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ABSTRACT OF THE DISSERTATION

Equivariant Instanton Homology

by

Stephen Michael Miller

Doctor of Philosophy in Mathematics
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Professor Ciprian Manolescu, Chair

We define four versions of equivariant instanton Floer homology (I`, I´, I8 and rI) for a

class of 3-manifolds and SOp3q-bundles over them including all rational homology spheres.

These versions are analogous to the four flavors of monopole and Heegaard Floer homol-

ogy theories. This construction is functorial for a large class of 4-manifold cobordisms,

and agrees with Donaldson’s definition of equivariant instanton homology for integer ho-

mology spheres. Furthermore, one of our invariants is isomorphic to Floer’s instanton

homology for admissible bundles, and we calculate I8 in all cases it is defined, away from

characteristic 2.

The appendix, possibly of independent interest, defines an algebraic construction of

three equivariant homology theories for dg-modules over a dg-algebra, the equivariant ho-

mology H`pA,Mq, the coBorel homology H´pA,Mq, and the Tate homology H8pA,Mq.

The constructions of the appendix are used to define our invariants.
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CHAPTER 1

Introduction

1.1 Background and summary of results

In [Flo88], Andreas Floer introduced the instanton homology groups IpY q, Z{8-graded

abelian groups associated to integer homology 3-spheres. These form a sort of TQFT in

which oriented cobordisms W : Y0 Ñ Y1 induce homomorphisms on the corresponding

instanton homology groups. Since then, similar TQFT-style invariants have found them-

selves a powerful tool in 3- and 4-dimensional topology, especially the related monopole

Floer homology of [KM07] and the Heegaard Floer homology of [OS04].

In ideal circumstances, the instanton homology groups are defined by a chain complex

generated by irreducible flat SUp2q connections up to isomorphism (equivalently, repre-

sentations π1pY q Ñ SUp2q whose image is non-abelian, modulo conjugacy by elements

of SUp2q); the component of the differential between two flat connections α´, α` is given

by an algebraic count of solutions on the cylinder Rˆ Y to the ASD equation

F`A “ 0,

where A is a connection on the trivial SUp2q-bundle over the cylinder which is asymp-

totically equal to the α˘. We can think of this as the “Morse chain complex” of the

Chern-Simons functional on the space of irreducible connections modulo gauge equiv-

alence, B˚Y “ A˚Y {G, whose critical points are the flat connections and gradient flow

equation is (formally) the ASD equation. While these equations depend on a choice of

metric on the 3-manifold Y , the homology groups are an invariant of the Y itself.

Floer’s theory is constrained to homology 3-spheres because of the presence of reducible

connections. While the instanton chain complex above is still a chain complex for rational

homology spheres, the proof that its homology is independent of the choice of metric fails

in the presence of Up1q-reducible connections (corresponding to representations π1pY q Ñ
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SUp2q with image lying inside a circle subgroup). One would need to take these reducible

connections into account in the definition of the chain complex, but this cannot be done

naively: while the instanton chain complex is a Morse complex for the space of irreducible

connections, which is an infinite-dimensional manifold, the gauge group G does not act

freely on the entire space of connections, and so the configuration space of all connections

modulo gauge, BY , is not a manifold.

Austin and Braam in [AB96] resolve this difficulty for a class of 3-manifolds (includ-

ing all rational homology spheres) by defining an invariant called the equivariant in-

stanton homology of Y , a Z{8-graded R-vector space IG˚ pY q with an action of RrU s “

H˚pBSOp3q;Rq, to be a form of SOp3q-equivariant Morse theory on an infinite-dimensional

SOp3q-manifold rBY with

rBY {SOp3q “ BY .

The manifold rBY might be called the configuration space of framed connections on (the

trivial SOp3q-bundle over) Y . Their invariant is defined using the equivariant de Rham

complex as a model form the equivariant (co)homology of a smooth G-manifold, and thus

inherently uses real coefficients.

Floer also defined, in [Flo91], instanton homology groups for SOp3q-bundles E over

3-manifolds Y satisfying the admissibility criterion that w2pEq P H
2pY ;Z{2q lifts to a

non-torsion class in H2pY ;Zq; in particular, b1pY q ą 0. In this case, there are no reducible

connections, and the homology of the Floer complex is a well-defined invariant of the pair

pY,Eq. This case is important for his work on surgery triangles in instanton homology.

Using this, Kronheimer and Mrowka introduce framed instanton homology groups

I#pY,Eq for an arbitrary SOp3q-bundle over a 3-manifold in [KM11b] by studying the

instanton homology of pY#T 3, E#Qq for a certain admissible bundle Q over T 3. This is

meant to be a version of the (non-equivariant) Morse homology of the space of framed

connections rBE.

In this paper, we jointly generalize Floer’s work on admissible bundles and Austin-

Braam’s work for rational homology spheres; to speak of both in the same breath, we say

that an SOp3q-bundle E over a 3-manifold Y is weakly admissible if either w2pEq has no

lifts to a torsion class in H2pY ;Zq, or if b1pY q “ 0.
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We take an alternate approach to Kronheimer and Mrowka’s to the framed instanton

homology groups: instead of taking a connected sum with T 3, we work on the space

of framed connections rBE itself. We do this with a sort of Morse-Bott complex for a

smooth G-manifold equipped with an equivariant Morse function; our definition is partly

inspired by the Morse-Bott complex introduced for monopole Floer homology in [Lin18].

This uses Lipyanskiy’s notion of the geometric chain complex Cgm
˚ pX;Rq of a smooth

manifold X, introduced in [Lip14], whose homology gives the usual singular homology of

X.

While there are technical obstructions to carrying this out for all 3-manifolds, this has

the advantage of providing more structure: for pY,Eq a weakly admissible bundle and

R a commutative ground ring, we can define a Z{8-graded chain complex of R-modules,

ĂCIpY,E, π;Rq, which carries the action of the differential graded algebra C˚pSOp3q;Rq.

(This is what we find to be the cleanest notion of a chain complex with an action of the

Lie group SOp3q.) This chain complex depends on further data π, including a metric on

the 3-manifold itself and a perturbation of the functional defining the Morse complex, but

this turns out to be mostly inessential: associated to a perturbation π on a pair pY,Eq

is an element of a finite set σpY,Eq of signature data; this will be defined in Chapter

4.5. For concreteness, we remark that if Y is a rational homology sphere whose universal

abelian cover Ỹ has H1pỸ ;Cq “ 0, then σpY,Eq consists of a single element for all E.

The set σpY,Eq corresponds precisely to the “natural classes of perturbations” stated in

the main theorem of [AB96].

In fact, the TQFT structure of the usual instanton Floer homology groups can be

lifted to the level of the homology groups of ĂCI. This is the main theorem of this paper.

Theorem 1. There is a category Cob
Up2q,w
3,b of based 3-manifolds pY,E, σ, bq equipped with

weakly admissible Up2q-bundles and signature data, whose morphisms are certain ‘weakly

admissible’ oriented cobordisms pW, rEq equipped with a path between the basepoints on

the ends. There is also a category of relatively Z{8-graded R-modules with an action of

H˚pSOp3q;Rq, and a functor

rI : Cob
Up2q,w
3,b Ñ Mod

r,Z{8
H˚pSOp3q;Rq

.

The relatively graded group rIpY,E, σ;Rq is called the framed instanton homology of the
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triple pY,E, σq. When Y is a rational homology sphere equipped with the trivial bundle,

the relative grading may be lifted to an absolute Z{8-grading.

Note the sudden shift to Up2q bundles in this statement. This is to pin down signs in

the definition of the differential and cobordism maps, and nothing else: the majority of

this text is written in the context of SOp3q-bundles, and we only make the passage to

Up2q-bundles in Chapter 6.4, in our discussion of orientations on the moduli spaces. In

particular, if we had chosen to work over a coefficient ring where 1 “ ´1, we may omit

discussion of Up2q-bundles entirely.

In the most important cases (including trivial bundles), the weak admissibility condi-

tion includes a condition called ρ-monotonicity, which is defined in terms of the Atiyah-

Patodi-Singer ρ invariant for flat connections and the signature data σ. Roughly, their

sum should always increase across the cobordism. This condition has to do with achieving

transversality normal to the reducible locus; when it fails, it is not clear how to try to

define the cobordism maps.

For a more precise statement, see Chapter 4.5 for Definition 4.5.1 of signature data;

the ρ-invariant and ρ-monotonicity condition are introduced at the end of Chapter 5.5,

and Definition 5.5.5 gives the definition of weakly (and fully) admissible bundles. Finally,

Chapter 7.2 contains Definition 7.2.2 of the weakly admissible cobordism category (and

below it, two relatives) as well as Theorem 7.2.10 defining the framed instanton functor.

It is our expectation that the notion of signature data above is inconsequential:

Conjecture 1. If Y is a rational homology sphere, ĂCI˚pY,E, σ;Rq is independent of the

choice of signature data σ up to graded C˚pSOp3q;Rq-equivariant quasi-isomorphism.

From here, ifR is a principal ideal domain, we may construct a complex CI`˚ pY,E, σ;Rq

using the bar construction (topologically, the Borel construction) on ĂCI. Its homology

groups are denoted I`˚ pY,E, σ;Rq and form a relatively graded module under the action

of H˚pBSOp3q;Rq. This construction is standard in algebraic topology, and reviewed in

the appendix.

One appealing feature of the monopole and Heegaard Floer theories (which are in some

sense S1-equivariant homology theories) is the existence of two other variants of the Floer
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homology groups that fit into an exact triangle. (Largely, we choose our notation to fit

with that of Heegaard Floer theory.)

In the appendix, we describe algebraic constructions C‚pA,Mq, where ‚ “ `,´,8,

where A is a dg-algebra and M a dg-module. C´pA,Mq is a cobar construction, dual

to the above bar construction, and C8pA,Mq is the Tate complex, constructed as a

comparison between a variant C` and C´. Thus up to a sort of twist (often only a

grading shift), we have an exact sequence

0 Ñ C`pA,Mq Ñ C´pA,Mq Ñ C8pA,Mq Ñ 0,

leading to an exact triangle of homology groups. The Tate homology groups H8pA,Mq

satisfy a short list of axioms, including that H8pA,Aq “ 0.

Applying a version of this for Z{8-graded complexes to the framed instanton complex

ĂCI as a module over C˚pSOp3q;Rq, and taking homology, we arrive at the equivariant

instanton homology groups

I`pY,E, σ;Rq, I´pY,E, σ;Rq, I8pY,E, σ;Rq.

As desired, these are all modules over H˚pBSOp3q;Rq, and fit into an exact triangle.

Theorem 2. There are functors from the cobordism category of pointed 3-manifolds

equipped with weakly admissible Up2q bundles and signature data to the category of rela-

tively Z{8-graded H´˚pBSOp3q;Rq-modules,

I‚˚ : Cob
Up2q,w
3,b Ñ Mod

r,Z{8
H´˚pBSOp3q;Rq,

‚ “ `,´,8. When Y is a rational homology sphere, I‚pY,E, σ;Rq’s relative grading lifts

to an absolute Z{8-grading. Furtheremore, there is a long exact sequence

¨ ¨ ¨ Ñ I`
r3s
ÝÑ I´ Ñ I8

r´4s
ÝÝÑ I` Ñ ¨ ¨ ¨

where rns denotes that the map increases grading by n.1

The main tool we use to establish invariance properties and perform calculations and

compare with existing theories is a collection of spectral sequences that calculate these

equivariant homology groups.

1Note that the grading shift is only meaningful when Y is a rational homology sphere, for which the
grading is absolute.

5



Theorem 3. Let pY,E, σq be a closed oriented 3-manifold equipped with weakly admissible

Up2q- bundle and signature datum. Supposing π is a regular perturbation for pY,E, σq,

we denote by Cπ the set of critical SOp3q-orbits.

Then there are Z{8ˆ Z-graded spectral sequences

à

αPCπ

H‚
SOp3qpα;Rq Ñ I‚pY,E, σ;Rq.

These spectral sequences converge strongly for rI, I`, and I´, meaning they can be used to

calculate the homology groups, and converge weakly for I8, meaning that we can detect

quasi-isomorphisms as isomorphisms on some finite page Er.

This is proved in two parts, Theorems 7.3.1 and 7.4.2, first for nonequivariant homology

and then for equivariant homology.

Using the fact that Tate homology of a free A-module vanishes, the groups I8pY,Eq

are especially computable. For an admissible bundle, they vanish, and we can compare

I` to Floer’s invariant IpY,E;Rq for admissible bundles.

Theorem 4. If E is an admissible bundle over a 3-manifold Y , then

I8pY,E;Rq “ 0, and I`pY,E;Rq – IpY,E;Rq.

If we also have 1
2
P R, the action of H˚pBSOp3q;Rq “ RrU s on I`pY,E;Rq is taken by

the isomorphism to the standard Floer-theroetic U-map.

The isomorphisms are given in Theorem 8.1.1 and Corollary 8.3.2.

Let 1
2
P R. In [Don02], Donaldson introduced three chain complexes for Y an integer

homology sphere equipped with the trivial SUp2q-bundle: the framed complex ĄCF pY ;Rq,

the equivariant homology complex CF pY ;Rq, and the equivariant cohomology complex

CF pY ;Rq. The first complex has an action of the exterior algebra Λpuq, with |u| “ 3,

and the second two complexes have an action of RrU s, where |U | “ ´4. In Section.2, we

prove the following.

Theorem 5. For pY,Eq a 3-manifold equipped with a weakly admissible bundle, there is a

finite dimensional Λpuq-module DCIpY,E;Rq and finite type RrU s-modules DCI
˘
pY,E;Rq,

so that there are equivariant quasi-isomorphisms
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DCIpY,E;Rq » ĂCIpY,E;Rq

DCI
`
pY,E;Rq » CI`pY,E;Rq

DCI
´
pY,E;Rq » CI´pY,E;Rq

Furthermore, when Y is an integer homology sphere, we have equalities

DCIpY,E;Rq “ ĄCF pY,E;Rq

DCI
`
“ CF pY,E;Rq

DCI
´
pY,E;Rq “ CF pY,E;Rq,

up to a rescaling of basis.

Here finite type means that it is a direct sum of finitely many simple pieces: for DCI
`

,

they are R with trivial U -action and RJU˚K, where U contracts against U˚; for DCI
´

,

they are R with trivial U -action and RrU s with canonical U -action.

It is by passing through this isomorphism that we show that the isomorphisms Theorem

4 above preserve the U -action; this is Corollary 8.2.6.

While more complicated than the Tate calculations for admissible bundles, we are able

to exploit the isomorphisms above to calculate instanton Tate homology for an arbitrary

rational homology 3-sphere in Section.3.

Theorem 6. Let pY,E, σq be a rational homology 3-sphere equipped with Up2q-bundle

and signature datum, and suppose R is a PID in which 2 is invertible.

We write RrH2pY qs to mean the group algebra of the finite group H2pY ;Zq – H1pY ;Zq.

If c “ c1E P H2pY q, there is an action of Z{2 on H2pY q given by the involution x ÞÑ

c´ x. Further define an action of Z{2 on the ring RrU1{2, U´1{2s, acting on the basis by

Un{2 ÞÑ p´1qnUn{2. Here |U1{2| “ ´2.

Then there is a canonical isomorphism of Z{8-graded modules over RrU s,

I8pY,E, σ;Rq – RrU1{2, U´1{2KbRrZ{2s RrH2
pY qs.

Remark 1. In [AB96], an equivariant instanton Floer homology is associated to any 3-

manifold with b1pY q “ 0 or H1pY ;Zq – Za ‘ pZ{2qb equipped with the trivial SOp3q
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bundle, though their analysis is unchanged in the case of b1pY q “ 0 and nontrivial SOp3q

bundle.

In the case that pY,Eq supports an SOp2q-reducible flat connection — that is, if

xw2pEq, H2pY ;Zq mod 2y, and 2Tors pH1pY ;Zq ‰ 0,

there is a topological obstruction to equivariant transversality.

When this is the case, the unperturbed moduli space of SOp2q-reducible flat connec-

tions is a disjoint union of tori T b1pY q. After applying an SOp3q-invariant perturbation,

the space of SOp2q-invarinat flowlines between various reducible critical points lying in

the same T b1 are smooth manifolds of dimension at most b1pY q ´ 1; they have a map to

a space of Fredholm operators, given by sending a reducible ASD connection splitting as

A – θ ‘ A to the ASD operator corresponding to A; in this specific case, this operator

has index 0. This map must be made disjoint from the loci of operators with cokernel of

dimension at least 1; this is a subspace of codimension 2. Thus when b1pY q ě 3, we may

have some non-trivial intersection with this locus which cannot be removed by a small

perturbation. A similar argument shows that there is a further obstruction to achieving

invariance than those we have already identified.

Austin and Braam’s invariant in the case that b1pY q ą 0 is defined by careful (non-

generic) choices of equivariant perturbation. We expect that the instanton complex de-

fined in this paper can be extended to that level of generality, as well as the proof of its

invariance up to signature data. However, the analysis is somewhat more delicate, and

the choice of perturbation is necessarily non-generic. The cases with b1pY q ą 0 also add

some difficulty in defining a cobordism category that instanton homology is functorial on,

as many cobordisms for which the cobordism maps are naturally and essentially uniquely

defined do not necessarily compose to cobordisms in the same class.

1.2 Survey of the homology theories

As a number of different chain complexes are introduced in this paper and exist in the

literature, we survey here the definitions and relationships.

Here pY,Eq is a closed oriented 3-manifold with weakly admissible Up2q-bundle, π is
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a regular perturbation and R is a PID. This means, in particular, that there are finitely

many critical orbits of the perturbed Chern-Simons functional on rBeE. The finite set

whose elements are connected components of the critical set is written Cπ; an element

α P Cπ is an SOp3q-space, either a point, S2, or SOp3q itself. If E is equipepd with a

trivialization, each α P Cπ has an associated grading ipαq P Z{8; otherwise, we instead

have relative gradings ipα, βq P Z{8. For uniformity of notation we often write the relative

grading as if it were given by an absolute grading.

The first chain complex introduced is ĂCIpY,E, π;Rq. As an R-module, this is given

by
à

αPCπ

Cgm
˚ pα;Rqripαqs.

The individual terms Cgm
˚ pα;Rq are the geometric chain complexes of the orbits α de-

scribed in Chapter 7.1. A generic basis element of Cgm
˚ pαq is given by a “strong δ-chain”,

but it is helpful to imagine that a generator of Cgm
˚ pα;Rq is given by a smooth map

σ : P Ñ α, where P is a compact smooth manifold with corners, and σ is considered up

to diffeomorphism of the domain. (This is essentially a special case of the more general

notion of δ-chain.)

The boundary operator on ĂCIpY,E, π;Rq is given as the sum of the geometric bound-

ary operator (sending σ : P Ñ α to BP Ñ α) and a fiber product map with the mod-

uli spaces whose properties are discussed in the first half of this paper, taking a map

σ : P Ñ α to a map

P ˆαMpα, βq Ñ β. (*)

This chain complex carries the action of a Cgm
˚ pSOp3q;Rq-module.

After this, one applies the results of the appendix to construct chain complexes

CI`pY,E, π;Rq, CI´pY,E, π;Rq, CI8pY,E, π;Rq.

These are constructed algebraically, and we will not give detailed descriptions here of a

generic element of these chain complexes. Writing ‚ for one of t`,´,8u, suffice it to

say that if G is a connected Lie group and H a connected subgroup, then for α “ G{H,

there are chain complexes Ĉ‚Gpα;Rq (the completed group homology complexes) so that

H`
G pαq computes group homology of H, while H´

G pαq computes group cohomology of H

in negative degrees and H8
G pHq computes Tate homology of H. These all having some

9



degree shift and an action of H´˚pBG;Rq induced by restriction to cohomology of BH.

Further,

CI‚pY,E, π;Rq “
à

αPCπ

Ĉ‚SOp3qpα;Rq.

Next when 1
2
P R we define a finite-dimensional chain complex DCIpY,E, π;Rq, given

as an R-module by

DCIpY,E, π;Rq “
à

αPCπ

H˚pα;Rqripαqs,

with an action of H˚pSOp3q;Rq; this is now an exterior algebra on a single degree-

3 generator, the fundamental class of SOp3q. One may think of this as contributing,

for each irreducible orbit α, a copy of R in degree ipαq and ipαq ` 3 with the action

of H˚pSOp3q;Rq taking the first to the second, for each SOp2q-reducible a copy of R

in degrees ipαq and ipαq ` 2, and for each full reducible a copy of R in degree ipαq.

The differential counts 0-dimensional moduli spaces between irreducibles, as well as the

degrees of maps of moduli spaces between different orbits. One of these maps is often

called the U -map, which we write UFl to distinguish from later algebraic terms, also

written U .

There is a C˚pSOp3q;Rq-equivariant quasi-isomorphism

DCIpY,E, π;Rq » ĂCIpY,E, π;Rq.

When Y is an integer homology sphere and E is the trivial bundle, DCIpY, π;Rq is

isomorphic to the complex Donaldson writes as ĄHF pY, π;Rq in [Don02, Section 7.3.3];

though Donaldson only writes his for rational coefficients, there is no difficulty extending

the definition to the broader case 1
2
P R.

One may immediately apply the constructions of the appendix to DCIpY,E, π;Rq.

Applying the plus-homology construction we arrive at DCI`pY,E, π;Rq, and applying

the minus-homology construction we arrive at DCI´pY,E, π;Rq. If U is a degree ´4

element and U˚ is a degree 4 element, the underlying R-modules are given by

DCI`pY,E, π;Rq “ DCIpY,E, π;RqJU˚K

and

DCI´pY,E, π;Rq “ DCIpY,E, π;RqrU s.
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One thinks of each irreducible here as contributing what looks like a copy of ESOp3q.

Applying a trick of Seidel and Smith from [SS10], we pass from these to complexes

DCI
`

and DCI
´

. The first has underlying R-module given by

à

αPCπ

HSOp3q
˚ pα;Rqripαqs

and the second by
à

αPCπ

Hdimα´˚
SOp3q pα;Rqripαqs.

That is, each irreducible contributes a copy of R (in degree ipαq or ipαq ` 3), while each

SOp2q-reducible contributes a tower RJU˚{2K or RrU1{2sr2s respectively, where |U˚{2| “ 2

and |U1{2| “ ´2. Lastly, each full reducible contributes a copy of RJU˚K or RrU s,

respectively. The differentials involve large powers of UFl.

We have C´˚pBSOp3q;Rq-equivariant quasi-isomorphisms

CI`pY,E, π;Rq » DCI`pY,E, π;Rq » DCI
`
pY,E, π;Rq

and

CI´pY,E, π;Rq » DCI´pY,E, π;Rq » DCI
´
pY,E, π;Rq.

For an integer homology sphere Y equipped with the trivial bundle E, the com-

plex DCI
`
pY,E, π;Rq is isomorphic as a U -module to the complex Donaldson writes

as CF pY ;Rq, and similarly DCI
´
pY,E, π;Rq – CF pY ;Rq.

Donaldson also defines complexes CF pY ;Rq and CF pY ;Rq. These are best understood

as the quotient and fixed points of the chain complex DCIpY, π;Rq – ĄCF pY, π;Rq under

the H˚pSOp3q;Rq-action. We do not use these, but do notice them as appearing in certain

spectral sequences for integer homology spheres. In that context, we write the resulting

homology groups as I and I.

There are also Froyshov’s reduced instanton Floer homology groups, which he writes

ĄHF and Donaldson writes yHF . We identify these in Section 8.4 as being the image of

I`pY ;Rq inside I´pY ;Rq (or more precisely, we see this at the level of an E8 page of a

spectral sequence calculating those), but otherwise do not use them. If we were to give

these groups a notation, we could call them pI.

11



There is also Floer’s original version of instanton homology, IpY q, which is defined

only for integer homology spheres and does not use the reducibles. This, too, may be

seen in terms of the spectral sequence for I` (ignoring the reducible piece).

Finally, Kronheimer and Mrowka define instanton homology groups I#pY,E;Rq for

all pairs of 3-manifolds and SOp3q-bundles, by taking the connected sum with a pair

pT 3, Eq where w2pEq is Poincaré dual to T 2 ˆ t˚u, also called ‘framed instanton homol-

ogy’. These are not the same as the groups rIpY,E;Rq. A calculation of [Sca15] using

Fukaya’s connected sum theorem shows that when Y is an integer homology sphere, the

group I#pY ;Rq may be calculated using a chain complex very much like that defining

DCIpY, π;Rq, but they differ in one component of the matrix defining the differential:

the term UFl in BDCI is instead given by UFl´8 in the complex defining I#pY ;Rq. So one

finds instead that I#pY,E;Rq is a sort of deformation of rIpY,E;Rq. We do not discuss

this relationship further here.

In summary, there are nine versions of instanton homology for integer homology

spheres,

rI, I`, I´, I8, I, I, pI, I#, I;

all but the last of these are also defined for pairs of a rational homology sphere and Up2q-

bundle. In this paper we will work most extensively with the first four of these. We will

briefly mention the next three ‘reduced’ homology theories I, I, and Î when discussing

spectral sequence calculations for integer homology spheres. We will not mention I# and

I any further.

In addition to the complexes defining each of these homology theories, we will also use

five important complexes for calculation, the Donaldson models

DCI, DCI`, DCI
`
, DCI´, DCI

´
.

The first of these has homology naturally isomorphic to rI, the second two of these have

homology naturally isomorphic to I`, and the last two of these have homology naturally

isomorphic to I´.
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1.3 Organization

Chapter 2 introduces the framed configuration spaces on which we attempt to do Morse

theory, and discusses the action of SOp3q on them. Chapter 3 explains how to com-

plete these topological spaces using Sobolev spaces and obtain the structure of a Banach

manifold.

The technical heart of the paper is in Chapters 4 and 5, where we use the standard

holonomy perturbations in instanton Floer theory to show that we can achieve equivariant

transversality: a generic perturbation gives rise to a finite set of critical SOp3q-orbits,

and the space of trajectories between them forms a smooth manifold. As long as the

dimension is sufficiently small, this has a compactification to a topological manifold with

corners, and we use these compactifications to define the complex ĂCI. This includes a

calculation of the reducible perturbed instantons and their indices in Chapter 5.4, which

is then used to give a condition which guarantees we can achieve transversality normal

to the reducible locus. This condition uses the notion of signature data introduced in

Chapter 4.5.

Chapters 2-6 provide us with the technical machine (the moduli spaces and their

properties) we need. Chapters 7 and 8 are devoted to defining and calculating equivariant

instanton homology given this machine, and may be read independently of the first part

of the paper.

In Chapter 7, we define the invariants CI‚. First we review Lipyanskiy’s geometric

homology, which is a crucial technical tool in our definition of ĂCI: it allows us to define

the chain complex without triangulating the moduli spaces appearing in (*), and only

requires the use of moduli spaces of small dimension; in particular, small enough that

the Uhlenbeck bubbling phenomenon does not arise. The chain complex ĂCIpY,E, π;Rq,

which depends on a choice of metric and perturbation, is defined in Chapter 7.2. This

construction comes with cobordism maps, and these provide us with the usual invariance

properties, giving Theorem 1.

In Chapter 7.3 we explain the notion of index filtration for ĂCI, which gives rise to a

Z{8 ˆ Z-graded spectral sequence. This is not a filtration on ĂCI in the standard sense,

but rather what we call a periodic filtration. In Chapter 7.4 we use the idea of periodic
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filtrations to define the equivariant instanton homology complexes CI‚, following the

construction of Section A.8.

In Chapter 8, we use the index spectral sequences of Chapters 7.4 and 7.5 to carry out

some calculations and comparisons.

In Chapter 8.1 we warm up with a calculation of I‚pY,Eq for admissible bundles,

giving Theorem 4 above.

After this, in Chapter 8.2 we compare ĂCI to Donaldson’s complex DCI (written in

[Don02] as ĄCF ), and in particular show that their homologies are isomorphic, justifying

the notation HpĂCIq “ rI. We are then able to show I`pY ;Rq – HF pY ;Rq for rings

containing 1{2, as well as I´pY ;Rq – HF pY ;Rq. In the same section, we extend the

definition of Donaldson’s chain complexes to rational homology spheres.

Chapter 8.3 uses the Donaldson model, and a localization/periodicity theorem for Tate

homology, to give the explicit formula for I8 mentioned as Theorem 6 above. Chapter

8.4 contains a calculation of I‚ for the 3-sphere, lens spaces, and the Poincaré homology

sphere, as well as a description of the spectral sequences for integer homology spheres

and a brief comment on the connection to Frøyshov’s reduced groups. We conclude in

Chapter 8.5 with a discussion of orientation-reversal and duality in CI‚pY q.

The appendix describes the algebraic constructions C‚pA,Mq and their invariance

properties, as well as providing calculational tools. In particular, if A is the group algebra

C˚pG;Rq, where G is a compact Lie group, then C‚pG,G{Hq is calculated for all ‚ and

any closed subgroup H Ă G. Section A.8 concludes with an extension of this machinery

to the Z{8-graded case, when our complexes come equipped with well-behaved periodic

filtrations.
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CHAPTER 2

Configuration spaces and their reducibles

Let Y be an oriented closed 3-manifold equipped with a Riemannian metric, and E Ñ Y

an SOp3q-bundle over Y ; it is worth mentioning that SOp3q-bundles over a 3-complex are

determined up to isomorphism by their second Stiefel-Whitney class w2pEq P H
2pY ;Z{2q.

Associated to E by the adjoint representation SOp3q ñ sop3q is the adjoint bundle

gE Ă EndpEq, the subbundle given by skew-adjoint endomorphisms. The space AE of

orthogonal connections on E is affine over Ω1pgEq. There is a gauge group, GE, the

set of smooth bundle automorphisms of E that cover the identity; equivalently, this is

the set of smooth sections of the non-principal SOp3q bundle AutpEq, the associated

bundle to E under the conjugation action SOp3q ñ SOp3q. Using the isomorphism

InnpSUp2qq – SOp3q, we may form the bundle

ĄAutpEq “ AutpEq ˆSOp3q SUp2q.

We say that σ P GE is an even gauge transformation if σ lifts to a section of ĄAutpEq, and

denote the group of even gauge transformations by GeE. Obstruction theory applied to

sections of AutpEq provides a short exact sequence of groups

1 Ñ GeE Ñ GE Ñ H1
pY ;Z{2q Ñ 0.

There is a map, the Chern-Simons functional,

cs : AE Ñ R,

defined as follows. Pick a compact oriented 4-manifold X, equipped with an SOp3q bundle

EX , such that BpX,EXq “ pY,Eq. Given a connection A on E, extend it to a connection

AX on EX . Then define

cspAq “

ż

X

TrpF 2
AX
q.
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This gives a function that depends only on the choice pX,EXq, not on the extension AX .

If pX 1, EX 1 , AX 1q is another extension, we may define M “ X YY X 1 with the obvious

choice of SOp3q-bundle and connection over it and invoke the Chern-Weil formula

´2π2p1pE
1
q “

ż

M

TrpF 2
A1q.

Thus cs is defined in general up to an 8π2Z ambiguity (using that 4 | p1pE
1q). If

pX 1, EX 1q “ pX,EXq, then p1pEX Y EX 1q “ 0, giving us a well-defined functional cs

on AE conditional on that choice of bounding 4-manifold pX,EXq.

The gauge group GE acts on AE by σpAq “ A´p∇Aσqσ
´1, where we take the covariant

derivative of σ by considering it as a section of EndpEq “ E bE˚, where E is considered

now as an oriented vector bundle equipped with metric. We denote the quotient by this

group action

BE “ AE{GE,

the configuration space of connections on E, and also write the even configuration space

as the quotient

BeE :“ AE{GeE.

Immediately from the definition we see that the stabilizer at A by the action of GE or GeE
is precisely the subset of (even) A-parallel gauge transformations; thus elements of the

stabilizer are determined by their value at a single point, and evaluating at a point b P Y

gives an isomorphism to a subgroup of SOp3q “ AutpEbq.

The Chern-Simons functional cs : AE Ñ R does not descend naively to BE — its

value may change after applying an element of gauge group GE. However, if u is a gauge

transformation,

cspupAqq “ cspAq ` 8π2k

for some integer k, so cs descends to a continuous map BE Ñ R{8π2Z. This statement is

little more than saying that there is always a 4-manifold with SOp3q-bundle pX,Eq over

which the gauge transformation u extends, for then one sees that

cspupAqq “

ż

X

tr
`

F 2
upAq

˘

“

ż

X

tr
`

F 2
A

˘

;

that the integrals are equal is Stokes’ theorem. It is this circle-valued functional, on a

slightly modified space, that we hope to do Morse theory with.
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2.1 Framed connections and the framed configuration space

The configuration space BE is in no sense a manifold, because GE does not act freely

on the space of connections. To free up the action of the gauge group on the space of

connections so that the quotient by gauge is a manifold (at least heuristically, at this

point), we pick a basepoint b P Y and consider the space of framed connections

rAE “ AE ˆ Eb.

We call a point p P Eb a framing because it determines an isomorphism SOp3q – Eb

sending the identity to the point p; here we are thinking of E as a principal bundle, not

a vector bundle. A gauge transformation σ evaluates to σpbq P AutpEbq, which acts on

Eb on the left by applying the automorphism. (By definition, to say f P AutpEbq means

fppgq “ fppqg.) This gives us an action of GE on the space of framed connections rAE.

There is further a natural right SOp3q action on rAE by acting on Eb by translation. If

σ P GeE, pA, pq P rAE, and g P SOp3q, we have that

σ ¨ ppA, pq ¨ gq “ pσ ¨ pA, pqq ¨ g,

because the gauge group acts by automorphisms of the right G-set Eb.

Because any gauge transformation in the stabilizer of A is A-parallel, it is trivial if its

value at any point is the identity. As a consequence, GeE acts freely on rAE. Its quotient

under the gauge group action, denoted rBeE, retains the right SOp3q-action. We call this the

framed configuration space of connections on E. The stabilizer of rA, ps P rBeE in SOp3q is

the isomorphic image of the stabilizer of A P AE under the action of the even gauge group

following evaluation GeE Ñ AutpEbq and the natural isomorphism AutpEbq – SOp3q.

There is a map

rBeE Ñ BeE,

given by quotienting by the leftover SOp3q action or equivalently by forgetting the fram-

ing. Said another way, orbits of the SOp3q-action on rBE or rBeE correspond to gauge

equivalence classes of connections, and a point on an orbit α Ă rBE corresponding to rAs

is an equivalence class of framings, with α – Eb{StabprAsq.

We will soon define Hilbert manifold completions of these spaces, in the context of
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which we will find that rBeE is a smooth Hilbert manifold with smooth SOp3q-action.

These remarks also apply to the full gauge group, with quotient rBE “ rAE{GE.

Remark 2.1.1. One could also define rBeE “ AE{rG
e,b
E , quotienting by the group of based

gauge transformations (gauge transformations with σpbq “ Id). This works just as well

here, and the right SOp3q action corresponds to the inverse of the left SOp3q action given

by GeE{G
e,b
E . However, we find later discussions of the 4-manifold configuration spaces and

the restriction maps to their ends clearer in the language of framed connections, so this

is our preferred model.

2.2 The equivalent Up2q model

We would like to understand the reducible subspaces of rBeE under the SOp3q action. The

SOp2q fixed points are more easily understood if we introduce an auxiliary construction.

Pick a principal Up2q-bundle Ẽ and an isomorphism

Ẽ ˆUp2q SOp3q – E.

This is possible because Up2q-bundles on 3-manifolds are classified by their first Chern

class (and SOp3q bundles by their second Steifel-Whitney class), so we only need to

know that we can pick a lift of w2 to an integral cohomology class; that this is possible

follows from the Bockstein long exact sequence and the fact that H3pY ;Zq – Z has no

2-torsion. Thinking of Ẽ instead as a complex vector bundle and explicitly identifying the

quotient homomorphism Up2q Ñ SOp3q, the construction Ẽ ˆUp2q SOp3q – E produces

the oriented 3-plane bundle supẼq Ă EndpẼq of skew-Hermitian endomorphisms of Ẽ as

the associated SOp3q-bundle.

Fix a connection A0 on the determinant complex line bundle detpẼq :“ λ (if c1pẼq is

finite order, we can choose this to be the flat connection, unique up to gauge transforma-

tion). We consider the space of connections with fixed determinant connection

Adet
Ẽ
“ tA P AẼ | trpAq “ A0 P Ω1

pY ; iRqu;

this is also affine over Ω1pgEq. To every connection on Ẽ there is an associated connection

on E, giving us a map AẼ Ñ AE which is a bijection when restricted to Adet
Ẽ

. To enhance
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this to a bijection of spaces of framed connections, let

rAdet
Ẽ
“ Adet

Ẽ
ˆ pẼb ˆUp2q SOp3qq;

this carries a natural right action by SOp3q. Furthermore, the natural gauge group acting

on Adet
Ẽ

is the set of gauge transformations whose (pointwise) determinant is 1, denoted

Gdet
Ẽ
“ ΓpAutpẼq | det γ “ 1q.

We can further identify this latter bundle of groups as isomorphic to ĄAutpEq and thus

there is a surjective homomorphism

Gdet
Ẽ
Ñ GeE.

It is not a bijection: recall that the latter group is defined as a subset of GE “ ΓpAutpEqq.

Its kernel is the 2-element set of gauge transformations whose pointwise values are ˘1 P

SUp2q. This subgroup acts trivially on rAdet
Ẽ

.

Now it is easy to verify that the bijection rAdet
Ẽ
Ñ rAE is equivariant under the actions

of the gauge groups, and thus after quotienting we have an equivariant diffeomorphism

rBdet
Ẽ

–
ÝÑ rBeE. (2.1)

The group acting on the former space is SUp2q, but ˘1 act trivially, and so passing to the

quotient PSUp2q – SOp3q we identify these two configuration spaces as SOp3q-spaces.

Furthermore, the natural definition of Chern-Simons functional on this first space is sent

to our Chern-Simons functional on the second space, and there is no difference in the

resulting gauge theory. We only consider this construction auxiliary because it depends

on the unnecessary input data of Ẽ and A0. When working on the Up2q-bundle, we

usually prefer to speak of the SUp2q action, as SUp2q naturally sits inside the Up2q gauge

group, even though ˘1 act trivially on the framed configuration space.

In the simple case that Ẽ “ η1‘η2, the associated SOp3q-bundle is iR‘pη1bη
´1
2 q, and

a connection on the former respecting the splitting is taken under the bijectionAdet
Ẽ
Ñ AE

to a connection which respects the latter splitting.
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2.3 Reducibles on 3-manifolds

We can explicitly describe the stabilizers that arise under the action of the even gauge

group onAE, and hence the orbit types in rBeE. In understanding these, it’s also convenient

to carry out the same analysis for the full gauge group GE and its quotient rBE. Recall

that

GE{GeE – H1
pY ;Z{2q,

identifying the latter with the group of obstructions to lifting a section of AutpEq to

a section of ĄAutpEq. This leaves an H1pY ;Z{2q action on rBeE, whose quotient is rBE,

the quotient by all gauge transformations. This is a useful gadget to keep track of,

especially in light of the following lemma (a version of [DK90, Lemma 4.28]), calculating

the stabilizers of connections under both GeE and GE.

Lemma 2.3.1. Let A be an SOp3q-connection on E. Then the stabilizer ΓA under the

action of the full gauge group GE is

CpHAq Ă SOp3q,

the centralizer of the holonomy group of A at some choice of basepoint b. Let π : SUp2q Ñ

SOp3q be the projection. ΓA X GeE is

CSUp2qpπ
´1HAq Ă SOp3q,

the set of elements of SOp3q that fix π´1HA under conjugation, considering SOp3q “

InnpSUp2qq.

Proof. If SOp3q acts smoothly on some manifold M , consider the M -bundle EˆSOp3qM .

If A is an SOp3q-connection on E, there is a natural connection induced on the associated

M -bundle. Then m P Mx extends to a parallel section of this M -bundle if and only if it

is fixed under the action of HA on M . Taking M to be SOp3q and SUp2q equipped with

the conjugation action gives the desired result. �

A group-theoretic calculation shows that the only subgroups of SUp2q that arise as

centralizers are the center Z{2, the circle subgroups Up1q, and the full group SUp2q. So

the only possible stabilizers of the action of GeE on AE are

tIu, SOp2q, SOp3q.
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A similar calculation shows that the subgroups of SOp3q that arise as centralizers are

additionally Op2q, the diagonal subgroup V4, and Z{2. (Calculate centralizers of elements

first, then calculate the possible intersections of these.) Comparing stabilizers, we see

that the action of H1pY ;Z{2q on BeE giving rise to the quotient by the full gauge group

BE is free except at reducibles with full stabilizer Op2q, V4, or Z{2, where the action of

H1pY ;Z{2q has stabilizer isomorphic to Z{2, V4, and Z{2, respectively.

When the stabilizer of a connection A on E is SOp3q Ă GeE, the bundle must be trivial

and the connection gauge equivalent to the trivial connection; however, it needn’t be

equivalent by an even gauge transformation. In fact, because H1pY ;Z{2q acts freely on

points in BeE with full stabilizer and there is only one such in the full quotient, there are

H1pY ;Z{2q different elements of rBeE with stabilizer SOp3q.

Inside the Up2q-model, [SS17, Section 3] identifies the action of H1pY ;Z{2q as sending

a connection on Ẽ to the corresponding connection on ẼbξC, where ξC is the complexifi-

cation of a real line bundle (equivalently, a complex line bundle equipped with a unitary

connection with holonomy in ˘1.)

We will ultimately be interested in reducible orbits of the SOp3q-action. To describe

the reducible orbits in a G-space X with orbit type isomorphic to G{H, it suffices to

describe the set of H-fixed points XH , and the action of the Weyl group

W pHq “ NGpHq{H

on XH : every orbit Gx of a point x with stabilizer conjugate to H intersects XH non-

trivially; and in fact, if x P XH , then

GxXXH
“ W pHqx.

Thus, for instance, a G-invariant function on the subspace of points whose stabilizer

contains a conjugate of H is determined uniquely by a W pHq-invariant function on XH .

The description in terms of fixed subspaces and Weyl groups tends to be easier to state

and prove, so we largely prefer that language as long as possible. The only case we

actually use is that of SOp2q Ă SOp3q, which has Weyl group isomorphic to Z{2.

Proposition 2.3.2. Suppose E is an SOp3q-bundle over a closed 3-manifold Y . Denote

Ẽ a Up2q bundle with c1pẼq mod 2 “ w2pEq and write λ “ det Ẽ, as in Chapter 2.2.
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1. The set of points of rBeE fixed by SOp2q Ă SOp3q is identified with

ğ

η

Bη :“
ğ

η

Aη{Gη

where η varies over isomorphism classes of complex line bundles, Aη is the con-

figuration space of unitary connections on η, affine over Ω1pY ; iRq, and the gauge

group Gη is the space of sections of Autpηq, which is the same as the space of maps

MappY, S1q. The SOp3q orbit of the SOp2q-fixed point space is the set of all re-

ducible connections. The action of the Weyl group sends a class of connection rAs

on η to the class of rA0 ´ As on λb η´1.

2. If E is trivial, rBeE has SOp3q fixed point set in bijection with H1pY ;Z{2q; if E is

nontrivial, the even configuration space has no SOp3q fixed points.

Proof. Following equation (2.1), it suffices to find the fixed subspaces in rBdet
Ẽ

. Consider

the subset of framed connections pÃ, pq in rAdet
Ẽ

whose connection term Ã has stabilizer

consisting of gauge transformationgs with σpbq in the diagonal subgroup

SpUp1q ˆ Up1qq Ă SUp2q,

using the framing p to specify the isomorphism

AutpẼbq – Up2q.

All other circle stabilizers in Gdet
Ẽ

are conjugate to this subgroup, and this fixed subspace

of the space of framed connections projects to the subset of SOp2q-fixed connections in

rBdet
Ẽ

. Our assumption implies that Ã has holonomy contained in the diagonal subgroup

Up1q ˆ Up1q Ă Up2q.

This leaves invariant a splitting

Ẽb – C2
– C‘ C,

the first isomorphism given by the framing p, and hence gives a parallel splitting Ẽ –

η ‘ η1. Sending pÃ, pq to the corresponding connection A1 on η gives us the map from

this subset to Aη, and because any gauge transformation of η extends to a determinant-1
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gauge transformation of Ẽ (act by the inverse in the η1 coordinate), this descends to a

well-defined map
´

rBdet
Ẽ

¯Up1q

Ñ
ğ

η

Bη

modulo gauge. Conversely, any connection on η induces a connection on Ẽ of the specified

form, and any gauge transformation of η is induced by a unique determinant-1 gauge

transformation of Ẽ. Any framing on η then induces a framing on Ẽ, but there is

a determinant-1 gauge transformation changing any framing on η to another, so after

modding out by gauge the choice of framing on η didn’t matter. This gives the stated

bijection for those connections whose induced splitting gives a line bundle of topological

type η in the first coordinate; but note that on a 3-manifold, a Up2q-bundle is determined

by its first Chern class, and so we have an isomorphism

Ẽ – η ‘ pλb η´1
q.

Thus every complex line bundle η arises in such a splitting.

The action of the Weyl group is to swap the coordinates of the framing; this then

swaps the components rA1 ‘ pA0 ´ A1qs of the connection, as stated in the lemma. In

particular, it only fixes A1 if there is an isomorphism

η – λb η´1

and this isomorphism sends A1 to A0 ´ A1. This is only possible if λ is twice an inte-

gral class, and so w2pEq “ 0; but if one such choice is made, all others are affine over

H1pY ;Z{2q, tensoring the whole bundle (and hence each component) with ξC, the com-

plexification of a real line bundle, or equivalently a complex line bundle with holonomy

in ˘1. �

Corollary 2.3.3. Let E and Ẽ be as in the previous proposition; write c “ c1pλq “ c1pẼq.

Then the reducible subspace of rBeE, consisting of framed connections with nontrivial stabi-

lizer, is a disjoint union over connected components labeled by pairs tz1, z2u Ă H2pY ;Zq

with z1`z2 “ c, where the zi are cohomology classes corresponding to complex line bundles

ηi.

If z1 ‰ z2, this connected component is a fiber bundle over Bη1 – Bη2 with fiber S2,
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where SOp3q acts trivially on the base and via the standard action on the fiber. If z1 “ z2,

this connected component contains a unique fully reducible connection.

Proof. Consider the subspace of framed reducibles corresponding to the splitting Ẽ –

η1 ‘ η2; we write this space as rBred
η1,η2

. The quotient of this space by the SOp3q-action is

the same as the quotient of its SOp2q-fixed subspace by the action of Z{2. In the case

that z1 ‰ z2, the SOp2q-fixed subspace is Bη1 \ Bη2 , and the action of the Weyl group

identifies these. Thus the desired fiber bundle is the quotient map

rBred
η1,η2

Ñ Bη1 – Bη2 .

When z1 “ z2 “: z, corresponding to a complex line bundle η, the SOp2q-fixed subspace

is Bη. Its quotient by the action of the Weyl group is connected, so rBred
η1,η2

is connected. In

this case, E is trivial, so we may choose Ẽ trivial for convenience of discussion; then the

action of the Weyl group may be described as complex conjugation, using the isomorphism

η – ξC for a unique real line bundle ξ; the induced connection is the fully reducible

connection. �

Remark 2.3.1. The full group of gauge transformations preserves the reducible set, so

GE{GeE – H1pY ;Z{2q acts on RedpY,Eq. If β : H1pY ;Z{2q Ñ H2pY ;Zq is the Bockstein

homomorphism, then in the notation of the above corollary, the action on RedpY,Eq is

given by sending

x ¨ tz1, z2u ÞÑ tz1 ` βx, z2 ` βxu.

In particular, this action is free and transitive on Red˚pY,Eq.

If x stabilizes tz1, z2u, then z2 “ z1 ` βx, and we see that c “ 2z1 ` βx, and we see

that we may rechoose c to be βx; then the above corresponds to the reduction

E – ξC ‘ R – ξ ‘ ξ ‘ R,

where ξ is the real line bundle corresponding to x.

The discussion after Lemma 2.3.1 shows that the H1pY ;Z{2q action has stabilizer

equal to Z{2 at an Op2q connection, and otherwise acts freely on the reducible set. So in

fact we see that H1pY ;Z{2q acts freely on the set of reducible components that do not

contain an Op2q-connection, and has stabilizer Z{2 on those that do.
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We summarize the content of this section as notation:

Definition 2.3.1. Let Y be a closed oriented 3-manifold and E an SOp3q-bundle over

Y . We write RedpY,Eq for the set of connected components of the reducible subspace of

rBeE. This may be written as

RedpY,Eq “ Red˚pY,Eq \ RedSOp2qpY,Eq,

where the first term refers to those components containing a fully reducible orbit, and

the second refers to those components entirely consisting of framed connections whose

stabilizers are conjugate to SOp2q.

If we fix a choice of c P H2pY ;Zq that reduces mod 2 to w2pEq, we are furnished with

a bijection between RedpY,Eq and the set of unordered pairs tz1, z2u Ă H2pY ;Zq with

z1` z2 “ c. The set Red˚pY,Eq is sent to the 1-element sets1, and the set RedSOp2qpY,Eq

is sent to the 2-element sets tz1, z2u with z1 ‰ z2.

We write elements of RedpY,Eq as tz1, z2u, making the choice of c implicit.

In the case that b1pY q “ 0, we determine the cardinality of these sets as a simple

exercise in algebraic topology.

Proposition 2.3.4. Let Y be a closed oriented 3-manifold with b1pY q “ 0, and E an

SOp3q-bundle over it. We may determine the number of reducible components as follows.

‚ If E is trivial, then

|Red˚pY,Eq| “ |H
1
pY ;Z{2q|

ˇ

ˇRedSOp2qpY,Eq
ˇ

ˇ “
`

|H2
pY ;Zq| ´ |H1

pY ;Z{2q|
˘

{2.

‚ If E is nontrivial, Red˚pY,Eq is empty, and

ˇ

ˇRedSOp2qpY,Eq
ˇ

ˇ “ |H2
pY ;Zq|{2.

Proof. If E is trivial, we choose the integral lift λ of w2pEq “ 0 to be 0. Then Red˚pY,Eq

is in bijection with 2-torsion elements of H2pY ;Zq. The Bockstein exact sequence

0 “ H1
pY ;Zq mod 2

ÝÝÝÝÝÑ H1
pY ;Z{2q β

ÝÑ H2
pY ;Zq ˆ2

ÝÑ H2
pY ;Zq

1that is, those pairs with z1 “ z2; equivalently the set of z with 2z “ c
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shows that the set of 2-torsion elements is in bijection with H1pY ;Z{2q, the bijection

sending x P H1pY ;Z{2q to βx P H2pY ;Zq. The set RedSOp2qpY,Eq is in bijection with

the set of pairs

tz,´zu P H2
pY ;Zq

for z not 2-torsion. This proves both equalities.

If E is nontrivial, and c is an integral lift of w2E, then a set tz1, z2u with z1 ` z2 “ c

cannot be a singleton: if c “ 2z1, then c reduces to 0 mod 2, and thus w2E “ 0,

so Red˚pY,Eq is empty. Thus every pair pz1, z2q with z1 ` z2 “ c consists of distinct

elements, and the Z{2 action swapping z1 and z2 has no fixed points. Because a pair

pz1, z2q is determined completely by z1 P H
2pY ;Zq, the desired equality is proven.

As a sanity check, observe that |H2pY ;Zq| is divisible by |H1pY ;Z{2q|, which is a power

of 2, and we assumed H1pY ;Z{2q to be nontrivial in assuming that w2pEq is nontrivial,

so |H2pY ;Zq|{2 is indeed an integer. �

2.4 Configurations on the cylinder

There are two more kinds of configuration spaces we should consider. First, we should

have a configuration space of connections on the bundle π˚E over RˆY . We write Ap4qπ˚E as

the space of connections which, when restricted sufficiently far on each end, are pullbacks

of connections on Y . (We will denote any gauge group or space of connections on a

4-manifold with a (4) unless there is no risk of confusion.) When we later give a Hilbert

manifold modification of this construction, it will instead be replaced by an appropriate

space of connections which have exponential decay to certain constant connections on the

end. The space of framed connections on π˚E is

rAp4qπ˚E :“ Ap4qπ˚E ˆ pπ
˚Eqp0,bq,

with the framing chosen at p0, bq P R ˆ Y . The gauge group acting on this is Gp4q,eπ˚E

— even gauge transformations which are constant on the ends. As usual, the framed

configuration space is the space

rBp4q,eπ˚E :“ rAp4qπ˚E{G
p4q,e
π˚E ,
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with the right SOp3q action on π˚Ep0,bq. The ‘restriction to the ends’ map is slightly more

complicated than what one might do naively: there is a map

ev´ : rAp4qπ˚E Ñ rAE

given by sending pA, pq to pA´8, γ´8pA, pqq, where in the latter term we send p to its

parallel transport under A along γ traversed backwards from p0, bq. When the constant

framing of the path (assigning the same p P π˚Ept,bq for all t) is A-parallel — if A is in

temporal gauge, for instance — this map is particularly simple: γ´8pA, pq “ p. This

map is equivariant on the left under the restriction-to-p´8q map

Gp4q,eπ˚E Ñ G
e
E,

and on the right under the SOp3q-action, because parallel transport is an isomorphism

π˚Ep0,bq Ñ π˚Ep´8,bq

of right SOp3q-sets. There is also a corresponding map ev`.

Thus the evaluation maps descend to a map of right SOp3q-spaces

rev´s ˆ rev`s : rBp4q,eπ˚E Ñ
rBeE ˆ rBeE.

We are most frequently interested in the spaces of connections on R ˆ Y with specified

limits rev˘s P α˘ inside previously specified SOp3q-orbits. Furthermore, we should pick

a relative homotopy class z P π1pBeE, rα´s, rα`sq. Because AE is contractible and GeE acts

with connected stabilizers, these are in bijection with

π0GeE – H3
pY ; π3

ĄAutpEbqq – Z

by an obstruction theory argument. Given limiting framed connections rA˘, p˘s P α˘,

we choose lifts (denoted A´ and A`) so that a path from A´ to A` in AE projects to

the relative homotopy class z in rBeE. We then define

rAπ˚E,zpA´, A`q “ tpA, pq P rAp4qπ˚E | A˘8 “ A˘8u.

(Note that the endpoint conditions only include the connection and nothing about the

framing.) The natural gauge group here is the group of even gauge transformations that

are harmonic on the ends:

Ge,hπ˚EpA´, A`q “ tσ P G
p4q,e
π˚E | dπ˚A˘σ “ 0 on the corresponding endu.
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The following is straightforward, and justifies this simplification.

Lemma 2.4.1. The natural map

rAπ˚E,zpA´, A`q{Ge,hπ˚EpA´, A`q Ñ revs´1
pα´ ˆ α`q

is an isomorphism of SOp3q-spaces, where the final space denotes the corresponding subset

of rBp4q,eπ˚E .

While the latter space is clearly the object of interest, the former is easier to describe,

so we prefer to use it as our working definition of the configuration space of framed

connections between two orbits. We record this as a definition:

Definition 2.4.1. If α˘ are SOp3q-orbits in rBeE, the naive configuration space2 of smooth

framed connections from α´ to α` is

rBeπ˚E,zpα´, α`q :“ rAπ˚E,zpA´, A`q{Ge,hπ˚EpA´, A`q,

where A´ and A` are representatives for the connections in the α˘, and a path from A´

to A` projects to the homotopy class z. This carries a continuous SOp3q action, acting

by translation on π˚Ep0,bq on the right. Identifying

α˘ “ rA˘, ps – Eb{ΓrA˘s

with p varying over all possible framings at the basepoint, the endpoint maps

rev˘s : rBeπ˚E,zpα´, α`q Ñ α˘

are induced by rAπ˚EpA´, A`q Ñ Eb, sending pA, pq to γ˘8pA, pq, respectively. There is

a left translation action of R, induced by the family of diffeomorphisms τt : R Ñ R with

τtpsq “ s´ t, given by sending

τ˚t pA, pq “ pτ
˚
t A, γtpτ

˚
t A, τ˚t pqq.

In the framing coordinate, we are parallel transporting τ˚t p forward by t along γ, so that

it is sent back to the basepoint.

2We use the term naive to contrast this space of smooth connections which are constant near 8 to
the later Hilbert spaces of connections which decay exponentially at 8.
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We have a corresponding version of Proposition 2.3.2 for the configuration spaces on

cylinders. We do not repeat the setup of the determinant-1 Up2q-model, but refer to

it freely in the proof below. Lemma 1.1 still gives that the only possible stabilizers of

elements in the 4-dimensional configuration space are the trivial group, the full group

SOp3q, and circle subgroups conjugate to SOp2q.

Proposition 2.4.2. Let E be an SOp3q-bundle over a 3-manifold Y , and α˘ are SOp3q-

orbits in rBeE. We have the following descriptions of the reducible subspaces in the config-

uration space rBeπ˚E,zpα´, α`q under the SOp3q action:

1. If the α˘ are not both reducible orbits belonging to the same component RedpY,Eq,

or after concatenating a path from α` to α´ in the (simply connected) reducible

component they lie in, the homotopy class z is nontrivial, then SOp3q acts freely on

the configuration space.

2. If α˘ P RedSOp2qpY,Eq are SOp2q-reducible orbits lying in the same connected com-

ponent of reducibles which contains no fully reducible point, labelled by tz1, z2u Ă

H2pY q, and the homotopy class z is trivial, then the reducible subspace is a fiber

bundle with base Bη1pα´, α`q and fiber S2, and in particular consists of one con-

nected component. There are no fully reducible points.

3. If α´ “ α` are the same unique fully reducible orbit in a fixed component tz1, z1u P

Red˚pY,Eq, and z is the trivial homotopy class, there is a unique fully reducible

point in the configuration space on the cylinder, lying in the unique connected com-

ponent of reducible orbits.

Proof. It’s easier to find the reducibles inside the larger space rBp4q,eπ˚E and afterwards take

the intersection with revs´1pα´ˆα`q. As in Proposition 2.3.2, working with connections

on π˚Ẽ with fixed trace, a connection representing an SOp2q-fixed point has holonomy

inside Up1q ˆ Up1q and hence induces a global splitting π˚Ẽ – η1 ‘ η2. As before, this

gives a natural correspondence between the SOp2q-fixed points and
Ů

η B
p4q
η1 \ B

p4q
η2 when

η1 ‰ η2 and with the single space Bp4qη when η1 “ η2. In the first case the involution

given by the Weyl group action swaps the two spaces and in the second case it acts with

a single fixed point.
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Write rBp4q,red
η for the subspace of rBp4q,eπ˚E consisting of reducible connections for which

the corresponding line bundle is of topological type η; in particular, we do not specify

the stabilizer. If η is an SOp2q-reducible component, the above shows that the map

rBp4q,red
η Ñ rBp4q,red

η {SOp3q

is a constant rank submersion, with fiber S2. The base may be identified with Bp4qη : it is

identified as the SOp2q-fixed point space modulo the Weyl group action.

To calculate the intersection with revs´1pα´ ˆ α`q, observe that the line bundles ηi

restrict to isomorphic line bundles on both ends (because the inclusion Y ãÑ Rˆ Y is a

homotopy equivalence), and so the pair of line bundles associated to α´ and α` must be

the same. Furthermore, after being put in temporal gauge, the relative homotopy class

z traced out by one of these induced connections lies inside the simply connected space

rBeηpα´, α`q. This gives us the restrictions in (2)-(3). �

Remark 2.4.1. If the SOp3q-bundle E is nontrivial, there are no full reducibles, and so

only cases (1) and (2) arise.

When the limiting connections are flat, we can distinguish the relative homotopy

classes z by the values of the integral calculating the “relative Pontryagin number” of the

connection A by

p1pAq :“
1

8π2

ż

RˆY
F 2
A;

this takes on a well-defined value modulo Z, and the different discrete values it can take

in R parameterize the set of connected components π0
rBeπ˚Epα´, α`q. When the limits

are not flat, one could pick a base connection A0 on the cylinder interpolating between

them and compute
ş

pF 2
A ´ F 2

A0
q; alternatively, later the limits will be critical points of a

perturbed Chern-Simons functional and we will define the action of a connection in terms

of this perturbed functional.

2.5 Configurations on a cobordism

Suppose we are given a complete Riemannian manifold W with two cylindrical ends

(i.e., specified isometries to p´8, 0s ˆ Y1 and r0,8q ˆ Y2) and an SOp3q bundle E with

30



specified isomorphisms over the ends to bundles Ei Ñ Yi). We think of this as a cobordism

Y1 Ñ Y2. Here Ei Ñ Yi is an SOp3q bundle, framed over a basepoint bi P Yi. Furthermore,

we pick a smooth embedded path γ : R Ñ W with γptq “ pb1, tq for t ă 0 sufficiently

small and γptq “ pb2, tq for t sufficiently large, and a trivialization of γ˚E restricting to

the given trivializations on the ends. This path γ will serve the role R ˆ tbu did for the

cylinder. Given orbits αi Ă rBeEi , we construct the configuration space rBeE,zpα1, α2q much

as we did before. The basepoint is instead γp0q, and the framing portion of the endpoint

maps given by parallel transport to ˘8 along γ. There is still a decomposition of the

configuration space into disconnected components, which we still label by z, but this no

longer has a description in terms of relative homotopy classes. Our above discussion on

relative Pontryagin numbers, however, still does, as will the definition of an action using

the perturbed Chern-Simons functional.

As in the previous sections, we analyze the reducible points in terms of the connected

components they lie in.

Definition 2.5.1. Let W be a 4-manifold with two cylindrical ends, as above, equipped

with an SOp3q-bundle E. We write RedpW,Eq to denote the set of connected components

of the reducible subspace of rBeE. This may be written as the disjoint union

Red˚pW,Eq \ RedSOp2qpW,Eq,

where the former denotes components that include some fully reducible orbit. If α´ and

α` label orbits in the configuration spaces rBeEi of the ends, we write RedpW,Eqpα´, α`q

for the set of connected components of the reducible subspace rBeEpα´, α`q.

We enumerate the reducible components in the following.

Proposition 2.5.1. Suppose W is a Riemannian 4-manifold equipped with SOp3q bundle

E, with one incoming cylindrical end pY1, E1q and one outgoing cylindrical end pY2, E2q.

The reducible subspaces of the SOp3q-action on the configuration space rBeEpα´, α`q is as

follows.

1. If either of the α˘ are irreducible, or βw2E P H3pW ;Zq is nonzero, then there are

no reducible points in the configuration space.
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2. If βw2E “ 0, then fix an integral lift c of w2E, and use the restriction of c to the

ends to determine the bijection between RedpYi, Eiq and 2-element sets of cohomol-

ogy classes in H2pYi;Zq as in Definition 2.3.1. Then the connected components

RedSOp2qpW,Eq are in bijection with pairs tz1, z2u Ă H2pW ;Zq with z1` z2 “ c and

z1 ‰ z2. The set RedSOp2qpW,Eqpα´, α`q is the subset of RedSOp2qpW,Eq consisting

of pairs that restrict to the tx1, x2u corresponding to each α˘.3

3. If E is nontrivial there are no fully reducible points. Otherwise, fix a trivializa-

tion; this produces a bijection of Red˚pYi, Eiq with 2-torsion cohomology classes in

H2pYi;Zq. Then the components Red˚pW,Eq are in bijection with 2-torsion coho-

mology classes in H2pW ;Zq.

If α˘ are both fully reducible orbits, then Red˚pW,Eqpα´, α`q is the subset of those

2-torsion classes in H2pW ;Zq that restrict to the 2-torsion classes in H2pYi;Zq

labelled by the α˘. In each component with a fully reducible point, there is a unique

such point.4

Proof. If βw2E ‰ 0, then E cannot be written as the direct sum of a trivial line bundle

and an oriented 2-plane bundle: βw2pEq “ epEq, the Euler class, which is the obstruction

to finding a nonvanishing section; but an SOp2q-reducible point induces such a splitting

(there is a parallel section). Note that this is also the obstruction to finding an integral

lift of w2pEq. So suppose now that c P H2pW ;Zq is an integral lift of w2E.

Almost identically to Proposition 2.4.2, the SOp2q-fixed point space of rBeE is identified

with the disjoint union over configuration spaces of connections on line bundles over W :

\ηBWη . If η1 ‘ η2 has first Chern class c, then the Weyl group acts on Bηi by sending

a connection rAs on one to the connection rA ´ A0s on the other, where A0 is a fixed

connection on the complex line bundle λ. Quotienting by the Weyl group we are only

left with components labelled by pairs tz1, z2u with z1 ` z2 “ c, and if z1 “ z2, the Weyl

group fixes a unique point in BWη , the corresponding fully reducible point. �

3Note in particular that taking the intersection of the reducible subspace with revs´1pα´ˆα`q — that
is, specifying the limits — does not increase the number of connected components. Furthermore, either
of α˘ may be SOp2q-reducible or fully reducible.

4It may be that W has more full reducibles than the Yi; this is true if, for instance, each Yi is an
integer homology sphere but H1pW ;Zq has 2-torsion.
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CHAPTER 3

Analysis of configuration spaces

3.1 Tangent spaces

Before we introduce the Hilbert manifold versions of these constructions, we investigate

the tangent spaces and differentials involved in the naive constructions (where all con-

nections and gauge transformations are smooth).

The spaceAE of all smooth connections on E is an affine space over Ω1pgEq; the natural

Riemannian metric on TAAE “ Ω1pgEq is the (incomplete!) L2 inner product on forms,

using a bi-invariant inner product on the Lie algebra bundle gE to define the Hodge star.

With this, we can define ∇cs as a vector field on AE; we may identify p∇csqpAq “ ˚FA.

The action of the gauge group GeE at A P AE has differential

dA : Ω0
pgEq – TeGepEq Ñ TAAE – Ω1

pgEq.

The kernel of this map is the space of A-harmonic sections of gE. The differential of

the action of GeE on the fiber Eb (whose tangent spaces are all canonically identified with

gb, the fiber of gE at b) is given by evaluation at the basepoint evb : Ω0pgEq Ñ gb. We

write

d̃A : Ω0
pgEq Ñ Ω1

pgEq ‘ gb

for the differential of the action of GeE on rAE at pA, pq. Unfortunately, there is no natural

identification of the cokernel of d̃A — which we hope to eventually identify with TrA,ps rBeE
— with the L2 orthogonal complement of its image, since the image is not L2 closed.

Its closure is ImpdAq ‘ gb, the essential difficulty here being that point-evaluation is not

L2-continuous. Rather, this orthogonal complement is precisely the same as kerpd˚Aq.

However, we can identify

pImpdAq ‘ gbq{Impd̃Aq – gKA,
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the orthogonal complement inside gb of the subspace gA of elements that extend to A-

parallel sections. Equivalently, gA is the tangent space to the image of ΓA in AutpEbq.

Picking a choice of (necessarily non-orthogonal) complement of Impd̃Aq inside ImpdAq‘

gb to identify with gKA, we may still decompose

TpA,pq rAE “ kerpd˚Aq ‘ Impd̃Aq ‘ gKA.

We will henceforth write this as

TA,p “ KA ‘ GA ‘ gKA,

giving us the isomorphism

TrA,ps rBeE – KA ‘ gKA.

This can not be a decomposition into a direct sum of locally trivial bundles (the last factor

has dimension varying between 0, 2, and 3), but it is when restricted to the submanifold of

rBeE consisting of framed connections with stabilizer of fixed conjugacy class (irreducible,

conjugate to SOp2q, or fully reducible), where gKA actually defines a locally trivial vector

bundle.

Because cs is, up to a constant, fixed under the action of GeE and not just Ge,bE , its L2

gradient on AE must take values in KA. It is clear from

∇cspAq “ ˚FA

that the critical points of cs are precisely the flat connections.

If A´ and A` are connections on the ends of π˚E over RˆY (and α˘ the corresponding

orbits in the configuration space), we constructed the 4-dimensional configuration space

in Definition 2.4.1 as a quotient of rAπ˚E,zpA´, A`q. If we pick a base connection A0 in

this space, we get a description

rAπ˚E,zpA´, A`q “ tA0 ` Ω1
cpπ

˚gEqu ˆ pπ
˚Eq0,b,

and in particular of the space of unframed connections as an affine space. The Lie

algebra of the gauge group Ge,hπ˚EpA´, A`q is Ω0
hpgEq, the space of sections of gE that are

A˘-harmonic on the corresponding ends. The differential of the gauge group action at
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some pA, pq is given by σ ÞÑ pdAσ, σpbqq. Picking a complement gKA of Impd̃Aq, we again

have our decomposition

TpA,pq rAE “ kerpd˚Aq ‘ Impd̃Aq ‘ gKA.

We also have the endpoint maps to pA˘, Ebq – SOp3q. Before modding out by gauge,

the positive endpoint map sends ev`pA, pq “ γ8pA, pq, the parallel transport of p to 8

using A. The differential of this map at pA, pq is a linear map

Ω1
cpgEq ‘ g0,b Ñ gb,

equal to the integral
ż 8

0

γ˚Aσpt, bqdt.

Here we use parallel transport backwards along γ using A so that σpt, bq is taken to

the single vector space g0,b, where it makes sense to integrate. Observe that if A is in

temporal gauge, this is just
ş8

0
σpt, bqdt.

Nothing changes in the above description when passing to a general Riemannian 4-

manifold W with cylindrical ends.

3.2 Hilbert manifold completions

To have a useful transversality theory, we must replace the naive “infinite-dimensional

manifolds” A, G, and so on with certain completions which are manifolds modeled on

Hilbert spaces. If E is an SOp3q-bundle over a 3-manifold, define AE,k to be the set of

L2
k connections on E; more precisely, if Ω1

k denotes the Hilbert space of L2
k 1-forms, then

AE,k “ A0 ` Ω1
kpgEq

for any choice of smooth base connection A0. The resulting set does not depend on the

choice of smooth connection. Similarly, we may define

GE,k`1 “ tσ P L
2
k`1pEndpEqq | σpxq is an isomorphism for all xu,

given the constraint that k ` 1 ě 2 so that gauge transformations are automatically

continuous and we may take point evaluations as in the definition. Then GeE,k`1 is the
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subset of sections which lift continuously to ĄAutpEq. As in [DK90, Section 4.2], the

space GeE,k`1 becomes a Banach Lie group, and we have a smooth action of GeE,k`1 on

rAE,k “ AE,kˆEb; the same argument as the case of smooth gauge transformations shows

that this action is free. The following is [Bou08, Proposition 3.1.5.10]. To facilitate

comparison to the version stated there, note that Bourbaki’s definition of immersion

includes the assumption that the differential has closed image with a closed complement.

Proposition 3.2.1. Suppose G is a Banach Lie group and X a Banach manifold on which

G acts. Suppose that G acts freely and properly on X, and such that if ρpxq : TeGÑ TxX

is the differential of the action at the point x, the image of ρpxq is closed and has some

closed complement for all x. Then the quotient topology on X{G is Hausdorff, and there is

a unique smooth structure on X{G such that π : X Ñ X{G is a submersion. Furthermore,

X Ñ X{G is a principal G-bundle.

We should see that all these assumptions apply to the action of GeE,k`1 on rAE,k, giving

us the quotient manifold rBeE,k. We record this as a lemma.

Lemma 3.2.2. rBeE,k is a Hausdorff Hilbert manifold if k ě 1.

Proof. Properness of this action would follow from properness of the action on the un-

framed space of connections, because the map rAE,k Ñ AE,k is proper (because Eb is

compact). That the action of GE,k`1 on AE,k is proper is proved in [DK90, Section 2.3.7],

by a bootstrapping argument.

Because rAE,k is a Hilbert manifold, we only need to verify that the image of the

differential is closed; write this explicitly as the sum

pdA, evbq : Ω0
k`1pgEq Ñ Ω1

kpgEq ‘ gb.

First note that ImpdAq is closed: there is an L2-orthogonal decomposition

Ω1
kpgEq “ kerpd˚Aq ‘ ImpdAq;

that this is true in Ω1
k and not just Ω1

0 follows from elliptic regularity (if dAσ “ η where

η P L2
k, then σ P L2

k`1).

Then suppose pηn, gnq Ñ pη, gq is a convergent sequence, for which there is a sequence

of σn P Ω0
k`1 with dAσn “ ηn and σnpbq “ gn. Because ImpdAq is closed, there is some σ
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with η “ dAσ. Thus there is some sequence ψn P kerpdAq so that σn ` ψn Ñ σ. As long

as k ` 1 ě 2, point-evaluation is continuous, and so gn ` ψnpbq Ñ g; because gn Ñ g, we

see that ψnpbq Ñ 0. Thus σpbq “ g and dAσ “ η as desired. �

This provides somewhat less inspiring charts than the case of irreducible connections

and unbased gauge group, where one can explicitly present slices for the action of the

gauge group as those connections with

d˚A0
pA´ A0q “ 0.

One can at least use the decomposition

TA,k “ KA,k ‘ GA,k ‘ gKA

to provide slices for the based gauge group as exponentials of KA,k ‘ gKA. In addition

to the natural tangent bundle T AE,k “ Ω1
kpgEq, we may also define completed tangent

bundles Tj rAE,k “ Ω1
jpgEq for any j ď k.

After passing to this completion, the analogue of Proposition 2.3.2 remains true.

Whenever we construct a gauge transformation via parallel transport, it has one greater

order of differentiability than the connection we used to define parallel transport.

3.3 The 4-dimensional case

In contrast to the case of homology 3-spheres, where to define Floer’s instanton homology

we only needed to study instantons on the cylinder with irreducible limits on the ends,

the same flavor of Sobolev completion will not suffice to define the configuration space

of 4-manifolds with general limits. Instead, we will need to use weighted Sobolev spaces.

Recall π˚E is an SOp3q-bundle on R ˆ Y , given as the pullback of some bundle E on

Y under the projection map. Let fδ be a smooth positive function on R such that

fδptq “ eδ|t| for |t| ě 1.

Suppose we have fixed limiting connections A´ and A` on E. Here we are fixing

connections and not gauge equivalence classes; we write the corresponding orbits in rBeE
as α˘. Pick a smooth base connection A0 on π˚E over RˆY that agrees with the pullback

connections of A´ and A` near ˘8 respectively; it traces out a relative homotopy class
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z P π1p rBeE, A´, A`q. Then one may define the space of L2
k,δ sections of π˚E as those

sections for which

ż

RˆY
f 2

`

|σ|2 ` |∇A0σ|
2
` . . . |∇k

A0
σ|2

˘

ă 8;

this is the L2
k,δ norm with respect to A0. Then we say

Aπ˚E,z,k,δpA´, A`q :“ tA0 ` Ω1
k,δpgEqu.

This only depends on A0 through the choice of z, but it clearly depends on the limits

A˘; if two pairs pAi˘q of limits are gauge equivalent by gauge transformations in the same

homotopy class, then there is a gauge transformation taking

Aπ˚E,z,k,δpA1
´, A

1
`q – Aπ˚E,z,k,δpA2

´, A
2
`q.

Similarly, this set does not depend on f , only δ.

We need a Banach Lie group Ge,hπ˚E,k`1,δpA´, A`q. Set

Γ˘ “ Γpα˘q Ă GeE,k`1;

this is precisely the set of α˘-harmonic gauge transformations. As before, we make

sense of the L2
k`1,δ norm by considering gauge transformations as certain sections of

π˚pEndpEqq. If we only cared about constant limits (as is the case when the α˘ are

irreducible), we could take the Lie group

Gπ˚E,k`1,δ “ tσ P ΓpAutpπ˚Eqq Ă ΓpEndpπ˚Eqq | pσ ´ 1q P L2
k`1,δpEndpπ˚Equ.

That is, roughly, gauge transformations in this group are sections of π˚pEbE˚q that are

pointwise automorphisms and decay exponentially quickly to the identity. This is again a

Banach Lie group that acts smoothly on Aπ˚E,z,k,δpA´, A`q; this is essentially the content

of [Don02, Section 4.3]. We write

Ghπ˚E,k`1,δpα˘q “

tσ P ΓpAutpEqq | Dψ with parallel ends and σ ´ ψ P L2
k`1,δpEndpEqqu.

This is again a Banach Lie group, but now we have the surjective endpoint evaluation

map

Ghπ˚E,k`1,δpA´, A`q Ñ Γ´ ˆ Γ`.
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There is also the natural subgroup Ge,hπ˚E,k`1,δpA´, A`q, those transformations that lift to

sections of ĄAutpπ˚Eq. Following Definition 2.4.1, we use this to define the configuration

space as follows.

Definition 3.3.1. The configuration space of framed connections on π˚E between α´ and

α` is defined to be

rBeπ˚E,z,k,δpA´, A`q “ rAπ˚E,z,k,δpA´, A`q{Ge,hπ˚E,k`1,δpA´, A`q.

This carries an action of SOp3q by acting on the fiber above the basepoint on the right.

The endpoint maps given by parallel transport along R ˆ tbu are right SOp3q maps to

rα˘s – Eb{Γ˘; these maps are smooth and furthermore submersions. Equivariant with

respect to these is a (left) R action by pullback of the connection and parallel transport of

the framing.

Again, we should check that this group action is well-behaved.

Lemma 3.3.1. rBeπ˚E,z,k,δpα´, α`q carries the natural structure of a smooth Hilbert man-

ifold when k ě 2.

Proof. We need to check that the action on rAπ˚E,z,k,δpA´, A`q is proper, and that the

tangent spaces to orbits are closed.

Let pσn, Anq be a sequence of L2
k`1,δ gauge transformations and L2

k,δ connections so

that σ˚nAn Ñ B in the L2
k,δ topology, and so that An Ñ A in the L2

k,δ topology. Write

Bn “ σ˚nAn. We want to show that σn then has a convergent subsequence in the L2
k`1,δ

topology.

