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Abstract

Automated Detection of Extracellular Action Potentials Propagation and Short

Latency Coupling

by

Zhuowei Cheng

Multi-electrode arrays (MEAs) non-invasively record extracellular action potentials

(eAPs, also known as spikes) from hundreds of neurons simultaneously. We developed

two algorithms that work with recordings from such devices. The first algorithm allows

for automated detection of action potential propagation. Since extracellular electrodes

sample from the local electrical field, each electrode can detect eAPs from multiple nearby

neurons. One method to assign eAPs to their source neurons is to use spike sorting, a

computational process that groups eAPs from single ‘units’ based on assumptions of how

spike waveforms correlate with different neuronal sources, to interpret spike trains at in-

dividual electrodes of high-density arrays. However, when experimental conditions result

in changes to eAP waveforms, spike sorting routines may have difficulty correlating eAPs

from multiple neurons at single electrodes before and after such waveform changes. We

present here a novel, empirical method for unambiguously isolating eAPs from individ-

ual, uniquely identifiable neurons, based on automated multi-point detection of action

potential propagation. This method is insensitive to changes in eAP waveform morphol-

ogy because it makes no assumptions about the relationship between spike waveform and

neuronal source. Our algorithm for automated detection of action potential propagation

produces a ‘fingerprint’ that uniquely identifies those spikes from each source neuron.

By unambiguously isolating eAPs from multiple neurons in each recording, on a range of

platforms and experimental preparations, our method now enables high-content screening

viii



with contemporary MEAs. We outline the limitations and strengths of propagation-based

isolation of eAPs from single neurons and propose how our automated method comple-

ments spike sorting and could be adapted to in vivo use. Our second algorithm uses the

information extracted from the first algorithm to non-invasively detect synaptic relation-

ships among neurons from in vitro networks. Our methods identify short latency spiking

relationships between neurons with properties expected of synaptically coupled neurons,

namely they were recapitulated by direct stimulation and were sensitive to changing the

number of active synaptic sites. Our methods enabled us to assemble a functional subset

of neuronal connectivity in our cultures.
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Chapter 1

Introduction

Extracellular recording of action potentials has been used for decades, and has revealed

fundamental insights in cellular and sensory neuroscience [1, 2, 3]. The relative ease of use

and the non-invasive nature of extracellular recording makes this technique technically

approachable for recording action potentials from groups of excitable cells, compared

to other electrophysiological recording configurations. Recent progress in fabrication

and surface chemistry have led to the production of 2- and 3-dimensional extracellular

electrode arrays, consisting of hundreds to thousands of densely-packed electrodes [4, 5].

Arrays such as these have been used to record simultaneously from hundreds of cultured

primary neurons or iPS-derived neurons grown on these substrates [6, 7], as well as from

intact brains [8, 9]. However, the burden of increased data handling and computational

cost accompany the increase in data channels, particularly when experiments require

significant post-acquisition data processing [10, 11].

Since extracellular electrodes sample from the electric field, rather than directly from

each neuron, these electrodes detect eAPs from any proximal neuron. The likelihood that

each electrode detects eAPs from multiple neurons increases with the density of neurons,

compromising an electrode’s ability to isolate eAPs from single sources. Computational
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Introduction Chapter 1

approaches collectively known as spike sorting have been developed to isolate, or sort,

eAPs into discrete source ‘units’ [12, 13]. Multiple sorting routines have been introduced

to automate data processing from arrays with several thousand electrodes [11, 14, 15].

Many such sorting routines assume that characteristics of the eAP waveforms from each

electrode correlate with properties from each source neuron [12, 10, 13, 16]. These as-

sumptions are multiplied in recordings with thousands of electrodes, from neurons at high

density. In different experimental preparations, ground truth validation of how sorting

routines isolate spikes can only be achieved with technically challenging experiments

that, for example, pair extracellular recording with intracellular or juxtacellular record-

ing [15]. Additionally, eAP waveforms from individual neurons can vary significantly

within a single recording session due to changes, for example, in firing frequency [17, 18].

Common experimental manipulations that change eAP waveforms make it challenging

for sorting routines to follow the same isolated ‘unit’ between experimental manipula-

tions [19, 20]. Efforts to validate the assumptions intrinsic to spike sorting routines are

ongoing [21]. However, the ability of any sorting routine to reliably isolate spikes from

the same neuronal source during experiments that significantly change waveform shape

remains largely untested.

We previously used detection of action potential propagation among extracellular

electrodes to uniquely identify, isolate and characterize propagating eAPs from individual

cultured neurons [22]. Because axonal action potential propagation is unidirectional, the

sequence of eAP occurrences at each array electrode along the propagation path creates

a ‘fingerprint’ that identifies each detected neuron. Here we present the automation of

this empirical approach to isolating eAPs from multiple uniquely identifiable neurons

in large electrode arrays. Detection of eAP propagation among extracellular electrodes

categorizes ensemble spiking data into eAPs from unique source neurons, and for the first

time routinely provides ground truth for the isolation of eAPs in extracellular recordings.

2



Introduction Chapter 1

Our algorithm is based on the eAP propagation path across multiple electrodes. The

electrodes in each propagation cohort, the order of eAP occurrence and the eAP latency

between each electrode are features that identify each signal. We also refer to the action

potentials detected by these electrode cohorts as propagation signals.

Our method reliably detects the same source neuron between experimental conditions

that affect spike morphology [23], including high spiking frequency, temperature changes

or drugs such as K+ channel blockers. Our method reveals multiple unique neurons

in recordings from primary cultures grown on low- or high-density arrays, as well as

from whole human brain organoids recorded with shank electrode arrays. Automated

detection of propagation separates propagating eAPs in identified source neurons from

all other spikes in any extracellular recording and enables tracking single neurons across

experimental conditions. Our algorithm enhances and streamlines post-acquisition data

handling because propagating eAPs from single neurons seen at multiple electrodes are

redundant in terms of extracting a neuron’s spiking pattern. Our algorithm can also be

used in combination with traditional spike sorting routines and redundant eAPs identified

by our algorithm can be ignored by spike sorting routines.

Oftentimes, multiple unique propagation signals are present on each array in our ex-

periments. Here we also examined the intercellular relationships between single cultured

mouse hippocampal neurons isolated by their distinctive propagation signals and eAPs

at all other array electrodes.

Superimposing the eAPs from constituent propagation signal electrodes correspond-

ing to each unique neuron effectively recalibrates the timing of the voltage record from all

other array electrodes to the propagation signal spike times. Isolating spiking from sin-

gle identified neurons in this way revealed clusters of spikes at other electrodes occurring

within milliseconds of the preceding propagation signal spike. We studied the underly-

ing nature of these associations in spike timing by using stimulation, by decreasing the

3
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probability of neurotransmitter release and by changing the recording temperature. Our

results are consistent with direct synaptic coupling underlying many of the short latency

relationships between propagation signal spikes and the spike clusters at other electrodes.

The amplitude distributions of the coupled eAP clusters are often statistically discrete

subsets of the full eAP amplitude distribution at those electrodes, consistent with cou-

pled spikes representing eAPs from single postsynaptic neurons. Our results suggest that

in our in vitro system, axons can make a sufficient number of synapses on postsynaptic

neurons to result in firing of those neurons. Our methods can be generalized to reveal

in vitro network connectivity phenotypes from targeted mutant or iPS-derived neurons

that might be overlooked by more traditional experimental approaches.

Details of use of our algorithms, along with documentation, can be found at

https://github.com/ZhuoweiCheng/Propagation-Signal-and-Synaptic-Coupling-Algorithm

The content in this dissertation is the result of a collaboration with Kenneth Tovar

and Elmer Guzman. The content in chapter 3 is the result of a collaboration with Elmer

Guzman and has appeared in Scientific Reports [24]. The rest is expected to appear in

publication as well.

4



Chapter 2

Automated detection of extracellular

action potentials from single neurons

2.1 Results

2.1.1 Detection of action potential propagation identifies single

neuron eAPs

In this work we used previously characterized features of action potential propaga-

tion detection on MEAs [22] to design an algorithm that automates isolation of spikes

from single neurons. Action potential propagation is evident in arrays of extracellular

electrodes by the repeated co-occurrence of eAPs at multiple electrodes[22, 25]. The

propagation sequence among cohort electrodes identifies such eAPs as originating from

each unique source neuron. Every recording from primary neurons cultured on arrays

we examined had multiple unique examples of action potential propagation in multiple

neurons, reflected by eAPs among electrode cohorts. Figure 2.1A shows a portion of an

electrode array with black circles indicating a cohort of electrodes at which propagating
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action potentials from a single neuron were detected. The unidirectionality and high fi-

delity of action potential propagation results in the invariant sequence detection (Figure

2.1B) and low inter-electrode latency variability of these eAPs (Figure 2.1C). In this ex-

ample, manual analysis showed that 93.3% (1939/2078) of the eAPs in electrode 1 were

followed by eAPs in electrode 2, with a mean latency of 0.255 ± 0.018 ms. Similarly,

92.0% (1912/2078) of the eAPs at electrode 1 were followed by eAPs at electrode 3, with

a mean latency of 0.485 ± 0.037 ms, and 76.2% (1583/2078) of the eAPs at electrode 1

were followed by eAPs at electrode 4, with a mean latency of 0.534 ± 0.047 ms (Figure

2.1C). Manual assessment of eAP co-occurrences was done by comparing the eAP times

in electrode 1 with spike times at other cohort electrodes and excluding inter-electrode

latencies greater than 1 ms. The coefficients of variation (CV) of the latencies in this

example (0.071, 0.076 and 0.088 respectively) are consistent with a high fidelity process

like action potential propagation.

To test whether the latencies between eAPs at electrode 1 and eAPs at the other

electrodes resulted from random alignment, we shuffled the spike times of eAPs at elec-

trodes 2, 3 and 4 while retaining the identical inter-spike interval (ISI) distribution of

those electrodes (Figure 2.1D). In the shuffled data, there were only 49, 69 and 92 eAPs

(for electrodes 2, 3 and 4, respectively) with latencies below 1.5 ms (0.68 ± 0.44 ms,

0.76 ± 0.45 ms and 0.77 ± 0.46 ms respectively). These results suggest that the high

number of eAPs at electrodes 2, 3 and 4 with sub-millisecond latency from electrode 1

were unlikely to result from random alignment of spikes and are instead consistent with

action potential propagation among these electrodes.

Our automated method uses the invariant unidirectionality of eAP detection and low

inter-electrode latency to isolate each electrode cohort of propagating eAPs. The sequence

of eAP propagation among these electrodes uniquely identifies each unique eAP cohort.

The algorithm first constructs cross-correlograms between a reference electrode and all

6
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Figure 2.1: Automated detection of eAP propagation. A, Action potential propagation
was manually detected among electrodes indicated by black dots. B, shows averaged
eAP waveforms from the electrodes indicated in A. The time offset of the eAP peaks,
from top to bottom, illustrate propagation among the indicated electrodes. Each
waveform represents the average of 90-100 sweeps and averaged waveforms were scaled
to the same amplitude for the sake of clarity. C, shows the eAP latency distribution
between propagating eAPs at electrode 1 and electrodes 2, 3, and 4, respectively. Panel
D shows the latency distribution of scrambled eAP times from C, showing very few
scrambled spikes occur at this short latency. Scrambled eAP latency distributions for
electrodes 1-3 are superimposed. Note the difference in y-axis between C and D. These
features are used for automated detection, as outlined in E. F compares results from
manual detection of action potential propagation (black lines) and the results from our
algorithm (red lines) by overlaying each on the all-points eAP amplitude histograms
(grey) from the electrodes in our example. Note the small fraction of potentially
mis-detected eAPs for manual and automated detection outside of the main modes in
the middle histograms. This recording was done on a low electrode density array (120
electrodes; 100 µm pitch) from cultured mouse hippocampal neurons. Bin sizes in C
and D were 0.1 ms. Bin sizes in F were 1 µV.
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other electrodes to find candidate constituent electrodes from each cohort of propagating

eAPs (Figure 2.1E). In every iteration, each electrode is used as a reference electrode,

to compare with all other electrodes. A collection of electrodes representing the path

of eAP propagation is then generated. Within each such electrode cohort, the number

of short latency (<1.5 ms) co-occurrences between eAPs at the reference electrode and

eAPs at all other electrodes are compared. The maximum number of eAP co-occurrences

between the reference electrode and any other cohort electrode approximates the spike

times for that electrode cohort. We refer to these two electrodes as anchor points, and

the electrode with the earliest eAPs in the propagation sequence as anchor point 1. A

second scanning step reduces false positive electrodes by eliminating electrodes with a low

fraction of co-occurrences. The algorithm outputs cohort electrodes along with statistics

for each unique cohort detected, including spike times of each isolated spike train, inter-

electrode latencies and number of co-occurrences between the reference electrode and

other electrodes. Details of user-defined settings for detection parameters refinement,

as well as criteria for selecting candidate electrodes are described in the Methodology

section.

