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Abstract of the Dissertation

Essays in Finance

by

Shaun William Davies

Doctor of Philosophy in Management

University of California, Los Angeles, 2013

Professor Bruce I. Carlin, Chair

In this dissertation I present three theoretical papers, each as an individual chap-

ter. The first paper is titled “The Economics of Discretion in Multi-Agent De-

cision Problems.” It is premised on the idea that discretion is valuable when

knowledge mismatches lead principals to delegate decisions to agents with spe-

cialized knowledge. In the paper, I consider a team setting, and I characterize

the optimal delegated choice set that is offered to agents when an agency conflict

is present. I show that the amount of discretion increases with the value of an

agent’s private information, with the degree of alignment between the principal

and agents, and with the ex ante uncertainty faced by the principal and agents.

The latter finding implies that discretion may be used by agents to hedge the

risk that they face. Nevertheless, I demonstrate that when all participants have

rational expectations, it is never optimal for agents to add strategic uncertainty

to receive more discretion ex post. I conclude the paper by applying the theory

to delegated portfolio management, which yields novel empirical implications in

this setting.

The second paper is co-authored with Bruce I. Carlin and Andrew Iannac-

cone and it is titled “Competition, Comparative Performance, and Market Trans-
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parency.” In the paper, we study how competition affects market transparency,

taking into account that comparative performance is assessed via tournaments

and contests. Extending Dye (1985) to a multi-firm setting in which top perform-

ers are rewarded, we show that increased competition usually makes disclosure

less likely, which lowers market transparency and may decrease per capita wel-

fare. This result appears to be robust to several model variations and as such,

has implications for market regulation.

The final paper is co-authored with Bruce. I. Carlin and is titled “Political

Influence and the Regulation of Consumer Financial Products.” In the paper,

we explore a theoretical model of product regulation in which the social plan-

ner chooses an optimal level of market complexity, given that people have varied

sophistication. We investigate how several dimensions affect the quality of reg-

ulation: the skill of the social planner, imperfect information, lobbying efforts,

voting behavior in elections, and political philosophy. We find that both so-

phisticated and unsophisticated market participants often vote to elect the least

informed and educated planners, which erodes social welfare. Further, when con-

cerns regarding equality are sufficiently large (i.e., a socialistic agenda), the social

planner limits the market to one product. In such case, adequacy suffers and all

market participants are equally worse off.

iii



The dissertation of Shaun William Davies is approved.

Simon Adrian Board

Florian P. Ederer

Mark S. Grinblatt

Antonio E. Bernardo

Bruce I. Carlin, Committee Chair

University of California, Los Angeles

2013

iv



To the Lord God Almighty,

who richly blesses me

with family, friends, colleagues,

and interesting problems to study.

v



Table of Contents

1 The Economics of Discretion in Multi-Agent Decision Problems 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Delegation in Contract Theory and the Theory of the Firm 5

2.2 Delegation in Portfolio Management . . . . . . . . . . . . 6

3 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 The Delegation Mechanism . . . . . . . . . . . . . . . . . 10

3.2 Optimal Rules . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Uniform Distribution Example . . . . . . . . . . . . . . . . 17

4 Costly Bargaining . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Rules and the Payoff Functions’ Concavity . . . . . . . . . . . . . 22

6 Strategic Uncertainty and Rules . . . . . . . . . . . . . . . . . . . 24

6.1 Optimal Rules Under the Mean-Preserving Linear Distri-

bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Application to Delegated Portfolio Management . . . . . . . . . . 28

8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 31

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.1 Two-Sided Asymmetric Information . . . . . . . . . . . . . 51

B.2 Correlated Bliss Points . . . . . . . . . . . . . . . . . . . . 53

B.3 Multiple Agent Extensions . . . . . . . . . . . . . . . . . . 55

vi



B.4 Decision Price Discussion . . . . . . . . . . . . . . . . . . . 57

B.5 Strategic Uncertainty and Rules: Generalized Results . . . 58

C Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C.2 Mean-Preserving Linear Distribution . . . . . . . . . . . . 64

2 Competition, Comparative Performance, and Market Transparency

74

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2 Discretionary Disclosure . . . . . . . . . . . . . . . . . . . . . . . 77

2.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3 Equilibrium Disclosure . . . . . . . . . . . . . . . . . . . . 80

2.4 Other Prize Structures . . . . . . . . . . . . . . . . . . . . 83

3 Disclosure With Concurrent Product Market Competition . . . . 87

3.1 Equal Shares Competition . . . . . . . . . . . . . . . . . . 87

3.2 Generalized Product Market Competition . . . . . . . . . 90

4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.1 Monopolist Model Example One . . . . . . . . . . . . . . . 108

B.2 Monopolist Model Example Two . . . . . . . . . . . . . . 109

3 Political Influence and the Regulation of Consumer Financial

vii



Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2 Products and Regulation . . . . . . . . . . . . . . . . . . . . . . . 121

2.1 Sophisticated Agents . . . . . . . . . . . . . . . . . . . . . 124

2.2 Unsophisticated Agents . . . . . . . . . . . . . . . . . . . . 124

2.3 Optimal Product Market Complexity . . . . . . . . . . . . 128

3 The Quality of Product Regulation . . . . . . . . . . . . . . . . . 129

3.1 Lobbying Efforts - Naive Social Planner . . . . . . . . . . 130

3.2 Lobbying Efforts - Savvy Social Planner . . . . . . . . . . 132

3.3 Voting Behavior . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Alternative Welfare Specifications . . . . . . . . . . . . . . . . . . 137

4.1 Equality Versus Adequacy . . . . . . . . . . . . . . . . . . 137

4.2 Minimizing the Maximum Loss . . . . . . . . . . . . . . . 139

5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 140

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

viii



List of Figures

1.1 Decision space. The bliss points for agent 1 and agent 2 appear in

the continuum of all possible choices. . . . . . . . . . . . . . . . 8

1.2 Rule with a perfectly informed principal. If both agents’ bliss

points are known, the optimal rule is to restrict agent 1 to choose

the midpoint of x∗
1 and x∗

2. . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Rules with an imperfectly informed principal. If agent 1’s bliss

point is private information the optimal rule straddles agent 2’s

bliss point and the principal’s best uninformed guess. . . . . . . . 14

1.4 Optimal rules with a uniform distribution. . . . . . . . . . . . . . 18

1.5 Agent 1’s payoff with x∗
2 = D/2 and θ1 = 1/2. . . . . . . . . . . . 22

1.6 Payoff for agent i as a function of d for β = 2 and β = 4. . . . . . 23

1.7 Mean-preserving linear distribution examples. . . . . . . . . . . . 25

1.8 Optimal discretion and variance. . . . . . . . . . . . . . . . . . . . 27

1.9 A uniform distribution f(x) and symmetric-triangular distribution

g(x). The two distributions share the same mean but differ in their

respective variances. . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.10 Mean-preserving linear distribution. . . . . . . . . . . . . . . . . . 65

1.11 Mean-preserving linear distribution examples. . . . . . . . . . . . 68

ix



2.1 Disclosure game with product market competition. The random

variable is x̃ ∼ N(0, 5) and φ = 1 and p = .3. The product

market competition characterized by FN (x) = F (Nx). The curve

shows how the equilibrium disclosure changes with the number

of competing firms. Disclosure initially increases, then decreases

asymptotically to the lower limit ω̂ ≈ 0.556. . . . . . . . . . . . . 89

3.1 The product market. The types for unsophisticated agents are

uniformly distributed along the interval [0, xu] and the types for

sophisticated agents are uniformly distributed on [0, xs]. Prod-

ucts in the market are distributed on [0, xm]. The bound x̂m is an

example of an incomplete market for both sophisticated and unso-

phisticated agents. The bound x′
m is a market that is complete for

unsophisticated agents, but is incomplete for sophisticated agents. 122

3.2 Individual losses given xm. . . . . . . . . . . . . . . . . . . . . . . 125

3.3 Ex ante expected losses as a function of xm. . . . . . . . . . . . . 127

x



List of Tables

1.1 Model timing in base model. . . . . . . . . . . . . . . . . . . . . . 9

1.2 Model timing in the principals’s delegation mechanism. . . . . . . 12

xi



Acknowledgments

The road to completing the Ph.D. began over thirty years ago. First and

foremost, I would like to thank Jesus Christ, my Lord and Savior. His love and

sovereignty brought me to this moment. Secondly, I would like to thank my best

friend, my love, my wife, Kjerstin Davies. Next, although we have not yet met, I

would like to thank our unborn baby, who we love very much. I would also like

to thank my parents, Scott and Cathy Davies, for encouraging me in my stud-

ies, and I would like to thank my sister Allyson Davies, who taught me algebra

when I was eight years old. I would also like to thank the many other family

members and friends that pushed me towards this degree: the Davies families,

Robbins families, Fedalen families, Dinsmore families, DeVille families, Sigvald-

son families, Eha families, Jonathan Chang, Eldon Clarence “Tommy” Thompson

III, Robert Stage, Dax Minary, Cameron Burns, Garrett Fahy, Tyson Strutzen-

berg, Christopher Oliver, Jeremy Durham, Joel Griswold, and countless others.

I would also like to thank the many teachers and instructors that I had at the

following institutions: Sierra Elementary, D’Evelyn Junior High, Standley Lake

High School, the University of Colorado at Boulder, the University of California,

Los Angeles, and Smith Breeden Associates, Inc. I would like to give a special

thank you to Malcolm Campbell, Bridget Morris-Virkler, Bonnie Harden, James

Curry, Campbell Harvey, Stan Kon, and John Sprow. Also, I would like to thank

the mentors I have had: Peter Nolan, Craig Booth, Steve Van Diest, and David

Lewis.

This dissertation would not have happened without the guidance and many

helpful discussions from the members of my dissertation committee: Bruce I.

Carlin (Chair), Antonio E. Bernardo, Mark S. Grinblatt, Florian P. Ederer, and

xii



Simon Adrian Board. I would also like to thank the many colleagues who helped

me in the process: Holger Kraft, Hanno Lustig, Ivo Welch, Andrea Eisfeldt,

Bhagwan Chowdhry, Mark Garmaise, Geoff Tate, Jack Hughes, Pierre-Olivier

Weill, John Riley, Joseph Ostroy, Nick Ross, Jim Ostler, Andrew Iannaccone,

Sara Parker, Brian Waters, Patrick Kiefer, Kyle Matoba, Phillip Wool, G.D.

Knolls, and the seminar participants at the University of Rochester, the Univer-

sity of Colorado, the University of British Columbia, Arizona State University,

Columbia University, Vanderbilt University, the University of Iowa, and the Uni-

versity of California, Los Angeles. I would also like to thank the UCLA Anderson

Graduate School of Management and the UCLA Graduate Division for their gen-

erous funding over the last five years. Lastly, I would like to thank Lydia Heyman,

Ani Adzhemyan, Delores Rhaburn, and Robin Helmer for their support during

my time at UCLA.

xiii



Vita

Education

2010 M.A., Economics, University of California at Los Angeles.

2005 B.S., Applied Mathematics, University of Colorado at Boulder.

2005 B.A., Economics, University of Colorado at Boulder.

2005 Certificate in the Practice and Study of Leadership, University of

Colorado at Boulder.

Employment

2005-2008 Research Analyst, Smith Breeden Associates, Inc., Fixed Income

Quantitative Research, Chapel Hill, North Carolina.

Teaching Experience

1. Corporate Finance, MBA, Teaching Assistant, Spring 2010, Fall 2010, Spring

2012.

2. Advanced Financial Policy for Managers, Executive MBA, Teaching Assistant,

Spring 2010.

3. Credit Risk, Master of Financial Engineering, Teaching Assistant, Fall 2010.

4. International Financial Markets, MBA, Teaching Assistant, Spring 2011.

5. Microfinance, Climate Change, and Impact Investing, MBA, Teaching Assistant,

Spring 2012.

Finance Publications

1. “Competition, Comparative Performance, and Market Transparency” (with Bruce

I. Carlin and Andrew Iannaccone), American Economic Journal: Microeco-

nomics 4: 202-237, 2012.

Works in Progress

1. “Political Influence and the Regulation of Consumer Financial Products” (with

Bruce I. Carlin).

2. “The Economics of Discretion in Multi-Agent Decision Problems”.

3. “Ratings and Liquidity in Secondary Market Trading” (with Brian Waters).

4. “Designing Markets for Impact Investing in Social Businesses” (with Bhagwan

Chowdhry and Brian Waters).

5. “Financial Markets and Investor Attention”.

xiv



Professional Organizational Activities

2012-Present Chartered Financial Analyst.

2011-2012 President of Advanced Degree Programs, UCLA Anderson Student

Association.

Awards

2012 Finalist, Best Finance PhD Dissertation Award, Olin Business

School & Wells Fargo Advisors CFAR.

2012 UCLA Dissertation Year Fellowship.

2011 AFA Doctoral Student Travel Grant Recipient.

2008 UCLA Anderson Fellowship.

2001 Boettcher Scholarship.

2001 Presidents Leadership Class / El Pomar Scholar.

Seminars

2013 University of Rochester, University of Colorado, University of

British Columbia, Arizona State University, Columbia University,

Vanderbilt University, University of Iowa.

2012 UCLA Anderson Graduate School of Management.

2011 UCLA Anderson Graduate School of Management.

Conference Presentations

2012 Western Finance Association, Summer 2012.

2010 California Corporate Finance Conference, Loyola Marymount Uni-

versity, Fall 2010.

Editorial Positions

2013-Present Finance and Accounting Memos, Associate Editor.

xv



CHAPTER 1

The Economics of Discretion in Multi-Agent

Decision Problems

1 Introduction

The use of delegation is motivated by a principal’s inability to extract an agent’s

private information due to costly information transmission. The principal chooses to

delegate her decision-making rights to the agent, instead of making an uninformed

decision. Delegation, however, introduces an agency conflict as the principal and agent

may have different objectives. Consequently, the principal mitigates the conflict by

providing discretion that limits the decision-maker to a subset of choices. In this

paper, I focus on how the principal optimally selects the decision-maker’s choice set

and I characterize it. My model’s insights and reach extend to many economic fields,

e.g., industrial organization, political economy, and corporate finance. As such, I first

analyze the general model to explore the economics of discretion-limits. Subsequently,

I apply the theory to delegation in the investment management industry.

The subject of discretion is particularly relevant in the investment management

industry where knowledge mismatches lead agents to delegate investment decisions to

those with specialized knowledge, e.g., retail investors delegate portfolio management

decisions via mutual fund purchases and institutions delegate investment decisions to

internal managers and sub-advisors. Delegating portfolio choices is beneficial as it

leads to informed portfolio construction. The benefit, however, is limited. It is well

documented that delegated investment management typically gives rise to an agency

cost: compensation contracts lead managers to add extra portfolio risk (Starks 1987;

Grinblatt and Titman 1989; Brown, Harlow, and Starks 1996; Chevalier and Ellison

1997), managers expend too little effort on information collection (Stoughton 1993),

and behavioral biases create a wedge between manager and investor risk appetites

(Eriksen and Kvaloy 2010).
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The existing literature focuses primarily on compensation schemes and monitoring,

but largely ignores discretion. Indeed, an understanding of compensation and incen-

tives is important, however, it overlooks a significant dimension of delegated portfolio

management: delegation is accompanied with decision constraints. For example, mu-

tual fund managers are typically limited by their funds’ prospectuses and institutional

portfolio managers may be provided with risk budgets to execute on strategies. I add

a new dimension to the literature by considering how decision rights should be al-

located and the quantity of discretion that should accompany those decision rights.

Furthermore, understanding discretion-limits as a substitute or complement to other

mechanisms is important when compensation is constrained and monitoring is costly.

The generalized model involves two agents and a principal. The agents are bound

by the outcome of a common decision and each agent has a preferred choice that

maximizes his individual payoff. If complete contracting is possible, the agents find

it optimal to choose the decision that maximizes the aggregate payoff, which is then

split according to their Nash bargaining weights. I assume, however, that bilateral

contracting between agents is costly. For example, depending on the application, it

may be costly for the two to haggle, coordinate information or transfer specialized

knowledge. If the contracting cost is sufficiently large, the agents do not find it efficient

to bargain. The principal remedies this by providing a delegation mechanism that

bypasses the cost. The mechanism, however, gives rise to an agency conflict due to

misalignment between the principal and agents. Nevertheless, the principal optimally

delegates all decision rights to one of the agents, but limits his choices, i.e., the principal

grants a provision of discretion.

I first consider the case where it is prohibitively costly for the the agents to contract

and I show that discretion is especially valuable when at least one agent has private

information. The principal grants the privately informed agent a continuum of choices

(Holmstrom 1977, 1984; Alonso and Matouschek 2008), which includes the principal’s

uninformed best guess (had she retained the decision-making rights). Naturally, I

show that the discretion provided to one agent is also characterized by the needs of

the other. Specifically, the continuum of choices also contains the other agent’s bliss

point. I augment the analysis by considering a setup where there are N > 2 agents.

The analysis provides new insights into the theory of delegation by considering agent-

to-agent effects in addition to the principal-agent relationship.

I then consider when the contracting cost is not large enough to prevent agent-
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to-agent bargaining. Indeed, it is efficient for the agents to bypass the delegation

mechanism and bargain if the net gain is greater than the contracting cost. The princi-

pal takes the agents’ ability to do so under consideration when she provides discretion.

Consequently, the quantity of discretion is a function of the contracting cost and the

agents’ bargaining weights. I show that discretion increases in the contracting cost

and decreases with the decision-making agent’s bargaining power. This suggests that

discretion is greater in competitive environments than in monopolistic ones.1

In the initial setup, I assume that both agents’ payoff functions contain a quadratic

loss component. I relax this assumption later in the paper and I analyze the sensitivity

of my initial results by considering a generalized payoff function. I demonstrate that

linear payoff functions make unlimited discretion optimal. However, this is a knife-edge

case and it is optimal to limit discretion if the agents’ payoff functions are anything

but linear. I supplement the analysis by showing that discretion increases with the

concavity of the agents’ payoff functions. As the payoff function gets “steeper” around

the agents’ bliss points, the decision-maker’s private information becomes more valuable

and the principal provides greater discretion.

Next, I show that discretion increases with uncertainty in the principal’s beliefs.

I model this by assuming that the principal’s beliefs are a probability distribution

over the agents’ preferences. I show that the principal allocates more discretion as the

distribution’s variance increases. For the analysis, I derive and use a distribution which

I coin the “mean-preserving linear distribution.” The distribution is attractive because

the variance is characterized by a single parameter without introducing confounding

factors, e.g., increasing the variance of the uniform distribution requires expanding

its support. The result might suggest that the decision-maker enjoys additional ex

ante uncertainty because he is granted greater discretion ex post. If the principal’s

beliefs are accurate, however, this turns out not to be the case; the increased discretion

does not sufficiently compensate the agent agent against increased risk. Consequently,

agents prefer an informed principal ex ante. In the supplementary appendix, I consider

a general class of distributions and provide conditions for which the results hold.

I conclude the analysis by considering an application to delegated portfolio man-

agement. I consider a decentralized firm that generates profits by actively managing

1The result also has implications for the theory of the firm, as upstream firm divisions
should receive greater discretion than monopolistic downstream divisions. See Williamson
(1973, 1979), Klein, Crawford, and Alchian (1978), Grossman and Hart (1986), and Hart and
Moore (1990) for a thorough analysis of the hold-up problem.
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investor capital. The agents in the application are the firm’s division managers and

the principal is the firm’s CEO. One division, the trading division, invests capital and

actively trades the firm’s portfolio. The other division, the “reputation” division, is

client-facing, e.g., the division is responsible for raising and maintaining outside cap-

ital via marketing & client services and establishing services to augment investment

activities. The firm’s CEO must decide how much portfolio risk the firm should take,

but the division managers possess specialized information. It is costly for managers

to transfer their information, so the CEO delegates the portfolio risk choice to one of

them. Furthermore, the CEO limits the choice set due to an agency conflict induced

by the firm’s compensation scheme.

The rest of the paper is organized as follows. In Section 2, I discuss the relevant

literature. In Section 3, I pose and characterize my base model, introduce the delegation

mechanism and derive optimal discretion under an imperfectly informed principal. In

Section 4, I allow the agents to choose between the principal’s mechanism and costly

bargaining. I demonstrate, in a rational expectations framework, that the optimal

provision of discretion increases with the contracting cost and decreases with bargaining

power. In Section 5, I explore the principal’s mechanism with variants of the the agents’

payoff functions. In Section 6, I consider the degree to which agents want the principal

to be informed. In Section 7, I apply my model to delegated portfolio management.

Section 5 concludes. All mathematical proofs are in Appendix A. In Appendix B,

I consider variants to the base model. In Appendix C, I derive the mean-preserving

linear distribution used in my analysis.

2 Literature Review

The application I explore in this paper is set in the context of an investment firm,

but I should emphasize that discretion is pervasive in many contexts and my model

can be easily applied to problems in industrial organization, political economy, and

corporate finance. As such, it is worthwhile to discuss the related literature in both

general economics and my specific application of delegated portfolio management.
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2.1 Delegation in Contract Theory and the Theory of the Firm

The topic of delegation and the accompanying subtopic of discretion-limits were first

broached by Simon (1951) who introduced the concepts within the context of an em-

ployer and employee relationship. In his setup, the employee sells his services to an

employer. The employer, in turn, provides the employee various terms of service in

an “acceptance set” and lets the employee choose by delegating the decision-making

ability. Holmstrom (1977, 1984) also considers the relationship between a principal and

a single agent. He demonstrates that a principal achieves a greater payoff by delegating

decisions to better informed agents, as long as their preferences are minimally aligned.

My paper continues in the spirit of Simon (1951) and Holmstrom (1977, 1984) by ex-

ploring the value of discretion in a multi-agent setting, how discretion is measured, and

how much discretion is optimal.

Melumand and Shibano (1991) consider a bilateral relationship between principal

and agent. Similar to my setup, they assume quadratic payoff functions and they

solve for the conditions under which delegating a single continuum of actions is op-

timal. While Melumand and Shibano model the principal’s uncertainty as a uniform

distribution, Alonso and Matouschek (2008) extend their analysis by considering gen-

eral distributions. My work complements these two papers by using their results to

justify discretion as the optimal, incentive compatible, truth-telling mechanism. Des-

sein (2002) considers a model where the principal chooses between delegation or noisy

communication with the agent. He shows that delegation is value-adding because it in-

herently involves commitment to a certain decision-making rule. If the principal cannot

commit, i.e., she maintains veto power, communication between principal and agent

breaks down and results in the cheap talk framework of Crawford and Sobel (1982). My

work adds another dimension to the work of Dessein; he considers the tradeoff between

loss of control (delegation) and noisy communication (cheap talk), while I consider the

tradeoff between delegation and costly complete contracts. Krishna and Morgan (2008)

consider the delegation problem with contingent monetary transfers. I also consider

contingent transfers in my paper and I show that there exists a unique pricing scheme

that leads to the first-best decision by the agent. Lastly, Aghion and Tirole (1997) con-

sider the effect of authority on the principal-agent information structure. I, however,

assume that the agent is always better informed.

Discretion is often considered in the same context as control rights and contingent

control. Control rights, or the designation of unlimited discretion, as explored by Klein,

5



Crawford, and Alchian (1978), Grossman and Hart (1986) and Hart and Moore (1990),

serve as a mechanism to mitigate ex ante inefficiencies. My paper adds to this existing

literature by distinguishing discretion as a form of limited control. I show that provi-

sions of discretion enhance the aggregate payoff and substitute for costly contracting.

My research also adds to the contingent control literature. Contingent control, as ex-

plored by Aghion and Bolton (1992), designates full discretion to interested parties

depending on the state of the world. In their paper they consider whether a wealth

constrained entrepreneur or investor should control a project. In this paper I consider

whether an agent with private information or an agent with no private information

should be granted decision rights.

Lastly, the agents in my model rely on rules constructed by an uninformed princi-

pal. As such, my paper adds to the existing economic literature regarding rules and

uncertainty. Baron and Myerson (1982) provide, perhaps, the definitive paper on op-

timal regulation in the presence of private information. Specifically, they consider the

optimal method for regulating a monopolist with an unknown cost function. My paper

adds to their work by considering how a principal accommodates an unknown pay-

off function with discretion. In a similar spirit to Baron and Myerson, Milgrom and

Roberts (1986) and Laffont and Tirole (1991) consider how a decision-maker efficiently

balances the needs of interested parties with private information. My paper also ex-

plores this tradeoff by examining how discretion imposes both a cost and a benefit to

all parties. Furthermore, my paper utilizes insights from the costly contracting litera-

ture. Anderlini and Felli (1994) and Battigalli and Maggi (2002) justify the existence

of incomplete contracts by the costs associated with explicitly defining every possible

contingency. In my model I assume an exogenous contracting cost but appeal to their

work as a micro foundation for it.

2.2 Delegation in Portfolio Management

Portfolio management requires a great deal of specialization within asset classes and

market sectors. Consequently, investment firms often require decentralized decision-

making. Delegation is used to match specialized knowledge to portfolio investment

decisions. Chen, Hong, and Kubik (2011) explore the performance of investment funds

that outsource portions of their fund portfolio. They find empirically that funds which

use outsourcing underperform funds that are run internally. The authors attribute the

difference to outside managers extracting rents. Cashman and Deli (2009) also examine
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the outsourcing of portfolio decision rights. They find empirically that decisions are

delegated to outsiders when there is likely a large degree of private information. My

paper provides a theoretical basis for both of these papers: the presence of private

information motivates principals to delegate decisions while an agency conflict leads to

rent seeking.

Almazan, Brown, Carlson, and Chapman (2004) consider the constraints placed on

managers by investors. They find empirically that constraints are more common when

agency costs are likely high. My work adds a theoretical dimension to their work by

solving for and characterizing the optimal quantity of discretion in delegated portfolio

management. van Binsbergen, Brandt, and Koijen (2008) consider a decentralized in-

vestment firm where division managers and a centralized decision-maker have different

objectives. The authors prescribe the use of a benchmark in compensation contracts

to mitigate the agency cost. I, however, show that limiting manager discretion is an

alternative tool for mitigating the agency cost.

Lastly, much of the theoretical research aimed at the delegated portfolio manage-

ment problem focuses on compensation schemes. Admati and Pfleiderer (1997) demon-

strate that benchmark-adjusted compensation is difficult to rationalize in a one-shot

game. Ou-Yang (2003) and Kraft and Korn (2008), however, show that benchmark-

adjusted compensation does mitigate agency conflicts when the problem is taken to a

continuous-time setting. It is also well documented that some compensation contracts

lead to agency conflicts, e.g., Starks (1987) shows that asymmetric incentive contracts

lead managers to add extra portfolio risk and Stoughton (1993) demonstrates that a

linear contract may lead to a moral hazard conflict with managerial effort. While an

understanding of compensation and incentives is important, I add a new dimension to

the problem by considering the effect of limiting discretion to mitigate agency conflicts.

3 Base Model

In this section, I establish an underlying game form which allows me to explore costly

contracting and delegation. Consider two agents that are mutually bound by the out-

come of a common choice d from the set of all feasible choices. The set of choices is

represented by the continuum [0,D]. Each of the two non-cooperative agents has a

unique choice x∗i ∈ [0,D] that maximizes his individual payoff function,

Πi = Hi(d, x
∗
i ) with i ∈ {1, 2}. (1.1)
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0 x∗
2 x∗

1 D

Figure 1.1: Decision space. The bliss points for agent 1 and agent 2 appear in
the continuum of all possible choices.

Furthermore, for each agent assume that

1. the payoff function is everywhere continuous and differentiable in d,

2. the payoff function is concave in d, i.e.,
∂2Hi(d,x∗i )

∂d2 ≤ 0,

3. and
∂Hi(d,x

∗
i )

∂d = 0 if d = x∗i .

The space of all possible choices and each agent’s bliss point are depicted in Figure 1.1.

Both agents retain the ability to walk away from the game and receive a zero payoff.

The aggregate payoff is the sum of the two agents’ payoffs,

Π(d, x∗1, x
∗
2) = H1(d, x

∗
1) +H2(d, x

∗
2). (1.2)

The sum of the two concave functions yields an aggregate payoff function that is also

concave in d. Consequently, there is a unique choice d∗ that maximizes it. The choice

is implicitly defined by

0 =
∂H1(d, x

∗
1)

∂d
+
∂H2(d, x

∗
2)

∂d
, (1.3)

and it is certainly possible that d∗ 6= x∗1 and d∗ 6= x∗2. For the sake of exposition, I

assign an explicit form to the payoff functions, namely,

Πi(d) = πi − (d− x∗i )
2, (1.4)

where πi > 0 for i ∈ {1, 2}.2 Because the agents are bound by a common choice, it

is impossible to simultaneously maximize both agents’ payoffs, except for the trivial

case of x∗1 = x∗2. This highlights the model’s key tension and provides the focus of my

paper: how is d chosen?

2I require that πi ≥ D2 for i ∈ {1, 2}. The assumption guarantees that both agents’ payoffs
are positive for all values of x∗1, x

∗

2 ∈ [0, D] and for all choices d ∈ [0, D]. In the absence of this
condition there exist regions where it is not efficient for at least one agent to participate in the
game. While this is noteworthy, it does not provide additional insights.
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Table 1.1: Model timing in base model.

Time Event

t = 1 Agents observe bliss points and decide whether or not to pay c/2.

If agents participate, they choose d and split aggregate payoff

according to Nash bargaining.

t = 2 Payoffs realized.

Although the focus of this paper is delegated discretion, I begin with an alternative

decision-making process to motivate the delegation mechanism. An obvious decision-

making mechanism is agent-to-agent complete contracting. The agents maximize their

payoffs by choosing d to maximize the aggregate payoff and then split it according

to the asymmetric Nash bargaining solution. Denote agent 1’s bargaining power as

θ1 ∈ [0, 1] and agent 2’s as θ2 = 1− θ1. The contracting process itself is costly for the

two agents. Namely, the agents each incur a fixed cost c/2 > 0 when they bargain. This

contracting cost is attributed to a vast list of bargaining expenses, e.g., effort and time

expended on haggling, the cost of coordinating information, and the cost of explicitly

contracting. As such, the aggregate payoff, net of the contracting cost, is given by

Π(d) = π1 + π2 − (d− x∗2)
2 − (d− x∗1)

2 − c. (1.5)

For now, let us start with the perfect information case. The model’s timing proceeds

as follows. At time t = 1 the agents’ bliss points are publicly observable and the agents

choose whether or not to participate. When the agents bargain, they each pay the

contracting cost of c/2 and Nash bargaining ensues to determine d. At time t = 2 the

agents’ combined payoffs yield the aggregate payoff and each agent receives his share.

I assume that agreements made at t = 1 are enforceable and cannot be renegotiated,

i.e., there are no holdup issues and an agent cannot abscond with his individual payoff.

The base model’s timing is summarized in Table 1.1.

Proposition 1. If c ≤ ĉ the agents choose d∗ = (x∗1 + x∗2)/2. It is inefficient for the
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agents to participate if c > ĉ where

ĉ ≡ π1 + π2 −
(x∗1 − x∗2)

2

2
. (1.6)

The economics of Proposition 1 are straightforward, but the implications are a bit

more subtle. The aggregate payoff in Equation 1.5 contains the contracting cost c,

which is attributed to haggling, coordinating information and drafting agreements. If

c is sufficiently small, the agents are able to bargain. If, however, the cost is large, then

bilateral contracting between agents is not possible and alternative decision mechanisms

are valuable. In the following section, I introduce a principal that oversees both agents

and provides a mechanism to overcome the cost.

3.1 The Delegation Mechanism

Assume that c > ĉ so that there is a benefit from alternative decision-making mech-

anisms. Furthermore, the two agents are overseen by a principal. The principal’s

objective is to maximize the aggregate payoff and, for consistency, I assume that the

existence of the principal does not eliminate the contracting cost c. The principal is

tasked with implementing a mechanism that enables decision-making without incurring

c.

In the spirit of Holmstrom (1984), the principal utilizes a delegation mechanism.345

Specifically, at time t = 0, the principal delegates the decision rights for d to one of

the agents. If the agents comply with the mechanism, they no longer bargain at t = 1.

Instead, the decision-making agent determines d ∈ [0,D]. Each agent realizes his payoff

at t = 2. For now, without loss of generality, suppose agent 1 is delegated the decision

rights.

At t = 1, both agents are committed to the mechanism, regardless of the decision-

making agent’s choice. Without limits on his discretion, the agent maximizes his payoff

3Holmstrom (1984) postulates that delegation is an attractive alternative because of the
“contracting costs saved by the simpler decision process.” Furthermore, the claim is supported
by the prevalence of the mechanism in practice.

4It is equivalent to consider a broader set of mechanisms and allow the principal to solve the
contracting problem by choosing any deterministic, incentive compatible, truth-telling mecha-
nism. This fact is redolent of the Revelation Principle. See Alonso and Matouschek (2008) for
further discussion.

5There may exist a cost to implement the delegation mechanism. The important distinc-
tion, however, is that the delegation mechanism is relatively cheaper to implement than the
alternative. As such, c captures the relative difference in implementation costs.
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by choosing d = x∗1. If x
∗
1 and x∗2 are equal, unlimited discretion maximizes the aggre-

gate payoff. If, on the other hand, x∗1 and x∗2 differ, the aggregate payoff is lower than

first-best. Consequently, it is possible to increase the aggregate payoff by limiting the

agent’s discretion.6

Definition 1. A rule is a set, {α,α} ∈ [0,D] × [0,D] with α ≤ α, determined by the

principal, that restricts the decision-making agent’s choice to the continuum [α,α]. A

decision-making agent’s discretion is increasing in α− α.

Definition 1 provides the means to limit the decision-maker’s discretion.78 The

definition also contains a metric for comparing rules. A rule provides broad discretion

if α and α differ greatly and narrow discretion when the two bounds are close. The

timing of the rule mechanism is outlined in Table 1.2.

3.2 Optimal Rules

The principal’s problem is to define a rule that maximizes the aggregate payoff,

maxα,α∈[0,D]Π1(d) + Π2(d)

subject to

d∈argmax
d̂∈[α,α]

Π1(d̂),

Π1(d)≥0,

Π2(d)≥0.

(1.7)

If the agents do not possess private information, the principal dictate’s the decision-

maker’s choice.

Proposition 2. A perfectly informed principal restricts the decision-making agent to

a single choice,

α∗ = α = α =
x∗1 + x∗2

2
. (1.8)

6I do not allow the principal to “price” individual choices for the decision-making agent. The
assumption that transfers are not contingent on d is consistent with the existing delegation lit-
erature, e.g., Holmstrom (1977, 1984), Aghion and Tirole (1997), Melumad and Shibano (1991),
Dessein (2002), and Alonso and Matouschek (2008). I, however, do consider the possibility of
contingent transfers in Appendix B.

7My use of the term “rule” is analogous to the term “control intervals” described by Hol-
mostrom (1984).

8Alonso and Matouschek (2008) discuss the optimacy of a delegation mechanism that re-
quires an agent to make his decision from a single interval, i.e., “interval delegation.” They
expound on the earlier work of Melumand and Shibano (1991) and provide the necessary con-
ditions under which interval delegation is optimal. The model setup prescribed in this paper
satisfies those conditions, that is, a rule consisting of a single interval is optimal.
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Table 1.2: Model timing in the principals’s delegation mechanism.

Time Event

t = 0 Principal anticipates the agents’ bliss points and provides discretion

[α, α]. Agents decide whether or not to commit to mechanism.

t = 1 Agents learn their respective bliss points. Agent 1 chooses x∗
1

if it is contained in [α, α]. Otherwise he chooses his best alternative

from the continuum [α, α].

t = 2 Payoffs realized.

0 x∗
2 α∗ x∗

1 D

Figure 1.2: Rule with a perfectly informed principal. If both agents’ bliss points
are known, the optimal rule is to restrict agent 1 to choose the midpoint of x∗

1

and x∗
2.