On any chart with compact closure, choose an arbitrary trivialization of π˚E, so that

we represent An and Bn as matrices of 1-forms and σn as a map to SOp3q. Then as in

[DK90, Section 2.3.7] we have the formula

dσn “ σnAn ´Bnσn;

from this it follows that an L2
j bound on σn implies an L2

j`1 bound as long as j ď k,

and an L2 bound follows from compactness of SOp3q and of the chart itself. Therefore
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}σn}L2
k`1

is uniformly bounded; by compactness, we may choose a convergent subsequence

σn Ñ σ in L2
k. But then we may identify σ˚A “ B, and therefore we have

dσ ´ dσn “ σA´ σnAn ´Bσ `Bnσn,

which may be rewritten as

pσ ´ σnqpAq ` σnpA´ Anq ´Bpσ ´ σnq ´ pB ´Bnqpσnq.

Then because all of σ´ σn, A´An, and B ´Bn go to 0 in L2
k, we see that dσ´ dσn Ñ 0

in L2
k, and therefore σn Ñ σ in L2

k`1.

This shows that σn Ñ σ in L2
k`1,loc. We should check convergence on the ends. We

may write An and Bn as the flat connection α plus an L2
k,δ 1-form valued in gE. Choose

a trivialization of E on a chart U of Y , and extend that to a trivialization of π˚E over

R ˆ U . Consider this on one end at a time; for convenience we say p´8, 0s ˆ U . We

write the flat connection α as d ` ωα in this chart, where ωα is a particular matrix of

1-forms, and then the connections in this trivialization take the form d` ωα `An for an

L2
k,δ 1-form An.

The above formula now gives us

dσn “ σnpα ` Anq ´ pα `Bnqσn “ σnAn ´Bnσn ` pσnα ´ ασnq;

more simply stated, this is

dασn “ σnAn ´Bnσn.

For the limit σ P L2
k`1,loc, we then have pdασq “ σA ´ Bσ. Because the L2

0,δ norm of

σA agrees with that of A, we see that pdασq has an L2
0,δ bound; because σ is the limit

of gauge transformations which are asymptotic to 1 on the ends, σ is asymptotic to 1 on

the ends, and so σ is L2
0,δ.

We also have

dασ ´ dασn “ σpA´ Anq ` pσ ´ σnqAn ´ pB ´Bnqpσq ´Bnpσ ´ σnq.

Therefore

}dασ ´ dασn}L2
0,δ
ď }A´ An} ` 2}An} ` }B ´Bn} ` 2}Bn},
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and in particular }σn}L2
1,δ

is uniformly bounded. By the compactness theorem for weighted

Sobolev spaces, σn Ñ σ in L2
1,δ1 for δ1 ă δ. Inducting with the previous formula, we may

see that }σn}L2
k`1,δ

is uniformly bounded. Therefore σn Ñ σ in L2
k`1,δ1 for δ1 ă δ. The

above formula again shows using Sobolev multiplication that }σ ´ σn}L2
k`1,δ

Ñ 0 on this

chart, and by running this argument a few times σn Ñ σ in L2
k`1,δ on all of R ˆ Y , as

desired.

The extension to the entire gauge group (with gauge transformations that are expo-

nentially decaying to α-harmonic gauge transformations) is formal, as the quotient by the

subgroup used above is compact, equal to the space of harmonic gauge transformations

on the two ends.

To see that tangent spaces are closed, it suffices to show that Ω1
k,δpgEq admits a closed

splitting ImpdAq‘kerpd˚Aq; we want to show that every element may be written uniquely

as a sum of that form.

That these are closed subspaces follows from the closed range theorem for densely

defined operators (thinking of this as a densely defined operator in L2): the range of dA

is closed if and only if its image is the L2 orthogonal complement of kerpd˚Aq X L
2
´k,´δ.

If ψ P kerpd˚Aq X L2
´k,´δ, then by separation of variables on the end, using that the

signature operator on Y has no nonzero eigenvalues of magnitude less than δ, we see that

ψ P L2
´k,δ,ext: it is the sum of a section which is constant and α- or β-harmonic on the

ends and an L2
´k,δ section; similarly elliptic regularity and the assumption that A is L2

k,δ

implies that ψ P L2
k,δ,ext. Now we may apply the usual integration by parts trick to show

that xdAσ, ψy “ xσ, d
˚
Aψy “ 0 for all σ.

What is left is to see that the equation ∆Aσ “ ´d
˚
Aψ has a solution for any ψ P Ω1

k,δ;

to see this, choose ψ so that d˚Aψ is in the orthogonal complement of Im∆A. But as

before we may see that if

0 “ x∆Aσ, d
˚
Aψy “ xdAσ, dAd

˚
Aψy,

then in particular dAd
˚
Aψ “ 0, and as such d˚Aψ is parallel. Because ψ is asymptotic to

0 on the ends, we see that d˚Aψ “ 0, and hence indeed

∆Aσ “ ´d
˚
Aψ
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is solvable for all ψ. Uniqueness follows because if ∆Aσ “ 0, then because σ is asymptotic

to 0 on the ends, by the usual integration by parts trick dAσ “ 0; again because σ is

asymptotically zero, we see that σ is globally zero. �

The discussion of tangent bundles and reducible configurations (Proposition 2.4.2)

from the naive case carry over without change.

Finally, suppose we are given a complete Riemannian manifold W with two cylindrical

ends (i.e., specified isometries to p´8, 0s ˆ Y1 and r0,8q ˆ Y2), an SOp3q bundle E

with specified isomorphisms over the ends to bundles Ei Ñ Yi, and specified αi on the

Ei. Further suppose W is equipped with an embedded path γ in W , cylindrical and

agreeing with specified basepoints bi on the ends. Then the construction of configuration

spaces rBeE,k,δpα1, α2q with equivariant endpoint maps to pEiqbi{Γαi carries through with

essentially no change from above. When defining cobordism maps in instanton homology,

the data of the embedded path will only ultimately matter up to homotopy of such paths,

which reduces to the data of a relative homotopy class pD1, t0u, t1uq Ñ pW,Y1, Y2q.
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CHAPTER 4

Critical points and perturbations

4.1 Holonomy perturbations

In order to carry out the construction of a Morse-like homology theory on our configura-

tion space rBeE,k, the Chern-Simons functional will usually need to be perturbed so that

the critical sets are isolated orbits of SOp3q, and the moduli spaces of trajectories are

smooth manifolds of the appropriate dimension. Here we recall the standard perturba-

tions used in this situation, as well as their basic properties, from [KM11b, Section 3.2];

they work relative to a knot K, but we may simply take K “ ∅. These perturbations

originate in Floer’s definition of instanton homology and have been used consistently in

the development of the subject.

Suppose we are given a collection of immersions

qi : S1
ˆD2 í Y, i “ 1, . . . , N,

such that the qi all agree in a small neighborhood of t1uˆD2. Further pick a conjugation-

invariant smooth function h : GN Ñ R and a nonnegative 2-form µ on D2 that integrates

to 1 and vanishes near the boundary. Taking the holonomy of a connection A along the

family of curves qipe
2πit, zq parameterized by i and z gives a map

HolqpAq : D2
Ñ SOp3qN ;

we are interested in the functions (called SOp3q-cylinder functions)

fq,h,µpAq “

ż

D2

hpHolqpAqqµ.

These functions fq,h,µ have smooth extensions to the Hilbert manifolds AE,k, where (as on

AE) they are invariant under the action of the gauge group. By ignoring the framing, we

can extend this trivially to a map fq,h,µ : rAE,k Ñ R invariant under both the left action of
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the full gauge group and the right action of SOp3q. Thus they descend to SOp3q-invariant

smooth functions fq,h,µ : rBeE,k Ñ R. Note that they are furthermore invariant under the

remaining H1pY ;Z{2q action.

In the context of the Up2q-model, we choose an integral cohomology class c P H2pY ;Zq

reducing mod 2 to w2E and hence a lift of E to the Up2q-bundle λ ‘ C, where c1λ “ c.

Fixing a base connection A0, the configuration space is the set of connections for which

trpAq “ A0. Associated to any connection with fixed trace is the holonomy map

HolA : ΩY Ñ Up2q,

where our loops are based at b; we also have, associated to A0, a map

HolA0 : ΩY Ñ Up1q.

Because trpAq “ A0, we have

det HolA “ HolA0 ;

thus we may define a relative holonomy map

Hol1A :“ HolAHol´1
A0

: ΩY Ñ SUp2q.

This map is equivariant under the action of the gauge group of determinant-1 automor-

phisms (acting on SUp2q by translation by σpbq). If one further acts on connections by

the operation of tensoring with χC, where χ is a real line bundle, this describes the action

of

GE{GeE “ H1
pY ;Z{2q

on this space. Abusing notation to write χ : π1W Ñ ˘1 for the holonomy of the unique

flat connection on this real line bundle, the corresponding map χC : π1W Ñ Up1q has

determinant 1; so

Hol1Abχpγq “ χpγqHol1A.

That is, Hol1 is not invariant under the H1pY ;Z{2q action. Now as above we may define

cylinder functions using this relative holonomy map; we call these SUp2q-cylinder func-

tions. Note that SOp3q-cylinder functions are the special case of H1pY ;Z{2q-invariant

SUp2q-cylinder functions.
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We’re interested in the gradient flow equation of the Chern-Simons functional on rB; the

relevant perturbations (called “holonomy perturbations”) will be the formal gradients of

the cylinder functions described above, so we will need to know that the formal gradients

are well-behaved. The most convenient way to do so is to calculate them explicitly. We

write

∇h : SOp3qN Ñ sop3qN

for the gradient of h using the Lie group trivialization of the tangent bundle and the

standard inner product on sop3q; write

∇jh : SOp3qN Ñ sop3q

for the jth component. Kronheimer and Mrowka give a formula for this in [KM11b,

Equation (74)] along the base r´ε, εs ˆD2 ãÑ Y of the embeddings qi as

∇f :“ p∇fq,h,µqpAq “ ˚

˜

N
ÿ

i“1

pqiq˚pp∇ihqpHolqpAqqµq

¸

,

where pqiq˚ is the pushforward of differential forms on each tangent space. This is de-

fined on the rest of Impqq via parallel transport, and then extended by 0 to the rest of

Y . The following properties of the formal gradient ∇f are enumerated as in [KM11b,

Proposition 3.5].

Theorem 4.1.1. Let f : AE,k Ñ R be a fixed SUp2q-cylinder function as above. Then the

formal gradient ∇f defines a smooth section of the tangent bundle TkAE,k, and its first

derivative D∇f , considered as a section of the bundle HompTk, Tkq, extends to HompTj, Tjq

for all j ď k.

Further, fixing a reference connection A0, we have the following pointwise norm bounds

for constants C,Ck, C
1:

}∇f pAq}L8 ď C

}∇f pAq}L2
k
ď Ckp1` }A´ A0}L2

k
q
k

@8 ě p ě 2, }∇f pAq ´∇f pA
1
q}Lp ď C 1}A´ A1}Lp .

More generally, for any n we may find continuous increasing functions kn (depending on

f) such that

}pDn∇f qpAq}L2
k
ď knp}A´ A0}L2

k
q,
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where on the left side we’re taking an operator norm. Furthermore, f (and thus ∇f) are

invariant under the action of the full gauge group.

Suppose now we have a collection of SUp2q-cylinder functions fi; we may associate an

increasing sequence of constants pKiq so that when
ř

iKi|ai| converges,
ř

ai∇fi converges

in Ck on compact sets. One may take Ki to be, for instance,

Ki´1 `

i
ÿ

n“1

knpfiqpiq.

Then we may define the K-weighted `1 Banach space as the space of sequences paiq with

}a}P “
ř

Ki|ai| ă 8. There is a map P Ñ C8p rBeE,k,Rq given by sending

π “
ÿ

i

ai ÞÑ
ÿ

i

aifi “: fπ

and a map to smooth sections of the tangent bundle by sending π to its formal gradient,

which we still call ∇π. We call P a Banach space of perturbations and the induced

functions fπ (which are now L1 sums of SUp2q cylinder functions, but not necessarily

cylinder functions themselves) holonomy perturbations.

The results of the previous theorem extend to smoothness of the P-parameterized

section of the tangent bundle, and parameterized inequalities for ∇πpAq where now π

may vary within P (with an extra factor of }π}P in the right-hand sides); this is [KM11b,

Proposition 3.7].

The following is the relevant geometric fact about SOp3q and SUp2q-cylinder functions

— and therefore also holonomy perturbations. It is well-known, though usually stated

nonequivariantly and for irreducible connections. Note that in the first statement we

have quotiented by the entire (as opposed to even) based gauge group.

Lemma 4.1.2. Given any compact SOp3q-invariant submanifold S Ă rBE,k, the restric-

tion of SOp3q-cylinder functions to S are dense in the space of smooth invariant functions

C8pSqSOp3q. This is furthermore true even if we demand the cylinder functions vanish in

a small invariant open neighborhood O of a finite set of orbits.

Similarly, given a compact SOp3q-invariant submanifold S Ă rBdet
Ẽ
– rBeE, the restriction

of SUp2q-cylinder functions to S are dense in the space of smooth invariant functions on

S.
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Proof. If y P Y is the basepoint, consider the maps AE,k Ñ SOp3q given by Holpγiq where

γi are some family of immersed loops, based at y, all with the same germ there. (‘Im-

mersed’ is implicit for all loops in the rest of this argument.) These maps are equivariant

with respect to the action of the gauge group on SOp3q (conjugating by the value at the

basepoint), and hence descend to SOp3q-equivariant maps rBE,k Ñ SOp3q. The claim is

that these maps separate points and tangent vectors in rBE,k; then, by compactness of S

there is some finite collection γi, 1 ď i ď N , such that HolApγiq : S Ñ SOp3qN is an

embedding.

If two connections have the same holonomy along every immersed loop γ based at y

with specified germ, they have the same holonomy along every piecewise smooth immersed

loop: we may write any piecewise smooth loop γ based at y as being the composition of

an arbitrarily small loop and a loop with the specified germ, and so HolAγ “ HolA1γ for

any piecewise smooth based loop γ. For any point p P Y , pick a path α from y to p, and

define

σppq “ HolApαqHol´1
A1 pαq;

that this is well-defined follows from the assumption that the (based) holonomies always

agree along closed loops. Taking derivatives along any smooth curve based at y we see that

A ´ dAσ “ A1, and clearly σpyq “ 1. So based holonomy separates connections modulo

based gauge. Equivalently, holonomy separates framed connections modulo gauge.

At the level of tangent spaces, we run the same argument with any ω such that

dHolApγqpωq “ 0 for all γ to see that ω “ dAσ for some σ P Ω0pgEq. Pick a path α from

y to an arbitrary point p; then we have a natural isomorphism

gp – T IsompEy, Epq

coming from the framing on Ey, and so we may define

σppq “ dHolApαqpωq;

as before this is independent of the choice of α and it is easy to verify from this definition

that dAσ “ ω. Thus based holonomy seperates tangent vectors in rBE,k.

Now choose some finite set of embedded based curves γi with the same germ so that

HolApγq embeds S into SOp3qN . Given h : S Ñ R an SOp3q-invariant function, extend it
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to h̃ : SOp3qN Ñ R arbitrarily using the equivariant tubular neighborhood theorem. We

may then approximate h by holonomy perturbations by picking a sequence of embeddings

qji of solid tori of small radius around the curves so that the radii go to zero as j Ñ 8;

then the cylinder functions

fqj ,h̃,µ : S Ñ R

approach h in C8pSq for any choice of 2-form µ, as desired.

The final claim about SOp3q-cylinder functions follows by applying the previous para-

graphs to embed the submanifold S and the disjoint finite set of orbits C into SOp3qN ; if

O is, for instance, the inverse image of a small neighborhood of the image of C in SOp3qN

(whose closure is disjoint from the image of S). Then choose the extended function h̃ to

be zero on this small neighborhood.

The corresponding fact for SUp2q-cylinder functions is a straightforward modifications

of the same proof. �

Following the lemma, we choose our Banach space of perturbations PE to be generated

by a choice of a countable set of holonomy perturbations tπiu, generated by ph, γ, µq. Here

‚ h varies over a countable dense set of SOp3q-invariant functions on SUp2qN which

vanish in a neighborhood of p˘1qN ,

‚ γ varies over a countable dense subset of the space of N immersions of S1ˆD2 that

share a germ around t1u ˆD2,

‚ µ is specified, and

‚ N varies over all positive integers.

We say that a Banach space of perturbations PE arising in this way is sufficiently

large. The first condition will be useful in technical arguments later, so that the Hessian

at fully reducible connections is the same no matter the perturbation.

The particular countable family of holonomy perturbations is inessential (other than

these denseness conditions). While the particular choice of countable dense set to choose

is noncanonical, the union of any two gives another; any theorem on independence of

perturbation in PE extends to show that the particular choice of PE is irrelevant.
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In practice we will need to make further perturbations, but we want to do so without

changing the existing functional at a finite set C of ‘acceptable’ critical orbits. We say

that holonomy perturbations vanishing on a small open neighborhood O of this set C

adapted to O; the lemma shows these are in large supply. If PE is a Banach space of

perturbations and π0 is some fixed perturbation, we denote

PE,O :“ tπ P PE | fπ
ˇ

ˇ

O “ fπ0
ˇ

ˇ

Ou.

It is well-known that the space of flat connections is compact. The set of critical points

of the unperturbed Chern-Simons functional framed flat connections, modulo even gauge;

it’s equivalently described as a sort of framed projective representation variety of E. We

recall the following compactness principle for critical points from [KM11b, Lemma 3.8];

their argument is unchanged for the framed moduli space, modulo even gauge.

Lemma 4.1.3. Let P be a Banach space of perturbations. The map

F : P ˆ rBeE,k Ñ P ˆ Tk´1
rBeE,k,

pπ, rAsq ÞÑ pπ,∇pcs ` fπqprAsqq, is proper. In particular, if C‚ Ă P ˆ rBeE,k denotes

the subset whose fiber over π P P is the set of critical points of cs ` fπ — that is,

C‚ “ F´1pP ˆ t0uq — then the projection C‚ Ñ P is proper.

4.2 Linear analysis

It follows immediately from [Don02, Equation 2.18], modified to fit our normalization of

cs, that

cspA` ωq “ cspAq `

ż

Y

trpdAω ^ ω `
2

3
ω ^ ω ^ ωq

that the Hessian of the Chern-Simons functional on AE is precisely

˚dA : Ω1
kpgEq Ñ Ω1

k´1pgEq.

(When working with Sobolev completions, the Hessian is a smooth map between tangent

bundles of different regularity.) Because the tangent space at a framed connection rA, ps P

rBeE,k can be decomposed as KA,k‘ gKA (recall that KA,k is defined to be the Coulomb slice
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kerpd˚Aq Ă Ω1
kpgEq), this identifies the Hessian of the Chern-Simons functional at a flat

connection as

HessA “ ˚dA ‘ 0 : KA,k ‘ gKA Ñ KA,k´1 ‘ gKA.

We call the summand ˚dA : KA,k Ñ KA,k´1 the normal Hessian, HessνA, which is the

Hessian restricted to the normal space to the orbit. The Hessian is a summand of a larger

elliptic operator, the extended Hessian

zHessA : Ω0
kpgEq ‘ Ω1

kpgEq Ñ Ω0
k´1pgEq ‘ Ω1

k´1pgEq

by the matrix
¨

˝

0 ´d˚A

´dA ˚dA

˛

‚.

It is clear that zHess
2

A “ ∆A on Ω0‘Ω1 and thus zHessA is a self-adjoint elliptic operator. At

a flat connection, where p˚dAq
2 “ 0, the extended Hessian has the further decomposition

under

Ω1
pgEq “ KA,k ‘ GA,k

as the orthogonal direct sum of HessνA on KA,k and the signature operator SA on Ω0‘GA,k.

The kernel of the Hessian is identified with the kernel of the Laplacian on 0- and 1-forms

(and is thus invertible if the Laplacian is).

Adding a perturbing term, the Hessian of the perturbed Chern-Simons functional

HessA,π differs only by the gradient of the vector field ∇π at rAs, written DA∇π. We

define the perturbed extended Hessian the same way. The perturbation of zHessA is a

compact self-adjoint operator, and so the resulting perturbed extended Hessian operator

is still self-adjoint first order elliptic. At critical points of cs`fπ, using the decomposition

Ω0 “ H0
A ‘ Impd˚Aq, we see that

zHessA,π “ 0‘ HessνA,π ‘ SA

on

H0
A ‘ pImpd

˚
Aq ‘ GA,kq ‘KA,k.

Thus at critical points A of the perturbed Chern-Simons functional, HessνA,π is a sum-

mand of a self-adjoint elliptic operator, and so it has discrete eigenvalues and the space

it acts on enjoys a direct sum decomposition over these (finite-dimensional) eigenspaces.
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Definition 4.2.1. A critical orbit rA, ps P rBeE,k of the perturbed function cs ` fπ is

called nondegenerate if HessνrAs,π is invertible, or, equivalently, the kernel of zHessA,π on

Ω0
kpgEq ‘ Ω1

kpgEq consists only of harmonic 0-forms.

This terminology agrees with [Don02]; if the connection A is furthermore irreducible,

and so its extended Hessian operator is invertible, Donaldson calls A acyclic.

4.3 Reducible critical points

Because of the linear nature of the SOp2q-fixed subspace of rBeE,

´

rBeE
¯SOp2q

“
ğ

η

Bη,

it’s especially easy to determine the critical points of the Chern-Simons functional. When

b1pY q “ 0, there is a unique flat connection in each component (corresponding to the

calculation Hompπ1pY q,Zq “ 0), at which the Hessian inside the SOp2q-fixed subspace is

simply the restriction of ˚d : Ω1
kpY ; iRq Ñ Ω1

k´1pY ; iRq to

Hessθ “ ˚d : kerpd˚qk Ñ kerpd˚qk´1.

This depends only on the underlying metric on Y , not the connection A. Because b1pY q “

0, Hodge theory guarantees that this is an isomorphism, and so these critical points are

nondegenerate in the SOp2q-fixed locus.

Proposition 4.3.1. Suppose Y is a Riemannian 3-manifold with b1pY q “ 0, equipped

with an SOp3q-bundle E. There is a positive constant ε so that for any perturbation

π P P with }π} ď ε, there is precisely one critical point of cs` fπ in each component Bη,k

of the SOp2q-fixed point space, and the Hessian of each inside Bη,k is nondegenerate.

Proof. The compactness principle Lemma 4.1.3 also applies to Bη,k. The set of nondegen-

erate critical points in C‚ (which we call C˚‚) is open, and hence the subset of degenerate

points is closed; because proper maps are closed, the set of perturbations π for which

some perturbed critical point rAs is cut out non-transversely is closed. Conversely, reg-

ular perturbations (written P˚) form an open set. Thus, because every reducible is cut
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out transversely in the fixed locus for π “ 0, the same is true for }π} ď ε for some small

ε. Finally, if p : C‚ Ñ P is the projection, the map

p : p´1
pP˚q Ñ P˚

is still a proper local diffeomorphism and hence the inverse function theorem guarantees

that (for sufficiently small }π}) there is precisely one critical point of cs ` fπ in each

component Bη,k of the SOp2q-fixed point set. �

There is a class of SOp3q-bundles over 3-manifolds with b1pY q ą 0 for which we can

avoid reducibles entirely, called admissible bundles (sometimes ‘non-trivial admissible’

bundles). These were introduced in Floer’s work on Dehn surgery in [Flo95], and were

extensively used in Kronheimer and Mrowka’s study of instanton knot homology, begin-

ning with [KM11b]. In defining instanton Floer homology we will restrict to these two

somewhat orthogonal cases: b1 “ 0 or E admissible.

Definition 4.3.1. An SOp3q-bundle over a 3-manifold Y is admissible if every lift of

w2pEq to a class in H2pY ;Zq is non-torsion. We say that an SOp3q-bundle E over Y is

weakly admissible if either E is admissible or b1pY q “ 0.

Ultimately, the instanton chain complex is described in terms of critical orbits, not

fixed points, so we give a description of these. The class of weakly admissible bundles

allows for a succinct description of the class of reducible critical orbits.

Proposition 4.3.2. Let Y be a Riemannian 3-manifold equipped with weakly admissible

SOp3q-bundle E, equipped with a perturbation π small enough that Proposition 4.3.1

applies. Then we have the following description of the reducible critical SOp3q-orbits of

cs` fπ in rBeE,k.

‚ If b1pY q “ 0, then there is a unique critical orbit lying in each reducible component

tz1, z2u P RedpY,Eq of the configuration space. In the components Red˚pY,Eq that

contain a fully reducible orbit, the full reducible is the critical orbit.

‚ If E is admissible, there are no reducible critical orbits.
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Proof. First suppose b1pY q “ 0. By Proposition 4.3.1, there is a unique critical point in

each connected component of the SOp2q-fixed subspace. The components of the SOp2q-

fixed subspaces were enumerated in Corollary 2.3.3.

In general, a critical orbit of cs in the component tz1, z2u P RedpY,Eq is a gauge

equivalence class of flat connection respecting the isomorphism

E – iR‘ η1 b η
´1
2 .

In particular, η1b η
´1
2 would support a flat connection, and thus have torsion first Chern

class. Because c “ z1 ` z2, this implies that c ´ 2z2 is a torsion cohomology class; as

this also represents w2pEq, this implies that E is not admissible. Because E supports no

reducible critical points for the unperturbed Chern-Simons functional, the same is true

of all sufficiently small perturbations. �

4.4 Transversality for critical points

Before discussing the 4-dimensional case, where we will assume that the limiting connec-

tions are nondegenerate, we should verify that this situation is achievable! This leads

us to the first transversality theorem of this paper; its proof is a model for the rest of

the transversality results we will need. It essentially follows the corresponding proof in

[AB96].

Theorem 4.4.1. Let Y be a Riemannian 3-manifold, equipped with an SOp3q-bundle E.

Suppose either that b1pY q “ 0 or that E is admissible. Given a sufficiently large Banach

space of perturbations P, there is a dense open set of π P P for which there are finitely

many critical orbits of the perturbed Chern-Simons functional rBeE,k, on each of which the

normal Hessian is invertible.

The proof proceeds by achieving transversality in each locus inductively. In the course

of achieving transversality over the reducible locus, we need a simple functional analysis

lemma.

Lemma 4.4.2. Let H be a Hilbert space, equipped with a densely defined self-adjoint

Fredholm operator T : H Ñ H; write H0 “ kerpT q and H1 “ impT q for the associated
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orthogonal splitting of H. Let K : H Ñ H be a bounded self-adjoint operator with

K00 : H0 Ñ H0 injective. Then for sufficiently small positive ε, the map T ` εK is

injective; in particular, an isomorphism.

Proof. If D “ H0‘D1 is the domain of T , then because T11 : D1 Ñ H1 is an isomorphism,

we have a bound }T11x1} ě CT }x1} for some CT ą 0 (where the norms are defined on

the appropriate domains). Similarly we have }K00x0} ě CK}x0} for some CK ą 0. Now

suppose pT ` εKqpx0 ` x1q “ 0 for some x “ px0, x1q P H. This means precisely that

K00x0 `K10x1 “ 0,

T11x1 ` εpK01x0 `K11x1q “ 0.

These two equations give us the bounds

CK}x0} ď}K00x0} “ }K10x1} ď }K}}x1},

CT }x1} ď }T11x1} “ ε}K01x0 `K11x1} ď ε}K}p}x0} ` }x1}q.

Combining these two inequalities we then have

CT }x1} ď ε}K}p1` }K}{CKq}x1}.

As soon as

ε ă
CT

}K}p1` }K}{CKq
,

this implies that x1 “ 0, and hence that x0 “ 0. �

Proof of Theorem 4.4.1. By the discussion in the proof of Proposition 4.3.1, there is an

open subset U of P so that all reducibles are cut out transversely in their own locus.

For π P U , there are thus a finite number of reducible π-critical orbits. Recall that cs

and SUp2q-holonomy perturbations are invariant under the action of SOp3q, but not of

H1pY ;Z{2q.

The normal Hessian to an SOp2q-reducible fixed point might have nontrivial kernel, a

finite-dimensional subspace of the tangent space.

Enumerate an element of each SOp2q-reducible critical orbit that is not fully reducible

as rAis, and let Di denote a small disc inside the kernel of HessνAi “ Zi. The manifold Di
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is an SOp2q-manifold; we may identify the orbit through Di as a vector bundle over S2

with generic fiber Di; call this neighborhood Vi. An SOp3q-invariant function on Vi is the

same thing as an SOp2q-invariant function on Di. At an SOp2q-reducible corresponding

to a reduction E – R ‘ ζ, the kernel of this operator is H1pY ; ζq. The SOp2q-action is

by scalar multiplication on this complex vector space. The restriction of some SOp2q-

invariant nondegenerate quadratic function q on Zi gives a smooth function on Di with

Hessian at the origin equal to the identity. Note that this implies that there are an even

number of positive and negative eigenvalues.

We will use holonomy perturbations approximating this smooth function on Di to

correct the fact that the Hessian has kernel. More precisely, if γj is a sequence of curves

for which HolApγq gives an equivariant embedding of the neighborhoods Vi into SUp2qN ,

we choose a function h̃ on SUp2qN which agrees in a neighborhood of each Ai with

v ÞÑ qpvq (identifying a neighborhood of each Ai with the tangent space at that point).

Now pick a sequence of holonomy perturbations πn arising from approximations of h̃ and

γj. For sufficiently large n, the restriction of DAi∇πn to kerpHessAiq is very close to q.

If we decompose KAi,k as the direct sum of Zi and its orthogonal complement, then

one may write HessAi,π in block-matrix form with respect to this splitting; the component

Zi Ñ Zi is the Hessian restricted to the submanifold Di at Ai. Therefore, we can apply

Lemma 4.4.2 to T “ HessAi,π and K “ DAi∇πn for large n to see that π`επn is a regular

perturbation at reducible connections for sufficiently large n and sufficiently small ε. A

similar argument works for the fully reducible connections, now using a nondegenerate

SOp3q-invariant quadratic form.

Similarly to Proposition 4.3.1, nondegeneracy for reducible critical points is an open

condition1 in perturbations P , and we’ve just seen that it is also a dense condition.

Now we have reduced ourselves to furthermore showing that perturbations for which

the irreducible critical points are nondegenerate are dense in Pďε. This is an applica-

tion of the Sard-Smale theorem, using that p∇πpAq separates points and tangent vectors

as π varies over P . (For the irreducible case, see [Flo88] and [Don02, Section 5.5.1].)

The open-ness is slightly more delicate, and uses that nondegenerate critical points are

1Note that 4.3.1 shows that nondegeneracy in the reducible locus is an open condition, and here we
want nondegeneracy in rBeE ; however, the proof requires only trivial modifications.
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isolated; therefore, for π P U , reducible critical points are isolated. This implies that

the projection p´1pUq˚ Ñ U is proper, where the asterisk denotes that we restrict to

irreducible connections. This is enough to conclude, as in Proposition 4.3.1. �

Remark 4.4.1. There is not much additional difficulty in proving this theorem for SOp3q-

holonomy perturbations, which are invariant under the H1pY ;Z{2q action. However, one

needs to do more bookkeeping at the other kinds of reducibles; those with stabilizer Z{2

are the most difficult, being labelled by their Euler classes in twisted cohomology.

Remark 4.4.2. In the above proof, we only used the assumption that E is weakly admis-

sible — that is, either b1pY q “ 0 or E is admissible — to ensure that the reducible flat

connections are cut out transversely in the reducible locus. This is not a serious issue:

one may easily first choose a perturbation for which the reducible π-flat connections are

cut out transversely in the reducible locus. However, transversality for the moduli spaces

of flowlines is much more restrictive, and forces the weak admissibility assumption on us

— if b1pY q ą 0 and E admits reducible connections, then there will be trajectories which

have higher expected dimension in the reducible locus than the irreducible locus. That

in mind, we see no harm in making the assumption a little early.

Note that the critical set of cs ` fπ is canonically identified with that in any Hilbert

manifold completion of lower regularity by an elliptic regularity argument; we are not

being remiss in leaving the regularity k out from our notation Cπ for the critical sets.

4.5 Signature data of reducible critical points

Suppose Y is a rational homology sphere. Fix a lift c of w2pEq to an integral cohomol-

ogy class; then the connected components RedpY,Eq of the configurations of reducible

connections on E are in bijection with pairs tz1, z2u Ă H2pY ;Zq with z1 ` z2 “ c. (See

Definition 2.3.1 for the definition of this set and a discussion of its enumeration.)

The component labeled by tz1, z2u corresponds to equivalence classes of framed con-

nections (with fixed determinant connection) on Ẽ “ η1 ‘ η2 respecting the direct sum

decomposition, where c1pηiq “ zi and det Ẽ “ λ, with c1pλq “ c. In

E – R‘ pη1 b η
´1
2 q
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these again correspond to connections respecting the direct sum decomposition. In partic-

ular, if A represents the unique class of flat connection on E that preserves the splitting,

we may identify zHessApgEq with the direct sum

zHessθpRq ‘zHessρpη1 b η
´1
2 q,

where ρ is the flat connection given by restricting A to η1 b η´1
2 . (and thus, the unique

equivalence class of flat connection on this oriented 2-plane bundle). In particular, be-

cause the space of harmonic forms for a flat connection is isomorphic to the cohomology

groups for the local system of coefficients defined by its holonomy representation, we have

ker zHess
ν

A – H1
pY ; ρq.

Our next goal is to obtain a more accessible calculation of this space.

Lemma 4.5.1. Let Y be a rational homology sphere and fix an abelian representation

ρ : π1Y Ñ Up1q. If Ỹ is the universal abelian cover of Y — the closed 3-manifold arising

as the covering space of Y corresponding to rπ1Y, π1Y s — then we may identify H1pY ; ρq

with the subspace of H1pỸ ;Cq on which gx “ ρpgqx for all g P H1pY q (the ‘ρ-eigenspace’).

In particular, if H1pỸ ;Cq “ 0, then H1pY ; ρq “ 0 for all local coefficient systems ρ.

Proof. Let C˚pY ;Cq be the cellular chain complex of some finite CW-decomposition of

Y , and C˚pỸ ;Cq the cellular chain complex with H1pY q-action. The cohomology groups

H˚pY ; ρq are (essentially by definition) isomorphic to the homology groups of the cochain

complex

HomH1Y

´

C˚pỸ ;Cq,C
¯

,

where H1pY q acts on C via ρ. By definition, this cochain complex is isomorphic to the

ρ-eigenspace of C˚pỸ ;Cq. Because the chain complex C˚pỸ ;Cq splits as a direct sum of

its eigenspaces, labelled by homomorphisms H1pY q Ñ Up1q, we see that the cohomology

H˚pỸ ;Cq splits as a direct sum of the direct sum of its eigenspaces H˚
ρ pỸ ;Cq, each of

which is isomorphic to the homology of the eigenspace C˚ρ pỸ ;Cq, which is then isomorphic

to H˚pY ; ρq. �

Proposition 4.5.2. Let Y be a rational homology sphere equipped with SOp3q-bundle

E. For ε ą 0 sufficiently small, the set of perturbations π with nondegenerate reducible
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critical points and }π} ă ε is an open set, which decomposes as the disjoint union of

nonempty open subspaces, each labelled by a function

Nπ : RedSOp2qpY,Eq Ñ Zě0

with Nπptz1, z2uq ď dimCH
1
`

Y ; η1 b η
´1
2

˘

.

Proof. That the set of such perturbations π is open is a mild extension of Proposition

4.3.1.

Given any ε-small perturbation π, let β : r0, 1s Ñ r0, 1s be a function equal to 1 near 0

and equal to 0 near 1, and consider the path πptq “ βptqπ from π to 0; we have }πptq} ă ε

for all t. If

r “ tz1, z2u P RedSOp2qpY,Eq

denotes a connected component of the reducible subset of the configuration space (here

z1 ` z2 is a fixed integral lift of w2E and z1 ‰ z2), by Proposition 4.3.1, there is a

unique πptq-critical orbit in the component labeled by r, and the proof shows it varies

smoothly in t. Choose a particular path Aptq of framed connections so that rAptqs lies in

the πptq-critical orbit in the reducible component labelled by r. We obtain an associated

continuous path of self-adjoint Fredholm operators

zHessAptq,πptq : Ω0
k ‘ Ω1

k Ñ Ω0
k´1 ‘ Ω1

k´1.

There is an associated spectral flow, sf
´

zHessAptq,πptq

¯

P Z, defined as the intersection

number of the eigenvalues with the line λ “ ´c for sufficiently small positive c; it is

essentially the number of eigenvalues that go from negative to nonnegative, counted with

sign. (This definition allows for the operators at t “ 0, 1 to have kernel, as opposed to

intersecting with the line λ “ 0.) In fact, zHessAptq,πptq splits as a direct sum corresponding

to the reductions R‘ pη1b η
´1
2 q (here c1pηiq “ zi); the operator in the first component is

constant, and in the second component is complex linear, so this spectral flow is actually

an even integer. The spectral flow of this path depends only on the ending perturbation

π, so we define

Nπprq “
1

2
sf
´

zHessAptq,πptq

¯

.

The kernel of zHessAptq,πptq splits as the direct sum of harmonic 0-forms and a space of

1-forms. Note that Aptq is SOp2q-reducible for all t (and never fully reducible), which
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implies that the dimension of the space of harmonic 0-forms is constant in t, and so does

not contribute to the spectral flow.

The spectral flow depends on π continuously (that is, sufficiently close perturbations

give the same integer) when zHessAp0q,π has no kernel other than the harmonic 0-forms.

To say that zHessAp0q,π has no kernel other than harmonic 0-forms is precisely to say that

π is regular at the critical point Ap0q. Therefore, the spectral flow to 0 is a continuous

function on the open set of interest, the space of regular perturbations.

As long as ε is chosen small enough, the only eigenvalues that are close enough to

0 to cross above or below it are the zero eigenvalues in ker zHessAp1q, the unperturbed

flat connection in this reducible component. The eigenvalues corresponding to harmonic

0-forms stay constant, so we only need to think about the other zero eigenvalues.

As we are counting the number of eigenvalues that go from negative to nonnegative

as we pass from zHessAp0q,π to the unperturbed extended Hessian, the spectral flow must

be nonnegative (said another way, the only relevant eigenvalues are the zero eigenvalues

at t “ 1, and those can only contribute to spectral flow by going down; reversing the

direction, the only way to contribute to the spectral flow is to have an eigenvalue go

upwards to 0 as we approach tÑ 1). Because there are

dimRH
1
`

Y ; η1 b η
´1
2

˘

of these eigenvalues, this spectral flow is bounded above by that number.

Thus we have a continuous map from the space of reducible-regular perturbations to

the discrete space

MappRedSOp2qpY,Eq,Zě0q

satisfying the stated bound; this decomposes the open set of reducible-regular perturba-

tions as the disjoint union of open subsets labelled by these functions

Nπ : RedpY,Eq Ñ Zě0

with upper bounds as in the statement of the proposition.

Given any function N satisfying these bounds, we may construct a small perturbation

π so that N arises as the spectral-flow function Nπ. Choose an S1-invariant quadratic

function with 2Nπprq positive eigenvalues on the space ker HessνA, where A is the unique
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critical point in the component labelled by r; note that on any given complex line, this

function takes the form cr2 where r is the radius, for some constant c.

Pick a holonomy perturbation that well approximates that quadratic function, think-

ing of ker HessνA as an S1-submanifold of rBeE,k by exponentiating. Because holonomy

perturbations are invariant under the full gauge group, the same quadratic function is

introduced at the reducible labelled x ¨ r. Doing this as we vary over RedSOp2qpY,Eq

gives us a perturbation which restricts to a nondegenerate quadratic function, with the

appropriate number of eigenvalues at each reducible critical point. Then if we choose c

sufficiently small, the perturbation c ¨π will be nondegenerate at each reducible and have

c ¨ }π} ă ε.

Note that there is no analogous discussion in the components Red˚pY,Eq containing

a fully reducible point, because this point is the unique critical point in that component

and is nondegenerate for all small π: the spectral flow is trivial. �

Remark 4.5.1. It is likely the case that the open set labelled byNπ : RedSOp2qpY,Eq Ñ Zě0

is connected, but we will not find this necessary, so do not prove it here. In a sense

similar to Remark 7.2.3, the ‘space of regular perturbations with fixed signature data’ is

contractible. This will not be true in the 4-dimensional setting.

Remark 4.5.2. If one works with SOp3q-holonomy perturbations, which are invariant

under H1pY ;Z{2q, one needs to do this bookkeping for additional types of reducibles,

each with different demands on the signature data.

The essential count turns out not to be the number of negative eigenvalues, but rather

the signature of the corresponding real vector space. As long as we remember the dimen-

sion of the underlying vector space, this is equivalent information.

Definition 4.5.1. Let pY,Eq be an SOp3q-bundle over a rational homology sphere, and

fix a complex line bundle λ with w2pEq “ c1pλq pmod 2q, which induces a bijection of

RedSOp2qpY,Eq with pairs tz1, z2u Ă H2pY ;Zq with z1 ` z2 “ c1pλq; the choice of λ is

essentially irrelevant. We write η1 and η2 for the corresponding complex line bundles.

We say that a signature datum on pY,Eq is a choice of function

σ : RedSOp2qpY,Eq Ñ 2Z
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with

|σπptz1, z2uq| ď dimRH
1
`

Y ; η1 b η
´1
2

˘

and

σπptz1, z2uq ” dimRH
1
`

Y ; η1 b η
´1
2

˘

pmod 4q.

Given a small regular perturbation π, the associated signature datum σπ is

σπptz1, z2uq “ dimRH
1
`

Y ; η1 b η
´1
2

˘

´ 4Nπptz1, z2uq.

The set of signature data is denoted σpY,Eq.

The name ‘signature datum’ refers to the fact that σ essentially chooses the symmetric

bilinear form on each complex vector space ker HessνA that we perturb in the direction of

(which are determined by their signature). The constraints are precisely those that the

signature of an S1-invariant bilinear form on a complex vector space must satisfy.

Remark 4.5.3. If the universal abelian cover Ỹ of Y (corresponding to the subgroup

rπ1Y, π1Y s Ă π1Y ) is a rational homology sphere, then |σpY,Eq| “ 1 for all E. If the

cover Ỹ 1 corresponding to the subgroup rπ1Y, π1Y s
2 is a rational homology sphere, then

|σpY, trivq| “ 1.
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CHAPTER 5

Moduli spaces of instantons

5.1 Moduli spaces for cylinders and cobordisms

In Definition 3.3.1, we defined the configuration space of framed connections on a bundle

π˚E over a cylinder with specified limits as a quotient

rBek,δpα´, α`q :“ rAk,δpA´, A`q
L

Ge,hk`1,δpA´, A`q.

The trivial vector bundle over this configuration space with fiber Ω2,`
k´1,δpEndpπ˚Eqq carries

a compatible linear action of Ge,hπ˚E,k`1,δpA´, A`q, given by the action of the gauge group

on π˚gE; it therefore descends to a vector bundle Sk´1,δ over the quotient (S for ‘self-

dual’) with fibers isomorphic to Ω2,`
k´1,δ. The smoothly varying section A ÞÑ F`A , which

is equivariant under the gauge group action on the left and invariant under the SOp3q

action on the right, descends to an SOp3q-invariant smooth section of Sk´1,δ.

Definition 5.1.1. The (unperturbed) (even) moduli space of framed instantons on the

bundle π˚E Ñ Rˆ Y with limits α´, α` is the SOp3q-invariant subspace

ĂMEpα´, α`q Ă rBek,δpα´, α`q,

consisting of gauge equivalence classes of framed connections pA, pq P rAk,δpA´, A`q with

F`A “ 0, where A˘ are connections whose gauge equivalence class is α˘. Equivalently, it

is the zero set of the section F`A of Sk´1,δ. There are equivariant endpoint maps ev˘ :

ĂMEpα´, α`q Ñ α˘. We denote the quotient as

MEpα´, α`q :“ ĂMEpα´, α`q
L

SOp3q.

In our notation for the moduli space, we drop the symbols k, δ, and e. The first two are

unnecessary, because as long as the perturbation π is of regularity L2
j , the moduli spaces
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for all 1 ă k ď j are canonically identified by an elliptic regularity result. The requirement

k ą 1 is necessary to define the moduli spaces, as we require gauge transformations in

L2
k`1 to have continuous point-evaluation maps, which requires k`1 ą 2. Similarly δ ą 0

is irrelevant so long as it is taken less than the absolute value of any nonzero eigenvalue

of any of the eigenvalues of the limiting operator zHessα. The even moduli space is not

the same as its quotient by the full gauge group, but we will never work with non-even

moduli spaces, so we drop the superscript anyway.

Note that if the A˘ are not flat connections, there are no unperturbed instantons with

those limits and L2 curvature.

If π is a regular perturbation, so that all critical points of cs ` fπ are nondegenerate,

we instead work with perturbed moduli spaces of instantons; we will need to do this to

guarantee these moduli spaces are smooth manifolds.

Write PE for the Banach space of perturbations of Chapter 4.1. Given π P PE cor-

responding to fπ : rBeE Ñ R, the natural perturbation on the connections A over R ˆ Y

is

pp∇πqpAq “ pdt^ p∇fπqpi˚tAqq
` ,

where i˚t is pullback to the slice ttu ˆ Y .

The operator p∇π gives a well-defined, smoothly varying section of the trivial bundle

rAk,δpA´, A`q ˆ Ω2,`
k´1,δpEndpπ˚Eqq Ñ rAk,δpA´, A`q,

equivariant under the action of Ge,hk`1,δpA´, A`q, and the rest of Theorem 4.1.1 carries over

with the obvious modifications (including a version with dependence on π).

In particular, because the above perturbations are invariant under the action of the

full 4-dimensional gauge group Ghk`1,δpA´, A`q, as well as the SOp3q-action, F`A `
p∇πpAq

defines a smooth section

P ˆ rBek,δpα´, α`q Ñ P ˆ Sk´1,δ; (5.1)

the fact that F`A ` p∇πpAq P Ω2,`
k´1,δ pEndpπ˚Eqq follows from the assumption that At

decays exponentially on the ends to connections with ˚FA˘ “ ´p∇πpA˘q.

As in Definition 5.1.1, we say that the perturbed moduli space of framed instantons

for the perturbation π, written ĂME,πpα´, α`q, is the set of gauge equivalence classes of
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framed connections with F`A “ ´p∇πpAq. As in the unperturbed case, A can only have

L2 curvature if ˚FA˘ “ ´∇πpA˘q, and so the limiting connections are critical points for

cs` fπ. We call these π-flat connections.

Using the gradient equation, we can define two useful notions of energy for an instanton

on the cylinder.

Proposition 5.1.1. For a perturbed connection A limiting to π-flat connections on the

ends, we call the expression
ż

}FA ` ˚3∇πpAptqq}
2

the analytic energy of A. If A is a π-perturbed instanton, the analytic energy of A

depends only on the endpoints α´, α` of A, and the homotopy class that A traces out,

written z P π1p rBE, α´, α`q. If A` and A´ are the limiting connections of A, it is equal

to 2 pcsπpα´q ´ 2csπpα`qq .

Correspondingly, given a pair of π-flat connections α´, α` and a homotopy class z

between them, we call

Eπz pα´, α`q “ 2 pcsπpα´q ´ csπpα`qq

the topological energy of pα´, α`, zq.

Whenever there is an instanton going from α´ to α` in the homotopy class z, we have

Eπz pα´, α`q ě 0 with equality if and only if A is constant. If zi is a homotopy class from

αi to αi`1, then

Eπz1˚z2pα1, α3q “ Eπz1pα1, α2q ` Eπz2pα2, α3q.

If 1 P π1p rBEq is the positive generator, then Eπz`1pα´, α`q “ 64π2 ` Eπz pα´, α`q.

Proof. The given expression is gauge invariant, so we may assume A is in temporal gauge

and write A “ d{dt ` Aptq. The curvature is FA “ FAptq ` dt ^ A1ptq, and so we may

write this integral as
ż

}A1ptq}2 ` }FAptq `∇π pAptqq }
2dt.

Because

FA ` dt^∇πpAptqq “ FA ` ˚p˚3∇πpAptqqq

is anti-self-dual, and ˚pdt^ ωq “ ˚3ω for a 1-form ω pulled back from Y , we see that

A1ptq “ ´ ˚3 FAptq ´∇πpAptqq “ ´∇pcs` fπqpAptqq.
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Using that Aptq is a gradient flowline, we may rewrite the integral as

ż

}A1ptq `∇pcs` fπqpAptqq}
2
´ 2xA1ptq,∇pcs` fπqpAptqqydt

“ ´2

ż

xA1ptq,∇pcs` fπqpAptqqydt

“ ´2

ż

dpcs` fπqpA
1
ptqq

“ ´2 ppcs` fπqpA` ´ pcs` fπqpA´qq P R,

the desired result. Now it is clear that this only depends on the connected component

of the connection A. (Here we are using the path to pin down the real lift of this difference

of Chern-Simons values.)

That Eπ0 pα, αq “ 0 is clear from the existence of the constant trajectory. Additivity

is clear by picking a connections Ai for each that are constant sufficiently far down the

cylindrical ends, and gluing those together; the difference in cs` fπ is additive.

Lastly, we need to determine Eπ1 pα, αq; by definition, this is the same as determining

2pcs` fπqpgpAqq ´ 2pcs` fπqpAq

for a gauge transformation g generating π0GeE. Because fπ is invariant under the full gauge

group, we are only asking to determine the difference in the Chern-Simons functional.

Pick a trajectory A going from A to gpAq, constant near the ends. By definition, this is

given by computing 2
ş

IˆY
TrpF 2

Aq. Because A differs from gpAq by a gauge transforma-

tion, we may glue these together to get a connection on an SOp3q-bundle E over S1ˆY ,

the bundle E being the mapping torus of the automorphism g; noting that F 2
A is zero

near the ends, this implies we may compute the curvature integral just as well over this

closed 4-manifold, where it is equal to ´2 ¨ 8π2p1pEq. We choose the positive generator

of π1p rBeEq to be the one that makes this integral positive; it remains to compute it. This

is computed more generally in [KM11b, Equation (24)], and in this case the minimal

p1pEq is 4, as desired. Because of the slight difference that we use specifically even gauge

transformations, we provide a short proof, given in the lemma that follows. �

Lemma 5.1.2. Let E be an SOp3q-bundle over a 3-manifold Y . Given an even gauge

transformation g P ΓpAutpEqq, the minimal first Pontryagin class of the mapping torus
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of g on S1 ˆ Y is 4.

Proof. The bundle E has

w2E P H
2
pS1

ˆ Y ;Z{2q – H2
pY ;Z{2q ‘H1

pY ;Z{2q.

The first factor of w2E is precisely the second Stiefel-Whitney class of its restriction to Y ,

which is w2E. The second term of w2E is precisely the obstruction class opgq P H1pY ;Z{2q

for lifting a section of AutpEq to a section of ĄAutpEq.

To see this, pick a loop γ in Y and consider the corresponding torus in S1 ˆ Y . The

map γ ÞÑ w2pEq
ˇ

ˇ

S1ˆγ
defines a homomorphism H1pY ;Zq Ñ Z{2. If opgq “ 0, then

the restriction of g to γ lifts to ĄAutpEq, and so is homotopic to the identity (because

π1
ĄAutpExq “ 0), so the corresponding bundle on the torus S1 ˆ γ is trivial.

Conversely, every bundle over S1 ˆ Y may be constructed as the mapping torus of

a bundle over Y , and both w2pEq and opgq of the bundle and mapping are determined

by w2E. Given fixed w2pEq “ w2pEq ‘ opgq, the Dold-Whitney theorem identifies the

possible values of p1pEq as those elements p P H4pS1 ˆ Y ;Zq with

p ” pw2Eq
2
pmod 4q,

where the mod 4 indicates we use the Pontryagin square on even-dimensional cohomology

H2pX;Z{2q Ñ H4pX;Z{4q. Expanding this, we obtain

p1pEq “ rS
1
s ¨ 2opgq ¨ w2pEq P H

4
pS1

ˆ Y ;Z{4q.

In particular, as long as o “ 0, the only condition is p1pEq ” 0 pmod 4q. �

Corollary 5.1.3. Given a 3-manifold Y equipped with SOp3q-bundle E and a regular

perturbation π, if α is a π-critical orbit, the constant connection is the unique π-perturbed

instanton A in the component labelled by the trivial homotopy class 0 P π1p rBeE, αq.

Proof. The constant connection at a π-flat connection is always a solution to the per-

turbed ASD equations. Because Eπ0 pα, αq “ 0, and the only connections with analytic

energy equal to zero are constant, so is any solution of the perturbed ASD equations in

this component of the space of connections. �
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For a Riemannian manifold W , with two cylindrical ends, orientably isometric to

p´8, 0sˆY1 and r0,8qˆY2, written as W : Y1 Ñ Y2, we can no longer consider constant

perturbations (pulled back from Y ). Further, we need to be able to interpolate between

perturbations, and have enough available to prove transversality results. As before, the

precise formulation of the perturbations here is similar to that in [KM11b, Section 3.2].

Fix once and for all a smooth function β0 : r0,8q Ñ r0, 1s with β0pxq “ 0 for x ď 1

and β0pxq “ 1 for x ě 2.

Given a perturbation π P PE2 , we may define the associated 4-dimensional perturbation

p∇π on r0,8q ˆ Y2 as

pp∇πqpAq “ β0ptq
`

dt^∇πpAptqq
˘`
,

and identically zero elsewhere, and similarly for a perturbation in PE1 .

An end perturbation on W is labelled by is

pπ´, π`q P PE1 ˆ PE2 “: Pp4qend.

The terms π˘ denote the constant perturbations on the ends, and the πi are perturbing

terms on a compact piece of the end, as above. (While Pp4qend depends on W and on the

choice of isometry between the ends and r0,8qˆY , this dependence is implicit and should

be clear from context.)

These end perturbations are the same as the perturbations used in [KM11b]; they

introduce further perturbations supported in p1, 2q ˆ Y , but as those are insufficient for

later purposes, we use an altogether different source for our holonomy perturbations on

the interior.

We will need one further type of perturbation, which is mainly useful to achieve

transversality at flat connections and reducible connections. These were introduced in

the setting of closed 4-manifolds in [K`05], and are similar to the notion of holonomy

perturbations along thickened loops in [Don87] and [Frø04].

Definition 5.1.2. Let W be a compact Riemannian manifold with boundary, equipped

with an SOp3q-bundle E, and W ˝ its interior. A collection of thickened loops in W

consists of a choice of closed ball B Ă W ˝, a finite collection q1, ¨ ¨ ¨ , qn of smooth sub-

mersions qi : S1 ˆ B Ñ W ˝ so that qip1, bq “ b and qip´, bq is an immersion for all

1 ď i ď n and b P B; we will write ~q for the entire collection.
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If γ : S1 Ñ X˝ is a curve, we write HolγpAq P ĄAutpEγp1qq for the parallel transport

around the loop, thought of as based at the image of 1 P S1; the lift to ĄAut is made

canonical by the choice that HolγpAq “ 1 if A is fully reducible above γ. This is preserved

by even based gauge transformations. Similarly we write Hol~γpAq P ĄAutpE~γp1qq
n for an

n-tuple of curves with a common basepoint.

An interior holonomy perturbation is induced by the data of a collection of thickened

loops q1, ¨ ¨ ¨ , qn, as well as a choice of smooth, (even) gauge-equivariant bundle map

r : ĄAutpEqN
ˇ

ˇ

B
Ñ gE

ˇ

ˇ

B

and a smooth self-dual 2-form ω on W with support in the interior of B.

The interior holonomy perturbation corresponding to p~q, r, ωq is the map

p∇π : AE Ñ Ω2,`
pW ; gEq

p∇πpAqppq “ r
`

Hol~qipp,´qpAq
˘

b ωppq.

Note that ωppq “ 0 when p R B, making this formula well-defined.

We will apply these perturbations on the submanifold

W 1
“ W z

`

r1,8q ˆ Y
˘

.

Being gauge-equivariant, these perturbations descend to sections of the bundle V` Ñ
rB. We will shortly discuss extentions to the configuration spaces modeled on Sobolev

spaces.

Soon, we will choose a countable dense set of the possible choices of data above.

These perturbations satisfy the following properties, analogous to those of [KM11b,

Proposition 3.7] or [Lin18, Definition 3.2.7].

Proposition 5.1.4. Suppose π˘ are 3-manifold perturbations on pY˘q, with fixed critical

orbits α˘. Suppose π is a 4-dimensional perturbation on the Riemannian manifold W

with cylindrical ends defined above, including both interior and end perturbations. The

map p∇π extends to smooth maps

p∇π : AE,k,δpα´, α`q Ñ Ω2,`
k,δ pW ; gEq
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for any k ě 2 and δ ą 0 sufficiently small. They satisfy the following properties.

1. Fixing a base connection A0, for each n ě 0 and k ě 2, there is an increasing

continuous function cn so that

}Dn
p∇πpAq}L2

k,δ
ď cn

´

}A´A0}L2
k,δ

¯

;

when n ą 0 this should be interpreted as the operator norm.

2. }p∇πpAq}L8 ď K, independent of A.

3. There is a constant C so that for all 1 ď p ď 8, and all L2
k connections A,A1, we

have

}p∇πpAq ´ p∇πpAq}Lp ď C}A´A0}Lp .

4. Suppose σ is a gauge transformation of E, defined away from some finite set of

points; and suppose Ai are globally defined connections with σ˚A1 “ A2 where

defined. Then

p∇πppA1qq “ p∇πpA2q.

5. Suppose we have a finite set x Ă W , a sequence of gauge transformations σn defined

on W zx which are L2
k`1,δ on the ends and locally L2

k on the complement of x, and a

sequence of connections An on E, so that over any compact set K for any p ě 2, the

connection σnpAnq is bounded in Lp1 over K. Then pσnq˚ p∇πpAnq has a subsequence

which is Cauchy in LppW q. If there is an Lp connection A on E so that σnpAnq Ñ A

in Lp on compact sets away from x, then the limit of this Cauchy subsequence is

p∇πpAq.

The proof must be divided into two parts, depending on the contribution from the end

perturbations and the interior perturbations. In the former case, everything except the

last point is given in [KM11b, Proposition 3.7]. These calculations for interior perturba-

tions are given in [K`05, Section 3]; the last point is argued in [K`05, Lemma 10], and

that argument works with only slight modifications for end perturbations as well.

As with the 3-dimensional perturbations and the end perturbations, then, we see that

for any countable set of perturbations πi there is an increasing sequence of constants
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Ci ą 0 so that for any sequence di P R with

ÿ

|di|Ci ă 8,

the limit
ř

di p∇πi has the same properties as above; one defines the Banach space of

perturbations to be the L1 space weighted by Ci (that is, the space of such sequences di,

with norm }pdiq} “
ř

|di|Ci). All inequalities in the above may then be made dependent

on π, adding a factor of }π} on the right-hand side.

Definition 5.1.3. In this section, and in what follows, we used the following notation

for Banach spaces of perturbations.

‚ On a 3-manifold Y equipped with SOp3q-bundle E, the space PE given by weighted

L1 sums of a countable dense set of data defining cylinder functions (with deriva-

tives vanishing to all orders at the fully reducible connections),

‚ On a 4-manifold pW,Eq, with cylindrical ends pY1, E1q and pY2, E2q, the space

Pp4qend “ PE1 ‘ PE2 ,

where the spaces PEi contribute a perturbation of the form

β0ptq pdt^∇πpAptqqq
`

on the end, β0 being a fixed cutoff function supported in p18q (with W left implicit

in the notation Pp4q),

‚ On the same 4-manifold pW,Eq, the space Pp4qint is given by L1 sums of a countable

dense set of interior holonomy perturbations, and we write

Pp4q “ Pp4qend ‘ P
p4q
int .

‚ The affine subspace Pp4qc Ă Pp4q of perturbations with pπ´, π`q P PE1 ‘ PE2 fixed

(but left implicit in notation); this subspace is affine over Pint.

Fix ε ą 0 so that for any reducible flat connection α, the only eigenvalues of zHess
ν

α,0

with absolute value at most ε are the elements of the kernel; one may fix a connected
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neighborhood 0 P Uε Ă PE so that this remains true for all π P Uε and any reducible π-flat

connection α.

This implies that dim Eig˘εpzHess
ν

α,πq “ 0 for all π P Uε and α a π-flat connection. In

particular, this means that

dim Eig´εďλďεpzHess
ν

α,πq “ dim kerzHess
ν

α,0

for all such pπ, αq.

If we let δ be a constant 0 ă δ ! ε, then we denote by PE,δ Ă Uε the subset of those

π P Uε so that zHess
ν

α,π has no eigenvalues of absolute value at most δ, for any π-flat

connection α (not necessarily reducible). This subset does not include 0, but by Theorem

4.4.1,
Ť

δÑ0PE,δ is dense in Uε. There are corresponding open subspaces Pp4qδ and Pp4qend,δ

for which the perturbations on the 3-manifold at 8 lie in PEi,δ. These spaces will be

important for the later weighted Sobolev theory.

So long as δ is sufficiently small, there is a union of connected components of PE,δ

so that the enumeration of reducible flat connections of Proposition 4.3.1 holds. This

follows because modifying the count of reducible flat connections would require one of

them to become critical, and so the count is the same at every point in the component;

further, there is some π P PE,δ arbitrarily close to zero, so long as δ is chosen sufficiently

small relative to the distance to zero.

Additionally, we may decompose PE,δ into connected open sets depending on the spec-

tral flow of zHess
ν

αt,πt for a generic path 0 Ñ π P PE,δ at the reducible πt-flat connections

α, precisely as in Proposition 4.5.2; this will be relevant later when calculating certain

operator indices. We still have a notion of analytic energy of a configuration on W , but

it is no longer a topological invariant, and will mostly be useful in keeping track of what

happens during compactification.

Definition 5.1.4. Let W be a Riemannian manifold with cylindrical ends, equipped with

an SOp3q-bundle and a perturbation π “ pπ´, π1, π2, π`q as above. Let α˘ be critical

orbits with respect to π˘. The analytic energy of a connection A P rBeE,k,δpα´, α`q is

defined to be

EπanpAq “ EπtoppAq `

ż

}F`A `
p∇πpAq}

2.
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This agrees with EπtoppAq for π-ASD connections, and agrees with
ż

}FA ` ˚3∇πpAptqq}
2

for connections on the cylinder with constant perturbation.

5.2 Linear analysis and index theory

Throughout this section, a perturbation π on W is fixed so that the limiting perturbations

πi on pYi, Eiq have finitely many critical orbits in Cπi , all nondegenerate and such that each

Hessνα,π has all eigenvalues of absolute value larger than a fixed constant δ (independent

of α).

We fix two such critical orbits, α˘ “ rA˘, Ebs. Here recall that the elements of α˘

vary over gauge equivalence classes of pairs pA˘, pq, where p P Eb is a point in the fiber

of E above the basepoint b, thought of as a framing of E above that point.

To analyze the local structure of the moduli spaces around a framed instanton pA, pq on

RˆY framed above p0, bq, we should restrict to the framed Coulomb slice pA` kerpd˚Aqqˆ

pπ˚Eqb Ă rAk,δpA´, A`q: this is just the usual Coulomb slice with an additional SOp3q

coordinate for the framing. Every framed connection sufficiently close to pA, pq is gauge

equivalent to one in the framed Coulomb slice, and the representation is unique up to

the action of ΓA ãÑ AutpEbq – SOp3q (the last isomorphism depending on the choice

of framing at the basepoint). This acts trivially on the connection coordinate, and by

translation in the framing coordinate.

We also find it convenient to pass to a smaller ΓA-invariant open set in the framing

coordinate, so that our subset is identified with

kerpd˚Aq ˆNpΓAq – Kp4qA,k ˆ ΓA ˆ gKA; (5.2)

we embed the normal bundle in SOp3q by exponentiating. We refer to this as the extended

Coulomb slice. The action of ΓA is again identified with left translation in the framing

coordinate. Here gKA Ă gb is the orthogonal complement to gA, the subset of gb which

extends to A-parallel sections; equivalently, this is the tangent space to ΓA.

Inside the extended Coulomb slice around pA, pq, (say, rKp4qk,δ), there is a ΓA-equivariant

trivialization of the bundle Ω2,`
k´1,δpEndpEqq, descending to a local trivialization of Sk´1,δ
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over rKk,δ{ΓA Ă rBek,δpα´, α`q. Using the second expression in (5.2), an element q P NpΓAq

can be expressed uniquely as u ¨ peξpq for ξ P gKA and u P ΓA; the equivariant trivialization

sends

pA` a, ueξp, ωq ÞÑ ppA` a, ueξpq, uωq.

In this equivariant trivialization, the section defined by (5.1) is given as

pπ,A` a, ueξpq ÞÑ u pdAa` a^ aq
`
` u

´

p∇πpA` aq ´ p∇πpAq
¯

.

We can thus identify the derivative of the perturbed map (for fixed π and at pA, pq a

π-perturbed framed instanton) rKp4qk,δ Ñ Ω2
k´1,δ as the perturbed ASD operator,

d`Aa` pDA∇πqpaq ‘ 0 : Kp4qk,δ ‘ gKA Ñ Ω2,`
k´1,δ;

we write this as DA,π, and the corresponding perturbed normal ASD operator as

Dν
A,π : Kp4qk,δ Ñ Ω2,`

k´1,δ.

Just as in §3.2, we gain control over the normal ASD operator with domain Kp4qk,δ by

expressing it as a summand of a larger elliptic operator and including a gauge fixing

condition. Define QA,π, the perturbed extended ASD operator, by

QA,π : Ω1
k,δpπ

˚gEq Ñ Ω0
k´1,δpπ

˚gEq ‘ Ω2,`
k´1,δpπ

˚gEq,

given by

QA,πpa, ξq “ pd
˚
Aa, d

`
Aa`DA

p∇πpaqq.

This is the operator usually used in the instanton theory for integer homology spheres,

as applied to weighted Sobolev spaces.

Now recall that we have an L2-orthogonal splitting

Ω1
k,δpgEq “ ImpdAq ‘ kerpd˚Aq;

that every element may be written uniquely as a sum in this way is essentially the

statement that the map

∆A : Ω0
k`1,δpgEq{gA Ñ Ω0

k´1,δpgEq{gA
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is an isomorphism, assuming δ is not an eigenvalue of the Laplacian of the limiting

connections, which is true as long as δ is chosen sufficiently small.

Now in this splitting Ω1 “ ImpdAq‘kerpd˚Aq, and rewriting the first term as Ω0
k`1,δ{gA

under the isomorphism d´1
A , we may write

QA,π “

¨

˝

∆A 0

0 Dν
A,π

˛

‚.

The fact that Dν
A,π takes values in kerpd˚Aq is the linearization of the statement that

F`A `
p∇πpAq is a gauge invariant quantity. In particular, the normal ASD operator is

Fredholm, and because the index of the top left operator is ´ dim gA, the index of the

normal ASD operator Dν
A,π is the index of QA,π plus the dimension of gA.

We recall the basic Fredholm property from [Don02, Sections 3.2 and 3.3.1].

Proposition 5.2.1. Suppose W is a Riemannian 4-manifold with cylindrical ends, iso-

metric to p´8, 0sˆY1 and r0,8qˆY2, equipped with an SOp3q-bundle E restricting to the

pullbacks of fixed SOp3q-bundles Ei on the ends. In this situation, we say that pW,Eq is

a cobordism from pY1, E1q to pY2, E2q. Suppose π is a fixed perturbation on E, restricting

to regular perturbations πi on the ends, and Ai are fixed nondegenerate critical points of

csYi ` fπi.

Let A be a choice of connection in AE,k,δpA1, A2q.

If δ ą 0 is less than than the absolute value of any eigenvalue of zHess
ν

Ai,π
, then QA,π

is Fredholm, and has index independent of such δ. If the Ai are irreducible, we may even

take δ “ 0.

There are two essential points. The first is that when a connection A “ Aptq on the

cylinder is in temporal gauge, the operator QA,π can be written in the form

QA,π “
d

dt
`zHessAptq,π.

(See [Don02, Section 2.5].) Secondly, if eσptq “ fδptq is the function used to define the

weighted Sobolev spaces, multiplication by fδ is an isometry L2
k,δ Ñ L2

k, and a first

order linear differential operator D of the form d
dt
` Lt is taken under this isometry to

d
dt
` Lt ´ σ1ptq. So to study our operator Qν

A,π on weighted Sobolev spaces, we should
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equivalently study
d

dt
`zHessAptq,π ´ σ

1
ptq

where σptq “ ´δt for t ! 0 and σptq “ δt for t " 0. (This is well-explained in [Don02,

Section 3.3.1] and the beginning of [Lin18, Section 3.3].) Once we’ve done this, the above

result for the ASD operator is a consequence of general theory; it is proven for Lt a family

of almost self-adjoint first order differential operators as [KM07, Proposition 14.2.1].

An important consequence of this description is that for A “ Aptq in temporal gauge,

we can describe the index ofQA,π as the spectral flow of the family of operators zHessAptq,π´

σ1ptq between zHessA1,π ` δI and zHessA2,π ´ δI, the (algebraic) intersection number of the

paths the eigenvalues take with 0 P R.

Because each AE,k,δ,zpA1, A2q is connected (even contractible) and index is a homo-

topy invariant of self-adjoint Fredholm operators, the index of QA,π only depends on the

homotopy class z, not the actual choice of connection A. For the same reason, this also

agrees with the index of Qν
A,π1 for any other perturbation which restricts to the same

perturbation sufficiently far on the ends.

It is perhaps worth observing that the index of Dν
A,π, defined to be the derivative of

the section operator rBeE,k,δ Ñ Sk´1,δ normal to an orbit, does have its index jump as we

pass from irreducibles to reducibles. This makes sense, thinking of Dν as measuring the

expected codimension of the orbit through A in the entire moduli space: the codimension

is larger at smaller-dimensional orbits.

Following the definition after [KM11b, Lemma 3.13], we use this to give the following

definition.

Definition 5.2.1. In the situation of Proposition 5.2.1, let z denote a connected com-

ponent of rAE,k,δpα, βq. We write the unframed grading grWz pα, βq “ indpQν
A,πq for any

choice of A in the component z, and the relative grading between the orbits α, β, with

respect to the path z, is grzpα, βq “ grzpα, βq ` 3´ dimα.

When W is the cylinder with the constant perturbation, we drop the superscript W .

The relative grading here will be quite natural in the definition of the framed instanton

Floer complex, whose differential is defined in terms of fiber products with moduli spaces;
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grWz pα, βq is the expected dimension of a fiber of the map

ev´ : ĂME,π,zpα, βq Ñ α.

It is worth noting here that 3´ dimα “ dim gα “ dim Γα.

The more immediate point of this definition is that the relative grading is additive. In

the particular case that W is isometric to the cylinder RˆY , z corresponds to a relative

homotopy class between rαs and rβs in BeE,k. If w is a path from rβs to rγs, then

grzpα, βq ` grwpβ, γq “ grz¨wpα, γq

(z ¨ w the concatenated path). This follows by computing these as a spectral flow: if

Azptq “ Az P rAk,δ,zpα, βq is in temporal gauge and Azptq “ α (resp. β) for t ! 0 (resp

t " 0), the index of QAz ,π is the spectral flow of the path

zHessAzptq,π ´ σ
1
ptq,

where σ1ptq “ ´δ for t ! 0 and σ1ptq “ δ for t " 0. Making a similar choice of Aw, if

we glue together Az and Aw sufficiently far out on the ends, we can find a connection

Az¨w in the component corresponding to z ¨w as the concatenation of the paths Azptq and

Awptq. However, we cannot concatenate the corresponding paths of self-adjoint operators

yet; for large t, the first ends at zHessβ,π ´ δ and the second begins at zHessβ,π ` δ. To

actually concatenate them, we must traverse the path

zHessβ,π ´ p1´ 2tqδ;

doing so changes p3´dim βq “ dim ker
´

zHessβ,π

¯

negative eigenvalues to positive, and

so

grzpα, βq ` p3´ dim βq ` grwpβ, γq “ grz¨wpα, γq.

Additivity of this grading for general cobordisms is also true. We record this as a

proposition.

Proposition 5.2.2. Suppose we have cobordisms pW1,E1q from pY1, E1q to pY2, E2q and

pW2,E2q from pY2, E2q to pY3, E3q, equipped with paths γ1 : R Ñ W1 and γ2 : R Ñ W2
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between the basepoints of the Yi. Suppose the Wi are equipped with perturbations π̂i, which

restrict to regular perturbations πj on each Yj, and furthermore suppose each pYj, Ej, πjq

is equipped with some πj-flat connection Aj.

We can define the composed cobordism pW T
12,E12q from pY1, E1q to pY3, E3q, identifying

pT,8qˆY 2 with p´8,´T qˆY2 on the cylindrical ends; there is a corresponding perturba-

tion π̂ interpolating between π1 and π3. We denote by zi a component of rAEi,k,δpAi, Ai`1q;

there is a component z1 ˚ z2 corresponding to gluing representative connections of these

components along the ends. In this situation, we have

grW1
z1
pα1, α2q ` grW2

z2
pα2, α3q “ gr

WT
12

z1˚z2pα1, α3q.

This follows from the additivity theorem of the index when the limiting operators

over the ends have no kernel ([Don02, Proposition 3.9]) and the relation of operators on

weighted Sobolev spaces to unweighted spaces, given by conjugating by the weighting

function: the operator QA1,π1 on its positive end, after conjugating by the weighting

function eσ, takes the form d
dt
`zHessA2,π2 ´ δ and on the negative end of W2 takes the

form d
dt
`zHessA2,π2 ` δ. To glue these we first need to interpolate between ´δ and `δ,

moving the

p3´ dimα2q “ dim ker
´

zHessA2,π2

¯

negative eigenvalues across 0; this is observed as [Don02, Proposition 3.10], identifying

the index on weighted spaces with what he denotes ind`pP q.

5.3 Uhlenbeck compactness for framed instantons

The following definition is precisely [KM07, Definition 16.1.1]. Note that there are no

framings involved yet.

Definition 5.3.1. Let Y be a Riemannian 3-manifold, equipped with SOp3q-bundle E

and regular perturbation π; then π has finitely many critical points in BeE,k, which we

write a generic point of as α. We say that a trajectory from α´ to α` is an equivalence

class of nonconstant π-perturbed instanton A PMEpα´, α`q Ă Beπ˚E,k,δpα´, α`q on RˆY

under the translation action.
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The homotopy class of a trajectory is the element of π1pBeE,k, α´, α`q it traces out;

these are in noncanonical bijection with Z. The topological energy of a trajectory was

defined above as

2ppcs` fπqpev`Aq ´ pcs` fπqpev´Aqq;

even though the Chern-Simons functional of an individual connection is only defined in

R{8π2Z, this difference of boundary components of a connection on a cylinder is defined

in R.

A broken trajectory from α´ to α` consists of a finite sequence of π-perturbed instan-

tons Ai on π˚E over Rˆ Y (say 1 ď i ď n), with

ev´A1 “ α´, ev`An “ α`, and ev`Ai “ ev´Ai`1 for 0 ă i ă n.

The homotopy class of a broken trajectory is the composite of the homotopy classes given

by the individual trajectories; the energy of a broken trajectory is defined as

EπpA1, ¨ ¨ ¨ ,Anq “

n
ÿ

i“1

EπpAiq.

We topologize this exactly as in [KM07, Page 276]. As per the author’s taste, we

present this in terms of sequences, following [Don02, Page 116]: give the space of broken

trajectories the final topology so that the following sequences of unbroken instantons, and

their natural generalizations to sequences of broken instantons, converge to their stated

limits: Ai, where i P N, converges to the broken trajectory pB1, ¨ ¨ ¨ ,Bnq, if there is a

sequence pT 1
i , ¨ ¨ ¨ , T

n
i q of real numbers with T ji ď T j`1

i for 0 ă j ă n, and the successive

differences T j`1
i ´ T ji Ñ 8 as i Ñ 8, so that the pullbacks τ˚

T ij
A converge as i Ñ 8 to

Bj in the L2
k,δ topology. Note that the energy of a trajectory is continuous with respect

to this ‘chain convergence’.

This form of noncompactness, trajectories breaking into a composite of lower-index

trajectories, is familiar in Morse theory. There is another kind of noncompactness familiar

in the instanton theory: Uhlenbeck bubbling.

Definition 5.3.2. Let pY,E, πq be as above. An ideal instanton is a solution A to the

π-ASD equations on pRˆY, π˚Eq, along with a finite (possibly empty) collection of points

xi P R ˆ Y and integer weights ki ě 1 at each point. An ideal trajectory is an R-

equivalence class of nontrivial ideal instantons, where nontrivial means either that A is
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nonconstant or that txiu is nonempty; equivalently, a nontrivial ideal instanton is one so

that τ˚t pA, x, kq is not gauge equivalent to pA, x, kq for any t. Similarly, a broken ideal

trajectory is a sequence of ideal trajectories pAiq
n
i“1 with ev`Ai “ ev´Ai`1.

The energy of an ideal instanton pA, xi, kiq, where 1 ď i ď n, is

EπpAq ` 16π2
ÿ

i

ki.

If the homotopy class of the instanton A is z, the homotopy class of the ideal instanton

pA, xi, kiq is z `
ř

ki. The energy and homotopy class of a broken ideal instanton are

defined to be additive under concatenation.

We say that a sequence of π-perturbed instantons An converges to an ideal instanton

pA, xi, kiq if there is a sequence of gauge transformations σn defined on pRˆY qztxiu such

that σ˚nAn Ñ A in the Lp1 topology on compact subsets of pRˆY qztxiu for all 8 ą p ě 2,

and such that the density measures converge:

2|FAn |
2
Ñ 2|FA|

2
`

n
ÿ

i“1

64π2kiδxi .