The histograms in Figure 2.1F show the amplitudes of all spikes at electrodes 1

through 4 (grey). Superimposed on these distributions is a comparison at each electrode

of the results of manually detected short latency eAPs and the isolated eAPs from au-

tomated detection (black and red lines, respectively). Automated and manual analysis

revealed that the majority of eAPs in electrode 1 were followed with short latency by

eAPs in the other electrodes. For automated detection, 97.1% of the eAPs at electrode

1 were followed by eAPs in electrode 2, 95.9% were followed by eAPs in electrode 3 and

78.3% were followed by eAPs in electrode 4 (red lines in each histogram). Using manual

detection, these values were 93.3%, 92.0% and 76.2% respectively (black lines in each

histogram). This comparison demonstrates that results from automated action potential

8
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propagation detection are at least as good by virtue of amplitude and timing information,

as the far more error-prone and laborious process of manual comparison of spike times

from different electrodes.

Because detection of action potential propagation confirms eAPs as resulting from a

single neuronal source, the narrow eAP amplitude distribution in electrode 1, coupled

with the high number of co-occurrences (>97%) detected suggests that this amplitude

distribution represents eAPs from a single neuron. In contrast, the eAP amplitude distri-

bution from electrode 2 is divided into two discrete modes. Automated detection revealed

that the eAPs in electrode 2 which occurred with short latency (1980/3864) from eAPs

in electrode 1 were limited almost exclusively to one mode of the electrode 2 distribution

(red line). If random alignment of spikes explains the short latency between eAPs in

electrodes 1 and 2, the eAP amplitudes would be evenly distributed between both modes

of the electrode 2 distribution. However, these short latency eAPs were limited to an

apparent single mode, consistent with a single neuronal source of those eAPs. Propa-

gating eAPs at electrode 3 that were isolated either by our algorithm or manually were

limited to the same single amplitude distribution component (red and black lines) and

overlapped each other almost uniformly. Unlike the eAP amplitude distributions from

electrodes 2 or 3, the amplitude distribution at electrode 4 appears to be a single mode,

part of which was excluded by the detection threshold for this electrode, which likely

explains why fewer eAP co-occurrences between electrode 1 and 4 were found with either

detection method. As with electrodes 2 and 3, amplitude distributions from automated

and manually isolated eAPs almost completely overlap each other at electrode 4 (red and

black lines). Interestingly, though the electrode 4 eAP amplitude distribution appears

unimodal, our results indicate that spikes from at least 2 neurons were detected at this

electrode, highlighting the unreliability of amplitude distribution shape as criteria to es-

timate the number of neurons at an electrode. These results demonstrate that automated

9
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detection of action potential propagation yields results that are, at minimum, as good as

results from the much more time consuming and error-prone manual detection.

2.1.2 Detection probability and spike train refinement

Our method for isolating eAPs from individual neurons is based on detection of action

potential propagation between at least 2 electrodes. The reliability of neuronal spike

trains isolated by our method is therefore sensitive to the signal-to-noise characteristics

of cohort electrodes. Assume, for example, that eAPs at the first electrode have an

infinitely high signal-to-noise ratio and propagating eAPs at the second electrode have a

mean amplitude of 1.5 times the detection threshold, with a standard deviation that is

33% the eAP amplitude. The co-detection requirement means that in this example, the

number of propagating eAPs detected will be under-sampled by at least 16% below the

number of eAPs at first electrode, resulting in gaps in the spike train.

We used co-detection of eAPs in the first two anchor points to determine how eAP

detection probability varies with the signal-to-noise ratio at the other cohort electrodes

from our algorithm. For this analysis, the set S is the co-occurring eAPs between the

anchor point 1 and any other cohort electrode giving the most co-occurrences. The set S

is a proxy representing the maximum number of eAPs detected from each neuron. The

detection probability for all other electrodes in the same cohort is defined as the ratio of

the number of co-occurrences between eAPs at that electrode and S to the number of

eAPs in S.

A map of coactive electrodes for a propagating eAP is shown in Figure 2.2A (black

circles). Figure 2.2B displays the average waveforms from electrodes 1, 2 and 3. Wave-

forms are ordered from left to right by their eAP amplitude/detection threshold ratios.

As expected [26], the detection probability rises steeply with increasing value of the eAP
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amplitude/detection threshold ratios (Figure 2.2C). This plot includes data from 1030

electrodes of 750 unique propagating eAPs in 63 recordings from neurons on low den-

sity arrays (120 electrodes; 100 µm pitch). Red dots are values from the example eAP

waveforms (Figure 2.2B). Failures of propagation cannot be ruled out as occasionally

contributing to failures to detect eAPs at cohort electrodes[27, 28]. However, given the

high coefficient of variation of the amplitude/threshold ratio (1.73 ± 0.91, n = 1030) and

the high fidelity of action potential propagation [29, 30], the occasional absence of ex-

pected propagating eAPs at a cohort electrode (Figure 2.2C) is consistent with a failure

of spike detection. The results reported here with automated eAP propagation detection

recapitulate results previously obtained manually [22].

These results demonstrate that to maximally represent spike trains from isolated

neurons, selecting coactive electrodes with high detection probability is crucial. The

relationship between eAP detection probability and the eAP amplitude/threshold ratio

may result in under-sampling spikes, thus creating gaps in the spike train. However,

if detection failures at any electrode occur randomly, then detection failures at cohort

electrodes would not be expected to occur simultaneously (Figure 2.2D). To minimize

gaps in the spike train resulting from failures of spike detection, we examined whether

adding anchor points improves the results of the automated detection of eAP propagation

algorithm. The algorithm first identified constituent electrodes of eAP propagation. Co-

occurrences between eAPs at the first 2 anchor points (S) are used to approximate the

number and timing of propagating spikes. We used the same 1.5 ms detection limit

following the eAP at anchor point 1. Cohort electrodes were ordered based on the

number of co-occurrences with anchor point 1. The electrode with the most co-occurrence

is designated anchor point 2. The propagating eAP spike times of anchor point 1 are

the best representation of the spike train from that neuron, due to the high signal-to-

noise ratio near action potential initiation [31]. We tested the effect of adding additional
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Figure 2.2: A, Map of constituent electrodes (black circles) for the subset of propagat-
ing eAPs. The two anchor points are marked with ∗. B, Average of 1000 propagating
eAP waveforms from electrodes 1, 2 and 3 in (A). Time and amplitude axes are the
same for each waveform. Dashed black lines are the baseline (0 µV). Red dashed
lines represent the specific spike detection threshold at each electrode. The grey areas
indicate ± one standard deviation of the eAP amplitude. C, the detection probability
versus eAP amplitude/the eAP detection threshold ratios. Each black dot represents
one constituent electrode of an eAP propagation and the red dots are results from
electrode 1, 2 and 3 from B. 7 dots with a spike amplitude to threshold ratio over
6 were omitted to highlight the majority of the data. D, A raster plot of the first
three anchor point electrodes from one eAP propagation. In this example, black lines
indicate co-occurring spikes detected by all three electrodes, blue lines show co-oc-
currences detected only by the first two anchors and red lines are detected with the
use of a third electrode. Grey line is an eAP at anchor 1 with no co-occurrences with
anchor 2 or 3. E, shows the number of propagating eAPs detected during a record-
ing by using 2 versus 3 anchor points. The raster plot for the three anchor points
in this example is below, with anchor 1, 2 and 3 from top to bottom. F, shows the
histogram of all eAP amplitudes (grey) in anchor 1 from E. The resulting propagating
eAP amplitude distributions isolated using 2 (black line) or 3 (red line) anchors are
superimposed. G, compares the number of propagating eAPs isolated when using
three anchor electrodes versus the number of propagating eAPs isolated using two
anchor electrodes (red circles). The results of shuffling the eAP times on anchor 3 are
superimposed (black circles). The slope of the grey line is equal to 1. H, compares
the additional propagating eAPs detected by adding a third anchor in shuffled versus
unshuffled data. All dots are in ascending order by the number of eAPs added by
including a third anchor. I, Percentage of propagating spikes isolated over the total
number of spikes on anchor 1 for each eAP propagations using 2, 3, 4 or 5 anchors.
J: The median ISI of the same eAP propagation using 2, 3, 4 or 5 anchors as in I.
All data in this figure were from recordings done on low electrode density arrays from
cultured mouse hippocampal neurons.
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anchor points, from most to least co-occurrences with anchor 1. Co-occurrences between

additional anchor points and anchor point 1 are added to S to comprise an amended set

of propagating eAPs.

The schematic (Figure 2.2D) illustrates the effect of using two versus three anchor

points. In this example, if propagation is defined by eAP co-occurrences at anchor 1 and

anchor 2, then 7 eAPs will be isolated. Including anchor 3 increases the total to 8 eAPs.

Figure 2.2E compares the effect of using 2 versus 3 electrodes to reduce artifactual gaps

in the spike train. Using 3 anchor points results in more isolated eAPs (Figure 2.2E)

compared to using 2 anchor points, as shown by the progressively greater increase in

number of propagating eAPs during the recording. The amplitude distribution of the

extracted eAPs from anchor 1 from this example (Figure 2.2F) shows that spikes isolated

with the addition of a third electrode occur in the same amplitude mode, indicating that

those eAPs are from the same single neuronal source. At the anchor point 2 electrode,

the mean amplitude of propagating eAP was -89.7 ± 10.0 µV and the threshold was -24.1

µV which should allow us to isolate almost all propagating eAPs (Figure 2.2C). However,

including propagating eAPs from anchor point 3, (-35.0 ± 4.9 µV mean amplitude; -24.8

µV threshold) still increased the total number of propagating spikes that were isolated

by our algorithm, demonstrating how gaps in the spike train were filled by increasing the

number of anchor points when possible.

Using more than 2 anchor points reduced the number of undetected propagating

eAPs but could also introduce artifactually detected eAPs to the spike train. To test

the extent to which such co-occurrences added by a third anchor point represent random

eAP alignment between anchor point electrodes, we shuffled the timing data at the third

electrode, then determined the number of eAPs added to the propagation spike train

(Figure 2.2G). Data shuffling was done by retaining the ISI distribution but shuffling the

spike time. This was done with 414 eAP propagations that had at least three constituent
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electrodes, from the same 63 recordings. If inclusion of a third anchor point produces no

increase in the spike total, then all points will lie on the line with the slope equal to 1 (grey

line). The number of spikes added when including a third anchor point increased more

in the unshuffled spike set (red dots) than in the shuffled spike set (grey dots). A direct

comparison of the number of additional spikes with or without shuffling (Figure 2.2H)

indicates that shuffling only occasionally increased the number of spikes, whereas using

a third anchor point almost always added eAPs to each spike train (Figure 2.2H). For

example, in 138/414 neurons, using 3 anchor points increased the number of propagating

eAPs by at least 20% compared to using 2 anchor points. In contrast, shuffling the spike

times at the third electrode resulted in a 20% or greater increase in additional eAPs

in only 4/414 neurons. In unshuffled data, using 3 anchor points resulted in a 30% or

greater addition of propagating eAPs in 86/414 neurons whereas there was never any

increase in the number of spikes greater than 30% in the shuffled data. These results

demonstrate that random alignment of eAPs is not a significant source of spikes added

when using a third anchor point.

Increasing the number of anchor points produce significant refinements in spike rate

detection of the propagating eAPs in our data. We therefore examined the result of

adding additional electrodes in the same data set by comparing the results of using 2,

3, 4 or 5 anchor points. Increasing the number of anchor points results in a gradual

increase in the percentage of propagating eAPs isolated (Figure 2.2I). In this data set

(144 eAP propagations with at least 5 cohort electrodes) the increase from 2 and 3 anchor

points diminishes when adding 4 or 5 anchor points. The median ISIs from the same

144 eAP propagations comparing the number of anchor points results in relatively minor

differences above 3 anchor points (Figure 2.2J). For different use cases, the number of

anchor points in our algorithm is a user-defined variable. Our results demonstrate that

most propagating eAPs can be found with just two anchor points. However, using more
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anchor points refines the extracted spike train, resulting in fewer gaps due to detection

failures, with diminishing differences above 3 anchor points in this data set.