Proposition 2 indicates that it is a misnomer to call the agent the “decision-maker”

if he does not have private information. Instead, the principal maximizes the aggregate

payoff by restricting the decision-maker to the first-best choice. Obviously, creating

rules that provide latitude, i.e., α 6= α, introduces the possibility of suboptimal decision-

making by self-interested agents. The space of all possible choices, the agents’ bliss

points and the permitted choice are depicted in Figure 1.2. I now turn my attention

to optimal discretion when the agents possess private information.

In situations where agents possess better information than the principal and a

decision needs to be made, the principal can either use available information to dictate

the decision or delegate away the decision. Indeed, as I will show shortly, delegating
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the decision is weakly dominant.9 In my analysis I implicitly assume that the principal

has the ability to commit to delegation, i.e., she does not retain veto-power. If the

principal could not commit to the mechanism it would be appropriate to model the

game in a cheap-talk framework, e.g., Crawford and Sobel (1982) and Dessein (2002).

In addition to this, the existing literature often considers delegation only in the context

of a vertical relationship between principal and agent. I depart from this conventional

setup by considering delegation in a setting where the principal oversees multiple agents

and I explore the benefits of delegation on agent-to-agent interaction. In Appendix B,

I consider a setup with N > 2 agents and provide additional insights.

Suppose that the principal is perfectly informed of agent 2’s bliss point but she

has only beliefs for agent 1’s.10 I denote the principal’s beliefs for x∗1 as a probability

density function, f(x), on the support [0,D]. For analytic tractability I make the

minimal assumptions that f(x) is continuous and differentiable. Again, assume that

the principal delegates the decision rights to agent 1 and that c > ĉ.

Before I demonstrate the optimal quantity of delegated discretion, consider the

following thought experiment. We saw in Section 3.1 that the first-best aggregate

payoff occurs when agent 1 selects d∗ =
x∗1+x

∗
2

2 . Here, the principal is unable to restrict

the agent to this choice because his bliss point is private. The principal, however, does

know agent 2’s bliss point. Therefore, even without beliefs, the principal can limit

discretion and increase the expected aggregate payoff. Specifically, she can establish

the naive rule,

{α,α} =

{
x∗2
2
,
x∗2 +D

2

}

. (1.9)

The naive rule eliminates any choices that cannot be first-best, since x∗1 cannot be less

than 0 or greater than D. The naive rule dominates unlimited discretion, but, as I will

now show, the principal uses her beliefs to do better.

Consider a rule {α,α}. The principal anticipates the agent’s optimal choice for

each possible realization of x∗1. The following lemma establishes the expected aggregate

payoff under a given rule,

9The existing research on delegation in economics and political economy suggests that au-
thoritative parties should delegate decision power to better informed subordinates. See Huber
and Shipan (2006) for discussion on the “Uncertainty Principle” in political economy.

10I consider the possibility that both agents’ bliss points are private information at the
conclusion of this section. I show that my results are qualitatively unchanged in that setup and
that little intuition is lost by considering that only agent 1’s bliss point is private information.
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0 α αx∗
2dP D

Figure 1.3: Rules with an imperfectly informed principal. If agent 1’s bliss point
is private information the optimal rule straddles agent 2’s bliss point and the
principal’s best uninformed guess.

Lemma 1. For a given rule {α,α} the expected aggregate payoff is given by,

E[Π(d)|{α,α}] =π1 + π2 −

∫ α

0

[
(α− x)2 + (α− x∗2)

2
]
f(x) dx

−

∫ α

α
(x− x∗2)

2f(x) dx

−

∫ D

α

[
(α− x)2 + (α− x∗2)

2
]
f(x) dx. (1.10)

Equation 1.10 contains three integrals because agent 1 will choose either his bliss

point or one of the rule’s bounds. The agent achieves his optimum when x∗1 is in the

realm of discretion [α,α]. When x∗1 falls below the lower bound of the rule, the agent

maximizes his payoff by choosing α. Similarly, when x∗1 is above the upper bound,

the choice is α. I effectively bake-in partial alignment between the principal and agent

1 via their payoff functions. Consequently, discretion-limits provide a benefit and a

cost: increased discretion lets agent 1 increase his payoff and, consequently, part of the

aggregate payoff. The additional discretion, however, may adversely affect agent 2’s

payoff, i.e., the other component of the aggregate payoff. The principal’s problem is to

strike a balance between this benefit and cost by providing a rule that offers optimal

discretion.

Proposition 3. When the decision-maker has private information, the optimal rule

does not restrict him to a single choice. Instead, the principal provides the decision-

maker with discretion,

{α,α} =

{
E[x∗1|x

∗
1 ≤ α] + x∗2
2

,
E[x∗1|x

∗
1 ≥ α] + x∗2
2

}

. (1.11)

Proposition 3 yields the optimal discretion provided to agent 1. Both the lower and

upper bounds of the rule are defined implicitly without stating a specific distribution.
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Later in this section I provide closed-form solutions for the rule’s bounds when f(x) is

uniform over [0,D]. It is important to note that the optimization results in a band of

permissible choices, rather than a single one. As such, providing discretion, α 6= α, at

least weakly dominates “no discretion” since α = α is contained in the optimization’s

choice set. The intuition of the result follows from understanding how the principal

utilizes the agent’s private information. If the principal relied on her own beliefs, she

would dictate her uninformed best guess,

dP =
E[x∗1] + x∗2

2
. (1.12)

A rule that restricts agent 1 to this lone choice is suboptimal; a provision of discretion

that includes all choices between dP and x∗2 can only increase the ex post aggregate

payoff. This is indeed the case, and, as I demonstrate in the following corollary, the

discretion provided to agent 1 always includes agent 2’s bliss point and the principal’s

uninformed best guess dP .

Corollary 3.1. The discretion provided to agent 1 includes both agent 2’s bliss point

x∗2 and the principal’s uninformed best guess dP .

Holmstrom (1984), in a setup with a principal and a single agent, demonstrates that

optimal discretion always includes the principal’s uninformed best guess. Corollary 3.1,

however, adds to this insight by demonstrating how the principal uses discretion with

multiple agents. The principal utilizes agent 1’s private information and, simultane-

ously, shields agent 2 from a potentially excessive payoff loss. She does so by providing

discretion-limits around agent 2’s bliss point and her own uninformed best guess. This

is illustrated in Figure 1.3. The lower bound of the rule lies below agent 2’s bliss point

and the principal’s uninformed best guess, while the upper bound resides above.

Until this point, my analysis has assumed that agent 1, who has private information,

is the decision-maker. One might wonder if agent 2, who has no private information,

would make a better decision-maker. Before I compare aggregate payoffs under different

decision-making regimes, I provide the following corollary,

Corollary 3.2. If agent 2 is the decision-maker, the optimal rule restricts him to the

principal’s best uninformed guess,

dP = α = α =
E[x∗1] + x∗2

2
. (1.13)
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Corollary 3.2 implies that discretion is a function of the decision-maker’s private

information and not aggregate private information. I now consider the aggregate payoff

differential under the two different decision-making regimes. Denote Λi with i ∈ {1, 2}

to indicate which agent is the decision-maker. The difference in the aggregate payoff

when agent 1 makes the decision rather than agent 2 is given by,

∆Π ≡ E[Π(d)|Λ1]− E[Π(d)|Λ2]. (1.14)

Equation 1.14 measures the difference in payoffs under the two possible decision-making

regimes. When ∆Π is positive, the aggregate payoff is larger when agent 1 makes the

decision. If ∆Π is always positive, the aggregate payoff is maximized with agent 1 as

the decision-maker. The next proposition shows that this is indeed always the case.

Proposition 4. The difference in the expected aggregate payoff when agent 1 has the

decision rights, rather than agent 2, is positive,

∆Π ≥ 0. (1.15)

Proposition 4 supplies an important result in setting optimal rules: the principal

maximizes the aggregate payoff by delegating decision rights to the agent with private

information.

I conclude this section with two remarks. The analysis in this section considers that

only x∗1 is private information. It is certainly possible that both agents’ bliss points

are private information and the following remarks demonstrate the optimal rules when

that is the case.

Remark 1. The optimal rule when both bliss points are private information and un-

correlated is,

{α,α} =
{
E[x∗1|x

∗
1≤α]+E[x∗2]

2 ,
E[x∗1|x

∗
1≥α]+E[x∗2]

2

}

. (1.16)

Remark 2. The optimal rule when both bliss points are private information and cor-

related is,

{α,α} =
{
E[x∗1|x

∗
1≤α]+E[x∗2|x

∗
1≤α]

2 ,
E[x∗1|x

∗
1≥α]+E[x∗2|x

∗
1≥α]

2

}

. (1.17)

The analysis for Remarks 1 and 2 is found in Appendix B. Furthermore, Remarks

1 and 2 demonstrate that the results of this section are qualitatively unchanged when

the principal cannot anticipate either bliss point. As such, there is little sacrificed in

assuming that only one agent’s bliss point is private information.
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3.3 Uniform Distribution Example

Proposition 3 provides a solution for optimal rules under a general distribution. Here I

include an analytic example to provide closed-form solutions and additional intuition.

Suppose the principal believes that x∗1 is distributed uniformly over [0,D]. The principal

sets a rule according to Proposition 3.

Example 1. The optimal rule when the principal’s beliefs are uniformly distributed is

{α,α} =

{
2x∗2
3

,
2x∗2 +D

3

}

. (1.18)

Furthermore, the expected aggregate payoff differential, ∆Π, is strictly positive.

The results of Example 1 are best appreciated in a graphical representation. Figure

1.4(a) illustrates {α,α} as a function of x∗2. The shaded band that follows x∗2 is the

space of permissable choices. As depicted, agent 1 is provided discretion around agent

2’s bliss point and the principal’s best uninformed guess. The extent of discretion, α−α,

is constant for all values of x∗2. The placement of the discretion, however, depends on

agent 2’s bliss point. Low values of x∗2 result in providing the majority of the discretion

in choices above x∗2. The converse is true for high values of x∗2. Only at the uniform

distribution’s median, D/2, is there an equal amount of discretion above and below x∗2.

Figure 1.4(b) illustrates the expected aggregate payoff as a function of x∗2 under the

two possible decision-making regimes. The curve labeled Λ2 is strictly less than the

one labeled Λ1, which emphasizes the result of Proposition 4. The expected aggregate

payoff is strictly larger when agent 1 chooses d.

4 Costly Bargaining

Earlier, in Section 3, I introduced delegation as a mechanism to bypass the contracting

cost. Specifically, I assumed that it was prohibitively costly for the agents to haggle

or contract directly. Suppose now that the cost is not too large, i.e., c ≤ ĉ. In this

section, I extend the base model and explore the relationship between this cost and

discretion-limits.

Consider again the model setup from Section 3.1, where agent 2’s bliss point is

public information and agent 1’s is private. The principal believes that x∗1 is distributed

according to a probability density function, f(x). For analytic tractability I assume
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Figure 1.4: Optimal rules with a uniform distribution.
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that the distribution is uniform over [0,D] and that agent 2 shares these beliefs. Again,

in the spirit of Proposition 4, assume that agent 1 is the decision-maker.

Agent 1’s private information is two fold: the agent knows his own bliss point and

the aggregate payoff maximizing choice d∗. If c > ĉ, the agent is only concerned with

choosing the choice d in [α,α] closest to x∗1. This focus on his own bliss point occurs

because, even with full bargaining power θ1 = 1, complete contracting with agent 2

is too costly. If, however, c ≤ ĉ this is not necessarily the case. Agent 1’s share of

the aggregate payoff that results from directly bargaining with agent 2 may sufficiently

exceed c.

Suppose agent 1 elects to pay c and engage agent 2 directly through bargaining.

According to Proposition 1, the agents choose d∗ =
x∗1+x

∗
2

2 to maximize the aggregate

payoff. If, however, he does not pay c, his payoff depends on the discretion provided by

the principal. Agent 1’s payoffs under both bargaining and the principal’s mechanism

are given by the following lemma,

Lemma 2. Agent 1’s bargaining payoff is given by

ΠNB1 = θ1

(

π1 + π2 −
(x∗1 − x∗2)

2

2
− δ1 − δ2

)

+ δ1, (1.19)

where δ1 and δ2 correspond to agent 1 and agent 2’s disagreement points respectively.

The disagreement points in this setup are each agent’s payoff under the principal’s

mechanism.

Agent 1’s payoff under the principal’s mechanism is given by,

ΠR1 =







π1 − (α− x∗1)
2 for x∗1 < α

π1 for x∗1 ∈ [α,α]

π1 − (α− x∗1)
2 for x∗1 > α.

(1.20)

The cost c is a dead weight loss for agent 1 since he does not recoup any of it in

his bargaining payoff. Despite this, paying the cost c ensures that the agents make

the first-best choice and maximize the aggregate payoff. If agent 1’s Nash bargaining

weight is sufficiently large or the principal’s rule restricts him to undesirable choices,

it may be efficient for agent 1 to incur the cost. The agent compares his payoff under

the bargaining outcome to the payoff under the principal’s mechanism. If the net gain
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in payoff is greater than c, the agent elects to incur the cost. Define ∆G to be the

difference between the net gain and the cost c,

∆G ≡
(
ΠNB1 −ΠR1

)
− c. (1.21)

The agent’s optimal decision is determined by the sign on ∆G. If it is positive, the

agent pays c and contracts directly with agent 2. Conversely, if ∆G is negative, the

agent adheres to the discretion provided to him by the principal.

The principal is rational and anticipates that agent 1 may pay c. She takes this

into account when establishing the optimal rule. The following proposition establishes

and characterizes the optimal discretion provided to agent 1.

Proposition 5. The optimal rule is given by,

α =







x∗2 −
√

2c
θ1

if c ≤ θ1

(
x∗2

2

18

)

2x∗2
3 otherwise

(1.22)

α =







x∗2 +
√

2c
θ1

if c ≤ θ1

(
(D−x∗2)

2

18

)

2x∗2+D
3 otherwise

. (1.23)

Furthermore, the decision-maker’s discretion, α− α,

1. is decreasing in θ1

2. is increasing in c

According to Proposition 5, a sufficiently small contracting cost creates regions

where it is efficient for the agents to bargain. The principal accounts for this by

making the rule’s discretion-limits a function of the parameters θ1 and c.

Agent 1’s discretion decreases in θ1. Intuitively, the more bargaining power the

agent has, as measured by θ1, the more he has to gain by paying c. Therefore, the

principal does not accommodate the agent’s private information with as much discre-

tion. Instead, the agent’s bargaining power substitutes for discretion and makes paying

c to achieve the first-best outcome more attractive. The result provides an empirical

prediction: agents with high bargaining power, for example an agent operating a down-

stream firm division, is provided less discretion than an agent with little bargaining

power, e.g., one that operates an upstream division.
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Additionally, the proposition states that discretion moves in the same direction as

c. This provides another empirical prediction: bilateral relationships that involve high

contracting costs should be characterized by larger provisions of discretion.

Also, as c increases to prohibitively high levels, the discretion approaches that

which was prescribed in Proposition 3. More interestingly, however, is what happens

to discretion as the cost goes to zero.

Corollary 5.1. If c = 0 the decision-maker is given no discretion,

α = α = x∗2.

The principal’s mechanism serves as a substitute for costly bargaining between

agents. As demonstrated in Section 3.1, the mechanism provides second-best outcomes

if there is private information. If bargaining is costless, the principal does not settle for

second-best. Corollary 5.1 confirms this intuition, that is, the principal eliminates the

agency cost by limiting agent 1 to a single choice of x∗2. If agent 1’s bliss point x
∗
1 6= x∗2,

the agent is compelled to directly contract with agent 2.

Corollary 5.2. It is never optimal for the non-decision-maker to initiate bargaining.

The intuition of Corollary 5.2 follows directly from the agents’ outside options. If

the agents engage in bargaining each agent must be at least as well off as they are

under the principal’s mechanism. If not, bargaining breaks down and the agents return

to the principal’s mechanism. Essentially, the disagreement points in Nash bargaining

bake-in individual rationality constraints. This implies that the aggregate payoff must

be larger under bargaining than under the principal’s mechanism, otherwise there is no

incentive to pay the contracting cost. Agent 2 shares the same beliefs and information

as the principal and, consequently, believes that the aggregate payoff is maximized

under the delegation mechanism. As such, he has no incentive to initiate bargaining

with agent 1.

The results of Proposition 5 are illustrated in Figure 1.5 for a sufficiently small

c. The horizontal axis corresponds to agent 1’s bliss point while the vertical axis

depicts the agent’s payoff. The provided discretion is the region between α and α. The

points t and t represent the points where agent 1 is indifferent between bargaining with

agent 2 and adhering to the principal’s rule. As such, these indifference points become

thresholds. The agent adheres to the principal’s mechanism for all values of x∗1 ∈ [t, t].

If x∗1 < t or x∗1 > t, the agent pays c and bargains with agent 2. This is depicted as the

shaded “Bargaining Space.”
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Figure 1.5: Agent 1’s payoff with x∗
2 = D/2 and θ1 = 1/2.

5 Rules and the Payoff Functions’ Concavity

The discretion-limits imposed by a rule stems from the quadratic components of each

agent’s payoff. If, instead, the functions were linear, should rules limit the choices?

Suppose that both agents have linear payoff functions,

Πi = πi − (d− x∗i ). (1.24)

A linear payoff alters the marginal benefit and marginal cost of limiting discretion.

Unlike the payoff function in Equation 1.4, incremental deviations between d and x∗i

have a constant marginal impact. Again, assume agent 1 is the decision-maker and

his preferences are private information. The following proposition addresses how much

discretion the principal should grant the agent.

Proposition 6. If the agents have linear payoff functions, the decision-making agent

is granted unlimited discretion.

The intuition of Proposition 6 is straightforward. Agent 1’s payoff gain from choos-

ing d = x∗1 is exactly offset by agent 2’s loss. In fact, the aggregate payoff is unaffected

so long as d falls anywhere between the agents’ bliss points. If the principal limits agent

1’s discretion, she potentially impedes efficiency. Therefore, it is weakly dominant to

give the agent unconstrained freedom in choosing d.

The combination of Proposition 6 and the earlier analysis in Section 3.1 would

appear to imply that discretion should decrease with the concavity of the payoff func-

tions. As I will show shortly, the linear payoff result turns out to be a knife-edge case
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and discretion actually increases with concavity. Let ~β be the set of all positive even

integers, {2, 4, 6, . . .} and consider the generalized payoff function,

Πi = πi − (d− x∗i )
β (1.25)

where β ∈ ~β.11 Figure 1.6 depicts two different payoff curves for an agent, where

2 ≤ βL < βH . The lower curve, labeled “βL”, represents the agent’s payoff with

the less concave function, while the upper curve represents the agent’s payoff with an

exponent β = βH . Although it is difficult to compare payoff levels with the generalized

function, Figure 1.6 emphasizes the effect β has on the concavity of the payoff function.

As such, β reflects the sensitivity of agent payoffs to the choice d.

Similar to Equation 1.10, the expected aggregate payoff is given by,

E[Π|{α,α}] =π1 + π2 −

∫ α

0

[

(α− x)β + (α− x∗2)
β
]

f(x) dx.

−

∫ α

α
(x− x∗2)

βf(x) dx−

∫ D

α

[

(α− x)β + (α− x∗2)
β
]

f(x) dx. (1.26)

Again, the principal maximizes the aggregate payoff by providing agent 1 limited dis-

cretion. The discretion allows the agent to use his private information to increase his

own payoff and the aggregate payoff. The limits on discretion, however, ensure that

the agent’s choice does not unduly decrease agent 2’s payoff. For analytic tractability

I assume that the principal accurately believes that x∗1 is uniformly distributed over

[0,D]. The following proposition characterizes optimal discretion as a function of β,

11The choice of focusing on positive even integers is for analytic ease, but the analysis could
be conducted with |d− x∗i |

β for all β > 0.
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Proposition 7. The decision-maker’s discretion is increasing in β. Furthermore, if

β ≥ 2, discretion is bounded by
x∗2
2 ≤ α and α ≤

x∗2+D
2 .

Proposition 7 echoes the prevailing theme in this paper and the existing delegation

literature; discretion is valuable when there is private information and partial alignment

of preferences. Furthermore, the proposition provides an additional insight; discretion

increases with the the value of private information. The principal’s intent to maximize

the aggregate payoff is limited by her beliefs. As β increases, obtaining the optimal

ex post decision becomes increasingly important. The principal cannot become better

informed of agent 1’s private information, so instead she provide the agent additional

discretion.

It is also important to note that the principal does not completely relinquish the

reins as β increases. According to the proposition, discretion is always bounded. In

fact, discretion is bounded by the naive rule outlined in Equation 1.9. Thus, as β goes

to infinity, agent 1 is granted discretion over all possible first-best choices.

6 Strategic Uncertainty and Rules

In Section 3, I demonstrate that the principal increases the aggregate payoff by granting

discretion if there is uncertainty. This leaves several questions to be answered: How

does the quantity of discretion change with uncertainty? If it increases, do agents have

the incentive to strategically add uncertainty ex ante?

In this section I consider these questions. For simplicity, I normalize the choice

continuum by D to restrict the analysis to the unit continuum [0, 1]. Furthermore, I

assume that agent 2’s bliss point is known by the principal and, for analytic tractability,

I assume it is equal to the midpoint of the continuum, x∗2 =
1
2 . I also assume that agent

1’s bliss point is distributed according to the mean-preserving linear distribution I

constructed. The mean-preserving linear distribution, f(x, γ), outlined in Appendix C,

is attractive for analytic work. The distribution’s second moment is characterized by

the parameter γ and, as its name indicates, the distribution is mean-preserving. The

distribution is also appealing because its variances changes with γ despite the support

remaining fixed, e.g., the uniform and triangular distribution are special cases of it. As

such, closed-form analytic solutions can be characterized by the distribution’s variance

without introducing confounding factors, e.g., increasing the variance of the uniform

distribution requires expanding its support. The mean and variance of the distribution
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Figure 1.7: Mean-preserving linear distribution examples.

are given by,

Ef [x] =
1

2
(1.27)

Ef
[
x2
]
− Ef [x]

2 =
3− γ

24
(1.28)

with γ ∈ [0, 2].

Figures 1.7(a), 1.7(b) and 1.7(c) depict the distribution with three different values of

γ. In Appendix B, I consider a broader class of distributions and I demonstrate that

the results of this section hold with mild restrictions on a distribution’s hazard rate.

6.1 Optimal Rules Under the Mean-Preserving Linear Distribution

Consider the optimal rule outlined in Proposition 3. The generalized rule, {α,α},

is defined implicitly and provides a quantity of discretion equal to α − α. An explicit

solution for the rule exists under the mean-preserving linear distribution and the follow-

ing proposition characterizes how the rule’s discretion changes with the distribution’s

variance.
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Proposition 8. The optimal rule grants a provision of discretion that is increasing in

the variance of f(x, γ).

According to Proposition 8, agent 1’s discretion increases with the principal’s un-

certainty regarding his bliss point. The intuition is straightforward; an increase in

uncertainty, as measured by variance, increases the value of private information. The

principal accommodates the private information by granting greater discretion when

uncertainty is high.12 The result of the proposition is exhibited in Figures 1.8(a) and

1.8(b). The horizontal axis in Figure 1.8(a) represents the the distribution’s variance

and the vertical axis represents the choice space. The optimal rule’s lower and upper

bounds diverge from each other as the variance increases and agent 1 is given a wider

range to choose d from. Figure 1.8(b) depicts the quantity of discretion, measured by

α− α, as the distribution’s variance increases.

Proposition 8 suggests that agent 1 may benefit from higher uncertainty since he is

granted greater discretion. Then again, because the principal establishes the optimal

rule at t = 0 and the agent does not realizes his bliss point until t = 1, an increase

in the distribution’s variance may adversely affect his ex post payoff. Higher variance

increases the probability that the agent’s bliss point realization falls in the distribution’s

tails. The following proposition demonstrates that the second effect dominates, i.e., the

added discretion from increasing the distribution’s variance does not compensate agent

1 sufficiently for his exposure to tail events.

Proposition 9. Agent 1’s ex ante payoff is decreasing in the variance of the distribution

f(x, γ).

Proposition 9 yields additional insight regarding discretion. Discretion over a set of

choices is valuable to agent 1, as opposed to his decision being dictated by the principal,

because it lets him utilize his private information to increase his payoff. Despite this, the

agent actually prefers that there is less uncertainty regarding his private information,

i.e., the informational rents he extracts via discretion are dominated by the payoff he

receives when the principal enjoys better information.

12The setup of Holmstrom (1984) considers a setup with a principal and a single agent. In
his setup, the principal believes that the agent’s private information is normally distributed
with variance σ2. Holmstrom shows that α − α → ∞ as σ2 → ∞. My analysis adds a new
dimension to this result by considering a distribution with a finite support.
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7 Application to Delegated Portfolio Management

Many important issues in industrial organization, political economy, and corporate

finance relate to my results. The issue I choose to focus on involves delegated portfolio

management. Specifically, I consider an application of my model to a decentralized

investment firm.

Consider an investment firm that generates profits by actively managing investor

capital. The firm relies on raising and maintaining outside capital via marketing &

client services and establishing services to augment investment management, e.g. se-

curing lines of credit. The firm is segmented into two profit divisions: a trading division

(T ) that invests capital and a reputation division (R) that is client-facing. Each divi-

sion is run by a self-interested manager that seeks to maximize the expected profit of

his own division.13 The two managers represent the agents in my generalized model,

i.e., agent 1 is manager T and agent 2 is manager R.

The common decision that links the two managers is what level of risk to take with

the firm’s current investment portfolio. Let σ represent this choice and assume that

σ is restricted to the continuum [0,Σ], where Σ is the maximum level of risk allowed

by regulation or investor mandates. The trading division profit is largely influenced

by the firm’s contemporaneous risk choice, i.e., the returns from a particular strategy

are generally realized in the short-run. Reputation profit, however, relies on outsiders’

expectations regarding the firm’s long-run solvency. Consequently, the two divisions

respond differently to the firm’s portfolio risk, ceteris paribus: trading profit increases

with σ and reputation profit declines, i.e., an increase in σ increases the probability of

insolvency.

In the absence of any spillover effects between the two divisions, it is simple to see

that the trading profit is maximized when the firm’s investment portfolio exhibits the

maximal level of risk and, conversely, the reputation profit is highest when the firm

bears the minimal level. In my setup, however, the two divisions are complementary:

greater profits via trading enhance the firm’s reputation and an enhanced reputation

leads to more investor capital and cheaper leverage. Consequently, each manager has

13My analysis handles the issue of compensation by assuming that managers care only about
division performance rather than overall firm performance. I do not model the underlying moral
hazard problem that leads to this wage contract, but instead appeal to its empirical foundation,
e.g., Bushman, Indjejikian, and Smith (1995), and theoretical grounds, e.g., Bernardo, Cai, and
Luo (2001).
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a unique, preferred σ and I denote these bliss points as x∗i ∈ [0,Σ] with i ∈ {T,R}.

I adopt the explicit form of the divisions’ profit functions from the base model,

Πi(σ) = πi − (σ − x∗i )
2, (1.29)

where πi > 0 for i ∈ {T,R}. To understand the profit functions consider the trading

division as an example. From the perspective of manager T , a risk choice of σ < x∗T is

suboptimal because it is too conservative in pursuing returns. Similarly, a choice σ > x∗T

is also suboptimal because it is too aggressive and decreases the complementary benefits

provided by reputation activities, i.e., it decreases the amount of investor capital or

increases the cost of leverage. At σ = x∗T , the marginal benefit of increased portfolio

risk equals the marginal cost of decreased firm reputation.14 The two divisions are

overseen by a chief executive officer (CEO), who is the principal in this application,

and her objective is to maximize firm profit, which is the sum of the two divisions’

profits,

Π(σ) = πT + πR − (σ − x∗T )
2 − (σ − x∗R)

2. (1.30)

Manager T has private, specialized knowledge regarding the firm’s optimal choice of σ,

but it is costly for him to transfer it to the CEO and manager R. The cost is analogous

to the contracting cost c in my generalized model. The private, specialized knowledge

possessed by manager T is his division’s bliss point x∗T . While the CEO does not know

x∗T , she correctly believes that it distributed according to the probability distribution

f(x, γ), where γ characterizes the variance of the distribution.

The firm must make a decision regarding its aggregate portfolio risk and the CEO

determines it one of three ways:

1. via her beliefs, i.e., the CEO’s uninformed best guess,

2. via costly manager-to-manager or manager-to-CEO negotiations,

3. via delegation of the decision rights to manager T .

14Alternatively, one could consider a setup where there are no complementary spillovers
between the profit activities. Instead, the difference between x∗T and x∗R serves as a proxy
for the extent to which stakeholders’, e.g., managers, payoffs are tied to a particular activity’s
profit. The congruency of the stakeholders is measured by taking the difference between x∗T and
x∗R. If the two bliss points are close, the stakeholders share similar preferences, which would
follow from an incentive scheme based on overall firm performance. Conversely, values that
differ greatly may reflect an incentive scheme based on division performance.
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All three options are associated with a cost: the first option introduces an information

cost as it neglects manager T ’s private information; the second option incurs the explicit

contracting cost c; and the third option introduces an agency cost as manager T ’s

objective is to maximize his division’s profit rather than firm profit. According to

Propositions 3 and 4, delegation of the decision rights is optimal. The CEO gives

manager T the continuum [α,α] to choose σ from. Furthermore, the CEO chooses the

continuum so that it includes her uninformed best guess and x∗R.

Manager T may find his division’s bliss point in the continuum of allowed choices,

and, if so, he chooses it. If, however, the bliss point is outside the continuum, the man-

ager chooses either α or α and his division’s profit incurs a quadratic loss. According

to Proposition 5, the quadratic loss may be sufficiently large that paying c to transfer

his specialized knowledge increases his division’s profit. This occurs when his division

has significant bargaining power and it extracts a large portion of the firm’s profit in

negotiations, i.e., the trading division is willing to relinquish private information if the

division commands the firm’s compensation scheme.

Proposition 5 also demonstrates that the CEO accounts for c in the discretion

she provides. In fact, as c goes to zero, manager T is able to transfer his specialized

knowledge freely and the CEO responds by restricting the manager to a single choice.

The choice corresponds to manager R’s bliss point, which compels manager T to fully

reveal his information.

Discretion is a good to manager T : additional discretion enables the manager to

increase his division’s profit. According to Proposition 8, the discretion provided to

manager T increases with the CEO’s uncertainty. The proposition would seem to

suggest that the manager is incentivized to add strategic uncertainty to the CEO’s

beliefs. The intuition is further enforced by recent work that suggests investment

managers add strategic complexity to financial products to gain market power, e.g.,

Carlin (2009). Proposition 9, however, shows that this is not the case, i.e., optimal

discretion is immune to strategic manipulation by managers. In fact, managers prefer

an informed CEO ex ante. The result suggests that optimal discretion is a robust

mechanism in delegated portfolio management.
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8 Concluding Remarks

In this paper I explored the economics of discretion-limits. I motivated the delegation

mechanism as an inexpensive alternative to complete contracting, and, as such, pro-

vided a theoretical bridge between the two. My analysis, however, could be extended

to a more general framework where I consider a broader class of decision-making mech-

anisms. This is a subject of future research.

One criticism of my setup is that I do not allow the principal to price the individual

choices within the discretion-limits. Consequently, the decision-making agent’s opti-

mal choice maximizes his payoff. As I demonstrate in Appendix B, a fully-separating

mechanism can be achieved if the principal prices each choice. Specifically, the price

transfers the aggregate payoff to the decision-maker and he makes the first-best deci-

sion. This result is uninteresting as it simplifies the setup to a single agent optimizing

over two payoff functions.

My findings are particularly timely as the debate regarding regulation-overhaul in

financial markets escalates. Recent proposals to limit the pay of bankers and traders

jeopardizes the effectiveness of compensation to remedy agency conflicts. As such, one

should view discretion-limits as an additional tool in mitigating conflicts of interest,

rather than as a panacea. Indeed, the optimal mechanism for solving a particular

problem may be a scheme consisting of compensation, monitoring and discretion-limits.

As such, it is important to understand both the benefits and costs associated with

discretion.
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A Appendix

Proof of Proposition 1: The agents split the aggregate payoff according to the Nash

bargaining weights θ1 and θ2. Therefore, it is efficient for the agents to select the choice

d that maximizes the aggregate payoff. The choice is found by taking the first-order

condition of Equation 1.5 with respect to d,

0 =
∂

∂d
Π(d)

= (d− x∗2) + (d− x∗1)

d∗ =
x∗1 + x∗2

2
. (A1)

A substitution of d∗ into Equation 1.5 simplifies the expression to,

Π(d∗) = π1 + π2 −
(x∗1 − x∗2)

2

2
− c. (A2)

Is is efficient for the agents to bargain if Π ≥ 0, which is true for all c less than ĉ,

ĉ ≡ π1 + π2 −
(x∗1 − x∗2)

2

2
. (A3)

�

Proof of Proposition 2: Agent 1 chooses d = x∗1 if x∗1 ∈ [α,α], d = α if x∗1 < α,

or d = α if x∗1 > α. For any possible rule, the principal knows agent 1’s unique

best response. Therefore, she restricts the action space so that the decision is always

first-best. She sets α = α = α∗, since permitting any other choice is dominated.

The aggregate payoff function is continuous, differentiable and concave in d. There-

fore, first-order conditions are necessary and sufficient for finding a value that maxi-

mizes it,

0 =
∂

∂d
Π(d)

=
∂

∂d

(
(d− x∗1)

2 + (d− x∗2)
2
)

= (d− x∗1) + (d− x∗2)

α∗ ≡
x∗1 + x∗2

2
.

�
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Proof of Lemma 1: For a given rule {α,α}, it is a dominant strategy for agent 1 to

choose d = α if x∗1 < α, d = x∗1 if x∗1 ∈ [α,α], and d = α if x∗1 > α. Therefore, since

there is no contracting cost with the principal’s mechanism, the expected aggregate

payoff is

E[Π(d)|{α,α}] =E[Π1(d)|{α,α}] + E[Π2(d)|{α,α}]

=π1 + π2 −

[∫ α

0
(α− x)2f(x) dx+

∫ α

α
0f(x) dx

+

∫ D

α
(α− x)2f(x) dx

]

−

[∫ α

0
(α− x∗2)

2f(x) dx

+

∫ α

α
(x− x∗2)

2f(x) dx+

∫ D

α
(α− x∗2)

2f(x) dx

]

.

A rearrangement yields,

=π1 + π2 −

∫ α

0

[
(α− x)2 + (α− x∗2)

2
]
f(x) dx

−

∫ α

α
(x− x∗2)

2f(x) dx−

∫ D

α

[
(α− x)2 + (α− x∗2)

2
]
f(x) dx. (A4)

�

Proof of Proposition 3: I begin by taking the first-order condition of Equation 1.10

with respect to α,

0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)
2f(α) +

∫ α

0
[2(α− x) + 2(α− x∗2)] f(x) dx− (α− x∗2)

2f(α)

= (2α − x∗2)−

∫ α
0 xf(x) dx

F (α)

α =
x∗2 + E[x∗1|x

∗
1 ≤ α]

2
. (A5)

Now I take first-order condition with respect to α,

0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)
2f(α)− (α− x∗2)

2f(α) +

∫ D

α
[2(α− x) + 2(α− x∗2)] f(x) dx

= (2α− x∗2)−

∫ D
α xf(x) dx

(1− F (α))
,

α =
x∗2 + E[x∗1|x

∗
1 ≥ α]

2
. (A6)
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�

Proof of Corollary 3.1: Consider the optimal rule outlined in Proposition 3. The

lower and upper bound on the continuum of permitted choices are given in Equation

1.11. The lower bound is smaller than agent 2’s bliss point, α ≤ x∗2,

0 = α−
x∗2 + E[x∗1|x

∗
1 ≤ α]

2

= 2α− (x∗2 + E[x∗1|x
∗
1 ≤ α])

≥ 2α− (x∗2 + α)

= α− x∗2 (A7)

→ x∗2 ≥ α. (A8)

Similarly, the upper bound is greater than agent 2’s bliss point, α ≥ x∗2,

0 = α−
x∗2 + E[x∗1|x

∗
1 ≥ α]

2

= 2α− (x∗2 + E[x∗1|x
∗
1 ≥ α])

≤ 2α− (x∗2 + α)

= α− x∗2 (A9)

→ α ≥ x∗2. (A10)

It is obvious that dP =
E[x∗1]+x

∗
2

2 lies within the continuum.

