
Building Assistive Sensorimotor Interfaces through Human-in-the-Loop Machine Learning

by

Siddharth Reddy

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Anca Dragan, Co-chair
Associate Professor Sergey Levine, Co-chair

Assistant Professor Gopala Krishna Anumanchipalli
Dr. Jan Leike

Spring 2022



Building Assistive Sensorimotor Interfaces through Human-in-the-Loop Machine Learning

Copyright 2022
by

Siddharth Reddy



1

Abstract

Building Assistive Sensorimotor Interfaces through Human-in-the-Loop Machine Learning

by

Siddharth Reddy

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Anca Dragan, Co-chair

Associate Professor Sergey Levine, Co-chair

One of the outstanding challenges in the field of human-computer interaction is building
assistive interfaces that help users with the perception and control of complex systems, such
as cars, quadcopters, and prosthetic limbs. In this thesis, we propose machine learning
algorithms for automatically designing personalized, adaptive interfaces that improve users’
performance on sequential decision-making tasks. First, we present work that uses theory of
mind to model irrational user behavior as rational with respect to incorrect internal beliefs
about how the world works, and leverages this assumption to assist users by modifying
their observations and actions. Second, we present work that uses model-free reinforcement
learning from human feedback to fine-tune user actions, with minimal assumptions about
user behavior. We demonstrate the effectiveness of our methods through experiments with
human participants, in which users play the Lunar Lander video game, perform simulated
navigation tasks, and land a quadcopter.
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state of the world (e.g., the position and orientation of the quadcopter, and the
number of animals present in the area), then take an action that aims to achieve
their goal (e.g., pushing the joystick forward with the intent of surveying more
of the area in search of the herd). When the user updates their beliefs about
the current state, we assume that they rely on an internal observation model
that evaluates the probability of observing a given image from a hypothetical
state. When the user plans their next action, we assume that they do so using an
internal dynamics model that predicts the state transition caused by a hypothetical
action. An inaccurate observation model or inaccurate dynamics model can lead
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2.1 The assistant processes observations ot generated by the environment on behalf of
the user H, updates its belief distribution over the current state b(st;o0:t, a0:t�1),
then synthesizes an observation õt that will induce accurate beliefs bH(st; õ0:t�1, õt, a0:t�1)
when shown to the user, enabling the user to make better decisions at. For
example, the assistant may use a smartphone camera and speaker to guide a
visually-impaired user through an indoor environment: the assistant observes the
user’s egocentric scene through the camera, uses an object detector to determine
nearby objects, then tells the user about one of them through the speaker. If the
user’s mental map of the environment includes object locations, the user can then
infer their position and orientation: they must be in one of the states from which
the mentioned object is visible. Enumerating all visible objects may overwhelm
the user, so we assume the user is ‘bandwidth-constrained’ to hearing about just
one object at a time. Hence, the assistant’s challenge is to select the single object
that will be most informative to the user (e.g., a landmark that is only visible
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(ASE), which synthesizes an informative observation under the assumption that
the user’s belief update is similar to the assistant’s, to baselines that either use
ambient observations generated by the environment (Unassisted) or randomly
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orange circle represents one of the 12 participants. The dashed gray line shows
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shows them the goal state (green) and the locations of the currently-observed
object in their mental map (orange circles). The user can choose to move forward
(w), turn 90 degrees (a/d), or stay still and wait for another observation (s). . . 16



vi

2.5 Lunar Lander experiments that address Q2—can we assist users when we do
not know their state estimation process, and must learn a model of it?—by
comparing our method (ASE), which learns a model of the user’s belief update
then synthesizes observations that are informative under the learned model, to a
baseline that always shows the ambient observation generated by the environment
(Unassisted). (a) We measure standard error across 120 episodes (10 episodes
per user). (b) Sample of unassisted trajectories from the user studies. (c) With
assistance, the user keeps the lander more level. (d-f) ASE tends to exaggerate
the tilt indicator (orange vs. gray line), and personalizes the exaggeration to the
user (each orange line in (d) corresponds to a different user). . . . . . . . . . . . 18

3.1 A high-level schematic of our internal-to-real dynamics transfer algorithm for
shared autonomy, which uses the internal dynamics model learned by our method
to assist the user with an unknown control task; in this case, landing the lunar
lander between the flags. The user’s actions are assumed to be consistent with
their internal beliefs about the dynamics T�, which differ from the real dynamics
T

real. Our system models the internal dynamics to determine where the user is
trying to go next, then acts to get there. . . . . . . . . . . . . . . . . . . . . . 26

3.2 Left, Center: Error bars show standard error on ten random seeds. Our method
learns accurate internal dynamics models, the regularization methods in Section
3.3 increase accuracy, and the approximations for continuous-state MDPs in
Section 3.3 do not compromise accuracy. Right: Error regions show standard
error on ten random tasks and ten random seeds each. Our method learns an
internal dynamics model that enables MaxCausalEnt IRL to learn rewards from
misguided user demonstrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Human users find the default game environment—the real dynamics—to be difficult
and unintuitive, as indicated by their poor performance in the unassisted condition
(top center and right plots) and their subjective evaluations (in Table 3.1). Our
method observes suboptimal human play in the default environment, learns a
setting of the game physics under which the observed human play would have been
closer to optimal, then performs internal-to-real dynamics transfer to assist human
users in achieving higher success rates and lower crash rates (top center and right
plots). The learned internal dynamics has a slower game speed than the real
dynamics (bottom left plot). The bottom center and right plots show successful
(green) and failed (red) trajectories in the unassisted and assisted conditions. . . 30

4.1 An overview of our method for assisting humans with real-time control tasks using
model-free shared autonomy and deep reinforcement learning. We empirically
evaluate our method on simulated pilots and real users playing the Lunar Lander
game (a) and flying a quadrotor (b,c). . . . . . . . . . . . . . . . . . . . . . . . 37



vii

4.2 (1,2) A copilot that leverages input from the synthetic LaggyPilot outperforms
the solo LaggyPilot and solo copilot. The colored bands illustrate the standard
error of rewards and success rates for ten different random seeds. Rewards and
success rates are smoothed using a moving average with a window size of 20
episodes. (3) The benefit of using Bayesian goal inference or supervised goal
prediction depends on ↵. Each success rate is averaged over ten different random
seeds and the last 100 episodes of training. (4) The effect of varying ↵ depends
on the user model. Each success rate is averaged over ten different random seeds
and the last 100 episodes of training. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 (1) Evaluation of real humans on Lunar Lander. Success and crash rates averaged
over 30 episodes for teams with human pilots. (2) Evaluation of real humans on the
quadrotor perching task. Success and crash rates averaged over 20 episodes. (3)
Pilot-copilot teams in the Lunar Lander game are able to switch between actions
more quickly than solo human pilots, which enables them to better stabilize flight.
(4) On their own, users tend to provide input at a constant rate throughout an
episode. When assisted by a copilot, users initially rotate the drone to orient the
camera at the target object, then defer to the copilot to fly to the landing pad. . 48

6.1 A simulated blind user navigating an indoor environment, using audio guidance
about nearby objects to estimate position and orientation (the same problem
setting as Figure 2.1). The assistant sees the RGB camera image, uses the semantic
mesh from the dataset to determine the list of visible objects, then replaces the
ambient observation (gray), which was sampled uniformly at random from the
list of visible objects, with an optimized observation (orange) that minimizes
KL-divergence (Equation 2.3). The simulated user knows the locations of all
objects, and can use this mental map to infer their current position and orientation
given observations of nearby objects and memory of past movements. . . . . . . 64

6.2 MNIST experiments that address Q4 – given enough demonstration data, can
ASE learn complex models of the user’s state estimation process? – by comparing
our method (ASE), which learns a model of the simulated user, to a baseline
variant of our method that does not learn a model (Naïve ASE). The results show
that with enough training data, the personalized assistant outperforms the naïve
assistant by more accurately predicting the effect of a given observation on the
simulated user, and thus providing more informative observations to the simulated
user. We measure standard error across 5 random seeds and 1000 evaluation
episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



viii

6.3 Car Racing experiments that address Q5 – does ASE still improve the user’s
performance when observations are severely delayed? – by comparing our method
(ASE), which tries to ‘undo’ the observation delay dmax by predicting the current
state and showing the user an observation representative of the predicted current
state, to baselines that either show the human the outdated ambient observation
generated by the environment (Unassisted) or randomly generate observations
(Random). The results show that ASE substantially improves the simulated user’s
task performance (left plot) and the simulated user’s internal state estimation
accuracy (right plot), especially when the delay dmax is high. We measure standard
error across 20 evaluation episodes. The gap between ASE and the oracle can be
attributed to imperfections in the assistant’s learned dynamics model, which is
used to define its state encoder f . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 For a given episode number, each circle represents a different user. Each dashed
line shows an ordinary least squares regression model trained on the data from
a particular phase. Though we did not counterbalance the unassisted and ASE
phases (only the unassisted and naïve ASE phases), the learning effect does not
appear to be a substantial confounder. Performance is relatively constant during
the unassisted phase, and sharply improves once the ASE phase begins. This
suggests that the improvement in performance between the unassisted and ASE
phases is primarily due to the introduction of the ASE assistant, rather than a
learning effect. We plot the tilt at timestep 80 for Lunar Lander, since that is
when the performance improvements from assistance tend to appear (see plot (a)
in Figure 2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Error bars show standard error on ten random seeds. Corrupting the internal
dynamics of the simulated user by scrambling actions the same way at all states
(top and bottom left plots) induces a much easier internal dynamics learning
problem than scrambling actions differently at each state (top and bottom right
plots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Our method is able to assist the simulated suboptimal user through internal-to-real
dynamics transfer. Sample paths followed by the unassisted and assisted user on
a single task are shown above. Red paths end out of bounds; green, at the target
marked by a yellow star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7 Assistance in the form of internal-to-real dynamics transfer increases success rates
and decreases crash rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



ix

List of Tables

3.1 Subjective evaluations of the Lunar Lander user study from 12 participants. Means
reported below for responses on a 7-point Likert scale, where 1 = Strongly Disagree,
4 = Neither Disagree nor Agree, and 7 = Strongly Agree. p-values from a one-way
repeated measures ANOVA with the presence of assistance as a factor influencing
responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Evaluation of simulated pilot-copilot teams on Lunar Lander: on ten different
random seeds and the last 100 episodes of copilot training for teams with a copilot;
on 100 episodes for teams without a copilot. . . . . . . . . . . . . . . . . . . . . 45

4.2 Training and testing with different pilots on Lunar Lander. Success rates shown
for 100 episodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Habitat navigation experiments that address Q3 – can we improve the accuracy
of simulated users’ internal beliefs? – by comparing our method (ASE), which
synthesizes an informative observation that fits within the simulated user’s sensor
bandwidth, to baselines that either use ambient observations generated by the
environment (Unassisted) or randomly generate observations (Random). The
results show that our method (ASE) substantially outperforms the baselines
(Unassisted and Random). The simulated user’s internal beliefs are represented
as log-likelihoods. We measure standard error across 100 evaluation episodes. . . 64

6.2 Car Racing User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 2D Navigation User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Lunar Lander User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Subjective evaluations on Lunar Lander. Survey of n = 12 participants. Responses

on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor
Agree, and 7 = Strongly Agree. p-values from a one-sample t-test comparing the
responses to mean 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Subjective evaluations for the quadrotor perching task. Survey of n = 4 partic-
ipants. Responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 =
Neither Disagree nor Agree, and 7 = Strongly Agree. p-values from a one-sample
t-test comparing the responses to mean 4. . . . . . . . . . . . . . . . . . . . . . 78



x

Acknowledgments

Many people supported me along my Ph.D. journey.
Thanks to my parents, Madhavi and Sundeep Reddy, for raising me with love and

encouraging me to pursue my dream of becoming a computer scientist.
Thanks to my Ph.D. advisors, Anca Dragan and Sergey Levine, for teaching me how to

be a researcher and steering me in productive directions. I still remember our first meeting
in March 2017 during Berkeley EECS Visit Days. I was new to robotics and reinforcement
learning, but when you pitched the shared autonomy project, it clicked, and I was 100%
certain that I had to come to Berkeley to work with you.

Thanks to my collaborators, Jensen Gao, Sean Chen, Glen Berseth, Nicholas Hardy,
Nikhilesh Natraj, Karunesh Ganguly, Shane Legg, Jan Leike, and Gokul Swamy. It has been
a blast working with you on algorithms for brain-computer interfaces, AI alignment, and
robotic teleoperation.

Thanks to everyone in InterACT, RAIL, and BAIR, for being awesome labmates and
creating an inspiring scenius at Berkeley.

Thanks to my undergraduate research advisors at Cornell—Thorsten Joachims, Igor Lab-
utov, and Siddhartha Banerjee—and my summer internship mentors at Knewton—Chaitanya
Ekanadham and Kevin Wilson—for introducing me to the world of computer science research.

Thanks to Preethi Gunaratne, David Wheeler, and Townley Chisholm, for mentoring me
through my very first research experiences in high school and encouraging me to become a
scientist.

Thanks to Jonathon Cai, for being a great roommate and an exemplar of independent,
critical thinking.

Thanks to Curran Reddy and the boys, for our weekly excursions in Elysium during the
pandemic.

Thanks to Zachary Marshall Young, Akilesh Potti, Vipin Sharma, Amal Puri, and Alok
Singh, for our friendship and adventures together. Bless the Maker and His Water.

This work was supported by a Berkeley EECS Department Fellowship for first-year Ph.D.
students, NVIDIA Graduate Fellowship, NSF IIS-1700696, AFOSR FA9550-17-1-0308, NSF
NRI 1734633, Berkeley DeepDrive, and computational resource donations from Amazon.



1

Chapter 1

Introduction

I can calculate the motion of
heavenly bodies, but not the
madness of people.

—Sir Isaac Newton

The idea of combining human and machine intelligence in a shared-control system goes
back to the early days of computing, with Ray Goertz’s remote manipulator in 1949 [37],
Ralph Mosher’s Hardiman exoskeleton in 1968 [76], and Marvin Minsky’s call for telepresence
in 1980 [73]. After decades of research in robotics, human-computer interaction, and artificial
intelligence, interfacing between a human operator and a remote-controlled robot remains
a challenge. According to a review of the 2015 DARPA Robotics Challenge [6], “the most
cost effective research area to improve robot performance is Human-Robot Interaction....The
biggest enemy of robot stability and performance in the DRC was operator errors. Developing
ways to avoid and survive operator errors is crucial for real-world robotics. Human operators
make mistakes under pressure, especially without extensive training and practice in realistic
conditions.”

Designing interfaces that enable humans to seamlessly control machines can be a hard
problem, especially for emerging applications like teleoperating robots through virtual reality
headsets, sensing the world through augmented reality glasses, controlling prosthetic limbs
through brain implants, driving trucks remotely, and performing robotic surgery. The
challenge for the user is that their behavior can be suboptimal due to cognitive biases, limited
reaction time, and other human factors. The challenge for the machine is that the user may
not be able to directly specify the desired task in a machine-readable format, so the machine
must infer the user’s intent from the user’s behavior. In this setting, can we train machines
to automatically assist users who exhibit suboptimal behavior?

To answer this question, consider the model of human decision-making in Figure 1.1.
First, the user observes an image from the quadcopter’s camera. Then, given the observations
they have received, and their internal beliefs about how those observations were generated by
the world, they infer the current position and orientation of the quadcopter as well as the
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Action
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Figure 1.1: Consider a human operator that wants to locate a herd of animals using a joystick-
controlled quadcopter equipped with a camera. We assume that when the user observes an image
from the camera, they update their internal estimate of the state of the world (e.g., the position and
orientation of the quadcopter, and the number of animals present in the area), then take an action
that aims to achieve their goal (e.g., pushing the joystick forward with the intent of surveying more
of the area in search of the herd). When the user updates their beliefs about the current state, we
assume that they rely on an internal observation model that evaluates the probability of observing a
given image from a hypothetical state. When the user plans their next action, we assume that they
do so using an internal dynamics model that predicts the state transition caused by a hypothetical
action. An inaccurate observation model or inaccurate dynamics model can lead to suboptimal
actions.

number of animals in the area. Then, given their goal of locating the herd, and their internal
beliefs about the physics of the quadcopter, they decide how to move their joystick.

Why is this decision sometimes suboptimal? Prior work assumes that the user’s actions can
be noisy, but are generally close to optimal (e.g., see Section 3.2). Based on this assumption,
we could infer the user’s desired goal from their actions, then automatically finish going to the
goal for them. The problem with this assumption is that it doesn’t take into account cognitive
biases that cause the user’s actions to deviate systematically from the optimal actions. When
there are systematic biases that violate the assumption of noisy, near-optimality, we can no
longer correctly infer the goal and no longer effectively assist in reaching the user’s true goal
[20]. Furthermore, since cognitive science researchers are still in the process of cataloguing
these biases [22], specifying a unified model of user behavior that captures all possible biases
is infeasible.

Our insight is that, instead of assuming that the user’s behavior follows a known model
of near-optimality or systematic suboptimality with respect to the real world, we assume
that the user’s behavior is near-optimal with respect to the user’s internal beliefs about how
the world works, and infer these internal beliefs from recordings of the user’s behavior in the
real world. If these internal beliefs are inaccurate, then behavior that is near-optimal with
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respect to these beliefs can be systematically suboptimal in the real world.
Where can inaccurate beliefs about how the world works enter the user’s decision-making

process? The first place is perception (Chapter 2). In particular, the user’s observation
model about how the world generates observations may be inaccurate (see Figure 1.1). This
can cause the user to inaccurately estimate the current state of the world, and, as a result,
take the wrong action. The second place where bias can enter is planning (Chapter 3). For
example, the user’s internal model of the state transition dynamics may be inaccurate (see
Figure 1.1), causing the user to take the wrong action.

We formalize this model of user behavior as

p(at|o0:t, a0:t�1; ✓, �) =

Z

S

exp (Q(st, at))P
a2A exp (Q(st, a))

b✓(st|o0:t, a0:t�1)dst, (1.1)

where b✓ is the user’s internal state estimation procedure, a is the user’s action, o is the user’s
observation, s is the environment state, and Q is the user’s soft Q function. We assume that
Q satisfies the soft Bellman equation [119],

Q(st, at) = Est+1⇠T�(·|st,at)

2

4R(st, at, st+1) + � log

0

@
X

at+12A

exp (Q(st+1, at+1))

1

A

3

5 , (1.2)

where T� is the user’s internal dynamics model, and R is the user’s reward function. The key
idea in this model is that T� may differ from the true state transition dynamics, and b✓ may
differ from the optimal Bayes filter for state estimation. See Equations 2.4 and 3.1 for details.

Chapters 2 and 3 discuss the systematic biases in perception and planning that users
can have when they make decisions, how to learn about those biases from demonstrations of
suboptimal user behavior, and how to leverage the learned internal models (b✓ and T�) to
assist the user in overcoming bias.

What if we don’t know, or don’t want to make assumptions about, the kinds of biases
the user may have? Chapter 4 addresses this question by using model-free reinforcement
learning from human feedback to fine-tune user actions, with minimal assumptions about
user behavior.
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Chapter 2

Optimizing Observations to Communicate

State

Chew, if only you could see what
I’ve seen with your eyes.

—Roy Batty, Blade Runner
(1982)

In this chapter, we aim to help users estimate the state of the world in tasks like robotic
teleoperation and navigation with visual impairments, where users may have systematic biases
that lead to suboptimal behavior: they might struggle to process observations from multiple
sensors simultaneously, receive delayed observations, or overestimate distances to obstacles.
While we cannot directly change the user’s internal beliefs or their internal state estimation
process, our insight is that we can still assist them by modifying the user’s observations.
Instead of showing the user their true observations, we synthesize new observations that lead
to more accurate internal state estimates when processed by the user.

We refer to this method as assistive state estimation (ASE): an automated assistant uses
the true observations to infer the state of the world, then generates a modified observation
for the user to consume (e.g., through an augmented reality interface), and optimizes the
modification to induce the user’s new beliefs to match the assistant’s current beliefs. To
predict the effect of the modified observation on the user’s beliefs, ASE learns a model of
the user’s state estimation process: after each task completion, it searches for a model that
would have led to beliefs that explain the user’s actions.

