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ABSTRACT OF THE DISSERTATION

Secure and Private Machine Learning for Smart Devices

by

Moustafa Farid Taha Mohammed Alzantot

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Mani B. Srivastava, Chair

Nowadays, machine learning models and especially deep neural networks are achieving outstanding

levels of accuracy in different tasks such as image understanding and speech recognition. Therefore,

they are widely used in the pervasive smart connected devices, e.g., smartphones, security cameras,

and digital personal assistants, to make intelligent inferences from sensor data. However, despite

their high level of accuracy, researchers have recently found that malicious attackers can easily fool

machine learning models. Therefore, this brings into question the robustness of machine learning

models under attacks, especially in the context of privacy-sensitive and safety-critical applications.

In this dissertation, we investigate the security and privacy of machine learning models. First,

we consider the problem of adversarial attacks that fool machine learning models under the practical

setting where the attacker has limited information about the victim model and also restricted access

to it. We introduce, GenAttack, an efficient method to generate adversarial examples against

black-box machine learning. GenAttack requires 235 times fewer model queries than previous state-

of-the-art methods while achieving a higher success rate in targeted attacks against the large scale

Inception-v3 image classification models. We also show how GenAttack can be used to overcome a

set of different recently proposed methods of model defenses. Furthermore, while prior research on

adversarial attacks against machine learning models has focused only on image recognition models

due to the challenges of attacking models of other data modalities such as text and speech, we show

GenAttack can be extended to attack both speech recognition and text understanding models with a

high success rate. We achieve 87% success rate against a speech command recognition model and
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97% success rate against a natural language sentiment classification model.

In the second part of this dissertation, we focus on methods for improving the robustness of

machine learning models against security and privacy threats. A significant limitation of deep neural

networks is their lack of explanation for their predictions. Therefore, we present NeuroMask, an

algorithm for generating accurate explanations of the neural network prediction results. Another

serious threat against the voice-controlled devices is the audio spoofing attacks. We present a deep

residual convolutional network for detecting two different kinds of attacks: the logical access attack

and the physical access attack. Our model achieves 6.02% and 2.78% equal error rate (EER) on the

evaluation datasets of the ASVSpoof2019 competition for the detection of the logical access, and

physical access attacks, respectively. To alleviate the privacy concerns of unwanted inferences while

sharing private sensor data measurements, we introduce, PhysioGAN, a novel model architecture

for generating high-quality synthetic datasets of physiological sensor readings. Using evaluation

experiments on two different datasets: ECG classification dataset and motion sensors for human

activity recognition dataset, we show that compared to previous methods of training sensor data

generative models PhysioGAN is capable of producing synthetic datasets that are both more accurate

and more diverse. Therefore, synthetic datasets generated by PhysioGAN are a good replacement to

be shared instead of the real private datasets with a moderate loss in their utility. Finally, we show

how we apply the differential privacy techniques to extend the training of the generative adversarial

networks to produce synthetic datasets with formal privacy guarantees.
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CHAPTER 1

Introduction

Smart devices powered by machine learning and artificial intelligence play an increasingly expandin

role in our daily lives. Recent statistics show that, in 2019, roughly a quarter of US adults

use at least one wearable device [Wur]. Wearables are equipped with an array of sensors, e.g.,

cameras, microphones, and motion sensors, to sense the surrounding environment and perceive

user actions. Smart home devices, e.g., Google Home, Amazon Echo, and Alexa, also rely on

the microphone and other sensing modalities to interact with the user in a convenient natural

way. A variety of innovative applications such as mobile health monitoring [WMH18, GDV18],

self-driving cars [YZY18], biometrics [Che16], augmented reality games [AKP19], and others

have taken advantage of the advances in machine learning research. Not only smart devices and

their applications took advantage of the progress in machine learning research, but also machine

learning community has gained a lot from the proliferation of smart devices. Smart devices with

their connectivity and sensor-rich hardware represent a golden mine for large scale collection of

datasets which are needed to train machine learning models. Therefore, we believe these mutual

benefits have made a win-win partnership between intelligent IoT devices and machine learning

models.

Nowadays, deep neural networks [LBH15] achieve state-of-the-art results in many tasks, includ-

ing image recognition [SLJ15], speech recognition [HDY12, AAA16], text translation [WSC16],

and sequential decision making such as playing games [MKS13, Gib16]. Nevertheless, despite

their outstanding levels of accuracy, recently researchers have been concerned about the robust-

ness of machine learning, especially deep neural networks, against malicious attacks. Recent

studies have illustrated the vulnerability of deep neural networks (DNNs) to adversarial exam-

ples [SZS13, GSS14]. For instance, a virtually imperceptible perturbation to an image can cause
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a well-trained image classification model to misclassify. Targeted adversarial examples can even

cause misclassification to a chosen class picked by the attacker. Moreover, researchers have shown

that these adversarial examples may remain effective in the physical world [KGB16a, AEI17]. The

lack of robustness exhibited by DNNs to adversarial examples has raised serious concerns for

safety-critical applications.

Furthermore, since machine learning models tend to leak information about their training

datasets. Recent research [FJR15, SSS17, SZH18] have shown that attackers can reverse engineer

models to reveal parts of the training dataset. The leakage of private training datasets presents a

severe privacy threat for models trained on sensitive data such as the medical and physiological

sensor readings. The adversary can also interfere with the model training process. Due to the cost

of large-scale training models, the training process is often either fully or partially outsourced due

to the lack of computation resources or necessary training data. This practice has been shown

to introduce security risks known as backdoor attacks [GDG17]. For instance, an adversary may

maliciously craft a backdoored model and publish it over the internet. The backdoored model will

produce normally expected results except for the case when the input contains a specific trigger

designated by the adversary. In the presence of this trigger, the backdoored model will produce

misclassification chosen by the adversary. This threat is intensified by the inherent limitation of

deep neural networks to explain their decisions [Lip16a]. Another severe attack that threatens the

voice-controlled devices is the ‘audio spoofing attack‘ where the adversary may use computer-

generated speech or replay a recording to gain illegitimate control over user devices. These attacks

have advanced a lot over the past few years because speech synthesis [ODZ16, WWK16, JBW18]

and voice conversion [TCS16, HLH18] have also progressed a lot over the past decade reaching the

point where it has become very challenging to differentiate between their results and genuine users’

speech.

The vulnerabilities of machine learning models against security attacks and privacy threats

raises a big concern against the continuing adoption of deep learning in the context of ubiquitous

smart devices.
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1.1 Aim and Objective

Motivated by the above, in this dissertation, we investigate answers the following questions:

• How can an adversary attack machine learning with limited information and restricted

access? Previous research efforts on adversarial attacks have mainly considered the white-box

settings where an attacker possess complete information [GSS14, CW17a] about the victim

model. In the more practical black-box setting, the attacker does not have access to this

information. While recently researchers [CZS17a, PMG16] have also studied the black-box

attack settings, the existing solutions do not scale well because they require a massive number

of queries with the victim model. Therefore, these solutions are infeasible under practical

attack scenario where the attacker has only restricted access to the victim models.

• Could we generate adversarial examples against models outside the image recognition

domain? Most of the studies on how to generate adversarial examples have considered image

recognition models. However, deep neural network models for other data modalities such as

speech and text are now widely deployed on a vast majority of smart devices (e.g., phones and

digital personal assistants). Therefore, we investigate the challenges of performing adversarial

attacks against deep neural networks for data modalities other than images, mainly speech

and text.

• Could we increase the robustness of machine learning models against attacks? We touch

upon the aspect of improving the robustness against different attacks by addressing the issue

of how to explain the deep neural network decisions and how to defend voice-controlled

devices against audio spoofing attacks.

• Could we use generative models, such as the generative adversarial networks to produce

high fidelity synthetic physiological signals? Generative adversarial networks have been

one of the most active topics of research over the past few years. Nevertheless, they have been

mainly applied to image generation and, to a lesser extent, text and tabular datasets. Only

preliminary efforts [ACS17, EHR17] have been made to using them to real-valued time-series

physiological sensor readings. The existing solutions suffer from producing samples that are
3



either inaccurate or lacking diversity. Therefore, we aim to study how to introduce a new

approach for model training to generate high-quality synthetic datasets of sensor readings.

The synthetic dataset can be utilized as a replacement for the original private data for privacy

purposes. We study both aspects of how to maximize the utility of synthetic datasets and

how to achieve strong formal guarantees that of the limits of private information disclosed by

generative model training.

1.2 Contribution and Organization

The contribution of this dissertation is multifold covering both directions of research in both attacks

and defenses of machine learning models. The following chapters of this dissertation are divided

into two parts. The first part presents novel methods of adversarial attacks against machine learning

models.

• Chapter 2: In this chapter, we introduces GenAttack, a novel algorithm for practical attacks

against black-box machine learning models. We evaluate GenAttack against different image

recognition models and datasets. Against the MNIST and CIFAR-10 classification models,

GenAttack requires roughly 2000 times less number of interaction queries with the victim

model than the previous state-of-the-art method of black-box adversarial attacks. Against the

large scale, Inception-v3 [SLJ15] ImageNet classification model, GenAttack requires

roughly 235 times less number of queries while achieving higher attack success rate. We also

show how GenAttack can bypass several different recently proposed defenses.

• Chapter 3: In this chapter, we extend GenAttack to target speech recognition models, which

are now essential for the operation of smart voice-controlled devices such as phones, wearable,

and home assistants. We demonstrate that GenAttack can cause targeted misclassification of

speech commands with 87% success rate by adding small background noise. We conducted

a human study to study the effect of added noise on human perception. We found that the

adversarial noise did not alter 89% of human listeners decisions.

• Chapter 4: In this chapter, we present another extension of GenAttack to target natural
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language understanding models. These models are now widely used in different applications

such as the digital personal assistants (e.g., Siri, Alexa, and Google assistant) offering natural

conversation-like communication with their users. Attacking Natural language understanding

models has its own difficulties as we explain in details in Chapter 4. We conduct experiments

against two different kinds of models, sentiment analysis model, and textual entailment model.

GenAttack achieve success rates of 97% and 70%, respectively. We additionally demonstrate

that 92.3% of the successful sentiment analysis adversarial examples are classified to their

original label by 20 human annotators.

• Chapter 5: In this chapter, we introduce NeuroMask as a method for generating interpretable

explanations of neural network results. We conduct experiments using different image

classification models and show how NeuroMask can be used to identify the backdoor trigger

of misclassified images by backdoored models.

• Chapter 6: In this chapter, we present our solution for the ASVSpoof2019 competition [con19],

which aims to develop countermeasure systems that distinguish between audio spoofing at-

tacks and genuine speeches. We develop a deep residual convolution neural network and

evaluate model accuracy using three different sets of features. In the two tracks of the compe-

tition, logical access attacks, and physical access attacks, our model reduces the equal error

rate (EER) metric of attack detection by 25% and 75%, respectively.

• Chapter 7: In this chapter, we introduce, PhysioGAN, a generative model to produce high

fidelity synthetic physiological sensor data readings. Using experiments on two different

real-world datasets: ECG Atrial Fibrillation (AFib) classification dataset, and Human Activity

Recognition (HAR) from motion sensors dataset. Classification models trained on synthetic

data generated by PhysioGAN have only 10%, and, 20% decrease in their classification

accuracy than classification models trained on the real data. Compared to existing approaches,

these results demonstrate that PhysioGAN is capable of generating higher levels of quality

datasets. Therefore, the synthetic datasets generated by PhysioGAN can be used to replace

the real private sensor data. This alleviates the issues of privacy risks of sharing physiological

sensor data.
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• Chapter 8: In the final chapter of this dissertation, we touch upon the idea how the training

of generative models can be modified using differential privacy [Dwo11] to provide strong

and formal privacy guarantees of the limits of private information disclosed in their synthetic

datasets. The methods and algorithms we describe in our chapter were used in our award

winning submissions in the 2018 Differential Privacy Synthetic Data Challenge [Ven19]

where we were awarded three different prizes: 4th place award in round 1, 5th place award in

round 3, and the open-source contribution award).

1.3 Notation

In the remainder of this dissertation, we adopt the following mathematical notation:

• R denotes the set of real numbers.

• Rn denotes the set of vectors of n real numbers.

• Rm×n denotes the set of m× n matrices of real numbers.

• [0, 1]n denotes the set of vectors of n real numbers between 0 and 1, inclusive.

• For each set S, the symbol |S| denotes the cardinality of S.

• For each vector x ∈ Rn, the symbols ‖x‖1, ‖x‖2, ‖x‖∞, and ‖x‖p denotes the L1, L2, L∞,

and Lp norms of x, respectively.

• ∇f(x) denotes the gradient of function f when evaluated at the point x.

• Ex∼xf(x) represents the expected value of the function f(x) computed over values of x

drawn from the probability distribution x.

• Πδmax(x; o) where x ∈ Rn, and o ∈ Rn denotes the projection operator that projects x on the

hyper-sphere with radius δmax centered at o. This is achieved by clipping operation.

xj = min (max (xj,oj − δmax) ,oj + δmax) ∀j = 1, ..., n

6



CHAPTER 2

GenAttack: Practical Black-box Attacks with Gradient-Free

Optimization

In this chapter, we introduce GenAttack, an efficient method for generation of adversarial examples

against black-box machine learning models.

2.1 Background

Deep neural networks (DNNs) have achieved state-of-the-art performance in various tasks in ma-

chine learning and artificial intelligence. Despite their effectiveness, recent studies have illustrated

the vulnerability of DNNs to adversarial examples [SZS13, GSS14]. For instance, a virtually imper-

ceptible perturbation to an image can lead a well-trained DNN to misclassify. Targeted adversarial

examples can even cause misclassification to a chosen class. Moreover, researchers have shown that

these adversarial examples are still effective in the physical world [KGB16a, AEI17], and can be

crafted in distinct data modalities, such as in the natural language [ASE18], and speech [ABS17]

domains. The lack of robustness exhibited by DNNs to adversarial examples has raised serious

concerns for security-critical applications.

Nearly all previous work on adversarial attacks, [GSS14, CW17a, CSZ17, MFF16, GR14,

KGB16a] has used gradient-based optimization in order to find successful adversarial examples.

However, gradient computation can only be performed when the attacker has full knowledge of

the model architecture and weights. Thus, these methods are only applicable in the white-box

setting, where an attacker is given full access and control over a targeted DNN. However, when

attacking real-world systems, one needs to consider the problem of performing adversarial attacks

in the black-box setting, where nothing is revealed about the network architecture, parameters, or
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training data. In such a case, the attacker only has access to the input-output pairs of the classifier.

A popular approach in this setting have relied on attacking trained substitute networks, and hoping

the generated examples transfer to the target model [PMG17]. This approach suffers from the

inherent model mismatch between the substitute model to the target model, as well as the high

computational cost required to train the substitute network. Recent works have used coordinate-

based finite difference methods in order to directly estimate the gradients from the confidence

scores, however the attacks are still computationally expensive, relying on optimization tricks to

remain tractable [CZS17b]. Both approaches are query-intensive, thus limiting their practicality in

real-world scenarios.

2.2 Contribution

Motivated by the above, we present GenAttack, a novel approach to generating adversarial examples

without having to compute or even approximate the gradients, enabling efficient adversarial attacks

to the black-box case. In order to perform gradient-free optimization, we adopt a population-

based approach using genetic algorithms, iteratively evolving a population of feasible solutions

until success. We also present a number of tricks that allows GenAttack to maintain its query-

efficiency when attacking models trained on large-scale higher-dimensional datasets, such as

ImageNet [DDS09].

Due to its gradient-free nature, GenAttack is robust to defenses which perform gradient masking

or obfuscation [ACW18]. Thus, unlike many current black-box attack approaches, GenAttack can

efficiently craft perturbations in the black-box setting to bypass some recently proposed defenses

which manipulate the gradients.

We evaluate GenAttack using state-of-the-art image classification models, and find that the

algorithm is successful at performing targeted black-box attacks with significantly less queries than

current approaches. In our MNIST, CIFAR-10, and ImageNet experiments, GenAttack required

roughly 2,126, 2,568, and 237 times less queries than the current state-of-the-art black-box

attack, respectively. Additionally, we also demonstrate the success of GenAttack against state-

of-the-art ImageNet defenses, such as ensemble adversarial training [TKP17], and randomized,
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non-differentiable input transformation defenses [GRM17]. These results illustrate the power of

GenAttack’s query efficiency and gradient-free nature.

In summary, we make the following contributions:

• We introduce GenAttack, a novel gradient-free approach for generating adversarial exam-

ples by leveraging population-based optimization. Our implementation is open-sourced1 to

promote further research in studying adversarial robustness.

• We show that in the restricted black-box setting, GenAttack using genetic optimization, as

well as dimensionality reduction and adaptive parameter scaling, can generate adversarial

examples which force state-of-the-art image classification models, trained on MNIST, CIFAR-

10 and ImageNet, to misclassify examples to chosen target labels with significantly less

queries than previous approaches.

• We further highlight the effectiveness of GenAttack by illustrating its success against a few

state-of-the-art ImageNet defenses, namely ensemble adversarial training and randomized,

non-differentiable input transformations. To the best of our knowledge, we are the first to

present a successful black-box attack against these defenses.

The rest of this chapter is organized as follows: Section 2.3 provides a summary of related work.

Section 2.4 formally defines the threat model for our attack. Section 2.5 discusses the details of

GenAttack. Section 2.6 describes our evaluation experiments and their results. Finally, Section 2.7

concludes the chapter with discusses our main findings.

2.3 Related Work

In what follows, we summarize recent approaches for generating adversarial examples, in both the

white-box and black-box cases, as well as defending against adversarial examples. Please refer to

the cited works for further details.

1https://github.com/nesl/adversarial_genattack
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2.3.1 White-box attacks & Transferability

In the white-box case, attackers have complete knowledge of and full access to the targeted DNN.

In this scenario, the adversary is able to use backpropagation for gradient computation, which

enables efficient gradient-based attacks. We briefly summarize a few important white-box attacks

formulations below.

L-BFGS

[SZS13] used box-constrained L-BFGS to minimize the `2 norm of the added adversarial noise

||δ||2 subject to f(x + δ) = l (prediction is class l) and x + δ ∈ [0, 1]m (input is within the valid

pixel range), where f : Rm → {1, ..., k} is the classifier, mapping a data example to a discrete label,

l ∈ {1, ..., k} is the target output label, and δ is the added noise.

FGSM & I-FGSM

[GSS14] proposed the Fast Gradient Sign Method (FGSM) to quickly generate adversarial examples.

Under an L∞ distortion constraint ‖δ‖∞ ≤ ε, FGSM uses the sign of the gradient of the training

loss J with respect to the original x0 and the true label l, to generate an adversarial example:

x = x0 + ε · sign(∇J(x0, l)), Similarly, targeted attacks can be implemented by computing the loss

with respect to a specified target class t, and instead going in the direction of the negative gradient.

In [KGB16a], an iterative version of FGSM was proposed (I-FGSM), where FGSM is used

iteratively with a finer distortion constraint, followed by an ε-ball clipping. In [MMS17a], project

gradient descnet (PGD) is introduced, where I-FGSM is modified to incorporate random starts.

C&W & EAD

Instead of leveraging the training loss, C&W [CW17a] designed an L2-regularized loss function

based on the logit layer representation in DNNs for crafting adversarial examples. Handling the

box constraint x ∈ [0, 1]p using a change of variables, they used Adam [KB14a] to minimize

c · f(x, t) + ‖x − x0‖2
2, where f(x, t) is a loss function depending logit layer values and target
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class t. EAD [CSZ17] generalizes the attack by minimizing an additional L1 penalty, and has been

shown to generate more robust and transferable adversarial examples [SC17, SC18, LCC18].

White-box attacks can also be used in black-box settings by taking advantage of transferabil-

ity [LCL18]. Transferability refers to the property that adversarial examples generated using one

model are often misclassified by another model [SZC18]. The substitute model approach to black-

box attacks takes advantage of this property to generate successful adversarial examples, as we will

discuss in the next subsection.

2.3.2 Black-box attacks

In the literature, the black-box attack setting has been referred to as the case where an attacker has

free access to the input and output of a targeted DNN but is unable to perform back propagation on

the network. Proposed approaches have relied on transferability and gradient estimation, and are

summarized below.

Substitute Networks

Early approaches to black-box attacks made use of the power of free query to train a substitute

model, a representative substitute of the targeted DNN [PMG17]. The substitute DNN can then be

attacked using any white-box technique, and the generated adversarial examples are used to attack

the target DNN. As the substitute model is trained to be representative of a targeted DNN in terms

of its classification rules, adversarial examples of the substitute model are expected to be similar to

adversarial examples of the corresponding targeted DNN. This approach, however, relies on the

transferability property rather than directly attacking the target DNN, which is imperfect and thus

limits the strength of the adversary. Furthermore, training a substitute model is computationally

expensive and hardly feasible when attacking large models, such as Inception-v3 [SLJ15].
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Zeroth Order Optimization (ZOO)

The zeroth order optimization (ZOO) attack builds on the C&W attack to perform black-box

attacks [CZS17b], by modifying the loss function such that it only depends on the output of the

DNN, and performing optimization with gradient estimates obtained via finite differences. ZOO,

however, suffers from requiring a huge number of queries, since a gradient estimate requires 2

queries per each coordinate. Thus, attacking Inception-v3 [SLJ15] on the ImageNet dataset requires

299× 299× 3× 2 = 536, 406 queries per each optimization step. To resolve this issue, stochastic

coordinate descent (SCD) is used, which only requires 2 queries per step. Still, convergence of

SCD can be slow when the number of coordinates is large, thus reducing the dimensionality of the

perturbation and using importance sampling are also crucial. Applying these techniques, unlike the

substitute model approach, attacking Inception-v3 becomes computationally tractable. However, as

we demonstrate in our experiments, the gradient estimation procedure is still quite query-inefficient,

and thus impractical for attacking real-world systems.

In parallel works, [BRB18, IEA18, TTC18] have also studied the problem of efficiency and

strength of black-box adversarial attacks, but our work remains unique in its goal and approach. [BRB18]

focuses on attacking black-box models with only partial access to the query results. Notably, their

method takes, on average, about 72x more queries than ours to achieve success against an unde-

fended ImageNet model. [IEA18] and [TTC18] study the efficiency of black-box attacks under the

same threat model we consider, however, both rely on gradient estimation, rather than gradient-free

optimization. [IEA18] estimates the gradient of the expected value of the loss under a parameter-

ized search distribution which can be seen as a finite differences estimate on a random gaussian

basis. [TTC18] dispenses with ZOO’s coordinate-wise estimation with a scaled random full gradient

estimator. Though we treat both efforts as parallel work, for the sake of completeness, we provide a

comparison between our “gradient-free” approach and the other query-efficient “gradient-estimation”

approaches in our results.
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2.3.3 Defending against adversarial attacks

Adversarial Training

Adversarial training is typically implemented by augmenting the original training dataset with the

label-corrected adversarial examples to retrain the network. In [MMS17a], a high capacity network

is trained against L∞-constrained PGD, I-FGSM with random starts, yielding strong robustness

in the L∞ ball, but has been shown to be less robust to attacks optimized on other robustness met-

rics [SC17, SRB19, ZCS19]. In [TKP17], training data is augmented with perturbations transferred

from other models, and was demonstrated to have strong robustness to transferred adversarial exam-

ples. We demonstrate in our experimental results that its less robust to query-efficient black-box

attacks, such as GenAttack.

Gradient Obfuscation

It has been identified that many recently proposed defenses provide apparent robustness to strong

adversarial attacks by manipulating the gradients to either be nonexistent or incorrect, dependent on

test-time randomness, or simply unusable. Specifically, it was found in analyzing the ICLR 2018

non-certified defenses that claim white-box robustness, 7 of 9 relied on this phenomenon [ACW18].

It has also been shown that FGSM based adversarial training learns to succeed by making the

gradients point in the wrong direction [TKP17].

One defense which relies upon gradient obfuscation is utilizing non-differentiable input transfor-

mations, such as bit-depth reduction, JPEG compression, and total variance minimization [GRM17].

In the white-box case, this defense can be successfully attacked with gradient-based techniques

by replacing the non-differentiable transformation with the identity function on the backward

pass [ACW18]. Though effective, this approach is not applicable in the black-box case, since the

attacker requires knowledge of the non-differentiable component. We demonstrate in our experimen-

tal results that GenAttack, being gradient-free and thus impervious to said gradient manipulation,

can naturally handle such procedures in the black-box case. Note that many black-box attacks that

require gradient estimation including [CZS17b, IEA18, TTC18] cannot be directly applied when
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non-differentiable input transformations exist.