2.1.3 Automated detection of propagating eAPs is insensitive

to frequency-dependent changes in eAP waveform

Transmembrane action potentials in many types of neurons show frequency-dependent

changes in amplitude or spike width [32, 33]. Frequency-dependent changes are reflected

in the extracellularly recorded action potentials from these neurons [17, 34]. Spike sort-

ing routines could interpret frequency-dependent eAP waveform heterogeneity from single

neurons as action potentials from multiple neuronal sources. The problem for spike sort-

ing resulting from heterogeneity in action potential waveform in single neurons has been

discussed elsewhere [19, 18]. Unlike spike sorting routines, detection of action poten-

tial propagation reliably isolates spikes from single neurons when frequency-dependent

changes in eAP waveform occur (Figure 2.3). This example illustrates that a burst of

propagating action potentials in one constituent electrode (Figure 2.3A) results in a

frequency-dependent decrease in spike amplitude (Figure 2.3B) and an increase in spike

width (Figure 2.3C). Note the change in the peak-to-peak latency of eAPs that occurred

following ISIs ≥ 500 ms, compared to the latency for eAPs following ISIs of ≤ 30 ms

(brackets, Figure 2.3C). This difference likely reflects decreased Na+ channel availability

at high spike frequency[35]. As shown, our method of detecting action potential propa-

gation isolates eAPs from single neurons at inter-spike intervals as short as 2 ms (Figure

2.3D), just above the refractory period frequency cutoff we used for spike detection. The

cumulative distribution of inter-spike intervals (ISI) shows that in this recording, 64% of

all the spikes (open grey circles) occurred following ISIs from 30 to 500 ms. The plot of

eAP amplitude as a function of ISI shows the amplitude variability in this intermediate
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frequency domain (Figure 2.3E). For example, for the propagating spikes in the anchor

point 1 electrode (closed circles) that follows intervals between 30 to 500 ms had a mean

amplitude of -54.9 ± 15.8 µV (n = 552). At the anchor point 2 electrode (open circles) in

the propagation pathway from this example, the mean amplitude of propagating spikes

(from anchor point 1) occurring within intervals of 30 to 500 ms was -61.7426 ± 21.5336

µV (n = 554), mirroring the amplitude variability in eAPs in the anchor point 1 electrode.

Because eAP morphology is expected to vary with inter-spike interval [17], the variability

of spike shapes in this large frequency range may present as eAPs from multiple units

for spike sorting. However, our algorithm detected action potential propagation in this

neuron across more than three orders of magnitude of inter-spike intervals (Figure 2.3D,

E).

2.1.4 Automated detection of propagating eAPs is insensitive

to experimentally-induced changes in waveform shape

Many experimental manipulations change the eAP waveform, either by modulating

intrinsic behavior of ion channels underlying transmembrane conductances or by directly

targeting the ion channels active during action potentials. Spike sorting routines which

cluster eAPs on the basis of shape are challenged by common experimental manipulations

that produce changes in the waveform shape, leading to failures in correctly identifying

eAPs from the same neuronal source across changing experimental conditions [20]. How-

ever, because our method of isolating spikes only depends on the sequence of propagating

eAPs at cohort electrodes it is insensitive to changes in eAP waveform.

Our algorithm isolates eAPs from single neurons between experimental conditions

that change eAP waveform shape, as shown by comparing the effects of the K+ channel

antagonist 4-AP (100 µM) on propagating eAP waveforms in different anatomical places
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Figure 2.3: Frequency-dependent changes in eAP waveform in single neurons revealed
by automated eAP propagation detection. A, voltage record from anchor point 1
electrode showing a frequency-dependent reduction in eAP amplitude. For clarity,
only one of two anchor point electrode voltage traces from this propagating eAP is
shown here. This burst was preceded by an ISI of > 2 s. B, eAPs in the anchor point
1 and anchor point 2 electrodes, shown at the beginning of the burst (grey traces)
and in the middle of the burst (red traces). C, for the propagating eAP from this
neuron, we superimposed the average of 50 eAPs that were preceded by ISIs of ≥ 500
ms duration (black traces) on 50 averaged eAPs that were preceded ISIs of ≤ 30 ms.
Note the frequency-dependent difference in amplitude and spike width of eAPs from
each anchor point electrode. Amplitude scale is the same in B and C. Dashed lines
in B and C indicate the eAP detection threshold for each electrode. The averaged
waveforms for anchor point 2 eAPs are time referenced to propagating eAPs from
electrode 1. Brackets below the waveforms in C indicate the inter-electrode latency
for long (black) and short (red) ISIs. D, the cumulative distribution of ISIs from this
neuron show large distribution in time. The eAPs that occurred ≤ 30 ms are shown
by open red circles, eAPs that occurred ≥ 500 ms are shown by open black circles.
Outside of these spike frequency ranges lies the majority of ISIs (open grey circles).
E, the relationship between eAP amplitude and ISI in this neuron, showing that the
64% of eAPs occurred after ISIs between 30 and 500 ms for anchor point 1 (closed
circles) and anchor point 2 (open circles). This highlights how eAPs kinetics and spike
train data from single neurons can be extracted in spite of the frequency-dependent
changes in spike morphology.
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from the same neuron (Figure 2.4A). Overlaying control eAPs (black traces) and eAPs

in 4-AP (red traces) highlights changes due to K+ channel antagonism in this cultured

neuron. Note the heterogeneous effects of 4-AP on eAP waveforms at different points in

the propagation pathway from this neuron, including increased duration (panels 1 and 2),

decreased eAP amplitude (panel 3) and reducing the repolarization phase (panels 1 - 4).

These results illustrate the difficulty in predicting how any drug will affect eAP waveform.

Waveform heterogeneity is likely due to how capacitive and resistive components of the

eAP waveform combine and are affected by the extracellular electrical field [36]. Figure

2.4B shows the multimodal amplitude distribution in electrode 4 of the propagating

action potential from Figure 2.4A, in control (left) and during 4-AP application (right).

The amplitude distribution of the propagating eAPs at electrode 4 are indicated in red.

In control condition, eAPs isolated from this neuron constitute 37.3% of the eAPs at this

electrode (778/2083) which increased to 49.1% (1278/2604) of the eAPs in 4-AP (in a

3-minute recording). Details of how experimental manipulations affect the spike trains

from these neurons are seen in the ISI distributions from these data (Figure 2.4C). Solid

lines indicate the ISI for all spikes at electrode 4 and dashed lines indicate the ISI of

the propagating eAPs, showing in this example no systematic change in the spike train

resulting from 4-AP application (Figure 2.4C).

In another experiment, varying the recording temperature from 30◦C (black traces)

to 38◦C (red traces) also changed the morphology of propagating eAP waveforms at four

constituent electrodes from a single neuron (Figure 2.4D). Higher temperature altered

the spike width and amplitude (panel 1, 4) and the capacitive component of the eAP

(panel 2). Note the leftward shifts of eAPs at higher temperature (panel 3-4), reflecting

faster propagation at higher temperature [37, 38]. Regardless of changes in waveform

morphology, our algorithm successfully identified propagating eAPs at the same four

constituent electrodes. The amplitude histograms of propagating eAPs at electrode 4
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Figure 2.4: Automated detection of eAP propagation during experiments that change
eAP waveform. A, the averaged propagating eAP waveforms from four constituent
electrodes in control condition (black traces) and in 100 µM 4-AP (red traces) are
superimposed, illustrating the effect of 4-AP on eAP waveforms at different points in
the propagation pathway. B, single neuron propagating eAP amplitude distribution
in control and 4-AP, compared with the all-points amplitude distribution in electrode
4. C, the ISI distribution of all eAPs in electrode 4 versus the ISI distribution of only
the propagating eAPs, comparing control and 4-AP. D, in another experiment, the
averaged propagating eAP waveforms from 4 constituent electrodes are superimposed
to compare waveforms shape in recording at 30◦C (black traces) versus recording at
38◦C (red traces). Averaged waveforms for electrodes 2 - 4 are time referenced to
electrode 1. Note the leftward shift of the eAP peak in the red traces relative to
black, consistent with the temperature induced increase in propagation speed. A and
D illustrate that experimentally induced changes in eAP waveform do not affect the
ability of our algorithm to detect spikes from the same neuron. E, single neuron
propagating eAP amplitude distribution at 30◦C versus 38◦C, each superimposed
on the all-points amplitude distribution in electrode 4. Note the increase in eAP
amplitude at higher temperature. F, the ISI distribution of all eAPs in electrode 4
versus the ISI distribution of only the propagating eAPs, comparing 30◦C and 38◦C.
Data in this figure were taken from recordings done on low electrode density arrays
(120 electrodes; 100 µm pitch) using cultured mouse hippocampal neurons.
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from the temperature experiments (Figure 2.4E) are superimposed on the amplitude

histogram of all eAPs at that electrode. For this neuron, propagating eAPs were 42.1%

(2849/6768) of all eAPs at electrode 4 at 30◦C. Propagating eAPs decreased to 32.9%

(2234/6787) of all eAPs at this electrode at 38◦C. Propagating eAPs isolated by our

algorithm were limited to an apparent single mode of the multimodal, all-point amplitude

distributions from these electrodes, even when experimental conditions changed the eAP

amplitude distribution (Figure 2.4B, E). Unpredictable changes to the eAP amplitude

distributions such as these (Figure 2.4B, E) may result in unreliability of the results of

spike sorting. The leftward shift in the ISI distribution from isolated eAPs in this data

(red versus black dashed lines) clearly illustrates the effect of higher temperature increases

eAP propagation speed (Figure 2.4F). The temperature effect is obscured by overlapping

ISI distributions of all spikes in electrode 4 (Figure 2.4F). These results demonstrate that

isolating spikes from single neurons based on action potential propagation is insensitive

to changes in the eAP waveform and that our algorithm reliably isolates spiking in single

identified neurons during changing experimental conditions.

2.1.5 Our algorithm works with multiple extracellular record-

ing platforms

Our algorithm works with any type of multi-electrode spike trains, with no upper

limit on the number of electrodes. The time complexity of our algorithm is proportional

to:

(total# eAPs× total# electrodes) + total# co− occurrences

Multiple propagating eAPs are readily detected with higher density planar CMOS arrays

(26,400 electrodes; 17.5 micron pitch). An example of a subset of eAP propagations

detected from a 21 x 24 electrode section of CMOS array containing 330 active electrodes,
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and their footprints generated by signal averaging based on anchor point 1 for each eAP

propagation, are shown (Figure 2.5A). For ease of visualization, not all examples of

propagating eAPs are displayed. Each waveform represents an electrode from which

super-threshold eAP components were recorded (Figure 2.5A). As we’ve done here, the

results of our algorithm could be used for refinement of axonal propagation pathway for

each detected signal [31].

Propagating eAPs from single neurons are often detected at multiple electrodes, es-

pecially in high-density arrays. The spikes at these electrodes are redundant because a

neuron’s spiking pattern can be represented by eAPs at anchor point 1. The number of

constituent electrodes artifactually multiplies the number of spikes from a neuron. In

the case of spike sorting, redundant eAPs such as these could be mistakenly isolated as

independent units unless they are removed from the data record. Higher electrode den-

sity results in greater number of redundant eAPs; the mean number of cohort electrodes

for each eAP propagation on high-density CMOS arrays was 14.1 ± 8.9 electrodes (n =

1606 neurons). In contrast, each eAP propagation recorded on low-density arrays was

detected by 3.5 ± 2.0 electrodes (n = 750 neurons), demonstrating that the extent of

the spike redundancy of propagating eAPs varies with recording platform and electrode

density. To demonstrate this explicitly, we removed propagating eAPs from all cohort

electrodes except for anchor point 1 in multiple recordings from both platform types

and plotted the distribution of the percentage of spikes removed from both platforms

(Figure 2.5B). In 6/63 recordings using low-density arrays and 33/53 recordings using

the high-density arrays, 40% or more of the eAPs in the entire data record could be

removed due to redundancy. Similarly, 40/63 of the low-density recordings and 50/53

of the high-density recordings have at least 20% redundant spikes. The relatively high

number of cohort electrodes for each eAP propagation in high-density arrays could im-

prove spike train refinement due to more choices for selecting anchor point electrodes with
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high-signal-to-noise characteristics. These data are from 2-minute-long recordings from

low- and high-density arrays. For ease of data acquisition, high-density arrays (26,400

electrodes) were segmented into 32 blocks. Each block was recorded independently be-

cause only 1024 electrodes can be recorded simultaneously. This produced 53 recordings

from high-density arrays with at least 1 example of eAP propagations, which we com-

pared to 63 recordings in low-density arrays. In arrays with addressable electrodes, our

algorithm maximizes the recording efficiency by identifying anchor points for individual

neurons. Simultaneous recording of multiple ground-truth validated neurons can then

be done in subsequent experiments using the minimum number of electrodes needed to

isolate propagation eAPs for each neuron.