We evaluate ASE in a user study with 12 participants who each perform four tasks: two
tasks with known user biases (bandwidth-limited image classification and a driving video
game with observation delay), and two with unknown biases that our method has to learn
(guided 2D navigation and a lunar lander teleoperation video game). ASE’s general-purpose
approach to synthesizing informative observations enables a different assistance strategy
to emerge in each domain, such as quickly revealing informative pixels to speed up image
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classification, using a dynamics model to undo observation delay in driving, identifying nearby
landmarks for navigation, and exaggerating a visual indicator of tilt in the lander game. The
results show that ASE substantially improves the task performance of users with bandwidth
constraints, observation delay, and other unknown biases.

2.1 Introduction

People cannot directly access the state of the world, and must instead estimate it from sensory
observations [61]. Unfortunately, systematic biases in the user’s state estimation process can
lead to inaccurate beliefs and suboptimal actions. For example, the user may not be able to
keep track of many different sensors simultaneously while flying a plane [78], or navigate with
a visual impairment while listening to a smartphone guide exhaustively list all nearby objects
[83]. Tasks performed over a network, like teleoperating space robots [33], may require the
user to compensate for unintuitive, intermittent delays in observations. Lens distortions can
cause drivers to overestimate distances to obstacles: the warning, “objects in mirror may be
closer than they appear,” is engraved into the side mirrors of cars.

Short of intervening in human cognition through brain stimulation, or training users to
overcome their biases, how can we assist users with performing more accurate perception?
The key idea in this paper is that an automated assistant can intervene in human perception
by modifying the observations the user receives. Given the user’s biases, different observations
lead to different state estimates. We invert this process to ‘trick’ the person into arriving
at the correct estimate: we modify observations so that, when processed by the biased user,
they induce an accurate state estimate.

Figure 2.1 describes our method: the assistant collects observations from the environment,
performs state estimation unencumbered by cognitive biases, then shows the user a synthetic,
optimized observation that induces accurate beliefs when processed by their biased perception
system. These synthetic observations could be constrained to augment real observations—for
example, in an augmented reality interface [118]—or could completely replace them—for
instance, by replacing the user’s video feed for teleoperating a robot. Crucially, this approach
does not require knowing the current task the user is performing: rather than inducing the
optimal action for the task, we induce accurate state estimates, so that the user can then
decide on task-appropriate actions.

The main challenge is that in order to determine how informative a synthetic observation
will be to the user, we need a model of the user’s state estimation process. For instance,
we might not know the user’s bandwidth constraint, observation delay, or even what kinds
of biases they have. We introduce an approach for training this model online: we start
assisting with an initial model, and collect data of the user suboptimally performing tasks
(e.g., navigating to different goals). We assume that upon task completion, the assistant
gets to know what the task was (e.g., which goal the user was trying to reach) and can
compute a near-optimal policy for that task (e.g., using reinforcement learning). We then
look in hindsight at the user’s actions, and optimize model parameters that lead to state
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“sofa nearby”

“sofa 
nearby”

Figure 2.1: The assistant processes observations ot generated by the environment on behalf of the
user H, updates its belief distribution over the current state b(st;o0:t,a0:t�1), then synthesizes an
observation õt that will induce accurate beliefs bH(st; õ0:t�1, õt,a0:t�1) when shown to the user,
enabling the user to make better decisions at. For example, the assistant may use a smartphone
camera and speaker to guide a visually-impaired user through an indoor environment: the assistant
observes the user’s egocentric scene through the camera, uses an object detector to determine nearby
objects, then tells the user about one of them through the speaker. If the user’s mental map of the
environment includes object locations, the user can then infer their position and orientation: they
must be in one of the states from which the mentioned object is visible. Enumerating all visible
objects may overwhelm the user, so we assume the user is ‘bandwidth-constrained’ to hearing about
just one object at a time. Hence, the assistant’s challenge is to select the single object that will be
most informative to the user (e.g., a landmark that is only visible from the user’s current state).

estimates which make the observed actions seem near-optimal. Intuitively, we ask what the
user must have believed, and what state estimation process would have led to those beliefs
given the observations they received. The experiments in Appendix 6.1 show that the quality
of assistance improves as we collect more data and the maximum-likelihood model gets closer
to the user’s internal state estimation process.

Our primary contribution is the assistive state estimation (ASE) algorithm for optimizing
synthetic observations to induce accurate beliefs about the current state in the user. We
evaluate ASE through a user study with 12 participants who each perform four tasks: two
where the user’s bias is known—image classification from bandwidth-limited input, and a
driving video game with observation delay—and two where the bias is unknown—navigating
a 2D simulation with limited vision where the user only remembers the locations of certain
objects but not others, and a lunar lander teleoperation video game. The lander experiment
is particularly interesting: the assistant learns to modify the tilt indicator away from its
real value; actually improving the user’s task performance, possibly because users tend to
underestimate tilt. Our user studies show that in all domains, ASE substantially improves
the user’s task performance, relative to a passive baseline that simply shows the user an
ambient observation generated by the environment. In addition to the user study, we perform
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experiments with simulated users that show ASE improves the accuracy of simulated users’
internal beliefs, and that ASE is capable of learning an expressive, neural network model of
the user’s belief update given enough demonstration data.

2.2 Assisting Users by Optimizing Observations

We formulate the assistance problem as follows. We assume that the environment follows a
partially observable Markov decision process (POMDP) [56] with state space S, observation
space ⌦, initial state distribution p

init(s0), state transition dynamics p
dyn(s0|s, a), observation

model p
obs(o|s), and unknown reward function R(s, a). At each timestep t, the assistant

samples an ambient observation ot from the environment. The assistant then intervenes and
provides the user with a different observation õt 2 ⌦. Since the reward function is unknown,
we cannot compute the optimal action and provide the user with an observation that will
induce them to take the optimal action. Instead, we aim for a task-agnostic method that
assists the user by providing them with an observation that efficiently communicates the
current state.

Our approach to this problem is outlined in Figure 2.1. We assume that the user’s state
estimation process differs from the assistant’s, and that this mismatch leads to suboptimal
user behavior. We assist the user by showing them synthetic observations that induce accurate
beliefs about the current state. In particular, the assistant first performs state estimation,
then optimizes an observation to update the user’s beliefs to match the assistant’s beliefs. To
improve the assistant, we learn a personalized model of the user’s state estimation process
from demonstrations of suboptimal user actions on known tasks.

Preliminaries: Assumptions about State Estimation

The standard, recursive Bayesian filter [106] performs state estimation using the belief update,

b(st|o0:t, a0:t�1) / p
obs(ot|st)

Z

S
p
dyn(st|st�1, at�1)b(st�1|o0:t�1, a0:t�2)dst�1. (2.1)

In domains with a small, discrete state space S, we compute exact belief updates using
Equation 2.1. In domains with high-dimensional, continuous states, the belief update in
Equation 2.1 may be intractable to compute. To address this issue, we represent the state
estimation process in continuous domains as

b(st|o0:t, a0:t�1) = N (st; µ = f(o0:t, a0:t�1), ⌃ = I�
2), (2.2)

where f is a known state encoder that maps a sequence of observations and actions to
a continuous, vector-valued state. Although this procedure does not necessarily perform
Bayesian belief updates, it enables us to apply our method to domains where the true
initial state distribution p

init, true dynamics model p
dyn, and true observation model p

obs are
unknown, but a state encoder f is available.
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Synthesizing Observations that Induce Accurate Beliefs

To assist the user, we synthesize an observation õt such that, after the user observes õt and
updates their beliefs about the current state st, the user’s beliefs will match the assistant’s
beliefs. Formally, given a history (o0:t, õ0:t�1, a0:t�1), the assistant decides which observation
to provide to the user H by greedily minimizing the KL-divergence between the assistant’s
beliefs and the user’s beliefs at the end of the current timestep:

õt  arg min
õt2⌦

DKL(b(st|o0:t, a0:t�1)| {z }
assistant’s beliefs

k b̂H(st|õ0:t�1, õt, a0:t�1)| {z }
assistant’s prediction of user’s beliefs

), (2.3)

where b̂H is the assistant’s model of the user’s state estimation process. The assistant’s
beliefs are fixed during this optimization, having already been conditioned on the most recent
ambient observation ot generated by the environment, while the user’s beliefs are conditioned
on the synthetic observation õt and can thus be optimized. The experiments in Section 2.4
and Appendix 6.1 illustrate how different assistance strategies emerge from Equation 2.3,
such as revealing informative pixels for image classification, undoing observation delay in
driving by forward-predicting the current observation, identifying landmarks for navigation,
and exaggerating indicators of dangerous states in a landing task.

Learning Personalized Models of State Estimation

To optimize the synthetic observation in Equation 2.3, we need to model how the user
will update their beliefs in response to observations. We assume the user’s unknown state
estimation process bH differs from the assistant’s known process b described in Equations
2.1 and 2.2. In particular, we assume bH lies in hypothesis space B. The hypothesis space,
which we parameterize as B = {b✓ : ✓ 2 ⇥}, captures our prior assumptions about possible
user biases. If we want to make minimal assumptions about the user’s biases, we could define
✓ to be the weights in a neural network state encoder f✓ that defines the belief update b✓ via
Equation 2.2. If instead we assume that the user performs a Bayesian belief update on each
new observation and action, but potentially ignores or misinterprets certain observations, we
could define ✓ to be the observation probabilities p

obs
✓ (o|s) = ✓o,s in Equation 2.1. In each of

our experiments, we make different assumptions about the user, leading to different choices
of hypothesis space B.

We search the hypothesis space for a model that best explains user behavior. We assume
access to a dataset D of demonstrations of suboptimal user actions on known tasks. This
dataset could be generated offline by the user without the assistant’s help, or generated
online while the assistant helps the user. After each demonstration episode, we ask the user
what task they were trying to perform during that episode. The task could be specified,
for example, through a goal state or a reward function. Let ⌧ = (o0:T�1, a0:T�1) denote a
demonstration, where T is the episode length. We model the user’s actions as rational with



CHAPTER 2. OPTIMIZING OBSERVATIONS TO COMMUNICATE STATE 9

respect to their beliefs about the current state:

p(at|o0:t, a0:t�1; ✓) =

Z

S
⇡(at|st)b✓(st|o0:t, a0:t�1)dst, (2.4)

where ⇡ is the user’s policy, which we assume to be near-optimal for their desired task. We
compute ⇡ in hindsight after asking the user what task they were trying to demonstrate;
e.g., by asking the user to write down the reward function, then doing maximum entropy
reinforcement learning [67]. Note that we only need to know a near-optimal policy for the
tasks in the demonstrations used to train the user model. We do not need to know the policy
at test time when we synthesize observations to assist the user. We assume that the user’s
policy ⇡ for a given task and their belief update bH do not change once the assistant begins
modifying observations using Equation 2.3. In practice, even if the user adapts their policy
or state estimation process to the assistant, this tends to improve performance, rather than
hurt it.

We use gradient descent to compute the maximum-likelihood estimate,

✓̂  arg max
✓

X

⌧2D

X

t

log p(at|o0:t, a0:t�1; ✓). (2.5)

We select the maximum-likelihood model to be our model of the user’s state estimation
process: b̂H  b✓̂. This model enables us to predict the effect of an observation on the user’s
beliefs.

Assistive State Estimation

Our assistive state estimation (ASE) method is summarized in Algorithm 1. We initialize the
user model b̂H with an initial model binit. In domains with a small, discrete state space S, we
assume knowledge of the initial state distribution, state transition dynamics, and observation
model, in order to compute Bayesian belief updates using Equation 2.1. In domains with
high-dimensional, continuous states, we instead assume knowledge of a state encoder, so
we can estimate the current state using Equation 2.2. At the start of each timestep t, the
assistant collects an observation ot from the environment. The assistant then optimizes a
synthetic observation õt that, when shown to the user, will induce beliefs that match the
assistant’s (Equation 2.3). The user sees the synthetic observation õt, takes an action at, and
the environment generates the next state st+1. At the end of each episode, we ask the user
what task they were trying to perform, add the episode to the dataset D, and re-train the
user model b̂H using Equation 2.5.

2.3 Related Work

Modeling human beliefs, preferences, and behavior. Inverse planning [7] and inverse
reinforcement learning [80] learn a model of the user’s reward function from demonstrated
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Algorithm 1 Assistive State Estimation (ASE)
Require binit 2 B . initial model of user
if S is discrete then

Require p
init(s0), pdyn(s0|s, a), pobs(o|s) . for assistant’s belief update in Equation 2.1

else if S is continuous then
Require state encoder f(o0:t, a0:t�1) . for assistant’s belief update in Equation 2.2

Initialize D  ; . user demonstrations
Initialize b̂H  binit . assistant’s model of user
while true do

s0 ⇠ p
init(s0)

for t 2 {0, 1, 2, ..., T � 1} do
ot ⇠ p

obs(ot|st) . assistant sees true observation, updates beliefs
õt  arg minõt2⌦ DKL(b(st|ot) k b̂H(st|õt)) . assistant synthesizes observation
at ⇠ p(at|õ0:t, a0:t�1) . user sees synthetic observation, updates beliefs, takes

action
st+1 ⇠ p

dyn(st+1|st, at)

D  D [ {(õ0:T�1, a0:T�1)}
✓̂  arg max✓

P
⌧2D

P
t log p(at|õ0:t, a0:t�1; ✓) . assistant learns model of user

b̂H  b✓̂

actions. These methods typically assume that user actions are near-optimal, and can be
affected by random noise [120], risk sensitivity [70], or dynamics model misspecification
[95]. The closest prior work learns a reward function or policy from demonstrations, using a
behavioral model that allows for false beliefs about the current state [30, 99, 24, 54]. ASE
differs in that we explicitly avoid trying to learn the user’s task-specific reward function or
policy. Instead, we provide the user with task-agnostic assistance by learning a model of the
user’s state estimation process, and supplying the user with informative observations.
Task-specific assistance via communication and visualization. [16] assist users by
modeling their internal beliefs and communicating observations that induce optimal actions,
but require knowledge of the user’s reward function at test time, assume a discrete state space,
and do not learn a personalized model of the user’s internal state estimation process. ASE
does not assume knowledge of the task rewards at test time, can be applied to domains with
high-dimensional, continuous observations like images, and interactively learns a user model.
[52] learn to visualize high-dimensional examples to assist users with one-step classification
tasks, whereas we focus on sequential decision-making and make minimal assumptions about
the desired task. [116] use a human-in-the-loop reinforcement learning method to train an
agent to sequentially explain black-box model predictions to a human auditor, where the agent
is rewarded for causing the user’s mental model of the predictive model to match the actual
predictive model. Our work differs in that it focuses on improving users’ situational awareness
in control tasks with partial observations, rather than improving model interpretability.
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Assistive navigation for visually-impaired users. The closest prior work plans instruc-
tional guidance actions under uncertainty about how the user will respond to instructions [82].
We take a complementary approach to assistance that focuses on situational awareness: we
help the user estimate their current state, so that they can make more informed decisions in
general. In particular, ASE could be useful for systems that inform users about nearby objects
and points of interest through haptic or audio feedback [110, 97]: as users build a mental map
of their environment to support navigation [8, 42], ASE can learn a user model that captures
differences between the mental map and the real environment, then prioritize information
that enables the user to localize themselves and nearby obstacles, without overwhelming the
user with too much information [83].

2.4 User Studies

In our experiments, we evaluate whether ASE can provide helpful assistance to users; both in
the case where we have prior knowledge of their state estimation process, and where we do
not have such knowledge and must learn the state estimation model in the loop. We conduct
a user study with 12 participants who each perform four tasks: classifying MNIST images
under bandwidth constraints [66], playing the Car Racing video game from the OpenAI
Gym with observation delay, navigating a simulated 2D environment with limited vision, and
playing the Lunar Lander video game from the OpenAI Gym with limited vision [15]. We
also conduct experiments with simulated users to study our method under ideal assumptions,
and measure the accuracy of the simulated users’ internal beliefs (Appendix 6.1 contains
details).

Assisting Users with Known Biases

Our first set of user studies seeks to answer Q1: can we assist users when we assume we
know their state estimation process? We test this hypothesis on MNIST image classification,
and the Car Racing video game from the OpenAI Gym.

MNIST Image Classification with a Bandwidth Constraint

In this experiment, we test ASE’s ability to assist the user when the user cannot leverage
their memory of past actions and their knowledge of the state transition dynamics to infer the
current state, and must rely entirely on observations. To that end, we formulate a sequential
image classification task in which the user’s actions have no effect on the state. We take
the standard MNIST digit classification problem and intentionally introduce a bandwidth
constraint: at each timestep, the user is shown one row of 28 pixels in the 28x28 image, and
must try to classify the image given only the pixels observed so far. The assistant observes
the full image at the start of the episode, and aims to help the user classify the image as
quickly as possible by showing the user informative pixels.
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Episode without assistance

With random assistance

With ASE
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Figure 2.2: MNIST image classification experiments that address Q1—can we assist users when
we assume we know their state estimation process?—by comparing our method (ASE), which
synthesizes an informative observation under the assumption that the user’s belief update is similar
to the assistant’s, to baselines that either use ambient observations generated by the environment
(Unassisted) or randomly generate observations (Random). ASE tends to quickly reveal rows near
the middle and rows with many non-zero pixels, enabling the user to more accurately guess the label
earlier. In the unassisted condition, revealing rows in order from top to bottom is not as quick to
reveal informative pixels. The random baseline tends to spread them out uniformly throughout the
image, which is a good strategy in the long run but does not necessarily reveal informative pixels
early in the episode. We measure standard error across 100 episodes.

The assistant uses a recurrent neural network state encoder f to compute the belief
update b via Equation 2.2, where f is trained offline to reconstruct the full image given a
sequence of pixel observations. We assume that the user’s belief update bH is equivalent to
the assistant’s belief update b, except that it can only process one row of pixels per timestep.
We compute the optimal synthetic observation õt by simply enumerating all rows of pixels
that have not been shown to the user yet, and computing the KL-divergence (Equation 2.3)
for each possible value of õt. Appendix 6.1 describes the experimental setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that reveals the pixel rows
in order from top to bottom; (2) a random baseline that reveals a new pixel row sampled
uniformly at random; and (3) ASE.
Dependent measures. We measure the user’s classification accuracy at each timestep, in
order to capture how quickly the user recognizes the image over the course of an episode.
Subject allocation. We recruited 11 male and 1 female participants, with an average age
of 25. Each participant was provided with the rules of the task and example images, then
labeled 25 different digits. Each digit was broken down into an episode of 28 partial images,
yielding a total of 700 labels per user. To avoid the confounding effect of users learning to
classify images more accurately and quickly over time, we randomly interleave episodes from
each of the three conditions. For example, episode 1 is unassisted, episode 2 is assisted by
ASE, episode 3 is assisted by the random baseline, etc.
Analysis. Figure 2.2 shows that ASE substantially outperforms the unassisted baseline
(orange vs. gray curve), and enables the user to classify the digit using fewer timesteps (i.e.,
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fewer pixels) than the random baseline (orange vs. red curve). We ran a one-way repeated
measures ANOVA on the classification accuracy dependent measure from the random and
ASE conditions, with the presence of ASE as a factor and the digit ID and fraction of image
revealed as covariates, and found that f(1, 5452) = 7.97, p < .01. While the effect was not
substantial—the assisted user’s least-squares-mean accuracy was 74.2%, while the unassisted
user’s was 71.7%—the assisted user achieved significantly higher accuracy than the unassisted
user. Although the uniform-random baseline happens to perform well on MNIST, it performs
extremely poorly in simulation experiments with 2D navigation and Car Racing (Table 6.1
and Figure 6.3 in the appendix).

