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Abstract— Macroscopic fundamental diagram (MFD) captures an 
orderly relationship among traffic flow, density, and speed at the 
network level. Understanding network-wide traffic through 
MFDs can optimally allocate demand to existing networks, 
improving performance by maximizing network production and 
avoiding congestion. However, due to historical data limitations, 
empirically derived MFD models are sparse in the literature, 
especially for the U.S. cities. Leveraging a large-scale and granular 
census-tract-level flow and density derived from vehicle probe 
data, this research is the first to develop a machine learning 
approach to both derive MFD models and interpret their 
underlying difference among urban networks across the entire 
United States. Among the four machine learning methods tested 
here XGBoost is found to deliver the best performance to predict 
the network traffic flow for given vehicular density and location 
attributes. Interaction Shapley Additive explanation (SHAP) 
values are used to interpret the factors, such as land use, 
transportation infrastructure, and network topology, that 
influence the flow-density relationships among locations. The 
analysis framework developed in this work can generate data-
driven MFDs and a deeper understanding of their shape 
dependence on network, infrastructure, and land use 
characteristics, which can be used by transportation authorities to 
derive and optimize location-specific MFDs facilitating more 
informed management and planning decisions at the network 
level.  

Keywords—macroscopic fundamental diagram, United States, 
vehicle probe data, machine learning models, TreeExplainer, 
Interaction Shapley values. 

I. INTRODUCTION 
Traffic in an urban network becomes congested once a 

critical number of vehicles is reached. Macroscopic 

fundamental diagrams (MFD) describe an orderly and 
consistent relationship between average vehicle flow and 
average traffic density when both are measured across a certain 
urban network. Such relationships have been proven to exist 
with simulation and empirical data in field studies [1]–[3]. The 
MFD (see Fig. 1) usually exhibits an uncongested branch, when 
increasing the number of vehicles in the network (indicated by 
traffic density) increases the travel production (indicated by 
space mean flow), and a congested branch, when the opposite is 
true. The urban network system’s capacity and critical density 
are reached at the boundary between the two phases (Fig. 1). 
The shape of MFDs depends on traffic signal settings, block 
lengths, free-flow speeds, and routing behaviors that are specific 
to a given network location [4], [5]. 

MFD model is one of the most famous examples of 
parsimonious traffic models for the aggregate behavior of large 

 
Fig. 1. (a) San Francisco tract-level traffic density at 5 PM; (b) Observed 

flow-density scatter at an example subregion of downtown San 
Francisco with illustration of network capacity and critical density 
and traffic regimes using data from this study. 
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systems with many agents [6]. Understanding network-wide 
traffic through MFDs can optimally allocate demand to existing 
networks, improving performance by maximizing network 
production and avoiding congestion. With reduced 
computational complexity and improved system-level 
representation and interpretability, MFDs are well suited to 
analyzing a large space of policy options and uncovering general 
insights into large-scale strategies. Example applications 
include perimeter flow control [7], [8], area-wide congestion 
pricing [9], [10], space allocation [11], street network 
configuration [12], [13], vehicle routing [14] and regional 
evacuation [15].  

Despite wide application of MFDs, MFD models (i.e. the 
flow-density relationships) have only been empirically derived 
for a limited number of networks such as [4],[16], [17][18]. 
Literature has been particularly sparse in empirically derived 
MFDs in U.S. urban locations. For example, only one U.S. city 
(Los Angeles) was included in a recent study that estimated 
MFD functional forms in 41 cities (mostly in Europe) around 
the world using existing traffic monitoring systems located on 
main urban roads [18].  

Furthermore, the empirical functional form, fs(.) that 
describes MFD models (i.e., flow as a function of density) at a 
given location s, were typically predetermined as multi-regime 
linear, polynomial, or exponential functions (see review in [19]) 
with parameters not readily transferrable from one location to 
another. However, machine learning models, on the other hand, 
when trained with large-scale flow-density data and location 
related input features across network types (see Equation (1)), 
hold the potential to derive MFD models flexibly for any given 
network based on location-specific characteristics (Equation 
(2)).  

