensional graph:

plot xt on the horizontal axis, and xt−1 on the vertical axis. Since Proposition 2.2 suggests
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that its shadow allocation y ≡ y(x, Ct) satisfies

yt − yt−1 = θtt−1(xt − xt−1) ≥ 0,

yi+1 − yi = θti(xi+1 − xi) = 0 ∀i < t− 1,

such that y1 = ... = yt−1 ≤ yt, we can locate y in the same graph: plot yt on the horizontal

axis, and yt−1 on the vertical axis. The black line represents all the non-wasteful, thus

candidate, income profiles. We randomly pick one unequal income profile x̂ on it
(
represented

by point (x̂t, x̂t−1)
)
, and show that its shadow allocation ŷ ≡ y(x̂, Ct)

(
represented by the

point (ŷt, ŷt−1)
)

is strictly cheaper than the shadow allocation for the equal income profile(
represented by point (vn/n, vn/n)

)
. Since each player earns vn/n at the latter, it translates

into showing that the point (ŷt, ŷt−1) is strictly below the green line. Now, before proceeding

with the proof, we make the following definition: for any coalition Ct, player i ≤ t, and income

profile x ∈ Rn, we define the associated indifference set ICi(x, Ct) as the set of allocations

y ∈ Rt that makes i indifferent between x and y: u(yi; y−i) = u(xi; x−i). Applied to the

proof, we can plot player (t − 1)’s indifference sets in the grand coalition N and coalition

Ct for income profile x̂: ICt−1(x̂, N) and ICt−1(x̂, Ct).
17 Denote (t − 1)’s utility at x̂ –

u
(
x̂t−1; x̂−(t−1)

)
– as ut−1, then ICt−1(x̂, N) is derived as follows:

u
(
xt−1; x−(t−1)

)
= ut−1

⇒ xt−1 −
α

n− 1
· (n− t+ 1)(xt − xt−1) = ut−1

⇒ xt−1 =
αn

1 + αn
· xt +

ut−1

1 + αn

where αn ≡
(n− t+ 1)α

n− 1

In the first step, we utilize the fact that x1 = ... = xt−1 ≤ xt = ... = xn, the second step

only involves algebraic rearrangement. Similarly, using u
(
yt−1; y−(t−1)

)
= ut−1, we arrive at

17More precisely, due to the restriction to two dimensions, we can only plot the intersection of ICt−1(x̂, N)
and {x ∈ Rn|x1 = ... = xt−1 ≤ xt = ... = xn}, as well as the intersection of ICt−1(x̂, Ct) and {y ∈ Rt|y1 =
... = yt−1 ≤ yt}.
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ICt−1(x̂, Ct):

yt−1 =
αt

1 + αt
· yt +

ut−1

1 + αt
where αt ≡

α

t− 1

Since 0 < αt < αn, both ICt−1(x̂, Ct) and ICt−1(x̂, N) have positive slopes, and the former

is flatter than the latter. Since they intersect the 45 degree line at the same point – at an

equal income profile in Rn, if we drop players (t+ 1), ..., n, the utility for player t remains to

be her income level, graphically, ICt−1(x̂, Ct) rotates downward from ICt−1(x̂, N) (see the

two red lines). Notice also that ICt−1(x̂, N) passes the point (x̂t, x̂t−1), as x̂ ∈ ICt−1(x̂, N).

Now, following the same principle, we derive player t’s indifference set for income profile x̂

in the grand coalition ICt(x̂, N):

u(xt; x−t) = ut ≡ u(x̂t; x̂−t)

⇒ xt −
β

n− 1
· (t− 1)(xt − xt−1) = ut

⇒ xt−1 = −1− βn
βn

· xt +
ut
βn

where βn ≡
(t− 1)β

n− 1

and that in coalition Ct – ICt(x̂, Ct):

yt−1 = −1− β
β
· yt +

ut
β

Since β < βn < −α < 0, both ICt(x̂, Ct) and ICt(x̂, N) have positive slopes, and the

former is flatter than the latter. Since they intersect the 45 degree line at the same point,

ICt(x̂, Ct) rotates inward from ICt(x̂, N) (see the two blue lines). Now, notice that in the

grand coalition N , player t’s indifference set ICt(x̂, N) intersects player (t−1)’s ICt−1(x̂, N)

at (xt, xt−1), for by definition, income profile x̂ ∈ ICt(x̂, N) ∩ ICt−1(x̂, N). Similarly, in

coalition Ct, t and (t − 1)’s indifference sets – ICt(x̂, Ct) and ICt−1(x̂, Ct) – both include

income profile x̂’s shadow allocation ŷ; thus graphically, ICt(x̂, Ct) and ICt−1(x̂, Ct) intersect

at (ŷt, ŷt−1).18 Since ICt−1(x̂, Ct) rotates downward from ICt−1(x̂, N), and ICt(x̂, Ct) rotates