Car Racing Video Game with Observation Delay

In this experiment, we test ASE’s ability to assist the user in a real-time driving game
with delayed observations, where the user tends to react to outdated observations as if they
are current. Our assistant sees the same delayed observations as the user, but instead of
passing them to the user, replaces the user’s video feed with synthetic images produced by a
generative model. To optimize these images to induce the correct state beliefs in the user,
the assistant forward-predicts the current state from the delayed observation and the user’s
most recent actions, then constructs an image observation representative of the predicted
current state. By default, this environment emits a 64x64 RGB image observation with a
top-down view of the car, and the user can steer left or right using their keyboard (Figure
2.3). To simulate intermittent observation delays, we set up the environment to alternate
between a no-delay phase of emitting new observations immediately (for 5 timesteps) and a
delay phase of repeatedly emitting the final observation from the previous no-delay phase
(for 5 timesteps). Both the assistant and the user experience the same delay.

The assistant uses a recurrent neural network (RNN) state encoder f to compute the
belief update b via Equation 2.2, and a variational auto-encoder (VAE) [59] to synthesize
image observations from the hidden states of f . We assume that the user’s belief update
bH is identical to the assistant’s belief update b, except that bH treats observations as if
they are never delayed. In practice, although users can clearly tell there is a delay, they are
incapable of adjusting to it and steer as if there is no delay. If the last d observations are
delayed, a straightforward solution emerges from the assistant’s belief-matching objective in
Equation 2.3: replace the delayed observations ot�d+1:t with recursively predicted, non-delayed
observations ôt�d+1:t from the RNN encoder f and VAE image decoder, and show the user
the prediction of the current observation: õt  ôt. If the last observation ot was not delayed,
then the assistant simply shows the ambient observation: õt  ot. Appendix 6.1 describes
the experimental setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that passively shows the
ambient observation generated by the environment and (2) ASE.
Dependent measures. We measure performance using a reward function that penalizes
going off road and gives bonuses for visiting new patches of the road.
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Figure 2.3: Car Racing video game experiments that address Q1—can we assist users when we
assume we know their state estimation process?—by comparing our method (ASE), which synthesizes
an informative observation under the assumption that the user’s belief update is similar to the
assistant’s, to a baseline that always shows the ambient observation generated by the environment
(Unassisted). (a) Each orange circle represents one of the 12 participants. The dashed gray line
shows baseline-equivalent performance, and the dotted orange lines show the difference between
assisted and unassisted performance. Per-user return is averaged across 3 episodes (50 seconds each).
(b-d) Top-down views of approaching a left turn with observation delay d at time t: (b) outdated
ambient observation ot, (c) forward-predicted observation representative of the current state ôt, and
(d) the ground truth, which cannot be observed by either the user or the assistant. ASE shows the
user the forward-predicted observation ôt, which is closer to the ground truth than the outdated
ambient observation ot that the user would see by default, especially when the delay is d is large.

Subject allocation. We recruited 11 male and 1 female participants, with an average age of
25. Each participant was provided with the rules of the task and a short practice period of 2
episodes to familiarize themselves with the controls and dynamics. Each user played in both
conditions: unassisted, and assisted by ASE. To avoid the confounding effect of users learning
to play the game better over time, we counterbalanced the order of the two conditions. Each
condition lasted 3 episodes, with 1000 timesteps (50 seconds) per episode.
Analysis Plot (a) in Figure 2.3 shows that users are able to achieve substantially larger
returns (i.e., drive on the road and stay off the grass more often) with the ASE assistant
compared to the unassisted condition. ASE makes the user’s video feed smoother by predicting
the current observation when the true current observation is delayed, which makes real-time,
closed-loop control of the car substantially easier. Users in the unassisted condition tended
not to change their steering action when the true images were delayed, while assisted users
were able to rapidly switch steering actions even during delay phases, by responding to the
assistant’s synthetic images. We ran a one-way repeated measures ANOVA on the returns
from the unassisted and ASE conditions with the presence of ASE as a factor, and found
that f(1, 11) = 41.01, p < .001. The assisted user achieved significantly higher returns than
the unassisted user. The subjective evaluations in Table 6.2 in the appendix corroborate
these results: users reported perceiving smaller delays and feeling more in control of the car
when they were assisted. One reason that users may have perceived a small delay even in
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the assisted condition is that the assistant uses an imperfect, learned state encoder f in its
belief update. This suggests that even when the assistant has an imperfect state estimation
process, ASE can still improve the user’s task performance; the assistant’s process just has to
be more accurate than the user’s.

Learning to Assist Users with Unknown Biases

Our second set of user studies seeks to answer Q2: can we assist users when we do not know
their state estimation process, and must learn a model of it? We test this hypothesis first in
a 2D navigation task, then in a variant of the Lunar Lander video game from the OpenAI
Gym.

2D Navigation with Incomplete Mental Map of Object Locations

In this experiment, we intentionally introduce a bias into the user’s perception (unknown to
ASE), and test whether ASE can learn a user model that recovers this bias. Inspired by the
assistive navigation systems discussed in Section 2.3, which inform visually-impaired users
about nearby points of interest through audio feedback, we set up a simulated 2D navigation
task in which the user cannot directly access their current position and orientation, but can
infer them using text observations that describe nearby objects. To incept a controlled user
bias, we intentionally do not include the locations of certain objects in the user’s ‘mental
map,’ which prevents the user from using observations of those objects to infer their current
state as they navigate to a goal. To effectively assist the user, ASE must learn that the user
ignores observations that mention these unknown objects. Figure 2.4 illustrates the ‘mental
map’ of the 5x5 grid world shown to the user. At each timestep, the user is told about one
of the objects directly in front of them. Some objects are unique, while other objects have
multiple instances that exist in different locations (e.g., one computer vs. multiple plants).
The objects are divided into 3 categories: (a) unique but unknown, (b) not unique but known,
and (c) both unique and known.

The assistant knows the locations of all objects, and can observe all objects in front of the
user simultaneously. Following Section 2.2, we parameterize the user model b✓ as a Bayesian
belief update (Equation 2.1) that uses observation model p

obs
✓ (o|s). The parameter ✓ 2 [0, 1]

weights the observation probabilities of objects in category (a): p
obs
✓ (o|s) / ✓ · p

obs(o|s) for
all objects o in category (a). Because we intentionally make category (a) objects unknown to
the user, we know the true value: ✓ = 0. We would like ASE to learn this value from the
user’s behavior. Appendix 6.1 describes the experimental setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that passively shows the
ambient observation generated by the environment; (2) a naïve version of ASE that does not
train the user model, and instead continues using the initial model binit where ✓ = 1; and (3)
ASE. In ASE, we learn ✓ from the episodes collected in conditions 1 and 2. In practice, we
pool the data from the first k participants to train the model for the k-th participant, since
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Time: 0 of 25 steps
Goal: 16
Object guidance: there is a computer 
directly in front of you.
There are computers located at the 
highlighted orange circles.
What are your possible current 
positions and orientations?:
> 63 84 69 46 87 93 70
What action would you like to take 
(a/w/s/d)?: 
> d

Figure 2.4: 2D navigation experiments that address Q2—can we assist users when we do not know
their state estimation process, and must learn a model of it?—by comparing our method (ASE), which
learns a model of the user’s belief update then synthesizes observations that are informative under
the learned model, to baselines that either use ambient observations generated by the environment
(Unassisted) or assume the user’s belief update is similar to the assistant’s and do not learn a model
(Naïve ASE). We measure standard error across 55 episodes (5 episodes per user). The results show
that ASE is able to learn the user’s bias parameter ✓, which enables the personalized assistant to
give the user more informative observations than the naive assistant. The user’s console interface
shows them the goal state (green) and the locations of the currently-observed object in their mental
map (orange circles). The user can choose to move forward (w), turn 90 degrees (a/d), or stay still
and wait for another observation (s).

the small amount of data collected for each individual user is too noisy to learn an accurate
model from, and because the true model does not vary between users.
Dependent measures. We measure the distance from the user’s current position to their
goal position (normalized by distance from initial position to goal position) at each timestep,
in order to capture how quickly the user moves toward the goal throughout the episode.
Subject allocation. We recruited 11 male and 1 female participants, with an average
age of 25. Each participant was provided with the rules of the task and a short practice
period of 3 episodes to familiarize themselves with the controls and dynamics. Each user
played in all three conditions: unassisted, assisted by naïve ASE, and assisted by ASE.
We counterbalanced the order of the unassisted and naïve ASE conditions. We could not
counterbalance the order of the ASE condition to control for the learning effect, since ASE
learns ✓̂ from the data collected in the unassisted and naïve ASE conditions. Figure 6.4 in
the appendix shows that the introduction of the ASE assistant sharply improves the user’s
performance across episodes, suggesting the learning effect was not a substantial confounder.
Each condition lasted 5 episodes, with 25 timesteps per episode.
Analysis. Figure 2.4 shows that users are able to move toward the goal substantially faster
with the ASE assistant compared to the unassisted condition. Furthermore, learning a model
of the user’s observation model substantially improved the assistant’s performance compared
to the naïve assistant. In the unassisted condition, the user receives many observations
of objects in category (b), which are known but relatively uninformative since they have
multiple known locations. In the naïve condition, the user receives many observations of
objects in categories (a), which are unique but unknown. ASE learns that objects in category
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(a) are unknown (i.e., ✓̂ = 0), so it only shows the unique and known objects in category
(c). We ran a one-way repeated measures ANOVA on the time-to-goal dependent measure
from the unassisted and ASE conditions with the presence of ASE as a factor, and found
that f(1, 11) = 18.02, p < .01. The assisted user reached the goal significantly faster than the
unassisted user. The subjective evaluations in Table 6.3 in the appendix corroborate these
results: users reported finding the observations more helpful in the ASE condition compared
to the unassisted condition.

Lunar Lander Video Game with Limited Vision

In this experiment, we evaluate whether ASE can learn a personalized model of naturally-
occurring user biases in the Lunar Lander game, in which users tend to land at an unsafe
angle. We conjecture that this suboptimal user behavior is caused by underestimating the
lander’s tilt, and that the assistant might learn to help the user by showing them an image
in which the lander’s tilt is exaggerated beyond the ground truth. At each timestep, the
environment emits an image of the lander, and the user can fire the left or right thruster
using their keyboard (plot (b) in Figure 2.5). The objective is to make sure the lander stays
level as it descends, using the thrusters to prevent it from tilting left or right. The image
includes a visual indicator of the lander’s tilt, which is separate from the body of the lander
(plot (e) in Figure 2.5). The assistant is capable of freely changing the angle of this tilt
indicator in the image observation shown to the user, but cannot change any other aspect of
the image (e.g., the lander body itself).

To simplify our model of the user, we focus on one feature: the angle of the lander.
In the user model, an observation is characterized by the angle of the tilt indicator: the
observation space is ⌦ = [�⇡, ⇡]. A state is characterized by the lander’s angle: the state
space is S = [�⇡, ⇡]. By default, the angle of the tilt indicator is equal to the lander’s angle:
p
obs(o|s) = [o = s]. We assume the user’s suboptimality stems from incorrectly inferring the

lander’s tilt from the angle of the tilt indicator: it is easy to tell when the lander is severely
tilted, but harder to tell when the lander is only slightly tilted. This is a problem for the
user, since keeping the lander level requires detecting tilt early when it is still small, so that
the thrusters have enough time to force the lander upright. We represent the user model
b✓ using a simple logistic model: b✓(o0:t, a0:t�1) = �⇡ + 2⇡ · �(✓0 + ✓1 · ot), where � is the
sigmoid function. The optimal synthetic observation anticipates the user’s internal distortion:
õt  b

�1
✓̂

(ot). Appendix 6.1 describes the experimental setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that rotates the tilt indicator
to exactly match the lander’s angle and (2) ASE. In ASE, we learn ✓ from the episodes
collected in the unassisted condition, as well as 5 assisted episodes generated iteratively using
Algorithm 1.
Dependent measures. We measure the absolute value of the lander’s angle |st| (i.e., ‘tilt’) at
each timestep, in order to capture how well the user is able to stabilize the lander throughout
the episode.
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Unassisted trajectories ASE-assisted trajectories

Unassisted 
tilt indicator

ASE-assisted 
tilt indicator

(a) (d) (e) (f)(c)(b)

Figure 2.5: Lunar Lander experiments that address Q2—can we assist users when we do not know
their state estimation process, and must learn a model of it?—by comparing our method (ASE),
which learns a model of the user’s belief update then synthesizes observations that are informative
under the learned model, to a baseline that always shows the ambient observation generated by the
environment (Unassisted). (a) We measure standard error across 120 episodes (10 episodes per user).
(b) Sample of unassisted trajectories from the user studies. (c) With assistance, the user keeps
the lander more level. (d-f) ASE tends to exaggerate the tilt indicator (orange vs. gray line), and
personalizes the exaggeration to the user (each orange line in (d) corresponds to a different user).

Subject allocation. We recruited 11 male and 1 female participants, with an average age
of 25. Each participant was provided with the rules of the task and a short practice period of
5 episodes to familiarize themselves with the controls and dynamics. Each user played in
both conditions: unassisted, then assisted by ASE. We could not counterbalance the order
of the two conditions to control for the learning effect, since ASE learns ✓̂ from the data
collected in the unassisted condition. Figure 6.4 in the appendix shows that the introduction
of the ASE assistant sharply improves the user’s performance across episodes, suggesting the
learning effect was not a substantial confounder. Each condition lasted 10 episodes, with 150
timesteps (10 seconds) per episode.
Analysis. Plot (a) in Figure 2.5 shows that users are able to substantially decrease the tilt
of the lander throughout the episode with the ASE assistant compared to the unassisted
condition. The assistant learns that the user infers a smaller lander angle than the observed
tilt indicator’s angle. This leads to an assistance policy that exaggerates observations by
rotating the tilt indicator to exceed the lander’s true angle. Furthermore, plot (d) in Figure
2.5 shows that the learned distortion model varies across users. We ran a one-way repeated
measures ANOVA on the average tilt dependent measure from the unassisted and ASE
conditions with the presence of ASE as a factor, and found that f(1, 11) = 6.30, p < .05. The
assisted user’s average tilt was significantly smaller than the unassisted user’s. The subjective
evaluations in Table 6.4 in the appendix corroborate these results: users reported finding it
easier to tell when the lander was tilted in the ASE condition compared to the unassisted
condition.
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2.5 Discussion

Summary. We propose the assistive state estimation (ASE) algorithm for helping users with
perception in partially observable Markov decision processes. The key idea is to synthesize
observations that induce more accurate beliefs about the current state than the ambient
observations. In our first set of user studies, we show that ASE can assist users with limited
sensor bandwidth by identifying subsets of informative pixels for image classification, and
that ASE can assist users with observation delay in a driving video game by using a dynamics
model to predict the current state of the world and constructing a hypothetical current
observation. In our second set of user studies, we show that ASE can assist irrational users
with navigating a 2D world by informing them about nearby landmarks, and detecting and
minimizing tilt in the Lunar Lander game by exaggerating a visual indicator of the lander’s
tilt. These experiments broadly illustrate how assisting users with state estimation while
making minimal assumptions about the desired task can improve real users’ task performance.
In addition to the user studies, we run simulation experiments on indoor navigation and
MNIST digit classification that show (1) ASE not only improves users’ task performance,
but also improves the accuracy of simulated users’ internal beliefs; and (2) the quality of
assistance increases with the number of user-in-the-loop episodes collected.
Limitations and future work. ASE assumes that we can solve for a near-optimal state
estimator in order to compute the assistant’s belief update b via Equations 2.1 or 2.2, and
can solve for near-optimal policies ⇡ in order to model user actions via Equation 2.4, which
may not be feasible in real-world domains. Fortunately, recent work has demonstrated
substantial improvements in learning approximate state estimators and policies in complex
environments with image observations, unknown dynamics, and other challenges [117, 45].
While our proof of concept does not make use of these advances, incorporating them into
a more practical assistive state estimation system is a promising direction for future work.
Furthermore, our user studies are limited in that we do not know if the improvement in users’
task performance is caused by more accurate internal beliefs, or by some other feature of
the assistance condition, since we cannot directly measure those beliefs in real users (only in
simulated users). Our ultimate goal is for the user to make better decisions when assisted,
and the results show that the belief-matching objective in Equation 2.3 accomplishes this in
four different domains. Even so, one direction for future work is to design experiments that
more directly measure the user’s internal beliefs during decision-making.
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Chapter 3

Inferring Beliefs about Dynamics from

Behavior

There was time only to see the
lights of the Aurors’ curses
arrowing down at him, slightly
angle the broomstick to avoid
them, realize that the broomstick
was simply continuing on with
mostly the same momentum
instead of going in the direction
he pointed it, and activate the
wordless concepts
*crap*
and
*Newton*

—Eliezer Yudkowsky, Harry
Potter and the Methods of

Rationality (2010)

Inferring intent from observed behavior has been studied extensively within the frameworks
of Bayesian inverse planning and inverse reinforcement learning. These methods infer a goal
or reward function that best explains the actions of the observed agent, typically a human
demonstrator. Another agent can use this inferred intent to predict, imitate, or assist the
human user. However, a central assumption in inverse reinforcement learning is that the
demonstrator is close to optimal. While models of suboptimal behavior exist, they typically
assume that suboptimal actions are the result of some type of random noise or a known
cognitive bias, like temporal inconsistency.

In this chapter, we take an alternative approach, and model suboptimal behavior as
the result of internal model misspecification: the reason that user actions might deviate
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from near-optimal actions is that the user has an incorrect set of beliefs about the rules—
the dynamics—governing how actions affect the environment. Our insight is that while
demonstrated actions may be suboptimal in the real world, they may actually be near-optimal
with respect to the user’s internal model of the dynamics. By estimating these internal beliefs
from observed behavior, we arrive at a new method for inferring intent.

We demonstrate in simulation and in a user study with 12 participants that this approach
enables us to more accurately model human intent, and can be used in a variety of applications,
including offering assistance in a shared autonomy framework and inferring human preferences.

3.1 Introduction

Characterizing the drive behind human actions in the form of a goal or reward function is
broadly useful for predicting future behavior, imitating human actions in new situations, and
augmenting human control with automated assistance—critical functions in a wide variety
of applications, including pedestrian motion prediction [121], virtual character animation
[84], and robotic teleoperation [77]. For example, remotely operating a robotic arm to grasp
objects can be challenging for a human user due to unfamiliar or unintuitive dynamics of the
physical system and control interface. Existing frameworks for assistive teleoperation and
shared autonomy aim to help users perform such tasks [77, 55, 100, 14, 94]. These frameworks
typically rely on existing methods for intent inference in the sequential decision-making
context, which use Bayesian inverse planning or inverse reinforcement learning to learn the
user’s goal or reward function from observed control demonstrations. These methods typically
assume that user actions are near-optimal, and deviate from optimality due to random noise
[120], specific cognitive biases in planning [30, 29, 9], or risk sensitivity [70].

The key insight in this paper is that suboptimal behavior can also arise from a mismatch
between the dynamics of the real world and the user’s internal beliefs of the dynamics, and
that a user policy that appears suboptimal in the real world may actually be near-optimal
with respect to the user’s internal dynamics model. As resource-bounded agents living in an
environment of dazzling complexity, humans rely on intuitive theories of the world to guide
reasoning and planning [36, 46]. Humans leverage internal models of the world for motor
control [115, 57, 26, 72, 107], goal-directed decision making [12], and representing the mental
states of other agents [87]. Simplified internal models can systematically deviate from the
real world, leading to suboptimal behaviors that have unintended consequences, like hitting a
tennis ball into the net or skidding on an icy road. For example, a classic study in cognitive
science shows that human judgments about the physics of projectile motion are closer to
Aristotelian impetus theory than to true Newtonian dynamics—in other words, people tend
to ignore or underestimate the effects of inertia [18]. Characterizing the gap between internal
models and reality by modeling a user’s internal predictions of the effects of their actions
allows us to better explain observed user actions and infer their intent.

The main contribution of this paper is a new algorithm for intent inference that first
estimates a user’s internal beliefs of the dynamics of the world using observations of how
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they act to perform known tasks, then leverages the learned internal dynamics model to infer
intent on unknown tasks. In contrast to the closest prior work [50, 38], our method scales
to problems with high-dimensional, continuous state spaces and nonlinear dynamics. Our
internal dynamics model estimation algorithm assumes the user takes actions with probability
proportional to their exponentiated soft Q-values. We fit the parameters of the internal
dynamics model to maximize the likelihood of observed user actions on a set of tasks with
known reward functions, by tying the internal dynamics to the soft Q function via the soft
Bellman equation. At test time, we use the learned internal dynamics model to predict the
user’s desired next state given their current state and action input.