𝑞 = 𝑓(𝑘, �⃗�) (1) 

Where q is the network average flow, k is the network average 
density, �⃗�  are the location features, and 𝑓(. )  represents the 
relationship learned by machine learning models. Thus the MFD 
model fs(.) at any given location s with location features	�⃗� = �⃗�! 
can be derived as: 

𝑞 = 𝑓!(𝑘) = 𝑓(𝑘, �⃗� = �⃗�!) (2) 

 

The lack of empirically-derived, machine-learning based 
MFD models and subsequent understanding of MFD differences 

across network locations in the U.S. is mainly due to limited 
availability of traffic volume data (traffic flow). Unlike speed 
data, which is readily available network-wide through probe 
vendors (e.g., INRIX, HERE, TomTom), reliable volume data 
generally exists only at sparsely-located continuous count 
stations. In recent work, Sekuła et al. [20] developed and applied 
a novel approach for estimating hourly volumes that combines 
a widely-used profiling method [21] and an artificial neural 
network (ANN) model trained with vehicle probe data for the 
state of Maryland. Sadabadi et al. (described in [22]) then 
expanded this method. They applied it to all 50 states in the U.S., 
leveraging a variety of data sources—most notably segment-
level HERE probe data, including probe counts and speed—to 
estimate traffic volume and speed at the road segment level at 
15-minute intervals. 

To address the aforementioned research gaps related to 
empirically derived and location-flexible MFD models across 
U.S. urban areas, this paper develops the first application of 
machine learning methods to derive the empirical flow-density 
relationships MFD models by leveraging the newly available 
volume and speed estimates at the road segment level nation-
wide from HERE probe data [22]. We seek to evaluate the 
ability of machine learning methods to predict location-
dependent flow-density relationships and determine important 
location factors that underly the differences in the resulting 
shape of MFD curves. We particularly focus on the differences 
in critical density and network capacity (as illustrated in Fig. 1) 
that delineate the boundary of the network traffic between being 
in the uncongested and congested branches of the MFD curves.  

First, we compare the performance of four machine learning 
methods. Then, TreeExplainer [23] is used to identify and 
interpret important factors influencing the flow-density 
relationships across different locations, including a wide range 
of transportation supply and demand characteristics such as road 
network topology, land use, transportation infrastructure, and 
demand characteristics. The overview of the data and analysis 
process is illustrated in Fig. 2. 

The rest of the paper is organized into the following sections. 
Section II describes the data sources and preprocesses that 
generate network-level flow and density and location factors. 
Section III introduces the machine learning methods and how 
they are applied to our data; and the interpretation method used. 
Section IV presents the results, including the performance of the 
machine learning models and an interpretation of important 
factors. Section V concludes the paper. 

 
Fig. 2. Overview of data process and analysis of the paper. 
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II. INPUT DATA PREPROCESSES AND DESCRIPTION 

A. Network Level Flow and Density Data Process 
1) Road Segment-level Volume and Speed Estimation 
Three months of HERE probe data (Sept - Nov) in 2019 have 

been licensed for the full U.S. network geometry, traffic counts, 
speeds, number of probes, and weather data are pre-processed 
and ultimately conflated to prepare the data for model 
calibration. A fully connected feedforward multi-layer Artificial 
Neural Network (ANN) model is applied to calibrate, test, and 
validate consistent models to estimate traffic counts (volume) 
for road segments belonging to different functional road classes 
(FRCs) at 15-minute granularity. Performance is evaluated in 
comparison with existing traffic count observations. A detailed 
description of the traffic volume estimation, model calibration, 
and validation strategy is presented in [20] [22] and thus not 
reported in this paper. The segment-level volume estimation and 
HERE probe vehicle reported average link speed are used in the 
next step for deriving network level flow and density.  

2) Network-level Flow and Density Aggregation at Urban 
Census Tracts 

The vehicle flow (𝑞" ) at a given road segment ( 𝑖 ) is 
computed by averaging the volume data over monitored lanes 
and over the observation period to get the number of vehicles 
per lane per second. Then the harmonic mean speed (𝑣" ) is 
derived from the observed speed data collocated with the 
volume monitor. Traffic density ( 𝑘" ) is derived using the 
macroscopic flow equation 𝑞 = 𝑘𝑣 . Then network-level 
average flow (𝑞.)	and density (𝑘/) are essentially the spatially 
weighted average of all the individual links for the given spatial 
unit [21] shown below in Equations (3) and (4), where 𝑙" is the 
segment length and 𝑛" is the number of lanes for segment 𝑖.  