We compared the computational time required for our algorithm to output results

from the low- or high-density arrays described above (Figure 2.5C). The specification of

the server on which this analysis was done is described in Methodology. For a recording

with 100000 spikes, the approximate computational time was 3.5 seconds for the low-

density arrays we used, and 11 seconds for our high-density arrays. In general, with the

same number of spikes, the computational time on a low-density array is less than on a

high-density array. This is due to the increase in pairwise electrode comparisons with

increasing electrode numbers.

We have shown that eAP propagation can be detected from neurons grown on planar

arrays. The three dimensional orientation of axonal process in intact tissue theoretically

makes detection of action potential propagation less likely. We examined whether our

algorithm could be used to detect propagation in recordings done on a whole cerebral

organoid, using a Neuropixels probe. We identified 15 unique neurons based on auto-

mated detection of eAP propagation from a Neuropixels recording of 384 electrodes. An

example of an eAP propagation detected is shown in Figure 2.5D. The footprint of the

eAP propagation was generated by signal averaging based on anchor point 1. Figure 2.5E
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Figure 2.5: Automated detection of eAP propagation handles data from a range
of recording platforms. A, a subset of eAP propagations detected on the CMOS
array (26,400 electrodes, 17.5 µm pitch). Each color is the footprint of propagating
eAPs in one neuron on this 21 electrode by 24 electrode section, with 330 active
electrodes. Each footprint is generated by signal averaging based on anchor point
1 for propagating eAPs in each neuron. B, The percentage of ‘redundant’ spikes
eliminated in each recording from low density arrays (black) or CMOS arrays (red).
C, Computational time of the algorithm versus the number of spikes with the data
from 63 low-density recordings (black) and 53 high-density recordings (red). D, A
footprint of an eAP propagation detected on a Neuropixels recording. The footprint
is generated by signal averaging based on anchor point 1 for each propagating eAPs.
Black lines are the same waveforms shown in (E). Note the time offset from top to
bottom in (E), indicating propagation among the three electrodes in three-dimensional
tissue from this organoid. Low density arrays have 120 electrodes with a 100 µm pitch.
High density CMOS arrays have 26,400 electrodes with a 17.5 µm pitch. Recordings
on low and high density arrays were done using cultured mouse hippocampal neurons.
The Neuropixels probe was used to record eAPs from a cerebral organoid derived from
human iPS cells.
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shows the same waveforms from the ones in black in Figure 2.5D. Note the time offset

from top to bottom from these electrodes. These data demonstrate that with high den-

sity arrays, isolating eAPs from single identified neurons in 3 dimensional neural tissue

is possible with automated detection of action potential propagation.

2.2 Methodology

2.2.1 Propagating eAP detection algorithm

The input of the algorithm is spike times on all electrodes in a recording. The first

step in our algorithm is to select candidate electrodes that could be cohort electrodes

of an eAP propagation. Let E denote the total set of electrodes in an array and n

denote the total number of electrodes in E. Each electrode in E with an average spiking

frequency higher than v1 Hz is used as a reference electrode (ei) to compare with all

other electrodes ej ∈ E (j = 1, 2, . . . , n). This threshold value for spiking frequency

v1 ensures a minimum number of spikes on each reference electrode for the analysis in

the next steps. v1 is a user-definable parameter. In this paper, we chose v1 to be 1Hz.

We used this frequency threshold because most of our recordings were 2- or 3-minutes

duration. In longer recordings, v1 can be adjusted to a lower value. We also included

an option to threshold for the minimum number of spikes in total instead of the spiking

frequency.

Cross-correlograms (CCGs) using a 1.5 ms window before and after reference time-

points with a bin size of 0.05 ms were then constructed for all (ei, ej) pairs. A sharp peak

in a CCG indicates a strong correlation of spike times between ei and ej. To quantify

sharp peaks, let n1 denote the largest sum of counts in any 0.5 ms moving window in the

CCG and n2 denote the sum of counts of a 2.05 ms window centered at the bin with the
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largest sum (if the largest sum is found in the first 1 ms or the last 1 ms of the CCG,

take the sum of the counts of the first 2.05 ms window or the counts of the last 2.05 ms

window as n2). The bigger the ratio n2/n1 is, the sharper the peak is. A customizable

variable v2 is used to threshold the lower bound of the ratio. An empty list is created

for each ei. When the ratio n2/n1 for an (ei, ej) pair is larger than v2, we add ej to the

corresponding list for ei and record the lag in the CCG bin with the largest number of

counts as the delay time of ej relative to ei. After the list is constructed, for each ei, if

all ej in the list have non-negative delay times, we store this list as a set of candidate

electrodes for a propagation. The requirement for non-negative delay times for all ej

avoids duplicate detection of the same eAP propagation. This process is repeated for

all electrodes ei in an array. In this paper, we chose v2 to be 0.5. The value 0.5 was

determined empirically with results from different thresholds compared with manually

detected propagation signals for our dataset as described in [22]. Users can change v2

to any number between 0 to 1 based on how sharp they want the peaks for a qualified

electrode pair to be.

After a set of candidate electrodes is found for a reference electrode ei, the second

step is as follows. First, find the electrode eh in the set of candidate electrodes with the

maximum number of co-occurrences with ei. If there are multiple electrodes with the

same number of co-occurrences with ei, the one with a shorter delay time is identified

as eh. If there are multiple electrodes with the same number of occurrences with ei

and the same delay time, the one with a smaller ID number is used as eh. Second,

scan through all other electrodes in the set of candidate electrodes to identify only the

electrodes with more than v3% of the maximum number of co-occurrences and an n1

greater than v4 (n1 denotes the largest sum of counts in any 0.5 ms moving window in the

CCG). Action potential propagation is a high-fidelity process where ideally, all cohort

electrodes detect most of the propagating eAPs. In practice, missed spike detection
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happens in electrodes with low signal-to-noise ratio. v3 is used as the threshold for the

lower bound of the percentage of co-occurrences each cohort electrode needs to detect for

an eAP propagation. Given the low inter-electrode latency variability, n1 is a proxy of the

absolute number of co-occurrences. Co-occurrences can happen from random alignment.

However, we showed in Figure 2.2G and 2.2H that random alignment only leads to a

small number of co-occurrences. The threshold v4 sets a lower bound for the number of

co-occurrences to avoid falsely identifying an electrode as a cohort electrode as a result

of random alignment.

In this paper, we used v3 = 50 and v4 = 50. v3 was determined empirically with

results from different values compared with manually detected propagation signals for

our datasets as described in [22]. We chose v4 to be 50 based on the number of spikes

in each recording. Electrodes that satisfy these criteria along with ei, eh are identified

as the cohort electrodes of an eAP propagation. This process was repeated for all sets of

candidate electrodes. This generates a collection of cohort electrodes, each representing

an eAP propagation in each recording.

All vi can be defined by users.

2.2.2 Signal statistics extraction

The eAPs from the identified cohort electrodes can be used to extract single cell

statistics. Spike times Ti for an identified neuronal source si are computed using the spike

times on the cohort electrodes. Let ei again denote the reference electrode in the cohort

and eh denote the electrode with the most co-occurrences with ei. Here co-occurrences

were spikes at cohort electrodes that occurred within 1.5 ms window following the eAP

at the reference electrode. ei and eh are the first two anchor points for si. First, all the

co-occurrences between these two anchor points are identified and added to a spike set S.
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Additional anchor points can be added in the order of most to least co-occurrences with

anchor point 1. The co-occurrences between the additional anchor point with anchor

point 1 are added to S to comprise an amended set of propagating eAPs. Note that

because inter-electrode latencies are usually small (<1 ms), we use the spike times at

anchor point 1 to represent the spike times of the neuronal sources.

In this work, the propagation eAPs were isolated with three anchor points when possi-

ble, unless otherwise specified. In cases with only two cohort electrodes, the propagation

eAPs were isolated with two anchor points.

The analysis for computational time in Figure 2.5C was done on a server with the fol-

lowing specifications: Chassis: Gigabyte R282-Z91-00 Rack Mount Server; Motherboard:

Gigabyte MZ92-FS0-00; CPUs: two AMD EPYC 2 Rome 7502 32 Core CPUs; RAM:

1TB DDR4 Reg ECC RAM; Operating System: Ubuntu 20.04 LTS. The software used

to run the script was MATLAB R2018b. The code used parfor (parallel) for-loops and

employed 12 workers on the server for parallel computing.

2.2.3 Primary cell culture

All animal protocols and procedures described in this study were approved by the

Institutional Animal Care and Use Committee (IACUC) of University of California, Santa

Barbara and were performed in accordance with the NIH Health Guide for the Care and

the Use of Laboratory Animals. All animal experiments were performed in accordance

with ARRIVE guidelines. Primary hippocampal neurons were isolated from postnatal

day 0 (P0) C57BL/6 mice using previously described protocols. Up to 3 mouse pups

were used per round of cell culture and the neurons were pooled for plating on multiple

MEAs. Cleaned and UV sterilized MEAs (120MEA100/30iR-ITO arrays; Multi Channel

Systems) were coated with 0.1 mg/ml poly-L-lysine (Sigma-Aldrich) for 1 h at 37 ◦C,
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rinsed 3 times with sterile water and air dried prior to plating. All recordings were done

from cultures that were plated twice. In the first plating, primary cells were plated and

allowed to grow and proliferate. After at least a week, another round of primary cells was

plated. Cells were plated at 100,000 to 125,000 cells for the first plating and 125,000 to

200,000 for the second plating. For cultures grown on CMOS arrays, cultures of primary

glial cells were maintained in separate T-75 flasks, were plated at 150,000 cells per well on

MEAs and allowed to proliferate for at least a week. Freshly dissociated hippocampal cells

were then plated at 250,000 cells per dish (550 cells/mm2) on the confluent glial cultures.

All primary mouse cultures were grown in minimum essential medium with Earle’s salts

(Thermo Scientific, catalog # 11090081) with 2 mM Glutamax (Thermo Scientific), 5%

heat-inactivated fetal bovine serum (Thermo Scientific), and 1 ml/l Mito+serum extender

(Corning) and supplemented with glucose to an added concentration of 21 mM.

2.2.4 Human brain cerebral organoid generation

Details on generation of the cerebral brain organoids have been previously published

[39]. The control induced pluripotent stem cell (iPSC) line F12442.453 were cultured in

mTeSR1 medium (Stem Cell Technologies) using hESC-qualified Matrigel-coated tissue

culture plates (Corning). Media was exchanged every other day and iPSCs were rou-

tinely passed using ReLeSR (Stem Cell Technologies). Organoids were generated using

the method of [40], with minor modifications. For dissociation, iPSCs were incubated

in 0.5 mM EDTA in D-PBS for 3 min followed by Accutase for 3 min at 37 ◦C and

triturated to achieve a single-cell suspension. Cells were centrifuged for 3 minutes at

1,000 rpm, resuspended in low bFGF hES media supplemented with Rock inhibitor (50

µM) and plated in U-bottom ultra-low attachment plates at 4,500 cells per well. On

day 2, low bFGS hES media with Rock inhibitor was replaced. Media was changed on
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day 4, omitting bFGF and Rock inhibitor. Embryoid bodies were transferred to neural

induction media on day 5 (1x N2 supplement, 1x GlutaMAX, 1x MEM-NEAA, 1ug/ml

Heparin in DMEM/F12) and media was replaced on days 7 and 9. On day 10, each

neuroepithelial structure was embedded in 15 ul hESC-qualified Matrigel, followed by

a 2 day incubation in neural induction media. On day 12, neural induction media was

replaced with NeuroDMEM-A media (0.5x N2 supplement, 1x B27supplement without

Vitamin A, 1x β-Mercaptoethanol, 1x GlutaMAX, 0.5x MEM-NEAA, 250 ul/l insulin so-

lution, 1x Pen/Strep in 50% DMEM/F12 and 50% Neurobasal). After day 19, organoids

were cultured in NeuroDMEM+A media (0.5x N2 supplement, 1x B27 supplement with

Vitamin A, 1x β-Mercaptoethanol, 1x GlutaMAX, 0.5x MEM-NEAA, 250 ul/l insulin

solution, 12.5 mM HEPES, 0.4 mM Vitamin C, 1x Pen/Strep in 50% DMEM/F12 and

50% Neurobasal) with media changes twice per week. After day 21, organoid cultures

were kept on an orbital shaker at 75 rpm.