There is then a natural extension of this to a definition of convergence to (and of)

broken ideal trajectories. The space of broken ideal trajectories from α to β in the

homotopy class z is written M̌E,z,πpα, βq. Note that this does not include constant

trajectories, or broken ‘trajectories’ for which one of the components is constant.

As observed in [K`05], the non-local nature of holonomy perturbations means that we

cannot expect better convergence than Lp1 under bubble-limits.

The Uhlenbeck compactness theorem for the ASD equations on the cylinder is the

following.

Proposition 5.3.1. The subspace of broken ideal trajectories in M̌E,z,πpα, βq with a fixed

energy bound EπpAq ď C is compact.

We do not repeat the proof, which can be seen in [Don02, Section 5.1]; the correspond-

ing fact for compact cylinders is [KM11b, Proposition 3.20].

A somewhat stronger statement, Proposition 5.3.2 below, is true; we will only use it

briefly, but find it to be somewhat interesting.
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As in Definition 5.1.3, for any real numbers ε " δ ą 0, we let PE,δ Ă PE be the open

subset of perturbations on pY,Eq so that, for each π-critical point α, all eigenvalues of

zHess
ν

α,π have absolute value larger than δ, and so that for every pair pπ, αq of perturbation

and π-flat reducible connection, the operator zHess
ν

α,π has no eigenvalues of absolute value

ε. (In particular, we assume π is a regular perturbation.)

Because the projection Cπ Ñ PE,δ of the parameterized critical set (in rBeE) to the

space of perturbations is a proper submersion, it is in particular a locally trivial fiber

bundle. Therefore, for some small open set U around any π0 P PE,δ, we have a canonical

bijection Cπ0 – Cπ for any π P U ; in fact, if we fix α P Cπ0 , we may choose a smooth map

sα : U Ñ AE,k, so that spπq is a π-flat connection which is identified under the above

bijection with α. Choose once and for all, for each homotopy class z, a smooth map

rz : AE,k ˆAE,k Ñ Ap4qπ˚E,z,k,δ,

sending pA´, A`q to a connection which is constant at A´ for t ď ´1 and constant at A`

for t ě 1 and in the homotopy class z.

We may use the sα to define the parameterized configuration space PδAp4qπ˚E,z,k,δ, whose

elements pπ, α˘,Aq consist of a perturbation π P PE,δ, a choice of two π˘-flat connections

α˘, and a connection A P Ap4qπ˚E,z,k,δpα´, α`q.

This set is given the structure of a smooth Banach manifold by patching together

charts of the form

U ˆAπ˚E,z,k,δpα´, α`q – rzpsα´π, sα`πq ` Ω1
k,δpgEq.

Write

Pδ rAp4qπ˚E,z,k,δ “ PδA
p4q
π˚E,z,k,δ ˆ π

˚Ep0,bq

for the parameterized space of framed connections, which inherits a smooth structure and

a smooth right action of SOp3q. It carries a smooth projection map

Pδ rAp4qπ˚E,z,k,δ Ñ PE,δ.

It carries the action of a bundle of Banach Lie groups over PE,δ; the fiberwise quotient

gives a topological space Pδ rBeπ˚E,z,k,δ. We may define the parameterized moduli space

Pδ ĂM Ă PδBeπ˚E,z,k,δ
80



as the equivalence classes of triples pπ,A, pq, where π P PE,δ is a perturbation, A is a

π-perturbed instanton, and p is a framing.

Because the perturbed ASD equations do not depend on the framing, this set inherits

the right SOp3q-action. The quotient of Pδ ĂM by this SOp3q action is the parameterized

moduli space of instantons, which we denote PδM. If we take the quotient by the

R action, throw out the constant trajectories, and incorporate bubble-limits into the

topology, we may extend this to a space PδM̌, the parameterized moduli space of ideal

broken trajectories. (We will soon discuss the version of this appropriate to the framed

setting, which is slightly more subtle.)

Proposition 5.3.2. Let PδM̌ďC be the subspace of PδM̌ consisting of those pairs pπ,Aq

so that EπpAq ď C. Then the projection map PδM̌ďC Ñ Pδ is proper.

Proof. Suppose we have a sequence pπn,Anq of perturbations and unbroken instantons

so that πn Ñ π. We want to show that there is a subsequence of An which converges to a

broken ideal π-trajectory. (The general case where An is itself a broken ideal trajectory

provides no further difficulty.) First, because the possible ev˘ take values in a finite set,

choose a subset of An so that, for n large, ev˘An correspond to α˘ P Cπ – Cπn . We may

now apply [Don02, Lemma 4.3], which establishes that any π-instanton with sufficiently

small energy and ev´A “ α is gauge equivalent on p´8, 0q ˆ Y to α` a for some a with

a uniform bound on |aptq|e´δt, as well as the derivatives |∇p`qpaqptq|eδt for ` ď k. The

constants in these uniform bounds are bounded for the convergent sequence πn Ñ π, and

δ is fixed. In particular, for our solutions An, gauge equivalent to αn` an, this is enough

for the Arzela-Ascoli and dominated convergence argument in [Don02, Lemma 5.1] to

imply that an Ñ a for some function a satisfying the same bounds; in fact we must have

F`α`a `
p∇πpα ` aq “ 0

as this is the pointwise limit of the corresponding equations

F`An
` p∇πpAnq “ 0.

Now that we have control over the ends, everything else is standard: a uniform bound

on EπnpAnq implies a uniform bound on the L2 norm of FA on compact sets, so one has

81



a limit on compact sets after accounting for bubbling, and then a limit on the whole line

to a broken ideal trajectory; this uses that there is a uniform positive lower bound on

the minimal energy of a nontrivial πn-instanton. To see this, recall that the energy of

an instanton may be written as 2
ş

|A1ptq|2 as in the proof of Proposition 5.1.1. If An is

a sequence of nontrivial πn-instantons with EπnpAnq Ñ 0, this implies that the distance

between the endpoints αn˘ goes to zero. But αn˘ Ñ α˘, so α´ “ α`; but then because αn˘

is sent to α˘ under the bijection Cπn – Cπ, we see that αn´ “ αn` for large n. However,

this would imply that EπnpAnq is a multiple of 64π2 for large n, and also may be made

arbitrarily close to zero by taking n large; therefore EπnpAnq “ 0 for large n. However,

this implies A1
nptq “ 0, but we assumed An was nontrivial.

The reason we restrict to perturbations in PE,δ is for the definition of the parameterized

moduli space as L2
k,δ connections; we always want to take δ less than the eigenvalues of the

extended Hessian, and otherwise would need to choose δ depending on the perturbation.

�

We conclude the discussion of compactness for cylinders by defining the object of

interest to us: the compactification of the framed moduli space of trajectories.

Definition 5.3.3. Let Y be a Riemannian 3-manifold, equipped with SOp3q-bundle E

and regular perturbation π. We say that a framed ideal trajectory from α´ to α` is an

equivalence class of π-perturbed framed instanton pA, pq P rBeπ˚E,k,δpα´, α`q equipped with

a (possibly empty) points of points x P RˆY and positive integer weights kx, where none

of the x are the basepoint p0, bq. We demand the ideal instanton is nontrivial, in the sense

that either the set of points xi is nonempty or the trajectory A is nonconstant.

A deframed ideal trajectory from α´ to α` is an ideal trajectory from α´ to α` so

that p0, bq is a weight-point x with kp0,bq ą 0.1

A framed broken trajectory from α´ to α` is a finite sequence whose elements are

1Here deframed is meant to indicate that the framing has been removed via the placement of a δ-mass
at the basepoint; not all the weight-sets are allowed, and in particular a non-ideal instanton without a
framing is not a ‘deframed ideal trajectory’.
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either framed ideal trajectories pAi, pi, xi, kiq or deframed ideal trajectories pA, xi, kiq with

ev´pA1, p1q P α´, ev`pAn, pnq P α`, and

ev`pAi, piq “ ev´pAi`1, pi`1q for 0 ă i ă n, when Ai,Ai`1 are both framed.

The set of framed broken trajectories in the homotopy class z from α´ to α` is written

ME,z,πpα´, α`q. We write a generic element as pA, pq, even though A may be broken

and not every piece must be framed.

This set is topologized as follows. A sequence pAn, pnq of framed instantons converges

to a framed ideal instanton pA, p, xi, kq if there is a sequence of gauge transformations

σn, defined on pR ˆ Y qztxiu, and in particular defined on the basepoint p0, bq, so that

σ˚nAn Ñ A converge in the sense of ideal instantons above, and σ˚npn Ñ p.

However, if the underlying trajectores An converge to an ideal trajectory with nontriv-

ial weight at p0, bq, so that the σn are undefined at p0, bq, then it doesn’t make sense to

compare σ˚npn and p. In this situation we lose the framing via bubbling at the basepoint.

In this case, the sequence pAn, pnq of framed instantons converges to a deframed ideal

trajectory. Incorporating this into the topology on broken trajectories is straightforward.

Proposition 5.3.3. The space ME,z,πpα´, α`q is compact.

Proof. We begin by recalling that there is a surjective map

ME,z,πpα´, α`q Ñ M̌E,z,πpα´, α`q.

This map is proper: if a sequence pAn, pnq of framed broken trajectories has underlying

sequence of broken ideal trajectories converge to A, the framings are either incomparable

(and that limit component of An is a deframed ideal trajectory), or (an appropriate

sequence of translations of) σ˚npn are all defined, and live in the compact space Eb –

SOp3q; so some subsequence converges, as desired. Doing this for the finitely many

components of the limit A constructs an element of M that a subsequence of pAn, pnq

converges to. Because we have constructed a proper map to a compact space, the total

space M is compact. �

Similarly, the projection from the parameterized moduli space PδM
ďC

to PE,δ is

proper.
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There are straightforward extensions of these to moduli spaces on cobordisms, which

we now state. In what follows, we write Pp4qδ for the subspace

PE1,δ ‘ P
p4q
int ‘ PE2,δ.

(As usual, the manifold W is left implicit in the notation.)

Definition 5.3.4. Let W be an oriented Riemannian 4-manifold, with cylindrical ends

oriented isometric to p´8, 0s ˆ Y1 and r0,8q ˆ Y2, equipped with an SOp3q-bundle E

and specified isomorphisms to the pullback of bundles on Yi over the ends. Suppose W is

equipped with an embedding γ : R ãÑ W which agrees for |t| sufficiently large with pt, b1q

or pt, b2q, depending on the sign of t, and write b “ γp0q as the basepoint of W . Suppose

W is equipped with a perturbation π, restricting to fixed regular perturbations πi on the

ends. Connected components of the space of connections on W limiting to α˘, critical

points of π˘, are in bijection with Z, and labeled by z.

Then a broken ideal W -trajectory from α´ to α` in the homotopy class z is a triple

of a broken ideal π´-trajectory on Y1 from α´ to some β (possibly constant, if α´ “ β),

an ideal π-instanton on W from β to some γ, and a broken ideal π`-trajectory on Y2

from γ to α` (possibly constant, if γ “ α`). The homotopy class is the composite of the

corresponding homotopy classes of non-ideal instantons, then summing the weights. We

denote the set of broken ideal W -trajectories from α´ to α` in the homotopy class z as

M̌W,π
E,z pα´, α`q.

A framed broken ideal W -trajectory is the same, but with in addition a framing on

each component where there is no weight at the basepoint of Yi or W , and so that the

neighboring evaluations agree:

Hol0Ñ8Ai,γi
ppiq “ Hol0Ñ´8Ai`1,γi`1

ppi`1q.

We denote the set of framed broken ideal W -trajectories from α´ to α` in the homotopy

class z as ME,z,πpα´, α`q. We similarly denote the parameterized space by

PL,δME,z.

Note in particular that we include the ‘deframed trajectories’ here as in the cylindrical

case, and at these, we have lost the framing at the basepoint. Here pW,Eq is collapsed

in the notation to simply the bundle E.
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A sequence of instantons An on W from α´ to α` converges to a broken trajectory

pA´,A,A`q if the following hold. First, for each end, we demand that there is a sequence

of real numbers T jn with

lim
jÑ8

T j`1
n ´ T jn “ ˘8

lim
nÑ8

T 0
n “ ˘8;

the limit should be negative on the negative end and and positive on the positive end.

These real numbers should be such that the translates τ˚
T jn

An converge to pA´qj in

Bπ˚E,k,δ pp´8, N s ˆ Y1q

for all N , and similarly for the positive end. Note that the assumption that T 0
n Ñ ˘8

implies that these translates are eventually defined on all of p´8, N s ˆ Y1 for any fixed

N , and similarly r´N,8q ˆ Y2.

Second, we demand that An Ñ A in BE,k,δ.

One similarly accounts for the bubbling phenomenon to define limits to broken ideal

trajectories: there should be a sequence of gauge transformations defined away from

the bubble points so that convergence of σ
p
nAnq is Lp1 on compact sets away from the

bubble-points for all 8 ą p ě 2.

We have the following analogue of Proposition 5.3.2 for W -trajectories, which will be

useful to us. The proof is a verbatim combination of what was already said in the case

of the ends (that is, in the cylindrical case), as well as a discussion of what happens on

compact subsets of W .

Proposition 5.3.4. Let PδM̌ďC
E be the subspace of PδM̌E consisting of those pairs pπ,Aq

so that EπpAq ď C. Then the projection map PδM̌ďC
E Ñ Pp4qδ is proper.

Proof. Fix pAn, πnq with πn Ñ π. We have already dealt with the ends in the discussion

of the cylinder, and so we will focus on W itself. We need to show that there is some

sequence of gauge transformations, defined on the complement of some finite set, so that

there is a connection A and a subsequence (still written An) so that σ˚nAn Ñ A. What

we need is to show that that a uniform energy bound gives, over any given compact set,
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a uniform bound on the L2 norm of FAn . Because

F`An
“ p∇πnpAnq

is bounded in L8 independent of n, Uhlenbeck’s compactness theorem will then guarantee

that there is a sequence of gauge transformations σn defined on the complement of a finite

set x, and an Lp1 connection A in Coulomb gauge with respect to some reference smooth

connection, so that σnpAnq Ñ A in Lp1 on compact sets of W zx. Proposition 5.1.4 (5)

guarantees that

p∇πnpσnq˚pAnq ÑLp
p∇πpAq,

and so

0 “ pσnq˚

´

F`An
` p∇πnpAnq

¯

ÑLp F
`
A `

p∇πpAq;

therefore, A is indeed a π-instanton. Because A is in Coulomb gauge with respect to a

reference smooth connection, the usual bootstrapping arguments imply A is smooth.

We will further need to ensure that if An converges to an ideal perturbed instanton,

the weight of the δ-mass at the ideal point x is a multiple of 64π2.

First, we will resolve the question of curvature. Consider the restriction of A to the

complement of the ends r1,8q ˆ Y , a compact manifold W 1 with boundary Y . The

perturbations vanish on the boundary of W 1 (and on the interior are the previously

discussed interior holonomy perturbations). On the ends the perturbations πn are of the

form (eg, for r0,8q ˆ Y1)

β0ptqpπ´qn,

where β0 : r0,8q Ñ r0, 1s is zero for t ď 1 and 1 for t ě 2.

Remember that for a π-instanton A (these chosen arbitrarily), its analtyic energy

Ean
π pAq was defined to be equal to

E top
π pAq “ 2

`

pcs` fπ´qpα´q ´ pcs` fπ`qpα`q
˘

.

Cutting this off at the boundary of the ends (we say A restricted to ttu ˆ Y1 is A´ptq,

and restricted to ttuˆY2 is A`ptq), where the perturbations are all zero, this decomposes

into three pieces:
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2
`

pcs` fπ´qpα´q ´ pcsqpA´p0qq
˘

`2 ppcsqpA´p0qq ´ pcsqpA`p0qqq

`2
`

pcsqpA`p0qq ´ pcs` fπ`qpα`q
˘

First we study how the value of cs`fπptq changes along the ends: consider the function

pcs` fπptqqpA´ptqq. Here, πptq “ β0ptqπ´. Then

ż

d
`

pcs` fπptqqpA´ptqq
˘

“ cspA´p0qq ´ pcs` fπ´qpα´q.

We may expand the integral as

ż

pcs` fπptqq
1
pA´ptqqdt`

ż

dpcs` fπptqq

ˆ

d

dt
A´ptq

˙

.

Note that the second integral is the same as

ż

@

˚ FA´ptq `∇πptqpA´ptqq,
d

dt
A´ptq

D

;

by assumption that A´ptq satisfies the time-dependent gradient flow equations, this in-

tegral is
ş

} d
dt

A´ptq}
2dt. Because fπptq “ β0ptqfπ0 , the first integral is the same as

ż

β10ptqfπ´pA´ptqq.

This is uniformly bounded above and below because the support of β10 is compact, and the

function fπ´ is bounded. Thus up to an amount bounded by a continuous function of π,

the first part of the Chern-Simons difference above is 2
ş

} d
dt

A´ptq}
2; a similar discussion

implies the same of the the third part of the Chern-Simons difference and 2
ş

} d
dt

A`ptq}
2.

Because πn Ñ π, we obtain a bound on the energy of any πn-instanton An on the

ends, uniform in n.

Altogether we see that an energy bound on A gives a bound on the L2 norm of the

FAn on W 1, as well as a bound on the L2 norms of A˘ptq. Because A´ptq satisfies the

equations
d

dt
A´ptq “ ´ ˚ FA´ptq ´∇πptqpA´ptqq,

and }∇πptqA}L8 is uniformly bounded, we get a uniform L2 bound on curvature on any

compact piece of the negative end of W ; similarly with the positive end. Because this
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bound holds for all An and is uniform in n, as in Proposition 5.3.2 we may conclude the

existence of the appropriate gauge transformations.

What remains is to check is that the energy lost at the points is as expected.

Now suppose An is a sequence of πn-perturbed instantons on W and suppose there is a

sequence of gauge transformations σ˚n, defined on the complement of a finite set of points,

so that σnpAnq Ñ A in Lp1 on compact sets in the complement of those points, for p ě 2.

Call one of these points x; we will show the energy lost at x is a non-negative multiple of

64π2; call this energy c. Abuse notation and rewrite An “ σnpAnq for convenience, write

Sprq for the geodesic sphere of radius r around x, and write Anprq for its restriction to

Sprq.

Because each Anprq Ñ Aprq in the L2
1{2 topology, we see that

limncspAnprqq ” cspAprqq mod 64π2Z,

We also have, by definition,

cspAnprqq “

ż

Bprq

Tr
`

F 2
An

˘

;

because An is a π-instanton, we have

cspAnprqq “

ż

Bprq

}FAn}
2
´ 2

ż

Bprq

}p∇πnpAnq}.

Because }p∇πpAq}L8 ď C}π}, the second term goes to zero as r Ñ 0, and the first term

limits to c, the energy lost at x.

Putting this together, we find

c “ lim
rÑ0

lim
nÑ8

cspAnprqq ” lim
rÑ0

cspAprqq “ 0 mod 64π2Z,

as desired. �

Corollary 5.3.5. The space MďC

E,πpα´, α`q of broken ideal trajectories on pW,Eq with

uniform energy bound is compact.

The following theorem summarizes the content of this section.
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Theorem 5.3.6. Let pY,Eq be a 3-manifold equipped with an SOp3q-bundle and regu-

lar perturbation π. There is a natural compactification of the space of unparameterized

trajectories

ĂM0
E,z,πpα, βq ĂME,z,πpα, βq

as a compact SOp3q-space equipped with equivariant endpoint maps.2 The added strata

MzĂM are given as a union of fiber products of moduli spaces of lower dimension (in

codimension equal to the number of intermediary orbits between α and β) and strata

corresponding to Uhlenbeck bubbling.

The same is true for a cobordism pW,Eq equipped with a perturbation π which is

regular on the bounding manifolds pYi, Eiq: the space of framed instantons ĂME,z,πpα, βq

has a natural compactification to the compact SOp3q-space ME,z,πpα, βq.

We conclude with some discussions on energy bounds. On a cylinder RˆY , equipped

with a regular perturbation π, there are finitely many critical orbits α. For a fixed pair

α, β, the space of connections from α to β has

π1
rBe
Epα, βq – Z

components. We may define two functions of z P π1
rBeEpα, βq. The first is the topological

energy Eπpzq, defined by taking a connection A in the component labelled by z, and

evaluating

2 ppcs` fπqpβq ´ cs` fπqpαqq P R;

we use the path A and the homotopy lifting property of the covering RÑ R{8π2 to pin

down a real lift of this difference. The second is grzpα, βq P Z. These are both affine

functions; writing z P Z, we have Eπpzq “ 64π2z`c and grzpα, βq “ 8z`c1. In particular,

we see that

Eπpzq ´ 8π2grzpα, βq

is constant. Therefore an energy bound is equivalent to an upper bound on grzpα, βq.

Suppose that the cobordism

pW,Eq : pY1, E1q Ñ pY2, E2q

2Here recall that ĂM0 is ĂM{R, less the constant trajectories.
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is equipped with a perturbation π so that its restriction πi to the ends is regular, and all

π-perturbed instanton moduli spaces up to some energy bound C are cut out transversely.

The set π0

´

rBeEpα, βq
¯

of components of the space of trajectories from α to β is affine

over both π1p rBeE1
, αq and π1p rBeE2

, βq, and hence we may write the set of components as

affine over Z. Then as before EπW pzq is affine with distortion 64π2 and grzpα, βq is affine

with distortion 8; so again we find that an energy bound is equivalent to a bound on

grzpα, βq. In what follows we will often only care about the case grzpα, βq ď 10´ dimα;

there is a corresponding energy bound.

Because components of the moduli space with grzpα, βq ă 3 ´ dimα are empty when

cut out transversely, and bubbling decreases grzpα, βq by multiples of 8, we have the

following.

Corollary 5.3.7. When π is a regular perturbation and grzpα, βq ď 10 ´ dimα, the

compactification ME,z,πpα, βq has no strata corresponding to Uhlenbeck bubbling.

5.4 Reducible instantons on the cylinder and cobordisms

The goal of this section is to characterize the reducible π-ASD connections on a cobordism

W . We begin with the especially simple case of the cylinder.

Proposition 5.4.1. Let E be an SOp3q-bundle over a rational homology sphere Y equipped

with a Riemannian metric. Let PE denote a Banach space of perturbations on pY,Eq.

By Proposition 4.3.2, if π P PE has }π} sufficiently small, then there is a unique critical

orbit α in every reducible component RedpY,Eq, which is the unique fully reducible orbit

if the reducible component has a fully reducible point.

Consider moduli spaces of reducible instantons on the cylinder R ˆ Y , equipped with

the constant perturbation π on the cylinder. By Proposition 2.4.2, the only moduli spaces

which can possibly be nonempty are ĂME,0,πpα, αq, the spaces of trajectories from α to α in

the trivial homotopy class. There is exactly one instanton in each of these: the constant

trajectory at α. Therefore, the moduli space ME,0,πpα, αq “ ∅, by definition.

Proof. In other words, the constant trajectory (which is always a solution) remains the

only solution. Because each component in RedpY,Eq lies inside rBeE,0,k,δpα, αq (the zero
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denoting the trivial homotopy class), and an instanton in this component has energy

equal to zero, the trajectory must be constant, as in Corollary 5.1.3. �

In fact, even in the case of cobordisms (or cylinders with nonconstant perturbations),

the enumeration will be in terms of topological information.

Proposition 5.4.2. Let W be an oriented Riemannian 4-manifold equipped with an

SOp3q-bundle E and with one incoming cylindrical end pY1, E1q and one outgoing cylin-

drical end pY2, E2q. Suppose b`pW q “ 0.

Consider the space of perturbations on W so that the perturbations π˘ on the ends lie

in Pred
E,δ, the subspace of perturbations so that the only eigenvalues of zHess

ν

α,π˘
acting on

Ω1pY ; iRq have absolute value at least δ; abusing notation3, we still call this space Pp4qδ .

If βpw2pEqq ‰ 0 or one of pYi, Eiq is admissible, then pW,Eq admits no π-perturbed

reducible instantons in ĂME,k,δ whatsoever.

If E is trivial and b1pW q “ 0, there is a neighborhood Pp4qend ĂP U Ă Pp4q so that, for all

π P U , all fully reducible connections are cut out transversely. We write Uδ “ U X Pp4qδ ;

this set contains 0 so long as δ is sufficiently small.

Fix pπ´, π`q P Pp4qend; write Uδ,c “ Uδ X Pp4qc for the portion contained inside the affine

space through pπ´, π`q over Pp4qint .

For all π in a residual subset of Uδ,c and for every component in RedpW,Eq, the

reducible π-instantons in this component comprise a finite set of orbits, which are cut out

transversely inside the reducible locus.

If π P Pp4q is sufficiently small (with respect to some constant εW,C), then for every

component in RedpW,Eq with EπpAq ď C, there is further a unique orbit of π-perturbed

reducible instantons in that component; for those components Red˚pW,Eq containing a

fully reducible orbit, that orbit is the unique reducible instanton in that component.

For bundles with βw2 ‰ 0 or with admissible ends, Proposition 2.5.1 shows that there

are not even reducible connections with L2 curvature. Thus there is only something

interesting to say for cobordisms with rational homology sphere ends.

3This space is larger than the usual Pp4qδ defined in Definition 5.1.3, as the requirement is easier to

satisfy; as the results will apply to the usual subset Pp4qδ , and this larger set will not be used outside this
section, we do not feel this abuse of notation is harmful.
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There is also a version when b`pW q ą 0. Our goal is to avoid reducibles in this case,

as they cannot be cut out transversely.

Proposition 5.4.3. Let W be an oriented Riemannian 4-manifold equipped with an

SOp3q-bundle E, with one incoming cylindrical end pY1, E1q and one outgoing cylindrical

end pY2, E2q. Suppose b`pW q ą 0.

If βpw2pEqq ‰ 0 or one of pYi, Eiq is admissible, then pW,Eq admits no π-perturbed

reducible instantons in ĂME,π whatsoever.

If b1pW q ă b`pW q, and E is nontrivial but neither Ei is admissible, for any fixed

π˘ P Pp4qend,δ, there exists a residual set of the affine slice π P Pp4qc for which there are no

reducible π-ASD connections in any component z.

If E is trivial, each fully reducible component always has the full reducible as a solution,

no matter the perturbation; if b`pW q ą b1pW q, these fully reducible solutions are never

cut out transversely in the SOp2q-fixed locus, for any π P Pp4qδ .

We prove these simultaneously, much like Proposition 4.3.2: we define a Banach

manifold of reducible solutions to the ASD equations, equipped with a map to Uδ (or

Pp4qδ , in the case that there are no fully reducible connections), which is proper; when

b1pW q “ b`pW q “ 0, the projection is a local diffeomorphism above points near 0. Recall

from Proposition 2.4.2 that the SOp2q-fixed subspace is a disjoint union over copies of

Bηpα´, α`q, as η varies over certain complex line bundles. Note that this configuration

space is unframed, despite being a subset of the framed configuration space of SOp3q-

connections on E. Setting this up takes some small amount of work because the Hilbert

manifold the equation is defined on, Bηpα´, α`q, depends on the limiting orbits, and

hence depends on π (which determines the reducible critical orbits). While we discussed

such a configuration space in the previous section, we did not show that this (unframed)

quotient was a Banach manifold: that is usually not true, but is in the special case of

SOp2q-bundles.

Lemma 5.4.4. Let W be an oriented Riemannian 4-manifold equipped with an SOp3q-

bundle E and with one incoming cylindrical end pY1, E1q and one outgoing cylindrical

end pY2, E2q, both rational homology spheres. Fix a lift of E to a Up2q-bundle rE; if none
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exist, then W admits no reducible connections whatsoever by Proposition 2.5.1. Write λ

for the complex line bundle detprEq and fix a connection A0 on λ.

There is a Banach manifold PδBη,k,δ, whose objects are pairs pπ,Aq defined as follows.

First, π P Pp4qδ is a perturbation as defined above; second, A is an L2
k,δ connection on rE

which respects a fixed splitting

rE – η ‘ pλb η´1
q

and has π˘-flat limits on the ends, considered up to equivalence by the group of L2
k`1,δ,ext

maps W Ñ S1, meaning that these maps exponentially decay to constant maps on the

ends.

This Banach manifold comes equipped with a smooth submersion PδBη,k,δ Ñ Pp4qδ .

There is a smooth vector bundle Sk´1,δ Ñ PδBη,k,δ with fiber isomorphic to Ω2,`
k´1,δpiRq,

and a smooth Fredholm section spπ,Aq “ F`A `
p∇πpAq.

Proof. Denote by ηi the restrictions of η to the ends. Write PδCη for the set whose

elements are triples pπ, α1, α2q, where π P Pp4qδ is a perturbation restricting to πi on the

ends, and αi P Bηi are equivalence classes of πi-flat connections on ηi. With minimal

change, Lemma 4.1.3 asserts that the map PδCη Ñ Pp4qδ , sending the parameterized

critical set of gauge equivalence classes of connections on η to the space of perturbations,

is proper. That PδCη is a manifold and that the projection above is a covering map

follow quickly from the assumption that every π P Pp4qδ is such that zHess
ν

Ai,πi
never has

eigenvalues of absolute value at most δ. Thus, PδCη has charts given by local sections ψ

of the projection to Pp4qδ . Fix such a chart, given by V Ă Pp4qδ .

We may lift the above section ψ : V Ñ PδCη to a smooth map

p : V Ñ Aη1,k ˆAη2,k,

so that ppπ1, ¨, ¨, π2q is a pair of connections in the same gauge equivalence as ψpπ1, ¨, ¨, π2q.

That is, this is a smooth map picking out critical points for the end-perturbations πi.

This entire discussion depends only on the connections over the ends.

For this chart V , there are two possible situations: it could be that there are no

reducible connections over the cobordism restricting to the configuration ψpπ1, 0, 0, π2q

on the ends, in which case PδBη,k,δ is empty above this chart and is tautologically a

manifold.
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More interestingly, if there is some reducible connection extending that configuration,

then may choose a smooth map e : Aη1,kˆAη2,k Ñ A
p4q
η,k,δ so that epA1, A2q is a connection

A on η so that A is constant and equal to Ai on the ends. Composing these, e˝p : Pp4qδ Ñ

Ap4qη,k,δ is a smooth map choosing a connection pe ˝ pqpπq which is constant and equal to

the π˘-critical connections ppπq on the ends.

We may use this to define

VAp4qη,k,δ “ tpπ,Aq | π P V,A´ pe ˝ pqpπq P Ω1
k,δpW ; iRqu.

In particular, this Banach manifold is diffeomorphic to V ˆ Ω1
k,δpW ; iRq. Clearly it

comes equipped with a smooth projection to V . There is the trivial bundle S`k´1,δ “

Ω2,`
k´1,δpW ; iRq over V ˆ Ap4qη,k,δ. Given a connection A on η, the induced connection on

η‘ pλb η´1q has curvature equal to 2FA ´FA0 , the non-central part of the curvature of

η ‘ pλb η´1q. Then the section s : VAp4qη,k,δ Ñ Sk´1,δ is given by

pπ,Aq ÞÑ 2F`A ´ F
`
A0
` p∇πpAq.

This space a smooth action by the Banach Lie group Gη,k`1,δ,ext, preserving the projec-

tion map to Pp4qδ and the section s. While the action is not free, the stabilizer is the same

at every point: it is the group of constant maps W Ñ S1. The action of Gη,k`1,δ factors

through its quotient by the subgroup of constant maps, and the action of this quotient

group is free. The fact that ‘A-harmonic gauge transformations’ are the same for all A

is a convenient and unique aspect of the case of SOp2q-bundles.

Now it is easy to verify that this action is proper, such that each orbit has closed

complemented tangent space, giving us a quotient manifold V Bη,k,δ with a projection

map and a section of a vector bundle Sk´1,δ (still the trivial bundle). That the section

on V Bη,k,δ is Fredholm follows from the same fact fiberwise, on a fixed Banach manifold

Bη,k,δpα1, α2q. Patching these together for different charts V of PδCη gives us a smooth

Banach manifold structure on PδBη,k,δ. �

Note that this Banach manifold is precisely the same as a component of the SOp2q-fixed

point space of Pδ rBE,k,δ, expressed in terms of the Up2q model.

In the case of reducible trajectories, the compactness properties are especially strong.

Note that there are no broken or ideal trajectories in the following statement.
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Lemma 5.4.5. The map PδMη,k,δ Ñ Pp4qδ is proper.

Proof. This is an application of Proposition 5.3.4. First, observe that because every fiber

of PδBη,k,δ Ñ Pp4qδ is connected, the topological energy EπpAq, for a reducible π-instanton

A, depends only on π, and depends continuously on π at that. In particular, if πn Ñ π

and An is a sequence of πn-instantons, we have EπnpAnq ď C for some constant C.

In particular, there is a subsequence of An and a broken ideal trajectory A such that

a subsequence of rAns conerges to rAs as a broken bubble-limit. Because all of the An

are reducible, so is A; and so we know that EπnpAnq Ñ EπpAq, implying no energy is

lost at bubble-points.

So the only noncompactness can arise from breaking of trajectories. We already know

by Proposition 5.4.1 that on the cylinder R ˆ Y , where Y is equipped with a weakly

admissible bundle and regular perturbation, reducible trajectories are constant. So after

passing to a subsequence and applying suitable gauge transformations, the configuration

An converges in L2
k,δ an honest reducible connection on η with the same limits at ˘8,

as desired, with no energy lost at the ends. �

The following unique continuation lemma is quoted essentially verbatim from [KM07,

Lemma 7.1.3]; we will use it frequently.

Lemma 5.4.6. Let H be a real Hilbert space and I “ rt1, t2s a closed interval, equipped

with a family Lptq of unbounded operators D Ñ H with common dense domain D Ă H, so

that Lptq “ L`ptq`L´ptq for L` symmetric on D and L´ptq skew-adjoint and bounded on

the whole of H. Further suppose that the time-derivative L1ptq is a well-defined operator

D Ñ H, defined pointwise, which has a bound

}L1ptqx} ď C1p}Lptqx} ` }x}q

uniform in t P I and x P D.

Let f : I Ñ H be a continuous map and z : I Ñ D be a solution of the equation

z1 ` Lz “ f , where we have the bound on the inhomogeneous term }fptq} ď C2}zptq},

uniform in t. Then if zptq “ 0 for some t P I, then z is identically zero.

We will first justify the open set Uδ used in the statement of Proposition 5.4.2.
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Lemma 5.4.7. Suppose b1pW q “ 0. If b`pW q “ 0 or E is nontrivial, then all fully

reducible connections are cut out transversely for any end perturbation; therefore, there

is a connected open set

Pp4qend Ă U Ă Pp4q

for which every fully reducible connection is cut out transversely. When δ ą 0 is suffi-

ciently small, the intersection Uδ “ U X Pp4qδ contains 0.

Proof. If E is nontrivial, there are no fully reducible connections; if b`pW q “ 0, then for

any fully reducible connection A, we have

cokerpQν
A,πq “ H`A “ H

`
“ 0

by the Hodge theorem. Therefore every fully reducible connection is cut out transversely

above 0; furthermore, because we assume the 3-dimensional holonomy perturbations fπ

vanish in a neighborhood of fully reducible connections, we necessarily have DA∇π “ 0

for any fully reducible connection A. In particular, because the end perturbations take

the form

p∇πA “ β0ptq
`

dt^∇πAptq
˘

,

we see that DA
p∇π “ 0 for any full reducible A on W and any end perturbation π; so

QA,π is surjective iff QA,0 is.

Because the projection from the parameterized configuration space of fully reducible

connections to Pp4qδ is a proper local diffeomorphism, we see that every fully reducible con-

nection is cut out transversely in a neighborhood of Pp4qend, and we call this neighborhood

U .

To say that 0 P Pp4qδ just means that for the reducible flat connections α, all eigenvalues

of zHess
ν

α, acting on Ω1pW ; iRq, have absolute value larger than δ. Because the kernel of

this operator is H1pW q “ 0, and the eigenvalues form a discrete closed set, we see that for

the finitely many reducible flat connections α, all eigenvalues have absolute value larger

than some δ ą 0, as desired. �

When b1pW q “ 0 and b`pW q ą 0 but E is trivial, the set Uδ is empty: full reducibles

are always π-perturbed ASD connections, regardless of π, but the index of DA,π is always

negative, so they cannot be cut out transversely.
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Lemma 5.4.8. Let pW,Eq be a Riemannian manifold with two cylindrical ends, both

of which are modelled on rational homology spheres, with b1pW q “ 0. Suppose either

that b`pW q “ 0 or that E is nontrivial, and fix a component of the SOp2q-fixed point

space, labeled by a line bundle η. We write Uδ Ă Pp4qδ for the open set in which all fully

reducible connections are cut out transversely; in the latter case, when E is non-trivial,

this containment is an equality.

Then the zero set

UδMη Ă UδBη,k,δ

is a smooth Banach submanifold.

Similarly, for any fixed pπ´, π`q P Pp4qend,δ, the zero set Uδ,cMη is a Banach submanifold

of UδBη,k,δ.

Proof. By assumption, we need only consider the SOp2q-reducible ASD connections which

are not fully reducible.

We want to show that

Q1A,π “
`

QA,π, p∇π1pAq
˘

: Ω1
k,δpW ; iRq ‘ Pp4q Ñ Ω2,`

k´1,δpW ; iRq

is surjective for all reducible π-instantons A in the component corresponding to η (of

class L2
k,δ).

To see this, consider ψ P cokerpQ1A,πq; necessarily, ψ P cokerpQA,πq, and in particular

Q˚A,πψ “ 0. We may write this as

Q˚A,0ψ “ ´pDA
p∇πq

˚ψ;

because DA
p∇π extends to L2 over all of W (but to all L2

j with ´k ď j ď k on the ends),

the usual elliptic bootstrapping shows that ψ P L2
1pW q, and furthermore that ψ P L2

k,δ on

the ends.

Recall that the interior holonomy perturbations are supported inside a compact sub-

manifold W 1 Ă W , whose complement is the portion r1,8q ˆ Y of the cylindrical ends.

Now, the argument in [K`05, Lemma 13] shows that so long as π is not fully reducible,

the image of p∇π1pAq is dense in continuous sections of Λ2,`piRq over W 1 which vanish on
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the boundary; in particular, because ψ P cokerpQ1q, it should be L2 orthogonal to all of

these, and hence vanish on the whole of W 1.

If π is fully reducible, these perturbations are identically zero. The hypothesis of

SOp2q-reducibility is used to ensure that, at any point in W 1, one may find a collection

of loops so that HolA R p˘1qN ; at these points of Up1qN Ă SUp2qN , any equivariant map

r : SUp2qN Ñ sup2q must necessarily send rpp˘1qNq “ 0; points in Up1qNzp˘1qN are sent

into up1q Ă sup2q, but are not otherwise constrained.

Now ψ satisfies the perturbed ASD equations on the end, written r0,8q ˆ Y , with

ψ P L2
k and ψ

ˇ

ˇ

t0uˆY
“ 0. So long as k ě 2, the map ψ defines an element of

C1
`

r0,8q,Ω1
0pY q

˘

X C0
`

r0,8q,Ω1
1pY q

˘

;

here the subscripts k, δ indicate we are taking 1-forms of Sobolev class L2
k. Further, it

satisfies the equations

d˚ψptq “ 0ψ1ptq ´ ˚dψptq “ DAptq∇πptqψptq.

This ODE satisfies the conditions of Lemma 5.4.6 so long as πptq and Aptq are C1 paths;

the fact that Aptq is a C1 path in Ω1
0pY q follows because A is L2

2, and πptq “ β0ptqπ8 is

smooth.

Therefore ψp0q “ 0 implies that ψ “ 0 on this entire end. Repeating for both ends,

we find that any ψ P cokerpQ1A,πq is necessarily zero, as desired. �

Proof of Propositions 5.4.2 and 5.4.3. Until the final paragraph of this proof, we assume

that b1pW q “ 0, and that E is nontrivial or b`pW q “ 0.

Fix pπ´, π`q P Pp4qend,δ.

The set Uδ,cMη,k,δ is a smooth submanifold of Uδ,cBη,k,δ. For fixed π, the set of all

π-instantons A are cut out transversely for all in Bη,k,δ if and only if the projection

pη : Uδ,cMη Ñ Uδ,c

has π as a regular value. By the Sard-Smale theorem, such π are in large supply: they

form a dense set. Furthermore, the projection pη is proper by Lemma 5.4.5. Therefore,

the regular values form an open set of Uδ,c.
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In the case that b`pW q ą 0, this means that Mη,π “ ∅ for π a regular value, as the

index of the operator DA,π is negative. In the case that b`pW q “ 0, the moduli space

Mη,π for regular π is a finite set, and 0 is a regular value.

What remains is to see what the solutions are when π “ 0; then by properness, we

immediately understand the solutions for all sufficiently small π. But for a cobordism

pW,Eq with b`pW q “ 0 but b1pW q “ n, the space of reducible unperturbed ASD connec-

tions in each reducible component is the torus T n; this is [Dae15, Lemma 1.6], and again

follows from Hodge theory, as the ASD equation is affine in the SOp2q-reducible case. See

also the related [Frø02, Lemma 2]. In the case we most care about, b1pW q “ b`pW q “ 0,

this means that there is a unique π-perturbed reducible ASD connection in each reducible

component, so long as π is sufficiently small.

Intersecting over all line bundles η, these open dense sets become residual sets. For

the statement of Proposition 5.4.2, we want the enumeration above to hold for all line

bundles up to a certain energy level; the assumption that b`pW q “ 0 implies that there

are only finitely many line bundles whose topological energy is bounded above by a given

constant C, and so intersecting over the finitely many relevant open sets, we find an open

set containing 0 so that the enumeration of reducibles up to energy C is correct for all π

in this open set.

If E is trivial, the trivial connection A is always an ASD connection, no matter the

perturbation. For π P Pp4qδ , we have indpDA,πq “ indpDA,0q. When b`pW q ą b1pW q, this

index is negative, and so A cannot be cut out transversely. �

5.5 Index calculations

With a strong grasp on the regularity properties of reducible instantons (internal to the

reducible locus), we move on to understanding the index of the ASD operator normal to

the reducible locus.

Let pW,Eq be a cobordism from pY1, E1q to pY2, E2q, thought of as a manifold with

cylindrical ends, and let π be a perturbation so that the ends π˘ are regular perturbations

on Yi. Suppose δ is larger than the least nonzero eigenvalue of the extended Hessian

operators of the π˘-critical points. Choose π˘ sufficiently small that Proposition 4.3.1
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holds; this is guaranteed by choosing π P Pp4qδ .

If A is a π-perturbed instanton, we would like to compute the index of

QA,π : Ω1
k,δpW ; gEq Ñ Ω2,`

k´1,δ ‘ Ω0
k´1,δ.

In fact, by invariance properties of the index, this only depends on the component A

sits inside and on the value of π on the ends. Correspondingly, we assume π has no

component corresponding to an interior perturbation: we suppose that π is supported on

the ends.

The most useful tool for computing the index of a differential operator on a compact

manifold with boundary is the Atiyah-Patodi-Singer index theorem. Let X be a compact

manifold with boundary, with metric of product type near the boundary. Let D be

an elliptic differential operator acting on sections of bundles V1, V2 over W 1 (thought of

as a compact manifold with boundary) with specified isomorphisms near the boundary

components r0,8qˆY from the given operator to d
dt
`A, where A is a self-adjoint elliptic

operator whose nonzero eigenvalues c have |c| ą δ. Then one may consider D as an

operator

DAPS : L2
1pX, V1;P q Ñ L2

pX, V2q,

where here P means that we demand that the restriction of σ P L2
1pW,V1;P q to the

boundary lies in the subspace spanned by the negative eigenvalues : that is, if P is the

projection operator corresponding to the eigenspaces with λ ě 0, we demand that Pσ “ 0.

Then even if A, the operator at the boundary, has kernel, DAPS is a Fredholm operator

with a well-defined index. If

X̂ :“ X YBX r0,8q ˆ BX

with the appropriate product metric on the ends, we may just as well consider D as an

operator on X̂. We write IpDq to mean the index of D, computed as a map between

weighted Sobolev spaces of weight δ ą 0, and IAPSpDq to mean the index computed as

DAPS.

Lemma 5.5.1. As long as δ is less than any nonzero eigenvalue of the boundary operators

Ai, we have IAPSpDq “ IpDq.
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Proof. This is essentially [APS75a, Proposition 3.11]. When thought of as a map on

weighted Sobolev spaces, kerpDq clearly consists of L2 solutions of Df on X̂. Conversely,

every L2 solution has as much smoothness as the operator itself, and in the asymptotic

expansion
ř

aλe
´tλφλ on the ends, aλ must be zero when λ ď 0 if the solution is to be

L2. So a solution decays exponentially with weight at least δ ą 0, where δ is less than

any positive eigenvalue of A.

The kernel of D˚ is computed in weighted Sobolev spaces as a subspace of L2
k,´δ. To

decay exponentially slower than e´δt, we must demand that aλ “ 0 for λ ě δ. Because

positive eigenvalues are at least as large as δ, we see that a solution is, on the ends, a

sum of an exponentially decaying solution and a solution which is constant in time. This

is precisely the kernel of D˚ on extended L2 sections, as in the computation of IpDAPSq

given in [APS75a, Proposition 3.11]. Because the two kernels and cokernels agree, we

have IAPSpDq “ IpDq. �

So it suffices to compute IAPSpQA,πq, and for this, we have the Atiyah-Singer index

theorem. We will need some simple lemmas first before we can calculate this index.

Lemma 5.5.2. Suppose W is a compact manifold with boundary of product type, equipped

with an elliptic operator D that is of product type near the boundary. Suppose further

that there is an oriented closed submanifold Y Ă W with a neighborhood of product type

so that the operator may be written as d{dt ` A on this neighborhood. Write D1 for

the operator on the compact manifold whose positive boundary contains Y , and D2 for

the operator on the compact manifold whose negative boundary contains Y ; say A is the

operator at Y . Then

IAPSpDq “ IAPSpD1q ` IAPSpD2q ` dim kerpAq.

Proof. This follows immediately from the index theorem itself, [APS75a, Theorem 3.10].

The only term which is not additive is ´h{2, where h is the kernel of the boundary

operator. Because we are contributing two extra copies of ´ dim kerpAq{2 on the right,

we counterbalance that by adding dim kerpAq. �

Finally, we will need to know how the index of spectral flow is computed.
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Lemma 5.5.3. Let D “ d{dt ` At be an operator on r0, 1s ˆ Y , where At is a time-

dependent self-adjoint elliptic operator, possibly with kernel. We define the spectral flow

sfpAtq to be the intersection number of the graph of the spectra with the line λpAtq “ ´δ,

which A0 and A1 do not intersect. This is the aggregate number of eigenvalues that go

from ď ´δ to ě 0, counted with sign.

Then

IAPSpDq “ sfpAtq ´ dim kerpA1q.

Proof. This may be proved using separation of variables. A similar formula is stated

below [APS96, Theorem 7.4], only giving the spectral flow term; their argument uses

the periodic boundary conditions on r0, 1s ˆ Y , which corresponds to the projection to

nonnegative eigenvalues at t “ 0 and positive eigenvalues at t “ 1, whereas the APS

boundary conditions stated above use the spectral projection to nonnegative eigenvalues

at t “ 1. The second operator has smaller domain, of codimension dim kerpA1q, having

included the demand that an element f of the domain projects nontrivially to kerpA1q.

Because index is addititive under composition and the inclusion of this subspace has

index ´ dim kerpA1q, the theorem follows. �

Now W may be decomposed as the union of a compact manifold X and the two

cylindrical ends. This decomposition will provide the desired calculation. Before stating

the result, we recall the definition of one of the terms that will appear.

Definition 5.5.1. Let α be an orthogonal (resp. unitary) flat connection on a real (com-

plex) vector bundle E of dimension n over a closed manifold Y . The Atiyah-Patodi-Singer

ρ-invariant of α is defined to be

ηαp0q ´ n ¨ ηθp0q.

Here ηα is the Atiyah-Patodi-Singer η invariant associated to the α-twisted signature

operator

B : Ωev
pW,Eq Ñ Ωev

pW,Eq

Bω “ p´1qdeg ω
p˚dα ´ dα˚qω,

as is studied in [APS75b]. This constant is denoted ρpαq.
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If E has a reduction labelled by tζ1, ζ2u, where ζi are complex line bundles and

c1pζ1q ` c1pζ2q “ λ,

we define ρptζ1, ζ2uq to be the ρ-invariant of the induced SOp3q-flat connection on E,

given as R‘ pζ1 b ζ
´1
2 q.

The following equivalent computations of the ρ-invariant given here are listed in the

discussion in [HK11, Section 2.9]. We state them without proof.

Lemma 5.5.4. Suppose E Ñ Y is an SOp3q-bundle, equipped with a reduction E –

R‘pζ1bζ
´1
2 q. Write κ “ ζ1bζ

´1
2 , thought of as a flat complex line bundle. If zi “ c1pζiq,

then ρptz1, z2uq coincides with ρpκq ` ρpκ´1q. Further, if

pW,Eq : pY1, E1q Ñ pY2, E2q

is a cobordism eqiupped with a compatible reduction

E – R‘
`

ζW1 b pζW2 q
´1
˘

.

Again, write κ “ ζW1 bpζW2 q
´1, write κi for the restrictions to each component, and write

zWi “ c1pζ
W
i q. Then

ρpκ2q ´ ρpκ1q “ SignpW q ´ SignκpW q,

where SignκpW q is the index of the twisted signature operator on W .

Now we calculate the Atiyah-Patodi-Singer index of the operator QA,π, where A is

a reducible trajectory on the 4-manifold W . By a homotopy, put A in a form so that

it is constant sufficiently far on the ends, and constant at the boundary t0u ˆ Y of the

ends, constant at the unique unperturbed flat connection on Y in the corresponding

component of reducibles. For the statement of the following theorem, recall Definition

4.5.1 of signature data on a pair pY,Eq, and in particular signature data associated to a

perturbation.

Proposition 5.5.5. Suppose pW,Eq : pY1, E1, π1q Ñ pY2, E2, π2q is a cobordism (with

cylindrical ends) between rational homology spheres, equipped with a perturbation π P Pp4qδ
which is regular on the ends. Then by Definition 5.1.3, the perturbations on the ends are

sufficiently small that Proposition 4.3.1 applies.

103



Let A be a reducible connection on E which, sufficiently far on the ends, is constant

and equal to a π-critical point; suppose A is in the component labeled by r P RedpW,Eq;

let ri P RedpYi, Eiq be the restrictions to the ends. Suppose r corresponds to the pair of

complex line bundles tη1, η2u, corresponding to cohomology classes tz1, z2u. Because the

ends are rational homology spheres, we may write zi P H
2
c pW ;Qq; the compactly supported

cohomology ring has a cup-product with values in Q.

Let Sprq “ 1 if r is a component of SOp2q-reducibles and Sprq “ 3 if r contains a full

reducible.

Then

IAPSpQA,πq “ ´2pz1 ´ z2q
2
` 3pb1

´ b`q

`
ρpr2q ´ ρpr1q

2
`
σπ2pr2q ´ σπ1pr1q

2
´
Spr1q ` Spr2q

2
.

Proof. Let WN be the compact submanifold of W given by including the first r0, N s of

each end; for N sufficiently large, the operator Qν
A is of product type near the boundary.

By splitting WN into three pieces, r´N, 0s ˆ Y1YX Y r0, N s ˆ Y2, we may decompose

the operator QA,π into its pieces on these three corresponding ends. Write Q˘ for the

pieces of QA,π on the corresponding ends, Q for the piece on W 1, and Ai the connections

A restricts to on t0u ˆ Yi.

First we calculate IAPSpQ´q. Write Aptq for the restriction of A to the negative end,

where t P r´N, 0s. The path Aptq is homotopic to a path Af ptq so that Af ptq is in the

unique gauge equivalence class of πptq-flat connection in its reducible component: This

is the path used in the proof of Proposition 4.5.2, and our assumption that πi on the

ends lie in the sets PEi,δ is to ensure this doesn’t go awry. (See the remark immediately

after Definition 5.1.3.) In particular, because QA,π is the operator d
dt
`zHessAptq,πptq, this

spectral flow is by definition equal to the function 2Nπ1pr1q defined in that proposition.

Thus by Lemma 5.5.3,

IAPSpQ´q “ 2Nπ1pr1q ´ dim kerzHessA1 .

A similar discussion gives

IAPSpQ`q “ ´Spr2q ´ 2Nπ2pr2q.
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What remains is to apply the index theorem to D on X. If we write Qθ to mean the

corresponding ASD operator for the trivial connection, this can be read off from [MMR94,

Proposition 8.4.1] as giving

IAPSpDq ´ 3IAPSpDθq “ ´2p1pAq `
ρpr2q ´ ρpr1q

2
` 3´

h1 ` h2

2
.

Here hi “ dim kerzHessAi . A detailed computation is provided in [HK11, Proposi-

tion 2.6], but note that our sign conventions on boundary orientations and the definition

of p1 are the negative of theirs. Hodge theory provides the equality

IAPSpQθq “ ´p1´ b
1
` b`q,

so we obtain

IAPSpQq “ ´2p1pAq ` 3pb1
´ b`q `

ρpr2q ´ ρpr1q

2
´
h1 ` h2

2
.

Summing over these and including boundary kernel terms as in Lemma 5.5.2, we obtain

´2p1E` 3pb1
´ b`q `

ρpr2q ´ ρpr1q

2
` 2Nπ1pr1q ´

h1

2
`
h2

2
´ 2Nπ2pr2q ´ Spr2q.

Now A induces a reduction E – R‘pη1bη
´1
2 q. Pontryagin classes are preserved under

stabilization, so we want to compute p1pη1 b η
´1
2 q. For a complex line bundle ζ, we have

p1ζ “ c1pζq
2, and considering the classes zi in H2

c pW ;Qq corresponding to ηi, we obtain

p1E “ pz1 ´ z2q
2.

We focus now on the last few terms. If we write

Dpriq “ dimRH
1
pYi; η1 b η

´1
2 q,

then we have h1 “ Dpr1q ` Spr1q and h2 “ Dpr2q ` Spr2q. Because the dimension of a

vector space equipped with a nondegenerate symmetric bilinear form is the number of

positive eigenvalues plus the number of negative eigenvalues, we see that Dprq ´ 4Nπprq

is the number of positive eigenvalues less the number of negative eigenvalues, and hence

2Nπ1pr1q ´
h1

2
`
h2

2
´ 2Nπ2pr2q ´ Spr2q “

σπ2pr2q ´ σπ1pr1q

2
´
Spr1q ` Spr2q

2
.

�
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The above calculation did not at all depend on the fact that the connection A was

reducible. In general, the same formula holds, where if the restriction of A to one of the

ends is irreducible, we write Spr1q “ 0 for that end; and the first term should be read

´2p1pEq, defined as a curvature integral for a connection A on the compact manifold W

which restricts to the relevant flat connections on a neighborhood of the boundary.

Note that if we choose a different connection A1 that restricts to the same flat con-

nections on the boundary, the only thing that can possibly change in the index formula

is ´2p1pEq. Fix a base connection A0, equal to the desired flat connections near the

boundary. Consider the double of W , with A0 on one half and, on the other half, an

arbitrary connection A restricting to the desired flat connections on BW . Clearly ´2p1

of this new connection on a closed manifold is ´2p1pA0q ´ 2p1pAq. Note that ´2p1E is

constant mod 8 on a closed manifold: it reduces to

2pw2Eq
2
P H4

pX; 2Z{8q “ 2Z{8,

where here we take the Pontryagin square to write w2
2 P Z{4. Then we immediately have

the following corollary.

Corollary 5.5.6. The relative grading grzpα, βq P Z is independent, modulo 8, of the

choice of z. Therefore, we may unambiguously write grpα, βq P Z{8.

The above index calculation in mind for reducible connections, we combine the ρ and

signature terms into a single function.

Definition 5.5.2. Let pY,Eq be a rational homology sphere equipped with an SOp3q-

bundle and small regular perturbation π. We define the perturbed ρ-invariant to be ρπprq “

ρprq ` σπprq, where σπ is the signature datum associated to π as in Definition 4.5.1.

Now if we write Dν
A,π for the normal ASD operator, the linearization of the section

defining the moduli spaces in rBeE,z,k,δpα1, α2q restricted to the normal space to an orbit,

then we see by the discussion at the start of Chapter 5.2 that

IpDν
A,πq “ IAPSpQ

ν
Aq ` Sprq,

where Sprq “ dim gA is the dimension of the space of A-parallel gauge transformations.

Further, at an SOp2q-reducible connection A, the normal ASD operator splits as a sum
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of a ‘reducible part’ and an ‘irreducible part’, corresponding to the splitting of gE – E –

R‘ λ; write

Dν
A,π “ Dred

A,π ‘D
irred
A,π ;

one has IpDredq “ b1 ´ b`. This is the component that Sprq “ 1 contributes to, as the

operator Qirred is the same as the operator Qθ written in the above proof, and hence has

index ´1` b1 ´ b`.

Correspondingly, we see that at an SOp2q-reducible A we have

IpDirred
A,π q “ ´2pz1 ´ z2q

2
` 2pb1

´ b`q `
ρπ2pr2q ´ ρπ1pr1q

2
` 1´

Spr1q ` Spr2q

2
.

Definition 5.5.3. Let pW,Eq be a cobordism pY1, E1q Ñ pY2, E2q equipped with some

small perturbation π, regular at the ends. We say that an SOp2q-reducible r on pW,Eq is

good if IpDirred
A,π q ě 0, and bad otherwise.

Remark 5.5.1. In fact, Dirred
A,π is a complex linear operator, so its index is even.

There is a natural condition on a cobordism-with-perturbation pW,E, πq that reduces

the class of bad reducibles to a simple, sometimes avoidable, set.

Definition 5.5.4. Let pW,E, πq : pY1, E1, π1q Ñ pY2, E2, π2q be a cobordism. For an

SOp2q-reducible component r on pW,Eq, we write its restriction to the two ends as ri.

We say that pW,E, πq is ρ-monotonic if for every SOp2q-reducible component r, we have

ρπ1pr1q ď ρπ2pr2q.

For a ρ-monotonic cobordism, one of the most mysterious terms in the index formula

is nonnegative, so we may focus on the rest.

Lemma 5.5.7. For a ρ-monotonic cobordism pW,E, πq with b1pW q “ b`pW q “ 0 and

rational homology sphere ends, the only bad reducibles are tz1, z2u where z1´z2 is a torsion

class on H2pW ;Zq that restricts trivially to the ends. In particular, bad reducibles can

only exist if H1Y1 ‘H1Y2 Ñ H1W fails to be surjective.

Proof. The assumption of ρ-monotonicity means

ρπ2pr2q ´ ρπ1pr1q

2
ě 0,
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so

IpDirred
A,π q ě ´2p1A` 1´

Spr1q ` Spr2q

2
.

If both ri are SOp2q-reducible but not fully reducible,

1´
Spr1q ` Spr2q

2
“ 0;

if precisely one of the ri is fully reducible then that same term is ´1, and if both of

the ri are fully reducible then the final term is ´2. Becase b` “ 0, we have ´2p1A “

´2pz1 ´ z2q
2 ě 0. Therefore for a ρ-monotonic cobordism, IpDirred

A,π q ě ´2, with equality

if and only if both ri are fully reducible and ´2p1A “ 0.

Because H2
c pW ;Qq – H2pW ;Qq, and the intersection form is nondegenerate negative

definite on H2
c , we see that

´2p1A “ ´2pz1 ´ z2q
2
“ 0

iff z1 ´ z2 “ 0 P H2pW ;Qq; this is the same as saying that z1 ´ z2 is a torsion class. The

assumption that the restriction to the ends is fully reducible is precisely the same as saying

that z1´ z2 restricts trivially to the ends. Applying the universal coefficient theorem, we

obtain a class in ExtpH1W,Zq which restricts trivially to ExtpH1Y1,Zq ‘ ExtpH1Y2,Zq,

and so

ExtpH1W q Ñ ExtpH1Y1q ‘ ExtpH1Y2q

is not injective. The natural isomorphism

ExtpA,Zq – HompA, S1
q

for finite abelian groups A implies that if the map on Ext is not injective, then the map

H1Y1 ‘H1Y2 Ñ H1W fails to be surjective.

Because IpDirred
A,π q is an even integer, if it is larger than ´2, it is nonnegative, so r is a

good reducible. �

Definition 5.5.5. Let pW,Eq be a cobordism between 3-manifolds with SOp3q-bundles

and signature data pY1, E1, σ1q and pY2, E2, σ2q. We say that pW,Eq is weakly admissible

if one of the following holds.

‚ The negative end pY1, E1q is admissible, meaning that w2pE1q only lifts to non-

torsion classes in H2pY1;Zq.
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‚ βw2pEq ‰ 0 P H3pW ;Zq, where β is the integral Bockstein homomorphism.

‚ b1pW q “ b`pW q “ 0, for every β P RedpW,Eq restricting to βi on the ends,

ρpβ2q ´ ρpβ1q ` σπ2pβ2q ´ σπ1pβ1q ě 0,

and H1pW q Ñ H1pY1q ‘H1pY2q is surjective. That is, pW,Eq is ρ-monotonic and

supports no bad reducibles.

‚ E is non-trivial, b1pW q “ 0 and b`pW q ą 0.

Later we will need a similar notion for Up2q-bundles. If rE is a Up2q-bundle on the

cobordism, we say that it is weakly admissible if its reduction to an SOp3q-bundle E is

weakly admissible.

The weakly admissible Up2q-bundles correspond to the first, third, and fourth cases

above; the second case precisely means that E admits no lift to a Up2q-bundle, which

implies that it admits no reducible connections.

We will soon see that every item on this list admits a regular perturbation. It should

be noted that in fact we can achieve regular perturbations when pY2, E2q is admissible

but the negative boundary component is not. We do not include these in our definition

of weakly admissible bundles as they do not glue together well in general. The composite

of a cobordism from a rational homology sphere to an admissible bundle, and then back

to a rational homology sphere, need not be weakly admissible.

For the definition above, we have the following.

Lemma 5.5.8. The composite of two weakly admissible cobordisms remains weakly ad-

missible.

Proof. First, it is clear that the composite of the first type of weakly admissible cobordism

with any other remains weakly admissible. That the composite of any cobordism and

one with βw2E ‰ 0 still has βw2E ‰ 0 follows immediately from the naturality of

the Bockstein and the fact that w2 is natural under restriction. Suppose we have weakly

admissible cobordisms of the third or fourth type that are not of the first or second. Then

their boundaries are rational homology spheres, and the composite also has b1pW q “
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0; the term b`pW q is additive under gluing along rational homology spheres, so the

composite of any of the third or fourth type with the fourth type is again of the fourth

type.

So what remains to check is that the composite of any cobordism of the third type

with another of that type remains of that same type. It is clear that the ρ-monotonicity

condition is additive; the interesting thing is to ask about is the homological condition.

At first glance, it is mysterious why composites of cobordisms satisfying this condition

should still satisfy this condition; it is made more clear by remembering the point of that

condition.

Let A be a reducible on the cobordism W with b1pW q “ 0, corresponding to coho-

mology classes tz1, z2u; write ri for the restriction of A to the corresponding boundary

component. The ρ-monotonicity condition and homological condition, combined, are

equivalent to the following: the index

IpDirred
A,π q “ ´2pz1 ´ z2q

2
´ 2b`pW q `

ρπ2pr2q ´ ρπ1pr1q

2
` 1´

Spr1q ` Spr2q

2

is nonnegative for all pA, πq. (This is the index computed above Definition 5.5.3.)

Now let W1 and W2 be weakly admissible cobordisms between rational homology

spheres equipped with reducibles Ai; write A12 for the reducible on the composite cobor-

dism W , and r1, r2, r3 for the restrictions of s to the successive 3-manifolds that serve as

boundary components of W1 and W2. It is easy to see that

IpDirred
A12,π

q “ IpDirred
A1,π

q ` IpDirred
A2,π

q ` Spr2q ´ 1.

Now the index IpDirred
Ai,π

q is non-negative for all reducibles; so for the composite, we find

IpDirred
A12,π

q ě Spr2q ´ 1. But r2 is a reducible, and so Spr2q is either 1 or 3; thus we obtain

IpDirred
A12,π

q ě 0, as desired. �

Consider the situation that W1 is a cobordism from a homology sphere to a rational

homology sphere, and W2 is a cobordism from a rational homology sphere back to a

homology sphere, so that H1Wi are both isomorphic to the middle boundary component.

Then clearly the composite cobordism fails the homological condition, even though it

tautologically satisfies ρ-monotonicity (all reducibles are full reducibles, where the ρ-
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invariant and signature data are both zero). So even though they satisfy the homological

condition, one of W1 and W2 must fail to be ρ-monotonic.

For every weakly admissible cobordism, all reducible configurations that exist for

generic perturbation π have non-negative normal index. (In the admissible case, we may

choose the perturbation π so that there are no π-ASD connections on the cobordism.)

In the first three cases, this remains true when considering paths of perturbations. In

the final case, reducibles only appear generically in families of perturbations of dimension

b`pW q, but do not necessarily have non-negative index; when they arise, we may not

achieve transversality. Strengthening the ρ-monotonicity requirement does not solve this

problem.

We conclude this section with some remarks on gradings.

Lemma 5.5.9. Let pW,Eq : pY1, E1, π1q Ñ pY2, E2, π2q be a cobordism between 3-manifolds

equipped with weakly admissible bundles and regular perturbations. If αi and βi are choices

of critical orbits, then

grW pα1, α2q ´ grW pβ1, β2q “ grpα1, β1q ´ grpα2, β2q.

This follows immediately from the additivity property of the grading and the fact that

grpβ, βq “ 0.

Corollary 5.5.10. Let pW,Eq : pY1, π1q Ñ pY2, π2q be a cobordism between rational

homology spheres equipped with the trivial bundle and small regular perturbations. Write

θi for the corresponding trivial connections. We have

w2pEq P H
2
pW, BW ;Z{2q,

and so we may use the Pontryagin square to write

w2pEq
2
P H4

pW, BW ;Z{4q “ Z{4,

and 2w2pEq
2 P 2Z{8.

Then

grW pα1, α2q “ ´2w2pEq
2
` 3pb1

´ b`q ` grpθ2, α2q ´ grpθ1, α1q.
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Suppose pW,E,Aq is a cobordism from pY,E, π, αq to itself, where Y is a rational

homology sphere equipped with a regular perturbation π and π-flat connection α. Then

grW pα, αq “ ´2w2pEq
2
` 3pb1

pW q ´ b`pW qq.

Proof. Recall Definition 5.2.1 that grpα, βq is given by indpQν
A,πq for any connection A

connecting α and β with perturbation π limiting to the fixed perturbations on the ends,

and

grpα, βq “ grpα, βq ` 3´ dimα.

Proposition 5.5.5 then provides us with

grW pθ1, θ2q “ ´2w2pEq
2
´ 3p1´ b1

` b`q,

using the fact that p1 ” w2
2 pmod 4q and Spθq “ 3, as well as the vanishing of the

invariants ρpθq “ σπpθq “ 0. Therefore

grW pθ1, θ2q “ ´2w2pEq
2
` 3pb1

´ b`q.

Then the conclusion is simply a special case of the previous lemma.

The final claim follows from the same index calculation we used to calculate grW pθ1, θ2q;

the key points are that the σπpαq terms cancel, and that Spαq is 3´ dimα. �

We may say something about the gradings of reducibles. We begin with the fully

reducible connections.

Proposition 5.5.11. Let Y be a rational homology 3-sphere equipped with a trivial bun-

dle and small regular perturbation π. If Θ and Θ1 are fully reducible connections, then

grpΘ,Θ1q P 4Z{8.

Proof. It suffices to prove this when π “ 0; the spectral flow description above, as well as

the assumption that π is sufficiently small that no eigenvalues cross the weight δ, implies

the grading is the same for arbitrary perturbation.

Now recall that there is an action of GE{GeE “ H1pY ;Z{2q on both the 3-dimensional

configuration space rBeE,k. The unperturbed Chern-Simons functional is invariant under

the full gauge group, and so the critical set is preserved by this action. Therefore, we
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also have an action on the 4-dimensional configuration space \α,β rBeπ˚E,k,δpα, βq; we take

the disjoint union here because the action of x takes rBeπ˚E,k,δpα, βq to rBeπ˚E,k,δpx ¨α, x ¨ βq.

The identification in Proposition 2.3.4 implies that H1pY ;Z{2q acts freely and tran-

sitively on the set of fully reducible critical points (or what is the same, the set of fully

reducible points). So there is a unique x P H1pY ;Z{2q with x ¨ Θ “ Θ1. Now pick a

connection A P rBeπ˚E,k,δpΘ,Θ1q. Because the action of H1pY ;Z{2q preserves the ASD

equations, the index of QA agrees with the index of Qx¨A.

Therefore, grpΘ,Θ1q “ grpΘ1,Θq; here we use that 2x “ 0, so

x ¨Θ1
“ px` xq ¨Θ “ Θ.

But we know

2grpΘ,Θ1
q “ grpΘ,Θ1

q ` grpΘ1,Θq “ grpΘ,Θq “ 0.

Because these take values in Z{8, we see that grpΘ,Θ1q is a multiple of 4. �

We may make a similar observation about general reducibles (both SOp2q- and fully

reducible connections), with a completely different proof.

Proposition 5.5.12. Let Y be a rational homology 3-sphere equipped with a weakly ad-

missible bundle E and a small regular perturbation π. If α and β are reducible critical

orbits, then grpα, βq is even.

Proof. First, we show that there exists a cobordism pW,Eq : pY,Eq Ñ pY,Eq so that there

is a reducible connection on pW,Eq restricting to α and β on the corresponding ends. To

see this, recall from Proposition 2.4.2 that components of reducibles are classified by

pairs of cohomology classes tz1, z2u Ă H2pW ;Zq so that z1 ` z2 is a fixed integral lift of

w2E (and, in particular, if there are reducible components such an integral lift exists).

We see, therefore, that it suffices to show that every oriented closed 3-manifold equipped

with a pair of cohomology classes pz1, z2q Ă H2pY ;Zq is null-bordant through an oriented

4-manifold equipped with a pair of cohomology classes pzW1 , zW2 q that restrict to the zi on

the boundary. Because pairs of cohomology classes are classified by maps to CP8ˆCP8,

we are asking that Ωor
3 pCP

8
ˆCP8q “ 0. This follows immediately from the existence of

the Atiyah-Hirzebruch spectral sequence, the fact that CP8ˆCP8 has cohomology only
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in even degrees, and Ωor
i “ 0 for 1 ď i ď 3, as this implies the terms E2

k,3´k “ 0 for all k,

and hence the same is true of E8.

Now if ηWi are the associated complex line bundles to pzW1 , zW2 q, the SOp3q-bundle is

E – R‘ ηW1 b pηW2 q
´1

and the reducible component is labelled by tzW1 , zW2 u; choosing such a bounding manifold

for both pY, αq and pY , βq, we may simply take the connected sum to obtain the desired

cobordism pY,E, αq Ñ pY,E, βq.

Now recall from Lemma 5.5.9 that

grW pβ, αq ´ grW pβ, βq “ grpα, βq.

To show that grpα, βq is even, our goal is to show that grW pβ, αq ” grW pβ, βq pmod 2q.

Pick a reducible connection A, asymptotic to β at ´8 and α at `8; the previous

discussion amounts to saying we may do so.

First, we remark that the A enjoys a splitting θ‘A, for a connection A on a complex

line bundle and θ the trivial connection on the trivial real line bundle. We may thus

write IpQAq “ IpQθq ` IpQAq. Because the index of a complex linear operator is even,

we see that IpQν
Aq ” IpQθq pmod 2q and

IpQθq “ b1
pW q ´ 1´ b`pW q.

Therefore, because β is reducible and hence 3´ dim β is odd, we find that

grW pβ, αq ” b1
pW q ´ b`pW q pmod 2q.

As for grW pβ, βq, the final part of Corollary 5.5.10 says that

grW pβ, βq “ ´2w2pEq
2
` 3pb1

pW q ´ b`pW qq.

Reducing modulo 2, we find that grW pα, αq ” b1pW q ´ b`pW q pmod 2q, and so

grW pα, αq ” grW pβ, αq pmod 2q,

as desired. �
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5.6 Transversality for the cylinder and cobordisms

Theorem 5.6.1. Let E be a weakly admissible bundle over a 3-manifold Y . Suppose a

perturbation π0 P PE,δ has been chosen. Then by Definition 5.1.3 of this space of pertur-

bations, the enumeration of reducibles in Proposition 4.3.1 holds, and the critical set Cπ0

is a finite set of nondegenerate SOp3q-orbits. If O is a small SOp3q-invariant neighbor-

hood of these orbits, and PE,O,δ the space of perturbations π P PE,δ with fπ
ˇ

ˇ

O “ fπ0
ˇ

ˇ

O,

then for a residual set of π P PE,O,δ, the R-reduced moduli spaces of framed instantons

ĂM0
E,z,πpα, βq between any two critical orbits are cut out nondegenerately. Hence these are

smooth SOp3q-manifolds of dimension grzpα, βq`dimα´1 unless α “ β and z is trivial,

in which case ĂM0
E,0,πpα, αq “ α.

Proof. First, we remark on the reducibles: by Proposition 5.4.1, the only reducible solu-

tions are constant. We want to verify that the solutions are nondegenerate at constant

trajectories; this amounts to saying that for the operator

d

dt
`zHessA,π : Ω0

‘ Ω1
Ñ Ω0

‘ Ω1

has no cokernel other than the constant trajectories at kerp∆αq Ă Ω0pgEq. This is true

by applying a standard separation of variables argument to the adjoint operator.

Now the only points to worry about are irreducibles, for which this theorem is standard:

see [Don02, Section 5.5.1] or [KM11b]. (This is precisely where we use the perturbations

in PE,O which agree with our original perturbations in a neighborhood of the π-flat

connections.) �

Before we continue the proof of transversality for cobordisms, we will need the following

lemma.

The key assumption we started with was that I is nonnegative, as the following lemma

makes clear. The non-equivariant index 0 case is written in [Sal99, Appendix A.3].

Lemma 5.6.2. Fix a compact Lie group G and two separable G-Hilbert spaces X and

Y . The Banach manifold FGpX, Y q of G-equivariant Fredholm maps X Ñ Y decomposes

into disjoint open sets F IGpX, Y q, where I P ROpGq is an element of the Grothendieck

group on finite-dimensional G-representations, labelling the index of an operator.
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Each F IGpX, Y q is stratified by locally closed subsets FV,WG pX, Y q, where V and W are

finite-dimensional G-representations with rV s ´ rW s “ I. These are defined to consist of

those operators T P FGpX, Y q with kerpT q – V and cokerpT q – W .

Each FV,WG pX, Y q is a smooth submanifold of FGpX, Y q; the normal space at an oper-

ator T P FV,WG pX, Y q is isomorphic to HomGpker T, coker T q.

Proof. Let T P FV,WG pX, Y q, and split X “ X0 ‘ X1 and Y “ Y0 ‘ Y1, where X0 “

kerpT q, X1 “ XK
0 , and Y1 “ ImpT q, while Y0 “ Y K1 ; then by assumption T11 is an

isomorphism. A neighborhood of T in FV,WG pX, Y q consists of equivariant maps T 1 “
¨

˝

A B

C D

˛

‚, written in block-matrix form, where

A : X0 Ñ X0, B : X1 Ñ X0, C : X0 Ñ X1, D : X1 Ñ X1,

where D is an isomorphism. If T 1 P FV,WG pX, Y q and is sufficiently close to T , then

the projection map kerpT 1q Ñ kerpT q “ X0 is an isomorphism (and otherwise it cannot

possibly be). So suppose this projection map is an isomorphism. Write the equivariant

inverse v : X0 Ñ kerpT 1q and write it in components as px, v1pxqq. The defining property

of v is that

pAx`Bv1pxq, Cx`Dv1pxqq “ 0.

Because D is an isomorphism, we may write v1pxq “ ´D´1Cx, and then we see that

Ax “ BD´1Cx. Conversely, it is easy to see that if A “ BD´1C, then the projection map

kerpT 1q Ñ X0 is an isomorphism. So A “ BD´1C is a defining equation for FV,WG pX, Y q

near zero. The map FV,WG pX, Y q Ñ HomGpX0, Y0q given by

T 1 ÞÑ A´BD´1C

has derivative T 1 ÞÑ A at zero, which is a surjective linear map, and hence we see that

FV,WG pX, Y q is a smooth manifold near T . �

For the most difficult part of the argument — transversality normal to the reducible

locus — we will need the following lemma.

Lemma 5.6.3. Let π be a regular perturbation on pY,Eq, and consider the π-perturbed

ASD operator on r0,8q ˆ Y with Coulomb condition. Writing a 1-form on r0,8q ˆ Y
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as ψptq ` dt ^ φptq for time-varying 0- and 1-forms φ and ψ, and a self-dual 2-form as

pdt^ ˚ωptqq` for a time-varying 1-form, this operator is

QA,πpφt, ψtq “ pφ
1
t ´ d

˚
Aptqψt, ψ

1
t ´ dAptqφt ` β0ptqDAptq pcs` fπqψt;

its adjoint is the same, with the signs on the time-derivatives negated. Henceforth, we

denote

Lptq “ β0ptqDAptq pcs` fπq .

Then the following are true.

1. If ψ is a time-dependent 1-form with Q˚A,πψ “ 0, and furthermore ψp0q “ 0, then

in fact ψ “ 0 on the whole of r0,8q ˆ Y .