The aggregation is performed for each census tract, with a 
typical size of 0.6 to 1 km2 in densely populated urban areas. 
The choice of spatial unit is to ensure the spatial alignment with 
the available location features to avoid interpolation errors as 
well as to limit network inhomogeneity that may arise from 
aggregation.  

Freeway segments (FRCs 1 and 2), which generally account 
for less than 3% of the total lane miles in urban tracts as defined 
in the transportation typology [24], are excluded in the 
aggregation to avoid the influence of higher speed and volume 
from these non-typical road types in urban areas. 

𝑞. = 	
∑ 𝑞"𝑛"𝑙""

∑ 𝑛"𝑙""
 (3) 

  

𝑘/ = 	
∑ 𝑘"𝑛"𝑙""

∑ 𝑛"𝑙""
 (4) 

 

The upper bound of the flow-density scatter that represents 
the MFD relationships are used for training the ML models. The 
upper-bound flow and density values correspond to the top 20% 
of the flow values per density bin are used as the outcome flow, 

with each density bin corresponding to 1/50 of the density range 
observed. 

Finally, to ensure the derived MFD models captures 
homogeneous traffic patterns at the census-tract level, the study 
only selects urban census tracts with land areas less than 10 km2 

[18].   

B. Location Attributes Process 
In addition to the network flow and density derived from 

HERE data, various transportation supply and demand 
characteristics are also collected from various data sources and 
aggregated at the census tract level to predict tract level flow at 
a given density, i.e., the MFD. These features help explain how 
land use, transportation infrastructure, network topology, and 
travel demand may affect flow-density relationships across 
different locations. A total of 38 location attributes are included: 

• Land use attributes: e.g., development intensity and fraction 
of land use types;  

• Network attributes: e.g., network circuity, dead-end fraction, 
intersection density, street length, percentage of road 
functional classes; 

• Road supply and demand characteristics that may affect the 
network utilization and thus influence the MFD shape: 
e.g., lane-meter per capita, job and population density, 
job-housing balance. 

The input features, including variable names and 
descriptions, and their data sources are provided in Table A1 in 
the Appendix. 

Due to the large number of input features and high 
correlation among them, we applied factor analysis to reduce the 
dimensionality and derive interpretable location factors. An 
Exploratory Factor Analysis (EFA) is performed using the 
Python package ‘FactorAnalyzer’ with data from 19,361 census 
tracts after removing tracts larger than 10 km2 in land area or 
with missing values.   

III. MACHINE LEARNING AND INTERPRETATION METHODS 

A. Machine Learning Methods 
We applied four machine learning methods (briefly 

described below) to predict network flow from given density 
and location factors. A total 16,808,176 network-level data 
points from 19,361 census tracts are used. The data are split into 
80% for training and 20% for testing, with network density and 
location factors as input features and network flow as the 
outcome. 

1) Random Forest.  
This algorithm [25] builds an ensemble of decision trees, or 

tree predictors, which depend on randomly and independently 
sampled vectors over the same distribution. The strength, 
correlation, and monitor error are closely followed to track the 
growing features in response to the branches splitting.  

In this study, the random forest regressor from the ‘scikit-
learn’ package is used [26] to train the random forest model. The 
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hyperparameters of tree size are tuned to achieve the best model 
accuracy (or lowest squared error). 

2) XGBoost.  
This algorithm is based on the standard gradient boosting 

methods but employs a new regularization technique, instead of 
optimizing the loss function, to minimize overfitting [27]. This 
tactic allows XGBoost to be faster and more robust during 
tuning. 

In this study, the ‘XGBoost’ package [27] is used to estimate 
the gradient boosting tree. ‘XGBoost’ allows parameter tuning 
for a variety of hyperparameters, and the notable 
hyperparameters, including learning rate, tree size and 
regularization terms, are tuned to minimize the squared error of 
the model. 

