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ABSTRACT

Cosmological N-body simulations provide numerical predictions of the structure of the Uni-
verse against which to compare data from ongoing and future surveys, but the growing volume
of the Universe mapped by surveys requires correspondingly lower statistical uncertainties in
simulations, usually achieved by increasing simulation sizes at the expense of computational
power. It was recently proposed to reduce simulation variance without incurring additional
computational costs by adopting fixed-amplitude initial conditions. This method has been
demonstrated not to introduce bias in various statistics, including the two-point statistics of
galaxy samples typically used for extracting cosmological parameters from galaxy redshift
survey data, but requires us to revisit current methods for estimating covariance matrices of
clustering statistics for simulations. In this work, we find that it is not trivial to construct
covariance matrices analytically for fixed-amplitude simulations, but we demonstrate that gz-
Mock (Effective Zel’dovich approximation mock catalogue), the most efficient method for
constructing mock catalogues with accurate two- and three-point statistics, provides reason-
able covariance matrix estimates for such simulations. We further examine how the variance
suppression obtained by amplitude-fixing depends on three-point clustering, small-scale clus-
tering, and galaxy bias, and propose intuitive explanations for the effects we observe based on
the Ezmock bias model.

2112.10845v2 [astro-ph.CO] 17 Mar 2023
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1 INTRODUCTION laboration 2005) and the spectroscopic SDSS? (Sloan Digital Sky
Survey, Blanton et al. 2017). The total volume of the Universe
mapped with galaxy surveys will continue to increase as the next
generation of large ground- and space-based experiments comes

online, including DESI? (Dark Energy Spectroscopic Instrument;

The study of the large-scale structure of the Universe has become
a precision science in recent years, thanks to such surveys as the
photometric DES! (Dark Energy Survey, Dark Energy Survey Col-
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Schlegel et al. 2011; Levi et al. 2013), AMOST* (4-metre Multi-
Object Spectroscopic Telescope; de Jong et al. 2012), HETDEX?
(Hobby—Eberly Telescope Dark Energy Experiment; Hill et al.
2008), J-PAS® (Javalambre Physics of the Accelerating Universe
Astrophysical Survey; Benitez et al. 2014), PFS’ (Subaru Prime Fo-
cus Spectrograph; Takada et al. 2014), LSST® (Legacy Survey of
Space and Time; LSST Science Collaboration, 2009), Euclid’ (Lau-
reijs et al. 2011), and the Roman Space Telescope10 (Spergel et al.
2013).

Theoretical modelling of galaxy clustering, including galaxy
bias and peculiar motions, is crucial for testing cosmological models
against observations. On large scales, these theoretical models are
often based on perturbation theory with approximations, and their
validation requires fully non-linear numerical solutions, generally in
the form of N-body simulations tracking the full growth of structure
over the Universe’s history. These simulations must be sufficiently
large compared to the volumes sampled in surveys while maintain-
ing sufficient mass resolution to resolve the dark matter haloes that
host the galaxies typically detected in surveys. As survey volumes
continue to grow, so too must the size of these N-body simulations.

These dual requirements of simulation volume and mass res-
olution are difficult to meet with current computational power. In-
deed, a single simulation with the required halo mass resolution
(~1x 10! Mg h_l, Gonzalez-Perez et al. 2017) covering the en-
tire survey volume of DESI [~ 70 (Gpc h~1)3] would demand an
enormous number of particles (2 160007 in a box of side length
4 Gpc h~1). However, the largest N-body simulations to date, e.g.
MillenniumXXL (Angulo et al. 2012), MICE (Fosalba et al. 2015),
MultiDark (Klypin et al. 2016), Dark Sky (Skillman et al. 2014),
OuterRim (Habib et al. 2016), FLAGSHIP (Potter et al. 2017),
UNIT (Chuang et al. 2019), Uchuu (Ishiyama et al. 2021), and Aba-
cusSummit (Maksimova et al. 2021), remain well below the particle
numbers we require. This problem is compounded by the need to
reduce the uncertainty in these simulations to levels well below the
statistical uncertainty of observations in order to maximize the in-
formation extracted from survey data: a simulation with size merely
equal to the survey volume is insufficient.