18It is clear that they only intersect once, so their unique intersecting point must be the shadow allocation
ŷ.
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inward from ICt(x̂, N), we have (ŷt, ŷt−1) << (x̂t, x̂t−1). Since (x̂t, x̂t−1) is strictly below the

green line, so is (ŷt, ŷt−1), that is, income profile x̂’s shadow allocation ŷ is strictly cheaper

than that for the equal income profile. Hence, the randomly chosen unequal income profile

x̂ is not critical, and so the only critical income profile is the equal one. Lastly, notice that

if α = 0, our result still holds – in the graph, we only need to make the two indifference sets

for player (t− 1) – ICt−1(x̂, N) and ICt−1(x̂, Ct) – completely flat, all else follows.

Lemma 2.3 and Lemma 2.4(ii) suggest that when −α < β < (t− 1)/t, a critical income

profile x ∈ V (N) for any coalition Ct (1 < t < n) satisfies x1 ≤ x2 = ... = xn and∑n
i=1 xi = vn. We now characterize the range of β in which out of all the income profiles

satisfying the conditions stated above, only the equal one where each player gets vn/n is

critical. Denote the equal income profile by xe. Notice that its shadow allocation, denoted

as ye, satisfies yei = vn/n ∀i, and that any other candidate income profile x ∈ V (N) can be

expressed as follows:

xi =


xei − (n− 1)∆ if i = 1,

xei + ∆ if i ≥ 2,

(2.21)

where ∆ is any positive scalar. Denote the two associated shadow allocations y(xe, Ct) and

y(x, Ct) by ye and y, respectively. We want to find the range of β in which ye is more

expensive than y. From Proposition 2.2, we obtain:

y2 − y1 = θt1(x2 − x1) = nθt1∆, (2.22)

yi+1 − yi = θti(xi+1 − xi) = 0 ∀i ≥ 2. (2.23)
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Then, we derive player 1’s income y1 from her indifference condition:

u(y1; y−1) = u(x1; x−1)

⇒ y1 −
α

t− 1

t∑
i=2

(yi − y1) = x1 −
α

n− 1

n∑
i=2

(xi − x1)

⇒ y1 −
α

t− 1
· (t− 1)nθt1∆ = x1 −

α

n− 1
· (n− 1)n∆

⇒ y1 = x1 − αn∆ + αnθt1∆,

where the second step is derived from conditions (2.21-2.23). Since (2.22-2.23) also imply

that y2 = ... = yt = y1 + nθt1∆, we can express players’ total income at allocation y as:

t∑
i=1

yi = t
(
x1 − αn∆ + αnθt1∆

)
+ (t− 1)nθt1∆

= t
(
xe1 − (n− 1)∆− αn∆ + αnθt1∆

)
+ (t− 1)nθt1∆

=
t∑
i=1

yei − (n− 1)t∆− αnt∆ + αntθt1∆ + (t− 1)nθt1∆, (2.24)

where the first equality is obtained from condition (2.21), and the second follows from the

fact that ye1 = ... = yet = xe1. Hence,
∑t

i=1 y
e
i >

∑t
i=1 yi if and only if

(n− 1)t+ αnt− αntθt1 − (t− 1)nθt1 > 0,

if and only if

β <
(1 + α) ·

(
1/t− 1/n

)(
1 + α− 1/n

)
/(t− 1)−

(
1 + α− 1/t

)
/(n− 1)

≡ βt ∈
(

0,
t− 1

t

)
19

which is obtained by plugging in the expression for θt1 exhibited in Proposition 2.2. In

other words, only when −α < β < βt is the equal income profile xe the unique critical

one for coalition Ct. If β = βt, then
∑t

i=1 yi =
∑t

i=1 y
e
i , and so any non-wasteful income

19A direct derivative computation tells us that βt strictly increases in n. Also, limn→∞ βt = (t− 1)/t.
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profile z ∈ V (N) for which z1 ≤ z2 = ... = zn is critical. If βt < β < (t − 1)/t, then∑t
i=1 yi >

∑t
i=1 y

e
i . By letting ∆ → ∞, we can make income profile x’s shadow allocation

y arbitrarily expensive
(
see equation (2.24)

)
, thus x becomes the critical income profile. It

satisfies x1 → −∞, x2 = ... = xn and
∑n

i=1 xi = vn.

Lastly, we show that when β = −α, the unique critical income profile for any coalition

Ct (1 < t < n) is the equal one. Notice that Lemma 2.3 allows us to restrict attention to the

income profiles x ∈ V (N) satisfying xt = ... = xn and
∑n

i=1 xi = vn (denote this set by T1).