�

Proof of Corollary 3.2: Agent 2 does not have private information. When he is

delegated the decision rights, the principal knows he will choose d = x∗2 if x∗2 ∈ [α,α],

d = α if x∗2 < α, or d = α if x∗2 > α. For any possible rule, the principal knows the

agent’s unique best response. Therefore, the principal restricts the action space so that

the agent’s decision maximizes the expected aggregate payoff. She sets α = α, since

permitting any other choice is dominated. As a result, the expected aggregate payoff

takes the form,

E[Π(d)|{d, d}] = π1 + π2 −

∫ D

0
(d− x)2f(x) dx− (d− x∗2)

2. (A11)
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The first-order condition of Equation A11 with respect to d is,

0 =
∂

∂d
E[Π(d)|{d, d}]

=

∫ D

0
2(d − x)f(x) dx+ 2(d− x∗2)

= 2d− x∗2 − E[x∗1]

α∗ ≡
E[x∗1] + x∗2

2
. (A12)

�

Proof of Proposition 4: For any α 6= α it must be the case that ∆Π = E[Π(d)|Λ1]−

E[Π(d)|Λ2] ≥ 0.

Suppose Not : According to Corollary 3.2, when agent 2 is the decision-maker, the

principal limits his discretion to a single choice, α∗ ∈ [0,D]. Therefore, E[Π(d)|Λ1] <

E[Π(d)|Λ2] implies that {α,α} is not a solution to the principal’s problem in Equation

1.7, since choosing α = α = α∗ dominates. This directly contradicts Proposition 3.

�

Proof of Example 1: I begin by directly applying Equations A5 and A6 to obtain

the optimal rule when agent 1 is the decision-maker. The lower bound of the rule is,

α =
x∗2 + E[x∗1|x

∗
1 ≤ α]

2

=
x∗2 +

∫ α

0
x̃

α

2

=
x∗2 +

α
2

2

α =
2x∗2
3
. (A13)

35



Similarly, the upper bound is,

α =
x∗2 + E[x∗1|x

∗
1 ≥ α]

2

=
x∗2 +

∫D
α
x̃

D−α

2

=
x∗2 +

D+α
2

2

α =
2x∗2 +D

3
. (A14)

The single choice when agent 2 is the decision-maker is given by,

α∗ =
E[x∗1] + x∗2

2

=

∫D
0 x dx+ x∗2

2

=
D
2 + x∗2

2
(A15)

The discretion solutions under both regimes permit a comparison of aggregate pay-

offs,

∆Π =

∫ D

0

(
(α∗ − x)2 + (α∗ − x∗2)

2
)
f(x) dx

−

[∫ α

0

(
(α− x)2 + (α− x∗2)

2
)
f(x) dx+

∫ α

α
(x− x∗2)

2f(x) dx

+

∫ D

α

(
(α− x)2 + (α− x∗2)

2
)
f(x) dx

]

>0. (A16)

�

Proof of Lemma 2: I begin with the agents’ payoffs under the principal’s rule. The
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payoffs are derived from Proposition 3,

ΠR1 =







π1 − (α− x∗1)
2 for x∗1 < α

π1 for x∗1 ∈ [α,α]

π1 − (α− x∗1)
2 for x∗1 > α

(A17)

ΠR2 =







π2 − (α− x∗2)
2 for x∗1 < α

π2 − (x∗1 − x∗2)
2 for x∗1 ∈ [α,α]

π2 − (α− x∗2)
2 for x∗1 > α.

(A18)

I now proceed to agent 1’s payoff in Nash bargaining. Once agent 1 pays the cost c

to bargain with agent 2, the cost is sunk and inconsequential to the bargaining process.

The agents choose d∗ =
x∗1+x

∗
2

2 to maximize the aggregate payoff which is,

Π(d∗) = π1 + π2 −
(x∗1 − x∗2)

2

2
. (A19)

In addition to bargaining power, the process is governed by each agent’s ability to walk

away and return the principal’s mechanism. As such, the outcomes under the principal’s

rule become the disagreement points for the agents. Denote the set of disagreement

points as {δ1, δ2}. The asymmetric Nash bargaining solutions for the agents are given

by,

ΠNB1 = θ1

(

π1 + π2 −
(x∗1 − x∗2)

2

2
− δ1 − δ2

)

+ δ1 (A20)

ΠNB2 = (1− θ1)

(

π1 + π2 −
(x∗1 − x∗2)

2

2
− δ1 − δ2

)

+ δ2. (A21)

�
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Proof of Proposition 5: I begin by solving for ∆G given the payoffs in Lemma 2,

∆G =
(
ΠNB1 −ΠR1

)
− c

=




θ1

(

π1 + π2 −
(x∗1 − x∗2)

2

2
− δ1 − δ2

)

+ δ1 − ΠR1
︸︷︷︸

δ1




− c

= θ1

(

π1 + π2 −
(x∗1 − x∗2)

2

2
− δ1 − δ2

)

− c

=







θ1

(

−
(x∗1−x

∗
2)

2

2 + (α− x∗1)
2 + (α− x∗2)

2
)

− c for x∗1 < α

θ1

(
(x∗1−x

∗
2)

2

2

)

− c for x∗1 ∈ [α,α]

θ1

(

−
(x∗1−x

∗
2)

2

2 + (α− x∗1)
2 + (α− x∗2)

2
)

− c for x∗1 > α.

(A22)

If ∆G < 0, agent 1 follows the principal’s mechanism, otherwise he will pay c and

engage agent 2 in bargaining. First, consider the values of x∗1 ∈ [α,α]. Agent 1 is

indifferent between his two options if ∆G = 0,

0 = θ1

(
(x∗1 − x∗2)

2

2

)

− c

c∗ = θ1

(
(x∗1 − x∗2)

2

2

)

. (A23)

The value c∗ represents a threshold cost. For values of x∗1 ∈ [α,α], agent 1 follows the

principal’s rule if c > c∗ and chooses d ∈ [α,α]. If c ≤ c∗, agent 1 engages agent 2 in

bargaining.

Now consider x∗1 < α and suppose c > c∗. The function ∆G can be rewritten as

follows,

∆G = θ1

(

−
(x∗1 − x∗2)

2

2
+ (α− x∗1)

2 + (α− x∗2)
2

)

− c+ (c∗ − c∗).

= θ1
(
−(x∗1 − x∗2)

2 + (α− x∗1)
2 + (α− x∗2)

2
)
− (c− c∗).

A rearrangement yields,

= 2θ1(x
∗
2 − α)(x∗1 − α)− (c− c∗)

< 0 (A24)

The inequality must always hold because x∗1 < α and it is know from the earlier analysis

in Section 3.1 that the principal sets α ≤ x∗2. Therefore, if c > c∗, agent 1 again adheres
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to the principal’s rule for all x∗1 < α. A similar analysis is performed for x∗1 > α. As

such, agent 1 will never engage agent 2 in bargaining if c > c∗. For the remainder of

the proof, assume c ≤ c∗15.

Again consider x∗1 < α and define t to be the value of x∗1 where agent 1 is indifferent

between the principal’s mechanism and bargaining. Agent 1 is indifferent when ∆G = 0,

therefore t is defined implicitly by,

0 = θ1

(

−
(x∗2 − t)2

2
+ (α− t)2 + (α− x∗2)

2

)

− c

=
θ1
2

(

2x∗2t+ 4α2 + t2 − 4αt+ x∗2
2 − 4αx∗2

)

− c

=
θ1
2
(x∗2 + t− 2α)2 − c.

An application of the quadratic formula yields,

t = 2α− x∗2 ±

√
2c

θ1
. (A25)

Agent 1 will pay c for all values of x∗1 < t, because his payoff is higher when he bargains

with agent 2 and chooses the first-best choice. Intuitively, t decreases with c since the

benefit of bargaining shrinks relative to the cost. Therefore, Equation A25 simplifies

to,

t = 2α− x∗2 −

√
2c

θ1
. (A26)

Now, consider x∗1 > α and define t to be the value of x∗1 where agent 1 is indifferent

between the principal’s mechanism and bargaining. Similar to the analysis in solving

for t, the solution for t is,

t = 2α− x∗2 +

√
2c

θ1
. (A27)

The principal knows of the agent’s ability to incur c and she takes this into con-

sideration when drafting the optimal rule. Her problem is to maximize the aggregate

15In fact, at the end of the proof it is obvious that agent 1 never pays c if x∗1 ∈ [α, α]. The
principal’s allocation of discretion is a function of c, and as such, she never provides unneeded
discretion.
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payoff,

E[Π(d)|{α,α}, c] =π1 + π2 −

[
∫ t

0

[(
x+ x∗2

2
− x

)2

+

(
x+ x∗2

2
− x∗2

)2

+ c

]

f(x) dx

+

∫ α

t

[

(α− x)2 + (α− x∗2)
2
]

f(x) dx

+

∫ α

α
(x− x∗2)

2 f(x) dx

+

∫ t

α

[

(α− x)2 + (α− x∗2)
2
]

f(x) dx

+

∫ D

t

[(
x+ x∗2

2
− x

)2

+

(
x+ x∗2

2
− x∗2

)2

+ c

]

f(x) dx

]

. (A28)

The first-order condition of Equation A28 with respect to α yields,

0 =
∂E[Π|{α,α}, c]

∂α

=2

∫ α

t
[(α− x) + (α− x∗2)] f(x) dx+ (α− x∗2)

2 f(α)

− (α− x∗2)
2 f(α).

A rearrangment leads to,

=

∫ α

t
[(α− x) + (α− x∗2)] f(x) dx

=2α (F (α)− F (t))−

∫ α

t
xf(x) dx− x∗2 (F (α)− F (t))

=2α −

∫ α
t xf(x) dx

(F (α)− F (t))
− x∗2.

The solution for α is,

α =
E[x∗1|t ≤ x∗1 ≤ α] + x∗2

2
. (A29)
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Recall that f(x) is uniform over [0,D] and that Equation A26 provided a solution for

t. Therefore, α is given by,

=
t+α
2 + x∗2

2

=
t+ 2x∗2

3

=
2α + x∗2 −

√
2c
θ1

3

=x∗2 −

√
2c

θ1
. (A30)

I now minimize Equation A28 with respect to α,

0 =
∂E[Π|{α,α}, c]

∂α

=(α− x∗2)
2 f(α) + 2

∫ t

α
[(α− x) + (α− x∗2)] f(x) dx

− (α− x∗2)
2 f(α).

A rearrangement yields,

=

∫ t

α
[(α− x) + (α− x∗2)] f(x) dx

=2α
(
F (t)− F (α)

)
−

∫ t

α
xf(x) dx− x∗2

(
F (t)− F (α)

)

=2α−

∫ t
α xf(x) dx(
F (t)− F (α)

) − x∗2.

Solving for α gives,

α =
E[x∗1|α ≤ x∗1 ≤ t] + x∗2

2
. (A31)

=
t+α
2 + x∗2

2

=
t+ 2x∗2

3

=
2α+ x∗2 +

√
2c
θ1

3

=x∗2 +

√
2c

θ1
. (A32)
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Equations A30 and A32 do not fully solve for the optimal rule. The indifference

thresholds, t and t, used in the analysis must be contained in [0,D]. If the lower

threshold falls below 0 or the upper threshold is greater than D then there are no

values of x∗1 where it is efficient for agent 1 to pay c. As such, 0 serves as a lower bound

for t and D similarly serves as an upper bound for t. Consider Equations A30 and A26

and the cost c at which t = 0,

0 = 2α − x∗2 −

√
2c

θ1

= 2

(

x∗2 −

√
2c

θ1

)

− x∗2 −

√
2c

θ1

= x∗2 − 3

√
2c

θ1
.

c =
θ1x

∗
2
2

18
. (A33)

Similary, define c to be the cost at which t = D

c =
θ1(D − x∗2)

2

18
. (A34)

It is never efficient for agent 1 to bargain if x∗1 < α and c > c. Similarly, agent 1 will

never bargain if x∗1 > α and c > c.

The optimal rule is given by,

α =







x∗2 −
√

2c
θ1

if c ≤ min
[

θ1

(
x∗2

2

18

)

, θ1

(
(x∗1−x

∗
2)

2

2

)]

2x∗2
3 otherwise

(A35)

α =







x∗2 +
√

2c
θ1

if c ≤ min
[

θ1

(
(D−x∗2)

2

18

)

, θ1

(
(x∗1−x

∗
2)

2

2

)]

2x∗2+D
3 otherwise

. (A36)

The comparative statics for the discretion provided by the rule are computed di-

rectly using Equations A30 and A32. Assume that c is sufficiently small such that 0 < t

and t < D,
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∂α

∂c
=

∂

∂c

(

x∗2 −

√
2c

θ1

)

= − (2cθ1)
−1/2

< 0 (A37)

∂α

∂θ1
=

∂

∂θ1

(

x∗2 −

√
2c

θ1

)

=
1

2

√

2c

θ31

> 0 (A38)

∂α

∂c
=

∂

∂c

(

x∗2 +

√
2c

θ1

)

= (2cθ1)
−1/2

> 0 (A39)

∂α

∂θ1
=

∂

∂θ1

(

x∗2 +

√
2c

θ1

)

= −
1

2

√

2c

θ31

< 0. (A40)

�

Proof of Corollary 5.1: This result comes directly by setting c = 0 in Equations

A35 and A36.

�

Proof of Corollary 5.2: If the agents engage in bargaining, each agent’s payoff must

be at least as large as the payoff under the principal’s mechanism. If not, bargaining

breaks down and the agents return to the principal’s mechanism. Agent 2, i.e., the

non-decision-making agent, has the same beliefs and information as the principal. As

such, he believes that the aggregate payoff is maximized under the mechanism and has

no reason to initiate bargaining with agent 1.

�

Proof of Proposition 6: The expected aggregate payoff with linear payoff functions
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is defined by,

E[Π(d)|{α,α}] =π1 + π2 −

∫ α

0
[(α− x) + (α− x∗2)] f(x) dx

−

∫ α

α
(x− x∗2)f(x) dx

−

∫ D

α
[(α− x) + (α− x∗2)] f(x) dx. (A41)

I begin by taking first-order conditions with respect to α,

0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)f(α) + 2

∫ α

0
f(x) dx− (α− x∗2)f(α)

= 2α

α = 0. (A42)

Now I take first-order conditions with respect to α,

0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)f(α) + 2

∫ D

α
f(x) dx− (α− x∗2)f(α)

= 2(D − α)

α = D. (A43)

�

Proof of Proposition 7: The expected aggregate payoff is given by Equation 1.26. I

begin by taking the first-order condition with respect to α,
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0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)
βf(α) +

∫ α

0

[

β(α− x)β−1 + β(α− x∗2)
β−1
]

f(x) dx− (α− x∗2)
βf(α)

=
αβ−1

β
+ (α− x∗2)

β−1

=
α

β1/(β−1)
+ (α− x∗2)

α =
β1/(β−1)x∗2
β1/(β−1) + 1

. (A44)

Now I take first-order condition with respect to α,

0 =
∂

∂α
E[Π(d)|{α,α}]

= (α− x∗2)
βf(α) +

∫ D

α

[

β(α− x)β−1 + β(α− x∗2)
β−1
]

f(x) dx− (α− x∗2)
βf(α)

=
−(α−D)β−1

β
− (α− x∗2)

β−1

=
(α−D)

β1/(β−1)
+ (α − x∗2)

α =
β1/(β−1)x∗2 +D

β1/(β−1) + 1
. (A45)

I now show that discretion is increasing in β. Taking partial derivatives of α and

α with respect to β is technically incorrect because β comes from a set of discrete

integers. However, because only the derivatives’ directions matter, I show that α is

strictly decreasing in β while α is strictly increasing.

∂α

∂β
=

∂

∂β

(

β1/(β−1)x∗2
β1/(β−1) + 1

)

=
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

)

x∗2

β1/(β−1) + 1
−
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

) (
β1/(β−1)x∗2

)

(
β1/(β−1) + 1

)2

=
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

) ((
β1/(β−1)x∗2 + x∗2

)
−
(
β1/(β−1)x∗2

))

(
β1/(β−1) + 1

)2 . (A46)
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Clearly the denominator is positive. The numerator is more difficult to sign. The

first term, β1/(β−1)
(

1
(β−1)β − log(β)

(β−1)2

)

, is negative because (β − 1)2 < (β − 1)β and

log(2) > 1. The second term,
((
β1/(β−1)x∗2 + x∗2

)
−
(
β1/(β−1)x∗2

))
, is positive because

x∗2 ≥ 0. This means that the product of the two terms is negative and ∂α
∂β ≤ 0.

The partial derivative of α with respect to β is given by,

∂α

∂β
=

∂

∂β

(

β1/(β−1)x∗2 +D

β1/(β−1) + 1

)

=
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

)

x∗2

β1/(β−1) + 1
−
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

) (
β1/(β−1)x∗2 +D

)

(
β1/(β−1) + 1

)2

=
β1/(β−1)

(
1

(β−1)β − log(β)
(β−1)2

) ((
β1/(β−1)x∗2 + x∗2

)
−
(
β1/(β−1)x∗2 +D

))

(
β1/(β−1) + 1

)2 . (A47)

Again, the denominator is positive. The first term in the numerator,

β1/(β−1)

(
1

(β − 1)β
−

log(β)

(β − 1)2

)

,

is again negative because (β − 1)2 < (β − 1)β and log(2) > 1. The second term in the

numerator,
((
β1/(β−1)x∗2 + x∗2

)
−
(
β1/(β−1)x∗2 +D

))
, is also negative because x∗2 ≤ D.

The product of two negative numbers is positive which indicates that ∂α
∂β ≥ 0.

It is worthwhile to note that β1/(β−1) approaches 1 as β → ∞. This implies that

discretion is bounded by [
x∗2
2 ,

x∗2+D
2 ].

�

Proof of Proposition 8: The mean-preserving linear distribution, outlined in Equa-

tion C10, is continuous and piecewise-defined. The assumption that x∗2 = 1
2 and the

result from Corollary 3.1 allow the expected aggregate payoff to be written as,

E[Π(d)|{α,α}] =π1 + π2 −

∫ α

0

[
(α− x)2 + (α− x∗2)

2
]
f(x, γ)dx

−

∫ x∗2

α
(x− x∗2)

2f(x, γ)dx−

∫ α

x∗2

(x− x∗2)
2f(x, γ)dx

−

∫ 1

α

[
(α− x)2 + (α− x∗2)

2
]
f(x, γ)dx. (A48)
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A substitution of the density’s explicit form, found in Equation C12, into the above

expression yields,

=π1 + π2 −

∫ α

0

[
(α− x)2 + (α− x∗2)

2
]
(−4 (1− γ)x+ (2− γ)) dx

−

∫ x∗2

α
(x− x∗2)

2 (−4 (1− γ) x+ (2− γ)) dx

−

∫ α

x∗2

(x− x∗2)
2 (4 (1− γ) (x− 1) + (2− γ)) dx

−

∫ 1

α

[
(α− x)2 + (α− x∗2)

2
]
(4 (1− γ) (x− 1) + (2− γ)) dx. (A49)

The first-order condition of Equation A49 with respect to α yields the same result

outlined in Proposition 3. Consequently, an explicit form of α is obtained as follows,

α =
x∗2 + E[x∗1|x

∗
1 ≤ α]

2

=
x∗2
2

+

∫ α
0 x (−4 (1− γ) x+ (2− γ)) dx

2 (2(1− α)− γ(1− 2α))α

=
x∗2
2

+
1
6

(
−8α2(1− γ) + 3α(2− γ)

)

2 (2(1− α)− γ(1− 2α))
.

Rearranging the expression and substituting x∗2 =
1
2 yields,

0 = α2

(
8

3
(1− γ)

)

+ α

(
5

2
γ − 4

)

+
(

1−
γ

2

)

. (A50)

An application of the quadratic formula and previous insights from the proof of Propo-

sition 3 yield,

α =
−
(
5
2γ − 4

)

2
(
8
3(1− γ)

) −

√
(
5
2γ − 4

)2
− 4

(
8
3 (1− γ)

) (
1− γ

2

)

2
(
8
3(1− γ)

)

α =
24 − 15γ

32(1 − γ)
−

√

3 (11γ2 − 48γ + 64)

32(1 − γ)
. (A51)

A similar analysis yields the explicit form for α,

α =
8− 17γ

32(1 − γ)
+

√

3 (11γ2 − 48γ + 64)

32(1 − γ)
. (A52)
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The quantity of discretion provided by the rule is given by,

α− α =

(

8− 17γ

32(1− γ)
+

√

3 (11γ2 − 48γ + 64)

32(1 − γ)

)

−

(

24− 15γ

32(1 − γ)
−

√

3 (11γ2 − 48γ + 64)

32(1 − γ)

)

=
−16− 2γ

32(1 − γ)
+

2
√

3 (11γ2 − 48γ + 64)

32(1 − γ)

=
−(8 + γ)

16(1 − γ)
+

√

3 (11γ2 − 48γ + 64)

16(1 − γ)
. (A53)

Equation A53 demonstrates that optimal discretion is a function of γ. According

to Equation C13 in Appendix C, the variance of the distribution f(x) is also a function

of γ,

E[x2]− E[x]2 =
3− γ

24
. (A54)

Consequently, because both optimal discretion and the distribution’s variance are tied

to γ, a relationship between discretion and variance exists. First consider how optimal

discretion changes with γ,

∂(α− α)

∂γ
=

∂

∂γ

(

−(8 + γ)

16(1 − γ)
+

√

3 (11γ2 − 48γ + 64)

16(1 − γ)

)

=
−9

16(1 − γ)2
+

120− 39γ

16(1 − γ)2
√

3 (11γ2 − 48γ + 64)

=
120 − 39γ − 9

√

3 (11γ2 − 48γ + 64)

16(1 − γ)2
√

3 (11γ2 − 48γ + 64)
. (A55)

The denominator in the above expression is clearly positive for all values of γ ∈ [0, 2].

The sign on the numerator, however, is not obvious. The numerator can be signed as
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follows,

120 − 39γ − 9
√

3 (11γ2 − 48γ + 64) S 0

120− 39γ S 9
√

3 (11γ2 − 48γ + 64)

40− 13γ

3
S
√

3 (11γ2 − 48γ + 64)

(
40− 13γ

3

)2

S 3
(
11γ2 − 48γ + 64

)

(40− 13γ)2

27
−
(
11γ2 − 48γ + 64

)
S 0

−1− γ2 + 2γ S 0

−(1− γ)2 ≤ 0. (A56)

Because the numerator is negative, optimal discretion is decreasing with γ. Similarly,

the variance of the distribution is also decreasing with γ. This means that optimal

discretion and variance move in the same direction, i.e., optimal discretion increases as

the variance of f(x, γ) increases.

�

Proof of Proposition 9: Agent 1’s ex ante payoff is

Π1 = π1 − E[(d − x∗1)
2] (A57)

= π1 −

(∫ α

0
(α− x)2f(x, γ) dx+

∫ 1

α
(α− x)2f(x, γ) dx

)

. (A58)

A substitution of the mean-preserving linear distribution Density into the expression

yields,

= π1 −

(∫ α

0
(α− x)2 (−4 (1− γ) x+ (2− γ)) dx

+

∫ 1

α
(α− x)2 (4 (1− γ) (x− 1) + (2− γ)) dx

)

= π1 −

(
α3(2− γ − α(1− γ))

3
+

(1− α)3(1 + α(1− γ))

3

)

. (A59)

A utilization of the explicit forms of α and α from Equations A51 and A52 results in,

= π1 −

(

24− 15γ −
√

3 (11γ2 − 48γ + 64)

32(1 − γ)

)3(

40− 17γ +
√

3 (11γ2 − 48γ + 64)

48

)

.

(A60)
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It can now be shown that agent 1’s payoff is increasing in γ. Consider the partial

derivative of the agent’s payoff with respect to γ,

∂Π1(γ)

∂γ
= −3

(

24− 15γ −
√

3 (11γ2 − 48γ + 64)

32(1 − γ)

)2(

40− 17γ +
√

3 (11γ2 − 48γ + 64)

48

)

(

−120 + 39γ + 9
√

3 (11γ2 − 48γ + 64)

32(1 − γ)2
√

3 (11γ2 − 48γ + 64)

)

−

(

24− 15γ −
√

3 (11γ2 − 48γ + 64)

32(1 − γ)

)3(

33γ − 72− 17
√

3 (11γ2 − 48γ + 64)

48
√

3 (11γ2 − 48γ + 64)

)

.

(A61)

It can be shown that the above expression achieves its minimum value at γ = 1.

Evaluating the expression at this value requires multiple applications of L’Hopital’s

rule and results in,
∂Π1(1)

∂γ
=

8

729
> 0. (A62)

Equation A62 shows that agent 1’s payoff is increasing in γ.

�
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B Appendix

In this appendix, I explore several variants of the base model. First I explore a model

where both agents’ payoff functions are private information. The analysis yields results

similar to those of Sections 3 and 3.1, thus I omit them from the main body of the

paper. I then consider a model where there are N > 2 agents and I show that discretion

decreases as the decision-maker becomes less aligned with the principal’s objective.

Next, I consider a model where the the decision-maker receives a bonus or penalty for

each decision. I demonstrate that there is an optimal mechanism where the principal

transfers the aggregate surplus to the decision-maker via the “price” and the first-best

decision is made. I conclude the appendix by presenting a set of generalized results

relating to Section 6.

B.1 Two-Sided Asymmetric Information

A principal is often times uncertain about both agents’ payoff functions. Instead of

perfect information, she must rely on beliefs in setting the optimal ex ante rules. In this

extension I consider such a scenario by assuming that the principal does not observe

either x∗1 or x∗2. Instead, she depends on her beliefs, a set of probability distributions

F 1(x̃) and F 2(x̃), when choosing {α,α}. I first assume that the agents’ bliss points are

independent and I show that the optimal rule parallels the result of Proposition 3. I

then conduct the analysis when the bliss points are correlated.

B.1.1 Independent Bliss Points

Agent 1’s and agent 2’s bliss points may be based entirely on idiosyncratic factors.

That is, one agent’s preferred choice is completely random conditional on the other’s.

When this is the case, a principal can consider each agent’s preferences independently.

Lemma B1. The expected aggregate payoff, E[Π(d)|{α,α}], when both agents’ bliss
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points are private information and uncorrelated is given by,

E[Π(d)|{α,α}] =π1 + π2 −

[∫ α

0
(α− x̃1)

2 dF 1(x̃1) +

∫ D

α
(α− x̃1)

2 dF 1(x̃1)

+ F 1(α)

∫ D

0
(α− x̃2)

2 dF 2(x̃2)− 2

∫ α

α
x̃1 dF

1(x̃1)

∫ D

0
x̃2 dF

2(x̃2)

+

∫ α

α
x̃21 dF

1(x̃1) +
(
F 1(α)− F 1(α)

)
∫ D

0
x̃22 dF

2(x̃2)

+
(
1− F 1(α)

)
∫ D

0
(α− x̃2)

2 dF 2(x̃2)

]

. (B1)

Proof of Lemma B1: The expected aggregate payoff, E[Π(d)|{α,α}], when both

bliss points are private information is given by,

E[Π(d)|{α,α}] =π1 + π2

−

[∫ D

0

∫ α

0
(α− x̃1)

2 dF 1(x̃1) dF
2(x̃2) +

∫ D

0

∫ D

α
(α− x̃1)

2 dF 1(x̃1) dF
2(x̃2)

+

∫ D

0

∫ α

0
(α− x̃2)

2 dF 1(x̃1) dF
2(x̃2) +

∫ D

0

∫ α

α
(x̃1 − x̃2)

2 dF 1(x̃1) dF
2(x̃2)

+

∫ D

0

∫ D

α
(α− x̃2)

2 dF 1(x̃1) dF
2(x̃2)

]

.

Because x̃1 and x̃2 are independent, it simplifies to,

=π1 + π2 −

[∫ α

0
(α− x̃1)

2 dF 1(x̃1) +

∫ D

α
(α− x̃1)

2 dF 1(x̃1)

+ F 1(α)

∫ D

0
(α− x̃2)

2 dF 2(x̃2)− 2

∫ α

α
x̃1 dF

1(x̃1)

∫ D

0
x̃2 dF

2(x̃2)

+

∫ α

α
x̃21 dF

1(x̃1) +
(
F 1(α)− F 1(α)

)
∫ D

0
x̃22 dF

2(x̃2)

+
(
1− F 1(α)

)
∫ D

0
(α− x̃2)

2 dF 2(x̃2)

]

. (B2)

�

Proposition B1. The optimal rule when both agents’ bliss points are private and

uncorrelated is given by,

{α,α} =
{
E[x∗1|x

∗
1≤α]+E[x∗2]

2 ,
E[x∗1|x

∗
1≥α]+E[x∗2]

2

}

(B3)
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Proof of Proposition B1: I begin with Equation B1 from Lemma B1. The first-order

conditions with respect to α and α are given by,

0 =
∂E[Π(d)|{α,α}]

∂α

=2

∫ α

0
(α− x̃1) dF

1(x̃1) + F 1(α)

∫ D

0
(α− x̃2)

2 dF 2(x̃2)

+ 2F 1(α)

∫ D

0
(α− x̃2) dF

2(x̃2) + 2αF 1(α)

∫ D

0
x̃2 dF

2(x̃2)

− α2F 1(α)− F 1(α)

∫ D

0
x̃22 dF

2(x̃2)

=2α−

∫ α
0 x̃1 dF

1(x̃1)

F 1(α)
− E[x∗2]

α =
E[x∗1|x

∗
1 ≤ α] + E[x∗2]

2
. (B4)

0 =
∂E[Π(d)|{α,α}]

∂α

=2

∫ D

α
(α− x̃1) dF

1(x̃1)− 2αF 1(α)

∫ D

0
x̃2 dF

2(x̃2)

+ α2F 1(α) + F 1(α)

∫ D

0
x̃22 dF

2(x̃2)− F 1(α)

∫ D

0
(α− x̃2)

2 dF 2(x̃2).

+ 2
(
1− F 1(α)

)
∫ D

0
(α− x̃2) dF

2(x̃2).

α =
E[x∗1|x

∗
1 ≥ α] + E[x∗2]

2
. (B5)

�

The result of Proposition B1 mirrors that of Proposition 3. The only difference is

that agent 2’s actual bliss point is replaced by the unconditional expectation.

B.2 Correlated Bliss Points

Proposition B2. The optimal rule when both agents’ bliss points are correlated is

given by,

{α,α} =
{
E[x∗1|x

∗
1≤α]+E[x∗2|x

∗
1≤α]

2 ,
E[x∗1|x

∗
1≥α]+E[x∗2|x

∗
1≥α]

2

}

(B6)
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Proof of Proposition B2: The expected aggregate payoff, E[Π(d)|{α,α}], when

both agents’ bliss points are private information and correlated is given by,

E[Π(d)|{α,α}] =π1 + π2 −

[∫ D

0

∫ α

0
(α− x̃1)

2 dF 1(x̃1, x̃2) +

∫ D

0

∫ D

α
(α− x̃1)

2 dF 1(x̃1, x̃2)

+

∫ D

0

∫ α

0
(α− x̃2)

2 dF 1(x̃1, x̃2) +

∫ D

0

∫ α

α
(x̃1 − x̃2)

2 dF 1(x̃1, x̃2)

+

∫ D

0

∫ D

α
(α− x̃2)

2 dF 1(x̃1, x̃2)

]

. (B7)

The first-order conditions of Equation B7 with respect to α and α are given by,

0 =
∂E[Π(d)|{α,α}]

∂α

=

∫ D

0

∫ α

0
2(α− x̃1) dF

1(x̃1, x̃2) +

∫ D

0

∫ α

0
2(α− x̃2) dF

1(x̃1, x̃2)

+

∫ D

0
(α− x̃2)

2 dF 1(α, x̃2)−

∫ D

0
(α− x̃2)

2 dF 1(α, x̃2)

=

∫ D

0

∫ α

0
(α− x̃1) dF

1(x̃1, x̃2) +

∫ D

0

∫ α

0
(α − x̃2) dF

1(x̃1, x̃2)

α =
E[x∗1|x

∗
1 ≤ α] + E[x∗2|x

∗
1 ≤ α]

2
. (B8)

0 =
∂E[Π(d)|{α,α}]

∂α

=

∫ D

0

∫ D

α
2(α− x̃1) dF

1(x̃1, x̃2) +

∫ D

0
(α− x̃2)

2 dF 1(α, x̃2)

+

∫ D

0

∫ D

α
2(α− x̃2) dF

1(x̃1, x̃2)−

∫ D

0
(α− x̃2)

2 dF 1(α, x̃2)

=

∫ D

0

∫ D

α
2(α− x̃1) dF

1(x̃1, x̃2) +

∫ D

0

∫ D

α
2(α − x̃2) dF

1(x̃1, x̃2)

α =
E[x∗1|x

∗
1 ≥ α] + E[x∗2|x

∗
1 ≥ α]

2
. (B9)

�
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B.3 Multiple Agent Extensions

In Section 3.2 I demonstrate that the discretion granted to agent 1 is characterized by

the needs of agent 2. Specifically, in Corollary 3.1 I show that x∗2 is contained within the

realm of discretion. Here, I expand the analysis and consider a setup where there are

N > 2 agents and without a loss of generality I assume agent 1 is the decision-maker.

The principal’s problem is to define a rule that maximizes the aggregate payoff,

maxα,α∈[0,D]

N∑

i=1
Πi(d)

subject to

d∈argmax
d̂∈[α,α] Π1(d̂),

Π1(d)≥0,

. . .

ΠN (d)≥0.

(B10)

The following proposition provides the optimal rule when there are more than two

agents.

Proposition B3. The optimal rule with N > 2 agents is given by,

{α,α} =







N∑

i=2
xi + E[x∗1|x

∗
1 ≤ α]

N
,

N∑

i=2
xi + E[x∗1|x

∗
1 ≥ α]

N







(B11)

Proof of Proposition B3: First, the aggregate payoff with N agents is given by,

E[Π(d)|{α,α}] =
N∑

i=1

πi +−

∫ α

0

[

(α− x)2 +
N∑

i=2

(α− xi)
2

]

f(x) dx

−

∫ α

α

N∑

i=2

(x− xi)
2f(x) dx

−

∫ D

α

[

(α− x)2 +
N∑

i=2

(α− xi)
2

]

f(x) dx. (B12)
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I begin by solving the principal’s problem for α,

0 =
∂

∂α
E[Π(d)|{α,α}]

=
N∑

i=2

(α − xi)
2f(α) +

∫ α

0

[

2(α− x) + 2
N∑

i=2

(α− xi)

]

f(x) dx−
N∑

i=2

(α− xi)
2f(α)

= Nα−

N∑

i=2

xi −

∫ α
0 xf(x) dx

F (α)

α =

N∑

i=2
xi + E[x∗1|x

∗
1 ≤ α]

N
. (B13)

Similarly, α is given by,

α =

N∑

i=2
xi + E[x∗1|x

∗
1 ≥ α]

N
. (B14)

�

Proposition B3 provides the analytic form for a rule when there are more than two

agents. Providing the decision-maker with discretion is valuable because there is align-

ment between the principal’s objective function and the decision-maker’s payoff. The

degree of alignment between the principal and decision-maker, however, is decreasing

as the number of agents increases. Consequently, the provided discretion responds.