We run experiments first with simulated users, testing that we can recover the internal
dynamics, even in MDPs with a continuous state space that would otherwise be intractable
for prior methods. We then run a user study with 12 participants in which humans play the
Lunar Lander game (screenshot in Figure 3.1). We recover a dynamics model that explains
user actions better than the real dynamics, which in turn enables us to assist users in playing
the game by transferring their control policy from the recovered internal dynamics to the
real dynamics.

3.2 Background

Inferring intent in sequential decision-making problems has been heavily studied under the
framework of inverse reinforcement learning (IRL), which we build on in this work. The
aim of IRL is to learn a user’s reward function from observed control demonstrations. IRL
algorithms are not directly applicable to our problem of learning a user’s beliefs about the
dynamics of the environment, but they provide a helpful starting point for thinking about
how to extract hidden properties of a user from observations of how they behave.

In our work, we build on the maximum causal entropy (MaxCausalEnt) IRL framework
[119, 11, 93, 79, 50]. In an MDP with a discrete action space A, the human demonstrator is
assumed to follow a policy ⇡ that maximizes an entropy-regularized reward R(s, a, s

0) under
dynamics T (s0|s, a). Equivalently,

⇡(a|s) , exp (Q(s, a))P
a02A exp (Q(s, a0))

, (3.1)

where Q is the soft Q function, which satisfies the soft Bellman equation [119],

Q(s, a) = Es0⇠T (·|s,a) [R(s, a, s
0) + �V (s0)] , (3.2)

with V the soft value function,

V (s) , log

 
X

a2A

exp (Q(s, a))

!
. (3.3)
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Prior work assumes T is the true dynamics of the real world, and fits a model of the reward
R that maximizes the likelihood (given by Equation 3.1) of some observed demonstrations of
the user acting in the real world. In our work, we assume access to a set of training tasks
for which the rewards R are known, fit a model of the internal dynamics T that is allowed
to deviate from the real dynamics, then use the recovered dynamics to infer intent (e.g.,
rewards) in new tasks.

3.3 Internal Dynamics Model Estimation

We split up the problem of intent inference into two parts: learning the internal dynamics
model from user demonstrations on known tasks (the topic of this section), and using the
learned internal model to infer intent on unknown tasks (discussed later in Section 3.4). We
assume that the user’s internal dynamics model is stationary, which is reasonable for problems
like robotic teleoperation when the user has some experience practicing with the system but
still finds it unintuitive or difficult to control. We also assume that the real dynamics are
known ex-ante or learned separately.

Our aim is to recover a user’s implicit beliefs about the dynamics of the world from
observations of how they act to perform a set of tasks. The key idea is that, when their internal
dynamics model deviates from the real dynamics, we can no longer simply fit a dynamics
model to observed state transitions. Standard dynamics learning algorithms typically assume
access to (s, a, s

0) examples, with (s, a) features and s
0 labels, that can be used to train

a classification or regression model p(s0|s, a) using supervised learning. In our setting, we
instead have (s, a) pairs that indirectly encode the state transitions that the user expected to
happen, but did not necessarily occur, because the user’s internal model predicted different
outcomes s

0 than those that actually occurred in the real world. Our core assumption is
that the user’s policy is near-optimal with respect to the unknown internal dynamics model.
To this end, we propose a new algorithm for learning the internal dynamics from action
demonstrations: inverse soft Q-learning.

Inverse Soft Q-Learning

The key idea behind our algorithm is that we can fit a parametric model of the internal
dynamics model T that maximizes the likelihood of observed action demonstrations on a set
of training tasks with known rewards by using the soft Q function as an intermediary.1 We tie
the internal dynamics T to the soft Q function via the soft Bellman equation (Equation 3.2),
which ensures that the soft Q function is induced by the internal dynamics T . We tie the soft
Q function to action likelihoods using Equation 3.1, which encourages the soft Q function to
explain observed actions. We accomplish this by solving a constrained optimization problem

1
Our algorithm can in principle learn from demonstrations even when the rewards are unknown, but in

practice we find that this relaxation usually makes learning the correct internal dynamics too difficult.
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in which the demonstration likelihoods appear in the objective and the soft Bellman equation
appears in the constraints.
Formulating the optimization problem. Assume the action space A is discrete.2 Let
i 2 {1, 2, ..., n} denote the training task, Ri(s, a, s

0) denote the known reward function for
task i, T denote the unknown internal dynamics, and Qi denote the unknown soft Q function
for task i. We represent Qi using a function approximator Q✓i with parameters ✓i, and the
internal dynamics using a function approximator T� parameterized by �. Note that, while
each task merits a separate soft Q function since each task has different rewards, all tasks
share the same internal dynamics.

Recall the soft Bellman equation (Equation 3.2), which constrains Qi to be the soft Q

function for rewards Ri and internal dynamics T . An equivalent way to express this condition
is that Qi satisfies �i(s, a) = 0 8s, a, where �i is the soft Bellman error:

�i(s, a) , Qi(s, a)�

Z

s02S
T (s0|s, a) (Ri(s, a, s

0) + �Vi(s
0)) ds

0
. (3.4)

We impose the same condition on Q✓i and T�, i.e., �✓i,�(s, a) = 0 8s, a. We assume our repre-
sentations are expressive enough that there exist values of ✓i and � that satisfy the condition.
We fit parameters ✓i and � to maximize the likelihood of the observed demonstrations while
respecting the soft Bellman equation by solving the constrained optimization problem

minimize
{✓i}ni=1,�

nX

i=1

X

(s,a)2Ddemo
i

� log ⇡✓i(a|s) (3.5)

subject to �✓i,�(s, a) = 0 8i 2 {1, 2, ..., n}, s 2 S, a 2 A,

where D
demo

i are the demonstrations for task i, and ⇡✓i denotes the action likelihood given by
Q✓i and Equation 3.1.
Solving the optimization problem. We use the penalty method [10] to approximately
solve the constrained optimization problem described in Equation 3.5, which recasts the
problem as unconstrained optimization of the cost function

c(✓,�) ,
nX

i=1

X

(s,a)2Ddemo
i

� log ⇡✓i(a|s) +
⇢

2

nX

i=1

Z

s2S

X

a2A

(�✓i,�(s, a))2ds, (3.6)

where ⇢ is a constant hyperparameter, ⇡✓i denotes the action likelihood given by Q✓i and
Equation 3.1, and �✓i,� denotes the soft Bellman error, which relates Q✓i to T� through
Equation 3.4.

For MDPs with a discrete state space S, we minimize the cost as is. MDPs with a
continuous state space present two challenges: (1) an intractable integral over states in the

2
We assume a discrete action space to simplify our exposition and experiments. Our algorithm can be

extended to handle MDPs with a continuous action space using existing sampling methods [44].
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sum over penalty terms, and (2) integrals over states in the expectation terms of the soft
Bellman errors � (recall Equation 3.4). To tackle (1), we resort to constraint sampling [17];
specifically, randomly sampling a subset of state-action pairs D

samp

i from rollouts of a random
policy in the real world. To tackle (2), we choose a deterministic model of the internal
dynamics T�, which simplifies the integral over next states in Equation 3.4 to a single term3.

In our experiments, we minimize the objective in Equation 3.6 using Adam [58]. We use
a mix of tabular representations, structured linear models, and relatively shallow multi-layer
perceptrons to model Q✓i and T�. In the tabular setting, ✓i is a table of numbers with a
separate entry for each state-action pair, and � can be a table with an entry between 0 and 1
for each state-action-state triple. For linear and neural network representations, ✓i and � are
sets of weights.

Regularizing the Internal Dynamics Model

One issue with our approach to estimating the internal dynamics is that there tend to be
multiple feasible internal dynamics models that explain the demonstration data equally
well, which makes the correct internal dynamics model difficult to identify. We propose two
different solutions to this problem: collecting demonstrations on multiple training tasks, and
imposing a prior on the learned internal dynamics that encourages it to be similar to the real
dynamics.
Multiple training tasks. If we only collect demonstrations on n = 1 training tasks, then
at any given state s and action a, the recovered internal dynamics may simply assign a
likelihood of one to the next state s

0 that maximizes the reward function R1(s, a, s
0) of the

single training task. Intuitively, if our algorithm is given user demonstrations on only one
task, then the user’s actions can be explained by an internal dynamics model that always
predicts the best possible next state for that one task (e.g., the target in a navigation task),
no matter the current state or user action. We can mitigate this problem by collecting
demonstrations on n > 1 training tasks, which prevents degenerate solutions by forcing the
internal dynamics to be consistent with a diverse set of user policies.
Action intent prior. In our experiments, we also explore another way to regularize the
learned internal dynamics: imposing the prior that the learned internal dynamics T� should
be similar to the known real dynamics T

real by restricting the support of T�(·|s, a) to states
s
0 that are reachable in the real dynamics. Formally,

T�(s0|s, a) ,
X

aint2A

T
real(s0|s, aint)f�(aint |s, a) (3.7)

where a is the user’s action, a
int is the user’s intended action, and f� : S ⇥ A

2
! [0, 1]

captures the user’s ‘action intent’—the action they would have taken if they had perfect
knowledge of the real dynamics. This prior changes the structure of our internal dynamics
model to predict the user’s intended action with respect to the real dynamics, rather than

3
Another potential solution is sampling states to compute a Monte Carlo estimate of the integral.
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Figure 3.1: A high-level schematic of our internal-to-real dynamics transfer algorithm for shared
autonomy, which uses the internal dynamics model learned by our method to assist the user with an
unknown control task; in this case, landing the lunar lander between the flags. The user’s actions
are assumed to be consistent with their internal beliefs about the dynamics T�, which differ from
the real dynamics T real. Our system models the internal dynamics to determine where the user is
trying to go next, then acts to get there.

directly predicting their intended next state. Note that, when we use this action intent prior,
T� is no longer directly modeled. Instead, we model f� and use Equation 3.7 to compute T�.

In our experiments, we examine the effects of employing multiple training tasks and
imposing the action intent prior, together and in isolation.

3.4 Using Learned Internal Dynamics Models

The ability to learn internal dynamics models from demonstrations is broadly useful for intent
inference. In our experiments, we explore two applications: (1) shared autonomy, in which a
human and robot collaborate to solve a challenging real-time control task, and (2) learning
the reward function of a user who generates suboptimal demonstrations due to internal model
misspecification. In (1), intent is formalized as the user’s desired next state, while in (2), the
user’s intent is represented by their reward function.

Shared Autonomy via Internal-to-Real Dynamics Transfer

Many control problems involving human users are challenging for autonomous agents due to
partial observability and imprecise task specifications, and are also challenging for humans
due to constraints such as bounded rationality [105] and physical reaction time. Shared
autonomy combines human and machine intelligence to perform control tasks that neither
can on their own, but existing methods have the basic requirement that the machine either
needs a description of the task or feedback from the user, e.g., in the form of rewards [55,
14, 94]. We propose an alternative algorithm that assists the user without knowing their
reward function by leveraging the internal dynamics model learned by our method. The key
idea is formalizing the user’s intent as their desired next state. We use the learned internal
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dynamics model to infer the user’s desired next state given their current state and control
input, then execute an action that will take the user to the desired state under the real
dynamics; essentially, transferring the user’s policy from the internal dynamics to the real
dynamics, akin to simulation-to-real transfer for robotic control [23]. See Figure 3.1 for a
high-level schematic of this process.

Equipped with the learned internal dynamics model T�, we perform internal-to-real
dynamics transfer by observing the user’s action input, computing the induced distribution
over next states using the internal dynamics, and executing an action that induces a similar
distribution over next states in the real dynamics. Formally, for user control input a

h
t and

state st, we execute action at, where

at , arg min
a2A

DKL(T�(st+1 |st, a
h
t ) k T

real(st+1|st, a)) (3.8)

Learning Rewards from Misguided User Demonstrations

Most existing inverse reinforcement learning algorithms assume that the user’s internal
dynamics are equivalent to the real dynamics, and learn their reward function from near-
optimal demonstrations. We explore a more realistic setting in which the user’s demonstrations
are suboptimal due to a mismatch between their internal dynamics and the real dynamics.
Users are ‘misguided’ in that their behavior is suboptimal in the real world, but near-optimal
with respect to their internal dynamics. In this setting, standard IRL algorithms that do not
distinguish between the internal and the real dynamics learn incorrect reward functions. Our
method can be used to learn the internal dynamics, then explicitly incorporate the learned
internal dynamics into an IRL algorithm’s behavioral model of the user.

In our experiments, we instantiate prior work with MaxCausalEnt IRL [119], which inverts
the behavioral model from Equation 3.1 to infer rewards from demonstrations. We adapt it
to our setting, in which the real dynamics are known and the internal dynamics are either
learned (separately by our algorithm) or assumed to be the same as the known real dynamics.
MaxCausalEnt IRL cannot learn the user’s reward function from misguided demonstrations
when it makes the standard assumption that the internal dynamics are equal to the real
dynamics, but can learn accurate rewards when it instead uses the learned internal dynamics
model produced by our algorithm.

3.5 User Study and Simulation Experiments

The purpose of our experiments is two-fold: (1) to test the correctness of our algorithm,
and (2) to test our core assumption that a human user’s internal dynamics can be different
from the real dynamics, and that our algorithm can learn an internal dynamics model that is
useful for assisting the user through internal-to-real dynamics transfer. To accomplish (1),
we perform three simulated experiments that apply our method to shared autonomy (see
Section 3.4) and to learning rewards from misguided user demonstrations (see Section 3.4).
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Figure 3.2: Left, Center: Error bars show standard error on ten random seeds. Our method learns
accurate internal dynamics models, the regularization methods in Section 3.3 increase accuracy, and
the approximations for continuous-state MDPs in Section 3.3 do not compromise accuracy. Right:

Error regions show standard error on ten random tasks and ten random seeds each. Our method
learns an internal dynamics model that enables MaxCausalEnt IRL to learn rewards from misguided
user demonstrations.

In the shared autonomy experiments, we first use a tabular grid world navigation task to
sanity-check our algorithm and analyze the effects of different regularization choices from
Section 3.3. We then use a continuous-state 2D navigation task to test our method’s ability
to handle continuous observations using the approximations described in Section 3.3. In the
reward learning experiment, we use the grid world environment to compare the performance
of MaxCausalEnt IRL [119] when it assumes the internal dynamics are the same as the real
dynamics to when it uses the internal dynamics learned by our algorithm. To accomplish
(2), we conduct a user study in which 12 participants play the Lunar Lander game (see
Figure 3.1) with and without internal-to-real dynamics transfer assistance. We summarize
these experiments in Sections 3.5 and 3.5. Further details are provided in Section 6.2 of the
appendix.

Simulation Experiments

Shared autonomy. The grid world provides us with a domain where exact solutions are
tractable, which enables us to verify the correctness of our method and compare the quality
of the approximation in Section 3.3 with an exact solution to the learning problem. The
continuous task provides a more challenging domain where exact solutions via dynamic
programming are intractable. In each setting, we simulate a user with an internal dynamics
model that is severely biased away from the real dynamics of the simulated environment.
The simulated user’s policy is near-optimal with respect to their internal dynamics, but
suboptimal with respect to the real dynamics. Figure 3.2 (left and center plots) provides
overall support for the hypothesis that our method can effectively learn tabular and continuous
representations of the internal dynamics for MDPs with discrete and continuous state spaces.
The learned internal dynamics models are accurate with respect to the ground truth internal
dynamics, and internal-to-real dynamics transfer successfully assists the simulated users. The
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learned internal dynamics model becomes more accurate as we increase the number of training
tasks, and the action intent prior (see Section 3.3) increases accuracy when the internal
dynamics are similar to the real dynamics. These results confirm that our approximate
algorithm is correct and yields solutions that do not significantly deviate from those of an
exact algorithm. Further results and experimental details are discussed in Sections 6.2 and
6.2 of the appendix.
Learning rewards from misguided user demonstrations. Standard IRL algorithms,
such as MaxCausalEnt IRL [119], can fail to learn rewards from user demonstrations that are
‘misguided’, i.e., systematically suboptimal in the real world but near-optimal with respect to
the user’s internal dynamics. Our algorithm can learn the internal dynamics model, and we
can then explicitly incorporate the learned internal dynamics into the MaxCausalEnt IRL
algorithm to learn accurate rewards from misguided demonstrations. We assess this method
on a simulated grid world navigation task. Figure 3.2 (right plot) supports our claim that
standard IRL is ineffective at learning rewards from misguided user demonstrations. After
using our algorithm to learn the internal dynamics and explicitly incorporating the learned
internal dynamics into an IRL algorithm’s model of the user, we see that it’s possible to
recover accurate rewards from these misguided demonstrations. Additional information on
our experimental setup is available in Section 6.2 of the appendix.

In addition to comparing to the standard MaxCausalEnt IRL baseline, we also conducted
a comparison (shown in Figure 3.2) with a variant of the Simultaneous Estimation of Rewards
and Dynamics (SERD) algorithm [50] that simultaneously learns rewards and the internal
dynamics instead of assuming that the internal dynamics are equivalent to the real dynamics.
This baseline performs better than random, but still much worse than our method. This
result is supported by the theoretical analysis in Armstrong et al. [4], which characterizes
the difficulty of simultaneously deducing a human’s rationality—in our case, their internal
dynamics model—and their rewards from demonstrations.

User Study on the Lunar Lander Game

Our previous experiments were conducted with simulated expert behavior, which allowed us
to control the corruption of the internal dynamics. However, it remains to be seen whether
this model of suboptimality effectively reflects real human behavior. We test this hypothesis
in the next experiment, which evaluates whether our method can learn the internal dynamics
accurately enough to assist real users through internal-to-real dynamics transfer.
Task description. We use the Lunar Lander game from OpenAI Gym [15] (screenshot in
Figure 3.1) to evaluate our algorithm with human users. The objective of the game is to land
on the ground, without crashing or flying out of bounds, using two lateral thrusters and a
main engine. The action space A consists of six discrete actions. The state s 2 R9 encodes
position, velocity, orientation, and the location of the landing site, which is one of nine
values corresponding to n = 9 distinct tasks. The physics of the game are forward-simulated
by a black-box function that takes as input seven hyperparameters, which include engine
power and game speed. We manipulate whether or not the user receives internal-to-real
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Figure 3.3: Human users find the default game environment—the real dynamics—to be difficult and
unintuitive, as indicated by their poor performance in the unassisted condition (top center and right
plots) and their subjective evaluations (in Table 3.1). Our method observes suboptimal human play
in the default environment, learns a setting of the game physics under which the observed human
play would have been closer to optimal, then performs internal-to-real dynamics transfer to assist
human users in achieving higher success rates and lower crash rates (top center and right plots). The
learned internal dynamics has a slower game speed than the real dynamics (bottom left plot). The
bottom center and right plots show successful (green) and failed (red) trajectories in the unassisted
and assisted conditions.

dynamics transfer assistance using an internal dynamics model trained on their unassisted
demonstrations. The dependent measures are the success and crash rates in each condition.
The task and evaluation protocol are discussed further in Section 6.2 of the appendix.
Analysis. In the default environment, users appear to play as though they underestimate
the strength of gravity, which causes them to crash into the ground frequently (see the
supplementary videos). Figure 3.3 (bottom left plot) shows that our algorithm learns an
internal dynamics model characterized by a slower game speed than the real dynamics, which
makes sense since a slower game speed induces smaller forces and slower motion—conditions
under which the users’ action demonstrations would have been closer to optimal. These
results support our claim that our algorithm can learn an internal dynamics model that
explains user actions better than the real dynamics.