Angulo & Pontzen (2016) proposed to suppress the variance
in these simulations by removing amplitude fluctuations in the var-
ious k-modes in the initial conditions of a simulation. Such fixed-
amplitude initial conditions have been employed in hydrodynam-
ical simulations (Villaescusa-Navarro et al. 2018) and have been
tested on Lyman-« forest statistics (Anderson et al. 2019). Chuang
etal. (2019) also tested the method on the clustering measurements
of galaxy redshift surveys. All found that the variance-suppression
method provides more precise predictions without introducing bias,
enabling simulations with large effective volume at much lower
computational cost. However, the reduced variance in these simu-
lations still must be quantified for comparison with the variance in
survey data (whose estimation is an important problem in its own
right), and we must verify that the methods typically employed to
estimate covariance matrices for the clustering statistics of galaxy
catalogues can provide reliable estimates when those catalogues are
derived from variance-suppressed simulations.
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Traditionally, covariance matrix estimation for both observa-
tion and simulation data has been done with mock galaxy catalogues.
Various methods exist for generating such mock catalogues, but we
broadly categorize them into two classes based on how they con-
struct their halo catalogues. The first class defines haloes by applying
a halo finder on simulated dark matter particles, and includes meth-
ods such as prHaLos (Manera et al. 2012, 2014), pinoccuio (PIN-
pointing Orbit-Crossing Collapsed Hierarchical Objects, Monaco
et al. 2002, 2013), reak paTcH (Bond & Myers 1996), FasTPmM
(Feng et al. 2016), coLa (COmoving Lagrangian Acceleration sim-
ulation; Tassev et al. 2013; Izard et al. 2016), and cLam (Klypin &
Prada 2018). These methods tend to be memory-intensive, as they
require a large number of particles in order to resolve haloes; indeed,
FASTPM, COLA, and GLAM are essentially efficient N-body simula-
tions. As a consequence, however, mock catalogues produced with
such codes using fixed-amplitude initial conditions naturally yield
good covariance matrix estimates for fixed-amplitude simulations.

The second class of methods populates haloes based on bias
models using coarse-resolution dark matter density fields. In these
models, halo creation is stochastic, but is calibrated to reproduce
the clustering statistics of a reference catalogue (obtained, for ex-
ample, from survey data or from a higher resolution simulation).
This second class includes such methods as LoGg-NorRMAL (Coles
& Jones 1991), ratcuy (PerturbAtion Theory Catalog generator of
Halo and galaxY distributions; Kitaura et al. 2013, 2015), HALO-
GEN (Avila et al. 2015), opm (quick particle mesh; White et al.
2013), BaM (Bias Assignment Method to generate mock catalogues;
Balaguera-Antolinez et al. 2019), and Ezmock (Effective Zel’dovich
approximation mock catalogue; Chuang et al. 2015a).

The computational cost of this second class of methods is much
lower, but the validity of their use in covariance matrix estimation
is less obvious. Some past work exists validating these methods for
covariance matrix estimation and comparing them with each other
and with those of the first class (see e.g. Chuang et al. 2015b; Blot
et al. 2019; Colavincenzo et al. 2019; Lippich et al. 2019), but more
study is desired to fully validate their use in upcoming surveys,
especially for covariance matrix estimation of observational data.

Still, these methods have gained traction for their key advantage
of efficiency. Ezmock in particular delivers reasonable accuracy at
very low computational cost, and indeed, was employed extensively
in the cosmological analysis of the final eBOSS galaxy sample (see
e.g. Avila et al. 2020; Bautista et al. 2020; Gil-Marin et al. 2020;
Hou et al. 2020; Kong et al. 2020; Mohammad et al. 2020; Neveux
et al. 2020; Raichoor et al. 2020; Ross et al. 2020; Tamone et al.
2020; de Mattia et al. 2020; eBOSS Collaboration, 2021; Zhao
etal. 2021a,b. It remains unclear, however, whether Ezmock, or any
method in this second class, can be extended to estimate covariance
matrices of variance-suppressed simulations.