The following two corollaries provide two new insights: the first corollary demonstrates

that the provided discretion is characterized by the average bliss point of the other

N − 1 agents and the second corollary shows that the decision-maker is provided no

discretion when there is no alignment between him and the principal.

Corollary A1. The discretion provided to agent 1 includes the average bliss point of

the other N − 1 agents,
N∑

i=2
xi

N − 1
.

Proof of Corollary A1: The proof mirrors the proof of Corollary 3.1. �

Corollary A2. As N → ∞, agent 1 is restricted to a single choice.
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Proof of Corollary A2: The quantity of discretion granted to agent 1 is given by

the difference of the expressions in Equations B13 and B14,

α− α =
E[x∗1|x

∗
1 ≥ α]− E[x∗1|x

∗
1 ≤ α]

N
. (B15)

As N → ∞, discretion goes to zero. �

B.4 Decision Price Discussion

The analysis in the body of this paper assumes that the principal cannot “price” the

decision-maker’s choices. Suppose instead that a contingent price is charged for the

agent’s choice and the price function, τ(d), is continuous and differentiable in d. Con-

sequently, agent 1 chooses a d that not only considers his payoff function but also the

decision’s price. As such, agent 1’s payoff is given by

Π1(d) = π1 − (d− x∗1)
2 + τ(d). (B16)

Agent 1 will optimize his decision according to

0 =
∂Π1(d)

∂d

=
∂τ(d)

∂d
− 2(d − x∗1)

d∗ =
∂τ(d)
∂d + 2x∗1

2
. (B17)

Clearly, if the price does not change with d then the partial derivative equals zero and

agent 1’s optimal choice is his bliss point. If, however, the price changes with d he

will choose something different than his bliss point. In fact, the optimal mechanism

is to give agent 1 the entire aggregate payoff via the price. This is accomplished by

transferring agent 2’s payoff,

τ(d) = π2 − (d− x∗2)
2. (B18)

By giving agent 1 the entire aggregate payoff, the agent fully internalizes the effect of

his choice, i.e., the multi-agent problem simplifies to a single agent optimizing over two
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payoff functions. Consequently, agent 1 makes the first-best decision,

d∗ =
∂τ(d)
∂d + 2x∗1

2

=
−2(d− x∗2) + 2x∗1

2

=
x∗1 + x∗2

2
. (B19)

This result has been studied extensively in the hold-up problem literature, e.g., Gross-

man and Hart (1986) and Hart and Moore (1990), and the result demonstrates that

separating contracts are optimal. Although this is important to mention in the context

of my analysis, it does not invalidate the results of this paper. Pooling contracts, for

example contracts with a single price, are ubiquitous in financial markets. My analysis

does not focus on the particular micro foundation by which pooling contracts arise, but

research in the area of incomplete contract considers this matter, e.g., Anderlini and

Felli (1994), Hart and Moore (1999) Maskin and Tirole (1999) and Segal (1999).

B.5 Strategic Uncertainty and Rules: Generalized Results

In Section 6, I utilize the mean-preserving linear distribution and I show that discretion

is increasing in the distribution’s variance. Although the decision-maker enjoys the

additional discretion that accompanies larger variance, I show that the decision-maker’s

ex ante payoff is decreasing in the distribution’s variance. In this section I consider

a broader class of distributions and provide the conditions under which the results of

Section 6 hold.

Consider a general distribution f(x, σ) on the support [0,D]. Furthermore, as-

sume that the probability density function is differentiable. The distribution f(x, σ) is

second-order stochastically ordered such that for any σ̂ > σ, it can be said that f(x, σ̂)

is a mean-preserving spread of f(x, σ), i.e., f(x, σ) second-order stochastically domi-

nates f(x, σ̂). The following proposition provides two conditions on the distribution’s

hazard rate for the decision-maker’s discretion to be increasing in σ.

Proposition B4. Discretion is increasing in the variance of f(x, σ) if the distribution’s

hazard rate satisfies the following two properties,

1. f(α,σ)
F (α,σ) ≤

2
∫ α

0
f(x,σ) dx

∫ α
0 F (x,σ) dx

,
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2. f(α,σ)
(1−F (α,σ)) ≤

2
∫ 1
α
f(x,σ) dx

∫ 1
α
(1−F (x,σ)) dx

.

Proof of Proposition B4: The distribution f(x, σ) is second-order stochastically

ordered such that for any σ̂ > σ, it can be said that f(x, σ̂) is a mean-preserving

spread of f(x, σ), i.e., f(x, σ) second-order stochastically dominates f(x, σ̂).

The implicit function theorem is used to determine the change in α and α with

respect to a change in σ. I begin with α and define Ψ(a)

Ψ(a) ≡ a−

∫ a
0
xf(x,σ) dx

∫ a

0
f(x,σ) dx

+ x∗2

2
, (B20)

and note that Ψ(α) = 0. The implicit-function theorem gives,

∂α

∂σ
= −

∂Ψ/∂σ

∂Ψ/∂a

∣
∣
∣
∣
a=α

. (B21)

First, we begin with ∂Ψ/∂σ,

∂Ψ

∂σ
=

−F (a, σ)
∫ a
0 x

∂f(x,σ)
∂σ dx+

∫ a
0 xf(x, σ) dx

∫ a
0
∂f(x,σ)
∂σ dx

2F (a, σ)2
, (B22)

and note that the result is positive by the definition of a mean-preserving spread. Next,

we evaluate ∂Ψ/∂a,

∂Ψ

∂a
= 1−

aF (a, σ)f(a, σ) − f(a, σ)
∫ a
0 xf(x, σ) dx

2F (a, σ)2

= 1−
aF (a, σ)f(a, σ) − f(a, σ)

(
aF (a, σ) −

∫ a
0 F (x, σ) dx

)

2F (a, σ)2

= 1−
f(a, σ)

∫ a
0 F (x, σ) dx

2F (a, σ)
∫ a
0 f(x, σ) dx

, (B23)

which is positive if the following relationship holds for the distribution’s hazard rate,

f(a, σ)

F (a, σ)
≤

2
∫ a
0 f(x, σ) dx∫ a

0 F (x, σ) dx
. (B24)

Therefore,

∂α

∂σ
= −

∂Ψ/∂σ

∂Ψ/∂a

∣
∣
∣
∣
a=α

=
F (α, σ)

∫ α
0 x

∂f(x,σ)
∂σ dx−

∫ α
0 xf(x, σ) dx

∫ α
0
∂f(x,σ)
∂σ dx

2F (α, σ)2 − f(α, σ)
∫ α
0 F (x, σ) dx

≤ 0, (B25)

59



if the distribution’s hazard rate satisfies Equation B24.

I now proceed to α and define Ψ(a)

Ψ(a) ≡ a−

∫ 1
a
xf(x,σ) dx

∫ 1
a
f(x,σ) dx

+ x∗2

2
, (B26)

and note that Ψ(α) = 0. The implicit-function theorem gives,

∂α

∂σ
= −

∂Ψ/∂σ

∂Ψ/∂a

∣
∣
∣
∣
a=α

. (B27)

We begin with ∂Ψ/∂σ,

∂Ψ

∂σ
=

−(1− F (a, σ))
∫ 1
a x

∂f(x,σ)
∂σ dx+

∫ 1
a xf(x, σ) dx

∫ 1
a
∂f(x,σ)
∂σ dx

2(1 − F (a, σ))2
, (B28)

and note that the result is negative by the definition of a mean-preserving spread. Next,

we evaluate ∂Ψ/∂a,

∂Ψ

∂a
= 1−

−af(a, σ)(1− F (a, σ)) + f(a, σ)
∫ 1
a xf(x, σ) dx

2(1 − F (a, σ))2

= 1−
−af(a, σ)(1− F (a, σ)) + f(a, σ)

(

1− aF (a, σ)−
∫ 1
a F (x, σ) dx

)

2(1 − F (a, σ))2

= 1−
−af(a, σ) + af(a, σ)F (a, σ)) + f(a, σ)− af(a, σ)F (a, σ) −

∫ 1
a F (x, σ) dx

2(1 − F (a, σ))2

= 1−
f(a, σ)

∫ 1
a (1− F (x, σ)) dx

2(1− F (a, σ))
∫ 1
a f(x, σ) dx

, (B29)

which is positive if the following relationship holds for the distribution’s hazard rate,

f(a, σ)

(1− F (a, σ))
≤

2
∫ 1
a f(x, σ) dx

∫ 1
a (1− F (x, σ)) dx

. (B30)

Therefore,

∂α

∂σ
= −

∂Ψ/∂σ

∂Ψ/∂a

∣
∣
∣
∣
a=α

=
(1− F (a, σ))

∫ 1
a x

∂f(x,σ)
∂σ dx−

∫ 1
a xf(x, σ) dx

∫ 1
a
∂f(x,σ)
∂σ dx

2(1− F (a, σ))2 − f(a, σ)
∫ 1
a (1− F (x, σ)) dx

≥ 0. (B31)

60



�

The following two propositions provide sufficient conditions for which the result of

Proposition 9 holds in a general class of probability distributions.

Proposition B5. A sufficient condition on f(x, σ), such that agent 1’s ex ante payoff

is decreasing in the distribution’s variance, is,

∂α

∂σ
≥ −

∂F/∂σ

∂F/∂x
. (B32)

Proof of Proposition B6: Recall, the distribution f(x, σ) is second-order stochasti-

cally ordered such that for any σ̂ > σ, it can be said that f(x, σ̂) is a mean-preserving

spread of f(x, σ), i.e., f(x, σ) second-order stochastically dominates f(x, σ̂).

Increasing σ yields two competing ex ante effects: it increases the decision-maker’s

discretion and increases the probability of an extreme realization. These effects occur

for both the rule’s lower bound α and the rule’s upper bound α. For brevity, we

consider the effect on the lower bound first,

∂Π1(σ)

∂σ
= −

∫ α(σ)

0
2(α(σ)− x)

∂α

∂σ
f(x, σ) dx−

∫ α(σ)

0
(α(σ)− x)2

∂f(x, σ)

∂σ
dx (B33)

= −2

∫ α(σ)

0
(α(σ)− x)

∂α

∂σ
f(x, σ) dx− 2

∫ α(σ)

0
(α(σ)− x)

∂F (x, σ)

∂σ
dx.

(B34)

= −2

∫ α(σ)

0
(α(σ)− x)

(
∂α

∂σ
f(x, σ) +

∂F (x, σ)

∂σ

)

dx (B35)

= −2

∫ α(σ)

0
(α(σ)− x)

(
∂α

∂σ

∂F (x, σ)

∂x
+
∂F (x, σ)

∂σ

)

dx (B36)

Therefore, for all x ∈ [0, α], a sufficient condition for the payoff to be decreasing in σ

is,
∂α

∂σ
≥ −

∂F/∂σ

∂F/∂x
, (B37)

where

∂α

∂σ
=
F (α, σ)

∫ α
0 x∂f(x,σ)∂σ dx−

∫ α
0 xf(x, σ) dx

∫ α
0
∂f(x,σ)
∂σ dx

2F (α, σ)
∫ α
0 f(x, σ) dx− f(α, σ)

∫ α
0 F (x, σ) dx

. (B38)

�
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Proposition B6. If x∗1 and x∗2 are both independently distributed according to f(x, σ),

agent 1’s payoff is maximized when there is no ex ante uncertainty.

Proof of Proposition B6: Consider the limiting case where the distribution’s entire

mass is located at the mean, E[x∗1] = x∗1 = x∗2 = E[x∗2]. In the limiting case, the planner

restricts agent 1 to choose E[x∗1] and both agents obtain a quadratic cost of zero.

�
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C Appendix

The uniform and symmetric-triangular distributions are attractive choices for analytic

modeling because they often yield clean closed-form solutions. Additionally, if the

distributions are over the same support they share the same mean but differ in their

variances. In the following section I derive a generalized linear distribution for which

the uniform and symmetric-triangular distributions are special cases of. As such, the

generalized form provides a class of linear distributions that share the same mean but

differ in second-order stochastic dominance.

C.1 Motivation

Consider a uniform distribution f(x) over the support [D,D]. The probability density

function is simply,

f(x) =
1

D −D
. (C1)

Now, consider a symmetric-triangular distribution g(x) over the same support. The

probability density function is piecewise-defined and has the form,

g(x) =







4
(

D+D

2
−x

)

(D−D)2
D ≤ x ≤ D+D

2

4
(

x−
D+D

2

)

(D−D)2
D+D

2 < x ≤ D.

(C2)

Although both distributions have the same mean, Ef [x] = Eg[x] =
D+D

2 , their vari-

ances differ. The uniform distribution has a variance of V arf [x] =
(D−D)2

12 , which is less

than the triangular distribution’s variance of V arg[x] =
(D−D)2

8 . The two distributions

are depicted in Figure 1.9.

It is desirable to obtain a general linear distribution for which both the uniform and

symmetric-triangular distributions are special cases of. Specifically, a linear distribution

which is mean preserving and characterized by a single parameter γ that determines

the distribution’s bend and, consequently, its variance.
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Figure 1.9: A uniform distribution f(x) and symmetric-triangular distribution

g(x). The two distributions share the same mean but differ in their respective

variances.

C.2 Mean-Preserving Linear Distribution

Consider the distribution in Figure 1.10(a). The distribution is neither the uniform or

the symmetric-triangular distribution, rather it falls somewhere between the two. The

analytic form of the distribution can be solved for with geometry. The regions A, B,

C and D in Figure 1.10(b) represent the cumulative probability density. Denote M as

the midpoint of the support [D,D] and γ to be the density evaluated at that midpoint.

Additionally, let T be the density at g(D) and g(D). The areas of A and C are given

by (T − γ) × D−D
4 and the areas of B and D are

(
D−D

2

)

× γ. The symmetric nature

of the distribution ensures that A+B = C +D = 1
2 . Consequently, T is a function of

γ, D and D.

1

2
=

(T − γ)(D −D)

4
+
γ(D −D)

2
2

(D −D)
= (T − γ) + 2γ

T =
2− γ(D −D)

(D −D)
. (C3)

The distribution is piecewise-defined. The functional form of the distribution in

the range of D ≤ x ≤ D+D
2 is the equation of a line that passes through the points
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(b) Mean-preserving linear distribution geometry.

Figure 1.10: Mean-preserving linear distribution.
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(x1, y1) = (D,T ) and (x2, y2) =
(
D+D

2 , γ
)

,

h(x) = mx+ b

=
y2 − y1
x2 − x1

x+

(

y1 −
y2 − y1
x2 − x1

x1

)

=
γ − T

D+D
2 −D

x+

(

T −
γ − T

D+D
2 −D

D

)

.

The above expression contains T , which is a function of γ, D and D as shown in

Equation C3,

=
−2
(
2− 2γ(D −D)

)

(D −D)2
x+

(

2− γ(D −D)

(D −D)
+

2
(
2− 2γ(D −D)

)

(D −D)2
D

)

=
−2
(
2− 2γ(D −D)

)
(x−D) +

(
2− γ(D −D)

)
(D −D)

(D −D)2
. (C4)

Similarly, the functional form of the distribution in the range of D+D
2 ≤ x ≤ D

is the equation of a line that passes through the points (x1, y1) =
(
D+D

2 , γ
)

and

(x2, y2) = (D,T ),

h(x) = mx+ b

=
y2 − y1
x2 − x1

x+

(

y1 −
y2 − y1
x2 − x1

x1

)

=
T − γ

D − D+D
2

x+

(

T −
T − γ

D − D+D
2

D

)

.

The above expression again contains T . An application of the result from Equation C3

yields,

=
2
(
2− 2γ(D −D)

)

(D −D)2
x+

(

2− γ(D −D)

(D −D)
−

2
(
2− 2γ(D −D)

)

(D −D)2
D

)

=
2
(
2− 2γ(D −D)

) (
x−D

)
+
(
2− γ(D −D)

)
(D −D)

(D −D)2
. (C5)

The parameter γ, which represents the height of rectangles B and D in Figure

1.10(b), cannot be less than 0 or greater than 2
D−D

. Equations C4 and C5 yield a
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probability density function of the form,

h(x, γ) =







−2(2−2γ(D−D))(x−D)+(2−γ(D−D))(D−D)

(D−D)2
D ≤ x ≤ D+D

2

2(2−2γ(D−D))(x−D)+(2−γ(D−D))(D−D)

(D−D)2
D+D

2 ≤ x ≤ D

(C6)

with γ ∈

[

0 ,
2

D −D

]

.

The cumulative density function is given by,

H(x, γ) =







(2(D−x)−γ(D−D)(D+D−2x))(x−D)

(D−D)2
D ≤ x ≤ D+D

2

(D−x)2(1+γ(x−D))+(x−D)2(1+γ(D−x))
(D−D)2

D+D
2 ≤ x ≤ D

(C7)

with γ ∈

[

0 ,
2

D −D

]

.

The mean and variance of the distribution are given by,

E[x] =
D +D

2
(C8)

E[x2]− E[x]2 =
(D −D)2(3− γ(D −D))

24
. (C9)

C.2.1 Special Case: Unit Support

A special case of the mean-preserving linear distribution is when [0,D] = [0, 1]. The

probability density function and corresponding cumulative density function are given

by,

h(x, γ) =







−4 (1− γ) x+ (2− γ) 0 ≤ x ≤ 1
2

4 (1− γ) (x− 1) + (2− γ) 1
2 ≤ x ≤ 1

(C10)

H(x, γ) =







(2(1 − x)− γ(1− 2x)) x 0 ≤ x ≤ 1
2

(1− x)2 (1 + γ(x− 1)) + x2 (1 + γ(1− x)) 1
2 ≤ x ≤ 1

(C11)

with γ ∈ [0 , 2] .
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Figure 1.11: Mean-preserving linear distribution examples.

The mean and variance of the distribution are given by,

E[x] =
1

2
(C12)

E[x2]− E[x]2 =
3− γ

24
. (C13)
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CHAPTER 2

Competition, Comparative Performance, and

Market Transparency

1 Introduction

Early work on disclosure theory suggests that market forces are sufficient to induce full

disclosure. Grossman and Hart (1980), Grossman (1981), and Milgrom (1981) argue

that in the absence of market frictions, adverse selection prompts those with good news

to distinguish themselves from others by disclosing their information. This reduces the

expected prospects for the remaining market and induces a cascade in which everyone

discloses their information.

Subsequent work challenges this. Full disclosure may not occur because disclosure

is costly (e.g. Verrecchia 1983; Fishman and Hagerty 1990), some market participants

are unsophisticated (e.g., Fishman and Hagerty 2003), or there is uncertainty whether

asymmetric information exists in the market (Dye 1985; Matthews and Postlewaite

1985; Jung and Kwon 1988; Shin, 2003; Acharya, DeMarzo, and Kremer 2010). In the

face of such market frictions, adverse selection may prevent market transparency.

All of the prior literature, however, focuses only on absolute performance and ig-

nores comparative performance. That is, when one entity outperforms another, there

are added spoils that go to the victor, and this needs to be taken into considera-

tion. Comparative performance is important in any tournament or contest (e.g., Rosen

1981; Lazear and Rosen 1981), especially when scarce resources are allocated or when

reputation adds value. As we describe in the paper, this arises in many economic are-

nas: financial reporting, money-management, academic research, job applications, and

marriage markets. The key insight is that when people choose whether to reveal infor-

mation, they know that their comparative performance will be evaluated in addition

to their absolute performance.
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In this paper, we study how competition affects market transparency, taking into

account that comparative performance matters. Our primary contribution is that we

show that increased competition usually makes disclosure less likely, which lowers mar-

ket transparency and may decrease per capita welfare. Especially in a tournament

setting, we cannot rely on the Invisible Hand to induce informational efficiency. This

has implications for market regulation.

We build on the model of Dye (1985), where incomplete disclosure results from

investors’ uncertainty as to whether or not a firm possesses relevant information.12 In

our variant, a finite number of firms compete in the market. All firms experience a

random shock that changes their fundamental value. Each firm may or may not observe

the precise value of their shock. Firms that make an observation simultaneously choose

whether to announce it publicly, while firms with no new information have nothing to

reveal. The firm with the best announcement gets a fixed prize from the market, which

represents the rank-based remuneration previously described.

In the unique Nash equilibrium of the game, each firm with new information applies

the same threshold in deciding whether or not to reveal its news. If the observed shock

value is above this threshold, the firm announces it and competes for the prize. If

the observed shock is lower, however, the firm conceals its information. The presence

of uninformed firms lends plausible deniability to informed firms wishing to conceal a

bad observation. As such, competing for the prize has an opportunity cost: firms who

disclose give up their chance to pool with other firms. Given this, rational investors

use Bayesian learning to adjust the market price of firms that do not release any news.

Because the probability of winning the prize drops when more firms compete, the

benefit of making announcements decreases with competition. Increasing competition

makes pooling with other firms more attractive compared to the benefit of vying for the

prize, which leads to decreased information revelation and lower market transparency.

In the limit, when the market is perfectly competitive, transparency is minimized be-

cause the individual probability of winning the prize goes to zero.

1Going forward for clarity, we always refer to the solicitor who holds private information
as the “firm” and the solicited agent as the “investor”, while keeping in mind the breadth of
economic applications noted earlier.

2Disclosure is costly in Dye (1985) because firms give up their opportunity to pool with
others. Our use of this framework does not make our analysis special, however. Competition
would still have the same effects that we demonstrate in any other form of costly discretionary
disclosure noted above.
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Although it may not be terribly surprising that the influence of a single fixed prize

decreases with the number of firms eligible to win it, we find the result to be robust to

alternate prize forms: progressive reward systems (i.e., prizes are awarded to runners

up), prizes that change in size as a result of competition, prizes awarded based on

percentile, and sequential disclosure. Most notably, perfect competition leads to min-

imal market transparency in all of the model variations we analyze except one: when

the prize grows exponentially with competition ad infinitum. Given that this is rather

unlikely to occur in reality, we view this result with considerable generality.

In much of our analysis, the distribution that the firms draw their value from does

not vary with competition. We relax this assumption to add a reduced-form model of

product market competition, in addition to the considerations analyzed so far.3 Now,

the market share for each firm shrinks with competition, which makes the ratio of the

prize to firm revenues grow with competition. For a small oligopoly, we show that this

causes added competition to increase disclosure. However once additional firms are

added, the effect of competition decreases market transparency. Intuitively, when a

small number of firms are present, disclosure is a mechanism to prove oneself. But as

the probability of winning the prize shrinks with competition, the incentive to hoard

information grows too large.

Our work not only adds to the previous literature on disclosure and transparency,

but also contributes to the work on tournaments and contests. Previous papers have

focused on whether tournaments optimally solve moral hazard problems (e.g., Lazear

and Rosen 1981; Green and Stokey 1983; Nalebuff and Stiglitz 1983a; Nalebuff and

Stiglitz 1983b; Moldovanu and Sela 2001). These papers weigh the merits of using

relative performance measures in settings in which performance is correlated. We add

to this literature by considering adverse selection instead and assessing the effect of

competition while taking the tournament mechanism as primitive. Indeed, as implied

by Nalebuff and Stiglitz (1983a), competition disrupts the incentives to perform. In

their setting, it imposes too much risk on participants. In ours, competition induces

firms to hoard information and not vie for the prize.

Finally, our analysis has normative implications. We conclude that if transparency

3This adds to the previous literature on product market competition and discretionary
disclosure. See Wagenhofer (1990), Darrough and Stoughton (1990), Feltham and Xie (1992),
Darrough (1993), Dye and Sridhar (1995) Clinch and Verrecchia (1997), Pae (2002), Stivers
(2004), and Board (2009).
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is considered a good, policy makers cannot simply depend on competition to induce

transparency. They need to carefully consider the type of competition that takes place

in markets before deciding whether regulation is necessary. When comparative per-

formance matters, competition for remuneration may make disclosure less attractive,

which may lower efficiency in the market. In this light, competition should not be

viewed as a panacea to assure information disclosure and self-regulation by market

participants.

The rest of the paper is organized as follows. Section 2 introduces our base model,

characterizes the equilibrium, and addresses whether our results are robust to other

prize structures. In Section 3, we add product market competition to the model. Sec-

tion 4 concludes. Proofs of all propositions are deferred to Appendix A. In Appendix B,

we explore the potential welfare implications of our results.

2 Discretionary Disclosure

2.1 Base Model

Consider that N risk-neutral firms compete in a one-period game of discretionary dis-

closure. Each firm j ∈ {1, . . . , N} experiences a random change x̃j, which is distributed

according to a twice continuously differentiable function F (x) on R. We assume that

f(x) > 0 for all x ∈ R and E[x̃j ] = 0.4 Realizations are independent and identically

distributed for each firm. For now, F (x) does not depend on N , but we relax this

assumption in Section 3.

Each firm j observes the true realization of x̃j with probability p, and observes

nothing otherwise. As such, the parameter p measures the degree of asymmetric infor-

mation and may be interpreted as a measure of strong form market (in-)efficiency. The

probability p is given exogenously and we assume that firms cannot alter its value.5

Any firm j that observes x̃j may either conceal its value (Cj), or may credibly

disclose it to investors (Dj). For a given realization x̃j = x, we denote the change in

4As will become clear, the assumption that E[x̃j ] = 0 is without loss of generality. For any
distribution in which E[x̃j ] 6= 0, rational investors would update their valuations of the firms
to take this into consideration. Therefore, by setting E[x̃j ] = 0, we are considering the news
that investors cannot readily predict before any announcements are made.

5See Matthews and Postlewaite (1985) for treatment of the monopoly case in which the firm
chooses p endogenously (i.e., chooses the quality of its information).
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firm value following these actions as uCj (x) and u
D
j (x). Following Dye (1985) and Jung

and Kwon (1988), firms that do not observe x̃j, are not permitted to fabricate one.6

That is, we assume that investors can freely verify and penalize false claims of x̃j , but

cannot determine whether a non-disclosing firm is in fact concealing information.

Each informed firm j determines its action using a disclosure policy σj : R → [0, 1],

where the firm discloses with probability σj(x) and conceals its information with prob-

ability 1 − σj(x). As such, firms may choose non-deterministic strategies, although

we will show shortly that deterministic strategies are optimal, almost surely. Let

σ ≡ {σ1, . . . , σN} and σ−j ≡ {σ1, . . . , σj−1, σj+1, . . . , σN}. All informed firms act

simultaneously to maximize firm value and do not know which of their competitors are

also informed at the time of their decision. We later extend our model and consider a

sequential game of disclosure in Section 2.4.3.

Investors are competitive, risk-neutral, and have rational expectations about firm

behavior. As such, investors price each firm according to uCj (x) and u
D
j (x). Let Pj be

the event that a firm j does not disclose new information. This may occur because the

firm is legitimately uninformed or because it is concealing a bad realization (i.e, pooling

with uninformed firms). Investors use Bayesian inference to calculate the firm’s change

in value, which is expressed as uCj (x) = E[x̃j |Pj , σ, p].

After all disclosures have been made, investors award a fixed prize φ to the firm

with the highest disclosed value. Given this, firm j’s expected value of revealing x is

uDj (x) ≡ x+ φWj(x, p, σ−j), (1)

whereWj(x, p, σ−j) is the probability that firm j has the highest disclosure. This value

depends on the probability p of competing firms being informed, and on the strategies

σ−j they employ.

2.2 Applications

Before characterizing the equilibrium of the game, it is instructive to note some of the

model’s economic applications. The model is relevant when superior relative perfor-

mance is rewarded and rankings drive remuneration. In the context of Dye (1985),

6This assumption is very common in the disclosure literature. See page 329 of Matthews
and Postlewaite (1985) for a good motivation of this assumption.
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investors not only reward firms for their disclosed performance, but also take into ac-

count the future decisions by third parties who do business with each firm. When third

parties allocate scarce resources to top-performing firms, this relaxes their budget con-

straints and increases each firm’s opportunity set. Indeed, empirical evidence confirms

that top firms enjoy superior access to human capital (Gatewood, Gowan, and Lauten-

schlager 1993), venture capital (Hsu 2004), and media attention and market coverage

(Hendricks and Singhal 1996). In the context of our model, investors not only update

their estimate of a firm’s current operations x̃j , but also take into account the added

value φ a firm generates from third parties when it outperforms their competition.

Stock prices reflect both components of value.

Our model also applies to other economic arenas, especially when reputation is an

important driver of value. For example, academic job market candidates who outper-

form their competitors and receive better initial job placement, often get the prize of

more exposure in the future. Likewise, scientists who win grants find it easier to obtain

future funding. Disclosing one’s true value in these settings not only conveys infor-

mation to others, but also allows the information sender to better compete for future

spoils.

This consideration is particularly important when information about objective per-

formance is difficult to obtain or interpret, such as in the money management industry.

Here, the prizes are convex investor flows that funds enjoy when they outperform com-

petitors (Brown, Harlow, and Starks 1996; Berk and Green 2004; Del Guercio and

Tkac 2008). The importance of such gains is magnified in the hedge fund industry

where funds are restricted by law to marketing their services to a small set of qualified

investors. Because of this, there is a paucity of public performance data and disclosure

is largely discretionary via for-profit databases (Ackerman, McEnally and Ravenscraft

1999; Malkiel and Saha 2005; Stulz 2007). Our model fits the strategic behavior in

this industry particularly well. Funds that disclose performance compete for investor

flows, whereas funds who do not disclose may do so for reasons unrelated to poor per-

formance: they may be at their investor cap, may not be seeking new capital, or may

be unable to make useful disclosure about valuations because some assets are illiquid.

Finally, our model is relevant when individual agents interact. For example, con-

sider a marriage market in which young men court a particular woman, at the same

time uncertainty about their future career prospects is being resolved. To see how our
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model applies, suppose that N men court a single woman, who chooses the suitor with

the best financial future x.7 This x could represent the man’s salary after an important

review, the companies that have made him job offers, or any other verifiable proxy of

future success. With probability p, the man is already privately informed of x and may

choose whether to disclose it or not. Disclosure affects both a man’s social standing

among peers θ(x), and also makes him eligible for the “prize” φ of marrying the woman.

If the suitor does not disclose x, he is not eligible to win φ because the woman is not

able to evaluate him as a marriage prospect. Disclosing yields

E[uD(x)] = θ(x) + φPr(x highest among suitors), (2)

and not disclosing yields

E[uC(x)] = (1− p)E[θ(x)] + pE[θ(x)|x concealed]. (3)

These payoff functions match those in our model, except for the monotonic transfor-

mation θ. As such, the suitor’s disclosure decision is isomorphic to the firm’s disclosure

decision in our extension of the Dye (1985) model.

2.3 Equilibrium Disclosure

The following proposition characterizes the game’s unique Nash equilibrium.

Proposition 1. There exists a unique and non-trivial Nash equilibrium, in which every

firm discloses according to a common threshold t∗ defined implicitly by

t∗ + φ (1− p+ pF (t∗))N−1 =
p

1− p+ pF (t∗)

∫ t∗

−∞
xf(x) dx. (4)

Further, the threshold t∗ lies below the unconditional mean of x̃j, i.e. t
∗ < 0.

The proof of the proposition, which is detailed in the appendix, proceeds in three

steps. First, we show that each firm acts according to a disclosure threshold tj < 0,

in which each informed firm simply compares the expected utility it can obtain by

revealing information to what it obtains by pooling. The threshold for each firm j is

defined implicitly by

uDj (tj) = uCj . (5)

7In reality, there may be other dimensions that are compared, but we include a single one
here for purpose of example.
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Second, we show that every firm uses the same disclosure threshold, which we denote

as t∗. As such, there cannot be an equilibrium in which some firms are more “honest”

than others. This is not too surprising, since all firms draw the observations from

identical and independent distributions. Third, we show that the common disclosure

threshold t∗ is in fact unique.

The expression in (4) implicitly defines the unique threshold for the game. The left

side is the utility that a firm enjoys if it observes x̃j = t∗ and reveals its information. In

this case, the firm immediately receives its own value x̃j = t∗, and can also win the prize

φ if its disclosure is the highest. But since competing firms never reveal values below

t∗, any other disclosing firm will have a higher value almost surely. Firm j can win,

therefore, only if all other firms pool and it is the only one to disclose. Each competing

firm pools if either it is uninformed or it is informed with an observation below the

threshold. These events occur with probabilities (1− p) and pF (t∗), respectively.

The right side is the utility a firm obtains by concealing its observation, which

equals a pooling firm’s expected change in value. Such a firm could be uninformed and

have a zero expected value for its observation, or could be hiding an observation lower

than the threshold. The weighted average of these possibilities yields the right side of

Equation 4.

It is important to note that the threshold t∗ is lower than the distribution mean,

which we’ve assumed to be zero. The average x̃j for an uninformed firm is simply the

distribution mean, and because firms disclose their best observations, rational investors

expect the average concealed observation to be negative. The weighted average assigned

to pooling firms must therefore be below the distribution mean. Since disclosure yields

strictly greater expected utility than the value disclosed, no firm will ever conceal an

above-average observation. So if firm j is indifferent between revealing and concealing

a value xj = t∗, then t∗ < 0.

Given the existence of a unique t∗, we could use the expression in (4) and the

Implicit Function Theorem to predict how disclosure behavior responds to exogenous

parameter changes. However, a more empirically relevant characterization would de-

scribe the disclosure frequency with which firms opt to reveal private information.

That is, what is the ex ante probability that a firm, if it observes its value change, will

choose to share its observation with investors?

To address this, we define ω∗ to be the ex ante probability that an informed firm
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discloses in equilibrium. By construction, ω∗ = 1− F (t∗), which implies that if a firm

lowers its threshold, it discloses more of its realized values, and vice-versa. We also

denote ω̂ as the equilibrium disclosure frequency when φ = 0, which corresponds to the

equilibrium condition derived in Dye (1985) and Jung & Kwon (1988) when there is

no strategic interaction. When φ > 0,

ω∗ ≥ ω̂ ∀φ ≥ 0,∀N <∞. (6)

As such, ω̂ is a lower bound for ω∗ over all φ and N . In fact, it is the largest possible

lower bound. The lower bound is defined implicitly by

F−1(1− ω̂) =
p
∫ 1
ω̂ t(Ω) dΩ

1− pω̂
. (7)

Proposition 2. Equilibrium disclosure frequency is decreasing in N and increasing in

φ. As N → ∞, ω∗ converges to ω̂.

According to Proposition 2, when firms disclose competitively in a tournament-

like setting, increased competition reduces disclosure. Increased competition drives

firms to hoard their informational advantage over investors. The result has immediate

application in many economic settings, especially in the financial sector (e.g., money

management), where disclosure is critical and where top-performing firms enjoy large

rewards.

Mathematically, the cause of the competition effect is straightforward. As more

firms enter the market, each firm’s chance of making the highest disclosure diminishes

exponentially. Since the disclosure decision is a trade-off between the desire to win the

prize and the desire to conceal bad signals, additional firm entry tips the balance in

favor of concealing. In the sections that follow, we will show this effect to be robust to

other types of prizes and prize structures.

Proposition 2 also states simply that firms will be more inclined to disclose when

the prize they can win is large. Again, a larger prize tips the balance between the

opportunity to pool with other firms and to compete openly for the prize. This concept

is also robust to our alternative model specifications.

The comparative statics in p turn out to be trickier. Jung and Kwon (1988) consider

the special case where N = 1 and φ = 0, and find disclosure to be strictly increasing in

p. We are able to confirm this result by computing our comparative statics with φ = 0.

But when there is a prize, the situation becomes more complicated.
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With a prize, if p were to increase and firms do not adjust their disclosure strategies,

there would be two sources of change in firm utility. First, the increase in asymmetric

information would increase the Bayesian probability of a firm having inside informa-

tion. Rational investors would respond by reducing their assessment uC of pooling

firms. Second, the increase in p means competing firms are more likely to be informed.

Since being informed is a prerequisite to disclosing, the increase in p makes any given

disclosing firm less likely to win the prize by default. Mathematically, a higher p

decreases Wj(x), which implies a lower expected utility of disclosure.