2.2.5 Recording conditions

All recordings from low density arrays (MultiChannel Systems; Reutlinger, Germany)

or CMOS arrays (Maxwell Biosystems; Zurich, Switzerland) were done in cell culture

medium to maintain sterility (see above). Low density arrays (100 micron inter-electrode

distance) were recorded using MultiChannel Systems MEA 2100 acquisition system. Data

were acquired at 20 kHz and post-acquisition bandpass filtered between 200 and 4000 Hz.

Data were acquired on all 120 data channels. We controlled the head stage temperature

with an external temperature controller (MultiChannel Systems TC01). Most recordings

reported here were done at 30◦C, unless otherwise indicated. The media osmolality was

usually ∼320 mosmol. Salts were obtained from Sigma-Aldrich or Fluka. Any drugs,

such as TTX (Tocris), were introduced into the recording chamber in a volume not more
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than 0.2% of the chamber volume.

All recordings were done on neurons at 5-30 days in vitro (DIV) except for recordings

done on organoids. We used recordings with signals present on the majority of channels.

Recording duration was kept brief (3 to 5 minutes) to minimize to avoid large changes

in CO2 and pH [22] and to minimize data file size. All recordings were done with

the MEAs chambers covered by a CO2-permeable, water vapor-impermeable membrane

to minimize evaporation, maintain cell culture sterility and decrease media degassing.

Membranes were held in place over the recording chamber by a Teflon collar placed over

the culture chamber. Once placed in the headstage, each array was allowed to equilibrate

to head stage temperature for at least 5 minutes. For experiments requiring temperature

changes, head stage temperature was monitored and each MEA was kept at the new

temperature for at least 5 minutes before data acquisition. For all CMOS recordings, the

headstage was kept in a cell culture incubator equilibrated to 5% CO2 and 37 °C. CMOS

data were acquired at 20 kHz. Data were acquired on a subset (1024 electrodes) of the

26,400 available electrodes.

Recordings from cerebral organoids were performed using a high-density Neuropix-

els CMOS shank (Neuropixels, Heverlee, Belgium) on 6-month-old cerebral organoids.

Briefly, organoids were cultured in BrainPhys media for 30 days prior to recording. For

recordings, organoids in BrainPhys media were immobilized in a custom well and kept

at 37 ◦C using a temperature-controlled stage. A 10 mm long high-density Neuropixels

CMOS shank (with 384 addressable electrodes in 960 electrode array) was inserted into

the organoid using a motorized micromanipulator (MP-285, Sutter Instruments). Data

acquisition was done with SpikeGLX (Bill Karsh, https://github.com/billkarsh/SpikeGLX)

at a sampling rate of 30 kHz. Subsequent data processing and analysis were performed

similarly to 2D CMOS data.

30



Automated detection of extracellular action potentials from single neurons Chapter 2

2.2.6 Spike detection and analysis

MultiChannel Systems proprietary files were converted to HDF5 file format prior to

all analysis with the MCS program Multi Channel DataManager. Extracellular voltage

records were bandpass filtered using a digital 2nd order Butterworth filter with cutoff

frequencies of 0.2 and 4 kHz. Spikes recorded from the MultiChannel Systems acquisi-

tion system were detected with MEA Tools [25] using a threshold of 6 times the standard

deviation of the median noise level. For CMOS recordings, raw voltage records were

bandpass filtered between 300-6000 Hz and the spike detection threshold was 5 times the

root mean squared of the signal per channel. Raw data was processed using proprietary

MaxLab Live software (Maxwell Biosystems). Manually detected propagating eAPs were

initially detected by eye with the help of MEA Viewer [25] spike visualization software

and validated by signal averaging. No spike sorted data was used in our analysis. Some

analysis was done using custom software written in Python and Mathematica (Wolfram)

and in Igor (Wavemetrics). For example, to compare the output of our detection algo-

rithm with raw data (Figure 2.1), output files from MEA Tools containing spike times and

amplitudes were manually compared to amplitude histograms from eAPs isolated with

our algorithm. All statistical data are displayed as the mean ± standard deviation.

2.3 Discussion

2.3.1 Limitations of automated detection of action potential

propagation

Since the method we outline here uses action potential propagation to isolate eAPs

from individual neurons, a minimum of two electrodes are required for propagation de-

tection. Propagation from some neurons may be undetectable due to their axons being
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outside the detection radius of any electrode. This is especially true for lower electrode

density arrays. However, denser arrays of electrodes will result in increased detection of

propagation. In the case of high electrode density arrays implanted in the human brain

organoid (Figure 2.5D, 2.5E), the blind insertion of the shank array and the unknown

cellular anatomy likely contributed to the limited detection of propagating action poten-

tials. With respect to the in vivo application of our algorithm, detection of propagating

eAPs may be facilitated in experiments where shank electrode arrays are inserted parallel

to fiber tracts in white matter, for example.

The input of our algorithm is spike trains that have been detected by other means.

Sampling the true spike train from any neuron is always limited to signal-to-noise con-

siderations. Our algorithm depends on co-detection of eAPs at two cohort electrodes

and therefore increases the risk of under-sampling the true spike train when the signal-

to-noise ratio at any anchor point is low. Because our algorithm always uses the cohort

electrode with the earliest eAPs in the propagation sequence as anchor point 1 and in-

dexes the propagating eAPs at all other cohort electrodes to the earliest eAPs, detection

accuracy is limited by the signal-to-noise at this electrode. The earliest electrode often

includes eAPs with waveforms consistent with them arising from at or near the axon

initial segment (AIS; Figure 2.1B, 2.4A, 2.4D). Because the transmembrane conductance

at the AIS is large[41, 31], the signal-to-noise of these eAPs is typically quite high. How-

ever, propagation detection is compromised the lower the signal-to-noise ratio is of other

cohort electrodes (Figure 2.2C).

We circumvented some signal-to-noise limitations of spike detection by designing into

our algorithm a user-defined option to include spike trains from cohort electrodes other

than anchor points 1 and 2 (Figure 2.2). Detection failures at the anchor point 2 elec-

trode could be compensated for by increasing the number of electrodes for propagation

detection. Doing so revealed more propagating spikes (Figure 2.2E, F). However, us-
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ing propagating eAPs from other cohort electrodes refines the spike train (Figure 2.2E)

but the increased comparisons between spikes increases the risk of false positives due to

random alignment (Figure 2.2H).

Repeated co-occurrence of eAPs is the detection criteria for isolating propagating

action potentials from different source neurons. Artifactual alignment of spikes that are

not reflective of propagation at other electrodes can be mistaken as propagating eAPs.

This concern increases when the spike rate at any electrode is high. However, as

we show (Figures 2.1D, 2.2G, 2.2H), the number of artifactually isolated propagating

eAPs due to randomness was minimal under our recording conditions. Propagating eAP

detection can be affected by additional thresholding based on the standard deviation

of inter-electrode latencies which gives rise to the CCG. Propagating action potentials

have low variability of the inter-electrode latency. Thus, eAPs at other electrodes with

latencies that are at the edges of the latency distribution are more likely to represent

noise. Figure 2.6 displays an example of additional thresholding based on the standard

deviation of inter-electrode latency. Each panel shows the amplitude distribution of all

eAPs at an electrode (in grey) superimposed with the amplitude distribution of prop-

agating eAPs (red) isolated using different thresholding. The first three panels display

how thresholding, based on different multiples of the standard deviation (α), affect the

isolation of propagating eAPs. The final panel shows the isolated propagating eAPs

amplitude distribution without any such thresholding. The amplitude distribution at

this example electrode is divided into two modes; we expect the propagating eAPs to be

limited to an apparent single mode. However, a small number of spikes from the lower

amplitude mode were included by the algorithm. With different value of α, different

number of eAPs were removed. Without thresholding, there are 1939 propagating eAPs

in the higher amplitude mode and 139 propagating eAPs in the lower amplitude mode.

When threshold was set to α = 2, 90% of the eAPs in the lower amplitude mode were
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filtered out while retaining all of the eAPs in the higher amplitude mode. In general,

smaller α will filter out some true co-occurrences and cause higher false negative rate

whereas a larger α can cause higher false positive rate.

Signal quality affects propagation detection in other ways. For example, our algo-

rithm uses parameters such as the shape of the CCG and the number of propagating eAP

co-occurrences (see Methodology) to identify cohort electrodes. When detection failure

varies between recordings, such as during experimentally induced changes in propagating

eAP waveforms (Figures 2.3, 2.4), these parameters can be affected and can result in

identification of propagating eAPs with different numbers of cohort electrodes. However,

the majority of spike train data from propagating eAPs in each neuron is usually repre-

sented by 2 to 3 electrodes (Figure 2.2I, J), within the limits of detection. Analytically,

this outcome matters, for example, when trying to increase the anatomical detail of the

propagation pathway. Changing the spike detection threshold could reveal such cases.

2.3.2 Future Directions - complementary use with traditional

spike sorting routines

Use of contemporary MEAs requires automated approaches for post-acquisition data

handling, due to the large number of sensors that each acquire data at the high enough

acquisition rates to represent eAPs. To understand how any experimental manipulation

affects spike rate, extracellular recording on the scale possible with contemporary MEAs

requires automated methods of isolating spikes into different sources. However, sorting

routines that are untested against contextually relevant ground truth could produce er-

roneous results in the absence of other information. In the absence of ground truth, even

the most sophisticated sorting routines are unable to validate how to correlate spikes at

single electrodes in experiments that significantly change the eAP waveform [20]. Our
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Figure 2.6: An example of the usage of multiples of standard deviation (α) of the
latency distribution for thresholding. In each histogram, grey are the amplitudes
of all eAPs at this electrode. Superimposed on these histograms are the amplitude
distributions of isolated propagating eAPs (red). From top to bottom, the first three
histograms show the eAP amplitude distribution after thresholding with α = 0.5, α
= 2 and α = 5 respectively. The histogram at the bottom is the propagating eAPs
detected without any thresholding.
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approach to isolating eAPs from different source neurons based on detection of eAP prop-

agation, routinely provides contextually relevant ground truth and thus could be used

to test spike sorting routines in every experiment in which propagation is detected. For

example, at each electrode, eAPs assigned to individual units by spike sorting routines

could be tested against eAPs at that same electrode that were isolated as part of a prop-

agation cohort. The extent of overlap between results from a sorting routine and the

results from our method assesses the accuracy of a sorting routine [22].

Isolation of eAPs by automated detection of action potential propagation performs

the same task as traditional spike sorting. The characteristics of action potential propa-

gation themselves validate that eAP cohorts isolated by this method are from individual

neuronal sources. Thus all spikes isolated by our method can be ignored by traditional

spike sorting routines. However, the characteristics of propagation detection mean that

the fraction of spikes in any data set that can be isolated by this method will depend

on factors such as electrode and neuron density. For example, densely packed electrodes

more readily detect propagation than more widely spaced electrodes (Figure 2.5B). In

intact tissue, positioning electrode arrays within fiber tracks or other neuronal propa-

gation pathways should facilitate propagation detection. Data acquisition in the range

of experimental contexts in which MEAs are used means that automated detection of

action potential propagation and traditional spike sorting routines are complementary.

A workflow in which spike train data is processed by our algorithm, followed by a tra-

ditional spike sorting method, may reduce the vulnerability of the remaining ensemble

spike train to be miss-sorted. This also increases the reliability of eAP isolation of the

entire data record because of the empirical isolation of eAPs with our algorithm as the

first step.

Sorting eAPs into source neurons based on action potential propagation avoids limi-

tations of waveform-based sorting. Because eAPs are isolated into unique sources based
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on the propagation pathway rather than waveform, drug development assays based on

extracellular recording on high throughput MEA platforms become unconstrained by

ambiguity introduced when drug application changes spike waveform [20]. Other exper-

imental manipulations that change eAP waveforms can also be unambiguously studied

with the implementation of our algorithm because the response of each identified neuron

can be tracked among various conditions. When eAPs are unambiguously assigned to a

unique neuronal source, those eAP times are an index against which eAPs from other

neurons can be timed, for example to identify synaptic coupling among small numbers of

neurons [24] or to assess how genetic background affects synaptic coupling, for example.