In this study, we show that Ezmock can provide reasonable
covariance matrix estimates for such simulations. The rest of this
paper is organized as follows. We outline the simulations used in
this study in Section 2, then present our findings in Section 3. In
particular, we show that fixed-amplitude EzmMock can reproduce the
covariance matrices of a reference fixed-amplitude simulation in
Section 3.1, then proceed in Section 3.2 to examine in turn the ef-
fects of three-point clustering, small-scale clustering, and galaxy
bias on the level of variance suppression obtained by fixing am-
plitudes, showing in the process how Ezmock can provide intuitive
explanations for our observations. We summarize and conclude in
Section 4.

MNRAS 000, 1-9 (2021)
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2 SIMULATIONS
2.1 rasTtpM catalogues

In order to study how Ezmock reproduces the covariance matrix
of a reference simulation, we require a large number of reference
simulations whose covariance matrices we will estimate. To this end,
we use a set of simulations produced with the rFasTpm code (Feng
et al. 2016). The rasTpm code relies on accelerated particle—-mesh
solvers, which have recently been shown to produce accurate halo
populations (compared to full N-body calculations) when enhanced
with various techniques (cf. the coLa code; Tassev et al. 2013).
FASTPM employs a pencil domain-decomposition Poisson solver and
a Fourier-space four-point differential kernel to compute the force.
Given that FAsTPM simulations are essentially N-body simulations,
we use them as our reference in this study.

Our simulations, 200 in all, are a subset of the FASTPM sim-
ulations created by the UNIT project to test the behaviour of the
variance-suppression method (Chuang et al. 2019). All of these
simulations are publicly available.!! Of the 200 simulations we use
here, half were produced with fixed-amplitude initial conditions
and half without. All are at z = 1. Each simulation was generated
with 10243 particles in a box 1 Gpc h~! on each side and simulated
for 100 time-steps. A Friends-of-Friends halo finder was used to
identify haloes; the minimum halo mass is 1.68 x 1012 Mg A1

Throughout this work we use the same cosmological pa-
rameters as these FasTtpm simulations: Q, = 0.3089, h =
Hy/(100kms~! Mpc™) = 0.6774, ns = 0.9667, and og = 0.8147
(based on Planck Collaboration, 2016, table 4).

2.2 EZMOCK

ezmock (Chuang et al. 2015a) is a method for generating mock cat-
alogues based on application of a bias model to a coarse-resolution
dark matter field. The dark matter field is constructed from the
Zel’dovich approximation (ZA) density field. Ezmock absorbs non-
linear effects and halo bias (i.e. linear, non-linear, deterministic, and
stochastic bias) into an effective model with only a few free param-
eters, which can be efficiently calibrated with N-body simulations.
We use the slightly modified version described in Baumgarten &
Chuang (2018), consisting of the following three steps:

(i) Generate the dark matter field. In the Lagrangian formu-
lation of cosmological fluid dynamics, we describe the motion of
a particle originally at ¢ to a position x at cosmic time ¢ by a
Lagrangian displacement field ¥':

x(q,t) =q+¥(q,1). (1)

The first-order Lagrangian perturbation theory solution to the equa-
tions of motion is given by the ZA

Pk jgqik
) = [ Gt )
where §(k) is the fractional density perturbation in Fourier space
(for a review, see e.g. Bernardeau et al. 2002).

We construct this displacement field in the ZA and extrapolate
to the redshift of the reference halo or galaxy sample (in our case,
z = 1). To generate our dark matter density field, we initialize a uni-
form square lattice of dark matter particles and evolve the particles
according to . We can apply fixed-amplitude initial conditions in

11 http://www.unitsims.org
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this step by selecting the §(k) to have random phases but prede-
termined fixed amplitudes rather than drawing them from Gaussian
distributions.