3) Support vector machine (SVM)  
This algorithm is another ML method that addresses 

nonlinearity in the data (Hastie et al., 2009). SVM regression 
works by projecting input factors into linear-separatable spaces 
and finding the best fit linear function in that space. The 
projection is performed using various linear or nonlinear kernel 
functions.  SVMs are one of the most robust prediction methods, 
insensitive to outliers and less prone to overfitting when using 
the ‘loss+penalty’ function as the objective. 

In this study, due to the low scalability of SVM regression 
on large a dataset, an ensemble approach is adopted to combine 
the predictions from a large number of SVM regressors, with 
each SVM trained on a smaller subsample (10,000 samples) 
from the training data.  The Radial Basis Function (RBF) kernel 
is adopted for the nonlinear projection of input factors, as RBF 
can combine multiple polynomial kernels multiple times of 
different degrees efficiently, and outperforms other kernels. 

4) Neural Network - Multilayer Perceptron (MLP)  
This algorithm is one of the simplest multi-layered neural 

network architectures, consisting of a hierarchical structure of 
layers containing individual artificial neurons [28]. For the 
current application, we implement an MLP architecture with 3 
hidden layers, with 100, 50, and 5 neurons, respectively. The 
Adaptive Movement Estimation algorithm (ADAM) [29] is an 
extension of the stochastic gradient descent that automatically 
updates the learning rate by taking into account the average of 
the second moments of the gradients. We employed ADAM 
with a starting learning rate of 0.01. The loss function for this 
regression task is the Mean Squared Error (MSE). We train the 
model for 10k epochs. 

B. Interpretation of Location Factors 

1) Importance Ranking using Interaction SHAP Values  
In this study, the importance of the location factors lies in 

their interaction effects with density, that is, their ability to 
influence the prediction of outcome flow as an interacting factor 
with input density. However, traditionally, local explanations 
based on feature attribution assign a single number to each input 
feature. Such simplified representation comes at the cost of 
combining main and interaction effects. For some ML methods, 

especially tree-based methods, SHAP also provides 
measurements of local interaction effects under TreeExplainer 
based on a generalization of Shapley values [23], [30], which 
was leveraged in transportation research [31]. The interaction 
SHAP values allocate credit not just among each factor, but 
among all pairs of factors, to separate out main and interaction 
effects for individual model predictions and uncover important 
patterns of joint effects of factor combinations.  For 
TreeExplainers, the SHAP interaction value is defined as: 

 
(5) 

And, 
 

 (6) 

Where 𝜙",$(𝑓, 𝑥) is the interaction SHAP value between factor 

𝑖 and 𝑗, for the estimated model 𝑓(. ) and specific input 𝑥; 𝑆 is 
the subset of factors; Μ is the set of all m input features; 𝑓% is 
conditional expectation function of the output under input 𝑥 
and estimated model 𝑓(. ). 

In this study, the average interaction SHAP values of the 
location factor and density pairs are used to rank the importance 
of and help interpret location factors influencing the flow-
density relationship (i.e., the MFD shapes). 

2) Location Dependence of MFD Shapes with a Focus on 
Network Capacity and Critical Density   
The shapes of the MFD curves vary by network locations. In 

particular, the critical density and network capacity are two 
important traffic control parameters related to MFD shapes. 
These two parameters (as illustrated in Fig. 1) delineate the 
boundary between uncongested and congested branches of the 
MFD curves, representing the optimal performance of the 
network. In this study, the network capacity is derived from both 
observed flow and the predicted flow from the machine learning 
MFD models, as the 99th percentile of the flow values (observed 
or predicted). The critical density is the network density 
associated with the network capacity flow value. The location 
dependence of MFD shapes will be investigated by comparing 
the predicted and observed relationships between these MFD 
shape-related parameters (critical density and network capacity) 
and location factors.  

IV. RESULTS AND DISCUSSIONS 

A. Data Preprocessing Results 

1) Aggregated Network Flow and Density 
The road segment level HERE data are aggregated to derive 

flow and density in 9,528 census tracts and used for final MFD 
estimation, with sufficient coverage for major U.S. cities and 
urban areas as indicated in Fig. 3.  