When unassisted, users often crash or fly out of bounds due to the unintuitive nature of
the thruster controls and the relatively fast pace of the game. Figure 3.3 (top center and right
plots) shows that users succeed significantly more often and crash significantly less often when
assisted by internal-to-real dynamics transfer (see Section 6.2 of the appendix for hypothesis
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Table 3.1: Subjective evaluations of the Lunar Lander user study from 12 participants. Means
reported below for responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither
Disagree nor Agree, and 7 = Strongly Agree. p-values from a one-way repeated measures ANOVA
with the presence of assistance as a factor influencing responses.

p-value Unassisted Assisted
I enjoyed playing the game < .001 3.92 5.92
I improved over time < .0001 3.08 5.83
I didn’t crash < .001 1.17 3.00
I didn’t fly out of bounds < .05 1.67 3.08
I didn’t run out of time > .05 5.17 6.17
I landed between the flags < .001 1.92 4.00
I understood how to complete the task < .05 6.42 6.75
I intuitively understood the physics of the game < .01 4.58 6.00
My actions were carried out > .05 4.83 5.50
My intended actions were carried out < .01 2.75 5.25

tests). The assistance makes the system feel easier to control (see the subjective evaluations
in Table 3.1), less likely to tip over (see the supplementary videos), and move more slowly in
response to user actions (assistance led to a 30% decrease in average speed). One of the key
advantages of assistance was its positive effect on the rate at which users were able to switch
between different actions: on average, unassisted users performed 18 actions per minute
(APM), while assisted users performed 84 APM. Quickly switching between firing various
thrusters enabled assisted users to better stabilize flight. These results demonstrate that the
learned internal dynamics can be used to effectively assist the user through internal-to-real
dynamics transfer, which in turn gives us confidence in the accuracy of the learned internal
dynamics. After all, we cannot measure the accuracy of the learned internal dynamics by
comparing it to the ground truth internal dynamics, which is unknown for human users.

3.6 Related Work

The closest prior work in intent inference and action understanding comes from inverse
planning [7] and inverse reinforcement learning [80], which use observations of a user’s actions
to estimate the user’s goal or reward function. We take a fundamentally different approach
to intent inference: using action observations to estimate the user’s beliefs about the world
dynamics.

The simultaneous estimation of rewards and dynamics (SERD) instantiation of Max-
CausalEnt IRL [50] aims to improve the sample efficiency of IRL by forcing the learned real
dynamics model to explain observed state transitions as well as actions. The framework
includes terms for the demonstrator’s beliefs of the dynamics, but the overall algorithm
and experiments of Herman et al. [50] constrain those beliefs to be the same as the real
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dynamics. Our goal is to learn an internal dynamics model that may deviate from the real
dynamics. To this end, we propose two new internal dynamics regularization techniques,
multi-task training and the action intent prior (see Section 3.3), and demonstrate their utility
for learning an internal dynamics model that differs from the real dynamics (see Section 3.5).
We also conduct a user experiment that shows human actions in a game environment can be
better explained by a learned internal dynamics model than by the real dynamics, and that
augmenting user control with internal-to-real dynamics transfer results in improved game
play. Furthermore, the SERD algorithm is well-suited to MDPs with a discrete state space,
but intractable for continuous state spaces. Our method can be applied to MDPs with a
continuous state space, as shown in Sections 3.5 and 3.5.

Golub et al. [38] propose an internal model estimation (IME) framework for brain-machine
interface (BMI) control that learns an internal dynamics model from control demonstrations
on tasks with linear-Gaussian dynamics and quadratic reward functions. Our work is (1)
more general in that it places no restrictions on the functional form of the dynamics or the
reward function, and (2) does not assume sensory feedback delay, which is the fundamental
premise of using IME for BMI control.

Rafferty et al. [92, 90, 91] use an internal dynamics learning algorithm to infer a student’s
incorrect beliefs in online learning settings like educational games, and leverage the inferred
beliefs to generate personalized hints and feedback. Our algorithm is more general in that it
is capable of learning continuous parameters of the internal dynamics, whereas the cited work
is only capable of identifying the internal dynamics given a discrete set of candidate models.

Modeling human error has a rich history in the behavioral sciences. Procrastination and
other time-inconsistent human behaviors have been characterized as rational with respect to
a cost model that discounts the cost of future action relative to that of immediate action [2,
60]. Systematic errors in human predictions about the future have been partially explained
by cognitive biases like the availability heuristic and regression to the mean [108]. Imperfect
intuitive physics judgments have been characterized as approximate probabilistic inferences
made by a resource-bounded observer [46]. We take an orthogonal approach in which we
assume that suboptimal behavior is primarily caused by incorrect beliefs of the dynamics,
rather than uncertainty or biases in planning and judgment.

Humans are resource-bounded agents that must take into account the computational cost
of their planning algorithm when selecting actions [41]. One way to trade-off the ability to find
high-value actions for lower computational cost is to plan using a simplified, low-dimensional
model of the dynamics [49, 34]. Evidence from the cognitive science literature suggests
humans find it difficult to predict the motion of objects when multiple information dimensions
are involved [88]. Thus, we arrive at an alternative explanation for why humans may behave
near-optimally with respect to a dynamics model that differs from the real dynamics: even if
users have perfect knowledge of the real dynamics, they may not have the computational
resources to plan under the real dynamics, and instead choose to plan using a simplified
model.
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3.7 Discussion

Limitations. Although our algorithm models the soft Q function with arbitrary neural
network parameterizations, the internal dynamics parameterizations we use are smaller, with
at most seven parameters for continuous tasks. Increasing the number of dynamics parameters
would require a better approach to regularization than those proposed in Section 3.3.
Summary. We contribute an algorithm that learns a user’s implicit beliefs about the
dynamics of the environment from demonstrations of their suboptimal behavior in the
real environment. Simulation experiments and a small-scale user study demonstrate the
effectiveness of our method at recovering a dynamics model that explains human actions, as
well as its utility for applications in shared autonomy and inverse reinforcement learning.
Future work. The ability to learn internal dynamics models from demonstrations opens the
door to new directions of scientific inquiry, like estimating young children’s intuitive theories
of physics and psychology without eliciting verbal judgments [114, 32, 39]. It also enables
applications that involve intent inference, including adaptive brain-computer interfaces for
prosthetic limbs [19, 104] that help users perform control tasks that are difficult to fully
specify.
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Chapter 4

Shared Autonomy via Deep

Reinforcement Learning

There are times in every
commander’s life when he must
yield the stick of authority to a
subordinate. Sometimes the
reason is one of expertise, when
the subordinate has skills the
commander lacks. Sometimes it
is positional, when the
subordinate is in the right place
at the right [time] and the
commander is not. Often it is
anticipated there will be loss of
direct communication, which
means the subordinate may be
given general instructions but
must then carry them out on his
own initiative as the situation
flows around him. No
commander enjoys those
moments. Most subordinates
fear them, as well. Those who
do not fear already betray the
overconfidence that nearly always
leads to disaster. But the
moments must be faced. And all
will learn from them, whether to
satisfaction or to sorrow.

—Timothy Zahn, Thrawn
(2017)
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In shared autonomy, user input is combined with semi-autonomous control to achieve
a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer
the goal from user input and assist with the task. Such methods tend to assume some
combination of knowledge of the dynamics of the environment, the user’s policy given their
goal, and the set of possible goals the user might target, which limits their application to
real-world scenarios.

In this chapter, we propose a deep reinforcement learning framework for model-free shared
autonomy that lifts these assumptions. We use human-in-the-loop reinforcement learning with
neural network function approximation to learn an end-to-end mapping from environmental
observation and user input to agent action values, with task reward as the only form of
supervision. This approach poses the challenge of following user commands closely enough to
provide the user with real-time action feedback and thereby ensure high-quality user input,
but also deviating from the user’s actions when they are suboptimal. We balance these
two needs by discarding actions whose values fall below some threshold, then selecting the
remaining action closest to the user’s input.

Controlled studies with users (n = 12) and synthetic pilots playing a video game, and
a pilot study with users (n = 4) flying a real quadrotor, demonstrate the ability of our
algorithm to assist users with real-time control tasks in which the agent cannot directly
access the user’s private information through observations, but receives a reward signal and
user input that both depend on the user’s intent. The agent learns to assist the user without
access to this private information, implicitly inferring it from the user’s input. This enables
the assisted user to complete the task more effectively than the user or an autonomous agent
could on their own.

4.1 Introduction

Imagine the task of flying a quadrotor to a safe landing site. This problem is challenging
for both humans and robots, but in different ways. For a human, controlling many degrees
of freedom at once while dealing with unfamiliar quadrotor dynamics is hard. For a robot,
understanding what makes a good landing location can be difficult, especially when the
human has a future task in mind that might influence where they want the quadrotor to land
now.

Shared autonomy [37, 1] aims to address this problem by combining user input with
automated assistance. We focus on an area of shared autonomy in which information about
the user’s intent is hidden from the robot, in which prior work [77, 55, 85, 64, 47] has proposed
approaches that infer the user’s goal from their input and autonomously act to achieve it.
These approaches tend to assume (1) a known dynamics model of the world, (2) a known
goal representation (a set of possible goals), and (3) a known user policy given a goal.

For many real-world tasks, these assumptions constrain the adaptability and generality of
the system. (1) Fitting an accurate global dynamics model can be more difficult than learning
to perform the task. (2) Assuming a fixed representation of the user’s goal (e.g., a discrete
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Figure 4.1: An overview of our method for assisting humans with real-time control tasks using
model-free shared autonomy and deep reinforcement learning. We empirically evaluate our method
on simulated pilots and real users playing the Lunar Lander game (a) and flying a quadrotor (b,c).

set of graspable objects) reduces the flexibility of the system to perform tasks in which
the users’ desires are difficult to specify but easy to evaluate (e.g., goal regions, or success
defined directly on raw pixel input). (3) User input can exhibit systematic suboptimality
that prevents standard goal inference algorithms from recovering user intent by inverting a
generative model of behavior.

Our goal is to devise a shared autonomy method that lifts these assumptions, and
our primary contribution is a model-free deep reinforcement learning algorithm for shared
autonomy that represents a step in this direction. The key idea is that training an end-to-end
mapping from environmental observation and user input to agent action values, with task
reward as the only form of supervision, removes the need for known dynamics, a particular
goal representation, and even a user behavior model. From the agent’s perspective, the
user acts like a prior policy that can be fine-tuned, and an additional sensor generating
observations from which the agent can implicitly decode the user’s private information. From
the user’s perspective, the agent behaves like an adaptive interface that learns a personalized
mapping from user commands to actions that maximizes task reward.

One of the core challenges in this work lies in adapting standard deep reinforcement
learning techniques to leverage input from a human without significantly interfering in their
real-time ‘feedback control loop’—the user’s ability to observe the consequences of their
own actions, and adjust their inputs accordingly. Consistently ignoring the user’s input can
prevent them from using action feedback to improve the quality of their input. To address
this issue, we use human-in-the-loop deep Q-learning to learn an approximate state-action
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value function that computes the expected future return of an action given the current
environmental observation and the user’s control input. Rather than taking the highest-value
action, our assistive agent executes the closest high-value action to the user’s input, balancing
the need to take optimal actions with the need to preserve the user’s feedback control loop.
This approach also enables the user to directly modulate the level of assistance through the
parameter ↵ 2 [0, 1], which sets the threshold of the system’s tolerance for suboptimal user
actions.

Standard deep reinforcement learning algorithms pose another challenge for human-in-
the-loop training: they typically require a large number of interactions with environment,
which can be a burden on users. We approach this problem by decomposing the agent’s
reward function into two parts: known terms computed for every state, and a terminal
reward provided by the user upon succeeding or failing at the task. This decomposition
enables the system to learn efficiently from a dense reward signal that captures generally
useful behaviors like not crashing, and also adapt to individual users through feedback.
It also enables pretraining the agent in simulation without a user in the loop, then later
fine-tuning—instead of learning from scratch—with user feedback. To further improve sample
efficiency, our method is capable of incorporating inferred goals into the agent’s observations
when the goal space and user model are known.

We apply our method to two real-time assistive control problems: the Lunar Lander game
and a quadrotor landing task (see Figure 4.1). Our studies with both human and simulated
pilots suggest that our method can successfully improve pilot performance. We find that our
method is capable of adapting to the unique types of suboptimality exhibited by different
simulated pilots, and that by varying a hyperparameter that controls our agent’s tolerance for
suboptimal pilot controls, we are able to help simulated pilots who need different amounts of
assistance. With human pilots, our method substantially improves task success and reduces
catastrophic failure. Finally, we show that when the user policy or goal representation are
known, our method can be combined with adaptations of existing techniques to exploit this
knowledge.

4.2 Related Work

Robotic teleoperation. We build on shared autonomy work in which the system is initially
unaware of the user’s goal [40, 28, 77, 55, 85, 64, 47] and explore problem statements
with unknown dynamics, unknown user policy, and unknown goal representation. The
parallel autonomy [100] and outer-loop stabilization [14] frameworks approach shared-control
teleoperation from a different angle: instead of predicting user intent, they minimally adjust
user input to achieve safe trajectories for tasks like semi-autonomous driving. Our agent’s
policy of executing a near-optimal action closest to the human’s suggestion is inspired by
this approach. Existing work in parallel autonomy requires analytic descriptions of the
environment, such as the explicit locations of road boundaries and a model of the behavior
of other cars. Outer-loop stabilization requires knowledge of the user’s goal. Our method
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is analogous, but for environments in which we do not have a dynamics model or a goal
representation.
Brain-computer interfaces. A large body of work in brain-machine interfaces uses
optimal control and reinforcement learning algorithms to implement closed-loop decoder
adaptation [103] for applications like prosthetic limb controllers that respond to neural signals
from myoelectric sensors [86]. These algorithms typically track desired motion, whereas we
focus on tasks with long-horizon goals.
Reinforcement learning with human feedback. Shared autonomy enables a semi-
autonomous agent to interpret user input at test time. In contrast, human-in-the-loop
reinforcement learning frameworks leverage human feedback to train autonomous agents
that operate independently of the user at test time [112, 62, 63, 69]. These frameworks
are applicable to settings where the agent has access to all task-relevant information (e.g.,
goals), but the reward function is initially unknown or training can be sped up by human
guidance. We focus on the orthogonal setting where the agent does not have direct access
to the information that is private to the user and relevant to the task, and will always
need to leverage user input to accomplish the task; even after training. This is also the key
difference between our method and inverse reinforcement learning [80] and learning from
demonstration [3], which generally require user interaction during training time but not at
test time.
Adaptive HCI. While the bulk of the shared autonomy research discussed here exists
in the context of the robotics literature, adaptive human-computer interfaces have been
explored in computer graphics for animating virtual characters using motion capture data
from humans [27], in natural language processing for learning to act on natural language
instructions from humans [111, 13], and in formal methods for verification of semi-autonomous
systems [101]. By not assuming a known user policy, our work also enables agents to adapt
to a user’s style of giving input.

4.3 Background

We first recap the reinforcement learning and shared autonomy problem statements on which
we build in our method.

Reinforcement Learning

Consider a Markov decision process (MDP) with states S, actions A, transitions T : S ⇥A⇥

S ! [0, 1], reward function R : S ⇥A⇥S ! R, and discount factor � 2 [0, 1]. In cases where
the state is not fully observable, we can extend this definition to a partially-observable MDP
(POMDP) in which there is an additional set of possible observations ⌦ and observation
function O : S ⇥ ⌦ ! [0, 1]. The expected future discounted return of taking action a in
state s with policy ⇡ : S ⇥A! [0, 1] is expressed by the state-action value function Q

⇡(s, a),
and the goal in RL is to learn a policy ⇡

⇤ that maximizes expected future discounted return.
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One algorithm for solving this problem is Q-learning [113], which minimizes the Bellman
error of the Q function,

Q(s, a)� �Es0⇠T (·|s,a)


R(s, a, s

0) + max
a02A

Q(s0, a0)

�
,

as a proxy for maximizing return. We will build on this method to implement model-free
shared autonomy.

Shared Autonomy

Prior work has formalized shared autonomy as a POMDP [55]. The reward function, known
to both the user and agent, depends on a goal g 2 G known to the user but unknown to
the agent. The set of candidate goals G is known to the agent. The user follows a goal-
conditioned policy ⇡h : S ⇥ G ⇥ H ! [0, 1] known to the agent, where H is the space of
possible user inputs—if the user suggests actions, then H = A. The transition distribution
T is known to the agent. The agent’s uncertainty in the goal can be formalized as partial
observability, which leads to the following POMDP: the state space S̃ = S ⇥ G is augmented
with the goal, the transition distribution T̃ ((st+1, g) | st, g, at) = T (st+1 | st, at) maintains
a constant goal, and the observation distribution O(s, ah

| s, g) = ⇡h(ah
| s, g) is given by

the user policy where a
h
2 H is the user input. Prior work assumes the goal space G, user

policy ⇡h, and environment dynamics T are known ex-ante to the agent, and solves the
POMDP (S̃, A, T̃ , R̃, H, O) using approximate methods like hindsight optimization [55]. In
the following section, we introduce a different problem statement for shared autonomy which
relaxes these assumptions.

4.4 Model-Free Shared Autonomy

We will relax the standard formulation in Section 4.3 to remove first the assumptions of known
dynamics and the known observation model ⇡h for the user’s private information, and then
the known set of candidate goals G. We introduce a model-free deep reinforcement learning
method, with variants that can also take advantage of a known observation model and goal
space when they do exist, but still provide assistance even when they are not available.

Problem Statement

In our problem formulation, the transition T , the user’s policy ⇡h, and the goal space G are
no longer all necessarily known to the robot. The reward function, which still depends on the
user’s private information, is decomposed as:

R(s, a, s
0) = Rgeneral(s, a, s

0)
| {z }

known

+ Rfeedback(s, a, s
0)| {z }

unknown, but observed

. (4.1)
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This captures a structure typically present in shared autonomy: there are some terms in the
reward that are known, such as the need to avoid collisions. We capture these in Rgeneral.
Rfeedback is a user-generated feedback that depends on their private information. We do not
know this function. We merely assume the robot is informed when the user provides feedback
(e.g., by pressing a button). In practice, the user might simply indicate once per trial whether
the robot succeeded or not.
Known-User-Policy: Unknown dynamics, known goal space and user policy. In
this setting, the transition T is unknown, but we have access to both G and the user’s
policy ⇡h(ah

|s, g). Having access to G structures Rfeedback, which is now parameterized by the
goal according to Rfeedback(s, a, s

0; g), and assigns high reward when s
0 = g, and 0 otherwise,

without requiring manual indication from the user. We do not know g, but having access to
⇡h enables us to infer g via Bayesian inference.
Known-Goal-Space: Unknown dynamics and user policy, known goal space. We
also consider a version of the problem where we know G, but do not make assumptions about
the user’s policy ⇡h. In this case, Rfeedback is still parameterized by the goal, but we must use
a classification or regression model to predict the goal from the user’s actions.
Min-Assumptions: Unknown dynamics, user policy, and goal space. Most of
our experiments will be concerned with this setting, where we no longer assume a goal
representation. This provides us with a maximally general approach, where the user might
imagine whichever goal they prefer, without the need to explicitly define the space of goals
in advance. In this case, we do not know the functional form of Rfeedback, nor do we assume
any parameterization for it, we merely assume the robot can observe it (evaluate it) as it
takes actions. This is typically a sparse terminal reward that signals whether the task was
completed successfully, and comes from the user.

Method Overview

Our method takes observations of the environment and the user’s controls or inferred goal
(when available) as input, and produces a high value action or control output that is as close
as possible to the user’s control. We learn state-action values via Q-learning with neural
network function approximation. In this section, we will describe how the agent combines user
input with environmental observations, motivate and describe our choice of deep Q-learning
for training the agent, and describe how the agent shares control with the user.