(ii) Determine final object densities using the dark matter
density and the halo probability distribution function (PDF).
We model the PDF of the final mock catalogue, the number of grid
cells containing 7 objects as a function of n, as

P(n) o< A", ©))

normalized to give the desired final object number density (a free
parameter). Greater dark matter density should yield greater object
density. Thus, we might naively sort the grid cells r by increasing
dark matter density pg(r) and assign each cell the number of objects
it should contain: the first P(0) will contain no objects, the next P(1)
will contain one, etc.

In practice, we use modified “densities” pg(r) for this rank-
ordering procedure to allow more tuning of our clustering. Be-
ginning with dark matter densities pg(r) in each cell obtained using
the cloud-in-cells (CIC) particle assignment scheme (see e.g. Hock-
ney & Eastwood 1981), cells with densities below some density
cut p. are assigned ps = 0. Adjusting p. allows us to modify the
bispectrum of the catalogues.

On the other hand, if py > p., we compute

1+G(r) G(r)=0

— _ a—Po(r)/pa
ps(r)=(1—e >{CG(,) B @

where, for each cell, G (r) is independently drawn from a Gaussian
distribution of some specified width A [typically left fixed, having
observed in the course of previous work (Baumgarten & Chuang
2018) that its effect on clustering statistics was highly degenerate
with that of the other parameters]. This procedure effectively in-
troduces some scatter into the PDF mapping procedure described
above. The non-linear function 1 — e P0/Pa introduces saturation
behaviour at a characteristic density p, (another free parameter),
converging to 1 when pg > pg.

(iii) Assign objects. The mock catalogue is populated by select-
ing at random a subset of the original dark matter particles such
that each cell contains the number of objects assigned to it in the
previous step.

We generate three sets of Ezmock catalogues, each consisting
of 2 x 1000 catalogues of size (1 Gpc h_l)3 and number density
7 = 2.343 x 10° /(Gpc/h)? (chosen to match the FaSTPM cata-
logues) generated on a 2563 grid. Within each set, half the cata-
logues are produced using normal initial conditions and half using
fixed-amplitude initial conditions.

The first set of EzMocks is a fiducial set with parameters chosen
to reproduce the clustering statistics of the FAsTpM catalogues (A =
0.37 and pg, pe = 2.25,0 in units of objects per grid cell). The
second set has matching two-point clustering but differs in its three-
point clustering (i.e. bispectrum) (A = 0.37 and pg, pc = 0.75,1).
The third set maintains the linear-scale amplitude of the fiducial set
but differs in small-scale clustering (A = 0.3, p4, pc = 3.1,0). We
fixed 4 = 10.

3 RESULTS
3.1 Covariance matrix estimation

It is well known that the fractional uncertainty in a band-averaged
power spectrum value P(k) for a Gaussian random field under
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Figure 1. Comparison of fractional uncertainty in the power spectrum
P (k) for the two sets of Fastpm catalogues, one produced with (blue;
“fixamp") and one produced without (pink; “nonfix") fixed-amplitude initial
conditions, against the theoretical fractional uncertainty (red). We scale by
VNg, where Ni ~ k2 is the number of modes in each k-bin. This theoretical
uncertainty is the sum of a Gaussian component (grey dashed line) and a
Poisson shot-noise component (grey dotted line). The theoretical uncertainty
agrees with that of the non-fixed-amplitude FasTpm simulations very well,
but that of the fixed-amplitude rFasTpM simulations can neither be described
by the theoretical uncertainty nor its Gaussian or Poissonian components at
small k. The computation of error bars is described in Appendix A.

Poisson sampling can be decomposed into a sum of a Gaussian
sample variance and a shot-noise contribution as

op(k) _ i 1
P(k) Nk( ﬁP(k))’

)

where Ny, ~ k2 is the number of modes in the k-bin and 7 is the mean
number density (see Feldman et al. 1994). Figure 1 confirms that
this model accurately accounts for the power spectrum uncertainty
in the non-fixed-amplitude rFasTPM catalogues.