These two effects of increased p work against each other. To determine whether

ω∗ will increase or decrease, we need to know which of these effect impact firm utility

more. If the reduction in uC(ω∗) is larger than the reduction in uD(ω∗), then disclosure

becomes more appealing. Firms will then respond to an increase in p by disclosing more

frequently. Conversely, if the reduction in uD(ω∗) dominates, then firms respond with

less frequent disclosure.

If the prize value φ is small or zero, then the reduction in Wj(x) is unimportant, so

the reduction in uC(ω∗) dominates, and equilibrium disclosure increases. This echoes

the Jung and Kwon (1988) result. The same result follows when N is very large, in

which case the probability of winning the prize is low from the outset. In contrast,

when φ is large and N is modest, the reduction in Wj(x) is critical. The second effect

dominates, so overall the incentive to disclose is reduced more than the incentive to pool.

Consequently, firms pool more often, reducing the equilibrium disclosure frequency.

2.4 Other Prize Structures

Now, we consider other prize structures to determine whether competition’s effect of

reducing disclosure is robust to alternative model specifications. In what follows, we

continue to assume that F (x) does not depend on N .

2.4.1 Increasing/Decreasing Prize Values in N

Consider that the prize depends on N , which we denote as φN . A case might be made

for either increasing or decreasing prize values. Prize value might decrease when addi-

tional firms enter because investor attention is diluted over a larger population of firms.

More commonly, though, the prize might shrink because of increasing competition for
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a scarce resource. It is straightforward to see, based on Proposition 2, that a prize

that decreases in N only strengthens our result. If the addition of further competitors

causes an exogenous reduction of prize value (i.e., lower φ), then equilibrium disclosure

falls even faster then if the prize remained constant.

Arguing that prizes increase with competition is more challenging, but may exist

in developing industries. Prizes that increase with competition may overcome the

competitive effect of disclosure, and are more likely to do so when N is small. But the

following proposition shows that unless the prize grows exponentially by a factor of at

least 1/(1−pω̂), disclosure will eventually decrease once N reaches some critical value.

Proposition 3. If φN increases with N and

limN→∞
φN+1

φN
<

1

1− pω̂
, (8)

then there exists some N ∈ R such that N > N implies that ω∗
N+1 < ω∗

N .

To gain intuition for this result, consider the case in which prize value per firm

remains constant:

φN ≡ Nφ1. (9)

In this case,

lim
N→∞

φN+1

φN
= 1 <

1

1− pω̂
, (10)

so the condition in (8) is satisfied, and disclosure decreases with competition for large

N .

Intuitively, the chance of winning the prize declines exponentially inN , so unless the

prize grows forever at the same exponential rate, the expected winnings will eventually

decline in N . Realistically, however, one must ask how a prize that continues to increase

exponentially with firm entry could arise. The value of high status may well increase

exponentially as the number of competing firms increases from, say N = 1 to N ′ = 10.

But it is difficult to believe the same exponential increase could continue from N = 10

to N ′ = 50. We conjecture that exponentially increasing status prizes are uncommon

at best, and may never occur in industries with a large number of firms.

2.4.2 Multiple Prizes

Consider that a finite number of progressive prizes K are awarded to the top firms.
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Definition 1. A disclosure game with a progressive prize structure is one in which

the firms that make the K highest disclosures each win a prize. The firm that makes

the kth highest disclosure wins φk. The prizes are positive and strictly monotonic,

φ1 > φ2 > . . . > φK > 0. (11)

Compared to a model with a single prize of φ = φ1, the addition of prizes for

runners-up naturally induces greater disclosure. But although the change to a progres-

sive prize structure may increases disclosure for any particular N , our central result

remains unchanged:

Proposition 4. Under any particular progressive prize structure, equilibrium disclo-

sure frequency strictly decreases as competition increases. That is, ω∗
N+1 < ω∗

N for any

N .

This result justifies our simplification in working with a single prize φ. Although

additional prizes may change the quantitative predictions of equilibrium disclosure,

the qualitative comparative statics remain unchanged. The chance of winning a lesser

prize decreases with competition just as the chance of winning a single prize does.

Competition therefore reduces disclosure in this setup as well.

Now, consider that prizes are awarded based on a firm’s percentile. For example,

each firm in the top 20 percent of the N firms could be awarded a prize, so that

the N/5 highest disclosures each receive an additional φ. This variation introduces

some complications that prevent us from showing the claim from the main model,

“equilibrium disclosure ω∗
N is strictly decreasing in N .” Because the number of prizes

is discrete, it cannot increase in exact proportion with N . For example, when 20

percent of the firms receive a prize, a single prize is awarded when N = 5, 6, 7, 8, 9, and

we numerically find that ω∗
5 > ω∗

6 > . . . > ω∗
9. But for N = 10, we suddenly award a

second prize, which can mean that ω∗
9 < ω∗

10. We must therefore content ourselves with

the result that disclosure decreases to its minimum possible frequency under perfect

competition.

Proposition 5. Suppose that for any N , a fixed fraction λ of the competing firms win

the prize φ. Further, suppose that λ ≤ pω̂. Then, disclosure converges to its lower

bound in the perfectly competitive limit:

ω∗
N −→ ω̂ as N → ∞. (12)
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According to Proposition 5, as the market becomes perfectly competitive, disclosure

is minimized. It should be noted that the condition that λ < pω̂ is weak in the sense

that it allows for a large number of firms to receive prizes. If λ = pω̂ when N → ∞,

this would mean that all firms that observed a value above t̂ would receive a prize.

Therefore, we limit the fraction of prizes (λ < pω̂) to keep the analysis realistic and

economically interesting.

2.4.3 Sequential Disclosure

We complete this section with a simple sequential disclosure model to further check

the robustness of our finding that disclosure is minimized under perfect competition.

Suppose that firms are randomly ordered, and each in turn observes its shock value x̃

with probability p, then chooses whether to disclose.

Since each firm makes a unique, history-dependent decision, we no longer have a

single symmetric, deterministic disclosure threshold. Rather, each firm has a random

disclosure threshold that depends upon the disclosures of the preceding firms and on

the number of firms remaining to act. Let νj be the ex ante probability that the jth

firm to act will disclose if they are informed. The average of these probabilities is the

analogue of the disclosure frequency in the main model,

ν̄N =
1

N

N∑

j=1

νj. (13)

Proposition 6. (Sequential Disclosure) In an equilibrium with N firms,

1. The ex ante probability that the jth firm discloses converges to the minimum with

perfect competition:

lim
N→∞

νj = ω̂. (14)

2. The ex ante probability that a randomly selected informed firm discloses also

converges to the minimum with perfect competition:

lim
N→∞

ν̄N = ω̂. (15)

According to Proposition 6, in the perfectly-competitive limit, every individual jth

firm discloses with frequency ω̂, the minimum possible. We can also show the slightly

stronger claim that the average frequency of disclosure over all N firms converges to

the minimum ω̂.
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3 Disclosure With Concurrent Product Market Compe-

tition

In this section, we analyze firms that compete directly in the product market, as well

as for prizes based on their disclosures. The distribution F (x) varies with N so that

firm revenue decreases with the entry of additional firms. Accordingly, firm signals

have relatively less direct importance to firm price and the prize has relatively more.

3.1 Equal Shares Competition

To capture this effect simply, we assume that the distribution of value signals becomes

compressed with the entry of additional firms. When N firms compete, we exchange

the original distribution of signals x ∼ F for a compressed distribution xN ∼ FN , so

that whenever a firm would have drawn a signal x in the original model, they instead

draw a scaled-down event x/N in the new model.

The new distribution is defined as

FN (x) ≡ F (Nx). (16)

An increase in N has the effect of shifting the distribution of news events while leaving

the support unchanged. For example, if x = $10k had been a 90th-percentile result

with N = 5, x = $1k would be the new 90th-percentile with N = 50. Increasing N

scales down expectations while preserving the concavity and any other peculiarities of

the value distribution.

We refer to this as “equal shares competition” for earnings, but wish to stress that

this is not intended as a substitute for other models of competition. The goal here

is simply to show how the value-scaling effect of competition affects disclosure. In

Section 3.2, we consider more general models of competition.

In Section 2, we found that as N increases, the incentive to disclose falls as the

probability of winning the prize decreases. With product market competition, though,

potential revenue declines as well, which reduces the incentive to pool. These two effects

oppose one another. Which effect dominates depends upon the number of competing

firms.

For what values of N , then, does competition reduce disclosure? If we were to find

the necessary number of firms to be in the millions, for example, then our point here
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would only be academic and not of practical import. To gain a sense of how many

firms is “enough,” consider the following proposition.

Proposition 7. Above some threshold N̄ = 1/pω̂, the equilibrium disclosure frequency

ω∗
N decreases monotonically in N and converges to ω̂.

To appreciate Proposition 7, suppose the distribution x̃ ∼ F is symmetric and

define t̂ as the threshold such that 1− F (t̂) = ω̂. The fact that t̂ < E[x] implies that

ω̂ = 1− F (t̂) > 1− F (E [x]) = 0.5. (17)

Then the sufficient condition becomes N > 2/p. If, for example, firm information

arrives with probability 0.5, then N = 2/(0.5) = 4 firms is enough competition that

further entry will only reduce disclosure. The higher p is, the fewer firms that are

required to assure that further competition decreases disclosure. We conjecture that in

many industries (e.g., financial sectors), there are already enough competitors present

so that disclosure responds negatively to additional competition.

Proposition 7 also shows that ω∗
N actually converges to ω̂ under perfect competition,

while industry profits converge to zero. Product prices decrease to their lowest possible

values, which maximizes social welfare. However, perfect competition in disclosure

induces firms to retain their maximum degree of asymmetric information. Thus, while

perfect competition drives product prices to their most socially efficient level, it drives

firm prices to their least informationally efficient. To better appreciate this, consider

the following example.

Example 1. Consider the disclosure game where x̃ is Gaussian with µ = 0, σ = 5

and φ = 1, p = .3 and product market competition characterized by FN (x) = F (Nx).

Figure 2.1 shows how the equilibrium disclosure changes with the number of competing

firms. Disclosure initially increases, then decreases asymptotically to the lower limit

ω̂ ≈ 0.556. Note that it only takes about 5 firms for increased competition to reduce

disclosure, even though p is relatively low at 0.3.

Although the above condition of N > 1/(pω̂) is mild enough, the condition is indeed

only sufficient for competition to decrease disclosure, not necessary. Typically, an even

smaller number of firms will suffice. We therefore derive the constraint on N that is

both necessary and sufficient for further entry to reduce disclosure.
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Figure 2.1: Disclosure game with product market competition. The random

variable is x̃ ∼ N(0, 5) and φ = 1 and p = .3. The product market competition

characterized by FN(x) = F (Nx). The curve shows how the equilibrium disclo-

sure changes with the number of competing firms. Disclosure initially increases,

then decreases asymptotically to the lower limit ω̂ ≈ 0.556.

Consider the position of a firm j that draws the threshold value, xj = F−1(1−ω∗).

With N firms competing for the prize, firm j is indifferent between disclosing and

herding. If a (N + 1)th competitor enters, and firm j observes the same xj, how do

the firm’s prospects change? Should it disclose, the entry reduces its expected prize

winnings by a factor of (1− pω) because

φW (ω;N) = φ(1− pω)N−1 (18)

is exponentially decreasing in N . But the other terms, F−1
N (1− ω) and uCN (ω), decline

by a factor of N/(N +1), as demonstrated in Lemma A5 in the appendix. As N rises,

then, this linear effect diminishes in significance compared to the exponential effect on

the expected prize value. Intuitively it seems that there is a critical number of firms

at which additional competition makes herding more attractive than competing for the

prize.

Proposition 8. Disclosure frequency decreases with firm entry if and only if the num-

ber of competing firms exceeds some threshold.:

N >
1− pω∗

N

pω∗
N

⇐⇒ ω∗
N+1 < ω∗

N . (19)
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According to Proposition 8, if N exceeds the threshold specified by the relative

probabilities of disclosing and pooling, then the exponential effect overwhelms the lin-

ear effect. So, the net effect of firm entry is a reduction in the incentive to disclose,

which results in ω∗
N+1 < ω∗

N . Note, however, that the threshold for N established

by Proposition 8 is changing with N . That is, as N increases, ω∗
N varies, and so the

probability ratio in Equation 19 may also increase. Therefore, although this proposi-

tion details the necessary and sufficient condition for N , it does not provide a tighter

unconditional bound than in Proposition 7.

Economically, Propositions 7 and 8 imply that when the number of firms is small,

further competition increases disclosure because the benefits of the prize are large

compared to the share of industry revenues that each firm receives. However, as the

number of firms rises, the benefits of revealing information rapidly drop compared to

sharing industry revenues with more firms, and disclosure becomes less likely.

3.2 Generalized Product Market Competition

Now suppose that we define the distribution as a function of N by

FN (x) ≡ F

(
x

αN

)

, (20)

for some decreasing sequence {αN}. By construction, if αN decreases rapidly, then firm

entry has a dramatic effect on the revenue of competing firms. If αN decreases more

slowly, then the effect is less pronounced. This formulation embeds the previous set up

in which FN (x) = F (Nx).

Proposition 9. If, under generalized competition with FN (x) = F (x/αN ),

lim
N→∞

αN+1

αN
> 1− pω̂, (21)

then there exists some N ∈ R such that N > N ⇒ ω∗
N+1 < ω∗

N .

The proof follows nearly the same structure as the proof of Proposition 8. Note,

however, that in this case, we need an additional restriction on the sequence {αN} in

order to complete the proof. Roughly stated, the requirement above is that competition

not reduce firm value too “quickly” as additional firms enter.

Thus, the question becomes one of whether the per-firm revenue can decrease ad-

infinitum at such a rate with the entry of additional firms. Although one can posit such
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a model, exponentially decreasing revenue is not a common feature of microeconomic

models of competition.

Example 2. Consider a Cournot competition with linear pricing. In such a model,

per-firm earnings (and hence firm value) declines as N grows:

πN =
π1
N2

. (22)

Therefore, αN = 1/N2. This sequence satisfies the criterion in Proposition 9 because

lim
N→∞

αN+1

αN
= lim

N→∞

N2

(N + 1)2
= 1 > 1− pω̂. (23)

So under linear Cournot competition, disclosure does indeed decline with competition

for large N .

4 Concluding Remarks

The primary result in this paper is that increased competition often reduces disclosure

when tournament-like competition is present. We show this both in a parsimonious

model, as well as in more sophisticated extensions. The fundamental idea, that firm

entry makes attaining top status more difficult, is straightforward. But the exponential

relationship between the number of competing firms and the probability of winning the

prize is mathematically powerful. The result is a robustness that makes our central

result widely generalizable.

If transparency is considered a good, then our analysis has straightforward welfare

implications. However, competition’s effect on welfare depends on the goal of screening

in the market. For example, suppose that it is only necessary to identify the top

performer(s) in the market. Then, even if competition causes more firms to hoard

information, welfare rises because a higher number of firms makes it more likely that

the best firm is identified. Indeed, this is proved analytically in Example B.1 and

Proposition B1 in the Appendix.

However, if welfare depends on the behavior of the marginal firm, competition may

decrease welfare. Example B.2 and Proposition B2 in the Appendix provide a situation

in which welfare depends on screening all potential counterparties in the market. In

such case, as competition increases, the marginal firm chooses not to disclose their
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information, which worsens the efficiency of screening and causes per capita welfare to

drop.

It is important to note that we do not assert that tournaments represent optimal

screening mechanisms. But they do exist in many venues. In such cases, we cannot

always appeal to the Invisible Hand to make markets transparent. While competition

in product markets often has a favorable effect on prices, driving firms to lower and

more socially efficient prices, it can have the opposite effect on disclosure. In the

asymptotic limit of perfect competition, prices converge to their most efficient values,

but disclosure falls to its least efficient.

In the end, our analysis implies that policy makers should consider the type of com-

petition that takes place in markets when deciding whether to regulate them. Compe-

tition may not always cure market ailments, and may even exacerbate them.
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A Appendix

Proof of Proposition 1: We establish Lemmas A1, A2, and A3, to determine the

game’s unique subgame-perfect Nash equilibrium. Lemma A1 establishes that all firms

use a threshold strategy to determine whether to disclose information when they have

it. Lemma A2 shows that all firms use a common threshold. Finally, Lemma A3 shows

that this common threshold is unique.

�

Lemma A1. In any subgame-perfect Nash equilibrium, each firm acts according to a

disclosure threshold tj < 0,

σj(xj) =







1 for xj > tj

0 for xj < tj .
(A1)

The threshold is implicitly defined by the condition that a firm observing xj = tj be

indifferent between disclosing and concealing,

uDj (tj) = uCj . (A2)

Proof of Lemma A1: Suppose firm j observes the event x. In a subgame-perfect

Nash equilibrium, the firm must disclose optimally given the value of x. That is, it

discloses when uDj (x) > uCj and conceal x when uCj > uDj (x) .

If the firm discloses, then it is eligible to with the prize φ. So its new market

valuation is x, plus an additional φ if no competing firm makes a higher disclosure,

uDj (x) = x+ φWj(x), (A3)

where Wj(x) is the probability that no competing firm discloses a higher value than x:

Wj(x) =
∏

k 6=j

(1− P (Ik)P ((xk > x) ∩Dj)

=
∏

k 6=j

(

1− p

∫ ∞

x
σk(z)f(z) dz

)

(A4)

Note that uDj (x) is differentiable, and therefore continuous. Furthermore, for any x,

uDj (x) ≤ x+ φ and x ≤ uDj (x) (A5)
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Evaluating at x = uCj − φ and x = uCj , these inequalities yield

uDj (u
C
j − φ) ≤ uCj and uCj ≤ uDj (u

C
j ). (A6)

So if firm j observes xj = uCj − φ, then disclosure yields a lower expected utility than

uCj ; and if it observes xj = uCj , then disclosure yields a higher expected utility than

uCj . Because u
D
j (x) is continuous, the Intermediate Value Theorem assures us there is

a potential observation tj ∈ [uCj − φ, uCj ] for which

uDj (tj) = uCj . (A7)

This tj is the disclosure threshold for firm j, where the firm is indifferent between

disclosing and pooling. Since uDj (x) is strictly monotonic in x, we further obtain

x > tj ⇒ uDj (x) > uCj (A8)

x < tj ⇒ uDj (x) < uCj . (A9)

The subgame-optimal response of firm j is therefore to disclose any values above the

threshold tj and to conceal any values below, as desired.

Now to show that tj < 0, we derive the value uCj that investors assign if the

firm conceals its observation. In a rational expectations equilibrium, the beliefs of the

investors with respect to the strategy must be consistent with the strategy actually

used,

uCj = E[x|Pj ] =
P (Uj)E[x|Uj ] + P (Ij ∩ Cj)E[x|Ij ∩Cj ]

P (Uj) + P (Ij)P (Cj |Ij)

=
(1− p) · 0 + pP (x < tj)E[x|x < tj]

(1− p) + pP (x < tj)

=
pF (tj)

1− p+ pF (tj)
E[x|x < tj]

<
pF (tj)

1− p+ pF (tj)
E[x] = 0, (A10)

and therefore,

uCj < 0 < uDj (0). (A11)

Because uDj (x) is monotonically increasing in x, the threshold tj must be below zero.

That is, all average or better values of x will be disclosed in equilibrium.

�
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Lemma A2. Every firm uses the same disclosure threshold, defined as t∗.

Proof of Lemma A2: Write Equation A11 as an integral, then apply integration by

parts,

uCj =
p

1− p+ pF (tj)

∫ tj

−∞
xf(x) dx

=
p

1− p+ pF (tj)

(

[xF (x)]
tj
−∞ −

∫ tj

−∞
F (x) dx

)

=
p

1− p+ pF (tj)

(

tjF (tj)−

∫ tj

−∞
F (x) dx

)

. (A12)

Using this expression, some algebraic manipulation transforms uDj (tj) = uCj into

φWj(tj)(1− p+ pF (tj)) = (1− p)(−tj)− p

∫ tj

−∞
F (x) dx. (A13)

Now suppose for contradiction that a non-symmetric equilibrium exists. That is, sup-

pose an equilibrium exists in which firms j and k use different thresholds. Without

loss of generality, assume that tk < tj. Equation (A13) holds for firm k as well as for

j. Subtracting these yields

φ (Wj(tj)(1 − p+ pF (tj)−Wk(tk)(1− p+ pF (tk)))

= (1− p)(−tj + tk)− p

∫ tj

tk

F (x) dx < 0, (A14)

and therefore

Wj(tj)(1 − p+ pF (tj)) < Wk(tk)(1− p+ pF (tk)). (A15)

But we can obtain a contradiction by deriving the opposite inequality. We simplify

Equation A4 with the assumption that all firms use threshold strategies, then evaluate

at tj:

Wj(tj) =
∏

i 6=j

(

1− p

∫ ∞

tj

σi(z)f(z) dz

)

=
∏

i 6=j

(1− p+ pF (max(ti, tj)))

= (1− p+ pF (max(tj , tk)))
∏

i 6=j,k

(1− p+ pF (max(ti, tj))) . (A16)
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The same holds for firm k, so we obtain

Wk(tk) = (1− p+ pF (max(tj , tk)))
∏

i 6=j,k

(1− p+ pF (max(ti, tk))) . (A17)

Since tj > tk, these equations show that Wj(tj) > Wk(tk). Therefore,

Wj(tj) (1− p+ pF (tj)) > Wk(tk) (1− p+ pF (tk)) . (A18)

This directly contradicts Equation (A15), so the hypothesized asymmetric equilibrium

cannot exist.

�

Lemma A3. The common disclosure threshold t∗ is unique.

Proof of Lemma A3: Suppose for contradiction there exist two distinct equilibrium

thresholds t∗ and t∗∗. Without loss of generality, assume t∗ < t∗∗. Equation A13 holds

at both thresholds. Subtracting, we obtain

φ (W (t∗) (1− p+ pF (t∗))−W (t∗∗) (1− p+ pF (t∗∗)))

= (1− p)(t∗∗ − t∗) + p

∫ t∗

t∗∗
F (x) dx < 0, (A19)

and therefore,

W (t∗) (1− p+ pF (t∗)) < W (t∗∗) (1− p+ pF (t∗∗)) . (A20)

We now obtain a contraction by deriving the opposite inequality. Since strategies are

symmetric, ti = tj in Equation A16, so the equation simplifies to

W (t∗) = (1− p+ pF (t∗))N−1 . (A21)

And the same holds for the other equilibrium threshold,

W (t∗∗) = (1− p+ pF (t∗∗))N−1 . (A22)

Because t∗ > t∗∗, these equations show that W (t∗) > W (t∗∗). Therefore,

W (t∗) (1− p+ pF (t∗)) > W (t∗∗) (1− p+ pF (t∗∗)) , (A23)

directly contradicting Equation A20. By this contradiction, we conclude that a second

distinct equilibrium threshold t∗∗ cannot exist.

96



�

Taken together, Lemmas A1, A2 and A3 show that all firms use a common and

unique disclosure threshold defined implicitly by

uDj (t
∗) = uC(t∗). (A24)

We expand this equivalence using uDj (t
∗) = t∗ + φW (t∗), Equation A21, and Equation

A12 to obtain the desired expression

t∗ + φ (1− p+ pF (t∗))N−1 =
p

1− p+ pF (t∗)

∫ t∗

−∞
xf(x) dx. (A25)

Finally, we find t∗ < 0 by the same argument that shows tj < 0 in Lemma A1.

Definition A1. For any disclosure frequency ω, define the corresponding disclosure

threshold by t(ω). That is,

t(ω) ≡ F−1(1− ω) (A26)

Definition A2. Define B(ω) as the benefit of disclosing the threshold value relative to

concealing, assuming that all firms disclose with frequency ω,

B(ω) ≡ uD(ω)− uC(ω), (A27)

where

uD(ω) ≡ E[uDj |xj = t(ω)] = t(ω) + φ(1− pω)N−1 (A28)

uC(ω) ≡ E[xj |Pj , tj = t(ω)] =
p

1− pω

∫ 1

ω
t(Ω) dΩ (A29)

Note that this definition does not require that ω be the equilibrium frequency, which we

denote distinctly by ω∗.

Corollary A1. The equilibrium condition Equation 4 in Proposition 1 can be rewritten

in terms of the equilibrium disclosure frequency ω∗ as

B(ω∗) = 0. (A30)

Proof of Corollary A1: From Definition A1 we get F (1 − ω∗) = t∗. Applying this

to Equation 4 yields,

t∗ + φ (1− p+ pF (t∗))N−1 =
p

1− p+ pF (t∗)

∫ t∗

−∞
xf(x) dx, (A31)

t(ω∗) + φ(1− pω∗)N−1 =
p

1− pω∗

∫ t∗

−∞
xf(x) dx, (A32)
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Defining the integral substitution Ω = 1− F (x) yields

∫ t∗

−∞
xf(x) dx =

∫ 1−F (t∗)

1−F (−∞)
F−1(1− Ω)(− dΩ) =

∫ 1

ω∗

F−1(1− Ω) dΩ. (A33)

Applying this to the right-hand side of the previous equation yields

t(ω∗) + φ(1− pω∗)N−1 =
p

1− pω∗

∫ 1

ω∗

F−1(1− Ω) dΩ (A34)

uD(ω∗) = uC(ω∗) (A35)

B(ω∗) = 0 (A36)

�

Lemma A4. B(ω) is strictly decreasing for all ω > ω∗.

Proof of Lemma A4: First write B(ω) ≡ uD(ω)− uC(ω) explicitly as

B(ω, φ, p,N) = t(ω) + φ(1− pω)N−1 −
p

1− pω

∫ 1

ω
t(Ω) dΩ. (A37)

Note that

∂

∂ω
t(ω) =

∂

∂ω
F−1(1− ω) =

−1

f(F−1(1− ω))
< 0, (A38)

so the first term is decreasing in ω. Clearly the second term is also decreasing in ω. In

the third term,

∂

∂ω

(

−
p
∫ 1
ω t(Ω) dΩ

1− pω

)

=
−p2

∫ 1
ω t(Ω) d(Ω) + pt(ω)(1− pω)

(1− pω)2

and the integrand t(Ω) is decreasing in Ω, so

. . . <
−p2(1− ω)t(ω) + pt(ω)(1− pω)

(1− pω)2

=
−p2 + p2ω + p− p2ω

(1− pω)2
t(ω)

=
p(1− p)

(1− pω)2
t(ω). (A39)

By our assumption that ω > ω̂, we know that t(ω) < t̂ < E[x̃] = 0, and so the derivative

of the third term is also negative. Thus, B(ω) is strictly decreasing in ω for all ω > ω̂.
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Proof of Proposition 2: First write B(ω) ≡ uD(ω)− uC(ω) explicitly as

B(ω, φ, p,N) = t(ω) + φ(1− pω)N−1 −
p

1− pω

∫ 1

ω
t(Ω) dΩ. (A40)

For any set of parameter values (φ, p,N), the equilibrium disclosure frequency is uniquely

defined by B(ω∗, φ, p,N) = 0. Because B is differentiable with respect to each of its

parameters, the Implicit Function Theorem tells us how the equilibrium frequency

changes with the parameter values. For each parameter θ ∈ {φ, p,N}, the IFT gives

∂ω∗

∂θ
≡
∂ω

∂θ

∣
∣
∣
∣
B=0

= −
∂B
∂θ

∣
∣
B=0

∂B
∂ω

∣
∣
B=0

. (A41)

Lemma A4 tells us that ∂B
∂ω < 0 for all ω > ω̂. Differentiating with respect to the other

model parameters yields

∂B

∂φ
= (1− pω)N−1 > 0 (A42)

∂B

∂N
= φ(1− pω)N−1 ln(1− pω) < 0 (A43)

∂B

∂p
= −ωφ(N − 1)(1 − pω)N−2 −

1

(1− pω)2

∫ 1

ω
t(Ω) dΩ. (A44)

Note that
∫ 1
ω t(Ω) dΩ < 0 is the expected value of x for a non-disclosing firm, which is

negative. So the second term of ∂B∂p is positive, while the first is negative. Which term

dominates depends on the parameter values.

Applying the Implicit Function Theorem yields the desired comparative statics:

∂B

∂φ
> 0 so

∂ω∗

∂φ
= −

∂B/∂φ

∂B/∂ω
> 0, (A45)

∂B

∂N
< 0 so

∂ω∗

∂N
= −

∂B/∂N

∂B/∂ω
> 0. (A46)

As shown already, ω is decreasing in N . Since any monotonic bounded sequence of

real numbers converges, and since we know ω∗
N > ω̂ for all N , ω∗

N converges as N → ∞.

Let us refer to its limit as

ω∞ = lim
N→∞

ω∗ (A47)
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The function B(·) is continuous in ω∗
N and N , and BN (ω

∗
N ) = 0 for all N . The

sequence {BN (ω
∗
N )} therefore converges to zero as well:

0 = lim
N→∞

BN (ω
∗
N )

= lim
N→∞

t(ω∗
N ) + lim

N→∞
φ(1− pω∗

N )
N − lim

N→∞

p
∫ 1
ω∗
N
t(Ω) dΩ

1− pω∗
N

= t(ω∞) + 0−
p
∫ 1
ω∞

t(Ω) dΩ

1− pω∞
(A48)

That is,

t(ω∞) =
p
∫ 1
ω∞

t(Ω) dΩ

1− pω∞
, (A49)

and therefore ω∞ = ω̂.

�

Proof of Proposition 3: We consider the base model with prizes φN that increase

with N according to some sequence {φN}. Then the benefit of disclosing relative to

concealing is a function of N ,

BN (ω) = t(ω) + φN (1− pω)N−1 − uC(ω). (A50)

The same holds for (N + 1) firms, so we can subtract the two equations to obtain

BN+1(ω)−BN (ω) = φN+1(1− pω)N − φN (1− pω)N−1

= φN (1− pω)N−1

(
φN+1

φN
(1− pω)− 1

)

. (A51)

Under our assumption that limN→∞
φN+1

φN
< 1/(1− pω̂), there exists some N such that

N > N ⇒
φN+1

φN
<

1

1− pω̂
, (A52)

so evaluating Equation A51 at ω = ω∗
N for any N > N yields

BN+1(ω
∗
N )− 0 < φN (1− pω∗

N)
N−1

(
φN+1

φN
(1− pω̂)− 1

)

< 0. (A53)

By Lemma A4, we obtain the desired ω∗
N+1 < ω∗

N .

�
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Proof of Proposition 4: Define a firm’s “rank” according to the firms place among

realized disclosures by competing firms. That is, if there are k − 1 higher disclosures,

the firm has rank k and receives φk. A disclosing firm’s rank is therefore a stochastic

function of its disclosed value. We define r̃(ω) accordingly:

r̃(ω) = rank of a firm that discloses x = F−1(1− ω). (A54)

Using this notation, we would write the expected utility of disclosure in the base model

as

uD(ω) = t(ω) + φW (ω) = t(ω) + φP (r̃(ω) = 1) . (A55)

With prizes for the top K firms, the expected payout becomes

uD(ω) = t(ω) +

K∑

k=1

φkP (r̃(ω) = k) . (A56)

We wish to show that this value is decreasing in N . Unfortunately, we cannot claim

that P (r̃(ω) = k) is decreasing in N without some further restrictions. Although the

chance of having at least the kth-highest disclosure is strictly decreasing in N , the

chance of having exactly the kth-highest disclosure may be increasing in N , at least for

certain parameter values. We therefore rearrange the sum in order to write it in terms

we know to be unconditionally decreasing in N ,

uD(ω) = t(ω) +
K∑

k=1

φk (P (r̃(ω) ≤ k)− P (r̃(ω) ≤ k − 1))

= t(ω) +

K∑

k=1

(φk − φk+1)P (r̃(ω) ≤ k) . (A57)

Note that P (r̃(ω) ≤ k), the probability of having at least the kth-highest disclosure,

is strictly decreasing in N . Since prizes are strictly decreasing in rank, we also have

(φk − φk+1) > 0. Therefore, uD(ω) is unconditionally decreasing in N . We conclude

that disclosure frequency decreases in N under a progressive prize structure.

�

Proof of Proposition 5: Let t∗N be the equilibrium disclosure threshold with N firms.

Suppose that a firm j observes and discloses exactly xj = t∗N . Then the probability q

that any other given opponent observes a higher value is given by

q ≡ p (1− F (t∗N )) = pω∗
N . (A58)
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Any such realization above the threshold will certainly be disclosed, so the number of

firms who disclose values higher than t∗N is a binomial random variable S̃ ∼ B(N, q).

The probability that firm j wins a prize is bounded by the probability that fewer than

λN other firms disclose values higher than t̂. That is,

Wj(t
∗
N ) ≤ P

(

S̃ ≤ λN − 1
)

. (A59)

This probability is the weight of a left tail of the binomial distribution of S̃. We may

bound it using Hoeffding’s inequality (Hoeffding 1963), which states that the sum s̃, of

any N random variables, has the probabilistic bound

P (|s̃− E [s̃]| ≥ c) ≤ 2 exp

(

−2c2
∑N

i=1(bi − ai)2

)

(A60)

where the ith random variable is contained by the interval [ai, bi]. In our application,

S̃ is the sum of (N − 1) identically-distributed Bernoulli trials with success probability

q, so

ai = 0, bi = 1, E
[

S̃
]

= q(N − 1). (A61)

We first transform our probability into the same form as Hoeffding’s inequality,

Wj (t
∗
N ) = P

(

S̃ ≤ λN − 1
)

= P
(

S̃ − E
[

S̃
]

≤ λN − 1− q(N − 1)
)

≤ P
(∣
∣
∣S̃ − E

[

S̃
]∣
∣
∣ ≥ (q − λ)N − q + 1

)

. (A62)

We then can apply the (A60) with c = (q − λ)N − q + 1 to obtain

Wj (t
∗
N ) ≤ 2 exp

(

−
2 ((q − λ)N − q + 1)2

N

)

. (A63)

Note that firms will always disclose values above t̂, so any equilibrium threshold t∗N

must be below t̂. We therefore have

q = p(1− F (t∗N )) > p
(
1− F

(
t̂
))

= pω̂ > λ. (A64)

This ensures that as N → ∞, the exponential in (A63) goes to −∞ and the right hand

side goes to zero for any sequence of thresholds {t∗N}. Since firms optimally respond to

W = 0 by concealing all realizations below t̂, the disclosure frequency converges to ω̂,

as desired.
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Proof of Proposition 6: By our definition of t̂, any firm with a realization xj > t̂

discloses even if they have no chance of winning the prize. This establishes a lower

bound for both limits:

lim
N→∞

νj ≥ ω̂ and lim
N→∞

ν̄N ≥ ω̂. (A65)

1. Suppose firm j discloses a lower value, xj < t̂. If any of the N − j firms yet to

act observes a value above t̂, they will certainly disclose it. The probability that

firm j wins the prize is therefore bounded above by

Wj (xj) ≤Wj

(
t̂
)
=
(
1− p

(
1− F (t̂)

))N−j
= (1− pω̂)N−j . (A66)

So as N → ∞, the probability of winning the prize converges to zero. In this

limit, so firm j will optimally conceal any values below t̂, disclosing no more

frequently than ω̂. Together with (A65), this establishes the desired result.

2. Again, note that a firm that realizes xj < t̂ will not disclose unless it has a

positive probability of winning the prize. Specifically, it will not disclose if any

preceding firm has already disclosed a value above t̂. That is, the probability of

disclosing a value below t̂ cannot possibly be larger than the probability that no

preceding firm i has disclosed xi > t̂. This allows us to place a very loose upper

bound on νj :

νj = P (x̃j < t̂) · P (Dj |xj < t̂) + P
(
Dj |xj > t̂

)
· P (x̃j > t̂)

≤ (1− ω̂) ·

j−1
∏

i=1

P (Ui or xi < t̂) + ω̂ · 1

= (1− ω̂)(1 − pω)j−1 + ω̂. (A67)

Averaging over all j yields

ν̄N ≤
1

N

N∑

j=1

(
(1− ω̂)(1 − pω̂)j−1 + ω̂

)

= (1− ω̂)
1

N

(
1− (1− pω̂)N

1− (1− pω̂)

)

+ ω̂

=
1− ω̂

pω̂

(
1− (1− pω̂)N

N

)

+ ω̂. (A68)
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As N → ∞, the first term vanishes, so limN→∞ ν̄N ≤ ω̂. Together with (A65),

this yields the desired result.