The tract-level median density at 5:00PM is shown for urban 
tracts across the U.S. in Fig. 3 with higher densities appearing 
in major urban areas known for experiencing chronic congestion 
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according to the Texas Transportation Institute’s Urban 
Mobility Report [32]. Zoomed-in views of six selected cities are 
provided in Fig. 3 together with the observed MFDs derived 
from HERE probe data at three randomly selected tracts in each 
city.  

The observed MFDs shown in Fig. 3. give a good example 
of MFD shapes varying by location of the networks. Overall, the 
network capacities are below 0.14 #veh/sec-lane, with the 
lowest in Chicago (0.10 #veh/sec-lane). Urban road networks in 
Boston and Los Angeles are observed to have greater capacity 
with mean values of 0.18 and 0.19 #veh/sec-lane, respectively. 
In addition to the variation between cities, from the MFD plots 
we can see, the MFD curves exhibit within-city variation.  

2) Location Factors Derived 
Through parallel analysis, the top 13 factors are selected to 

achieve the balance between variance explained and 
interpretability of the factors.  Fig. 4 depicts the 13 factors 
indicated by the columns, and how the raw features (y-axis) are 
loaded on them with complete explanation and description 
presented in the Appendix Table A2. 

Among the resulting factors, “freeway”, “development 
level” and “non-freeway arterial” indicate density of major 
roads and level of urbanization, combining various network and 
traffic attributes. Factors such as “network connectivity”, 
“network complexity”, “core-edge network” and “network 
circuity” represent the network topology mostly relying on 
network features from OpenStreetMap [33]. Factors including 
“mixed-use districts”, “bike potential”, “walk potential”, “job 
hub”, and “median travel”, capture the demand characteristics 

 
 

Fig. 3. Network traffic density at 5:00PM in urban tracts across the U.S. with inserts showing the zoomed-in view of the tract-level density in six cities and 
the flow-density scatters (i.e., observed MFDs) for three randomly selected urban tracts in each city. 

 

 
Fig. 4. Raw features (y axis) and their factor loadings on the 13 derived 

location factors (x-axis).  
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of each tract.  Finally, “roadway roughness” suggests the 
vertical alignment of the roads and easiness of driving on those 
roads.  Those factors help capture the major location-specific 
infrastructure and traffic characteristics, and can affect the MFD 
trends due to their potential impacts on traffic flow and network 
utilization. 

B. Performance of Machine Learning Models 
The model performance, when predicting network flow 

from given density and location factors in the 20% testing data, 
is evaluated using four metrics: R2, mean absolute error (MAE), 
root mean squared error (RMSE), and mean absolute percentage 
error (MAPE) in TABLE I. Across all four metrics, XGBoost 
consistently shows the best performance among the machine 
learning models evaluated here. This conclusion can also be 
visually confirmed by comparing the observed vs predicted 
network flows from the XGBoost model in Fig. 5 (a).  

Taking the best performing XGBoost model, we further 
evaluate its ability to capture two of the MFD shape parameters: 
network capacity and critical density, derived from the observed 
vs. predicted MFD curves in Fig. 5 (b) and (c). The comparison 
indicates reasonable agreement between modeled and observed 
turning points of the MFD curves, with correlation of 0.97 and 
0.76 for network capacity and critical density, respectively, 
across U.S. urban tracts. 

C. Influence of Location Factors on MFD Shapes 

1) Importance Ranking of Location Factors 
Coupled with the best performing XGBoost model, 

TreeExplainer uncovers the influence of location factors on 
MFD shapes learned by the model using the interaction SHAP 
values. Fig. 6(a) presents the importance ranking of the location 
factors according to their interaction SHAP values with density. 

The top-ranking factors are mostly related to network 
topology (such as network connectivity, network complexity, 
core edge network, and network circuity), transportation 
infrastructure characteristics—such as composition of the road 
functional classes (freeway and non-freeway arterial) and 
roadway condition (roadway roughness)—and land use factors 
(such as mixed-use districts and development level).  