The fixed-amplitude FasTpMm catalogues show suppressed vari-
ance at linear scales (small k). We might expect the residual un-
certainty here to be dominated by a shot-noise contribution, as the
initial dark matter power spectrum has no Gaussian sample vari-
ance (by construction), but Figure 1 shows that this is not the case.
The excess variance here is also too great to be easily explained
as the result of weak non-linear effects affecting the evolution of
the dark matter field; Angulo & Pontzen (2016) found much lower
dark matter power spectrum variance in their fixed-amplitude sim-
ulations at these k (see the residuals for individual fixed-amplitude
simulations at k < 0.1 2 Mpc™! in their fig. 2). Since halo presence
is intimately connected to small-scale dark matter clustering, the
residual small-k variance in the halo power spectrum in the fixed-
amplitude rasTPM simulations may very well arise from large-k dark
matter power spectrum variance. It is evidently non-trivial to build
a theoretical model for the covariance matrix of two-point statistics
of fixed-amplitude simulations, even at linear scales.

Can a method like EzMmock, which produces mock catalogues
based on a bias model, reproduce the covariance matrix of these
fixed-amplitude catalogues? Yes. In Figure 2, we compare the power
spectrum and two-point correlation function for a fiducial set of
2 % 100 ezmocks and the FasTPM catalogues. The parameters are
the same between the fixed-amplitude (“fixamp”) and non-fixed-
amplitude (“nonfix”) ezmocks. Thus, the second row shows that
applying the fixed-amplitude condition does not bias our clustering

statistics, consistent with previous studies (see e.g. Chuang et al.
2019). In the bottom panels, the variance suppression observed
in the power spectrum of the FAsTPM boxes is reproduced by the
ezmocks. The variance suppression observed in the FasTpPm boxes’
correlation function measurements is also reproduced reasonably
at large scales, though Ezmock underestimates the suppression at
smaller scales. This underestimation may be a limitation of the bias
model underlying Ezmock being “too stochastic” at small scales,
as further tuning of fit parameters does not tend to improve this
underestimation.

We also compute normalized covariance matrices (i.e. corre-
lation matrices) of the power spectrum and correlation function
for the full set of fiducial Ezmocks (both fixed-amplitude and non-
fixed-amplitude), as well as for the reference rFasTpm catalogues.
These correlation matrices are shown in Figure 3, where we ob-
serve that for both the power spectrum and the correlation function,
the EzMock correlation matrix agrees with that of our FasTpMm boxes.

The stochastic bias we observe in the fixed-amplitude EzMock
catalogues is introduced through the scattering procedure used in
the PDF mapping, as described in step (ii) of Section 2.2. The
parameters involved are calibrated with the clustering measurements
of the reference catalogue (in this case, FasTpm). We do not tune
additional parameters to calibrate the covariance matrix separately.
That the covariance matrices obtained from the EzMocks agree with
those of the FAsTPM simulations shows that the Ezmock bias model
reasonably reproduces the stochastic bias of the rasTpm haloes.

In Figure 3, we further note that for both the Ezmocks and
the rasTPM catalogues, the power spectrum correlation matrices
are similar between the fixed-amplitude and non-fixed-amplitude
simulations, as underscored by the cuts plotting the first off-diagonal
correlations: fixed-amplitude initial conditions do not bias the mode
coupling in Fourier space.

In contrast, the correlation matrices for the correlation func-
tions are dramatically different between fixed-amplitude and non-
fixed-amplitude catalogues. This difference is not surprising, how-
ever. Indeed, while one can compute the covariance matrix of the
correlation function from that of the power spectrum by expressing
the correlation function as a Fourier transform of the power spec-
trum, the correlation matrix of the correlation function cannot be
determined from only the correlation matrix of the power spectrum:
the magnitude of the variances in the power spectrum, suppressed
in the fixed-amplitude mocks, must be considered when deriving
the correlation matrix of the correlation function.

3.2 Influences on variance suppression

We proceed to investigate the impact of three-point clustering,
small-scale clustering, and overall galaxy bias on the degree of
variance suppression observed in our mock catalogues upon appli-
cation of fixed-amplitude initial conditions, and provide intuitive
explanations for our observations based on the Ezmock bias model.