Incorporating User Control

Because we do not know dynamics in any of our problems of interest, we use a deep
reinforcement learning agent which maps observations from its sensors to actions (or Q
values for each action). We incorporate information from the user as useful observations for
the agent. Our method jointly embeds the agent’s observation of the environment st with
the information from the user ut by simply concatenating them. The particular form of ut
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depends on the information that is available. Formally,

s̃t =


st

ut

�
. (4.2)

When we do not know G, we use the user’s actions a
h
t as ut. When we know more about the

possible user goals and policy, we set ut to the inferred goal ĝt.
Known-User-Policy: Incorporating user control via Bayesian goal inference. When
the user’s policy is available, it can be used to infer the maximum a posteriori estimate of
the goal ĝt. We can instantiate Bayesian goal inference by using maximum entropy inverse
reinforcement learning [120] with a goal-parameterized Q function trained via Q-learning
separately from our agent, analogously to prior work [55]. Each time step produces a better
estimate of the goal ĝt, as additional actions reveal more about the user’s intent.
Known-Goal-Space: Incorporating user control via supervised goal prediction.
When we do not have a convenient model of the user’s policy, we can use supervised prediction
to compute the goal estimate ĝt. In this case, we use a separate recurrent LSTM network to
predict the goal, conditioned on the sequence of states and user controls observed up to the
current time t. Training data is collected from the user. As before, we concatenate ĝt with
the agent’s observation of the environment st to get the combined observation s̃t.
Min-Assumptions: Incorporating user control via raw action embedding. In
this setting, which we use in the majority of our experiments, we do not use any explicit
goal inference. Instead, the policy directly takes in the user’s actions a

h
t and must learn to

implicitly decode the user’s intent and perform the task.1 To our agent, the user is part
of the external environment, and the user’s control is yet another source of observations,
much like the output of any of the agent’s other sensors. Because deep neural networks are
end-to-end trainable, our agent can discover arbitrary relationships between user controls
and observations of the physical environment, rather than explicitly assuming the existence
of a goal. Our method jointly embeds the agent’s observation of the environment st with the
user’s control input a

h
t by simply concatenating them, henceforth referred to as “raw action

embedding.” In this setting, we set ut = a
h
t .

Q-Learning with User Control

Model-free reinforcement learning with a human in the loop poses two challenges: (1)
maintaining informative user input and (2) minimizing the number of interactions with the
environment. (1) If the user input is a suggested control, consistently ignoring the suggestion
and taking a different action can degrade the quality of user input, since humans rely on
feedback from their actions to perform real-time control tasks [65]. Additionally, some user
policies may already be approximately optimal and only require fine-tuning. (2) Many
model-free reinforcement learning algorithms require a large number of interactions with

1
In principle, the user’s past actions are also informative of intent, and a recurrent policy could effectively

integrate these. In practice, we found a reactive policy to be more effective for our tasks.
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the environment, which may be impractical for human users. To mitigate these two issues,
we use deep Q-learning [113] to learn an approximate state-action value function that can
be used to select and evaluate actions. Specifically, we implement neural fitted Q-iteration
(NFQI) [96] with experience replay [68], a periodically updated target network [74], and double
Q-learning [109]. This gets around a practical problem with using vanilla deep Q-networks
(DQN) [74] for human-in-the-loop learning: DQN performs a gradient update after each step,
which can cause the task interface to lag and disrupts human control, whereas NFQI only
performs gradient updates at the end of each episode. We chose Q-learning because (a) it
is an off-policy algorithm, so we do not need to exactly follow the agent’s policy and can
explicitly trade off control between the user and agent, and (b) off-policy Q-learning tends to
be more sample-efficient than policy gradient and Monte Carlo value-based methods [51].

Control Sharing

Motivated by the discussion of (1) and (a) in the previous section, we use the following
behavior policy to select actions during and after Q-learning: select a feasible action closest to
the user’s suggestion, where an action is feasible if it isn’t that much worse than the optimal
action. Formally,

⇡↵(a | s̃, a
h) = �

 
a = arg max

{a:Q0(s̃,a)�(1�↵)Q0(s̃,a⇤)}
f(a, a

h)

!
, (4.3)

where f is an action-similarity function and Q
0(s̃, a) = Q(s̃, a)�mina02A Q(s̃, a0) maintains

a sane comparison for negative Q values: if Q(s̃, a) < 0 8a and 0 < ↵ < 1, then the set of
feasible actions would be empty if we didn’t subtract a baseline from the Q values. The
constant ↵ 2 [0, 1] is a hyperparameter that controls the tolerance of the system to suboptimal
human suggestions, or equivalently, the amount of assistance. The functional form of the
action feasibility condition is motivated by the fact that it is invariant to affine scaling of Q
values. The overall algorithm is summarized in Algorithm 2.

4.5 Simulation Experiments

We begin our experiments with an analysis of our method under different simulated users. To
simplify terminology, we henceforth refer to the user as the pilot and the semi-autonomous
agent as the copilot. Our central hypothesis is that our method can improve a pilot’s
performance despite not knowing the world’s dynamics and the pilot’s policy, or assuming
a particular set of goals. Simulating pilots enables us to take a deeper dive into different
aspects of our method (like the effects of the tolerance parameter ↵, and of training and
testing on different types of input) before testing on real users—after all, simulated pilots do
not run out of patience.
The Lunar Lander System. We use the Lunar Lander game from OpenAI Gym [15] (see
the bottom-left panel of Figure 4.1) as our test platform for this part of our experiments.
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Algorithm 2 Human-in-the-loop deep Q-learning
Initialize experience replay memory D to capacity N
Initialize Q-function with random or pretrained weights ✓
Initialize target action-value function Q̂ with weights ✓� = ✓
for episode = 1,M do

for t = 1, T do

Sample action at ⇠ ⇡↵(at | s̃t, aht ) using equation 4.3
Execute action at and observe (s̃t+1, aht+1, rt)
Store transition (s̃t, at, rt, s̃t+1) in D

if s̃t+1 is terminal then

for k = 1 to K do . training loop
Sample minibatch (s̃j , aj , rj , s̃j+1) from D

yj = rj + �Q̂(s̃j+1, argmaxa0 Q(s̃j+1, a0; ✓); ✓�)
✓  ✓ � ⌘r✓

P
j (yj �Q(s̃j , aj ; ✓))

2

Every C steps reset Q̂ = Q
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Figure 4.2: (1,2) A copilot that leverages input from the synthetic LaggyPilot outperforms the
solo LaggyPilot and solo copilot. The colored bands illustrate the standard error of rewards
and success rates for ten different random seeds. Rewards and success rates are smoothed using a
moving average with a window size of 20 episodes. (3) The benefit of using Bayesian goal inference
or supervised goal prediction depends on ↵. Each success rate is averaged over ten different random
seeds and the last 100 episodes of training. (4) The effect of varying ↵ depends on the user model.
Each success rate is averaged over ten different random seeds and the last 100 episodes of training.

The objective of the game is to pilot the lunar lander vehicle to a specified landing site on the
ground without crashing using two lateral thrusters and a main engine. Each episode lasts at
most 1000 steps, and runs at 50 frames per second. An episode ends when the lander crashes,
flies out of bounds, remains stationary on the ground, or time runs out. The action space A

consists of six discrete actions that correspond to the {left, right, off} steering commands
and {on, off} main engine settings. The state s 2 R8 is an eight-dimensional vector that
encodes the lander’s position, velocity, angle, angular velocity, and indicators for contact
between the legs of the vehicle and the ground. The x-coordinate of the landing site is
selected uniformly at random at the beginning of each episode, and is not directly accessible
to the agent through the state s. A human playing the game can see two flags demarcating
the landing site, and can supply a suggested control a

h
2 A—depending on the user policy,
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Table 4.1: Evaluation of simulated pilot-copilot teams on Lunar Lander: on ten different random
seeds and the last 100 episodes of copilot training for teams with a copilot; on 100 episodes for teams
without a copilot.

Without Copilot With Copilot

Pilot Success Rate Crash Rate Success Rate Crash Rate Training Episodes ↵

None - - 0.026 0.156 742 0.0

Sensor 0.000 1.000 0.060 0.650 800 0.2

Laggy 0.150 0.750 0.287 0.186 236 0.8

Noisy 0.150 0.700 0.240 0.160 604 0.5

Optimal 0.720 0.030 - - - -

a
h could be an approximately-optimal action, a signal that encodes the relative direction of

the landing site, etc. Thus, in order to perform the task, the agent needs to leverage a
h to

maneuver toward the landing site.
The agent uses a multi-layer perceptron with two hidden layers of 64 units each to

approximate the Q function Q̂ : S ⇥A
2
! R. The action-similarity function f(a, a

h) in the
agent’s behavior policy counts the number of dimensions in which actions a and a

h agree
(e.g., f((left, on), (left, off)) = 1). As discussed earlier in Section 4.4, the agent’s reward
function is composed of a hard-coded function Rgeneral and a user-generated signal Rfeedback.
Rgeneral penalizes speed and tilt, since moving fast and tipping over are generally dangerous
for any pilot regardless of their intent. Rfeedback emits a large positive reward at the end of
the episode if the vehicle successfully lands at the intended site, or a large negative reward if
it crashes or goes out of bounds.

Testing Unstructured Copilot Performance

We now test the central hypothesis that our method, model-free shared autonomy, improves
a pilot’s performance. We do this first in the Min-Assumptions setting, where the dynamics,
user policy, and goal space are all unknown. We then test our ability to leverage this
information when it exists in the next section.
Manipulated variables. We manipulate (1) the operator team composition: a solo pilot, a
solo copilot, or our method—a pilot assisted by a copilot; and (2) the policy followed by the
simulated pilot—a categorical variable that can take on four values: None (always executes a
noop), LaggyPilot, NoisyPilot, and SensorPilot.

LaggyPilot is an optimal pilot except that it can’t change actions quickly, which for a
real human might be the result of poor reaction time. The LaggyPilot policy is trained as
follows: augment the state vector with the landing site coordinates, train a reinforcement
learning agent using vanilla DQN, and corrupt the trained policy by forcing it to repeat the
previously executed action with fixed probability p = 0.85. This causes each action to repeat
for a number of steps that follows a geometric distribution.

NoisyPilot is an optimal pilot except that it occasionally takes the wrong action, which
for a real human might be the result of mistakenly pressing the wrong key. It uses the same
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training procedure as LaggyPilot but follows an ✏-greedy behavior policy at test time
(✏ = 0.3).

SensorPilot tries to move toward the landing site by firing the appropriate lateral
thruster, but is oblivious to gravity and doesn’t use the main engine; these actions provide
enough signal for an assistive copilot to deduce the location of the landing site, which may
be all the human is willing to do.
Dependent measures. We measure reward, success rate, and crash rate.
Hypothesis. We hypothesize that a pilot-copilot team with a simulated pilot will perform
better on the Lunar Lander game than a solo pilot or solo copilot.
Analysis. The results in Figure 4.2 (first two plots) show that a copilot which leverages
input from LaggyPilot outperforms the solo LaggyPilot and solo copilot: the combined
pilot-copilot team crashes and goes out of bounds less often, uses less fuel, follows stabler
trajectories, and finds the landing site more often than the other two solo teams. The solo
copilot and combined pilot-copilot teams learn from experience, whereas the solo LaggyPilot
is pretrained and frozen; hence the stationarity of the gray curve. Table 4.1 shows that
NoisyPilot and SensorPilot also benefit from assistance, although SensorPilot’s
success rate does not substantially increase.

To measure the sensitivity of the copilot’s performance to the pilot tolerance hyperpa-
rameter ↵ (recall Equation 4.3), we sweep different values of ↵ while shaping the reward
Rfeedback to improve the performance of SensorPilot. The results in Figure 4.2 (bottom
right) show the effects of varying ↵ for different simulated pilot models: ↵ = 0 is optimal for
SensorPilot, and ↵ ⇡ 0.5 is optimal for LaggyPilot and NoisyPilot.

The Benefit of Structure when Structure Exists

In some tasks, the user’s private information will indeed be a goal, and we will indeed know
the set of candidate goals and the policy that user follows given a goal. In this section,
we show the adaptions of our method for Known-Goal-Space and Known-User-Policy from
Section 4.4 can effectively leverage this information when it exists.
Manipulated variables. We manipulate (1) the input decoding mechanism—a categorical
variable that can take on three values: Bayesian goal inference, supervised goal prediction,
and raw action embedding; and (2) the pilot tolerance ↵ 2 [0, 1]—a continuous variable
sampled uniformly across the unit interval.
Hypothesis. We hypothesize that a copilot that uses Bayesian goal inference or supervised
goal prediction to interpret user control inputs from LaggyPilot will outperform a copilot
that uses raw action embedding.
Analysis. The results in Figure 4.2 (third plot) show that when the goal space and user
model are known, Bayesian goal inference and supervised goal prediction outperform raw
action embedding. Bayesian goal inference enables much better assistance when the user
model is approximately correct: LaggyPilot behaves similarly enough to an optimal pilot
that maximum entropy inverse reinforcement learning generates high-accuracy estimates
of the landing site. As a result, Bayesian goal inference performs better than supervised
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Table 4.2: Training and testing with different pilots on Lunar Lander. Success rates shown for 100
episodes.

Evaluation Pilot

Training Pilot None Sensor Laggy Noisy

None 0.02 0.02 0.29 0.04

Sensor 0.18 0.46 0.31 0.23

Laggy 0.00 0.00 0.31 0.23

Noisy 0.10 0.10 0.38 0.21

goal prediction and raw action embedding on LaggyPilot. We conclude that when an
approximately correct user model is available, one should take advantage of it by using
Bayesian goal inference instead of supervised goal prediction or raw action embedding. When
the user model is unknown ex-ante, then one should use supervised goal prediction instead of
raw action embedding.

Adapting to Diverse Users

Next, we investigate to what extent the copilot’s learned policy is adapted to the pilot it
assists at training time. User-specific adaptation is important because it would enable our
method to generalize to tasks in which users display a range of behavior policies with distinct
types of errors that cannot simultaneously be corrected by a general assistance feature.
Manipulated variables. We manipulate (1) the policy followed by the simulated pilot used
to train the copilot and (2) the policy followed by the simulated pilot used to evaluate the
copilot—both categorical variables that can each take on four values: None (always executes
a noop), SensorPilot, LaggyPilot, and NoisyPilot.
Hypothesis. We hypothesize that the copilot learns an assistive policy that is personalized
to the individual user, and that a copilot trained with one type of simulated pilot will perform
better if evaluated with the same type of pilot than with a different pilot.
Analysis. The results in Table 4.2 hint that the copilot trained to assist SensorPilot
acquires a relatively unique assistive policy, and that assisting SensorPilot requires some-
thing qualitatively different than assisting other pilots. A copilot trained with SensorPilot
does not help other simulated pilots as well as it helps SensorPilot. Copilots trained
with non-SensorPilot pilots do not assist SensorPilot as well as a copilot trained with
SensorPilot. In contrast, a copilot evaluated with LaggyPilot or NoisyPilot performs
equally well when trained with either of those two pilots. These results may be explained by
the fact that SensorPilot implements a goal-signaling policy that is qualitatively distinct
from LaggyPilot and NoisyPilot, which both implement policies based on perturbations
of an optimal pilot.

Another takeaway from Table 4.2 is that a copilot trained without a pilot learns an
assistive policy that is just as effective at helping LaggyPilot as a copilot policy trained
with LaggyPilot in the loop. This suggests that the copilot can still learn useful assistive
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Figure 4.3: (1) Evaluation of real humans on Lunar Lander. Success and crash rates averaged over
30 episodes for teams with human pilots. (2) Evaluation of real humans on the quadrotor perching
task. Success and crash rates averaged over 20 episodes. (3) Pilot-copilot teams in the Lunar Lander
game are able to switch between actions more quickly than solo human pilots, which enables them
to better stabilize flight. (4) On their own, users tend to provide input at a constant rate throughout
an episode. When assisted by a copilot, users initially rotate the drone to orient the camera at the
target object, then defer to the copilot to fly to the landing pad.

behaviors even when there is no pilot in the loop during training. Furthermore, it may
enable us to save human pilots time by pretraining the copilot without the human pilot, then
fine-tuning the pretrained copilot with the human pilot.

4.6 User Study with a Game Agent

We saw in simulation that our method can improve the performance of different kinds of
pilots. Next, we test whether it can actually help real people in a teleoperation task.
Manipulated variables. We manipulated the team structure: solo copilot, solo human pilot,
and our method—human pilot with a copilot. We use the same Lunar Lander environment
for this part of the experiment. Rfeedback is a terminal reward as before.
Dependent measures. Our objective measures are success rate and crash rate. We
additionally introduce some informal subjective measures, where in each condition we ask
participants about their experience, to help us understand their perception of the copilot.
Hypothesis. We hypothesize that a pilot-copilot team with a real human pilot will perform
better than a solo human pilot or solo copilot.
Subject allocation. We recruited 11 male and 1 female participants, with an average age of
24. Each participant was provided with the rules of the game and a short practice period of 20
episodes to familiarize themselves with the controls and dynamics. To avoid the confounding
effect of humans learning to play the game better over time, we counterbalanced the order of
the two conditions that required human play (solo pilot, and assisted pilot). Each condition
lasted 30 episodes.

To speed up learning, the copilot was pretrained without a pilot in the loop then fine-tuned
on data collected from the human pilot. Pilot tolerance ↵ = 0.6 was chosen heuristically to
match the difficulty of the game and the average human user’s skill level. The default game
environment is too challenging for human pilots, so it was modified to make the vehicle’s legs
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more resistant to crashing on impact with the ground. Additionally, pilot tolerance was set
to ↵ = 0 when the human was not pressing any keys, and an additional key was introduced
to enable the user to explicitly enter a noop input with ↵ = 0.6.
Analysis. Figure 4.3 (first plot) shows a clear quantitative and qualitative benefit to
combining a real human pilot with a copilot. Humans follow a tortuous path with sudden
drops and difficult course corrections, leading to fewer successes and more crashes. With
a copilot, the human follows a smooth, gradual descent to the landing site, leading to
significantly more successes and significantly fewer crashes than without a copilot for each of
the participants. We ran a repeated measures ANOVA with the presence of the copilot as a
factor influencing success and crash rates, and found that f(1, 11) = 165.0001, p < 0.0001 for
the success rate and f(1, 11) = 259.9992, p < 0.0001 for the crash rate. The combined human
pilot-copilot team succeeds significantly more often than the solo copilot, at the expense
of crashing significantly more often. For each of the participants, we ran a binomial test
comparing their success rate and crash rate in the combined pilot-copilot team to those of
the solo copilot and found that p < 0.01 for all comparisons.

The subjective evaluations generally suggest that users benefited from the copilot. The
assistive system was particularly helpful in avoiding crashing, but perceived to be somewhat
inconsistent in its behavior and too aggressive in stabilizing flight at the expense of slowing
down the lander’s descent.

4.7 User Study with a Physical Robot: Quadrotor

Perching

One of the drawbacks of analyzing Lunar Lander is that the game interface and physics do
not reflect the complexity and unpredictability of a real-world robotic shared autonomy task.
To evaluate our method in a more realistic environment, we formulate a “perching” task for a
real human flying a real quadrotor: land the vehicle on a level, square landing pad at some
distance from the initial take-off position, such that the drone’s first-person camera is pointed
at a specific object in the drone’s surroundings, without flying out of bounds or running out
of time. Perching a drone at an arbitrary vantage point enables it to be used as a mobile
security camera for surveillance applications. Humans find it challenging to simultaneously
point the camera at the desired scene and navigate to the precise location of a feasible landing
pad under time constraints. An assistive copilot has little trouble navigating to and landing
on the landing pad, but does not know where to point the camera because it does not know
what the human wants to observe after landing. Together, the human can focus on pointing
the camera and the copilot can focus on landing precisely on the landing pad.
Robot task. Figure 4.1 (b, c) illustrates the experimental setup. We fly the Parrot AR-Drone
2 in an indoor flight room equipped with a Vicon motion capture system to measure the
position and orientation of the drone as well as the position of the landing pad. Users are only
allowed to look through the drone’s first-person camera to navigate, and are blocked from
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getting a third-person view of the drone. Each episode lasts at most 30 seconds. An episode
begins when the drone finishes taking off. An episode ends when the drone lands, flies out of
bounds, or time runs out. The action space A consists of 18 discrete actions that correspond
to moving left, right, forward, back, descending, or hovering in place and simultaneously
rotating (yawing) clockwise, counter-clockwise, or not rotating. The state s 2 R10 is a
ten-dimensional vector that encodes the vehicle’s position, velocity, angle, angular velocity,
and the horizontal components of the difference between the landing pad position and the
vehicle’s position. At the beginning of each episode, the starting position and orientation of
the drone are randomized and the user is told that their goal is to point the camera at an
object selected randomly from a set of four in the vicinity: a red chair, a gray chair, white
styrofoam boards, or a door. The agent’s state does not include this target orientation, which
is necessary for success. Success is defined as landing on the pad (evaluated automatically
using motion tracking) while orienting the camera at the correct object, which is evaluated by
the human experimenter with a button press at the end of the episode. Crashing is defined
as landing outside the landing pad or going out of bounds.

