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The overarching problem that Natural Language Processing (NLP) research tries to solve

is linguistic constructs and their meaning. There has been tremendous progress in recent years in

contextual text representations, leading to the emergence of self-attention and language models.

Language models have pushed the state of the art in question answering, natural language

understanding, and a range of other NLP tasks. Whereas language models have revolutionized the

way text is represented, they need large amounts of training data, and they may not understand

text written in informal, non-mainstream styles. As a result, knowledge-hungry domains such as

healthcare or underrepresented users such as older adults have not benefited from this progress.

This dissertation introduces methods that aim to enable language models to adapt to do-
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mains with user-generated text as input, and that require specialized knowledge, with challenging,

noisy or small training datasets. In particular, I develop methods for text understanding and

question answering for consumer health applications, or users of medical language technology

systems. First, I tackle Answer Sentence Selection through recursive language models. I show

that the popular transformer architecture can leverage tree structures in formally written text,

yet fail to do so in informal, user-written text. Then, I propose to better understand user-written

questions, or Consumer Health Questions: I propose a new parameter-sharing method that jointly

trains question summarization and entailment for the medical domain. Afterwards, I bring to-

gether answer selection and question understanding to design a system for medical Question

Understanding and Answering. The proposed system takes a long, user-written medical question

as input, and selects the best answer from a medical knowledge base using self-supervised losses.

Finally, I study text understanding through the lens of entity linking for utterances written by

users on social media.
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Chapter 1

Introduction

One of the tangible goals of Natural Language Processing (NLP) is equipping computers

with the ability to converse with humans at a similar level of intelligence. ELIZA is an early

conversational agent [Weizenbaum, 1976], that simulates conversation with humans using rule-

based pattern matching. It is estimated to be one of the earliest NLP applications to be able to

undergo the Turing test – a philosophical test requiring a computer to communicate such that it

is reliably indistinguishable from humans. The current state of NLP research decomposes the

goal of passing the Turing test as various subfields, including natural language understanding and

question answering.

Question Answering (QA) is the subfield of natural language processing that deals with a

computer’s ability to provide correct answers to questions asked by users. Question Answering

covers a range of tasks, from understanding the intent of questions, to selecting and/or generating

content that answers a given question. Applications of question answering pervade our daily lives,

through voice assistants like Siri and Alexa, and search engines like Google. Question answering

can also be fine-tuned to fit the needs of a particular domain of knowledge. For example, the

US National Institutes of Health have developed CHIQA, a question answering system for the

medical domain. Their system uses question understanding, a task at the intersection of natural
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language understanding and question answering.

Natural Language Understanding (NLU) is the subfield of natural language processing

that aims to teach computers to understand the intent of what users write. For example, for a user

whose search history relates to Pakistani topics, a query related to ”best restaurants in Hyderabad”

should likely be disambiguated to get results for Hyderabad, Pakistan rather than Hyderabad,

India. This particular example is at the intersection of query understanding and entity linking.

More generally, NLU can be applied to numerous applications related to disambiguating text.

NLU methods can use lexicons like the WordNet [Miller, 1998], or use corpus statistics like in

machine translation.

1.1 State of the Art

How can computers best represent the meaning of language? The overarching problem

that NLU and NLP try to solve is the representation of text and meaning. Early text representation

models, such as word2vec [Mikolov et al., 2013] and GloVe [Pennington et al., 2014], embed

words using the co-occurrence of words within windows of context. Recurrent neural networks

[Cho et al., 2014, Sutskever et al., 2014] can encode sequences of text and generate text using an

encoder-decoder architecture. However, the recurrent nature of the encoder makes it difficult to

model long-range dependencies in text. Moreover, the decoder relies on the last encoder output,

and the latter may not accurately represent the entire text sequence in the absence of an adequate

aggregation mechanism. To resolve these issues, Bahdanau et al. [2014] introduce the attention

mechanism, that takes into account sequential order.

The self-attention mechanism and the transformer architecture [Vaswani et al., 2017]

aim to better represent the meaning of text – self-attention takes into account all words in a

sequence, not just in sequential order. Their introduction was a seismic shift in natural language

understanding, and has enabled the emergence of powerful contextualized text representations,
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most notably BERT [Devlin et al., 2019a]. Language models like BERT – or Bidirectional

Encoder Representations from Transformers – and its derivatives [Yang et al., 2019, Liu et al.,

2020, Rogers et al., 2021] are powered by the pre-training of language modeling tasks on

huge amounts of text. These language models have pushed the state of the art in various NLP

applications, including machine translation [Edunov et al., 2018], abstractive summarization

[Lewis et al., 2020a], and syntactic parsing [Mrini et al., 2020].

1.2 Challenges

Whereas language models have revolutionized the way text is represented, they need large

amounts of training data, and they may not understand text written in informal, non-mainstream

styles. There are two main challenges that we have identified.

Lack of Applicability of Language Models for User-Generated Text. In recent years,

NLP conferences – such as NAACL 2021 – have proposed new themes related to understudied

problems and methods that enable models to generalize and perform well outside of laboratory

settings. Most of the popular benchmark datasets are carefully curated or formally written datasets,

and as such do not necessarily represent real-life settings. Therefore the reported performance

of a language model in benchmark datasets is not indicative of its generalizing ability, as the

performance may drop significantly for user-generated text, such as text found on social media or

online forums. In our work, our research question is: how can we develop methods that enable

language models to process user-generated text?

Lack of Applicability of Language Models to Domains with Scarce Datasets. As

large language models perform best when trained on large training data, their performance is

reduced for domains requiring specialized knowledge, and where there is a scarcity of datasets.

In this work, we take the consumer health domain as our low-resource domain of application.

The consumer health domain is a subset of the medical domain, where the input is user-generated
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text. Datasets in this domain are scarce, and vary from curated and small to noisy and large. In

this line of work, we ask: how can language models learn domain adaptation efficiently from

noisy or small datasets?

1.3 Contributions and Dissertation Organization

This dissertation introduces methods that aim to enable language models to adapt to do-

mains with user-generated text as input, and that require specialized knowledge, with challenging,

noisy or small training datasets. We make the following contributions:

Answer Selection through Recursive Language Models. In chapter 2, we investigate

whether tree structures can boost performance in Answer Sentence Selection (AS2). We introduce

the Tree Aggregation Transformer: a novel recursive, tree-structured self-attention model for AS2.

The recursive nature of our model is able to represent all levels of syntactic parse trees with only

one additional self-attention layer. Without transfer learning, we establish a new state of the art

on the popular TrecQA and WikiQA benchmark datasets. Additionally, we evaluate our method

on four Community Question Answering datasets, and find that tree-structured representations

have limitations with noisy user-generated text.

Question Understanding through Summarization and Entailment. Having uncovered

a weakness in language models for user-generated text in the previous chapter, we propose in

chapter 3 a novel Multi-Task Learning (MTL) method with data augmentation for medical question

understanding. We first establish an equivalence between the tasks of question summarization and

Recognizing Question Entailment (RQE) using their definitions in the medical domain. Based on

this equivalence, we propose a data augmentation algorithm to use just one dataset to optimize

for both tasks, with a weighted MTL loss. We introduce gradually soft parameter-sharing: a

constraint for decoder parameters to be close, that is gradually loosened as we move to the highest

layer. Our method outperforms existing MTL methods across 4 datasets of medical question
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pairs, in ROUGE scores, RQE accuracy and human evaluation.

Question Understanding and Answering as Summarization and Retrieval. In the

previous two chapters, we addressed question understanding and question answering. In chapter

4, we introduce a medical question understanding and answering approach with knowledge

grounding and semantic self-supervision. Our system is a pipeline that first summarizes a long,

medical, user-written question, using a supervised summarization loss. Then, our system performs

a two-step retrieval to return answers. The system first matches the summarized user question

with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of

relevant sentences from the corresponding answer document. In the absence of labels for question

matching or answer relevance, we design three novel, self-supervised and semantically-guided

losses. We evaluate our model against two strong retrieval-based question answering baselines.

Evaluators ask their own questions and rate the answers retrieved by our baselines and own system

according to their relevance. They find that our system retrieves more relevant answers, while

achieving speeds 20 times faster. Our self-supervised losses also help the summarizer achieve

higher scores in ROUGE, as well as in human evaluation metrics.

Text Understanding as Entity Linking. In chapter 5, we move beyond the understanding

of questions, and we propose to apply understanding to social media utterances using multi-task

learning, in a similar approach to chapter 3. We propose an autoregressive entity linking model,

that is trained with two auxiliary tasks, and learns to re-rank generated samples at inference

time. Our proposed novelties address two weaknesses in the literature. First, a recent method

proposes to learn mention detection and then entity candidate selection, but relies on predefined

sets of candidates. We use encoder-decoder autoregressive entity linking in order to bypass this

need, and propose to train mention detection as an auxiliary task instead. Second, previous work

suggests that re-ranking could help correct prediction errors. We add a new, auxiliary task, match

prediction, to learn re-ranking. Without the use of a knowledge base or candidate sets, our model

sets a new state of the art in two benchmark datasets of entity linking: COMETA in the biomedical
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domain, and AIDA-CoNLL in the news domain.

Finally, in Chapter 6, we summarize our contributions and elicit possible directions for

future work on enabling NLP techniques to perform well beyond the mainstream benchmarks.
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Chapter 2

Answer Selection

In this thesis, we aim to develop methods to build systems that understand the intent

expressed by users in text, and that respond to the queries or questions of the users accordingly.

To respond to users’ questions, the first step we work on is teaching machine learning models

to select what answers fit a given question. This chapter focuses on improving and studying the

performance of current state-of-the-art systems on the task of Answer Sentence Selection (AS2).

2.1 Introduction

Motivation. Natural language text is characterized by structure. For instance, syntactic

parse trees decompose a sentence into syntactic groups, which in turn are decomposed recursively

until we get to single-word spans. Therefore, syntactic parse trees have a varying number of

levels that can be accurately represented by recursive model architectures.

Tree-structured LSTM networks [Tai et al., 2015] are the recursive extension of LSTM

networks [Hochreiter and Schmidhuber, 1997], and allow for syntactic trees to be represented

hierarchically. Tree-LSTMs and bidirectional Tree-LSTMs [Teng and Zhang, 2017] do not

represent sequence position information, whereas the hybrid neural inference networks [Chen

et al., 2017c] represent sequence position information separately from tree-structured hierarchical
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<s> Marrakesh </s>

<s> in Marrakesh </s> 

<s> died in Marrakesh </s><s> Averroes </s>

<s> Averroes died in Marrakesh. </s>

Self-Attention

Self-Attention

Self-AttentionSelf-Attention

Self-Attention

Sentence Embedding

Figure 2.1: Embedding a sentence with our proposed recursive tree-structured self-attention
using the corresponding constituency parse tree. There is only one set of parameters for the
recursive self-attention.

information.

Tree-structured models have been applied to the tasks of natural language inference [Chen

et al., 2017c], sentence pair similarity [Tai et al., 2015], dependency parsing [Kiperwasser and

Goldberg, 2016], and text embeddings [Mrini et al., 2019]. In this paper, we consider the problem

of Answer Sentence Selection (AS2), where the goal is to predict for a question-sentence pair

whether the sentence contains an answer to the question. Given that tree-structured models have

performed strongly on a task that takes a sentence pair as input – sentence pair similarity, we

hypothesize that tree structures can help in AS2, another sentence pair task.

The most recent top-performing model architectures for Answer Sentence Selection

have been based on the self-attention transformer architecture [Vaswani et al., 2017]. Three of

them [Lai et al., 2019, Garg et al., 2019, Tran et al., 2020] use transfer learning on large AS2

datasets; another one [Laskar et al., 2020] uses direct fine-tuning on pre-trained transformer-

based language encoders, whereas all three use pre-trained BERT [Devlin et al., 2019b] and/or

RoBERTa embeddings [Liu et al., 2019b].
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Contribution. We investigate whether tree structures are useful for AS2. We introduce

the Tree Aggregation Transformer: a novel recursive and tree-structured self-attention model for

Answer Sentence Selection. We use the syntactic parse trees of questions and candidate answer

sentences to model them in a tree-structured way. We then form representations for questions and

candidate answers using one additional self-attention layer in a recursive, bottom-up fashion, as

shown in Figure 2.1. We learn syntactic embeddings to represent hierarchical order and phrase-

level syntactic information. We find in an ablation study that our learned syntactic embeddings

improve performance.

Without using AS2 datasets for transfer learning, our model establishes a new state of

the art for the clean versions of TrecQA and WikiQA, two widely used benchmark datasets in

question answering and AS2. Our tree-structured self-attention matches or exceeds the state of the

art – which is fine-tuning on RoBERTa – on 2 out of 4 Community Question Answering (CQA)

datasets. We conduct experiments for 3 probing tasks to establish what information our models

leverage to increase performance, and likewise what they fail to leverage when they do not exceed

baselines. We find that tree-structured representations that successfully absorb the provided

syntactic information consistently perform better than baselines. Our probing task results suggest

that there is more work to be done for tree structures to adapt to noisy user-generated text.

2.2 Related Work

Tree-structured Transformers. To the best of our knowledge, our method is the first

to introduce tree self-attention to Answer Sentence Selection. There is a growing body of work

incorporating tree structures in self-attention for a range of other NLP tasks.

Nguyen et al. [2019] introduce a transformer-based encoder-decoder that incorporates

tree-structured attention. The tree-structured attention is accumulated hierarchically. A token

in the tree has as many representations as overall children, therefore it is first accumulated in a
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bottom-up fashion (vertically), and then horizontally to compute a token’s representation. Their

model is not recursive and uses different parameters for each level. The authors evaluate their

model in machine translation and text classification.

Sun et al. [2020] develop a tree-structured transformer encoder-decoder architecture

for code generation. Here, the tree structure is based on the code syntax. The model uses

character-level embeddings as input.

Harer et al. [2019] introduce Tree-Transformer: a model with a tree convolution block for

correction of code and grammar. Wang et al. [2019] propose a model of the same name, where

the model learns syntactic parse trees in an unsupervised manner. The model uses up to 12 layers

of non-recursive self-attention on top of a pre-trained BERT.

Ahmed et al. [2019] introduce Constituency and Dependency Tree Transformer models,

largely inspired by the Constituency and Dependency Tree-LSTM models [Tai et al., 2015] and

RvNN models [Socher et al., 2011, 2012, 2013]. On 4 datasets of semantic relatedness, natural

language inference and paraphrase identification, their transformer models achieve performance

on par with Tree-LSTM models, and do not set a new state of the art. The authors use two

convolution layers to form a parent representation from the corresponding children. Their model

does not learn an explicit syntactic representation, and the authors do not analyze the fluctuating

results.

Answer Sentence Selection (AS2). The recent state-of-the-art models in the AS2 task all

use transfer learning from large-scale datasets, and do not incorporate syntactic information. All

of them use a standard linear (or sequential) input format, where the first input sentence is the

question and the second is the candidate answer.

Lai et al. [2019] introduce the Gated Self-Attention Memory Network (GSAMN). It

combines gated attention [Dhingra et al., 2017, Tran et al., 2017], memory networks [Sukhbaatar

et al., 2015] and self-attention [Vaswani et al., 2017] in one model. The authors use transfer

learning with their Stack Exchange QA dataset.
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Garg et al. [2019] propose the TandA method: Transfer and Adapt. The method is simply

fine-tuning directly on a pre-trained BERT or RoBERTa model. The transfer step is transfer

learning: fine-tuning a large pre-trained BERT or RoBERTa on the ASNQ dataset: a large-scale

answer sentence selection dataset extracted from Google’s Natural Questions [Kwiatkowski et al.,

2019]. The second step is to adapt the language model fine-tuned for answer sentence selection

to the smaller, target benchmarks TrecQA and WikiQA.

Tran et al. [2020] build upon the work of Lai et al. [2019]. They propose to use a neural

Turing machine [Graves et al., 2014] as a controller for the memory network, instead of the gated

attention that Lai et al. [2019] use. Like Garg et al. [2019], they use the ASNQ dataset for transfer

learning.

Laskar et al. [2020] achieve state-of-the-art results on a wide range of QA and CQA

datasets by directly fine-tuning on the target datasets, without transfer learning from an external

large-scale dataset. They show results for two methods: the first trains a self-attention layer while

freezing pre-trained language model layers, and the second directly fine-tunes on the language

model.

2.3 Tree Aggregation Transformer for Answer Sentence Selec-

tion

In the AS2 task, the input is a pair of sentences, where the first one is the question and

the second is a candidate answer. This is a binary classification problem on whether or not the

candidate answer sentence contains an answer to the question. We therefore design our model to

form a representation of the question and a representation of the candidate answer, in a bottom-up

tree aggregation fashion.