In contrast, the demand and trip-related factors (such as trip 
distance related factors: median travel, job hub, bike potential 
and walk potential) are ranked at the bottom.  

This ranking of location factors aligns well with existing 
literature. The shape of MFDs has been considered in the 
literature to be mainly determined by the urban road structure 
and network topology, traffic control, and the level of 
inhomogeneity in the distribution of traffic. Although it is still 
under debate whether the MFD shape depends on demand 
characteristics such as trip origins and destinations and route 
choice, most of the MFD literature assumes it is more or less 
independent of demand when the trip length remains roughly 
constant [34].  

Land use characteristics, such as the development level and 
mixed land use with development including both commercial 
and residential buildings, whose importance is revealed in this 
study, have rarely been investigated in the literature. These land-
use related attributes, especially mixed-use level, may influence 
the road network utilization and homogeneity of the traffic. For 
example, networks primarily serving as job centers may induce 
traffic flows that are uni-directional during rush hours and 
therefore decrease the level of two-way lane utilization, 
resulting in inhomogeneous congestion. More importantly, the 
direction of the influence of these location factors (discussed in 
the next section) can help future design of transportation 
infrastructure and land use planning to mitigate traffic 
congestion and improve network performance.   

TABLE I.  MODEL PERFORMANCE METRICS ON 20%* TESTING DATA 

ML Models Performance Measures 
R2 MAE 

(veh/lane-hr) 
RMSE 

(veh/lane-hr) 
MAPE+

(%) 
XGBoost 0.984 12.12 22.67 6.1 

Random 
Forest 

0.982 12.28 24.2 6.2 

Ensembled 
SVM 

0.913 27.27 53.02 12.7 

MLP 0.953 22.65 39.25 11.1 

* Testing data size: 3,361,636 
+ data size 2,143,156 after flow (100 veh/lane-hr) and density (0.006 veh/m-lane) cutoff 
thresholds applied. (the cut-off is to remove observations with near zero flow and thus 
potentially high percentage error even if absolute error is low) 

 

 

 
Fig. 5. Comparison between observed and XGBoost model predicted values for (a) network flow, and derived MFD shape-related parameters (b) network 
capacity, and (c) critical density. Color indicates the density of the points. 
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2) Interpretation of Location Dependence of MFD Shapes 
The dependence of MFD shapes on location factors can be 

closely examined by the local SHAP interaction values. The 
implications on how the consequent network critical density and 
capacity from MFD shapes change from these factors can be 
subsequently derived. Two examples are shown in Fig. 6 (b) and 
(d) for “freeway” and “network connectivity” factors. Positive 
interaction SHAP values indicate a relative increase in the 
predicted flow, whereas negative ones indicate a relative 
decrease. 

We can see in Fig. 6 (b) that the presence of a higher fraction 
of freeways in the network slightly increases flow under the low 
density (uncongested—indicated by the blue dots) conditions 
and greatly increases flow under the high density (more 
congested—indicated by red dots) conditions. This results in the 
deep green MFD curve in Fig. 6 (c) relative to a reference level 
(dashed black curve). In contrast, a lower fraction of freeways 
in the network slightly decreases the flow under the low density 
(blue dots) conditions and greatly decreases the flow under the 
high density (red dots) conditions. This results in the light green 
MFD curve in Fig. 6 (c) relative to a reference level. Taken 
together, MFD shapes under high vs low fractions of freeways 
shown by dark green vs. light green in Fig. 6 (c) indicate that 
both the capacity and critical density of the network increase 
with the fraction of freeways. 

In contrast, when we apply the interpretation of interaction 
SHAP values in Fig. 6 (d) to the MFD shape changes illustrated 
in Fig. 6 (e), we can see increasing network connectivity has a 
trade-off/opposite effect on network capacity and critical 
density. Higher connectivity of the road network can 
accommodate more vehicles before congestion sets in, indicated 
by the increase in critical density, however, it also decreases the 
network capacity at the same time.   