2. If QA,πpφ, ψq “ 0, and furthermore ψp0q “ ´dAp0qσ for some 0-form σ, then one

may extend σ to a time-dependent 0-form σt with

pφt, ψtq “ pσ
1
t,´dAptqσtq;

that is, if an element of the kernel is exact on the boundary, it is globally exact.

Proof. The first statement follows immediately from Lemma 5.4.6; the second is more

subtle.

First, set σt “ ∆´1
Aptqd

˚
Aptqψt. Adding dAσ to the given element of the kernel, we obtain a

new one with d˚Aptqψt “ 0 for all t. We aim to show that this pφ, ψq is itself the differential

of some 0-form on r0,8q ˆ Y . This destroys the Coulomb condition, but preserves the

linearized ASD equation.

First, we write the ASD equation explicitly: it now takes the form

ψ1t ` Lptqψt “ dAptqφt.

Fix a C1 isomorphism

et : kerpd˚Ap0qq Ñ kerpd˚Aptqq.

We use this to write ψt “ etpftq, where ft is a time-dependent element of kerpd˚Ap0qq. Then

we may write ψ1t “ etpf
1
tq ` e

1
tpftq, where e1t : kerpd˚Ap0qq Ñ Ω1 is a continuous linear map,

varying continuously in time.
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Projecting to kerpd˚Aptqq (and calling the projection operator Πt), we obtain the follow-

ing equation on kerpd˚Ap0qq:

f 1t ` pe
´1
t PitLptqetqpftq “ ´petq

´1
pPite

1
tqpftq.

The operator e´1
t pPitLptqetq differs from a symmetric and densely defined operator by a

bounded operator, and the operator e´1
t pPite

1
tq is bounded, so this satisfies the conditions

of Lemma 5.4.6; therefore, ft “ 0 for all time, and so ψ “ 0. The ASD equation becomes

dAptqφt “ 0.

We need to show that pφt, 0q is exact. But if σt “
şt

0
φsds, we have

dAσt “ pφt,

ż t

0

dApsqσsdsq “ pφt, 0q.

So any element of the kernel which is exact on the boundary is exact on the whole of

r0,8q ˆ Y . �

Theorem 5.6.4. Let pW,E, πq : pY1, E1, π1q Ñ pY2, E2, π2q be a weakly admissible cobor-

dism, where π P Pp4qδ ; this means, in particular, that the πi are regular perturbations,

and the enumeration of reducibles Proposition 4.3.1 applies. Write, as usual, Pp4qc for the

space of perturbations which agree with the πi on the ends.

For any fixed constant C ą 0, there is an open neighborhood pπ´, π`q P UC Ă Pp4qc with

the following significance.

There is a residual set of π P UC so that for any π in this residual set, every moduli

space ĂME,z,π1pα, βq with energy at most C is cut out transversely, and hence is a smooth

SOp3q-manifold of dimension grzpα, βq ´ dimα if it contains irreducible connections. In

particular, regular perturbations4 exist arbitrarily close to pπ1, 0, π2q.

Proof. As before, we argue inductively on reducibility type. We have already seen in

Lemma 5.4.7 that the set of perturbations for which the fully reducible connections are

cut out transversely in a neighborhood pπ´, π`q Ă U of any end perturbation pπ´, π`q on

4Here we use regular in the sense that moduli spaces up to some energy bound are cut out regularly;
we will only need those moduli spaces with grz ď 10, which corresponds to an energy bound.
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a weakly admissible cobordism. Furthermore, we saw in the proof of Proposition 5.4.2

and Proposition 5.4.3 that for a residual set of π P U , we achieve transversality internally

to the reducible locus. The same argument applies just as well to irreducible connections.

The only remaining difficulty is achieving transversality normal to the reducible locus.

Recall that above the neighborhood U , we have a Hilbert manifold of parameterized

reducible instantons UMred
k,δ , equipped with a projection to U ; this projection is proper so

long as you restrict to π-instantons with energy bounded by a fixed constant C. A fixed

component of this space corresponds to instantons which respect a splitting of topological

type E – R‘ η.

Over this Hilbert manifold there is a Banach bundle, whose fiber above pA, πq is the

space of SOp2q-equivariant Fredholm maps

pkerpd˚Aqk,δq Ñ Ω2,`
k´1,δpW ; ηq;

a more invariant way of specifying the domain is NA
rBred
A,k,δ, the normal bundle to the

reducible locus.

Write UF for this Banach bundle with projection

UF Ñ UMred
k,δ .

There is a stratified sub-bundle of this bundle, which is a locally closed union of

manifolds: the subspace UFěk of those Fredholm operators with cokernel isomorphic to

Cj, for some j ě k, with SOp2q acting with weight one. By Lemma 5.6.2, the normal

space to UF j at pA, π,Dirred
A,π q is

HomSOp2q

`

kerpDirred
A,π q, cokerpDirred

A,π q
˘

.

HereDirred is the ASD operator restricted to the bundle η; it has no gauge fixing condition,

or rather has the gauge fixing condition built into the domain of the map.

Our next goal is to show that the section Dirred
A,π : UMred

k,δ Ñ UF is transverse to UFě1

along Mred
pπ´,π`q,k,δ

— that is, we are only showing that this map Dirred is transverse to

UFě1 along the fiber above 0. This is true for all fully reducible connections by the

definition of U , so we may as well assume A is SOp2q-reducible.
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Now suppose pA, pπ´, π`qq is a reducible perturbed instanton whose perturbation has

no interior part. Recall that if W has cylindrical ends r0,8q ˆ Y , we define the interior

holonomy perturbations on the interior of the submanifold

W 1
“ W z

`

p1,8q ˆ Y
˘

.

Our first claim is that for any point p in the interior of W 1, there is a collection of

loops γ1, ¨ ¨ ¨ , γN based at p so that the equivariant map

dAHol~γ : kerpDirred
A,π q Ñ pgEpq

N

is an embedding.

This follows because ω must be exact over the interior of W 1 by Lemma 4.1.2, and

therefore by the second point of Lemma 5.6.3 ω is exact along p0,8qˆY as well. The issue

is that if σ1, σ2 are the 0-forms with dAσi “ ω over the interior and ends, respectively,

it’s not clear that σ1 “ σ2 over p0, 1q ˆ Y ; however, their difference is a closed 0-form on

p0, 1q ˆ Y .

If A is reducible over p0, 1qˆY , then a unique continuation argument shows that it is

reducible of the same class over all of p0,8qˆ Y ; in particular, the closed 0-form σ1´ σ2

extends to a closed 0-form on the whole of p0,8q ˆ Y . Adding this to σ2, we find that

indeed there is a globally defined 0-form σinΩ0
k`1,δ,extpW ; gEq so that ω “ dAσ, and thus

ω is zero as a tangent vector in rBE,k,δ.

In fact, because this derivative map is SOp2q-equivariant, its image must lie in some

complement to the SOp2q-fixed subspace piRqN .

The second claim is that one may choose a finite set of points p1, ¨ ¨ ¨ , pm in the interior

of W 1 so that the evaluation map

cokerpDirred
A,π q Ñ

m
à

i“1

Λ2,`
pgEpi q

is injective; again as above we may restrict to Λ2,pg{iRq.

This is where we use, in an essential way, that π does not have a component which is

an interior perturbation — to run the elliptic regularity argument that identifies ψ P L2
k,δ

requires that the perturbations DA
p∇π extend to Sobolev spaces L2

j,loc for all ´k ď j ď k,
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whereas we only have that extension through 0 ď j when the perturbation includes an

interior part. When there is no interior part, however, we have enough regularity that

we may point-evaluate as above.

So suppose that we have enough regularity to point-evaluate, and that the above map

was not injective, for any choice of points pi in the interior of W 1. This would imply that

there was some ψ P cokerpDirred
A,π q which was identically zero on the whole of W 1. But

then, by the first point of Lemma 5.6.3, ψ is zero on all of W . Thus some collection of

points pi suffices.

Now A, being SOp2q-reducible but not fully reducible, we may assume that the curves

above (at each point pi) are chosen so that

Hol~γjpAq P Up1qNjzp˘1qNj :

here we identify ΓA Ă ĄAutpEbq with Up1q. Call this element Hj for convenience.

This means that when we choose the equivariant map

rj : ĄAutpEpjq
N
Ñ Λ2,`

´

gEpj

¯

so that the derivative dHjrj is an arbitrary SOp2q-equivariant map

g
Nj
Epj

Ñ Λ2,`
´

gEpj

¯

,

and in particular can restrict to an arbitrary chosen SOp2q-equivariant map

´

gEpj {iR
¯Nj

Ñ Λ2,`
´

gEpj {iR
¯

.

Thus, finally, we may choose these maps rj so that, upon restricting to the image of

kerpDirred
A,π q and projecting to the image of cokerpDirred

A,π q, the maps rj give an arbitrary

chosen SOp2q-equivariant map

kerpDirred
A,π q Ñ cokerpDirred

A,π q.

As usual, now, we may approximate these collection of loops and maps rj by elements

of the fixed countable dense set of interior holonomy perturbations πi, choosing the self-

dual 2-forms supported in a neighborhood of the points to very well approximate δ-masses

at those points.
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So we may approximate an arbitrary SOp2q-equivariant map from the kernel to the

cokernel as a map induced by Dirred
A

p∇πi .

Thus, the map

Dirred : UMred
k,δ Ñ UF

is indeed transverse to UFě1 above pπ´, π`q P U . Now recall from Lemma 5.4.5 that, so

long as you restrict to those instantons of energy at most C, the map

UMred,ďC
k,δ Ñ U is proper, and in particular closed, so the tube lemma applies: there

is a neighborhood pπ´, π`q P UC Ă U so that the restriction of Dirred to UCMred is

transverse to UCF for those π-instantons with energy at most C. It is safe to assume

that C is not the energy of any reducible π-instanton above UC , so that this is still a

smooth manifold; we drop the C from the notation from Mred for convenience.

Write

pDirred
q
´1
pUCFě1

q “ UCMred,ě1
k,δ ;

this is a union of a countable collection of locally closed submanifolds of positive codi-

mension. By Sard’s theorem, the regular values of the projection

UCMred,ě1
k,δ Ñ UC

form a residual set; for π to be regular simply means that cokerpDirred
A,π q “ 0 for all

reducible π-instantons A.

This is what we set out to prove. �

It is worth recalling in the above that we may choose a constant C so that for all

π P UC , any moduli space of instantons with grzpα, βq ď 10 consists of instantons with

energy at most C. In particular, there is no need to take C arbitrarily large, and no risk

of the open sets UC shrinking to zero as one attempts to do so.

5.7 Gluing

We follow the approach to gluing given in [KM07, Chapter 19], and in particular we need

to briefly discuss weighted Sobolev spaces and the perturbed ASD equations on compact

cylinders.
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We write ZT “ r´T, T sˆY and Z8 “ r0,8qˆY \p´8, 0sˆY ; we view Z8 as a limit

of the ZT , stretching until what used to be 0 becomes the point at 8. We uniformly have

BZT “ Y \ Y . The function spaces of interest to us are the Sobolev spaces of sections of

vector bundles over ZT . The L2
k Sobolev space is the completion of the space of compactly

supported smooth sections on ZT ; notice that there are no boundary conditions on these

sections. As a remark before continuing, the restriction map to the boundary takes value

in the L2
k´1{2 Sobolev space.

We define the weighted Sobolev spaces on ZT as in [Lin18, Page 72]: let σδ : RÑ r´δ, δs

be an odd smooth function such that σδptq “ ´δ for t ě 1 and σδptq “ δ for t ď ´1. For

each finite T ě 2 we let gT,δ be the positive smooth even function on r´T, T s which is

equal to 1 on the boundary and has σδ “ logpgT,δq
1. For t P r1, T s, we have gT,δ “ e´δpt´T q,

an exponentially decreasing function with final value 1. Then for sections on the finite

cylinder ZT we set

}f}L2
k,δ
“ }gT,δ ¨ f}L2

k
.

For T “ 8 then as before we will use g8,δ “ e|t|δ. For finite T , this is equivalent to the

usual L2
k norm, with implicit constants growing exponentially in T .

Now as before we may introduce the moduli space of instantons on the finite cylinder

ZT in the same component as the constant solution γA in the usual way: we consider

the configuration space γA ` Ω1
k,δpZ

T ; gEq and quotient by the space Ge,hE,k`1,δ of gauge

transformations. In the case T “ 8, the h (for harmonic) denotes that these gauge

transformations should be asymptotic on the noncompact end to elements of ΓA, possibly

different on each component. These moduli spaces with no boundary conditions are

infinite-dimensional and depend on the Sobolev index k, as the restriction of an L2
k ASD

connection to the boundary may only be of Sobolev class L2
k´1{2, in any L2

k`1{2 gauge

equivalence class.

When defining framed moduli spaces on the finite cylinder ZT , we set

ĂMA,k :“ AA,kpZT
q ˆ Ep´T,bq

L

Geπ˚E,k`1,δ.

Here A denotes that we are based at the constant trajectory γA. Because these moduli

spaces depend on the Sobolev index k, we include it in our notation.

In the infinite case Z8, there should be two framings, one for each component, which

123



have the same value in the orbit through A in rBeE when we take the holonomy to ˘8.

To mirror the case of finite cylinders, we write this as

rAA,k,δpZ8q :“ AA,k,δpZ8q ˆ Ep0`,bq ˆ Ep0´,bq;

the notation p0`, bq singifies that this lies in the component r0,8q ˆ Y .

Write ĂM1
A,k,δpZ

8q for the quotient. Now we may take A-holonomy to p8, bq or p´8, bq,

respectively, and project the framing factors to Eb{Γα; and we write ĂMA,k,δpZ
8q for the

subset on which the two framings project to the same element of Eb{Γα.

For all T , there is a restriction map

RT : ĂMA,k,δpZ
T
q Ñ rBeE,k´1{2pY \ Y q.

When T “ 8, an element of ĂMA,k,δpZ
8q is an equivalence class of connection with a

framing at each basepoint on the two boundary components. Therefore, R8 may be

given by literally restricting the connection and framing to the boundary (up to gauge

equivalence).

For finite T this is a little more complicated. On the left boundary component Y ,

this is the usual restriction map (the framed basepoint is on Y ), but on Y , it is given

by restriction in the connection coordinate and parallel transport from ´T to `T along

Rˆ tbu in the framing coordinate.

Now we turn to slices for the gauge group action so that we may compute neighbor-

hoods of ĂMA,k,δ as an equation on a linear space.

As before, we may consider the Coulomb slice kerpd˚γAq Ă Ω1
k,δpZ

T ; gEq where γA de-

notes the constant trajectory at A; in particular

d˚γApdt^ σptq ` ωptqq “ ´σ
1
ptq ` d˚Aωptq.

The Coulomb slice is no longer a slice for the gauge group action: if we try to solve the

equation d˚γApdγAσ ` ωq “ 0, to write an arbitrary element of Ω1 as a sum of an element

of ImpdγAq and an element of kerpd˚γAq, we find that

d˚γAdγAσ “ ´d
˚
γA
ω

has a unique solution dγAσ for each ω and fixed boundary values dAσ
ˇ

ˇ

Y\Y
.
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We obtain the Coulomb-Neumann slice around γA, written CNA,k,δ: the subset of

ω P Ω1
k,δpZ

T ; gEq on which d˚γAω “ 0 and, writing ω “ φ ` dt ^ ψ, where ψ is a time-

dependent 0-form, we demand that

ψ
ˇ

ˇ

BZT
“ 0.

Every connection on ZT sufficiently close to γA is gauge equivalent to one on the Coulomb-

Neumann slice, and the only remaining ambiguity is that CNA,k,δ carries the action of

the stabilizer ΓγA in the gauge group, and γA ` a is gauge equivalent to γA ` upAq. In

particular, observe that CNA,k,δ ˆΓγA
SOp3q gives an SOp3q-invariant neighborhood of

γA in rBpZT q.

Before moving on, we recall Lin’s abstract Morse-Bott gluing theorem. Let E be a

vector bundle over a closed oriented 3-manifold Y , and let L be a self-adjoint elliptic

operator acting on L2
kpY ;Eq with kernel H0. In what follows, we consider the operator

D :“ d{dt ` L acting on finite cylinders ZT “ r´T, T s ˆ Y and infinite cylinders Z8 “

r0,8q ˆ Y \ p´8, 0s ˆ Y .

On the infinite cylinder, we write

L2
k,δ,extpZ

8; π˚Eq :“ H0 ` L
2
k,δpZ

8; π˚Eq,

where H0 indicates sections sh0 in kerpDq on Z8 which are constant in time at some

element h0 in H0 “ kerpLq. In fact, we write

ETδ “ L2
k,δpZ

T ; π˚Eq, E8δ “ L2
k,δ,extpZ

8, π˚Eq

and

FTδ “ L2
k´1,δpZ

T ; π˚Eq, F8δ “ L2
k´1,δpZ

8, π˚Eq.

We have a projection map Π80 : E8δ Ñ H0 given by taking the asymptotic value at ˘8

and projection maps ΠT
0 : ETδ Ñ H0 given by projection onto the subspace of constant

sections in the L2
k,δ norm (equivalently, in the L2

0,δ norm).

Suppose we are given a bounded linear operator

Π : L2
k´1{2pY \ Y ;Eq Ñ H
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for some Hilbert space H; by restriction to the boundary this induces maps

Π : L2
k,δpZ

T ; π˚Eq Ñ H

Π : L2
k,δ,extpZ

8; π˚Eq Ñ H.

We now assume, crucially, that the map

pD,Π80 ,Πq : E8δ Ñ F8δ ‘H0 ‘H

is an isomorphism, which implies the same for δ1 sufficiently close to δ. Now suppose we

are given a non-linear map

α : C8pZT ; π˚Eq Ñ L2
locpZ

T ; π˚Eq,

obtained by restriction to slices from a map α0 : C8pY ; π˚Eq Ñ L2
locpY ; π˚Eq. We assume

that α extends to a smooth map

L2
kpr´1, 1s ˆ Y ; π˚Eq Ñ L2

k´1pr´1, 1s ˆ Y ; π˚Eq

with αph0q for every h0 P H0 and we assume that α is purely nonlinear, in the sense that

its derivative at 0 P L2
kpr´1, 1s ˆ Y ; π˚Eq is zero. This implies that α defines smooth

maps ETδ Ñ FTδ with the same property.

Now write

F T
“ D ` α : ETδ Ñ FTδ

and

MpT q “
`

F T
˘´1

p0q Ă ETδ .

The following is [Lin18, Proposition 3.5.15].

Proposition 5.7.1. For T P rT0,8s, the sets MpT q are Hilbert submanifolds of E8δ in a

neighborhood of 0. There exist η ą 0 and smooth maps

upT,´q : BηpH0 ‘Hq ÑMpT q

which are diffeomorphisms onto their image and have

pΠ0,ΠqupT, ph0, hqq “ ph0, hq and upT, ph0, 0qq “ sh0 .
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For T P rT0,8s, we have a map

µT : BηpH0 ‘Hq Ñ L2
k´1{2pY \ Y ;Eq

obtained as a composition of upT,´q with restriction to the boundary. For each T , µT is

a smooth embedding; µT is smooth as a function on rT0,8qˆBηpH0‘Hq, and µT Ñ µ8

as T Ñ 8 in the C8loc topology on maps BηpH0‘Hq Ñ L2
k´1{2pY \Y ;Eq. Finally, there is

an η1 ą 0 independent of T so that the images of the maps upT,´q contains all solutions

u PMpT q with }u}L2
k,δ
ď η1.

We will now state our main gluing lemma. In what follows, we will use Lin’s abstract

gluing theorem to prove our lemma in three cases, depending on the reducibility type of

the orbit α, along with some mild changes (the flavor of the changes depending on how

reducible α is).

Lemma 5.7.2. Let pY,E, πq be a closed oriented 3-manifold equipped with a weakly ad-

missible SOp3q-bundle and regular perturbation π. We write α for a π-critical orbit; if A

is a connection in the gauge equivalence class of α, we write the corresponding Coulomb

slice

Kα “ kerpd˚Aq X Ω1
k´1{2pY ; gEq,

and BpKαq for its unit ball. The Hilbert space Kα carries the action of the stabilizer of

A in the gauge group; thinking of Kα as the normal space to a point in the orbit α in

rBek´1{2pY q, this is the same as the action of Γα, the stabilizer of a point of α in SOp3q.

We may thus extend Kα to a vector bundle

rKα :“ SOp3q ˆH Kα

over the orbit α, equipped with an SOp3q action (acting on the factor of SOp3q on the

left). We write the associated unit disc bundle as BprKαq.

There is a T0 so that for all T P rT0,8s, we may find smooth, SOp3q-equivariant maps

rupT,´q : BprKαq Ñ ĂMα,k,δpZ
T
q

which are diffeomorphisms onto neighborhoods of the constant solution γα, and such that

the map

rµT : BprKαq Ñ rBeE,k´1{2pY \ Y q,
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given by composing upT,´q with the restriction map

RT : ĂMα,k,δpZ
T
q Ñ rBeE,k´1{2pY \ Y q

described above using holonomy in the framing coordinate for finite T , has the following

properties.

First, rµT , being the composition of equivariant maps, is SOp3q-equivariant; rµT is a

smooth embedding of BprKαq for all T P rT0,8s, and rµT is smooth as a function of

rT,8qˆBprKαq. Though not smooth as a function on rT0,8s, we at least have rµT Ñ rµ8

in the C8loc topology on BprKαq as T Ñ 8.

Finally, there is an η ą 0, independent of T , so that the images of rupT,´q contain all

solutions rγs P ĂMα,k,δpZ
T q such that

}γ ´ γα}L2
k,δpZ

T q ď η.

The vector space Kα has an eigenspace decomposition K´α ‘K`α “ Kα; correspondingly

we have an SOp3q-equivariant fiber product decomposition

BprKαq – BprK´α q ˆα BprK`α q.

We also have the decomposition

ĂMα,k,δpZ
8
q “ ĂMα,k,δpRě0

ˆ Y q ˆα ĂMα,k,δpRď0
ˆ Y q.

The map rup8,´q respects this decomposition: it is a fiber bundle map over α, and on

each fiber it respects the product structure.

The easiest case is when α is irreducible, as then we may solve the gluing problem in

a Morse (not Morse-Bott) setting.

Proof of Lemma 5.7.2 in the irreducible case. We will be studying the ASD operator with

a gauge fixing condition; the linear operator L on Y is the perturbed operator zHessA,π.

In the irreducible case, this operator has no kernel, and Lin’s gluing theorem reduces to

the abstract gluing theorem [KM07, Theorem 18.3.5].

First we will apply the abstract gluing lemma to see the corresponding statement about

unframed moduli spaces: we will see that there are maps

upT,´q : BpKαq ÑMα,k,δpZ
T
q
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parameterizing solutions of the perturbed ASD equations in a neighborhood of γA satis-

fying the same conditions (without the equivariance); the corresponding restriction maps

RT are given by the actual restriction of connections to the boundary (as opposed to

before, where it involved a global quantity, the holonomy).

The argument in [KM07, Section 18.4] applying the abstract gluing theorem to the

Seiberg-Witten equations readily applies all the same to the ASD equations.

We sketch the argument, as we will use essentially the same argument in the reducible

case. Fix a connection A on Y in the gauge equivalence class of α. We identify a

neighborhood of α in BeE,k´1{2 as kerpd˚Aq via the Coulomb slice.

On the cylinder ZT , we identify the spaces

Ω1
k,δpZ

T ; gEq

and
`

Ω0
‘ Ω2,`

˘

k,δ
pZT ; gEq

with

L2
k,δpZ

T ; π˚pR‘ T ˚Y q b gEq;

the first by writing every 1-form as ψ ` dt ^ σ for ψ a time-dependentent 1-form on Y ,

and the second by writing every self-dual 2-form as pdt^ ψq`.

Now note from this isomorphism that when we have a P Ω1
k,δpZ

T ; gEq, we may keep

track of more information at the boundary than just a
ˇ

ˇ

Y\Y
; this restriction kills any term

of the form dt^ σ. So we write

r : Ω1
k,δpZ

T ; gEq Ñ Ω1
k´1{2pY \ Y ; gEq ‘ Ω0

k´1{2pY \ Y ; gEq,

to record both the restriction of a and its normal value σp˘T, bq, or σp0˘, bq in the case

of the infinite cylinder.

On Ω1
k´1{2pY ; gEq, we may project to kerpd˚Aq, which has an eigenspace decomposition

K´α ‘ K`α for the action of DA,π. (The positive and negative eigenspaces swap upon

orientation-reversal.) Write

Π : Ω1
k´1{2pY \ Y ; gEq ‘Ω0

k´1{2pY \ Y ; gEq Ñ K´α ‘Ω0
k´1{2pY ; gEq ‘K`α ‘Ω0

k´1{2pY ; gEq;
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this is the spectral projection on the kerpd˚Aq term (projecting to negative eigenvalues on

Y and positive eigenvalues on Y ), and records the data of σ
ˇ

ˇ

BZT
.

Now, on the linear space Ω1
k,δpZ

T ; gEq, consider the equations

d`γAa` pa^ aq
`
` pdt^∇πpγA ` aqq

`
“ 0

d˚γAa “ 0

Πpa
ˇ

ˇ

BZT
q “ c

Here

c P K´α ‘ Ω0
k´1{2pY ; gEq ‘K`α ‘ Ω0

k´1{2pY ; gEq;

we henceforth write this space as H “ H´‘H` to simplify notation. The above equations

are simply the ASD equations with boundary conditions corresponding to the spectral

projection of the Ω1pY q component and restriction of the Ω0pY q component.

The linearization of these equations is

QγA,πa “ 0

Πpa
ˇ

ˇ

BZT
q “ 0,

so the most important thing to check is that these linearized equations determine an

isomorphism

Ω1
kpZ

8; gEq Ñ pΩ2,`
‘ Ω0

qk´1pZ
8; gEq ‘H;

equivalently it suffices to show that

Ω1
kpr0,8q ˆ Y ; gEq Ñ pΩ2,`

‘ Ω0
qk´1pr0,8q ˆ Y ; gEq ‘H

´

is an isomorphism. To do this, we write QγA,π “
d
dt
`zHessA,π, and split

Ω0
pY q ‘ Ω1

pY q “ Ω0
‘ ImpdAq ‘ kerpd˚Aq;

rewriting ImpdAq – Ω0
k`1{2pY ; gEq, we have

zHessA,π “

¨

˝

0 ´∆A

´1 0

˛

‚,
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which is invertible because A is irreducible. On the other component, our operator takes

the form DA,π, which is invertible because π is a regular perturbation.

First let us see that pQγA,π,Πq is surjective. We may write an arbitrary element of the

domain as

pσs, ψs, h, cq P pΩ
2,`
‘ Ω0

qk´1pr0,8q ˆ Y ; gEq ‘H
´,

where σs is a time-dependent 0-form and ψs is a time-dependent 1-form, thought of as

the self-dual 2-form via pdt^ ψsq
`; h P K´α and c P Ω0

k´1{2pY ; gEq.

We may decompose Ω0pY q into the eigenspaces of ∆A and kerpd˚Aq into the eigenspaces

of DA,π. For φ P Ω1
kpr0,8q ˆ Y ; gEq we write φs “ ωs ` dAηs, where ωs P kerpd˚Aqk´1{2.

We will explicitly write out pQγA,π,Πq in terms of these.

Using the eigenspace decompositions, we may write

σs “
ÿ

bλpsqσλ

ηs “
ÿ

cλpsqσλ

ψs “
ÿ

dλpsqωλ,

where the coefficients range over a basis of eigenfunctions.

Now we find that these must satisfy σ1psq “ ∆Aηpsq and η1psq “ σpsq. These immedi-

ately give us

bλ “ c1λ,

b1λpsq “ λcλpsq.

Combining these we solve to find

cλptq “ cλp0q ¨ e
˘
?
λt.

However, under the assumption that φ P L2
k and hence η P L2

k`1, the sign must be

negative. By specifying c above, we specify the values of cλp0q for all λ, and hence

both b and c for all time. Because
ř

cλp0q defines an L2
k´1{2 function on Y and the

sum
ř

e´
?
λcλp0q satisfies an elliptic equation, regularity implies that this defines an L2

k

function on r0,8q ˆ Y (and similarly for b).

Now for ψs we get the formula ω1λpsq “ λωλpsq. This can only contribute to the

solution if λ ă 0, as otherwise ω is not L2. We specified the values of ωλp0q for λ ă 0 in
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the choice of h P H´, and thus have specified ω for all time; as above it has the desired

regularity. We have constructed a solution to the equations of the desired regularity and

with desired boundary values, so pQ,Πq is surjective.

To see that pQ,Πq is injective, we remark that the above argument always produced

unique solutions.

This in hand, the abstract gluing theorem gives us a map

upT,´q : Bη

`

K´α ‘K`α ‘ Ω0
k´1{2pY \ Y q

˘

Ñ Ω1
k,δpZ

T ; gEq

parameterizing solutions in a neighborhood of 0. To use this to get a parameterization

of γA in MA,k,δpZ
T q, we observe that a neighborhood of γA in the latter is given by

the Coulomb-Neumann slice CNA,k,δ, and this parameterization is compatible with the

restriction maps; so to obtain the desired parameterizations, we simply need to restrict

the domain of u to BηpK´α ‘K`α q, imposing the Neumann gauge condition that the dt^σ

component is zero on the boundary.

Recall that projection ĂMpZT q Ñ MpZT q forms a principal SOp3q-bundle over the

irreducible instantons. Our goal is to choose a section of this over BpKαq, sitting in-

side ĂMpZT q via upT,´q, which will automatically give us an equivariant map SOp3q ˆ

BpKαq Ñ ĂMpZT q, as desired. But we should be careful in how we choose this lift so that

the maps µT have the desired properties.

We identified a neighborhood of γA in MA,k,δpZ
T q with a subset of CNA,k,δpZ

T q. We

may thus define the section above CNA,k,δpZ
T q; choose the section to be

CNA,k,δpZ
T
q Ñ SOp3q ˆ CNA,k,δpZ

T
q

A ÞÑ pp,Aq

for p a fixed framing.

Then writing BprKαq “ SOp3q ˆ rKα, our parameterization

rupT,´q : SOp3q ˆBpKαq Ñ ĂMpZT
q

is given as pũqpg, hq “ s̃puphqq¨g in the ‘framed Coulomb-Neumann slice’ SOp3qˆCNA,k,δ.

That this is a smooth embedding for all T follows from the corresponding fact for un-

framed moduli spaces, and because µT is assumed smooth in finite T , so is rµT ; similarly

rµT Ñ rµ8 in the C8loc topology.
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Finally, because the unframed map up8,´q respects the product structure and we

defined ũ to be a fiber bundle map, the last statement is true. �

We quickly discuss linear models for the configuration space rBA,k,δpZT q when A is

fully reducible. When T is finite, choosing a base framing p, a neighborhood of 0 in the

Coulomb slice

CNA,k,δpZ
T
q Ă AA,k,δpZT

q ˆ tpu Ă rAA,k,δpZT
q

projects to a chart in rBπ˚E,k,δpZT q around γA, so we may effectively study neighborhoods

of γA in the moduli space on finite cylinders by studying a subset of the equations in

Coulomb-Neumann gauge. We will consider the Coulomb-Neumann slice as a subset of

Ω1
k,δpZ

T q and work there. In this case, the space H0 “ kerpLq above is the Lie algebra gb;

when considered as a subset of Ω1pZT q, these consist of the 1-forms dt^ σ, where σ is a

fixed A-parallel section of gb.

The discussion of the Coulomb-Neumann slice remains correct on the infinite cylinder:

everything in a neighborhood of γA in rBA,k,δpZ8q is gauge equivalent to an asymptotically

decaying connection in Coulomb-Neumann gauge. Recall here that our definition of

rBA,k,δpZ8q involves two framings : one on each boundary component. Applying A-parallel

gauge transformations on each component, we may change those framings arbitrarily

while obtaining another connection in Coulomb-Neumann gauge.

In fact, while we will consider the space E8δ “ Ω1
k,δ,extpZ

8; gEq of 1-forms which asymp-

totically decay to dt^σ, in the case of the infinite cylinder the extra kernel arising as dt^σ

is somehow illusory: applying a gauge transformation we may change any connection in

this extended space to a connection in Coulomb-Neumann gauge.

Similarly, for any a P CNA,k,δ, we have by definition of Coulomb-Neumann gauge the

integration by parts formula

0 “ xd˚γAa, byL2 “ xa, dγAbyL2 .

Above, the projection Π0 was projection onto the constant sections dt ^ σ in the L2
0,δ

inner product; then this is defined to be the same as xa, g2
T,δdt ^ σyL2 , where gT,δ is the

weight function in the definition of Sobolev spaces on finite cylinders.

But we may choose an antiderivative d
dt
GT,δ “ g2

T,δ, and then the right-hand side of
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this inner product is dγApGT,δσq, because σ is A-parallel. Therefore, for any solution in

Coulomb-Neumann gauge, ΠT
0 a “ 0. With this, we begin the proof.

Proof of Lemma 5.7.2 in the fully reducible case. The equations we look to study with

Lin’s abstract gluing theorem are nearly the same as last time: now they are

d`γAa` pa^ aq
`
` pdt^∇πpγA ` aqq

`
“ 0

d˚γAa “ 0

Πpa
ˇ

ˇ

BZT
q “ c

ΠT
0 a “ h0.

That our operator pD,Π0,Πq satisfies the invertibility assumption follows by the same

separation of variables argument as in the irreducible case.

Lin’s theorem, therefore, gives us a parameterization

upT, h0, hq : BηpH0 ‘Hq Ñ Ω1
k,δpZ

T
q

of solutions to the above equations on ZT with ph0, hq P BηpH0‘Hq; recall that here H0

consists of 1-forms of the form dt^ σ for σ P kerp∆Aq and

H “ K´A ‘ Ω0
pY ; gEq ‘K`A ‘ Ω0

pY ; gEq.

For his application, Lin restricts to the subdomain H0 ‘ K´A ‘ K`A; based on the

discussion above, we see that in our case we should actually restrict to the subdomain

K´A ‘K`A and ignore the terms coming from H0. We abuse notation and write upT, hq “

upT, 0, hq. As long as T is finite, all solutions thus obtained are in Coulomb-Neumann

gauge, and this defines a parameterization of a small neighborhood of γA in ĂMA,kpZ
T q.

Before going on, we should explain why this map u is equivariant; this follows as a

consequence of uniqueness of solutions. That is, if g is a gauge transformation preserving

γA, then upgh0, ghq is the unique solution a to the equations
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d`γAa` pa^ aq
`
` pdt^∇πpγA ` aqq

`
“ 0

d˚γAa “ 0

Πpa
ˇ

ˇ

BZT
q “ gc

ΠT
0 a “ 0

Here c “ ph, 0, 0q and Π is the projection operator to

K´ ‘K` ‘ Ω0
pY \ Y ; gEq ‘H0.

But this equation is also satisfied by gupT, hq, because the projections are equivariant

and the ASD equations are invariant under gauge transformations.

So upT, hq defines a map

BηpKαq Ñ CNA,k,δpZ
T
q ˆ tpu Ă rAA,k,δpZT

q

for T finite, where p is a fixed framing; projecting to rBA,k,δpZT q, this gives a neighborhood

of γA in ĂMA,k,δpZ
T q.

So we have our parameterization of a neighborhood of γA for all T P rT0,8s; we

should check the desired properties of the restriction maps. The abstract gluing theorem

guarantees certain properties of the maps µ˘T : BηpHq Ñ kerpd˚Aqk´1{2 obtained as the

restriction of rupT, hq to the corresponding boundary component. However, our gluing

lemma asks for properties of a restriction map whose definition includes the framing,

written rµT . In the case of restriction to the leftmost boundary component, there is no

change, as the framing is already fixed on the left boundary component; there is no need

to perform any holonomy. But the right enpoint map is more complicated.

Let’s be precise. Let pA, pq be a framed connection on ZT , where the framing is chosen

at p´T, bq. Then the definition of the right endpoint map is

pA, pq ÞÑ
´

A
ˇ

ˇ

Y
,Hol

p´T,bqÑpT,bq
A p

¯

;

we then pass to the quotient by the gauge group action (as this is an equivariant map).

Now, we identified a neighborhood of A in BE,k´1{2pY q with the projection of the

Coulomb slice kerpd˚Aq ˆ tpu Ă
rAE,k´1{2pY q, where p is the same fixed framing as above.
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Therefore, identifying a neighborhood of γA in ĂMA,k,δpZ
T q with the corresponding subset

of the Coulomb-Neumann slice (and a neighborhood of A with the corresponding Coulomb

slices), the restriction rµ´T to the left boundary component is still given by the same

µ´T : CNA,k,δpZ
T
q Ñ kerpd˚Aqk´1{2pY q

as in the abstract gluing theorem, because our framing is chosen fixed at the left boundary

component to begin wit. However, the restriction to the right boundary component is

now given by

rµ`T paq “ σT paq ¨ µT paq P kerpd˚Aqk´1{2pY q,

where we have identified σT paq P SOp3q with an A-parallel gauge transformation.

Precisely, the map σT is given by

σT paq “
´

Hol
p´T,bqÑpT,bq
γA`a

¯´1

,

using the same framing p at ˘T to identify this isomorphism Ep´T,bq Ñ EpT,bq with an

element of SOp3q. We have σp0q “ 1: the connection γA is in temporal gauge and so

there is no holonomy across Rˆ tbu.

What we need to do first is see that σT pupT, hqq converges in the C8loc topology. We

will then use this to define the map rup8,´q, as an appropriate modification of up8, 0,´q.

First we recall how holonomy is defined. First, given a P γA ` Ω1
k,δpZ

T q, there is a

natural restriction map to

d{dt` Ω1
k´3{2,δpr´T, T s, gbq “ d{dt` dt^ Ω0

k´3{2,δpr´T, T s, gbq

to the line Rˆtbu. The holonomy along the path only depends on the values of a on this

path, and more precisely, if we decompose a “ dt^ηptq`ψptq, it only depends on ηpb, tq.

Precisely, let γptq : r´T, T s Ñ SOp3q be the unique solution to the differential equation

γ1ptqγ´1
ptq “ ηpb, tq and γp´T q “ 1,

guaranteed as long as k´3{2 ě 1, so that η is C1. Solving this differential equation gives

a smooth map

Lift : L2
k´3{2,δpr´T, T s, gbq Ñ L2

k´5{2,δpr´T, T s, SOp3qq,
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and then evaluation at T is clearly smooth.

If we write u`phq as the component of up8, hq on the cylinder r0,8qˆY , and similarly

for u´phq, we write

UpT, hq “ τ˚Tu`phq ` τ
˚
´Tu´phq.

We see from [Lin18, Lemma 3.5.19] that UpT, hq ´ rupT, hq goes to 0 in the C8loc topology.

So it suffices to check that σT pUpT, hqq has a limit in C8loc.

Now we may be very explicit. By translation, consider instead the interval r0, 2T s;

we may see that σT pUpT, hqq´1 is the solution to the differential equation γ1ptqγ´1ptq “

u`phqpt, bq ` u´phqpt ´ 2T, bq with γp0q “ 1, evaluated at 2T . We may instead consider

this as the product g2g1 of two elements of SOp3q: first, g1 is the time-T value of that

same equation; second, g2 is the time-T value of the solution to the differential equation

γ1ptqγ´1
ptq “ u´phqp´t, bq ` u`phqp2T ´ t, bq and γp0q “ 1.

That g “ g2g1 is just the statement that the holonomy of two paths, traversed in suc-

cession, is the product of their holonomies and that the holonomy of a path traversed in

reverse is the inverse of the holonomy.

We examine g1; the analysis of the other term is very similar. Notice that the stated

differential equation only needs the values of the given functions on r0, T s, so we introduce

a cutoff function β which has βptq “ 1 for t ď 0 and βptq “ 0 for t ě 1{2, and βT ptq “

βpt´ T q; write

qT phq “ u`phqpt, bq ` βT ptq pu´phqpt´ 2T, bqq .

It is clear that UpT, hq and qT phq give the same time-T holonomy map, as they agree on

r0, T s. Our first claim, to be proved below, is that the time-dependent map BηpKαq Ñ

L2
k´3{2,δpr0,8q, gbq given by sending h ÞÑ βT ptqu´phqpt ´ 2T, bq converges to 0 in C8loc;

given that this is true, our goal becomes finding the C8loc limit as T Ñ 8 of

evTLift pu`phqpt, bqq .

Now there is nothing left to do here, as u` is time-independent! We see that the output

converges in the C8loc topology to

Hol
p0`,bqÑp8,bq
γA`u`phq

.
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Similarly we may identify the limit of g2 as the inverse of the corresponding

Hol
p0´,bqÑp´8,bq
u´phq

.

We conclude, therefore, that σT pupT, hqq converges in C8loc to σ8phq, which is defined

to be the inverse of
´

Hol
p0´,bqÑp´8,bq
u´phq

¯´

Hol
p0`,bqÑp8,bq
γA`u`phq

¯

.

This makes some intuitive sense; the appearance of σT corresponds to the twist in

framing as we move the left endpoint framing to the right endpoint. So on the infinite

cylinder, we should be forced to take holonomy from left endpoint to right endpoint.

Based on the above, we define the map

rup8,´q : BηpKαq Ñ CNA,k,δpZ
8
q ˆ SOp3q ˆ SOp3q Ă rAA,k,δpZ8q

to be

rup8, hq “ pup8, hq, p, σ8phq ¨ pq;

we project from this framed Coulomb slice to the configuration space ĂMpZ8q. Then the

above discussion shows that indeed, rµT Ñ rµ8 as T Ñ 8.

Now to prove the claim that βT ptq pu`phqpt´ 2T, bqq converges to 0 in C8loc. The point

is that the application of the inverse function theorem defining u` can be factored through

a Sobolev space with smaller exponent, so that one may find pointwise bounds on all of

the derivatives of u`:

}Dmu`phqpt´ 2T, bq} ď Cmphqe
´δ1pt´2T q,

where the Cm are continuous functions of h depending on m; the same is true when

adding in the bump function (whose derivatives all have compact support).

Because the support of βTu`pt ´ 2T q is contained in r0, T ` 1s, we obtain bounds by

Cmphqe
´δ1p1´T q; taking T Ñ 8 we see that this goes to 0 in C8loc. �

What remains is the case of SOp2q-reducible critical orbits. We use a mix of the above

techniques; we work in the Coulomb-Neumann slice as a model for the normal space to

γA, and then extend this to an SOp3q-invariant parameterization.
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Proof of Lemma 5.7.2 in the SOp2q-reducible case. We study the same equations as above,

where γA is an SOp2q-reducible constant trajectory. We start by choosing p P S2 “

Ep0,bq{ΓA, a choice of framing modulo the action of ΓA; restrict to the subspace ĂM1pZT q

given by those pairs pA, qq with framings that project to p in the quotient. (This is the

space that has a neighborhood modelled by the solutions to the equations in the Coulomb-

Neumann slice.) We find just as above that Lin’s abstract gluing theorem again provides

us with an S1-equivariant parameterization BηpKαq Ñ ĂMpZT q. The issue is in verify-

ing that the restriction maps to the right end, which depend on holonomy, converge as

T Ñ 8 in C8loc, as before.

We may choose an arbitrary lift of p to an actual framing p̃. Note that because γA

is in temporal gauge, the holonomy from ´T to T is the identity. Now choosing the

domain of the parameterization u small enough, we may demand that Hol
p´T,bqÑpT,bq
γA`upT,0,hq

p̃ lies

in an S1-invariant neighborhood of ΓA ¨ p̃. Exponentiating the normal bundle, we may

choose an S1-equivariant diffeomorphism U – S1 ˆD2. This gives us an S1-equivariant

projection map P : U Ñ S1. We write

Hol
p´T,bqÑpT,bq

γA`upT,0,hq
“ PHol

p´T,bqÑpT,bq
γA`upT,0,hq

p̃;

this is precisely the amount of holonomy in the ‘S1-direction’, and the analogue of σT puq´1

for the SOp2q-reducible case (that is, the inverse of this term is precisely the rotation

appearing in the right-most restriction map.)

We saw above that Hol
p´T,bqÑpT,bq
upT,0,hq does converge in C8loc as T Ñ 8, and to

´

Hol
p0´,bqÑp´8,bq
up8,0,hq

¯´1

Hol
p0`,bqÑp8,bq
up8,0,hq .

Because the projection P : U Ñ S1 is smooth, the same is true of Hol
p´T,bqÑpT,bq

upT,0,hq ; we use

this to define the map up8, 0, hq on BηpKαq Ñ ĂM1
A,k,δpZ

8q as before, and see that it is

SOp2q-equivariant.

All that is left is to extend this to an SOp3q-equivariant parameterization of the whole

of ĂMA,k,δpZ
T q. We write the neighborhood of pγA, p̃q as

pp ¨ S1
q ˆS1 CN γA,k,δpZ

T
q.

That is, we allow ourselves to vary over all framings that lie above the fixed p P S2, and
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then quotient by the natural action of ΓA. Then there is a canonical S1-equivariant map

S1
ˆS1 CN γA,k,δpZ

T
q Ñ SOp3q ˆS1 CN γA,k,δpZ

T
q.

This is our desired section. We thus extend our parameterization to an SOp3q-equivariant

parameterization SOp3q ˆS1 BηpKαq Ñ ĂMpZT q of a neighborhood of the orbit through

γA, as desired. �

With this, the proof of the gluing theorem follows essentially the same lines as in

[KM07, Chapters 19 and 24.7]. We outline the procedure and show what mild modifica-

tions are necessary. For the rest of this section, if pW,E, πq is a manifold with cylindrical

ends and perturbation π, we demand that π is regular.

First, the moduli spaces ĂME,z,π,kpZ
T q of π-perturbed instantons on the cylinder, finite

or infinite, are cut out transversely inside rBeE,z,π,kpZT q, and therefore form a smooth

Hilbert manifold no matter the perturbation π. The proof of this is no different than

[KM07, Theorem 17.3.1]; the point is that we have a unique continuation result for zeroes

of the adjoint operator Q˚A,π, as the equations are of gradient-flow type.

Fix a compact manifold W with boundary Y1 \ Y2, with cylindrical metric near the

boundary, and SOp3q-bundle E which restricts to bundles Ei over the respective ends

Yi. Suppose we have fixed small perturbations πi on pYi, Eiq so that there are finitely

many nondegenerate critical orbits of csYi ` fπi . Further, we assume pW,Eq is weakly

admissible, so it admits some perturbation achieving transversality on all moduli spaces

of bounded dimension on the infinite cobordism Ŵ .

On the cylindrical ends of the infinite manifold Ŵ , we fix the constant perturbation

pdt^∇π˘pAqq
`. This is dampened by a cutoff function on the end

r0,8q ˆ pY1 \ Y2q,

equal to 0 for x ď 1 and equal to 1 for x ě 2. There is a further interior holonomy

perturbation supported in the complement of r1,8q ˆ pY1 \ Y2q.

For L ě 2, if WL is the complement of pL,8q ˆ pY1 \ Y2q, then the moduli space of

instantons ĂME,π,kpW
Lq on the compact manifold WL is a smooth Hilbert manifold in a

neighborhood of ĂME,k,δpŴ q. This is a matter of showing that if A is a π-instanton on
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Ŵ , then any nonzero element of the kernel of Q˚A,π on WL must restrict nontrivially to

the boundary.

For suppose to the contrary that we had ψ P Ω2,`
´k pW

L; gEq with ψ|BWL “ 0. Elliptic

regularity allows one to obtain ψ P L2
k on WLzW , where the perturbation arises from the

gradient of cylinder functions on slices. For the same reason, we can argue that ψ|BWL “ 0

means by unique continuation that ψ|BWLzW “ 0. In particular, ψ extends by 0 to an

element

ψ̂ P Ω2,`
´k,δpŴ ; gEq, with Q˚A,πψ̂ “ 0.

The assumption that π is a regular perturbation then means that ψ̂ “ 0 globally, and

so ψ “ 0, as desired.

We write

ĂME,k,δ Ă rV L
E,π,k Ă

ĂME,π,kpW
L
q,

the middle term denoting an open set of π-instantons A on WL for which QA,π :

Ω1
kpW

L; gEq Ñ Ω2
k´1pW

L; gEq is surjective.

From here, we may describe moduli spaces on the manifold W with infinite cylindrical

ends as a fiber product. Let I`j and I´` be a finite sequence of intervals (0 ď j ď n, 0 ď

` ď m), where the first negative interval is I´0 “ p´8, 0s, the first positive interval is

I`0 “ r0,8q, and all other intervals are finite. Write ĂB˘ “ rBeE,k´1{2pY
˘q. There are

evaluation maps

ev˘ : rV L
E,π Ñ

rB´ ˆ rB`,

and similarly for ĂME,π,kpZ
I˘j q Ñ rB˘ ˆ rB˘. For the infinite ends, we only have one

evaluation map. We assemble all of this into a map

pR´, R`q : rV L
E,π ˆ

n
j“0

ĂME,π,kpZ
I`j q ˆ

m
`“0

ĂME,π,kpZ
I´` q Ñ

´

ˆ
n
j“1

rB` ˆm`“1
rB´

¯2

.

Lemma 5.7.3. Let W be the cobordism with cylindrical ends attached. There is a natu-

ral map from the fiber product FibpR´, R`q to ĂME,π,kpŴ q, which is a homeomorphism.

Because any instanton A in the image is assumed to be cut out transversely, the corre-

sponding element of rV L
E,π ˆ

ś

ĂMpZIq, the map R´ ˆR` is transverse to the diagonal.

We do not repeat the proof, which follows essentially as in [KM07, Theorem 19.1.4].
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We now want a canonical way to cut up the real line (or multiple copies of the real line,

in the case of broken trajectories) so that every instanton is written as a fiber product,

as above, where most intervals are of a fixed large length 2L (where most of the energy is

supported), and otherwise are of large variable length T ě T0. The mechanism for this is

given in [KM07, Section 19.2]. For A P rBeEi,k´1{2pYiq, we write cipAq “ }∇Apcs ` fπq}L2 .

Fix ε ą 0 so that any nontrivial instanton on Rˆ Yi has cipAptqq ď ε for some t P R. Let

β be a cutoff function equal to 1 for x ě ε and 0 for x ď ε{2.

Definition 5.7.1. Let I “ r´L,Ls. An instanton on I ˆ Y is said to be centered if

1. cpAptqq ď ε{2 for t P r´L,´L` 1s Y rL´ 1, Ls,

2. cpAptqq ě ε for some t P r´L,Ls, and

3. The center of mass
ż

tβ
`

cpAptqq
˘

dt
M

ż

β
`

cpAptqq
˘

dt

is zero.

The space of centered instantons forms a smooth Hilbert manifold. Then we have the

following analogue of [KM07, Proposition 24.7.3], with the same proof.

Lemma 5.7.4. For any compact subset

K Ă ĂME1,k,δpα0, α1q ˆα1 ¨ ¨ ¨ ˆ
ĂME1,k,δpαn´1, αnq

ˆαn
ĂME,k,δpαn, β0q ˆβ0 ¨ ¨ ¨ ˆβm´1

ĂME2,k,δpβm´1, βmq,

there is an L0 so that for all 8 ą L ě L0, we have a neighborhood K Ă V pK,Lq Ă

ME,k,δpα0, βmq for which

1. For any A P V pK,Lq, the restriction of A to BWL has cpA
ˇ

ˇ

BWLq ď ε{2,

2. Any A P V pK,Lq admits a unique collection of cylinders of length 2L in the com-

plement of WL so that A
ˇ

ˇ

I
is a centered instanton, while
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3. The complement of both WL and these intervals consists of cylinders of length at

least T0, where T0 is larger than the least T for which Lemma 5.7.2 applies to each

of Y1 and Y2.

As a corollary, we have a map d : V pK,Lq Ñ p0,8sn`m measuring the distance between

the centers of successive centered intervals; for the ends closest to W , we consider BW

to be the location of that corresponding center. It is easy to see that the values of d do

not depend on K or L; in particular, taking the union over all V pK,Lq, we obtain a map

V Ñ p0,8sn`m from a neighborhood of the stratum in M, the neighborhood V consisting

of all instantons that may be partitioned as above.

At the same time, we have a map

evT : p0,8sn`m ˆ ĂMp´8,0sˆY1
E1,k,δ

pα0q ˆ
n
i“1 BηprKαiq ˆn ĂMcenpZ

L
1 q ˆ

rV L
E,π,k

ˆ
m´1
j“0 BηprKβjq ˆm ĂMcenpZ

L
2 q ˆ

ĂMr0,8qˆY2
E2,k,δ

pβmq Ñ
´

ˆ
n
rBE1,k´1{2 ˆ

m
rBE2,k´1{2

¯2

,

the map in every case given by restriction; perhaps most notably here, for the BηpKAq

factors we are using the maps rupT,´q of Lemma 5.7.2 to parameterize a neighborhood

of γA in ĂMγαi ,k,δ
pZT q, where T P rT0,8s, and then restricting to the boundary; Lemma

5.7.2 included the fact that these restriction maps converge in C8loc as T Ñ 8.

We call the domain p0,8sn`m ˆM and the codomain N . This map is smooth on

each stratum of p0,8sn`m, and for a convergent sequence Tn P p0,8s
n`m, the maps evTn

converge to the appropriate limit in the C8loc topology. We may identify ev´1
T p∆q in the

above fiber product as the neighborhood V pLq in ME,k,δpα0, βmq. Now we may apply

[KM07, Lemma 19.3.3].

Theorem 5.7.5. Let W be a compact 4-manifold equipped with two boundary components,

cylindrical metric near the boundary, an SOp3q-bundle E restricting to the pullback of

fixed bundles over the ends, and a curve γ which is cylindrical at the basepoints on the

ends. Further let W be equipped with a perturbation π so that ME,π,zpα, βq is cut out

transversely whenever the expected dimension is at most 10.

Then suppose we are given any open stratum σ Ă ME,π,zpα, βq, where grzpα, βq ď

10 ´ dimα. In that case, we may find a neighborhood V pσq and an SOp3q-invariant

map V pσq Ñ p0,8sn`m which is stratum-preserving, a submersion on each stratum, and
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a topologically trivial fiber bundle for the inverse image of a neighborhood of 8. In

particular, ME,π,zpα, βq is a topological manifold with corners and a smooth structure on

each stratum.

Proof. Above we constructed a map evT : p0,8sn`m ˆ N Ñ R, where N and R are

Hilbert manifolds; here T P p0,8sn`m. For fixed T , the map evT is smooth, and T ÞÑ evT

is convergent in the C8loc topology because the same is true of the restriction maps µT on

BprKαiq and BprKβjq. Thus the aforementioned lemma tells us that ev´1p∆q Ñ p0,8sn`m

is a topological submersion, which means precisely that V pσq Ñ p0,8sn`m is a trivial

fiber bundle near 8. That the projection is smooth and a submersion on each stratum

follows because µT is actually smooth in T on each stratum. �

We summarize the results of this section as follows.

Proposition 5.7.6. For a regular perturbation π, and grzpα, βq ď 10 ´ dimα as in

Corollary 5.3.7, ME,z,πpα, βq can be given the natural structure of a compact topological

SOp3q-manifold with corners with a smooth structure on each open stratum. We have the

following decomposition of the boundary:

BME,z,πpα, βq “
ğ

γ;z1˚z2“z

ME,z1,πpα, γq ˆγME,z2,πpγ, βq.

The same is true on a cobordism W as long as grWz pα, βq ď 10´ dimα. In that case,

we have the decomposition

BMW

E,z,πpα, βq “
ğ

γPCπ1 ;z1˚z2“z

ME1,z1,π1pα, γq ˆγM
W

E,z2,π
pγ, βq

ğ

ζPCπ2 ;z1˚z2“z

MW

E,z1,π
pα, ζq ˆζME2,z2,π2pζ, βq.

5.8 Families of metrics and perturbations

Let S be a compact smooth manifold with corners. Let pW,Eq be a cylindrical end

cobordism pY1, E1q Ñ pY2, E2q, and suppose each pYi, Eiq is equipped with a regular

metric and perturbation pgi, πiq. A family of metrics and perturbations parameterized by

S, written πS, is the data of:

144



‚ a smooth metric on the bundle p˚WTW on SˆW , restricting to the product metric

dt2 ` gi on Rˆ Yi on each end, and

‚ a smooth map S Ñ Pp4qc , the latter being the space of perturbations on W which

agree with πi on the corresponding ends. We usually restrict to a small neighbor-

hood UC of the perturbation pπ´, π`q with no interior part, as in Theorem 5.6.4.

We may then define the parameterized moduli spaces ĂME,z,Spα, βq of pairs ps,Aq,

where A is a πs-perturbed L2
k,δ instanton going between critical orbits α and β in a fixed

component of trajectories z. Fiberwise compactifying by ideal instantons and broken

trajectories we obtain ME,z,Spα, βq; the result is compact by a version of Proposition

5.3.4 which allows for variations of metric on the interior (which requires no change in

the argument).

There is a bundle over S ˆ rBeE,z,k,δpα, βq, written SS, whose fiber above ps,Aq is

Ω2,`,s
k´1,δpW ; gEq; the notation `, s indicates that we are taking the self-dual 2-forms with

respect to the metric gs.

Definition 5.8.1. At each perturbed instanton ps,Aq P ĂME,z,Spα, βq, taking the deriva-

tive of the SOp3q-equivariant map σ : S ˆ rBE,z,k,δpα, βq Ñ S defined by the instanton

equation induces a map on the normal space to each orbit,

pdσqA,s : TsS ˆ kerpd˚,sA qk,δ Ñ Ω2,`,s
k´1,δpW ; gEq.

We say the parameterized moduli spaces ĂME,z,Spα, βq are cut out regularly if pdσqA,s

is surjective for all perturbed instantons ps,Aq in the homotopy class z. In this case

the parameterized moduli space ĂME,z,Spα, βq is a smooth SOp3q-manifold of dimension

grzpα, βq ` dimS.

We say the compactified parameterized moduli spacesME,z,Spα, βq are cut out regularly

if every moduli space ĂME,w,Spγ, γ
1q appearing in the compactification is cut out regularly.

If ME,z,Spα, βq is cut out regularly for all pα, β, zq with

grzpα, βq ` dimS ď 10´ dimα,

we say that πS is regular.
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Recall Definition 5.5.5 of weakly admissible cobordism. In the first two cases, no

reducibles arise for any perturbation, and still do not arise in families. In the third case,

there is a unique reducible of each type for every perturbation, and in particular for the

moduli spaces parameterized by a family of perturbations there is a dimS-dimensional

space of reducibles of each type.

In the final case, we have b`pW q ą 0 and E is nontrivial. In this case, for a generic

perturbation, there are no reducibles; the expected dimension of the space of reducibles

is ´b`pW q. This means that they do arise in generic families when dimS ě b`pW q.

Something else needs to be asserted to guarantee that in families, reducibles are still cut

out transversely. Instead of adding more homological conditions (akin to ρ-monotonicity,

but even more strict), we will simply endeavor to avoid the reducibles.

Proposition 5.8.1. Suppose pW,Eq is equipped with a metric, a weakly admissible SOp3q-

bundle and regular perturbations π˘ on the ends. There is an open set pπ´, 0, π`q P UC Ă

Pp4qc of the space of perturbations which equal π˘ on the ends. The set UC is the small

neighborhood around pπ´, 0, π`q given in Theorem 5.6.4, in which all fully reducible con-

nections are cut out transversely and the parameterized space of reducibles UCMred is

transverse to the space of Fredholm operators with non-trivial cokernel at those reducibles

with energy ď C. We may demand that UC is contractible by passing to a small ball

around pπ´, 0, π`q.

Suppose π0, π1 P UC are regular perturbations.

If either b`pW q ‰ 1 or that E admits no SOp2q-reducible connections of class L2
k,δ with

π˘-flat limits, then there is a regular family πt of metrics and perturbations πt : r0, 1s Ñ

UC, all with the same values on the ends.

If b`pW q “ 1 and E supports SOp2q-reducibles, suppose πt : r0, 1s Ñ UC is a path of

metrics and perturbations such that no πt supports a reducible instanton. Then we may

modify the perturbations πt by an arbitrarily small amount on the interior of r0, 1s so that

πt forms a regular family of metrics and perturbations.

If K is any compact family of metrics on W , constant on the ends, then replacing

the open set UC above with a smaller open set UC,K, everything above still applies while

allowing us to vary the metric in the family K.

146



Proof. This follows from the same strategy as in Theorem 5.6.4. In the first case (that

b`pW q ‰ 1 or E supports no reducibles), pick an arbitrary path πt : r0, 1s Ñ UC ; in

the second case we are supplied such a path. By the assumption that πt P UC , all fully

reducible connections are cut out transversely for all t. We have a parameterized moduli

space of reducibles, and the map

UCMred
Ñ UC

has index ´b`pW q; we have already assumed that π0, π1 are regular values, so by a small

perturbation we may assume that πt is transverse to this projection. That is to say that

for the family πt, the reducibles are cut out transversely inside the reducible locus. When

b`pW q ą 1, this means there are no reducible π-ASD connections; when b`pW q “ 1, we

already assumed there were no reducible π-ASD connections; when b`pW q “ 0, there is

a finite set of πt-ASD connections for each t.

Now as in Theorem 5.6.4 we have a countable union of submanifolds of even codimen-

sion

UCMred,ě1
Ă UCMred,

restricting to those reducible connections of energy ď C. This is the space of reducible

connections supporting a splitting E – R‘ η so that the normal ASD operator

Dirred
A,π : Ω1

k,δpW ; ηq Ñ Ω2,`
k´1,δpW ; ηq

has non-trivial cokernel. The codimension of each of these is even because the normal

space is isomorphic to HomCpCi`j,Ciq for i ě 0, j ą 0, which is a non-trivial complex

vector space; the fact that the index i is positive for each reducible A is part of the

assumption that W is weakly admissible.

By assumption, π0 and π1 are regular values of the projection

UCMred,ě1
Ñ UC ,

so by a small perturbation we may assume that πt is transverse to this projection as well.

Because the codimension of each manifold in UCMred,ě1 is at least 2, this means that for

any reducible πt-instanton A, the normal ASD operator is surjective.

That is to say, for the path πt, any reducible πt-instanton A of energy ď C is cut out

transversely, and not just internally to its own locus.
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Now we conclude by playing the same game with the irreducible connections: we have

a parameterized moduli space UCMirred, and we demand that the path πt is transverse

to the projection

UCMirred
Ñ UC ,

which we can make true by a small perturbation on the interior of r0, 1s.

The set UC depends on the chosen metric on W , but as in the statement of the

proposition, we may vary over a compact set of metrics by passing to a smaller open set

UC,K . �

Remark 5.8.1. Except in the case where E admits no reducible connections whatsoever,

there are obstructions to extending the above theorem to arbitrary families of metrics and

perturbations, even when b` “ 0. Generically, one expects the set of reducibles for which

the operator Qirred
A,π has nontrivial cokernel to form a codimension I ` 2 family, where I is

the index of this operator. The definition of regular family of metrics and perturbations

does nothing to help this: the map we want to be surjective,

p∇s1pπqA : TsS Ñ cokerpQirred
q,

is an equivariant map. The former space has trivial circle action, and the latter space has

circle action of weight 1: the only equivariant map is zero. So if our family of metrics and

perturbations supports a reducible which is not cut out transversely in the usual sense,

it won’t be cut out transversely in the family sense, either.

When E admits no reducible connections, there is no difficulty applying the usual

ideas: there is a smooth map π : PM Ñ P , and we choose a map S Ñ P transverse to

π extending a given map BS Ñ P transverse to π.

Remark 5.8.2. Suppose we are given metrics g0, g1 on W , which give open sets UC,i

depending on the metric; and suppose we are given regular πi P UC,i. Choosing a path

gt between these metrics, we see that we may choose a generic path between the two

perturbations, so long as they are chosen in a smaller set UC,gt Ă UC,0 X UC,1.

To actually construct a generic path between the perturbations, then, first choose a

perturbation π1i P UC,gt , and choose a generic path from πi to π1i inside of UC,i. Then

choose a generic path from π10 to π11 inside of UC,gt .
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Assuming S is a regular family of metrics and perturbations, we have smooth moduli

spaces ĂME,z,Spα, βq with smooth projection maps ĂME,z,S Ñ S. The space ĂME,z,S is not

compact but the fiberwise Uhlenbeck compactification ME,z,S is. As long as

grWz pα, βq ` dimα ` dimS ď 10,

this being at least the dimension of ĂMS{SOp3q, there is no Uhlenbeck bubbling arising

in this compactification. Note that here it is possible for ĂME,z,S to be nonempty even if

grzpα, βq is negative. In this case, the set of s P S so that πs is nonempty is a compact

submanifold with corners of codimension ´grWz pα, βq.

We then have the following analogue of Theorem 5.7.5.

Proposition 5.8.2. If πS is a regular family of metrics and perturbations indexed by S,

and grWz pα, βq ` dimS ď 10´ dimα, then ME,z,S has the natural structure of a compact

topological SOp3q-manifold with corners and a smooth structure on each stratum. Its

boundary has the decomposition

BME,z,Spα, βq “
ď

γPCY1
z1˚z2“z

ME1,z1,πpα, γq ˆγME,z2,Spγ, βq

ď

ζPCY2
z1˚z2“z

ME,z1,Spα, ζq ˆζME2,z2,πpζ, βq Y ME,z,BSpα, βq.

In particular, suppose S “ r0, 1s, and write W as the composite of cobordisms with

cylindrical ends W1 and W2, obtained by spliting together the positive end of W1 with

the negative end of W2. Write the broken perturbation πp1q as πi on each of the Wi,

where π´ is the perturbation on the negative end of W1 and π` is the perturbation on

the positive end of W2; write the common perturbation in the center as πb. So long as
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grWz pα, βq ď 9´ dimα, we have a decomposition

BME,S,zpα, βq “
ď

γPCπ´
z1˚z2“z

ME´,z1,π´pα, γq ˆγME,z2,Spγ, βq

ď

ηPCπb
z1˚z2“z

ME1,z1,π1pα, ηq ˆηME2,z2,π2pη, βq

ď

ζPCπ` ;z1˚z2“z

ME,z1,Spα, ζq ˆζME`,z2,π`pζ, βq

Y ME,z,πp0qpα, βq.

Proof. Fix an open stratum σ ĂME,z,Spα, βq corresponding to n breakings along Y1 and

m breakings along Y2. The result will follow essentially as in Theorem 5.7.5. There we

described a gluing map

evT : p0,8sn`m ˆN Ñ R

between Hilbert manifolds. The manifold N consisted of products of spaces parameteriz-

ing n long (length L) broken pieces of framed instantons on r´L,LsˆY1, and similarly m

on pY2, E2q, a space parameterizing instantons on cylinders r´T, T sˆYi for all T0 ď T ď 8

sufficiently large, and a space parameterizing instantons on the compact manifold WL

(which is W with the cylindrical ends r0,8qˆY truncated to r0, LsˆY ). The codomain

R consisted of restrictions of these to 2n copies of the configuration space of framed

connections on Y1 and 2m copies of the configuration space of framed connections on Y2.

This is smooth on each stratum of p0,8sn`m, and the individual maps evT converge in

C8loc as

Tk Ñ T P p0,8sn`m.

The moduli space of instantons on W , compactified by broken trajectories, is identified

with ev´1p∆q, the subset of instantons on each piece so that the restrictions to corre-

sponding boundary pieces agree.

When we allow the metric and perturbation to vary in some family S, this variation

occurs in a compact part of the manifold with cylindrical ends Ŵ . As long as L above

is taken large enough, this variation only takes place in WL, and hence only affects that
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term of the product; we may replace the term

ĂME,π,k,δpŴ q Ă rV L
E,π Ă

ĂME,πpW
L
q

instead with a parameterized version rV L
E,S of instantons on WL for which

Ω1
pWL

q ‘ TsS Ñ Ω2,`
pWL

q

pω, π1q ÞÑ DA,π ` p∇π1pAq

is surjective.

The modified evaluation map above is written

p0,8sn`m ˆNS Ñ R,

and is again smooth on each stratum of p0,8sn`m, with convergent sequences of Tk P

p0,8sn`m giving sequences of maps evTk which converge in C8loc. Again we have that

ME,z,S “ ev´1p∆q.

Therefore we may apply [KM07, Lemma 19.3.3], which asserts that

ev´1
p∆q Ñ p0,8sn`m

is a topological submersion, meaning that it is a topologically trivial fiber bundle near

8. In particular, this gives a chart for a neighborhood of σ Ă MS,z, an open embed-

ding p0,8sn`m ˆ σ Ñ MS,z that is the identity on σ, is stratum-preserving, and is a

diffeomorphism on each open stratum. �

We will need a version of these results for more general families of metrics and pertur-

bations termed ‘families of broken metrics’ (see [Dae15] and [KM11a], where this notion

was used to study spectral sequences from Khovanov homology).

Suppose are given a 4-manifold W with cylindrical ends p´8, 0s ˆ Y1 and r0,8q ˆ

Y2, and a sequence of Riemannian 3-manifolds M1, ¨ ¨ ¨ ,M`, equipped with an isometric

embedding

\ϕi : p´1´ ε, 1` εq ˆMi Ñ W.

Each interval r´1, 1s ˆMi will be equipped with a perturbation p∇πi which restricts to

some neighborhood of p´ci, ciqˆMi as pdt^∇πiq
` for some regular perturbation ∇πi on
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the pair pMi,Eiq (that is, so that the critical orbits are cut out nondegenerately and all

moduli spaces up to some sufficiently large dimension are also cut out nondegenerately).

We say that the perturbation is adapted to the cut.

To define the restriction map for the framed instanton moduli spaces, we need to

assume that the path γ : R Ñ W is adapted to the cuts, in the sense that there is

a sequence t1, ¨ ¨ ¨ , t` of real numbers with ti ` 2 ă ti`1 so that for the interval t P

rti ´ 1, ti ` 1s, we have γpti ` tq “ ϕipt ´ ti, xiq for some fixed xi P Mi. In particular, γ

passes through the Mi in the order listed.

The canonical family of broken metrics on W is parameterized by r0,8s`; for a fixed

element pT1, ¨ ¨ ¨ , T`q, one replaces the isometric copies of r´1, 1s ˆ Mi with isometric

copies of

r´1´ Ti, 1` Tis ˆMi if Ti ă 8, or
´

r´1,8q \ p´8, 1s
¯

ˆMi if Ti “ 8,

and replaces the image of γ appropriately. The perturbation p∇πi associated to pT1, ¨ ¨ ¨ , T`q

is defined by assuming that its value on the interval p´ci´Ti, ci`Tiq is equal to pdt^∇πiq
`

as above; this remains true in the infinite case. We say that the metric parameterized by

p8, ¨ ¨ ¨ ,8q is an `-times broken metric on W , with cuts along M1, ¨ ¨ ¨ ,M`.

A family of broken metrics and perturbations is given by a compact smooth manifold

with corners S equipped with a family of metrics and perturbations on W , possibly con-

taining broken metrics and perturbations. If s P S corresponds to one of these broken

metrics, cut along M1, ¨ ¨ ¨ ,M`, then we demand there is a chart ϕ : pT,8s` ˆ U Ñ S,

where U is some topological manifold with corners and ϕ is a stratum-preserving open

embedding, so that ϕpT1, ¨ ¨ ¨ , T`, xq is the element of the canonical family of broken met-

rics and perturbations associated to pT1, ¨ ¨ ¨ , T`q described above. The variance in metric

and perturbation parameterized by x P U occurs in the complement of the canonical

intervals I ˆMi. The union over the images of ϕpUq in S, as the ϕ vary over charts

for neighborhoods of a specific sequence of cuts M1, ¨ ¨ ¨ ,M`, is called the cut stratum for

M1, ¨ ¨ ¨ ,M`.

If S parameterizes a family of broken metrics and perturbations, we define the pa-

rameterized moduli space ĂMS as follows. For a fixed broken metric and perturbation
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π, cut along M1, ¨ ¨ ¨ ,M`, we are left with a sequence W0, ¨ ¨ ¨ ,W` of manifolds with two

cylindrical ends; other than the outer two, we have Wi a manifold with incoming cylin-

drical end p´8, 0s ˆMi and outgoing cylindrical end r0,8qˆMi`1. Each of these has a

corresponding collection of moduli spaces

ğ

αi,αi`1PCπi
ziPπ1p rBeEpαi,αi`1qq

ĂMWi
E,zi,π

pαi, αi`1q;

we say that an element of ĂMW
E,z,π is a sequence of framed instantons

A P ĂMWi
E,zi,π

pαi, αi`1q

so that the concatenation z1 ˚ ¨ ¨ ¨ ˚ z` is z. That is, writing the space given by the disjoint

union of πi-critical orbits on Mi as rRπipMiq, we have

ĂMW
E,π :“ ĂMW0

E,π ˆ rRπ1 pM1q
¨ ¨ ¨ ˆ

rRπ` pM`q
ĂMW`

E,π,

which then may be decomposed as a disjoint union according to the paths pz1, ¨ ¨ ¨ , z`q.

The moduli space of the family is then defined to be

ĂME,z,Spα0, αnq “ YsPS ĂME,z,πspα0, αnq,

topologized so that psn,Anq converges to ps,Aq if sn Ñ s and An Ñ A in L2
k on compact

sets.

We say that the individual moduli space ĂME,z,πpα0, αnq is regular if each component

moduli space ĂMEi,zi,πpαi, αi`1q is cut out regularly in dimensions at most 10.

We say that a family of broken metrics and perturbations parameterized by S is

regular if, for each cut stratum σ of S parameterizing `-broken metrics with cuts along

M1, ¨ ¨ ¨ ,M`, but varies metric and perturbation elsewhere on W , we have that each of the

component moduli spaces ĂMEi,zi,σpαi, αi`1q is regular. For ` “ 0, this just says that the

open submanifold of S parameterizing unbroken metrics should be regular in the sense

of Definition 5.8.1.

One may then define the fiberwise Uhlenbeck compactificationMS as before, by setting

Ms to be the fiber products

ME0,π0 ˆ rRπ1 pM1q
¨ ¨ ¨ ˆ

rRπ` pM`q
ME`,π`
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of Uhlenbeck compactifications (by ideal instantons and broken trajectories); ME,π,S is

the union of these over s P S, topologized as above. One easily verifies that MS is

compact by the same argument as the case of families of unbroken metrics; now if sn Ñ s

is a sequence that limits to a metric and perturbation with more breakings, energy slides

off the newly-infinite ends. If MS is regular and of dimension at most 10, then this

compactification only includes broken trajectories, not ideal instantons.

On the composite cobordism W , we will want to consider the composite perturbation,

but this involves a term along the neck which doesn’t come from what we call ‘interior

perturbations’. We will need to dampen this perturbation out if we hope to compare the

moduli spaces on the composite, with generic perturbation, to those of the individual

manifolds Wi.

We resolve this by considering a 2-parameter family of perturbations. Suppose S is a

family of broken metrics and perturbations; let pπ, tq P Sˆr0, 1s denote the perturbation

which is the same as π, but instead of being β0psqp∇πipAq on the neck, we instead use

tβ0psqp∇πipAq; for t “ 1, this is what we already had, and for t “ 0, this is identically

zero.

To see why this is necessary or desirable, recall where the open set UC of Theorem

5.6.4 comes from: it is a set of perturbations π so that the map

Dirred : UCMred
Ñ UCF

sending a reducible π-instanton to its normal ASD operator, is transverse to those oper-

ators with non-trivial cokernel . This open set is guaranteed because we see that Dirred is

transverse to UCF along the perturbations pπ´, 0, π`q with no part coming from ‘interior

holonomy perturbations’.

The point is the following. Suppose W is a manifold with two cylindrical ends, aris-

ing from gluing the Wi together. Suppose further that π´, π1, ¨ ¨ ¨ , π` is a sequence of

regular perturbations on the ‘cutting’ 3-manifolds, and we consider the perturbation

pπ´, 0, tπ1, 0, ¨ ¨ ¨ , tπn, 0, π`q on the composite, where we dampen the perturbation on the

necks as above. Then the same argument that shows Dirred is transverse along pπ´, 0, π`q

shows that Dirred is transverse just as well along pπ´, 0, ¨ ¨ ¨ , 0, π`q - this is guaranteed so

long as there is no ‘interior holonomy perturbation’ component.
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Given this, suppose we have a family of broken metrics and perturbations S; we

will demand that the perturbation on the necks takes a ‘dampened’ form such as the

above. Then if Pp4qc,i are the spaces of interior perturbations on Wi, there is an open set

UC,S,i Ă Pp4qc,i so that Dirred is transverse to the operators with non-trivial cokernel along

any

pπ´, π
int
0 , π1, ¨ ¨ ¨ , π

int
n , π`q

with

πint
i P UC,S,i

for all i.

The reason that this is an open condition is the following. Suppose An is a sequence of

instantons on WL, with gluing factors L finite but going to infinity, with An converging

to a broken instanton A. If all of the components of A are regular, then so is An, for

large n.

Proposition 5.8.3. Let S parameterize a family of broken metrics, and π : S Ñ
ś

i UC,S,i

parameterize a family of perturbations on pW,Eq so that BS is a regular family.

Then the family of broken metrics on S only consists of unbroken metrics and per-

turbations on the interior of S, and one may modify S by an arbitrarily small amount

on the interior to make it into a regular family. In particular, given a broken metric

and perturbation π0 P
ś

i UC,S,i, there is a regular path πt of metrics and perturbations,

with πt unbroken for t ą 0, and so that the perturbation π1 a regular perturbation on the

composite cobordism W with zero perturbation on the ‘neck’.