�

Lemma A5. Under equal shares competition, the signal that corresponds to a given

probability ω, previously written as t(ω) becomes

tN (ω) =
1

N
t(ω). (A69)

Similarly,

uCN (ω) =
1

N
uC(ω) (A70)

uDN (ω) =
1

N
t(ω) + φ(1 − pω)N−1. (A71)

Proof of Lemma A5: Under the definition,

FN (x) = F (Nx), (A72)

we find, for any p ∈ [0, 1], that

p = FN
(
F−1
N (p)

)
≡ F

(
NF−1

N (p)
)
, (A73)

which can be rearranged to

F−1
N (p) =

1

N
F−1(p), (A74)

so for p = 1− ω, we have

F−1
N (1− ω) =

1

N
F−1(1− ω), (A75)

and therefore

tN (ω) =
1

N
t(ω). (A76)

Using this first result, the others follow quickly

uDN (ω) ≡ tN (ω) + φ(1 − pω)N−1

=
1

N
t(ω) + φ(1− pω)N−1 (A77)
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uCN (ω) ≡
p

1− pω

∫ 1

ω
tN (Ω) dΩ

=
p

1− pω

∫ 1

ω

t(Ω)

N
dΩ

=
1

N
uC(ω). (A78)

�

Proof of Proposition 7: Suppose that N > 1/pω̂. Since the addition of a prize can

only increase equilibrium disclosure,

N >
1

pω̂
≥

1

pω∗
N

>
1− pω∗

N

pω∗
N

(A79)

By Proposition 8, which is proven later in the appendix, this implies that ω∗
N > ω∗

N+1.

Since the same logic holds for all larger N , the sequence ω∗
N , ω

∗
N+1, ω

∗
N+2, . . . is mono-

tonically decreasing. Since the sequence is also bounded below by ω̂, it must have a

limit, which we will refer to as

ω∞ = lim
N→∞

ω∗
N (A80)

The function B(·) is continuous in ω∗
N and N , and BN (ω

∗
N ) = 0 for all N . The sequence

{BN (ω
∗
N )} therefore converges to zero as well:

0 = lim
N→∞

BN (ω
∗
N )

= lim
N→∞

t(ω∗
N ) + lim

N→∞
φ(1− pω∗

N )
N − lim

N→∞

p
∫ 1
ω∗
N
t(Ω) dΩ

1− pω∗
N

= t(ω∞) + 0−
p
∫ 1
ω∞

t(Ω) dΩ

1− pω∞
(A81)

That is,

t(ω∞) =
p
∫ 1
ω∞

t(Ω) dΩ

1− pω∞
, (A82)

This the same function which implicitly defines ω̂, so ω∞ = ω̂, as desired.

�

Proof of Proposition 8: Applying Lemma A5 to the definition of B(ω) under equal

shares competition yields

BN (ω) = uDN (ω)− uCN (ω)

=
1

N
t(ω) + φ(1− pω)N−1 −

1

N
uC(ω), (A83)
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and therefore,

NBN (ω) = t(ω) +Nφ(1− pω)N−1 − uC(ω). (A84)

The same holds for N + 1. That is,

(N + 1)BN+1(ω) = t(ω) + (N + 1)φ(1 − pω)N − uC(ω). (A85)

Subtracting Equation A84 from Equation A85 yields

(N + 1)BN+1(ω)−NBN (ω)

= (N + 1)φ(1 − pω)N −Nφ(1− pω)N−1

= φ(1− pω)N−1 ((1− pω)−Npω) . (A86)

If we evaluate the expression at ω = ω∗
N , then BN (ω

∗
N ) = 0, so Equation A86 reduces

to

BN+1(ω
∗
N ) =

φ(1 − pω∗
N)

N−1

N + 1
((1− pω∗

N )−Npω∗
N ) . (A87)

Focusing on the sign of the term in parenthesis, we find

N >
1− pω∗

N

pω∗
N

⇒ BN+1(ω
∗
N ) < 0 ⇒ ω∗

N+1 < ω∗
N , (A88)

where the second implication is due to Lemma A4. That is, disclosure at the frequency

ω∗
N gives B < 0, so the marginal disclosure loses value. The equilibrium frequency

ω∗
N+1 must be lower. This shows that the entry of the (N+1)th firm reduces disclosure

when N is large. When N is smaller than the threshold, the inequalities in Equation

A88 are reversed, as shown by the same logic. This completes the equivalence.

�

Proof of Proposition 9: Under generalized competition with N firms, we have

BN (ω) = tN (ω) + φ(1− pω)N−1 − uCN (ω)

= αN t(ω) + φ(1− pω)N−1 − αNu
C(ω), (A89)

and therefore,

1

αN
BN (ω) = t(ω) +

1

αN
φ(1− pω)N−1 − uC(ω). (A90)
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The same holds for N + 1, so we can subtract the two equations to obtain

1

αN+1
BN+1(ω)−

1

αN
BN (ω)

=
1

αN+1
φ(1− pω)N −

1

αN
φ(1− pω)N−1

=
1

αN+1
φ(1− pω)N−1

(

(1− pω)−
αN+1

αN

)

. (A91)

Evaluating at ω∗
N and rearranging terms yields

BN+1(ω
∗
N ) = (1− pω∗

N )
N−1φ

(

(1− pω∗
N)−

αN+1

αN

)

. (A92)

Under our assumption that limN→∞ αN+1/αN > 1−pω̂, there exists some N such that

N > N ⇒
αN+1

αN
> 1− pω̂. (A93)

So for N > N , we obtain

BN+1(ω
∗
N ) = (1− pω∗

N )
N−1φ

(

(1− pω∗
N)−

αN+1

αN

)

< (1− pω∗
N )

N−1φ ((1− pω∗
N )− (1− pω̂))

= (1− pω∗
N )

N−1φ (ω̂ − ω∗
N ) < 0. (A94)

By Lemma A4, we conclude that ω∗
N+1 < ω∗

N , as desired.

�
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B Appendix

Monopolist Model Examples

B.1 Monopolist Model Example One

Consider that a risk-neutral monopolist sorts through N firms to choose a single firm

to do business with. The monopolist wishes to select the firm with the best realization

of xj , but faces the problem that when N or p is small, no firm may disclose their

information at all.

In this example, increasing competition is a boon to the monopolist and increases

aggregate welfare, as the probability of at least one firm disclosing increases with N .

We formalize this in the following proposition.

Proposition B1. Define ZN as the ex ante probability that zero of the N competing

firms disclose. Then,

1. ZN is decreasing in N ;

2. limN→∞ ZN = 0.

Proof of Proposition B1: For part 1, note that for all N and corresponding thresh-

olds t∗N , the threshold condition says

0 = t∗N + φ (1− p+ pF (t∗N ))
N−1 +

p

1− p+ pF (t∗N )

∫ t∗N

−∞
xf(x) dx (B1)

Multiplying by (1− p+ pF (t∗N )) yields

0 = t∗N (1− p+ pF (t∗N )) + φ (1− p+ pF (t∗N ))
N − p

∫ t∗N

−∞
xf(x) dx

= t∗N (1− p+ pF (t∗N )) + φZN − p

∫ t∗N

−∞
xf(x) dx (B2)

and therefore,

φZN = −t∗N (1− p+ pF (t∗N )) + p

∫ t∗N

−∞
xf(x) dx (B3)
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Differentiating with respect to N yields

φ
dZN
dN

=−
∂t∗N
∂N

(1− p+ pF (t∗N ))

− t∗Npf (t
∗
N )

∂t∗N
∂N

+ p
∂

∂N

(
∫ t∗N

−∞
xf(x) dx

)

∂t∗N
∂N

=−
∂t∗N
∂N

(1− p+ pF (t∗N )) (B4)

Since
∂t∗N
∂N > 0, we have ∂ZN

∂N < 0, so ZN is decreasing in N as desired.

For part 2, note that the probability of any single firm failing to disclose converges

to a number less than 1:

lim
N→∞

(1− p+ pF (t∗N )) = 1− p+ pF (t∞) < 1 (B5)

So the probability of zero firms disclosing converges to zero as N → ∞,

lim
N→∞

ZN = lim
N→∞

(1− p+ pF (t∞))N = 0 (B6)

�

B.2 Monopolist Model Example Two

Now suppose instead that the monopolist is unconstrained in how many firms she can

choose and that it is efficient for the monopolist to choose firms with a realization of x̃

above a threshold x, and not do business with firms below x. Denote the net gain from

the partnership as G; because the screening party is monopolistic, we assume that she

extracts G from the relationship.

Consider first that the prize is equal to zero. If x ≥ t̂, the monopolist can always

efficiently screen counterparties because t̂ ≥ t∗. However, when x < t̂, there may exist a

region of inefficiency. In this case, for any x̃ ∈ [x, t∗], an informed firm withholds their

information, despite being qualified. For a given threshold t∗, the ex ante expected

welfare loss from the forgone opportunity is

L = pN [F (t∗)− F (x)]G. (B7)

The difference F (t∗) − F (x) is the expected fraction of firms that falls in the interval

[x, t∗]. Of this group of firms, a fraction p will be informed. Therefore, of the N poten-

tial counterparties, the monopolist expects pN [F (t∗)− F (x)] of them to be qualified

but not identified.
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Now, consider that the monopolist can encourage additional disclosure by offering

a prize φ. We assume that φ is a transfer between the monopolist and the firm with the

highest disclosure; therefore, the size of φ does not affect aggregate welfare in and of

itself. Again by construction, it is clear that no prize is needed when x ≥ t̂. However,

when x < t̂, the monopolist’s goal is to set the optimal prize φ to minimize the forgone

opportunity. Specifically, the monopolist desires to lower the firms’ threshold t∗ closer

to x. As such, we denote the threshold as a function of φ, t(φ). Obviously, there is no

additional benefit to increasing the prize once t(φ) = x. Hence, we define φ to be the

prize that leads to that equality. The monopolist’s problem for a given N is

min
φ∈R+

pN [F (t(φ)) − F (x)]G+ φ(1− ZN ). (B8)

Proposition B2. The optimal prize for the monopolist to offer is

φ∗ =







0 if N < 1−WN

GpF ′WN−1

min
(

GW − 1−WN

NpF ′WN−2 , φ
)

if N ≥ 1−WN

GpF ′WN−1

, (B9)

where W = (1− p+ pF (t)) and F ′ = ∂F/∂t.

Proof of Proposition B2: We begin solving the monopolist’s problem by adopting

the following shorthand notation, W ≡ (1 − p + pF (t)) and F ′ ≡ ∂F/∂t. Using first-

order conditions with respect to φ we obtain,

0 =
∂

∂φ
[L+ φ(1− ZN )]

=
∂

∂φ
[pN [F (t(φ)) − F (x)]G+ φ(1− ZN )] . (B10)

Recalling that ZN =WN ,

0 = pNF ′G
∂t

∂φ
+ (1−WN )− φNWN−1pF ′ ∂t

∂φ
(B11)

Recall from Proposition 2 we obtained ∂t/∂φ from the Implicit Function Theorem using

the net benefit of disclosure formula B. That is,

−
∂B/∂φ

∂B/∂t

∣
∣
∣
∣
B=0

=
∂t

∂φ
. (B12)

Therefore, we can rewrite Equation B11 as,

= −pNF ′G

(
∂B/∂φ

∂B/∂t

∣
∣
∣
∣
B=0

)

+ (1−WN ) + φNWN−1pF ′

(
∂B/∂φ

∂B/∂t

∣
∣
∣
∣
B=0

)

. (B13)
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A rearrangement yields

0 =− pNF ′G
∂B

∂φ

∣
∣
∣
∣
B=0

+ φNWN−1pF ′∂B

∂φ

∣
∣
∣
∣
B=0

+ (1−WN )
∂B

∂t

∣
∣
∣
∣
B=0

=− pNF ′WN−1G+ φNW 2(N−1)pF ′

+ (1−WN )

[

1 + φ(N − 1)pF ′WN−2 +
p2F ′

∫ t
0 x dF

W 2
−
ptF ′

W

]

=− pNF ′WN−1G+ φNW 2(N−1)pF ′

+ (1−WN )

[

1 + φ(N − 1)pF ′WN−2 +
pF ′

W
E[x̃j |ND]−

pF ′

W
t

]

=− pNF ′WN−1G+ φNW 2(N−1)pF ′

+ (1−WN )
[
1 + φ(N − 1)pF ′WN−2 + pF ′φWN−2

]

=− pNF ′WN−1G+ φNW 2(N−1)pF ′ + (1−WN )
[
1 + φNpF ′WN−2

]
(B14)

Solving for the optimal prize we obtain,

φ = GW −
1−WN

NpF ′WN−2
. (B15)

However, if φ > φ, then it is a dominant strategy for the monopolist to offer φ, because

incentivizing firms to disclose below x yields no additional benefit. This yields that the

optimal prize is equal to

φ∗ = min

(

GW −
1−WN

NpF ′WN−2
, φ

)

. (B16)

The prize that the monopolist can offer is positive so long as as

N ≥
1−WN

GpF ′WN−1
. (B17)

The monopolist is restricted to φ ∈ R
+, so when

N <
1−WN

GpF ′WN−1
, (B18)

the prize is equal to zero.

�

The condition in (B9) can be appreciated as follows. First, it always holds that

φ∗ < G. That is, the monopolist never has to give up the entire surplus that she earns
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from working with the most qualified counterparty. Second, when the gain is low (small

G), the probability of being informed is low (small p), and the distribution is relatively

flat locally around the threshold (low F ′), the monopolist optimally avoids paying the

cost of offering a prize. In such cases, efficiency is minimized.

The effect of competition on incentives to offer the prize may be non-monotonic for

some N , but is strictly decreasing once N reaches a threshold. To see this, consider

the limit when N → ∞: it is optimal for the lender to offer no prize. Mathematically,

we can re-write the condition in (B9) and compute

lim
N→∞

NGpF ′WN−1

1−WN
= 0 < 1. (B19)

Economically, when N → ∞, the prize becomes ineffective: firms minimize disclosure

because their chances to win the prize tends to zero. In turn, the monopolist optimally

chooses not to offer a prize and efficiency is minimized.
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CHAPTER 3

Political Influence and the Regulation of

Consumer Financial Products

1 Introduction

Complexity has outpaced sophistication in retail financial markets.1 This mismatch

appears to affect social welfare and has been cited as a contributor and catalyst of

the recent financial crisis.2 The traditional approach to this problem allows markets

to be free and then provides assistance to people ex post to help them make good

decisions. This might involve improved education (e.g., Mandell, 2009)3, better timely

decision support (e.g., Bertrand and Morse 2009; Lynch, 2009), or a policy of libertarian

paternalism (e.g., Thaler and Sunstein, 2003; Choi, Madrian, Laibson, and Metrick,

2009; Carlin, Gervais, and Manso, 2011). These types of policies aim to help market

participants protect themselves, while still implicitly allowing markets to be as complete

as possible (and thereby complex).

Newer proposals, however, call for limiting the types of products that can be offered

or traded in markets. Such policies aim to protect people from themselves. Possibil-

ities include, for example, limiting the types of mortgages available to home buyers

or controlling the types of investments that can be accessed by consumers. The idea

1For example, in retail settings the menu of offerings is now daunting, but financial literacy
remains in short supply (Lusardi and Mitchell, 2007). Many participants in the market have
limited sophistication regarding the products in the market (e.g. NASD Literacy Survey, As-
sociated Press, 2003). See also Capon, Fitzsimons, and Prince (1996), Alexander, Jones, and
Nigro (1998), Barber, Odean, and Zheng (2005), and Agnew and Szykman (2005).

2For example, many home owners did not appreciate the variable-rate clauses in their mort-
gages and their explicit exposure to interest rate risk. Many individuals failed to appreciate the
fees and interest rate schedules used commonly in credit cards, which exacerbated the amount
of household debt and number of personal defaults in the United States (Campbell, 2006).

3See also Bernheim, Garrett, and Maki (2001), Bernheim and Garrett (2003), and Carlin
and Robinson (2010)
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here is that, instead of improving sophistication, simplicity or standardization is en-

forced. Such intervention is meant to prevent less educated consumers from choosing

products distant from their actual needs and avoid the problems associated with in-

formation overload (e.g., Iyengar, Huberman, and Jiang, 2004; Salgado, 2006; Iyengar

and Kamenica, 2008; Heidhues and Koszegi, 2010).

In this paper, we provide a theoretical model of product differentiation to explore

these new policies and investigate several dimensions that affect the quality of regu-

lation: the skill of the social planner, imperfect information, lobbying efforts, voting

behavior in elections, and political philosophy (e.g., socialism versus libertarianism).

As we show, these considerations interact and impact both the success of regulation

and social welfare.

In our benchmark model, a continuum of products are offered in the market. The

upper bound of the continuum represents the extent of the market, that is, how com-

plete the market is. A unit mass of agents who use these products are divided into two

groups: sophisticated agents who identify the product in the market that is best suited

for their needs and unsophisticated agents that cannot do this. As such, unsophisti-

cated agents make errors because they choose randomly among the products in the

market. This sets up a natural tension between the two groups. Sophisticated agents

desire the market to be as complete as possible, so they have more to choose from and

can identify the product that is best tailored for their needs. In contrast, unsophisti-

cated agents are ambivalent about market complexity: while they enjoy the benefits of

having more choices in aggregate, they incur the cost of making inappropriate choices.

Therefore, unsophisticated agents desire less market completion than people who are

sophisticated.

We solve for the optimal level of market completion when a fully informed social

planner regulates the market.4 As one would expect, the upper bound of the contin-

uum is strictly increasing in both the needs of the sophisticated and unsophisticated

agents, increasing in the fraction of sophisticated agents, and decreasing in the fraction

of unsophisticated agents. Importantly, however, we show in equilibrium that unso-

phisticated consumers actually desire less market completion than meets their needs

4In the Appendix, we consider two extensions: one in which the planner controls both the
upper and lower extent of the product continuum and one in which the planner can simultane-
ously educate consumers. We considered the case in which the planner can imperfectly screen
for sophistication in a prior version of this paper.
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in aggregate5 .

We use the benchmark model as a platform to explore political economy consid-

erations and their corresponding effects on the quality of regulation. We start by

reconsidering the model when the social planner is uninformed about the specific needs

of her constituents. Before regulating the market, the planner listens to the recommen-

dations of two advocates, each lobbying on behalf of one of the groups of constituents.

Based on these reports, the planner chooses and enforces a level of market complex-

ity that best represents the wishes of her constituents, but is regrettably second best.

We consider two types of uninformed planners in this fashion. The first is naive in

that she accepts and uses reports by the lobbyists at face value. The second is savvy

(i.e., rational) and uses her consistent beliefs about the lobbyists’ incentives to misre-

port and therefore unwind their messages to better appreciate their information. We

use a cheap-talk framework to analyze this latter setting (e.g., Crawford and Sobel,

1982).

Not surprisingly, both advocates do in fact misreport their private information with

both types of planners. Indeed, it is a weakly dominant strategy for the sophisticated

agents’ advocate to lobby for full market completion (i.e., a libertarian platform). Tak-

ing this into account, the advocate for the unsophisticated also shades down, but his

optimal strategy depends on the parameters in the model. In many cases, he success-

fully lobbies the planner to set a level of complexity that exactly optimizes the utility of

the unsophisticated people. In other cases, he is less successful and receives an inferior

outcome.

In equilibrium, both types of uninformed planners only implement second-best reg-

ulation. However, the punchline is that the least qualified planner usually gets elected

to implement regulation. We model an election in which a perfectly informed planner,

a rational uninformed planner, and a naive uninformed planner run for office. We show

that when a supermajority exists, the most naive planner usually gets elected, even

when sophisticated agents dominate the market. This places a bound on how effective

regulation can be in the market. When unsophisticated agents have the supermajority,

their advocate can get their needs met perfectly. When sophisticated agents dominate,

they will often support the less qualified planner so their lobbyist can maximize the

5Kuksov and Villas-Boas (2010) arrive at a similar conclusion in a model of costly search
and evaluation.
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benefit of exaggerating his recommendations. This is most likely to occur when the

potential extent of the market exceeds their actual needs.

Based on this, we add an important aspect to the debate on product regulation.

Specifically, even though there are two groups whose wishes need to be balanced, it

is the incentive problems that arise in the market that predispose the planner to be

less qualified. That is, quality suffers endogenously when two groups compete for their

interests, which causes welfare to deviate from first best.

Finally, we consider alternative welfare functions. First, we consider that the plan-

ner may also value the disparity between losses of the unsophisticated and sophisticated

agent groups. That is, we study the tradeoff between adequacy and equality in the mar-

ket. Interestingly, our analysis demonstrates that if equality is sufficiently important

(e.g., represents 2
3 of aggregate utility in the welfare function), the optimal regulation

involves having one, and only one, product in the market. As such, a sufficiently so-

cialistic perspective necessarily results in making the market as incomplete as possible,

even though all agents end up hurt in the effort to maintain equality. Second, if the

planner is concerned with minimizing the maximum loss sustained by any one agent

then she is unable to influence social welfare with her choice. The result is striking, so

we consider an alternative model setup and explore the robustness of the result. Even

with a more flexible model, we find that the planner has little ability to influence social

welfare through her choice. Indeed, in the alternative model, the social planner offers

a single product to unsophisticated and sophisticated agents. We further study the

generalized model format in Appendix B.

While we study optimal regulation in this paper, one might wonder whether regu-

lation is even necessary in retail financial markets. Previous work suggests that it is:

competition in financial markets may be an unreliable driver of market transparency

and education may not improve social welfare. As Carlin, Davies, and Iannaccone

(2012) show, when providers compete for attention in the market, competition actually

makes it less likely that they disclose private information. Likewise, Carlin (2009) shows

that when competition increases, providers actually have an increased non-cooperative

incentive to add complexity to their offerings. Both of these papers make a strong

argument for the value of market intervention. Carlin and Manso (2010) show that ed-

ucational initiatives may be welfare decreasing in some circumstances since it induces

providers of financial products to decrease clarity in the market via obfuscation. In
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such cases, regulation may be important to increase welfare.

Last, our paper is of general economic interest as it adds to a large literature on

product differentiation and efficiency in exchange economies. Starting with, Hotelling

(1929), Chamberlin (1933), and Lancaster (1966), economists have focused on oligopoly

behavior when there is a demand for differentiated products and consumers are hetero-

geneous.6 In this literature, location games using linear city and circular city models

are commonplace. Our work here departs in that we model the needs of two subsets

of people by superimposing two (possibly different) linear city distributions and con-

sidering that one group is less sophisticated in assessing their needs for products in

the market. Kamenica (2008) also considers a product market with both unsophis-

ticated and sophisticated consumers. In the model, unsophisticated consumers learn

about their needs based on the products that are offered by strategic firms. Similarly,

Kuksov and Villas-Boas (2010) consider a product market with costly sequential search.

The model’s takeaway is that firms strategically choose their offerings to maximize the

probability of purchase. We, however, abstract away from the oligopoly behavior that

might lead to the evolution of such markets and focus instead on regulating such mar-

kets.

The rest of the paper is organized as follows. In Section 2, we pose and characterize

our benchmark model, and derive the socially optimal product regulation. In Section 3,

we evaluate the quality of regulation by considering imperfectly informed planners and

the implications of lobbying and elections. Section 5 concludes. All of the proofs are

in Appendix A. In Appendix B, we consider an alternative setup where the planner

chooses both the lower and upper bounds of the market’s completeness. Appendix C,

we consider an alternative setup where the planner considers a tradeoff between clarity

and simplicity in the market. There we show that educational initiatives and product

regulation are strict substitutes.

2 Products and Regulation

We begin by establishing an underlying game form which serves as a platform to discuss

political economy considerations in Sections 3 and 4. Consider the market in Figure 3.1

6See Lancaster (1990) or Anderson, de Palma, and Thisse (1992) for a thorough survey of
this literature.
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0 xu xs
x̂m x′

m

Figure 3.1: The product market. The types for unsophisticated agents are uni-
formly distributed along the interval [0, xu] and the types for sophisticated agents
are uniformly distributed on [0, xs]. Products in the market are distributed on
[0, xm]. The bound x̂m is an example of an incomplete market for both sophis-
ticated and unsophisticated agents. The bound x′

m is a market that is complete
for unsophisticated agents, but is incomplete for sophisticated agents.

in which a continuum of products [0, xm] are offered for use, where xm measures the

extent of the market. We interpret xm as a measure of market completeness. For

example, in Figure 3.1, the market with x′m is more complete than the one with x̂m.

Since people have more choices to consider with x′m than with x̂m, we also consider xm

to be a measure of collective complexity in the market. The purpose of this paper is to

study the socially optimal level of xm. As such, we remain silent about what oligopoly

behavior actually leads to any particular xm.

There exists a unit mass of agents who participate in the market. A fraction λs

of the agents are sophisticated and have a type t̃s, which is uniformly distributed

over [0, xs]. These agents know their type exactly and maximize their payoff (to be

described shortly) by choosing the product closest to their type. For example, in a

product market where xm = 0.55, a sophisticated agent with type t̃s = 0.5 would

choose x = 0.5. However, if the product market was more limited in scope such that

xm = 0.4, the same sophisticated agent with type t̃s = 0.5 would choose x = 0.4, which

is the best alternative available.

The remaining agents, λu = 1 − λs, are unsophisticated and have a type t̃u dis-

tributed uniformly over [0, xu]. We assume that unsophisticated agents do not know

their own type and choose a random product x̃ in [0, xm]. By construction, unsophis-

ticated agents make errors. This is standard in both the literature on consumer search

theory (e.g., Salop and Stiglitz, 1977; Varian, 1980; and Stahl, 1989) and household

finance (e.g., Carlin, 2009; Carlin and Manso, 2010).7 An alternative specification

7For example, in models of “all-or-nothing” search (e.g., Salop and Stiglitz, 1977; and Var-
ian, 1980), unsophisticated consumers are explicitly assumed to choose randomly among firms.
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might allow them to see a noisy signal about their type, but the economics would be

qualitatively similar to what follows here.

Sophisticated agents maximize their expected utility from participation. In this

setting, this involves minimizing a loss function in which an agent is better off the

closer they are to their true type. Since sophisticated agents know their type, they

solve

min
x∈[0,xm]

L(x|ts, xm) = |x− ts|. (1)

Unsophisticated agents, on the other hand, choose randomly from the menu of products

offered8.

In this model, we assume that xu ≤ xs to capture the idea that sophisticated

agents may have use for more exotic products.For example, there may be a subset

of home owners that demand a mortgage that amortizes in a particular way that is

not appropriate for most home buyers. As we will see shortly, this induces a natural

tension in the model: whereas sophisticated agents desire a more complete market,

unsophisticated agents would prefer more standardization to avoid making errors and

suffering losses. As we analyze in Section 2.3, the goal of the social planner is to set

xm to maximize welfare in the presence of this tension. It is important to point out,

though, that the assumption that xu ≤ xs is made for analytic convenience and is not

necessary for the tension to be present: in Lemma 2, we show that the tension exists

as long as xs >
3
4xu.

We begin by showing some intuitive results about agent behavior that will be useful

in Section 2.3 when we consider the social planner’s problem.

In sequential search models, unsophisticated consumers are randomly assigned to their first firm
and then choose whether to continue searching for the best alternative. In equilibrium, unso-
phisticated consumers stop at the first firm, so that they in essence make purchases randomly
from the firms. See either Stahl (1989) or Baye, Morgan, and Scholten (2006) for a complete
review of consumer search theory.

8In a similar fashion to Kuksov and Villas-Boras (2010), we use the absolute distance |x−ts|
as the loss function for analytic tractability. Using alternative loss functions (e.g., quadratic)
only allows for numerical solutions, which yield qualitatively similar results to the ones we
derive in the paper.
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2.1 Sophisticated Agents

Since each sophisticated agent knows their type, we can write the aggregate loss to

these agents Ls as

Ls =

∫ xm

0
0
dt̃s
xs

+

∫ xs

xm

|xm − t̃s|
dt̃s
xs
. (2)

The following lemma establishes some useful results.

Lemma 1. If xm < xs, the aggregate loss for sophisticated agents is

Ls =
x2s − 2xmxs + xm

2

2xs
, (3)

which is decreasing and convex in xm. If xm ≥ xs, then Ls = 0.

According to Lemma 1, for xm < xs, some sophisticated agents are able to use a

product that is identically perfect for their needs. Others, however, have to settle for

a suboptimal choice. Figures 3.2(a) and 3.2(b) provide examples of this. The “hockey-

stick”-shaped figured labeled L(t̃s) plots the individual losses that sophisticated agents

experience. The aggregate loss for the group is the triangular area bounded by the

kink in the curve to the left and xs to the right. This area is calculated analytically by

the expression in (3).

As xm rises, this lowers the aggregate loss to sophisticated agents. This is best seen

in Figure 3.3(a): the curve labeled Ls is downward sloping as a function of xm. In the

limit, when xm → xs, Ls → 0. This implies that any market expansion beyond xs adds

no value to sophisticated agents. We define

x∗s ≡ xs (4)

to be the point at which the aggregate loss to sophisticated agents is minimized. As

we will see shortly when we consider the social planner’s problem, we will be able to

allow x∗s to serve as an upper bound for xm without loss of generality.

2.2 Unsophisticated Agents

Unsophisticated agents have no information regarding their type t̃u and choose ran-

domly from the products in the market. The expected aggregate loss for unsophisti-
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Figure 3.2: Individual losses given xm.
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cated agents in a product market characterized by xm is

Lu ≡ E[L(t̃u, x̃|xm)] =

∫ xu

0

∫ xm

0
|x̃− t̃u|

dx̃

xm

dt̃u
xu

. (5)

We can now make some statements regarding the unsophisticated agents’ preferences

for xm.

Lemma 2. The level of xm that maximizes the expected aggregate welfare of unsophis-

ticated agents is given by

x∗u ≡
3

4
xu. (6)

When xm > 3
4xu, Lu is increasing and convex in xm.

Lemma 2 tells us that unsophisticated agents are worse off when products are offered

in the market that exceed their particular needs. More interestingly, they not only have

an aversion to such products, but actually prefer the market to be less complete than

meets their needs in aggregate. The intuition behind the result lies in the tradeoff

between providing access to more products in the market and the cost of introducing

more room for error. The highest types of unsophisticated agents benefit from more

products because it improves the chances that they randomly select a product near their

type. Conversely, lower types suffer as it becomes more likely that they choose wrongly.

The loss for the mass of unsophisticated agents is minimized at 3
4xu, which results from

the triangular nature of the loss function induced by the uniform distribution.

These results can be appreciated visually. The individual losses for the unsophis-

ticated agents are plotted on the curves labeled L(t̃u) in Figures 3.2(a) and 3.2(b).

By inspection, the loss function is convex with a minimum strictly less than xu. The

aggregate loss function to the unsophisticated agents Lu is plotted in Figure 3.3(a) as

a function of xm. Again, by inspection, it is clear that an xm strictly less than xu

maximizes welfare for unsophisticated agents.

Since x∗u < xu, this implies a natural tension between sophisticated and unsophis-

ticated agents, even if xu = xs. The social optimal level of xm will take these forces

into account, and we derive x∗m next.
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Figure 3.3: Ex ante expected losses as a function of xm.
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2.3 Optimal Product Market Complexity

The aggregate loss to all agents is given as

L(xm, λu, λs) = λuLu + λsLs. (7)

The aggregate loss has the form

L(xm, λu, λs) =







λu

[
xm2

3xu
+ −xm+xu

2

]

+ λs

[
x2s−2xmxs+xm2

2xs

]

xm ≤ xu

λu

[
xm2−xmxu+(2/3)x2u

2xm

]

+ λs

[
x2s−2xmxs+xm2

2xs

]

xm > xu.
(8)

The analytic expressions for Lu in (8) are derived in the proof of Lemma 2. One

concern about L(xm, λu, λs) might be whether it is discontinuous at xu. As we show in

Lemma A1 in the appendix, this function is indeed continuously differentiable at the

point xu.

The social planner solves the following problem

min
xm∈[0,xs]

L(xm, λu, λs). (9)

As noted before, the social planner can restrict her attention to xm ≤ xs because

once xm ≥ xs, increasing it further makes the sophisticated agents no better off, but

hurts the unsophisticated. The following proposition characterizes the unique socially

optimal level of x∗m.

Proposition 1. There exists a unique optimal x∗m ∈ [x∗u, x
∗
s] that minimizes L(xm, λu, λs).

If
λu
λs

< 6

(

1−
xu
xs

)

, (10)

then x∗m > xu.

The optimal x∗m is

1. increasing in xu and xs;

2. decreasing in the mass of unsophisticated agents, λu;

3. increasing in the mass of sophisticated agents, λs.

According to Proposition 1, if the needs of either type of agent increase ceteris

paribus, the optimal scope of the market is higher. However, xm is determined based

128



on the proportion of types in the market. As the fraction of sophisticated agents rises,

x∗m is higher. As λu increases, x∗m is lower. These comparative statics are a direct

result of the natural tension between the two groups.

It is important to note that the market does not need to have the particular struc-

ture that we consider here to have the same comparative statics hold. For example, in

Appendix B we consider an alternative specification in which the lower bound of the

market is not tethered to zero. As we show, sophisticated consumers still prefer the

market to be as complete as possible, whereas unsophisticated consumers desire there

to be one product that is the median of their needs. We solve for the planner’s optimal

choice of lower and upper bounds, and show that such bounds change monotonically

in the underlying parameters of the model.

Before closing this section, let us consider a special case that we will use periodically

in the rest of the paper. Specifically, let

xu = xs ≡ xp. (11)

From Proposition 1, we know that λu
λs

≥ 6
(

1− xu
xs

)

= 0, so that x∗m ≤ xp. Taking

first-order conditions with respect to the aggregate loss function, we obtain

0 =
∂

∂xm
L(xm, λu, λs|xm ≤ xu) (12)

= λu

[
2xm
3xp

−
1

2

]

+ λs

[

−1 +
xm
xp

]

. (13)

Solving for xm yields

x∗m =
3

2

xp(2− λu)

(3− λu)
. (14)

Note that when λu = 0 we obtain that x∗m = xp, which is intuitive since all agents

are sophisticated. Likewise when all agents are unsophisticated, λu = 1, we obtain

x∗m = 3
4xp, which is consistent with their ideal point. If λu = λs = 1

2 , we obtain

x∗m = 9
10xp. Thus, the expression in (14) confirms our previous claim that even when all

agents are distributed uniformly on identical supports, the presence of unsophisticated

agents yields an internal optimum (i.e., x∗m < xp).

3 The Quality of Product Regulation

The quality of regulation depends, among other things, on the ability of elected officials

to understand markets and their knowledge regarding the needs of their constituents.
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In this section, we explore how these considerations affect product regulation. So far,

we have assumed that the social planner perfectly observes xu and xs. But in reality,

this is far from true. Policy makers, as benevolent as their motives might be, cannot

know everything about their constituents and often resort to listening to the opinions

of lobbyists and advocates before setting policy. Therefore, in this section, we consider

a setting of imperfect information and study the distortions that may arise from both

lobbying and voting behavior.

We consider two types of social planners. The first is naive in that she does not have

information about xu or xs, and blindly accepts recommendations from advocates who

represent the sophisticated and unsophisticated agents’ interests. The second planner

is savvy in that while she does not have information about market participant needs,

she rationally understands the incentives of the advocates to misreport, and therefore

unwinds such reports to refine her beliefs before making a final decision regarding

regulation.