As before, the agent uses a multi-layer perceptron with two hidden layers of 64 units each
to approximate the Q function Q̂ : S ⇥A

2
! R. The action-similarity function f(a, a

h) in
the agent’s behavior policy counts the number of dimensions in which actions a and a

h agree
(e.g., f((left, rotate clockwise), (left, rotate counter-clockwise)) = 1). As discussed earlier in
Section 4.4, the agent’s reward function is composed of a hard-coded function Rgeneral and a
user-generated signal Rfeedback. Rgeneral penalizes distance from the landing pad, since moving
toward the pad is generally useful to all pilots regardless of their desired camera orientation.
Rfeedback emits a large positive reward at the end of the episode if the task was completed
successfully, or a large negative reward in the event of a crash.
Manipulated variables. We manipulate the pilot-copilot team membership as before.
Dependent measures. Performance is measured using the dependent factors of success
rate and crash rate. As before, we ask participants about their experience (see Table 2 in the
supplementary material) to help us understand their perception of the copilot.
Hypothesis. We hypothesize that a pilot-copilot team with a real human pilot will perform
better on the quadrotor perching task than a solo human pilot or a solo copilot.
Subject allocation. We recruited 3 male and 1 female participants, with an average age of
23. Each participant was provided with the rules of the game and a short practice period of 2
episodes to familiarize themselves with the controls and dynamics. To avoid the confounding
effect of humans learning to play the game better over time, we counterbalanced the order of
the two conditions that required human play (solo pilot, and assisted pilot). Each condition
lasted 20 episodes.

To speed up learning, the copilot was pretrained in simulation without a pilot in the loop
then fine-tuned on data collected from the human pilot. The pretraining simulation assumed
an idealized physics model in which the drone is a point mass, there are no external forces,
linear velocity commands are executed without any noise, and sensors have zero measurement
error. In the pretraining simulation, a target angle (yaw) is randomly sampled for each
episode to simulate the random choice of a target object for the camera in the real world. As
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before, the agent cannot directly access this target angle through its state.
With a real human pilot in the real world, pilot tolerance was set to ↵ = 0 when the

human was not pressing any keys, and otherwise set to ↵ = 1.
Analysis. Figure 4.3 (second plot) shows a clear quantitative and qualitative benefit to
combining a real human pilot with a copilot. Humans are rarely able to arrive at the landing
pad, leading to fewer successes and more crashes. With a copilot, the human consistently gets
to the landing pad, leading to significantly more successes and significantly fewer crashes than
without a copilot. The sample size of n = 4 participants is relatively small, so the evidence is
mainly anecdotal and should be interpreted in the context of the larger simulation experiments
and user study on the Lunar Lander game. With that in mind, we ran a repeated measures
ANOVA with the presence of the copilot as a factor influencing success and crash rates, and
found that f(1, 3) = 44.1045, p < 0.01 for the success rate and f(1, 3) = 62.3151, p < 0.01
for the crash rate. The combined human pilot-copilot team succeeds significantly more
often than the solo copilot, at the expense of crashing significantly more often. For each
of the participants, we ran a binomial test comparing their success rate and crash rate in
the combined pilot-copilot team to those of the solo copilot and found that p < 0.01 for all
comparisons. The subjective evaluations in Table 2 of the supplementary material generally
suggest that users benefited from the copilot.

4.8 Discussion

In this paper, we contribute an algorithm for shared autonomy that uses model-free rein-
forcement learning to help human users with tasks with unknown dynamics, user policies,
and goal representations. We introduce a behavioral policy for deep Q-learning that enables
users to directly control the level of assistance, as well as a decomposition of the reward
function that enables the system to quickly learn generally useful behaviors and also adapt
to individual users. Our user studies with a virtual agent and a real robot suggest that this
method can indeed be effective at improving user performance.

Several weaknesses and open questions remain to be addressed. Inferring user intent
in general will require memory. Several existing techniques may accomplish this, including
concatenating m previous frames with the current observation, or adding recurrent connections
to the copilot policy architecture as in [48]. Finally, users will adapt to the robot’s interface,
and explicitly capturing this may improve copilot training and inform theoretical guarantees
on convergence [81].
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Chapter 5

Conclusions and Future Work

We’re each of us alone, to be
sure. What can you do but hold
your hand out in the dark?

—Ursula K. Le Guin, Nine
Lives (1968)

Humans generally know what they want, but can have trouble achieving it due to
systematic biases in perception and planning that lead to suboptimal behavior. Machines
generally don’t know what their human operators want, but are often capable of sensing
and controlling complex systems without the limitations of human cognitive biases. In this
thesis, we presented various methods for building assistive interfaces that combine human
and machine intelligence to perform challenging sequential decision-making tasks.

The most promising area for future work on these methods is brain-computer interfaces
[19, 104], which have the potential to help patients who have lost motor function regain their
independence and flourish. For example, the internal-to-real dynamics transfer assistance
method from Chapter 3 and the human-in-the-loop Q-learning method from Chapter 4 could
be used to improve the accuracy of decoders that predict the user’s desired action given
the user’s brain activity. Furthermore, recent work on audio-visual speech entrainment [35],
haptics [25], lingual nerve stimulation [75], and intracortical stimulation of somatosensory
cortex [31] suggests that improving feedback is at least as important as improving action
decoding accuracy for closed-loop brain-computer interfaces. The assistive state estimation
algorithm from Chapter 2 could be used to optimize observations (e.g., haptic feedback
patterns) for this purpose.

Another promising direction for future research is machine theory of mind [89] and AI
alignment. Prior work has shown that, in order to accurately infer human preferences from
demonstration data, one must make assumptions about the rationality of human behavior
[5]. However, making the wrong assumptions (e.g., assuming humans are noisily-rational
when they are actually systematically biased) can lead to inaccurate estimates of the human



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 53

reward function [20]. The training methods discussed in Chapters 2 and 3 could be useful for
learning a model of human irrationality from demonstration data, akin to prior work [102].
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6.1 Optimizing Observations to Communicate State

Simulation Experiments

One of the drawbacks of running a user study with human participants is that, while we can
measure task performance, we cannot directly measure the accuracy of users’ internal beliefs
about the current state. Studying how ASE scales with the amount of observation delay,
training data, and other factors would also require a prohibitive number of human-in-the-loop
experiments. To that end, we run experiments with simulated users on indoor navigation
and MNIST digit classification.

Improving Accuracy of Users’ Internal Beliefs

Our third experiment seeks to answer Q3: can we improve the accuracy of simulated users’
internal beliefs? We test this hypothesis in an indoor navigation task with a more realistic
environment than the 5x5 layout from the user study: we take one floor of a 3D house
from the Matterport3D dataset [21], and discretize it into a navigable 2D grid using the
Habitat framework [71]. The simulated user’s belief update bH is identical to the assistant’s
belief update b, except that it ignores any observation that consists of more than one object.
The assistant knows the simulated user’s belief update bH. Note that this differs from the
5x5 experiment in Section 2.4, in which the user’s belief update was not only bandwidth-
constrained, but also tainted by a misspecified observation model due to the presence of
unknown objects whose locations were not plotted in the user’s mental map. The purpose of
this experiment is not to test if ASE can learn a user model, but rather to test the accuracy
of the user’s induced beliefs. Appendix 6.1 describes the experimental setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that passively shows the
ambient observation generated by the environment and (2) ASE.
Dependent measures. We measure success rate, distance to the goal at the end of the
episode, number of steps taken to reach the goal, and the user’s internal log-likelihood of the
true state.
Analysis. Table 6.1 show that ASE substantially outperforms the unassisted and random
baselines in improving the accuracy of the user’s internal beliefs. ASE tends to inform the
user of landmark objects that are more likely to be seen from the current state than in other
states – like gym equipment, paintings, and showers – enabling the user to infer the current
state more accurately. In the unassisted condition, the user tends to receive observations of
objects that are common not only in the current state but also common across states – like
walls, floors, and ceilings – which makes it difficult to identify the current state. This result
illustrates that ASE can be used to improve situational awareness, independent of the user’s
desired task.
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Goal True 
state

Estimated 
state

Simulated user’s 
internal beliefs

Guide’s camera image 
(not observable to user)

Simulated user’s mental map 
of object locations

Guide’s object segmentation
(not observable to user)

Audio guidance about nearby objects

Figure 6.1: A simulated blind user navigating an indoor environment, using audio guidance about
nearby objects to estimate position and orientation (the same problem setting as Figure 2.1). The
assistant sees the RGB camera image, uses the semantic mesh from the dataset to determine the
list of visible objects, then replaces the ambient observation (gray), which was sampled uniformly
at random from the list of visible objects, with an optimized observation (orange) that minimizes
KL-divergence (Equation 2.3). The simulated user knows the locations of all objects, and can use
this mental map to infer their current position and orientation given observations of nearby objects
and memory of past movements.

Success Rate Distance to Goal Time to Goal Belief in True State

Unassisted (Baseline) 0.73 ± 0.04 0.10 ± 0.02 70.87 ± 2.72 �1.70 ± 0.02
Random (Baseline) 0.02 ± 0.01 1.00 ± 0.04 99.99 ± 0.71 �20.44 ± 0.08
ASE (Our Method) 1.00 ± 0.00 0.00 ± 0.00 38.55 ± 1.60 �0.72 ± 0.02

Table 6.1: Habitat navigation experiments that address Q3 – can we improve the accuracy of
simulated users’ internal beliefs? – by comparing our method (ASE), which synthesizes an informative
observation that fits within the simulated user’s sensor bandwidth, to baselines that either use
ambient observations generated by the environment (Unassisted) or randomly generate observations
(Random). The results show that our method (ASE) substantially outperforms the baselines
(Unassisted and Random). The simulated user’s internal beliefs are represented as log-likelihoods.
We measure standard error across 100 evaluation episodes.

Scaling to Multivariate User Models

Our fourth experiment seeks to answer Q4: given enough demonstration data, can ASE learn
complex models of the user’s state estimation process? We test this hypothesis in the MNIST
domain from Section 2.4. We simulate a user by training an LSTM sequence model to predict
the image label given a sequence of pixel observations. We define the simulated user’s belief
update bH using Equation 2.2, where the state encoder fH maps a sequence of observations to
a 32-dimensional hidden state. This hidden state is distinct from the hidden state produced
by the assistant’s state encoder f , due to the difference between the assistant’s reconstruction
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Figure 6.2: MNIST experiments that address Q4 – given enough demonstration data, can ASE
learn complex models of the user’s state estimation process? – by comparing our method (ASE),
which learns a model of the simulated user, to a baseline variant of our method that does not learn
a model (Naïve ASE). The results show that with enough training data, the personalized assistant
outperforms the naïve assistant by more accurately predicting the effect of a given observation on
the simulated user, and thus providing more informative observations to the simulated user. We
measure standard error across 5 random seeds and 1000 evaluation episodes.

objective (described in Section 2.4) and the simulated user’s classification objective. ASE
represents the user’s state encoder as a recurrent neural network f✓ with 32 hidden units,
and defines the user model b✓ via Equation 2.2. Appendix 6.1 describes the experimental
setup in more detail.
Manipulated factors. We evaluate (1) an unassisted baseline that passively shows the
ambient observation generated by the environment; (2) a naïve version of ASE that does
not train the user model; and (3) ASE, where we learn ✓ from episodes generated iteratively
using Algorithm 1. The naïve assistant incorrectly assumes the user’s state encoder fH is
equivalent to the assistant’s state encoder f , except that it can only process one row of pixels
per timestep. We vary the number of training episodes |D| in the ASE condition.
Dependent measures. We measure per-timestep classification accuracy, as in Section 2.4.
Analysis. Figures 6.2 shows that with enough training episodes in D, ASE can learn a model
of the simulated user that enables it to outperform a naïve version of ASE that assumes the
simulated user’s belief update uses the same state encoder as the assistant’s. This result
demonstrates that ASE can scale to training an expressive, recurrent neural network model
of the user’s belief update b✓.

Scaling to Longer Observation Delays

Our fifth experiment seeks to answer Q5: does ASE still improve the user’s performance
when observations are severely delayed? We test this hypothesis with simulated users in
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Figure 6.3: Car Racing experiments that address Q5 – does ASE still improve the user’s performance
when observations are severely delayed? – by comparing our method (ASE), which tries to ‘undo’
the observation delay dmax by predicting the current state and showing the user an observation
representative of the predicted current state, to baselines that either show the human the outdated
ambient observation generated by the environment (Unassisted) or randomly generate observations
(Random). The results show that ASE substantially improves the simulated user’s task performance
(left plot) and the simulated user’s internal state estimation accuracy (right plot), especially when
the delay dmax is high. We measure standard error across 20 evaluation episodes. The gap between
ASE and the oracle can be attributed to imperfections in the assistant’s learned dynamics model,
which is used to define its state encoder f .

the Car Racing domain from Section 2.4. We simulate the user using an expert policy
trained via the model-based reinforcement learning method described in [43]. In addition to
manipulating the assistance condition as in Section 2.4, we also manipulate the observation
delay dmax 2 {0, 1, 2, ..., 20}. The delay dmax controls the length of the no-delay and delay
phases. For example, in the user study in Section 2.4, the no-delay and delay phases each
lasted 5 timesteps, which corresponds to dmax = 5. In addition to measuring the task return,
we also measure the simulated user’s internal log-likelihood of the true state at each timestep.

Figure 6.3 shows that ASE substantially outperforms the unassisted and random baselines
(orange vs. gray and red curves) in assisting simulated users. ASE helps the simulated
user by predicting the current state given outdated observations, then showing the user an
observation representative of the predicted current state. These predictions are not perfect,
as shown by the gap between ASE and the oracle (orange vs. green curve), but still align
the simulated user’s beliefs more closely with the true state. As the delay dmax increases,
the assistant’s dynamics model – which is used to define its state encoder f (see Section
2.4) – is not able to accurately predict the current state. Hence, both assisted and unassisted
performance decrease as the delay increases.
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Implementation Details

We use Adam [58] to perform gradient descent on the objective in Equation 2.5.
MNIST. There are T = 28 timesteps per episode, and the user can change their label at each
timestep. Each observation consists of zero or more row indices and corresponding pixel values:
⌦ = ([28] ⇥ R28)⇤, where [28] = {1, 2, ..., 28} denotes the set of row indices, and ⇤ denotes
the Kleene star. Let I1:28,1:28 2 R28⇥28 denote the full image. The environment initially emits
the full image observation o0 = ((1, I1,1, I1,2, ..., I1,28), (2, I2,1, ...), ..., (28, I28,1, ...)), and the
assistant observes it. We define the assistant’s belief update b using Equation 2.2, where the
state encoder f is an LSTM sequence model [53] trained to reconstruct the full image given
a sequence of pixel observations. We assume that the user’s state estimation process lies in a
singleton hypothesis space B = {bH}, where bH is identical to the assistant’s belief update b,
except that it ignores any observation that consists of more than one row of pixels.

Under these assumptions, the optimal synthetic observation õt consists of exactly one
row of pixels. Furthermore, õt minimizes the Euclidean distance between the user’s latent
state f(õ0:t�1, õt) after observing the partial image, and the assistant’s latent state f(o0)
after observing the full image (taking �

2
! 0 in the assistant’s belief update in Equation 2.2

simplifies the KL-divergence to the Euclidean distance between mean states). To compute
the assistant’s belief state after observing the full image at time t = 0, we break up the
full image into an arbitrary sequence of pixel row observations, and feed each observation
to the RNN state encoder f one by one. Note that all of this occurs immediately after the
assistant observes the full image at time t = 0: by the time the assistant computes the
optimal observation for the user at time t = 0, the assistant has already processed the entire
sequence of observations. In the simulation experiment in Appendix 6.1, we train a policy ⇡✓

(to model user actions via Equation 2.4) end to end with the state estimation model b✓.
Car Racing. There are a maximum of T = 1000 timesteps per episode. Each observation
consists of an image and a binary feature that indicates whether the image is delayed:
⌦ = R64x64

⇥ {0, 1}, where 0 indicates no delay and 1 indicates delay. We define the
assistant’s belief update b using Equation 2.2, where the state encoder f is composed of a
recurrent neural network (RNN) dynamics model [98] and a variational auto-encoder model
of image observations (VAE) [59] trained on random trajectories [43]. The state space S is
the 256-dimensional latent space of the RNN f . The VAE uses a 32-dimensional latent space
to model 64x64 RGB image observations. We assume that the user’s state estimation process
lies in a singleton hypothesis space B = {bH}, where bH is identical to the assistant’s belief
update b, except that it ignores the binary delay indicator in the observations and simply
assumes all observations are not delayed.

Under these assumptions, the optimal synthetic observation õt minimizes the Euclidean
distance between the user’s latent state f(õ0:t�1, õt, a0:t�1) and the assistant’s latent state
f(o0:t, a0:t�1) (as in MNIST, taking �

2
! 0 in the assistant’s belief update in Equation 2.2 sim-

plifies the KL-divergence to the Euclidean distance between mean states). If the last d observa-
tions are delayed, we approximate this solution using a prediction of a current, non-delayed ob-
servation: õt  ôt. This prediction is made by replacing the delayed observations ot�d+1:t with
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recursively predicted, non-delayed observations ôi>t�d = (g(f(o0:t�d, ôt�d+1:i�1, a0:i�1)), 0)
from the RNN state encoder f and VAE image decoder g, where the 0 indicates that the
predicted observation is not delayed.
2D navigation. The states are arranged in a 5x5 grid, and the number of states is
|S|= 100. Each state (x, y, �) contains a discrete position x, y 2 N and discrete orientation
� 2 {N, S, E, W}. The actions, A = {turn left, turn right, move forward}, change the user’s
orientation or position deterministically. There are a maximum of T = 25 timesteps per
episode. The environment contains a discrete set of 78 objects (26 in each of the 3 categories):
X = {chair, window, bathtub, painting, ...}. The observation space is the power set of the
set of objects: ⌦ = P(X ). The observation model p

obs(o|s) is a delta function on the subset
of all objects o visible from state s. The assistant knows the locations of all objects, and can
observe all objects in front of the user simultaneously: in other words, the assistant performs
Bayesian belief updates (Equation 2.1) using the true observation model p

obs. We compute
the optimal synthetic observation õt by simply enumerating the singleton sets of objects in
⌦ and computing the KL-divergence (Equation 2.3) for each possible value of õt. We set
the (goal-conditioned) policy ⇡(a|s; g) / exp (Q(s, a; g)), which is used to model user actions
in Equation 2.4, to take the shortest path to the goal: the value function Q is computed
using tabular soft Q-iteration [113, 11] with a reward function that gives a constant negative
penalty for each state transition that does not reach the goal.
Lunar Lander. We blend the color of the lander’s body with the background to make it
difficult for the user to see, making the tilt indicator more prominent. Each episode ends
when the lander contacts the ground, which typically occurs at T = 115 timesteps. We define
the assistant’s belief update b using Equation 2.2, where the state encoder f simply passes
through the most recent observation: f(o0:t, a0:t�1) = ot. We hardcode the optimal policy ⇡

used to model user actions in Equation 2.4: if the angle st > 0, then fire the right thruster to
counter-rotate the vehicle counter-clockwise; or if the angle st < 0, then fire the left thruster
to counter-rotate the vehicle clockwise. To simplify the integral in Equation 2.4, we take
�
2
! 0 in the model of the user’s belief update b✓ (Equation 2.2).