Semantic and Syntactic Representation. We define a token embedding in our input

representation as the concatenation of a semantic embedding and a syntactic embedding. The
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Input Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Token <s> Where did Averroes die ? </s> </s> Averroes died in Marrakesh . </s>

Part of Speech WRB VBD NNP VB . NNP VBD IN NNP .

(NP Averroes)

(VP die)

(SQ did (NP Averroes) (VP die))(WHADVP Where)

Tree 
Levels

(SBARQ (WHADVP Where) (SQ did (NP Averroes) (VP die)) ?)

(NP Marrakesh)

(PP in (NP Marrakesh))

(VP died (PP in (NP Marrakesh)))(NP Averroes)

(S (NP Averroes) (VP died (PP in (NP Marrakesh))) .)0

1

2

3

Figure 2.2: Input representation of an example question-sentence pair using RoBERTa.

</s>
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Semantic 
Representation

Syntactic 
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Figure 2.3: Detailed example of recursive tree aggregation.
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semantic embedding is a projection of the token embedding from a given pre-trained language

model, whereas the syntactic embedding contains information from part-of-speech tags, syntactic

categories, and the level within the syntactic parse tree.

The syntactic embedding is the sum of three learned embeddings. The first embedding

represents the token’s tag – a part-of-speech tag if the token is a word, or a syntactic category

if the token is a classification or separator token. The second embedding represents the token’s

level within the tree, inherited from the head of the token’s constituent span. Our recursive model

allows to represent sentences with as many tree levels as the corresponding syntax tree has. The

third embedding represents the position of a token within the constituent span, as seen in the

example in Figure 2.2. This position embedding puts the token within its span context, whereas

the position embedding of the semantic (language model) embedding puts the token within the

context of the question-sentence pair.

More formally, given a token t, its language model embedding xt, its position index pt , its

part-of-speech tag or syntactic category st , and its tree level lt , the token’s semantic embedding et

and syntactic embedding nt are as follows:

et = W1 ∗xt +b1 (2.1)

nt = W2

[
Es [st ]+Ep [pt ]+El [lt ]

]
+b2 (2.2)

where W1, W2, b1, b2 are learned, and Es, Ep and El are learned embedding layers, respectively

for the part-of-speech tag or syntactic category, the position index, and the tree level.

Recursive Self-Attention. We add 1 layer of recursive self-attention layer on top of the

language model layers. The recursive self-attention layer has separate attention distributions ae
t

and an
t for the semantic embedding et and syntactic embedding nt:
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ae
t = softmax

(
qe

t ∗Ke
√

de

)
(2.3)

an
t = softmax

(
qn

t ∗Kn
√

dn

)
(2.4)

where dn and de are the dimensions of the query and key vectors for the semantic and syntactic

embeddings respectively, and Ke and Kn are the learned matrices of key vectors of input tokens.

qe
t and qn

t are the query vectors for the token t, such that:

qe
t = WQ,e ∗ et (2.5)

qn
t = WQ,n ∗nt (2.6)

where WQ,e and WQ,n are learned.

The resulting vectors oe
t and on

t are computed as:

oe
t = et +WO,e ∗ (ae

t ∗Ve)+bO,e (2.7)

on
t = nt +WO,n ∗ (an

t ∗Vn)+bO,n (2.8)

where Ve and Vn are the value vectors for the input tokens, and WO,e, WO,n, bO,e, bO,n are

learned. Finally, we apply separate position-wise feed-forward layers to these output vectors.

Usually, self-attention includes residual dropout over the attention-weighted value vectors.

We found in preliminary experiments that the performance on the dev set improved when we

omitted dropout regularization. We omit dropout in both self-attention and position-wise feed-

forward layer.
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The recursiveness of the self-attention allows the model to re-use the same sets of parame-

ters across each tree level, instead of training new ones as in previous work [Nguyen et al., 2019,

Wang et al., 2019].

Constituent Span Embedding. Each input sentence is represented in a tree-structured

fashion using its constituency parse tree. We use a pre-trained parser, whose parameters are fixed,

to produce the trees before training time.

The constituent span is fed to the recursive self-attention as a matrix of token vectors. This

matrix includes the embeddings of the words of the constituent span, preceded by a first, start-of-

sentence embedding, and followed by an end-of-sentence embedding. The start-of-sentence token

is the classification token if the span is part of the question, or a separator token if the span is part

of the candidate sentence. Figure 2.3 shows how we compose a constituent span embedding for

RoBERTa models.

The constituent span embedding is the output embedding of the first token. The first

token embedding obtains through the recursive self-attention an attention-weighted sum of all of

the span’s token embeddings. This creates a span-specific embedding, conscious of the entire

question-sentence pair input as a result of the language model layers, but focused on the tokens of

a span as a result of the recursive self-attention.

In using only one layer of recursive self-attention, the first token embedding gets an

attention-weighted sum of value vectors that contains token embeddings that did not go through a

layer of self-attention, and syntactic embeddings that came directly out of the embedding layers.

Efficient Tree Aggregation. To obtain an aggregate sentence embedding, we proceed by

embedding from the deepest level of the tree (the leaves) to the root, as shown in Figure 2.3. The

computations are done on the same two sets of self-attention parameters.

To reduce training time, we compute the constituent span embeddings one level at a time.

For instance, in Figure 2.2, we compute the NP, VP and PP groups at once when computing the

span embeddings at tree level 2.
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We efficiently compute all span embeddings only once, and keep all computed span

embeddings, as they will be used in the next level.

The sentence embedding is obtained from the first token output of the computation at the

root of the tree, as shown in Figure 2.1.

Prediction. Finally, we concatenate the aggregate embeddings for the question-sentence

input pair. Given the question’s aggregate semantic embedding we
q and aggregate syntactic

embedding wn
q, and the sentence’s aggregate semantic embedding we

s and aggregate syntactic

embedding wn
s , we obtain the prediction values as follows:

p(s|q) = softmax
(
W∗ tanh

[
we

q;wn
q;we

s ;wn
s
]
+b

)
(2.9)

where W and b are learned. We use binary cross-entropy as our loss function.

Our model can optionally include a residual connection, by adding the classification token

embedding output of the language model to the beginning of the question-sentence pair vector.

This residual connection does not contain syntactic information, and the classification token

embedding is not projected in this case.

2.4 Experiments

2.4.1 Datasets

We evaluate our proposed Tree Aggregation Transformer on six English-language bench-

mark datasets for answer sentence selection. The first two – TrecQA and WikiQA – are widely

used benchmarks in Question Answering (QA). The other four – YahooCQA and SemEval 2015,

2016 and 2017 – are all from the Community Question Answering (CQA) domain. We show the

statistics of these six datasets in Table 2.1.

TrecQA [Wang et al., 2007] is collected from labeled sentences of the QA track of the

Text REtrieval Conference (TREC). Over time, the dataset has evolved into two versions: the raw
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version includes all question-sentence pairs, whereas the clean version excludes questions with

only non-relevant or only relevant candidate answers.

WikiQA [Yang et al., 2015a] contains questions originally sampled from Bing query logs,

and matched with candidate answer sentences from the first paragraph of relevant Wikipedia

articles. Likewise, it also has a raw and a clean version. Following Lai et al. [2019], Tran et al.

[2020], we evaluate our method on the clean versions of TrecQA and WikiQA.

YahooCQA [Tay et al., 2017] is a filtered and pre-processed subset of the large-scale

Yahoo! Answers Manner Questions dataset [Surdeanu et al., 2008]. The latter is based on the

Yahoo! Answers online forum.

SemEval 2015 CQA [Nakov et al., 2015] is the challenge dataset of Subtask A of Task

3 of SemEval 2015. It is based on the Qatar Living online forum, and the goal is to predict the

relevance scores of candidate answers given a question. The original subtask divides labels into

three categories: definitely relevant, potentially useful, and irrelevant. Following previous work

[Sha et al., 2018, Laskar et al., 2020], only definitely relevant candidate answers are marked as

relevant in our binary classification setting.

SemEval 2016 CQA [Nakov et al., 2016] corresponds as well to Subtask A of Task 3 of

SemEval 2016, about question-comment similarity. It is a new dataset also based on the Qatar

Living online forum. The training set includes the training, development and testing sets of the

SemEval 2015 CQA, and two new training sets. The authors of the dataset have described the

first one as highly reliable, and the second one as noisier.

SemEval 2017 CQA [Nakov et al., 2017] is the latest version of the community question

answering task. The training and development sets are the same as the 2016 version, but the

testing set is different.

In Figure 2.2, we show an example of question-sentence pairs for a QA dataset and a

CQA dataset. The aim is to illustrate the difference in style and length between formal (QA) and

informal (CQA) text.
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Table 2.1: Statistics of the six benchmark datasets.

Dataset Number of Questions Number of Answers
Train Dev Test Train Dev Test

TrecQA Clean 1,229 65 68 53,417 1,117 1,442
WikiQA Clean 873 126 243 8,672 1,130 2,351

YahooCQA 50,112 6,289 6,283 253,440 31,680 31,680

SemEval
2015 2,600 300 329 16,541 1,645 1,976
2016 4,879 244 327 36,198 2,440 3,270
2017 4,879 244 293 36,198 2,440 2,930

Table 2.2: Samples of question-sentence pairs from the training sets of WikiQA and SemEval
2016-2017 (both years share the same training dataset). Here, the sentence contains an answer
to the question.

Dataset Question Answer
WikiQA how are glacier caves formed ? A glacier cave is a cave formed within the ice of a glacier

.
SemEval
2016-
2017

Why people are crossing red signals on Doha
Roads? I think signals are changing quickly than on
Dubai roads and its hard for the motorists to control
their vehicles? Moreover; motorists are bit panic
fearing the penalties as per the new traffic law.

also i traffic lights here does not have standard options.
some have blinking green light; some chage to yellow
right away then red. several times alredy i found my self
driving in the middle of the crossing in red light luckily
at the moment no fines. hehehe :) pykester

2.4.2 Setup

The standard evaluation metrics in answer sentence selection are Mean Average Precision

(MAP) and Mean Reciprocical Rank (MRR). Both metrics are widely used in Information

Retrieval (IR) and are averaged per query – in this case per question. Our model produces

relevance scores going from 0 (irrelevant) to 1 (relevant) for each candidate answer, and therefore

produces a list of candidate answers that can be ranked by relevance. Whereas MRR scores how

Table 2.3: Ablation study on syntactic representations: Results for our Tree Aggregation
Transformer with and without learned syntactic embeddings for all of our benchmark dev sets,
on RoBERTa Large.

Representation TrecQA WikiQA YahooCQA SemEval CQA
2015 2016-2017

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR
Semantic Only 0.932 0.958 0.892 0.901 0.929 0.929 0.947 0.959 0.911 0.950
Semantic + Syn-
tactic

0.946 0.961 0.898 0.912 0.933 0.933 0.945 0.962 0.914 0.957
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early a first relevant answer appears in that candidate list, MAP scores the order in which all

candidate answers are listed for each question.

To produce parse trees, we use the NLTK part-of-speech tagger [Loper and Bird, 2002]

trained on the part-of-speech tagset of the English Penn Treebank (PTB) [Marcus et al., 1994],

and the English-language parser of Mrini et al. [2020], which is the state of the art on the parse

trees of the PTB.

2.4.3 Training Parameters

We use 1 layer of recursive self-attention for all datasets. We use the residual connection

described in §2.3 for TrecQA only. For all our models, we use either BERT large or RoBERTa

large, so as to match our baselines. Our recursive self-attention layers have: 16 attention heads, a

feed-forward dimension of 4096, and a hidden dimension of 2048. We use half of the dimensions

to encode semantic information, and the rest to encode syntactic information.

2.4.4 Ablation Study on Syntactic Embeddings

We perform an ablation study by removing the syntactic embedding part of the input

representation. In this experiment, we are quantifying the added value of the learned syntactic

embeddings for span position, part-of-speech tags and syntactic categories, and tree levels.

Our results on the dev sets are in Table 2.3. SemEval 2016 and 2017 results are the same

since both have the same dev set. Across all AS2 datasets, we notice that there is an advantage to

learning syntactic embeddings, as the sum of MRR and MAP scores are higher for the variant

that includes learned syntactic embeddings. The advantage is clearer for QA datasets, suggesting

that formal language tends to benefit more from learned syntactic information. We use syntactic

embeddings in our next experiments.
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2.4.5 Baselines

We conside five strong baselines, described in §2.2:

(1) GSAMN [Lai et al., 2019]: Gated Self-Attention Memory Networks.

(2) TandA [Garg et al., 2019]: the two-step Transfer and Adapt method.

(3) Regular Self-Attention [Laskar et al., 2020]: a self-attention layer fine-tuned over

frozen BERT Large embeddings.

(4) Direct Fine-tuning [Laskar et al., 2020]: directly fine-tuning on a pre-trained language

model.

(5) Evidence Memory [Tran et al., 2020]: the neural Turing machine as memory con-

troller.

Baselines 1, 2, and 5 are available only on TrecQA and/or WikiQA, whereas baselines 3

and 4 use the exact same datasets as we do.

2.4.6 Results and Discussion

The results of our experiments with the QA datasets are in Table 2.4, and the results of

our experiments with CQA datasets are in Table 2.5.

State of the Art in QA datasets

Our results in Table 2.4 establish a new state of the art in TrecQA and WikiQA, two

widely used benchmark datasets in answer sentence selection.

In TrecQA, our average of MAP and MRR scores matches the one for TandA [Garg et al.,

2019] in BERT, without any transfer learning on a large dataset. This shows that our model is

able to leverage the tree structure to increase performance on relatively small datasets.

For the RoBERTa results in WikiQA, the added value between the direct fine-tuning and

our recursive self-attention confirms that our model is beneficial to formally written text, such as
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Table 2.4: Our results in comparison with recent work on the TrecQA and WikiQA benchmark
datasets. * indicates use of transfer learning on large-scale datasets.

Model TrecQA WikiQA
MAP MRR MAP MRR

Chen et al. [2017b] 0.781 0.851 0.721 0.731
Bian et al. [2017] 0.821 0.899 0.754 0.764
Tay et al. [2018a] 0.784 0.865 0.712 0.727
Chen et al. [2018b] 0.823 0.889 0.736 0.745
Chen et al. [2018a] 0.841 0.917 0.730 0.743
Sha et al. [2018] - - 0.746 0.758
Madabushi et al. [2018] 0.865 0.904 - -
Tymoshenko and Moschitti [2018] - - 0.762 0.776
Kamath et al. [2019] - - 0.700 0.716
Models using BERT Large
GSAMN [Lai et al., 2019]* 0.914 0.957 0.857 0.872
TandA [Garg et al., 2019]* 0.912 0.967 - -
Reg. Self-Attention [Laskar et al., 2020] 0.789 0.887 0.714 0.731
Direct Fine-tuning [Laskar et al., 2020] 0.905 0.967 0.843 0.857
Our Tree Aggregation Transformer 0.917 0.961 0.851 0.868
Models using RoBERTa Large
TandA [Garg et al., 2019]* 0.943 0.974 - -
Direct Fine-tuning [Laskar et al., 2020] 0.936 0.978 0.900 0.915
Our Tree Aggregation Transformer 0.950 0.985 0.906 0.920
Models using RoBERTa Large and Evidence Memory
Evidence Memory [Tran et al., 2020]* 0.961 0.993 0.936 0.952
Our Tree Aggregation Transformer 0.970 0.995 0.941 0.958
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Table 2.5: Our results in comparison with recent work on the YahooCQA and SemEvalCQA
benchmark datasets.

Model YahooCQA SemEval CQA
2015 2016 2017

MAP MRR MAP MRR MAP MRR MAP MRR
Nakov et al. [2017] - - - - - - 0.884 0.928
Tay et al. [2018a] 0.801 0.801 - - - - - -
Sha et al. [2018] - - - - 0.801 0.872 - -
Models using BERT Large
Regular Self-Attention [Laskar
et al., 2020]

0.778 0.778 0.883 0.923 0.765 0.831 0.867 0.922

Direct Fine-tuning [Laskar et al.,
2020]

0.951 0.951 0.935 0.961 0.866 0.927 0.921 0.963

Our Tree Aggregation Transformer 0.946 0.946 0.946 0.972 0.844 0.900 0.902 0.955
Models using RoBERTa Large
Direct Fine-tuning [Laskar et al.,
2020]

0.955 0.955 0.947 0.970 0.888 0.938 0.943 0.974

Our Tree Aggregation Transformer 0.949 0.949 0.961 0.981 0.863 0.918 0.926 0.974

Table 2.6: Results for three probing tasks comparing sequential [Laskar et al., 2020] and tree-
structured (ours) representations. In the last two columns, we show the Spearman correlation of
the probing task and the AS2 performance differences between the tree-structured and sequential
representations.