Compared to a social planner with perfect information, these two types of leaders

do not achieve first best regulation. However, we complete the analysis by studying the

voting behavior of sophisticated and unsophisticated agents, given that they participate

in an election in which all three types of planners run for office: the naive uninformed,

the savvy uninformed, and the perfectly informed. We determine how qualified the

regulator is that gets elected and how this affects the quality of regulation.

3.1 Lobbying Efforts - Naive Social Planner

Consider the model setup from Section 2, except that the upper bounds xu and xs are

unobservable to the social planner. Instead, there are two advocates that represent

each group: Au lobbies for unsophisticated agents and As lobbies for the sophisticated.

Each advocate makes a report, ru and rs, about their respective bound. Since it is

prohibitively costly to canvass the population to assess each person’s needs, the reports

are not verifiable ex post. As in Section 2, xu ≤ xs, but we now assume that there is

a finite bound on the sophisticated agents’ needs (i.e., xs ≤ x).

The social planner faithfully accepts the values provided by the lobbyists and uses

them to choose an xm(ru, rs). However, the planner does not attempt to unwind

the true observations of xu and xs from the reports, using the incentives that each

advocate has to lobby for their constituents. We explore that consideration in the next
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subsection.

The following proposition characterizes optimal reporting behavior by the advo-

cates.

Proposition 2. It is a weakly dominant strategy for As to always report rs = x. If,

and only if,

xu ≥ x

(
4

3
−

2λu
3λs

)

, (15)

Au reports ru > 0 such that x∗u = xm(ru, x). Otherwise, Au reports ru = 0 and the

planner sets

xm = x̄
[

1−
λu
2λs

]

. (16)

The intuition behind the first part of Proposition 2 rests on the observation that

sophisticated agents are only hurt when they are underserved. If a social planner

sets xm below xs, the sophisticated agents with needs in [xm, xs] are unable to find a

product with perfect fit. When xm is set equal to or above xs, all sophisticated agents

are able to find the product they need. With this, and knowing that it is the social

planner’s objective to balance the needs of the two groups, the best response for As is

to maximally exaggerate the sophisticated agents’ needs. The strategy is costless and

shifts xm upward, ceteris paribus.

The advocate for unsophisticated agents takes this into account and reports ru < xu

(i.e., shades down). According to Proposition 2, if the condition in (15) holds, Au will

make a positive report and successfully lobby the planner to restrict the market to

xm = x∗u. If (15) does not hold, then Au cannot push the planner to choose the unso-

phisticated ideal point with any report. In such case, Au will claim that unsophisticated

agents need one, and only one, product.

The condition in (15) provides some natural economic insights. First, the closer xu

is to x, the more likely it is that unsophisticated agents are able to obtain their ideal

point. The more interesting result is expressed in the following corollary.

Corollary 1. When the planner depends on lobbyist reports, the unsophisticated agents

obtain xm = x∗u if λu ≥ 2λs.

Corollary 1 tells us that if unsophisticated agents make up two thirds of the popu-

lation, they will be able to persuade an imperfect social planner to choose xm = x∗u.
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Importantly, this holds true no matter how large x is and does not depend on any other

exogenous political pressures (i.e., getting re-elected or monetary payoffs). So, as long

as unsophisticated agents make up at least 2
3 of the population, they get their way by

lobbying a naive social planner without full information.

3.2 Lobbying Efforts - Savvy Social Planner

Consider now that the social planner anticipates that the two advocates have the in-

centive to misreport their group’s needs. Again, the social planner does not observe

xs and xu but instead has to rely on the advocates’ reports and her prior beliefs. For

analytic ease, we assume that the social planner believes that xu and xs are distributed

uniformly over [0, x̄], with xu ≤ xs.

Lemma 3. The social planner’s unconditional beliefs for xu and xs are given by,

E[xu] =
x̄

3
(17)

E[xs] =
2x̄

3
. (18)

The two agents again have the incentive to misreport their needs because the plan-

ner is imperfectly informed. Furthermore, since there is no punishment for lying and

reporting is costless, a truth-telling, incentive compatible mechanism is elusive. Since

this is a cheap-talk game, messages that are sent to the planner will be insubstantial

if the advocates are restricted to perfectly reliable, noiseless communication channels

(e.g., Farrell, 1998; Forges, 1986 and 1988). Therefore, in the spirit of Crawford and

Sobel (1982), we model the described lobbying problem as a cheap-talk game in which

the advocates and the planner adhere to an equilibrium message strategy and a corre-

sponding action function.

Each of the agents independently observes their group’s needs and sends the planner

a report, ri with i ∈ {u, s}. Correspondingly, the planner processes ru and rs and then

determines an xm conditional on the messages and her prior beliefs. Denote xam(ru, rs)

to be the decision made by the social planner. The planner’s problem therefore is to

minimize,

min
xam∈[0,x̄]

|xam(ru, rs)− x∗m|, (19)

where x∗m is the optimal level of sophistication if the planner was perfectly informed.
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Similarly, denote each advocates’s objective function as,

min
ri∈[0,x̄]|r−i

|xam(ru, rs)− (x∗m − bi)|, (20)

where bi represents the advocate’s bias from the first-best solution. For unsophisticated

agents, the bias is given by bu = x∗m − x∗u, whereas for sophisticated agents it is bs =

x∗m − x∗s.

Definition 1. An equilibrium in the cheap-talk lobbying problem consists of

1. a message strategy for each advocate, qi(ri|xi), such that
∫ x̄
0 qi(ri|xi) dri = 1 for

all xi ∈ [0, x̄],

2. a choice function for the principal, xam(ru, rs) such that

(a) for each xu, xs ∈ [0, x̄] if qi(r
′
i|xi) > 0 then it must be that

r′i ∈ argmin
ri

|xam(ru, rs)− (x∗m − bi)|

,

(b) and xam(ru, rs) ∈ argminx
∫ x̄
0 |x− x∗m|p(x

∗
m|ru, rs) dx

∗
m where

p(x∗m|ru, rs) =
qu(ru|xu, rs)qs(rs|xs)

∫ x̄
0

∫ x̄
0 qu(ru|µu, rs)qs(rs|µs) dµu dµs

Definition 1 essentially says that for any realization of xi, advocate i will mix over

a set of messages, {~ri}, such that the sum of probabilities on each possible message

add to one. Furthermore, given the planner’s decision rule, xam(ru, rs), any message r′i,

sent with positive probability, must imply that xam(r
′
i|r−i) results in an outcome that is

no worse than the outcome that would have resulted from sending any other message

r′′i ∈ [0, x̄]. Additionally, given the family of message rules for advocates Au and As,

the choice xam(ru, rs) must be a solution to the social planner’s problem.

We now appeal to the result of Crawford and Sobel (1982) that, for any bi > 0,

there exists at least one “partition” equilibrium, with specific properties to be discussed

momentarily, such that each advocate reports in which partition of [0, x̄] their realiza-

tion lies. Correspondingly, the planner takes the midpoint of the partition as a “noisy”

estimate of the true realization.9

9For any bi > 0 it is essential that each partition is “noisy”, meaning that it has positive mass,
for substantive communication to occur. Farrell (1988) and Forges (1986, 1988) demonstrate
that messages in sender-receiver games are insubstantial if players are restricted to perfectly
reliable, noiseless communication channels.
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Lemma 4. It is a weakly dominant strategy for As to always report rs = x̄. Further-

more, this implies that qs(x̄|xs) = 1 and qs(r
′
s|xs) = 0 for all xs ∈ [0, x̄] and r′s ∈ [0, x̄)

and that

p(x∗m|ru, x̄) =
qu(ru|xu)

∫ x̄
0 qu(ru|µu, x̄) dµu

.

Lemma 4 greatly reduces the complexity of our lobbying problem since we now

only need to concern ourselves with the message strategy of Au. The properties of the

“partition” equilibrium follow as,

1. there is a positive integer, N , such that one can define a set of N+1 real numbers,

generically denoted {r0u, r
1
u, . . . r

N
u } with r0u < r1u < . . . < rNu ,

2.

xam(r
j
u) =







xm

(
rj+1
u +rju

2 , E
[

xs

∣
∣
∣xs ≥

rj+1
u +rju

2

])

N > 1

xm
(
x̄
3 ,

2x̄
3

)
N = 1,

where xm(·, ·) is the optimal xm given a noisy indication of xu and xs.

3. qu(ru|xu) is uniform over [riu, r
i+1
u ] if xu ∈ [riu, r

i+1
u ].

Now, we direct our attention to ex ante efficient message strategies and action rules,

since xu is unobservable and the advocate’s true bias is unknown to the social planner.

The following proposition addresses the maximum number of partitions that can be

supported in equilibrium.

Proposition 3. An equilibrium exists in which the maximum number of partitions, N ,

that can be supported is 〈

−
1

2
+

1

2

√

32− 3λs
5λs

〉

(21)

where 〈z〉 denotes the smallest integer greater than or equal to z. Additionally, only a

babbling equilibrium, N = 1, exists if λs >
2
3 , while a perfectly informative equilibrium

exists if λs = 0.

According to Proposition 3, a babbling equilibrium exists as long as λu is less than

1/3, in which the report is completely uninformative. Indeed, Crawford and Sobel

(1982) show that a babbling equilibrium, N = 1, always exists. In such an equilibrium,
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the planner would be left to choose xm based solely on her unconditional beliefs outlined

in Lemma 3.

Proposition 3 tells us that the informativeness of agent Au’s report depends on

the proportion of unsophisticated agents in the economy. Interestingly, because As

exaggerates his report, equilibrium messages from Au do not contain much information

unless unsophisticated agents make up a substantial proportion of the population.

According to (21), N ≥ 3 can only be supported if λu > 3/4 and N ≥ 4 can only

be supported if λu > 27/31 (i.e., 87% of the population). This means that the savvy

planner only partitions the message space into quartiles if the unsophisticated agents

comprise roughly 87% of the population. This severely limits the planner’s ability to

conduct inference. Of course, as λu → 1, the number of partitions goes to infinity

and the planner receives a perfectly informative signal. This is not surprising because

when λu → 1, there is no longer any conflict and Au simply tells the truth. Practically

speaking, however, this is usually not the case, and we often have to settle with a savvy

planner that cannot learn much from lobbying efforts.

3.3 Voting Behavior

We now consider what type of social planner is elected to regulate markets, which

will greatly impact the quality of such regulation. We assume that all three types of

planners run for office prior to the implementation of any financial policy. We assume

all agents participate in the election, so outcomes will be based on their respective

proportions within the population.

Let the optimal levels of market sophistication under each type of planner be de-

noted as,






xPm Perfectly Informed

xVm Savvy

xNm Naive

where xPm 6= xVm 6= xNm.

Proposition 4. In any election, it is impossible for a unanimous decision to take place.

Sophisticated and unsophisticated agents never agree. The reason for this is that

they always have conflicting preferences as to which planner is optimal. For example,
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when the condition in (15) holds, unsophisticated agents are satisfied perfectly with an

imperfect planner, but sophisticated agents would rather elect a fully informed planner

to drive xm upward. However, if (15) is not satisfied, then ru = 0 and the two groups’

preferences diverge based on the two differences, x̄−xs and x̄−xu. If these differences

are large, sophisticated agents prefer the uninformed planner because they gain from

their exaggerated report; unsophisticated agents would rather have an informed planner

to minimize the cost of As’s exaggeration. If these differences are small, the opposite

results hold.

Going forward, we analyze the election results given that there exists a superma-

jority of one type of agent in the population. Specifically, we consider either that

λu ≥ 2/3 or that λs ≥ 2/3. This is for mathematical convenience, but supermajority

voting requirements are commonplace in U.S. legislative procedures and other political

arenas.

Proposition 5. When a supermajority of 2
3 exists, a savvy, uninformed social planner

never gets elected. When λu ≥ 2/3, a naive social planner always gets elected. When

λs ≥ 2/3, the planner with the higher xm gets elected, that is max(xPm, x
N
m). If λs ≥ 2/3

and x̄ ≥ 4
3xs, a naive social planner always gets elected.

According to Proposition 5, the least qualified social planner often gets elected by

whomever has a supermajority. Per Corollary 1, if λu ≥ 2/3, Au always gets his way:

xm = x∗u is always chosen. If λs ≥ 2/3 and x̄ ≥ 4
3xs, the sophisticated agents again

elect the least qualified social planner. This implies that if the potential extent of the

market (x̄) is sufficiently high compared to the actual needs of the sophisticated agents

(xs), the sophisticated advocate is able to use misreporting to his advantage to better

satisfy the needs of the sophisticated agents. It is also important to note that x̄ ≥ 4
3xs

is a sufficient condition, but is not necessary for the sophisticated agents to elect the

least qualified planner. That is, there are other parameters for which a naive planner

gets elected when λs ≥ 2/3. It is only when x̄ is close to xs that a perfectly informed

planner gets elected. This occurs because the ability of As to misreport is lower than

that for Au. As such, the sophisticated agents elect someone who is knowledgeable.

This analysis has several qualitative welfare consequences. Proposition 5 tells us

that even if we have the ability to regulate markets, this may not be desired by market

participants. Indeed, the least qualified person gets elected in many cases, and due to

lobbying behavior, xm is not set at the first best level set in Section 2. This implies
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that proponents of product regulation need to take into account how qualified the

leaders are who implement such policies, and incentives within the system to preclude

knowledgeable people from attaining such roles.

4 Alternative Welfare Specifications

In the previous sections, the social planner chose the optimal level of market sophisti-

cation, x∗m, by minimizing the total aggregate loss. The comparative statics of x∗m in

Proposition 1 reveal that the difference in expected loss for unsophisticated and sophis-

ticated agents can be large when one group is much smaller than the other and when

the upper bounds on the groups’ needs are greatly dissimilar. That setup assumes

that total aggregate loss is the only concern of the social planner. Here we extend the

analysis to two scenarios: one where the planner is concerned about the degree of dis-

parity between the agents and one where the planner is concerned about the maximum

loss sustained by any one agent. In both scenarios we assume that xu = xs = xp and

λu ∈ (0, 1).

4.1 Equality Versus Adequacy

We begin with the scenario where the social planner is interested in not only the total

loss, but also the expected degree of disparity between sophisticated and unsophisti-

cated agents10. We define the degree of disparity between agent groups as

D(xm, λu, λs) ≡ |Lu −Ls|. (22)

Equation 22 and Equation 8 from Section 2.3 can be combined to produce a welfare

equation that incorporates both concerns,

W = κL(xm, λu, λs) + (1− κ)D(xm, λu, λs), (23)

where κ ∈ [0, 1]. We assume that κ is exogenously given and it represents the social

planner’s preferences over the two matters.

10Given that there are continua of sophisticated and unsophisticated agents, the law of large
numbers makes our analysis here apply to ex post dispersion as well.
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Proposition 6. The optimal level of market sophistication when the social planner

is concerned with both total aggregate loss and the disparity between sophisticated and

unsophisticated agents is given by

x∗m =







0 if κ < 1
3−λu

3
2
1−κ(3−λu)
1−κ(4−λu)

xp if κ ≥ 1
3−λu

.
(24)

If κ ≥ 1
3−λu

, then x∗m is strictly increasing in κ and strictly decreasing in λu.

The comparative statics in κ and λu are straightforward. That is, as the importance

of aggregate social loss increases (higher κ), the optimal market completeness rises.

Likewise, as the number of unsophisticated agents increases, the lower x∗m will be.

What is interesting is that as long as κ < 1
3 , the social planner optimally chooses to

have a one-product market. This means that if equality is most important, as it would

be in a socialistic society, no differentiation is allowed in the market. Of course, as λu

rises, this bound becomes larger. As λu → 1, if κ < 1
2 , then a one product market is

optimal.

Proposition 6 implies that there is a tradeoff between a market that provides ade-

quate products to its constituents and the equality that people experience when they

make choices. As κ decreases and equality is more important, xm decreases and devi-

ates more from the optimum derived in Section 2.3. This means that the more equality

is weighted, the less adequate is the market, especially for sophisticated agents. As

such, Proposition 6 captures the idea that aggregate losses may increase as equality

concerns are introduced. When κ < 1
3 , equality is indeed achieved, but unfortunately

both sophisticated and unsophisticated agents are equally worse off. This captures one

of the potential drawbacks of a socialistic agenda (e.g., Stiglitz, 1994).

We complete this section with the following example.

Example 1. Suppose that κ = 1
2−λu

. Then, plugging into (24) yields x∗m = 3
4xu.

The significance of Example 1 is that unsophisticated agents may benefit substantially

at the expense of sophisticated agents. In this case, κ is such that xm = x∗u. Of course,

if κ were to decrease further, the aggregate loss for both groups would rise, even as the

two aggregate losses converged more.
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4.2 Minimizing the Maximum Loss

The degree of disparity formulation in the previous section measures the difference

between an average unsophisticated agent and an average sophisticated agent. The

difference in average losses is certainly one measure of disparity, however, the plan-

ner may be concerned with the maximum loss sustained by any one agent. Let all

agents, unsophisticated and sophisticated, be indexed by i and define the maximum

loss sustained by any individual as,

max
i

|x− tiψ| with ψ ∈ {u, s}. (25)

We assume that there is a positive measure of both agent types, and consequently, there

is always a loss of xp > 0. This is because at least one unsophisticated agent with type

xp will mistakenly choose the product located at zero. If minimizing the maximum loss

is indeed a concern for the planner, our setup does not permit her choice to influence

social welfare. In Appendix B, however, we consider a variant to the model: we allow

the social planner to choose both the upper and lower bound of the market offerings.

We denote the lower bound of market offerings as xm,l and the upper bound as xm,u.

In this setup, the planner’s problem is given by,

min
xm,l,xm,u

max
i

|x− tiψ| with ψ ∈ {u, s}. (26)

It is straightforward to see that the preceding expression is rewritten as,

min
xm,l,xm,u

max{xm,u, xp − xm,l}. (27)

The maximum possible losses for unsophisticated agents occur when an agent of type

tu = 0 accidently chooses the product furthest from his type, i.e., he chooses xm,u and

sustains a loss of xm,u, or when an agent of type tu = xp chooses xm,l and sustains a

loss of xp − xm,l. The maximum possible loss for sophisticated agents is dominated by

the maximum possible losses sustained by the unsophisticated. As such, the maximum

possible loss across all agents is given by the expression in Equation 27. The follow-

ing proposition demonstrates the optimal levels of xm,l and xm,u when the planner is

concerned with minimizing the maximum loss sustained by any one agent.

Proposition 7. The planner chooses x∗m,l = x∗m,u =
xp
2 to minimize the maximum loss

sustained by any one agent.
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Proposition 7 highlights a tension not obvious in our previous results: although

many agents experience a loss, the losses are not felt equally agent-to-agent. Consider

the unsophisticated agents; an agent with type tu = 0 or tu = xp is likely to sustain a

greater utility loss than an unsophisticated agent of type tu =
xp
2 , since his mistakes

tend to be larger. Sophisticated agents also sustain losses if the market is anything

but complete, i.e., xm,l 6= 0 or xm,u 6= xp, but these losses are dominated by the losses

to unsophisticated agents. Proposition 7 addresses the tension on an agent-to-agent

basis by minimizing the maximum loss sustained by any one agent. It is intuitive that

the proposition prescribes the most conservative level of market completion, i.e., the

market consists of a single product. The conservative nature provides agents with a

robustness that no single loss is “too large.”

5 Concluding Remarks

The model we have explored provides an innovative framework to explore the tension

that exists in offering products to agents with heterogeneous levels of sophistication.

There is a natural inclination to think markets should be complete so that participants

are free to make choices that best fit their needs. Skeptics, on the other hand, think such

a paradigm is too idealistic. They believe that agents are prone to make mistakes and

that offering too many products introduces room for error. We have characterized this

friction by modeling a market where perfect and imperfect agents jointly participate.

In a parsimonious model, we have analyzed the optimal level of collective complexity

with respect to each group’s size and needs.

We also have explored the effects of political influence and political philosophy

on the quality of regulation. Uninformed planners, whether naive or rational, will

only achieve second best regulation. Sophisticated agents always support a libertarian

platform, even if they will not utilize the most complex products in the market. Both

sophisticated and unsophisticated agents often vote for the least qualified planner when

they have a supermajority, which erodes the quality of regulation. Finally, socialism

that dictates equality, necessarily decreases product differentiation and destroys the

surplus that can be produced by completing markets.

In the end, our analysis provides a new dimension to consider in the debate of finan-

cial product regulation. Policy makers should carefully consider the tradeoff between
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satisfying agents’ needs and introducing the possibility of blunders. Furthermore, a

robust policy is one that resolves the lobbying and political problems that arise in the

market.
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A Appendix

Proof of Lemma 1: First, consider that xm ≥ xs. The loss for a given sophisticated

consumer with type t̃s is given by

L(x|t̃s, xm) = |x− t̃s|. (A1)

Because the consumer knows their type perfectly and their type is available in the set

of financial products [0, xm], the agent will choose x = t̃s. Thus, |t̃s − t̃s| = 0 for all

types of sophisticated agents. Therefore, Ls = 0.

Now consider that xm < xs. By the same reasoning, for any sophisticated agent

with type t̃s ∈ [0, xm], their loss is zero. However, the sophisticated agents with type

t̃s ∈ [xm, xs] will choose x = xm to minimize their losses. Since sophisticated consumers

are distributed uniformly, the aggregate expected loss in this population is given by

Ls =

∫ xm

0
0
dt̃s
xs

+

∫ xs

xm

|xm − t̃s|
dt̃s
xs

=

∫ xs

xm

(t̃s − xm)
dt̃s
xs

=
t̃2s
2xs

−
xmt̃s
xs

∣
∣
∣
∣

xs

xm

=
x2s − 2xmxs + xm

2

2xs
.

The first-order derivative of the expected loss with respect to xm is

∂

∂xm
E[L(t̃s, x|xm)] =

−xs + xm
xs

,

The which is strictly negative because xm < xs by assumption.

The second-order derivative of the expected loss with respect to xm is given by,

∂2

∂xm2
E[L(t̃s, x|xm)] =

1

xs
> 0,

which tells us that the loss function is convex in xm.

�

Proof of Lemma 2: Suppose first that xm > xu. Using the expected loss for a given

unsophisticated consumer in Equation 5, we can compute the expected loss for the
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group as a whole. The expected loss is,

E[L(t̃u, x|xm)] =

∫ xu

0

(
(xm − t̃u)

3

2xm|xm − t̃u|
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xu

0

(
(xm − t̃u)

3

2xm(xm − t̃u)
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xu

0

(
(xm − t̃u)

2

2xm
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xu

0

(

xm
2 − 2xmt̃u + 2t̃u

2

2xm

)

dt̃u
xu

=

(

xm
2t̃u − xmt̃

2
u + (2/3)t̃u

3

2xmxu

)∣
∣
∣
∣
∣

xu

0

=
xm

2xu − xmx
2
u + (2/3)x3u

2xmxu

=
xm

2 − xmxu + (2/3)x2u
2xm

.

For convenience we note the following computation that was used in the last calculation:
∫

|(ax+ b)n|dx =
(ax+ b)n+2

a(n+ 1)|ax+ b|
+ C,

where n is odd and n 6= −1.

The first-order derivative of the expected loss with respect to xm is given by,

∂

∂xm
E[L(t̃u, x|xm)] =

1

2
−

x2u
3xm2

,

which is strictly positive because xm > xu by assumption. Additionally, the loss

function is convex. By second-order conditions we obtain,

∂2

∂xm2
E[L(t̃u, x|xm)] =

2x2u
3xm3

> 0.

Note that we did not solve for the optimal xm for unsophisticated consumers using

this first-order equation because our assumption that xm ≥ xu allowed us a simplifying

step that |xm − t̃u| = (xm − t̃u). We address the optimal xm shortly. It is useful to

note here, that had we solved for the optimum using this first-order condition we would

have obtained,

x∗m ≡ xu

√

2

3
. (A2)
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In this case, x∗m < xu, violating our assumption that xm ≥ xu.

Now, we consider the case when now we look at xm < xu. Using the expected loss

for a given unsophisticated consumer in Equation 5, we can compute the expected loss

for the group as a whole. The expected loss is,

E[L(t̃u, x|xm)] =

∫ xu

0

(
(xm − t̃u)

3

2xm|xm − t̃u|
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xm

0

(
(xm − t̃u)

3

2xm|xm − t̃u|
+

t̃2u
2xm

)
dt̃u
xu

+

∫ xu

xm

(
(xm − t̃u)

3

2xm|xm − t̃u|
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xm

0

(
(xm − t̃u)

3

2xm(xm − t̃u)
+

t̃2u
2xm

)
dt̃u
xu

+

∫ xu

xm

(
(xm − t̃u)

3

2xm(t̃u − xm)
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xm

0

(
(xm − t̃u)

2

2xm
+

t̃2u
2xm

)
dt̃u
xu

+

∫ xu

xm

(
−(xm − t̃u)

2

2xm
+

t̃2u
2xm

)
dt̃u
xu

=

∫ xm

0

(
xm

2 − 2xmt̃u + 2t̃2u
2xm

)
dt̃u
xu

+

∫ xu

xm

(
−xm

2 + 2t̃uxm
2xm

)
dt̃u
xu

=

(
xm

2t̃u − xmt̃
2
u + (2/3)t̃3u

2xmxu

)∣
∣
∣
∣

xm

0

+

(
−xm

2t̃u + t̃2uxm
2xmxu

)∣
∣
∣
∣

xu

xm

=
xm

3 − xm
3 + (2/3)xm

3

2xmxu
− 0 +

−xm
2xu + xmx

2
u

2xmxu
−

−xm
3 + xm

3

2xmxu

=
xm

2

3xu
+

−xm + xu
2

.

First-order conditions with respect to xm yield the ideal level of market sophistica-

tion for unsophisticated consumers,

0 =
∂

∂xm
E[L(t̃u, x|xm)]

=
2xm
3xu

−
1

2
.

Additionally, the loss function is convex. The second-order condition is given as,

∂2

∂xm2
E[L(t̃u, x|xm)] =

2

3xu
> 0.

Therefore, the unsophisticated consumers’ losses are minimized when

x∗u ≡
3

4
xu < xu. (A3)

�
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Lemma A1. The function L(xm, λu, λs) is continuously differentiable at xu.

Proof of LemmaA1: Consider the following:

E[L(t̃u, x|xm ≤ xu)] =
xm

2

3xu
+

−xm + xu
2

∣
∣
∣
∣
xm=xu

=
xu
3

E[L(t̃u, x|xm > xu)] =
xm

2 − xmxu + (2/3)x2u
2xm

∣
∣
∣
∣
xm=xu

=
xu
3

∂

∂xm
E[L(t̃u, x|xm ≤ xu)] =

2xm
3xu

−
1

2

∣
∣
∣
∣
xm=xu

=
1

6
∂

∂xm
E[L(t̃u, x|xm > xu)] =

1

2
−

x2u
3xm2

∣
∣
∣
∣
xm=xu

=
1

6
∂2

∂xm2
E[L(t̃u, x|xm ≤ xu)] =

2

3xu

∣
∣
∣
∣
xm=xu

=
2

3xu
∂2

∂xm2
E[L(t̃u, x|xm > xu)] =

2x2u
3xm3

∣
∣
∣
∣
xm=xu

=
2

3xu

�

Proof of Proposition 1: Both of the loss functions of the sophisticated and unso-

phisticated agents are strictly convex by Lemmas 1 and 2. Since the sum of two convex

functions is also convex, L(xm, λu, λs) is strictly convex. By Lemma A1, L(xm, λu, λs)

is continuously differentiable. Finally, since L(xm, λu, λs) evaluated on the compact set

[0, xs], we know that a unique global minimum exists.

Now, we proceed to the claim in (10). By Lemmas 1 and 2, the loss function for

unsophisticated agents is strictly increasing for any xm > x∗u and the loss function for

sophisticated consumers is strictly decreasing for any xm < xs. If the marginal benefit
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of increasing xm to sophisticated consumers is greater than the marginal cost to the

unsophisticated, the first-order condition of the aggregate loss function will be negative.

Evaluating the first-order condition of the aggregate loss function at xm = xu yields,

∂

∂xm
L(xu, λu, λs) =

λu
6

+ λs

(

−1 +
xu
xs

)

,

which is negative if and only if λuλs < 6
(

1− xu
xs

)

, implying that the x∗m > xu.

Clearly, since ∂Lu

∂xm
> 0 for all xm > x∗u and ∂Ls

∂xm
< 0 for all xm < x∗s, the solution to

the social planner’s problem lies in the interval [x∗u, x
∗
s]. Moreover, it is straightforward

to show that there exists an internal solution. The derivative ∂Ls

∂xm
is zero at xs, whereas

∂Lu

∂xm
= 2xs

3xu
− 1

2 . Likewise, The derivative
∂Lu

∂xm
is zero at x∗u, whereas

∂Ls

∂xm
= xu

xs
− 1 < 0.

We now proceed to write an expression for x∗m so that we may proceed with comparative

statics exercises. Using the condition in (10), we consider the two possible cases for

optimums. First, suppose that λu
λs

≥ 6
(

1− xu
xs

)

. First-order conditions with respect

to the aggregate loss function yield

0 =
∂

∂xm
L(xm, λu, λs|xm ≤ xu) (A4)

= λu

[
2xm
3xu

−
1

2

]

+ λs

[

−1 +
xm
xs

]

. (A5)

Recall that the ideal point for sophisticated consumers is x∗s = xs, and the ideal point

for unsophisticated consumers, given that xm ≤ xu, is x
∗
u = 3

4xu. Substituting in the

ideal points yields

0 = λu

[
2xm
4x∗u

−
1

2

]

+ λs

[

−1 +
xm
x∗s

]

. (A6)

Solving for xm yields

x∗m =
x∗ux

∗
s(λu + 2λs)

λux∗s + 2λsx∗u
. (A7)

Now, consider that λu
λs
< 6

(

1− xu
xs

)

. We define the function g(xm) to be the first-order

conditions with respect to the aggregate loss function, i.e.

g(xm) ≡
∂

∂xm
L(xm, λu, λs|xm > xu)

= λu

[
1

2
−

x2u
3xm2

]

+ λs

[

−1 +
xm
xs

]

. (A8)
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Since, solving for an explicit solution to g(xm) = 0 is analytically intractable, we leave

x∗m as implicitly defined by g(x∗m) = 0, and use the implicit function theorem to derive

comparative statics.

Because of the piecewise construction of the aggregate loss function, we need to

determine the four comparative statics for both the case when x∗m ≤ xu and when

x∗m > xu. First we consider the former.

The optimal level of sophistication is given by Equation A7. We start by considering

the comparative static of x∗m with respect to λu and note that λu + λs = 1,

∂x∗m
∂λu

=
∂

∂λu

x∗ux
∗
s(λu + 2λs)

λux∗s + 2λsx∗u

=
−x∗ux

∗
s(λux

∗
s + 2λsx

∗
u)− x∗ux

∗
s(λu + 2λs)(x

∗
s − 2x∗u)

(λux∗s + 2λsx∗u)
2

=
−λux

∗
ux

∗
s
2 − 2λsx

∗
u
2x∗s − λux

∗
ux

∗
s
2 + 2λux

∗
u
2x∗s − 2λsx

∗
ux

∗
s
2 + 4λsx

∗
u
2x∗s

(λux∗s + 2λsx∗u)
2

=
−2λux

∗
ux

∗
s
2 + 2λsx

∗
u
2x∗s + 2λux

∗
u
2x∗s − 2λsx

∗
ux

∗
s
2

(λux∗s + 2λsx∗u)
2

=
−2λux

∗
ux

∗
s
2 + 2(1− λu)x

∗
u
2x∗s + 2λux

∗
u
2x∗s − 2(1− λu)x

∗
ux

∗
s
2

(λux∗s + 2λsx∗u)
2

=
2x∗u

2x∗s − 2x∗ux
∗
s
2

(λux∗s + 2λsx∗u)
2

=
2x∗ux

∗
s(x

∗
u − x∗s)

(λux∗s + 2λsx∗u)
2

and because x∗u < xs,

< 0.

The comparative static of x∗m with respect to λs,

∂x∗m
∂λs

=
∂x∗m
∂λu

∂λu
∂λs

,

and because ∂λu
∂λs

= −1,

> 0.
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Now we consider the comparative static of x∗m with respect to xu. For analytic ease, we

substitute out the ideal points for both sophisticated and unsophisticated consumers,

i.e. x∗s = xs, and given that xm ≤ xu, x
∗
u = 3

4xu.

∂x∗m
∂xu

=
∂

∂xu

xuxs(3λu + 6λs)

4λuxs + 6λsxu

=
(3λuxs + 6λsxs)(4λuxs + 6λsxu)− 6λs(3λuxuxs + 6λsxuxs)

(4λuxs + 6λsxu)2

=
12λ2ux

2
s + 18λuλsxuxs + 24λuλsx

2
s + 36λ2sxuxs − 18λuλsxuxs − 36λ2sxuxs

(4λuxs + 6λsxu)2

=
12λ2ux

2
s + 24λuλsx

2
s

(4λuxs + 6λsxu)2

> 0.

And lastly with the comparative static of x∗m with respect to xs,

∂x∗m
∂xs

=
∂

∂xs

xuxs(3λu + 6λs)

4λuxs + 6λsxu

=
(3λuxu + 6λsxu)(4λuxs + 6λsxu)− 4λu(3λuxuxs + 6λsxuxs)

(4λuxs + 6λsxu)2

=
12λ2uxuxs + 18λuλsx

2
u + 24λuλsxuxs + 36λ2sx

2
u − 12λ2uxuxs − 24λuλsxuxs

(4λuxs + 6λsxu)2

=
18λuλsx

2
u + 36λ2sx

2
u

(4λuxs + 6λsxu)2

> 0.

Now we consider when x∗m > xu. Because we did not solve for an explicit solu-

tion for x∗m, we utilize the Implicit Function Theorem with our characteristic equation,

Equation A8, that implicitly defines x∗m, i.e. g(x
∗
m) = 0. The Implicit Function Theo-

rem tells us how the optimal level of sophistication changes with the parameter values.

For each parameter θ ∈ {λu, λs, xu, xs}, the IFT gives

∂x∗m
∂θ

≡

− ∂g(xm)
∂θ

∣
∣
∣
xm=x∗m

∂g(xm)
∂xm

∣
∣
∣
xm=x∗m

(A9)

We begin by showing that ∂g(xm)
∂xm

> 0,

148



∂g(xm)

∂xm
= λu

2x2u
3x3m

+
λs
xs

> 0.

Differentiating with respect to each of the parameters and recalling that λu+λs = 1

yields

∂g(xm)

∂λu
=

1

2
−

x2u
3x2m

︸ ︷︷ ︸

> 0 since xu < xm

+ 1−
xm
xs

︸ ︷︷ ︸

≥ 0 since xm ≤ xs

> 0

∂g(xm)

∂λs
= −

1

2
+

x2u
3x2m

︸ ︷︷ ︸

< 0 since xu < xm

+ −1 +
xm
xs

︸ ︷︷ ︸

≤ 0 since xm ≤ xs

< 0

∂g(xm)

∂xu
=

−2λux
2
u

3x2m
< 0

∂g(xm)

∂xs
=

−λsxm
x2s

< 0

�

Lemma A2. The function x∗m(xu, xs, λu, λs) is continuously differentiable at xu.

Proof of Lemma A2: The proof follows directly from Lemma A1 because x∗m is

determined by the first-order condition of the aggregate loss function with respect to

xm. We know that the first and second derivatives of the aggregate loss function are

continuous, therefore x∗m(xu, xs, λu, λs) is continuous.