2.4 Threat Model

We consider the following attack scenario. The attacker does not have knowledge about the network

architecture, parameters, or training data. The attacker is solely capable of querying the target model

as a black-box function:

f : Rd → [0, 1]K

where d is the number of input features and K is the number of classes. The output of function f

is the set of model prediction scores. Note, that the attacker will not have access to intermediate

values computed in the network hidden layers, including the logits.

The goal of the attacker is to perform a targeted attack. Formally speaking, given a benign input

example x that is correctly classified by the model, the attacker seeks to find a perturbed example

xadv for which the network will produce the desired target prediction t chosen by the attacker from

the set of labels {1..K}. Additionally, the attacker also seeks to minimize the Lp distance, in order

to maintain the perceptual similarity between xorig and xadv. i.e.,

arg max
c∈{1..K}

f(xadv)c = t such that ||x− xadv||p ≤ δ

where the distance norm function Lp is often chosen as L2 or L∞.

This threat model is equivalent to that of prior work in black-box attacks [CZS17b, PMG17],

and is similar to the chosen-plain-text attack (CPA) in cryptography, where an attacker provides the

victim with any chosen plain-text message and observes its encryption cipher output.

2.5 GenAttack Algorithm

GenAttack relies on genetic algorithms, which are population-based gradient-free optimization

strategies. Genetic algorithms are inspired by the process of natural selection, iteratively evolving

a population P of candidate solutions towards better solutions. The population in each iteration
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is called a generation. In each generation, the quality of population members is evaluated using a

fitness function. “Fitter” solutions are more likely to be selected for breeding the next generation.

The next generation is generated through a combination of crossover and mutation. Crossover is

the process of taking more than one parent solution and producing a child solution from them; it is

analogous to reproduction and biological crossover. Mutation applies a small random perturbation

to the population members, according to a small user-defined mutation probability. This is done in

order to increase the diversity of population members and provide better exploration of the search

space.

Algorithm 1 describes the operation of GenAttack. The algorithm input is the original example

xorig and the target classification label t chosen by the attacker. The algorithm computes an

adversarial example xadv such that the model classifies xadv as t and ||xorig − xadv||∞ ≤ δmax. We

define the population size to be N , the “mutation probability” to be ρ, and the “mutation range” to

be α.

GenAttack initializes a population of examples around the given input example xorig by picking

random examples from a uniform distributed defined over the sphere centered at the original example

xorig, whose radius = δmax. This is achieved by adding random noise in the range (−δmax, δmax) to

each dimension of the input vector xorig. Then repeatedly, until a successful example is found, each

population members’ fitness is evaluated, parents are selected, and crossover & mutation are

performed to form the next generation.

Fitness function:

The subroutine ComputeFitness evaluates the fitness, i.e. quality, of each population member.

As the fitness function should reflect the optimization objective, a reasonable choice would be to

use the output score given to the target class label directly. However, we find it more efficient to

also jointly motivate the decrease in the probability of other classes. We also find that the use of

log proves to be helpful in avoiding numeric instability issues. Therefore, we chose the following

function:

ComputeF itness(x) = log f(x)t − log

j=k∑
j=0,j 6=t

f(x)c
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Algorithm 1: Targeted Adversarial Attack using GenAttack
Input: original example xorig, target label t, maximum L∞ distance δmax, mutation-range α,

mutation probability ρ, population size N , τ sampling temperature.

. Create initial generation.

for i = 1, ..., N in population do

P0
i ← xorig + U(−δmax, δmax)

end for

for g = 1, 2...G generations do

for i = 1, ..., N in population do

F g−1
i = ComputeF itness(Pg−1

i )

end for

xadv = Pg−1

arg maxj F
g−1
j

. Find the elite member.

if arg maxc f(xadv)c == t then

Return: xadv . Found successful attack

end if

Pg1 = {xadv}

. Compute Selection probabilities.

probs = Softmax(F g−1/τ)

for i = 2, ..., N in population do

Sample parent1 from Pg−1 according to probs

Sample parent2 from Pg−1 according to probs

child = Crossover(parent1, parent2)

childmut = child+Bernoulli(ρ)∗ ↪→ U(−α δmax, α δmax) . Apply mutations and

clipping.

childmut = Πδmax(childmut,xorig)

. Add mutated child to next generation.

Pgi = {childmut}

end for

. adaptively update α, ρ parameters

ρ, α = UpdateParameters(ρ, α)

end for
16



Selection:

Population members at each iteration are ranked according to their fitness value. Members with

higher fitness are more likely to be a part of the next generation while members with lower fitness

are more likely to be replaced. We compute the probability of selection for each population member

by computing the Softmax of the fitness values to turn them into a probability distribution. Then,

we independently select random parent pairs among the population members according to that

distribution. We also find it important to apply the elitism technique [BMP96], where the elite

member, the one with highest fitness, of the current generation is guaranteed to become a member

of the next generation.

Crossover operation:

After selection, parents are mated to produce members of the next generation. A child is generated by

selecting each feature value from either parent1 or parent2 according to the selection probabilities

(p, 1− p) where p is defined as

p =
fitness(parent_1)

fitness(parent_1) + fitness(parent_2)

Mutation operation:

To promote diversity among the population members and exploration of the search space, at the

end of each iteration, population members can be subject to mutation, according to probability ρ.

Random noise uniformly sampled in the range (−α δmax, α δmax) is applied to individual features

of the crossover operation results. Finally, clipping operator Πδmaxis performed to ensure that the

pixel values are within the permissible L∞ distance away from the benign example xorig.

2.5.1 Improving Query Efficiency

In this section, we present a couple of optimizations that we adopt in our GenAttack algorithm, and

which contribute significantly to query efficiency.
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2.5.1.1 Dimensionality Reduction:

On one hand, scaling genetic algorithms to explore high-dimensional search spaces (such as

ImageNet models) efficiently requires a large population size in each generation. On the other

hand, evaluating the fitness of each member implies additional costs in the form of new queries.

Therefore, we limit GenAttack to operate using a relatively small (e.g., less than ten) population

size. We provide more discussion on the trade-off between population size and number of queries

in Section 2.6.3.

In addition, motivated by the work in [TTC18], we seek to address the challenge of scaling

genetic algorithms (in turn GenAttack), by performing dimensionality reduction of the search space

and defining adversarial noise in the lower dimensional space. To compute the adversarial example,

we apply bilinear resizing (which is deterministic), to scale the noise up to same size as the input.

Thus,

xorig ∈ [0, 1]d, eadv ∈ [0, 1]d
′
, xadv = S(eadv) + xorig

where eadv is the learnt adversarial noise, S is the bilinear resizing operation, and d′ is chosen such

that d′ < d. Effectively, this leads to a condensed adversarial noise vector, where one value of

eadv is used to perturb multiple neighbouring pixels of xorig to produce xadv. We noticed that this

approach significantly improves the query efficiency of GenAttack against high dimensional models,

such as ImageNet models, while maintaining the attack success rate under the L∞ constraint.

2.5.1.2 Adaptive Parameter Scaling

In order to lessen the sensitivity of genetic algorithms to hyperparameter values (e.g. mutation rate,

population size, and mutation range), we use an annealing scheme where the algorithm parameters

(namely the mutation rate ρ and mutation range α) are decreased gradually if the search algorithm

is detected to be stuck for a number of sequential iterations without any further improvement in the

objective function. Adaptive scaling alleviates the situation where a very high mutation rate may

allow for an initially fast decrease in the objective function value, after which the algorithm may get

stuck without achieving any further progress.
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We employ exponential decay to update the parameter values

ρ = max(ρmin, 0.5× (0.9)num_plateaus) (2.1)

α = max(αmin, 0.4× (0.9)num_plateaus) (2.2)

where ρmin and αmin are chosen to be 0.1 and 0.15 respectively, and num_plateaus is a counter

incremented whenever the algorithm does not improve the fitness of the population’s elite member

(highest fitness) for 100 consecutive steps.

2.6 Results

We evaluate GenAttack by running experiments attacking state-of-art MNIST, CIFAR-10, and

ImageNet image classification models. For each dataset, we use the same models as used in the

ZOO work [CZS17b]. For MNIST and CIFAR-10, the model accuracies are 99.5% and 80%,

respectively. The reader can refer to [CW17a] for more details on the architecture of those models.

For ImageNet, we use Inception-v3 [SLJ15], which achieves 94.4% top-5 accuracy and 78.8% top-1

accuracy. We compare the effectiveness of GenAttack to ZOO on these models in terms of the

attack success rate (ASR), the runtime, and the median number of queries necessary for success.

The runtime and query count statistics are computed over successful attacks only. A single query

means an evaluation of the target model output on a single input image. Using the authors’ code2,

we configure ZOO for each dataset based on the implementations the authors used for generating

their experimental results [CZS17b]. We also evaluate against the state-of-the-art white-box C&W

attack [CW17a], assuming direct access to the model, to give perspective on attack success rate.

In addition, we evaluate the effectiveness of GenAttack against ensemble adversarial train-

ing [TKP17], using models released by the authors at the following link3. Ensemble adver-

sarial training is considered to be the state-of-art ImageNet defense against black-box attacks,

proven to be effective at providing robustness against transferred attacks in hosted competi-

tions [TKP17, KGB18, SLA18]. Finally, we evaluate against recently proposed randomized,

2https://github.com/huanzhang12/ZOO-Attack

3https://github.com/tensorflow/models/tree/master/research/adv_imagenet_
models
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Figure 2.1: MNIST adversarial examples generated by GenAttack. Row label is the true label and

column label is the target label.
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Figure 2.2: CIFAR-10 adversarial examples generated by GenAttack. Row label is the true label

and column label is the target label.
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non-differentiable input transformation defenses [GRM17] to test GenAttack’s performance against

gradient obfuscation. We find that GenAttack can handle such defenses as-is due to its gradient-free

nature.

Hyperparameters

For all of our MNIST and CIFAR-10 experiments, we limit GenAttack to a maximum of 100,000

queries, and fix the hyperparameters to the following values: mutation probability ρ = 5e−2,

population size N = 6, and step-size α = 1.0. For all of our ImageNet experiments, as the

images are nearly 100x larger than those of CIFAR-10, we use a maximum of 1,000,000 queries

and adaptively update the ρ and α parameters as discussed earlier in Section 2.5. In addition, we

experimented both with and without dimensionality reduction (d′ = 96). To match the mean L∞

distortion computed over successful examples of ZOO, we set δmax = {0.3, 0.05, 0.05}, for our

MNIST, CIFAR-10, and ImageNet experiments, respectively. As genetic algorithms have various

tuning parameters, we conduct parameter sensitivity studies in Section 2.6.3. To encourage further

work, our code is released as open source. 4

2.6.1 Query Comparison

We compare GenAttack and ZOO by number of queries necessary to achieve success, and provide

C&W white-box results to put the ASR in perspective. For MNIST, CIFAR-10, and ImageNet, we

use 1000, 1000, and 100 randomly selected and correctly classified images from the test sets. For

each image, we select a random target label.

2.6.1.1 MNIST and CIFAR-10:

Table 2.1 shows the results of our experiment. The results show that both ZOO and GenAttack can

succeed on the MNIST and CIFAR-10 datasets, however GenAttack is 2,126 times and 2,568 times

more efficient on each. A randomly selected set of MNIST and CIFAR-10 test images and their

4https://github.com/nesl/adversarial_genattack.git
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MNIST (L∞ = 0.30) CIFAR-10 (L∞ = 0.05)

ASR Queries ASR Queries

C&W 100% – 100% –

ZOO 98% 2,118,222 93.3% 2,064,798

GenAttack 100% 996 96.5% 804

Table 2.1: Attack success rate (ASR) and median number of queries for the C&W (white-box)

attack, ZOO, and GenAttack with equivalent L∞ distortion. Median of query counts is computed

over successful examples. Number of queries is not a concern for white-box attacks.

associated adversarial examples targeted to each other label are shown in Figure 2.1 and Figure 2.2.

ImageNet:

Table 2.2 shows the results of our experiment against normally trained (InceptionV3) and ensemble

adversarially trained (Ens4AdvInceptionV3) ImageNet models. To demonstrate the effect of

dimensionality reduction and adaptive parameter scaling, we denote GenAttack without such tricks

as “GA baseline”. On ImageNet, ZOO is not able to succeed consistently in the targeted case,

which is significant as it shows that GenAttack is efficient enough to effectively scale to ImageNet.

Moreover, GenAttack is roughly 237 times more efficient than ZOO, and 9 times more query

efficient than the GA baseline. A random example of results against Inception-v3 test image with

its associated adversarial example is shown in Figure 2.3.

2.6.1.2 Comparison to parallel efforts in query efficient attacks

While preparing this manuscript, we became aware of parallel efforts that were also developed to

address query-efficient adversarial attacks. For sake of completeness, we also present a comparison

between our approach and other contributions. Unlike GenAttack, which performs gradient-free

optimization, [TTC18] and [IEA18] propose more efficient gradient estimation procedures than

ZOO. Table 2.3 shows a comparison between the results of the three methods. We notice that while
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Welsh springer spaniel Parking meter

toilet tissue photocopier

French horn photocopier

Figure 2.3: Random samples of adversarial examples generated by GenAttack against the Incep-

tionV3 model (L∞ = 0.05). Left figure: original, right figure: adversarial example.
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washbasin rugby ball

Macaw Triumphal arch

Figure 2.4: Adversarial example generated by GenAttack against the Bit-depth Reduction

(L∞ = 0.05) and JPEG compression defense (L∞ = 0.15). Left figure: original, right figure:

adversarial example.
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InceptionV3 Ens4AdvInceptionV3

ASR Queries ASR Queries

C&W 100% - 100% -

ZOO 18% 2,611,456 6% 3,584,623

GA baseline 100% 97,493 93% 163,995

GenAttack 100% 11,081 95% 21,966

Table 2.2: Attack success rate (ASR) and median number of queries for the C&W (white-box) attack,

ZOO, and GenAttack with equivalent L∞ distortion (0.05). Median of query counts is computed

over successful examples. GA baseline is GenAttack without the dimensionality reduction and

adaptive parameter scaling tricks.

Attack Queries Count L2-distance L∞-distance

GenAttack 11,081 2.3× 10−4 0.05

AutoZOOM [TTC18] 13,099 8.1× 10−4 0.75

Ilyas et al.[IEA18] 14,737 1.9× 10−4 0.05

Table 2.3: Comparison with parallel work against the ImageNet InceptionV3 model in terms of both

median of query counts and per-pixel-L2 and L∞ distances between the original and adversarial

images.

the three methods are all significantly more query efficient than the previous state-of-art (ZOO),

GenAttack requires 25% fewer queries than the work of [IEA18] under the same L∞ distance

constraint at the cost of a slight increase in L2 distance, mainly due to the use of dimensionality

reduction. Also, GenAttack requires 15% less queries than [TTC18], even though [TTC18] has

higher distortion in both L∞ and L2 distortion. Notably, [TTC18] has additional post-processing

steps to reduce the amount of distortion but it significantly costs more queries. Therefore, we

reported the number of queries and distortion distances at the first success for all attacks.
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2.6.2 Attacking Defenses

In the following section, we present how GenAttack succeeds in breaking a set of state-of-the-art

defense methods proposed to increase the robustness of models against adversarial attacks.

2.6.2.1 Attacking Ensemble Adversarial Training:

Ensemble adversarial training incorporates adversarial inputs generated on other already trained

models into the model’s training data in order to increase its robustness to adversarial exam-

ples [TKP17]. This has proven to be the most effective approach at providing robustness against

transfer-based black-box attacks during the NIPS 2017 Competition. We demonstrate that the

defense is much less robust against query-efficient black-box attacks, such as GenAttack.

We performed an experiment to evaluate the effectiveness of GenAttack against the ensemble

adversarially trained model released by the authors [TKP17], namely Ens4AdvInceptionV3.

We use the same 100 randomly sampled test images and targets used in our previous ImageNet

experiments. We find that GenAttack is able to achieve 95% success against this strongly defended

model, significantly outperforming ZOO. As seen, in Table 2.2, we compare the success rate and

median query count between the ensemble adversarially trained and the vanilla Inception-v3 models.

Our comparison shows that these positive results are yielded with only a limited increase in query

count. We additionally note that the maximum L∞ distortion used for evaluation in the NIPS 2017

competition varied between 4 and 16 (in a 0-255 scale), which when normalized equals 0.02 and

0.06, respectively. Our δmax (0.05) falls in this range.

2.6.2.2 Attacking Non-Differentiable, Randomized Input Transformations:

Non-differentiable input transformations perform gradient obfuscation, relying upon manipulating

the gradients to succeed against gradient-based attackers [ACW18]. In addition, randomized

transformations increase the difficulty for the attacker to guarantee success. One can circumvent

such approaches by modifying the core defense module performing the gradient obfuscation,

however this is clearly not applicable in the black-box case.
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CIFAR-10 ImageNet

ASR Queries ASR Queries

Bit depth 93% 2,796 95% 16,301

JPEG 88% 3,541 89% 23,822

TVM 70% 5,888 × 32 – –

Table 2.4: Evaluation of GenAttack against non-differentiable and randomized input transformation

defenses. We use L∞ = 0.05 for bit-depth, and L∞ = 0.15 for JPEG and TVM experiments. For

TVM, we compute the expectation of the fitness function by taking t = 32 queries.

In [GRM17], a number of input transformations were explored, including bit-depth reduction,

JPEG compression, and total variance minimization. Bit-depth reduction and JPEG compression

are non-differentiable, while total variance minimization introduces additional randomization and

is quite slow, making it difficult to iterate upon. We demonstrate that GenAttack can succeed

against these input transformations in the black-box case, due to its gradient-free and multi-modal

population-based nature making it impervious to gradient obfuscation. To the best of our knowledge,

we are the first to demonstrate a black-box algorithm which can bypass such defenses. Our results

are summarized in Table 2.4.

For bit-depth reduction, 3 bits were reduced, while for JPEG compression, the quality level

was set to 75, as in [GRM17]. GenAttack is able to achieve high success rate against both non-

differentiable transformations, on both the CIFAR-10 and ImageNet datasets. A visual example of

our results against JPEG compression is shown in Figure 2.4.

Total variance minimization (TVM) introduces an additional challenge as it is not only non-

differentiable, but it also introduces randomization and is an exceedingly slow procedure. TVM

randomly drops many of the pixels (dropout rate of 50%, as in [GRM17]) in the original image

and reconstructs the input image from the remaining pixels by solving a denoising optimization

problem. Due to randomization, the classifier returns a different score at each run for the same input,

confusing the attacker. Succeeding against randomization requires more iterations, but iterating

upon the defense is difficult due to the slow speed of TVM processing.
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In the setting with randomization, the ComputeFitness function can be generalized to be

ComputeF itness(x) = E
r

[log f(x, r)t − log max
c 6=t

f(x, r)c]

where f(x, r) is the randomization-defended model query function and r is the noise input to the

TVM function, GenAttack can still handle this defense in the black-box case. The expectation is

computed by querying the model t times (we used t = 32) for every population member to obtain

a robust fitness score at the cost of an increased number of queries. Due to the computational

complexity of applying TVM on each query, we performed the TVM experiment only using the

CIFAR-10 dataset and achieved 70% success with L∞ = 0.15. Due to the large randomization

introduced by TVM, we counted an adversarial example as success only if it is classified as the

target label three times in a row. Notably, TVM significantly decreases the model accuracy on clean

inputs (e.g. in our CIFAR-10 experiments, from 80% to 40%) unless the model is re-trained with

transformed examples [GRM17].

Comparison to ZOO and C&W:

Due to the non-differentiable nature of the input transformations, the C&W attack, a gradient-

based attack, can not succeed without manipulating the non-differentiable component, as discussed

in [ACW18]. In the white-box case, this method can be applied to yield high success rate, but is not

applicable in the more restricted black-box case. In the black-box setting, ZOO achieved 8% and

0% against the non-differentiable bit-depth reduction and JPEG compression defenses on ImageNet,

again demonstrating its impracticality.

2.6.3 Hyper-parameters values selection

Since genetic algorithms are traditionally sensitive to the choice of hyper-parameter values (e.g.

population, mutation rate, etc.), we present a discussion regarding this effect, in the context of query

efficiency, which leads to our selection of the hyper-parameter values listed in Section 2.6.
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Figure 2.5: Effect of population size selection on both the speed of convergence and the number of

queries.

Population size:

Large population size allows for increased population diversity and thus improved exploration of the

search space within fewer iterations. However, since the evaluation of each population member costs

one query, there is a trade-off in the selection of large population size to accelerate the algorithm

success (in terms of the number of iterations), and the total number of queries spent. Figure 2.5

demonstrates this trade-off. On a set of 20 images, we recorded the mean number of queries as

well as the number of iterations until success under different choices of population size. From this

experiment, we conclude that the relatively small population size of six is a reasonable choice to

balance between convergence speed and number of queries.

Mutation rate:

For the mutation rate ρ, we found that the best result can be achieved if we use an adaptive mutation

rate which is gradually decayed according to Eq. (2.1) and (2.2) in Section 2.5. As shown in
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Figure 2.6: Effect of mutation probability on the number of queries required until success.

Figure 2.6, this method performs better than fixed valued mutation rates. Effectively, the adaptive

mutation rate balances between exploration and exploitation by encouraging exploration initially,

and then gradually increasing the exploitation rate as the algorithm approaches convergence near an

optimal solution.

2.7 Conclusion and Future Work

In this chapter, we presented GenAttack, a powerful and efficient black-box attack which uses

a gradient-free optimization scheme via adopting a population-based approach through genetic

algorithms. We evaluated GenAttack by attacking well-trained MNIST, CIFAR-10, and ImageNet

models, and found that GenAttack is successful at performing targeted black-box attacks against

these models with not only significantly less queries than the previous state-of-the-art, but addi-

tionally can achieve a high success rate on ImageNet, which previous approaches are incapable of

scaling to. Furthermore, we demonstrate that GenAttack can succeed against ensemble adversarial

training, the state-of-the-art ImageNet defense, with only a limited increase in the number of queries.
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Finally, we showed that GenAttack can succeed against gradient obfuscation, due to its gradient-free

nature, namely through evaluating against non-differentiable input transformations, and can even

succeed against randomized ones by generalizing the fitness function to compute an expectation over

the transformation. To the best of our knowledge, this is the first demonstration of a black-box attack

which can succeed against these state-of-the-art defenses. Our results suggest that population-based

optimization opens up a promising research direction into effective gradient-free black-box attacks.

Future work: Our directions of the future work include studying how to efficiently generate

adversarial examples when the black-box classifier returns only the hard-label prediction without

probability scores. Also, we will investigate ideas for defenses against adversarial attacks. Also, we

would like to consider the problem of how to
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CHAPTER 3

Adversarial Attacks against Speech Recognition Systems

In this Chapter, we demonstrate how the GenAttack algorithm we introduced in Chapter 2 can be

used to attack models for automatic speech recognition.

3.1 Background

Recent progress in machine learning and artificial intelligence is shaping the way we interact with

our everyday devices. Speech based interaction is one of the most effective means and is widely

used in personal assistants of smartphones (e.g. Siri, Google Assistant). These systems rely on

running speech classification model to recognize the user’s voice commands. Although traditional

speech recognition models were based on hidden markov models (HMMs), deep learning models are

currently the state of art for automatic speech recognition (ASR) [GMH13], [AAA16] and speech

generation [ODZ16]. Despite their outstanding performance accuracies in many applications, recent

research has shown that neural networks are easily fooled by malicious attackers who can force

the model to produce wrong result or to even generate a targeted output value. This kind of attack

known as adversarial examples has been demonstrated with high success against image recognition,

and object detection models. However, to the best of our knowledge there have been no successful

equivalent attacks against automatic speech recognition (ASR) models.

3.2 Contribution

In this Chapter, we present an attack approach that fools neural-network-based speech recognition

model. Similar to adversarial example generation for images, the attacker will perturb benign
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(correctly classified) audio files by adding a small amount of noise to cause the ASR model to

mis-classify or produce a specific target output label. The added noise is small and will be observed

by a human listening to the attack audio clip as background noise and will not change how a human

recognizes the audio file. However, it will be sufficient to change the model prediction from the true

label to another target label chosen by the attacker.