Probing Task Representation TrecQA WikiQA YahooCQA SemEval Spearman’s ρ

2015 2016 2017 MAP MRR
Top Constituent
Prediction (F1 score)

Tree-Structured 0.1573 0.1949 0.0354 0.2058 0.0674 0.1151
0.8214 0.9550Sequential 0.0475 0.0463 0.0364 0.0434 0.0505 0.0483

Tree Depth
Prediction (F1 score)

Tree-Structured 0.1568 0.1638 0.0354 0.1682 0.0621 0.1340
0.8214 0.9550Sequential 0.0481 0.0476 0.0354 0.0451 0.0523 0.0481

Input Length
Regression (MSE)

Tree-Structured 0.0266 0.0273 4.51e-06 0.0652 0.0989 0.0416
-0.0360 0.1429Sequential 0.0822 0.1200 4.14e-06 0.2915 0.3338 0.1484
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the one found in Wikipedia.

The increase in performance compared to the Evidence Memory models [Tran et al.,

2020] when we add our tree representation shows that our tree aggregation method brings about a

consistent and robust added value for the QA datasets.

Limitations in CQA datasets

As shown in Table 2.5, our Tree Aggregation Transformer is able to establish a new state

of the art in SemEval 2015, and our BERT-based version exceeds other BERT-based baselines.

However, our method scores below the state of the art in YahooCQA and SemEval 2016, and only

manages to match the MRR – but not the MAP – of the state of the art in SemEval 2017.

Therefore, there is a contrast in the performance of our recursive tree-structured self-

attention between the QA and the CQA datasets. The difference lies in the style of the datasets, as

questions and sentences can be much longer in QA datasets than in CQA datasets. On average, a

training set pair in QA has 32 words for WikiQA, and 39 words in TrecQA, whereas a training set

pair in CQA has 78 words for SemEval 2015, 85 words for SemEval 2016-2017, and 40 words

for YahooCQA. As shown in the example, CQA pairs may also have spelling mistakes or lack

coherent structure. Thus, the informal writing style and larger text length of CQA datasets may

be decreasing the ability of our model to leverage tree structures. Accordingly, we see that our

model achieves very competitive scores for YahooCQA, and that it has a text length that is very

close to the QA datasets. The SemEval 2015 exception could be explained by the fact that the

2015 training dataset is less noisy than the 2016-2017 training dataset, as pointed out by the

authors of the SemEval CQA datasets.

2.4.7 Do Tree Structures Improve Performance?

We investigate how tree structures are leveraged in the Answer Sentence Selection task

across the different datasets. We evaluate our tree-structured representations and compare them
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with the corresponding sequential representations, using three probing tasks from Conneau et al.

[2018].

Probing Tasks

The three probing tasks are as follows:

(1) Top Constituent Prediction. This task looks to predict the top constituent sequence

of the question-sentence pair: the sequence of syntactic categories immediately below the S

(Sentence) syntactic category. Following Conneau et al. [2018], we define this task as a 20-way

classification problem, where the first 19 classes are the 19 most popular top constituent sequences,

and the last category is for all the remaining top constituent sequences.

(2) Tree Depth Prediction. The tree depth is the number of hops from the root node of

the syntactic tree to the lowest-level leaf nodes.

(3) Input Length Regression. This tasks investigates whether the embedding is aware

of how many words it contains. The length of the question-sentence pair input is defined as the

number of its tokens – full words and punctuation symbols.

The first two tasks are syntactic, and investigate whether our tree-structured representations

absorbed the syntactic category information that we fed it – respectively syntactic categories and

tree levels – and whether that information was already present in the sequential representations.

Probing Experiment Setup

In our probing experiments, we consider all six datasets used both in our work and in

Laskar et al. [2020]. We consider the sequential representation of a question-answer pair to be the

classification token embedding used for prediction in the RoBERTa-based models of Laskar et al.

[2020]. We take our own RoBERTa-based tree-structured models (without evidence memory),

where we consider the tree-structured representation to be the classification token embedding fed

to the prediction layer. The tree-structured and sequential representations have the same number
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of dimensions.

The probing model architecture is a simple MLP with a layer of the same size as the input

embeddings, a ReLU activation, and a prediction layer. We train 36 probing models for each of

the 36 combinations of a probing task, a dataset and a representation type. The input embeddings

are frozen, so that the training does not change the weights of the pre-trained AS2 models. All

experiments are trained for the same number of epochs, and use the same train/dev/splits as AS2

experiments.

Probing Results and Discussion

Our probing experiment results are shown in Table 2.6. We compute the Spearman

correlations of the added values of the tree-structured representations compared to the sequential

representations in each probing task with the same added value in the AS2 task. We compute

the added value of the tree representation in a given task by subtracting the performance of

the sequential representations [Laskar et al., 2020] from the performance of the tree-structured

representations (ours).

For the syntactic probing tasks (the first two), the tree-structured representation gets an

F1 score about 3 to 4 times higher than the one obtained by the sequential representation in 4

datasets: TrecQA, WikiQA, and SemEval 2015 and 2017. These 4 datasets correspond to the ones

in which our tree-structured AS2 models set a new state of the art or matched the performance

of the fine-tuning baseline of Laskar et al. [2020]. In the other datasets, the tree-structured

representation’s F1 score is just slightly higher than the sequential representation’s F1 score,

if not about the same. This shows that when the tree-structured representations successfully

absorb the syntactic information we fed it, there is a consistent increase in performance in the

answer sentence selection task. The high correlation values for both MAP and MRR confirm

that successfully absorbing syntactic information is associated with higher performance in AS2.

The weakness of tree-structured representations in certain datasets may be due to the lack of
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generalization of syntactic parsers trained on the Penn Treebank.

In the input length probing experiment, we observe that the mean-squared error (MSE)

of the tree-structured representations is consistently and significantly lower than the one of the

sequential representations, except for YahooCQA. This shows that the recursion of our tree-

structured AS2 model makes representations aware of the length of their question-sentence pair,

but the correlation values show that this information does not necessarily help in the AS2 task.

2.5 Conclusions

We introduce the Tree Aggregation Transformer: a novel, recursive and tree-structured

self-attention model for AS2. Our method embeds sentences by aggregating word representations

following the corresponding parse tree. We show that our model leverages tree structure and,

through an ablation study, that its learned syntactic embeddings increase performance. Our method

establishes a new state of the art in the TrecQA and WikiQA benchmark datasets with only one

additional self-attention layer. Our tree-structured self-attention exceeds or matches the state of

the art in 2 out of 4 CQA datasets, where text is informal and longer. To investigate this mixed

performance, we devise 3 probing tasks to examine what our tree-structured representations learn

compared to their sequential counterparts. We find that there is a strong correlation between a tree-

structured model’s ability to absorb syntactic information and its ability to increase performance

in the AS2 task compared to baselines. Our findings suggest that there is more work to be done

for tree-structured representations to adapt to noisy user-generated text.
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Chapter 3

Question Understanding

In the previous chapter, we studied current state-of-the-art systems in answer sentence

selection, and found that the performance in this task is worse for informal, user-written text,

compared to formally worded text. Therefore, we cannot directly use NLP systems to understand

intents in user queries. In this chapter, we tackle Question Understanding: we introduce multi-task

learning methods to teach models to summarize long and informal user questions into short,

single-sentence and formally worded questions.

3.1 Introduction

In order to retrieve relevant answers, one of the basic steps in Question Answering (QA)

systems is understanding the intent of questions [Chen et al., 2012, Cai et al., 2017]. This is

particularly important for medical QA systems [Wu et al., 2020a], as consumer health questions

– questions asked by patients – may use a vocabulary distinct from doctors to describe similar

health concepts [Ben Abacha and Demner-Fushman, 2019b]. Consumer health questions may

also contain peripheral information like patient history [Roberts and Demner-Fushman, 2016],

that are not necessary to answer questions. There is a growing number of approaches to medical

question understanding, including query relaxation [Ben Abacha and Zweigenbaum, 2015, Lei
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Source User-written Question or Consumer Health Question (CHQ):
SUBJECT: Morgellon Disease. MESSAGE: It appears as if I have had this 
horrible disease for many, many years and it is getting worst.  I am trying 
to find a physician or specialist in the South Carolina area who can treat 
me for this medical/mental disease.  It seems as if this disease has "NO" 
complete treatment and it is more least a disability!

Reference Summarized Question or Frequently Asked Question (FAQ):
What are the treatments for Morgellon Disease, and how can I find 
physician(s) in South Carolina who specialize in it?

BART Trained on Summarization Loss Only (Baseline):
Where can I find physician(s) who specialize in morgellon disease?

Our Gradually Soft Multi-Task and Data-Augmented Model:
Where can I find a physician or specialist in South Carolina who can treat 
Morgellon Disease?

Figure 3.1: We highlight the main four aspects of the CHQ. Our method learns from the task
of Recognizing Question Entailment to generate more informative summaries compared to the
baseline.

et al., 2020], question entailment [Ben Abacha and Demner-Fushman, 2016, 2019a, Agrawal

et al., 2019], question summarization [Ben Abacha and Demner-Fushman, 2019b], and question

similarity [Ben Abacha and Demner-Fushman, 2017, Yan and Li, 2018, McCreery et al., 2019].

Medical question summarization is the task of summarizing consumer health questions

into short, single-sentence questions that capture essential information needed to give a correct

answer. The task of Recognizing Question Entailment (RQE) is defined by Ben Abacha and

Demner-Fushman [2016] in the medical domain as a binary classification task. For the purpose

of this task, a first question is considered to entail a second one if and only if every answer to the

second question is a correct, and either full or partial answer to the first question.

We find in initial experiments [Mrini et al., 2021b] that RQE can teach question sum-

marizers to distinguish salient information from peripheral details, and likewise that question

summarization can benefit RQE classifiers. In our setting, we cast the medical question un-

derstanding task as a Multi-Task Learning (MTL) problem involving the two tasks of question

summarization and Recognizing Question Entailment. We use a simple sum of learning objec-

tives in Mrini et al. [2021b]. In this paper, we introduce a novel, gradually soft multi-task and
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data-augmented approach to medical question understanding.1

Previous work on combining summarization and entailment uses at least 2 datasets – 1

from each task [Pasunuru et al., 2017, Guo et al., 2018]. We first establish an equivalence between

both tasks. This equivalence is the inspiration behind the data augmentation schemes introduced

in our previous work [Mrini et al., 2021b]. The goal of the data augmentation is to use a single

dataset for Multi-Task Learning. We propose to use a weighted loss function to simultaneously

optimize for both tasks. Then, we propose a gradually soft parameter-sharing MTL approach. We

conduct ablation studies to show that our two novelties – data augmentation and gradually soft

parameter-sharing – improve performance in both tasks.

Our proposed gradually soft multi-task and data-augmented approach outperforms existing

single-task and multi-task learning methods on architectures achieving state-of-the-art results

in abstractive summarization. Compared to single-task learning, our approach achieves a 12%

increase in accuracy on a medical RQE dataset, and an average increase of 3.5% in ROUGE-1

F1 scores across 3 medical question summarization datasets. Additionally, we perform human

evaluation and find our approach generates more informative summarized questions. Finally, we

find that our approach is more efficient at leveraging smaller amounts of data, and yields better

performance under 4 low-resource settings.

3.2 Background and Related Work

Recognizing Question Entailment (RQE). Ben Abacha and Demner-Fushman [2016]

introduce the task of RQE. It is closely related –– but not exactly similar –– to the task of

Recognizing Textual Entailment (RTE) [Dagan et al., 2005, 2013], and early definitions of

question entailment [Groenendijk and Stokhof, 1984, Roberts, 1996].

The task of RQE is to predict, given two pairs of questions A and B, whether A entails B.

1Our code is available at: https://github.com/KhalilMrini/Medical-Question-Understanding
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RQE considers that question A entails question B if every answer to B is a correct answer to A,

and answers A either partially or fully. It differs from traditional definitions of entailment, where

we consider that the premise entails the hypothesis if and only if the hypothesis is true only if the

premise is true.

Ben Abacha and Demner-Fushman [2016] define RQE within the context of Medical

Question Answering. The goal is to match a Consumer Health Question (CHQ) to a Frequently

Asked Question (FAQ), and ultimately match the CHQ to an expert-written answer.

Summarization and Entailment. There is a growing body of work combining summa-

rization and entailment [Lloret et al., 2008, Mehdad et al., 2013, Gupta et al., 2014].

Falke et al. [2019] use textual entailment predictions to detect factual errors in abstractive

summaries generated by state-of-the-art models. Pasunuru and Bansal [2018] propose an entail-

ment reward for their reinforced abstractive summarizer, where the entailment score is obtained

from a pre-trained and frozen natural language inference model.

Pasunuru et al. [2017] propose an LSTM encoder-decoder model that incorporates entail-

ment generation and abstractive summarization. The authors optimize alternatively between the

two tasks, and use separate Natural Language Inference (NLI) and abstractive summarization

datasets. Only the decoder parameters are shared.

Li et al. [2018] closely follow the MTL setting of Pasunuru et al. [2017], and propose a

model with a shared encoder, an NLI classifier and an NLI-rewarded summarization decoder.

Guo et al. [2018] introduce a pointer-generator summarization model with coverage

loss [See et al., 2017]. They build upon the work of Pasunuru et al. [2017], and add question

generation on top of the two tasks of abstractive summarization and entailment generation. They

also alternate between the three different objectives. The authors propose to share all parameters

except the first layer of the encoder and the last layer of the decoder, and show that soft parameter-

sharing improves over hard parameter-sharing. Their method outperforms the pointer-generator

networks of See et al. [2017] on the CNN-Dailymail news summarization baseline. Here, the
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authors show performance increase in entailment on some batch sizes and decrease on other batch

sizes, and they consider entailment as an auxiliary task.

Transfer Learning for Medical QA. BioNLP is one of many NLP applications to

benefit from language models that use multi-task learning and transfer learning. There are

pretrained language models that are geared towards BioNLP applications, that are based on BERT

[Devlin et al., 2019b]. Those include SciBERT [Beltagy et al., 2019] which has been fine-tuned

using biomedical text from PubMed. BioBERT [Lee et al., 2020] has been fine-tuned on the

PMC dataset, whereas models named ClinicalBERT [Huang et al., 2019, Alsentzer et al., 2019]

additionally use the MIMIC III dataset [Johnson et al., 2016].

Transfer learning was a popular approach at the 2019 MEDIQA shared task [Ben Abacha

et al., 2019] on medical NLI, RQE and QA. The question answering task involved re-ranking

answers, not generating them [Demner-Fushman et al., 2020]. For the RQE task, the best-

performing model [Zhu et al., 2019] uses transfer learning on NLI and ensemble methods.

3.3 Methodology

We consider the multi-task learning of medical question summarization and medical RQE.

The input to both tasks is a pair of medical questions. The first question is called a Consumer

Health Question (CHQ), and the second question is called a Frequently Asked Question (FAQ).

The CHQ is written by a patient and is usually longer and more informal, whereas the FAQ is

usually a single-sentence question written by a medical expert. The purpose of both tasks is to

match a CHQ to an FAQ, and ultimately to an expert-written answer that matches the FAQ. An

example pair is shown in Figure 3.1.

Our novel gradually soft multi-task and data-augmented learning approach to medical

question understanding has four main components. First, we establish the equivalence between

medical question pairs in question summarization and RQE. Then, we use our equivalence
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observation to propose a scheme for data augmentation. Third, we show our simultaneous multi-

task learning model architecture and learning objective. Finally, we describe our gradually soft

parameter-sharing scheme.

3.3.1 Equivalence of Question Summarization and RQE

In the following, we evidence the equivalence between medical question summarization

and medical RQE. We first consider a pair of medical questions C and F, where C is a CHQ and F

and is an FAQ, such that C is longer than F.

Ben Abacha and Demner-Fushman [2016] define question entailment as: question C

entails question F (C ⇒ F) if and only if every answer to F is also a correct answer to C, whether

partially or completely (1).

According to the guidelines set in the data creation of a medical question summarization

dataset by Ben Abacha and Demner-Fushman [2019b], doctors were told to grade manually

written summarized questions (FAQs) as perfect, acceptable or incorrect. The two conditions for

a perfect FAQ are: first, an FAQ should enable to retrieve “complete and correct answers” to

the original CHQ, and second, the summarized question should not be so short that it violates

the first condition. The resulting medical question summarization dataset includes perfect and

acceptable FAQs. We assume that a perfect FAQ provides complete and correct answers to the

corresponding CHQ, and that an acceptable FAQ provides correct answers to the corresponding

CHQ, whether partially or completely. We therefore conclude that: F is a good summary of C, if

and only if F enables to retrieve correct answers to C, whether partially or completely (2).