Further development of our methods can start to bridge the gap between rapidly evolving

MEA technology and science that use of such technology can reveal.
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Chapter 3

Extracellular detection of neuronal

coupling

3.1 Results

3.1.1 Propagating eAPs are a timing device

We isolated eAPs from single identified neurons by extracting action potential propa-

gation signals from single axons across multiple electrodes[22, 42]. We previously charac-

terized axonal action potential propagation by isolating cohorts of electrodes with eAPs

that occur in fixed spatial and temporal relationships[22] as a means to identify and label

each individual isolated neuron. For example, spikes between electrodes H6 and D6 (Fig.

3.1a, b) co-occurred 1360 times in this recording, with an inter-electrode latency of 0.305

± 0.024 ms and a coefficient of variation (CV) of 0.078, consistent with a high-fidelity

process like axonal action potential propagation. Isolation of eAP propagation signals

within the multi-electrode voltage record in this way empirically reveals spiking from

single neurons.
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Figure 3.1: Propagation signals are a clock used to identify coupled eAP’s. a, Map
of electrode array used in these experiments. Two electrodes that detect single axon
eAP propagation are shown in red. Electrode K3 is the location of the spike cloud
that follows the propagation signal. b, The eAP waveforms at H6 and D6 are shown.
Individual eAPs are in grey; the average of 100 eAP waveforms is superimposed in
red. c, The distribution of inter-electrode eAP latency between H6 and D6. The
high number of co-occurrences (n = 1360) and low coefficient of variation (0.078) are
consistent with action potential propagation. d, aligning the eAP co-occurrences at
H6 and D6 (schematized in red) reveals a cloud of eAPs at K3. Twenty eAP wave-
forms from K3 are superimposed in grey, with 3 waveforms highlighted in black. The
timing of 50 eAPs from K3 following the H6/D6 co-occurrence are shown as grey
hash marks beneath eAP the waveforms. e, the plot of eAP amplitude at versus time
after H6/D6 co-occurrence shows a large cluster. All eAPs that occurred between 0.5
and 10 milliseconds after the H6/D6 co-occurrence are displayed. Red lines indicate
the mean latency and eAP amplitude, respectively. Horizontal and vertical grey lines
indicate two standard deviations of the mean for each dimension. f, the amplitude
distribution of the spikes in K3 that occurred within 0.5 to 10 ms following the H6/D6
co-occurrence (red bars) are superimposed on the all-points spike amplitude distribu-
tion histograms from electrode K3. g, cumulative distribution of the coupled spikes
in K3 (red line) superimposed on the cumulative distributions from 5 randomly se-
lected groups of amplitudes from the all-points distribution from K3, showing that the
amplitudes of the coupled eAPs were not randomly selected from the full amplitude
distribution.
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The co-detection of action potentials by multiple electrodes was the time stamp we

used to mark events at other array electrodes. Because co-occurrences represent spiking

from a single neuron, we can recalibrate the timing of all other electrodes by indexing

the voltage record to the co-occurring eAPs. Superimposing the co-occurring spikes from

each unique propagation signal recalibrates the timing of other eAPs with relation to the

timing of the propagating events. For example, superimposing co-occurring spikes from

H6 and D6 (Fig. 3.1c) revealed a cluster of spikes at another electrode (K3) that occur

with short, variable latency after the propagating spikes (Fig. 3.1d). In this example,

spikes in K3 occurred with a probability of 0.85 between 0.5 to 10 milliseconds after the

propagating eAPs, with a latency of 2.40 ± 1.33 ms (n = 1205; Fig. 3.1e). The latency

CV of these coupled spikes (0.55) is inconsistent with action potential propagation while

the high probability and short latencies of eAPs in K3 suggested direct coupling of spiking

between the propagation signal neuron and a neuron detected at electrode K3.

Extracellular electrodes can detect spikes from any sufficiently proximal neuron. Con-

sequently, the eAP amplitude distribution of single electrodes can reflect spikes from

multiple source neurons[43]; spike amplitude can often be discriminating criteria in spike

sorting routines[12, 44]. The full eAP amplitude distribution from electrode K3 is mul-

timodal, potentially representing spikes from at least two source neurons (Fig. 3.1f, grey

bars). In contrast, the amplitude distribution of the eAPs at K3 that occurred between

0.5 to 10 milliseconds after propagation signal H6/D6 was a discrete subset of the entire

eAP amplitude distribution rather than a randomly sampled subset of the full amplitude

distribution (Fig. 3.1f, red bars). To formally examine if the amplitude distribution

of coupled spikes at K3 could be explained by random selection from the entire am-

plitude histogram, we compared the amplitude distribution of the eAPs coupled to the

propagation H6/D6 to the amplitude distributions of multiple randomly sampled eAPs

amplitudes from K3, using the Kolmogorov-Smirnov (KS) test, which tests the prob-
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ability that groups of spikes were taken from the same distribution (Fig. 3.1g). The

probability that the distribution of coupled eAPs and randomly sampled eAPs were from

the same distribution was less than 1.0×10−14 (two-sample KS test, two-sided, n = 1205).

In contrast, the probability that two randomly chosen groups of eAPs from electrode K3

were drawn from the same amplitude distribution was 0.64. These results suggest that

eAPs from a single source neuron occur with short latency after the propagating spike

H3/E6. Our results further suggest the short latency between eAPs from the neuronal

source of the propagation signal eAPs and downstream clusters of spikes reflects direct

synaptic coupling.

3.1.2 Detection of neuronal coupling with an automated detec-

tion algorithm

To apply the high throughput capabilities of MEAs efficiently, we developed algo-

rithms for the automated detection of (1) propagation signals and (2) neurons with short

latency couplings based on clusters of post-synaptic eAPs. We first isolated eAPs from

single neurons, using all 120 electrodes to detect propagation signals. We then used the

propagation signal spike times to create cross-correlograms (CCGs), with a 2 ms window

before and after reference time-points for each pair of eAP spike time comparisons among

all electrodes. The process was repeated for all array electrodes, generating a collection

of all propagation signals with the delay time of the electrodes through which they pass

(Fig. 3.2a).

The spike times of each propagation signal were then used as reference time-points

for detection of short-latency connections between propagation signal spike times and

eAPs at all other electrodes. A new CCG was performed for each pair of comparisons,

using a window between 0.5 and 10ms after each reference time-point (Fig. 3.2b) with
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Figure 3.2: Algorithm for the routine detection of synaptic coupling. a, following
propagation signal detection, two electrodes with the most co-occurrences from each
propagation signal were picked as anchor points to compute the spike times. b, A
CCG is generated and stored using propagation signal spike times as a reference and
all other individual electrodes as targets. To inspect the specificity of the postsynaptic
response, a scatter plot of spike amplitude versus spike latency in the target electrode
is produced. A few criteria can be used for deciding the existence of a short latency
connection including: 1) The position of the peak of the CCGs, 2) the standard devi-
ation of the latency and amplitude, 3) the proportion of spikes that fall into the peak
region, and 4) the ratio of the number of spikes in the peak region to the number of
spikes in the reference signal. The specific values for the criteria can alternatively be
user defined. c, d (right) The two-sample KS test (two-sided) p - value distribution
of coupled-versus-coupled comparisons (red circles) and random-versus-random com-
parisons (black circles). The amplitude distributions of some electrodes are expected
to be unimodal if eAPs from only single neurons are detected by those electrodes. In
these cases, coupled spikes would be expected to have the same amplitude distribution
as randomly selected spikes, as is the case for comparisons that do not differ.
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filtering criteria described in the Methodology section. The coupling probability is the

ratio of spikes in the CCG peak over the total number of propagation signal spikes.

To test whether our algorithms were randomly selecting eAPs from each electrode,

we used the two-tailed KS test to determine the probability that coupled spikes were

selected from the same amplitude distribution as a randomly selected group of spikes

from the entire distribution of the same electrode. We also compared two groups of

randomly selected eAPs from the same electrode to test the probability that they were

from the same distribution. As seen, most (94/156) of the coupled-versus-random com-

parisons (red circles) were unlikely to have been selected from the same distribution at

a 5% significance threshold (Fig. 3.2c). In contrast, 152 of the random-versus-random

comparisons (black circles) exceeded this threshold. These data indicate that the coupled

spikes selected by our algorithm are a non-random selection from the full eAP amplitude

histogram at each electrode.

The amplitude distribution of coupled spikes (red lines) selected by our algorithm

in this example (Fig. 3.2d, left) are predominantly sampled from the higher amplitude

mode of the full distribution (grey bars). In contrast, the randomly drawn sample of

eAP amplitudes (black line) mirrors the full amplitude distribution. This difference led

to a low probability (P < 6.7× 10−35) that coupled spikes and randomly selected spikes

were drawn from the same sample. However, in some cases, such as when only one

neuron is proximal to an electrode, the amplitude distribution will approximate a normal

distribution. Thus, when we apply our algorithm under these circumstances, the coupled

spike amplitude distribution will be indistinguishable from a randomly selected group of

spikes (Fig. 3.2d, right). In cases where electrodes sample from multiple neurons, coupled

spikes extracted by our algorithm represent a statistically distinct subset of the full events,

consistent with eAPs from single neurons and with statistical characteristics outlined

previously (Fig. 3.1f, g). To examine whether our results arose because of random
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associations between pre- and postsynaptic neurons, we shuffled the timing of all spikes

at postsynaptic electrodes, while retaining the distribution of inter-spike intervals (ISI)

for each electrode and calculated the ratio of the number of spikes in the target electrode

that fall within 0.5 to 10 ms of a spike in the reference electrode over the number of spikes

in the reference electrode signal. We found that the ratio dropped from 0.35 ± 0.25 in

unshuffled controls to 0.0035 ± 0.0038 in the shuffled data (n = 746 detected couplings),

indicating that what our algorithm identified as couplings were not the result of the

randomness of timing associations between spikes at different electrodes. Our results

indicate that our algorithm detects spikes that are postsynaptic to the propagation signal

eAP, likely representing examples of synaptically-coupled neurons from the extracellular

voltage record.

3.1.3 Stimulation recapitulates properties of spontaneously-coupled

spikes

The majority of eAPs in our cultures result, directly or indirectly, from excitatory

synaptic transmission. Blocking excitatory neurotransmitter receptors in our cultures

(2.5 – 5 µM NBQX and 10 µM R-CPP) reduced the number of spikes to 12.5 ± 15.2%

of control (n = 7 arrays). The latency between propagation signal eAPs and coupled

spikes suggests a direct synaptic interaction. We tested whether we could recapitulate

the coupling probability of spontaneously active neurons by direct stimulation of the

propagation signal neurons. In this example, the coupled eAPs at electrode A7 (Fig.

3.3a) consistently and closely followed the propagation signal D3/E5, with a probability

of 0.65 (n = 377 coupled spikes). If eAPs from the propagation signal D3/E5 result in

spikes at A7, stimulation of electrode D3 should result in eAPs that occur with a similar

probability and amplitude distribution at A7. As shown, stimulation resulted in eAPs in
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A7 with a probability of 0.79 (n = 393 coupled spikes; Fig. 3.3a). The spike amplitudes at

A7 following spontaneous propagation signals (44.14 ± 9.15 µV) or stimulation (44.75 ±

14.17 µV) did not differ (n = 200 randomly chosen spikes from each group; P = 0.2; two-

sample KS test, two-sided; Fig. 3.3b). The latency of the coupled spikes was 4.29 ± 0.69

ms in the spontaneous conditions and 5.93 ± 0.63 ms in the stimulated condition. For

stimulation, the latency was the interval between the beginning of the blanking period

and the negative peak of the coupled spike. The longer latency following stimulation

likely reflects the difference in how latency was measured in these cases. This suggests

that spontaneous eAPs at A7 following the propagation signal or the stimulation of the

propagation signal are from the same source neuron.