Define a subset of T1: T2 ≡
{
x ∈ V (N)

∣∣x1 = ... = xt−1 ≤ xt = ... = xn,
∑n

i=1 xi = vn
}

. We

first show that every income profile in T1\T2 is linked to an income profile in T2 with equally

expensive shadow allocation. Take any income profile x ∈ T1\T2. Denote by j < t − 1 the

poorest player who earns strictly less than the adjacent player above: x1 = xj < xj+1. Let

∆ = (xj+1 − xj) · (t − 1 − j)/(t − 1), and construct a new income profile x′ ∈ T1 according

to condition (2.7). Notice that x′j = x′j+1. Since β = −α, from Proposition 2.2,

θtj =
1 + α · n/(n− 1)

1 + α · t/(t− 1)
∀j < t,

thus equation (2.14) suggests
∑t

i=1 y
′
i =

∑t
i=1 yi

(
the derivation of (2.14) follows exactly

the same procedure as before
)
. If the new income profile x′ /∈ T2, we repeat the process

above on x′, and keep iterating until reaching an income profile in T2. Hence, any income

profile x ∈ T1\T2 shares equally expensive shadow allocation with an income profile in T2.

From figure 2.1, the equal income profile where each player gets vn/n is the unique one in T2

that maximizes the associated shadow allocation’s total income. Hence, it has strictly more

expensive shadow allocation than any other income profile x ∈ T1 does.20 In other words,

the equal income profile is the unique critical one.

Q.E.D.

20Condition (2.7) suggests that any income profile x ∈ T1\T2 is linked to a strictly unequal income profile
in T2.
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Figure 2.1: Graphic Proof for Theorem 2.1 when β ≤ −α

92



CHAPTER 3

Reward Pricing in Crowdfunding

3.1 Introduction

As a low-barrier fundraising method, rewards-based crowdfunding has become more and more

popular, especially among independent artists and innovators eager to market their artworks,

designs, inventions and ideas. A crowdfunding project is usually run through an interactive

online platform. When launching a project, the creator – the person in need of fund to

support their initiative – creates a webpage on the designated platform and posts on it the

total amount of fund they aim to raise through the project (the funding goal), the project

starting and ending time, a detailed marketing campaign clarifying the purpose, design,

budgeting and expected future progress of their work, as well as a set of related rewards

with detailed descriptions and associated minimum prices – the least amount of money a

donor needs to pay to the creator to obtain the corresponding reward.

There are several different rewards-based crowdfunding platforms, but most crowdfunding

activities are done on two websites: Kickstarter and Indiegogo. While the market share of

Kickstarter is considerably larger than that of Indiegogo, they have very similar crowdfunding

policies and website design.

The duration of a crowdfunding project ranges from 1 day to 3 months, but is usually

around 1 month. Prior to launching a project, the creator can choose from two funding

modes. In one mode, they can claim the fund raised through the platform at the end of

the project only if the total amount of the fund has exceeded the funding goal by then;

otherwise, all the raised fund would be returned to their original donors, leaving nothing

to the creator. In another mode, the creator can claim however much is raised during the
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crowdfunding period regardless of the set funding goal. Most creators chose the first mode,

perhaps because it implies that the donors are charged only if the project is guaranteed

sufficient funding, making them more willing to donate. The crowdfunding success rate is

averaged at 31% on Kickstarter.

In the language of crowdfunding, we call a project’s potential donors backers, and some-

times term donating pledging or backing. A backer browses the crowdfunding platform,

examines the project they are interested in, and determines whether they would like to

support it through choosing a reward from the list and pledging its minimum price.

Depending on the nature of a project, a reward can either be intangible – say, an appre-

ciative hug from the creator – or involve a substantial product related to the project, such

as a newly-released music album. To incentivize backers with different tastes to pledge, a

creator usually prepares assorted rewards with minimum prices ranked in accordance with

their values.

In this paper, we build a structural model to understand a creator’s optimal pricing

decision. For a given project, its value and the values of its associated rewards are constant,

but each backer has an idiosyncratic preference level that leads to dispersion in reward

choices. Knowing the distribution of backers’ preferences and the project and reward values,

the creator chooses a set of (minimum) reward prices to maximize the total amount of

fund raised. Given data on reward prices and the numbers of backers buying each reward,

we estimate the preference distribution and the project and reward values, and use this

information to analyze the creator’s optimal pricing strategies.