Now suppose that S parameterizes a regular family of broken metrics and perturbations

on pW,Eq. Let σ Ă S be a cut stratum of codimension `, so parameterizing metrics with

a sequence of cuts along M1, ¨ ¨ ¨ ,M`. For any stratum rσ ĂME,σ,zpα, βq of codimension

n ` k1 ` ¨ ¨ ¨ ` k` ` m, parameterizing broken s-perturbed instantons for s P σ with n

breakings along the incoming end Y1, with ki breakings along the internal end Mi, and

with m breakings along the outgoing end Y2. Then there is a neighborhood

V pσq ĂME,z,Spα, βq

and an SOp3q-invariant map V pσq Ñ p0,8sn`k1`¨¨¨`k``m which is stratum-preserving, a

submersion on each stratum, and a topologically trivial fiber bundle for the inverse image
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of a neighborhood of 8. In particular, ME,S,zpα, βq is a compact topological manifold

with corners and a smooth structure on each stratum, with the same decomposition as in

Proposition 5.8.2.

Proof. The transversality claim follows without real change as in Proposition 5.8.1. By

the discussion before this proposition, if we have a broken perturbation π0, we may

choose a path πt so that π1 is of the form pπ´, π, π`q, where the compactly supported

perturbation π is an interior holonomy perturbation — it has nothing corresponding to

the holonomy perturbation on the neck.

The rest follows the same lines as the proof of the gluing theorem: first, we may use

Lemma 5.7.2 to build charts µiT : Bηip
rHiq Ñ ĂMαi,k,δpZ

T
i q near the constant solution γαi ,

where ZT
i “ r´T, T s ˆMi for finite T and

`

r0,8q Y p´8, 0s
˘

ˆM0

for T “ 8. For uniformity of notation, set M0 “ Y1 and M``1 “ Y2. Then as in the

proof of Lemma 5.7.4, for sufficiently large fixed L may assemble a map with domain the

product

p0,8sn`k1`¨¨¨`k``m ˆ ĂMp´8ˆY1
E1,k,δ

pα0q ˆ
n Bη0p

rH0q ˆ
n
ĂMcenpZ

L
0 q

ˆ rV
W 1

0
σ,E,k ˆ

k1 Bη1p
rH1q ˆ

k1
ĂMcenpZ

L
1 q

¨ ¨ ¨

ˆσ rV
W 1
`

σ,E,k ˆ
k` Bη`p

rH`q ˆ
k`

ĂMcenpZ
L
` q

ˆ
m Bη``1

p rH``1q ˆ
m

ĂMcenpZ
L
``1q ˆ

ĂMr0,8qˆY2
E2,k,δ

pβq.

Recall that rV W
E,k Ă

ĂMW 1

E,k is an open neighborhood of those instantons which extend to

the whole of W .

Here the ˆσ indicates that the moduli spaces

rV W 1
0 ˆ rV W 1

1 ˆ ¨ ¨ ¨ ˆ rV W 1
`

should then be considered as those moduli spaces altogether parameterized by σ, but

not that we parameterize each by S separately and take the product. Secondly, here
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we mean by Wi the compact manifolds given by trunacting the cylindrical ends of W 1
i ,

written EndpWiq “ r0,8q ˆ BW
1
i , at some large finite r0, Ls.

The codomain of the map is restriction to the boundary of each piece (this uses parallel

transport along the path γ):

´

ˆ
n
rBeY1,k´1{2 ˆ

k1
rBeM1,k´1{2 ˆ ¨ ¨ ¨ ˆ

k`
rBeM`,k´1{2 ˆ

m
rBeY2,k´1{2

¯2

.

Call the domain p0,8sn`k1`¨¨¨`k``mˆN and the codomainR. Mapping to an element of

the diagonal in the codomain means that the corresponding instantons on each piece may

be glued to a (possibly broken) instanton on the sequence of manifolds with cylindrical

ends W0, ¨ ¨ ¨ ,W`. The assumption that BS is regular means, in particular, that σ is a

regular family of metrics and perturbations, and so the map ev8 : N Ñ R is transverse

to the diagonal. By convergence in C8loc, the same is true for other nearby evT , and

in particular the families pT, σq are regular families of metrics and perturbations for T

sufficiently large. This is the first part of the proposition.

Now [KM07, Lemma 19.3.3] gives the second part: the fact that this map

p0,8sn`k1`¨¨¨`k``m ˆN Ñ R

is transverse to the diagonal at 8 means that the projection

ev´1
p∆q Ñ p0,8sn`k1`¨¨¨`k``m

is a topological submersion at 8, which is smooth on each stratum, and hence we may

obtain a corresponding chart for a neighborhood of ev´1
8 p∆q Ă ev´1p∆q, which is smooth

on each stratum. This space ev´1
8 p∆q contains a neighborhood V pσq of the stratum of

MS described in the statement, and so we may conclude. �
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CHAPTER 6

Orientations

6.1 Orientability and determinant line bundles

We begin by briefly recalling some generalities on determinant lines. Let H1 and H2 be

Hilbert spaces, and let FpH1, H2q be the space of Fredholm maps. We would like to claim

that there is a natural line bundle over FpH1, H2q, called the determinant line bundle,

whose fiber over T is isomorphic to

Λ˚pkerpT qq b Λ˚pcokerpT qq˚q;

we intuit this as being the determinant line of the virtual vector space kerpT q´ cokerpT q.

If one attempts to do this naively (with literally those fibers), the result does not have

continuous transition functions due to jumps in the kernel. Instead, given any Fredholm

operator T0, choose a finite-dimensional subspace J Ă H2 so that

T0 ‘ IdJ : H1 ‘ J Ñ H2

is surjective, and instead define the determinant line bundle to be

Λ˚kerpT ‘ IdJq b Λ˚pJ˚q

for T near T0. Because T ` IdJ is surjective for T close enough to T0, this gives a well-

defined line bundle over this chart; one should argue that the line bundles are identical

for different choices of J , and that doing this on an open cover defines a legitimate line

bundle on FpH1, H2q.

The idea of the determinant line bundle originates in [Qui85] in the context of Riemann

surfaces; the operators BJ define a family of Fredholm operators over the moduli space

of all Riemann surfaces. Our application is similar, as with most applications of this
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construction. Also see [KM07, Section 20.2], in which the authors describe the construc-

tion of the determinant line bundle, and explain how to construct a canonical associative

isomorphism

q : detpFpH1, H2qq b detpFpK1, K2qq Ñ detpFpH1 ‘K1, H2 ‘K2qq,

its definition involves signs that depend on the choice of J in a local description as above.

All in all, we have smooth real line bundles over each FpH1, H2q which have canonical

direct-sum isomorphisms.

Now let pW,Eq be a Riemannian 4-manifold equipped with weakly admissible SOp3q-

bundle and regular perturbation π, with two cylindrical ends: one incoming pY1, E1, π1q

and one outgoing pY2, E2, π2q. If α is a π1-flat connection on Y1, and similarly β is π2-flat,

then the space of connections AE,k,δpα, βq admits a smooth map

AE,k,δpα, βq Ñ F
`

Ω1
k,δ,Ω

2,`
k´1,δ ‘ Ω0

k´1,δ

˘

,

sending a connection A to the perturbed ASD operator

QA,π “ pd
`
A `DA

p∇π, d
˚
Aq;

pulling back the determinant line bundle on the space of Fredholm operators, we find

that we have a line bundle over Ap4qE,k,δ.

Furthermore, because QA is invariant under the gauge group, we see that Q descends

to an SOp3q-invariant map rBeE,k,δ Ñ F , and hence that there is an SOp3q-equivariant line

bundle detpQq over this space.

Lemma 6.1.1. The line bundle detpQq over rBeE,k,δ is trivializable.

Proof. For convenience of notation we drop the super/subscripts on B; everything here

is modulo even gauge.

We begin with Donaldson’s stabilization trick, adapted for SOp3q-bundles (as opposed

to SUp2q-bundles). There is a natural map AE,k,δ Ñ AE‘C,k,δ given by taking the direct

sum with the trivial connection; this is equivariant for the even gauge group (where

for an SOpnq-bundle, ‘even’ means that the gauge transformation lifts to a section of

AutpEq ˆSOpnq Spinpnq, the action by conjugation). Therefore, this map descends to a
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map on the quotients rBeE Ñ rBeE‘C. Write detpQ1q for the determinant line bundle for

connections over E ‘ C; for a connection of the form A ‘ θ, the operator Q1 splits as

a direct sum of the ASD deformation complex for the three bundles gE, C˚ b E, and

R, where on the first term we use the connection induced by A, on the second term the

connection θ b A, and on the final term the trivial connection. Note that the second

term is a complex linear operator, and hence has canonically trivial determinant.

Thus this stabilization map pulls back detpQ1q to detpQq ‘ detpQθq, where the final

term is a trivial line bundle. In particular, if detpQ1q is trivializable, then detpQq is as

well. Write Bp`q for the configuration space of connections on E‘C`, modulo even gauge,

and write rBp`q for the smooth SOp2` ` 3q-manifold of framed configurations on E ‘ C`,

whose quotient is rBp`q.

Next, because the reducible subspace is of infinite codimension, transversality implies

that the inclusion of the irreducible subspace rB˚
p`q ãÑ rBp`q is a weak homotopy equivalence.

In particular the restriction map

r rBp`q,RP8s Ñ r rB˚p`q,RP8s

is a bijection, so any line bundle which is trivializable over rB˚
p`q is necessarily globally

trivializable. Now our bundle is crucially an SOp3q-equivariant line bundle over rB˚
p`q,

so it is the pullback of some line bundle over B˚
p`q, the space of irreducible connections

modulo gauge (with no framing). Our goal now is to show that this line bundle is trivial,

which will start from a calculation of π1B˚p`q. By definition, this space is the quotient of A˚

by the even gauge group Ge,h
E‘C` ; because A˚ is again the complement of a union of infinite

codimension submanifolds, we see that it too is contractible, and so π1B˚p`q “ π0Ge,hE‘C` .

Next, we must calculate this group of components. This is where stabilization is first

useful.

Fix a principal G-bundle P over a CW complex Y . It is not difficult to show that the

pointed mapping space MapP˚ pY,BGq gives a model for BGpP q, where the superscript

indicates we are only interested in the component which classifies the bundle P . Now,

because BSO is an H-space (with product structure given by direct sum of vector bun-

dles), in fact every component of Map˚pY,BSOq is homotopy equivalent to any another.
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For n sufficiently large,

πiMapP˚ pY,BSOq – MapP˚ pY,BSOpnqq

(this is true for i “ 1 already as soon as n “ 7). To compute the fundamental group

of the quotient by all gauge transformations, it suffices to compute the fundamental

group of the identity component of Map˚pY,BSOq. As before, because we are only

interested in the quotient by even gauge transformations, we actually need only compute

π1Map˚pY,BSpinq. Because there is a fibration

F Ñ BSpin Ñ KpZ, 4q

with F 6-connected, we see that

π1Map˚pY,BSpinq – π1Map˚pY,KpZ, 4qq.

Now, it is a theorem of Thom [Tho57] that we have a splitting

Map˚pY,KpG, nqq “
n
ź

i“1

KpHn´i
pY ;Gq, iq,

and in particular, π1Map˚pY,KpZ, 4qq – H3pY ;Zq.

In our case, the gauge group Ge,h consists of even gauge transformations which are

asymptotically parallel; this fits into an exact sequence Ge Ñ Ge,h Ñ Γα ˆ Γβ, where the

groups Γ are the stabilizers of the corresponding connections and Ge is the gauge group

of asymptotically trivial gauge transformations. in particular, we see that π0Ge Ñ π0Ge,h

is a surjection. The homotopy type of the group of gauge transformations which are

asymptotically trivial is the same as the relative gauge group over pW, BW q; the discussion

of the above paragraph goes through without difficulty to this relative setting, replacing

cohomology with relative cohomology. We conclude that

π0Ge “ H3
pW, BW ;Zq – H1pW ;Zq

by Poincaré duality, and in particular H1pW ;Zq Ñ π1
rBE‘C` is surjective.

Now that we know what the loops in this space are, the goal is to show that w1pdetpQ1qq

pairs trivially against them. Now we are in standard territory, and the proof follows ex-

actly as in [Don87, Lemma 3.23] (modifying the Poincaré duality argument to account
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for the boundary): if one chooses a base connection A, a concentrated charge-one instan-

ton J on S4, and a loop rγs P H1pW q in the interior of W , then one performs a family

connected-sum construction along the loop to construct a loop of connections. One may

identify both that the corresponding loop in π1
rBE‘C` is the image of rγs, and that the

determinant line bundle over this loop of connections is trivial (if one so desires, this can

be carried out using the index-gluing constructions along the boundary of a 4-manifold,

which will be described later in this section).

Therefore, the pairing of w1pdetpQ1qq against H1pW ;Zq is identically zero, and so

detpQ1q is trivializable. Being the pullback of the sum of this bundle and a trivial line

bundle, the same is true of detpQq, as desired. �

Now choose a framed π-instanton rA, ps P ĂME,z,π, where π is a regular perturbation.

The tangent space TrA,ps ĂME,z,π is identified with the first cohomology of the deformation

complex

Ω0
k`1,δpgEq

dA,evb
ÝÝÝÝÑ Ω1

k,δpgEq ‘ g
DA,π
ÝÝÝÑ Ω2,`

k´1,δpgEq,

where g means the fiber of gE above b, and evbσ “ σpbq. We denote this complex CA.

Here we require k to be sufficiently large that every L2
k`1 function is continuous, so

that evaluation is a continuous operation. Write gA to denote the subspace of g that

extends to A-parallel gauge transformations (so that gA is the Lie algebra of ΓA), and

write e : gA Ñ Ω0
k`1,δ,ext for the operator that takes a point-value and sends it to the

corresponding parallel section.

Take a map pA : gA Ñ Ω0pgEq which has xpAphq, ephqy ą 0 for all h ‰ 0 P gA. We

write the operator rQA,π : Ω1
k,δ ‘ gÑ Ω2,`

k´1,δ ‘Ω0
k´1,δ for rQ “ Q` pA (suppressing the pA

from notation; as we shall see shortly, this is not so depraved).

Lemma 6.1.2. The composite map kerp rQq ãÑ kerpDA,πq � H1pCAq is an isomorphism

if pA is sufficiently small.

Proof. By assumption that π is a regular perturbation, the complex CA has cohomology

concentrated in degree one, and cokerpQA,πq “ gA. By assumption that pAphq pairs

nontrivially with ephq for any h P gA, we see that rQA,π is surjective. Because the index of

the operator rQ agrees with the index of the complex C, we see that kerp rQq and H1pCAq

have the same dimension; so it suffices to show surjectivity.
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So suppose DA,πω “ 0; our goal is to show there is some σ P Ω0
ext so that

∆Aσ ` pApσpbqq “ ´d
˚
Aω.

The map ∆A : Ω0
k`1,ext,δ Ñ Ω0

k´1,δ is a self-adjoint operator with kernel gA.

In particular, because pA : kerp∆Aq Ñ cokerp∆Aq is assumed to be an isomorphism,

the map ∆A ` tpA is surjective for sufficiently small t. So (replacing pA with tpA if

necessary, t small) we see that ∆A`pA : Ω0
k`1,δ,ext Ñ Ω0

k´1,δ is an isomorphism. Therefore

we may indeed solve the desired equation, so that we see the map kerp rQq Ñ H1pCAq is

surjective (and hence an isomorphism), as desired. �

In particular, we have a canonical isomorphism in a neighborhood of rA, ps between

detpT ĂMq and detp rQq. The sign of this isomorphism is independent of the auxiliary choice

of pA. What we look to investigate is, then, the latter operator.

Recall now that the index of Fredholm operators is invariant under homotopy through

Fredholm operators; because the map QA,π`tpA, for t P r0, 1s, gives a homotopy through

Fredholm operators (as g is finite-dimensional), we see that Ip rQA,πq – IpQA,πq ‘ g, and

in particular

detp rQA,πq – detpQA,πq b detpgq.

Therefore, a choice of orientation of the Lie group SOp3q and an orientation of Q canoni-

cally gives us an orientation of rQ. This is completely independent of the choice of r, and

we may as well remove r from the discussion of the index theory, and instead study QA,π

itself.

In particular, a choice of orientation of the line bundle detpQA,πq for A in some com-

ponent of rBeE, and a fixed orientation of sop3q, therefore gives a global orientation of the

framed moduli space ĂM sitting inside that component.

If A P rBeE,z,k,δpα, βq, where here z P π0
rBeE,k,δ labels a path-component, we write

ΛW
z pα, βq for the two-element set of orientations of detpQAq b detpgq. As above, a choice

of element of ΛW
z pα, βq induces an orientation on the moduli space ĂME,z,πpα, βq.
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6.2 A gluing operation for determinant lines

Let pWi,Eiq be two cobordisms (considered as manifolds with two cylindrical ends), so

that the positive end of pW1,E1q is isometric to the negative end of pW2,E2q. Here we

include the possibility that either or both of the Wi are cylinders; write pW T
12,E12q for

the composite cobordism, glued by cutting off the positive end of W1 (say, r0,8q ˆ Y2)

at tT u ˆ Y2 and similarly for the negative end of W2. If it is not necessary for clarity, we

drop the T from notation. If z1 and z2 are components of rBE1,k,δpα, βq and rBE2,k,δpβ, γq,

respectively, then denote the apparent ‘composite component’ as z12.

What we would like is to take an element of each of ΛW1
z1
pα, βq and ΛW2

z2
pβ, γq, and

output an element of ΛW12
z12
pα, γq (possibly depending on some extra input coming from β

alone).

To do this, we will use the mechanism of gluing indices along boundary components.

We begin by setting up some notation.

Let X1 and X2 be 4-manifolds equipped with SOp3q-bundles Ei, possibly with cylin-

drical ends, so that BXi is nonempty and the metric is of product type near the boundary.

We decompose each BXi into a union B´XiYB`Xi of connected components (either term

possibly empty) which we call ‘positive’ or ‘negative’, and orient them so that a neighbor-

hood of B`Xi is isometric to p´t, 0s ˆ B`Xi and a neigbhorhood of B´Xi is isometric to

r0, tq ˆ B´Xi. Suppose furthermore that pB`X1,E1q is oriented isometric to pB´X2,E2q.

Write

Y1 “ B´X1, Y2 “ B`X1 “ B´X2 Y3 “ B`X2,

and write Y “ Y1 Y Y2 Y Y3.

Then we may form the composite X12 “ X1YY2 X2, equipped with SOp3q-bundle E12.

Suppose each pXi,Eiq is equipped with a choice of 4-manifold perturbation, regular

on the ends, which is also constant in time near the boundary. Suppose each is equipped

with a connection Ai of regularity L2
k,δ, decaying towards π-flat connections on the ends,

and suppose that A12 is a connection on X12 of the same regularity which agrees with

each Ai when restricted to each Xi. Write A for the restriction of A12 to Y ; it is of

regularity L2
k´1{2.
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We are interested in studying the perturbed ASD operator on these compact manifolds

with boundary. We should introduce a restriction on the boundary values to make this a

Fredholm operator, as in Chapter 5.7. However, the choice there (the Coulomb-Neumann

gauge) is not appropriate for us here; that boundary value problem is not continuously

varying as we change the reducibility type of A. Instead, we use the standard Atiyah-

Patodi-Singer spectral boundary value problem. On the composite X12, the ASD operator

takes the form d{dt` LA,π on p´t, tq ˆ Y for the signature operator

LA,π : Ω0
k´1{2pY q ‘ Ω1

k´1{2pY q Ñ Ω0
k´3{2pY q ‘ Ω1

k´3{2pY q,

written in matrix form as

LA,π “

¨

˝

0 ´d˚A

´dA DA,π

˛

‚,

where DA,π “ ˚dA `DA∇π.

Henceforth we write Ω0pY q‘Ω1pY q as H, only writing the Sobolev indices if necessary.

When there are multiple Yi, we write

Hi :“ Ω0
pYiq ‘ Ω1

pYiq.

Suppose λ P R is not an eigenvalue of LA,π for any A arising as the restriction of A to

a boundary component. Then we may split H as Hąλ ‘Hăλ as the closure of the linear

span of eigenvectors with eigenvalue greater than, or less than, λ. Then we define the

λ-weighted ASD operator on X1 to be

Qλ
A,π “ pDA,π, d

˚
A,Π

ăλ
1 r,Πąλ2 rq : Ω1

k,δpX1q Ñ Ω2,`
pX1q ‘ Ω0

pX1q ‘H
ăλ
1 ‘Hąλ

2 ,

where r is restriction to the appropriate boundary components and the operators Π

are the L2
k´1{2 orthogonal projections onto the corresponding eigenspaces. The operator

written on X2 is the same, with the boundary value projections changed to Πăλ2 and Πąλ3 ,

and similarly with X12.

With this notation in hand, the following is essentially the content of the beginning of

[KM07, Section 20.3], especially pages 383-384.

Lemma 6.2.1. Let K be any compact family of connections A12 and perturbations as

above, where λ is never an eigenvalue for any LA,π for any A given by restriction of
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A P K to the boundary. Then the operators Qλ
Ai,π

form a family of Fredholm operators,

and there is a canonical isomorphism of line bundles over K

detpQλ
A1,π

q b detpQλ
A2,π

q Ñ detpQλ
A12,π

q,

given by a homotopy between the operators Qλ
A1,π

‘ Qλ
A2,π

and an operator whose kernel

and cokernel are canonically identified with that of Qλ
A12,π

.

What we really care about are connections A P rBE,z,k,δpα, βq on a manifold W with

two cylindrical ends and no boundary components. To make use of the above lemma,

we should break these into pieces. For T large, write N for the restriction of A to

p´8,´T s ˆ Y1, P for the restriction to rT,8q ˆ Y2, and C for the restriction to the

compact piece lying between these.

We fix a small constant ε ą 0. What we demand of our choice of T , writing N “ p˚α`a

for p˚α the pullback connection d{dt` dα and a P Ω1
k,δ pp´8,´T s ˆ Y1q, is the following.

First, that the signature operator Lα`tap´T q never has an eigenvalue of absolute value ε for

any t P r0, 1s. Second, that the only eigenvalue of Lα,π in r´ε, εs is 0, which corresponds

to kerpLα,πq “ gα, the space of α-parallel sections of gE; this is the entire kernel by the

assumption that α is a nondegenerate critical orbit. We demand similarly for P. This

is a smallness condition on N and P, or rather the size of the differences between those

and constant connections. In particular, the operators Q´εN,π and Q´εP,π are both Fredholm

operators, and there are canonical isomorphisms

detpQ´εN,πq – detpQ´εp˚α,πq, detpQ´εP,πq – detpQ´εβ,πq.

This remains true for families of such connections, so long as T is chosen to satisfy the

given properties for all connections in the family; this is always possible if the family is

compact.

Then by Lemma 6.2.1, we have an isomorphism

detpQ´εp˚α,πq b detpQ´εC,πq b detpQ´εp˚β,πq – detpQA,πq.

To reduce this to studying C alone, we should understand explicitly the operators corre-

sponding to each end.
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Lemma 6.2.2. Write Z´ “ p´8, 0s ˆ Y1 and Z` “ r0,8q ˆ Y2.

The operator

Q´εp˚α,π : Ω1
k,δpZ

´
q Ñ Ω2,`

k´1,δpZ
´
q ‘ Ω0

k´1,δpZ
´
q ‘Hă´ε

1

is an isomorphism, and so there is a canonical trivialization detpQ´εp˚α,πq – R. The

operator

Q´εp˚β,π : Ω1
k,δpZ

`
q Ñ Ω2,`

k´1,δpZ
`
q ‘ Ω0

k´1,δpZ
`
q ‘Hą´ε

1

is injective with cokernel canonically identified with gβ, the space of β-parallel sections of

gE, and so we have a canonical isomorphism detpQ´εp˚β,πq – detpgβq
˚, giving a trivializa-

tion as soon as we orient the vector space gβ.

Proof. Because the operator

pDp˚α,π, d
˚
p˚αq “ pd

`
p˚α `Dα

p∇π, d
˚
p˚αq

takes the form d{dt` Lα,π, and identically with β, we may solve the equation

pDp˚α,π, d
˚
p˚αqω “ 0

by separation of variables, decomposing Ω0pY1q ‘ Ω0pY2q into the eigenspaces of Lα,π. A

solution with boundary value φ P L2
k´1{2 exists if and only if φ is in the closure of the span

of eigenvectors with negative eigenvalues. Because Hă´ε
1 “ Hă0

1 by assumption on ε, we

see that the operator Q´εp˚α,π is invertible, as desired. However, for the other cylindrical

end, we have Hą´ε
2 “ Hě0

2 , we see that we have cokernel equal to H0
2 “ kerpLα,πq “ gα,

by the assumption that α is nondegenerate. �

We use these facts about the index to construct a comparison map between certain

determinant line bundles.

Definition 6.2.1. Let A1 and A2 be connection on cobordisms W1 and W2 as above,

going between α and β or β and γ, respectively. If A12 is a connection on the composite

W T
12 which is uniformly close to A1 on WďT

1 and A2 on Wě´T
2 , the there is a canonical

isomorphism

ρan : det pQA1,πq b detpgβq b det pQA2,πq – det
´

rQA12,π

¯

,
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given by decomposing

det pQA1,πq – det
`

Q´εC1,π

˘

b detpgβq
˚

and

det
`

Q´εA2,π

˘

– det pQC2,πq b detpgγq
˚,

as above, and applying the canonical isomorphism detpgβq
˚ detpgβq – R, as well as the

isomorphism

det
`

Q´εC1,π

˘

b det
`

Q´εC2,π

˘

– det
`

Q´εC12,π

˘

given by Lemma 6.2.1, by first applying a small homotopy taking Ci to the restriction of

C2.

We call ρan the analytic gluing map. There is a corresponding version of this map for

the operators rQ which have a factor of g to account for the SOp3q-action; this is written

rρan : det
´

rQA1,π

¯

b detpgKβ q
˚
b det

´

rQA2,π

¯

– det
´

ČQA12,π

¯

,

given by decomposing

det
´

rQAi,π

¯

– det pQAi,πq b detpgq

and using the canonical isomorphism detpgq – detpgβqbdetpgKβ q, where here we implicilty

demand that g “ gβ ‘ gKβ is an oriented splitting if we choose an orientation on any two

of these.

In particular, this gives an isomorphism

ΛW1
z1
pα, βq ˆZ{2 Λpgβq ˆZ{2 ΛW2

z2
pβ, γq – ΛW12

z12
pα, γq,

where Λpgβq is the set of orientations of gβ.

Given any compact family of Ai as above, the analytic gluing map ρan gives an iso-

morphism of line bundles over the parameter space, and identically with rρan.

Note that this is usually relevant to us in the case where one of Wi is a cylinder. If

neither are cylinders, the orientations that actually appear in practice are of the param-

eterized ASD operator, with parameter given by some family of broken metrics.
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6.3 The gluing diffeomorphism is orientation-preserving

In the previous section, we defined a gluing isomorphism ρan between certain determinant

lines. We also have a similar isomorphism coming from a different source: the inverse

function theorem. Recall from Chapter 5.7 that, for certain connected SOp3q-invariant

open subsets Uαβ Ă ĂME1,z1pα, βq and Uβγ Ă ĂME2,z2pβ, γq, Proposition 5.7.6 gives a

diffeomorphism

gl : Uαβ ˆβ Uβγ Ñ Uαγ.

In the compactification by broken trajectories, the closure of glpUαβ ˆβ Uβγq includes the

open face

ĂMαβ ˆβ ĂMβγ Ă BMαγ.

We remind the reader here that when considering ĂME,k,δ in the case where W is a

cylinder, this is the moduli space of parameterized trajectories: we do not reduce by the

R-action.

In particular, suppose we are given a pair of framed instantons prA1, p1s, rA2, p2sq which

project to the same framing at β. Taking the derivative of gl, we obtain an isomorphism

rρgm : det
´

rQA1,π

¯

b detpgβq
˚
b det

´

rQA2,π

¯

– det
´

rQA12,π

¯

;

note that the SOp3q-action on a point gives an isomorphism Tpβ – gKβ , which explains

this factor. Because the gluing map is equivariant, this descends to an isomorphism

ρgm : det pQA1,πq b detpgKβ q b det pQA2,πq – det pQA12,πq .

We call ρgm the geometric gluing map. If the open sets Uαβ and Uβγ are chosen so that

the restriction of A P Uαβ to each end is close enough to the constant trajectory, and

similarly for the restriction of A P Uβγ to each end, that we may apply Lemma 6.2.1.

Then we obtain two isomorphisms

ρ : det pQA1,πq b detpgβq b det pQA2,πq – det pQA12,πq .

The next part of this section is dedicated to showing that these two isomorphisms are

positive scalar multiples of one another, and hence both induce the same orientation on

det pQA12,πq.
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The map ρgm (or rather, rρgm) is not difficult to understand at the level of kernels and

cokernels; it is less clear how to understand rρan at this level, so this is our next immediate

goal.

Lemma 6.3.1. Let V,W, and Wb be Hilbert spaces; suppose we have a continuous family

of Fredholm maps

At “ pA, rtq : V Ñ W ‘Wb,

with A : V Ñ W surjective. Suppose that A0 is surjective, and that the map

rt ´ r0 : kerpAq Ñ Wb

has sufficiently small norm, uniformly in t. Let J Ă Wb be a finite-dimensional subspace

so that rAt : V ‘J Ñ W‘Wb, given by

¨

˝

A 0

rt 1

˛

‚, is surjective for all t. Then the composite

kerp rA0q ãÑ V ‘ J � kerp rAtq

is an isomorphism, where the first map is inclusion and the second map is orthogonal

projection. Similarly, the map kerpA0q Ñ kerpA1q is injective, and the above gives us

an isomorphism kerpA0q ‘ cokerpA1q – kerpA1q. This gives an isomorphism between

orientation sets ΛpA0q – ΛpA1q, the same as that induced by the homotopy through

Fredholm operators At.

Proof. First, we argue in slightly more generality. Suppose we are given two Fredholm

maps Ti : X Ñ Y of Hilbert spaces, and that }T2

ˇ

ˇ

kerpT1q
} ă ε. Write π2 : X Ñ kerpT2q

for the orthogonal projection, and C2 “ kerpπ2q, the orthogonal complement to kerpT2q.

Then the map T2 : C2 Ñ Y is an isomorphism onto its (closed) image, and in particular

enjoys an inequality of the form }T2v}Y ě c}v}C2 for some c ą 0. For any v P kerpT1q, we

have

}p1´ π2qv} ď
1

c
}T2p1´ π2qv} “

1

c
}T2v} ď

ε

c
}v};

the equality follows because T2π2v “ 0, by definition of π2. As soon as ε ă c, we see

that π2v must be nonzero. In particular, so long as }T2

ˇ

ˇ

kerpT1q
} is sufficiently small, the

composite kerpT1q ãÑ X � kerpT2q is injective.

Given an element pv, jq of kerp rA0q, we have

rAtpv, jq “ pAv, rtv ` jq “ p0, prt ´ r0qvq;
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because v P kerpAq, we see that

} rAt
ˇ

ˇ

kerp rA0q
} ď }prt ´ r0q

ˇ

ˇ

kerpAq
}.

So if }prt ´ r0q
ˇ

ˇ

kerpAq
} is sufficiently small, we see that kerp rA0q Ñ kerp rAtq as defined

above is injective, for all t; because the operators rAt are all homotopic through Fredholm

operators and assumed to be surjective, these kernels all have the same dimension, and

hence this injection is an isomorphism.

By the assumption that A0 is surjective, we may identify kerp rA0q as kerpA0q ‘ J . If

we write cokerp rAtq ‘ J 1t – J , then choosing a section of the projection kerp rAtq Ñ J 1t, we

may similarly identify kerp rAtq – kerpAtq ‘ J
1
t. The isomorphism

kerpA0q ‘ J – kerpAtq ‘ J
1
t

is isotopic to the direct sum of an isomorphism kerpA0q ‘ cokerpAtq Ñ kerpAtq with the

identity map on J 1t. Here, the map cokerpAtq Ñ kerpAtq is given (up to a small homotopy)

by first choosing a section s of the surjective map

kerpAq
´r0
ÝÝÑ Wb Ñ cokerpAtq,

which supplies us with a map

s1 : cokerpAtq Ñ kerpA0q ‘ J

s1pjq “ pspjq, r0spjqq;

because the space of sections is contractible this map only depends on the choice of section

up to an isotopy. Then as usual we apply orthogonal projection to spjq to obtain a map

kerpA0q ‘ J Ñ kerpAtq.

This, then, is identified as an isomorphism of virtual vector spaces

pkerpA0q, 0q Ñ pkerpAtq, cokerpAtqq,

the map on kernels just being the composite kerpA0q Ñ V Ñ kerpAtq as above.

Given that we have a family of such isomorphisms, starting with the identity, identi-

fies this map with the isomorphism ΛpA0q Ñ ΛpA1q induced by the homotopy through

Fredholm operators. �
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Let W1 and W2 be cobordisms, with the positive end of W1 and the negative end of W2

modeled on pY,Eq. Suppose we have regular framed instantons pA1, p1q, pA2, p2q on the

respective cobordisms (possibly cylinders) which limit to the critical orbit β; the gluing

map provides a framed instanton pAT
12, pq on the glued-up cobordism

W T
12 “ WďT

1 YY W
ě´T
2 ,

obtained by truncating the two cobordisms at some large t˘T u ˆ Y and pasting them

together. The defining property of pAT
12, pq, arising from the inverse function theorem, is

as follows. First, for large enough T the restriction to W
ďT {2
1 and W

ě´T {2
2 is uniformly

close to pA1, p1q and pA2, p2q, respectively (here we use parallel transport to move the

framing between various basepoints). Second, the restriction to the region in between

these two pieces, isometric to r´T {2, T {2sˆY , is uniformly small. We write r´T {2, T {2sˆ

Y “: ZT {2. If π : Eb Ñ Eb{Γβ is the projection and q the framing at some basepoint b on

ZT {2, then πq is uniformly close to the common limiting value q of p1 and p2.

In this context, we consider

V “ Ω1
k,δpW

ďT {2
1 q ‘ Ω1

k,δpZ
T {2
q ‘ Ω1

k,δpW
ě´T {2
2 q,

while

W “ pΩ2,`
‘ Ω0

qk´1,δpW
ďT {2
1 q ‘ pΩ2,`

‘ Ω0
qk´1,δpZ

T {2
q ‘ pΩ2,`

‘ Ω0
qk´1,δpW

ě´T {2
2 q,

and

Wb “ pΩ
0
‘ Ω1

qk´1{2pt´T {2, T {2u ˆ Y q.

The operator A : V Ñ W is given by pd˚, d`q, while there are two restriction oper-

ators V Ñ Wb of interest to us: one is r0 “ pres,´resq, taking the restriction on each

positive boundary component and negative the restriction on each negative boundary

component. The other is r1 “ pΠą´ε,Πă´εq, the spectral projection onto the ą ´ε

eigenspaces on positive ends, and the ă ε eigenspaces on negative ends. The operator A1

has the property that it splits as a direct sum of operators corresponding to the pieces

W
ďT {2
1 , ZT {2,W

ě´T {2
2 , while the operator A0 has kernel and cokernel naturally isomorphic

to QA12,π itself. Here the appropriate choice of L2
k,δ norm on the direct sum in fact has

a weight on the ZT {2 component, as in Chapter 5.7, essentially weighted by a symmetric

function equal to eδpt`T {2q on r´T {2,´tq for some small t ą 0.
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We may interpolate through these projections via

rt “ pΠ
ą´ε

` tΠă´ε,´tΠą´ε ´ Πă´εq;

as discussed in [KM07, Section 20.3], this gives a homotopy At “ pA, rtq through Fredholm

operators. Furthermore, if T is chosen large enough, then }prt ´ r0q
ˇ

ˇ

kerpAq
} is arbitrarily

small, uniformly in t. Observe here that

rt ´ r0 “ tpΠă´ε,´Πą´εq,

so we may focus attention on the case t “ 1. For convenience, we only pay attention to

the factor Πă´ε as we approach tT {2u ˆ Y from the left.

Write ωT {4 “ ω
ˇ

ˇ

tT {4uˆY
and ωT {2 “ ω

ˇ

ˇ

tT {2uˆY
. For T very large, we have that

A12

ˇ

ˇ

W
rT {4,T {2s
1

is uniformly close to the constant trajectory at the π-flat connection β,

as follows because A1 decays exponentially. For some constant C, independent of T , we

have }ωT {4}k´1{2 ď C}ω}k,δ for all ω P L2
k,δ; this is just the claim that the trace along

a hypersurface is a continuous map (and the fact that a neighborhood of tT {4u ˆ Y is

isometric to p´t, tq ˆ Y , independent of T ). Writing the ASD operator for the constant

trajectory at β as an ODE in the eigenvalues of

Lβ,π : pΩ0
‘ Ω1

qk´1{2pY q Ñ pΩ0
‘ Ω1

qk´3{2pY q,

and writing ωT {2 “ ω`T {2 ‘ ω
´

T {2 for the spectral decomposition, we see that

}ω´T {2} ď
e´δT {4

2
}ω´T {4} ď

e´δT {4

C
}ω}

for any ω P kerpAq, where δ is the absolute value of the least eigenvalue of Lβ,π, and

the factor of 2 is simply a fudge factor to account for the fact that A1 is not literally

the constant trajectory at β in the relevant portion of the cobordism. Here we use that

´ε ă 0 to conclude that this component of rt ´ r0 is uniformly small.

For the negative boundary components, a similar argument applies, but now one must

exploit the exponential weights in the definition of the L2
k,δ norm on the compact cylinder

and the fact that ε is chosen less than δ to get the desired bound (now instead there is a

factor of epε´δqT {4).

This is almost sufficient to apply the above lemma, except for the condition that A0

is surjective; rather, we have a canonical identification cokerpA0q – gA12 , the tangent
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space to the stabilizer ΓA12 . This is easy enough to dispatch; recall the definitions of the

extended operators rQA,π from earlier in this section, depending on a certain choice of

map p : gÑ Ω0pW q. These were chosen precisely so that rQA,π is surjective for a regular

instanton A. In this context, take rV “ V ‘ g‘ g (thinking of each g as being a choice of

framing on one of the components W
ďT {2
1 or W

ě´T {2
2 , based at say γp´T q and γpT q for

the base curve γ), while ĂW “ W ‘ g and ĂWb “ Wb. The map g‘ gÑ ĂW is the expected

maps pi on the Ω0pWiq factors, while the map g‘gÑ g is the identity in the first factor,

and ´Hol
γpT qÑγp´T q
A12

in the second factor; if the points γp˘T q are chosen to lie on the

boundary of the two pieces, then the composite of this map with the projection g Ñ gKβ

is very close to the identity, because A12 is sufficiently close to the constant trajectory at

β.

Then the map rA : rV Ñ ĂW is surjective, as is rA0 : rV Ñ ĂW ‘ĂWb, and the maps pi

contribute minimally to the boundary-evaluation, so these satisfy the assumptions of the

lemma.

Corollary 6.3.2. If T is sufficiently large, the index-theoretic isomorphism

rΛpA12q – rΛpA
ďT {2
1 qΛpgq˚rΛpA

ě´T {2
2 q

is given, at the level of kernels and cokernels, by an injection

kerp rQA12q Ñ kerp rQ
ďT {2
A1

q ‘g kerp rQ
ě´T {2
A2

q,

obtained first by restriction to Ω1pW
ďT {2
1 \W

ě´T {2
2 q and second by projection to the kernel.

(Here ‘g means we take the kernel of the natural projection of the direct sum to g.)

Similarly, for sufficiently large cutoffs T , the index-thereotic isomorphism

rΛpA1qΛpg
K
β q
˚
rΛpA2q Ñ rΛpA

ďT {2
1 qΛpgq˚rΛpA

ě´T {2
2 q

may be described at the level of kernels and cokernels as a map

kerp rQA1q ‘gKβ
kerp rQA2q Ñ kerp rQ

ďT {2
A1

q ‘ kerp rQ
ě´T {2
A2

q,

which may be described explicitly again as restriction to the corresponding manifolds with

boundary, and then projection to the latter kernel.
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Proof. The only point not outlined above is a discussion of the middle piece, isometric

to r´T {2, T {2s ˆ Y . Given that A12 is uniformly close to the constant trajectory at β

for large enough T , and that for large enough T the ASD map on the cylinder (with

boundary conditions) is an isomorphism for the constant trajectory at β, we see that its

determinant line is canonically trivial, and does not enter into the discussion. �

Now consider the diagram

rΛpA1qΛpg
K
β q
˚
rΛpA2q rΛpA

ďT {2
1 qΛpgq˚rΛpA

ě´T {2
2 q

rΛpA12q

The vertical map may be taken to be either Λprρgmq or Λprρanq. The horizontal map and

upper-right map are as discussed above: they maybe understood either as the inverses of

index-theoretic gluing isomorphisms, or via projection maps between various kernels.

If the vertical map is taken to be rρan, then this diagram commutes (in fact, ρan is

defined so that this diagram commutes). If we take the vertical map to be rρgm, this

diagram still commutes: we are claiming that the composite map

pA1, p1, T,A2, p2q Ñ pAT
12, pq Ñ pA

ďT {2
12 p11,A

ě´T {2
12 , p12q

is uniformly close to restriction, and hence this map commutes (up to a small homotopy)

at the level of kernels. Because the diagram commutes with either choice, Λprρgmq “

Λprρanq: the two gluing maps are the same.

If we have fixed an orientation of gβ, then via the recipe given by the analytic gluing

map, an orientation of ΛW1
z pα, βq and an orientation of ΛW2

w pβ, γq induces an orientation

of ΛW12
zw pα, γq; it also naturally an induces an orientation of the fiber product

ĂME1,z,k,δpα, βq ˆβ ĂME2,w,k,δpβ, γq,

and what we learned above is that the geometric gluing map, which gives rise to a

diffeomorphism between an open subset of this fiber product and ĂME12,zw,k,δpα, γq is

orientation-preserving, having oriented the latter via the recipe given by the analytic

gluing map.
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Suppose that W1 is a cylinder. Then if M1

E1,z
pα, βq is the ‘compactification’ of

ĂME1,zpα, βq by broken trajectories,1 quotienting by R gives the usual ME1,zpα, βq of

unparameterized broken trajectories. We always orient this so that the diffeomorphism

RˆME1,z,k,δpα, βq –M
1

E1,z,k,δ
pα, βq

is orientation-preserving.

The notation in the following is slightly different than in Proposition 5.7.6, to allow

for a more uniform discussion.

Proposition 6.3.3. If pY,Eq is a 3-manifold equipped with regular perturbation, then if

ME,k,δpα, βq is the compactified moduli space of unparameterized flowlines, then Propo-

sition 5.7.6 gives a decomposition of the boundary

BME,z,πpα, βq “
ď

γPCπ
z1˚z2“z

ME,z1,πpα, γq ˆγME,z2,πpγ, βq.

Suppose we orient Λzpα, βq using the analytic gluing map and fixed orientations of the

three of Λz1pα, γq,Λz2pγ, βq, and gγ. If d is the dimension of ĂME,z1,πpα, γq, then the

boundary orientation on

ME,z1,πpα, γq ˆγME,z2,πpγ, βq

differs from the fiber product orientation by a factor of p´1qd.

Now let pW,Eq be a cobordism equipped with regular perturbation. By Proposition

5.7.6, each compactified moduli space ME,z,π has boundary given as the union

BME,z,πpα, βq “
ď

γPCπ1
z1˚z2“z

ME1,z1,π1pα, γq ˆγME,z2,πpγ, βq

ď

ζPCπ2
z1˚z2“z

ME,z1,πpα, ζq ˆζME2,z2,π2pζ, βq.

This decomposes the boundary into two types of components: whether breaking occurs at

the negative end or at the positive end.

1To make sense of this, the broken trajectories are not parameterized on each component, but rather
the stratum corresponding to a k-broken trajectory is quotiented by the action of Rk´1 Ă Rk, sitting
inside as the subset with zero sum.

176



Then if we orient Λzpα, βq using the analytic gluing map and fixed orientations of the

three of Λz1pα, γq,Λz2pγ, βq, and gγ, the orientation of

ME1,z1,π1pα, γq ˆγME,z2,πpγ, βq

as a boundary stratum agrees with the orientation induced by the fiber product. If the

dimension of ME,z1,π is d, then the orientation of

ME,z1,πpα, ζq ˆζME2,z2,π2pζ, βq

as a boundary stratum is p´1qd that of the orientation given as a fiber product.

Proof. The argument is no different from [KM07, Proposition 20.5.2] and [KM07, Propo-

sition 25.1.1], respectively. We write ĂM0
E,z,πpα, βq for the quotient of the space of pa-

rameterized flowlines by the R action, not compactified. Then in the first case, the sign

arises from the orientation-preserving local homeomorphism

ĂM0
E,z1,π

pα, γq ˆ r0,8q ˆγ ˆĂM0
E,z2,π

pγ, βq ÑME,z,πpα, βq;

to compare to the boundary orientation, we should commute the r0,8q factor across

ĂM0
E,z1,π

pα, γq,

which has dimension d ´ 1, as above; the final sign p´1qd comes because we restrict to

the negative boundary component t0u.

The argument in the case of a cobordism is identical, and the difference in signs arises

because in the case of breakings along the negative end, we do not need to commute

anything. �

6.4 Canonical orientations for determinant lines

What remains is to find a recipe so that, given some choices for each α and β, and a choice

depending only on the underlying cobordism (in the case that it is not just a cylinder),

we are given natural orientations of each ΛW
z pα, βq. These must compose approproiately

under gluing. If we change one of the choices for α then the sign of the orientation on

each Λzpα, βq should change, and similarly with swapping the choice for β. If one changes
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the choice for W , then every orientation should change uniformly. This assignment of

orientations is what we call in the title of this section ‘canonical orientations’.

To do this, we will ultimately require that the cobordism (or possibly some larger cobor-

dism) admits a reducible connection. Already this places the demand that βw2pEq “ 0,

but this is not enough to pin down orientations.

Supposing that A is an SOp2q-reducible, we have a splitting QA,π – Qη,π ‘ Qθ,π. If

we chose a complex structure on η, then the term Qη,π is complex linear with respect to

this complex structure, which would give an isomorphism

detpQA,πq – detpQθ,πq,

thus reducing discussion to the case of the trivial connection (possibly perturbed), but a

different choice of complex structure will give a different isomorphism. We need to ensure

that a choice of such a complex structure is part of our data.

For the first time in this text we need to choose (for each 3-manifold Y and each

cobordism W ) not an SOp3q-bundle over the manifold, but rather a Up2q-bundle. An

SOp3q-bundle has a lift to a Up2q-bundle if and only if βw2pEq “ 0 P H3p´;Zq. If rE

is a rank 2 complex vector bundle with fixed connection on its determinant line, then a

reducible connection A induces a splitting rE – η ‘ ζ, where η b ζ – detprEq and η, ζ

are complex line bundles. Thus for the trace-0 adjoint bundle we obtain an isomorphism

g
rE – R‘ pηb ζ´1q, respecting the splitting induced by A; thus we have fixed a complex

structure on the second component of the above splitting.

We begin this with some preliminaries.

Lemma 6.4.1. Let pW,Eq be a complete Riemannian manifold equipped with a Up2q-

bundle with no boundary components and some number of cylindrical ends, modelled on

either p´8, 0s ˆ Yi or r0,8q ˆ Yi; in the former case we say Yi is a negative end, in

the latter a postive end. Suppose W is equipped with a perturbation which is regular on

each end, and a choice of αi P CπpYiq for each 3-manifold Yi the ends are modelled on.

Write rBeE,k,δpαq for the configuration space of L2
k,δ connections, asymptotic to the αi on

the corresponding ends.

Then π0BeE,k,δpαq – Z, this isomorphism affine over π1BeEi – Z for any end pYi,Eiq.
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If all of the αi are trivial, then there is a unique component z P π0BeE,k,δpαq which

supports a reducible connection.

Proof. The statement about components in the space of connections is little more than

the classification of Up2q-bundles over a compact 4-manifold with boundary with fixed

isomorphism class on the boundary in terms of their first Chern class c1 P H
2pW ;Zq

and Pontryagin class p1 P Λ Ă H4pW, BW ;Rq. Here Λ is a subset affine over 8π2Z, the

latter defined by a curvature integral with respect to some connection with fixed bound-

ary components. Gluing in the nontrivial positive (determined by the same curvature

integral) generator of π1BeEi increases this by 8π2, as expected. We denote this operation

as z ÞÑ z ` 1.

The fact that one and only one component supports a reducible connection follows

from the enumeration of reducible components in Proposition 2.5.1 (or rather, a version

allowing more ends). �

Lemma 6.4.2. In the situation above, there is a canonical isomorphism ΛW
z pαq – ΛW

z`1pαq,

compatible with the gluing maps.

Suppose all of the αi are trivial, and z is the corresponding component supporting a

reducible connection, and the perturbation is zero on the ends of W . Then if we write

QW
θ : Ω1

k,δpW ;Rq Ñ Ω2,`
k,δ pW,Rq ‘ Ω0

k,δpW ;Rq,

for pd`, d˚q, we have an isomorphism ΛW
z pαq – ΛW pθq, where the latter is the set of

orientations of QW
θ . This is true for any choice of Sobolev indices on the various ends,

so long as they never coincide with eigenvalues of zHessαi or zHessθ.

Proof. The first isomorphism follows by gluing charge-1 instantons on S4 into the cobor-

dism. By the assumption that the perturbation is compactly supported in W , we may

modify QW
A,π by a homotopy through Fredholm operators to QW

A .

We discussed the second claim above for SOp2q-reducible connections on SOp3q-

bundles. When we have a lift of the SOp3q-bundle to a Up2q-bundle, if the reducible

corresponds to some splitting E – R ‘ ξ, then we obtain a canonical complex orienta-

tion on the complement of the R-factor, giving the desired claim. For SOp3q-reducible
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connections, instead we have QW
A “ QW

θ b g, and so an orientation of one canonically

induces an orientation of the other (supposing an orientation of g is given). �

Thus we drop z from the notation ΛW pα, βq.

If one of α or β is irreducible, we cannot appeal to reducible connections on the

cobordism as above. So we need to ’cap off’ the two ends, as appropriate. Being precise

about this is a little intricate, as described in the following definition.

Definition 6.4.1. Let pW, rEq be a cobordism pY1, E1q Ñ pY2, E2q equipped with Up2q-

bundle, a choice of perturbation on the ends (possibly zero, allowing for it to fail to be

regular), and a choice of critical orbits α, β on the negative and positive end.

The symbol ΛW pα, βq always means the two-element set of orientations of detpQA,πq,

where A is a connection asymptotic to α and β on the appropriate ends, and QA,π has

domain Ω1
k,δ and codomain Ω2,`

k´1,δ ‘ Ω0
k´1,δ. (If one of these terms α, β is trivial, we

sometimes do not write the corresponding θ.) When unadorned, the symbol ΛW pθq denotes

the same for the trivial connection on the trivial bundle.

If pW, rEq is a cobordism from some pY´, trivq to pY1, E1q, for which the perturbation is

zero on the incoming end, we say W is an incoming cap; if pY2, E2q is the incoming end

and pY`, trivq is the outgoing end, with zero perturbation on the outgoing end, we call

pW, rEq an outgoing cap, and otherwise call W an intermediate cobordism.

If W is an incoming, intermediate, or outgoing cobordism respectively, we write

ΛW
´ pθq, ΛW

i pθq, ΛW
` pθq

for the two-element sets of orientations of the following three operators:

Q´θ : Ω1
δ,´δ Ñ pΩ2,`

‘ Ω0
qδ

Qi
θ : Ω1

´δ Ñ pΩ2,`
‘ Ω0

q´δ,δ

Q`θ : Ω1
´δ,δ Ñ pΩ2,`

‘ Ω0
q´δ,δ

Here the subscripts indicate the Sobolev weights on the ends; if only one subscript

appears, it is the Sobolev weight on both ends, and if two appear, they are the Sobolev

weights on the negative and positive ends, in that order.
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Whenever we have two-element sets Λ and Λ1, we write ΛΛ1 to denote Λ ˆZ{2 Λ1, the

Z{2 action the canonical free involution on both sets.

The point of the choices of Sobolev indices is that these operators (for the unperturbed

trivial connection) enjoy an additivity property, immediate from spectral flow arguments.

Lemma 6.4.3. Let W0,W,W1 denote incoming, intermediate, and outgoing cobordisms

equipped with Up2q-bundles, as above. If Ŵ denotes the composite of these, then we have

canonical isomorphisms

ΛW0pαqΛpgαqΛ
W
pα, βqΛpgβqΛ

W1pβq – ΛŴ
pθq

and

ΛW0
´ pθqΛ

W
i pθqΛ

W1
` pθq – ΛŴ

pθq.

Given a 3-manifold with Up2q-bundle pY, Ẽq, given any two incoming caps pW0, rEq and

pW 1
0,
rE1q, the sets ΛpgαqΛ

W pαqΛW
´ pθq and ΛpgαqΛ

W 1

pαqΛW 1

´ pθq are canonically isomorphic.

The appropriate modification is true for the outgoing caps, as well.

Proof. These follow from the usual gluing of operators on manifolds with cylindrical

ends (for which the Sobolev weights on the ends match up appropriately, or there is a

corresponding term to account for the spectral flow). The composite of the terms in

the first displayed equation are naturally isomorphic, rather, to the orientation set of a

nontrivial connection over Ŵ , but as above we may reduce this to the case of a reducible

connection and then to the trivial connection, as above.

Once we have this, using twice the orientation-reversal W0 as a positive cap, using

these canonical isomorphisms we further get canonical isomorphisms

ΛpgαqΛ
W0pαqΛW0

´ pθq – ΛW0pαqΛW0
` pθq – ΛpgαqΛ

W 1
0pαqΛ

W 1
0

´ pθq,

as desired. �

The collection of isomorphisms above between the different possible 2-element sets

ΛpgαqΛ
W pαqΛW

´ pθq determine an equivalence relation on the set

ğ

pW,rEq

W incoming cap

ΛpgαqΛ
W0pαqΛW0

´ pθq,
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whose quotient is a 2-element set we write Λ´pαq. Similarly the 2-element set Λ`pαq is a

quotient of various copies of ΛW1
` pθqΛ

W1pαqΛpgαq as W1 varies over positive caps.

We thus have from the first part of the above lemma a natural isomorphism

Λ´pαqΛ
W
i pθqΛ`pβq – ΛW

pα, βq.

This was essentially our goal, though we are not quite done.

Lemma 6.4.4. There is a canonical isomorphism Λ`pβq – ΛpgβqΛ´pβq.

Proof. Writing this out explicitly, we have chosen incoming and outgoing caps W0,W1,

we are trying to construct a trivialization of

ΛW1
` pθqΛ

W1pβqΛpgβqΛ
W0pβqΛW0

´ pθq,

here exploting the isomorphism between orientations on a vector space and their dual to

reverse the order of the first few terms. By gluing the middle three terms, we obtain an

isomorphism to ΛW1
` pθqΛ

Ŵ pθqΛW0
´ pθq; splitting up the middle term, this is isomorphic to

ΛW1
` pθqΛ

W0
´ pθqΛ

W1
` pθqΛ

W0
´ pθq. As this takes the form Λ2 for some 2-element set Λ, it is

canonically trivial. �

Therefore, if we simply write Λpαq :“ Λ`pαq, we have above found a canonical isomor-

phism ΛpgαqΛpαqΛ
W
i pθqΛpβq – ΛW pα, βq; then we obtain the gluing isomorphism

ΛW
pα, βqΛpgβqΛ

W 1

pβ, γq – ΛW˝W 1

pα, γq

simply by paing off adjacent like terms.

The last thing to be clear about is precisely what the middle orientation set ΛW
i pθq is.

Definition 6.4.2. A homology orientation of W , a cobordism with cylindrical ends and

incoming end p´8, 0sˆY1, is an orientation of the real vector space H1pW q‘H2,`pW q‘

H1pY1q.

Because W and Y are connected, note that we have a canonical isomorphism H0pW q‘

H0pY1q – R2, and in particular carries a canonical orientation. Because we have

kerpQi
θq – H1

pW q

cokerpQi
θq – H2,`

pW q‘H1
pY1q ‘H

0
pW q ‘H0

pY1q,

a homology orientation canonically induces an orientation of ΛW
i pθq.
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Remark 6.4.1. Homology orientations have a natural associative composition law, given

by the index-gluing described above. However, the composition law may be described

explicitly, without passing to a discussion of Fredholm operators. An explicit formula for

this law was found in [Sca15], where an explicit understanding was crucial to discuss the

differentials in a spectral sequence to Khovanov homology. We do not need this here, and

so will not discuss Scaduto’s results in any more detail.

We assemble the content of this section into a proposition.

Proposition 6.4.5. For any 3-manifold Y equipped with Up2q-bundle Ẽ and regular

perturbation π, there are canonical 2-element sets Λpαq for each critical orbit α P Cπ, and

we have the canonical isomorphism Λpα, βq – ΛpgαqΛpαqΛpβq. Therefore, the moduli

space ĂMzpα, βq may be given an orientation if we choose an element of Λpαq and Λpβq,

and an orientation of the orbit α. Choosing the other element of either set will negate

the orientation of ĂMpα, βq.

If one fixes a choice of element of each of Λpαq,Λpβq, Λpγq, and an orientation of

α, then the orientation these induce on ME,πpα, γq ˆγME,πpγ, βq via the fiber product

differs from the orientation induced as the fiber of a component of BMfib

E,πpα, βq by a sign

of p´1qd, where d is the dimension of ĂME,πpα, γq.

Let pW, rEq be a cobordism from pY1, E1q to pY2, E2q, equipped with a regular perturbation

π that restricts to πi on the ends. Then a choice of element of each Λpαq and Λpβq, as

well as a homology orientation of W and an orientation of α, give rise to an orientation

of ME,πpα, βq; swapping any one of these elements will negate this orientation.

The boundary components of ME,πpα, βq arise in two pieces: those of the form

ME1,z1,π1pα, γq ˆγME,z2,πpγ, βq,

where γ P Cπ1, and those of the form

ME,z1,πpα, ζq ˆζME2,z2,π2pζ, βq,

where ζ P Cπ2.

Given a choice of element of each Λpαq,Λpβq,Λpγq, and Λpζq as above, as well as a

choice of homology orientation on W and orientation of α, the orientations on BM and
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on the fiber products agree in the first case; they differ by a sign of p´1qdW in the second

case, where dW is the dimension of ĂME,z1,πpα, ζq.

Similarly, if S is a 1-parameter family of metrics on W abutting to a broken metric,

the decomposition of the boundary ofME,z,Spα, βq of Proposition 5.8.2 gives the boundary

components orientations which differ by the orientation induced by analytic gluing by a

factor of 1, p´1qd1 , p´1qd12 , and ´1, respectively (the last term coming from the boundary

orientation of t0u Ă r0, 1s), where d1 is the dimension of ĂME´,z1pα, γq, while d12 is the

dimension of ĂME,z1,Spα, ηq.
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CHAPTER 7

Floer homology

7.1 Geometric homology

It will be useful in what follows to have a chain complex computing the singular homology

of a smooth manifold X, whose generators are smooth maps from oriented manifolds with

corners (as opposed to continuous maps from simplices). Fix a principal ideal domain R.

The definitions below are modeled on [Lin18, Chapter 4.1], which in turn follow the

simpler [Lip14]. For technical reasons, we must introduce the notion of strong δ-chain.

The reader will not be led astray in what follows by pretending every occurrence of “strong

δ-chain” means “compact smooth manifold with corners”; if we could achieve that level

of smoothness on the instanton moduli spaces, this sequence of definitions would not be

necessary to set up our homology theory.

Definition 7.1.1. A d-dimensional strong δ-chain is a compact topological space P with

a stratification

P d
Ą P d´1

Ą ¨ ¨ ¨ Ą P 0
Ą ∅

by closed subsets, so that P ezP e´1 is decomposed as a finite disjoint union of smooth

manifolds of dimension e, written \mei“1M
e
i ; the top stratum P zP d´1 has only one open

face Md
1 “ P zP d´1 in its decomposition. (Note that M e

i need not be connected!) We

denote the closure of any one of these manifolds an e-dimensional face, and write it as

∆. We write ∆˝ for the interior of a face (one of the manifolds M e
i in the disjoint union

P ezP e´1) and call it an open face.

We demand that whenever a codimension e face ∆0 is contained in a codimension

pe´ 2q face ∆2, there are exactly two codimension pe´ 1q faces ∆1 with ∆0 Ă ∆1 Ă ∆2.

Whenever ∆1 Ă ∆2, we assign a set np∆1,∆2q (which we will write as n, or n12

when the faces are not implicit) with cardinality dim ∆1 ´ dim ∆2, an open neighborhood
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∆˝
1 Ă W p∆1,∆2q Ă ∆2, and a map r : W Ñ r0, εqn so that ∆˝

1 “ r´1p0q.

We also assign a space W ãÑ EW p∆1,∆2q, where EW is a topological manifold with

corners and a smooth structure on each stratum of dimension d`mp∆1,∆2q, for which

the map from W is smooth on each stratum, and equipped with a map r̃ : EW p∆1,∆2q Ñ

r0, εqn extending r : W Ñ r0, εqn. We demand the following.

‚ There is a vector bundle V p∆1,∆2q Ñ EW of rank mp∆1,∆2q, and a section σ of

V , smooth and transverse to the zero section on each stratum, so that σ´1p0q “ W .

‚ Write EW k for the inverse image of Rk Ă r0, εqn, the set of points for which

exactly k coordinates are zero; we demand that the map EW k Ñ Rk is a smooth

submersion.

‚ r̃ is a fiber bundle projection. The restriction of σ to r̃´1p0q is transverse to the

zero section, whose fiber above zero is ∆˝
1. In particular, EW is diffeomorphic to

r0, εqn12 ˆ r̃´1
12 p0q, and r̃´1

12 p0q is diffeomorphic to a neighborhood of the zero section

in the restriction of V to ∆˝
1.

These are compatible in the following sense. Associated to a sequence of inclusions

∆1 Ă ∆2 Ă ∆3 we have an inclusion of sets np∆1,∆2q ãÑ np∆1,∆3q, an embedding

EW p∆1,∆2q ãÑ EW p∆1,∆3q, as well as an embedding of vector bundles V p∆1,∆2q ãÑ

V p∆1,∆3q covering this; the section σ12 is the restriction of σ13. The map n12 Ñ n13 of

sets induces a stratum-preserving embedding r0, εqn12 ãÑ r0, εqn13 so that, with respect to

this inclusion, r̃12 is the restriction of r̃13. Finally, we demand that with respect to these

embeddings,

EW p∆1,∆2q “ r̃´1
13 pr0, εq

n12q .

This complicated definition is in fact more or less forced on us by a few simple require-

ments. First, our chains should include compact topological manifolds with corners with

a smooth structure on each stratum (satisfying the combinatorial condition). Second,

they should be closed under transverse intersections (in particular, the inverse image of

a regular value should be a chain). This is the property we need to ensure that excision

holds in our coming homology theory based on maps from strong δ-chains.
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Already we run into trouble: because the smooth structure on the strata do not

interact, all we see is that the transverse intersection of two topological manifolds with

smooth structures on each stratum is a space stratified by smooth manifolds. For instance,

it is not hard to construct a θ-shaped graph as the zero set of a continuous function f

on r0, 1s ˆR which is smooth on each stratum and for which 0 is a regular value on each

stratum. This is what forces us to think of spaces equipped with “local thickenings”

which actually are manifolds. In the case of the θ-shaped graph, the three open arcs of

the graph form the unique top-dimensional open face, whose local thickening is a small

open neighborhood of these in the strip; the vector bundle is the trivial line bundle, and

σ is the function f . The stratum P 0 consists of two points, for which the neighborhood

W p∆0,∆1q is a small neighborhood of one of these points (which looks like a chicken

foot). The local thickenings are small 2-dimensional neighborhoods r0, εq ˆ p´t, tq and

the map r̃ is projection to r0, εq. Again, the vector bundle is the trivial line bundle and

σ “ f .

The third requirement is that faces of a chain should also be chains, and thus we are

forced to define local thickenings not just for the whole space, but also for inclusions

∆1 Ă ∆2. Finally, it is crucial that the combinatorial boundary operator satisfies B2 “ 0;

this is why we demand the combinatorial condition on faces. At the level of manifolds

with corners, it says that a bigon is a manifold with corners, but a teardrop (unigon) is

not.

Essentially, the definition of strong δ-chain is one possible approach to formalize a

space with local charts modelling a neighborhood of each point as the zero set of a

smooth function (smooth section of a vector bundle) on a compact topological manifold

with smooth structures on each stratum, and compatibility relations between the charts.

The notion of strong δ-chain here is a slight modification of the notion of δ-chain given

in [KM07, Definition 24.7.1] and [Lin18, Definition 4.1.1].

There are two differences. First, for a strong δ-chain the set W Ă EW is cut out as

the zero set of a transverse (on each stratum) section of a vector bundle over EW ; for a

δ-chain, instead the map is simply to some vector space Rk. The definition of δ-chain is

attempting to formalize the kind of spaces that appear as the monopole moduli spaces,

while the definition of strong δ-chain is meant to capture all transverse intersections
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of compact topological manifolds with corners and smooth structures on each stratum.

These transverse intersections may be written as the inverse image of a diagonal ∆ Ă

Y ˆ Y ; the vector bundle in question is N∆, and if Y has interesting topology this

bundle may be nontrivial, so we need to include zero sets of sections of vector bundles.

Locally near any point, these are the same notion, but they may not be the same in a

neighborhood of an entire stratum.

Second, the map EW Ñ Rk in the definition of δ-chain is required to satisfy certain

positivity properties, depending on the values of r̃pEW q Ă r0, εqn; we do not make

any such demand for strong δ-chains. This requirement originates from the boundary-

obstructedness phenomenon in monopole moduli spaces, which we do not encounter.

Definition 7.1.2. Suppose we are given the following data.

‚ For each pair of faces ∆1 Ă ∆2, open subsets U12 Ă W12 and U 112 Ă W 1
12, as well as

open subsets EU12, EU
1
12 of the extensions,

‚ homeomorphisms ϕ12 : U12 Ñ U 112, ϕ̃12 : EU12 Ñ EU 112, which are diffeomorphisms

over each stratum,

‚ an isomorphism of vector bundles V12 – V 112 over these open subsets EU and EU 1,

covering the diffeomorphism ϕ̃12,

all of which respect all the associated structure and are compatible for triples ∆0 Ă ∆1 Ă

∆2. Then we say the two strong δ-chains are germ equivalent.

Suppose now that we are given two strong δ-chains with the same P,W , and maps r,

but different thickenings EW,E 1W . Suppose we are given the following.

‚ A vector bundle F12 over EW12 for each inclusion of faces,

‚ an embedding F12 Ñ F13 covering the embedding EW12 Ñ EW13 corresponding to

any triple of faces,

‚ a diffeomorphism ϕ12 : E 1W12 – F12 (the total space of the vector bundle),

‚ an isomorphism ψ12 : π˚pV12 ‘ F12q – V 112 covering ϕ12, taking σ ‘ 0 to σ1 ‘ 0,
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all of which are compatible for triples of faces, then we say that the strong δ-chains are

stably equivalent.

This definition fits with the above intuition for strong δ-chains as spaces equipped with

a special kind of chart modeling them as a zero set: if we pass to smaller open subsets

containing the zero set, or stabilize, this should still present a perfectly good, equivalent

chart at a point.

Next, we will show the important property that strong δ-chains are, in a sense, closed

under fiber products. Stable equivalence was partly introduced as a means to this end.

To start, we should define what a map from a strong δ-chain is.

Definition 7.1.3. Suppose X is a smooth manifold, and P is a strong δ-chain. We

say a map f : P Ñ X is a continuous map f : P Ñ X on the underlying topological

space which is smooth on each stratum, and for each inclusion of faces ∆1 Ă ∆2, an

extension Ef12 : EW12 Ñ X which is smooth on each stratum. Given a sequence of faces

∆0 Ă ∆1 Ă ∆2, recall that EW02 ãÑ EW12; we demand that Ef02 is the restriction of

Ef12.

If f1 : P1 Ñ X and f2 : P2 Ñ X are two maps from strong δ-chains to X, we say that

they are transverse if they are transverse on each stratum, and for any pair of faces in P1

and any pair of faces in P2, the extensions Ef1 and Ef2 are transverse on each stratum

in a neighborhood of W1 ˆW2 in EW1 ˆ EW2.

We say that a map f is submersive if Ef12 is a submersion on each stratum.

Note that the definition of submersive says nothing about the underlying map f . For

a map to be submersive EW has to be quite large, but we may do this at the cost of a

stabilization; this is why we introduced stable equivalence above.

Lemma 7.1.1. Let f : P Ñ X be a map from a strong δ-chain to a smooth manifold X

without boundary. Then f extends to a submersive map from the stabilization of P by

f˚TX (that is, the same underlying space P and open sets W but E 1W12 is diffeomorphic

to a neighborhood of the zero section in Ef˚12TX).

Proof. Equip X is equipped with a complete Riemannian metric. Then E 1f12pp, vq is

exppEf12ppq, vq, the exponential of the tangent vector v P TEfppq using the metric on X.
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This map is submersive because the derivative of the exponential map is the identity. �

Proposition 7.1.2. Suppose fi : Pi Ñ X are transverse maps from germ equivalence

classes of strong δ-chains P1, P2 to a complete Riemannian manifold X, and suppose that

f2 is submersive. Then P1ˆX P2 has the natural structure of a germ equivalence class of

strong δ-chain.

Proof. The compact space P1 ˆX P2 is still stratified by smooth manifolds (the fiber

products of the original open faces). For a pair of inclusions ∆i
1 Ă ∆i

2 of faces of Pi, the

open set W corresponding to

∆1
1 ˆX ∆2

1 Ă ∆1
2 ˆX ∆2

2

is the fiber product of the corresponding open sets. EW is the fiber product EW1ˆXEW2;

this is still a topological manifold with corners and a smooth structure on each stratum

by the assumption that Ef2 is a submersion on each stratum. All of the additional

structures (the vector bundle V , the section σ, the map r, and so on) is given as the

fiber product of the structures on the EWi; for instance the vector bundle V is V1ˆX V2,

whose fibers above EW1 ˆX EW2 are isomorphic to the direct sum of fibers V1 ‘ V2. �

To use coefficients other than Z{2, we must introduce a notion of orientation.

Definition 7.1.4. Let P be a strong δ-chain.

Suppose we have an orientation on the top stratum of P , and for a codimension 1

face ∆1 Ă P , suppose we have oriented the open manifold ∆˝
1. We may find an iso-

morphism det pTEW12q – detV12 above W ˝
12 using the fiber bundle isomorphism EW –

r0, εq ˆ r̃´1
12 p0q, using that r̃´1

12 p0q is isomorphic to a neighborhood of the zero section of

the restriction of V12 to ∆˝
1, and that we have oriented ∆˝

1. Then

W ˝
12 :“ r´1

12 p0, εq
n
“ r̃´1

12 p0, εq
n
X σ´1

p0q

may be oriented as the zero set of the section EW ˝
12 Ñ V12 using the above isomorphism

of determinant bundles. This gives an orientation on an open subset of P dzP d´1. If the

same as the orientation already given, we say that ∆1 has the boundary orientation; we

express that this is possible for some orientation on ∆1 by saying that ∆1 is consistently

orientable with respect to P .
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For any sequence of codimension 1 faces ∆k Ă ¨ ¨ ¨ Ă ∆1 Ă P , we may thus inductively

define the notion of any sequence being consistently orientable with respect to P .

We say that P is an oriented δ-chain if P is equipped with an orientation on its top

stratum P dzP d´1, satisfying the follwing conditions:

‚ Any sequence of codimension 1 faces of P is consistently orientable with respect to

P ,

‚ Given a codimension 2 inclusion ∆0 Ă ∆2, there are two intermediate faces ∆1

and ∆1
1; we demand that if we fix an orientation on ∆2 (induced from P by some

sequence of codimension 1 faces as above), then the boundary orientation that arises

on ∆0 from the sequence ∆0 Ă ∆1 Ă ∆2 is negative that from the sequence ∆0 Ă

∆1
1 Ă ∆2.

The definition of boundary orientation above is relevant for the following calculation

for strong δ-chains. This is proved for δ-chains as [KM07, Theorem 21.3.2]; instead of

subdividing our strong δ-chains into pieces that may be given the structure of δ-chains in

the sense of Kronheimer-Mrowka, instead we spell out their proof in simpler language as

an exercise in understanding the definition of strong δ-chains. The proof follows similar

lines as a discussion in [SS10, Section 2c].

Lemma 7.1.3. If P is a 1-dimensional oriented strong δ-chain, then P 0 consists of a

finite number of oriented points whose count, signed by the boundary orientation, is equal

to zero.

Proof. If x P P 0, there is an open subset Wx Ă P with a map to r0, εq, as well as a larger

space EWx – r0, εqˆVx so that Wx ãÑ EWx, with x mapping to p0, 0q, and W ˝
x mapping

into p0, εq ˆ Vx; the neighborhood Wx Ă P is the zero set of a map σ : r0, εq ˆ Vx Ñ Vx

which is smooth and transverse to zero on each stratum. Write σtpxq “ σpt, xq. That σ

is transverse to zero on the boundary implies that σ´1p0q X pt0u ˆ Vxq is discrete (and

in particular discrete inside W ). In particular, P 0 is a discrete set in the compact space

P , so it is finite. For convenience, after passing to a possibly smaller neighborhood and

reparameterizing, we assume σ0 “ Id in our coordinates.
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We also see that σ does not vanish on a sufficiently small sphere t0u ˆ SδpVxq in the

boundary of the local thickening near x; the inclusion map from this sphere to Vxzt0u

is degree 1 (regardless of how we orient Vx, as long as we orient these compatibly).

Extending this to a disc Dx in r0, εq ˆ Vx which only intersects t0u ˆ Vx in SδpVxq and is

transverse to σ´1p0q, we see that DxX σ
´1p0q is a finite set of points whose oriented sum

is 1, orienting them as det dpσtqpyq at an intersection point pt, yq.

Dx bounds a ball one dimension larger; deleting the part of Wx contained in the interior

of this ball for each x, what is left of P 1 is a compact oriented 1-manifold L with boundary
Ů

xPP 0 pDx X σ
´1p0qq. The boundary orientation convention is that a point pt, yq in this

intersection is oriented positively as the boundary of L if the sign of detpdσtqpyq agrees

with the sign of x. In particular, the signed sum of points in BL is

ÿ

xPP 0

sgnpxq#
`

Dx X σ
´1
p0q

˘

“
ÿ

xPP 0

sgnpxq,

where the signed count is as in the previous paragraph. The signed count of points in

the boundary of an oriented compact 1-manifold is zero, and thus the desired count is

zero. �

Now that these objects have been introduced, we can introduce the geometric chain

complex computing singular homology. First we will write down the generating set.

Definition 7.1.5. Let X be a smooth manifold. Fix once and for all a Hilbert space H

equipped with a Hilbert bundle VH .

A basic chain of degree d in X is a stable germ equivalence class of maps σ : P Ñ

X, where P Ă H is a compact connected subspace equipped with the structure of an

oriented strong δ-chain of dimension d, whose thickenings EW12 are compatibly embedded

subspaces of H, and whose vector bundles V12 are subbundles of VH .

Two basic chains σi : Pi Ñ X are isomorphic if there is an orientation-preserving

homeomorphism f : P1 Ñ P2 which is a diffeomorphism on each stratum, with σ2f “ σ1,

and an extension for each ∆1 Ă ∆2 to Ef12 : EW 1
12 Ñ EW 2

12 which are diffeomorphisms

on each stratum compatible with restriction. A basic chain σ : P Ñ X is achiral if it is

isomorphic to itself with the opposite orientation, and chiral if it is not achiral. A basic

chain σ : P Ñ X has small image if there is map g : QÑ X from a δ-chain Q of strictly

smaller dimension.
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Write rC˚pX;Rq for the graded vector space freely generated in degree d by the basic

chains of degree d. One step closer to the desired chain complex, there is a quotient

C˚pX;Rq obtained from the relations

´rσ : P Ñ Xs “ rσ : P Ñ Xs,

and if 2 ‰ 0 P R we further set any achiral basic chains σ equal to zero.

This is still a free graded R-module, freely generated by isomorphism classes of chiral

basic chains, with exactly one choice of orientation for each nontrivial basic chain ap-

pearing as a generator. (The achiral chains are precisely the basis elements of rC˚pX;Rq

which are sent to zero in C˚pX;Rq; if 2 “ 0 P R then no basis elements are set to zero.)

There is a geometric boundary operator rB : rC˚pX;Rq Ñ rC˚´1pX;Rq, sending each

(isomorphism class of) basic chain σ : P Ñ X to the sum of the faces of P d´1 equipped

with their boundary orientation. Because this is compatible with orientation-reversal, it

descends to an operator B : C˚pX;Rq Ñ C˚´1pX;Rq.

Lemma 7.1.4. We have B
2
“ 0.

Proof. This immediately follows from the combinatorial conditions on the definition of

δ-chain and orientation thereof.