�

Proof of Proposition 2: We begin the proof by showing that it is a weakly dominant

strategy to choose rs = x. The aggregate loss to sophisticated agents, Ls, is a function

of the true upper bound xs and the social planner’s choice of xm based on the reports

rs and ru. The change in the aggregate loss to sophisticated agents with respect to rs

is given by,
∂

∂rs
Ls(xs, xm(rs, ru)) =

∂Ls
∂xm

∂xm
rs
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From Lemma 1 we know that ∂Ls

∂xm
≤ 0. Furthermore, because the social plan-

ner takes As at their word, we know from Proposition 1 that ∂xm
rs

> 0. Therefore,
∂
∂rs

Ls(xs, xm(rs, ru)) ≤ 0 which yields the desired result that rs = x̄

Now we examine the strategy of Au. By Lemma A2 and Proposition 1 we know

that xm(ru, rs) is continuously differentiable and strictly increasing in ru. Because [0, x]

is compact, if xm(0, x) ≤ x∗u ≤ xm(x, x) we know by the Intermediate Value Theorem

that there exists an r̂u ∈ [0, x] such that x∗u = xm(r̂u, x). Furthermore, because xm is

strictly increasing in ru, r̂u is unique.

When x∗u 6∈ [xm(0, x), xm(x, x)] it must be the case that either x∗u < xm(0, x) or

xm(x, x) < x∗u. However, since xm(x̄, x̄) ∈ [34 x̄, x̄] and x
∗
u ≤ 3

4 x̄, then it cannot be that

xm(x, x) < x∗u. We know from Lemma 2 that the losses for unsophisticated agents,

Lu, are increasing for all xm > x∗u. Therefore, when x∗u 6∈ [xm(0, x), xm(x, x)], it is a

dominant strategy for Au to report the lowest possible value for xu, that is ru = 0.

Consequently, the reporting strategy of Au is segregated into two cases; those when

he makes a positive report and those when he reports ru = 0. We first consider the

former, when there exists an ru > 0 such that x∗u = xm(ru, x).

Because the naive planner takes ru to be the true value of xu, we know from

Proposition 1 that the planner’s choice of xm is set according to a piecewise function.

In fact, xm ≤ ru so long as λu
λs
> 6

(
1− ru

x

)
, and xm > ru otherwise. (A7) provides the

planner’s rule for setting xm when it falls below ru. The advocate chooses ru such that

it results in the planner setting xm equal to the unsophisticated bliss point,

x∗u = xm(ru, x)

=
rurs(3λu + 6λs)

4λurs + 6λsru

=
rux(3λu + 6λs)

4λux+ 6λsru
.

A rearrangement yields,

4λuxx
∗
u = rux(3λu + 6λs)− 6λsrux

∗
u.

Solving for ru we obtain,

ru =
4λuxx

∗
u

x(3λu + 6λs)− 6λsx∗u
,
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and recall that x∗u = (3/4)xu

ru = xu

(
3λux

3λux+ 6λs(x− (3/4)xu)

)

. (A10)

Clearly from (A10), conditional on xm ≤ ru and x being finite, there always exists

a report ru such that x∗u = xm(ru, x). Thus, ru cannot be 0 if xm ≤ ru.

Consider now the planner’s rule for xm > ru. Although we do not have a closed-

form solution, the planner chooses xm so that it satisfies (A8). Again, the advocate

will choose ru such that x∗u = xm(ru, x),

0 = λu

[
1

2
−

r2u
3x2m

]

+ λs

[

−1 +
xm
rs

]

= λu

[
1

2
−

r2u
3x∗u

2

]

+ λs

[

−1 +
x∗u
x

]

.

A rearrangement yields,

λur
2
u

3x∗u
2 =

λu
2

+ λs

[

−1 +
x∗u
x

]

r2u =
3x∗u

2

λu

(
λu
2

+ λs

[

−1 +
x∗u
x

])

= x∗u
2

(
3

2
+
λs
λu

[

−3 +
3x∗u
x

])

ru = x∗u

(
3

2
+
λs
λu

[

−3 +
3x∗u
x

])1/2

,

and recall that x∗u = (3/4)xu

ru = xu
3

4

(
3

2
+
λs
λu

[
9xu
4x

− 3

])1/2

. (A11)

Equation (A11) is real valued so long as 3
2 +

λs
λu

[
9xu
4x − 3

]
≥ 0, or

xu ≥ x

(
4

3
−

2λu
3λs

)

(A12)

The unsophisticated advocate’s report is characterized by either (A10) or (A11),

depending on whether the planner’s choice of xm is greater or less than ru. The specific
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condition is pinned down by solving for ru = xm. Utilizing Equation A8 yields,

0 = λu

[
1

2
−

r2u
3x2m

]

+ λs

[

−1 +
xm
rs

]

= λu

[
1

2
−

1

3

]

+ λs

[

−1 +
ru
x

]

=
λu
6

+ λs

[

−1 +
x∗u
x

]

.

A rearrangement of this expression yields,

x∗u = x

(
6λs − λu

6λs

)

, (A13)

or,

xu = x

(
4

3
−

2λu
9λs

)

. (A14)

We have now fully characterized when Au reports a value greater than zero.

For xu ≥ x
(
4
3 − 2λu

9λs

)

, the advocate adheres to (A10) for his report. When

xu ∈
[

x
(
4
3 −

2λu
3λs

)

, x
(
4
3 −

2λu
9λs

)]

the advocate will choose ru according to (A11). An

advocate is unable to make a positive report that results in xm = x∗u for values of

xu < x
(
4
3 −

2λu
3λs

)

. Instead, the advocate will make the smallest possible report, ru = 0.

Mathematically we define this reporting strategy, ru = σ(xu), as

σ(xu) =







0 for xu < x
(
4
3 − 2λu

3λs

)

xu

(
3
4

√
3
2 +

λs
λu

[
9xu
4x − 3

])

for x
(
4
3 − 2λu

3λs

)

≤ xu < x
(
4
3 −

2λu
9λs

)

xu

(
3λux

3λux+6λs(x−(3/4)xu)

)

for x
(
4
3 − 2λu

9λs

)

≤ xu.

Therefore, the advocate will make a report greater than zero if, and only if, xu ≥

x
(
4
3 − 2λu

3λs

)

.

Finally, when ru = 0, we know that xm > ru. Substituting into (A8) yields

0 = λu[
1

2
− 0] + λs[−1 +

xm
x̄

].

Solving for xm yields the desired result.

�
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Proof of Corollary 1: Proposition 2 tells us that there exists a report, ru > 0,

such that x∗u = xm(ru, x) if and only if xu ≥ x
(
4
3 −

2λu
3λs

)

. We direct our attention to

Equation 15. Because both xu and x are greater than or equal to zero by definition, if

0 >
(
4
3 −

2λu
3λs

)

the condition is satisfied.

0 >

(
4

3
−

2λu
3λs

)

2λu
3λs

>
4

3

λu > 2λs

�

Proof of Lemma 3: The conditional expectation of xu, given xs and that it is

distributed uniformly over [0, x̄], can be written as,

E[xu|xu ≤ xs] =
xs
2
. (A15)

Similarly, the conditional expectation of xs, given xu, is

E[xs|xs ≥ xu] =
xu + x̄

2
(A16)

Taking expectations of both equations gives,

E[xu] =
E[xs]

2
(A17)

E[xs] =
E[xu] + x̄

2
(A18)

A rearrangement yields,

E[xu] =
x̄

3
(A19)

E[xs] =
2x̄

3
(A20)

�

Proof of Lemma 4: Because the planner takes the midpoint of the partition, it is

always a weakly dominant strategy for the sophisticated advocate to report that xs lies

in the partition that contains x̄. This follows from the fact that sophisticated agents
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are never harmed by having an xm > xs, but do incur losses if xm < xs. Therefore, for

any realization of xs, the probability that rs = x̄ equals one.

�

Proof of Proposition 3: An equilibrium of this game is guaranteed by Theorem 1

of Crawford and Sobel (1982), since the utility functions of the social planner and

Au satisfy those listed on page 1433 of Crawford and Sobel (1982) for UR(y, r) and

US(y, r, b) respectively.

Equation 21 is derived in similar fashion as Equations (20)-(22) in from Section 4 of

Crawford and Sobel (1982). We first derive the expected bias for Au. Using Equation

A7 and the results of Lemma 3, we compute

E[bu] = E[x∗m]− E[x∗u]

=
E[x∗u]E[x∗s](λu + 2λs)

λuE[x∗s] + 2λsE[x∗u]
− E[x∗u]

=
x̄2

6 (λu + 2λs)

λu
2x̄
3 + 2λs

x̄
4

−
x̄

4

=
5λsx̄

16− 4λs
(A21)

Evaluating Equation 21 with the unconditional expectation for Au’s bias yields the

maximum number of partitions that can be supported, which is computed as

N =

〈

−
1

2
+

1

2

√

1 +
2x̄

E[b]

〉

=

〈

−
1

2
+

1

2

√

1 +
32 − 8λs

5λs

〉

=

〈

−
1

2
+

1

2

√

32− 3λs
5λs

〉

(A22)

It follows that N is less than or equal to 1 if 32−3λs
5λs

≤ 9. Thus, if λs >
2
3 only a

babbling equilibrium exists. Conversely, as λs → 0, the number of partitions goes to

infinity.

�

Proof of Proposition 4: The optimal levels of market sophistication under each type
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of planner is denoted as






xPm Perfectly Informed

xVm Savvy

xNm Naive,

where xPm 6= xVm 6= xNm.

We begin by considering only xPm and xNm. According to Proposition 1, a perfectly

informed social planner will choose xPm ∈ [x∗u, x
∗
s]. Furthermore, we know that ∂Lu

∂xm
> 0

for all xm ≥ x∗u and ∂Ls

∂xm
< 0 for all xm ≤ x∗s. Therefore, the unsophisticated agents

always prefer an xm < xPm and sophisticated agents always prefer an xm > xPm.

From Proposition 2 we know that rs = x and ru > 0 if xNm(ru, x) = x∗u and 0 otherwise.

Substituting these reports into the social planner’s equation for xNm yields two possible

values,

xNm =







x∗u ru > 0

x
(

1− λu
2λs

)

ru = 0.
(A23)

It follows then that if xNm < xPm then unsophisticated agents will prefer the imperfect

social planner. Conversely, if xPm < xNm, sophisticated agents will prefer the imperfect

social planner. Specifically, the unsophisticated agents always prefer min(xPm, x
N
m) and

the sophisticated prefer max(xPm, x
N
m).

It is straightforward to show that adding a third choice does not induce unanimity.

If xVm < x∗u and is preferred by the unsophisticated agents, it will not be preferred

by sophisticated agents because xPm > xVm. If xVm > x∗s and is (weakly) preferred

by the sophisticated agents, it will not be preferred by unsophisticated agents because

xPm < xVm. If x
V
m ∈ [x∗u, xs], the argument against unanimity follows as in the two-option

case above.

�

Proof of Proposition 5: The result for λu ≥ 2
3 follows from Corollary 1. For λs ≥

2
3 ,

with a savvy social planner, the optimal level of market sophistication will never exceed

her beliefs of xs. That is, when sophisticated agents have a supermajority, the planner’s
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unconditional expectation of xs serves as an upper bound for xVm, i.e. x
V
m ≤ 2x̄

3 .

However, sophisticated agents with a supermajority can obtain a higher level of

market sophistication under a naive social planner. According to Proposition 2, un-

sophisticated agents will report xu = 0 if λu ≤ 1/3. This leads to xNm = x̄
[

1− λu
2λs

]

,

which obtains its minimum at λs = 2/3 since it is increasing in λs. Evaluating at 2/3

yields xNm = 3x̄
4 , which is strictly greater than xVm.

Without any further information regarding the true values of xu and xs, we cannot

say whether sophisticated agents prefer xPm or xNm. Their choice of planner will be

governed by max(xPm, x
N
m). However, the sufficient condition in the proposition can

be derived as follows. We can examine whether xNm > xPm for values of λs ≥ 2
3 . As

mentioned above, xNm reaches its minimum of 3
4 x̄ at λs = 2

3 and is increasing in λs.

Assessing xPm, if xu = xs = xp, the perfectly informed planner sets xPm = 15
16xp. If

xu < xs, then x
P
m < 15

16xp. Therefore, at λs =
2
3 , a sufficient condition for xNm > xPm is

x̄ > 5
4xp. However, as λs increases, x

P
m also rises. When λs → 1, xPm → xp. Therefore,

the sufficient condition that ensures xNm > xPm is x̄ > 4
3xp as desired.

�

Proof of Proposition 6: To solve for the level of market sophistication that minimizes

the weighted sum of aggregate loss and agent dispersion, we begin by showing that

|Lu − Ls| = (Lu − Ls) when xu = xs = xp.
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|Lu − Ls| =

∣
∣
∣
∣
∣

[
x2m
3xp

+
−xm + xp

2

]

−

[

x2p − 2xmxp + x2m
2xp

]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

[

2x2m
6xp

+
−3xmxp + 3x2p

6xp

]

−

[

3x2p − 6xmxp + 3x2m
6xp

]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

2x2m − 3xmxp + 3x2p − 3x2p + 6xmxp − 3x2m
6xp

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

3xmxp − x2m
6xp

∣
∣
∣
∣

=

∣
∣
∣
∣

xm(3xp − xm)

6xp

∣
∣
∣
∣

=
xm(3xp − xm)

6xp
,

which is always positive since xm ∈ [0, xp].

To find an internal solution that minimizes the aggregate loss and the disparity between

agents, we need Equation 23 to be convex. To determine the conditions under which

the function is convex in xm, we take the second derivative of Equation 23,

∂2W

∂x2m
=

∂2

∂x2m
[κL(xm, λu, λs) + (1− κ)D(xm, λu, λs)]

= κ

[

λu
2

3xp
+ λs

1

xp

]

+ (1− κ)

[
2

3xp
−

1

xp

]

= κ

[
2λu + 3(1 − λu)

3xp

]

− (1− κ)
1

3xp

=
κ(3 − λu)− (1− κ)

3xp
,

=
κ(4 − λu)− 1

3xp
,

which is postive so long as the numerator is positve. Therefore, the welfare function is

convex so long as,

κ ≥
1

4− λu
. (A24)
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When κ is smaller than the condition stated in (A24), the welfare function is strictly

concave in xm over [0, xp]. This means that the optimal level of market sophistication is

a corner solution; either x∗m = 0 or x∗m = xp. We now show that losses are monotonically

increasing in xm, indicating that x∗m = 0 when κ < 1
4−λu

. The first derivative of the

welfare function with respect to xm is

∂W

∂xm
=

∂

∂xm
[κL(xm, λu, λs) + (1− κ)D(xm, λu, λs)]

= κ

[

λu

(
2xm
3xp

−
1

2

)

+ λs

(
−xp + xm

xp

)]

+ (1− κ)

[(
2xm
3xp

−
1

2

)

−

(
−xp + xm

xp

)]

= κ

[

λu

(
4xm − 3xp

6xp

)

+ λs

(
−6xp + 6xm

6xp

)]

+ (1− κ)

[
4xm − 3xp + 6xp − 6xm

6xp

]

=
κ[λu(4xm − 3xp + 6xp − 6xm)− 6xp + 6xm] + (1− κ)[3xp − 2xm]

6xp

=
κ[λu(3xp − 2xm)− 6xp + 6xm] + (1− κ)[3xp − 2xm]

6xp

=
κ[λu(3xp − 2xm)− 9xp + 8xm] + 3xp − 2xm

6xp
.

(A25)

It follows that ∂W
∂xm

> 0 if

κ[λu(3xp − 2xm)− 9xp + 8xm] + 3xp − 2xm > 0

or

xm ≤
3

2

1− k(3− λu)

1− k(4− λu)
xp, (A26)

which is always the case when κ < 1
4−λu

. Therefore, x∗m = 0 when κ < 1
4−λu

.

When κ ≥ 1
4−λu

, we can utilize the first-order condition of Equation 23 with respect

to xm since the welfare loss function is convex:
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0 =
∂W

∂xm

=
∂

∂xm
[κL(xm, λu, λs) + (1− κ)D(xm, λu, λs)]

= κ

[

λu

(
2xm
3xp

−
1

2

)

+ λs

(
−xp + xm

xp

)]

+ (1− κ)

[(
2xm
3xp

−
1

2

)

−

(
−xp + xm

xp

)]

= κ

[

λu

(
4xm − 3xp

6xp

)

+ λs

(
−6xp + 6xm

6xp

)]

+ (1− κ)

[
4xm − 3xp + 6xp − 6xm

6xp

]

=
κ[λu(4xm − 3xp + 6xp − 6xm)− 6xp + 6xm] + (1− κ)[3xp − 2xm]

6xp

=
κ[λu(3xp − 2xm)− 6xp + 6xm] + (1− κ)[3xp − 2xm]

6xp

= κ[λu(3xp − 2xm)− 9xp + 8xm] + 3xp − 2xm

= 3κλuxp − 2κλuxm − 9κxp + 8κxm + 3xp − 2xm

= −3xp(3κ− κλu − 1) + xm(−2κλu + 8κ− 2)

x∗m =
3

2

1− k(3− λu)

1− k(4− λu)
xp (A27)

The comparative statics of x∗m with respect to κ and λu are determined by simple

differentiation.

�

Proof of Proposition 7: The social planner’s problem is given by

min
xm,l,xm,u∈[0,xp],xm,l≤xm,u

{max{xm,u, xp − xm,l}} . (A28)

Note that max{xm,u, xp − xm,l} = xm,u if xm,u −
xp
2 >

xp
2 − xm,l. Similarly, note

that max{xm, xp − xm} = xp − xm,l if xm,u −
xp
2 <

xp
2 − xm,l. Since

xp
2 is fixed, the

planner’s choices for xm,l and xm,u determine both the direction of the inequality and

the maximum loss. First, it is intuitive that the solution to the planner’s problem

requires that xm,u −
xp
2 =

xp
2 − xm,l. This implies that

x∗m,u+x
∗
m,l

2 =
xp
2 . Second, it is

straightforward to see that losses are minimized then when x∗m,l = x∗m,u =
xp
2 .

�
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B Appendix

In this appendix, we explore an alternative model to the one in Section 2. There, we

tethered the lower bound of the market to be zero and studied how a social planner

optimal chose the upper bound. As such, we interpreted the size of [0, xm] to be the

extent of the market, where the planner could regulate how complete the market is.

Here, we consider that the planner can choose both the lower and upper bounds of this

continuum and show that the planner still faces the same tensions from unsophisticated

and sophisticated agents. As such, the planner balances both groups’ needs and chooses

an internal level of market completeness.

Define xm,l ≥ 0 as the least sophisticated product that is offered in the market and

define xm,u ≥ xm,l to be the most sophisticated product. The planner’s problem is to

balance the demands of the two groups to minimize the aggregate loss,

min
xm,l,xm,u∈[0,xp]

L(xm,l, xm,u, λu, λs), (B1)

where

L(xm,l, xm,u, λu, λs) = λuE[L(t̃u, x|xm,l, xm,u)] + λsE[L(t̃s, x|xm,l, xm,u)]. (B2)

The following proposition is the analog of Lemmas 1 and 2, which evaluates the loss to

the two types of market participants.

Proposition B1. The aggregate loss for sophisticated agents is

Ls =
x2m,l + x2p + x2m,u − 2xm

2xp
, (B3)

which is increasing in xm,l, decreasing in xm,u and convex in both parameters respec-

tively.

The aggregate loss for unsophisticated agents is

Lu =
3xm,lxm,u + 2(xm,u − xm,l)

2 + 3(xm,u − xp)(xm,l − xp)

6xp
, (B4)

which reaches a minimum at xm,u = xm,l =
1
2xp.

Proof of Proposition B1: The loss for a given sophisticated agent with type t̃s is

given by

L(x|t̃s, xm,l, xm,u) = |x− t̃s| (B5)
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Because the agent knows his type perfectly he will choose the closest product to his

type. When t̃s < xm,l the agent chooses x = xm,l. Similarly, when t̃s > xm,u the agent

chooses x = xm,u. An agent with type t̃s ∈ [xm,l, xm,u] does not incur a loss since he

will choose x = t̃s. Since sophisticated agents are distributed uniformly, the aggregate

expected loss in the population is given by,

Ls =

∫ xm,l

0
|xm,l − t̃s|

dt̃s
xp

+

∫ xm,u

xm,l

0
dt̃s
xp

+

∫ xp

xm,u

|xm,u − t̃s|
dt̃s
xp

=

∫ xm,l

0
(xm,l − t̃s)

dt̃s
xp

+

∫ xp

xm,u

(t̃s − xm,u)
dt̃s
xp

=

[
xm,l t̃s
xp

−
t̃2s
2xp

∣
∣
∣
∣

xm,l

0

]

+

[

t̃2s
2xp

−
xm,ut̃s
xp

∣
∣
∣
∣

xp

xm,u

]

=

[

x2m,l
xp

−
x2m,l
2xp

]

+

[

x2p
2xp

−
xm,uxp
xp

−
x2m,u
2xp

+
x2m,u
xp

]

=
x2m,l + x2p − 2xm,uxp + x2m,u

2xp
(B6)

The first-order derivative of the expected loss with respect to xm,l is

∂

∂xm,l
E[L(t̃s, x|xm,l, xm,u)] =

xm,l
xp

, (B7)

which is strictly positive. The first-order derivative of the expected loss with respect

to xm,u is

∂

∂xm,u
E[L(t̃s, x|xm,l, xm,u)] =

xm,u − xp
xp

, (B8)

which is negative since xp serves as the maximum possible level of market sophistication.

The second-order derivative of the expected loss with respect to xm,l is

∂2

∂x2m,l
E[L(t̃s, x|xm,l, xm,u)] =

1

xp
, (B9)

which tells us the function is convex in xm,l since it is positive. Similarly, the second-

order derivative of the expected loss with respect to xm,u is

∂2

∂x2m,u
E[L(t̃s, x|xm,l, xm,u)] =

1

xp
, (B10)

which is also strictly positive.
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The loss for a given unsophisticated agent with type t̃u is given by

L(x|t̃u, xm,l, xm,u) =

∫ xm,u

xm,l

|x̃− t̃u|
dx̃

xm,u − xm,l
, (B11)

since the unsophisticated agent randomly selects a product on the continuum [xm,l, xm,u].

Since unsophisticated agents are distributed uniformly, the aggregate expected loss in

the population is given by

Lu =

∫ xp

0

∫ xm,u

xm,l

|x̃− t̃u|
dx̃

xm,u − xm,l

dt̃u
xp

=

∫ xp

0

(x̃− t̃u)
3

2|x̃− t̃u|(xm,u − xm,l)

∣
∣
∣
∣

xm,u

xm,l

dt̃u
xp

=
1

(xm,u − xm,l)xp

∫ xp

0

[
(xm,u − t̃u)

3

2|xm,u − t̃u|
−

(xm,l − t̃u)
3

2|xm,l − t̃u|

]

dt̃u,

which expands to,

=
1

(xm,u − xm,l)xp

[∫ xm,l

0

[
(xm,u − t̃u)

3

2|xm,u − t̃u|
−

(xm,l − t̃u)
3

2|xm,l − t̃u|

]

dt̃u

+

∫ xm,u

xm,l

[
(xm,u − t̃u)

3

2|xm,u − t̃u|
−

(xm,l − t̃u)
3

2|xm,l − t̃u|

]

dt̃u

+

∫ xp

xm,u

[
(xm,u − t̃u)

3

2|xm,u − t̃u|
−

(xm,l − t̃u)
3

2|xm,l − t̃u|

]

dt̃u

]

=
1

2(xm,u − xm,l)xp

[∫ xm,l

0

[
(xm,u − t̃u)

2 − (xm,l − t̃u)
2
]
dt̃u

+

∫ xm,u

xm,l

[
(xm,u − t̃u)

2 + (xm,l − t̃u)
2
]
dt̃u

+

∫ xp

xm,u

[
−(xm,u − t̃u)

2 + (xm,l − t̃u)
2
]
dt̃u

]

.
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An evaluation of the integrals yields,

=
1

2(xm,u − xm,l)xp

[[

x2m,ut̃u +
t̃3u
3

− xm,ut̃
2
u − x2m,l t̃u −

t̃3u
3

+ xm,l t̃
2
u

∣
∣
∣
∣

xm,l

0

]

+

[

x2m,ut̃u +
t̃3u
3

− xm,ut̃
2
u + x2m,l t̃u +

t̃3u
3

− xm,l t̃
2
u

∣
∣
∣
∣

xm,u

xm,l

]

+

[

−x2m,ut̃u −
t̃3u
3

+ xm,ut̃
2
u + x2m,l t̃u +

t̃3u
3

− xm,l t̃
2
u

∣
∣
∣
∣

xp

xm,u

]]

=
xm,lxm,u

2xp
+

(xm,u − xm,l)
2

3xp
+

(xm,u − xp)(xm,l − xp)

2xp

=
3xm,lxm,u + 2(xm,u − xm,l)

2 + 3(xm,u − xp)(xm,l − xp)

6xp
. (B12)

The first-order derivatives of the expected loss with respect to xm,l and xm,u are

∂

∂xm,l
E[L(t̃u, x|xm,l, xm,u)] =

4xm,l + 2xm,u − 3xp
6xp

(B13)

and
∂

∂xm,u
E[L(t̃u, x|xm,l, xm,u)] =

2xm,l + 4xm,u − 3xp
6xp

. (B14)

At optimality (i.e., setting (B13) and (B14) equal to zero), xm,l = xm,u, which implies

that xm,l = xm,u = 1
2xp. It is straightforward to verify that the second-order condition

is satisfied so that a minimum is attained when xm,l = xm,u = 1
2xp.

�

From Proposition B1, sophisticated agents prefer the market to be complete as possible

at both ends of the spectrum, whereas unsophisticated agents want the market to

contract towards their median needs. The planner’s problem is to balance the demands

of the two groups and the following proposition solves for a socially optimal x∗m,l and

x∗m,u.

Proposition B2. There exists a unique optimal set {x∗m,l, x
∗
m,u}, with 0 ≤ x∗m,l ≤

x∗m,u ≤ xp, that minimizes L(xm,l, xm,u, λu, λs),

{x∗m,l, x
∗
m,u} =

{
λuxp

6− 4λu
, xp −

λuxp
6− 4λu

}

. (B15)

The optimal x∗m,l is
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1. increasing in xp

2. increasing in the mass of unsophisticated agents.

The optimal x∗m,u is

1. increasing in xp

2. decreasing in the mass of unsophisticated agents.

Proof of Proposition B2: Both sophisticated and unsophisticated agents’ losses are

convex and continuous in both xm,l and xm,u which means the aggregate loss function is

also convex and continuous in these parameters. The first-order condition of Equation

B2 with respect to xm,l is,

0 =
∂

∂xm,l
L(xm,l, xm,u, λu, λs)

= λu

[
4xm,l + 2xm,u − 3xp

6xp

]

+ λs

[
xm,l
xp

]

= λu[4xm,l + 2xm,u − 3xp] + 6λsxm,l

xm,l =
3λuxp − 2λuxm,u

4λu + 6λs
. (B16)

The first-order condition with respect to xm,u is,

0 =
∂

∂xm,u
L(xm,l, xm,u, λu, λs)

= λu

[
2xm,l + 4xm,u − 3xp

6xp

]

+ λs

[
xm,u − xp

xp

]

= λu[2xm,l + 4xm,u − 3xp] + 6λs(xm,u − xp)

xm,u =
3λuxp − 2λuxm,l + 6λsxp

4λu + 6λs
. (B17)

Combining Equations B16 and B17 we can solve for x∗m,l,

xm,l =
3λuxp

4λu + 6λs
−

2λu(3λuxp − 2λuxm,l + 6λsxp)

(4λu + 6λs)2

xm,l(4λu + 6λs)
2 = 3λuxp(4λu + 6λs)− 2λu(3λuxp − 2λuxm,l + 6λsxp).
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Recall that λs = 1− λu,

xm,l(4λu + 6(1− λu))
2 = 3λuxp(4λu + 6(1− λu))− 2λu(3λuxp − 2λuxm,l + 6(1− λu)xp)

xm,l(36− 24λu) = 6λuxp

x∗m,l =
λuxp

6− 4λu
. (B18)

Now x∗m,u is given by,

xm,u =
3λuxp − 2λu

(
λuxp
6−4λu

)

+ 6λsxp

4λu + 6λs

=
3λuxp − 2λu

(
λuxp
6−4λu

)

+ 6λsxp

4λu + 6λs

=
(6− 5λu)xp
6− 4λu

x∗m,u = xp −
λuxp

6− 4λu
(B19)

The comparative statics of x∗m,l and x
∗
m,u with respect to λu and xp are,

∂x∗m,l
∂λu

=
xp(6− 4λu)− λuxp

(6− 4λu)2

=
xp(6− 5λu)

(6− 4λu)2
≥ 0

∂x∗m,l
∂xp

=
λu

6− 4λu
≥ 0

∂x∗m,u
∂λu

= −

(
xp(6− 4λu)− λuxp

(6− 4λu)2

)

= −

(
xp(6− 5λu)

(6− 4λu)2

)

≤ 0

∂x∗m,u
∂xp

= 1−
λu

6− 4λu

=
6− 5λu
6− 4λu

≥ 0 (B20)

�
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C Appendix

One interesting issue that arises in discussions about regulation in financial markets is

whether the social planner should limit the scope of the market to protect people who

are less sophisticated versus educating them to help them protect themselves. Such ed-

ucation may take the form of improved literacy training, timely decision support, access

to intermediaries or other resources that provide guidance, or screening mechanisms.

In our model, the key question of interest is what should a social planner do when

they identify that the market is operating away from the optimum. Do they improve

access to information, require standardization of products (i.e., force simplicity), or

both? To address this, we need to enhance the model to allow unsophisticated agents

to access information about their choice. That is, while the fractions λu and λs are

still exogenously given, we need to allow unsophisticated agents to learn. Once that

channel is present, the social planner can potentially intervene in two ways: via xm

and via learning.

Suppose that the social planner can exert effort to educate α fraction of the unso-

phisticated agents. This effort is costly and the social planner incurs 1
2kα

2 for some

k > 0. If an unsophisticated agent becomes educated and acquires information, they

are essentially the same as a sophisticated consumer. Going forward, we assume that

types for all agents are uniformly distributed over [0, xp], where xp = xs = xu.

Once the social planner chooses α, the expected aggregate loss for unsophisticated

agents is

Lu ≡ λu

{

(1− α)E[L(t̃u, x|xm)] + αE[L(x|xm, t̃u)]
}

. (C1)

The educated fraction, α, identify the products closest to their types, which precludes

them from making mistakes. As a result, their preferences mirror those of sophisticated

agents in that they want markets to be complete. Given such assistance, we can now

compute the aggregate loss to all agents in the market and education costs as

L(xm, λu, λs, α) = Lu + λsE[L(t̃s, x|xm)] +
1

2
kα2. (C2)
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This can be written as

L(xm, λu, λs, α) = λu

{

(1− α)
[ x2m
3xp

+
xp − xm

2

]

+ α
[x2p − 2xmxp + x2m

2xp

]}

+ λs

[x2p − 2xmxp + x2m
2xp

]

+
1

2
kα2. (C3)

The next proposition calculates the marginal effects of changing xm and altering α.

Proposition C1. The marginal effect on the aggregate loss function from increasing

xm is

Lxm ≡ λu(1− α)
[2xm
3xp

−
1

2

]

+ (λs + αλu)
[xm − xp

xp

]

. (C4)

The marginal effect on the aggregate loss function from educating is

Lα ≡ λu

[x2m − 3xmxp
6xp

]

+ kα. (C5)

Education and standardization in the product market are strict substitutes, i.e.,
∂2[L(xm,λu,λs,α)]

∂xm∂α
< 0.

Proof of Proposition C1: We first consider the marginal effect with regard to xm.

Taking the derivative of (C3) with respect to xm yields

λu

{

(1− α)
[2xm
3xp

−
1

2

]

+ α
[−xp + xm

xp

]}

+ λs

[−xp + xm
xp

]

.

re-arranging this yields the expression in (C4).

Now, we consider the marginal effect with regard to α. Taking the derivative of

(C3) with respect to α yields

−λu

{[ x2m
3xp

+
−xm + xp

2
−
x2p − 2xmxp + x2m

2xp

]}

+ kα.

re-arranging this yields the expression in (C5).

Taking the derivative of (C5) with respect to xm yields

λu
6xp

(2xm − 3xp) < 0,

which implies that ∂2[L(xm,λu,λs,α)]
∂xm∂α

< 0.

�
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By inspection of Equation C4 it is clear that the expression is negative for xm <
3
4xp, meaning that increasing xm strictly enhances welfare (decreases expected losses).

Conversely, the first term, which is the effect of increasing xm on uneducated and

unsophisticated agents, is strictly positive for xm > 3
4xp. This is consistent with our

base model where unsophisticated agents prefer simpler markets when xm exceeds

three quarters of their aggregate needs. The second term however, which represents

the marginal effect on both sophisticated agents and the educated unsophisticated

fraction, is negative for all xm < xp. This follows from their ability to perfectly identify

optimal products, i.e. they only incur losses when underserved. This tension, between

uninformed and informed agents’ preferences, suggests that a planner’s optimal choice

of xm falls in the interval
[
3
4xp, xp

]

. In fact, because a fraction αλu essentially become

sophisticated, a planner’s optimal choice of xm is likely to be higher with the ability to

educate than without.

Costly education increases aggregate welfare when Equation C5 is negative. This

arises when the first term, which is the expected reduction in losses from providing

unsophisticated individuals full information, offsets the marginal cost of educating. As

we show in the next corollary, this is likely to be the case for small values of k and

when the fraction of unsophisticated agents is large.

The concluding finding of Proposition C1 is of central importance to determining

optimal regulation because it tells us about the interplay between decreasing xm and

increasing α. The negative sign on the cross-derivative of Equation C3 implies that

clarity and simplicity are strict substitutes. That is, when the market is not welfare

optimal, if the social planner chooses one type of intervention, it makes the value of the

other decline. For example, if the social planner subsidizes information acquisition, i.e.

clarifying, the benefit to limiting the scope of products in the market drops. Likewise,

if the social planner enforces simplicity, the benefit of increasing access to information

decreases. This relationship holds for all parameter choices, the only differences are in

the magnitude.

Corollary C1. In equilibrium, the optimal level of education α∗

1. is increasing in λu, xp, and xm

2. is decreasing in k.
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Proof of Corollary C1: First-order conditions of Equation C3 with respect to xm

and α yields the following system of equations,

0 =− λu

{[ x2m
3xp

+
−xm + xp

2
−
x2p − 2xmxp + 2x2m

2xp

]}

+ kα (C6)

0 =λu

{

(1− α)
[2xm
3xp

−
1

2

]

+ α
[−xp + xm

xp

]}

+ λs

[−xp + xm
xp

]

. (C7)

Define x∗m and α∗ to be the optimal levels of sophistication and education that

satisfy Equations C6 and C7. Because Equation C3 is strictly convex in both xm and

α, we know that the set x∗m and α∗ is unique. We now re-write α∗ in terms of x∗m,

α∗ =
λu
6kxp

(

3x∗mxp − x∗m
2
)

. (C8)

The partial derivatives of Equation C8 with respect to k, λu, xp, and x
∗
m are,

∂α∗

∂k
= −

λu
6xpk2

(

3x∗mxp − x∗m
2
)

≤ 0

∂α∗

∂λu
=

1

6kxp

(

3x∗mxp − x∗m
2
)

≥ 0

∂α∗

∂xp
=
λux

2
m

6kx2p
≥ 0

∂α∗

∂x∗m
=

λu
6kxp

(3xp − 2x∗m) ≥ 0

(C9)

�

Corollary C1 contains an intuitive message for planners considering the extent to

educate. First, when the fraction of unsophisticated agents is large, educating becomes

more efficient. A fraction αλu of the entire population reaps the benefit of education.

Because α is independent of how many unsophisticated agents participate, education

is going to have the largest impact when λu is large. Additionally, when the cost of

educating is low, a planner finds it advantageous to provide more learning. In fact,

as k approaches zero, all agents in the economy are provided with their type and xm

approaches xp. Finally, as the extent of the peoples’ needs increases or as the market

is more complete, the optimal α∗ increases ceteris paribus.
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