Since the rewards for a project are partial substitutes, the creator’s optimal pricing

problem is similar to that of a monopolist selling differentiated products. Using theoretical

modeling, [MR78] first study how, in face of consumers with different tastes, a monopolist

optimally prices a line of products similar in nature but different in quality. [MR84] study

a similar problem with discrete consumer types. Other relevant papers include [MS80] and

[OSW84].

This paper is also related to the literature on demand estimation for multiple products
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(see [HLZ94], [BLP95], [Pet02], [Nev03] and [Dub05], etc.). Specifically, We build a structural

model based on [Bre87] that estimates the demands for the American automobile market

with horizontally differentiated consumer types.

Also relevant is the literature on rewards-based crowdfunding. [KBE17] find that the

reward supplies are positively correlated with the project success rate, providing favorable

evidence for product differentiation in successfully designing a crowdfunding project. [Ste17]

uses survey data to identify two motivations for backing a project: the “altruistic motive”

and the “purchasing motive,” which we take into consideration when building the model.

In a behavioral study, [SWT17] identify the “middle-option bias,” that is, given a list of

rewards, backers tend to choose the middle option. Our model exhibits the potential to test

this empirical finding.

We arrange the paper as follows. Section 3.2 introduces the model and defines an equi-

librium. Section 3.3 describes the dataset. Section 3.4 proposes the estimation method and

presents the estimation results. Section 3.5 discusses several robustness concerns. Section

3.6 concludes.

3.2 Model

We focus on a single crowdfunding project. There are two player types: the backers (she)

and the creator (he). Given the project and its associated rewards, the creator chooses a

set of reward prices, and a backer chooses whether to pledge to the project and if so, which

reward to buy. Information is perfect. Time variation is abstracted away.

Backers

A backer’s motivation for backing a crowdfunding project can be separated into two parts:

her support to the project and the utility she derives from consuming the reward. The first

part is somewhat altruistic, whereas the second part comes solely from self-interest. For ease

of estimation, we assume they are additively separable.
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Let v > 0 be the value pertaining to the project. Notice that v is not the intrinsic value

of the project, but rather, the value a backer derives from donating to the project she deems

meaningful. If the project is financed by a significant number of backers, then v is much

smaller than – in fact, negligible compared to – the intrinsic project value. Let K be the

total number of rewards for the project. Each reward k ∈ {1, 2, ..., K} has value wk > 0. We

assume that each reward is valued distinctly and index the rewards by value in ascending

order: w1 < w2 < ... < wK . Both v and wk’s are constants.

Each backer i has an idiosyncratic preference level αi > 0. It is distributed i.i.d. with

support on [α, ᾱ], where ᾱ > α ≥ 0, and according to the c.d.f. F : [α, ᾱ]→ [0, 1].

We assume that each backer buys at most one reward. Let pk be the price of reward k.

If backer i backs the project and buys reward k, she derives utility αi(v + wk)− pk.

Let α̂k be the preference level at which a backer is indifferent between choosing reward

(k − 1) and reward k, then:

α̂k(v + wk)− pk = α̂k(v + wk−1)− pk−1 ⇒

α̂k =
pk − pk−1

wk − wk−1

for k = 2, ..., K. (3.1)

Kickstarter – the source of our data – has the policy that each participating backer has

to pledge at least $1. Backers who pledge less than p1 – the price of the cheapest reward –

receive nothing. They back the project merely to support the creator’s initiative. Using this

information, we can derive two additional indifference conditions:

α̂1(v + w1)− p1 = α̂1v − p0, (3.2)

α̂0v − p0 = 0. (3.3)

(3.2) characterizes the preference level α̂1 that makes a backer indifferent between buying the

cheapest reward and backing the project with no reward. (3.3) – the participation constraint

– characterizes the lowest preference level α̂0 at which a backer is willing to back the project.
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For the cutoff preference levels α̂k’s to be positive and hence properly defined, it is

necessary to assume that 1 = p0 < p1 < ... < pk, i.e., a more valuable reward is priced

higher. This assumption is largely consistent with reality. A stronger assumption is required

to ensure the existence of a separating equilibrium where a more valuable reward attracts

backers with higher preference levels. We will discuss the details in the creator’s problem

below.

Notice that, by defining a backer to be utility-maximizing, we have implicitly assumed

that all backers pay the posted minimum reward prices. In reality, the amount of the pledge

a backer pays sometimes exceeds the minimum price of her chosen reward. We can think of

the “residual pledge” beyond the minimum price as an individual-specific donation coming

into play only after the backer has made the rational choice, thus irrelevant to our study.

Creator

The aim of the creator is to solicit as much fund as possible to finance his work. In reality,

he chooses three elements when launching a crowdfunding project: the funding goal, the

project duration and the reward prices. In this model, we focus on the reward prices and

abstract away from the others.