We have: F enables to retrieve correct answers to C, if and only if answers to F are correct

answers to C. Therefore, F enables to retrieve correct answers to C, if and only if every answer to

F is also a correct answer to C, whether partially or completely. Given the equivalences (1) and

(2) above, it follows that: question F is a good summary of question C, if and only if question C

entails question F (3).
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3.3.2 Data Augmentation

Medical question understanding datasets are scarce, and new high-quality datasets are

complex and costly to create. We propose in Mrini et al. [2021b] to augment existing datasets in

one of the two tasks to create a synthetic dataset of the same size for the other task. Our two-way

data augmentation algorithm is inspired by the equivalence shown in the previous subsection,

and enables us to train in a simultaneous multi-task setting. Our data augmentation method also

addresses a weakness in previous work in multi-task learning, where each task involves a distinct

dataset, often from a different domain. Our data augmentation will enable us to use datasets in

the same domain, and we hypothesize this can benefit performance in both tasks.

For summarization datasets, we create equivalent RQE pairs. For each existing summa-

rization pair, we first choose with equal probability whether the equivalent RQE pair is labeled as

entailment or not. If it is an entailment case, we use the equivalence in (3) and create an RQE pair

identical to the summarization pair. If it is not an entailment case, then we have: (3) ⇔ question F

is not a summary of question C if and only if question C does not entail question F (4). Therefore,

to create an equivalent RQE pair labeled as not entailement, the RQE CHQ is identical to the

CHQ of the summarization pair, and the RQE FAQ is randomly selected from a distinct question

pair from the same dataset split.

Inversely, for the RQE dataset, we create equivalent summarization pairs. For each

existing RQE pair, we consider two cases. If the RQE pair is labeled as entailment, we create an

identical summarization pair. If the RQE pair is labeled as not entailment, then following (4), we

create a summarization pair that is identical to a randomly selected and distinct RQE pair labeled

as entailment from the same dataset split.
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3.3.3 Simultaneous Multi-Task Learning

Previous work on multi-task learning with summarization and entailment [Pasunuru et al.,

2017, Guo et al., 2018] optimize for the objectives of the different tasks by alternating between

them. This alternating multi-task training follows a ratio between the different tasks, that depends

on the size of the dataset of each task (e.g. a ratio of 10:1 means training for 10 batches on

one task, and then for 1 batch on the other task). In our approach, we propose to optimize

simultaneously for the objectives of both tasks. We do not use ratios, as we are not alternating

between objectives and the resulting datasets from our data augmentation algorithm are of equal

size.

Whereas many previous multi-task settings chose generation tasks (entailment generation

and question generation), we choose the BART Large architecture [Lewis et al., 2019] as it enables

to optimize for a classification task (RQE) and a generation task (summarization) using the same

architecture. In addition, BART is adequate as it achieves very strong results in benchmark

datasets of recognizing textual entailment and abstractive summarization. The input works

differently between both tasks. For summarization, the encoder takes the CHQ as input and the

decoder takes the FAQ as input. For RQE, both the encoder and decoder take the entire RQE

pair as input. We add a classification head for RQE, to which we feed the last decoder output, as

it attends over all decoder and encoder positions. We show an overview of our architecture in

Figure 3.2.

We propose to optimize a single loss function that combines objectives of both tasks. Our

loss function is the weighted sum of the negative log-likelihood summarization objective, and the

binary cross-entropy classification objective of RQE.

More formally, given a CHQ embedding x, the corresponding FAQ embedding y, and the

entailment label lentail ∈ {0,1}, we optimize the following multi-task learning loss function:
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Figure 3.2: Overview of the architecture of our proposed gradually soft multi-task and data-
augmented model. The gradually thinning links between decoder layers represent the loosening
parameter-sharing constraint.
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LMTL(θ) =−λ∗ logp(y|x;θ)

+(1−λ)∗BCE([x;y] , lentail;θ)

(3.1)

where BCE is binary cross entropy, and λ is a hyperparameter between 0 and 1.

3.3.4 Gradually Soft Parameter-Sharing

In multi-task learning, there are two widely used approaches: hard parameter-sharing

and soft parameter-sharing. Guo et al. [2018] propose soft parameter-sharing for all parameters

except the first layer of the encoder and last layer of the decoder. Liu et al. [2019a] introduce

MT-DNN and show that hard parameter-sharing of all of the transformer encoder layers, and only

having task-specific classification heads produces results that set a new state of the art for the

GLUE benchmark [Wang et al., 2018].

We propose a hybrid approach, where we apply hard parameter-sharing for the encoder,

and a novel gradually soft parameter-sharing approach for the decoder layers. We define gradually

soft parameter-sharing as a smooth transition from hard parameter-sharing to task-specific layers.

It is a soft parameter-sharing approach that is gradually toned down from the first layer of the

decoder to the last layer, which is entirely task-specific.

In gradually soft parameter-sharing, we constrain decoder parameters to be close by

penalizing their l2 distances, and the higher the layer the looser the constraint. Given a decoder

with N layers, the gradually soft parameter-sharing loss term is as follows:

LGS(θ) = γ∗
N−1

∑
n=1

(
e

N−n
N −1

)∥∥∥θ
QS
dec,n −θ

RQE
dec,n

∥∥∥2
(3.2)

where γ is a hyperparameter, θ
QS
dec,n represents the decoder parameters for the question summa-

rization at the n-th layer, and likewise θ
RQE
dec,n represents the decoder parameters for the RQE task

37



Table 3.1: Statistics of the medical dataset splits.

DATASET TRAIN DEV TEST

MeQSum 400 100 500
HealthCareMagic 181,122 22,641 22,642
iCliniq 24,851 3,105 3,106
MEDIQA RQE 8,588 302 230

at the n-th layer. We iterate from the 1st to the (N − 1)-th layer, as the N-th layer is entirely

task-specific and unconstrained. We show a high-level representation in Figure 3.2.

3.4 Experiments

3.4.1 Datasets

We consider 3 medical question summarization datasets and 1 medical RQE dataset. We

show dataset statistics in Table 3.1. MeQSum and MEDIQA RQE can be considered low-resource,

whereas the other two are far larger. Our datasets are in the English language. Due to space

constraints, we briefly introduce the datasets and leave additional details in the appendix.

The medical question summarization datasets are MeQSum [Ben Abacha and Demner-

Fushman, 2019b], HealthCareMagic and iCliniq. We extract in Mrini et al. [2021b] and in Mrini

et al. [2021d] the HealthCareMagic and iCliniq datasets from the large-scale MedDialog dataset

[Chen et al., 2020]. Whereas MeQSum is a high-quality dataset from the U.S. National Institutes

of Health (NIH), HealthCareMagic and iCliniq are from online healthcare service platforms.

HealthCareMagic’s summaries are more abstractive and are written in a formal style, unlike

iCliniq’s patient-written summaries.

The medical RQE dataset is the MEDIQA RQE dataset from the 2019 MEDIQA shared

task [Ben Abacha et al., 2019]. Similarly to MeQSum, the question pairs match a longer CHQ

received by the U.S. National Library of Medicine (NLM) and a FAQ from NIH institutes.

Whereas the train and dev sets have automatically generated CHQs, the test set has manually
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Table 3.2: Dev set results for the ablation studies on our two main novelties: our data augmenta-
tion algorithm, and our gradually soft parameter-sharing method. The R1, R2 and RL metrics
refer to the F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L [Lin, 2004].

DATASET MeQSum HealthCareMagic iCliniq RQE
METRIC R1 R2 RL R1 R2 RL R1 R2 RL Accuracy
ABLATION OF DATA AUGMENTATION

Gradually Soft MTL + Existing Dataset 51.3 32.3 47.5 45.1 22.9 40.3 59.4 46.0 54.5 81.1%
ABLATION OF GRADUALLY SOFT PARAMETER-SHARING

Hard-shared Decoder + Data Aug. 52.0 34.0 47.9 44.3 23.3 41.5 60.1 47.0 56.3 77.5%
Soft-shared Decoder + Data Aug. 53.2 35.6 48.9 44.8 22.8 40.9 60.7 48.3 57.8 79.4%
Task-specific Decoder + Data Aug. 50.8 31.7 45.4 46.0 25.1 43.4 61.8 47.5 56.9 81.8%
OUR MODEL

Gradually Soft MTL + Data Aug. 54.5 37.9 50.2 46.9 24.8 43.2 62.3 48.7 58.5 82.1%

written CHQs. This results in significantly higher dev set results than for test sets, as has been

observed during the 2019 MEDIQA shared task.

In addition, we use two pretraining datasets. We use the XSum dataset [Narayan et al.,

2018], an abstractive summarization benchmark, for question summarization. For the RQE task,

we use the Recognizing Textual Entailment (RTE) dataset [Dagan et al., 2005, Haim et al., 2006,

Giampiccolo et al., 2007, Bentivogli et al., 2009] from the GLUE benchmark [Wang et al., 2018].

3.4.2 Setup and Training Settings

All of our models use the BART large architecture. Unless otherwise noted, all experi-

ments on the 3 question summarization datasets are made using a checkpoint pre-trained on the

XSum dataset using only the summarization objective, and all experiments on the RQE dataset

are made using a checkpoint pre-trained on the RTE dataset, only optimizing the cross-entropy

loss.

We report ROUGE F1 scores for the question summarization datasets, and accuracy for

the RQE dataset, as it is a binary classification task with two labels: entailment and not entailment.

The learning rate for RQE experiments is 1×10−5 and for the question summarization

experiments, it is 3×10−5. We use an Adam optimizer where the betas are 0.9 and 0.999 for

summarization, and 0.9 and 0.98 for RQE. In all experiments, the Adam epsilon is 10−8, and the
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Figure 3.3: Dev set performance of multi-task learning as a function of the loss hyperparameter
λ. The closer λ is to 0, the more the loss focuses on the RQE objective, and vice-versa for the
question summarization objective.

dropout is 0.1. We set the γ hyperparameter to 1×10−7.

3.4.3 Balancing between the Objectives

Our loss function as defined in equation 3.1 has a hyperparameter λ to balance between

the question summarization objective and the RQE objective. We run experiments where λ

varies from 0.1 to 0.9 in 0.1 increments. The results are in Figure 3.3. The best λ values are

0.5 for MeQSum, 0.7 for iCliniq, 0.8 for HealthCareMagic and 0.3 for MEDIQA RQE. For the

question summarization datasets, we notice that the smaller the dataset, the more it benefits from

data-augmented MTL with RQE.
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3.4.4 Ablation Studies

We perform two ablation studies to show the added value of our main novelties: our

equivalence-inspired data augmentation algorithm and our gradually soft parameter-sharing

algorithm.

Data Augmentation. We compare our data augmentation algorithm against the following

alternative: instead of training using a synthetic dataset for the auxiliary task, we choose a

separate, existing dataset for abstractive summarization or recognizing textual entailment. This

follows the approach taken by most MTL models. For the question summarization task, we

optimize the cross-entropy objective using the RTE dataset. For the RQE task, we optimize the

summarization objective using the XSum dataset. For the sake of fair comparison, we use the

simultaneous MTL objective and the same architecture. Results in Table 3.2 show a consistent

increase in performance across all datasets when using our data augmentation method, suggesting

that in-domain MTL is more efficient.

Comparing Parameter-Sharing Configurations. We compare our gradually soft

parameter-sharing method with 3 other parameter-sharing configurations. For all configura-

tions, we keep using our data augmentation method, and sharing encoder parameters entirely.

1. Hard-shared decoder: decoder parameters are shared using hard parameter-sharing.

2. Soft-shared decoder: we apply soft parameter-sharing on decoder parameters across all N

layers using the following, unweighted loss term:

LS(θ) = γ∗
N

∑
n=1

∥∥θ
sum
dec,n −θ

ent
dec,n

∥∥2 (3.3)

3. Task-specific decoder: we train two task-specific decoders.

Our ablation study results in Table 3.2 show that our gradually soft parameter-sharing

method exceeds all 3 of the other parameter-sharing configurations in RQE accuracy, and in

the sum of ROUGE F1 scores. These results show our proposed smoother parameter-sharing
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Table 3.3: Test set results on the 3 question summarization datasets.

DATASET MeQSum HealthCareMagic iCliniq
METRIC R1 R2 RL R1 R2 RL R1 R2 RL
BASELINES

Seq2seq Attentional Model [Nallapati et al.,
2016]

24.8 13.8 24.3 - - - - - -

Pointer-Generator Networks (PG) [See et al.,
2017]

35.8 20.2 34.8 - - - - - -

PG + Data Augmentation [Ben Abacha and
Demner-Fushman, 2019b]

44.2 27.6 42.8 - - - - - -

PG + Coverage Loss [See et al., 2017] 39.6 23.1 38.5 - - - - - -
PG + Coverage Loss + Data Augmentation
[Ben Abacha and Demner-Fushman, 2019b]

41.8 24.8 40.5 - - - - - -

MODELS USING BART
BART [Lewis et al., 2019] 45.7 26.8 40.8 44.5 22.3 39.7 48.7 28.0 43.5
BART + Entailment Generation + MTL of Pa-
sunuru et al. [2017]

46.5 27.7 42.3 42.2 20.6 38.1 49.6 29.3 43.8

BART + Entailment Generation & Question
Generation + MTL of Guo et al. [2018]

47.2 28.1 42.0 44.7 23.5 41.9 51.4 32.3 46.5

BART + Recognizing Question Entailment +
Gradually Soft MTL + Data Augmentation
(Ours)

49.2 29.5 44.8 45.9 24.3 42.9 54.2 36.9 49.1

Table 3.4: Human Evaluation results on 120 samples from the question summarization datasets.
The percentages indicate the added value of our method.

DATASETS Fluency Coherence Informative Correct
MeQSum +11.25% +2.50% +7.50% 0%
HealthCareMagic +6.25% -2.50% +12.50% +1.25%
iCliniq +2.50% 0% +3.75% +5.00%

transition between encoder and decoder layers brings about higher performance.

3.4.5 Results and Discussion

Summarization Results

Baselines. We consider three main baselines. The first one is BART [Lewis et al., 2019],

where we only train on the summarization task. The second baseline trains BART on the same

MTL settings as Pasunuru et al. [2017], using alternative training with entailment generation on

the Stanford Natural Language Inference (SNLI) corpus [Bowman et al., 2015] and having a
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shared decoder and task-specific encoders. The third baseline trains BART on the same MTL

settings as Guo et al. [2018], where, on top of the entailment generation task, we add the question

generation task using the Stanford Question Answering Dataset (SQuAD) [Rajpurkar et al., 2016],

and all parameters are soft-shared, except for the task-specific first encoder layer and last decoder

layer.

In addition, we also report the baselines assessed by Ben Abacha and Demner-Fushman

[2019b] for MeQSum. For data augmentation, they use semantically-selected relevant question

pairs from the Quora Question Pairs dataset [Iyer et al., 2017]. Their results show that coverage

loss [See et al., 2017] diminishes the added value of data augmentation in pointer-generator

networks. Our summarization-only BART baseline exceeds all of the reported MeQSum baselines

in ROUGE-1 F1.

Summarization Results. We report our summarization results in Table 3.3. Compared

to the single-task BART baseline, our gradually soft multi-task and data-augmented method

performs better across all three ROUGE metrics, and achieves increases ranging from 1.4 to 5.5

points in ROUGE-1 F1. This differences shows that our method is consistently more efficient

compared to training only on summarization.

The other two MTL baselines are generally performing better than the single-task BART

baseline, except for the larger HealthCareMagic dataset. We observe that the different parameter-

sharing configurations and tasks used in the MTL baselines are scoring about 1 to 4 points below

our method in terms of ROUGE-1 F1 scores. This shows that our choice of tasks, simultaneous

MTL loss, data augmentation and gradually soft parameter-sharing method work consistently

better than existing MTL methods.

Human Evaluation. Given that ROUGE is notoriously unreliable, we hire 2 annotators

to judge 120 randomly selected summaries from the summarization test sets, generated from the

single-task BART baseline and our own method in Table 3.3. We ask the annotators to judge

the Fluency, Coherence, Informativeness and Correctness of each generated summary, using
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Best-Worst scaling, with the possibility of ranking both summaries equally. The annotators are

presented with 2 generated summaries, in a randomized order at each evaluation, such that they

cannot identify which method generated which summary.

Our human evaluation results are in Table 3.4. Scores generally favor our method, more

strongly so in the abstractive datasets – HealthCareMagic and MeQSum. However, we note an

increase in correctness for the more extractive iCliniq dataset. On average, our gradually soft

multi-task and data-augmented method outputs summarized questions that are more fluent and

more informative than the single-task BART baseline.