Existing methods for adversarial examples generation such as FGSM [GSS14], Jacobian-based

Saliency Map Attack [PMJ16], DeepFool [MFF16], and Carlini [CW17a] depend on computing

the gradient of some output of the network with respect to its input in order to compute the attack

noise. For example, in the FGSM [GSS14] the adversarial noise is computed as:

xadv = x + ε sign(∇xJ(θ,x, y))

The gradient needed to compute adversarial noise can be efficiently computed using backpropagation

assuming attacker knows model architecture and parameters. However, backpropagation, being

based on the chain rule, requires the ability to compute the derivative of each network layer output

with respect to the layer inputs. While it is easily done in image recognition models where all

layers in the pipeline are differentiable, it becomes problematic to apply same techniques for speech

recognition models as they rely on the Mel Frequency Cepstral Coefficients (MFCCs) as features

of the input audio data. Therefore, the first layers of an ASR model typically pre-process the raw

audio by computing the spectrogram and the MFCC inputs. These two layers are not differentiable

and there is no efficient way to compute the gradient through them. While the training process

of the neural network does not require backpropagation because MFCCs are considered as model

inputs, the generation of adversarial examples would require the gradient. Therefore, gradient-based

methods [GSS14, PMJ16, CW17a, MFF16]) to generate adversarial noise are not directly applicable

to speech recognition models based on MFCCs.

Our algorithm generates adversarial noise to perform targeted attacks on ASR. To avoid comput-

ing MFCC derivatives, we use a genetic algorithm which is a gradient-free optimization method.

Our genetic algorithm based method does not require knowledge of the victim model architecture

or parameters and can be used for black box attacks without training substitutive models. We eval-

uate our attack using the speech commands recognition model [SP15] and the speech commands
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dataset [spe]. Our results show that targeted attacks succeed 87% of the time while adding noise

to only the 8 least-significant-bits of a subset of samples in a 16 bits-per-sample audio file. We

evaluate the effect of noise on human perception of the audio clip with a user study. Results show

that the noise did not change the human decision in 89% of our samples and listeners still recognize

the audio as its original label.

Adversarial Attacks on Audio:

Figure 3.1: Adversarial attacks on speech commands: a malicious attacker adds small noise to the

audio such that it is misclassified by the speech recognition model but does not change human

perception.

Adversarial examples refer to inputs that are maliciously crafted by an attacker to fool machine

learning models. Adversarial examples are typically generated by adding noise to the inputs that

are correctly classified by the model, and the added noise should be imperceptible for humans. To

create adversarial examples for speech recognition models an attacker takes a legitimate audio file

perturbs it by adding an imperceptible noise that causes the machine learning speech recognition

model to mis-classify the input and possibly produce a desired target label. We demonstrate this

in Figure 3.1, where the attacker adds noise to an audio clip of the word "YES" that the machine

learning model classifies as "NO" while the human still recognizes as "YES".

Prior Audio Attacks: While recent research uncovered potential attacks against speech

recognition models, the demonstrated attacks do not represent an instantiation of adversarial

examples [GSS14] as witnessed with image recognition models. Backdoor [RHR17] exploits the

35



non-linearities of microphones in smart devices to play audio at a frequency that is inaudible to

humans (40 kHz), but creates a shadow in the audible range of the microphone. Backdoor harnesses

this phenomenon to block microphone in places such as movie theaters. However, the attack

requires an array of specialized high frequency speakers. DolphinAttack [SM17] exploits the same

non-linearities in microphones to create commands audible to speech assistants but inaudible to

humans. Notably, in both methods [RHR17, SM17] the attack sound is not heard by the human at

all, while an adversarial example should be recognized by a human as benign while misclassified

by the speech recognition model. The attack to closest adversarial examples is the “Hidden Voice

Commands” by Carlini et al. [CMV16] that generates sounds that are unintelligible to human

listeners but interpreted as commands by devices. Nevertheless, it does not represent an adversarial

attack because the samples they generate are aimed to be ‘unrecognizable’ by humans, but it can

still lead to suspicion. A more stealthy and powerful attack will maintain the listener interpretation

of the attack samples as something benign.

3.3 Threat Model:

Following the same threat model as the one adopted in Chapter 2, a black-box threat model where

the attacker knows nothing about the model architecture and parameter values, but is capable of

querying the model results. Precisely, the victim model is used by the attacker as a black box

function f(x) while mounting his attacks. Such that: f : X −→ [0, 1]K where X is the space of all

possible input audio files, and the output [0, 1]K represent the prediction probability scores to each

one of the possible K output labels. The output values are obtained from the final Softmax layer

commonly used in classification models.

3.4 Generating Adversarial Speech Commands

We use gradient free genetic algorithm based approach to generate our adversarial examples as

shown in 3. The algorithm accepts an original benign audio clip x and a target label t as its inputs.

It creates a population of candidate adversarial examples by adding random noise to a subset of the
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Algorithm 2: Generation of Targeted Adversarial Audio Files using GenAttack
Inputs :Original benign example x

target classification label t

Output :Targeted attack example xadv

/* Initialize the population of candidate solutions */

population←− InitializePopulation(x)

iter_num = 0

while iter_num < max_iter do

scores←− ComputeFitness(population)

xadv ←− population [argmax(scores)]

if argmax f(xadv) = t then

break // Attack succeeded, Stop early.

end

/* Compute selection probabilities. */

select_probs←− Softmax( scores
Temp

)

Next population←− {}

for i← 1 to size do

Select parent1 from population according to probabilities select_probs

Select parent2 from population according to probabilities select_probs

child = Crossover(parent1, parent2)

Next population = Next population
⋃
{child}

end

foreach child of Next population do Mutate(child)

population←− Next population

iter_num = iter_num+ 1

end

return xadv
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samples within the given audio clip. To minimize the noise effect on human perception, we add

noise to only least-significant bits of a random subset of audio samples. We compute fitness score

to each population member based on the prediction score of the target label and produce the next

generation of adversarial examples from the current generation by applying selection, crossover

and mutation. Selection means that population members with higher fitness value are more likely

to become part of the next generation. Crossover takes pairs of population members and mixes

them to generate a new ‘child’ that will be added to the new population. Finally, mutation adds

random noise with very small probability to the child before passing it to the future generation. The

algorithm iterates on this process for preset number of epochs or until the attack is found successful.

To assist other researchers to reproduce our results, we have made our implementation (with

the same hyper-parameter values used for evaluation results reported in this chapter) available at

https://git.io/vFs8X.

3.5 Evaluation

Speech Recognition Model: We evaluate our attack against the Speech Commands classification

model [SP15] implemented in the TensorFlow [AAB16] software framework. This model is an

efficient and light-weight keyword spotting model based on convolutional neural network and

achieves 90% classification accuracy on the speech commands [spe] dataset. The speech commands

dataset [spe] is a crowd-sourced dataset consisting of 65,000 audio files. Each file is a one second

audio clip of single words like: "yes", "no", "up", "down", "left", "right", "on", "off", "stop", or

"go".

3.5.1 Attack Results:

For the targeted attack experiment, we randomly select 500 audio clips from the dataset at 50 clips

per labels (after we exclude the "silence" and "unknown" labels). We produce adversarial examples

from each file such that it will be classified as a different target label. For example, for an audio

clip of "yes", we produce adversarial examples that are targeted to be classified as "no", "up",
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"down", "left", etc. This means for input audio clip we produce 9 adversarial examples leading

to a total count of 4500 output files. Samples of our targeted attack output can be listened to at

https://git.io/vFs42. Figure 3.2 shows the result of our targeted attack. Our algorithm

Figure 3.2: Percentage of success for every (source, target) targeted adversarial attack.

was successful 87% in performing targeted adversarial attack between any source-target pair. We

limit the number of iterations in our algorithm to 500. If the algorithm fails to find a successful

targeted attack within 500 iterations, we declare this as failure. The median time to generate an

39



adversarial audio file is 37 seconds on a desktop machine with Nvidia Titan X GPU. A more

successful attack can be possible if we increase the limit of noise or number of iterations.

Attack labeled as source Attack labeled as target Attack labeled as other

89% 0.6% 9.4%

Table 3.1: Human perception of adversarial examples generated by our attack

3.5.2 Human Perception Results:

In order to assess the effect of added adversarial noise on human listeners, we conducted a human

study where we recruited 23 participants, and we asked them to listen to and label successful

adversarial audio clips we generated. In total, the study participants labeled 1500 audio clips. The

participants were not told what is the source or target labels of the audio clips they were provided.

Results from our human experiment shown in Table 3.1 show that 89% of participants were not

affected by the added noise and they still label the heard audio at the source label while the machine

learning model labels all of them as the target label.

3.6 Conclusion and Future Work

In this section, we discuss the limitations and possible future directions for our study.

Using MFCC inversion for white box attack: Our attack algorithm does not require knowing

the model architecture or its parameters and it only uses the victim model as a black box. In a

white-box scenario where an attacker can utilize his knowledge about victim model, a stronger

attack may be possible. However, this approach will face the hurdle of how to do back-propagation

through the MFCC and spectrogram layer. One idea is to compute the adversarial noise with respect

to the MFCC layer outputs as the classification model inputs, then use MFCC inversion [BD08] to

reconstruct the adversarial audio. Further experiments should be done to evaluate the quality of this

approach.

Evaluation against a larger ASR model and complete sentence generation: An interesting
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question is if the more powerful state-of-art ASR models are also affected by adversarial examples,

and whether we can generate adversarial sentences instead of just adversarial audio clips of single

words.

Untargeted attacks: We reported the results of our targeted attacks where the attacker specifies

the desired output label. In addition, we achieved 100% success rate with our untargeted attacks.

Although the untargeted attack is considered a weaker type of attack, further study of the untargeted

attacks can be useful to study model robustness against adversarial noise.

Over the air attack: In our evaluation, we assume that the attacker feeds the audio clip directly

to the classification model. However, a more realistic and powerful attack will succeed even when

we play the adversarial audio clip from the speaker while the victim model picks the audio from the

microphone. This is harder to achieve, and we plan to study it in follow-up research.
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CHAPTER 4

Generating Natural Language Adversarial Examples

In this Chapter, we demonstrate how the GenAttack algorithm can be modified to attack models for

natural language understanding.

4.1 Background

Adversarial examples have been explored primarily in the image recognition domain. Examples

have been generated through solving an optimization problem, attempting to induce misclassification

while minimizing the perceptual distortion [SZS13, CW17a, CSZ17, SC17]. Due to the computa-

tional cost of such approaches, fast methods were introduced which, either in one-step or iteratively,

shift all pixels simultaneously until a distortion constraint is reached [GSS14, KGB16b, MMS17b].

Nearly all popular methods are gradient-based.

Such methods, however, rely on the fact that adding small perturbations to many pixels in the

image will not have a noticeable effect on a human viewer. This approach obviously does not transfer

to the natural language domain, as all changes are perceptible. Furthermore, unlike continuous image

pixel values, words in a sentence are discrete tokens. Therefore, it is not possible to compute the

gradient of the network loss function with respect to the input words. A straightforward workaround

is to project input sentences into a continuous space (e.g. word embeddings) and consider this as

the model input. However, this approach also fails because it still assumes that replacing every

word with words nearby in the embedding space will not be noticeable. Replacing words without

accounting for syntactic coherence will certainly lead to improperly constructed sentences which

will look odd to the reader.

Relative to the image domain, little work has been pursued for generating natural language adver-
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sarial examples. Given the difficulty in generating semantics-preserving perturbations, distracting

sentences have been added to the input document in order to induce misclassification [JL17].

4.2 Contribution

In our chapter, we attempt to generate semantically and syntactically similar adversarial examples,

via word replacements, resolving the aforementioned issues. Minimizing the number of word

replacements necessary to induce misclassification has been studied in previous work [PMS16],

however without consideration given to semantics or syntactics, yielding incoherent generated

examples.

In recent work, there have been a few attempts at generating adversarial examples for lan-

guage tasks by using back-translation [IWG18], exploiting machine-generated rules [RSG18], and

searching in underlying semantic space [ZDS18]. In addition, while preparing our submission, we

became aware of recent work which target a similar contribution [KTL18, ERL18]. We treat these

contributions as parallel work.

4.3 Attack Design

4.3.1 Threat model

We assume the attacker has black-box access to the target model; the attacker is not aware of the

model architecture, parameters, or training data, and is only capable of querying the target model

with supplied inputs and obtaining the output predictions and their confidence scores. This setting

has been extensively studied in the image domain [PMG16, CZS17a, ASC18], but has yet to be

explored in the context of natural language.

4.3.2 Algorithm

To avoid the limitations of gradient-based attack methods, we design an algorithm for constructing

adversarial examples with the following goals in mind. We aim to minimize the number of modified
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words between the original and adversarial examples, but only perform modifications which retain

semantic similarity with the original and syntactic coherence. To achieve these goals, instead of

relying on gradient-based optimization, we developed an attack algorithm that exploits population-

based gradient-free optimization via genetic algorithms.

An added benefit of using gradient-free optimization is enabling use in the black-box case;

gradient-reliant algorithms are inapplicable in this case, as they are dependent on the model being

differentiable and the internals being accessible [PMS16, ERL18].

Genetic algorithms are inspired by the process of natural selection, iteratively evolving a

population of candidate solutions towards better solutions. The population of each iteration is a

called a generation. In each generation, the quality of population members is evaluated using a fitness

function. “Fitter” solutions are more likely to be selected for breeding the next generation. The next

generation is generated through a combination of crossover and mutation. Crossover is the process

of taking more than one parent solution and producing a child solution from them; it is analogous

to reproduction and biological crossover. Mutation is done in order to increase the diversity of

population members and provide better exploration of the search space. Genetic algorithms are

known to perform well in solving combinatorial optimization problems [AF94, Muh89], and due

to employing a population of candidate solutions, these algorithms can find successful adversarial

examples with fewer modifications.

Perturb Subroutine: In order to explain our algorithm, we first introduce the subroutine

Perturb. This subroutine accepts an input sentence xcur which can be either a modified sentence

or the same as xorig. It randomly selects a word w in the sentence xcur and then selects a suitable

replacement word that has similar semantic meaning, fits within the surrounding context, and

increases the target label prediction score.

In order to select the best replacement word, Perturb applies the following steps:

• Computes the N nearest neighbors of the selected word according to the distance in the

GloVe embedding space [PSM14]. We used euclidean distance, as we did not see noticeable

improvement using cosine. We filter out candidates with distance to the selected word

greater than δ. We use the counter-fitting method presented in [MST16] to post-process the
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adversary’s GloVe vectors to ensure that the nearest neighbors are synonyms. The resulting

embedding is independent of the embeddings used by victim models.

• Second, we use the Google 1 billion words language model [CMS13] to filter out words

that do not fit within the context surrounding the word w in xcur. We do so by ranking

the candidate words based on their language model scores when fit within the replacement

context, and keeping only the top K words with the highest scores.

• From the remaining set of words, we pick the one that will maximize the target label prediction

probability when it replaces the word w in xcur.

• Finally, the selected word is inserted in place of w, and Perturb returns the resulting

sentence.

The selection of which word to replace in the input sentence is done by random sampling with

probabilities proportional to the number of neighbors each word has within Euclidean distance

δ in the counter-fitted embedding space, encouraging the solution set to be large enough for the

algorithm to make appropriate modifications. We exclude common articles and prepositions (e.g. a,

to) from being selected for replacement.

Optimization Procedure: The optimization algorithm can be seen in Algorithm 3. The algorithm

starts by creating the initial generation P0 of size S by calling the Perturb subroutine S times to

create a set of distinct modifications to the original sentence. Then, the fitness of each population

member in the current generation is computed as the target label prediction probability, found by

querying the victim model function f . If a population member’s predicted label is equal to the

target label, the optimization is complete. Otherwise, pairs of population members from the current

generation are randomly sampled with probability proportional to their fitness values. A new child

sentence is then synthesized from a pair of parent sentences by independently sampling from the two

using a uniform distribution. Finally, the Perturb subroutine is applied to the resulting children.
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Algorithm 3: Algorithm for Finding Natural Language Adversarial Examples
for i = 1, ..., S in population do

P0
i ← Perturb(xorig, target)

end for

for g = 1, 2...G generations do

for i = 1, ..., S in population do

F g−1
i = f(Pg−1

i )target

end for

xadv = Pg−1

arg maxj F
g−1
j

if arg maxc f(xadv)c == t then

return xadv . Found successful attack

else

Pg1 = {xadv}

p = Normalize(F g−1)

for i = 2, ..., S in population do

Sample parent1 from Pg−1 with probs p

Sample parent2 from Pg−1 with probs p

child = Crossover(parent1, parent2)

childmut = Perturb(child, target)

Pgi = {childmut}

end for

end if

end for

4.4 Experiments

To evaluate our attack method, we trained models for the sentiment analysis and textual entailment

classification tasks. For both models, each word in the input sentence is first projected into a fixed

300-dimensional vector space using GloVe [PSM14]. Each of the models used are based on popular
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Original Text Prediction = Negative. (Confidence = 78.0%)

This movie had terrible acting, terrible plot, and terrible choice of actors. (Leslie Nielsen ...come

on!!!) the one part I considered slightly funny was the battling FBI/CIA agents, but because the

audience was mainly kids they didn’t understand that theme.

Adversarial Text Prediction = Positive. (Confidence = 59.8%)

This movie had horrific acting, horrific plot, and horrifying choice of actors. (Leslie Nielsen

...come on!!!) the one part I regarded slightly funny was the battling FBI/CIA agents, but because

the audience was mainly youngsters they didn’t understand that theme.

Original Text Prediction = Positive. (Confidence = 78%)

The promise of Martin Donovan playing Jesus was, quite honestly, enough to get me to see the

film. Definitely worthwhile; clever and funny without overdoing it. The low quality filming was

probably an appropriate effect but ended up being a little too jarring, and the ending sounded

more like a PBS program than Hartley. Still, too many memorable lines and great moments for

me to judge it harshly.

Adversarial Text Prediction = Negative. (Confidence = 59.9%)

The promise of Martin Donovan playing Jesus was, utterly frankly, enough to get me to see the

film. Definitely worthwhile; clever and funny without overdoing it. The low quality filming was

presumably an appropriate effect but ended up being a little too jarring, and the ending sounded

more like a PBS program than Hartley. Still, too many memorable lines and great moments for

me to judge it harshly.

Table 4.1: Examples of attack results for the sentiment analysis task. Modified words are highlighted

in green and red for the original and adversarial texts, respectively.
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Original Text Prediction = Negative. (Confidence = 74.30%)

Some sort of accolade must be given to ‘Hellraiser: Bloodline’. It’s actually out full-mooned

Full Moon. It bears all the marks of, say, your ‘demonic toys’ or ‘puppet master’ series, without

their dopey, uh, charm? Full Moon can get away with silly product because they know it’s silly.

These Hellraiser things, man, do they ever take themselves seriously. This increasingly stupid

franchise (though not nearly as stupid as I am for having watched it) once made up for its low

budgets by being stylish. Now it’s just ish.

Adversarial Text Prediction = Positive. (Confidence = 51.03%)

Some kind of accolade must be given to ‘Hellraiser: Bloodline’. it’s truly out full-mooned Full

Moon. It bears all the marks of, say, your ‘demonic toys’ or ‘puppet master’ series, without their

silly, uh, charm? Full Moon can get away with daft product because they know it’s silly. These

Hellraiser things, man, do they ever take themselves seriously. This steadily daft franchise

(whilst not nearly as daft as i am for having witnessed it) once made up for its low budgets by

being stylish. Now it’s just ish.

Original Text Prediction = Negative. (Confidence = 50.53%)

Thinly-cloaked retelling of the garden-of-eden story – nothing new, nothing shocking, although

I feel that is what the filmmakers were going for. The idea is trite. Strong performance from

Daisy Eagan, that’s about it. I believed she was 13, and I was interested in her character, the rest

left me cold.

Adversarial Text Prediction = Positive. (Confidence = 63.04%)

Thinly-cloaked retelling of the garden-of-eden story – nothing new, nothing shocking, although

I feel that is what the filmmakers were going for. The idea is petty. Strong performance from

Daisy Eagan, that’s about it. I believed she was 13, and I was interested in her character, the rest

left me cold.

Table 4.2: Additional examples of attack results for the sentiment analysis task. Modified words are

highlighted in green and red for the original and adversarial texts, respectively.
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Original Text Prediction: Entailment (Confidence = 86%)

Premise: A runner wearing purple strives for the finish line.

Hypothesis: A runner wants to head for the finish line.

Adversarial Text Prediction: Contradiction (Confidence = 43%)

Premise: A runner wearing purple strives for the finish line.

Hypothesis: A racer wants to head for the finish line.

Original Text Prediction: Contradiction (Confidence = 91%)

Premise: A man and a woman stand in front of a Christmas tree contemplating a single thought.

Hypothesis: Two people talk loudly in front of a cactus.

Adversarial Text Prediction: Entailment (Confidence = 51%)

Premise: A man and a woman stand in front of a Christmas tree contemplating a single thought.

Hypothesis: Two humans chitchat loudly in front of a cactus.

Table 4.3: Examples of attack results for the textual entailment task. Modified words are highlighted

in green and red for the original and adversarial texts, respectively.
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Original Text Prediction: Contradiction (Confidence = 94%)

Premise: A young girl wearing yellow shorts and a white tank top using a cane pole to fish at a

small pond.

Hypothesis: A girl wearing a dress looks off a cliff.

Adversarial Text Prediction: Entailment (Confidence = 40%)

Premise: A young girl wearing yellow shorts and a white tank top using a cane pole to fish at a

small pond.

Hypothesis: A girl wearing a skirt looks off a ravine.

Original Text Prediction: Entailment (Confidence = 86%)

Premise: A large group of protesters are walking down the street with signs.

Hypothesis: Some people are holding up signs of protest in the street.

Adversarial Text Prediction: Contradiction (Confidence = 43%)

Premise: A large group of protesters are walking down the street with signs.

Hypothesis: Some people are holding up signals of protest in the street.

Table 4.4: Additional examples of attack results for the textual entailment task. Modified words are

highlighted in green and red for the original and adversarial texts, respectively.
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Sentiment Analysis Textual Entailment

% success % modified % success % modified

Perturb baseline 52% 19% – –

GenAttack 97% 14.7% 70% 23%

Table 4.5: Comparison between the attack success rate and mean percentage of modifications

required by the genetic attack and perturb baseline for the two tasks.

open-source benchmarks, and can be found in the following repositories12. Model descriptions are

given below.

Sentiment Analysis: We trained a sentiment analysis model using the IMDB dataset of movie

reviews [MDP11]. The IMDB dataset consists of 25,000 training examples and 25,000 test examples.

The LSTM model is composed of 128 units, and the outputs across all time steps are averaged

and fed to the output layer. The test accuracy of the model is 90%, which is relatively close to the

state-of-the-art results on this dataset.

Textual Entailment: We trained a textual entailment model using the Stanford Natural Lan-

guage Inference (SNLI) corpus [BAP15]. The model passes the input through a ReLU “translation”

layer [BAP15], which encodes the premise and hypothesis sentences by performing a summation

over the word embeddings, concatenates the two sentence embeddings, and finally passes the output

through 3 600-dimensional ReLU layers before feeding it to a 3-way softmax. The model predicts

whether the premise sentence entails, contradicts or is neutral to the hypothesis sentence. The test

accuracy of the model is 83% which is also relatively close to the state-of-the-art [CZL17].

4.4.1 Attack Evaluation Results

We randomly sampled 1000, and 500 correctly classified examples from the test sets of the two tasks

to evaluate our algorithm. Correctly classified examples were chosen to limit the accuracy levels of

1https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py

2https://github.com/Smerity/keras_snli/blob/master/snli_rnn.py
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the victim models from confounding our results. For the sentiment analysis task, the attacker aims

to divert the prediction result from positive to negative, and vice versa. For the textual entailment

task, the attacker is only allowed to modify the hypothesis, and aims to divert the prediction result

from ‘entailment’ to ‘contradiction’, and vice versa. We limit the attacker to maximum G = 20

iterations, and fix the hyperparameter values to S = 60, N = 8, K = 4, and δ = 0.5. We also fixed

the maximum percentage of allowed changes to the document to be 20% and 25% for the two tasks,

respectively. If increased, the success rate would increase but the mean quality would decrease.

If the attack does not succeed within the iterations limit or exceeds the specified threshold, it is

counted as a failure.