Assume that, prior to launching the project, the creator has conducted thorough market

research and so knows the distribution of backers’ preference levels F (α). In addition, he

has obtained K different rewards, each with sufficient supply to meet the market demand.

Knowing the project value v and the reward values (wk)
K
k=1, the creator chooses a set of

reward prices (pk)
K
k=1 to maximize the total profit:

max
(pk)Kk=1

K−1∑
k=0

[
F (α̂k+1)− F (α̂k)

]
· (pk − wk) +

[
1− F (α̂K)

]
· (pK − wK) (3.4)

subject to the constraints p0 = 1, w0 = 0 and 0 ≤ α̂1 ≤ α̂2 ≤ ... ≤ α̂K , where each α̂k is

defined by equations (3.1-3.3).[
F (α̂k+1)−F (α̂k)

]
proportion of backers choose reward k for k = 0, ..., K−1.

[
1−F (α̂K)

]
97



proportion of backers choose reward K. Per reward k sold, the creator derives profit (pk−wk).

One way to think about it is to consider wk as reward k’s market value. The creator charges

a price pk beyond the market value wk and receives the premium (pk −wk) as the donation.

The last constraint of the profit maximization problem ensures that the solution to (3.4) is

a properly-defined separating equilibrium where a backer with higher preference level chooses

a reward with higher value. In other words, the price differences (pk − pk−1)’s have to be

large enough to select the backers into different rewards in accordance with their preference

levels.

Equilibrium

In order to solve for a unique separating equilibrium, the following assumptions regarding

the preference distribution F (α) are imposed:

Assumption 3.1. i F is everywhere twice differentiable on (α, ᾱ) with p.d.f. f . Moreover,

2f(α) + (α− 1)f ′(α) > 0 for all α ∈ (α, ᾱ).

ii 1−F (α) = (α−1)f(α) has K distinct positive solutions. In addition, its smallest solution

is no less than 1/v.

Assumption 3.1(i) ensures the creator’s problem (3.4) is concave and can be solved by

the first order conditions:

1− F (α̂k) = (α̂k − 1)f(α̂k) for k = 1, ..., K. (3.5)

The first part of Assumption 3.1(ii) ensures that equations (3.5) are solvable. Coupled

with the constraint 0 ≤ α̂1 ≤ α̂2 ≤ ... ≤ α̂K , the cutoff preference levels (α̂k)
K
k=1 can be

uniquely identified. The second part of 3.1(ii) ensures that α̂1 is no less than α̂0 = 1/v given

by the participation constraint (3.3).

Once the equilibrium cutoff preference levels (α̂k)
K
k=0 are known, the equilibrium prices

(pk)
K
k=1 can be directly backed out from the indifference conditions (3.1-3.2).
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We formally define the equilibrium below.

Definition 3.1 (Equilibrium). Let (α(k))Kk=1 be the K positive solutions of 1 − F (α) =

(α− 1)f(α) such that α(1) < α(2) < ... < α(K). Then in equilibrium,

i a backer backs the project if and only if her preference level is at least 1/v. Backers with

preference levels in [1/v, α(1)) back the project without reward; those with preference levels

in [α(k), α(k+1)) choose reward k for k = 1, ..., K − 1; and those with preference levels no

less than α(K) choose reward K;

ii the creator chooses prices (pk)
K
k=1 satisfying the following set of formulas: pk = α(k)(wk−

wk−1) + pk−1 for k = 1, ..., K, where p0 = 1 is given.

The assumption that 1− F (α) = f(α)(α− 1) has exactly K positive solutions is rather

strict. However, if the creator internalizes the number of rewards K as one of his optimal

choices, then this is nothing but a natural maximizing outcome. In this case, we need only

to assume that at least one positive solution exists.

3.3 Data

The database [Li19] we use is generously provided by CrowdBerkeley – a leading research

initiative on rewards-based crowdfunding at the University of California, Berkeley.

This is a structured relational database collected on January 30, 2019. It records a total of

408,637 crowdfunding projects launched on Kickstarter between April 21, 2009 and January

30, 2019.

The main table project records the main statistics for each project, including the fund-

ing goal, the starting and ending time, the total amount of fund raised, the total number

of backers, the project status, creator information, country and location information, and

marketing information.

The table most important to our study is reward. This table provides information on

the rewards per project recorded in the main table. It gives us data on reward descriptions,
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minimum prices, number limits, backer counts and shipping information. We are primarily

interested in minimum prices and backer counts.

Besides, the category table summarizes all the project categories, the location table

records creators’ countries and locations, and the creator table contains detailed information

on each project creator. All these tables reveal useful information for our study.