RQE Results and Discussion

Baselines. We compare our method to three baselines. The first one trains a single-task

BART on RQE, with a classification head pre-trained on RTE. The second baseline is a feature-

based SVM from Ben Abacha and Demner-Fushman [2016] who introduced the MEDIQA RQE

dataset. The third baseline [Zhou et al., 2019] is an adversarial MTL method combining medical

question answering and RQE. The architecture consists of a shared transformer encoder using

BioBERT embeddings [Lee et al., 2020], separate classification heads for RQE and medical

QA, and a task discriminator for adversarial training. A separate dataset is used for medical QA

[Ben Abacha et al., 2019].

RQE Results. We show our RQE results in Table 3.5. We see a 12% increase on the test

set compared to optimizing only on the RQE objective, and 10% increase. Without a separate

dataset or embeddings trained on large-scale biomedical data, our method is able to exceed the

performance of Zhou et al. [2019] by 0.7%. This confirms the strength of our method, and shows

our method can increase performance in both RQE and Question Summarization in the medical

domain.
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Table 3.5: Accuracy results on MEDIQA RQE test set.

METHOD Accuracy
BART [Lewis et al., 2019] 52.1%
Feature-based SVM [Ben Abacha and Demner-Fushman, 2016] 54.1%
BioBERT + Adversarial MTL with Medical QA [Zhou et al., 2019] 63.6%
BART + Summarization + Gradually Soft MTL + Data Aug. (Ours) 64.3%

Figure 3.4: Test set 4-run average performance of our method compared to single-task BART in
low-resource settings. Full dataset results are shown for comparison.
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3.4.6 Performance in low-resource settings

We compare our gradually soft MTL and data-augmented method with the single-task

BART baseline on four low-resource settings. For each dataset, we limit the training data to a

subset of 50, 100, 500 or 1000 datapoints, and keep the same training settings. To avoid selection

bias, we select four random and distinct subsets per low-resource setting, and show average

ROUGE-1 F1 scores in Figure 3.4.

The results show that our approach is able to perform much better in low-resource settings.

We notice in particular that, on all 4 datasets, the scores of the single-task BART baseline for 100

and 1000 datapoints are lower than or roughly equal to the scores of our method for a training

subset of half the size (50 and 500 datapoints respectively). This suggests that our method’s

performance increase is not only related to additional datapoints, but also its gradually soft MTL

setting.

3.5 Conclusions

We propose a novel multi-task learning approach for medical question understanding. Our

approach trains on the tasks of RQE and question summarization in a simultaneous, weighted

MTL loss function, where we add a loss term to constrain the decoder layers to be close, and we

loosen the constraint gradually as we move higher up the layers. We show using the definitions

of both tasks in the medical domain that we can augment datasets, such that we only need

one dataset for MTL. Our two ablation studies show that our gradually soft parameter-sharing

and our data augmentation algorithm each increase performance individually. We compare our

method to single-task learning and existing MTL work, and show improvements across 3 medical

question summarization datasets and 1 medical RQE dataset. Finally, we test our approach under

low-resource settings: we find that it is able to efficiently leverage small quantities of data, and

that these performance increases do not only depend on additional data from augmentation.
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Chapter 4

Question Understanding and Answering

In the two previous chapters, we study the problem of selecting relevant answers, and the

problem of understanding the intent of users when they write long questions. In this chapter, we

bring those two problems together: we propose a system that understands a long user question, in

order to select relevant answers from a knowledge base. We discover that question understanding

and answering is not just a matter of combining tasks, as it is a problem with its own challenges

and limitations.

4.1 Introduction

Motivation. Users of medical question answering systems often write long questions,

called Consumer Health Questions (CHQs). Several aspects of CHQs hinder the capacity

of current question answering (QA) systems to process them: long medical questions may

contain peripheral information like patient history [Roberts and Demner-Fushman, 2016] that

are not necessary to retrieve relevant answers. Consumer health questions may also use a

distinct vocabulary from the one used by medical providers to describe the same health concepts

[Ben Abacha and Demner-Fushman, 2019b].

A growing number of approaches attempt to enhance the processing of consumer health
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Figure 4.1: Overview of our proposed Consumer Health Question Understanding and Answering
model. The input is a user question, called Consumer Heath Question (CHQ). The goal is to
match the CHQ to relevant answer sentences associated with a Frequently Asked Question (FAQ)
from a medical knowledge base.
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questions – or medical question understanding. These approaches include query relaxation

[Ben Abacha and Zweigenbaum, 2015, Lei et al., 2020], question entailment [Ben Abacha and

Demner-Fushman, 2016, 2019a, Agrawal et al., 2019], question summarization [Ben Abacha and

Demner-Fushman, 2019b], and question similarity [Ben Abacha and Demner-Fushman, 2017,

Yan and Li, 2018].

However, the above medical question understanding approaches stop short of retrieving

answers after processing consumer health questions. The Medical Question Answering Task at

TREC 2017 LiveQA [Ben Abacha et al., 2017] attempts to fill the gap by proposing the task

of Consumer Health Question Answering. The goal is to retrieve relevant answers obtained

using online search for the corresponding CHQ. As part of their participation in this task, Yang

et al. [2017] find that online search engine queries introduce noise in performance, and that even

collected and curated medical knowledge available offline can fare better.

Contributions. To enable the use of a curated medical knowledge base for answering

long user questions, we introduce a novel, knowledge-grounded and semantically self-supervised

system for Consumer Health Question Understanding and Answering (CHQUA). We tackle a

challenging aspect of CHQUA: providing answers when no relevance labels are available. Our

contributions are as follows:

(1) We propose an end-to-end pipeline, as shown in Figure 4.1, that takes as input a

consumer health question, and trains a summarizer model to generate a short, formally worded

question. We optimize a summarization training objective using the medical question summariza-

tion datasets.

(2) The medical knowledge base we use is separate from the question summarization

datasets, and therefore we have no labels to indicate which knowledge base question matches a

given consumer health question. We design a novel, semantically-guided self-supervised loss

function to ground the generated summary with knowledge base FAQs, using semantic similarity

as proxy to question matching. The Matching FAQ similarity loss helps the encoder pick the most
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semantically similar knowledge base question.

(3) The large medical knowledge base we use has no answer sentence relevance labels.

We adapt to this scenario by designing two complementary self-supervised losses on the same

encoder, and by considering semantic similarity as a proxy to relevance. The Answer Similarity

loss pushes the model to distinguish between relevant and irrelevant answer sentences, whereas

the Answer Selection loss works in a complementary way to push the model to select a given

number of sentences.

Finally, we conduct an evaluation to compare the relevance of our system with two strong

baselines of retrieval-based question answering. We ask evaluators to ask their own questions, and

then perform a blind evaluation of the retrieved answers by each system. Seven evaluators find

that our system retrieves more relevant answers compared to the two baselines, while achieving

significantly faster processing speeds. We also find that the self-supervised losses help achieve

better scores in ROUGE and human evaluation metrics. However, we find that the task remains

challenging, with room for improvement. We release our code, model, and matched datasets to

encourage further research in consumer health question understanding and answering.

4.2 Related Work

Consumer Health Question Answering. Ben Abacha et al. [2017] introduce the Medical

QA shared task at TREC 2017 LiveQA, where the goal is to develop a consumer health question

answering system. The training data is comprised of question-answer pairs. The questions are

informally worded CHQs received by the U.S. National Library of Medicine (NLM). The answers

are formally worded and come from websites of the U.S. National Institutes of Health or manually

collected by librarians. The evaluation scores are given by humans, using a test set of CHQs and

reference answers.

The team of Wang and Nyberg [2017] scores the highest evaluation score by far. Their
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approach starts first by searching for the full CHQ on Bing Web Search and Yahoo! Answers to

find relevant answers. Then, they retrieve relevant answer sentences using an ensemble model

comprised of non-parametric IR techniques, a question paraphrase identification model, and a

question-answer relevance prediction model.

Many participating teams adopt a question matching approach, and train their models

on question similarity datasets like the Quora question pair dataset [Iyer et al., 2017], or other

datasets collected from community question answering websites.

In the MEDIQA 2019 Shared task, Ben Abacha and Demner-Fushman [2019b] introduce

a differently defined consumer health question answering task. Here, the goal is to rank a given

list of answers according to their relevance with regard to a CHQ. He et al. [2020] introduce a

new disease knowledge infusion training procedure for BERT [Devlin et al., 2019b] that scores

well in this task.

Medical Question Answering. Medical QA approaches include translating questions to

SPARQL queries [Ben Abacha and Zweigenbaum, 2012], semantic similarity between questions

and candidate answers [Hao et al., 2019], knowledge representations [Terol et al., 2007, Goodwin

and Harabagiu, 2017], ranking candidate answers [Ben Abacha et al., 2017, 2019], and multi-

answer summarization [Ben Abacha et al., 2021].

There is a variety of definitions for the task of medical QA and related sub-tasks in the

literature. Hao et al. [2019] define medical QA as the task of finding the correct answer from a

set of candidates and a body of evidence documents. They propose to work on two datasets: the

National Medical Licensing Examination of China (NMLEC) [Shen et al., 2020], and Clinical

Diagnosis based on Electronic Medical Records (CD-EMR), where the goal is to predict the

correct diagnosis based on patient history.

Sharma et al. [2018] propose to tackle three kinds of medical questions found in the

BioASQ challenge [Balikas et al., 2015]: factoid questions where answers are single entities,

list-type questions where answers are a set of entities, and yes/no questions.
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Retrieval-based Question Answering. Recent methods for retrieval-based QA systems

use contextual text embeddings to evaluate a candidate answer’s relevance to a given question.

Tay et al. [2018b] propose to use Multi-Cast Attention Networks (MCAN), a new attention

mechanism, to model question-answer pairs. The resulting model predicts a relevance score. At

the time of publication, MCANs scored a new state of the art on the TrecQA benchmark dataset

[Wang et al., 2007].

Mrini et al. [2021e] introduce a recursive, tree-structured model that models sentences

according to their syntactic tree. Their results show that tree structure sets a new state of the art in

conventional, formally worded QA benchmarks like TrecQA and WikiQA [Yang et al., 2015b],

but does not fare well in informally worded, user-written datasets.

Karpukhin et al. [2020] introduce Dense Passage Retrieval (DPR): a dual-encoder based on

BERT [Devlin et al., 2019b], that predicts relevance scores of passages with regard to a question.

DPR encoders are trained on the relevance of passages from datasets containing such labels,

using a supervised negative log-likelihood loss based on the semantic similarity of questions and

relevant passages.

Mao et al. [2021] modify the query part of retrieval-based QA: they propose to use

language models to generate context for queries. They then feed the extended queries to retrieval

systems, such as DPR or BM-25.

4.3 Problem Definition

We define knowledge-grounded Consumer Health Question Understanding and Answering

(CHQUA) as the problem of retrieving a fixed number of answer sentences from a medical

knowledge base that are the most relevant given a long and informal user question – called a

Consumer Health Question (CHQ). There are three steps in CHQUA: question summarization,

matching the summarized user question with a relevant FAQ from the knowledge base, and
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Consumer Health Question:
Asking about Hairy cell leukemia. 
I get report for my father from 
hospital it is saying that he have 
Hairy cell leukemia i am here to ask 
if this dissease dangerous and there 
is treatment for it  Also if The one 
who have it will live for long or 
not?  My father age is 55  We 
discover the dissease by blood test.

Encoder Decoder Generated Summary:
What are the treatments for hairy cell 
leukemia and how long does it live?

Reference FAQ (Summarization):
Where can I find information on hairy 
cell leukemia, including treatment 
and prognosis?

Knowledge 
base of FAQs 
and Answers

What are the symptoms of Hairy 
Cell Leukemia ?

How to diagnose Hairy Cell 
Leukemia ?

What are the stages of Hairy Cell 
Leukemia ?

What are the treatments for Hairy 
Cell Leukemia?

Top k most relevant FAQs  
with TF-IDF retrieval

Semantic 
Similarity
Ranking

Matching FAQ:
What are the treatments for 
Hairy Cell Leukemia?

Matching FAQ 
Similarity Loss

Summarization 
Loss

Summarization Model

Output Logits

Figure 4.2: The Consumer Health Question (user question) is first summarized, and we then
retrieve a relevant question from the knowledge base using the generated summary. The top half
of the figure illustrates the first step: question understanding through summarization (§4.4.1).
The bottom half of the figure illustrates the second step: question matching through self-
supervised knowledge grounding (§4.4.2).

retrieval of the relevant answer sentences from the corresponding answer document.

Knowledge-grounded CHQUA is comprised of three elements used for training. First, the

CHQ is the input of the task. Second, the Reference FAQ (Frequently Asked Question) is the

golden or expert-written summary corresponding to the CHQ. Whereas the CHQ is a long and

informally worded question, the reference FAQ is the corresponding short, one-sentence, formally

worded question. At inference time, the reference FAQ is not available, and we will therefore use

a summary generated by the model. Third, the medical knowledge base is comprised of FAQs,

where each FAQ has a corresponding answer document with at least one sentence. FAQs in the

knowledge base are also short, one-sentence, formally worded questions.

The goal of knowledge-grounded CHQUA is to find a set R of n relevant answer sentences,

from a document comprised of answer sentences Ai, such that Ai corresponds to question qi from

the knowledge base. We call qi the retrieved or matching FAQ, such that qi is the most similar

question to the user’s summarized question qu:
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qi = argmax
q∈Q

f (q,qu) (4.1)

where Q is the set of questions (FAQs) in the knowledge base, and f is a given similarity scoring

function. qu is the reference FAQ (during training) or a generated summary (during inference).

We find the set R of n relevant answer sentences such that it maximizes the relevance

score with the user’s summarized question qu:

R = argmax
R ′⊂Ai

∑
a∈R ′

g(a,qu) (4.2)

where a is an answer sentence, and g is a given relevance scoring function.

4.4 Our Pipeline

Our proposed pipeline for Consumer Health Question Understanding and Answering has

three main components.

In the first step, our approach learns to understand the intent of user questions (CHQs) by

summarizing them. We use an encoder-decoder-based summarization model for this step.

The second step is question matching, or the retrieval of the relevant FAQ from the

knowledge base: we ground the generated summary to a medical knowledge base of FAQs and

corresponding answer documents. As there are no question matching labels, we consider semantic

similarity as a proxy to question matching, and we optimize a self-supervised similarity loss.

The third step is the retrieval of the relevant answer sentences: our model learns to select

the top-k most relevant answer sentences from the matching answer document. To achieve this

task in the absence of answer relevance labels, we consider semantic similarity as a proxy for

relevance, and we optimize two novel, semantically-guided, and self-supervised loss functions.

The first pushes the model to discriminate between relevant and irrelevant sentences, and the
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Encoder
Semantic 
Similarity

Answer 
Similarity Loss

Answer 
Selection Loss

Generated Summary:
What are the treatments for hairy cell 
leukemia and how long does it live?

Retrieved Answer Document:
Extracted as Sentences

Selected Answer Sentences:
There are different types of treatment for 
patients with hairy cell leukemia.
Cladribine and pentostatin are anticancer drugs 
commonly used to treat hairy cell leukemia.

Figure 4.3: Illustration of the third step of our pipeline: answer retrieval through self-supervised
similarity and selection losses (§4.4.3). Following the same example as Figure 4.2, our model
encodes sentences from the retrieved answer document from the knowledge base, and compares
them to the FAQ generated by the summarization model. We use the encoder of the summariza-
tion model to embed sentences.

other pushes the model to consider only a fixed number of sentences as relevant.

We show an overview of the model and learning objectives in Figure 4.1. The entire

pipeline is trained together, as the summarizer encoder is re-used to encode the questions and

answer sentences.

4.4.1 Question Understanding through Summarization

Our work aims to flip the burden of question understanding on the question answering

model. Instead of asking the user to shorten or reformulate their question, we train an encoder-

decoder abstractive summarizer to shorten user questions. Figure 4.2 illustrates this part of the

model.

At training time, we input a Consumer Health Question (CHQ) to the summarization

model. The reference Frequently Asked Question (FAQ) is the corresponding shorter and formal

question. Given a CHQ embedding x and the corresponding reference FAQ embedding yref, the

summarization loss is defined as the following negative log-likelihood objective:
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Lsum =−logp(yref|x;θ) (4.3)

4.4.2 Question Matching through Self-Supervised Knowledge Grounding

In the next step, we match the summarized user question with the most relevant FAQ from

the medical knowledge base. We use semantic similarity as a proxy for question matching, in the

absence of such labels.

The knowledge-grounding process is comprised of two steps. First, we use TF-IDF-

weighted bag-of-word and n-gram vectors to get the top k most relevant FAQs from the knowledge

base. This first step acts as a fast filter to extract a small subset of candidate FAQs. Our retrieval

approach follows the retrieval methods commonly used in question answering systems [Chen

et al., 2017a, Dinan et al., 2018]. Dinan et al. [2018] note that the retriever is a potentially

learnable part of the model. In our case, using TF-IDF retrieval is computationally optimal and

scalable given a large knowledge base with thousands of FAQs. We use a TF-IDF embedder fitted

on all the FAQs of the knowledge base, as well as reference FAQs from the training set of the

question summarization dataset.