Fig. 7 confirms, both from observed and predicted MFD 
curves, the association of critical density and network capacity 
with the two location factors illustrated in Fig. 6. We can see 
indeed that critical density and network capacity both have a 
positive association with the freeway factor, while they have 
the opposite associations with the network connectivity factor. 
The complete list of associations between location factors and 
MFD shape parameters (critical density and network capacity) 
derived from observed and predicted MFD curves, is presented 
in Table II. 

 
Fig. 6. (a) The importance ranking of location factors according to their interaction SHAP values with network density; local interaction SHAP values 
between density and two example location factors (b) freeway factor and (d) network connectivity factor. The corresponding graphical interpretation 
of MFD shape changes are illustrated in (c) and (e). 

 

 
Fig. 7. Association between example location factors and MFD shape 
parameters derived from observed (blue) and predicted (red) MFD curves 
(r = correlation coefficient): (a) critical density and freeway factor; (b) 
network capacity and freeway factor; (c) critical density and network 
connectivity factor; (d) network capacity and network connectivity.  
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The directionality of the associations between these MFD 
shape parameters and the location factors is closely aligned 
between model prediction and observations (Table II). An 
important observation is that a particular location factor’s 
association with critical density and network capacity is not 
always in the same direction, indicating a potential tradeoff in 
traffic controls. For example, greater road network 
connectivity and development level may accommodate more 
vehicles before the congestion sets in, as indicated by their 
positive association with critical density, however, they may 
also decrease the network capacity at the same time, as 
indicated by their negative association with network capacity. 
On the other hand, some location attributes pertinent to 
urban/transportation planning, such as mixed-use development, 
may contribute to enhanced network performance by 
increasing both network capacity and critical density. The 
underlying mechanism from the data-driven associations 
observed here warrants further research to confirm a causal 
relationship, before such insights can be applied in practice.    

V. CONCLUSIONS 
Macroscopic fundamental diagram is a parsimonious 

modeling tool used in urban traffic management for capturing 
the interrelationship between vehicular flow, density, and speed 
at a network-wide level. However, in practice, due to historical 
data limitations, empirically derived MFD models are sparse in 
the literature especially for U.S. cities. Leveraging large-scale 
and granular census-tract-level flow and density data derived 
from vehicle probes, this paper has presented the first 
application of machine learning methods to both deriving MFD 
models and interpreting the important location factors 
underlying different MFD shapes of urban networks across the 
entire United States.  

Among the four machine learning methods tested, XGBoost 
is found to deliver the best performance to predict the network 
traffic flow for given vehicular density and location attributes. 

In particular, predictions from XGBoost effectively capture both 
local flow values of a given network density and the key traffic 
control parameters related to MFD shape, i.e., critical density 
and network capacity. 

The interaction Shapley Additive explanation (SHAP) 
values were used to determine the importance of and understand 
location factors, such as land use, transportation infrastructure, 
and network topology, that influence the shape of MFD curves. 
We find top-ranking factors are mostly related to network 
topology, transportation infrastructure, and land use, whereas 
demand and trip related factors are ranked at the bottom. The 
ranking of these location factors is largely aligned with the 
literature.  

The directionality of the associations between MFD shape 
parameters (network capacity and critical density) and location 
factors have good agreement between model predictions and 
observations, both confirming the model’s ability to capture 
changes of MFD shapes across locations and revealing potential 
synergistic and tradeoff effects of land use and network design 
to be considered in transportation and land use planning.  

The analysis framework developed in this work can generate 
data-driven MFDs and a deeper understanding of their shape 
dependence on network, infrastructure, and land use 
characteristics, which can be used by transportation authorities 
to derive and optimize location-specific MFDs facilitating more 
informed management and planning decisions at the network 
level.  
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APPENDIX  

TABLE A1. SUMMARY OF TRANSPORTATION SUPPLY AND DEMAND 
FEATURES USED FOR MFD PREDICTION. 

Variable Description Source 

pct agr. land Fraction of land area is agriculture 
land 

(Dewitz, 2019) 
 

dev. intensity Fraction of developed land area 
pct water Fraction of area is water surface (U.S. Census 

Bureau, TIGER, 
2019) 

Network attributes 

avg. circuity Total edge length/sum of great 
circle distances between the 

network nodes indecent to each 
edge. 