3.4 Estimation

Identification

Per project, the data provide us with its reward prices (pk)
K
k=1, the total number of backers

M in pledging to the project, and the numbers of backers choosing each reward (Mk)
K
k=1. The

number of backers pledging less than p1 and receiving no reward is easily backed out through

M0 = M in−
∑K

k=1Mk. The unknowns we need to estimate are the project and reward values(
v, (wk)

K
k=1

)
, the cutoff preference levels (α̂k)

K
k=0 and the two preference boundaries (α, ᾱ),

as well as the number of backers choosing not to back the project M out and the market size

M = M in +M out.

An obvious estimation approach is to utilize the creator’s first order conditions (3.5)

to compute the cutoff preference levels (α̂k)
K
k=0, and plug them into backers’ indifference

conditions (3.1-3.3) to compute the project and reward values
(
v, (wk)

K
k=1

)
. Though the

c.d.f. values of the cutoff preference levels
(
F (α̂k)

)K
k=0

are not known due to the lack of

data on the market size M , their ratios can be identified with the numbers of backers

choosing each reward (Mk)
K
k=1. The main difficulty lies in identifying the corresponding p.d.f.

values
(
f(α̂k)

)K
k=0

. A simple “local uniform” assumption on the preference distribution F (α)

facilitates the recovering of these values:

Assumption 3.2. A backer’s preference level α is distributed uniformly on each interval

[α̂k, α̂k+1) for k = 1, ...K − 1, with slight perturbations around the cutoffs α̂k’s such that

Assumption 3.1(i) is satisfied.
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Under Assumption 3.2, the p.d.f. value of each cutoff preference level f(α̂k) equals[
F (α̂k+1) − F (α̂k)

]
/(α̂k+1 − α̂k) for k = 1, ..., K − 1. Hence, we can rewrite the first order

conditions (3.5) as:

α̂k+1 − α̂k
α̂k − 1

=
F (α̂k+1)− F (α̂k)

1− F (α̂k)
≡ dk ⇒

α̂k+1 = dk(α̂k − 1) + α̂k for k = 1, ...K − 1. (3.6)

Equations (3.6) give us the relationship between each pair of neighboring cutoff prefer-

ences, where each dk = Mk/
(∑K

s=kMs

)
can be directly computed from data. However, the

cutoff preferences α̂k’s can still not be identified without a locational assumption. Since a

crowdfunding project is typically created by an individual or entity lacking wide recognition

and dedicated to a specific cause, it is reasonable to consider its backers as a cult following,

the members of which value the project and its associated rewards beyond their market

values – the values an agent with preference level α = 1 would obtain. Therefore, we as-

sume the lower boundary of the preference distribution α is slightly above 1. This locational

assumption is formalized below.

Assumption 3.3. The lower preference boundary α = 1+ε, where ε > 0 is arbitrarily small;

moreover, the preference level α is distributed uniformly on [α, α̂2) and [α̂K , ᾱ], respectively,

with slight perturbations around the cutoffs such that Assumption 3.1(i) is satisfied.

Assumption 3.3 also ensures that the cutoffs α̂k > 1 for all k ≥ 1 – a necessary condition

for the first order conditions (3.5) to be well-defined. In order to add an effective boundary

condition to facilitate model estimation, α is chosen to be slightly larger than 1 instead

of equal to 1, and the “local uniform” assumption is extended to the lower and upper

boundaries. For example, we can set ε = 0.05, so that α = 1.05.

With Assumption 3.3, the cutoff α̂1 can be pinned down through:

α̂2 − α̂1

M1

=
α̂1 − α

M out +M0

(3.7)
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where α̂2 = d1(α̂1 − 1) + α̂1.

We are left with computing the outside share of the market M out. We would have

information on it if we could observe the number of visits to the crowdfunding project

webpage. However, such data is not available. Given the cult nature of the target market and

the low pledging barrier at $1, the outside share M out should be small. We set M out = 0.1M ,

i.e., the outside share is 10%.

Once M out is known, we can compute the cutoff α̂1 through equation (3.7) and, conse-

quently, the other cutoffs
(
α̂0, (α̂k)

K
k=2

)
using the first order conditions (3.6). The project and

reward values
(
v, (wk)

K
k=1

)
are then backed out through the indifference conditions (3.1-3.3).

Example

To accurately estimate the preference distribution F (α), we need abundant observations

of backers. Thus, we restrict attention to those projects with at least 10,000 backers and

funding goal greater than $5,000. Besides, we focus on the projects launched in or after

2014. We only consider successful projects, as it is an indicator that the project creator had

made wise pricing decisions.

We only preserve the projects with at least 6 rewards to ensure sufficient preference

differentiation. Since many rewards had limited copies and were sold out before the funding

period ended, in order not to distort the estimation outcome, we only consider those projects

for which the rewards were either unlimitedly offered or not sold out during the crowdfunding

period.