The second step of knowledge-grounding is to rank the top k FAQs using semantic

similarity. To get semantic embeddings of the generated summary and the corresponding top k

most relevant FAQs from the knowledge base, we use the encoder of the summarization model.

We take inspiration from the precision formula of BERTSCORE [Zhang et al., 2019], and compute

the weighted semantic similarity score as follows:

Sim(qu,qi) = ∑
w∈Wu

max
w′∈Wi

idf(w) ·CosSim(xw,xw′)

∑w′′∈Wu
idf(w′′)

(4.4)

where qu is the reference FAQ (during training) or the generated summary (during inference), qi

is the i-th question from the top k most relevant FAQs, Wu and Wi are the corresponding sets of

words, CosSim is the cosine similarity function, and idf(w) is the inverse document frequency of

57



the word w.

The matching FAQ is the knowledge base FAQ with the highest similarity score with qu,

as shown in the example in Figure 4.2. During training, the summarization model may produce

low-quality or degenerate FAQs. For this reason, at training time, we choose to use the reference

FAQ instead to compute the semantic similarity scores and find the matching FAQ. At test time,

we only use the generated summary.

Since we are using different datasets for the question summarization and for the knowledge

base, we have to reconcile the questions from the knowledge base and the reference questions.

We propose to force the model to learn a representation space that does not distinguish between

the reference FAQ and the most similar knowledge base FAQ. To accomplish this, we compute

the matching FAQ similarity loss. Given the embedding of a summarization reference FAQ qsum

and the embedding of a matching FAQ qmat, the matching FAQ similarity loss is defined as:

Lmat = 1−ReLU(Sim(qsum,qmat;θ)) (4.5)

4.4.3 Answer Retrieval through Self-Supervised Similarity and Selection

Losses

After summarizing the user question and retrieving a relevant FAQ from the knowledge

base, the next step is to retrieve relevant sentences from the corresponding answer document.

In our setting, we need to retrieve a fixed number of sentences relevant to the user question.

However, we have no labels for the answer sentences indicating relevance to the user question.

We propose two complementary self-supervised learning objectives, that use semantic similarity

as a proxy to relevance scoring, and satisfy the constraint of selecting a fixed number of answer

sentences.

We show an overview of our answer retrieval approach in Figure 4.3. In the example of

the figure, we show for simplicity a relatively short answer document with four sentences, from
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which the model chooses the two most relevant ones. In practice, there are close to ten sentences

in answer documents.

We compute semantic similarity scores between the generated summary (for inference) or

the reference FAQ (for training), and each of the sentences of the retrieved answer document. We

obtain the semantic embeddings of each sentence using the encoder of the summarization model.

We then compute semantic similarity scores as shown in equation 4.4. Cosine similarity scores

have values in the [−1;1] range. For a pair of sentences, a cosine similarity value closer to −1

means that the corresponding sentence embeddings are negatively correlated, or that the sentences

have opposite meanings. A value closer to 0 means that the embeddings are not correlated, and

that there is no particular semantic relation between the sentences. A value closer to 1 means that

the sentence embeddings are positively correlated, and the sentences are close semantically. We

consider that a sentence is relevant when the values are closer to 1, and irrelevant otherwise. For

this reason, we apply a ReLU activation on the cosine similarity scores before feeding them to

the loss functions.

We propose two learning objectives to achieve the self-supervised selection of relevant

answer sentences. The semantic similarity loss pushes the model to increase its confidence in the

relevance of answer sentences, whereas the answer selection loss pushes the model to select only

a fixed number of sentences. The intuition for sharing the encoder with the summarization model,

is that these two losses will enable the summarizer to absorb notions of relevance and semantic

similarity.

Given the summarization reference FAQ qsum and the i-th sentence of the retrieved answer

document ai, we compute the ReLU-activated semantic similarity score as follows:

S(qsum,ai;θ) = ReLU(Sim(qsum,ai;θ)) (4.6)

We then define the semantic similarity loss Lsim and the answer selection loss Lsel as

follows:
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Lsim =
|A |

∑
i=1

S(qsum,ai;θ)∗ (1−S(qsum,ai;θ)) (4.7)

Lsel =

∣∣∣∣∣min(n, |A |)−
|A |

∑
i=1

S(qsum,ai;θ)

∣∣∣∣∣ (4.8)

where A is the set of sentences in the retrieved answer document, and n is the fixed number of

sentences to be retrieved.

The semantic similarity loss Lsim pushes the semantic similarity values to be either 1

(relevant) or 0 (irrelevant). In combination with Lsim, the answer selection loss pushes the model

to only select up to n sentences to have semantic similarity values close to 1. Our system then

outputs the sentences with the highest semantic similarity values in the order in which they appear

in the answer document. Therefore, the particular semantic similarity ranking of the relevant

sentences does not matter – it only matters that relevant sentences have the n highest values.

Finally, the learning objective L is as follows:

L = Lsum +λ∗Lmat + γ∗ (Lsim +Lsel) (4.9)

where λ and γ are hyperparameters. We use only one weight for Lsim and Lsel as these two losses

are complementary.

4.5 Experiments and Results

In this section, we evaluate our proposed pipeline for Consumer Health Question Under-

standing and Answering, and we propose to compare our proposed pipeline against two strong

baselines. Seven medical experts judge the performance of our system and baselines by asking

their own questions, and rating the relevance of the answers retrieved. Then, we analyze the

results through the lens of summarization metrics, human evaluation, and computational speed.
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Table 4.1: Statistics of the medical dataset splits.

DATASET SPLIT TRAIN DEV TEST

MeQSum 405 50 50
HealthCareMagic 1,314 164 165

4.5.1 Datasets

We use one medical knowledge base, MedQuAD [Ben Abacha and Demner-Fushman,

2019a], and two medical question summarization datasets: MeQSum [Ben Abacha and Demner-

Fushman, 2019b] and HealthCareMagic [Chen et al., 2020]. All datasets are in English. We show

dataset statistics in Table 4.1.

MedQuAD is a large-scale Medical Question Answering Dataset. Ben Abacha and

Demner-Fushman [2019a] collect trusted medical question-answer pairs by crawling them from

12 websites of the U.S. National Institutes of Health (NIH). Each web page contains information

about a health-related topic, like a disease or a drug. The authors automatically collect the

question-answer pairs by composing handcrafted patterns adapted to each website based on

document structure and section titles. They manually evaluate 1,721 CHQs to come up with

automatic wording patterns for each of 36 question types. Therefore, even though answers are

curated and written by medical experts, questions are automatically formulated and may have

some noise.

We collect the publicly available (e.g. not copyrighted) question-answer pairs from the

MedQuAD dataset1. We then use the NLTK sentence tokenizer [Bird, 2006] to split answer

documents into sentences. We get 16,423 questions and 157,592 answer sentences, making for an

average of 9.6 answer sentences for each question.

MeQSum [Ben Abacha and Demner-Fushman, 2019b] is a medical question summariza-

tion dataset released by the U.S. National Institutes of Health (NIH). It contains 1,000 consumer

health questions summarized into FAQ-style single-sentence questions by medical experts.

1https://github.com/abachaa/MedQuAD
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HealthCareMagic is a medical dialogue dataset issued as part of the MedDialog dataset

[Chen et al., 2020]2. It is crawled from HealthCareMagic.com, an online healthcare service

platform. This dataset includes first a formally worded, one-sentence question describing the

intent of the patient question, followed by 2 long utterances: a CHQ from the patient that includes

a description of the problem and a question, and then an answer from the doctor. To form a medical

question summarization dataset, we consider the single-sentence descriptions as summaries of

the patient’s CHQ. We collect 226,405 question pairs.

4.5.2 Knowledge-based Filtering of Datasets

We conduct experiments for each of the two question summarization datasets, and we use

MedQuAD as the underlying knowledge base in all experiments. For this reason, we decide to

filter each of the question summarization datasets to reconcile their differences with MedQuAD.

We first fit a TF-IDF embedding model, similar to the one of [Dinan et al., 2018], on the

reference FAQs of each question summarization dataset and the questions of MedQuAD. We then

compute the dot products of the TF-IDF-weighted vectors for all possible pairs of summarization

FAQs and MedQuAD questions. We assign a matching score m(qsum) to each summarization

reference FAQ:

m(qsum) = max
q′∈QMedQuAD

tfidf(qsum) · tfidf(q′) (4.10)

We manually evaluate the matching scores for each summarization dataset to set a cutoff

matching score of filtering. This way, we obtain question summarization datasets where reference

FAQs have matches in the medical knowledge base. Finally, we perform a random and rough

80/10/10 split for the train/dev/test sets. The dataset statistics are in the main paper.

2https://github.com/UCSD-AI4H/Medical-Dialogue-System
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4.5.3 Baselines

We propose the two following baselines in retrieval-based question answering: Dense

Passage Retrieval (DPR) [Karpukhin et al., 2020], and Generation-Augmented Retrieval (GAR)

[Mao et al., 2021]. We adapt these two baselines to our case, and adopt BART-based pre-trained

encoders.

Similarly to our own pipeline, we create a two-stage retrieval to get answers. The first

stage encodes questions from the knowledge base, and retrieves the question that is most relevant

to the query. The second stage encodes the corresponding answer document, and retrieves the

three sentences that are most relevant to the query.

For DPR, the query is simply the user question. For GAR, we need to generate a context

to add to the user question: we choose to add the summary of the user question as the context. We

train a BART encoder to summarize user question, using the question summarization datasets.

Whereas our system’s retrieval encoder is trained on our proposed self-supervised objec-

tives, the retrieval encoders of the baselines are trained on Wikipedia for the task of retrieval-based

question answering.

4.5.4 Training Settings

We adopt the BART encoder-decoder model [Lewis et al., 2019], as it set a state of

the art in abstractive summarization benchmarks. We train our model using the HuggingFace

implementation [Wolf et al., 2020], on a learning rate of 2 ·10−6. The question matching pool

retrieved by TF-IDF is comprised of k = 32 knowledge base FAQs. Our answer selection loss

Lsel is optimized to select up to n = 3 sentences. We use λ = 0.01 and γ = 0.01 as weights for

the self-supervised losses. The BART encoder is used for embedding sentences for question

matching and answer selection.

We train for 50 epochs for MeQSum, and 20 epochs for HealthCareMagic. Each training
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epoch takes about 10 minutes for MeQSum, and about 35 minutes for HealthCareMagic. Inference

takes 1 minute for the MeQSum test set and 3 minutes for the HealthCareMagic test set. The best

checkpoint is selected based on the lowest loss value L on the dev set.

We use BART Large pre-trained on the CNN-Dailymail dataset, and each BART Large

model contains 406 million parameters, as per the HuggingFace implementation.

Our OS is 16.04.1-Ubuntu/ x86 64. We used a single GPU for experiments with our

system: one GeForce GTX 1080 Ti with 11 GB of memory. For the baselines, we use four 16GB

GPUs, available as a single p3.8xlarge EC2 instance on Amazon Web Services.

4.5.5 Do we retrieve relevant answers?

Evaluation Strategy

We hire seven annotators: four of which are medical doctors, and the remaining three

hold degrees related to healthcare or immunology.

We ask the evaluators to first write user questions, and then evaluate the answers retrieved

by our system and the two existing systems. Given that our medical knowledge base has

limited questions, we ask the evaluators to limit their questions to the topics covered by the nine

sources from which the knowledge base was extracted. The sources of questions and answers in

MedQuAD are as follows:

• National Cancer Institute

• Genetic and Rare Diseases Information Center: various aspects of genetic/rare diseases

• Genetics Home Reference (GHR): consumer-oriented information about the effects of

genetic variation on human health

• MedlinePlus Health Topics: information on symptoms, causes, treatment and prevention

for diseases, health conditions, and wellness issues
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• National Institute of Diabetes and Digestive and Kidney Diseases

• National Institute of Neurological Disorders and Stroke: neurological and stroke-related

diseases

• NIHSeniorHealth: health and wellness information for older adults

• National Heart, Lung, and Blood Institute (NHLBI): diseases, tests, procedures, and other

relevant topics on disorders of heart, lung, blood, and sleep

• Centers for Disease Control and Prevention (CDC)

Then, we ask the evaluators to rate the relevance of the answers retrieved by each system

independently, according to the following criteria:

• Score of 1/5: The system’s answer is completely irrelevant to the question, and does not

even contain any concept related to the question.

• Score of 2/5: The system’s answer mentions notions that are related to the question, but

does not contain a word or concept mentioned in the question.

• Score of 3/5: The system’s answer mentions one or more words or concepts from the

question, but does not actually answer the question.

• Score of 4/5: The system’s answer partially answers the question, mentions one or more

words or concepts from the question, but does not fully answer the question.

• Score of 5/5: The system’s answer fully answers the question.

Each of the seven annotators wrote 20 questions, and each question gets three answers

(one per system). We assign three annotators to the models trained on MeQSum, and four to the

models trained on HealthCareMagic. The annotators rate answers only for the questions that they

wrote themselves.
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Table 4.2: Evaluation of the relevance (out of 5) of answers retrieved by our proposed system
and two strong baselines for questions asked by seven evaluators. The systems trained on
MeQSum are evaluated on 60 questions by 3 evaluators, and the ones trained on the larger
HealthCareMagic dataset are evaluated on 80 questions by 4 evaluators. The column on the
right shows the number of seconds it takes for a loaded system to retrieve the answer to a query.

SYSTEM MeQSum HealthCareMagic Time/Query
DPR [Karpukhin et al., 2020] 1.42 1.73 47 seconds
GAR [Mao et al., 2021] 1.40 1.64 48 seconds
Ours 2.13 2.35 2 seconds

Results and Discussion

We show the results of the evaluations in Table 4.2. The first three columns show the

averages of relevance scores that were given by annotators for all systems.

The results show that the evaluators have preferred our system’s answers over the answers

retrieved by the two baselines. Our system gets relevance scores that are 0.6 to 0.7 points higher,

out of 5 on the relevance scale.

The two baselines seem to perform similarly to each other. This is likely due to the

fact that the main difference between them is that the query is generation-augmented for GAR,

whereas the query is simply the user question for DPR.

Overall, the relevance scores are on the lower side, as no system exceeds an average score

of 2.5/5. This shows that consumer health question answering and understanding is a challenging

task, especially since there are no labels to indicate whether an answer is relevant to a particular

question, or which FAQ matches the user’s intent.

In addition, the challenges of the task are also due to the limitations of the knowledge base.

Some annotators noted that the retrieved answers were often not appropriate, or close to the topic

but not answering the question. This is due to the fact that MedQuAD does not cover all possible

illnesses and medical conditions that the users could ask about. Whereas a larger database would

potentially solve coverage problems, it could be at the expense of the quality or verifiability of the

answers. The MedQuAD dataset is at times noisy, and contains generic sentences that may not
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Table 4.3: Question Understanding evaluation: summarization results on test set (reference
FAQs). The R1, R2 and RL metrics refer to the F1 scores of ROUGE-1, ROUGE-2 and ROUGE-L.

DATASET MeQSum HealthCareMagic
METRIC R1 R2 RL R1 R2 RL
GAR [Mao et al., 2021] 45.72 30.43 42.02 31.04 13.68 27.90
Ours 46.74 30.10 42.81 33.13 14.71 30.18

answer any question, or generic templates related to percentages of symptoms and how frequent

they are.

4.5.6 Computational Speed

We run our system on a single 11GB GPU, whereas the two baselines are each run on

four 16GB GPUs. We show the average duration required to retrieve answers for a single query

in the right column of Table 4.2.

This is done at the beginning when loading the models, but the query similarity computa-

tion is done at each run, thereby lengthening the processing time.

4.5.7 Analysis of Question Understanding

An additional way that our system outperforms the two baselines could be through

summarization. We evaluate the summarization of consumer health questions using the ROUGE

metric [Lin, 2004]. Our GAR baseline uses a BART model trained on the summarization loss

only. We show the results in Table 4.3. We notice that sharing encoder parameters between the

summarization loss and our proposed self-supervised losses generally increases ROUGE F1 scores

across both datasets. For HealthCareMagic, score increases exceed 2 points in ROUGE-1 and

ROUGE-L.

Given that ROUGE is notoriously unreliable, we hire two additional annotators on Upwork

who are healthcare workers to judge the fluency, coherence, informativeness and correctness

of generated summaries. We define these criteria for the two healthcare worker annotators as
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Table 4.4: Question Understanding evaluation: blind evaluation by 2 annotators of the generated
summaries for the test set CHQs. A “Win” evaluation means that our model generates a better
summary than the baseline summarizer.