Habitat navigation. The number of states is |S|= 1640. The number of objects is |X |= 34.
The initial state distribution is uniform: s0 ⇠ Unif(S). At the beginning of the episode, the
user has a uniform belief distribution over possible initial states. For each episode, we sample
a goal state uniformly at random from S. There are a maximum of T = 100 timesteps per
episode.
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Table 6.2: Car Racing User Study

p-value Unassisted ASE
I was able to keep the car on the road < .0001 1.67 3.75

I could anticipate the consequences of my steering actions < .001 2.25 4.17

I could tell when the car was about to go off road < .01 3.08 4.33

I could tell when I needed to steer to keep the car on the road < .05 3.17 4.83

I was often able to determine the car’s current position < .05 3.50 4.75

using the picture on the screen
I could tell that the picture on the screen was sometimes delayed < .001 6.83 4.25

The delay made it harder to perform the task < .01 6.58 4.83

Subjective evaluations from 12 participants. Means reported below for responses on a 7-point Likert
scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly Agree.
p-values from a one-way repeated measures ANOVA with the presence of assistance as a factor
influencing responses.

Table 6.3: 2D Navigation User Study

p-value Unassisted Assisted

N
ai

ve
A

SE I was often able to infer my current position and orientation > .05 5.50 5.67
I was often able to move toward the goal > .05 5.50 5.58
I often found the guidance helpful > .05 6.00 5.50
I often forgot which position and orientation I believed was in > .05 3.17 3.25

A
SE

I was often able to infer my current position and orientation < .01 5.50 6.83

I was often able to move toward the goal < .01 5.50 6.83

I often found the guidance helpful < .01 6.00 6.92

I often forgot which position and orientation I believed was in < .01 3.17 1.42

Subjective evaluations from 12 participants. Means reported below for responses on a 7-point Likert
scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly Agree.
p-values from a one-way repeated measures ANOVA with the presence of assistance as a factor
influencing responses.

Table 6.4: Lunar Lander User Study

p-value Unassisted ASE
I could tell when the lander was tilted < .05 5.67 6.33

I was able to straighten the lander before it tilted out of control > .05 4.42 4.58

Subjective evaluations from 12 participants. Means reported below for responses on a 7-point Likert
scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly Agree.
p-values from a one-way repeated measures ANOVA with the presence of assistance as a factor
influencing responses.
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Figure 6.4: For a given episode number, each circle represents a different user. Each dashed line shows
an ordinary least squares regression model trained on the data from a particular phase. Though we
did not counterbalance the unassisted and ASE phases (only the unassisted and naïve ASE phases),
the learning effect does not appear to be a substantial confounder. Performance is relatively constant
during the unassisted phase, and sharply improves once the ASE phase begins. This suggests that
the improvement in performance between the unassisted and ASE phases is primarily due to the
introduction of the ASE assistant, rather than a learning effect. We plot the tilt at timestep 80 for
Lunar Lander, since that is when the performance improvements from assistance tend to appear (see
plot (a) in Figure 2.5).
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6.2 Inferring Beliefs about Behavior from Dynamics

Experiments

Grid World Navigation

In Section 3.3 (in the main paper), we described two ways to adapt our algorithm to MDPs
with a continuous state space: constraint sampling, and choosing a deterministic model of the
internal dynamics. In this section, we evaluate our method on an MDP with a discrete state
space in order to avoid the need for these two tricks. Our goal is to learn the internal dynamics
and use it to assist the user through internal-to-real dynamics transfer. To sanity-check our
algorithm and analyze its behavior under various hyperparameter settings and regularization
choices, we implement a simple, deterministic grid world environment in which the simulated
user attempts to navigate to a target position.
Hypothesis. Our algorithm is capable of learning accurate tabular representations of the
internal dynamics for MDPs with a discrete state space. The two regularization schemes
proposed in Section 3.3 (in the main paper) improve the quality of the learned internal
dynamics model.
Task description. The state space consists of 49 states arranged in a 7x7 grid. The action
space consists of four discrete actions that deterministically move the agent one step in each
of the cardinal directions. The reward function emits a large bonus when the agent hits the
target, a large penalty when the agent goes out of bounds, and includes a shaping term that
rewards the agent for moving closer to the target. An episode lasts at most 100 timesteps.
Each of the 49 states is a potential target, so the environment naturally yields 49 distinct
tasks.
Corrupting the internal dynamics. To simulate suboptimal behavior, we create two
users: one user whose action labels have been randomly scrambled in the same way at all
states (e.g., the user’s ‘left’ button actually moves them down instead, and this confusion
is the same throughout the state space), and a different user whose action labels have been
randomly scrambled in potentially different ways depending on which state they’re in (e.g.,
‘left’ takes them down in the top half of the grid, but takes them right in the bottom half).
We refer to these two corruption models as ‘globally scrambled actions’ and ‘locally scrambled
actions’ respectively. The users behave near-optimally with respect to their internal beliefs
of the action labels, i.e., their internal dynamics, but because their beliefs about the action
labels are incorrect, they act suboptimally in the actual environment.
Evaluation. We evaluate our method on its ability to learn the internal dynamics models
of the simulated suboptimal users, i.e., on its ability to unscramble their actions, given
demonstrations of their failed attempts to solve the task. The dependent measures are the
next-state prediction accuracy of the learned internal dynamics compared to the ground truth
internal dynamics, as well as the user’s success rate when they are assisted with internal-to-real
dynamics transfer (see Section 3.4 in the main paper) using the learned internal dynamics.
Implementation details. We use tabular representations of the Q✓i functions and the
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Figure 6.5: Error bars show standard error on ten random seeds. Corrupting the internal dynamics
of the simulated user by scrambling actions the same way at all states (top and bottom left plots)
induces a much easier internal dynamics learning problem than scrambling actions differently at
each state (top and bottom right plots).

internal dynamics T�. We collect 1000 demonstrations per training task, set ⇢ = 2 · 10�3 in
Equation 3.6 (in the main paper), and enumerate the constraints in Equation 3.6 (in the
main paper) instead of sampling.
Manipulated factors. We manipulate (1) whether or not the user receives assistance in
the form of internal-to-real dynamics transfer using the learned internal dynamics model – a
binary variable; (2) the number of training tasks on which we collect demonstrations – an
integer-valued variable between 1 and 49; (3) the structure of the internal dynamics model –
a categorical variable that can take on two values: state intent, which structures the internal
dynamics in the usual way, or action intent, which uses Equation 3.7 (in the main paper)
instead; and (4) the user’s internal dynamics corruption scheme – a categorical variable that
can take on two values: globally scrambled actions, or locally scrambled actions.
Analysis. Figure 6.5 provides overall support for the hypothesis that our method can
effectively learn a tabular representation of the internal dynamics for an MDP with a discrete
state space. The learned internal dynamics models are accurate with respect to the ground
truth internal dynamics, especially when the user’s internal dynamics corruption is systematic
throughout the state space (top and bottom left plots).

We also compare the two regularization schemes discussed in Section 3.3 (in the main
paper): training on multiple tasks, and imposing an action intent prior. Internal models
are easier to learn when the user demonstrates their behavior on multiple training tasks, as
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shown by the increase in accuracy as the number of tasks (on the horizontal axis) increases.
Regularizing the internal dynamics using action intent can be useful in some cases when
the internal dynamics systematically deviate from the real dynamics, like when the user’s
actions are scrambled in the same way throughout the state space (top and bottom left
plots, compare orange vs. teal curve), but can have a varying effect in other cases where
the internal dynamics are severely biased away from reality, like when the action scrambling
varies between states (top and bottom right plots, compare orange vs. teal curve).

2D Continuous Navigation

In the previous section, we adopted a tabular grid world environment in order to avoid
constraint sampling in Equation 3.6 (in the main paper). Now, we would like to show that
our method still works even when we sample constraints to be able to handle a continuous
state space.
Hypothesis. Our algorithm can learn accurate continuous representations of the internal
dynamics for MDPs with a continuous state space.
Task description. As mentioned in Section 3.1 (in the main paper), a classic study in
cognitive science shows that people’s intuitive judgments about the physics of projectile
motion are closer to Aristotelian impetus theory than to true Newtonian dynamics [18]. In
other words, people tend to ignore or underestimate the effects of inertia. Inspired by this
study, we create a simple 2D environment in a which a simulated user must move a point
mass from its initial position to a target position as quickly as possible using a discrete
action space of four arrow keys and continuous, low-dimensional observations of position and
velocity. The system follows deterministic, linear dynamics. Formally,

xt+1 = Axt + But (6.1)

where x = (x, y, vx, vy)| denotes the state, u 2 {(±0.01, 0)|, (0, ±0.01)|} denotes the control,

A =

0

BB@

1 0 a13 0
0 1 0 a24

0 0 a33 0
0 0 0 a44

1

CCA , B =

0

BB@

b11 0
0 b22

b31 0
0 b42

1

CCA .

At the beginning of each episode, the state is reset to x0 = (x0 ⇠ Unif(0, 1), y0 ⇠
Unif(0, 1), 0, 0). The episode ends if the agent reaches the target (gets within a 0.02 radius
around the target), goes out of bounds (outside the unit square), or runs out of time (takes
longer than 200 timesteps).
Corrupting the internal dynamics. In the simulation, actions control acceleration and
inertia exists; in other words, b11 = b22 = 0 and the rest of the parameters are set to 1. We
create a simulated suboptimal user that behaves as if their actions control velocity and inertia
does not exist, which causes them to follow trajectories that oscillate around the target or
go out of bounds. The user behaves near-optimally with respect to their internal beliefs
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Figure 6.6: Our method is able to assist the simulated suboptimal user through internal-to-real
dynamics transfer. Sample paths followed by the unassisted and assisted user on a single task are
shown above. Red paths end out of bounds; green, at the target marked by a yellow star.

about the dynamics, but because their beliefs are incorrect, they act suboptimally in the real
environment.
Evaluation. As before, we evaluate our method on its ability to learn the internal dynamics
models of the simulated suboptimal user given demonstrations of their failed attempts to
solve the task. We manipulate whether or not the user receives assistance in the form of
internal-to-real dynamics transfer using the learned internal dynamics model. The dependent
measures are the L2 error of the learned internal dynamics model parameters with respect to
the ground truth internal dynamics parameters, and the success and crash rates of the user
in each condition.
Implementation details. We fix the number of training tasks at n = 49, and use a
multi-layer perceptron with one hidden layer of 32 units to represent the Q✓i functions. We
use a linear model based on Equation 6.1 to represent the internal dynamics T�, in which
â13, â24, â33, â44, b̂11, b̂22, b̂31, b̂42 2 [0, 1]. We collect 1000 demonstrations per training task, set
⇢ = 2 in Equation 3.6 (in the main paper), and sample constraints in Equation 3.6 (in the
main paper) by collecting 500 rollouts of a random policy in the real world (see Section 3.3
in the main paper for details).
Analysis. Our algorithm correctly learns the following internal dynamics parameters: (1)
â33 = â44 = 0 in the learned internal dynamics, which corresponds to the user’s belief that
inertia does not exist; (2) b̂11 = b̂22 = 1 and b̂31 = b̂42 = 0 in the learned internal dynamics,
which matches the user’s belief that they have velocity control instead of acceleration control.
The learned internal dynamics maintains â13 = â24 = 1, as in the real dynamics, which makes
sense since the user’s behavior is consistent with these parameters. Figure 6.6 (left plot)
demonstrates the stability of our algorithm in converging to the correct internal dynamics.

Figure 6.6 (center and right plots) shows examples of trajectories followed by the simulated
suboptimal user on their own and when they are assisted by internal-to-real dynamics transfer.
The assisted user tends to move directly to the target instead of oscillating around it or
missing it altogether.
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Learning Rewards from Misguided User Demonstrations

The previous simulation experiments show that our algorithm can learn internal dynamics
models that are useful for shared autonomy. Now, we explore a different application of our
algorithm: learning rewards from demonstrations generated by a user with a misspecified
internal dynamics model. In order to compare to prior methods that operate on tabular
MDPs, we adopt the grid world setup from Section 6.2, with globally scrambled actions as
the internal dynamics corruption scheme.
Hypothesis. Standard IRL algorithms can fail to learn rewards from user demonstrations
that are ‘misguided’, i.e., suboptimal in the real world but near-optimal with respect to the
user’s internal dynamics. Our algorithm can learn the internal dynamics model, then we
can explicitly incorporate the learned internal dynamics into standard IRL to learn accurate
rewards from misguided demonstrations.
Evaluation. We evaluate our method on its ability to learn an internal dynamics model
that is useful for ‘debiasing’ misguided user demonstrations, which serve as input to the
MaxCausalEnt IRL algorithm described in Section 3.4 (in the main paper). We manipulate
whether we use the learned internal dynamics, or assume the internal dynamics to be the
same as the real dynamics. The dependent measure is the true reward collected by a policy
that is optimized for the rewards learned by MaxCausalEnt IRL.
Implementation details. We implement the MaxCausalEnt IRL algorithm [119, 50]. The
reward function is represented as a table R(s).
Analysis. Figure 3.2 (in the main paper, right plot) supports our claim that standard IRL
is not capable of learning rewards from misguided user demonstrations, and that after using
our algorithm to learn the internal dynamics and explicitly incorporating the learned internal
dynamics into an IRL algorithm’s behavioral model of the user, we learn accurate rewards.

User Study on the Lunar Lander Game

Task description. The reward function emits a large bonus at the end of the episode for
landing between the flags, a large penalty for crashing or going out of bounds, and is shaped
to penalize speed, tilt, and moving away from the landing site. The physics of the game are
deterministic.
Evaluation protocol. We evaluate our method on its ability to learn the internal dynamics
models of human users given demonstrations of their failed attempts to solve the task in the
default environment. We manipulate whether or not the user receives assistance in the form
of internal-to-real dynamics transfer using the learned internal dynamics. The dependent
measures are the success and crash rates in each condition.
Implementation details. We fix the number of training tasks at n = 9 and use a multi-layer
perceptron with one hidden layer of 32 units to represent the Q✓i functions. We collect 5
demonstrations per training task per user, set ⇢ = 2 · 10�3 in Equation 3.6 (in the main
paper), and sample constraints in Equation 3.6 (in the main paper) by collecting 100 rollouts
of a random policy in the real world (see Section 3.3 in the main paper for details).
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The physics of the game are governed in part by a configurable vector  2 R7 that encodes
engine power, game speed, and other relevant parameters. Since we cannot readily access an
analytical expression of the dynamics, only a black-box function that forward-simulates the
dynamics, we cannot simply parameterize our internal dynamics model using  (see Section
3.3 in the main paper for details). Instead, we draw 100 random samples of  and represent
our internal dynamics model as a categorical probability distribution over the samples. In
other words, we approximate the continuous space of possible internal dynamics models using
a discrete set of samples. To accommodate this representation, we modify Equation 3.4 (in
the main paper):

�✓i,�(s, a) , Q✓i(s, a)� Ej⇠Cat(100,�)

Z

s02S
T j (s

0
|s, a) (Ri(s, a, s
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0
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�j ·
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s02S
T j (s

0
|s, a) (Ri(s, a, s

0) + �V✓i(s
0)) ds

0
.

Subject allocation. We recruited 9 male and 3 female participants, with an average age of
24. Each participant was provided with the rules of the game and a short practice period of
9-18 episodes to familiarize themselves with the controls and dynamics. Each user played in
both conditions: unassisted, and assisted. To avoid the confounding effect of humans learning
to play the game better over time, we counterbalanced the order of the two conditions. Each
condition lasted 45 episodes.

Counterbalancing the order of the two conditions sometimes requires testing the user in
the assisted condition before the unassisted condition, which begs the question: where do the
demonstrations used to train the internal dynamics model used in internal-to-real dynamics
transfer assistance come from, if not the data from the unassisted condition? We train the
internal dynamics model used to assist the k-th participant on the pooled, unassisted demon-
strations of all previous participants {1, 2, ..., k � 1}. After the k-th participant completes
both conditions, we train an internal dynamics model solely on unassisted demonstrations
from the k-th participant and verify that the resulting internal dynamics model is the same
as the one used to assist the k-th participant.
Analysis. After inspecting the results of our random search over the internal dynamics space,
we found that the game speed parameter in  had a much larger influence on the quality of
the learned internal dynamics and the resulting internal-to-real dynamics transfer than the
other six parameters. Hence, in Figure 3.3 (in the main paper, bottom left plot), we show
the results of a grid search on the game speed parameter, holding the other six parameters
constant at their default values. The game speed parameter governs the size of the time
delta with which the game engine advances the physics simulation at each discrete step. This
parameter indirectly controls the strength of the forces in the game physics: smaller time
deltas lead to smaller forces and generally slower motion, and larger deltas to larger forces
and consequently faster motion.

We ran a one-way repeated measures ANOVA with the presence of assistance as a factor
influencing success and crash rates, and found that f(1, 11) = 109.58, p < 0.0001 for the
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Figure 6.7: Assistance in the form of internal-to-real dynamics transfer increases success rates and
decreases crash rates.

success rate and f(1, 11) = 126.33, p < 0.0001 for the crash rate. The assisted user succeeds
significantly more often and crashes significantly less often than the unassisted user. Figure
6.7 shows the raw data.
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Table 6.5: Subjective evaluations on Lunar Lander. Survey of n = 12 participants. Responses on a
7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly
Agree. p-values from a one-sample t-test comparing the responses to mean 4.

P
il
o
t p-value Mean 1 2 3 4 5 6 7

I improved over time > 0.05 4.33 1 2 1 1 4 1 2

The game was too difficult > 0.05 5.42 0 2 0 0 3 3 4

C
o
p
il
o
t

The copilot was generally helpful in completing the task < 0.01 5.92 0 0 0 1 3 4 4

I understood what the copilot was trying to do > 0.05 4.75 0 1 1 3 4 1 2

I could anticipate the copilot’s behavior < 0.05 4.17 0 0 5 2 3 2 0

The copilot improved over time > 0.05 5.08 0 0 2 3 1 4 2

The copilot was helpful in avoiding crashing < 0.001 6.17 0 0 0 0 3 4 5

The copilot was helpful in avoiding flying out of bounds > 0.05 4.50 1 0 2 4 1 2 2

The copilot was helpful in landing quickly before time ran out > 0.05 3.92 1 3 1 1 3 3 0

The copilot was helpful in landing between the flags > 0.05 4.83 1 1 1 2 1 3 3

The copilot was too aggressive and didn’t give me enough control > 0.05 4.67 0 0 4 1 3 3 1

I play differently with the copilot than without the copilot < 0.001 6.75 0 0 0 0 0 3 9

I prefer playing with the copilot < 0.01 6.17 0 0 1 0 2 2 7

Table 6.6: Subjective evaluations for the quadrotor perching task. Survey of n = 4 participants.
Responses on a 7-point Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree,
and 7 = Strongly Agree. p-values from a one-sample t-test comparing the responses to mean 4.

P
il
o
t p-value Mean 1 2 3 4 5 6 7

I have flown a quadrotor before > 0.05 3.50 2 0 0 0 1 0 1

I improved over time > 0.05 5.25 0 0 0 1 2 0 1

The game was too difficult > 0.05 5.25 0 0 1 0 0 3 0

C
o
p
il
o
t

The copilot was generally helpful in completing the task < 0.01 6.75 0 0 0 0 0 1 3

The copilot made the task less stressful < 0.05 6.50 0 0 0 0 0 2 2

I understood what the copilot was trying to do < 0.001 7.00 0 0 0 0 0 0 4

I could anticipate the copilot’s behavior > 0.05 5.50 0 0 1 0 0 2 1

The copilot improved over time > 0.05 4.00 1 0 0 2 0 0 1

The copilot was helpful in landing on the pad < 0.001 7.00 0 0 0 0 0 0 4

The copilot was helpful in avoiding flying out of bounds > 0.05 5.00 0 0 1 1 0 1 1

The copilot was helpful in landing quickly before time ran out > 0.05 5.00 0 0 1 0 2 0 1

The copilot was helpful in pointing the camera < 0.05 2.25 2 0 1 1 0 0 0

The copilot was too aggressive and didn’t give me enough control > 0.05 3.50 0 1 1 1 1 0 0

I play differently with the copilot than without the copilot > 0.05 6.25 0 0 0 0 1 1 2

I prefer playing with the copilot > 0.05 5.25 1 0 0 0 0 1 2

6.3 Shared Autonomy via Deep Reinforcement Learning

Tables 6.5 and 6.6 summarize the subjective evaluations of the participants in our experiments.
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