Though the dataset records more than 400,000 project observations in total, the restric-

tions above narrow them down to only 37 projects categorized in figure 3.1.

Kickstarter groups its projects into 15 categories. But those satisfying our requirements

come from only 6 categories, with design, games, and technology having predominant shares.

More than half of these projects are for gaming products.

We select one project from the list to perform the estimation. It is titled “Tak: A
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Figure 3.1: Categories of the Target Projects

Beautiful Game.” This crowdfunding project was launched by Cheapass Games in April

19, 2016 and lasted for 31 days. During the funding period, 12,187 backers pledged to the

project, helping it to raise fund totaling $1,351,142, far exceeding its goal of $50,000.

Cheapass Games is a gaming company funded and run by James Ernest since 1996, based

in Seattle, Washington. Headed by an experienced professional game designer, the company

has designed and released dozens of games of different types, including board games, card

games and white box games [Wik].

Cheapass Games launched its first crowdfunding project on Kickstarter in 2012, and

since then has run 12 projects on this platform, all successfully funded. The funding goals

of their projects were averaged at $27,909.09, with the lowest at $10,000. An average fund

of $232,070 was raised per project. The least funded project solicited $43,714.5. The data

speak to the company’s successful crowdfunding management. Undoubtedly, it has a stable

target market on Kickstarter.

“Tak: A Beautiful Game” was the 9th project Cheapass Games launched, which among

all its projects collected the largest amount of fund from the largest number of backers. What

the company wanted to sell through the project was Tak – a two-player abstract strategy

game invented by James Ernest and Patrick Rothfuss, based on Rothfuss’ fantasy novel The

Wise Man’s Fear. During the funding period, the company was still actively designing Tak
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and posted several updates. Since backers backed this project both to support the company’s

future game design and to obtain their products in desire, this project can be suitably applied

to our model [Gam].

The project offered several products related to the game, each accompanied by detailed

description, such as the Companion Book delineating the game rule, different types of game

boards/sets, and collector coins. There were 11 rewards in total. We rank them by price

in ascending order. Some rewards were product bundles, which were charged simply at the

total price of the included products. For instance, reward 2 was a companion book worth

$15, reward 3 was a Tavern Set for $25, and reward 4 offered a combination of both products

at $40. A complete list of the rewards’ rankings, contents, minimum prices and backer counts

(from left to right) is presented in figure 3.2.

Figure 3.2: List of the Rewards’ Contents, Minimum Prices and Backers Counts

The first row shows that 95 backers pledged less than $5 and received no reward. With

the exception of reward 1 that granted access to the Pledge Manager, all the rewards offered

some physical products or product bundles. The price gap between each two neighboring

rewards was either $10 or $15 in the lower and middle tiers and increased tremendously in

the upper tier – a common pricing strategy in crowdfunding.

We now estimate our model using the project data. The estimation results are presented
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in figure 3.3. Starting from the left, each column represents, respectively, the reward ranks

k, the cutoff preference levels α̂k, the cutoff c.d.f. values F (α̂k), and the reward values wk.

The two boundaries of the preference distribution α, ᾱ are shown in the first and last rows.

Figure 3.3: Model Estimation Results

All estimated reward values wk’s are smaller than their corresponding minimum prices

pk’s. To better understand the creator’s pricing strategy, let us take a close look at the

project’s preference distribution F (α).

Figure 3.4 plots the c.d.f. of the preference distribution F (α). The curve is very steep in

the lower range but much smoother above around α = 1.2. It indicates that the market for

this project consisted primarily of backers with comparatively low preference levels. Though

105



Figure 3.4: C.D.F. of the Preference Distribution F (α)

there existed backers with exceptionally high preferences reaching up to 2.1, around 85% of

the backers had preference levels lower than 1.2 – much closer to the lower boundary.

One would expect the creator to have prepared rewards with large value and price gaps

to attract backers with different preference levels. Indeed, figures 3.2 shows that the price

gap between each two neighboring rewards was notably higher starting at reward 7, and

figure 3.3 shows that 86% of the backers either chose rewards with prices lower than that of

reward 8 or did not pledge at all. The pricing strategy effectively differentiated the market.

Figure 3.5 compares the reward price pk and value wk along the reward rank k. 3.5a

confirms our previous finding that the price gaps on the upper tier are steeper. Such trends

also apply to the reward values wk. Besides, the price-value differences are much larger for

higher-ranked rewards, indicating that the creator extracted considerably more surplus from

backers with higher preferences – compared to the majority of the backers who had low

preference levels, they resembled donors more than consumers.