Across multiple experiments, the coupling probability between spontaneous and stim-

ulated cases were comparable, as shown by plotting coupling probability for spontaneous

events as a function of coupling probability for evoked events (Fig. 3.3c). The slope

of the linear fit to this data was 0.84 (n = 20). A paired t-test (two-sided) showed no

significant difference when comparing coupling probability for spontaneous and evoked

cases (P = 0.45). Similarly, a plot of the mean amplitude of spontaneous eAPs as a func-

tion of the amplitude of evoked eAPs was well fitted to a line with a slope of 0.93; the

amplitudes of coupled spikes following stimulation were not statistically different from

those of spontaneous spikes (Fig. 3.3d; n = 20; P = 0.18; paired t-test, two-sided). Our

experiments directly demonstrate that the spike clusters seen following many propaga-

tion signal spikes result at least in part from activation of synapses originating from the

single neuron identified by its propagation signal. These data indicate that stimulation

at the electrode where a propagation signal was detected recapitulates the probability

and amplitude characteristics of spontaneous events that resemble coupled spikes.
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Figure 3.3: Stimulation of presynaptic neurons recapitulates spontaneous activity. a,
50 spontaneous co-occurring spikes in D3 and E5 were used as reference points to
identify coupled spikes in A7 (spikes depicted as raster’s below). Spiking activity in
A7 after stimulation of electrode D3 using a 3µA biphasic current injection, 200 µsec
total duration, 500 times. A blanking period (1.5 ms) during which no voltage data
is collected is applied to all electrodes due to artifacts introduced by stimulation. For
the stimulation experiments we therefore measured latency from the start of the stim-
ulation period. b, The spike amplitude distribution of spikes detected at A7 (n = 200
randomly sampled spikes) after spontaneous propagation signals at D3/E5 (n = 572)
is not significantly different than the spike distribution of spikes detected at A7 (n =
200 randomly sampled spikes, P = 0.2, two-sample KS test, two-sided, 1 MEA with
2 recording sessions for a and b)) after stimulation at electrode D3. c, Correlation of
coupling probabilities for spontaneous activity versus stimulated activity. Each data
point in (c) and (b) represents coupled neurons. Couplings were identified by identi-
fying spontaneous propagation signal activity as references in a CCG and a coupling
probability was assigned to the postsynaptic unit. Following identification of coupling
relationships, electrodes associated with presynaptic propagation signals were then
stimulated in order to obtain coupling probabilities with the same postsynaptic unit
(n = 20 couplings, P = 0.45 paired t-test). d, For the same coupling events in (c), the
correlation between spike amplitudes of the postsynaptic response in the spontaneous
condition was compared to the spike amplitudes of the stimulated condition. Error
bars represent the standard deviation of spike amplitude distributions (n = 20 cou-
plings, P = 0.18 paired t-test, 3 MEAs and 6 total recording sessions were used for c
and d).
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3.1.4 Decreasing active synapse density lowers coupling proba-

bility

Presynaptic calcium influx initiates the release of neurotransmitters[45]. Cadmium

(Cd2+) reduces calcium conductance through calcium channels[46] and decreases the

neurotransmitter release probability, and thus the number of active synapses[47]. How-

ever, the number of synapses between individual cultured hippocampal neurons can be

sufficiently high such that single axons can make multiple synapses on the dendrites of

single postsynaptic neurons[48, 49]. If coupled spikes result from integration of multiple

synaptic inputs from single axons, then decreasing the number of active synapses with

Cd2+ should decrease the coupling probability. We compared the coupling probabilities

in control conditions and following the addition of Cd2+ (1µM, 5µM and 10 µM) in the

same cultures. The majority of cases resembled the coupling between propagation signal

F4/E5 and postsynaptic electrode H11, in which coupled spikes in control conditions

were no longer present at 10 µM Cd2+ (Fig. 3.4a). We identified 83 functional couplings

in control which decreased to 67 at 1 µM Cd2+. Higher Cd2+ concentrations decreased

the detection of coupling to 18 (5 µM Cd2+) and 10 (10 µM Cd2+). Interestingly, we saw

no change in latency between control (2.9 ± 1.22, n = 83) and 5 µM Cd2+ (2.8 ± 0.77, n

= 18). The total number of propagation signal spikes were comparable in all conditions

(Fig. 3.4b), indicating that the cadmium-related decrease in coupling probability was

unrelated to changes in number of propagation signal spikes, and thus neuronal activity.

These results demonstrate that the coupling probability is sensitive to changes in the

number of active neurotransmitter release sites.

To examine how decreasing the number of active synapses alters the connectivity of

small neural networks, we used a recording that demonstrated a high level of coupling

among propagation signals and asked how reduction of active synapses is affected with
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Figure 3.4: Cadmium alters coupling probabilities. a, Propagation signal eAP’s de-
tected at F4 and E5 with coupled spikes in H11 in the absence of cadmium and after
addition of 1µM, 5µM, and 10µM cadmium. Coordinated spiking activity in H11 after
propagation signal spikes in F4 and E5 decreased dramatically and resulted in the ab-
sence of coordinated activity at 10µM. b, In this example, the total number of spikes
from the propagating neuron detected in electrode F4 to E5 under control conditions
was 1848 spikes and the coupling probability of the postsynaptic unit at H11 was
0.14. Addition of 1µM Cd2+ resulted in 2154 spikes in the propagating neuron and a
coupling probability of 0.16 with H11. At 5µM and 10µM Cd2+, the spikes CCG at
electrode H11 did not meet our criteria for coupling and were considered fully de-cou-
pled; with 1784 and 2357 spikes in the propagating neuron, respectively. c, Network
graphs were constructed to visualize the couplings between only propagation signal
spiking activity. 8 of 10 propagation signals (nodes) formed a total of 29 couplings
(black edges) in control conditions. Addition of 1µM Cd2+ resulted in loss of 26 edges
present in control and the appearance of 17 couplings (red edges). No couplings were
detected at 5µM or 10µM Cd2+ (1 MEA was used for 4 recording sessions for a – c).
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1µM Cd2+. Propagation signal neurons are represented by circles (nodes) in the network

graph (Fig. 3.4c), and lines (edges) represent couplings between propagation signals. We

identified 29 couplings (black edges) among 8 of 10 of the propagation signals in control

conditions, including 3 recurrent connections. With the addition of Cd2+ only 3 of the

29 couplings present in control were retained (black lines, Fig. 3.4d, right). Interestingly,

addition of Cd2+ revealed 17 couplings not seen in control conditions, including couplings

among propagation signals that were only detected in Cd2+. In this experiment, no

couplings were detected in 5µM Cd2+. The decrease in network connectivity in Cd2+ is

consistent with reduction in the number of active synapses. Cd2+ also affects inhibitory

neurons, and the consequent reduction in inhibitory tone may explain the redistribution

of connections among existing and new propagation signals.

3.1.5 Temperature sensitivity of coupled eAP latency

Synaptic transmission is highly sensitive to temperature[37, 38, 50]. If postsynaptic

activation and integration of multiple synapses from single axons is the basis for the eAP

coupling latency, then changes in the coupling latency in response to temperature should

be within range of previous measurements of synaptic delay[51, 52, 53]. Thus we measured

the latency between propagation signal spikes and coupled spikes at three temperatures.

As shown (Fig. 3.5a), increasing the temperature shifted the distribution of the coupled

eAP latency to shorter values in this example (2.75 ± 0.47 ms at 30◦C; 2.15 ± 0.1.09 ms

at 32◦C; 1.80 ± 0.91 ms at 36◦C). The mean latency at 30◦C (1.76 ± 0.8) was longer than

at 36◦C (1.41 ± 0.7; n = 23; P < 0.0001 paired t-test; Fig. 3.5b). The coupling latency

captures the sum of events that occur between spiking in one neuron to spiking in another,

including action potential propagation, the synaptic delay and synaptic integration. At

physiological temperatures, the synaptic delay at mammalian synapses can range from
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150 to 500 microseconds and can decrease by 50% within the temperature range of our

experiments[52, 53]. Action potential propagation velocity increases by 30% between

30◦C and 36◦C 4. Plotting the change in coupling latency at 36◦C as a function of the

latency at 30◦C (Fig. 3.5c) highlights the variability of the latency change in our data

set. However, the mean coupling latency change between 30◦C to 36◦C (0.35 ± 0.32 ms,

n = 23) is consistent with expected differences in temperature dependence of synaptic

delay and action potential propagation. Interestingly, shorter coupling latencies at 30◦C

tended to have smaller temperature dependent changes, suggesting that these examples

are close to the lower limit of our temporal resolution.

3.1.6 Contributions of multiple presynaptic neurons to spiking

in a single postsynaptic neuron

The coupled eAPs we identified likely represent synaptic couplings. However, it is

unlikely that activation of synapses from the majority of single axons reflects the most

common source of action potentials in postsynaptic cells, given that most of our mea-

surements of coupling probability were well below one. To address how multiple inputs

influence a postsynaptic neuron, we used spike times from a single propagation signal

to identify presynaptic couplings. In one example, we identified 7 inputs that were sta-

tistically coupled to the propagation signal eAPs. Of these, 5 inputs were propagation

signals, and 2 were isolated as spikes from single electrodes (Fig. 3.6a). A raster display

of eAPs from these 7 inputs highlights that the majority of presynaptic spikes occur 1 -

5 ms before the postsynaptic propagation signal eAPs (Fig. 3.6b). For each presynaptic

input, the probability of a spike occurring 0.5 - 10 ms before the postsynaptic propagation

signal eAP was computed as the ratio of the amount of post-synaptic spikes that has at

least one presynaptic spike in the 9.5 ms window over the total number of post-synaptic
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Figure 3.5: Temperature increase reduces coupling latency. a, Spikes from a propa-
gating neuron detected at E8 and E9 coupled to a postsynaptic unit in E5. At 30◦C
the average latency between propagation signal spikes and the CCG peak in E5 was
2.75 ± 0.47 ms. Temperature in the same culture was increased to 32◦C and 36◦C
sequentially, the average latency of the CCG peaks were 2.15 ± 1.09 ms and 1.80 ±
0.91 ms, respectively (1 MEA was used over 3 recording sessions for a). b, The distri-
bution of average latency of presynaptic propagation signals coupled to postsynaptic
units at 30◦C is significantly different than the average latency of the same couplings
at 36◦C (1.76 ± 0.8 ms at 30◦C, 1.41 ± 0.7 ms at 36◦C; n = 23; P < 0.0001, paired
t-test, two-sided). c, Average latency of couplings at 30°C versus the change in av-
erage latency of the same couplings at 36◦C. (7 MEAs were used with 2 recording
sessions per MEA, 14 total sessions, for b and c).
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spikes. The coupling probabilities of the 7 inputs ranged from 0.09 to 0.31 (Fig. 3.6c).

The low electrode density likely means that we do not capture all neurons presynaptic

to the propagation signal neuron. Additionally, the relatively low coupling probabilities

likely reflect the necessity for multiple well-timed co-active presynaptic inputs to bring a

postsynaptic neuron to AP threshold.

Figure 3.6: The influence of presynaptic inputs on a single postsynaptic propagation
signal. a, Location of the post-synaptic neuron in red and upstream signals in other
colors. Dots in different colors represent different upstream signals. Each two dots
in the same color represent two anchor points for one propagation signal. Pink and
purple represent two single electrode units. b, The patterns of pre-synaptic spikes.
Each row shows the pre-synaptic firing pattern within 10ms prior to corresponding
spike on the red neuron. The first 200 instances are zoomed in on the right. The colors
are consistent with (a). c, CCGs for all upstream signals. Postsynaptic spikes (red
propagation signal, n = 2124 spikes) were used as reference time points to perform
CCG on other propagation signals and single electrodes A8 and B8. Because the
postsynaptic spikes were used as the reference time points, the coupling probability
was calculated by taking the ratio of presynaptic spikes in the CCG peak over the
total number of postsynaptic spikes (1 MEA and a single recording session was used
for a – c).
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3.2 Methodology

3.2.1 Neuronal coupling detection algorithm

To facilitate identification of coupled spiking between two neurons we developed a set

of algorithms for the automated detection of (1) propagation signals and (2) functionally

coupled units (available at https://github.com/ZhuoweiCheng/Propagation-Signal-and-

Synaptic-Coupling-Algorithm). For propagation signal detection, spike times were stored

for all 120 electrodes in a cell array. The set of electrodes was denoted as E. To identify

all propagation signals in an array, each electrode ei ∈ E was used as a reference electrode

to compare with all electrodes ej (j = 1, 2, . . . , n). Cross-correlograms (CCGs) were

constructed using a 2 ms window before and after reference time-points for each (ei, ej)

pair. Let nall denote the number of spikes on the reference electrode and nwin denote

the largest sum of counts in any 0.5 ms moving window in the cross-correlogram (CCG).