Sample outputs produced by our attack are shown in tables 4.1, 4.2, 4.3, and 4.4. Table 4.5

shows the attack success rate and mean percentage of modified words on each task. We compare

to the Perturb baseline, which greedily applies the Perturb subroutine, to validate the use

of population-based optimization. As can be seen from our results, we are able to achieve high

success rate with a limited number of modifications on both tasks. In addition, the genetic algorithm

significantly outperformed the Perturb baseline in both success rate and percentage of words

modified, demonstrating the additional benefit yielded by using population-based optimization.

Testing using a single TitanX GPU, for sentiment analysis and textual entailment, we measured

average runtimes on success to be 43.5 and 5 seconds per example, respectively. The high success

rate and reasonable runtimes demonstrate the practicality of our approach, even when scaling to

long sentences, such as those found in the IMDB dataset.

Speaking of which, our success rate on textual entailment is lower due to the large disparity in

sentence length. On average, hypothesis sentences in the SNLI corpus are 9 words long, which

is very short compared to IMDB (229 words, limited to 100 for experiments). With sentences

that short, applying successful perturbations becomes much harder, however we were still able to

achieve a success rate of 70%. For the same reason, we didn’t apply the Perturb baseline on the

textual entailment task, as the Perturb baseline fails to achieve any success under the limits of

the maximum allowed changes constraint.
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4.4.2 User study

We performed a user study on the sentiment analysis task with 20 volunteers to evaluate how

perceptible our adversarial perturbations are. Note that the number of participating volunteers is

significantly larger than used in previous studies [JL17, ERL18]. The user study was composed of

two parts. First, we presented 100 adversarial examples to the participants and asked them to label

the sentiment of the text (i.e., positive or negative.) 92.3% of the responses matched the original

text sentiment, indicating that our modification did not significantly affect human judgment on the

text sentiment. Second, we prepared 100 questions, each question includes the original example

and the corresponding adversarial example in a pair. Participants were asked to judge the similarity

of each pair on a scale from 1 (very similar) to 4 (very different). The average rating is 2.23± 0.25,

which shows the perceived difference is also small.

4.4.3 Adversarial Training

The results demonstrated in section 4.4.1 raise the following question: How can we defend against

these attacks? We performed a preliminary experiment to see if adversarial training [MMS17b],

the only effective defense in the image domain, can be used to lower the attack success rate. We

generated 1000 adversarial examples on the cleanly trained sentiment analysis model using the

IMDB training set, appended them to the existing training set, and used the updated dataset to

adversarially train a model from scratch. We found that adversarial training provided no additional

robustness benefit in our experiments using the test set, despite the fact that the model achieves

near 100% accuracy classifying adversarial examples included in the training set. These results

demonstrate the diversity in the perturbations generated by our attack algorithm, and illustrates the

difficulty in defending against adversarial attacks. We hope these results inspire further work in

increasing the robustness of natural language models.
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4.5 Conclusion and Future Work

We demonstrate that despite the difficulties in generating imperceptible adversarial examples in

the natural language domain, semantically and syntactically similar adversarial examples can be

crafted using a black-box population-based optimization algorithm, yielding success on both the

sentiment analysis and textual entailment tasks. Our human study validated that the generated

examples were indeed adversarial and perceptibly quite similar. We hope our work encourages

researchers to pursue improving the robustness of DNNs in the natural language domain.
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CHAPTER 5

NeuroMask: Explaining Predictions of Deep Neural Networks

through Mask Learning

In this Chapter, we demonstrate how the NeuroMask algorithm which can be used to explain the

decisions of image recognition models.

5.1 Background

In the past decade, the world has witnessed a revolution in smart devices and machine intelligence.

Computers in different forms and scales, ranging from servers to smart home devices, and from

mobile phones to smart cars, are now achieving or exceeding human levels of autonomy and

intelligence in certain specific situations. Much of this success has been made possible by the surge

in the subset of machine learning algorithms known as Deep Neural Networks (DNNs). DNNs are a

powerful way to learn approximations of the complex functions that underlie the process of decision

making in many real-world applications (e.g. object recognition, image understanding, speech, and

language understanding) that would have been hard for human and domain experts to tackle before.

They also, most often, are trained using a domain-agnostic family of algorithms known as “back

propagation" and “gradient descent" which require only using a labeled set of training examples

and adjusting the model weight parameters to minimize an error, or loss function, defined over the

training examples and model weights. The final set of weights are used in the model to carry out

future predictions.

While the existing algorithms for training and building DNNs work effectively and magically

to achieve unprecedented levels of accuracy in different application domains, they suffer from a

major and, sometimes critical, limitation: DNNs lack the ability to provide explanations of how
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the predicted outcomes were computed. This is extremely important. Humans often have a prior

knowledge as to what are the important types of evidence or features which support a particular

decision. A machine learning algorithm, however, models the correlations between input features

and classes. It can learn relationships which are purely the result of noise, biases in training data,

or even poorly formed machine learning problems. For example, a cancer diagnosis model from

MRI images should highlight which part of the MRI image looks abnormal. A job applicant

selection program should be able to explain why it has preferred a given applicant over another. The

explanation is needed to ensure the fairness and correctness of the deployed models and that they are

not using spurious features. The need for this was dramatically illustrated in a recent incident where

Amazon deployed an experimental artificial intelligence recruiting tool which rated every applicant

on a scale from one to five based on their application materials [REU18]. Not too long after the

experiment began, it was discovered that the program would systemically assign CVs of women

applicants lower ratings than those of men with similar qualifications. The sexist failing behavior of

the program is of course not intended and could have been spotted earlier if the model had been

able to explain its results. For these reasons, governments around the world have started to create

regulations (e.g. the General Data Protection Regulation (GDPR) [Par16]) requiring organizations

that use machine learning and artificial intelligence to make decisions affecting users (such as

approval of loans, hiring, etc.) to also provide an explanation of their decision. In a similar effort,

the US government has organized the DARPA’s explainable Artificial Intelligence (XAI) [Gun17]

to encourage and promote research efforts that address this challenging problem.

One method for understanding the performance of a learned algorithm is to look directly at

its functional form. Some types of models, such as logistic regression and decisions trees, can

sometimes be easy to understand. However, their results are often worse than those for DNNs.

DNNs, on the other hand, learn models which are cascaded sequences of linear and non-linear

operations (e.g. ReLU, tanh, sigmoid) which lead from the input to the final outcome. It is often

impossible for a human to understand what evidence was used by the the model and how to reach

its final conclusion. The limitation of DNNs to explain their outcomes and the evidence which

supports them places barriers in their application in critical areas where an explanation is required

and is as important as the outcome. This trade-off between model accuracy and interpretability
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urges the need for a robust approach to generate explanations of DNNs predictions.

Motivated by the above, many authors have developed intepretability methods based on heat

maps: the parts of an input image area assigned weights to show their relative importance in a

DNN decision. While these efforts have lead to the creation of a number of methods (e.g. Saliency

Map [SVZ13], LIME [RSG16], Smoothed Grad [STK17]) as a way to explain neural networks

results, they are still either computationally inefficient or generate noisy results.

5.2 Contribution

Motivated by the above, we present NeuroMask, a new method that aims to generate better explana-

tions by formulating the problem of generating explanations as an optimization problem to learn a

‘mask’ that hides parts of the input which are irrelevant to the model output and leaves important

parts still visible to the model. We introduce an efficient algorithm for learning this ‘mask’ in

Section 5.4. In addition, when applied to images, we also add additional constraints that make the

explanation results more interpretable for a human observer by promoting the mask to hide/reveal

contiguous parts of the input image instead of individual pixels. NeuroMask does not require any

modification to the architecture or training algorithm of the DNN model and can be applied to

produce explanations for the outputs of any pre-trained model.

We demonstrate the effectiveness of NeuroMask by showing its explanations for the predictions

of state-the-art ImageNet [DDS09] and CIFAR-10 [KH09] image recognition models on different

examples. Visual comparison between NeuroMask and explanations generated by other methods

(Saliency Map [SVZ13], Smoothed Grad [STK17], Guided Backprop [SDB14], LIME [RSG16],

and LRP-epsilon [BBM15a]) reflect the success of NeuroMask to produce high-quality explanations.

The rest of this chapter is organized as follows: Section 5.3 summarizes the related work.

Section 5.4 describes the assumptions and implementation of the NeuroMask algorithm. Section 5.5

describes our evaluation experiments and provides visual examples of explanations generated by

NeuroMask. Finally, Section 5.6 concludes the chapter and presents directions for our future work.

57



5.3 Related Work

Over the past few years, researchers have studied the problem of DNNs interpretability. While

the definition of interpretability itself is still confusing as discussed in [Lip16b]. Most of the

work [STK17, SVZ13, ZF14, STK17] use the term to refer how to explain the DNNs prediction

results in terms of its own input which is the same definition we consider in this chapter.

The major existing methods for interpretability can coarsely be categorized according to how

they work into one of the following categories:

(a) Occlusion-based: such as [ZF14] which systemically occlude different parts of the input

image with a grey square and monitor the change of the prediction class probability. This method

while being effective is computationally inefficient due to its brute-force nature that requires trying

occlusion square at every possible position in the input image. It is also unsuitable when objects in

the image have different scales and arbitrary shapes.

(b) Gradient-based: The Saliency Map [SVZ13] method relies on computing the gradient of the

prediction class label with respect to the model input to estimate features importance. However,

the results of Saliency Map are often noisy and hard to interpret. To improve further, The gradient-

weighted action mapping (GRAD-CAM) [SCD17] uses the gradient of output label with respect to

the final convolution layer to produce a coarse localization map highlighting important region in the

image. Similarly, the SmoothGrad [STK17] improves the quality of saliency maps by reducing the

visual noise by using a regularization technique. The Layerwise Relevance Propagation (LRP) and

Deep LIFT have been recently proposed as an alternative method. The difference between these

two methods and prior work is that they attempt to estimate the global importance of pixels, rather

than the local sensitivity. LRP [BBM15b] was the first to propose the pixel-wise decomposition

of classifiers in order to produce an explanation for a classification decision. They evaluate

individual pixel contributions and produce “interpretable” heatmaps. Guided-Backprop [SDB14]

uses backpropagation and deconvolution operation to invert the computation of the DNN in order to

visualize the concepts represents by intermediate layers. Guided-Backprop can be considered as

equivalent to computing gradients except for the case when the gradient becomes negative then it

will be zeroed out.
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(c) Approximate local model-based: such as Local Interpretable Model-agnostic Explanations

(LIME) [RSG16] algorithm. LIME [RSG16] generates an explanation of a model prediction of a

given input by training another model (explainer) which is selected from a group of intrinsically

interpretable group of models (e.g. linear models, decision trees, etc.). The explainer is trained to

approximate the model’s decision surface around the provided input example. Training instances

are obtained by drawing samples uniformly at random from the perturbed neighborhood of the input

example. The perturbed samples are labeled with their prediction outcome from the given model and

given the set of perturbed samples and their labels. The explainer is trained to mimic the decision

surface of input model around the given example. LIME has been used to provide explanations for

models of different data formats including text, tabular, and images. For images datasets, LIME

uses super-pixels rather than individual pixels while producing the explainer training instances in

order to produce a more interpretable explanation in terms of super-pixels. However, the reliance

of superpixels sometimes can cause LIME to fail as we have observed in our experiments. It is

also computationally inefficient due to the necessity of training the explainer model. During our

literature survey to prepare this manuscript, we have found the approach of [FV17] to be the most

similar to our idea. Both methods attempt to generate interpretable explanations of DNN decision

by learning a mask that perturbs the input image. Nevertheless, our method is novel in its algorithm

and cost function definition.

A more comprehensive review of literature in this topic can be found in [CTR17] and [GMR18].

5.4 Algorithm Design

The basic idea behind NeuroMask is that input features which are not strongly relevant to the

model’s classification decision can be suppressed from the input without affecting the model’s

output. In order to find out which pixels are influential/unimportant, NeuroMask maintains two

clones of the given pre-trained classification model. As an input to one of them, we feed the input

example for which we seek an explanation of the model’s result. The image fed into the other model

copy is the input example after suppressing part of its features. By comparing the outputs of the two

copies, NeuroMask attempts to find which are the unimportant features that could be suppressed
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Figure 5.1: Interactions of different components in NeuroMask. The blue blocks are clones of

the pre-trained models. The dotted line represent gradient updates the adjust the values of mask

weights.

while maintaining close similarity between the outputs of the two model copies. Importantly, the

output explanation should be comprehensible for a human observer. Toward this end, we design

NeuroMask such that the explanation output is both minimal and interpretable. In this rest of this

section, we give more details on how NeuroMask operates.

We formalize the problem of explaining the predictions of a DNN from a given example, as

follows:

Given

• x ∈ RH×W×3: an input example representing RGB image whose height is H and width is W .

• f(x; θ) : RH×W×3 → [0, 1]L: a pre-trained image recognition model that maps input example

to one of different L classification labels. θ denotes the set of model parameters.

The goal of NeuroMask is to learn the values of a single channel mask filter m ∈ [0, 1]H×W with

the same height and width as the input image. Elements of the mask are real values the [0, 1]
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corresponding to the relevance of the input image pixels at the same coordinate to the model

prediction. The value 1 signifies a strongly relevant pixel and 0 deemed as an irrelevant pixel.

Figure 5.1 illustrates the different components of NeuroMask and how they interact with each

other. At the heart of NeuroMask, there are two copies of the given pre-trained model (shown within

the grey box). The two copies are identical and their weights remain frozen during the operation of

NeuroMask. They only differ in the input applied to each one of them. Additionally, NeuroMask

defines a set of trainable parameters which we refer to as ‘mask weights’ W. The mask weights are

initialized from a uniform random distribution, and transformed into a ‘relevance mask’ m using

a sigmoid function. The relevance mask is what we need to compute by NeuroMask through

the algorithm described in 3. One of the two model copies receives the input example as its input

while the other receives the result of multiplying (pixel-wise) the input example by the relevance

mask. Outputs from the two models are fed into a cost function Lpred the measures the distance

between their predictions. In addition, the mask weights W goes into two additional cost terms

Lsparse and Lsmooth which are designed to improve the interpretability of the final mask weights.

The weighted sum of these three terms (Lpred, Lsparse, Lsmooth) represent the total cost function

Ltotal of NeuroMask.

Ltotal = λp Lpred + λsp Lsparse + λsm Lsmooth

where λp, λsp, and λsm are weighting coefficient to balance between the different components of

cost function.

We use the RMSProp [TH12] optimization algorithm to compute the final mask weights W∗

that minimizes this cost function. Therefore, the final mask weights are defined by

W∗ = arg min
W

Ltotal(W; x, θ)

The three components in NeuroMask cost function are defined according the the following:

• Prediction cost Lpred: which measures the distance between the predictions of the two clones

of the given model. It is defined as the cross-entropy between the two model copies outputs.

Lpred(y, ŷ) = −
∑

i∈{1,2,..L}

1(i = arg max
j∈{1,2,..L}

yj) log (ŷi)
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• Sparseness cost Lsparse: A high-quality explanation should be minimal. Rather than declar-

ing all pixels in the input image as relevant to the model’s prediction, we need to identify

as small as possible subset of pixels that are considered the most relevant. This can be

achieved by forcing the “relevance mask” m to be sparse matrix. The sparseness of m can be

encouraged by defining Lsparse as a L1 regularizer over the mask weights.

Lsparse(W) =
H∑
i=1

W∑
j=1

|Wi,j + τ |

This will force as many as possible elements of matrix W to be equal to −τ . The τ (we pick

its value equal 20) is chosen such that σ(−τ) ≈ 0.

• Smoothness cost Lsparse: In addition to being minimal, it is also desirable for an explanation

to be interpretable. I.e., the explanation would ideally be defined in terms of objects and

object parts in the image rather than a subset of ungrouped pixels. Previous work (LIME,

[RSG16]) addressed this requirement by expressing the explanation in terms of super-pixels

which are patches of nearby pixels with similar color intensities, the approach would often fail

when we have nearby objects with similar colors (as we show in our results section). Inspired

by the work of [ZNZ18] that altered the training algorithm of convolutional networks so that

convolution filters correspond to interpretable parts of objects in the image, we employ a

similar constraint that encourages the mask weights to be smooth and therefore highlights

groups of spatially co-located pixels. Accordingly, the definition of Lsparse is chosen to be

the L1 norm of the 2nd derivative of the mask weights, which are computed by convolving W

with a discrete Laplacian filter fs

Lsmooth(W) =|∇2W(x, y)|1 =

∣∣∣∣δ2W

δx2 +
δ2W

δy2

∣∣∣∣
1

,

=|W ~ fs|1,

where ~ denotes the 2d convolution operation.

Algorithm 4 describes the steps to compute the explanation mask by minimizing the cost

function.
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Algorithm 4: Optimization algorithm to compute the explanation mask m.

1: Input: input example x ∈ RH×W , a pre-trained prediction model f : Rd → [0, 1]L.

2: Output: m explanation mask showing the relevance of different image parts to the model

decision.

3: W ∼ Uniform(−τ, τ) . Initialize mask weights

4: for i = 1, ..., T do

5: x̄ = σ(W) · x . Apply mask to input

6: y = f(x; θ) . Prediction of original input

7: ŷ = f(x̄; θ) . Prediction of masked input

8: Lpred = −
∑L

i=1 1(i = arg maxj yj) log (ŷi)

9: Lsparse = |W|1

10: Lsmooth = |W ~ fs|1

11: dW = ∇W (λp Lpred + λsp Lsparse + λsm Lsmooth)

12: . RMSProp optimizer step

13: vdw = βvdw + (1− β)dW 2

14: W = W − α dW√
dW+ε

15: end for

16: m = σ(W) . Final mask
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5.5 Evaluation Results

We evaluate the effectiveness of NeuroMask by demonstrating the visual quality of the explanations

it generates of the predictions made by pre-trained state-of-art image recognition models. These

models are tested using the CIFAR-10 [KH09] and ImageNet [DDS09] datasets. We also compare

NeuroMask outputs to the outputs to other state-of-the-art interpretability methods.

5.5.1 CIFAR-10 Results

Figure 5.2: Using NeuroMask to explain the predictions on a pre-trained model for image recognition

on randomly selected examples from the CIFAR-10 dataset.

The CIFAR-10 dataset [KH09] contains small images (32x32 pixels) for 10 different categories.

We used a convolutional network from [CW17b] that reaches near to state-of-the-art (80%)

classification accuracy on the CIFAR-10 dataset. We use NeuroMask to explain the classification

model predictions on randomly selected images. As shown in figure 5.2, NeuroMask can accurately

localize the object within the image and highlight its discriminative parts (for example; tires of

the car and wings of the airplane). This indicates that NeuroMask is effective in explaining the

decisions of the pre-trained model.

5.5.2 ImageNet Results

We also performed comparison to evaluate the quality of explanations produced by NeuroMask

versus prominent state-of-the-art methods (Saliency Map [SVZ13], Smoothed Grad [STK17], Grad-
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Figure 5.3: Qualitative evaluation of the explanations make by NeuroMask vs other state-of-the-art

interpretability methods (Saliency Map [SVZ13], Smoothed Grad [STK17], Grad-CAM [SCD17],

Guided Backprop [SDB14], LIME [RSG16], LRP-epsilon [BBM15a]) on images selected from

ImageNet [DDS09] test dataset using Inception_v3 [SVI15] image recognition model.

CAM [SCD17], Guided Backprop [SDB14], LIME [RSG16], and LRP-epsilon [BBM15a]) for

DNNs interpretability. We randomly select test images from the ImageNet [DDS09] test dataset.

The ImageNet dataset contains large scale (299× 299 pixels) images for 1000 different classes of

images. In our experiments, We use the Inception-v3 [SVI15] as the pre-trained image recognition

model (with 93.2% top-5 accuracy). The implementation of LIME [RSG16] was obtained from the

author’s Github repo1, while for the remainder of methods we use the implementations provided by

the iNNvestigate tool kit [ALS18].

Our remarks from the visual comparison are as follow: both NeuroMask and Smoothed

Grad [STK17] produce explanations that are accurate and easy to interpret for a human observer. On

the other hand, explanations produced by Saliency Map [SVZ13] and Guided Backprop [SDB14]

have too much noise which makes them hard to understand. By contrast, Grad-CAM [SCD17] is

too coarse grained while LRP-epsilon [BBM15a] is too conservative in what it highlights. Finally,

LIME [RSG16] works well in some cases but fails in others (such as in the 2nd row) where its

1https://github.com/marcotcr/lime
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reliance on superpixels causes it to declare the background as important as the golf-ball itself.

Based on these results, we conclude that NeuroMask has a lot of potential and promise to

provide explanations for DNNs outcomes. Nevertheless, in the future, we plan to conduct more

comprehensive evaluation studies that include doing user’s surveys to analyze their feedback on the

different interpretability results.

5.5.3 NeuroMask Learning Progress

Figure 5.4: Evolution of the explanation by NeuroMask during the optimization process.

Figure 5.4 shows the progress of learning an interpretable explanation during the optimization

process of NeuroMask. Since the mask weights are initialized as uniformly random, the mask

initially looks like white noise (step 0) and then gradually it starts to focus more on the relevant part

of the image as shown in Step 600. After that, the mask weights are refined to focus on important

parts of the object which are most relevant to the classifier outcome.

5.5.4 Using NeuroMask to Detect Backdoor Triggers

AI models are vulnerable to backdoor attacks. An adversary may publish online trained models

which have injected trojans into them. The backdoored model will produce normally expected

results except for the case when the input has a specific backdoor trigger. This backdoor trigger
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Figure 5.5: Different examples of Verifying NeuroMask explanation using a backdoored model

using the BadNet [GDG17] attack. The top rows represent a clean correctly classified image while

the bottom rows represents a backdoored image with the trojan trigger (the white square at the

bottom right corner)
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which is only known to the attacker will cause the model to misclassify. We perform experiments

using the German Traffic Sign (GTSRB) [SSS11] dataset classification model. We train backdoored

model on this dataset using the BadNet [GDG17] attack that poisons the training data with a trojan

trigger causing the model to misclassify. The model test accuracy on normal clean images is 97%,

but any image with the white square at the bottom right corner will be misclassified as speed limit

sign. We use NeuroMask to generate model explanations for pairs of images before and after adding

backdoor trigger. Figure 5.5 shows the generated explanations using both gradient saliency map

and netmask. Top rows represent the clean correctly classified images while bottom rows represent

the backdoored image . We notice that NeuroMask accurately identify the trigger as the explanation

of prediction of the backdoored images.

5.6 Conclusion and Future Work

In this chapter, we presented NeuroMask a novel approach for generating explanations for the

predictions of pre-trained deep neural networks. NeuroMask is model agnostic and can be used

to explain the outputs of any image recognition models. The visual quality of explanations shows

the success of NeuroMask to identify which parts of the input image were relevant to the classifier

decision. Compared to explanations generated by other interpretability methods, we find NeuroMask

to produce competitive explanations.

Future Work Our directions for future work include: extending NeuroMask to DNNs used

for other tasks such as image captioning, and data modalities such as text and sound. We are also

going to conduct users study surveys to understand their perception and feedback of the NeuroMask

generated explanations.

68



CHAPTER 6

Deep Residual Neural Networks for Audio Spoofing Detection

In this Chapter, we introduce methods to defend the smart voice-controlled devices against audio

spoofing attacks.

6.1 Background

Over the past decade, voice control has gained popularity as a practical and comfortable interface

between users and smart devices. Due to the security and privacy sensitive nature of many ap-

plications (e.g., banking, health, and smart home) running on these devices, automatic speaker

verification (ASV) [EKY13] techniques have emerged as a form of biometric identification of

the speaker. However, ASV systems are threatened by replay [KEY17] and audio spoofing at-

tacks where an attacker utilizes techniques such as voice conversion (VC) or speech synthesis

(SS) to gain illegitimate control over user devices. Speech synthesis [ODZ16, WWK16, JBW18]

and voice conversion [TCS16, HLH18] have also progressed a lot over the past decade reaching

the point where it has become very challenging to differentiate between their results and gen-

uine users’ speech. To enhance reliability against attacks, we combine ASV systems with audio

spoofing detection systems that compute countermeasure scores to distinguish between spoofed

and bonafide (genuine) speech. The automatic speaker verification spoofing and countermeasure

challenge (ASVSpoof [EKY13, WKE15, KEY17, con19]) competitions have emerged to assess the

state-of-art methods for spoofing detection and promote further research in this critical challenge.