Given any face ∆2 Ă P of codimension 2, there are two intermediate faces of codimen-

sion 1. The boundary of BP then contains two copies of the face ∆2: once from each of the

intermediate faces. The assumption on orientations were that these two copies were ori-

ented negatively to one another, so they sum to zero. Therefore, B
2
σ “ 0 P C˚pX;Rq. �

As is familar already from cubical definitions of singular homology, the homology of

C˚ppt;Rq is not obviously concentrated in degree zero unless we impose some further de-

generacy requirements. (These degeneracy requirements will later turn out to be essential

in our definition of the instanton Floer complex.) This is furnished by Lipyanskiy’s no-

tion of small image. However, the basic chains of small image do not span a subcomplex

of C˚pX;Rq: for instance, a basic chain of dimension larger than X is automatically of

small image, but if the chain is of dimension dimX ` 1, there is no such guarantee that

its boundary has small image. This inspires us to make the following definition.
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Definition 7.1.6. A basic chain σ : P Ñ X is degenerate if both σ has small image and

Bσ is a disjoint union of basic chains of small image and an achiral chain. The span of

the degenerate basic chains forms a subcomplex D˚pX;Rq Ă C˚pX;Rq; this is precisely

the submodule spanned by basic chains with small image and whose boundary in C˚pX;Rq

is a sum of elements of small image. We define the geometric chain complex of X (with

coefficients in R) as

Cgm
˚ pX;Rq :“ C˚pX;Rq{D˚pX;Rq.

Again, Cgm
˚ pX;Rq is degreewise R-free. It is functorial under smooth maps, and is

supported in degrees r0, dimX ` 1s; the map B : Cgm
dimX`1pX;Rq Ñ Cgm

dimXpX;Rq is an

isomorphism onto its image. It is also well-behaved with respect to transverse intersec-

tions.

Definition 7.1.7. Suppose fi : Pi Ñ X is a countable family F of maps from δ-chains

to X. The subcomplex of Cgm
˚ pX;Rq spanned by nondegenerate chains transverse to all

of the fi is written Cgm,F
˚ pX;Rq.

The following lemma can be proved as an inductive application of transversality theo-

rems to each stratum, using that P ezP e´1 is a manifold and P e is compact. A proof in the

only slightly different setting of δ-chains (not strong) is given in [Lin18, Lemma 4.1.14].

Lemma 7.1.5. The inclusion of Cgm,F
˚ pXq ãÑ Cgm

˚ pXq is a quasi-isomorphism.

Most importantly for us, these chain complexes have chain-level fiber product maps,

as long as we’re potentially willing to pass to a quasi-isomorphic subcomplex. First we

need an additional definition.

Definition 7.1.8. Let f : Z Ñ X be a map from a strong δ-chain to a smooth manifold

X which is a submersion on each stratum. We say that a fiber orientation of f is an

orientation of the δ-chain f´1pxq for any x P X.

Lemma 7.1.6. Suppose X is a connected smooth manifold. Let Z be a strong δ-chain,

and suppose we have maps e´ : Z Ñ X, e` : Z Ñ Y , for which e´ is a submersion on

each stratum of Z. Further, suppose e´ is equipped with a fiber orientation. Then there
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is an induced map Cgm
˚ pX;Rq Ñ Cgm

˚ pY ;Rq of degree pdim Z ´ dim Xq given by sending

a basic chain σ : P Ñ X to e` : P ˆe´ Z Ñ Y , where

P ˆe´ Z “ tpp, zq P P ˆ Z | σppq “ e´pzqu

and e`pp, zq “ e`pzq. We denote this chain σ ˆe´ Z. Here we orient the fiber product so

that

TpP ‘ T
fib
z Z – Tp,zpP ˆX Zq

is an oriented splitting.

If dimZ ą dimX ` dimY ` 1, this chain map is identically zero. These maps satisfy

the formula

Bpσ ˆe´ Zq “ Bσ ˆe´ Z ` p´1qdimP`dimXσ ˆe´ BZ.

The second statement follows because Cgm
˚ pY ;Rq vanishes in degrees larger than

dimY ` 1, and the final statement because taking the boundary in the final case in-

volves commuting the desired outward-pointing normal across the first two factors (of P

and the base X).

Now we should justify the claim that this is just a fancy way to write down singular

homology with desirable chain-level properties. To make sense of the Eilenberg-Steenrod

axioms for smooth manifolds, we work with the notion of admissible pairs pX,Aq, where

X is a smooth manifold without boundary, and A is a closed (in the sense of point-

set topology) submanifold of X of codimension zero. These were introduced in [Sch93]

to prove the equivalence between Morse homology and singular homology, and used in

[Lin18, Theorem 4.1.13] to prove that a very similar homology theory to ours (using

δ-chains, instead of strong δ-chains) agrees with singular homology; our proof follows

similar lines as his.

Theorem 7.1.7. The functor Hgm
˚ pX;Rq from smooth manifolds and maps to graded

R-modules satisfies the Eilenberg-Steenrod axioms for a homology theory:

1. The induced map Hgm
˚ pX;Rq Ñ Hgm

˚ pY ;Rq is a homotopy invariant,

2. There is a natural relative long exact sequence relating

Hgm
˚ pX, Y q :“ H pCgm

˚ pXq{C
gm
˚ pY qq
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to Hgm
˚ pXq and Hgm

˚ pY q,

3. If pt denotes the one-point space, then Hgm
˚ ppt;Rq is a copy of R concentrated in

degree zero, and

4. If A is codimension zero, and Y “ BA is a codimension 1 submanifold of X, bound-

ing A on one side and B on the other, then the inclusion induces an isomorphism

Hgm
˚ pB, Y q – Hgm

˚ pX,Aq.

As a result, there is an isomorphism Hsing
˚ pX;Rq – Hgm

˚ pX;Rq for all X, natural under

smooth maps.

Proof. We prove each property separately, and then explain why this restricted class of

Eilenberg-Steenrod axioms is enough.

Homotopy invariance follows the expected strategy: write down a chain homotopy of

the induced map, given by sending a basic chain P to PˆI, with map given by composing

the map σ : P Ñ X with the homotopy ft.

The relative long exact sequence is a matter of homological algebra (it is induced by

a short exact sequence of chain complexes).

To check the first nontrivial axiom, observe that Cgm
˚ ppt;Rq is concentrated in degrees

0 and 1. We saw in Lemma 7.1.3 that the boundary map Cgm
1 ppt;Rq Ñ Cgm

0 ppt;Rq “ R

is identically zero; but a chain of small image with zero boundary has boundary of small

image, and is in particular degenerate, so Cgm
1 ppt;Rq “ 0. Therefore

Hgm
˚ pptq “ Cgm

˚ pptq “ R.

Excision is the hardest property to verify. If we write Cgm
˚ pA Y Bq for the image of

Cgm
˚ pAq ‘ C

gm
˚ pBq in Cgm

˚ pXq, then there is a diagram of exact sequences

0 ÝÝÝÑ Cgm
˚ pAq ÝÝÝÑ Cgm

˚ pAYBq ÝÝÝÑ Cgm
˚ pB, Y q ÝÝÝÑ 0

§

§

đ

§

§

đ

§

§

đ

0 ÝÝÝÑ Cgm
˚ pAq ÝÝÝÑ Cgm

˚ pXq ÝÝÝÑ Cgm
˚ pX,Aq ÝÝÝÑ 0.

By the five lemma and the induced map on homology long exact sequences, if we can

show the middle vertical arrow is a quasi-isomorphism, so too will be the last arrow,
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as desired. Now, if we write Cgm,Y
˚ pXq for the quasi-isomorphic subcomplex of strong

δ-chains transverse to the submanifold Y , there is a map

ρ : Cgm,Y
˚ pXq Ñ Cgm

˚ pAYBq

given by sending each basic chain σ : P Ñ X to the sum of P X A and P X B; these

are again δ-chains because of the transversality hypothesis, and their boundary is a

subdivision of the original boundary into pBP q X A and pBP q X B, respectively, and so

this is a chain map. If P is a cycle, then ρpP q is homologous to P itself, the bounding

chain given by P ˆ I, with the usual δ-structure on one end, and the ‘broken’ δ-structure

P “ pPXAqYpPXBq on the other. In particular, we see that the inclusion Cgm
˚ pAYBq Ñ

Cgm
˚ pXq is surjective on homology. Injectivity is similar: given a chain whose boundary

is transverse to P , we can represent it instead by a chain transvere to P with homologous

boundary still transverse to P ; cutting it into two pieces, we get a chain in Cgm
˚ pAY Bq

whose boundary is homologous to the original.

Now we should explain why the homotopy category of admissible pairs of smooth

manifolds (with the homotopy type of a finite CW complex) is equivalent to the homo-

topy category of pairs of finite CW complexes. Putting a relative CW structure on each

admissible pair via Morse theory, we have a natural inclusion from the category of ad-

missible pairs to the category of finite CW complexes; by smooth and (relative) smooth

approximation, this is a fully faithful functor, and it suffices to show that it’s surjective

on objects. Given a pair pX,Aq, find an embedding of this in some large Euclidean space;

then a small open neighborhood UX of the image of X (called a regular neighborhood)

is homotopy equivalent to X itself and so that BUX is a manifold, and we may choose an

open neighborhood UA of A satisfying the same property, with UA Ă UX . Then the pair

pUX , UAq is the desired admissible pair. �

If R has characteristic 2, we can simplify definitions by removing all reference to

orientations; this is even desirable, as it allows us to refer to the identity map of a non-

oriented compact manifold as a chain.
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7.2 Equivariant instanton homology

We are now ready to define the framed instanton chain complex ĂCIpY,E, π;Rq, using the

instanton moduli spaces. The material of sections 1-4 amounts to the following package

of theorems about these instanton moduli spaces. Recall from Definition 4.3.1 that for a

Up2q-bundle E over a 3-manifold Y to be weakly admissible, either b1pY q “ 0 or c1pEq

is not twice some element of H2pY ;Zq.

In the following, the regular perturbation π is chosen from an open subset PE,δ of the

Banach space PE of perturbations, defined in Definition 5.1.3.

Theorem 7.2.1. Let Y be a 3-manifold equipped with a weakly admissible Up2q-bundle

E, a basepoint b, and a choice of metric and regular perturbation π (which always exists).

Then:

1. The collection of critical orbits of the perturbed Chern-Simons function cs ` π on

the configuration space rBE is a finite set of SOp3q-orbits. We write this set of orbits

as Cπ.

2. Write c1pEq “ λ P H2pY ;Zq. Define PairpH2q to be the set of unordered pairs of

integral cohomology classes on Y ; that is, the set H2pY ;Zq ˆH2pY ;Zq modulo the

relation pz, wq „ pw, zq. The set of reducible critical orbits may be identified with

the set

RλpY,Eq Ă PairpH2
q

given by those pz, wq with z`w “ λ. The fully reducible critical orbits are those for

which z “ w, and there are hence H1pY ;Z{2q of them if Y is a rational homology

sphere with c1pEq “ 0, and none otherwise.

3. There is a number grzpα, βq P Z, assigned to each pair of critical orbits α, β and

homotopy class of path z between them in rBE. If w is a path from β to γ and z ˚w

is the concatenation of paths, we have

grz˚wpα, γq “ grzpα, βq ` grwpβ, γq.
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For different paths z, w, we have grzpα, βq ´ grwpα, βq P 8Z, so that grpα, βq P Z{8

is well-defined.

4. If α and β are reducible, then grpα, βq is even. If α and β are fully reducible, then

grpα, βq is divisible by 4.

5. Associated to each pair pα, βq of critical orbits and homotopy class z is a smooth

SOp3q-manifold (possibly empty) ĂM0
E,z,πpα, βq of dimension grzpα, βq ` dimα´ 1.

It comes equipped with equivariant smooth maps

α
e´
ÐÝ ĂM0

E,z,πpα, βq
e`
ÝÑ β.

6. For each critical orbit α, there is an associated 2-element set Λpαq. A choice of

element of each of Λpαq and Λpβq induces an orientation on the fiber of

e´ : ĂM0
E,z,πpα, βq

for all z; in the language of Definition 7.1.8, this is a fiber orientation of e´. Negat-

ing either one of these choices negates the resulting fiber orientation.

7. If grzpα, βq ď 10´ dimα, there is a natural compactification

ĂM0
E,z,πpα, βq ĂME,z,πpα, βq

into a compact topological SOp3q-manifold with corners and a smooth structure on

each stratum. The endpoint maps extend to equivariant maps from M0
which are

smooth on each stratum; we will use the same notation e˘ for these extended maps.

In the trivial case α “ β with homotopy class z “ 0, we consider ME,0,πpα, αq to

be empty.

8. The action of SOp3q on ME,z,πpα, βq is free.
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9. Given any choice of element of each of Λpαq,Λpβq, and Λpγq, so that all of the

relevant moduli spaces are fiber oriented, there is a decomposition respecting fiber

orientations

BME,z,πpα, βq –
ğ

γ,w1,w2
w1˚w2“z

p´1qgrw1
pα,γqME,w1,πpα, γq ˆγME,w2,πpγ, βq.

Observe that the relation grzpα, βq “ dimME,z,πpα, βq´ dimα` 1 is compatible with

the dimensions of the manifolds involved in the gluing formula.

Proof. For a fixed metric g, the existence of an admissible perturbation π is the combi-

nation of Theorem 4.4.1 and Theorem 5.6.1; these guarantee that the critical orbits are

isolated, and that the moduli spaces of trajectories between them are smooth manifolds

of the appropriate dimension, respectively. That there are only finitely many critical

orbits follows from Lemma 4.1.3 (that the derivative of our perturbed Chern-Simons

functional is a proper map). The enumeration of reducible critical orbits is a combina-

tion of Corollary 2.3.3 and Proposition 4.3.2; as mentioned after Definition 5.1.3, one of

the reasons we demand π P PE,δ is so that this enumeration remains true. The integer

grzpα, βq “ grzpα, βq´dimα is defined in Definition 5.2.1, where we also explain why grz

counts the dimension of the fiber of ĂM – Rˆ ĂM0 above a point in α. That the grading is

well-defined modulo 8 is Corollary 5.5.6. The calculation of relative gradings between full

reducibles is Proposition 5.5.11 and arbitrary reducibles is Proposition 5.5.12. The exis-

tence of a compactification only in terms of fiber products of lower-dimensional moduli

spaces is Corollary 5.3.7; that the resulting object is a topological manifold with corners

with a smooth structure on each stratum is Proposition 5.7.6. That the SOp3q-action is

free means that there are no reducible solutions; this is guaranteed by Proposition 5.4.1.

The moduli spaces carry compatible fiber orientations by Proposition 6.4.5, writing the

sign in terms of the grading function grz. The signs here are different from those in

Proposition 6.4.5 by a factor of p´1qdimα. This arises because in the above formula, we

take the boundary before passing to the fiber above α. �

We will also need a similar package in the case of cobordisms W . We include this

here as well. Recall the definition of weakly admissible bundle over a cobordism from

Definition 5.5.5, as well as Definition 6.4.2 of homology orientations of a cobordism W .
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In the following, we choose the 4-manifold perturbation π from a contractible open

set U Ă Pp4qc of perturbations which restrict to fixed elements of PEi,δ on the ends; this

open set was defined in the process of proving Theorem 5.6.4 (when comparing, take the

constant C large enough that all instantons A in a trajectory z with grzpα, βq ď 10 have

energy less than C). It contains the perturbation pπ1, 0, π2q supported on the ends, with

no interior part.

If π P U , we say that π is W -small.

Theorem 7.2.2. Suppose pW,Eq is an oriented 4-manifold with two cylindrical ends,

with incoming end modeled on pY1, E1q and outgoing end modeled on pY2, E2q; suppose

the Ei are weakly admissible, and that we have chosen regular perturbations πi P PEi,δ.

Furthermore suppose that E is a weakly admissible Up2q-bundle over W . Then we have

the following.

1. For every pair of critical orbits α Ă Cπ1pY1q and β Ă Cπ2pY2q, there is a set of

configurations of framed connections on W from α to β, denoted rBEpα, βq. The set

of components is written π0
rBEpα, βq, and carries a free and transitive action of both

π1
rBE1pαq and similarly with E2; in particular, it carries an affine identification

π0
rBEpα, βq – Z.

For each z in this set, there is an integer grWz pα, βq, satisfying the same additivity

formula as in the previous theorem, which is independent of z after reducing modulo

8.

2. Let π be a W -small regular perturbation on W , restricting to regular perturbations

πi on the cylindrical ends corresponding to Yi. For each pair of critical orbits α, β,

with z as above, we associate a smooth SOp3q-manifold ĂME,z,πpα, βq, which is of

dimension grWz pα, βq ` dimα so long as ĂMzpα, βq contains an irreducible connec-

tion. The term grWz pα, βq is independent of z modulo 8. When W is equipped with

a smoothly embedded path γ : RÑ W which agrees with p´t, b1q P p´8, 0sˆY1 and

pt, b2q P r0,8qˆ Y2 for large enough |t|, then ĂM is imbued with smooth equivariant

endpoint maps to α and β. A residual set of π P U are regular.
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3. If grWz pα, βq ď 10 ´ dimα, then there is a natural compactification of this SOp3q-

manifold to a compact topological SOp3q-manifold with corners and a smooth struc-

ture on each stratum, MW

E,z,πpα, βq. The endpoint maps extend to MW
.

4. If W is given a homology orientation as in Definition 6.4.2, and we choose gen-

erators of the 2-element sets Λpαq and Λpβq from the previous proposition, these

induce a fiber orientation on e´ : ME,z,πpα, βq Ñ α. Negating any one of these

choices negates the corresponding orientation.

5. Suppose b1pW q “ b`pW q “ 0. So long as all three of the perturbations π1, π, π2 are

taken sufficiently small, the set of reducible orbits inME,πpα1, α2q may be identified

as the following set, written RedpW,Eq. Write c1pEq “ λ P H2pW ;Zq, and write

λi “ λ
ˇ

ˇ

Yi
. There is an induced map PairpH2W q Ñ PairpH2Yiq given by restriction;

the orbit αi corresponds to some

ri P RλipYi, Eiq Ă PairpH2Yiq.

Then RedpW,Eq is the subset of PairpH2W q consisting of pairs tz, wu restricting

to ri on the corresponding ends, and with z ` w “ λ. The set of full reducibles is

taken to the subset with z “ w. If b`pW q ‰ 0 and π is a regular perturbation, then

no reducibles arise in the moduli space M.

6. Assuming we have chosen a homology orientation of W and an element of all rele-

vant orientation sets, there is a fiber oriented decomposition

BMW

E,z,πpα, βq –
ď

γĂCπ2 ,w1,w2
w1˚w2“z

p´1qgrWw1
pα,γq MW

E,w1,π
pα, γq ˆγME2,w2,π2pγ, βq

ď

γĂCπ1 ,w1,w2
w1˚w2“z

ME2,w1,π1pα, γq ˆγM
W

E,w2,π
pγ, βq.

Proof. That such a regular perturbation exists, and that they are generic in U , is Theorem

5.6.4. The grading function was defined in Definition 5.2.1 and seen to be well-defined

mod 8 in Corollary 5.5.6, the compactification with no bubbling is given in Corollary 5.3.7,
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and the manifold-with corners structure (and decomposition of the boundary) given by

Proposition 5.7.6. The orientations are provided by Proposition 6.4.5. The identification

of reducible orbits was given by Proposition 2.5.1 and Proposition 5.4.2.

The path γ is necessary to choose a basepoint in W (as γp1{2q, say) and then to parallel

transport the chosen framing to the basepoints γp0q, γp1q on the boundary components.

The fiber orientations and oriented decomposition were provided by Proposition 6.4.5;

as in the previous theorem, there is a sign difference of p´1qdimα between what is written

here and in that proposition. �

Lastly, to prove invariance of these induced maps, we will want a version of this package

for families of perturbations π. Recall both the definition of broken metric and regular

family of metrics and perturbations from Section 5.8. We only use this notation for the

case of families indexed by the interval r0, 1s.

Also recall that Definition 5.5.5 of weakly admissible cobordisms partitions these into

three classes: first, the admissible cobordisms for which one end is an admissible bundle

(so supports no reducible flat connections). Second, there are the weakly admissible

cobordisms with rational homology sphere ends, b1pW q “ 0, and b`pW q ą 0 and E

non-trivial. Third, there are those with b1pW q “ b`pW q “ 0 and which satisfy the

‘ρ-monotonicity inequality’

ρπ1pr1q ď ρπ2pr2q

and support no bad reducibles, meaning that H1Y1 ‘H1Y2 Ñ H1W is surjective.

(The second condition Definition 5.5.5 is never satisfied for Up2q-bundles.)

Theorem 7.2.3. Suppose pW,Eq : pY1, E1, π´q Ñ pY2, E2, π`q is a weakly admissible

cobordism between 3-manifolds equipped with regular perturbations π˘ P PEi,δ.

Suppose I “ r0, 1s parameterizes a family of metrics on W (with fixed cylindrical ends);

the metrics g0 and g1 may be cut along a separating 3-dimensional submanifold of W , as

in Chapter 5.8, itself equipped with a regular perturbation. Then there is a contractible

open set Ug with

pπ´, 0, π`q Ă Ug Ă U Ă Pp4qc
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such that the following are true. Suppose pW,Eq is equipped with a pair of regular per-

turbations πp0q, πp1q P Ug Ă Pp4qc which equal the π˘ on the ends.

1. If b`pW q ‰ 1 or E supports no reducibles, there is a path π : r0, 1s Ñ Ug so that

πptq and gt form a regular family of metrics and perturbations.

2. If b`pW q “ 1, then for π0, π1 as above and any path π : r0, 1s Ñ Ug that suppots no

reducible instantons, we may perturb πptq on the interior to form a regular family

of metrics and perturbations.

3. If πptq is a regular family of perturbations on r0, 1s “ I, there are smooth SOp3q-

manifolds ĂME,z,πptqpα, βq of dimension grzpα, βq ` dimα ` 1.

4. A homology orientation of W and a choice of element of each of Λpαq and Λpβq

induces a fiber orientation on

e´ : ĂME,z,πptqpα, βq Ñ α,

as before. These orientations negate under orientation-reversal of any one of these

choices.

5. As long as grWz pα, βq ď 9 ´ dimα, the moduli space ĂME,z,πptqpα, βq has a natural

compactification ME,z,πptqpα, βq satisfying the same properties as before.

6. If an element is chosen from each relevant orientation set as above, then there is a

fiber oriented decomposition

BME,z,πptqpα, βq “
ď

γPCπ´ ;z1˚z2“z

ME1,z1,π´pα, γq ˆγME,z2,πptqpγ, βq

ď

ζPCπ` ;z1˚z2“z

p´1qgrWz1 pα,ζqME,z1,πptqpα, ζq ˆζMz2pζ, γq

Y MW

E,z,πp1qpα, βq Y ´M
W

E,z,πp0qpα, βq.
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If the perturbation π is broken along some submanifold Y with limiting perturbation

πb along Y , and restricting to perturbations πi on the piece pWi,Eiq, then we have

the fiber oriented decomposition

BMW

E,z,πpα, βq “
ď

ηPCπb ;z1˚z2“z

p´1qgr
W1
z1
pα,ηqMW1

E1,z1,π1
pα, ηq ˆηME2,z2,π2pη, βq.

Proof. This is precisely the content of Section 5.8; in particular, the transversality and

gluing results in the absence of broken metrics are given by Proposition 5.8.1 and Propo-

sition 5.8.2, respectively; the extension to the case of broken metrics, including the third

item above, is given by Proposition 5.8.3. �

We will use the fiber product maps of Lemma 7.1.6 associated to the SOp3q-equivariant

endpoint maps

e´ :ME,z,πpα, βq Ñ α, e` :ME,z,πpα, βq Ñ β

to define the framed instanton differential, as opposed to the usual counting of points in

0-dimensional moduli spaces. (Note that the degree of the fiber product map is precisely

grzpα, βq ´ 1 for moduli spaces on the cylinder, and precisely grWz pα, βq on a cobordism.)

Lemma 7.1.6 guarantees that when

dimMpα, βq ě dimα ` dim β ` 2

the map σ ÞÑ σˆe´Mpα, βq is identically zero on the chain level. Because all orbits have

dimension at most 3, and

dimMpα, βq “ grzpα, βq ` dimα ` 1,

we see that these fiber product maps vanish when grzpα, βq ě 6. As a result, we need

not panic about the Uhlenbeck bubbling arising in large-dimensional moduli spaces. This

same observation arose in the original definition of equivariant instanton homology given

in [AB96]. In their case, the differential was defined via pullback and integration-over-

the-fiber of differential forms, and whenever the differential form is in degree lower than

the dimension of the fiber, the integral is zero.

Definition 7.2.1. A relative Z{8 grading on a set S is defined by a function

r : S ˆ S Ñ Z{8,
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with rpx, yq ` rpy, zq “ rpx, zq. Such an additive function is equivalent to a function

i : S Ñ Z{8 considered up to translation; that is, i „ i1 if ipxq “ i1pxq ` c, for some fixed

c. Given a function i, one obtains an additive function from its differences:

ripx, yq “ ipyq ´ ipxq.

This gives the same function for any equivalent i, i1. Conversely, evaluation defines func-

tions ispxq “ rpx, sq, with ispxq “ itpxq ` ipt, sq, so that is „ it.

A relatively graded chain complex splits as a direct sum C “ ‘iPZ{8Ci, where the

differential is the direct sum over di : Ci Ñ Ci´1.

The relevant relative grading to us is gr : Cπ ˆ Cπ Ñ Z{8. Picking a critical orbit ρ

arbitrarily, we write ipαq “ grpρ, αq. If E is trivial, we set ipαq “ ipθ, αq, where θ is the

trivial connection. This gives us an absolute grading when E is trivial (though changing

the trivialization may change i by a multiple of 4).

Just as there is a relative grading on critical orbits, the framed instanton chain complex

ĂCI has a relative grading. As a relatively graded R-module, ĂCI is defined by

ĂCI˚pY,E, π;Rq :“
à

αĂCπ

Cgm
˚ pα;Rqripαqs bRrZ{2s RrΛpαqs.

Here Λpαq is the 2-element orientation set discussed in Theorem 7.2.1 (6). The group

Z{2 acts on Λpαq by swapping the two elements, and on Cgm
˚ pα;Rq by negation.

If σ1 : P Ñ α and σ2 : QÑ β are basic chains, the relative grading |σ1| ´ |σ2| P Z{8 is

given as

|σ1| ´ |σ2| “ pdimP ` ipαqq ´ pdimQ´ ipβqq mod 8.

Because ipαq ´ ipβq “ grpρ, αq ´ grpρ, βq, this simplifes using the additivity formula of

Theorem 7.2.1 (2) to

|σ1| ´ |σ2| “ dimP ´ dimQ` grpα, βq.

This further implies p|σ1| ´ |σ2|q ` p|σ2| ´ |σ3|q “ |σ1| ´ |σ3|, as expected.

The differential is given (termwise on basic chains σ : P Ñ α) by

BCIσ “ Bσ `
ÿ

βĂCπ
z,grzpα,βqď5

p´1qdimσ`dimασ ˆe´ME,z,πpα, βq.
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Here Bσ denotes the differential inside Cgm
˚ pαq and the chain σ ˆe´M is defined as in

Lemma 7.1.6; we orient the moduli spaces using choices of elements of Λpαq and Λpβq.

Because swapping elements of these orientation sets negates the orientation on the fiber

product, the map Cgm
˚ b RrΛpαqs Ñ Cgm

˚ b RrΛpβqs descends to the quotient under the

two Z{2 actions. We drop the orientation sets from notation as much as is reasonably

possible.

The index demand on the sum ensures that all of the moduli spaces M appearing in

the sum are compact oriented topological manifolds with corners and a smooth structure

on each stratum (as a consequence of Theorem 7.2.1 (7)). The reason we can do this

without concern is that the fiber product with any larger-dimensional moduli spaces is

identically zero — we can consider our sum as being a formal truncation of what “should

be” the instanton differential BCI , where we throw out moduli spaces of dimension too

large to contribute. This happens precisely when the degree of the fiber product map is

larger than dim β ` 1; because SOp3q-orbits have dimension at most 3, this is true when

grzpα, βq ´ 1 ą 4.

First observe that the differential decreases the relative grading by one: if σ : P Ñ α

is a basic chain, taking the fiber product gives a basic chain σ1 : P ˆe´Mz Ñ β. The

relative grading between these is

|σ| ´ |σ1| “ dimP ´ dim
`

P ˆe´Mz

˘

` grzpα, βq.

Lemma 7.1.6 tells us that the dimension of the fiber product is dimP `dimMz´dimα.

Combining these with dimMz “ grzpα, βq ` dimα ´ 1, we see that the relative grading

|σ| ´ |σ1| “ dimP ´ pdimP ` grzpα, βq ´ 1q ` grzpα, βq “ 1.

Lemma 7.2.4. ĂCI˚pY,E, π;Rq is a chain complex. That is, B2
CI “ 0. Furthermore, the

right action of Cgm
˚ pSOp3q;Rq on ĂCI, acting on each ‘Cgm

˚ pα;Rq on the right (induced

by the right action of SOp3q on α) gives ĂCI the structure of a dg-module.
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Proof. It is clear that, for a basic chain σ : P Ñ α,

B
2
CIσ “ B

2σ `
ÿ

βPCπ
z,grzpα,βqď5

p´1qdimσ`dimα´1
pBσq ˆe´ME,z,πpα, βq

`
ÿ

βPCπ
z,grzpα,βqď5

p´1qdimσ`dimα
B
`

σ ˆe´ME,z,πpα, βq
˘

`
ÿ

γ,βPCπ
z,grzpα,γqď5
w,grwpγ,βqď5

p´1q2pdimσ`dimαq`grpα,γq´1σ ˆe´
`

ME,z,πpα, γq ˆγME,z,πpγ, βq
˘

.

First, B2σ “ 0 because Cgm
˚ pα;Rq is a chain complex. Using the decomposition

Bpσ ˆe´Mq “ Bσ ˆe´M` p´1qdimσ`dimασ ˆe´M

of Lemma 7.1.6, and cancelling the pBσq ˆe´M terms, this reduces to

B
2
CIσ “

ÿ

βPCπ
z,grzpα,βqď5

σ ˆe´
`

BME,z,πpα, βq
˘

`
ÿ

γ,βĂCπ
z,grzpα,γqď5
w,grwpγ,βqď5

p´1qgrpα,γq´1σ ˆe´
`

ME,z,πpα, γq ˆγME,z,πpγ, βq
˘

.

The terms in the second sum can only be nonzero when grzpα, γq ` grwpγ, βq ď 5,

which is to say that grz˚wpα, βq ď 5. After eliminating terms in the sum which vanish for

dimension reasons, we’re left with

B
2
CIσ “

ÿ

βPCπ
z,grzpα,βqď5

σ ˆe´
`

BME,z,πpα, βq
˘

`
ÿ

γ,βPCπ
z,w,grz˚wpα,βqď5

p´1qgrpα,γq´1σ ˆe´
`

ME,z,πpα, γq ˆγME,z,πpγ, βq
˘

.

This is zero by the decomposition of the boundary given in Theorem 7.2.1 (9); here

we need to use those moduli spaces with grzpα, βq “ 5.

That the action of Cgm
˚ pSOp3q;Rqmakes ĂCI into a Cgm

˚ pSOp3q;Rq-module is clear from

the fact that each summand Cgm
˚ pα;Rq is, and that the fiber product map of Lemma 7.1.6

is a Cgm
˚ pSOp3q;Rq-module homomorphism. �
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Suppose we have a weakly admissible bundle E over a cobordism W from pY1, E1q to

pY2, E2q. To fix the orientations of these moduli spaces, we need to choose a homology

orientation on W ; we will suppress this from notation and just refer to “a cobordism W”.

Lemma 7.2.5. Suppose

pW,E, πq : pY1, E1, π1q Ñ pY2, E2, π2q

is a cobordism where E is a weakly admissible bundle and π is a choice of metric and

regular perturbation restricting to the πi on the ends. Furthermore suppose W is equipped

with an embedded path γ between the basepoints b1 and b2. Then there is an induced

Cgm
˚ pSOp3q;Rq-equivariant chain map

rFW,E,π,γ : ĂCIpY1, E1, π1;Rq Ñ ĂCIpY2, E2, π2;Rq.

Proof. The map is defined analogously to the differential itself; we only need to define its

value on a basic chain σ : P Ñ α, where α Ă Cπ1 is a critical orbit on Y1. Here the value

is

rFW,E,π,γ pσq “
ÿ

βĂCπ2
z, grWz pα,βqď4

p´1qdimσ`dimασ ˆe´ME,z,π,

where the map to β is defined using the positive endpoint map e` :ME,z,π Ñ β. Defining

this endpoint map is the essential place the path γ : RÑ W is used. Here the sum is up

to grzpα, βq “ 4 instead of 5, because for cobordisms dimM “ gr` dimα, whereas there

is an extra factor of `1 on the cylinder, account for the translation action.

That this is an equivariant chain map follows as in the previous lemma from the

decomposition of the moduli space ME,z,π of Theorem 7.2.2 (6). �

These maps are essentially independent of the perturbation chosen on the cobordism,

except in the case that W is weakly admissible and b`pW q “ 1. (In the statement of the

following, recall the definition of weakly admissible from Definition 5.5.5.)

Lemma 7.2.6. Given two W -small regular perturbations π0, π1 on a weakly admissible

cobordism pW,Eq, there is a regular family of W -small perturbations πptq parameterized

by r0, 1s interpolating between them, restricting to the same fixed perturbations on the ends
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for all t, or possibly some chain of them, so long as either b`pW q ‰ 1 or E supports no

reducible connections. This induces a Cgm
˚ pSOp3q;Rq-equivariant chain homotopy between

rFW,E,π0,γ » rFW,E,π1,γ.

If pW,Eq is weakly admissible and b`pW q “ 1, then consider the set of metrics and regular

perturbations on W , equipped with the equivalence relation pg0, π0q „ pg1, π1q if there is

a path ˚gtπtq between them so that no pgt, πtq suppots a reducible πt-ASD connection. If

π0 „ π1, then we have a chain homotopy as above.

Proof. When W supports no reducible connections, or has b`pW q ‰ 1, then the existence

of such a regular family of perturbations is Theorem 7.2.3 (1), and when b`pW q “ 1 it

is point (2). Some care should be taken when varying the metric; first we should modify

the perturbations πi to be small relative to the path of metrics gt, and then we should

construct a regular path between them.

That the moduli spaces of relevant dimension have compactifications to manifolds with

corners and a smooth structure on each stratum follows from Theorem 7.2.3 (5). The

chain map is given on a basic chain σ : P Ñ α by sending

σ ÞÑ
ÿ

βPCY2
z, grWz pα,βq`1ď4

p´1qdimσ`dimασ ˆe´ME,z,πptq.

That this is a chain homotopy from rFW,E,π0,γ to rFW,E,π1,γ follows from the decomposition

of the moduli space given by Theorem 7.2.3 (6).

The main interesting point to make here is that these moduli spaces may be nonempty

even though grzpα, βq is negative. This corresponds to the existence of πptq-instantons for

t P p0, 1q that are regularly cut out in the family — but because of the index they cannot

possibly be cut out regularly (considered as an instanton for the single perturbation

πptq). �

We need to relate maps arising from the geometric composition of cobordisms and the

composition of chain maps.

Lemma 7.2.7. Suppose we have two weakly admissible cobordisms pWi,Ei, πiq from Yi

to Yi`1 with regular perturbations πi P Pp4qWi,Li,δ
. Further suppose each Wi is equipped
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with a path γi, so that the positive end of W1 agrees with the negative end of W2, and

the paths concatenate to form a smooth path γ in the composite cobordism. Denote the

composite pW,Eq. Then there is a regular family of metrics and perturbations πptq so

that πp0q is a regular perturbation and metric on W , while πp1q is the broken metric (and

perturbation) corresponding to the obvious way to glue the two cobordisms. This induces

a Cgm
˚ pSOp3q;Rq-equivariant chain homotopy

rFW2,E2,π2,γ2 ˝
rFW1,E1,π1,γ1 »

rFW,E,πp0q,γ.

Proof. Recall that the moduli spaces for the broken metric are by definition given by

ME,z,πp1qpα, γq “
ď

βPCY2
z1˚z2“z

ME1,z1,π1 ˆβME2,z2,π2 .

Thus the chain map given by a broken metric is precisely the composite of its component

cobordisms.

Lemma 5.5.8 guarantees that the composite of weakly admissible cobordisms remains

weakly admissible. The conditions in Theorem 7.2.3 (2)-(3) were that πptq admits SOp2q-

reducible instantons if and only if b`pW q “ 0, and all fully reducible instantons are cut

out transversely. These are assumed to be true for the two pieces of the broken metric.

If πptq is the path from a broken metric to a non-broken metric, the same will hold for

sufficiently small t. Some care should be taken to ensure that the perturbation πp0q is W -

small and has no part on the neck corresponding to the perturbation that used to lie ‘at

infinity’, as in the discussion preceding Proposition 5.8.3. Then by a small perturbation,

we may ensure that πptq is a regular family of perturbations.

Given that, we may define the induced map as

σ ÞÑ
ÿ

β

p´1qdimσ`dimασ ˆe´ME,z,πptqpα, βq.

There are no additional difficulties in verifying this is a chain homotopy between the map

induced by the perturbation πp0q and the map induced by the broken metric/perturbation

πp1q. �

The chain maps rF are invariant under diffeomorphisms of the cobordisms.
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Lemma 7.2.8. Suppose W1 and W2 are cobordisms equipped with weakly admissible bun-

dles Ei, regular perturbations πi, and paths γi between the basepoints of the ends. Fur-

thermore suppose that the ends of the two cobordisms pWi,Ei, πi, γiq agree (so that we

think of them as cobordisms between the same manifolds). Suppose ϕ : W1 Ñ W2 is a dif-

feomorphism, equal to the identity on the ends and with ϕpγ1q “ γ2, and Ψ : ϕ˚E2 – E1

an isomorphism of Up2q-bundles so that Ψ takes ϕ˚π2 to π1. Furthermore suppose ϕ

preserves the homology orientations on the Wi. Then the chain maps rFWi,Ei,πi,γi are

identical.

Proof. This data induces a diffeomorphism

Ψ1 :ME1,π1pα, βq ÑME2,π2pα, βq.

That this diffeomorphism preserves the endpoint maps follows because ϕpγ1q “ γ2; it

preserves orientation because ϕ preserves the homology orientation of the cobordisms.

Given any basic chain σ : P Ñ α, the map

P ˆe´ME1 Ñ P ˆe´ME2

induced on the fiber product is a diffeomorphism preserving e` : P ˆe´MEi Ñ β. By

definition, this means these two basic chains are isomorphic, hence equal in Cgm
˚ pβ;Rq. �

Remark 7.2.1. In dimension 4, any two embedded paths which agree near the ends and

are homotopic relative to their boundary are in fact isotopic relative to their boundary.

The isotopy extension theorem then provides a diffeomorphism of W fixing the boundary

and taking ϕpγ2q “ γ1. Hence from the previous lemma rFW,E,π,γ1 “ rFW,E,ϕ˚π,γ2 . So

homotopic paths induce the same map in homology.

Combining all of these, we see that we have a functor from a sort of cobordism cate-

gory to a homotopy category of chain complexes. We make this precise in the following

definition. Recall Definition 4.5.1 of the finite set σpY,Eq of signature data on pY,Eq.

There are two categories of cobordisms relevant to us. The first includes the data of

the perturbations; the second removes it as much as possible.
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Definition 7.2.2. Let Cob
Up2q,w,π
3,b denote the following category.1 The objects are closed

oriented Riemannian 3-manifolds Y , equipped with a choice of basepoint b P Y , a weakly

admissible Up2q-bundle E Ñ Y , and a regular perturbation π P PE,δ for some δ ą 0.

The morphisms in Cob
Up2q,w,π
3,b will be formal concatenations of morphisms of the fol-

lowing type (called ‘unbroken cobordisms’).

An unbroken cobordism

pW, rE, π, γ, ϕ, ψq : pY1, E1, π, b1q Ñ pY2, E2, π2, b2q

is given by the following data. Here W is an oriented, homology oriented, Riemannian

4-manifold with two cylindrical ends, with chosen oriented isometries of these ends to

p´8, 0s ˆ Y1 and r0,8q ˆ Y2, respectively, while E is a weakly admissible Up2q-bundle

with specified isomorphisms to the pullback of Ei on the cylindrical ends. The data π

is a W -small regular perturbation restricting to the perturbations πi on the ends, and

γ : R Ñ W is an embedded path which agrees with pt, biq on the ends, following the

specified isometries above.

A morphism in Cob
Up2q,w,π
3,b is simply a finite sequence of morphisms Wi (for 1 ď i ď n)

so that the target of Wi is the source of Wi`1 when 1 ď i ă n. These morphisms are

thought of as Riemannian manifolds with ‘broken metric and perturbation’.

Let Cob
Up2q,w
3,b denote the following category. Its objects are closed oriented 3-manifolds

Y equipped with a basepoint b P Y , a weakly admissible Up2q-bundle E Ñ Y , and a

signature datum σ P σpY,Eq. A morphism pY1, Ẽ1, σ1, b1q Ñ pY2, Ẽ2, σ2, b2q is given by

the data of pW, rE, rg, πs, γ, ϕ, ψq. Here W is a compact oriented, homology oriented, 4-

manifold; E is a weakly admissible Up2q-bundle; rg, πs is an equivalence class as in Lemma

7.2.6 of metric g and pW, gq-small regular perturbation π2 restricting to perturbations πi

on the ends with associated signature data σπi “ σi; and γ : r0, 1s Ñ W is an embedded

path which is cylindrical in a collar of the boundary; ϕ : BW Ñ Y1\Y2 is a diffeomorphism

sending γpiq to bi`1; ψ is an isomorphism E1 \ E2 Ñ ϕ˚E.

1The notation b is meant to stand for based, and w for weakly admissible; the π signifies that the
perturbation data are included in an essential way.

2By definition, unless b`pW q “ 1, all perturbations are equivalent, and so this additional data is
vacuous!
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Two such cobordisms pWi, rEi, rπis, γi, ϕiq are to be considered the same morphism in

Cob
Up2q,w
3,b if there is a diffeomorphism φ : W1 Ñ W2 with ϕ2φ “ ϕ1, a bundle isomorphism

Ψ : rE1 Ñ φ˚rE2 taking Ψ˚rπ2s “ rπ1s and a homotopy relative to the endpoints between

γ1 and φ´1pγ2q.

The target category is the following.

Definition 7.2.3. Let Kom
r,Z{8
C˚SOp3q;R

denote the category with objects dg-modules over

Cgm
˚ pSOp3q;Rq equipped with a relative Z{8 grading, and whose morphisms are relatively

graded Cgm
˚ pSOp3q;Rq-equivariant chain maps. There is an equivalence relation on the

morphisms in this category — Cgm
˚ pSOp3q;Rq-equivariant chain homotopy — and there

is a category

Ho
´

Kom
r,Z{8
C˚SOp3q;R

¯

,

the homotopy category of right Cgm
˚ pSOp3q;Rq-modules, whose morphisms are equivalence

classes of equivariant chain maps. If we denote the category of relatively Z{8-graded R-

modules with a graded action of H˚pSOp3q;Rq as Mod
r,Z{8
H˚SOp3q;R

, then taking homology

gives a functor

Ho
´

Kom
r,Z{8
C˚SOp3q;R

¯

Ñ Mod
r,Z{8
H˚SOp3q;R

.

The following is essentially immediate from definitions, and we record it as a lemma.

Lemma 7.2.9. Sending pY,E, b, πq to the framed instanton complex ĂCIpY,E, π;Rq de-

fines a functor

Cob
Up2q,w,π
3,b Ñ Kom

r,Z{8
C˚SOp3q;R

.

Proof. Because morphisms Cob
Up2q,w,π
3,b are given by formal concatenations of a given gen-

erating set of morphisms, this merely asserts that we have defined induced maps for that

generating set. This was done in Lemma 7.2.5. �

Finally, we see that framed instanton homology is functorial on the category of cobor-

disms without perturbation data.

Theorem 7.2.10. There is a functor

rI : Cob
Up2q,w
3,b Ñ Mod

r,Z{8
H˚SOp3q;R

,
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so that for any regular perturbation π on pY,Eq, the group rIpY,E, σ;Rq is canonically

isomorphic to the homology groups rIpY,E, π;Rq of the chain complexes defined above.

Following this canonical isomorphism, the induced map of a cobordism pW,E, rπsq is given

by the induced map on homology of the map of chain complexes defined above.

Proof. The previous lemmas showed that ĂCI is a complex of the appropriate type, and

showed that cobordisms W in this category — when equipped with a perturbation π

— induce chain maps, as long as π is sufficiently small. An isomorphism between

pW, rE, γ, ϕ, ψq (here, taking the path γ1 diffeomorphically to γ2) takes the moduli spaces

(and their endpoint maps) of the first to those of the second, and hence the chain maps

are the same on the nose. In particular, given regular perturbations π1, π2 on pY,Eq with

signature data σ, any path πt between them gives a sufficiently small perturbation on

RˆY (possibly with time-varying metric), and hence gives an induced map rFRˆY,π˚E,πt,b;

by Lemma 7.2.6, any two such chain maps are homotopic.

We will use this to pin down the group IpY,E, σq as something independent of the

choice of metric and perturbation.

Write ρ12 : rIpY,E, π1q Ñ rIpY,E, π2q for the unique isomorphism between the groups

associated to the perturbations πi (abbreviated for the moment rIpπiq) defined by choosing

a perturbation along Rˆ Y as above. Set

rIpY,E, σ;Rq :“

˜

à

π; σπ“σ

rIpY,E, π;Rq

¸

L

´

px P rIpπ1q „ ρ12x P rIpπ2q

¯

.

The map rIpY,E, π;Rq Ñ rIpY,E;Rq induced by inclusion into the direct sum is an iso-

morphism for any regular perturbation π.

A cobordism with cylindrical ends pW,E, πq restring to πi on the appropriate ends

induces a map on each summand rFW,rE,γ : rIpY1, E1, π1q Ñ rIpY2, E2, π2q. The invariance

result of Lemma 7.2.6 implies that this map is the same, independent of the choice of π

extending the πi on the ends; furthermore, Lemma 7.2.7 implies that these compose as

expected with the canonical isomorphisms ρ12 above. Therefore, this defines an induced

map rFW,E,γ : rIpY1, E1, σ1q Ñ rIpY2, E2, σ2q by attaching cylindrical ends on each boundary

component and choosing some sufficiently small regular perturbation.

We saw that the chain maps were independent of the perturbation π and homotopy
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class γ up to chain homotopy in Lemma 7.2.6 (unless b`pW q “ 1, in which case there is

an equivalence relation on perturbations), and that they compose as a functor should up

to chain homotopy in Lemma 7.2.7. �

Remark 7.2.2. There is a natural partial ordering on σpY,Eq: an element σ defines a

function fσ : RedpY,Eq Ñ Zě0, and we say that σ ď σ1 if fσpαq ď fσ1pαq for all α. The

problem with attempting to show that the instanton homology groups are invariant of the

signature datum is that the cylinder is only a weakly admissible cobordism pY,E, σq Ñ

pY,E, σ1q if σ ď σ1. Any attempt to resolve this needs somehow to cope with reducible

connections on the cylinder which cannot be made to be cut out transversely; perhaps

the obstruction bundle technique, as described briefly at the end of [Don02] and used to

great effect in [Tau84], is one such tool.

Remark 7.2.3. Suppose we work instead in the category Cob
SOp3q,a
3,b of admissible cobor-

disms. Then in fact, a much stronger invariance property of the maps rFW,E is true: the

homotopies between induced maps are homotopic, and so on.

A precise formulation of this statement uses the language of quasicategories (some-

times called p8, 1q-categories); a good introduction to the language is [HLS16]. There is

a quasicategory πCobUp2q,a3,b of 3-manifolds equipped with perturbations, whose morphism

spaces are simplicial sets whose n-simplices are ∆n-indexed admissible families of (possi-

bly broken) perturbations on cobordisms. The framed instanton chain complex lifts to a

functor from this quasicategory to the quasicategory of chain complexes, and furthermore

the forgetful functor πCobUp2q,a3,b Ñ Cob
Up2q,a
3,b to the homotopy category is an equivalence

of quasicategories. This is essentially the statement that the space of admissible pertur-

bations on a given cobordism is contractible, and a version of this would be provided

by a natural extension of Theorem 7.2.3 for simplices; the only obstructions to such an

extension lies at reducible connections, which the admissibility assumption is used to

avoid. Using this, it’s possible to find a chain-level version of ĂCI that is functorial under

cobordisms on the nose, as opposed to up to homotopy, and well-defined up to essentially

unique natural equivalence. In fact, this is done using the quasicategorical Kan extension;

the definition of IpY,E, σq above is a very special case of a Kan extension. We don’t see

any need for this structure, and so leave the details to the interested reader.

Any extension of such a result to all weakly admissible pW, rEq would require a sub-
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stantially different notion of “regular family”, as there are obstructions to achieving

transversality in the standard sense at reducible connections for families.

In this framework, the space of perturbations on a fixed 3-manifold form a quasi-

category (actually, a Kan complex): 0-simplices are pairs pY, Ẽq of a weakly admissible

3-manifold and regular perturbation π, and an n-simplex starting at pY, Ẽ, π1q and ending

at pY, Ẽ, π2q is a regular family of perturbations on Rˆ Y parameterized by the pn´ 1q-

dimensional simplex, so that for all perturbations in this family, the restriction of π to

the the corresponding end is the fixed perturbation πi. Then 7.2.3 (1) guarantees that

the space of perturbations with fixed signature perturbation is contractible, and that this

quasi-category is equivalent to the poset whose elements are signature data on Y , and

there is a morphism σ Ñ σ1 iff σ ď σ1.

7.3 The index filtration

Recall that the relatively Z{8-graded complex

ĂCIpY,E, π;Rq

is defined as a graded Cgm
˚ pSOp3q;Rq-module to be

à

αPCπ

Cgm
˚ pα;Rqripαqs,

where ipαq “ grpρ, αq P Z{8; this grading is well-defined up to a translation (arising from

choosing a different base orbit ρ), and thus defines a relative grading on ĂCI. Here we

drop the orientation sets Λpαq from notation; if so desired, there is no harm in making a

choice of orientation for each critical orbit.

Now if z is a homotopy class of path from ρ to α, write

ipα, zq “ grzpρ, αq P Z{8.

There is a Z-graded complex ĂCIunrpY,E, π;Rq given as

à

αĂCπ
zPπ1 rBE ,ρ,α

Cgm
˚ pα;Rqripα, zqs.
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If pαi, ziq are two such labelled critical orbits, there is a unique homotopy class of path

w from α1 to α2 so that z2 » w ˚ z1. Then using the additivity of gr, we see that the

degree difference between σi : Pi Ñ αi is given as

|σ1| ´ |σ2| “ pdimP1 ´ ipα1, z1qq ´ pdimP2 ´ ipα2, z2qq

“ dimP1 ´ dimP2 `
`

grz2pρ, α2q ´ grz1pρ, α1q
˘

“ dimP1 ´ dimP2 ` grwpα1, α2q.

We thus see that the grading induced by choosing ρ as a basepoint induces the expected

relative grading.

We write a basic chain σ : P Ñ α corresponding to a critical orbit α labelled by z as

pσ, zq. The differential of σ : P Ñ pα, zq is given by

BCIpσ, zq “ pBσ, zq `
ÿ

βPCπ
wPπ1p rBE ,α,βq

grwpα,βqď5

`

σ ˆe´ME,w,πpα, βq, z ˚ w
˘

.

Each critical orbit α has a unique homotopy class of path 1 P π1p rBE, αq with gr1pα, αq “

8; the element 1 is a cyclic generator of the fundamental group, which is isomorphic to

Z. The complex ĂCIunrpY,E, π;Rq has a periodicity isomorphism, sending the compo-

nent Cgm
˚ pα;Rq labelled by z identically to the component labelled by z ` 1. That this

commutes with the differential above is only the statement w ` 1 “ 1 ` w for any path

w.

The 8Z-periodic, Z-graded complex ĂCIunrpY,E, π;Rq is called the unrolled complex of

ĂCIpY,E, π;Rq in Section A.8; the quotient by the above periodicity isomorphism just

forgets about the labelling by z.

ĂCIunrpY,E, π;Rq carries an honest filtration by index. We write

FsĂCIunrpY,E, π;Rq “
à

αPCπ
zPπ1p rBE ,ρ,αq
ipα,zqďs

Cgm
˚ pα;Rqripα, zqs.

Because a nonempty moduli space ME,w,πpα, βq can only exist if

grzpρ, αq ą grz˚wpρ, βq,
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the differential decreases index and hence preserves the filtration. Furthermore, because

the filtration is defined by taking a direct sum of Cgm
˚ pα;Rq for pα, zq satisfying the index

bound, this is a filtration by Cgm
˚ pSOp3q;Rq-modules.

Because grz`1pρ, αq “ grzpρ, αq`8, this is a periodic filtration in the sense of Definition

A.8.1. The associated graded module is

grpĂCIunrpY,E, π;Rq –
à

αPCπ
ipαq“p mod 8

Cgm
˚ pα;Rqrps.

In particular, because Cgm
˚ pX;Rq is supported in degrees at most dimX`1, and all of

our components α are SOp3q-orbits, each associated graded piece is bounded, supported

in degrees r0, 4s.

Now note that the instanton differential BCI : ĂCIunr Ñ ĂCIunr decomposes as BCI “

B0 ` B1 ` ¨ ¨ ¨ ` B5, where B0pσ, zq “ pBσ, zq and for k ą 0,

Bkpσ, zq “
ÿ

βPCπ
wPπ1p rBE ,α,βq
grwpα,βq“k

`

σ ˆe´ME,w,πpα, βq, z ˚ w
˘

.

This is the component of the differential that decreases filtration by k, and is given by

those fiber product maps with moduli spaces which increase dimension by k ´ 1. The

decomposition of BCI into the Bk ends at B5 because fiber products with moduli spaces

with grwpα, βq ą 5 are identically zero.

Furthermore, observe that dimMzpα, βq “ dimα`grzpα, βq´1, while for any nonempty

moduli space we have dimMzpα, βq ě 3 because by Theorem 7.2.1 (8), the SOp3q-action

is free. Therefore, if Mzpα, βq is nonempty and α is an SOp2q-reducible, necessarily

grzpα, βq ą 1; if α is fully reducible, then necessarily grzpα, βq ą 3. In particular, B1 is

identically zero on reducible orbits; in addition both B2 and B3 vanish on fully reducible

orbits.

Therefore, we have the following, which a special case of Theorem A.8.1, item (3).

Theorem 7.3.1. Let pY,Eq be a weakly admissible bundle and π a regular perturbation.

There is a pZ{8,Zq-bigraded spectral sequence of H˚pSOp3q;Rq-modules so that the Z{8-

grading is relative, whose E1 page is

E1
p,q “

à

αĂCπ
grpαq“p

Hqpα;Rq
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this spectral sequence converges to E8p,q – grprIp`qpY,E, π;Rq, the pth component of the

associated graded vector space of rIpY,E, π;Rqp`q.

On the unrolled pZ,Zq-graded spectral sequence, we have

E8p,q – grprI
unr
p`q.

For a class rxs P Er which has a representative x P ĂCI with dix “ 0 for i ă r,

the spectral sequence differential drrxs may be identified with rBrxs. In particular, the

differential d1 on E1 is only nonzero on the irreducible components, where it is given by

counting points in 0-dimensional moduli spacesME,z,πpα, βq{SOp3q (note that β need not

be irreducible).

The index spectral sequence for rI degenerates on the E5 page for dimension reasons.

Proof. The only conditions we need to check to apply Theorem A.8.1 is that the alge-

bra A “ Cgm
˚ pSOp3q;Rq and each associated graded module grpĂCIunr (for each fixed p)

are bounded in degree. These follow by definition: Cgm
˚ pX;Rq is supported in degrees

r0, dimX`1s, and grpĂCIunr is a direct sum of SOp3q-orbits with ipαq “ p, so is supported

in degrees rp, p` 4s.

That the differentials on elements rxs with lifts that have dix “ 0 for i ă r are

induced by Br is an elementary diagram chase. In fact, that this is true holds more

generally: Wall’s notion of a multicomplex (see Definition A.2.2) is a complex so that the

differential splits nicely into components dr that decrease the filtration by r, and C is

equipped with the induced differential

d “ d0 ` d1 ` d2 ` ¨ ¨ ¨

Observe that our choice of Bk is precisely the component of the differential that decreases

the filtration level of ĂCI by k.

The invariants RE8 and W of Proposition A.2.3 are both zero for this spectral se-

quence, because it degenerates at the 5th page.

By the second part of Proposition A.2.3, and Definition A.2.1 of strong convergence,

we see that E8pĂCIq “ gr rI. �
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As an immediate corollary, we may define and calculate the Euler characteristic of the

instanton chain complex, where σ is a signature datum.

Corollary 7.3.2. Let pY,E, σq be a 3-manifold equipped with a weakly admissible bundle

and signature datum σ. Then rIpY,E, σq is finitely generated, and

χprIpY,E, σqq “ |H2
pY ;Zq| “ |H1pY ;Zq|.

If b1pY q ą 0, we interpret the right-hand-side to be zero.

This follows because

χprIpY,E, σqq “ χpgr rIpY,E, σqq;

because χpSOp3qq “ 0, the only contribution to this Euler characteristic is from the re-

ducibles. Then the result follows from the enumeration of reducibles given by Proposition

2.3.4, which have even index by the calculation of Proposition 5.5.12 (and so all contribute

positively to the Euler characteristic sum). The isomorphism H2pY ;Zq “ H1pY ;Zq is

Poincaré duality.

Remark 7.3.1. In general it’s rare for a multicomplex that a class rxs P Er has a repre-

sentative with all dix “ 0 for i ă r, but is relatively common in the rI spectral sequence.

The discussion simplifies substantially if 1
2
P R, so we make this assumption; then we

know that H˚pSOp3q;Rq “ R ‘Rr3s and

H˚pSOp3q{SOp2q;Rq “ H˚pS
2;Rq “ R ‘Rr2s.

Choosing an arbitrary class ρ P Cπ, we write the absolute grading

ipαq “ grpρ, αq.

We define

C irr
p “

à

αPCπ
Γα“1
ipαq“p

R

CSOp2q
p “

à

αPCπ
Γα–SOp2q
ipαq“p

R

Cθ
p “

à

αPCπ
Γα“SOp3q
ipαq“p

R
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With this notation, the E1 page is given as

E1
p,q “

$

’

’

’

’

’

&

’

’

’

’

’

%

C irr
p ‘ C

SOp2q
p ‘ Cθ

p q “ 0

C
SOp2q
p q “ 2

C irr
p q “ 3

The E1 differential on C irr
p counts SOp3q-orbits in 3-dimensional moduli spaces. For

α P E1
p,0 the first page differential is given by counting points in unframed moduli spaces

with grpα, βq “ 1;

d1α “
ÿ

β,grpα,βq“1

`

#Mpα, βq{SOp3q
˘

β,

and d1α is zero if α is reducible.

Because the E1 differential vanishes on the SOp2q-irreducibles, we see that the differ-

ential d2 on rαs P E2
p,2, for α P C

SOp2q
p Ă E1

p,2, is given by a similar formula as above:

counting, for each β with grpα, βq “ 2, the (signed) number of SOp3q-orbits of trajectories

between them: npα, βq “ #Mpα, βq{SOp3q for β irreducible; so

d2rαs “
ÿ

β,grpα,βq“2

npα, βqrβsp´2,3.

d2 vanishes everywhere else for dimension reasons. Finally, d4 on rθs P E4
0,0 (when Y is a

rational homology sphere and so has trivial connections, and 0 P V makes sense) counts

SOp3q-orbitsMpθ, βq{SOp3q between an irreducible and an irreducible with grpθ, βq “ 4.

(This is the map Donaldson calls D2 in [Don02, Section 7.1].)

Once we develop the equivalence to the Donaldson model DCI in Chapter 8.2, the

terms in this spectral sequence become much easier to calculate, and visible at the chain

level.

7.4 Four flavors of instanton homology

We will soon apply Theorem A.8.1 to define three additional flavors of equivariant in-

stanton homology, I`pY q, I´pY q, and I8pY q. To explain what these different flavors

represent, it is useful to analogize to the situation of finite G-CW complexes. To cor-

rectly state certain stabilization pheneomena, we must ensure everything in sight has
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a basepoint. Let X` denote the disjoint union of a G-space X with a disjoint fixed

basepoint. The smash product of pointed spaces is

X ^ Y “ pX ˆ Y q
L

pX ˆ ˚Y , ˚X ˆ Y q.

A pointed G-CW complex is a G-space assembled from cells of the form

Di
^ pG{Hq` “ pD

i
ˆG{Hq

L

p˚ ˆG{Hq,

where the basepoint is in the boundary sphere and attaching maps preserve the basepoint.

Given a pointed G-CW complex X, its most well-known homological invariants are its

nonequivariant homology H˚pXq and its Borel equivariant homology

HG
˚ pXq “ H˚

`

pX ^ EG`q{G
˘

,

both taken relative to a basepoint (equivalently, taking reduced homology). These are

both invariants of X up to equivariant homotopy equivalence. In fact, write ΣX denotes

the reduced suspension

S1
^X “ pr0, 1s ˆXq{pr0, 1s ˆ ˚, t0u ˆX, t1u ˆXq

of a pointed G-space. Because H˚`1pΣXq – H˚pXq and ΣX ^G EG` “ ΣpX ^G EG`q,

the equivariant homology groups HG
˚ are invariants of X up to stable equivariant homo-

topy equivalence.

In the stable homotopy category of finite G-CW complexes, where the suspension op-

erator Σ has an inverse and there is a sphere Sn for every n P Z, there is a contravariantly

functorial Spanier-Whitehead duality operator DG sending

DG

`

Sn ^ pG{Hq`
˘

– S´n ^ pG{Hq`.

Explicitly, if V – RN is a G-representation, and X ãÑ SV`1 is an equivariant em-

bedding into the one-point compactification of V ‘ R, then DGX is the desuspension

Σ´V pSV`1zXq.

In the nonequivariant case, the remarkable Alexander duality theorem identifies

H´˚
pDXq – H˚pXq,
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by

H´˚
pDXq “ H´˚

`

Σ´npSn`1
zXq

˘

“ Hn´˚
pSn`1

zXq – H˚pXq.

Though the double dual involved in writing H´˚pDXq outputs a homology theory (a com-

position of two contravariant functors is a covariant functor), Alexander duality identifies

it as the homology theory we started with, so this operation doesn’t produce anything

new. Note that we used negatively graded cohomology, H´˚, so that the gradings in this

formula would work out.

However, in the equivariant case, something altogether new happens: applying the

above formula to orbits,

H´˚
G

´

DG

`

pG{Hq`
˘

¯

“ H´˚
G

`

pG{Hq`
˘

“ H´˚
pBHq,

which is not HG
˚

`

pG{Hq`
˘

“ H˚pBHq, nor some degree shift of it: H´˚pBHq is concen-

trated in nonpositive degrees, and H˚pBHq is concentrated in nonnegative degrees. Thus

H´˚
G pDGXq is an altogether different homology theory, which deserves to be called co-

Borel homology. [GM95] and [Man16] write this cHG
˚ pXq. Following [Jon87], and because

cHG
˚ pXq is usually supported in the negative direction, we prefer to denote it H´

G pXq.

Correspondingly, we write H`
G pXq “ HG

˚ X, as this is usually supported in the positive

direction.

Using the cap product of cohomology and homology, and pulling back cohomology

classes from BG, we find that H`
˚ pXq is a module over H´˚pBGq (note the negative

grading, as cohomology classes contract against homology, decreasing degree). Using the

cup product instead, H´
˚ pXq is also a module over H´˚pBGq.

If G is finite or connected, is a homomorphism relating these two homology theories,

the norm map:

NG : H`
G pXqrdimGs Ñ H´

G pXq.

Note the degree shift by dimG; we think of the norm map as a sort of averaging operator.

For a general compact Lie group there is a twist involving the character π0GÑ ˘1 given

by the determinant of the adjoint representation (see Theorem A.7.2).

There is a final equivariant homology theory, Tate homology, written H8
˚ pXq and

fitting into a long exact sequence

¨ ¨ ¨ Ñ H`
˚´dimGpXq

NG
ÝÝÑ H´

˚ pXq Ñ H8
˚ pXq Ñ H`

˚´dimG´1pXq Ñ ¨ ¨ ¨
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Remarkably, the norm map is an H´˚pBGq-module homomorphism, and Tate homology

also has the structure of an H´˚pBGq-module for which all maps in the above exact

sequence are module homomorphisms.

The other essential property of Tate homology is that H8
G pGq “ 0, so that Tate

homology of a finite G-CW complex can be calculated (essentially) from its subcomplex

of points with nontrivial stabilizer. This is extremely useful for calculation, as we will

see later in the context of I8.

The following table summarizes the analogies between equivariant homology of G-

spaces and the various Floer homologies of 3-manifolds. The monopole Floer homology

is defined to be a sort of S1-equivariant Floer homology, but the S1 symmetry is less

visible in Heegaard Floer theory. In any case, the monopole Floer and Heegaard Floer

homology groups are modules over H´˚pBS1;Zq “ ZrU s, where |U | “ ´2.

Heegaard Floer Monopole Floer Instanton Floer Equivariant homology

HF`˚ pY q
~HM˚pY q I`˚ pY q H`

˚ pXq “ H˚pEG` ^G Xq

HF´˚ pY q
zHM˚pY q I´˚ pY q H´

˚ pXq “ H´˚
G pDGXq

HF8˚ pY q HM˚pY q I8˚ pY q H8
˚ pXq

yHF ˚pY q ĆHM˚pY q rI˚pY q H˚pXq

In our setting, we have a functorial dg-module with dg-algebra action

ĂCIpY, Ẽ, π;Rq ð Cgm
˚ pSOp3q;Rq,

acting from the right because rBE carries a right SOp3q-action; these are right orbits.

This is a reasonable notion of ‘chain complex with action of SOp3q’, and we would like to

obtain invariants that behave like equivariant homology of a G-space X. The majority of

the appendix develops chain complexes C‚pA;Mq whose homology gives us equivariant

homology theories for Z-graded dg-modules over a dg-algebra.

The definitions for Z{8-graded complexes are more delicate, and carried out in Sec-

tion A.8. Here we take the point of view that the periodic filtration on the module
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M should give rise to a periodic filtration on C‚SOp3qpMq, and to do so we require that

grpM̃ is bounded. Our complexes ĂCI are equipped with a periodic filtration, and each

grpĂCIunrpY, Ẽ, π;Rq is bounded. In particular, Theorem A.8.1 is readymade for us to

apply to ĂCI.

Theorem 7.4.1. Suppose R is a PID. There is a dg-algebra Ĉ´
´

Cgm
˚ pSOp3q;Rq

¯

whose

homology algebra is graded isomorphic to H´˚pBSOp3q;Rq. We denote this dg-algebra

by C´.

There are functors

CI‚ : Cob
Up2q,w,π
3,b Ñ Ho

´

C´-Mod
r,Z{8
R

¯

,

where ‚ P t`,´,8u, given by applying the constructions

C‚
´

Cgm
˚ pSOp3q;Rq, ĂCIunrpY, Ẽ, π;Rq

¯

of Theorem A.8.1 for periodically filtered modules with finite support on each associated

graded piece. After taking homology, we then have functors

I‚ : Cob
Up2q,w
3,b Ñ Mod

r,Z{8
H´˚pBSOp3q;Rq.

These fit into an exact triangle

¨ ¨ ¨ Ñ I`pY,E;Rq
r3s
ÝÑ I´pY,E;Rq Ñ I8pY,E;Rq

r´4s
ÝÝÑ I`pY,E;Rq Ñ ¨ ¨ ¨

where all arrows are H´˚pBSOp3q;Rq-module maps.

Given any other bounded, non-negatively graded dg-algebra A and right A-module

M , equipped with a periodic filtration each of whose associated graded groups grpM̃ is

bounded, there are A-homology groups H‚
ApMq. If there is an algebra map which is a

quasi-isomorphism

f : Cgm
˚ pSOp3q;Rq Ñ A,

and an f -equivariant filtered module map g : ĂCIpY, Ẽ, π;Rq ÑM whose induced map on

associated graded complexes is a quasi-isomorphism, then there is an induced canonical

isomorphism I‚ – H‚
ApMq, equivariant under the actions of H´

A pRq under the induced

isomorphism H´˚pBSOp3q;Rq – H´
A pRq.
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We also have spectral sequence for the equivariant homology groups. As with the

non-equivariant homology, we state this in slightly more detail than in Theorem A.8.1,

point (4).

Theorem 7.4.2. For each of ‚ P t`,´,8u, if pY,Eq is a weakly admissible bundle

equipped with regular perturbation π, there is a pZ{8,Zq-bigraded spectral sequence of

H´˚pBSOp3q;Rq-modules from

E1
p,q “

à

αPCπ
grpαq“p

H‚
SOp3qpα;Rq

whose target is the associated equivariant instanton homology I‚pY,E, π;Rq.

For I´, we have an isomorphism of the unrolled pZ,Zq-bigraded spectral sequence

E8p,q – grpI
´,unr
p`q . For any of the theories, a filtered chain map

CI‚pY,E, πq Ñ CI‚pY 1, E 1, π1q

which induces an isomorphism on any finite page Er induces an isomorphism on I‚.

Proof. The existence of this spectral sequence, and the fact that we may detect quasi-

isomorphisms by isomorphisms on a finite page Er, is precisely Theorem A.8.1, point (4).

As for the specific calculation of the E1 page, our associated graded complex

grpĂCIunrpY,E, π;Rq “
à

αPCπ
grpαq“p

Cgm
˚ pα;Rq

is a bounded Cgm
˚ pSOp3q;Rq-module. By Proposition A.7.8, there is a chain of quasi-

isomorphisms connecting Cgm
˚ pSOp3q;Rq to the algebra C˚pSOp3q;Rq, and similarly a

chain of equivariant quasi-isomorphisms between Cgm
˚ pα;Rq to C˚pα;Rq. In particular,

we may identify

H‚
pCgm
˚ pSOp3qq, C

gm
˚ pα;Rqq – H‚

SOp3qpα;Rq

using Theorem A.7.6. �

As before, these spectral sequences will become significantly more computable after

the introduction of the Donaldson models DCI
˘

for CI´ and CI` in Chapter 8.2.
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Remark 7.4.1. It is important to note that while the homology theory for Z-graded com-

plexes H`
A pMq described at first in the appendix sends A-equivariant quasi-isomorphisms

M Ñ M 1 to isomorphisms on H`
A , this is not true for arbitrary filtered A-equivariant

quasi-isomorphisms between Z{8-graded complexes. An acyclic Z{8-graded complex M

whose associated graded complex is not acyclic need not have H`
A pMq “ 0.

What remains true, and will be used extensively, is that if M,M 1 are Z{8-graded A-

modules equipped with a periodic filtration, and f : M Ñ M 1 is a filtered dg-module

map inducing an isomorphism on the associated graded homology groups (the E1 page

of the spectral sequence), then f induces an isomorphism on H`
A pMq.

The reason this happens is that these objects are defined via a completion with respect

to the given filtration, which ensures that the associated spectral sequences converge.

However, quasi-isomorphisms between the uncompleted complexes which are not quasi-

isomorphisms on the associated graded do not necessarily induce quasi-isomorphisms

between the completions.
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CHAPTER 8

Examples, calculations, and comparisons

For the entirety of Chapter 8, we choose elements in each orientation set Λpαq arbitrarily,

and suppress these orientation sets from notation.

8.1 Equivariant instanton homology for admissible bundles

When E is a nontrivial admissible Up2q-bundle over an oriented 3-manifold Y , all crit-

ical orbits are free. The complex ĂCIpY,E;Rq resembles the equivariant Morse complex

of a finite-dimensional free SOp3q-manifold M , so our heuristic is that the equivariant

homology groups I‚pY,E;Rq should behave like the equivariant homology H‚
GpMq:

H´
G pM ;RqrdimM s – H`

G pM ;Rq – HpM{G;Rq

H8
G pM ;Rq “ 0.

Theorem 8.1.1. Suppose E is a nontrivial admissible bundle over a 3-manifold Y . Then

I8pY,Eq “ 0, and if CIpY,Eq is Floer’s instanton chain complex for admissible bundles,

there is a natural quasi-isomorphism CI`pY,E;Rq Ñ CIpY,E;Rq. In particular, the

equivariant Floer homology I`pY,Eq of a nontrivial admissible bundle is Floer’s orig-

inal instanton homology group IpY,Eq. Furthermore, there is also a functorial quasi-

isomorphism CIpY,E;Rqr3s Ñ CI´pY,E;Rq.

Proof. We first prove the statement for CI8. The E1 page of the index spectral sequence

is
à

αPC, nPZ
n“ipαq mod 8

H8
˚ pα;Rqripαqs.

Now all orbits are free orbits α – SOp3q, and so we can calculate this as

à

H8
˚ pSOp3q;Rqripαqs.
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That H8
SOp3qpSOp3qq vanishes is one of the defining features of Tate homology: see Propo-

sition A.3.3 (4). So the E1 page is identically zero, and by the I8 part of Theorem 7.4.2

we see that the map 0 Ñ CI8pY,E;Rq is a quasi-isomorphism, as desired.

Floer’s instanton complex CIpY,Eq is defined as the free R-module generated by crit-

ical orbits α Ă C, the relative grading defined still as grzpα, βq; the differential counts

points in zero-dimensional moduli spaces of unframed instantons between α and β. As a

graded C´-module,

CI` “
à

αPC

C`pα;Rqripαqs,

CI “
à

αPC

Rripαqs.

The differential is a sum of the induced differential on each factor C`pα;Rq and the maps

C`pα;Rq Ñ C`pβ;Rq induced by the Cgm
˚ pSOp3qq-equivariant chain maps

σ ÞÑ σ ˆe´Mpα, βq.

Recall from Lemma A.7.1 that H`

SOp3qpSOp3q;Rq “ R, concentrated in degree zero.

There is a chain map ϕ : CI`pY,E;Rq Ñ CIpY,E;Rq given on the summand for each

critical orbit by the augmentation map C`SOp3qpα;Rq Ñ R induced by the point-counting

map C˚pα;Rq Ñ R; this map kills everything in degree larger than ipαq and sends

C`0 pα;Rq “ C0pα;Rq Ñ H`

ipαq “ R by the augmentation.

To see that ϕ is a chain map, note that if σ P CI`k pY,E;Rq is not sent to zero, it can

be written as a sum of points in
à

αPCπ
ipαq“k

C0pα;Rq.

So it suffices to check that ϕpd̃σq “ dϕpσq for σ “ p, where p is a point in α. The only

components of dσ P CI` not automatically sent to zero are those in some C0pβ;Rq Ă

C`pβ;Rq, which arise from taking fiber products with moduli spaces Mpα, βq of dimen-

sion 3. Because the SOp3q action on M is free, the count of points of p ˆαMpα, βq is

the same as that of Mpα, βq{SOp3q, Floer’s unframed moduli space of instantons. In

particular, we find that ϕ is a chain map, as desired.

Now, on the unrolled complexes, this map is a filtered chain map for the tautological

periodic filtration of CIpY,E;Rq by degree, and Theorem 7.4.2 says that the above map
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induces an isomorphism

E1
`

CI`pY,E;Rq
˘

Ñ E1
pCIpY,E;Rqq “ CIpY,E;Rq.

Therefore, by the comparison theorem, the induced map

I`pY,E;Rq Ñ IpY,E;Rq

is an isomorphism. That these isomorphisms fit into a commutative square with the

corresponding cobordism maps is proved the same way.

The statement about I´ follows because of the exact triangle relating I8, I`, and I´

and the fact that I8 vanishes; one may alternately define a chain map CIr3s Ñ CI´

explicitly, almost precisely as above except including the fundamental class instead of a

point class. �

Suppose 1
2
P R; then H´˚pBSOp3q;Rq “ RrU s, where |U | “ ´4. Floer’s IpY,E;Rq

also carries an action by this ring (when 1
2
P R), and we should check that the above

map preserves the U -action. Because the U -action carries things down vertically in the

spectral sequence, but E2pCI`q is here concentrated on a single horizontal line, this is not

a theorem well-suited to a spectral sequence proof. Instead, we must get our hands dirty

at the chain level. This will be delayed until the following section, where we construct a

simpler chain-level model of ĂCI.

8.2 Comparison with Donaldson’s theory

In this section, we describe a finite-dimensional complex computing framed instanton

homology rI, and then explain how to use it to calculate the equivariant instanton groups.

While it seems likely that this is possible over any PID R, the situation is drastically

simpler when 1
2
P R. So for the rest of this section, R is a PID in which 2 is invertible;

the ring R will be dropped from the notation whenever possible.

If 2 is invertible in R, then H˚pSOp3q;Rq is isomorphic to a single copy of R in degrees

0 and 3 and zero otherwise. We denote this R-algebra Λpuq, the exterior algebra on a

generator u in degree 3. There is a dg-algebra homomorphism

i : Λpuq Ñ Cgm
˚ pSOp3q;Rq
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given by picking out the identity in degree 0 and the fundamental class in degree 3;

this map induces the identity on homology. By Proposition A.3.4, because i is a quasi-

isomorphism, we have

H‚
pCgm
˚ pSOp3q;Rq, ĂCIq – H‚

pΛpuq, ĂCIq.

For the purposes of computing the equivariant instanton homology groups I`, I´, and

I8, it therefore suffices to consider ĂCI as a module over Λpuq.

Our goal is to write down a differential on the Z{8-graded R-module

DCIpY,E, π;Rq “ ‘αH˚pα;Rqripαqs,

which has a periodic filtration by index of the orbit α. This differential should decrease

the filtration, and there should be a map ĂCIpY,E, πq Ñ DCI which is the identity on

the E1 page, or something like it. To produce this, we use what is called the homological

perturbation lemma. Recall its statement:

Lemma 8.2.1 (Homological perturbation lemma). Suppose pC, dq and pC 1, d1q are chain

complexes, equipped with an inclusion i : C ãÑ C 1 and a projection p : C 1 Ñ C so that

pi “ 1, both quasi-isomorphisms, as well as a degree 1 map h : C 1 Ñ C 1 serving as a

homotopy witnessing this. That is,

ip “ 1` d1h` hd1.