CRITERIA Fluency Coherence Informativeness Correctness
EVALUATION Win Lose Tie Win Lose Tie Win Lose Tie Win Lose Tie
MeQSum 11 5 28 10 6 28 12 3 29 12 4 28
HealthCareMagic 45 17 42 44 19 41 46 18 40 44 18 42

follows:

• Fluency: which generated FAQ is more grammatically correct, and easier to read and to

understand?

• Coherence: which generated FAQ is better structured and more organized?

• Informativeness: which generated FAQ captures the most out of the concern of the patient

who wrote the CHQ?

• Correctness: which generated FAQ is more factually correct given the CHQ?

We show the annotators the consumer health question (source text), the reference FAQ

(target text) and two generated summaries. The annotators do not know which system generated

which summary. We show the evaluation scores in Table 4.4. We remove repetitions of refer-

ence FAQs in the test sets put up for evaluation. The results confirm that our self-supervised

losses increase the quality of generated summaries. Summaries generated with our model score

more wins more often than losses on all four metrics, and score more wins than ties with the

summarization-only baseline for HealthCareMagic.

4.6 Conclusions

We introduce an end-to-end pipeline for knowledge-grounded consumer health question

answering and understanding (CHQUA). Our challenge is that we have no labels for question
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matching or answer relevance. We propose to use semantic similarity as a proxy for those labels,

and we design three novel self-supervised losses: one works to match the user’s summarized

question to a knowledge base question, and the other two losses work complementarily to teach

our model to select a fixed number of relevant answer sentences.

We compare our proposed system against two strong baselines of retrieval-based question

answering. We hire seven medical experts to ask their questions, and they find that our system

provides more relevant answers. Our system also achieves processing times that are more than 20

times faster. Finally, we find that our proposed self-supervised losses enable the summarizer model

to achieve higher scores in ROUGE and human evaluation metrics, compared to a summarization-

only baseline. However, we find that this task remains challenging and that there is still room for

improvement.
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Chapter 5

Text Understanding as Entity Linking

The two previous chapters deal with understanding the intent of long user questions, in

order to improve recall in answer selection. However, not all user-written text is a question. This

chapter focuses on understanding what entities users are referencing in their utterances. Similarly

to the earlier chapters, our study focuses on bridging the gap between informal, user-written

vocabulary and formal, technical vocabulary.

5.1 Introduction

Entity linking [Zhang et al., 2010, Han et al., 2011] is the task of linking entity mentions

in a text document to concepts in a knowledge base. It is a basic building block used in many

NLP applications, such as question answering [Yu et al., 2017, Dubey et al., 2018, Shah et al.,

2019], word sense disambiguation [Raganato et al., 2017, Uslu et al., 2018], text classification

[Basile et al., 2015, Scharpf et al., 2021], and social media analysis [Liu et al., 2013, Yamada

et al., 2015].

Early definitions decompose the task of entity linking (EL) into two subtasks: Mention

Detection (MD) and Entity Disambiguation (ED). Many statistical and LSTM-based methods

propose to cast EL as a two-step problem, and optimize for both MD and ED [Guo et al., 2013,
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SOCCER - Japan Get Lucky Win, China In Surprise Defeat. 
Japan began the defence of their Asian Cup title with a lucky 
2-1 win against Syria in a Group C championship match on 
Friday. But China saw their luck desert them [...]

Source Text

SOCCER - Japan Get Lucky Win, China national football team 
In Surprise Defeat. Japan national football team began the 
defence of their AFC Asian Cup title with a lucky 2-1 win 
against Syria national footballer team in a Group C 
championship match on Friday. But China Chinese Super 
League [...]

GENRE (De Cao et al., 2021)

SOCCER - Japan national football team Get Lucky Win, China 
national football team In Surprise Defeat. Japan national 
footballer team began the defence of their AFC Asian Cup title 
with a lucky 2-1 win against Syria national football teams in a 
Group C championship match on Friday. But China national 
Football team saw their luck desert them [...]

Our Multi-Task Model

Figure 5.1: Example of an Entity Linking (EL) source text and generated outputs. Entity
mentions to be recognized and disambiguated are denoted in blue in the source text. In the
outputs, red denotes errors, green denotes correct answers, yellow denotes close matches.
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Luo et al., 2015, Cornolti et al., 2016, Ganea and Hofmann, 2017].

Recent entity linking methods based on language models propose to cast entity linking

as a single, end-to-end trained task [Broscheit, 2019, Poerner et al., 2020, El Vaigh et al., 2020],

rather than a two-subtask problem. An example is autoregressive entity linking [Petroni et al.,

2021, De Cao et al., 2021b], which formulates entity linking as a language generation problem

using an encoder-decoder model. A more recent approach [De Cao et al., 2021a] increases

performance, and is instead based on a two-step architecture: first mention detection with a

transformer encoder, and then autoregressive candidate selection with an LSTM. However, this

candidate selection module needs a predefined set of candidate mentions.

Methods based on word embedding models [Basaldella et al., 2020] propose to learn

entity disambiguation by mapping embedding spaces. Their high accuracy at 10 results show that

re-ranking could increase entity linking performance.

Contributions. In this paper, we propose an autoregressive entity linking method, that is

trained jointly with two auxiliary tasks, and learns to re-rank generated samples at inference time.

Our proposed novelties address two weaknesses in the literature.

First, instead of the two-step method [De Cao et al., 2021a] that learns to detect mentions

and then to select the best entity candidate from a predefined set, we propose to add mention

detection as an auxiliary task to encoder-decoder-based autoregressive EL. By using encoder-

decoder-based autoregressive EL, we bypass the need for a predefined set of candidate mentions,

while preserving the benefit of the knowledge learned from mention detection for the main EL

task.

Second, previous work suggests that re-ranking could correct prediction errors [Basaldella

et al., 2020]. We propose to train a second, new auxiliary task, called Match Prediction. This task

teaches the model to re-rank generated samples at inference time. We define match prediction as

a classification task where the goal is to identify whether entities in a first sentence were correctly

disambiguated in the second sentence. We train this second task with samples generated by the
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model at each training epoch. At inference time, we then rank the generated samples using our

match prediction scores.

Our multi-task learning model outperforms the state of the art in two benchmark datasets

of entity linking across two domains: COMETA [Basaldella et al., 2020] from the biomedical and

social media domain, and AIDA-CoNLL [Hoffart et al., 2011] from the news domain. We show

through three ablation study experiments that each auxiliary task provides improvements on the

main task. Then, we show that using our model’s match prediction module to re-rank generated

samples at inference time plays an important role in increasing performance. Finally, we devise

three experiments where we train auxiliary tasks with a smaller dataset. Results suggest that our

model’s performance is not only due to more training datapoints, but also due to our auxiliary

task definition.

5.2 Related Work

Entity Linking (EL). Entity Linking is often [Hoffart et al., 2011, Steinmetz and Sack,

2013, Piccinno and Ferragina, 2014, De Cao et al., 2021a] trained as two tasks: Mention Detection

(MD) and Entity Disambiguation (ED). Mention detection is the task of detecting entity mention

spans, such that an entity mention m is represented by start and end positions. A mention m refers

to a concept in a given knowledge base. Entity disambiguation is the task of finding the right

knowledge base concept for an entity mention, thereby disambiguating its meaning.

Early EL methods [Hoffart et al., 2011, Steinmetz and Sack, 2013, Daiber et al., 2013]

rely on probabilistic approaches. Hoffart et al. [2011] propose a probabilistic framework for MD

and ED, based on textual similarity and corpus occurrence. They test their framework using the

entity candidate sets available in the AIDA-CoNLL dataset.

More recently, neural methods propose to train end-to-end EL models. Francis-Landau

et al. [2016] propose a convolutional neural EL model to take into account windows of context.
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Kolitsas et al. [2018] propose a neural model for joint mention detection and entity

disambiguation. They use a bidirectional LSTM [Hochreiter and Schmidhuber, 1997] to encode

spans of entities. They then embed candidate entities and train layers to score the likelihood of a

match.

Sil et al. [2018] introduce an LSTM-based model that uses multilingual embeddings for

zero-shot transfer from English-language knowledge bases.

EL as Language Modeling. Language modeling approaches have enabled new, end-

to-end definitions of the entity linking task. These new settings enable to bypass the two-step

MD-then-ED setting for entity linking, and propose to cast entity linking as a single task.

Broscheit [2019] propose to reformulate end-to-end EL problem as a token-wise classifi-

cation over the entire set of the vocabulary. Their model is based on BERT [Devlin et al., 2019b].

The training combines mention detection, candidate generation, and entity disambiguation. If an

entity is not detected, then the prediction is O. If an entity is detected, the classification head has

to classify it as the corresponding particular entity within the vocabulary.

De Cao et al. [2021b] propose an autoregressive setting for EL. They use BART [Lewis

et al., 2020b] and cast entity linking as a language generation task. In this setting, the input is the

source sentence with the entity mention. The goal is to generate an annotated version of the input

sentence, such that the entity mention is highlighted and mapped to a knowledge base concept.

Brackets and parentheses are used to annotate the entity mention and concept: “I took the [flu

shot] (influenza vaccine).”. They then introduce a constrained beam search to force the model to

annotate. De Cao et al. [2021c] is a multilingual extension of this work.

EL as Embedding Space Mapping. Language models like BERT, as well as embedding

models like FastText [Bojanowski et al., 2017], enable to retrieve context-aware representations

of entities and knowledge base concepts.

Basaldella et al. [2020] propose to map the embeddings of entity mentions to the em-

beddings of knowledge base concepts. They find that the right mapping is more often found
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among the ten closest concept embeddings (accuracy at 10) rather than being the closest concept

embedding (accuracy at 1). Their results suggest that generated sample re-ranking could improve

entity linking systems.

Concurrently, Wu et al. [2020b] propose a method that uses re-ranking for zero-shot

retrieval of entities. They use entity definition embeddings to find candidate entities from a

knowledge base, and then train a cross-encoder to re-rank the candidates.

Basaldella et al. [2020] also introduce the COMETA dataset: an entity linking bench-

mark based on social media user utterances on medical topics, and linked to the SNOMED-CT

biomedical knowledge base [DONNELLY, 2006]. The dataset has four splits, based on whether

the dev/test set entities are seen during training (stratified) or not (zeroshot), and on whether

the entity mapping is context-specific (specific) or not (general). Liu et al. [2021a] propose a

self-alignment pre-training scheme for entity embeddings, and show that it benefits the context-

free splits (stratified general and zeroshot general). Liu et al. [2021b] propose MirrorBERT: a

data-augmented approach for masked language models. Lai et al. [2021] and Kong et al. [2021]

propose convolution-based and graph-based methods, respectively, for embedding mapping

between entities and knowledge base concepts.

All of the above methods use knowledge base concepts. In our biomedical entity linking

setting, we choose the harder zeroshot specific split. We propose to use the language modeling task

setting instead of the embedding mapping method. We therefore bypass the need to embed each

and every knowledge base concept, whereas only a small portion (¡10%) of the SNOMED-CT

knowledge base concepts are used in the COMETA dataset.

5.3 Multi-Task Learning for Autoregressive Entity Linking

We propose an autoregressive entity linking model, that is trained along with two auxiliary

tasks, and uses re-ranking at inference time.
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In this section, we first describe the main entity linking task. Then, we define the two

auxiliary tasks: Mention Detection and a new task, called Match Prediction. Third, we train our

multi-task learning architecture with a weighted objective. Finally, we propose to use the match

prediction module for re-ranking during inference. An overview of our architecture is in Figure

5.2.

5.3.1 Autoregressive Entity Linking

We train autoregressive entity linking as a language generation task. We follow the setting

of the encoder-decoder model of De Cao et al. [2021b]. They train their model to generate the

input sentence containing both the entity mention and the target entity, annotated with parentheses

and brackets. For simplicity, we omit these annotations from the examples in the figures.

For entity linking (EL), we optimize the following negative log-likelihood loss:

LEL =−
N

∑
i=1

logP(yi|y1, ...,yi−1,x) (5.1)

where x is the input sentence, and y is the output sentence of length N.

5.3.2 Entity Mention Detection

We introduce mention detection (MD) as an auxiliary task to encoder-decoder autore-

gressive EL, in order for the knowledge learned from MD to benefit the main EL task, while

bypassing the need for predefined candidate sets. MD teaches the model to distinguish tokens that

are part of entities from tokens that are not part of any entity. As a result, this task is in essence

a token-wise binary classification task. Broscheit [2019] propose a similar task definition, but

combine entity detection with entity disambiguation. Their task definition is a classification task

over the entire knowledge base vocabulary, rather than our binary setting.

In this task, we train the model to predict where the tokens of the entities are in the input
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Decoder (EL)

Output Layer Classification 
HeadTagging Head

(Target Sentence)

I took the flu shot. I took the flu shot. I took the flu shot.
I took the flu vaccine.

1. Entity Mention 
Detection (MD)

2. Autoregressive 
Entity Linking (EL)

3. Entity Match 
Prediction (MP)

Decoder (MP)Decoder (MD)

Tagging Head
(Source Sentence)

I took the flu shot.
O  O  O  E  E O

I took the influenza vaccine.
O  O  O    E      E  O I took the influenza vaccine.

Prediction: 0.45
Entities do not match

Multi-Task Training Inference Time

Input

Autoregressive
Entity Linking

𝑘 sampled outputs
Ranked by LM probability

𝑘 sampled outputs
Ranked by prediction score

Entity Match 
Prediction

Generating & Re-ranking
𝑘 sampled outputs

Figure 5.2: Architecture of our proposed multi-task autoregressive entity linking model. Each
task is trained using a shared encoder and a task-specific decoder and output layer. The auxiliary
mention detection task uses datasets derived from one entity linking dataset, whereas the match
prediction task uses sampled outputs. At inference time, we use the match prediction module to
re-rank generated samples.

sentence and in the target (annotated) sentence. Therefore, this auxiliary task has to output two

sequences of entity indicators: “E” for entity mention or concept tokens, and “O” for all other

tokens. To train our model to generate sequences for the input and target sentences, we augment

our existing dataset. We create two datasets of the same size: the first has sequences of entity

indicators for the input sentences, and the second has sequences of entity indicators for the target

sentences.

As shown at the left of Figure 5.2, we use two different tagging heads for mention

detection: one for the input sentence, and one for the output sentence. We use two tagging heads

as the model learns different mappings from two different kinds of input. For the input sentence,

we feed the encoder embeddings to the first tagging head. We cast this as a classification problem.

For mention detection on the output sentence, we use a separate decoder, and feed this decoder’s

embeddings to the second tagging head. We cast this task as a generation task. For both tasks,

we optimize a cross entropy (CE) loss. In summary, we optimize the following loss function for
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mention detection (MD):

LMD =CE(Enc(x),Ent(x))

+CE(Dec(Enc(x)),Ent(y))
(5.2)

where Enc(·) is the encoder representation, Dec(·) is the decoder representation, and Ent(·)

indicates the corresponding sequence of entity indicators.

The method of De Cao et al. [2021a] has two steps, where the first step is to detect

mentions. Here, mention detection is an auxiliary task rather than a main part of the pipeline. We

employ encoder-decoder autoregressive EL as our main end-to-end pipeline.

5.3.3 Entity Match Prediction

In their biomedical entity linking experiments using word embedding space mapping,

Basaldella et al. [2020] find that accuracy at 10 is often more than double the accuracy at 1.

They then suggest that re-ranking could significantly improve performance. We build on this

observation to introduce the second auxiliary task: entity match prediction (MP). The goal of this

task is to teach the model to re-rank generated samples based on the input sentence, with the aim

to help narrow the gap with the accuracy at 10 scores.

The input to this task is composed of two sentences: the first one is the input sentence,

and the second is a sentence where entity mentions are replaced by entities that may or may not

be the matching target entities. We train the model to predict whether the entities match (score

of 1) or not (score of 0) between both sentences. The entity match must be complete – all target

entities must be generated – for a score of 1.

At regular intervals during training, we generate k samples for each input sentence using

beam search on the autoregressive entity linking part of the trained model. We then form k

sentence pairs. The corresponding ground truth label for a given sentence pair indicates whether
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the entities match or not. This data generation setting exposes the model to its own successes and

failures in the main entity linking task.

It may be the case that no generated sample contains entities that match the input sentence,

and therefore that all labels for a pair are 0. In this case, the model would not be shown what an

example of matching entities looks like. To mitigate this issue, we decide to add one additional

sentence pair, where the second sentence is the target sentence used in the autoregressive entity

linking training. We add this additional sentence pair to all datapoints for consistency.

We train entity match prediction using a mean squared error loss:

LMP =
(
PMP(ŷ|x)−1

)2

+
k

∑
i=1

(
PMP(ys

i |x)− ŷMP
i

)2
(5.3)

where ŷ is the target sentence, ys
i is the i-th generated sample, PMP(·|·) is the probability that

the entities in the left-hand sequence match the ones in the right-hand sequence, and ŷMP
i is the

ground truth label for entity match prediction for the i-th generated sample.