The first edition of the competition, ASVSpoof2015[WKE15], focused on logical access

scenarios where the attacker is using text-to-speech (TTS) [ODZ16, HLH18, WWK16] and voice

conversion (VC) [TCS16, HLH18] algorithms. The second edition of ASVSpoof competition,
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ASVSpoof2017 [KEY17], focused on the physical access scenario where the attacker is performing

replay attack by recording the genuine speech and then replay it to deceive the ASV system. The

new edition of the competition, ASVSpoof2019 [con19], extends the previous versions in several

directions. First, it considers all three major forms of attacks: SS, VC, and replay attacks. Besides,

the latest and strongest spoof algorithms are used to generate more natural counterexamples for

spoof detection systems. Finally, while the previous competitions used the equal error rate (EER)

as an evaluation metric, ASVSpoof 2019 adopts a newly proposed tandem decision cost function

(t-DCF) as its primary metric and leaves EER as a secondary metric.

6.2 Contribution

In this chapter, we present our models submitted for the ASVSpoof2019 competition [con19].

Inspired by the success of deep neural networks in many tasks [AAA16, SLJ15, EKN17], we pick

a deep neural model as our model family. Among deep neural networks, convolutional networks

have been the most successful in image classification [SLJ15], and have been recently applied to

other data modalities such as Speech [AMJ14, AAA16], text [ZZL15] and ECG signals [RHH17].

We consider different feature extraction algorithms to convert the input (raw time-domain speech

waveform) into a 2D feature representation. That 2D feature representation is fed as an input into

our convolutional model. A practical challenge in training very deep (consisting of many layers)

convolutional networks is vanishing gradients that makes it hard for lower-layers (closer to input)

to receive useful update signals during the training [HZR16]. To overcome this issue, [HZR16]

recently proposed an effective solution called residual networks which employ skip connections that

act as shortcuts allowing training updates to back-propagate faster towards the lower layers during

training. Therefore, we also consider adding residual links to improve and stabilize the training of

our models. A detailed description of our model architecture is provided in Section 6.4.2. Finally,

we show how the fusion of countermeasure (CM) scores produced by models trained on different

features help to increase the accuracy of the spoofing detection.

Our contribution in this chapter is threefold. First, we design and implement a deep residual
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convolutional network to perform audio spoofing detection. Our models are released as open source1.

Second, we provide a comparison between the performance of three different feature extraction

algorithms (MFCC, log-magnitude STFT, and CQCC). Third, we evaluate the performance of

our residual network with varying choices of input features against the two attack scenarios of

ASVSpoof2019 (logical access, and physical access) using both the development (including only

known attacks) and evaluation datasets (including both known and unknown attacks).

The rest of this chapter is organized as follows. Section 6.3 provides a summary of related work.

Section 6.4.1 describes the feature extraction module of the system. Section 6.4.2 then describes

our model architecture design and implementation. Section 6.5 includes our experiment results.

Finally, Section 6.6 concludes the chapter and points the future directions.

6.3 Related Work

While the participants of the previous ASVspoof2015 [WKE15] have built several powerful solu-

tions against audio spoofing, the state-of-the-art of audio spoofing techniques, e.g., TTS [ODZ16,

HLH18] and VC [LYT18], has also progressed a lot over the past four years. Likewise, this

year’s competition ASVSpoof2019 has a more realistic dataset for replay attacks compared to

ASVSpoof2017 [KEY17]. Prominent previous approaches against logical access attacks in-

clude [VMO15] which used spectral-log-filter-bank and relative phase shift features as input to a

model combining a deep neural network with support vector machine (SVM) classifier. [CQD15]

proposed using a DNN to compute a representative spoofing vector (s-vector). Then it uses nor-

malized Mahalanobis distance between the s-vector and the class representative vector to calculate

countermeasure scores. [WYK15] uses relative phase information and group delay feature to train

a Gaussian Mixture Model (GMM) for detecting spoofing attacks. Against replay attacks, [LNM17]

have previously developed a deep learning model combining both CNN and RNN that lead to 6.73%

EER on the ASVSpoof2017 evaluation dataset. In ASVSpoof2017, [CXZ17] also used a residual

convolutional network, but with different an architecture and input features, to obtain 13.44% EER

on the eval set.

1https://github.com/nesl/asvspoof2019
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6.4 Model Design

The goal of ASVspoof challenge is to compute a countermeasure (CM) score for each input audio

file. A high CM score indicates a bonafide speech, and a low CM score indicates a spoofing attack.

We created a deep residual network that performs binary classification. To prepare the features as

the convolutional network inputs, we process the raw audio waveform first a by a feature extraction

step which we will discuss in the next section.

6.4.1 Feature Extraction

We prepare features from raw audio waveform by one of the following feature extraction algorithms:

the Mel-Frequency Cepstral Coefficients (MFCCs), the Constant Q Cepstral Coefficients(CQCCs),

and the Logarithmic Magnitude of Short-Time Fourier Transform(log-magnitude STFT).

Mel-frequency Cepstral Coefficients (MFCCs): MFCC is a widely used feature for speech

recognition and other applications like music genre classification. MFCC is achieved by computing

the short-time-Fourier-transform (STFT), then mapping the spectrum into Mel-Spectrum through a

filter bank, and finally calculating a discrete cosine transform(DCT). We pick the first 24 coefficients.

We also find the performance can be improved if we concatenate the MFCC with its first-order

∆MFCC and second derivative ∆2MFCC to produce our feature representation which is a 2D

matrix whose x axis is the time and y axis is the 72 elements of (MFCC,∆MFCC,∆2MFCC).

This improvement is because derivatives of MFCC capture the dynamics in cepstral coefficients.

Constant Q Cepstral Coefficients(CQCCs): Instead of using STFT, the CQCC uses constant-

Q transform(CQT) which was initially proposed for music processing. While STFT imposes a

regularly spaced frequency bins, the CQT uses geometrically spaced frequency bins. Thus, it

offers a higher frequency resolution at lower frequencies and higher temporal resolution at higher

frequencies. To compute CQCC, after applying CQT, we calculate a power spectrum and take a

logarithm. Then a uniform re-sampling is performed, followed by a DCT to get the CQCCs(which

is also a 2D matrix). More details of CQCC can be found in [TDE17].

Logarithmic Magnitude of STFT: An advantage of deep learning models is their capabilities
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of representation learning [BCV13, GBC16] by automatically learning high-level features from raw

input data. This ability has led to neural models which process raw input images to outperform

models dealing with human-engineered features. Inspired by this, we also train models with the

log magnitude of STFT as the input. We first compute the STFT on hamming windows (window

size = 2048 with 25% overlap). Then we calculate the magnitude of each component and convert

it to log scale. The output matrix captures the time-frequency characteristics of the input audio

waveform and is fed directly as an input to our neural model without any further transformations

or conversions. While this input representation is rawer than either MFCC or CQCC, we rely on

the representation learning abilities of neural networks to transform this input into higher-level

representations within the hidden layers of our model.

6.4.2 Model Architecture
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Figure 6.1: Model architecture for the Spec-ResNet model. Detailed structure of residual blocks

is shown in 6.2.

We build three different models variants MFCC-ResNet, CQCC-ResNet, and Spec-ResNet

which process MFCC, CQCC and log-magnitude STFT (which turns out to be a spectrogram) input

features, respectively. The three variants have a nearly identical architecture, but they differ from

each other in the input shape to accommodate the differences in the dimensions of input features,

and consequentially also the number of units in the first fully connected layer which is after the last

residual block, as we will explain later.

Figure 6.1 shows the architecture of the Spec-ResNet model which takes the log-magnitude

STFT as input features. First, the input is treated as a single channel image and passed through a 2D
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Figure 6.2: Detailed architecture of the convolution block with residual connection.
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convolution layer with 32 filters, where filter size = 3× 3, stride length = 1 and padding = 1. The

output volume of the first convolution layer has 32 channels and is passed through a sequence of 6

residual blocks. The output from the last residual block is fed into a dropout layer [SHK14] (with

dropout rate = 50%) followed by a hidden fully connected (FC) layer with leaky-ReLU [HZR15]

activation function (α = 0.01). Outputs from the hidden FC layer are fed into another FC layer

with two units that produce classification logits. The logits are finally converted into a probability

distribution using a final softmax layer.

The structure of a residual block is shown in Figure 6.2. Each residual block has a Conv2D layer

(32 filters, filter size = 3×3, stride = 1, padding = 1) followed by a batch normalization layer [IS15],

a leaky-ReLU activation layer [HZR15], a dropout (with dropout probability = 0.5) [SHK14], and

another final Conv2D layer (also 32 filters and filter size = 3× 3, but with stride = 3 and padding =

1). Dropout is used as a regularizer to reduce the model overfitting, and batch normalization [IS15]

accelerates the network training progress. A skip-through connection is established by directly

add the inputs to the outputs. To guarantee that the dimension agrees, we apply a Conv2D

layer (32 filters, filter size = 3 × 3, stride = 3, padding = 1) on the bypass route. Finally, batch

normalization [IS15] and leaky-ReLU non-linearlity are used to produce the residual block output.

All models are trained by minimizing a weighted cross-entropy loss function where the ratio

of between weights assigned to genuine and spoofed examples are 9:1, in order to mitigate the

imbalance in the training data distribution. The cost function is minimized using Adam opti-

mizer [KB14b] with learning rate = 5× 10−5 for 200 epochs with batch size = 32. After each epoch

we save the model parameters, and we finally use the parameters with the best performance on the

validation dataset.

The final countermeasure score (CM) is computed from the softmax outputs using the log-

likelihood ratio.

CM(s) = log(p(bona fide|s; θ))− log(p(spoof|s; θ))

where s is the given audio file and θ represents the model parameters.
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6.5 Evaluation

We implemented our neural network model using PyTorch [PGC17] and trained our models using

a desktop machine with TitanX GPU. Feature extraction was done using the librosa [MRL15]

python library.2.

6.5.1 Dataset and Baseline Models

The competition organizers provide a dataset of non-overlapping short audio files for each competi-

tion track. The bonafide voice clips come from 78 human (male and female) speakers. The dataset is

divided into three partitions with disjoint sets of speakers: training (8 male, 12 female), development

(4 male, 6 female), and evaluation (21 male, 27 female). The spoofed audio in the logical access

scenario is generated using 17 different speech synthesis and voice conversion toolkits. Six of these

attack types are considered known attacks and are used to generate the training and development

datasets while the other 11 attacks are considered unknown and are used, along with two of the

known attacks, to generate the evaluation dataset. For physical access scenario, replay attacks are

recorded and replayed in the 27 different acoustic configurations and nine different settings (combi-

nations of three categories of recording distance and three levels of replay device quality) [con19].

Evaluation data for the physical access are generated from different impulse responses and therefore

represents unknown attacks. Distributions of training and validation datasets are shown in Table 6.1.

Baseline Models : For each track of the competition, the organizers have provided implementations

for two baseline models which are using Gaussian mixture models (GMMs) [RR95, RQD00] using

the Linear Frequency Cepstral Coefficients (LFCC) and CQCC features.

6.5.2 Evaluation Metrics

The evaluation scores are computed using the following metrics on both the development dataset

(known attacks) and evaluation dataset (both known and unknown attacks):

t-DCF [KLD18]: the tandem detection cost function is the new primary metric in the ASVSpoof

2For the CQCC for which we used the MatLab code provided by competition organizers
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Logical access Physical access

Subset Bona fide Spoof Bona fide Spoof

Training 2,580 22,800 5,400 48,600

Development 2,5480 22,296 5,400 24,300

Table 6.1: Number of audio files in the ASVspoof 2019 dataset.

2019 challenge. It was proposed as a reliable scoring metric to evaluate the combined performance

of ASV and CMs.

EER: the Equal Error Rate is used as a secondary metric. EER is determined by the point at which

the miss (false negative) rate and false alarm (false positive) rate are equal to each other.

6.5.3 Results

Table 6.2 shows a comparison between the scores of our three model variants (MFCC-Resnet,

Spec-ResNet, CQCC-ResNet) and the baseline algorithms (LFCC-GMM, and CQCC-GMM) on

both the development and evaluation datatsets. Fusion represents the result of doing weighted

average of the individual ResNet models’ CM scores to provide a final CM score, where fusion

weights are assigned based on the single model’s performance on the validation dataset.

6.5.3.1 Logical Access Results

As shown in Table 6.2, Our Spec-ResNet and CQCC-ResNet have a significantly smaller

t-DCF and EER scores than the baseline algorithms on the development set (known attacks) of

the logical access scenario. The fusion of the models achieves a perfect score of zero EER and

t-DCF on the development set. However, in the evaluation set results, our models outperform the

baseline models only in the EER of CQCC-ResNet and t-DCF score of MFCC-ResNet. This

highlights the difficulty of generalizing a spoofing detection system to unknown attack algorithms.
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Logical Access Physical Access

Development Evaluation Development Evaluation

Model t-DCF EER t-DCF EER t-DCF EER t-DCF EER

Baseline LFCC-GMM 0.0663 2.71 0.2116 8.09 0.2554 11.96 0.3017 13.54

Baseline CQCC-GMM 0.0123 0.43 0.2366 9.57 0.1953 9.87 0.2454 11.04

MFCC-ResNet 0.1013 3.34 0.2042 9.33 0.3770 15.91 - -

Spec-ResNet 0.0023 0.11 0.2741 9.68 0.0960 3.85 0.0994 3.81

CQCC-ResNet 0.0002 0.01 0.2166 7.69 0.1026 4.30 0.1070 4.43

Fusion 0.0000 0.00 0.1569 6.02 0.0581 2.65 0.0693 2.78

Table 6.2: t-DCF and EER scores for the different models as measured on the development and

evaluation sets for both logical and physical access scenarios.
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Nevertheless, our model fusion shows t-DCF = 0.1569 and EER = 6.02 which are approximately

a 25% improvement over the best scores of baseline algorithms.

To provide a better analysis of the performance of our model against both known and unknown

attacks, the t-DCF scores of our models against each attack type are shown in Figure 6.3. Attacks

from A01 to A06 are known attacks (from the development set) while attacks from A07 to A19

are the 11 unknown and two known attacks (from the evaluation set). From Figure 6.3, we can see

that our models still work well against most attack types except for only two types of the unknown

attacks, namely A17 and A18. Both A17 and A18 are voice conversion algorithms, where A17 is

based on waveform filtering and A18 is based on vocoders. In comparison to the baseline models,

the CQCC-GMM model also perform poorly on A17(t-DCF=0.9820), which suggest that CQCC is

easier to be deceived by waveform filtering based video conversion attacks. Both the CQCC-GMM

and LFCC-GMM work fine on A18, so it is possible that ResNet is more vulnerable to vocoder based

video conversion attacks.

Figure 6.3: t-DCF scores of different models against different attack types (both TTS and VC) in

the logical access scenario.

6.5.3.2 Physical Access Results

In the physical access scenario, both Spec-ResNet and CQCC-ResNet have significantly

improved both the EER and t-DCF. As shown in Table 6.2, our best single model (Spec-ResNet)

79



is 50% and 60% better than the best baseline results according to the development set EER and

t-DCF, respectively. According to the evaluation set scores, Spec-ResNet reduces the t-DCF and

EER of baseline algorithms by 60% and 65%, respectively. Furthermore, the fusion of our models

leads to 71% and 75% improvement.

Table 6.3 provides detailed results of model performance over different replay attack settings.

Each setting is named with two letters. The first letter stands for the distance of the recording device

from the bona-fide speaker. ’A’ means 10-50 cm, ’B’ means 50-100 cm, and ’C’ means >100cm.

The second letter indicates the quality of replay devices, where A means perfect, B means high, and

C means low. From the results it is easy to see that, as the distance decreasing and recording device

getting better, the anti-spoof task becomes more and more difficult. The worst results are achieved

at setting ‘AA’. Another thing to notice is that, while Spec-ResNet is generally performing

better than CQCC-ResNet while in some cases like ’BB’, ’BC’, ’CB’, and ’CC’, CQCC-ResNet

outperforms Spec-ResNet.

Generally, the system performs better on physical access scenarios that on logical access. This is

probably caused by the challenge of generalization, as in logical access, most attacks in the testing

dataset are diverse and unknown, while in physical access the features come from the replay channel

properties and are easier to learn and generalize.

6.6 Conclusion and Future Work

In this chapter, we presented a novel audio spoofing detection system for both logical access

and physical access scenarios. We provide comparisons between the performance of our model

combined with three feature different feature extraction algorithms. According to the evaluation

dataset scores, against replay attacks, the fusion of our models CM scores improves the t-DCF and

EER metrics of baseline algorithm by 71% and 75% respectively. Also, against the TTS and VC

attacks, our fusion of models improves the t-DCF and EER metrics by approximately 25% each.

Future work: In the future, we are going to study how to improve the generalization of our

model against unknown attacks. One possible solution is to employ advanced fusion to build

a ’wide-and-deep’ network as proposed in [CKH16]. The key idea of this new proposal is to

80



Attack Type
CQCC-ResNet Spec-ResNet Fusion

t-DCF EER t-DCF EER t-DCF EER

AA 0.2857 10.59 0.2473 9.17 0.1845 6.78

AB 0.0690 2.57 0.0638 2.22 0.0468 1.77

AC 0.0464 1.75 0.0436 1.56 0.0219 0.80

BA 0.1404 5.46 0.1300 4.82 0.0855 3.29

BB 0.0295 1.18 0.0374 1.34 0.0230 0.79

BC 0.0213 0.84 0.0240 0.86 0.0086 0.36

CA 0.1173 4.55 0.1105 4.01 0.0705 2.71

CB 0.0266 1.00 0.0342 1.19 0.0171 0.59

CC 0.0209 0.82 0.0254 0.87 0.0074 0.28

Table 6.3: Detailed comparison between the two best single models and the fusion model in Physical

Access scenario under different replay attack settings.
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concatenate the features from each model’s last fully connected layers and use a shared softmax

layer as the output layer. This might be able to train the networks to collaborate with each other and

achieve a better fusion result.
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CHAPTER 7

PhysioGAN: Training High Fidelity Generative Model for

Physiological Sensor Readings

In this Chapter, we introduce PhysioGAN which is a generative model to produce high quality

synthetic datasets of physiological sensors time-series data. PhysioGAN can be used to alleviate the

privacy concerns that arises while sharing sensor data measurements.

7.1 Background

Improved techniques for training generative models is a rapidly growing area of research. Over

the past few years, the machine learning research community has made significant leaps for-

ward towards this goal. This wave of success has been mainly driven by the advent of new

training techniques such as the variational autoencoder (VAE) [KW13] and the generative ad-

versarial networks (GAN) [GPM14]. Through GANs and VAEs–as well as their improved ver-

sions [SGZ16, BDS18, ROV19]–we are now capable of producing high fidelity, large-scale images

with unprecedented levels of quality. GANs and VAEs have also been proven useful in a variety

of applications such as generating photorealistic super-resolution images from low-resolution im-

ages [LTH17], learning a disentangled latent space representation (which is valuable for content

manipulation) [CDH16, HMP17], and generating realistic images from text descriptions [RAY16].

However, a majority of generative model research has focused on training models for im-

ages [RMC15, SGZ16, BDS18, ROV19] and, more recently, text datasets [YZW17, JDB18, WW18,

ZLZ18]. Only a few pieces of work have studied how to learn a generative model for time series

data such as sensor readings with limited success. Data from physiological sensors, e.g., electrocar-

diograms (ECGs) and fitness tracking sensors, are now prevalent in a lot of applications for health
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monitoring and patient diagnosis. A good generative model for physiological sensor readings is an

important key for many desired applications in the medical domain. To name a few potential appli-

cations, GANs have been successfully used to boost the performance of semi-supervised learning

classification models that learn from a small set of labeled examples and a larger set of unlabeled

examples on image datasets [SGZ16]. In the medical domain, semi-supervised learning is highly

desirable since labeling medical sensors readings–e.g., whether an ECG signal segment is normal

or abnormal–can be costly and doable only by medical professionals. Further, GANs have been

utilized to address concerns of privacy in the context of machine learning. Since machine learning

models store information of training data, it has been shown that they can be reverse-engineered

by an attacker [FJR15, SSS17] to uncover sensitive information about the training data set. GANs

have been used in combination with the differential privacy techniques [DR14] to train accurate

models with strong privacy guarantees against this kind of attacks [PAE16]. It has been shown

that GANs can produce synthetic datasets that can be used in place of the original real data while

still being useful for performing analysis or even training newer models [AS19, JYS18]. These

solutions are invaluable for researchers in the medical domain since the privacy-sensitive nature of

medical datasets–along with their associated laws and regulations such as the ‘Institution Review

Board‘ (IRB)–prevents researchers from sharing the data they collect [SK11]. Unfortunately, the-

state-of-the-art methods for training generative models on sensor data readings are still far away

from being able to satisfy the requirements of these applications.

The few efforts that have explored training generative models for sensor readings have focused

on simple tasks with toy datasets rather than meaningful, real-world tasks and datasets. For example,

SenseGen [ACS17] uses a recurrent neural network to train a generative model for accelerometer

sensor readings using the maximum-likelihood objective. However, SenseGen was only capable

of performing unconditional generation and, thus, cannot control the attributes of the generator

outputs. While the model can be easily extended to support conditional generation–as we will show

in our experiments–we find that this training approach is not capable of delivering highly accurate

conditional generation results.We also studied the conditional variational recurrent autoencoder

(CVRAE) approach for training a generative model for sensor data. The variational autoencoder

maximizes an inexact lower-bound of the likelihood of training data is generally better at generating
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novel samples than traditional autoencoders [KW13]. Nevertheless, the accuracy of the conditional

generation is also not high with this training approach. On the other hand, adversarially trained

models using the GANs training framework are capable of producing more accurate conditionally

generated samples. The RCGAN model [EHR17] has demonstrated how to use this approach to

train a recurrent neural network generator with for conditional generation of medical sensors data.

However, as we show in our evaluation section, we find that despite having a very high accuracy

with the conditional generation, the RCGAN model suffers from a lack of diversity. We empirically

showed that the RCGAN model produces samples that are very similar and nearly identical within

each class. The lack of sample diversity in GANs models is a well-known problem known as mode

collapse [TOB15]–which is currently being addressed by the machine learning community [SVR17].

Although mode collapse is not unique to generator models that produce sensor data, it is more

severe in RGAN because it utilizes a recurrent generator [MPP17]. Since the discriminator used

for RCGAN training does not provide any penalty when the generator produces repeated samples,

the powerful recurrent generator tends to identify which subset of examples are good enough to

fool the discriminator and simply repeats them–leading to a lack of sample diversity. Synthetic

datasets that have samples suffering from either low generation accuracy or low diversity will have

an equally poor performance when used as a replacement for real, private data. As such, a new

training approach is needed that combines the merits of variational recurrent autoencoder approach

with the GANs approach to produce a synthetic dataset that has both high conditional generation

accuracy as well as a high diversity of samples.

7.2 Contribution

In this Chapter, we introduce PhysioGAN, a novel approach for training generative models to

produce synthetic sensor readings. PhysioGAN consists of three different components: an encoder,

a decoder and a discriminator. Together, the encoder and the decoder form a conditional variational

recurrent autoencoder (CVRAE) similar to the CVRAE model–which we consider as a baseline.

To improve the accuracy of conditional generation by the CVRAE, we introduce two additional

training objectives provided by a discriminator: the adversarial loss and the feature matching loss.
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The discriminator itself is trained as a multi-class classifier that predicts the class label of real

data and attempts to identify “fake" samples produced by the generator. To address the issue of

mode collapse, we introduce an additional diversity loss that urges the generator to maximize the

mutual information between its output and the latent space noise used to generate them. Therefore,

the diversity loss penalizes the decoder–which acts as a generator–when it generates identical

samples.We improve the training stability by using an annealing approach where the model training

cost function softly changes from a pure autoencoder loss to the new loss that combines the

variational autoencoder loss with the feature matching loss, diversity loss and adversarial loss.

We evaluate PhysioGAN against four different baselines: the conditional-recurrent neural

network generator (CRNN) (which is an extension of [ACS17] that allows for conditional genera-

tion), the conditional variational recurrent autoencoder (CVRAE), the conditional recurrent GANs

(RCGAN) [EHR17], and a variation of RCGAN that has a modified auto-regressive generator

(RCGAN-AR). We conduct our experiments using two real-world tasks and datasets. The first

dataset is the “AFib classification dataset" [YPT18], which is a dataset of ECG signal segments.