This data is called deformation retract data, and is depicted

pC, dq
i
ÝÑ
ÐÝ
p
pC 1, d1q⟲h.

Suppose that C 1 is equipped with a deformation: an additional map δ : C Ñ C so that

pd1 ` δq2 “ 0. Suppose that hn “ 0 for sufficiently large n. Write A “
ř8

n“0pδhq
nδ.

Then pC, d` pAiq is a chain complex, equipped with deformation retract data

pC, d` pAiq
i`hAi
ÝÝÝÑ
ÐÝÝÝÝ
p`pAh

pC 1, d1 ` δq⟲h` hAh.

If C and C 1 are dg-modules over a dga, and all of i, p, h, and δ are dg-module homo-

morphisms, then the same is true of the perturbed deformation retract data. In particular

pC, d` pAiq is homotopy equivalent to pC 1, d1 ` δq as a dg-module.
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If C and C 1 are filtered, and i, p, h, and δ all preserve the filtration (in the sense that

fpFkq Ă F 1k for all k), then the same is true for the perturbed deformation retract data.

In particular, pC, d ` pAiq is a filtered complex, which is filtered homotopy equivalent to

pC 1, d1 ` δq.

A very explicit reference is [Cra04].

To apply the homological perturbation lemma, first recall that we may write the dif-

ferential on ĂCI as d ` dM . The first term is the usual boundary operator on geometric

chains, and the second term is the contribution from fiber products with moduli spaces.

We want to apply the lemma to pDCI, 0q and pĂCI, dq, with δ “ dM .

Choose a basepoint bα P α for each critical orbit α; if α is an SOp2q-reducible, we

demand that the stabilizer of bα is the standard SOp2q Ă SOp3q. Later, when considering

the SUp2q-model, this will translate into the demand that the stabilizer is the standard

Up1q Ă SUp2q.

Our inclusion map

i : DCI Ñ ĂCI

is given on H0pα;Rq Ñ Cgm
˚ pα;Rq by sending the generator to the basepoint bα, and on

Hdimαpα;Rq Ñ Cgm
˚ pα;Rq by sending a generator to the corresponding fundamental class

of α. (Note that the choice of fundamental class depends on an orientation of α; we are

making this choice by choosing a generator of top homology.)

We will proceed to the deformation retract data in two steps.

First, we will pass from ĂCI to a slightly different but quasi-isomorphic chain complex,

for which we can explicitly define p and h. Then we will modify the differential on ĂCI

itself to be chain-homotopy equivalent to the complex we started with, but in such a way

that we have

ppdMhq
ndM i “ 0 for n ą 0.

This implies that the perturbed differential pAi on DCI consists only of the term pdM i,

which has a concrete description.

To begin, note that the map H˚pSUp2q;Rq Ñ H˚pSOp3q;Rq is an isomorphism. It will

be important in what follows to first replace ĂCI with a quasi-isomorphic complex called
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the SUp2q model. Throughout this section, in an attempt to minimize notational overload,

we write Mαβ for the compactified moduli space of framed instantons ME,z,πpα, βq for

the unique homotopy class z with

´2 ď grzpα, βq ď 5,

as we ignore all larger moduli spaces. This space can only be nonempty if that grading

is positive. Its quotient Mαβ{SOp3q is denoted simply Mαβ.

The main difficulty is that while we may define the holonomy from one point to another

as an element of SUp2q (using the Up2q-model for the configuration space and the fact

that we are only quotienting by even gauge transformations), it is not true that we can

lift the endpoint maps Mαβ Ñ α ˆ β to maps to SUp2q when α or β is irreducible.

For instance, consider the case that Mαβ is a single point and α, β are irreducible; then

Mαβ Ñ αˆβ may be identified with the diagonal which is nontrivial on π1, and therefore

cannot be lifted to codomain SUp2q ˆ SUp2q.

What we would like to do is the following. First, replace every irreducible SOp3q-orbit

α with its universal cover rα; this carries a canonical SUp2q action lifting the SOp3q action

on α. Second, replace every moduli spaceMαβ with the π1pαqˆπ1pβq cover corresponding

to the homomorphism

e˚ : π1pMαβq Ñ π1pα ˆ βq;

call this cover Mcov

αβ . This cover carries a lift to a map

Mcov

αβ Ñ rα ˆ rβ,

unique up to isomorphism. However, when β is irreducible, the fiber product

Mcov

αβ ˆrβM
cov

βγ

is not isomorphic to a boundary stratum of Mcov

αγ . For convenience of notation, call this

stratum BβM
cov

αγ . Instead, there is a canonical covering map

Mcov

αβ ˆrβM
cov

βγ Ñ BβM
cov

αγ

with fiber of cardinality |π1pβq|.
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Suppose we had some rule allowing us to identify the fundamental class (in some sense)

of a compact manifold with half of the fundamental class of its double cover. Formally,

set

M1

αβ :“
1

|π1pαq|
Mcov

αβ .

Then, given this ‘rule’, we would be able to write

M1

αβ ˆrβM
1

βγ “ BβM
1

αγ,

giving us the relation necessary to define the instanton chain complex. We therefore aim

to make this idea precise.

Recall the definition of the chain complex Cgm
˚ pα;Rq from Chapter 7.1. Whenver 2 P R

is invertible, we will construct a further quotient of this suitable to our purposes, written

Cgm,2
˚ pα;Rq. Whenever we have a basic chain given as a composite

σ1 : P 1
p
ÝÑ P

f
ÝÑ α,

where p is a covering map with fiber of order 2n, we quotient by the additional relation

rσ1s “ 2nrσs.

Because the composite of two finite covers is again a finite cover, no new additional

relations are imposed by chains of covers P 2 Ñ P 1 Ñ P that we have not already

quotiented by. The resulting chain complex is again natural under smooth maps.

A few verifications are in order, all of which are straightforward enough that we state

them without proof. First, Cgm,2
˚ pα;Rq satisfies the Eilenberg-Steenrod axioms for ad-

missible pairs, with the proof essentially unchanged from Theorem 7.1.7. Second, the

fiber product map

ˆX : Cgm
˚ pα;Rq Ñ Cgm

˚ pβ;Rq

induced by a pair of maps (with left map a submersion)

αÐ X Ñ β

descends to Cgm,2
˚ : this follows because the fiber product with a covering space is a cover

of the fiber product. Finally, the complex Cgm,2
˚ pα;Rq is still a free R-module: the set

of chains naturally forms a partiall ordered set with σ1 ě σ if σ1 covers σ with fiber of
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cardinality 2n; considering this as a graph by forgetting the direction of edges, a choice

of basic chain in each path-component of this graph gives a free generating set. Here it

was crucial that 2 is invertible in R.

Now we define the SUp2q model exactly as suggested above. As a relatively graded

Cgm
˚ pSUp2q;Rq-module, it is given by

ĂCI
SUp2q

pY,E, π;Rq “
à

αPCπ

Cgm,2
˚ prα;Rq,

and the differential is the sum of the usual boundary operator and fiber products with the

M1

αβ defined above. Note that here the formal definition given above makes sense, with

a factor of 1
2

when α – SOp3q; this means we take the usual fiber product withMcov

αβ and

then multiply by 1
2

if α – SOp3q. Because the expected decomposition of BM1

αβ holds,

this defines a chain complex (in fact, a dg-module).

Lemma 8.2.2. The projection r : Cgm
˚ pSUp2q;Rq Ñ Cgm

˚ pSOp3q;Rq induced by the stan-

dard covering homomorphism r : SUp2q Ñ SOp3q is a dg-algebra homomorphism which

is a quasi-isomorphism. There is a zig-zag of dg-module quasi-isomorphisms between ĂCI

and ĂCI
SUp2q

.

Proof. That r is a dg-algebra homomorphism follows immediately from the fact that the

corresponding map r : SUp2q Ñ SOp3q is a homomorphism of groups. To construct the

zig-zag, first consider the Cgm
˚ pSOp3q;Rq-module given by

ĂCI
1

“
à

Cgm,2
˚ pα;Rq;

the natural projection ĂCI Ñ ĂCI
1

is a module homomorphism and a quasi-isomorphism,

because it is an isomorphism on the E1 page of the corresponding index spectral sequence.

There is a map

f : ĂCI
SUp2q

Ñ ĂCI
1

,

defined as follows. If we denote πα : rα Ñ α for the covering map on each orbit, and

σ : P Ñ rα is a chain, then we set

fpσq “
1

|π1pαq|
πασ.
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The map f is clearly equivariant with respect to r. Next we should see that π gives a

chain map. Observe that if σ : P Ñ rα is a chain, then

σ ˆ
rαM

cov

αβ “ |π1α|pπασq ˆαM
cov

αβ

as chains equipped with maps to rβ; here the factor |π1α| indicates that the former is the

disjoint union of that many copies of the latter. Next, we have the canonical covering

map

pπασq ˆαM
cov

αβ Ñ pπασq ˆαMαβ,

with fibers of cardinality |π1α| ¨ |π1β|. Combining these with the definition of

M1

αβ “
1

|π1α|
Mcov

αβ ,

we have the relation

σ ˆ
rαM

1

αβ “
|π1β|

|π1α|
pπασq ˆαMαβ

as elements of Cgm,2
˚ pβ;Rq.

This is precisely the statement that f is a chain map. �

In a flagrant abuse of notation, from now on we will write rα simply as α and the new

moduli space M1

αβ simply as Mαβ, just as before, unless otherwise stated. As we will

primarly work in the SUp2q-model for the rest of this section, we hope that this will cause

no confusion, and will make the distinction clear when both moduli spaces are in play.

To define the map p, choose basepoints qα P α, with the property that each qα cor-

responding to an Up1q-reducible α has a different stabilizer, which is not the standard

Up1q.

Recall from Definition 7.1.7 and Lemma 7.1.5 that, given a countable family F of maps

from δ-chains to a space X, the geometric chain complex has a quasi-isomorphic subcom-

plex Cgm,F
˚ pX;Rq, spanned by those chains which are transverse on every stratum to the

countable family of maps. If X is an SOp3q-orbit, this is a Λpuq-invariant subcomplex,

because the evaluation map SOp3q Ñ X is a submersion. This means that the product

of any chain with the fundamental class is transverse to any element of F .

To define the map

p : Cgm,F
˚ pα;Rq Ñ H˚pα;Rq,
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take F to include the basepoint qα. In degree zero, any 0-dimensional δ-chain has an

underlying oriented point, and the projection is given by counting these with sign. In top

degree, we send a δ-chain σ : P Ñ α to the signed count #σ´1pqαq. Note that to define

the sign of this signed count, we need to choose an underlying orientation of α, which

determines the generator of Hdimαpα;Rq we should send 1 to. The homomorphism we

obtain is independent of this choice of orientation of α.

Unfortunately, the fiber products with moduli spaces do not send chains transverse to

qα to chains transverse to qβ. So this submodule of ĂCI is not a subcomplex. To fix this,

we enlarge the collection F that our chains must be transverse to.

Denote Mq

αβ for the fiber above qβ of the endpoint map

Mαβ Ñ β.

More generally, given a sequence of orbits γ1, ¨ ¨ ¨ , γn, denoteMq

α~γβ denote the fiber above

qβ of the map

Mαγ1 ˆγ1 ¨ ¨ ¨ ˆγnMγnβ Ñ β.

For the orbit α, we let the collection F consist of qα and all of the endpoint maps of

moduli spaces

Mq

α~γβ Ñ α.

Because this collection is closed under fiber products with moduli spaces on the left, the

condition of being transverse to F is preserved by dM . So for this collection F , we have

a Λpuq-subcomplex

ĂCI
F
pY,E, π;Rq Ă ĂCIpY,E, π;Rq

for which the projection map p above is defined. Running the index spectral sequence,

and using that the inclusion of Cgm,F
˚ pα;Rq Ñ Cgm

˚ pα;Rq is a quasi-isomorphism for each

orbit, we see that this subcomplex ĂCI
F

is equivariantly quasi-isomorphic to the whole

thing. Furthermore, it is a free R-submodule; its generators are precisely those generators

of ĂCI for which all strata are transverse to the given family of δ-chains.

To ensure that the image of i is in this subcomplex, we need to demand that bα is a

regular value of Mq

α~γβ Ñ α; one may symmetrically demand that qβ is the regular value

of the endpoint map from the fiber above bα. It is not difficult to ensure that the qα

satisfy this, by an application of Sard’s theorem.
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We will define the map h in the course of Lemma 8.2.4, but for intuition it is convenient

to imagine it as follows. In degrees up to dimα ´ 1, one imagines that h is given by the

‘cone to bα’ map, using stereographic projection based at qα. In degree dimα, it is chosen

arbitrarily to satisfy the requirements that

ip´ 1 “ d1h` hd1

and uh “ hu. The latter condition is automatically satisfied for degree reasons ex-

cept possibly on 0-chains on an irreducible orbit; in that case, it becomes the demand

hprSUp2qsq “ 0. In degree dimα ` 1, the map h is again zero for degree reasons.

The issue is that h, as defined here, does not preserve transversality to F (only to qα).

We will resolve this when the time comes; for now, we discuss what would happen if h

did indeed preserve transversality to F .

This is enough to apply the homological perturbation lemma and get some result,

a differential on DCIpY,E, π;Rq which is Λpuq-equivariantly homotopy equivalent to

ĂCI
F
pY,E, π;Rq. Unfortunately, the differential is still more complicated than we would

like: it takes the form

p
8
ÿ

n“0

pdMhq
ndM i,

where dM is the part of the differential coming from fiber products with moduli spaces. It

is not impossible that many components of this may be nonzero: one takes a fiber product

of the basepoint bα with some moduli space, pushes it forward to β, cones towards bβ,

takes another fiber product, and then counts intersections with bγ. One could easily

imagine that, starting and ending at irreducibles α, γ, one takes the fiber product with a

moduli space that increases the dimension by 2, cones towards bβ, and then takes a fiber

product with a 0-dimensional moduli space and gets a result that has nonzero degree

above bγ.

To resolve this, we should reduce the influence of lower-dimensional moduli spaces,

an approach suggested by [Don02, Section 7.3.2]. We will be modifying the endpoint

maps, as in the following two lemmas. The proofs are somewhat technical, and it is

not necessary to understand the arguments to read the rest of the section; we invite the

reader to skip them on a first pass.
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Lemma 8.2.3. Suppose eαβ :Mαβ Ñ αˆβ are the equivariant endpoint maps associated

to moduli spaces of instantons on a weakly admissible bundle pY,Eq with respect a fixed

perturbation π.

Suppose we choose a collection of etαβ :Mαβ Ñ αˆ β, homotopies through equivariant

maps that are smooth on each stratum, one homotopy for each pair pα, βq, so that e0
αβ “

eαβ above. Furthermore demand that these are compatible in the sense that

etαβ ˆβ e
t
βγ :Mαβ ˆβMβγ Ñ α ˆ γ

agrees with the restriction of etαγ to that stratum of Mαγ.

We may define a chain complex ĂCI tpY,E, πq, identical as a Cgm
˚ pSOp3qq-module to

ĂCI, but whose differential uses the fiber product with the same moduli spaces but endpoint

maps etαβ. Then ĂCIpY,E, πq is Λpuq-equivariantly quasi-isomorphic to ĂCI1pY,E, πq.

This lifts to an equivalence between the SUp2q-models. In fact, suppose one instead

chooses SUp2q-equivariant homotopies etαβ : M1

αβ Ñ rα ˆ rβ, which are compatible in the

sense that the restriction of etαγ to the stratum corresponding to factorizations through β

is a double cover of eαβˆrβ eβγ. Then one gets an SUp2q-equivariant homotopy equivalence

between the corresponding SUp2q-models.

Proof. We write et´ : Mαβ Ñ α to be the map παe
t
αβ; similarly with et`. Also write

C “ ĂCIpY,E, πq, and the differential corresponding to ĂCI t is given as B ` Bt, the first

term the boundary operator in the geometric chain complex and the latter term fiber

product with moduli spaces whose endpoint maps are given as et˘. In what follows, we

identify the n-simplex ∆n with the subset of r0, 1sn consisting of pt1, ¨ ¨ ¨ , tnq with ti ď ti`1

for all i.

Consider the maps Hn : C Ñ C given by

Hnpσq “
ÿ

β1,¨¨¨ ,βn

pσ ˆ∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ ˆ

tn
e´
Mβn´1βn

˘

.

Here, when we write ˆtie´ , we mean to take fiber products with respect to the maps e
ti´1

`

(which should be interpreted as σ in the case i “ 1) and eti´ over the point

pt1, ¨ ¨ ¨ , ti, ¨ ¨ ¨ , tnq P ∆n;
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the map to β is given by etn` .

The claim is that our desired chain map pC, B ` B0q Ñ pC, B ` B1q is given as f :“
ř8

n“0Hn “ Id `
ř8

n“1Hn. Because the basic chains comprising Hkpσq are of dimension

at least k (we took the product with ∆k in the process), and 5-chains on a 3-dimensional

space are degenerate, Hk “ 0 for k ą 4, and this infinite sum makes sense. The map f

is clearly Cgm
˚ pSOp3qq-equivariant, as it is defined using fiber products under equivariant

maps. If we see that f is a chain map, a quick application of the index spectral sequence

finishes the job: because f is the identity modulo higher filtration, it induces the identity

on the associated graded chain complexes (the E0 page of the index spectral sequence),

and hence f is a quasi-isomorphism. The lift to ĂCI
SUp2q

is obvious: replace H with fiber

products with the lifted moduli spaces M1
.

What remains to us is to show that f is a chain map. Let’s start by calculating

BHn ´HnB. The simplex ∆n has n` 1 boundary faces; we denote the ith boundary face

by Biσ, where 0 ď i ď n. This is the face in which ti “ ti`1 for 1 ď i ď n ´ 1; if i “ 0,

it’s the face in which t1 “ 0, and if i “ n, it’s the face in which tn “ 1.

Up to a sign, we have

pHnB ´ BHnqpσq “
ÿ

β1,¨¨¨ ,βn

pBσ ˆ∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ ˆ

tn
e´
Mβn´1βn

˘

“

n
ÿ

i“0

ÿ

β1,¨¨¨ ,βn

pσ ˆ Bi∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ ˆ

tn
e´
Mβn´1βn

˘

“

n
ÿ

i“1

ÿ

β1,¨¨¨ ,βn

pσ ˆ∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ BMβiβi`1

¨ ¨ ¨ ˆ
tn
e´
Mβn´1βn

˘

´
ÿ

β1,¨¨¨ ,βn

pBσ ˆ∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ ˆ

tn
e´
Mβn´1βn

˘

.

The first and final terms cancel. Of what remains, the first chunk of HnB´BHn cancels

with the second chunk of Hn`1B ´ BHn`1. More precisely, in the term

ÿ

β1,¨¨¨ ,βn`1

pσ ˆ Bi∆n`1
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ ˆ

tn`1
e´
Mβnβn`1

˘

,

Bi∆n`1 consists of those sequences pt1, ¨ ¨ ¨ , tn`1q so that ti “ ti`1. This term is equiv-

alent to
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ÿ

β1,¨¨¨ ,βn`1

pσ ˆ∆n
q ˆ

e
t1
´

´

Mαβ1 ˆ
t2
e´
¨ ¨ ¨

´

Mβiβi`1
ˆ
e
ti
´

Mβi`1βi`2

¯

¨ ¨ ¨ ˆ
tn`1
e´
Mβnβn`1

¯

;

instead of ti`1 in the fiber product in the middle, we have replaced it with ti “ ti`1.

Identifying Bi∆n`1 with ∆n by

pt1, ¨ ¨ ¨ , tn`1q ÞÑ pt1, ¨ ¨ ¨ , ti, ti`2, ¨ ¨ ¨ , tn`1q,

and noting that the fiber product we have pointed out in the middle is equivalent to

BMβiβi`2
(fiber products taken with respect to eti˘), we see that this is the same as

ÿ

β1,¨¨¨ ,βi,βi`2,¨¨¨ ,βn`1

pσ ˆ∆n
q ˆ

e
t1
´

`

Mαβ1 ˆ
t2
e´
¨ ¨ ¨ BMβiβi`2

¨ ¨ ¨ ˆ
tn
e´
Mβnβn`1

˘

.

Thus B
ř8

n“0Hn ´
ř8

n“0HnB is a telescoping sum, and because Hk “ 0 for k ě 5, the

leftover terms in the telescope are eventually zero, and this sum is zero, so f is a chain

map, as desired. �

To be clear, there are no transversality conditions imposed on the above chain com-

plexes. One should choose the basepoints pbα, qαq, and hence the map h, only after having

specified the endpoint maps from the moduli spaces. Now what we need is the following.

Lemma 8.2.4. We may find a coherent collection of SUp2q-equivariant homotopies et˘ :

Mαβ Ñ α ˆ β, and basepoints bα, qα, so that if dM is the map corresponding to fiber

products with moduli spaces using the time-1 maps e1
˘, and p, h are the maps in the

deformation retract data specified by the bα and qα, the map pdMhdM is identically zero.

Proof. If we write

Xαβ “ pα ˆ βq{SUp2q,

there is an induced map Mαβ Ñ Xαβ; we will soon demand that this map is constant

as much as we can force it to be. If one of the orbits (say, α) is irreducible, then

Xαβ – β; if one of the orbits is trivial, Xαβ is a point; if both α and β are Up1q-reducibles,

Xαβ – r´2, 2s.
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We induct on two different integers: the dimension i of Mαβ, and the maximal codi-

mension j of a stratum of Mαβ; of course i ě j.

We will start by explaining the argument in the case of integer homology spheres; the

Up1q-reducibles present substantial new issues that must be addressed, but the idea is

largely the same.

Let Mαβ be a moduli space without any boundary strata, and suppose both α and

β are irreducible, with dimMαβ ă 3. Using the trivialization α – SUp2q given by the

basepoint bα, the left endpoint map to α gives a trivialization

Mαβ –Mαβ ˆ SUp2q,

as well as a canonical isomorphism

α ˆ β – Xαβ ˆ SUp2q.

Therefore, an equivariant homotopy of the endpoint map is the same as choosing a ho-

motopy of the map

Mαβ Ñ Xαβ – S3.

Because S3 is 2-connected, any such map is null-homotopic; choose a homotopy taking

this map to the constant map at rbα, bβs. Do nothing to the higher-dimensional moduli

spaces, and do nothing to the moduli spaces for which one of α or β is fully reducible.

We now consider moduli spaces having at most a codimension 1 boundary stratum.

Again, we first consider the case where both α and β are irreducible. If one of these

strata corresponds to a factorization through the full reducible, then dimMαβ ą 3, and

we will not worry about it yet.

Suppose dimMαβ ă 3. We have already chosen a specified null-homotopy BMαβ Ñ

Xαβ. Again, because S3 is 2-connected and the final stage of the homotopy on the

boundary is constant at rbα, bβs, we may extend this to a null-homotopy of the entire

moduli space to rbα, bβs.

In every other case (that is, either dimMαβ ě 3 or one of α or β is fully reducible),

we take the existing homotopy of

BMαβ Ñ α ˆ β
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and use the equivariant homotopy extension property to extend it arbitrarily to the whole

of Mαβ.

Do the same for those moduli spaces of dimension 2 with codimension 2 strata (be-

tween irreducibles) and extend arbitrarily for higher-dimensional moduli spaces. Now

inductively extend the existing homotopies on all moduli spaces with strata of the same

maximal codimension j, for j ě 3.

Having done this, we choose basepoints qα in each orbit so that the mapMα~γβ Ñ αˆβ

is transverse to the orbit through pbα, qβq for all α,~γ, β, as in the setup before Lemma

8.2.3. Choose the homotopy h arbitrarily so that hprbαsq “ 0 and hprαsq “ 0; its existence

is guaranteed as i and p are quasi-isomorphisms between free R-modules whose composite

is the identity on homology. We claim that hdM i is either zero, or of dimension larger

than the orbit it lies in. This follows by a case-by-case analysis. The fiber product

bα ˆαMαβ Ñ β

is in one of the following five cases:

‚ The orbits α and β are both irreducible and dimMαβ “ 0; in this case, the fiber

product is simply some number of copies of rbβs, and applying h returns zero.

‚ The orbits α and β are both irreducible, while 0 ă dimMαβ ă 3, the fiber product

is a constant map to bα and hence a degenerate chain (its boundary is either also

small image, or its boundary is a sum of points whose signed count must be zero),

and hence zero at the chain level.

‚ The orbits α and β are both irreducible, while dimMαβ ě 3; taking the fiber

product and then applying h leaves a chain of dimension larger than β.

‚ The orbit α is fully reducible; in this case bα ˆαMαβ “ Mαβ, and hence has

dimension at least as large as β. Applying h gives a chain of dimension larger than

β.

‚ The orbit β is fully reducible; applying h to dM i gives something of dimension at

least 1, which is then automatically degenerate.
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Because the projection map p kills any chain of dimension larger than the orbit it lives

on, we see that ppdMhq
ndM i “ 0 for n ą 0, as desired. What remains of the differential

simply counts the preimages of Mαβ Ñ Xαβ above rbα, qβs.

We now discuss the changes necessary in the presence of Up1q-reducibles. The argu-

ment — crush maps down to constant maps, unless the dimensions are too large to ensure

this is possible — largely applies, until the case of moduli spaces of dimension 2 between

irreducibles α, β, with a codimension 1 stratum corresponding to factorization through a

Up1q-reducible γ. Then, applying the existing homotopies on the boundary, we find that

the stratum corresponding to that factorization is (a disjoint union of signed copies of)

Up1q, and the map from these Up1qs to β is the embedding of Up1q onto the Up1q-orbit

through bβ. This is forced on us by equivariance. We will call these moduli spaces IUI

type to indicate that they are between two irreducibles, with a stratum corresponding to

a factorization through a Up1q-reducible.

It is worth remarking that in the case of 1-dimensional moduli spaces between two

Up1q-reducibles, we need slightly more argument to see that we may homotope the end-

point maps down to the basepoint. To do this, we use that the SUp2q action on M is

free, and hence there is an isomorphismM –MˆSUp2q. BecauseM is 1-dimensional,

it is a collection of circles and arcs, and the SUp2q-equivariant null-homotopy arises from

the fact that α ˆ β – S2 ˆ S2 is simply connected.

To get around the more serious issue with 2-dimensional moduli spaces, we use h to

take something that was not previously of small image, and make it small image.

To be precise, for each irreducible orbit α, choose a disc bounding bα ¨ Up1q. Call this

disc Dα. In the above situation, what we can do is homotope this moduli space Mαβ,

relative to the boundary, so that its image lies inside the disc Dα. (Here again we use

that S2 is 2-connected.) Once we have done this for all such moduli spaces, we continue

the usual pattern of extending arbitrarily to everything whose dimension is 3 or larger.

We will continue to useMαβ to denote the moduli spaces equipped with this new family

of maps.

We will set

hpbα ¨ Up1qq “ Dα.
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For convenience, following the isomorphism α – SUp2q – S3 determined by the basepoint

bα, we demand that this is the same disc for all irreducible orbits α.

For each moduli space Mαβ of IUI type, we choose a chain σαβ with

Bσαβ “
`

bα ˆαMαβ

˘

Y nDα,

where n is the appropriate integer; that is, we choose a chain which cobounds the map

from the moduli space and the appropriate number of discs (so that their sum is null-

homologous). Furthermore, we demand that σαβ factor through the disc Dα. That we

may do all this follows because H2pD
2q “ 0. We will set

h
`

bα ˆαMαβ

˘

“ σαβ.

Lastly, we will let hpDαq “ 0.

Next, we choose the basepoints qα so that the following conditions hold. First, if

bMα~γβ is the fiber product

bα ˆαMαγ1 ˆγ1 ¨ ¨ ¨ ˆγnMγnβ,

thought of as a chain in β, we demand that qβ is a regular value of bMα~γβ.

Similarly, let DMα~γβ denote the fiber product with Dα, where α is an irreducible orbit,

and let σMα~γβ the fiber product with σξα as ξ varies. We further demand that qβ is a

regular value of these chains in β.

Now set F to consist of the chains in α given by

αÐ
`

Mα~γβ ˆβ qβ
˘

.

Then ĂCI
SUp2q,F

is a quasi-isomorphic, Λpuq-invariant subcomplex of ĂCI
SUp2q

. The first

condition above guarantees that i has image inside this subcomplex (that is, bα is trans-

verse to all of the chains in F); similarly, Dα and σξα are all transverse to F , and hence

our choice of hpbα ¨Up1qq above is valid in this subcomplex, as is our choice of h
`

bMαβ

˘

.

Additionally, we demand the conditions hprbαsq “ 0 and hprαsq “ 0. Beyond these we

extend h arbitrarily as a chain homotopy on the entire complex between ip and 1.

What remains is a case-by-case analysis that ppdMhq
ndM i “ 0 for n ą 0. Most cases

are similar (if not identical) to those discussed above in the integer homology sphere case:
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automatically zero because the moduli space itself is a degenerate chain, or automatically

zero because the dimension counts are wrong. Here we enumerate the cases that are

fundamentally new.

‚ Consider the component of pdMhdM i arising by first taking the fiber product with

a moduli space Mαβ of type IOI as above, applying h, and then taking the fiber

product with a 0-dimensional moduli space between irreducibles β, γ. The output of

hdM i here is the chain σαβ Ñ β, which is of small image; applying the appropriate

component of dM to this, we again obtain a chain of small image. Projecting, we

get zero: the intersection number of any chain of small image with a regular value

is always zero.

‚ Consider the component of pdMhdM i arising by first taking the fiber product with a

0-dimensional moduli space αÑ β, where α is Up1q-reducible and β is irreducible.

The output of hdM i is some number of copies of the disc Dβ. Suppose the moduli

space corresponding to the second factor of dM is a 1-dimensional moduli space

β Ñ γ, both orbits irreducible. Then the corresponding fiber product is degenerate:

it is of small image (its image is the image of the disc Dβ), so the corresponding

projection is zero.

‚ Consider the component pdMhdMhdM i arising nearly as above: the first dM con-

tributes a 0-dimensional moduli space α Ñ β, the next factor contributes a 0-

dimensional moduli space β Ñ γ, and the last contributes a 0-dimensional moduli

space γ Ñ δ, where all three of β, γ, δ are irreducible, while α is Up1q-reducible.

Then as above, hdM i outputs some number of copies of the disc Dβ; taking another

fiber product with a 0-dimensional moduli space outputs Dγ. Applying h to this

gives zero.

‚ Consider the component pdMhdM i arising from a 0-dimensional moduli space αÑ

β, and a 0-dimensional moduli space β Ñ γ, where α, γ are both Up1q-reducible

and β is irreducible. Because hdM i is some number of copies of the disc Dβ, and

the projection SUp2q Ñ S2 sends the disc Dβ to a class which generates the second

homology of S2, we can not rule these out in the same way as above. However, this

would imply that grpα, γq “ 3, which contradicts Proposition 7.2.1 (4), stating that
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the grading of any two reducibles is the same parity.

Thus, the basepoints q, the endpoint maps of the moduli spaces, and the homotopy h

have been chosen as desired. �

Take the complex ĂCI1pY,E, π;Rq equipped with the differential d`dM induced by the

above fiber products with moduli spaces; we described the construction of deformation

retract data

pDCI, 0q
i
ÝÑ
ÐÝ
p
pĂCI1, d` dMq⟲h

above. Applying the homological perturbation lemma, and using the fact that

pdMphdMq
ni “ 0

for n ą 0, we arrive at a chain complex pDCI, pdM iq with Λpuq-action, and an equivariant

homotopy equivalence to pĂCI1, d` dMq. We may finally describe the differential pdM i.

Denote by C irr
˚ the free R-module on the irreducible orbits α Ă Cπ (graded the same),

C
Up1q
˚ the free R-module on Up1q-reducible orbits, and Cθ

˚ the free R-module on the full

reducibles. Set

DCIpY,E, πq “ C irr
˚ ‘ C

irr
˚ r3s ‘ C

Up1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚.

As graded R-modules, DCIpY,E, πq “
À

H˚´ipαqpαq.

The differential pdM i that DCI inherits is given by the matrix

rBCI :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0 0

´UFl B1 V4 V2 D2

´V1 0 0 0 0

´V3 0 0 0 0

´D1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

(We will momentarily define the terms in this matrix.) The action of u on ĂCI is defined

by the matrix whose only nonzero term is id : C irr
˚ Ñ C irr

˚ r3s. It is easy to see that

uĂBCI “ ĂBCIu “ B1, considered as a map C irr
˚ Ñ C irr

˚´1r3s.
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As before, we denote

Mαβ “Mαβ{SUp2q;

these are the spaces of unframed flowlines between the underlying connections rαs, rβs,

having forgotten the framings. Also recall we defined Xαβ “ pα ˆ βq{SUp2q above. The

operators in this matrix all arise of the form T pαq “
ř

β npα, βqβ, where the sum is taken

over β in the right degree, and npα, βq arises either by counting points (with orientation)

in Mαβ, or degree of the map Mαβ Ñ Xαβ, as measured by the number of points lying

above rbα, qβs. We’ve chosen bα, qβ to ensure that this is a regular value (and in the case

that both α and β are Up1q-reducibles, to have different stabilizer).

‚ B1 counts points in Mαβ, when α, β are both irreducible and grpα, βq “ 1.

‚ D1 counts points inMαβ when α is irreducible, β is fully reducible, and grpα, βq “ 1.

‚ D2 counts points inMαβ when α is fully reducible, β is irreducible, and grpα, βq “ 4.

1

‚ UFl counts the number of points in the fiber above rbα, qβs of the mapMαβ Ñ Xαβ,

when α and β are both irreducible and grpα, βq “ 3.

‚ V1 counts points inMαβ when α is irreducible, β is Up1q-reducible, and grpα, βq “ 1.

‚ V2 counts points inMαβ when α is Up1q-reducible, β is irreducible, and grpα, βq “ 2.

‚ V3 counts points above rbα, qβs when α is irreducible, β is Up1q-reducible, and

grpα, βq “ 3.

‚ V4 counts points above rbα, qβs when α is Up1q-reducible, β is irreducible, and

grpα, βq “ 4.

The derivation of this matrix is relatively self-explanatory; the signs arise from the

factor p´1qdimσ`dimα in dM . The one small subtlety is why there is no matrix element

corresponding to counting points above rbα, qβs when both α, β are Up1q-reducible and

1Recall that this means thatM is of dimension dimα` grpα, βq´ 1; because α is fully reducible, this
means that M is 3-dimensional. Because the endpoint map to β is equivariant, and β is irreducible, M
is a finite set of orbits with no stabilizer, and M is 0-dimensional.
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grpα, βq “ 3. By Proposition 7.2.1 (4), this is impossible: the relative grading of reducible

connections is always even!

We summarize the result of the homological perturbation lemma discussion as follows.

Corollary 8.2.5. The R-module with differential pDCI, pdM iq described above is a dg-

module over Λpuq, and is Λpuq-equivariantly homotopy equivalent to ĂCI.

Remark 8.2.1. What we call DCI was described in [Don02, Section 7.3.3] for integer

homology spheres, with the notation ĄCF . Donaldson’s complex includes the data of the

filtration2 by degree of an element in H˚α, as well as the action of u P Λpuq. In Section

7.3.2, Donaldson introduces a method for reducing the contribution of small-dimensional

moduli spaces, so that this complex makes sense; his homotopy is an example of the many

possible homotopies we could have used above. Thus, in particular, ĂCI is equivariantly

homotopy equivalent to Donaldson’s ĄCF .

In what follows we use the complex DCI to produce small models which we write as

DCI
˘

for CI` and CI´. In the case of integer homology spheres, these are essentially

the same as what Donaldson writes CF and CF .

As described in the appendix, the reduced bar construction of an augmented dg-algebra

A and a right dg-module M is given, as a graded R-module, as

BpM,A,Rq :“
8
à

n“0

M b Ar1sn,

where A “ ker ε and ε is the augmentation. For us, A “ Λpuq, and A is just a copy of R

concentrated in degree 3. Therefore, we may write

BpM,A,Rq “
8
à

n“0

M r4ns.

We write this as M bR RrU
˚s, where |U˚| “ 4.3 The differential d` is seen to be

d`pmb pU˚qnq “ umb pU˚qn´1
` p´1qnmb pU˚qn,

2Thinking of DCI as a Z{8ˆZ-graded multicomplex with d0 “ 0, this is the filtration corresponding
to the Z factor, while ours is the periodic filtration corresponding to the Z{8 factor.

3We choose the notation U˚ here because U is reserved for the degree ´4 operation coming from
H´4pBSOp3q;Rq.
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where pU˚q´1 should be interpreted as zero. Write U`alg for the operator with

U`alg pmb pU
˚
q
n
q “ p´1qnumb pU˚qn´1;

again, this means that U`algp1q “ 0.

Now, when we apply this to a Z{8-graded module M (with finite basis of finite-

dimensional Λpuq-modules degreewise isomorphic to R) as in Section A.8, we need to

complete; in particular,

CI` “
ź

ně0

ĂCIr4ns – ĂCI pbRRrU
˚
s “ ĂCI bR RJU˚K.

The action of RrU s Ă C´Λpuq is such that U ¨ pU˚qk “ pU˚qk´1; we must restrict to this

subalgebra as the action of the entire algebra does not extend to the completion. We

denote DCI` “ C`ΛpuqpDCIq, equipped with its action of RrU˚s.

By convention, if A is an operator from one summand of DCI to another, then we use

A to also refer to the corresponding map between summands of DCI` with

Apxb pU˚qnq “ p´1qnAxb pU˚qn.

Then the differential of

DCI` –
`

C irr
˚ ‘ C

irr
˚ r3s ‘ C

Up1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

pbRRrU
˚
s

is given by the following matrix.

B
`
DCI :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0 0

U`alg ´ UFl B1 V4 V2 D2

´V1 0 0 0 0

´V3 0 0 0 0

´D1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Now we apply the following analogue of [SS10, Lemma 5] to our very similar situation.

First, observe that the map UFl ` Ualg defines an isomorphism

U˚C irr
˚ JU˚K Ñ C irr

˚ r3sJU
˚K;
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here we have used the completeness in U˚. The inverse is explicitly given by
ř

ně0 cnpU
˚qn ÞÑ

ř

ně0 dnpU
˚qn`1, where

dn “
n
ÿ

j“0

p´1qj`npn´1q{2`pn´jqpn´j´1q{2U j
Flcn´j.

We write

P`
ÿ

ně1

cnpU
˚
q
n
“

ÿ

ně0

dnpU
˚
q
n`1

for this inverse.

Consider the projection map ε1 : DCI` Ñ C irr
˚ JU˚Kr3s; we let

ε “ pε1, ε1B
`
q : DCI` Ñ C irr

˚ JU˚Kr3s ‘ C irr
˚ JU˚Kr2s.

The codomain is given the differential

¨

˚

˚

˚

˝

0 1

0 0

˛

‹

‹

‹

‚

, and ε is a chain map; in fact, it is

surjective, as px, yq is in the image of pP`py ´ B1xq, xq P DCI
`. As the codomain is

acyclic, inclusion kerpεq Ñ DCI` is a quasi-isomorphism.

Write

DCI
`
“ C irr

˚ ‘
`

CUp1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

bR RJU˚K

as a graded R-module. There is also a projection π : DCI` Ñ DCI
`

, and the composite

πi : ker εÑ DCI
`

is an isomorphism of R-modules. We wish to describe the differential

(and U -action) on DCI
`

, pulling back via this isomorphism. The differential is written

pπiqB`pπiq´1, and similarly U -map (whose degree is ´4) is pπiqUpπiq´1.

Explicitly, pπiq´1x is the unique element y P DCI` so that neither y nor B`y have

components in C irr
˚ JU˚Kr3s. If

x “ px0, x1, x2, x3q P C
irr
˚ ‘

`

CUp1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

bR RJU˚K,

then

piπq´1
pxq “ px0 ´ P

`
p´UFlx0 ` V4x1 ` V2x2 `D2x3q, 0, x1, x2, x3q P

`

C irr
˚ ‘ C

irr
˚ r3s ‘ C

Up1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

RJU˚K.

Applying B`, projecting onto DCI
`

, and using that B1P
`x is in kerpεq, we find that the

desired matrix is
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B
`

DCI :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0

´V1P
`UFl ´ V1 V1P

`V4 V1P
`V2 V1P

`D2

´V3P
`UFl ´ V3 V3P

`V4 V3P
`V2 V3P

`D2

´D1P
`UFl ´D1 D1P

`V4 D1P
`V2 D1P

`D2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

A remarkable number of these terms are zero for degree reasons. Recall from Proposi-

tion 5.5.12 that the relative grading of any pair of reducible orbits is even. Now, Di and

Vi have degree of the same parity as i, and all terms in the infinite sum P`x have the

same grading as x modulo 4; therefore the entries not in the left column are all of odd

degree, and hence identically zero! Therefore, we have

B
`

DCI “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0

´V1P
`UFl ´ V1 0 0 0

´V3P
`UFl ´ V3 0 0 0

´D1P
`UFl ´D1 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Similarly, the action of U P H´4pBSOp3q;Rq was previously contraction against U˚;

using U " to denote contraction by U , the action U on DCI
`

is given by
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

UFl ´V4 ´V2 ´D2

0 U " 0 0

0 0 U " 0

0 0 0 U "

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In the case that Y is an integer homology sphere and Q Ă R, up to a change of

basis (just a scaling of each coordinate) the chain complex DCI
`
pY ;Rq is identical as a

U -module to Donaldson’s CF pY ;Rq.

Now we may write

DCI´ “
`

C irr
˚ ‘ C

irr
˚ r3s ‘ C

Up1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

rU s,
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with differential

B
´
DCI :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0 0

U´alg ´ UFl B1 V4 V2 D2

´V1 0 0 0 0

´V3 0 0 0 0

´D1 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Unlike in the case of DCI`, the operators B1, Vi, Di do not pick up an extra sign when

acting on CrU s. For x P C irr
˚ , we define the operator

U´algpxb U
k
q “ p´1q|x|`kxb Uk`1

P C irr
˚ r3srU s;

this is the only sign in the above differential hidden in the notation.

Now

UFl ` U
´
alg : C irr

˚ rU s Ñ
`

C irr
˚ r3s

˘

rU s
L

p1 ¨ C irr
˚ r3sq

is an isomorphism; it is crucial here that we are working with a polynomial ring and not

a power series ring. The inverse, P´, is given on a basis element by

P´pxb Un`1
q “

n
ÿ

i“0

p´1qspn,i,|x|qUn´i
Fl xb U i,

where the exponent spn, i, |x|q “ npn` 1q{2´ ipi´ 1q{2` pn´ i` 1q|x| ` pn´ iq.

Now we follow [SS10] more closely, and instead of taking the kernel of a map to an

acyclic complex, we quotient by an acyclic subcomplex. The subcomplex Z is spanned

by C irr
˚ JUK and its image under B´DCI , which is an injective map. The quotient DCI´{Z

remains a U -module. If we set

DCI
´
“ C irr

˚ r3s ‘
`

CUp1q
˚ ‘ CUp1q

˚ r2s ‘ Cθ
˚

˘

bR RrU s

we have a natural inclusion map i : DCI
´

ãÑ DCI´ so that the composite

πi : DCI
´
Ñ DCI´{Z

is an isomorphism. As above, we may compute the induced differential as
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B
´

DCI “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 V4 ` UFl pP
´V4qU“0 V2 ` UFl pP

´V2qU“0 D2 ` UFl pP
´D2qU“0

0 V1P
´V4 V1P

´V2 V1P
´D2

0 V3P
´V4 V3P

´V2 V3P
´D2

0 D1P
´V4 D1P

´V2 D1P
´D2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Here the term V4 in the topmost row, and similarly with V2 and D2 in that same row,

denotes the composite

CUp1q
˚ rU s

U“0
ÝÝÑ CUp1q

˚

V4
ÝÑ C irr

˚ r3s;

in the bottom right 3 ˆ 3 block matrix, there is no projection component to the terms

V4, V2, or D2. When we write for instance pP´V4qU“0, we mean the composite

CUp1q
˚ rU s

P´V4
ÝÝÝÑ C irr

˚ r3srU s
U“0
ÝÝÑ C irr

˚ r3s :

that is, apply P´V4 then project to the constant term.

Again, most of these terms are zero for degree reasons, and we may in fact write

B
´

DCI “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 V4 ` UFl pP
´V4qU“0 V2 ` UFl pP

´V2qU“0 D2 ` UFl pP
´D2qU“0

0 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Finally, the action of U is given on DCI
´

by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p´1q|x|`1UFl 0 0 0

p´1q|x|`1V1 U ! 0 0

p´1q|x|`1V3 0 U ! 0

p´1q|x|`1D1 0 0 U !

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Again, when Y is an integer homology sphere and Q Ă R, the chain complexDCI
`
pY ;Rq

is identical as a U -module to Donaldson’s CF pY ;Rq up to scaling of basis.
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When pY,Eq is equipped with an admissible bundle, there are no reducible connections;

in this case, the equivalence of CI`pY,E;Rq with DCI
`
pY,E;Rq as a RrU s-module (and

the same for the minus flavor) immediately gives is the following.

Corollary 8.2.6. When 1
2
P R, the equivalence I˘pY,Eq – IpY,Eq for an admissible

bundle pY,Eq takes the U-map to the U-map up to sign.

8.3 Instanton Tate homology

We have the following theorems for Tate homology. Fix a ground ring R with 1
2
P

R; then we have a canonical isomorphism H´

SOp3qpRq – RrU s and a quasi-isomorphism

C˚pSOp3q;Rq » Λpuq :“ Λ, where Λpuq denotes the exterior algebra on a degree 3

generator u.

Proposition 8.3.1. The action of U˚ is an isomorphism on I8pY,E;Rq. In fact, the

map I´pY,E;Rq Ñ I8pY,E;Rq may be identified with the localization

I´pY,E;Rq Ñ I´pY,E;Rq bRrUs RrU,U
´1K;

even more explicitly, we may identify the map CI´pY,E;Rq Ñ CI8pY,E;Rq on the chain

level using the reduced Donaldson model as

DCI
´
pY,E;Rq Ñ DCI

´
pY,E;Rq bRrUs RrU,U

´1K.

Proof. We follow much the same lines as in Proposition A.4.2 in the Z-graded case, and

work with the Donaldson model DCI
´

. First, to see that the action of U on I8 is

invertible, we look at the spectral sequence corresponding to the index filtration of CI8.

The E1 page is identified with a direct sum of copies of

H8
Λ pΛq, H

8
Λ pR ‘Rr2sq, and H8

SOp3qpRq;

the first corresponds to irreducible orbits, the second corresponds to SOp2q-reducibles

and is just a sum of two copies of H8
Λ pRq, and the last corresponds to full reducibles. In

all cases, the action of U is an isomorphism on each factor: that the first group is zero

is one of the axioms of Tate homology, and that the second two have invertible U action

is precisely the calculation of Lemma A.4.1. Because the index filtration is complete, a
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map which is an isomorphism on the E1 page is an isomorphism on homology, and so the

action of U is invertible in I8pY,E;Rq.

Given a map f : M ÑM of degree k of a dg-module, there is a definition given before

Proposition A.4.2 of a chain complex M rf´1s; it is the mapping cone of M rts
1´tf
ÝÝÝÑM rts,

where |t| “ ´k. This is defined so that

HpM rf´1
sq “ HpMqrf´1

s,

the latter notation meaning the usual module-theoretic sense of inverting an element or

map.

If one applies this to define CI8pY,E;RqrU´1s, one finds that the index filtration is

no longer complete, even though the index filtration is complete on CI8. One may then

pass to the completion of CI8pY,E;RqrU´1s; this is the filtered complex that the spectral

sequence actually computes the homology of (and the E1 pages of the spectral sequence

for a filtered complex and its completion are the same). Precisely, if FsM is a filtered

complex, the completion is

xM “ limpÑ8M{F´pM.

We write this completion as CI8pY,E;Rq{rU´1s. There is a natural map

CI8pY,E;Rq Ñ CI8pY,E;Rq{rU´1s

which we know to be an isomorphism on the E1 page, because the action of U˚ is an

isomorphism on the E1 page of CI8pY,E;Rq.

Because completion is natural, we have maps

CI´pY,E;Rq{rU´1s Ñ CI8pY,E;Rq{rU´1s;

again, the computations of Lemma A.4.1 imply that this is an isomorphism on the E1

page, and because these filtrations are complete, the same is true at the level of homology.

To conclude we need to find a quasi-isomorphism

CI´pY,E;Rq{rU´1s » DCI
´
pY,E;Rq bRrUs RrU,U

´1K.

This follows again via naturality of completion: there is a canonical map

DCI
´
pY,E;RqrU´1

s Ñ DCI
´
pY,E;Rq bRrUs RrU,U

´1
s
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of filtered complexes for which the filtration is not complete (remember that the first term

is defined to be the mapping cone of a certain map on DCI´rts). The same argument as

before shows this map is an isomorphism on the E1 page, so the corresponding map on

completions

DCI
´
pY,E;Rq{rU´1s Ñ DCI

´
pY,E;RqpbRrUsRrU,U

´1
s

is a quasi-isomorphism. We conclude by observing that we may explicitly identify the

completion as

DCI
´
pY,E;RqpbRrUsRrU,U

´1
s “ DCI

´
pY,E;Rq bRrUs RrU,U

´1K,

using the fact that DCI
´

is a finite direct sum of copies of R and RrU s. �

Corollary 8.3.2. Let pY,Eq be a rational homology 3-sphere with Up2q-bundle and sig-

nature data, and write c “ c1pEq P H
2pY ;Zq. Then there is a natural Z{2-graded iso-

morphism

I8pY,Eq – RrU1{2, U´1{2KbRrZ{2s RrH2Y s.

Here the first term is Laurent series in U´1{2, and the action of Z{2 is p´1q ¨ Uk{2 “

p´1qkUk{2, while the action on RrH2Y s is given by p´1q ¨ erxs “ erc´xs.

Proof. This is immediate from the computation of the differential on DCI
´

in the pre-

vious section: there is no component of the differential going from the reducible part of

DCI
´

back to itself. At the same time, the reducible part is the only thing that survives

to DCI
´
bRrUs RrU,U

´1K. Therefore the differential on this is identically zero, and the

graded group

DCI
´
bRrUs RrU,U

´1K

itself calculates the Tate homology.

What we see, then, is that I8pY,E;Rq is a direct sum of copies of RrU,U´1K, one

for each full reducible and two for each SOp2q-reducible (one of the copies shifted up by

2). Now, the content of Proposition 7.2.1 (2) is that pairs tz1, z2u with z1 ` z2 “ c and

z1 ‰ z2 are in bijection with the SOp2q-reducible critical orbits, and that the pairs with

z1 “ z2 are in bijection with the full reducibles.

We choose the perturbation to be small enough so that this enumeration of reducible

flat connections holds.
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Contributing two copies of RrU,U´1K, one shifted up by degree 2, is equivalent to

contributing a single copy of

RrU1{2, U´1{2K “ RrU,U´1K‘ U´1{2RrU,U´1K,

recalling here that |U´1{2| “ 2.

The description in the corollary arises from the observation that we may give this a

more succinct description, only in terms of the cohomology group H2pY q and the class

c1E. The point is that

RrU1{2, U´1{2KbRrZ{2s RrH2Y s

may be described explicitly: for a pair tz1, z2u with z1`z2 “ c and z1 ‰ z2, the involution

swaps the two corresponding copies of RrU1{2, U´1{2K, and therefore in the quotient we

have identified these two towers; so we have a copy of RrU1{2, U´1{2K for each such pair.

If, on the other hand, z1 “ z2, the action identifies

Uk{2
b erz1s „ p´1qkUk{2

b erc´z1s “ p´1qkUk{2
b erz1s.

Because 2 is invertible in R, we see that this kills precisely the terms of the form Uk{2;

so such a pair contributes a copy of RrU,U´1K.

This is precisely the description given above as

DCI
´
pY,E, π;Rq bRrUs RrU,U

´1K.

�

8.4 Examples of the I‚ and the index spectral sequence

Example 8.4.1. Let Y “ S3 equipped with the trivial bundle. Then ĂCIpY ;Rq “ R con-

centrated in degree 0. Therefore, CI`pS3;Rq is given as the completion Ĉ˚pBSOp3q;Rq.

Recall that this means that for i P Z{8, we have

ĈipBSOp3q;Rq “
ź

ZQjě0
j”i mod 8

CjpBSOp3q;Rq.

Therefore, we have

I`˚ pS
3;Rq – Ĥ˚pBSOp3q;Rq.
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Similarly,

I´˚ pS
3;Rq – H´˚

fin pBSOp3q;Rq,

meaning that we take cohomology classes which correspond to functionals of finite sup-

port; that is, we do not complete in the direction of negative degrees:

H´i
fin pBSOp3q;Rq “

à ZQjě0
j”i mod 8H

´j
pBSOp3q;Rq.

Finally, as graded R-modules we have

I8pS3;Rq “ Ĥ˚pBSOp3q;Rqr3s ‘H
´˚
fin pBSOp3q;Rq.

The calculations of these groups, and their module structures, is given in Example A.7.1

for 1
2
P R and R “ Z{2.

We are presented with a dichotomy. When 1
2
P R, we see that

I`pS3;Rq – RJU´1K,

I´pS3;Rq – RrU s

I8pS3;Rq – RrU,U´1K,

all as RrU s-modules; this periodicity calculation in Tate homology is the content of

Lemma A.4.1, and the other two are straightforward calculations using the definitions of

bar and cobar constructions.

However, when 2 is not invertible, we do not have such a periodicity. The most

dramatic case is when R “ Z{2; in that case,

I`pS3;Rq “ pZ{2qJw˚2 , w˚3K,

and

I´pS3;Rq “ pZ{2qrw2, w3s.

Then I8pS3;Rq looks like a ‘bi-infinite cone’: the Tate homology H8
SOp3qpZ{2q has rank

growing roughly linearly in the degree |k|. In fact, the action of H´˚
fin pBSOp3q;Z{2q on

Ĥ˚pBSOp3q;Z{2q Ă H8
SOp3qpZ{2q
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is nilpotent on each element, as opposed to having an element that induces a periodicity

isomorphism I8pS3q Ñ I8pS3q!

This suggests that in the case of R “ Z{2, it would be more appropriate to local-

ize ĂCIpBSOp3q;Z{2q to some specific exterior algebra Λpu1q or Λpu2q in C˚pSOp3q;F2q.

Mostly we will content ourselves with the case 1
2
P R.

Example 8.4.2. If p ą q are coprime integers (not necessarily prime), let Lpp, qq be the

lens space, which by our convention is the quotient of S3 by the Z{p action generated by

r1s ¨ pz, wq “ pe2π{pz, e2qπ{pwq.

First, we work with the trivial Up2q-bundle; the set of critical orbits now correspond

to

Hompπ1, SUp2qq{„ “ HompZ{p, SUp2qq{„,

where the equivalence elation is conjugacy in SUp2q. Because Z{p is abelian, and si-

multaneously commuting matrices are simultaneously diagonalizable, this is the same as

HompZ{p, S1q{conj; here conj is complex conjugation. Identify HompZ{p, S1q with the

pth roots of unity, and hence with Z{p again after fixing the generator e2πi{p; thus re-

ducibles correspond to pZ{pq{ ˘ 1 “ r0, p{2s, and full reducibles — those fixed by the

conjugation action, which is ˘1 on Z{p — correspond to r0s for any p and rp{2s when p

is even. The SOp2q-reducibles correspond to 0 ă i ă p{2. Finally, 0 corresponds to the

trivial connection.

Austin calculates in [Aus90] the expected dimension of the different components of

the moduli space of unframed instantons (before quotienting by the translation action)

between two flat connections on Lpp, qq, and in particular the expected dimension of

MpLpp, qq, 0, iq; the expected dimension of ourMpLpp, qq, θ, αiq is dimSOp3q´dimR “ 2

dimensions larger; the index grpαiq “ grpθ, αiq differs from this dimension by subtracting

dimαi and adding 1. Thus we should add either 3 or 1 to Austin’s result; we add 3 in

the case that i is either r0s or rp{2s, and we add 1 otherwise. Set εpiq “ 1 if 0 ă i ă p{2

and εp0q “ εpp{2q “ 0, and write 0 ă q1 ă p for the unique integer with qq1 “ ap` 1.

Then the grading function δpp, q, iq “ grpLpp, qq, iq P Z{8 is given by

δpp, q, iq “
8i2q1

p
´ εpiq `

2

p

p´1
ÿ

j“1

cot

ˆ

jπ

p

˙

cot

ˆ

jqπ

p

˙

sin2

ˆ

2iπ

p

˙

pmod 8q.
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Sasahira [Sas13, Corollary 5.3] has given formulas for the δpp, q, iq in terms of counting

solutions to congruences.

A few observations about this complicated-looking function are in order:

‚ We have δpp, q, 0q “ 0, as we should.

‚ If p is even, δpp, q, p{2q “ 4q ¨ p
2
; because q1 must be odd, δp4k, q, 2kq “ 0 and

δp4k ` 2, q, 2k ` 1q “ 4.

‚ Because the sum only depends on q’s value modulo p, and cot is odd, when 0 ă i ă

p{2 we have δpp, q, iq “ ´δpp, p´ q, iq ´ 2. The factor of ´2 comes from ´2εpiq. It

is trivially true by the above calculations that δpp, q, iq “ ´δpp, p´ q, iq when i “ 0

or p{2.

‚ As Austin observes, δpp, q, iq is even for all i.

‚ If qq1 “ ap` 1, then δpp, q, qiq “ δpp, q1, iq. Here we are considering d as a function

from the integers, but notice that δpp, q, iq “ ´δpp, q, iq and δpp, q, i`pq “ δpp, q, iq.

Then the claimed equality follows because the summation in δpp, q1, iq is just the

summation in δpp, q, qiq, but with index jq1 instead of j; as ˆq1 : ppZ{pqz0q Ñ

ppZ{pqz0q is a bijection, and j’s value modulo p is all that’s relevant, the sum is

therefore the same.

It seems plausible that δpp, q, kiq “ δpp, q1, iq for all i iff k “ 1 and q1 “ q or k “ q and

q1 “ q´1 pmod pq; calculation shows that this is true at least for p ď 15. This would be

consistent with the classification of lens spaces up to oriented homeomorphism. However,

we do not know a proof.

As for the differential, we saw in Lemma 8.2.3 that if we coherently homotope the

endpoint maps of the compactified moduli spaces, the resulting chain complex is quasi-

isomorphic to the original. The discussion following that ensures that between reducible

orbits α and β, the endpoint maps may be chosen so that the corresponding fiber product

maps ˆαMαβ are identically zero on the chain level. While Lemma 8.2.4 proved this for

the SUp2q-model (which may only be applied for coefficient rings with 1
2
P R), this passage

to a double cover is only necessary for the argument when considering the irredicuble

orbits; here, we have none.
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Thus, as a dg Cgm
˚ pSOp3qq-module, and with Lpp, qq equipped with the trivial SOp3q-

bundle, we see that we have a quasi-isomorphism

ĂCIpLpp, qq;Rq »

$

’

&

’

%

R ‘
tp{2u

i“1 C˚pS
2;Rqrδpp, q, iqs p odd

R ‘
p{2´1
i“1 C˚pS

2;Rqrδpp, q, iqs ‘Rrδpp, q, p{2qs else

Thus to write down I‚ (where ‚ “ `,´,8) we use Theorem A.7.6, which says that the

equivariant homology groups of an orbit are given by the homology groups of the stabilizer

(with a degree shift) as long as the stablizer is connected. So to take I‚, we replace every

appearance of C˚pS
2;Rq with H‚

SOp2qpRq, with a degree shift of 2 if ‚ P t´,8u, and

every appearance of Rrds with H‚
SOp3qpRqrds. When 1

2
P R, we have isomorphisms as

RrU s “ H´

SOp3qpRq-modules

H`

SOp2qpRq – RrU1{2, U´1{2K
L

U1{2RrU1{2
s

H´

SOp2qpRq – RrU1{2
s

H8
SOp2qpRq – RrU1{2, U´1{2K

If p is even, Lpp, qq carries a unique nontrivial SOp3q-bundle; choose a lift of this to

a Up2q-bundle. We can identify the classes now with ta ` ξu{ ˘ 1, where ξ P Z{p is a

choice of odd number (the choice of Up2q lift). This, then, may be identified with the

odd numbers in Z{2p modulo ˘1; no points are fixed, so all are SOp2q-reducibles. So we

label the reducibles by i “ 1, 3, ¨ ¨ ¨ , p ´ 1; there are p{2 of them. Their relative grading

is also given in [Aus90], now as

δpp, q, i, i1q “
2pi2 ´ pi1q2qq1

p
´ 3`

2

p

p´1
ÿ

i“1

cot

ˆ

πj

p

˙

cot

ˆ

jπ

p

˙

cot

ˆ

jqπ

p

˙ˆ

sin2

ˆ

i1π

p

˙

´ sin2

ˆ

iπ

p

˙˙

pmod 8q.

Again, this is always even.

The result is here independent of the choice of Up2q-lift of the underlying SOp3q-

bundle because there are no differentials, and thus we may ignore the orientation of the

moduli spaces; in fact, we expect this in general (up to noncanonical isomorphism, the

noncanonicity coming from sign choices).
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Example 8.4.3. Suppose Y is an integer homology sphere and E is the trivial bundle. We

may use the results of Chapter 8.2 to determine the index spectral sequences explicitly.

We write CIpY q for the chain complex pC irr
˚ , B1q, Floer’s original chain complex for

integer homology spheres. Donaldson introduced in [Don02, Section 7.1] the complex

CIpY q, given as C irr
˚ ‘R with differential

B “

¨

˚

˚

˚

˝

B1 0

D1 0

˛

‹

‹

‹

‚

.

Corollary 8.2.5 shows that there is an equivariant filtered homotopy equivalence ĂCIpY q »

DCIpY q, and so to investigate the index spectral sequence computing Ĩ, we may do the

same for the index spectral sequence on the finite-dimensional complex DCIpY q.

We consider DCIpY q; this is, as an R-module, CIpY q‘CIpY qr3s‘R, with differential
¨

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0

´UFl B1 D2

´D1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

The differential splits as d1 ` d4 into pieces which decrease the filtration the corre-

sponding amount;

d1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0

0 B1 0

´D1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

and d4 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0

´UFl 0 D2

0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the E2 page of the index spectral sequence for DCIpY q is

pDCIpY q, d1q “ CIpY q ‘ CIpY qr3s ‘R,

and so the E3 page is IpY q ‘ IpY qr3s. The matrix d4 defines a chain map

pU,D2q : CIpY q Ñ CIpY qr3s;

writing the induced map f : IpY q Ñ IpY q, we see that the E5 page is

pIpY q ‘ IpY qr3s, fq.
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Therefore, the E6 page (and all successiave pages, for degree reasons) is kerpfq‘cokerpfq.

If R is a field, there is nothing left to say; there are no extension problems to resolve,

and rIpY q – kerpfq ‘ cokerpfq.

Now consider the CI` spectral sequence by passing through DCI
`

. The complex

DCI
`

is, as a graded R-module, given by CIpY q ‘ RJU˚K, where |U˚| “ 4, and the

differential is given by
¨

˚

˚

˚

˝

´B1 0

´D1 ´D1P
`UFl 0

˛

‹

‹

‹

‚

,

where recall that by definition when x P CIpY q, we have

P`x “
ÿ

iě0

p´1qipi`1q{2U i
FlxpU

˚
q
i`1.

A similar definition with slightly different signs remains true for

x P CIpY qr3s b pU˚qk.

We decompose this differential as d1 ` d5 ` d9 ` ¨ ¨ ¨ , where d1 “

¨

˚

˚

˚

˝

´B1 0

´D1 0

˛

‹

‹

‹

‚

and

d4i`1x “

¨

˚

˚

˚

˝

0 0

p´1q1`ipi´1q{2D1U
i
Flxb pU

˚qi 0

˛

‹

‹

‹

‚

.

The sign discrepancy arises from the definition D1px b pU
˚qkq “ p´1qkD1x b pU

˚qk.

Now this is a multicomplex in the sense of Wall, and we may identify the E2 page as

I ‘ U˚RJU˚K.

The map d5 defines a homomorphism I Ñ U˚R; write I2 for its kernel. Inductively,

there is a homomorphism

d4k`1 : Ik Ñ pU˚qkR,

and we write its kernel as Ik`1. We may identify the q “ 0 line in E4k´2 page with Ik

(identifying the successive differentials with zig-zags of the differentials d4k`1, and using
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that any compositions of the differentials are zero). In particular, we identify the q “ 0

line in the E8 page with

I8 “
č

kerpD1U
k
Flq Ă I.

A similar discussion presents itself for the CI´ spectral sequence, passing through

DCI
´

. As a graded R-module,

DCI
˘
pY,Eq “ CIpY,Eqr3s ‘RrU s;

thinking of an element of RrU s as a polynomial f , we write fk for the coefficient of Uk;

this has differential

B
´
“

¨

˚

˚

˚

˝

B1 D2f0 ´
ř

kě1p´1qkpk´1q{2Uk
FlD2fk

0 0

˛

‹

‹

‹

‚

.

The top-right term means that B
´
p1q “ D21 and

B
´
pUk

q “ ´p´1qkpk´1q{2Uk
FlD2p1q.

As before, we may split this into pieces d1 ` d5 ` d9 ` ¨ ¨ ¨ . The E1 page is given as

CIr3s ‘R with differential
¨

˚

˚

˚

˝

´B1 D2

0 0

˛

‹

‹

‹

‚

,

which (shifted by 3 and with a sign change) Donaldson calls CIpY q. The homology,

written I, is the q “ 0 page of this spectral sequence. The differential d5 (which is,

up to sign, UFlD2) determines a homomorphism R Ñ I; its cokernel might be written

Ip2q, and may be identified with the E6 page. Inductively, the differential d4k`1 defines a

homomorphism R Ñ Ipkq, and its cokernel is written Ipk`1q, and may be identified with

the E4k`2 page.

If Λ is the exterior algebra on a generator of degree 3, the norm map is an isomorphism

H`
Λ pΛqr3s Ñ H´

Λ pΛq

(as a corollary of item (4) of Theorem A.3.3), and is zero for H`
Λ pRqr3s Ñ H´

Λ pRq for

degree reasons: the former is supported in degrees no less than 3, and the latter is

supported in nonpositive degrees.

266



Therefore, the induced map of the norm map on the E1 page of the I` and I´ spectral

sequences is the identity on C irr
˚ , and zero on RJU˚K. We thus identify the image Ip8q Ñ

Ip8q as the quotient group Ip8q{xU
i
FlD2, 1y, the second term in the quotient generating

the reducible piece of Ip8q. This4 is Frøyshov’s reduced Floer group pI; the first hints

of this were introduced in the dα homomorphisms of [Frø95] and used to introduce the

h-invariant in [Frø02].

Example 8.4.4. For the sake of compactness of notation, we write Rn in this example

to mean Rrns (a copy of R in degree n), and similarly for bigradings Rp,q. Let us see

the above in practice in the explicit case of Σp2, 3, 5q. In this case, we have a reducible

generator of ĂCI in degree 0, as well as an irreducible generator in each pair of degrees

p1, 4q and p5, 0q, with the action of u sending the lower degree generator to the generator

3 degrees larger. So as a u-module our complex is given as

R0 ‘ pR1 ‘R4q ‘ pR5 ‘R0q “ R0 ‘ pR1 ‘R5q b Λpuq.

For degree reasons, B1 “ 0, as is D2 : ĂCI0 Ñ ĂCI7. Through either the beautiful and

explicit calculations of moduli spaces in [Aus95] or the general theory of [Frø02]5, we may

identify that the map D1 : ĂCI1 Ñ ĂCI0 is the identity map RÑ R, while UFl : ĂCI1 Ñ ĂCI0

and UFl : ĂCI5 Ñ ĂCI4 are multiplication by one of ˘8.

The E1 page of the above spectral sequence is R0,0 ‘ R1,0 ‘ R1,3 ‘ R5,0 ‘ R5,3, with

multiplication-by-u map taking us up 3 vertical degrees. The differential d1 comprises

only the map D1, and therefore is the identity R1,0 Ñ R0,0.

The E2 page is therefore given by R1,3 ‘ R5,0 ‘ R5,3. There are no differentials until

the E5 page, where the next differential is UFl : R5,0 Ñ R1,3, which we know to be

multiplication-by-8. Since we are working over a ground ring with 1
2
P R, we see that

E8pĂCIpΣp2, 3, 5qq “ R5,3;

because there can be no extension problems,

rIpΣp2, 3, 5qq “ R0,

4Despite the choice of notation, these groups are not related to the Tate homology groups.

5Note that Frøyshov works in cohomology, while we work in homology.
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with trivial multiplication-by-u map.

For the CI` spectral sequence, instead we start with E1 page equal to

R0,0JU˚K‘R1,0 ‘R5,0,

where |U˚| “ p0, 4q. Then our first differential d1 is given as the identity map R1,0 Ñ R0,0;

the E5 page is then identified with R0,4JU˚K ‘ R5,0. We may identify the differential d5

with the multiplication-by-8 map R5,0 Ñ R0,4. The E6 page, then, is simply R0,8JU˚K,

and there are no further differentials. As this is concentrated in a single vertical line,

there are no extension problems, and we see

I`pΣp2, 3, 5q;Rq – pU˚q2RJU˚K,

with U -action given by contraction against U˚. It is clear from this that the above

‘reduced group’ is

pIpΣp2, 3, 5qq “ 0.

In the CI´ spectral sequence, on the other hand, all differentials past the E2 page are

identically zero, as they factor through the map D2. In fact,

I´pΣp2, 3, 5q;Rq – DCI
´
pΣp2, 3, 5qq “ R0rU s ‘ pR4 ‘R0q

as a chain complex; by the formula for the U -map from Chapter 8.2, which includes a

term corresponding to D1, we see that the U -action is given by

U ¨ pUk, x, yq “ pUk`1
`D1x, 0, 0q.

Therefore we may write I´pΣp2, 3, 5q;Rq – R4rU s ‘R0 as a U -module, where |U | “ ´4,

identifying 1 P R0rU s with D1x, where x P R4 is a generator.

8.5 Orientation reversal and equivariant cohomology

For a dg-A-module M equipped with a periodic filtration whose associated graded com-

plex is bounded, we defined equivariant ‚-homology chain complexes C‚GpMq, with an

action of the ring C´GpRq “ HomfinpC
`
GpRq, Rq, the negative chains of finite support.

We define the corresponding ‚-cohomology, written CG
‚ pMq, to be

HompC‚GpMq, Rq,
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the literal dual of C‚G. We then define the instanton ‚-cohomology, I˚‚ , to be H
SOp3q
‚ pĂCIq,

where precisely by SOp3q we mean the dg-algebra Cgm
˚ pSOp3q;Rq. We have the following

duality theorem.

Theorem 8.5.1. Let 1
2
P R. There is a canonical isomorphism of Λpuq-modules rIpY,Eq –

rI˚pY ,Eq, and furthermore canonical isomorphisms of

H´˚pBSOp3q;Rq “ RrU s-modules

I`˚ pY,Eq – I˚´pY ,Eq

I´˚ pY,Eq – I˚`pY ,Eq

I8˚ pY,Eq – I˚8pY ,Eq,

Proof. We will show that DCIpY q_ is isomorphic, as a Λpuq-module, to DCIpY q. This

implies the rest of the results, as one may check that at the level of C´A -modules, we have
`

C`A pDq
˘_
“ C´A pD

_q as well as
`

C´A pDq
˘_
“ C`A pD

_q. These equalities preserve the

norm map, so we get the same result for Tate homology.

Before doing this calculation, recall that if D is a chain complex, its dual D_ has the

differential δf “ p´1q|f |`1fd. This is isomorphic as an A-module to the chain complex

with δf “ fd, with isomorphism given by f ÞÑ p´1q|f |p|f |`1q{2f . (Observe that this makes

sense for any chain complex graded over Z{4N for any integer N ě 0.) In what follows,

we will use the second differential on the dual.

Recall the definition of the chain complex

DCIpY q “ C irr
˚ pY q ‘ C

irr
˚ pY qr3s ‘ C

Up1q
˚ pY q ‘ CUp1q

˚ pY qr2s ‘ Cθ
˚pY q

stated before Corollary 8.2.5. Passing to the dual (and slightly rewriting), we obtain

DCIpY q_ “ C irr
´˚´3pY q ‘ C

irr
´˚´3pY qr3s ‘ C

Up1q
´˚´2pY q ‘ C

Up1q
´˚´2pY qr2s ‘ C

θ
´˚pY q,
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with differential

ĂBCI
_

:“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´B1 0 0 0 0

´UFl ´B1 V3 V1 D1

´V2 0 0 0 0

´V4 0 0 0 0

´D2 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Now if π is a regular perturbation on Y , then the same perturbation is regular on Y .

Using the time-reversal symmetry R ˆ Y – R ˆ Y , if A is a connection on the latter

going from critical orbits α to β, then it is sent to a connection A going from β to α on

R ˆ Y ; in particular, the indices of the corresponding deformation operators are equal:

indpQν
A,πq “ indpQν

A,π
q. Recalling the definition of grading from Definition 5.2.1, we see

that

grY pα, βq ` pdimα ´ dim βq “ grY pβ, αq.

In particular, if β is the trivial connection, we see that iY pαq “ ´iY pαq ´ dimα. Thus

the graded basis for DCIpY q_ described above is precisely a graded basis for DCIpY q.

Furthermore, this time-reversal symmetry gives isomorphisms

MY,zpα, βq –MY ,´zpβ, αq.

Following this isomorphism, we may use the same coherent family of homotopies to define

DCIpY q as for DCIpY q. Once we do this, we have equalities of the operators

D1pY q “ D2pY q,

V1pY q “ V2pY q,

V3pY q “ V4pY q,

UFlpY q “ UFlpY q.

Therefore the isomorphism of graded vector spaces DCIpY q_ – DCIpY q described

above, which also preserves the Λpuq-action, is in fact an isomorphism of chain complexes.

�
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Remark 8.5.1. While this theorem is surely true for arbitrary principal ideal domains R,

there are technical obstructions in proving it. One natural idea is to try to construct an

equivariant pairing ĂCI˚pY q b ĂCI˚pY q Ñ R, or at least a pairing on a quasi-isomorphism

Cgm
˚ pSOp3q;Rq-submodule of that tensor product (one defined by the demand that the

chains intersect transversely, as in [McC06]). To do this, one needs to be able to put

a module structure on the tensor product. If A is a dg-algebra and we wish to endow

the category of A-modules with a tensor product structure, we require a comultiplication

∆ : A Ñ A b A. While this is easy in the model of C˚pSOp3q;Rq with simplicial chains

(given by the Alexander-Whitney map), it seems unlikely this is possible for Cgm
˚ pSOp3qq;

we have no way to cut a δ-chain into canonical pieces. Perhaps a modification of this

model exists that admits the structure of a bialgebra (or even a Hopf algebra), but this

is not clear to the author.

A more straightforward approach is to extend the Donaldson model to work with

arbitrary principal ideal domains R, where instead of C˚pSOp3q;Rq » Λpuq, one would

instead use C˚pSOp3q;Rq » A, where A is a dg-algebra with a generator ai in each degree

0 ď i ď 3, with the relations

dpa2q “ 2a1, a
2
1 “ 0, and a1a2 “ a3.

We expect that the above proof then generalizes easily, but we leave the details to an

interested reader.
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APPENDIX A

Equivariant homology of dg-modules

Let G be a finite group acting on a topological space X. We may define its equivariant

(co)homology as the (co)homology of the Borel space pXˆEGq{G. An algebraic approach

to this construction, which works more generally for any ZrGs-module, replaces C˚pXq

with a resolution in the category of chain complexes over ZrGs, takes the quotient by

ZrGs, and then computes the homology (or cohomology) of its totalization.

We will want a generalization of this process that will work for compact Lie groups G

in some sense “acting on a chain complex” C, which gives equivariant (co)homology in the

case of G acting on C˚pXq. We model this by considering dg-modules over the dg algebra

C˚pGq. After that, we will describe the dual homology theory, called coBorel homology,

and a homology theory called Tate homology that compares the two. Our approach

to the Borel/bar and coBorel/cobar constructions are strongly inspired by [GM74] and

[BMR14], while the approach to Tate homology is essentially that of [Kle02].

We conclude with a discussion of extensions to the case of complexes graded over

Z{2N , equipped with an appropriate object called a periodic filtration, which will be

used in the main body of the text to define the equivariant instanton invariants.

A.1 Bar constructions

We begin by fixing conventions. From here onwards, R is a principal ideal domain (PID)

which will serve as the ground ring of all of our chain complexes.

A Z{2N -graded chain complex of R-modules, for N ě 0, is a collection of R-modules

Ca, indexed by i P Z{2N , equipped with an R-linear map di : Ci Ñ Ci´1 so that the

composite di´1di : Ci Ñ Ci´2 is zero. The tensor product of Z{2N -graded chain complexes
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C and D is

pC bDqn “
à

i`j“n

Ci bDj,

with differential acting on ab b P Ci bDj as

dpab bq “ pdaq b b` p´1qiab pdbq

and swap isomorphism

τpab bq “ p´1q|a||b|pbb aq.

Here it is necessary that we use Z{2N as opposed to some odd order finite ring, so that

there is a reduction map Z{2N Ñ Z{2.

We will introduce the basic constructions for modules over a differential graded algebra

that we use to define the various flavors of equivariant homology.