De Cao et al. [2021a] propose to rank candidate concepts from a predefined set after the

detecting entity mentions. In our case, we do not learn to rank predefined sets of candidates, nor

do we rank concepts. Instead, we generate sentences using beam search, and propose to learn to

re-rank them.

5.3.4 Multi-Task Learning

We propose to optimize simultaneously for all three tasks using a single loss function.

We set one weight for each auxiliary task. We discuss the task weight hyperparameter tuning in

§5.4.3.

Given the losses defined in equations 5.1, 5.2, and 5.3, our loss function for multi-task
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learning is as follows:

LMTL = LEL +λMDLMD +λMPLMP (5.4)

where λMD and λMP are the auxiliary task weights for mention detection and match prediction,

respectively.

As shown in Figure 5.2, we use three separate decoders for training: one for each task. We

use two separate tagging heads for mention detection. For the match prediction task, we feed the

last decoder output to the classification head. This follows the training scheme of BART [Lewis

et al., 2020b] for sentence classification tasks.

Our proposed multi-task definition is inspired by our prior work [Mrini et al., 2021b,c]. In

our prior research papers, we introduce multi-task learning architectures for biomedical question

summarization and entailment. We find that closely related tasks benefit each other during

learning, through either multi-task learning or transfer learning [Mrini et al., 2021d].

Our model architecture is also inspired by MT-DNN [Liu et al., 2019a], a multi-task model

that obtained state-of-the-art results across many NLP tasks involving sentence representation.

In the MT-DNN architecture, the encoder is shared across tasks, and prediction heads are task-

specific. Nonetheless, other multi-task architectures remain compatible with our auxiliary tasks

and re-ranking, which are the novelties we focus on in this work.

5.3.5 Inference-time Re-ranking

In order to bridge some of the gap between accuracy at 1 and accuracy at 10 [Basaldella

et al., 2020], we propose to use the entity match prediction module to re-rank generated samples.

The right side of Figure 5.2 illustrates the process.

At inference time, we first generate k samples ranked by their language modeling proba-

bility. We then use the separate entity match prediction (MP) decoder to predict an entity match
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Table 5.1: Statistics of Entity Linking benchmark datasets.

AIDA-CoNLL COMETA
Split Documents Mentions Mentions
Train 942 18,540 13,714
Dev 216 4,791 2,018
Test 230 4,485 4,283

probability. To do so, we input the source sentence and a generated sample to the MP decoder.

We use the resulting MP probabilities to re-rank the k generated samples. We select the sample

with the highest MP probability to compute the evaluation metrics.

5.4 Experiments

5.4.1 Datasets and Setup

We use two benchmark datasets for English-language entity linking. We use the standard

data splits for both datasets, as detailed in Table 5.1.

AIDA-CoNLL [Hoffart et al., 2011] is a dataset consisting of annotated news articles

from the Reuters Corpus [Lewis et al., 2004]. The knowledge base concepts come from the titles

of the English-language Wikipedia. Each news article contains multiple entity mentions. Articles

are sometimes too long for the maximum sequence length of our model. We follow De Cao et al.

[2021a] and cut the articles into separate chunks. We use the Micro-F1 metric for evaluation. We

only evaluate mentions present in the knowledge base, following the In-KB setting [Röder et al.,

2018], in line with previous work [De Cao et al., 2021b,a]. This dataset contains candidates for

each entity mention. We do not use entity candidates, although several baselines do [Kolitsas

et al., 2018, Martins et al., 2019, De Cao et al., 2021a].

COMETA [Basaldella et al., 2020] is a dataset of biomedical entity mentions from social

media (Reddit) utterances. In this dataset, each user-written utterance contains exactly one entity

mention. The metric used to evaluate this dataset is accuracy at 1 (Acc@1). We measure Acc@1
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(a) Choosing the optimal λMD, setting λMP = 0.3.

(b) Choosing the optimal λMP, given the optimal λMD.

Figure 5.3: Task weight tuning on the dev set for Mention Detection (MD) and Match Prediction
(MP). We first optimize for λMD (a), and then λMP (b).

by checking whether the correct knowledge base concept is present in the top generated sample.

We use the zeroshot specific split, where the entity mention and disambiguation pairs in the test

set are not seen during training, and the entity linking is context-specific.

5.4.2 Training Details

We use BART Large [Lewis et al., 2020b] as our base model. We use three decoders,

all initialized from the same checkpoint decoder. We found in initial experiments that separate

decoders for all tasks benefit the main EL task. We train for 100 epochs on AIDA-CoNLL, and

for 10 epochs on COMETA.
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5.4.3 Task Weight Tuning

For each dataset, we optimize the auxiliary task weights λMD for mention detection, and

λMP for match prediction. We select these hyperparameters based on the highest performance in

Micro-F1 (AIDA-CoNLL) or accuracy at 1 (COMETA) on the dev set.

We trial all values from 0.1 to 1.0 with 0.1 increments, for both task weights. We start by

optimizing λMD given λMP = 0.3, and then optimize λMP given the optimal λMD weights. The

results are in Figure 5.3. The graphs show that performance on the main entity linking task can

vary visibly when the weights of the auxiliary tasks change. The variation is likely due to the

large auxiliary task datasets, which could dominate training. Moreover, the optimal task weights

are different for every dataset and domain: we find that the optimal auxiliary task weights are

λMD = 0.4 and λMP = 0.6 for AIDA-CoNLL, and λMD = 0.5 and λMP = 0.3 for COMETA. We

use these task weights for the next experiments.

5.4.4 Results and Discussion

AIDA-CoNLL. The test results for the AIDA-CoNLL dataset are on Table 5.2. Our

model establishes a new state of the art for this task.

Compared to the state-of-the-art encoder-decoder autoregressive EL model on AIDA-

CoNLL [De Cao et al., 2021b], our method shows a 2.0-point improvement in Micro-F1 score.

This increase shows that our model is able to correct some errors with the re-ranking at inference

time, and that our multi-task setting benefits the main entity linking task.

Our model scores a Micro-F1 0.2 higher than the model of De Cao et al. [2021a]. However,

De Cao et al. [2021a] use a predefined candidate set of concepts, whereas the encoder-decoder

autoregressive EL models – including our own – do not. This shows that our model is able to

bypass the knowledge base, and that our method leverages language modeling to gain knowledge

of the news domain.
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Table 5.2: Results on the AIDA-CoNLL test set.

Method Micro-F1
Hoffart et al. [2011] 72.8
Steinmetz and Sack [2013] 42.3
Daiber et al. [2013] 57.8
Moro et al. [2014] 48.5
Piccinno and Ferragina [2014] 73.0
Kolitsas et al. [2018] 82.4
Peters et al. [2019] 73.7
Broscheit [2019] 79.3
Martins et al. [2019] 81.9
van Hulst et al. [2020] 80.5
Févry et al. [2020] 76.7
Kannan Ravi et al. [2021] 83.1
De Cao et al. [2021a] 85.5
Encoder-Decoder Autoregressive EL Models
De Cao et al. [2021b] 83.7
Our model 85.7

COMETA. There are no predefined sets of candidate concepts in the COMETA dataset.

In this task, there is a knowledge base of biomedical concepts from which the model can choose.

Similarly to our AIDA-CoNLL setting, our model does not use the knowledge base.

We consider three baselines for our biomedical entity linking benchmark. The first

baseline is the embedding mapping method of Basaldella et al. [2020]. They use BioBERT

and a max-margin loss with negative target embeddings. The second baseline is the BERT- and

classification-based method of Broscheit [2019]. We train this baseline by classifying tokens

into the concepts present in the COMETA dataset, as opposed to the entire vocabulary of 350K

knowledge base concepts. This is for computational purposes, as a 350K-way classification would

be difficult to train. The third baseline is the autoregressive, single-task model of De Cao et al.

[2021b]. We train this baseline as a reference point for our model. We do not include De Cao et al.

[2021a] as a baseline, as their method uses predefined sets of candidate concepts, and COMETA

does not include them.

The test results of the COMETA dataset experiments are on Table 5.3. Our model is able
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Table 5.3: Results on the COMETA test set.

Method Acc@1
Basaldella et al. [2020] 27.0
Broscheit [2019] 24.5
Encoder-Decoder Autoregressive EL Models
De Cao et al. [2021b] 30.9
Our model 32.4

to exceed over five percentage points the baselines that use the knowledge base concepts. This

shows that our method can efficiently generalize without the need for a knowledge base, but only

through learning about the biomedical domain. Note that we use the zeroshot specific split here,

where the entity mention and disambiguation pairs in the test set are not seen during training.

Moreover, our model exceeds the autoregressive single-task baseline by 1.5%. This increase

shows that our multi-task setting and re-ranking can generalize, and increase performance under

zeroshot settings.

5.4.5 Ablation Studies

We perform two types of ablation studies to analyze the added value of our novelties. First,

we evaluate how do the two auxiliary tasks and the re-ranking impact entity linking performance.

Second, we implement a low-resource scenario for the auxiliary tasks, as we ask whether the

main task benefits more from the knowledge learned the auxiliary tasks, or from the additional

training data.

Auxiliary Tasks and Re-ranking. Our main novelties are multi-task learning with two

auxiliary tasks, and the re-ranking of generated samples at inference time. The first auxiliary

task, mention detection, aims to preserve the knowledge learned from detecting mentions of

entities, while allowing the encoder-decoder model to bypass the need for predefined sets of entity

candidates. The second auxiliary task, match prediction, aims to teach the model how to predict

whether entities were correctly disambiguated given an input sentence and a generated sample.
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Table 5.4: Results of the ablation studies on the test sets. We perform ablation studies on
Mention Detection (MD), Match Prediction (MP), and the re-ranking of generated samples
(Rk).

AIDA-CoNLL COMETA
MD MP Rk Micro-F1 Acc@1
Ablation of Auxiliary Tasks and Re-ranking
✗ ✗ ✗ 83.7 30.9

Ablation of Auxiliary Tasks
✓ ✗ ✗ 84.3 31.2
✗ ✓ ✓ 85.4 32.1

Ablation of Re-ranking
✓ ✓ ✗ 84.8 31.5

MD, MP and Re-ranking (Ours)
✓ ✓ ✓ 85.7 32.4

We perform ablation studies to gauge the added value of each task and re-ranking. We

perform three additional experiments, keeping the same number of model parameters. First,

we remove the match prediction training objective (λMP = 0.0), and therefore also remove the

re-ranking, but we keep the optimally weighted mention detection objective. Second, we remove

the mention detection training objective by setting λMD = 0.0, but we keep the optimally weighted

mention prediction objective, along with the re-ranking. Third, we keep both optimally weighted

auxiliary tasks, but remove the inference-time re-ranking of generated samples. Finally, we

compare our results to De Cao et al. [2021b] as it does not have both auxiliary tasks nor the

re-ranking.

We show the results of all ablation experiments on the dev sets in Table 5.4. The lowest

scores are obtained when both auxiliary tasks and re-ranking are ablated. This shows the added

value of all of our main novelties on the main entity linking task. In addition, each auxiliary

task individually increases performance, as shown on the second and third row of results. The

auxiliary match prediction task along with re-ranking provide a larger performance increase than

the auxiliary mention detection task alone. This could be due to the fact that the match prediction

task gets a larger number of samples to train on. Finally, the difference in performance between

87



our model and the re-ranking ablation study shows that re-ranking of generated samples is an

important contribution to the final performance. This result backs the suggestion of Basaldella

et al. [2020] that re-ranking can bridge some of the gap between Acc@1 and Acc@10.

Impact of additional training data. In this subsection, we ask whether the main task

benefits more from the knowledge learned by the auxiliary tasks, or from the large sizes of the

auxiliary task datasets. The mention detection task has two datapoints for every EL datapoint,

while the match prediction task has k+1 = 11 datapoints for every EL datapoint. Therefore, in a

given training epoch, there are more datapoints to train on for the auxiliary tasks in comparison

with the main task.

We devise three experiments to gauge whether a lower amount of training datapoints for

auxiliary tasks impacts the main task results. We propose a low-resource regimen of training

for auxiliary tasks, such that we bring the ratio of training datapoints down to 1:1 between the

auxiliary tasks and the main task. We train on one out of every two MD datapoints, and on one of

out every 11 MP datapoints. In other words, we skip 50% of the training data of the MD task,

and 91% of the training data of the MP task. We spread out the input such that, at each training

step, the model sees one EL input sentence, one MD input sentence, and one MP input sentence

pair. In each epoch, we skip the same datapoints so that the model only sees a reduced number of

training datapoints.

In the first experiment, we train for both auxiliary tasks on a train set ratio of 1:1 with

the main task. In the second and third experiments, we apply the low-resource setting only

to the mention detection task, and only to the match prediction task, respectively. In all three

experiments, we keep the same selection of skipped datapoints for each task, and we keep

re-ranking.

We show the results of the low-resource experiments in Table 5.5. For reference, we

add the results from our model and the model without auxiliary task nor re-ranking of De Cao

et al. [2021b]. The results show that globally, there is a slight decrease in performance when the
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Table 5.5: Results on the test sets of the low-resource experiments. We reduce the training
datasets of the auxiliary mention detection MD and match prediction MP tasks to measure the
benefit of multi-task learning.

% of Train Set AIDA-CoNLL COMETA
MD MP Micro-F1 Acc@1

Ablation of Auxiliary Tasks and Re-ranking
0% 0% 83.7 30.9

Low-Resource Experiments
50% 9% 84.5 32.0
50% 100% 85.4 31.4

100% 9% 84.5 31.8
No Low-Resource (Ours)
100% 100% 85.7 32.4

training set is smaller, compared to our model. However, the low-resource experiments show a

significant increase in performance compared to the ablation experiment of the first row. This

shows that our proposed method’s edge does not only come from the additional training data, but

also from our formulation of the auxiliary tasks, and the re-ranking of generated samples.

5.5 Conclusions

We propose a multi-task learning and re-ranking approach to autoregressive entity linking.

Our main two novelties address two weaknesses in the literature. First, whereas the two-step

method of De Cao et al. [2021a] improves performance, it relies on predefined sets of entity

candidates. We propose to instead train mention detection as an auxiliary task to autoregressive

EL, in order to bypass the need for entity candidate sets, and to preserve the knowledge learned

by mention detection. Second, previous work suggests that a sizeable portion of errors could be

corrected with re-ranking. We propose to use samples generated at training time to teach the

model to re-rank outputs.

Our model establishes a new state of the art in both COMETA and AIDA-CoNLL. The

increases in performance across both datasets show that our model can learn and leverage domain-
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specific knowledge, without using a candidate set or a knowledge base. To analyse our model, we

devise three ablation study experiments, and show that our model benefits from both auxiliary

tasks and re-ranking. In particular, we show that re-ranking plays a major role in increasing entity

linking scores. Then, we propose three low-resource experiments for auxiliary tasks. The results

show that our model’s performance is not only due to additional training datapoints, but also due

to how we defined our auxiliary tasks.
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Chapter 6

Conclusions

In this dissertation, I presented my research on text understanding and question answering

for user-written utterances in the low-resource medical domain. I shed light on lesser known

benchmark datasets that contain user-written text. In answer selection and summarization, user-

written text datasets have been ignored in favor of traditional benchmarks consisting of formally

written and encyclopedia-like text. I showed that transformers, currently the most popular model

architecture in NLP, produce mixed results for user-written text, even when there is consistent

improvement for the traditional, formally written benchmarks. Throughout my time working with

consumer health datasets and traditional benchmark datasets, I observed that there are far fewer

baselines to work with in user-written text datasets. In many chapters, I spent a considerable time

determining which baselines to consider, and then trained them on our own for consumer health

text datasets. A recommendation would be that more work needs to be done for marginalized

forms of writing, and in particular users who have non-traditional or underrepresented writing

styles. To achieve this, a human-centered approach to text representation learning should be

preferred over the predominant benchmark-based one.

My dissertation focuses as well on developing new task formulations that can help

alleviate the problem of scarce datasets. In consumer health question understanding, the particular
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definition of question summarization and entailment enabled us to design data-augmented multi-

task learning architectures. In consumer health question understanding and answering, self-

supervised losses enable to find alternatives for labels, that would otherwise be costly and difficult

to obtain due to the technical knowledge required. In consumer health entity linking, I find that

defining new auxiliary tasks with synthetically created datasets enables us to take achieve better

performance on the main task, even under low-resource settings. Through this work, I aim to

highlight that less popular, technical domains require methods that adapt to their specificities. As

such, this opens the door for many opportunities to develop domain-specific methods, and enable

those domains to also benefit from tremendous advances in human language technology.
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