Each segment is labeled as either “Normal" or “Atrial Fibrillation (AFib)", which is a major kind of

irregular heartbeat (also known as arrhythmia) that can lead heart failures and possibly death. The

second dataset is a human activity recognition (HAR) dataset [AGO13] based on motion sensors

such as the accelerometer and the gyroscope commonly found in wearable fitness tracking devices.

The HAR dataset represents a dataset for multi-class classification with 6 different kinds of activities

that can be grouped into two major groups. Because each group has 3 types of activities that

are highly similar to each other and, learning how to conditionally generate samples is a difficult

challenge. Further, the HAR dataset introduces the challenge of multi-channel data since each data

sample has 6 different axes corresponding to correlated sensor readings. In addition to providing

a visualization and qualitative comparison of samples produced by each model, we quantitatively

evaluated the 5 models (PhysioGAN and the 4 other baselines) based on their conditional generation

accuracy, the diversity of generated samples, as well as the novelty of samples to ensure that the

model is not simply reproducing the same samples as those observed during the training. In addition

to those metrics, we use an additional metric to measure the utility [EHR17, RV19] of the synthetic

dataset produced by each generator. The utility of a synthetic dataset measures how well the dataset
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can be used to train a classification model using only the synthetic data by validating its performance

against the accuracy of a model trained on the real dataset.

Contributions Our contributions in this chapter are three-fold. First, we identify common

issues that state-of-the-art models currently suffer from by evaluating existing approaches and

available baselines of generative models for time-series sensor readings. Second, we provide a

novel model training method, PhysioGAN, that combines both generative adversarial networks and

variational recurrent autoencoders to train a generative model for sensor readings that produces

samples with high accuracy and high diversity. Third, we evaluate PhysioGAN and other baselines

on two different datasets and show that PhysioGAN is capable of producing a synthetic dataset

that are both accurate and diverse compared to the synthetic datasets generated by other baseline

algorithms. Therefore, on each of the AFib classification and HAR classification tasks, we can train

classification models using only synthetic data produced by PhysioGAN with only 10% and 20%

decrease in the classification accuracy than models trained on real data. the Finally, all of our model

implementations and experiments are available as open-source at 1 to promote further research in

this important direction of research.

The rest of this chapter is organized as follow: Section 7.3 provides a background on the

different kinds of generative models such as GANs and VAEs and also summarizes the related

work in training generative models for time-series sensor data readings. Section 7.4 describes our

model architecture and training procedure details. Section 7.5 includes the results of our evaluation

experiments. Finally, Section 7.6 concludes the chapter and discusses our future work.

7.3 Background and Related Work

In this section, we present the preliminary information necessary to understand the PhysioGAN

model as well as the works directly related to the scope of this chapter.

1https://github.com/nesl/physiogan

87



7.3.1 Background

We first present an overview of the two state-of-the-art frameworks for training generative models:

generative adversarial networks (GANs), and variational autoencoders (VAEs).

Generative Adversarial Networks

Generative adversarial networks (GANs) [GPM14] were presented as a framework for training

generative models. GANs simultaneously train two separate models through an adversarial game.

The first model–called the generator, G–learns the distribution of training data. Instead of producing

an explicit probability density value, the goal of the generator is to directly produce samples from

the distribution it learned. The input to the generator G is a noise vector, z, sampled from an

arbitrary chosen prior noise distribution pz(z), i.e., z ∼ pz(z). The noise distribution pz(z) is

typically chosen as the standard Gaussian distribution N (0, I). The generator function, G(z),

translates that random noise into fake samples that match the real samples drawn from the training

dataset. The second model is referred to as the discriminator, D. The discriminator distinguishes

between the fake samples produced by the generator and the real samples from the training dataset.

D(x) represents the probability that the input x is drawn from the real data distribution rather

than coming from the generator outputs. The training objective of the discriminator, D, is to

increase its accuracy in distinguishing between those two sets of samples. On the other hand, the

training objective of generator, G, is to fool the discriminator by producing fake samples that look

sufficiently realistic such that it becomes harder for the discriminator to identify them. This training

procedure can be mathematically formalized as D and G playing a two-player min-max game with

the following value function V (G,D):

min
G

max
D

V (G,D) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]

(7.1)

Conditional GANs [MO14] extend the original GANs [GPM14] models to generate samples that

are conditioned on a given class label attribute y. This can be achieved by feeding y as additional
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input to both the the discriminator D and generator G. Therefore, the objective function to the

two-player min-max game becomes:

min
G

max
D

V (G,D) =Ex,y∼pdata(x|y)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)))]

(7.2)

Over the past few years, many extensions to GANs have been proposed [RMC15, SGZ16,

ACB17a], and they have been successfully applied in a variety of domains such as generating

realistic super-resolution images [LTH17], image in-painting [DU18], and image synthesis based

on text description [RAY16, XZH18]. However, despite the recent success of GANs, successful

training of GANs remains a challenge as it requires finding the Nash equilibrium between two

non-cooperating players G and D. The Nash equilibrium happens when the cost of each player is

minimized with respect to its own parameters. However, since GANs training is done by applying

gradient descent to alternately minimize both the discriminator loss and the generator loss, there is

no guarantee that this training approach will converge as minimizing one of the losses may increase

the other. Therefore, researchers have suggested various tricks to improve the stability of GANs

training such as architecture guidelines for both generators and discriminators [RMC15], mini-

batch discrimination [SGZ16], and historical averaging of model weights [SGZ16]. Wasserstein

GAN [ACB17a, GAA17] is a recent improvement that replaces the discriminator by a critic and uses

either weight clipping [ACB17a] or gradient-penalties [GAA17] to enforce a Lipschitz constraint

to improve the training stability.

Variational AutoEncoders

In addition to GANs, the variational autoencoder (VAE) [KW13] is another state-of-the-art frame-

work for training generative models. Unlike GANs, where the generator, G, is trained to fool the

discriminator, the objective of VAE training is based on maximum likelihood estimation. Intuitively,

increasing the likelihood of the generator model to produce training data samples will also increase

its capability of generating samples that are similar to the training data.

A major assumption VAEs make is that the data points x are generated in response to some

latent code variable z that are drawn from a prior distribution pz(z). According to the law of total
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probability, the likelihood of one example x(i) can be expressed as:

pθ(x
(i)) =

∫
pθ(x

(i)|z) pz(z) dz (7.3)

where the model function pθ(x(i)|z) acts as a decoder that produces the likelihood of sample x(i)

to be generated according to the latent space value of z. When the decoder is implemented as a

neural network, which is capable of being a universal function approximator, It can translate the

arbitrarily chosen distribution of the latent space variables into the learned data distribution. The

prior distribution of the noise pz(z) is typically chosen as the standard Gaussian distributionN (0, I).

However, this likelihood integral in equation 7.3 is intractable because there are many possible

values of z and most of them will not have a significant likelihood of producing the given example

x(i). VAEs address this issue by introducing another network called the inference or recognition

model, qφ(z|x), that approximates the true posterior pθ(z|x). VAEs use the expected log-likelihood

of training samples under this approximate posterior:

log
(
pθ(x

(i))
)

= Ez∼qφ(z|x(i))

[
log pθ(x

(i))
]

= Ez∼qφ(z|x(i))

[
log

pθ(x
(i)|z)p(z)

p(z|x(i))

]
= Ez∼qφ(z|x(i))

[
log

pθ(x
(i)|z)p(z)

p(z|x(i))

qφ(z|x(i))

qφ(z|x(i))

] (7.4)

This equation can be simplified as:

log
(
pθ(x

(i))
)

=
[
Ez∼qφ(z|x(i))(log pθ(x

(i)|z))

−DKL

(
qφ(z|x(i))||pz(z)

)]
+DKL

(
qφ(z|x(i))||pθ(z|x(i))

) (7.5)

where DKL is the KL-divergence function that measures the distance between two probability

distributions, i.e.,

DKL(p||q) =

∫
p(x) log (

p(x)

q(x)
) dx

This allows for 7.5 to be rewritten as:

log
(
pθ(x

(i))
)

= LELBO
(
x(i); θ, φ

)
+DKL

(
qφ(z|x(i))||pθ(z|x(i))

) (7.6)
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Since The KL-divergence term is always non-negative, i.e. DKL(p, q) ≥ 0, the first right hand side

term–called the evidence lower bound (LELBO), will constitute a lower-bound for the log-likelihood

function, i.e.,

LELBO
(
x(i); θ, φ

)
≤ pθ(x)

This term LELBO is what the VAE will maximize as increasing a lower bound of log-likelihood

will increase the log-likelihood. The difference between the lower bound LELBO and the true

log-likelihood indicates the error due to replacing the exact intractable posterior pθ(z|x) by an the

approximate posterior qφ(z|x)–which is tractable to use with help of the ‘recognition’ network. The

training loss of the the variational autoencoder is equal to the negative of the evidence lower bound.

Therefore, the the training loss is defined as:

Lvae(x(i);φ, θ) = −LELBO(x(i); θ, φ)

[ Reconstruction loss︷ ︸︸ ︷
−Ez∼qφ(z|x(i))

(
log pθ(x

(i)|z)
)

+

Posterior loss︷ ︸︸ ︷
DKL

(
qφ(z|x(i))||pz(z)

)] (7.7)

The first part of the right-hand side in equation 7.7 represents the log-likelihood of the training

sample x(i) generated by the decoder network from a latent space input vector z sampled from the

recognition network. This term represents the reconstruction error of the training example after

being fed through the encoder-decoder networks. The second term of the right-hand side represents

the KL-divergence between the distribution of the latent space values produced by the recognition

network and a chosen prior distribution of the latent space values. Therefore, the KL-divergence

term acts as a regularizer that encourages the encoder to produces latent space values that match the

given prior. Typically, the latent space prior pz(z) is chosen as an isotropic Gaussian.

Calculating the gradients of the LELBO requires backpropagation through the stochastic sam-

pling of the encoder output. Therefore [KW13] introduced the technique known as the ‘reparam-

terization trick’ where the approximate posterior sampling z ∼ qφ
(
pz(z)|x(i)

)
is replaced with a

differentiable transformation. The recognition network produces the mean, µ, and the standard

deviation, σ, of the output distribution. The stochastic sampling of z can now be approximated

using the following equation:

z ∼ qφ
(
pz(z)|x(i)

)
≈ µ+ σ � ε (7.8)
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where ε ∼ N (0, I) is an auxiliary noise variable sampled from the standard Gaussian distribution.

7.3.2 Related Work

Generative models for data synthesis has been an active topic of research over the past few years.

However, most of of the research focus has been on generating high fidelity images [BDS18, KLA19,

ZGM18] and tabular datasets [AS19, PMG18, XV18, CBM17, YVE17]. For time-series datasets,

the focus has been on the generation of natural language text [MKB10, YZW17, JDB18, HYL17,

WW18] and music datasets [RER18]. Much less effort has been placed towards the generation of

physiological sensor readings. In the rest of this section, we briefly discuss the related work on the

generation of time-series and sensor readings.

Generative Models for Time-series Generation

The ability to generate high-quality human language text is essential for a variety of tasks such as

machine translation and AI chatbots. RNNLM [MKB10] uses the maximum likelihood estimate

(MLE) to train a recurrent neural network to predict the next word given the previous word. However,

MLE is not a perfect training objective due to the exposure bias problem [Hus15] that leads to

performance degradation at the generation time due to the discrepancy between the model inputs

at training and inference. Scheduled sampling technique [BVJ15] was proposed to increase

generation quality. However, it has been found that it will have the negative effect of decreasing

sample diversity–leading to another issue known as mode collapse [HYL17, TOB15] where the

model generates samples that are too similar to each other.

SeqGAN [YZW17] described an approach for training text generative models by modeling

the generator as a stochastic policy agent of reinforcement learning (RL) which is trained using

a policy gradient algorithm [SMS00]. TextGAN [ZGC16] uses a GANs framework to simultane-

ously train a recurrent neural network (RNN)-based generator with a convolutional neural network

(CNN)-based discriminator. Instead of using the standard GANs training objective for a gener-

ator, TextGAN [ZGC16] uses feature matching [SGZ16] that matches the mean and variances

of discriminator feature vectors between the real and synthetic sentences. A generative model
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that combines both a variational autoencoder and a discriminator based adversarial training was

introduced in [HYL17] to generate plausible text sequences whose attributes are controlled by

learning a disentangled latent space representation. Our model design is inspired by this work due to

the high quality of results it offered in controlled text generation. A more comprehensive literature

review on using generative models for text can be found in [LZZ18, ZLZ18].

To generate time-series data outside the domain of text and music, SktechRNN [HE17] uses a

recurrent neural network model to draw sketch-based drawings of common objects. Each drawing

is represented as time-series of paint-brush strokes.

Generative Models for Sensor Readings Generation

In the following section, we provide an overview of previous work in the domain of generating

synthetic sensor data readings.

Maximum Likelihood-based Models. SenseGen [ACS17] uses the maximum-likelihood objective

to train a recurrent neural network with mixture density distribution (MDN) outputs to generate

synthetic sensor readings. Their framework is trained and evaluated using accelerometer sensor

dataset. However, SenseGen is not capable of performing conditional generation as it does not

provide a mechanism to control the attributes of the generator results. Besides, models trained

with only maximum-likelihood objective exhibit exposure bias [Hus15] that reduce the quality

of the generated signal because the model is trained to predict the next step of sequence without

being encouraged to model the holistic features of the signal. SenseGen [ACS17] did not have an

evaluation for the quality or utility of generator results and used only visual quality to demonstrate

the success of their model. To the best of our knowledge, there is no prior work in using VAEs

to train generative models for sensor readings. VAEs have the nice capability of doing inference

by encoding the input sample into a distributed latent space vector that captures global features of

the signal. The ability to do inference jointly with generation not only improves the quality and

diversity of generator results but also can be handy in applications such as sensor data imputation to

fill missing segments of input examples.

Adversarially trained models. SensoryGAN [WCG18] uses the GANs adversarial training objec-
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tive to train generative models for three kinds of human activities: staying, walking, and jogging.

However, their technique requires training a separate generator with a different model architecture

for each kind of activity rather than using a single generator with a conditioning input. This makes

their approach less generalizable for other tasks and datasets. Also, in their experiments, they train

models to generate only three human activities (staying, walking, jogging) which are considered

coarsely grained and strongly dissimilar from each other due to the significant degree of difference

in motion intensity. A more solid experiment would be to include activities that are considered

similar with only fine grained differences such as walking, walking upstairs, and walking downstairs,

or normal vs abnormal ECG signals we are doing in our experiments. The RCGAN [EHR17] uses

a recurrent discriminator to train a recurrent generative model using the GAN training objective.

However, experimentss of [EHR17] were only done on toy datasets and as we show later in our

evaluation sections the synthetic samples produced RCGAN suffer from low diversity.

Compared to prior work, our work is the first of its kind that combines variational autoencoder

with adversarial networks for the task of conditional generation of synthetic sensor readings. By

using a novel training objective that combines variational autoencoder and generative adversarial

networks, our model is able to generate high-quality synthetic datasets that are both accurate and

diverse.

7.4 PhysioGAN Methodology

In the following section, we describe our model architecture and training algorithm.

7.4.1 Objective

Given a dataset of N labeled time-series sensor data readings, D = {(x(i), y(i))}Ni=1, Our goal is

to build a ‘generator model’ G that is capable of conditionally generating synthetic real-valued

time-series sensor readings. The sensor readings may be multi-dimensional at each time step. For

example, each time-step may consist of multiple values measured across the different channels of the

same sensor or multiple sensors sampled in time-synchronized intervals. Ideally, the synthetic data

94



produced by the generator should look realistic and hard to distinguish from the real data sampled

from the training set. They should also mimic the same distinguishing features and dynamics as the

real data. Therefore, any analytic function computed over the synthetic data should return a value

close to the returned value from the same function when computed over the real data. For instance,

a machine learning classification model trained on a synthetic dataset produced by our generator

should yield good accuracy when tested using samples from the real dataset.

7.4.2 Notation

Formally, the generator function can be defined as:

x̃ = G(z, y; θ)

G(z, y; θ) : RNz × Y → {RT×Nd}
(7.9)

where z ∈ RNz is an input random noise vector sampled from an arbitrarily chosen prior distribution

(e.g., standard Gaussian) used as a source of variation to the deterministic generator model function,

and y ∈ Y is a latent code used to specify the desired attributes of the samples we want from

generator output. For example, Y can be defined as

y ∈ Y = {sitting,walking, running},

to represent the activity label when while a human activity classification dataset with those 3 classes

of activities. θ represents the set of parameters of the generative models. Each example in the

dataset x is a time-series with T time-steps, i.e.,

x ∈ RT×Nd

If we use the subscripted notation xt to represent the time-series value at the single time step t, we

can write x as

x = {x1,x2, . . . ,xT}

. At each time step, xt has Nd real-valued numbers representing the values across the different

channels of sensor readings (or the values across different time-synchronized sensors). For example,
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given a 3-axial accelerometer motion sensor, Nd will be equal to three–corresponding to the three

X, Y, Z axes of the sensor readings. Thus, any xt in this context can be represented as

xt = (xt,1,xt,2, ...,xt,d) ∈ RNd ∀t ∈ [1, 2, ..T ]

. To summarize, equation 7.9 indicates that the generator learns how to translate an input noise

vector and a conditional label into a time-series of real-valued numbers that looks realistic with

respect to real sensor reading samples that match the designated condition label. Given this notation,

we can now describe the model structure of PhysioGAN.

7.4.3 PhysioGAN Model Structure

Encoder

+×

ϵ ∼ 𝒩(0,I)

μ
σ z

y

D
iscrim

inator

x x̄
ψ(x̄)

z ∼ 𝒩(0,I)

y ∼ pY(Y )

D
ecoder

D
iscrim

inator ψ(x)

D
ecoder

Encoder

x̃ D
iscrim

inator

z̄

D(x̃)

Figure 7.1: Overview of model design for PhysioGAN. PhysioGAN consist of an encoder, decoder

and discriminator components. The different instances of the same component in this diagram are

all sharing the same set of weights.

Our model takes advantage and draws inspirations from the recent success Generative adversarial

networks (GAN) and variational autoencoders (VAE) have had for the generation of realistic time-
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series values in text and sketch-drawing domains [BVV15, HE17, HYL17]. PhysioGAN consists

of three major components: an encoder, a decoder, and a discriminator. Figure 7.1 depicts the

overview of PhysioGAN’s model structure and the interaction between the different components.

Together, the encoder and the decoder form a sequence-to-sequence autoencoder that learns to take

an input example x and reconstructs it back into x̄ after it has been mapped into a fixed-length

latent space vector z. Both the encoder and the decoder are implemented as recurrent neural

networks (RNNs). We utilize the VAE training objective–which maximizes the evidence lower

bound LELBO in equation 7.7–since VAEs are better at generating new samples than traditional

autoencoders [KW13]. Conditional generation from VAEs can be achieved by adding the attribute

labels value y as an additional input to the decoder. However, the element-wise reconstruction

error objective of the VAE does not encourage the decoder to maintain the holistic features of

the output time-series that are unique for each class label. Therefore, to improve the quality of

conditional generation, we pair the VAE decoder with a discriminator model. We extend the

VAE decoder training objective–which acts as a generator–in two ways. First, we use the GANs

training approach to train the decoder how to fool the discriminator into accepting the samples

it generates as realistic and by using a multi-class classifier as our discriminator it also penalizes

the generation of the samples that looks realistic but belong to a wrong class. Second, we extend

the reconstruction error component of the training objective to include feature matching between

the features computed by the discriminator on both the original input and reconstructed output of

the discriminator. Feature matching encourages the decoder to not only preserve the element-wise

similarity between autoencoder inputs and outputs but also to preserve the values of the global

high-level features that are specific for each class label. While introducing the GAN objective using

the discriminator into the decoder training helps to improve the quality of generated samples. GANs

are known to suffer from the issue of ‘mode collapse‘ [TOB15] where the generator identifies

which samples were able to fool the discriminator successfully and lazily generates repeated copies

of them. In such a case, the model will exhibit low diversity, i.e., the model will generate samples

that are too similar to each other. To alleviate this issue and improve the diversity of generated

samples, we feed the synthetic samples produced by the decoder from a noise vector z back into

the encoder, which reconstructs the noise vector ẑ. Then, as an additional objective of the decoder
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training, we introduce an additional loss term which measures the reconstruction error between z̄

and z. This term encourages the decoder to produce samples that are unique for each z value so

that the encoder will be able to approximately recover the value of z as z̄.

In the rest of this section, we describe the details of building individual components of Physio-

GAN as well as how to train them.

Encoder Design

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

x
x1 x2 xT−1 xT
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Fully Connected

μ

̂σ = log σ2

h0h1h2hT−1hT

h0 h1 hThT−1

σ

e( .
2 )
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Figure 7.2: Architecture of the Encoder model.

The encoder translates the input time series sequence into a latent space vector sampled from a

posterior distribution, i.e., z ∼ qφ(z|x). As shown in Figure 7.2, our encoder model is implemented

using a bidirectional recurrent neural network that accepts an input time-series sequence x ∈ RT×Nd

and produces a latent vector z ∈ RNz . The bidirectional recurrent neural network consists of two

recurrent neural networks that process the input sequence in the forward and backward direction,

respectively. Each one of those recurrent neural networks evolves a hidden state vector
−→
h ,
←−
h

while processing the input sequence time-step by time-step. We use the Gated Recurrent Unit
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(GRU) [CVB14, CGC15] implementation of the recurrent unit in our encoder.

−→o t,
−→
h t = GRU(xt,

−→
h t−1)

←−o t,
←−
h t = GRU(x

(reversed)
t ,

←−
h t−1)

(7.10)

where x
(reversed)
t is the input time-series x after being reversed along the time-axis to be processed

in the backward direction. The initial values for the hidden state vectors are zero vectors
−→
h 0 =

←−
h 0 = 0. After processing the whole sequence, we concatenate the final values of the GRU hidden

state vectors. The concatenated final hidden state hT represents a summary of the input sequence.

hT is projected through two fully connected layers to produce two vectors µ and σ̂ which represent

the mean and the logarithm of the variance of posterior distribution computed by the encoder. Each

of µ and σ̂ has a size of Nz. The log-variance output σ̂ is converted into a non-negative standard

deviation by the exponential operation.

hT = [
−→
h T ;

←−
h T ]

µ = WµhT + bµ

σ̂ = WσhT + bσ

σ = e
σ̂
2

(7.11)

Finally, we use the re-parameterization trick [KW13] to approximate the probabilistic sampling

of the encoder output z ∼ N (µ, σ2) by a differentiable transformation defined upon µ, σ and an

auxiliary random variable ε.

z = µ+ σ � ε where ε ∼ N (0, I) (7.12)

Decoder Design

The decoder model pθ(x|z,y) translates the pair of latent space noise vector z and condition

label y into a time-series sequence of length T . As shown in Figure 7.3, the decoder is an auto-

regressive [Gra13] recurrent neural network that produces an output sequence one-step at a time.

At each time-step, the generated output is fed back as an input into the next time step. Therefore,

the decoder output at time step t depends also on its own predictions at previous time-steps < t in

addition to the values of z and y. Our decoder is built using a stack of three layers of gated recurrent
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Figure 7.3: Architecture of the Decoder model.

units (GRU) neural networks. The vector s denotes the list of hidden states for the GRU units in the

three layers and the vector o(dec) denotes the output of the last GRU layer. The initial state of the

decoder GRU units s0 is computed from the latent space vector z as in:

s0 = tanh(Wsz + bs) (7.13)

At each time-step, the decoder takes its own generated value from the previous time-step x̃t−1 along

with the current hidden state value st−1 to produce an output o(dec)
t and an updated hidden state

st. The last GRU layer output ot is projected through a fully connected layer to produce the final

generated value x̃t ∈ RNd . We have found it useful to compute a context vector c̃ by projecting

both z and y through a fully connected layer and add this context vector the decoder input at each

time-step. Using the context vector, c̃, effectively adds a shortcut between the decoder output at

each time-step and the encoder output z while processing long-sequences.

c̃ = Wc[z ; y] + bc

o
(dec)
t , st = Dec([x̃t−1 ; c̃], st−1)

x̃t = Wo o
(dec)
t + bo

(7.14)
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Discriminator Design
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ψ(x)

x

Figure 7.4: Architecture of the Discriminator model. The auxiliary output ψ(x) is used to compute

the feature matching loss.