3.5b plots the rewards’ price-value ratios pk/wk against their ranks k. The convex shape
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(a) pk, wk on k (b) pk/wk on k

Figure 3.5: Comparison between pk and wk along k

of the curve implies that the price-value ratios approach 1 for the middle-ranked rewards

and are much higher for those with low and high ranks. Interestingly, the creator funded

his project predominantly from the “generous donors” placing exceptionally high values on

his work and the “indifferent multitude” with only lukewarm interest in supporting his work

and reluctant even to pay for the products with medium values, while charging little or no

premiums from the backers standing in the middle.

Figure 3.6 demonstrates the near-linear relationship between the reward values wk and

the reward prices pk, with slope estimated at 1.32.

The project value v is estimated at 0.95, lower even than the value of the cheapest reward.

It suggests the importance of providing rewards to incentivize donation. For backers, the

motivation for funding the project came from their relatively high preference levels, which

were well above 1 and effectually boosted up the subjective project and reward values. The

contribution of the objective project value v was trivial. The multiplicative nature of backers’

preferences α justifies the offering of rewards, as the creator could significantly raise backers’

willingness to pay by providing rewards much more valuable than the project itself.

3.5 Robustness

This section enumerates several robustness concerns for model specification and estimation.
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Figure 3.6: pk over wk

In the model, the project and reward values v, wk’s are multiplied by the same preference

level α. While facilitating calibration, this assumption is not necessarily consistent with

reality and imposes restriction on model estimation. However, without it, it is impossible

to identify and compare the two forces given limited data. An alternative specification is to

allow each backer to have two different, possibly correlated preference levels for the project

value v and reward values wk’s, respectively. Ideally, a richer dataset (perhaps one that allows

us to vary v within a project) would enable us to identify both preference distributions, pin

down their correlation patterns and discern which effect is dominant.

The “local uniform” assumption for the preference distribution, while serving as an ex-

pedient for estimation, is quite arbitrary. A slight modification to the truncation of intervals

could drastically change the estimation results. For example, if the preference level α is

distributed uniformly on each (α̂k, α̂k+1], and not [α̂k, α̂k+1) as assumed, then all the cutoff

p.d.f. values f(α̂t)’s need to be recalculated, which would consequently change all our esti-

mation results. The “local uniform” assumption would be more reliable if the price gaps are
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small. While some projects set their price gaps within $1, this is certainly not the case for

the example we use. Perhaps a more reasonable estimator for the cutoff p.d.f. values is the

average of the p.d.f.s for the uniform distributions over two adjacent intervals.

Also dubious is the locational assumption. The cutoff preference levels are pinned down

through guessing the outside market share M out and the lower boundary for the preference

distribution α. We choose them as the fixed points because it is comparatively easier to

justify their guessed values. However, the guesses are not corroborated with data evidence.

Hopefully, with the help of richer data, we could find a better approach to fix the location

in the future.

In the model, we assume that each backer pledges at most once per project. This is not

necessarily the case, and the equilibrium would be characterized differently should we allow

a backer to purchase more than one reward for each project. We cannot incorporate in this

possibility because we do not know backers’ identities, which are confidential information

withheld by Kickstarter. Nevertheless, we think it a reasonable assumption that most backers

pledged only once to a project. So, the effect of not counting in the repetitive purchases is

minor.

Since our data were collected at one point of time, we are not able to identify time

variations in the project and reward values as well as the preference distribution, which may

contain interesting information.

In the creator’s profit maximization problem, the profit per reward sold is represented

by the reward’s minimum price minus its value, deviating from the usual setting where the

per unit profit equals the price minus the cost. This setting would be ideal to adopt should

we have data on cost information. As explained above, our specification can be justified by

treating the reward values as the market values of rewards – the equilibrium reward prices

in a normal market. The creator tries to solicit as much fund as possible from his devoted

backers by charging them premiums beyond the normal prices.
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3.6 Conclusion

This paper studies a creator’s optimal pricing strategies in the rewards-based crowdfunding

industry. We construct a structural model, propose an estimation strategy for backers’

preference distribution and the project and reward values, and demonstrate the estimation

results with a selected example. In the example, the preference distribution weighs towards

the lower side, and the creator follows a bow-shaped pricing strategy where the price-value

ratio is close to one at the medium-ranked rewards and much higher on the two ends.

While we have only examined one example, the model demonstrates the potential to an-

alyze multiple examples, identify different patterns of preference distributions, and compare

various optimal pricing strategies. We predict that projects in the same category would

exhibit similar patterns.

We have ignored some other information in the dataset possibly correlated with the

project and reward values, such as whether the project was spotlighted. Incorporating in

this information may help generate more accurate results.
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