3.2.1 Effects of higher order clustering

To test the impact of higher order clustering on the variance sup-
pression, we compare the fiducial set of Ezmocks with the second
set of 2000 Ezmocks described in Section 2.2. The two sets have
similar two-point statistics (within 2% for k < 0.35Mpc k1), but
their differing density cuts p. produce different bispectra, as shown
in the top panel of Figure 4. From Figure 5, the variance suppres-
sion from fixing amplitudes appears slightly worse with greater p.
(lower bispectrum).

MNRAS 000, 1-9 (2021)
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Figure 2. Comparison of rastpMm catalogues and 2 x 100 fitted Ezmocks. Top panels show the mean power spectrum P (k) and correlation function & (r) of
the fixamp FastPm and Ezmock catalogues (shaded bands show +107). The next row, which shows the ratio of the P (k) and & (r) means for both rastpm and
ezMmock for the fixamp catalogues and the corresponding means for the nonfix catalogues, indicates that the fixed-amplitude condition does not bias the mean
values. The third row compares the means in a different way, plotting the ratio between the Ezmocks and the rFasTpMm catalogues for each amplitude condition
(i.e. nonfix EzMock vs. nonfix FAsTPM and fixamp Ezmock vs. fixamp rastpm). We see that Ezmock reproduces the clustering measurements of the FASTPM
catalogues. The final two rows are analogous to the second and third, but show ratios of variances. It is evident that the Ezmocks reproduce the variance
suppression seen in the FasTpm simulations, especially at large scales. Standard errors are computed per Appendix A.

One might expect this behaviour from the perspective of the
EZMOCK bias model. Ezmock introduces scatter during the PDF
mapping procedure (see step (ii) of Section 2.2) to reduce the clus-
tering amplitude (galaxy linear bias): the larger the scatter, the lower
the bias. However, when we apply a higher density cut, we increase
the linear bias of the resulting Ezmock, so to achieve the same two-
point clustering as before, we must then reduce the linear bias by
introducing greater scatter during PDF mapping, resulting in larger
variance and weaker variance suppression. Indeed, as previously
mentioned, the scatter procedure is the primary source of stochastic
bias in EzMmocCK; it introduces variance even when we apply fixed-
amplitude initial conditions.

Incidentally, the middle panel of Figure 4, indicates that the
fixed-amplitude condition yields no significant improvement in bis-
pectrum uncertainty, as observed by Angulo & Pontzen (2016). The

MNRAS 000, 1-9 (2021)

lower panel of Figure 4 indicates that the variances in the bispectrum
are not sensitive to the mean value of the bispectrum.

3.2.2  Effects of small-scale clustering

We next explore the effect of adjusting small-scale (large k) cluster-
ing. We produced the third set of Ezmocks described in Section 2.2
with a stronger PDF slope (A = 0.3 versus the original A = 0.37)
and thus weaker small-scale clustering compared to the fiducial set.
In order to isolate the effect of small-scale clustering, we adjusted
the scatter parameter p,, to maintain the linear amplitude of the fidu-
cial Ezmocks. In Figure 6, we find that these new Ezmocks, with
weaker small-scale clustering, show stronger variance suppression.

The Ezmock bias model again gives a natural explanation. The
PDF mapping procedure inherently boosts the amplitude of density
fluctuations in all k-modes (not necessarily by the same amount).
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of the FAsTPM boxes. Standard errors are computed per Appendix A.
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The scatter procedure then reduces bias at the linear scale (small k),
but does little to the small-scale clustering, which remains governed
by the PDF we choose (i.e. A). So for our new set of EzmMocks, with
its lower small-scale clustering, the PDF mapping procedure does
not increase the linear bias as much as it does in the fiducial set, thus
requiring less scatter to reach the targeted linear bias. The result is
the stronger variance suppression we observe.