The discriminator D is trained to distinguish between the samples produced by the decoder

when we feed random noise vectors into it and the examples drawn from the real dataset. Through

the feedback it provides for the decoder on the samples it generates, it forces the decoder to improve

the quality of its generated samples until the decoder can produce samples that are sufficiently

realistic to fool the discriminator into accepting them as if they were drawn from the real dataset.

As previously suggested in [SGZ16], we use a L + 1 multi-class classifier instead of a binary

classifier as our discriminator–where L is the number of class labels and the L+ 1 class is the fake

or “generated“ class. Therefore, the goal of discriminator is to classify all samples produced by

the decoder as label L + 1 and classify samples drawn from the real data as their correct label

y ∈ 1, ..., L. The goal of the decoder while generating a new sample given a latent space vector

z and a condition label by ∈ 1, ..., L is to fool the discriminator into believing this sample is a

genuine sample that belongs to the desired class label y.

As such, this modification changes the original conditional GANs min-max equation, shown
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earlier in 7.2, into the following:

min
G

max
D

V (D,G) =Ex,y∼pdata [logD(x)y]

+ E z∼pz(z)
y∼Cat({1,..,L})

[D(G(z,y))L+1]

− E z∼pz(z)
y∼Cat({1,..,L})

[D(G(z,y))y]

where, D(x) ∈ [0, 1]L+1.

(7.15)

To realize the discriminator, we use the 1-D convolutional classification model shown in Figure

7.2. The discriminator consists of three convolution layers followed by a final fully connected layer

with a softmax output. Each convolution layer has 32 filters with filter size = 3, and applied with

stride = 3 and zero padding. Additionally, we regard the output of the last convolution layer (layer

3) as an auxiliary output which is going to be useful to implement the feature matching loss we

describe in more details in Section 7.4.4.

7.4.4 Model Learning

The training of our model alternates between updating the discriminator and updating both the

VAE encoder and decoder. For simplicity, we will refer to the training of both the encoder and the

decoder as the generator learning because they are trained together–despite the fact that only the

decoder is needed for generating samples after the training has been finished.

Further, the functions E(., φ), G(., θ) D(., θd) are used to refer to the encoder, decoder, and

discriminator, receptively. Where the symbols φ, θ, and θd refer to the parameters of the three

models, in the same order.

Discriminator Learning

The discriminator is trained to distinguish between the real data samples and those samples generated

by the generator. It is a multi-class classifier with a L+ 1 probability distribution output where first

1 <= i <= L scores are the scores that the given sample is real and predicted as class label i. The

last score L+ 1 is reserved to represent the probability that the given sample is ‘fake’ or ‘generated’.
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The adoption of a multi-class classifier instead of a binary classifier discriminator was proposed

earlier by [SGZ16] in the scope of semi-supervised learning to let the discriminator provide a

class-specific feedback signal to the generator outputs. Additionally, as noted by similar approach

was used in [CDH16], this forces the generator to increase the mutual information between the

GANs synthetic samples and the latent space condition codes. To train the discriminator, we sample

batches of labeled examples from the training set, {(x(i),y(i))}Mi=1, and create a set of fake examples

by feeding into the decoder a set of randomly sampled pairs of latent space vectors and condition

codes, {(z(i),y(i))}Mi=1. The objective of discriminator learning is to minimize the following cost

function:

J(θd) = Ex,y∼pdata

[
− log D(x; θd)y

]
+ E z∼pz(z)

y∼Cat({1,..,L})

[
− log D

(
G(z,y; θ); θd

)
L+1

] (7.16)

Generator Learning

In the vanilla VAE model training, the training objective is defined based on the negative value

of the evidence lower bound (ELBO), as shown in equation 7.7. Therefore, the original loss for

VAE training is composed of two parts: the reconstruction error objective and the enforcement of

smoothness on the latent space distribution of encoder outputs, making the encoder map examples

into smooth regions in the latent space rather than single isolated points. This smoothness makes it

more likely to produce realistic samples by feeding into the decoder values of latent space vectors

sampled from the prior distribution z ∼ pz(z), i.e.,

Lvae = Lrecon + Lposterior (7.17)

To improve the accuracy and diversity of the generated samples, we incorporate the discriminator

feedback into the encoder, and decoder training objective by adding three more terms: feature

matching Lfeatures, adversarial loss Ladv, and the generator diversity Ldiverse. We explain the role

and definition of each term as well as the equation of the total loss that combines them together.

Reconstruction loss Lrecon For any given single example from the training set (x(i),y(i)), the

reconstruction error measures how well the decoder can recover the original input x(i) after it
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has been compressed into the latent space code z produced by the encoder. For sensor data

readings with real values, we assume that the decoder output is a Gaussian distribution with fixed

variance. Therefore, the log-likelihood of decoder output is proportional to the mean-squared error

between the original reading value x(i) and its own reconstruction through the autoencoder, i.e.,

x̄(i) = G(E(x;φ),y; θ). Therefore,

Lrecon(x(i),y(i);φ, θ) = −Ez∼qφ(z|x(i))(log pθ(x
(i)|z,y(i)))

∝
[

1

T

1

Nd

∥∥x−G
(
E(x(i);φ),y(i); θ

)∥∥
2

] (7.18)

Posterior loss Lposterior the Kullback-Leibler Divergence loss Lkl in Equation 7.7 enforces a

prior over the latent space distribution. When this prior distribution of latent space is selected to

be IID Gaussian with zero mean and unit variance, the Kullback-Leibler divergence loss can be

computed in the closed form [KW13]:

DKL

(
p(z|µ, σ2)||N (0, I)

)
=− 1

2

1

Nz

(1 + log σ2 − µ2 − σ2) (7.19)

where µ and σ̂ are, respectively, the mean and log-variance of the posterior distribution outputted by

the encoder network qφ, as we described in Section 7.4.3.

A common issue in VAE training is suffering from posterior collapse where the decoder ignores

the latent space code z. As reported by previous research [BVV15, ?], This more likely when the

decoder is by itself a powerful model such as the RNN decoder in our case. The VAE posterior

collapse happens during the early steps of training when the model finds it is easier to bring down

the KL-divergence component of Equation 7.18 rather than the reconstruction error. Therefore,

Lkl goes rapidly down to nearly zero, after that the decoder is optimized by itself to minimize the

reconstruction error while ignoring the encoder output. Thus, there will be no gradient signal passed

between the two models, i.e., the encoder and decoder have no influence on each other [BVV15].

To address this issue, we use the ‘free bits’ [KSJ, ROP19] method that modifies VAE loss such that:

Lposterior(x,y;φ) = max
(
DKL

(
p(z|µ, σ2)||N (0, I)

)
− δ, 0

)
, (7.20)

where the KL-divergence is minimized only once until it surpasses a given threshold δ–which we

pick as δ = 0.1. To ensure that the model learns how to pack useful information between the
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encoder and the decoder, we use a cost annealing scheme [BVV15] that assigns a high weight to

the reconstruction loss and a nearly zero weight to the posterior loss at the early steps of training.

Then, we gradually and smoothly increase the weight of posterior loss while decreasing the weight

of the reconstruction loss. This way encourages the model to pack useful information between the

encoder and the decoder through the latent space code z. The annealing scheme of the training cost

is described in more details at the end of Section in equation 7.25.

Feature matching loss Lfeats The original reconstruction loss of the VAE training is based on

the element-wise distance between the two vectors of the original input x(i) and its reconstruction

x̄(i) in the raw data space. This objective, however, leads to outputs that are blurry and lack fine

details. Feature matching [SGZ16] encourages the model to reduce the distance between the higher

levels features of the original input ψ(x(i)) and those of its reconstruction ψ(x̄(i)) . This encourages

the model to maintain the holistic attributes of the data points while providing robustness against

noise as well as in-variance against transformations such as signal shift. The operator ψ may be

provided by either a domain-specific feature extraction algorithm or by taking the values of one of

the hidden layers in a classifier. Since our discriminator model is trained as a multi-class classifier

to predict the correct label of input examples, we reuse the discriminator as a feature extractor and,

accordingly, the ψ is chosen to be the output values of the last convolution layer in the multi-class

discriminator model. Therefore, the features reconstruction loss is defined as:

Lfeats(x; y; φ, θ) =
1

d
‖ψ(x)− ψ(x)‖2

where, x̄ = G
(
E(x; φ

)
,y; θ)

(7.21)

Adversarial Loss Ladv The adversarial training loss of the decoder is based on the feedback

it receives from the discriminator on its generated samples. This directs the generator (i.e. the

Decoder) to learn how to improve the quality of its generation by matching the class condition label

code y, i.e.,

Ladv(z,y; θ) =− log D
(
G(z,y; θ); θd

)
y

where z ∼ pz(z),y ∼ Cat({1, .., L})
(7.22)
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Diversity loss Ldiverse Training GANs requires finding the Nash equilibrium between two non-

cooperating adversaries. However, this process is known to unstable for training GANs as the

discriminator and generator may train in orbits without convergence. This is due to the fact that

gradient-descent optimization is not well suited for the task of finding the Nash equilibrium. One

common symptom of GAN training failure is mode collapse, where the generator produces repeated

samples that are essentially replicas of instances that were successful in fooling the discriminator.

After the discriminator identifies that these samples are fake, the generator will pick another mode

to repeat, and so on. This prevents the generator from producing samples with high diversity. This

issue may be amplified in our model due to the posterior collapse where the decoder may depend

on itself as a powerful generative model and ignores the latent code z it receives from the encoder

during the training. The diversity loss penalizes this situation by the forcing the decoder to utilize

the latent code vector z. To compute, the diversity loss, we use the encoder to reconstruct the

the latent code vector from samples generated by the decoder. The diversity loss is defined as the

mean-squared-error between the original latent code z and its reconstruction by the encoder z̄.

At the case when the decode is suffering from ‘mode collapse‘, it will ignore the latent code and

produces identical samples. In such a case, the encoder will be unable to recover the latent code

from the samples, leading to a high penalty for the decoder. The diversity loss is defined as:

Ldiverse(z,y; φ, θ) = ‖E(G(z,y; θ);φ)− z‖2

where z ∼ pz(z),y ∼ Cat({1, .., L})
(7.23)

Total training cost for generator The summarize, the total training cost of the encoder and

decoder models is defined as:

Jtotal(φ, θ) =Ex,y∼pdata

[
ηt Lrecon(x,y;φ, θ)

+
(
1− ηt

)(
βLposterior(x,y;φ) + λfLfeats(x,y;φ, θ)

)]
+E z∼pz(z)

y∼Cat({1,..,L})

[(
1− ηt

)(
λa Ladv(z,y; θ) + λd Ldiverse(z,y; θ)

)]
(7.24)

Where the β = 0.2, λf = 1, λa = 1, λd = 0.2 are weighting coefficients empirically chosen to

balance the values of the different loss components. The ηt is a decay function chosen to be the
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‘inverse sigmoid decay‘ [BVJ15] with k = 200.

ηt = max
( k

k + exp(t/k)
, 0.1

)
(7.25)

The goal of ηt is to focus the training at the early step on only the reconstruction loss Lrecon.

Then gradually, add the other losses and decrease the importance of reconstruction loss. We

have empirically found this technique improves the stability of training. At the early steps, the

output of the generator will be too different from the real data and easy for the discriminator to

distinguish, leading to a saturation of the adversarial loss. We avoid this by focusing more on

the reconstruction loss at the early steps and then introduce the adversarial loss after the model

has started to produce sensible outputs. Also, the annealing scheme helps to avoid the posterior

collapse issue we discussed earlier in this Section. The gradual increase of the importance of

the posterior loss, Lposterior, lets the model focuses first on using the latent space value z to store

useful information in order to minimize the reconstruction loss then gradually starts to minimize the

posterior loss, Lposterior, to match the latent space prior distribution.

Model Summary

PhysioGAN consists of three different models: encoder, decoder and discriminator. We extend

the vanilla variational autoencoder training objective by including additional terms to improve the

quality and diversity of generated samples. The procedure for training of PhysioGAN is given in

Algorithm 5.

7.5 Evaluation

In the following section, we describe our experiments and evaluation results. We used two different

datasets: ECG signal classification, and activity classification from motion sensors. The dataset are

described in details in section 7.5.1. We compare the quality of the synthetic data generated by our

model against different baselines, which are described in section 7.5.2. Choosing the right metric

for evaluating the quality of generative models is still an active topic of research. In addition to the

visual quality of samples, most of metrics currently in use are specific to the kind of data being
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Algorithm 5: PhysioGAN Model Training Algorithm
Require: a dataset of labeled training examples Dtrain = {(x(i),y(i)}Ni=1.

1: t = 0

2: Initialize the weights of encoder φ, decoder θ, and discriminator θd with random weights.

3: for number of training epochs do

4: t = t+ 1.

5: Compute ηt according to equation 7.25.

6: for each batch Bd = {(x(i),y(i))}Mi=1 in training data Dtrain do

7: Sample a batch of latent variables Bz,c = {(z ∼ pz(z),y ∼ Cat({1, .., L}))}.

8: Use the training data batch Bd and the latent variables batch Bz,c to update the

discriminator weights θd to minimize the cost given in equation 7.16.

9: Use the training data batch Bd to compute equations 7.19, 7.20, and 7.21.

10: Sample another batch of latent variables B′z,c = {(z ∼ pz(z),y ∼ Cat({1, .., L}))}.

11: Use B′z,c to compute equations 7.22, and 7.23.

12: Update the the encoder weights φ and decoder weights θ to minimize the total cost given

in equation 7.24.

13: end for

14: end for

generated such as the Inception Score [SGZ16] and The Fréchet Inception distance (FID) [HRU17]

of image generation, and the perplexity score [CBR98] for text generation. In this chapter, we

evaluate the quality of generated sensor data using metrics that measure their conditional generation

accuracy score (Section 7.5.4), diversity of samples score (Section 7.5.5), and novelty of samples

(Section 7.5.6). Besides, we use an application-specific metrics of the overall quality of the

generated data. An evaluation criteria, we use the synthetic dataset utility (Section 7.5.7) which

measures how well suited are the generated samples to be used for training classification models

that are evaluated on real samples test data.
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Figure 7.5: Random samples of the real data (top row) and synthetic data (bottom rows) generated

by PhysioGAN and other baseline models the AFib classification ECG dataset. The title of each

column indicate the class label of the samples.
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Figure 7.6: Random samples of the real data (top row) and synthetic data (bottom rows) generated

by PhysioGAN and other baseline models the AFib classification ECG dataset. Each sample has

120 time-steps.The title of each column indicate the class label of the samples.
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Figure 7.7: Random samples of the real data (top row) and synthetic data (bottom row) generated

by PhysioGAN and other baseline models on the HAR dataset. The title of each column indicate

the class label of the samples.
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7.5.1 Datasets

ECG dataset for AFib classification:

Atrial Fibrillation (AFib) is an irregular heartbeat (arrhythmia) disorder. It is considered the

most common arrhythmia type, occurring in 1-2% of the general world population and leads to

a significant increase in the risks of death, strokes, hospitalization, and heart failure [ECM10].

The Electrocardiography (ECG) signal is considered the most common method for arrhythmia

classification. The arrhythmia detection dataset of [YPT18] contains 1000 fragments of ECG

signals from 45 persons taken from the MIT-BIH Arrhythmia Database. The dataset fragments

correspond to 17 classes including the Normal Sinus Rhytm (NSR), the Atrial Fibrillation (AFib)

and 15 others. In our study, we focus on learning how to generate only (NSR) and AFib classes

because they are the most important rhythms and because the other rhythms had a significantly

smaller number of examples in the dataset. Therefore, we use the 418 examples that correspond

to NSR and AFib classes. Each sample corresponds to 10 seconds of ECG samples recorded

at 300 Hz sampling rate. For computational efficiency, we sub-sample the signal to 30 Hz. We

split the data into train and test subsets using 75%, 25% split ratios. We train a recurrent neural

network-based classification model on the dataset, after sub-sampling, which achieves 97.14%

classification accuracy, which is on-par with the state-of-the-art classification accuracy reported by

[YPT18]. Random samples of the dataset are shown in the top row of Figure 7.5.

Motion Sensors for Human Activity Recognition

Human activity recognition is important for many reasons, such as elderly fall detection [CKC06]

and the assessment of Parkinson disease patients [ABN19]. Activity recognition in wearable devices

relies on using the embedded motion sensors such as accelerometer and gyroscope. The UCI human

activity recognition HAR dataset [AGO13] includes 10,299 examples collected from smartphone

attached to the waist of 30 volunteers while performing six different activities: walking, walking

upstairs, walking downstairs, sitting, standing, and laying. The dataset is split into training and

test sets using 70%, 30% split ratios. We trained a recurrent neural network-based classification

model on the dataset, which achieves 89.74% test set classification accuracy. We use this dataset as
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an example for learning how to generate a multi-class and multi-dimensional (each time step has

six values corresponding to the X , Y , Z axis values for each of the accelerometer and gyroscope

sensors) time-series data. Samples of the dataset are shown in the top row of Figure 7.7.

Notably, the dataset we have used in our experiments is considered more challenging than those used

in the original experiments of previous work. For example, [ACS17] did not perform conditional

generation or utility evaluation. [EHR17] performed experiments on only toy dataset (e.g., sin-

waves) and short low-frequency frequency simple classification tasks. Likewise, [WCG18] only

studies the generation of accelerometer data while considering only highly dissimilar classes (e.g.,

only walking vs. standing) while we consider the more challenging case of generating six classes

including classes are highly similar to each other (e.g., walking, walking upstairs, and walking

downstairs).

7.5.2 Baseline algorithms

In comparison to the vast amount of research done on image and text generation, significantly less

success has been made towards the conditional generation of high-quality synthetic sensor dataset.

Among the notable efforts in this space that we are aware of is the work of [ACS17] trains a

maximum-likelihood based recurrent neural network for unconditional generation of accelerometer

sensor readings. Both the work of [EHR17] and [WCG18] uses adversarial training to train a

recurrent neural network of producing real-valued time-series values. We include those methods

as baselines and compare their performances against PhisyoGAN according to the measures of

condition accuracy, diversity, and novelty and synthetic data utility.

We use the following baseline models:

• CRNN (Conditional RNN-Model): This is an auto-regressive [Gra13] recurrent neural net-

work model similar which is trained by maximizing the likelihood of predicting each next

time-step values given the previous values. This baseline can be considered as an extension

to [ACS17] with the additional support of performing conditional generation which was

achieved by conditioning the RNN at each step on the latent code, [z, c], in the same way as

our decoder introduced earlier in equation 7.14.
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• CVRAE (Conditional Variational Recurrent Auto-Encoder): This is a conditional variational

autoencoder with a recurrent encoder and recurrent decoder. The architecture of encoder and

decoder were same as those used in our model. But the training objective is different. The

training objective used for CVRAE is the vanilla conditional VAE training loss introduced

earlier in 7.18.

• RCGAN (Recurrent Conditional GAN): This model mimics the structure and training method

of the conditional recurrent generative model introduced in [EHR17]. It consists of a

recurrent neural network generator which is trained with the GANs training objective shown

in equation 7.15. Notably, this model is not auto-regressive and the RNN input at each

time-step dependent only on the latent space codes [z, c] but not on the previous predictions

made by the generator.

• RCGAN-AR (Recurrent Conditional GAN-Auto-Regressive): This baseline extends the

RCGAN model by introducing feedback connections that go from the generator output at one

time-step to its input in the next time-step. Therefore, the generator behaves exactly like our

decoder, shown in equation 7.14, but it is still trained with the GANs training objective 7.15.

To make a fair comparison between all models, the architecture of CRNN, RCGAN, RCGAN-

AR is identical for the architecture of our decoder, described earlier in Section 7.4.3. While

the baseline CVRAE has the same architecture of its encoder and decoder as the encoder and

decoder of PhysioGAN. Also, models that required a discriminator for adversarial training (RCGAN,

RCGAN-AR) were trained using the same multi-class convolutional discriminator that used to train

PhysioGAN, which we described earlier in Section 7.4.3. Therefore, the five models are only

different in their model training technique.

7.5.3 Evaluation Results

Figures 7.5, 7.6, and 7.7 provides a visual illustration of randomly selected samples from the real

data and randomly selected samples of the synthetic data generated by PhysioGAN for each class

of the ECG AFib classification and the human activity recognition (HAR) classification datasets,
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respectively. Since it is more challenging to rely on visual inspection of sensor measurements

than images and text as an evaluation metric. Therefore, in the rest of this section, we introduce

test results that measure the different aspects of synthetic data quality: accuracy, diversity, and

novelty of the synthetic samples. In addition to the aforementioned evaluation criteria, We also

conduct additional task-specific metrics: the synthetic dataset utility which evaluates the quality of

the synthetic dataset to replace the real training data to train classification models on them.

7.5.4 Conditional Generation Accuracy Score

Model HAR Dataset AFib Dataset

Real Data 89% 97%

CRNN 76.0% 67%

CVRAE 72.0% 67%

RCGAN 100% 100%

RCGAN-AR 82% 100%

PhysioGAN 90% 94%

Table 7.1: The conditional generation score of synthetic dataset produced by each generative model.

The first row indicates the accuracy of the oracle model which is trained a training dataset from the

real data.

The conditional generation accuracy score evaluates the rate by which the generated sensor

readings match the class label that the generator was conditioned upon to generate those samples.

To compute the score value, for each dataset, we train a high accuracy model on the real dataset and

use this model as a oracle that predicts a classification label of each synthetic sample. To evaluate

each generative model, we generate a large set of synthetic samples (with size = 10 times the size of

115



the real training data) produced by that model and use the Oracle model to predict a label for those

samples. The rate by which the Orcale predictions matches the condition code of the generated

samples represents the accuracy of conditional generation. The results of conditional generation

score are shown in 7.1.

The result from Table 7.1 that the models trained with adversarial training (i.e., RCGAN,

RCGAN-AR, and PhysioGAN) have a significantly higher conditional generation score than models

trained with maximum-likelihood (i.e., CRNN, and CVRAE). This indicates that adversarial-trained

generative models are more likely to produce samples that will look, according to the oracle

model, as the class they were supposed to match. However, the conditional generation score is

not a sufficient metric to assess the quality of the generative models because it does not assess the

intra-class diversity of generated samples. Neither, it does evaluate the novelty of the generated

samples to inspect whether or not the generative model is memorizing samples from training data.

Therefore, we introduce two other metrics: the diversity and novelty scores.

7.5.5 Diversity of Samples Score

Mode collapse is a common pitfall for GANs [TOB15]. It is defined by the case when the generator

produce synthetic samples that are very similar to each other. On the other hand, we want the

generator to produce samples that are accurate, diverse, and novel from those in the training dataset.

In previous research, [WW18] defined a score metric to evaluate the diversity of generated text. In

the same way, we define a diversity score of the synthetic dataset according to the equation in 7.26.

Diversity
(
S(i)
)

=
1

Λ
min

{
DTW(S(i),S(j))

}j=|S|,j 6=i
j=1

Where, Λ =
1

|D|

i=|D|∑
i=1

min
{
DTW(·(i),D(j))

}j=|D|,j 6=i
j=1

(7.26)

Given a set of synthetic examples S and another set of real data examples D, the diversity score of

an individual sample S(i) is defined as the distance the sample ith sample and its nearest neighbor in

the synthetic dataset S. Distances are measured using the dynamic time warping (DTW) [SC07]

distance measure, which is a reliable measure of time-series dissimilarity due to robustness to

minor translations and variations. The diversity score of the whole dataset S is the average of
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the diversity score assigned for individual samples. In order to have a normalized score value

where, as a reference, the diversity score of the original real dataset D is equal to 1 we divide

thediversity score of each sample in a synthetic dataset by the normalizer ∆ which is the average

dynamic-time-warping distance between each example from the real dataset D and its nearest

neighbor from the same dataset.

The results for computing the diversity scores on the synthetic datasets produced by PhysioGAN

and the baseline generative models are shown in Table 7.2. The result shows that PhysioGAN has a

significantly higher diversity of generated samples than the other methods trained with adversarial

training RCGAN, and RCGAN-AR which reflects how PhysioGAN had much less mode collapse

then the other models that relied only on the vanilla adversarial training objective.