Let A be a homologically graded unital dg-algebra (over the ground ring R); so A is

a Z-graded chain complex of R-modules whose product satisfies the graded Leibniz rule

dpabq “ dpaqb ` p´1q|a|adpbq. Furthermore, assume A has an augmentation ε : A Ñ R

with εp1q “ 1; then we may identify

kerpεq “ A{x1y “: A,

and give R the natural structure of an A (bi)-module. In a differential graded left A-

module N , the same Leibniz rule must hold and the unit should act by the identity; for

right A-modules M , the sign in the Leibniz rule uses the grading of N instead of the

grading of A.

Definition A.1.1. The (two-sided) bar construction BpM,A,Nq is the totalization of

the resolution

M bN ÐM b AbN ÐM b A
b2
bN Ð ¨ ¨ ¨

So as a graded module,

BpM,A,Nq “ ‘8n“0M b Ar1sbn bN.

where Ak “ Ar1sk`1. Writing a generic tensor proudct as m ra1 | ¨ ¨ ¨ | aksn where possibly
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k “ 0, its differential is given as

p´1qkdmra1, | ¨ ¨ ¨ | aksn

`

k
ÿ

i“1

p´1qk`|m|`εi´1m ra1 | ¨ ¨ ¨ | dai | ¨ ¨ ¨ | aksn` p´1q|m|`εkm ra1 | ¨ ¨ ¨ | aks dn

`ma1ra2 | ¨ ¨ ¨ | aksn

`

k´1
ÿ

i“1

p´1qim ra1 | ¨ ¨ ¨ | aiai`1 | aksn` p´1qkm ra1 | ¨ ¨ ¨ | ak´1s akn

Here εi “ |a1| ` ¨ ¨ ¨ ` |ai| ` i.

These sign conventions are those of [GM74]. Gugenheim and May define TorApM,Nq for

arbitrary pairs of dg-modules over a dga; their Corollary A.9 shows that

TorA˚ pM,Nq “ H˚BpM,A,Nq

as long as M , A, and N satisfy appropriate flatness hypotheses. We will state, and then

assume, the relevant hypotheses shortly; they are there to ensure that BpM,A,Nq takes

quasi-isomorphisms to quasi-isomorphisms.

Most of the time we are interested in the special case BpM,A,Rq. If one thinks of

A “ C˚pGq as the canonical dg-algebra of interest, acting on the module C˚pXq for some

G-space X, then BpM,A,Rq models the Borel construction, also known as the ‘homotopy

quotient’,

MhG “M ˆG EG.

Note that whenever akn appears in the differential above, this term is zero, as ak P A “

kerpεq, acting on n P R via the augmentation ε.

The bar construction is functorial (as an A-module) under maps

f : AÑ A1, g : M ÑM 1, h : N Ñ N 1

with gpmaq “ gpmqfpaq and similarly for h. It is also functorial under homotopies of such

maps. Most commonly one either fixes the modules or A when using this functoriality;

for a map of triples

pM,A,Nq Ñ pM 1, A,1N 1
q,
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the corresponding map of bar constructions factors as

BpM,A,Nq Ñ BpM 1, A,N 1
q Ñ BpM 1, A1, N 1

q.

There is a canonical map, natural in pM,A,Nq,

BpM,A,Nq Ñ BpM,A,Rq bBpR,A,Nq (A.1)

given as

mra1 | ¨ ¨ ¨ | aksn ÞÑ
k
ÿ

i“0

p´1qpk´iqp|m|`εiqmra1 | ¨ ¨ ¨ | ais b rai`1 | ¨ ¨ ¨ | aksn.

This endows BA :“ BpR,A,Rq with the structure of a coalgebra, and BpM,A,Rq the

structure of a right BA-comodule.

Definition A.1.2. The cobar construction of pN,A,Mq, where A is a dg-algebra and

both N and M are right A-modules, is the chain complex

cBpN,A,Mq “ HomApBpN,A,Aq,Mq.

This, too, is a special case Gugenheim and May’s constructions; now we have

H˚cBpN,A,Mq “ Ext´˚A pN,Mq

under suitable projectivity hypotheses. We will primarily be interested in the case N “ R.

For concreteness, we note that cBpN,A,Mq is isomorphic as a graded R-module to

8
ź

i“0

N bNHomRpAr1s
bi,Mq “ HomRpN bBA,Mq,

graded so that |a| ` |η| “ |ηpaq|. This is the negative of the usual grading (which

would make HomRpC,Dq into a cochain complex); for M bounded and A nonnegatively

graded, the chain complex we define here is bounded above but unbounded in the negative

direction! Passing through the above isomorphism, the differential of an element η :

BpN,A,Rq ÑM of degree d is given as

pdηqpnra1| ¨ ¨ ¨ |apsq “ dMpηpnra1| ¨ ¨ ¨ |apsqq ´ p´1qdη
`

dBpN,A,Rqnra1| ¨ ¨ ¨ |aps
˘

´ p´1qd`pηpnra1| ¨ ¨ ¨ |ap´1sqap.
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The cobar construction is functorial for triples pM,A,Nq; it is covariant in M , but

contravariant in A and N . The equivariance condition on morphisms is that we demand

f : A1 Ñ A and g : M Ñ M 1 satisfy gpmfpa1qq “ gpmqa1; the condition on A and N is

the usual, that hpn1a1q “ hpn1qfpa1q.

Dual to equation (A.1),

cBpR,A,Rq “ HomRpBA,Rq

is naturally an algebra. The chain complex cBpR,A,Mq is naturally a left module over

this algebra, following the diagram

HomRpBpR,A,Rq,Mq b HomApBpR,A,Aq,Mq

Ñ HomApBpR,A,Rq bBpR,A,Aq,Mq Ñ HomApBpR,A,Aq,Mq “ cBpR,A,Mq.

Here the final map is dual to the BA-comodule structure on BpR,A,Aq; note that the

map BpR,A,Aq Ñ BpR,A,Rq b BpR,A,Aq is a map of right A-modules, so it makes

sense to apply HomA to this map.

Finally, observe that BpM,A,Rq is a left module over cBpR,A,Rq, by applying the

comodule structure and then the pairing. In the following map, we suggestively rewrite

cBpR,A,Rq “ BA_:

BA_ bBpM,A,Rq
1b∆
ÝÝÝÑ BA_ bBpM,A,Rq bBA

τb1
ÝÝÑ BpM,A,Rq bBA_ bBA

1beval
ÝÝÝÝÑ BpM,A,Rq.

The map ∆ is the comodule structure and τ is the swap map xb y ÞÑ p´1q|x||y|y b x.

Here, and elsewhere in this text, we write M_ for an R-module M to be its dual as an

R-module, HomRpM,Rq; if M was a right A-module, then M_ carries the structure of a

left A-module by paηqpmq “ ηpmaq.

A.2 Invariance

Suppose we have a map of pairs pM,A,Nq Ñ pM 1, A1, N 1q as above inducing a map

BpM,A,Nq Ñ BpM 1, A1, N 1q. When is the induced map an isomorphism on homology?

Because the bar construction is functorial under homotopies, this is true if the map of
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triples is a homotopy equivalence (of triples). More generally, we have the following

theorem. These flatness restrictions are harmless for most purposes in topology and for

use in this paper, but indicate that the approach taken here is too naive for general

modules over a dga. See also [BMR14, Proposition 10.18], where BpM,A,Nq is shown

to be a quasi-isomorphism invariant under quasi-isomorphisms of A-modules that are

homotopy equivalences of R-modules. This result, and much of [GM74], is put into the

powerful general framework of model categories, but which we will not need here.

Theorem A.2.1. Suppose we have a map of triples

pg, f, hq : pM,A,Nq Ñ pM 1, A1, N 1
q

so that f , g and h all induce isomorphisms on homology (from here on we will say

“are quasi-isomorphisms”). Suppose further that N,N 1, A and A
1

are flat (as graded R-

modules). Then the induced map BpM,A,Nq Ñ BpM 1, A1, N 1q is a quasi-isomorphism.

Note in particular that we may take N “ R in the above theorem. A similar result is

true of cBpN,A,Mq (making slightly stronger assumptions).

Theorem A.2.2. Suppose M,N are A-modules and N,N 1 are A1-modules. Let

f : A1 Ñ A, g : M ÑM 1 h : N 1
Ñ N

be quasi-isomorphisms that are equivariant in the sense that

gpmfpa1qq “ gpmqa1 and hpn1a1q “ hpn1qfpa1q.

If all of A, A1, N and N 1 are R-free, then cBpN,A,Mq Ñ cBpN 1, A1,M 1q is a quasi-

isomorphism.

These theorems are proved by appealing to natural spectral sequences associated to the

bar and cobar constructions. Now, and later in this appendix, it’s useful to use Board-

man’s language of strongly convergent and conditionally convergent spectral sequences

from [Boa99]. We have slightly different assumptions and indexing than Boardman, cho-

sen to fit with our preference for homological gradings.

Definition A.2.1. Suppose C is a chain complex equipped with an increasing (possibly

unbounded) filtration

¨ ¨ ¨ Ă FpC Ă ¨ ¨ ¨ Ă C.
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We will call this a ‘filtered complex’. If
Ť

p FpC “ C, then we say that F‚C is an exhaus-

tive filtration. We say that the filtration is Hausdorff if
Ş

p FpC “ 0 and complete if the

map C Ñ limpC{F´pC is an isomorphism. We say that the associated spectral sequence

Er converges conditionally to H˚C if the filtration H˚pFpCq of H˚pCq is complete and

Hausdorff. We say that it converges strongly to H˚C if furthermore we have isomor-

phisms E8p,q – grpHp`qC, where grpM for a filtered module M , we write the associated

graded module

grpM “ FpM{Fp´1M.

We will only ever care about filtrations that are exhaustive and complete Hausdorff

(but it is still important to check these conditions). Completeness in particular is often

subtle and delicate.

Conditional convergence does not promise us that we can calculate H˚C from the

E8 page, but it is both quite powerful and quite flexible. Its relevance comes from the

following proposition ([Boa99, Theorems 8.2-8.3]):

Proposition A.2.3. Suppose we have exhaustive filtered complexes C and C 1 such that

associated spectral sequences converge conditionally to H˚C and H˚C
1. If f : C Ñ C 1

is a map of filtered complexes inducing an isomorphism on some finite page ErpF˚Cq Ñ

ErpF˚C
1q, then f is a quasi-isomorphism. There are invariants RE8 and W pEq of

conditionally convergent spectral sequences so that if RE8 “ W pEq “ 0, then the spectral

sequence converges strongly.

If E is a half-plane spectral sequence, then W pEq “ 0. If there are only finitely many

differentials leaving a given Es,t, then RE8 “ 0. If E degenerates on some finite page,

then both RE8 “ W pEq “ 0.

So even though we may not be able to use the E8 page of a conditionally convergent

spectral sequence to calculate homology, we can still use it to detect quasi-isomorphisms.

To apply this, we will make frequent use of [Boa99, Theorems 9.2-9.3], which show that

conditionally convergent spectral sequences are relatively common:

Proposition A.2.4. If C is a filtered complex whose filtration is exhaustive and complete

Hausdorff, then the associated spectral sequence, whose E1 page given by HpFpC{Fp`1Cq,
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is conditionally convergent to H˚pCq. If the filtration of C is not exhaustive, complete,

or Hausdorff, the associated spectral sequence instead converges conditionally to Ĉ “

limp colims FsC{F´pC.

If the filtration is bounded below, it is automatically both complete and Hausdorff; if it

is bounded above, it is automatically exhaustive. Another situation that frequently arises

is that the filtration is the totalization of a multicomplex ; in this case, the completion is

easy to describe. We state the definition here (first appearing in [Wal61]).

Definition A.2.2. A multicomplex is a bigraded R-module Ms,t with differentials dr :

Ms,t ÑMs´r,t`r´1 for r ě 0 so that

ÿ

i`j“n

didj “ 0.

The associated (completed) filtered complex is the subcomplex

Ĉn “
ź

sÑ´8

Ms,n´s Ă
ź

sPZ

Mn,n´s

consisting of those sequences pxsq with xs “ 0 for sufficiently large s. (That is to say, the

product is only taken in the negative direction.) The differential is given as
ř

rě0 dr.

Proposition A.2.5. The completed complex Ĉ of a multicomplex M is complete Haus-

dorff, and we can identify the E1 page of the associated (conditionally converging) spectral

sequence with HpM,d0q equipped with the differential Hpd1q.

These tools in hand, we can prove the two invariance results we need.

Proof of Theorem A.1. Filter BpM,A,Nq by

FpBpM,A,Nq “M b

´

‘
p
i“0A

bi
bN

¯

.

Then we calculate the E1 page of the associated spectral sequence as the (bigraded)

complex

HpM bNq Ð HpM b AbNq Ð ¨ ¨ ¨

Because the map BpM,A,Nq Ñ BpM 1, A1, N 1q preserves the filtration, it induces a map

of spectral sequences; if the maps

HpM b A
bi
bNq Ñ HpM 1

b A
1bi
bN 1

q
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are isomorphisms, then we would have proved that Bpg, f, hq induces an isomorphism on

the E1 page and hence all pages of the spectral sequence.

We prove this fact inductively on the number of tensor factors.

Lemma A.2.6. If F : X Ñ X 1 is a quasi-isomorphism of degreewise R-flat complexes,

and G : Y Ñ Y 1 is a quasi-isomorphism of arbitrary complexes, then F b G : X b Y Ñ

X 1 b Y 1 is a quasi-isomorphism.

This follows immediately from comparing the short exact sequences (which exist be-

cause X, X 1 are degreewise flat)

0 Ñ
à

p`q“n

HppXq bHqpY q Ñ HnpX b Y q Ñ
à

p`q“n´1

TorpHpX,HqY q Ñ 0,

because the outside terms only depend on HX and HY . This is where we need R to

be a PID; otherwise we would need to apply the Kunneth spectral sequence, and would

need boundedness assumptions. One may use the spectral sequence argument to extend

this result to Dedekind domains, as in [KM95, Lemma 2.2].

The filtration of BpM,A,Nq is trivially complete and Hausdorff, as F´1 “ 0. It is

exhaustive because the infinite direct sum is the union of its finite direct summands.

Because N,N 1, A, and A
1

are degreewise R-flat, we have Bpg, f, hq is an isomorphism

on the E2 pages. Because the filtration is bounded below, the spectral sequences converge

strongly by Proposition A.2.4 and thus Bpg, f, hq is a quasi-isomorphism by Proposition

A.2.3. �

Proof of Theorem A.2. Now the filtration is

F´pcBpN,A,Mq “ HomApBpN,A,Aq{FpBpN,A,Aq,Mq;

that is, it consists of those functionals that vanish on FpBpN,A,Aq. Let us abbrevi-

ate BpN,A,Aq “: B. This filtration is now bounded above, and thus is automatically

exhaustive. Note that the intersection

lim
´p

HomApB{Fp,Mq “ HomApcolimpB{Fp,Mq.

The colimit is an exact functor, so

colimpB{Fp “ B{colimpFp “ B{B “ 0,
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because the filtration of B was exhaustive, and thus the filtration is Hausdorff. Now,

the short exact sequence 0 Ñ Fp Ñ B Ñ B{Fp Ñ 0 is split as A-modules (not dg),

identifying B{Fp with the summand ‘iąpN b A
bi
b A (but ignoring the differential).

This implies that

HomApB,Mq
L

HomApB{Fp,Mq – HomApFp,Mq

as R-modules (Hom takes split exact sequences to split exact sequences). Applying

lim HomApB,Mq
L

HomApB{Fp,Mq – lim HomApFp,Mq

“ HomApcolimFp,Mq “ HomApB,Mq,

we see that the filtration is complete (the last equality because the filtration on B was

exhaustive).

Using the isomorphism of cBpN,A,Mq as a graded R-module to HompN b BA,Mq,

we identify the E1 page as the totalization of the double complex

H
`

HomRpN,Mq
˘

Ñ H
`

HomRpN b A,Mq
˘

Ñ ¨ ¨ ¨

We need to see that HompN b A
bi
,Mq Ñ HompN 1 b A

1bi
,M 1q is a quasi-isomorphism

for all i; then the theorem will be proved. We write this as a lemma: the only property

we will use is that N bA
bi

is free for any i (a tensor product of free modules is free). �

Lemma A.2.7. If X and X 1 are R-free, and F : X 1 Ñ X is a quasi-isomorphism, then

for any quasi-isomorphism G : Y Ñ Y 1, the induced map HomRpX, Y q Ñ HomRpX
1, Y 1q

is a quasi-isomorphism.

Proof. When both X and dpXq Ă X are complexes of projective modules, we have a

natural Kunneth short exact sequence

0 Ñ
ź

p`q“n´1

Ext1
pHpX,H´qY q Ñ H´nHompX, Y q Ñ

ź

p`q“n

HompHpX,H´qXq Ñ 0;

from this the theorem is clear, as long as every submodule dpXq of a free module of

arbitrary rank is free; this is true for PIDs. For the statement of the Kunneth theorem

and that submodules of free modules are projective (and hence free, as projective modules

over a PID are free), see [Wei95, Exercises 3.6.1-3.6.2]. �
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We will often be interested in thinking of one-variable versions of the bar and cobar

constructions as providing homology theories for A-modules; we will introduce new no-

tation for the sake of compactness. Our notation is chosen to fit with both [Jon87] and

[OS04].

Definition A.2.3. Suppose that A is an augmented dg-algebra with each An free over R,

and M a right A-module. We define the positive and negative A-chains on M to be

C`A pMq :“ BpM,A,Rq

C´A pMq :“ cBpR,A,Mq.

The homology of C`A pMq is denoted H`
A pMq, the (Borel, or positive) A-homology of M ,

while the homology of C´A pMq is denoted H´
A pMq, the coBorel (or negative) A-homology

of M .

Note that both C`A pMq and C´A pMq are covariant in M ! When A is clear and we are

not interested in varying it, we omit it from the notation.

In the Z{2N graded setting will need versions of these invariance results for the com-

pleted bar constructions and the finitely supported cobar constructions. By the nature of

these completions, the spectral sequence arguments no longer work (the filtrations will

fail to either be exhaustive or complete, respectively), and so we are left with significantly

weaker results. They will, however, be enough for us.

Definition A.2.4. Let A be a dg-algebra, and let M be a right A-module. If N is a left

A-module, the completed bar construction B̂pM,A,Nq is given as

8
ź

i“0

M b Ābi bN,

with differential defined by the same formula as before, which extends to the completion

because every term sends an element of Bi “ M b A
bi
b N to either Bi or Bi´1. If N

is a right A-module, the finitely supported cobar construction xcBpN,A,Mq is given as

Homfin
A pBpN,A,Aq,Mq, the set of those A-equivariant maps which vanish on

à

iěk

M b Ābi bN

for some sufficiently large k.
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Essentially, what we need is the following.

Lemma A.2.8. Suppose pg, f, hq : pM,A,Nq Ñ pM 1, A1, N 1q satisfy the conditions of

Theorem A.2.1, and additionally, suppose that the algebras A, A1 are supported in non-

negative degrees, and all of M,M 1, N,N 1 are bounded below. Then

´

B̂pM,A,Nq
¯

k
“ BpM,A,Nqk;

in particular, the induced map B̂pg, f, hq is a quasi-isomorphism.

This is self-evident: if M and N are supported in degrees above m and n, respectively,

then M b Ābi bN is supported in degrees above m` i` n. So elements of B̂pM,A,Nq

in any fixed degree k in fact lie in BpM,A,Nq.

We have the dual assertion for the cobar construction.

Lemma A.2.9. Suppose pg, f, hq : pM 1, A1, Nq Ñ pM,A,N 1q satisfy the conditions of

Theorem A.2.1, and additionally, suppose that the algebras A, A1 are supported in non-

negative degrees, the modules N,N 1 are bounded below, and M,M 1 are bounded above.

Then
´

xcBpN,A,Mq
¯

k
“ cBpN,A,Mqk;

in particular, the induced map xcBph, f, gq is a quasi-isomorphism.

Here, because N is bounded below (by degree, say, n) and A is concentrated in non-

negative degrees, we see that
À

iěkN bAr1s
bibA is supported in degrees at least n` k.

So an element of cBpN,A,Mq of degree d is a map BpN,A,Aq Ñ M which sends an

element of
à

iěk

N b Ar1sbi b A

to some Mp, where n` k ´ d ď p. Because M is bounded above, as k increases without

bound, we see that the target of such a map is zero. So any element of cBpN,A,Mq is

finitely supported in the above sense.

A.3 The dualizing complex and Tate homology

Tate homology, constructed in this section for dg-modules over a dg-algebra and written

as H8
A pMq, has appeared in the literature in many forms. Our approach here is essentially

283



a chain-level interpretation of [Kle02] (which was written in the context of Tate homology

of G-spectra). Tate homology may be viewed, in some sense, as the homology theory that

arises when you kill off free objects. The classic reference to Tate homology of spectra

is [GM95]; we warn that if X is a G-space, our H8
C˚pGq

pC˚pXq;Rq is more analogous

to what they would call tHR^GpHRqpXq, not tGpHRqpXq. (We are ‘chainifying’ the

group from the start as well.) The idea of Tate homology is beautifully developed in

an abstract homotopical setting in [Gre01], which surely includes as a special case the

content of this section. A recent approach to Tate homology of G-spectra via localization

of p8, 1q-categories appears in [NS17]; this level of abstraction has the advantage of giving

multiplicativity and uniqueness results that are not as easily available otherwise (in some

cases, not available at all).

We take our current approach as it seems to minimize input energy, at the cost perhaps

of some conceptual clarity and multiplicativity results (we do not construct a product on

C8A pRq, for instance).

Because A is a left A-module, the complex cBpR,A,Aq “ C´A pAq inherits the structure

of a left A-module, by paηqprb1 | ¨ ¨ ¨ | bnsbq “ a ¨ ηprb1 | ¨ ¨ ¨ | bnsbq.

Definition A.3.1. The dualizing complex DA of a degreewise R-free dg-algebra A is the

left A-module C´A pAq.

Definition A.3.2. Let A be a degreewise R-free dg-algebra and M a left A-module. The

map

NM : BpM,A,DAq Ñ C´A pMq

given by

NM pmra1 | ¨ ¨ ¨ | aksψq “

$

’

&

’

%

0 k ą 0

m ¨ ψ k “ 0

is called the norm map of M . The product m ¨ψ makes ψ into an M-valued functional by

using the fact that ψ is A-valued and M is a right A-module. The mapping cone of NM

is denoted C8A pMq, the Tate complex of M . Its homology is the Tate homology H8
A pMq

of M .

The following is important enough to record as a lemma.
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Lemma A.3.1. DA is degreewise R-flat.

Proof. Recall that

DA “ cBpR,A,Aq “
8
ź

i“0

pA
_
q
bi
b A;

A is degreewise R-free, and in particular torsion-free. Because R is a PID, R-flatness is

equivalent to (R-) torsion-freeness. Duals of torsion-free modules are torsion-free, sums

of torsion-free modules are torsion free, and products of torsion-free modules are torsion-

free, so cBpR,A,Aq is degreewise torsion-free, and hence degreewise flat. �

To justify the name “Tate homology”, we show that this satisfies part of the cor-

responding versions of Klein’s axioms defining Tate cohomology [Kle02], skipping the

complete verification that H8
A and H pBp´, A,DAqq are homology theories: the remain-

ing axioms state that these preserve homotopy pullbacks and filtered homotopy colimits.

These are not hard to verify, but we will not use them.

Theorem A.3.2. The functor C8A pMq from left A-modules to chain complexes satisfies

Klein’s four axioms specifying the Tate homology of M :

1. C8A pMq preserves weak equivalences;

2. H8
A pX b Aq “ 0, where X is a chain complex and the right A-module structure is

given by acting on A;

3. There is a map C´A pMq Ñ C8A pMq, natural in M , whose homotopy fiber preserves

weak equivalences.

Proof. It follows from Theorem A.2.1 that BpM,A,DAq preserves weak equivalences in

M , because by Lemma A.3.1 above, DA is flat. The Tate complex is the mapping cone

(homotopy cofiber) of NM : BpM,A,DAq Ñ C´˚ pMq, and both the domain and the

codomain of the norm map preserve weak equivalences, so C8˚ pMq does as well. This is

Axiom 1.

For Axiom 2, note that

BpX b A,A,DAq – X bBpA,A,DAq.
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Then the norm map is identified with the projection X b BpA,A,DAq Ñ X bDA; but

BpA,A,Nq Ñ N is a homotopy equivalence for any left A-module N , so the mapping

cone of the norm map is contractible.

The first part of Axiom 3 is obvious (it is the inclusion into a mapping cone), and the

second part almost so: the homotopy fiber = mapping cocone is naturally equivalent to

BpM,A,DAq. �

We henceforth write H`,tw
A pMq for HpBpM,A,DAqq, and call it the twisted Borel

homology. We will investigate its relationship to H`
A pMq later.

We won’t prove Klein’s uniqueness theorem that these axioms do uniquely characterize

Tate cohomology, but rather use it as motivation that we have the correct definition. (It

seems likely that some variation of his argument works in this context.)

In addition to the above, it is important to observe that there is a natural left action of

C´A pRq on DA, and hence on BpM,A,DAq; the norm map NM is easily seen to be C´A pRq-

equivariant. Therefore, the mapping cone inherits the structure of a left C´A pRq-module,

and the natural map C´A pMq Ñ C8A pMq is a module homomorphism.

The following theorem summarizes everything we’ve assembled about the three A-

homology functors H`,tw, H´, H8.

Theorem A.3.3. Let A be a dg-algebra over a commutative PID R which is (R´) flat

in each degree An. There are functors

H`,tw
A pMq, H´

A pMq H
8
A pMq,

from dg A-modules to graded R-modules, satisfying the following properties.

1. The functors send short exact sequences of A-modules to exact triangles and preserve

weak equivalences.

2. H´
A pRq is a ring, and each of these homology theories carry a natural left module

structure over H´
A pRq.

3. There is an exact triangle of H´
A pRq-modules

H`,tw
A pMq Ñ H´

A pMq Ñ H8
A pMq

r´1s
ÝÝÑ H`,tw

A pMq Ñ ¨ ¨ ¨
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4. H8
A pX bAq “ 0 when X is a chain complex and X bA is given the canonical right

action.

We state an invariance theorem for equivariant homology with respect to quasi-isomorphic

dgas.

Proposition A.3.4. Suppose f : A Ñ A1 is a quasi-isomorphism of algebras, each

degreewise free over R. This induces a functor F : ModA1 Ñ ModA via restriction of

scalars, and there are natural isomorphisms H‚
ApFMq

–
ÝÑ H‚

A1pMq, for the homology

theories ‚ P tp`, twq,´,8u. These natural isomorphisms induce an H´
A pRq-equivariant

natural isomorphism of exact triangles.

Proof. The fact that cBpR,A,Mq Ð cBpR,A1,Mq is a quasi-isomorphism is Theorem

A.2.2; for that reason, the maps

DA “ cBpR,A,Aq Ñ cBpR,A,A1q Ð cBpR,A1, A1q “ DA1

are quasi-isomorphisms. This is the crucial place we need A and A1 to be degreewise free.

To make the diagrams smaller, let us write

BA “ BpDA, A, FMq,

cBA “ C´A pFMq “ HomApBpA,A,Rq, FMq,

B1 “ BpC´A pA
1
q, A1,Mq.

Then the induced maps on bar constructions BA Ñ B1 Ð BA1 are quasi-isomorphisms by

Theorem A.2.1, using that DA, C´A pA
1q, and DA1 are all flat R-modules, which is Lemma

A.3.1.

Comparing the Tate homology groups is more complicated. The following diagram

commutes, which is an easy check left to the reader.

BA B1 BA1

cBA cBB

CpNAq CpN 1q CpNA1q

NA
N 1

NA1
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Here N 1 : HomApBpA,A,Rq, A
1q bA1 BpA

1, A1,Mq Ñ HomApBpA,A,Rq,M
1q is obtained

from the projection map BpA1, A1,Mq ÑM . The maps in the bottom row are the natural

maps induced on a cone, and we denote the norm maps NA and NA1 instead of the usual

NM to reflect the different choice of algebra M is a module over.

Because all of the maps in the top two rows are quasi-isomorphisms, the maps on the

bottom row are also quasi-isomorphisms by an application of the five lemma. In particu-

lar, inverting the bottom-right quasi-isomorphism on homology, we have an isomorphism

H8
A pFMq Ñ H8

A1pMq.

All of the maps in this diagram are module homomorphisms with respect to either

C´A pRq or C´A1pRq, as appropriate; this implies that the isomorphisms on homology are

H´
A pRq-equivariant. �

In what follows we briefly describe the completed version of Tate homology and its

comparatively weak invariance properties. The finitely supported dualizing complex, pDA,

is precisely

xcBpR,A,Aq “ Homfin
A pBpR,A,Aq, Aq.

As before, there is a natural map pB
´

M,A, D̂A

¯

Ñ xcBpR,A,Mq; we write Ĉ8A pMq for

its mapping cone, and (for now) call this the completed Tate homology.

To begin with, we can compare pDA and pDA1 , using Lemma A.2.9.

Lemma A.3.5. Suppose we are given a quasi-isomorphism f : AÑ A1 of nonnegatively

graded, R-free, and bounded above dg-algebras A,A1. Then

pDA Ñ xcBpR,A,A1q Ð pDA1

is a zig-zag of quasi-isomorphisms.

To compare the completed versions of the twisted Borel homology, we need a more

subtle argument, as follows. We allow to vary the dg-algebra involved in the dualizing

complex to make use of the zig-zag above.

Lemma A.3.6. Suppose A and A1 are non-negatively graded, R-free, and bounded above.

Let f : A Ñ A1 be a dg-algebra quasi-isomorphism, and f : M Ñ M 1 be a quasi-
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isomorphism of bounded below right A1-modules (thought of also as A-modules by restric-

tion of scalars), then the maps

pBpM,A, pDAq Ñ pB
`

M,A,xcBpR,A,A1q
˘

Ð pBpM,A, pDA1q Ñ pBpM 1, A1, pDA1q

are all quasi-isomorphisms.

Proof. All of these will fall prey to the same argument, so we investigate the leftmost one

in particular.

The right A-module B̂pR,A,Aq (which agrees with BpR,A,Aq by Lemma A.2.8) is

the increasing union of the bounded subcomplexes

BďkpR,A,Aq “
k
à

i“0

Ar1sbi b A;

this stabilizes in each degree for some finite k (but this k “ kpiq depends on the degree, and

may be arbitrarily large). Here we used that A is bounded to see that these subcomplexes

are bounded. Therefore there is also a sequence of bounded quotient complexes

xcB
ďk
pR,A,Aq “ Homfin

A

`

BďkpR,A,Aq, A
˘

,

and similarly with xcB
ďk
pA,A1q. We have

lim
k

xcB
ďk
pR,A,Aq “ xcBpR,A,Aq,

and this limit stabilizes degreewise at some finite k (again k depending on the degree).

Further, observe that the map xcB
ďk
pR,A,Aq Ñ xcB

ďk
pR,A,A1q is a quasi-isomorphism

by the argument of Theorem A.2.2; now the filtration used there is finite.

Now pBpM,A, pDďkA q and pB
´

M,A,xcB
ďk
pR,A,A1q

¯

both satisfy the conditions of Lemma

A.2.8, so the map

pBpM,A, pDďkA q Ñ
pB
´

M,A,xcB
ďk
pR,A,A1q

¯

is a quasi-isomorphism for each k. Next, observe that

pBpM,A, pDAq – lim
k

pB
´

M,A, pDďkA

¯

:

there is a natural chain map from the leftmost complex to the right, which is an isomor-

phism at the level of R-modules because limits commute (the second relevant limit is
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pB “ limBďk, which makes sense at the level of R-modules). Because this limit is over a

tower of quotient maps, the tower in particular satisfies the Mittag-Leffler condition, and

we may apply [Wei95, Theorem 3.5.8], which says that there is a short exact sequence

0 Ñ lim1H pB
´

M,A, pDďkA

¯

r1s Ñ H pB
´

M,A, pDA

¯

Ñ limH pB
´

M,A, pDďkA

¯

Ñ 0.

Such a sequence is natural for maps of towers of chain complexes that satisfy the Mittag-

Leffler condition.

The given assumptions imply that pDďkA is bounded; given the standing assumption

that M is bounded below, we may apply Lemma A.2.8 to obtain a quasi-isomorphism

between pBpM,A, pDďkA q and pBpM,A,xcB
ďk
pR,A,A1qq; then applying the five lemma to

this exact sequence, we see that the induced map on the non-truncated versions is a

quasi-isomorphisn.

A similar discussion applies to all of the other chain complexes in the statement of the

lemma. �

We may thus conclude using the same argument as Proposition A.3.4 that the com-

pleted Tate complexes are quasi-isomorphic (with quasi-isomorphism respecting the Ĉ´A pRq

action), under the conditions in the previous lemma.

Corollary A.3.7. Suppose A and A1 are bounded, non-negatively graded, R-free dg-

algebras, for which f : M Ñ M 1 is a quasi-isomorphism of bounded right A1-modules.

Then there is a canonical isomorphism Ĥ8
A pMq – Ĥ8

A1pM
1q, equivariant under the action

of Ĥ´
A pRq – Ĥ´

A1pRq.

A.4 Periodicity in Tate homology

Tate homology, in some cases, is periodic: there is some class in H´
A so that its action

on H8
A pMq is an isomorphism when M is a finite A-module (in an appropriate sense). A

beautiful reference for this phenomenon is [GM95, Section III.16] in the setting of genuine

G-spectra, where G is a compact Lie group that acts freely on some sphere. Without this

assumption, periodicity phenomena often fail; see for instance [BC92].

Here we endeavor only to prove an analogue of it in a simple case which will suffice

for our purposes, and in a computational manner. We write A “ Λ :“ Λpunq, where
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|un| “ n, and either n is odd or the ground ring R has 2 “ 0. We have H´
Λ “ RJUK,

where |U | “ ´n ´ 1, and H`
Λ “ RrU˚s with |U | “ n ` 1, where the action of U is

contraction against U˚; these are immediately clear from the definition of bar and cobar

construction here, which have no nonzero differentials.

We see from the tautological exact triangle that, as a graded R-module, we have H8
Λ “

RJU,U´1s (where here we have suggestively rewritten U˚ “ U´1); we know from the fact

that the exact triangle are maps of H´
Λ -modules that the action of U on these increases

the power of U by 1, except possibly for the action on U´1. The content of the following

crucial lemma is that U ¨ U´1 “ 1.

Lemma A.4.1. Let Λ be the exterior algebra over R on an element in degree n, where

either n is odd or R has characteristic 2. We have an H´
Λ -module isomorphism H8

Λ –

RJU,U´1s, with U ¨ U i “ U i`1 for all i P Z.

Proof. We write this out very explicitly; all of what follows is a transcription of definitions.

First, we may write DΛ “ RJηK b Λ, with differential dηk “ p´1qknηk`1 b u. To avoid

confusion later, we have used the notation η where previously we wrote U : it is the

functional on BΛ which sends U˚ to 1 P R. As graded R-modules we have

BpDΛ,Λ, Rq “ RJηKb Λpuq bRrU˚s;

under this isomorphism, the differential of BpDΛ,Λ, Rq is taken to

dpηj b pU˚qkq “ ηj b ub pU˚qk´1
` p´1qk`jnηj`1

b ub pU˚qk,

and is otherwise zero. The action of U on this complex is U ¨ pηj b pq “ ηj`1 b p for

any p P Λpuq b RrU˚s. Finally, the norm map NΛ : BpDΛ,Λ, Rq Ñ C´Λ pRq is given by

ηk ÞÑ Uk and is otherwise zero.

By definition, the Tate complex

C8Λ pRq “ BpDΛ,Λ, Rqr1s ‘ C
´
Λ pRq
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is the mapping cone of the norm map; this means that its differential is

d8 “

¨

˚

˚

˚

˝

´d 0

NΛ d

˛

‹

‹

‹

‚

;

the action of U˚ is the same as before on each component. Now note that

H˚BpDΛ,Λ, Rq – H`
Λ rns

as an H´
Λ -module, and a chain in BpDΛ,Λ, Rq representing the degree zero element of

H`
Λ is given by η0 b u b pU˚q0. Our goal, then, is to show that U ¨ pη0 b u b pU˚q0q is

homologous to U0 P C´Λ pRq. But from this formula we have

d8pη
0
b 1b pU˚q0q “ ´η b ub pU˚q0 ` U0;

this is precisely what we wanted. �

We can use this to prove the following localization theorem.

Proposition A.4.2. Let M be a dg-module over Λ, degreewise free over R; suppose M has

a finite filtration 0 “ F´1M Ă F0M Ă ¨ ¨ ¨ Ă FnM “ M so that each piece FkM{Fk´1M

of the associated graded dg-module is quasi-isomorphic to a finite direct sum of copies

of R and Λ. Then the action of U P H´
Λ on H8

Λ pMq is an isomorphism. Therefore the

natural map H´
Λ pMq Ñ H8

Λ pMq factors through H´
Λ pMqrU

´1s, and the map

H´
Λ pMqrU

´1
s Ñ H8

Λ pMq

is an isomorphism, natural for dg-module homomorphisms of such M .

To prove this, we first define the notion of inverting an endomorphism of a dg-module

with respect to a dg-module homomorphism f : M Ñ M of degree k, written M rf´1s.

This is NOT the strict notion of inversion of an element familiar in module theory,

colim
´

M
f
ÝÑM

f
ÝÑM

f
ÝÑ ¨ ¨ ¨

¯

,

because this rarely plays well with taking homology. Instead it is a homotopy colimit.

The simplest way to phrase this (taken from [HR96, Definition 24.5]) is that M rf´1s is

the mapping cone of the map 1 ´ tf : M rts Ñ M rts, where t is a polynomial generator
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in degree ´k. Then immediate from the exact triangle on homology, and the fact that

p1´ tfq˚ : HpMqrts Ñ HpMqrts is injective, we see that HpM rt´1sq “ HpMqrt´1s, where

on the right side we are inverting an element of a module in the usual sense. (Here we are

using that the module-theoretic notion may be defined perfectly well as M rts{p1´ tfq.)

Proof of Proposition A.4.2. First we show that the action of U˚ on H8
Λ pMq is an iso-

morphism. This is equivalent to showing that the natural map C8Λ pMq Ñ C8Λ pMqrU
´1s

is a quasi-isomorphism. To see this, we use that the filtration FkM induces a filtration

FkC
8
Λ pMq “ C8Λ pFkMq, and similarly a filtration on C8Λ pMqrU

´1s; these are complete

because the filtration is finite. Now the E1 page of the corresponding spectral sequence

is given as a direct sum of copies of H8
Λ pRq and H8

Λ pΛq (or, respectively, the results of

inverting U), and the action of U on the E1 page is the direct sum of the corresponding

actions. But H8
Λ pΛq “ 0, and the fact that U˚ is an isomorphism on H8

Λ pRq was the

content of Lemma A.4.1. So the natural (filtered) map C8Λ pMq Ñ C8Λ pMqrU
´1s is an

isomorphism on the E1 page, and therefore a quasi-isomorphism. This proves the first

part of the theorem.

The rest follows similar lines: there is a natural map

C´Λ pMqrU
´1
s Ñ C8Λ pMqrU

´1
s,

and our goal is to show that this map is a quasi-isomorphism; because the map C´Λ pMq Ñ

C´Λ pMqrU
´1s is identified on homology with the result of inverting U , the desired result

follows. But using the same filtration as the above, the E1 page of the first spectral

sequence is a direct sum of copies of H´
Λ pRqrU

´1s and H´
Λ pΛqrU

´1s, and the E1 page of

the second spectral sequence is a direct sum of corresponding copies ofH8
Λ pRq andH8

Λ pΛq.

Then the only thing to observe is that what we already know: H´
Λ pRqrU

´1s Ñ H8
Λ pRq

is an isomorphism, and that H´
Λ pΛq is a copy of R concentrated in degree zero, so that

H´
Λ pΛqrU

´1s “ 0. Therefore the above map is an isomorphism on the E1 page of the

corresponding spectral sequence, and therefore a quasi-isomorphism. �
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A.5 Simplifying the twisted Borel homology

In this section, we give conditions under which there is a natural isomorphismH`,tw
A pMq –

H`
A pMqrns for some degree shift n. We would, furthermore, like this isomorphism to

preserve the action of H´
A pRq.

The simplest assumption we can make that guarantees this is that A satisfies Poincaré

duality of degree n, meaning that there is a quasi-isomorphism of right A-modules A »

A_rns. Here (as usual) A_ :“ HomRpA,Rq with the grading making this into a chain

complex, with the right A-action induced by the left A-action on A. This is enough to

get the desired R-module isomorphism; some slight additional conditions guarantee the

H´
A pRq-module isomorphism as well.

Remark A.5.1. This is a very special case of what is called a Gorenstein condition in

the literature, which usually amounts to something like the condition HomApR,Aq –

Arns, interpreted in a derived sense. Our condition implies this because of the chain of

equivalences

HomApR,Aq » HomApR,HomRpA,Rqqrns “ HomRpAbR R,HomApA,Rqqrns

“ HomRpA,Rqrns » A.

The second equality uses the tensor-hom adjunction for (bi)modules over two rings,

and all appearances of “Hom” are derived. We will not use the Gorenstein condition

except through the above Poincaré duality condition; this remark is purely motivational.

A particularly nice reference, which applies to the dg-algebra case, is [DGI06].

Theorem A.5.1. If A is R-flat and satisfies Poincaré duality of degree n, then there is

a quasi-isomorphism of left A-modules DA » Rrns. Thus, there is a natural isomorphism

H`,tw
A pMq – H`

A pMqrns. If furthermore A is non-negatively graded and H0A – RrGs for

some finite group G, this isomorphism preserves the action of H´
A pRq.

Proof. We have DA “ HomApBpR,A,Aq, Aq » HomApBpR,A,Aq, A
_qrns by assumption.

That DA » Rrns then follows from the fact that the projection

π : BpR,A,Aq Ñ R
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is an A-equivariant quasi-isomorphism ofR-flat modules, and the elementary isomorphism

of left A-modules

HomRpBpR,A,Aq, Rqq – HomApBpR,A,Aq, A
_
q

given on an element η P HomRpBpR,A,Aq, Rq by η ÞÑ η1 with η1pbqpaq “ ηpbaq.

This equivalenceDA » HomRpBpR,A,Aq, Rq is equivariant under the actions of C´A pRq

essentially by definition: the product structure uses the left BA-comodule structure of

BpR,A,Aq, and all of the maps above only involved the rightmost factor. We write

BpR,A,Aq “ EA for convenience; this equivalence says DA » pEAq
_, this equivalence

equivariant under both the left A-action and the left C´A pRq “ pBAq
_-action.

Now we have a map

BpM,A, pEAq_q Ñ BpM,A,Rq bR BpR,A, pEAq
_
q “ BpM,A,Rq bR EAbA pEAq

_.

The pairing pEAq b pEAq_ Ñ R is A-equivariant, so it factors through EA bA pEAq
_,

and thus we have a composite BpM,A, pEAq_q Ñ BpM,A,Rq. The claim is that this

map is equivariant under the C´A pRq “ pBAq
_-action.

We write this computation down at the chain level, following the sign conventions

in [Law]; write ψ for an element of pEAq_ and β for an element of pBAq_; then a

generic element of BpM,A, pEAq_q “ BpM,A,AqbA pEAq
_ is written as mra1| ¨ ¨ ¨ |ansψ.

Following the given map and then applying β, we have

β bmra1| ¨ ¨ ¨ |ansψ ÞÑ β b
n
ÿ

i“0

p´1qs1mra1| ¨ ¨ ¨ |ais b rai`1| ¨ ¨ ¨ |ansψ

ÞÑ β b
n
ÿ

i“0

p´1qs2mra1| ¨ ¨ ¨ |aisψprai`1| ¨ ¨ ¨ |ansq

ÞÑ β b
ÿ

0ďjďiďn

p´1qs3mra1| ¨ ¨ ¨ |ajs b raj`1| ¨ ¨ ¨ |aisψprai`1| ¨ ¨ ¨ |ansq

ÞÑ
ÿ

0ďjďiďn

p´1qs4mra1| ¨ ¨ ¨ |ajs b βpraj`1| ¨ ¨ ¨ |aisqψprai`1| ¨ ¨ ¨ |ansq.
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Here the exponents are

s1 “ pn´ iqp|m| ` εiq

s2 “ pn´ iqp|m| ` εiq ` |ψ|pεn ´ εiq

s3 “ pi´ jqp|m| ` εjq ` pn´ iqp|m| ` εiq ` |ψ|pεn ´ εiq

s4 “ p|β| ` i´ jqp|m| ` εjq ` pn´ iqp|m| ` εiq ` |ψ|pεn ´ εiq.

Here recall that εi :“ |a1| ` ¨ ¨ ¨ ` |ai| ` i is the degree of ra1| ¨ ¨ ¨ |ajs. We have used the

rule that the swap map is ab b ÞÑ p´1q|a||b|bb a.

On the other hand, if we apply β first to ψ and then follow the given map, we have

β bmra1| ¨ ¨ ¨ |ansψ ÞÑ p´1qt1mra1| ¨ ¨ ¨ |anspβ ¨ ψq

ÞÑ
ÿ

0ďjďn

p´1qt2mra1| ¨ ¨ ¨ |ajs b raj`1| ¨ ¨ ¨ |anspβ ¨ ψq

ÞÑ
ÿ

0ďjďn

p´1qt3mra1| ¨ ¨ ¨ |ajspβ ¨ ψqpraj`1| ¨ ¨ ¨ |ansq

“
ÿ

0ďjďiďn

p´1qt4mra1| ¨ ¨ ¨ |ajspβ b ψqpraj`1| ¨ ¨ ¨ |ais b rai`1| ¨ ¨ ¨ |ansq

“
ÿ

0ďjďiďn

p´1qt5mra1| ¨ ¨ ¨ |ajsβpraj`1| ¨ ¨ ¨ |aisqψprai`1| ¨ ¨ ¨ |ansq,

where the exponents are

t1 “ |β|pm` εnq

t2 “ pn´ jqp|m| ` εjq ` |β|p|m| ` εnq

t3 “ pn´ jqp|m| ` εjq ` |β|p|m| ` εnq ` p|β| ` |ψ|qpεn ´ εjq

t4 “ pn´ jqp|m| ` εjq ` |β|p|m| ` εnq ` p|β| ` |ψ|qpεn ´ εjq ` pn´ iqpεi ´ εjq

t5 “ pn´ jqp|m| ` εjq ` |β|p|m| ` εnq ` p|β| ` |ψ|qpεn ´ εjq ` p|ψ| ` n´ iqpεi ´ εjq.

The first and second expressions clearly agree, at least up to the signs on each factor. To

check that p´1qt4 “ p´1qs5 , observe the congruences mod 2

pn´ jqp|m| ` εjq ` |β|p|m| ` εnq ` p|β| ` |ψ|qpεn ´ εjq ` p|ψ| ` n´ iqpεi ´ εjq

” pn´ j ` |β|q|m| ` |ψ|εn ` p|ψ| ` n´ iqεi ` p|β| ` i´ jqεj

” p|β| ` i´ jqp|m| ` εjq ` pn´ iqp|m| ` εiq ` |ψ|pεn ´ εiq.

296



These are easily seen by breaking the top and bottom formulas (which are the relevant

exponents of ´1) into the components labelled by |m|, εn, εi, and εj in the center formula.

The natural isomorphism H`,tw
A pMq – H`

A pMqrns then follows from the invariance

theorem for bar constructions, Theorem A.2.1, and we have seen this is an isomorphism

of H´
A pRq-modules. �

The argument doesn’t change at all after completion, making the usual assumptions

that A is non-negatively graded and bounded above, and it follows that if such an algebra

satisfies Poincaré duality of degree n, we have Ĥ`,tw
A pMq – Ĥ`

A pMqrns as Ĥ´
A pRq-modules,

so long as M is bounded below.

A.6 Spectral sequences

Making some further mild assumptions on the algebras, we have useful spectral sequences

for calculating the various flavors of A-homology.

Proposition A.6.1. If A is a non-negatively graded dg-algebra (An “ 0 for n ă 0),

there is a projection of dg-algebras π : A Ñ H0A, through which we can have A act on

HqM . Then for any ‚ P t`,´,8u, there is a conditionally convergent spectral sequence

of H´
A pRq-modules

H‚
p pA,HqMq Ñ H‚

p`qpA,Mq.

If H0A “ R, observe that the action of A on HpMq is trivial; if HpMq is flat over R,

we may identify E2
p,q – H‚

p pAq bHqpMq.

The spectral sequence for H` is always strongly convergent, the spectral sequence for

H´ and H8 are strongly convergent if H˚pMq is bounded below.

Proof. Recalling that BpM,A,Rq –M bBA as graded modules, we filter

FpBpA,Mqn “ ‘iďppMqn´i bBAi;

that is, FpBpM,A,Rq consists of elements with total BA-degree at most p. The differ-

ential on BpM,A,Rq can be written (ignoring signs) as three terms:
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dpmra1 | ¨ ¨ ¨ | ansq “
`

pdmqra1 | ¨ ¨ ¨ | ans
˘

`
`

ma1ra2 | ¨ ¨ ¨ | ans
˘

`
`

mdpra1 | ¨ ¨ ¨ | ansq
˘

.

The first and last term clearly preserve the filtration, and the second does because

An “ 0 for n ă ´1. The first differential of the associated spectral sequence is the

differential on the associated graded complex, which is d0 “ dM b 1BA. We can thus

identify the E1 page with BAbHM (remember BA is degreewise R-flat). The piece that

decreases filtration by exactly 1 is d1, given by the differential in BA and multiplication

by elements of A0. Therefore we identify that the E1 page is given as BpHM,A,Rq,

where a positive degree element of A acts trivially (these components of the differential

decrease the filtration by at least 2) and the action of A0 factors through A0 Ñ H0A.

This filtration is a pleasant example of the filtration on the totalization of a multicomplex ;

see [Boa99, Theorem 11.3]. Because this is a complete exhaustive Hausdorff filtration, it

gives rise to a conditionally convergent spectral sequence by Proposition A.2.4.

In Boardman’s language this is a spectral sequence with exiting differentials because

pBAqi “ 0 for negative i, and strong convergence is given by A.2.3.

Observe that the action of C´A pRq, which contracts against BA, is filtered; so this is a

spectral sequence of H´
A pRq-modules.

The proof for the H´ and H8 spectral sequences follow mostly as before. As graded

modules, we may write

cBpR,A,Mqn “
ź

iÑ´8

cBpR,A,Rqi bMn´i,

where the symbol
ś

iÑ´8 is as in Definition A.2.2, and filter as usual

FpcBpR,A,Mqn “
ź

iďp

cBpR,A,Rqi bMn´i.

(We again need A to be nonnegatively graded for this to be a filtration, and identify the

E2 page as before.) Because this filtration is complete, exhaustive, and Hausdorff, we

thus get a conditionally convergent spectral sequence of H´
A pRq-modules by Proposition

298



A.2.4, because the action of C´A pRq is again filtered. As for C8A pMq, as a graded R-module

we have

C8A pMqn “
ź

iÑ´8

C8A pRqi bMn´i.

The same filtration applies and is complete, giving a conditionally convergent spectral

sequence of H´
A pRq-modules with the expected E2 page.

If H˚pMq is not bounded below, then in principle there could be infinitely many

nonzero differentials leaving a given point in the spectral sequence for H´
A pMq or H8

A pMq;

but if H˚pMq is bounded below, then each Ep
s,t stabilizes at some finite p, and thus

RE8 “ 0. Because H˚pMq is bounded below, this is a half-plane spectral sequence, and

so W pEq “ 0 as well, so these spectral sequences are strongly convergent. �

A.7 Group algebras

The most important application of the A-homology functors is for A “ C˚pG;Rq, where

G is a topological group (but most importantly a compact Lie group). The product

structure is given as the composite

C˚pGq b C˚pGq
EZ
ÝÝÑ C˚pGˆGq

ˆ
ÝÑ C˚pGq,

where EZ is the Eilenberg-Zilber map. The unit is res P C0pGq and the augmentation

C0pGq Ñ R is the natural augmentation (add up points). These makes C˚pG;Rq into an

associative augmented algebra. For the rest of this section, we frequently abuse notation

and write G for C˚pG;Rq unless there is danger of confusion.

We begin with the following well-known fact to justify our definition of group homology;

a more detailed proof may be found in [GM74, Theorem 3.9]. Here EG denotes a left

G-space that G acts freely on, and for a right G-space X we denote XhG “ pX ˆEGq{G

for the Borel construction on X.

Lemma A.7.1. Let G be a compact Lie group and M “ C˚pX;Rq for X a right G-space.

Then C`GpMq » C˚ppX ˆEGq{G;Rq. We also have that C´GpM
_q “ C´GpC

´˚pXqq is the

dual of C`GpMq, and in particular

H´
G pC

´˚
pX;Rqq » H´˚

G pXhG;Rq.
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Product structures are compatible with this: the action of H´
G pRq on H`

G pMq is that of

H´˚pBG;Rq on H˚pXhG;Rq.

The first fact follows because pEGˆXq{G can be given as the bar construction BpG,Xq

in topological spaces, and the natural map

BpC˚pXq, C˚pGq, Rq Ñ C˚
`

BpX,G, ptq;R
˘

given levelwise by Eilenberg-Zilber maps is a homotopy-equivalence (with homotopy in-

verse given by a map built out of Alexander-Whitney maps). The second statement, that

C´A pM
_q is the dual of C`A pMq, is true for any algebra A. There is a slight subtlety in

making sense of this: while M is a right A-module, instead M_ is a left A-module. So

when we write C´A pM
_q, we mean HomApBpR,A,Aq,M

_q.

Our first goal is to calculate what we need to make Theorem A.3.3 practically useful.

The following is our first goal, which we prove in pieces.

Theorem A.7.2. Let G be a compact Lie group G of dimension n, and suppose that the

homomorphism det Ad : π0G Ñ Z{2 is trivial, where Ad : G Ñ GLpgq is the adjoint ho-

momorphism. Then C˚pG;Rq is a Poincaré duality algebra of degree n, and in particular

by Theorem A.5.1 we have H`,tw
G pMq – H`

G pMqrns.

Lemma A.7.3. If G is a compact Lie group, then DG » C̃˚
`

SAd
˘

“: S̃Ad as left G-

modules, where SAd is the one-point compactification of the adjoint representation on g

and the C̃ indicates we take reduced chains.

Proof. As in [Kle01, Theorem 10.1], Atiyah duality gives a quasi-isomorphism of C˚pGq-

bimodules

C˚pGq Ñ HomRpC˚pGq, C̃˚pS
Ad
qq,

where the right module structure comes from the left action on C˚pGq and the left module

structure from the left G-module structure on S̃Ad; we thus have quasi-isomorphisms of

left G-modules

DG Ñ cBpR,G,HompG, S̃Adqq Ð cBpR,G,HompG,Rqq b S̃Ad.

As in the proof of Theorem A.5.1, we conclude using the contractibility of BpR,A,Aq

and the quasi-isomorphism of left A-modules

HompBpR,A,Aq, Rqq – HomApBpR,A,Aq,HompA,Rqq.
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�

The above lemma is useful because H˚pS̃
Adq is a copy of R concentrated in degree

d “ dimG, and the action of H0G “ Rrπ0Gs is given by det Ad. Indeed, writing this

G-module as λ, we have

Lemma A.7.4. If G is a compact Lie group, then S̃Ad is related to λ by a zig-zag of

quasi-isomorphisms of left G-modules. Hence C˚pG;Rq » C˚pG;Rq_ b λrds.

Proof. Let Bτ be the G-subcomplex of S̃Ad given by

Bτ
k “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 k ă d

Impdk`1q Ă CkpS
Adq k “ d

CkpS
Adq k ą d

Clearly Bτ is acyclic, so S̃Ad Ñ S̃Ad{Bτ is a quasi-isomorphism of left G-modules.

Then there is a natural inclusion λ ãÑ S̃Ad{Bτ picking out the generator of homology

(because λ “ ZdpS̃
Adq{BdpS̃

Adq). This is clearly a quasi-isomorphism of left G-modules.

This, combined with the Atiyah duality equivalence of the previous lemma, then gives

us an equivalence

C˚pGq » C˚pGq
_
b S̃Ad » C˚pGq

_
b λrds.

�

With this, we can assemble the last of basic groups H`
G , H´

G , and H8
G .

Corollary A.7.5. Let G be a compact Lie group of dimension d, and suppose that det Ad

is trivial. Then H˚BpDG, G,Rq “ H˚´dpBG;Rq, Thus, by Theorem A.3.3 (4),

H8
G,kppt;Rq “

$

’

&

’

%

Hk´d´1pBG;Rq k ą d

H´kpBG;Rq k ď 0

.

If det Ad was not trivial, instead the result would be Hk´d´1pBG;λq in degrees k ą d.

In particular, the long exact sequence of Theorem A.3.3 (4) reduces to

¨ ¨ ¨ Ñ H`
˚´dpMq Ñ H´

˚ pMq Ñ H8
˚ pMq Ñ ¨ ¨ ¨
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In general, the first term would be replaced by H`
˚ pM b λq (the degree shift reflected in

the fact that λ is concentrated in degree d).

We can generalize this calculation to that of the equivariant homologies of orbits G{H:

Theorem A.7.6. If G is a compact Lie group and H is a closed subgroup, let G{H

be the orbit of right cosets of H (which is thus a right G-space). Then there is an H-

module λNH , given by a copy of R in degree dim G´ dim H with action given by a map

π0H Ñ t˘1u so that we have the following isomorphisms:

1. H`
G pG{Hq – H`

HpRq – H˚pBH;Rq

2. H´
G pG{Hq – H´

HpλNHq – H´˚pBH;λNHq

3. H8
G pG{Hq – H8

H pλNHq.

Proof. The map C˚pGq Ñ C˚pG{Hq is C˚pHq-invariant, inducing a quasi-isomorphism of

right G-modules BpR,H,Gq Ñ C˚pG{Hq (that this is a quasi-isomorphism follows from

[GM74, Theorem 3.9]). There is further a canonical isomorphism of chain complexes

BpBpR,H,Gq, G,Rq – BpR,H,BpG,G,Rqq.

(1) then follows because there is an equivalence BpG,G,Rq Ñ R of left G-modules

(induced by the augmentation ε : C˚pGq Ñ R). The same argument in general identifies

H`
G pGbH Mq with H`

HpMq.

(2) follows from a combination of this idea and the argument of Lemma A.7.3: exactly

analogous to the argument of [Kle01, Theorem 10.1], there is an Atiyah duality quasi-

isomorphism C˚pG{Hq Ñ HomC˚HpC˚G, C̃˚S
NHq of right C˚pGq-modules. Then we may

show

MapG pBpR,G,Gq, G{Hq »MapG

´

BpR,G,Gq,MapHpG, S̃
NH
q

¯

– MapHpBpR,G,Gq, S̃
NH
q »MapHpBpH,H,Rq, S̃

NH
q “ cBpR,H, S̃NHq.
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The second equivalence is given just as in Lemma A.7.3, via ηpbqpgq ÞÑ ηpbgq. The

second-to-last equivalence follows from [GM74, Page 11] and verifying that, in that lan-

guage, BpG,G,Rq is a proper split Kunneth resolution of R as an H-module, which

follows similar lines as verifying that C˚pGq is split as an H-module, implicit in the

proof of (1). The rest of the statement follows as in Lemma A.7.4, reducing S̃NH to a

1-dimensional representation λNH .

We can combine the previous two parts and the long exact sequence of Theorem

A.3.3 (4) to verify the isomorphism on Tate homology. This follows from the following

homotopy commutative diagram, where every vertical arrow is a quasi-isomorphism and

horizontal arrow is an appropriate modification of the norm map.

BpG{H,G,DGq ÝÝÝÑ cBpR,G,G{Hq
§

§

đ

›

›

›

BpR,H,DGq ÝÝÝÑ cBpR,G,G{Hq
§

§

đ

§

§

đ

BpR,H,DH b S̃
NHq ÝÝÝÑ cBpR,H, S̃NHq

The bottom-left vertical map is induced by the map of pairs (recall that cB is con-

travariant in the algebra and covariant in the module) pG,Gq Ñ pH,H b S̃NHq, the first

map inclusion H ãÑ G and the second map a logarithm map

C˚pGq Ñ C˚pThpNHqq
AW
ÝÝÑ C˚pHq b S̃

NH .

This is the explicit form Klein gives of the Atiyah duality isomorphism. As it is a quasi-

isomorphism, the map on bar constructions is a quasi-isomorphism.

Finally, we replace the bottom left term with BpDH b λNH , H, ˚q and commute λNH

across with the following lemma to identify the bottom row with the norm map for the

H-module λNH .

The isomorphisms to homology and (twisted) cohomology of BH follow from Lemma

A.7.1, adapted to twisted coefficient systems. �

Lemma A.7.7. Let ρ be a G-bimodule with action (on both sides) induced by some group

homomorphism f : π0GÑ Rˆ. Then Bpρ,G,Mq – BpG, ρbMq.
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Proof. If π : C˚pG;Rq Ñ H0G Ñ R is the composition of the projection and the map

rgs ÞÑ fpgq, there is an isomorphism BpR,G, ρbMq Ñ Bpρ,G,Mq given by

πpa1 ¨ ¨ ¨ akqra1 | ¨ ¨ ¨ | aksm ÞÑ ra1 | ¨ ¨ ¨ | aksm;

the inverse uses the inverse in π0G (giving rise to the antipode in H0G “ Rrπ0Gs). This

is part of a general isomorphism for moving factors across two-sided bar construction over

a Hopf algebra, but the simple form here follows because the G-action factors through

the action of a central algebra concentrated in degree 0. �

Observe that everywhere thusfar we have twisted by some orientation character, if we

had worked with R a ring of characteristic 2, the action of π0G on R would in fact be

trivial.

We conclude this section with some related results which we use in the main text.

Example A.7.1. We may apply this to calculate the three cases relevant to us in this text:

G “ SOp3q and H one of the three subgroups teu, SOp2q, and SOp3q. In every case H is

connected, and so the representation λNH of π0H is trivial and is precisely Rr3´dimHs.

Thus H‚
SOp3qpSOp3q{H;Rq “ H‚

HpRq, with a dimension shift if appropriate.

When H “ teu, the Tate homology is trivial, and H`

teupRq “ H´

teupRq “ R concentrated

in degree zero. (This is just the axiomatic property of Tate homology.)

WhenH “ SOp2q, we are left withH`

SOp2qpRq “ H˚pCP8q andH´

SOp2qpRq “ H´˚pCP8q

by Lemma A.7.1, and the Tate homology is a splicing of these. By Proposition A.4.2, as

modles over H´

SOp2qpRq, we may write the Borel homology, coBorel homology, and Tate

homology respectively as

RrV s, RJV ´1K, RrV, V ´1K,

where |V | “ 2. Then, because H´

SOp3qpRq Ñ H´

SOp2qpRq sends

p1 ÞÑ V 2
P H´˚

pBSOp2q;Rq,

we learn the module structure of these over xp1y P H
´˚pBSOp3q;Rq. When 1

2
P R, we

have

H´˚
pBSOp3q;Rq “ H´˚

pBSUp2q;RqRJp1K,

so this determines the module structure over H´

SOp3qpRq.
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On the other hand, we have that

H´˚
pBSOp3q;Z{2q “ pZ{2qJw2, w3K

is a power series ring in two generators (where here one takes H´˚ “
ś

H´k as opposed

to a direct sum; the latter would give a polynomial ring). This is standard, and proved in

[Hat, Proposition 3.12]. A calculation with integral coefficients is given in [BJ82], and in

particular shows that p1 restricts to e2 on oriented 2-plane bundles, where e is the Euler

class.

Proposition A.7.8. There is a chain of algebra quasi-isomorphisms

Cgm
˚ pSOp3q;Rq » C˚pSOp3q;Rq.

Proof. We neglect to mention the coefficients R throughout, as they play no major role.

First we should replace singular chains with something more easily comparable with the

degeneracy relations involved in Cgm
˚ . We define the chain complex of smooth singular

chains Csm
˚ pMq to be the set of smooth maps from ∆n Ñ M ; then it has a quotient

Csmd
˚ pM ;Rq after we carry out the previous identifications under orientation-preserving

diffeomorphisms and quotienting by the same degeneracies. There are, in this situation,

two forgetful maps Csmd
˚ pMq Ð Csm

˚ pMq Ñ C˚pMq. The easiest way to see that all

of these maps are quasi-isomorphisms is to prove that all of these theories are in fact

homology theories on smooth manifolds M , and that the induced map on M “ pt is

an isomorphism on homology. In fact the rightmost chain complexes are identical for

M “ pt. On the other hand, Csmd
˚ pptq “ R, a copy of the ground ring concentrated in

degree zero. All higher-dimensional chains are degenerate. Because H˚pptq “ Rp0q, and

the given maps do the obvious things to points (which are cycles generating H˚pptq),

they are all homology isomorphisms. A proof that these are homology theories follows

similar lines as Theorem 7.1.7.

It is also possible to show these quasi-isomorphisms extremely explicitly, using e.g.

smooth approximation to find cycles in Csm
˚ homologous to any given cycle in C˚.

So we now need to relate the chain complex of smooth simplices modulo degeneracy,

Csmd
˚ pMq, to Cgm

˚ pMq.
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The theory interpolating between these is the chain complex of triangulated geometric

chains on a smooth manifold M . This chain complex Ctgm
˚ pMq is functorial under smooth

maps, and its homology groups define a homology theory (as before).

Precisely, a triangulated basic chain on M is a compact smooth oriented manifold with

corners P equipped with a smooth triangulation (that is, a homeomorphism f : |X| Ñ P ,

where |X| is the realization of a simplicial complex, so that f is a diffeomorphism from

each closed simplex onto its image), and a smooth map σ : P Ñ M . Two triangulated

basic chains are isomorphic if there is an orientation-preserving diffeomorphism ϕ : P Ñ

P 1 and an isomorphism of simplicial complexes ψ : X Ñ X 1 so that ϕ1f “ f 1|ψ| and

σ1f “ f 1σ. The triangulated geometric chain complex Ctgm
˚ pMq is defined following the

same procedure as for Cgm
˚ pMq: identify orientation-reversals with their negative, and

quotient by the subcomplex of degenerate chains (triangulated basic chains for which the

images of σ|∆k and Bσ|∆k are both contained in the image of some smooth manifold of

smaller dimension than k, resp k ´ 1, for each component simplex ∆k ).

Now observe that there are natural chain maps

Cgm
˚ pMq Ð Ctgm

˚ pMq Ñ Csmd
˚ pMq.

The left map is given by forgetting the triangulation and thinking of a smooth manifold

with corners as a very special kind of δ-chain, and the right map is given by sending a

triangulated n-chain to the sum of its component simplices: σ : P ÑM to

ÿ

∆nĂX

σ
ˇ

ˇ

∆n .

As before, because these are homology theories, to show that these are quasi-isomorphisms

in general it suffices to check that these maps are isomorphisms on H˚pptq. Each of these

chain complexes (because of the nondegeneracy requirements) are simply a copy of R

concentrated in degree zero, and the induced map between them is the identity.

Now, if G is a Lie group, Csmd
˚ pGq is a dg-algebra using the Eilenberg-Zilber product

(multiply the chains σˆη using the group structure and triangulate the result according to

a standard triangulation of ∆kˆ∆n). So is Ctgm
˚ pMq: now if σ : P ÑM and η : QÑM

are triangulated basic chains, their product is σ ˆ η : P ˆ Q Ñ M equipped with the

product triangulation (again, triangulate each component ∆k ˆ∆n in a standard way).
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With these algebra structures, the maps

Csmd
˚ pMq Ð Ctgm

˚ pMq Ñ Cgm
˚ pMq

are in fact dg-algebra homomorphisms. It is even easier to see that the map Csmd
˚ pMq Ð

Csm
˚ pMq Ñ C˚pMq are dg-algebra homomorphisms, giving us the desired zig-zag of dg-

algebra equivalences. �

A.8 Periodic homological algebra

In this section, we set up a version of the machinery before, built to work for complexes

graded over Z{2N which are finite in a suitable sense. In the main text, we will frequently

want to use a filtration resembling the index filtration on the Morse-Bott complex of a

finite-dimensional compact smooth manifold, but because the index is only defined in

Z{8, this doesn’t make sense! So if we want to use spectral sequences to check that maps

are quasi-isomorphisms, we must do something at least slightly more subtle.

We resolve this by passing instead to the unrolled complex rC˚ of C, defined as rCk “

Ckmod 2N , with the obvious differential. A 2NZ-periodic complex is a complex rC equipped

with a periodicity isomorphism ϕ : rC Ñ rCr2N s. From here, we recover the Z{2N -graded

complex by picking an interval ri, i` 2N ´ 1s Ă Z, and for k P ri, i` 2N ´ 1s, define

Ck mod 2N “ rCk;

the differential is defined in the obvious way except on Cimod 2N , where it is defined as

dx “ ϕprdxq; this makes sense as ϕprdxq is in degree i ´ 1 ` 2N “ i ` 2N ´ 1. The

definitions immediately imply that the Z{2N -graded complex C did not depend on the

choice of representative interval, and that Hkp rCq “ Hkmod 2NpCq.

This implies that if we’re trying to show that a map C Ñ C 1 of Z{2N -graded complexes

is a quasi-isomorphism, this is equivalent to showing that the same is true for the map

f̃ : rC Ñ rC 1 of 2NZ-periodic complexes. We may more or less pass freely between these

notions. To avoid notational irritation, we ignore the periodicity isomorphism ϕ — up

to isomorphism of 2NZ-periodic complexes, we can take rCk “ rCk`2N on the nose, and

ϕ “ Idr2N s.
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Instead of attempting to filter a Z{2N -graded complex, we find that the appropriate

notion seems to the following.

Definition A.8.1. Let rC be a 2NZ-periodic complex. A periodic filtration on rC is a

filtration ¨ ¨ ¨ Ă Fs rC Ă Fs`1
rC Ă ¨ ¨ ¨ with

ď

s

pFs rCq “ rC,
č

s

Fs rC “ 0,

and Fs`2N
rC “ pFs rCqr2N s; that is,

Fs`2N
rCt`2N “ Fs rCt.

So while the filtration on each of the individual abelian groups FsCk may stabilize (so

FNCk “ Ck for large N) — as indeed is frequently the case for us — the filtration itself is

infinite in both directions (i.e., neither is the complex F´N rC equal to zero for any N ě 0,

nor is FN rC “ rC for any N).

We now pass to the spectral sequence Er
s,t of the filtered complex rC. The associated

graded complex is

E0
s,t
rC “ Fs rCs`t{Fs´1

rCs`t,

and the fact that the filtration is periodic implies that E0
s,t “ E0

s`2N,t. This identification

is the map induced by the periodicity isomorphism rC Ñ rCr2N s, which is a filtered chain

map; because it induces an isomorphism on the E0 page, the same is true for all pages

Er of the spectral sequence: there is a periodicity isomorphism Er
s,t Ñ Er

s`2N,t preserving

the differentials.

If so desired, we may thus view this filtration as inducing a pZ{2N,Zq-bigraded spectral

sequence Er
rss,t, with rss P Z{2N . This may be pictured as a cylinder, where differentials

wrap around.

If we have a map f : rC Ñ rC 1 of unrolled complexes, compatible with a periodic filtra-

tion of each, it induces a map of the spectral sequences Er
s,t. We would like to know when

we can check that the map f is a quasi-isomorphism from the corresponding fact about

the E2 page of this spectral sequence. Because the ‘unrolled’ spectral sequence Er
s,t (con-

sidered with pZ,Zq-bigrading, 8Z-periodic in the first grading) is a whole-plane spectral

sequence, it is difficult to prove and often false that the E8 page actually calculates the
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homology groups. However, as long as the periodic filtration is complete, we at least still

know from Theorem A.2.4 that we may detect quasi-isomorpshisms from isomorphisms

on the E2 page; further, if the spectral sequence degenerates on some finite page, we may

indeed calculate the associated graded homology groups from the E8 page.

Now let A be a bounded, non-negatively graded dg-algebra satisfying Poincaré duality

of degree n, as in Section A.5. Let M be a right dg-A-module, graded over Z{2N ,

equipped with a complete periodic filtration; suppose that the associated graded A-

module FpM̃{Fp´1M̃ is bounded.

We would like to apply the constructions of the previous sections to construct ‘equiv-

ariant homology’ complexes C‚ApMq, with corresponding periodic filtrations. The clear

thing to try is to pass to the unfolded complex M̃ and consider the corresponding com-

plexes C‚ApM̃q. However, because M̃ is unbounded in both directions, these filtrations

are not complete; BA has elements in arbitrarily large degrees, which by pairing with

elements of M̃ in arbitrarily low filtration may contribute a sequence of nonzero elements

of C‚ApM̃q of arbitrarily low filtration but fixed degree. The spectral sequence will not

converge to its homology, but to its completion’s.

For a right A-module M with periodic filtration as above, we thus write

C`A pMq :“ pBpM̃, A,Rq.

C´A pMq :“ xcBpA, M̃q “ Homfin
A

´

BpR,A,Aq, M̃
¯

C8A pMq :“ Cone
´

B̂pM̃, A, D̂Aq Ñ xcBpA, M̃q
¯

.

The filtrations FsC
`
A pMq “

pC‚ApFsM̃q are now complete, exhaustive, and Hausdorff; these

homology groups are what the spectral sequences induced by the filtration on C‚ApM̃q

actually converge to.

We may assemble this into the following homology theories for periodically graded

A-modules.

Theorem A.8.1. Let A be a non-negatively graded, bounded above, and R-free dg-algebra

satisfying Poincaré duality of degree n. If M is a Z{2N-graded right A-module, equipped

with a periodic filtration whose associated graded complex grpM̃ is bounded for each p,

there are Z{2N-graded complexes C‚ApMq, for ‚ P t`,´,8u, satisfying the following

properties.
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1. Each C‚ApMq is equipped with a left action of Ĉ´A pRq;

2. The C‚ApMq are functorial under A-module maps f : M Ñ M 1 of Z{2N graded

complexes, which are filtered in the sense that f̃pFsM̃q Ă Fs`dM̃
1 for all s and a

fixed constant d;

3. There is a strongly convergent spectral sequence of HpAq-modules,

grppHqpMqq Ñ Hp`qpMq,

which degenerates at some finite page;

4. There is a conditionally convergent spectral sequence of H´
A pRq-modules

H‚
ApgrpM̃qq Ñ H‚

ApMq,

which is strongly convergent for H´
A pMq.

5. A filtered A-module map M Ñ M 1 which is a quasi-isomorphism on the associated

graded complexes induces a quasi-isomorphism C‚ApMq Ñ C‚ApM
1q;

6. If the associated graded is free over A, in the sense that grpM̃ – Xp bA for each p

and some R-free complex Xp, then H8
A pMq “ 0;

7. There is a long exact sequence of H´
A pRq-modules

¨ ¨ ¨ Ñ H`
A pMq

rns
ÝÑ H´

A pMq Ñ H8
A pMq

r´n´1s
ÝÝÝÝÑ H`

A pMq Ñ ¨ ¨ ¨

natural under filtered A-module maps.

Proof. The actions of Ĉ´A pRq on C‚ApMq were detailed in the sections the completed

complexes were introduced. An A-module map f : M Ñ M 1 induces an A-module map

f̃ : M̃ Ñ M̃ 1, and therefore a map C‚ApM̃q Ñ C‚ApM̃
1q, so it induces a map on their

completions — which are what we define to be the unwrapped, Z-graded complexes of

C‚ApMq and C‚ApM
1q, when M,M 1 are Z{2N -graded.

By assumption, each grppMkq – grp`2NpMk`2Nq is bounded in k, which has the same

bound for k ” k1 pmod 2qN . Because there are only finitely many equivalence classes
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modulo 2N , there is a uniform bound in k on grppMp`kq, independent of p. In particular,

the filtration is finite in each degree, and the associated spectral sequence is contained

in some finite strip; if the strip has width `, then the differentials on any Er
s,t must leave

the strip if r ą `` 1, and so the spectral sequence degenerates at E``2. This gives (3).

The existence of the spectral sequence was outlined above. If we also know that

Ĥ‚
ApgrpM̃q takes quasi-isomorphisms of A-modules to isomorphisms of Ĥ´

A pRq-modules,

we may conclude item (5), as we have detected an isomorphism on the E1 page. That

this is true follows because A is R-free, non-negatively graded, and bounded above, while

each grpM̃ is bounded: for Ĥ` this is Lemma A.2.8, for Ĥ´ this is Lemma A.2.9, and

for Ĥ8 this is Corollary A.3.7.

The vanishing theorem A.3.3 (4) implies that if grM̃ – X b A, we have

H8
A pgrM̃q “ 0,

and so the spectral sequence H8
A pgrM̃q Ñ H8

A pMq collapses at the E1 page, giving

H8
A pMq “ 0.

The long exact sequence is clear from the existence of a short exact sequence

0 Ñ pBpM̃, A, D̂Aq Ñ CylpN̂M̃q Ñ C8A pMq Ñ 0,

where CylpN̂M̃q is the mapping cylinder of the norm map, and so is naturally equivalent

as C´A pRq-modules to C´A pMq. In particular, by the completed analogue of Theorem

A.5.1 (which is proved in an essentially identical manner), we have that the homology of

the first term is naturally equivalent to H`
A pMqrns as an H´

A pRq-module. The discussion

there guarantees this for M bounded below, but if M 1 Ă M̃ is some bounded below A-

submodule which equals M in all sufficiently large degrees, one may identify Ĥ`,tw
A pMq “

limnÑ´8 Ĥ
`,tw
A pM 1r´2N sq. �
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