(Boeing, 2017) 

dead end proportion Fraction of network nodes that are 
dead ends 

self-loop proportion Fraction of edges with single 
incident node 

intersection density The density of intersection nodes 
per area (nodes/km2) 

street density The ratio between street length to 
the area (1/km) 

avg. street length Average road edge length in 
undirected network (m) 

avg. streets per 
node 

Average number of streets that 
emanate from each node 

avg. edge per node Average number of inbound and 
outbound edges incident to the 

nodes 
edge count Count of network edges from 

OSM, normalized by lane miles 
(#/ln-mile) 

node count Count of network nodes from 
OSM, normalized by lane miles 

(#/ln-mile) 
avg. centrality Average of all degree centralities 

in the network, where centrality is 
defined as the fraction of nodes 
that each node is connected to 

avg. neighbor edge 
degree 

Average degree of nodes in the 
neighborhood of each node 

pct full access 
control 

Fraction of lane miles with full 
access control 

(BTS NTAD, 
2021) 

 pct partial access 
control 

Fraction of lane miles with partial 
access control 

avg. iri Average of International 
Roughness Index (IRI) all lane 

miles (inches/mile) 
avg speed limit Average speed limit (weighted by 

lane mile) (mph) 
pct highways Fraction of lane miles are highway 

(FHWA class 1 and 2) 

pct local roads Fraction of lane miles are local 
roads (FHWA class 6 and 7) 

pct midsize roads Fraction of lane miles are arterials 
(FHWA class 3 - 5) 

pct signal 
coordination 

Fraction of road with coordinated 
signal (weighted by road count) 

lane-miles per 
sq.km 

The ratio between total lane miles 
and land areas (lane mile/km2) 

total lane miles Total lane miles from all FHWA 
road classes (mile) 

road grade Average road grade of all 
roadways (%) 

Aggregated traffic 

avg. daily flow Average daily traffic volume for 
all traffic, normalized by lane 

miles (veh/lane/day) 

(BTS NTAD, 
2021) 

 
 avg. daily comb. 

trucks 
Average daily traffic volume for 

combination trucks, normalized by 
lane miles (veh/lane/day) 

avg. daily single-
unit trucks 

Average daily traffic volume for 
single-unit trucks, normalized by 

lane miles 
Trip Generation/demand characteristics 

job density Jobs per land area (jobs/km2) (Census Bureau, 
LODES, 2017) 

population density Population per land area 
(person/km2) 

(Census Bureau, 
ACS, 2018) 

pct trips<1.3 mi Fraction of commute trips within 
1.3 miles 

(Census Bureau, 
LODES, 2017) 

 
pct trips 1.3-3 mi Fraction of commute trips between 

1.3 miles and 3 miles 

pct trips 3-8 mi Fraction of commute trips between 
3 miles and 8 miles 

pct trips >8mi Fraction of commute trips above 8 
miles 

trip sink magnitude Trip sink magnitude = number of 
work trip destinations/number of 

work trip origins (homes) 
jobs-housing 

balance 
Total jobs/total population by 

tracts 
(Census Bureau, 
LODES, 2017) 

(Census Bureau, 
ACS, 2018) 

lane-meters per 
capita 

Total lane distance/population 
(m/person) 

(BTS NTAD, 
2021) 

(Census Bureau, 
ACS, 2018) 

TABLE A2. DESCRIPTIONS  OF LOCATION FACTORS DERIVED AND THEIR 
COMPONENTS. 

Factor Component 

freeway High freeway fraction and traffic volume 
development level More developed land with dense and short streets 
network connectivity More streets are connected 

network complexity More edges and nodes per lane-mile available in a network 
core-edge network Featuring a few nodes with high centrality  

mixed-use districts Mix of high job and residential density 
median travel Many trips between 3 and 8 miles 
network circuity The road network is more circular, less straight lines 

job hub Industry areas with high employment and low residential 
population 

bike potential Many trips between 1.3-3 miles 

walk potential Many trips under 1.3 miles 
non-freeway arterial More streets are non-freeway arterials  

roadway roughness High roughness and steep roads 
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