3.2.3  Effects of galaxy bias

Finally, we investigate how galaxy bias affects variance suppression
in fixed-amplitude catalogues. For each of the 200 FasTp™m cata-
logues, we produce three subcatalogues with only half the number
density of the full catalogues. The “heavy” and “light” subcata-
logues are simply the top and bottom halves of the catalogues split
by mass, while the “random” subcatalogue is a random 50% down-
sampling. We show the power spectra of these subcatalogues in Fig-
ure 7, where we find that the variance improvement in the “heavy”
subcatalogues is noticeably stronger than in the “light” and “ran-
dom” subcatalogues. Since the subcatalogues have equal number
density, the shot-noise contributions to the variance are equal, and
we conclude that larger bias leads to stronger variance suppression.

One might expect the opposite trend: stronger variance sup-
pression when there is less bias. Indeed, we know that the underly-
ing dark matter field (which has unity bias, lower than any of these
galaxy samples) should show the greatest variance improvement
when fixed-amplitude initial conditions are used: there should be
no dark matter power spectrum variance in fixed-amplitude simula-
tions, by definition.
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Interestingly, the Ezmock bias model allows us to understand
this apparent contradiction. Indeed, Ezmock introduces scatter to
reduce clustering amplitudes from some higher bias that the PDF
mapping procedure would produce in the absence of scatter. To
achieve a lower bias in the resulting Ezmock catalogue, more scatter
must be applied (and thus more stochastic bias introduced). So
increased variances in clustering measurements are associated with
reduced clustering amplitude.

4 CONCLUSIONS

In this study, we demonstrated that Ezmock with fixed-amplitude
initial conditions can be used to estimate covariance matrices for
fixed-amplitude N-body simulations. We further investigated the be-
haviour of the variance suppression introduced by fixed-amplitude
initial conditions. Our main findings can be summarized as follows:

(1) No simple analytical form exists for covariance matrices of
fixed-amplitude catalogues.

(i1) Fixed-amplitude initial conditions do not bias clustering
measurements in EZMOCK.

(iii) After calibrating Ezmock with clustering measurements
from a reference fixed-amplitude catalogue, the resulting covari-
ance matrix is a good estimate for that of the reference without
further calibration.

(iv) In fixed-amplitude catalogues, variance suppression is
stronger with stronger three-point clustering, weaker when there is
stronger small-scale clustering, and stronger when there is greater
large-scale bias.

(v) The relative strength of the variance suppression in these
cases can be understood with the Ezmock bias model: the variance
suppression due to fixed-amplitude initial conditions is reduced

when EzMoCK requires greater scatter to reproduce the clustering
statistics of a reference simulation.

As survey volumes continue to grow, variance-suppressed cos-
mological N-body simulations will become increasingly important
in order to deliver large effective simulation volumes at reduced
computational cost. Our work validates Ezmock as an effective
and efficient method for estimating covariance matrices for these
variance-suppressed simulations, paving the way for the use of the
variance-suppression technique in future simulations, and by exten-
sion, for much more computationally cost-effective cosmological
analysis.
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APPENDIX A: UNCERTAINTY ESTIMATION

In this appendix, we briefly describe our computation of standard
errors for variances and correlation coefficients.

Indeed, as variance suppression is central to our investigation,
we must take care to compute standard errors on variances correctly.
For data xq, .. .,xn, we estimate the variance as

N
1 -2
ky = ﬁ;(xi—x) , (AD)

where X is the sample mean % > x;. This is the well-known
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minimum-variance symmetric unbiased estimator of the variance.
Per Kenney & Keeping (1951, p. 189), an unbiased estimate of the
variance of k; is given by

2, N-1
2k2 + 5 kg

A2
N+1 °~ (A2)
where k4 is the fourth k-statistic
N2[(N + D)my = 3(N = 1)m?]
4= 2 (A3)

(N-D(N=-2)(N-3)

expressed in terms of the second and fourth sample moments about
the mean my 4 (m, = ﬁ i (xi —X)™). Taking the square root of
the variance estimate A2 yields a standard error for our variances.

We estimate uncertainties on correlation coefficients r via the
Fisher transformation z = tanh™! r, which produces a new random
variable z with an approximately normal distribution with standard
deviation 6z ~ 1/VN —3 (Kenney & Keeping 1951, p. 222). To
visualize any skewness in the distribution of r, we plot asymmetric
error bars with limits tanh(z + 6z).

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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