A greater than 0.3 ratio indicates a consistent spike time delay of the target electrode

with respect to the reference electrode. The ratio 0.3 was determined empirically with

results from different thresholds compared with manually detected propagation signals.

If a high ratio was detected in the CCG for (ei, ej), the delay time of ej corresponding

to ei is recorded. All electrodes with high ratios were sorted based on their delay time.

If all ej have a non-negative delay time, then we can conclude that a propagation signal

originating from ei was detected (Fig 3.2a). The process was repeated for all electrodes

in the array generating a collection of propagation signals.

We then used the set of the identified propagation signals, denoted as S, to find in-

stances of putative intercellular coupling. The putative functionally coupled relationships

between all si ∈ S or between si ∈ S and ej ∈ E can be identified. To identify connec-

tions, we began with spike times from individual propagation signals. Spike times Ti for

a propagation signal were computed using the spike times of the group of electrodes. Let
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e1 denote the earliest electrode on a signal and ex denote the electrode with the most

spikes other than e1. The spike times, Ti, are then computed with the average times

of the co-occurrences in these two electrodes. Co-occurrences are defined as two spikes

occurring in quick succession in separate electrodes.

We filtered our results as follows: (1) to minimize false-positive couplings, the lower

limit of coupling probability was set to 0.1, (2) couplings with an average latency outside

our window of interest (1 – 5 ms after the propagation signal eAP) were discarded as

most central nervous system excitatory neurons couple to neighboring neurons with a

latency within this range[54, 55], and (3) the area under the CCG peak must be 60%

of the total area to avoid chance associations between pre- and postsynaptic spikes. To

accomplish this, each signal si was used as a reference signal to compare with all other

signals sk (k ̸= i) or all electrodes ej. A CCG, using a window between 0.5 and 10ms

after reference time-points were performed for each (si, sj) or (si, ej) pair. The criteria

for identifying connections are:

• If n1 denotes the sum of counts of the CCG and n denotes the number of spikes in

the reference signal, the ratio n1/n must be larger than v1.

• If n2 denotes the largest sum of counts in any 3 ms moving window in the CCG,

then the ratio n2/n1 must be larger than v2.

• The delay time must be between v3 and v4 ms.

• The standard deviation for all the ∆t in CCG is less than v5.

The values used in this paper are v1=0.1; v2=0.57; v3=1; v4=5; v5=2.7. Specifically,

v2 and v5 were determined empirically. The value v2 is a cutoff for the ratio of the

number of spikes in the 3 ms moving window with the most spikes to the total number of

spikes in the CCG. The larger the value of v2, the stricter the criteria and the higher the
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certainty that the coupling results identified by the algorithm are real and non-random.

However, the higher the value is for v2, the more likely we are to exclude real couplings.

The value v5 is a threshold of the standard deviation of the latency. We used v5 to filter

out cases where one electrode detects eAPs from multiple nearby neurons, as can often

happen in our recordings (data not shown). Between two electrodes, the coefficient of

variation of eAP propagation latency should be small. It was often the case that single

electrodes detected spikes from multiple neurons (for example Figures 3.1f and 3.2d)

at the neuron densities we used. When spikes from multiple independent neurons are

detected at any single electrode, the latency distribution of spikes between the target

electrode and the reference electrode is expected to have large variability. All vi can

instead be user defined. If the relationship is between propagation signals and spikes at

individual electrodes, the output of the algorithm also includes a verification flag. A flag

value of one is a suggestion to manually verify the connection. Flag values are determined

by comparing the normalized standard deviation of the voltage amplitude of all spikes

on the target electrode to v6. The value used in this paper for v6 is 0.25.

3.2.2 Neuronal cell culture

The animal protocols and procedures in this study were approved by the Institutional

Animal Care and Use Committee (IACUC) of University of California, Santa Barbara

and were performed in accordance with the National Institutes of Health Guide for the

Care and the Use of Laboratory Animals. All animal experiments were performed in

accordance with ARRIVE guidelines.

We prepared hippocampal neurons from postnatal day 0 (P0) C57BL/6 male mice

using a previously described protocol[56]. Up to 3 animals were used per experiment

and the pooled hippocampal neurons were plated on multiple MEAs. Cleaned and steril-
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ized multi-electrode arrays (120MEA100/30iR-ITO arrays; Multi Channel Systems) were

coated with 0.1 mg/ml poly-L-lysine (Sigma-Aldrich) for 1h at 37◦C, rinsed 3 times with

sterile water and air dried before plating. Plating was done in two steps. In the first

step, cultured glial cells maintained in separate T-75 flasks were dissociated and plated

(at 150,000 cells per well) on MEAs and allowed to proliferate. Once glia were confluent

over the electrode area, freshly dissociated hippocampal cells were plated at 250,000 cells

per dish (550 cells/mm2) on the confluent glial cultures. Cultures were grown in minimum

essential medium with Earle’s salts (Thermo Scientific, catalog # 11090081) with 2mM

Glutamax (Thermo Scientific), 5% heat-inactivated fetal bovine serum (Thermo Scien-

tific), and 1 ml/l Mito+ serum extender (Corning) and supplemented with glucose to an

added concentration of 21mM. For the purpose of long-term culturing and maintaining

MEA sterility during recordings, the MEA chamber was covered with a membrane that

permits CO2 exchange when the plate is in the CO2 incubator and during recordings.

3.2.3 MEA recordings

Extracellular voltage recordings of neuronal cultures were performed using an MEA

2100-System (Multichannel Systems, Reutlingen, Germany). Arrays contained 120 elec-

trodes with a 100 µm inter-electrode distance. Voltage records were acquired at 20 kHz.

All recordings were performed in culture media. The head stage temperature was set

to 30◦C with an external temperature controller and MEAs were equilibrated for 5 min

on the head stage before data acquisition or after any pharmacological or temperature

manipulation. Recording duration was typically 3 to 5 minutes. Only cultures at 14 days

in vitro (DIV) or older were used for all pharmacological, stimulation and temperature

experiments. These experiments used pooled neurons from up to 3 animals.
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3.2.4 Data Processing

Raw extracellular voltage data from Multichannel Systems acquisition software was

converted to HDF5 file format using Multichannel Data Manager software and processed

offline. Using MEA tools[25], extracellular voltage records were bandpass filtered using

a second order Butterworth filter with cutoff frequencies of 200Hz to 4000Hz followed

by spike detection. Negative deflections in the voltage records were labelled as spikes

when the amplitude exceeded 6 times the standard deviation of the median noise level.

None of the data in this work was spike sorted. Spike times and amplitudes output from

MEA Tools were used for subsequent analysis and development of automated algorithms

in Matlab. Post-hoc analysis was performed in Matlab by extracting the raw voltages

for electrodes of interest and inspecting the timing and amplitude of spikes within time

windows of interest. In certain cases, to validate our results we shuffled spike times from

electrodes of interest; spike time shuffling was done in a way that retained the inter-spike

interval distribution from the spike train of interest to retain the overall spiking pattern.

Propagation signals were differentiated from coupled signals based on the difference in

inter-electrode latency. The inter-electrode latency of the propagation signals we detected

had a mean of 0.46 ± 0.36 ms (n = 1014 electrode pairs). In contrast, the latencies of

what we detected as coupled neurons had a mean of 2.79 ± 2.06 ms, (n = 746) in wild

type neurons.

3.2.5 Statistical analysis

Statistical analysis was performed with Prism 8 or Matlab. Distributions were tested

for normality using a one-sample Kolmogorov-Smirnov test. Non-uniformly distributed

data were tested using non-parametric tests (two-sample Kolmogorov-Smirnov test or

Mann-Whitney U-test) at a 5% significance level.
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3.3 Discussion

In this work we present analytical approaches for detecting when synapses from single

axons influence the ability of postsynaptic neurons to fire action potentials. Detection of

action potential propagation validates that the preceding, presumably presynaptic, eAPs

arise from single identifiable neurons. The timing of these eAPs is the clock we use to

detect short latency spike clusters that follow, or even precede, propagating spikes.

Techniques such as simultaneous recordings with multiple patch clamp electrodes[57,

58], a combination of patch and extracellular recording[59, 60] and automated multi-

patch recording[61] leave no doubt about the neuronal source of activity. However, the

technically challenging nature of these methods makes their routine use difficult. The

invasive nature of patch recording also precludes long-term monitoring of neurons. The

results from our experiments would be difficult to obtain with other methodologies such

as optical imaging methods that require fluorescence indicators resulting in phototoxicity

and altered cell physiology[62]. By unambiguously isolating eAPs from single identifi-

able neurons, our methods demonstrate how synaptic coupling from multiple identified

neurons can be simultaneously assessed, under a variety of experimental manipulations

and/or across multiple days. High signal fidelity and temporal resolution with the MEA,

capable of capturing spike amplitudes while recording from multiple sites, allowed us to

infer a partial connectivity map for the culture (Fig. 3.4d). This “functional connectome”

is clearly missing connectivity edges that are invisible due to the low electrode density

relative to the density of the neurons and the presence of neurons outside the boundary of

the array. However, another source of missing connectivity can be revealed when synap-

tic weights are changed as implemented by reducing the release probability (Fig. 3.4d).

Reducing the number of active synapses with cadmium resulted in the expected loss of

connections, but also the emergence of new connections, a latent connectivity network,
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probably due to suppression of inhibitory transmission. Likewise, detection of multiple

inputs to a single neuron and determining each of their latencies and coupling probabili-

ties (Fig. 3.6) presents novel approaches to dendritic signal summation[63, 64]. Our data

revealed a multiplicity of input firing events within a 5 ms window that contribute, with

different probabilities, toward eliciting a post synaptic action potential.
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Conclusion

Extracellular recording has been used for decades to non-invasively study excitable cells in

a range of experimental contexts [3, 1, 6, 65]. Using extracellular recording to understand

how neural networks integrate input, convert perception to electrical signal or respond to

pharmacological or experimental manipulations requires unambiguous knowledge of the

cellular source of each action potential in the data record. Discriminating the cellular

source of any eAP becomes complicated because action potentials from multiple neurons

can be detected by single electrodes (Figure 2.1F, 2.4B, 2.4E). This is especially true

when neuron density is high. Post-acquisition data processing from contemporary MEAs

requires automated approaches to identifying eAPs from single neurons.

Spike sorting routines are based on assumptions regarding how characteristics of eAP

waveform heterogeneity correspond to the source neurons where those eAPs originate.

Ground truth validation of spike sorting is not routinely available but has been achieved

in technically challenging experiments pairing extracellular MEA recording with intra- or

juxtacellular recording [15, 66]. As previously shown [31, 22] action potential propagation

is reflected by two or more MEA electrodes with eAPs that repeatedly occur with short

latency, in the same sequence (Figure 2.1B, C). Characteristics of propagating eAPs
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identify them as being from single neurons, in an analogous way that paired recording

has been used to unambiguously isolate spikes from individual neurons.

In this dissertation we presented two algorithms that work with recordings from multi-

electrode arrays. The first algorithm allows for automated detection of action potential

propagation. When electrodes detect eAPs from multiple neurons, isolation of propagat-

ing eAPs by our algorithm labels spikes from each propagation as resulting from single

neurons, even in a background of spikes from other cells. Multi-point detection inherent

in our algorithm reinforces the reliability of our results. Isolation of eAP by using prop-

agation makes no assumptions about waveform shapes. Our method of unambiguously

isolating eAPs from multiple different neurons in each recording increase the utility of

multi-electrode arrays for high content screening applications and could eventually be

adapted for use in vivo, for example in retina [67].

Our second algorithm uses the information extracted from the first algorithm to

non-invasively detect short latency relationships between neurons. Direct stimulation of

presynaptic neurons validated our assertions. As expected, decreasing the number of

active synapses with cadmium decreased the coupling probability. Given the timing and

latency characteristics of what we define here as functional coupling, our data is most

consistent with functional coupling representing the action of multiple synapses from a

single axon acting on a single postsynaptic neuron in many cases. We cannot rule out

that some of what we are detecting represents indirect synaptic coupling but for that to

explain our data, the latencies and fidelity would have to be higher than expected from

the literature. Our in vitro results are consistent with work in well characterized in vivo

circuits[68, 69]. With this in vitro system we can screen the effects of pharmacological

manipulations as well as the synaptic connectivity phenotypes from targeted mutant or

iPS-derived neurons.
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