Model HAR Dataset AFib Dataset

Real data 1.00 1.00

CRNN 0.43 1.03

CVRAE 0.38 1.01

RGAN 0.27 0.06

RGAN-AR 0.23 0.07

PhysioGAN 1.14 0.87

Table 7.2: The diversity scores of synthetic dataset produced by each generative model. The first

row indicates the score of the real data.

7.5.6 Novelty of Samples Score

Generative models are desired to learn the underlying distribution of the training dataset and produce

samples that are both novel and realistic rather than over-fitting the real dataset set. We extend the
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idea of [WW18] to evaluate the novelty of the synthetic samples generated by the models under

our study using the novelty score shown in 7.27.

Novelty
(
S(i)
)

=
1

Λ
min

{
DTW(S(i),D(j))

}j=|D|
j=1

Where, Λ =
1

|D|

i=|D|∑
i=1

min
{
DTW(D(i),D(j))

}j=|D|,j 6=i
j=1

(7.27)

Figure 7.8: Distribution of novelty scores for PhysioGAN synthetic samples on the AFib classifica-

tion dataset.

Given a dataset of synthetic samples S and the training dataset D that was used to train the

model which produced S , the novelty score of an individual sample S(i) is measured as its distance

to the nearest neighbor from samples in D. Distances are measured using the dynamic time warping

[SC07]. Novelty scores are also normalized by dividing their value upon the average distance to

nearest neighbor between samples in D and each other. Therefore, a novelty score equal to zero

indicates that the synthetic sample is a replica of another sample in the training set. When the

novelty score of a synthetic sample is equal to one, this indicates that the sample is, on average, as

close to samples in the training data as samples from the training data are close to each other. The

novelty score of the entire synthetic dataset S is the mean value of novelty score for each individual

sample in S.
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Model HAR Dataset AFib Dataset

Real data 1.00 1.00

CRNN 1.09 1.33

CVRAE 1.33 1.52

RCGAN 1.67 1.15

RCGAN-AR 1.75 1.00

PhysioGAN 1.35 1.02

Table 7.3: The novelity scores of synthetic dataset produced by each generative model. The first

row indicates the score of the real data.

The novelty scores of PhysioGAN and the other baseline generative model training methods are

shown in Table 7.3. We notice that PhysioGAN has less novelty score than other methods which

may indicate that samples produced by PhysioGAN are more similar to the training data samples. To

investigate whether or not PhysioGAN is memorizing samples from the training data, we compare

the distribution of novelty scores for individual synthetic samples produced by PhysioGAN on

each dataset and the distribution of novelty scores for real data in Figure 7.8. From the figure, we

conclude that PhysioGAN is not memorizing the training data samples because rare samples have

novelty score close to zero.

7.5.7 Utility of Synthetic data

Since datasets of physiological and medical sensor readings are often considered privacy-sensitive,

laws and regulations impose a lot of constraints on how this data can be shared. This introduces a

challenge for research teams who collect datasets and are willing to share it with other researchers

or the public audience. As an alternative, those researchers may resort into generating synthetic

dataset that does not belong to real patients but are produced with a generative model trained on
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real patients data. The utility of synthetic dataset under this situation is reflected by how good are

they to be used in lieu of the real data in the downstream task (commonly a classification task).

Rather than evaluating the quality of a conditional generative model based on measuring the

aspects of accuracy, and diversity. An alternative way is to measure how good are they to produce

data suitable for a downstream task. Even though the downstream is generally unknown at the model

training time, a good generative model that learns the generating distribution of the data should be

able to produce data that are as good to be used in any downstream task as the training real data.

Following this approach, a recently proposed metric for the quality of conditional generative models

is the classification accuracy score [RV19]. The classification accuracy score evaluates conditional

generative models by training a classification model using only synthetic data and validates the

accuracy of the trained model on real test data. This idea was also proposed earlier in [EHR17]

under the name of ‘TSTR‘ (Train on Synthetic Test on Real). Despite their success in producing

synthetic images that look very realistic and natural, the evaluation of the BigGAN [BDS18] state-

of-the-art generative model for ImageNet images shows that top-1 and top-5 accuracy of models

trained on synthetic data are 27.9% and 41.6% less than models trained on real data [RV19]. It was

also observed that classification accuracy score for a variety of generative models does not correlate

with other metrics such as the Inception score [SGZ16], and FID [HRU17] which indicates the

challenging nature of how to evaluate generative models.

(a) Trained on Real Data (b) Trained on CRNN (c) Trained on PhysioGAN

Figure 7.9: The confusion matrix of different classification models trained on real data (shown left),

and classification models trained on synthetic datasets produced by CRNN (shown in the middle),

and PhysioGAN (shown right).
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HAR Dataset AFib Dataset

Training Dataset RNN SVM RNN

Real Data 97% 83.4% 0.96 (97.0%)

CRNN 32.4% 35.9% 0.46 (54.2%)

CVRAE 46.3% 43.7% 0.50 (48.7%)

RCGAN 30.5% 37.6% 0.52 (55.2%)

RCGAN-AR 29.1% 26.9% 0.48 (50.4%)

PhysioGAN 77.8% 65.1% 0.87 (88.6%)

Table 7.4: Accuracy scores for classification models trained on synthetic datasets generated by

different generative models. The first row indicates the accuracy of the same model when trained

on real data. For the AFib dataset, we use the area-under-the curve (AUC) score because the test

dataset is highly imbalanced and show the accuracy between parentheses.
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On the ECG dataset, we train a recurrent neural network classification model. While on the

HAR dataset, we train two different classification models, a deep-recurrent neural network-based

model, and traditional SVM classification model with human-engineered features, selected from

best performing work. Results for training those models on both the real data and synthetic dataset

are shown in Table 7.4. The first row indicates the accuracy of the models trained on real data for

each task. The rows of generative models show the accuracy of classification models trained by

their synthetic datasets when evaluated on real test dataset. To train models on synthetic data, we

sample a set of generator results with size = 10 times the size of the real training dataset. We have

noticed that increasing the size of synthetic data will increase the test score of the models they are

trained on. The results in Table 7.4 show that PhysioGAN have significantly higher utility than

the other generative model training methods. Also in Figure 7.9 we show the confusion matrix of

classification models trained on real and synthetic datasets, the results show that models trained

on samples produced PhysioGAN can achieve high accuracy in classification between different

classes compared.This is because PhysioGAN generates samples that have a balance between their

generation accuracy and diversity.

7.6 Conclusion and Future Work

In this Chapter, we presented PhysioGAN, a novel model structure that combines both the variational

autoencoder and generative adversarial networks in order to learn how to generate synthetic samples

of physiological sensors time-series data conditioned on their class labels. We evaluate PhysioGAN

against different baseline training methods using metrics for the accuracy, diversity, and novelity.

On two different datasets, our evaluation results show that PhysioGAN is capable of producing high

quality novel samples that are both accurate and diverse. Furthermore, synthetic datasets produced

by PhysioGAN can be used to replace the real dataset in training of classification model with a

moderate decrease in the classification accuracy. As a result, PhysioGAN alleviates the privacy

concerns that arise while sharing the privacy-sensitive physiological sensors data.

Future directions of work: In the future, we will explore other applications of the PhysioGAN

such as learning a disentangeld representation of sensor data and use this representation to manipu-
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late sensor data to prevent inferences of sensitive attributes while maintaining others non-sensitive

inferences. Also, we will study how to train PhysioGAN with differential privacy to offer stronger

and formal guarantees of the limits of information leaked from examples in the training dataset. We

touch upon this approach, briefly, in the next chapter.
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CHAPTER 8

Differentially Private Release of Private Datasets using

Generative Adversarial Networks

In this Chapter, we introduce techniques for using generative adversarial networks to produce

differentially private synthetic datasets that protects personally identifiable information while

maintaining a dataset’s utility for analysis.

8.1 Background

The NIST: Differential Privacy Synthetic Data Challenge [nis] was a three rounds competition

organized the National Institute of Standards and Technology (NIST) during the period between Oct

2018 and April 2019. Participants were asked to create new methods, or improve existing methods

of data deidentification while preserving the dataset’s utility for analysis. Our team UCLANESL1

has participated in round 1 and round 3 of the competition and achieved three prizes: 4th place in

first round, the 5th place in the third round, and open-source contribution award2.

The goal of the challenge competition is to produce Differentially private synthetic datasets that

preserve the utility of the original datasets on different tasks like using them to train clustering and

classification models. The generation of the synthetic dataset should satisfy differential privacy

guarantees so that it does not leak entries from the original dataset. Such a method for utility

preserving synthetic dataset generation with differential privacy guarantees would be of extreme

1Team members are : Prof. Mani Srivastava (Rounds 1 and 3), Moustafa Alzantot (Rounds 1 and 3), Dr. Supriyo
Chakraborty (Round1), and Nathaniel Snyder (Round 1).

2Prizes announcement: https://www.nist.gov/communications-technology-laboratory/
pscr/team-uclanesl
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value to provide researchers with datasets to work with when the original datasets are sensitive to

the privacy of the individuals who have contributed to it or when regulations prohibit the release of

these data such medical records datasets.

Our team submission combines together two state-of-art methods for synthetic data generation

and accounting of differential privacy loss. Namely, the WGAN [ACB17b] method for training

GAN (generative adversarial networks) models and the moments accountant [ACG16] approach for

calculating the bound of the privacy loss.

8.2 Contribution

The contribution of this chapter is to describe the algorithms we used in our award winning submis-

sions of the NIST differential privacy synthetic data challenge. Furthermore, our implementation of

the methods described in this Chapter is available as open source at 3.

The rest of this Chapter is organized as follows: Section 8.3 describes our algorithm and model

trainng technique. Section 8.3.4 proves that our training algorithm satisfies the differential privacy

requirements. Section 8.4 presents our evaluation results.

8.3 Methodology

Our approach to solving the competition challenge is the following: We use the provided real dataset

to train a generative model (GAN) using the improved Wasserstein GAN training algorithm. After

training, the generator model of our GAN can be used to produce synthetic dataset by feeding noise

samples from a prior distribution (e.g. normal distribution) into it. Compared to the original GAN

formulation, the WGAN produces higher quality results and it is much more stable to train. In order

to satisfy the differential privacy constraints, the training of our WGAN models is made private by

sanitizing the gradient before applying gradient descent steps. Sanitization of gradient occurs in

two steps: first, the l2 norm of the computed gradient is clipped to ensure that the gradient function

3https://github.com/nesl/nist_differential_privacy_synthetic_data_challenge
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has bounded l2 sensitivity. Second, we apply the Gaussian mechanism by adding Gaussian noise to

the sum of clipped gradient. During the model training, we track the total privacy loss by using the

moments accountant method [ACG16].

In the rest of this Section, we first present brief background about both Wasserstein GANs 8.3.1

and differential privacy 8.3.2, then we discuss how we utilized differential privacy in the Wasserstein

GAN model training in Section 8.3.3.

8.3.1 Wasserstein Generative Adversarial Networks

Deep learning models using neural networks have achieved huge success in many tasks (e.g. image

recognition, object detection, speech recognition, etc.). Deep learning models can be categorized

as either discriminative models or generative models. Discriminative models attempt to learn the

mapping between inputs and the target variables. Formally, they learn to compute P (y|x; θ). Where

x is the model input, y is the output and θ denotes the model parameters. On the other hand,

generative models attempt to learn the joint distribution between the input and output variables i.e.

P (x, y; θ).

The first wave of deep learning advancements in the past decade has been focused on dis-

criminative models (e.g. image recognition and speech classification) because they are easier to

train and achieve good results on. While training generative models was still considered relatively

harder to make progress on. Especially when the input data dimensions are large then training a

generative model using maximum likelihood needs huge amounts of training data (due to the curse

of dimensionality) and involves approximations of many intractable probabilistic computations that

lead to poor quality results.

Generative Adversarial Networks A breakthrough happened in 2014 when researchers intro-

duced a new approach known as Generative Adversarial networks (GANs) [GPM14, Goo16]. The

goal of the training is to learn a probability distribution pg(x; θG) that matches the distribution of

input training data pdata(x). While GANs do not provide an explicit representation of the learned

probability distribution, we can use a GAN to generate samples from the distribution it has learned.
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This is useful in the case when the goal is to generate synthetic dataset which makes them a suitable

technique for the purpose of our competition.

The basic idea of adversarial networks is to maintain two neural network models D, and G

that compete against each other. The D(x; θD) model is termed the discriminator and accepts an

input that is either coming from the real data distribution x ∼ pdata(x) or from the outputs of the

generator model x ∼ pg(x; θG). The objective of model D training is to increase its accuracy in

making a difference between inputs that are coming from the real data distribution and those that

are coming from the generator model outputs. In original GAN[GPM14] formulation the output of

D model is a probability value in the [0, 1] range.

The generator modelG(z; θG) takes an input noise vector sampled from a given prior distribution

(e.g. normal or uniform) to produce fake samples that mimic the samples in the real training dataset.

The objective of the model G training is to confuse the model D and limits its ability to make

distinction between real examples and generator outputs.

Formally, G and D play the following min-max game with value function V (D,G)

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))]

When both G and D are differentiable functions (e.g. neural networks), the two models are

training algorithm alternates between updating D, and G and the parameters of each model are

updated using gradient descent and backpropagation.

It has been empirically found [Goo16] that it is better to train modelG to maximize Ez∼pz(z)[logD(G(z))]

instead of minimizing Ez∼pz(z)[log(1−D(G(z)))] in order to provider stronger gradient updates

to improve the θG parameters in the early stages of training. This technique is known as the log D

trick. One important aspect of the GAN training approach: only the model D is trained directly

using examples from the real dataset, while G model is trained through the feedback it receives

from the D model outptus on the samples it generates.

Wasserstein GAN Although GANs constitute a significant improvement than previous methods

for training generative models, researchers faced a major challenge in scaling up GANs and

stabilizing their training on big and high dimensional datasets. GANs suffered from instability in
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training that prevented the competing models D, and G from reaching the Nash equilibrium of the

min-max game so that both model the quality of D and G oscillates.It has also been found that

when G model produces samples that are far from the true data samples, the discriminator saturates

and results in vanishing gradient that limits the chances of G model to improve. This problem has

motivated researchers to develop many alternatives and tricks to make GAN training more stable

and improve the equality of results[SGZ16, RMC15, AB17, SVR17, MPP16].

A notable fix to GAN adversarial training stability issues and improve the results quality is the

Wasserstein GAN [ACB17b]. In the original GAN formulation, the generator attempts to minimize

the Jenson Shannon Divergence (JSD) between pg and pd. Rather than minimizing the JSD,

Wasserstein GAN changes the GAN training loss so that it minimizes an efficient approximation of

the Earth Movers (EM) distance between the the two distributions pdata(x), and pg(x; θG).

The Earth-Mover distance of Waserstein-1 distance is defined as:

W (Pdata(x), Pg(x; θ)) = inf
γ∈Π(Pdata(x),Pg(x;θ))

E(x,y)∼γ
[
‖x− y‖

]
, (8.1)

where Π(Pdata(x), Pg(x; θ)) is the set of all joint distributions γ(x, y) whose marginals are respec-

tively Pdata(x) and Pg(x; θ). Intuitively, the EM distance is the “cost” of the optimal transport plan

between the two distributions where γ(x, y) represents how much “mass” must be transported from

x to y in order to transform the distributions Pdata(x) into the distribution Pg(x; θ).

EM distance has a number of appealing properties than the JSD that leads to an improved and

more stable training of the WGAN models. The D model in W-GANs is termed as critic instead of

discriminator, because its output value is no longer required to represent a probability value and

therefore no longer constrained to be within the [0, 1, ] range. Unlike the JSD distance, EM distance

does not saturate when the D model produces good results and that allows WGAN model to train

D model till optimality and after that, it can be used to provide useful gradient to train the generator

model. Therefore, it is no longer needed to put a lot of effort maintaining a balance between D and

G while training which was a reason for a lot of troubles in the original GAN training. Instead, in

WGAN the better the critic D, the better gradients it can provide as feedback to train the generator

G.
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To avoid intractable infimum operation in EM distance definition, WGAN[ACB17b] employs

(the Kantrovitch-Rubinstein duality [Vil08]) to compute it with following formula instead:

W (Pdata(x), Pg(x; θ)) = sup
‖f‖L≤1

Ex∼Pdata(x)[f(x)]− Ex∼Pg(x;θ)[f(x)] (8.2)

Therefore, if we have a family of functions w ∈ W that are all K-Lipschitz for some K, the

following equation becomes equal to Wasserstein distance multiplied by a multiplicative factor K.

max
w∈W

Ex∼Pdata(x)[fw(x)]− Ez∼p(z)[fw(G(z; θ))]

This equation can be approximated when the neural network parameters w are lying in a compact

space. In order to ensure that parameters lie in a compact space, WGAN[ACB17b] enforces this by

clamping the model weights to a fixed box (sayW = [−0.01, 0.01]l) after each gradient update.

The min-max game between the two networks becomes :

min
θ

max
w∈W

Ex∼Pdata(x)[fw(x)]− Ez∼p(z)[fw(G(z; θ))]

The WGAN training algorithm is provided in 6.

In Algorithm 6, fw is the critic model function with parameters w, and G is the generator

function with parameters θ. The critic is trained multiple for multiple steps (ncritic) before training

the generator in order to reach its optimality and improve the gradients it can provide to improve the

generator. The weight clipping of critic parameters w in line 7, ensure that the weights parameters lie

in a compact space and the RMSProb[HSS12] is an extension to gradient descent that adaptively

adjusts the learning rate for each dimension in the weight vector.

8.3.2 Differential Privacy

Differential privacy is a privacy model that provides privacy guarantees for algorithms on aggregate

databases. Intuitively, it provides a promise made by the data holder to the data subject: "you will

not be affected by allowing your data to be used in the released results of statistical queries no

matter what other auxiliary information the attacker may have".
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Algorithm 6: Algorithm for training WGAN
Require: : α, the learning rate. c, the clipping parameter. m, the batch size. ncritic, the number of

iterations of the critic per generator iteration.

Require: : w0, initial critic parameters. θ0, initial generator’s parameters.

1: while θ has not converged do

2: for t = 0, ..., ncritic do

3: Sample {x(i)}mi=1 ∼ Pdata(x) a batch from the real data.

4: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

5: gw ← ∇w

[
1
m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(G(z(i); θ)))

]
6: w ← w + α · RMSProp(w, gw)

7: w ← clip(w,−c, c)

8: end for

9: Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.

10: gθ ← −∇θ
1
m

∑m
i=1 fw(G(z(i); θ))

11: θ ← θ − α · RMSProp(θ, gθ)

12: end while

Differential Privacy : An randomized algorithmM : Dn → R is (ε, δ)-differentially private if

for all neighbouring databases d, d′ such that ||d− d′|| ≤ 1:

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ

for all S ∈ R. Typically δ is less than the inverse of any polynomial in the size of the database. If

δ = 0, thenM is ε-differentially private. The smaller the value of ε, the stricter privacy guarantee is

offered byM.

Post-Processing property [DR14] if M : Dn → R is randomized algorithm taht is an ε-

differentially private mechanism by using:-differentially private. Let f : R → R′ be an arbitrary

data-independent randomized algorithm. Then f ◦M : Dn → R′ is an (ε, δ)-differentially private.
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Laplace Mechanism [DR14] Any given function f : Dn → R can be approximated via an

ε-differentially private mechanism by using:

M(x) = f(x) + Lap(
∆f

ε
)

where Lap(σ) is a value sampled from Laplace distribution with zero mean and σ scale, and ∆f is

the sensitivity of f defined as

∆f = max
x,y∈Dn
||x−y||=1

||f(x)− f(y)||1

Gaussian Mechanism[DR14] Another alternative to adding Laplacian noise is to add Guassian

noise. In this case rather than scaling noise to l1 sensitivity ∆f , we instead scale the noise to the

l2 sensitivity ∆2(f). Therefore, any given function f : Dn → R can be approximated via an

ε-differentially private mechanism by using:

M(x) = f(x) +N (0,∆2
2(f) · σ2)

where ∆2(f) is l2 sensitivity of function f

∆2(f) = max
x,y∈Dn
||x−y||=1

||f(x)− f(y)||2

A single application of Guassian mechanism to a function f of l2 sensitivity ∆2(f) satisfies (ε, δ)

differential privacy if σ ≥
√

2 log 1.25
δ

ε

Sequential Composition and Privacy Accountant [McS09] : The sequential composition prop-

erty of differential privacy states that for any sequence of computations that each of them is differ-

entially private in isolation will also provide differential privacy. If each ofMi is εi differentially-

private then the sequence ofMi provides
∑

i εi-differential privacy. [McS09] proposes the use of

privacy accountant to maintain track of the total privacy loss in complex algorithms that consist

of individual differentially-private computation steps.

Strong Composition Theorem: The lemma 2.3[BST14, DRV10] can be used to compute the

total privacy loss of T steps of adaptive composition. When ε, δ′ ≥ 0, The class of ε-differentially
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private algorithms satisfies (ε′, δ′)-differential privacy under T-fold adaptive composition for ε′ =√
2 ∗ T ln ( 1

δ′
)ε+ Tε(eε − 1)

Moments Accountant Method: Like privacy accountant method, the moments accountant also

keeps track of the privacy loss for sequence of computations. However, the moments accountant

uses the tail bound of log moments of privacy loss random variable to obtain a more strict bound for

privacy loss. For any two neighbouring data-sets d, d‘ ∈ Dn, a mechanismM, auxiliary input aux,

and an outcome o ∈ R, the privacy loss at o is defined as

c(o;M, aux, d, d′)
∆
= log

Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]

where the aux input for the kth mechanismM‖ includes the output of all previous mechanisms.

Therefore, allowing for composition of mechanisms.

For any given mechanism, the λth moment αM(λ; aux, d, d′) is the log of the moment generating

function evaluated at value λ

αM(λ; aux, d, d′)
∆
= log Eo∼M(aux,d)[exp(λc(o;M, aux, d, d′)]

If we let αM(λ) to be the maximum taken over all possible aux and all neigbhouring databases

d, d′

αM(λ) = max
aux,d,d′

αM(λ; aux, d, d′)

Then αM has two important properties:

• Composability: suppose a mechanism M consists of sequence of adaptive mechanisms

M1, ..Mk where Mi : Πi−1
j=1Rj ×D → Ri, then for any λ

αM(λ) ≤
k∑
i=1

αMi(λ)

• Tail bound: For any ε > 0, the mechanismM is (ε, δ)-differentially private for

δ = min
λ

exp(αM(λ)− λε)
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The proof for the two properties is provided in [ACG16].

As a result, we can compute the overall bound αM by summing the bounds of each step αMi
.

Then, we can use the tail bound property to convert the moments bound to (ε, δ)-differential privacy

guarantee.

8.3.3 Wasserstein GAN Training with Differential Privacy

Now, we discuss about how utilize the differential privacy technique to train our WGAN model.

Algorithm 7 describes the procedure for training our differentially-private WGAN.

Compared to the original WGAN training algorithm given in 6, we add the following steps:

Compute Per-Example Gradient: Rather than computing the mini batch gradient value, we need

to compute the gradient of loss function with respect to the critic parameters per each example x(j)

in the training data gw(x(j)).

x(j)

Gradient Norm Clipping: Since choosing the amount of noise we add while applying the

Gaussian mechanism depends on the l2 sensitivity of the input function. We clip the l2 norm of each

gradient so that the maximum gradient norm becomes cp.

Adding Noise: We apply Gaussian mechanism to santize the gradients of individual examples

by adding noiseN (0, σ2c2
pI) to the sum of clipped per-example gradients. Therefore, the aggregated

gradient for each step becomes differential private. In order to achieve (ε, δ) differential privacy for

each step, it suffice to chose σ to be ≥
√

2 log 1.25
δ

ε
[DR14].

Using Moments Account: We use the moments accountant to track the privacy loss of the

whole training algorithm by through composition of bounds of the log of moments of privacy loss

per each step.
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Algorithm 7: Algorithm for training (ε, δ)-differentially private WGAN
Require: : α, the learning rate. c, the clipping parameter. m, the batch size. ncritic, the number of

iterations of the critic per generator iteration. Noise scale σ, group size L, Gradient Norm

bound cp

Require: : w0, initial critic parameters. θ0, initial generator’s parameters.

1: for t ∈ [T ] do

2: for i = 0, ..., ncritic do

3: Pick a random sample Lt,i = {x(j)}Lj=1 ∼ Pdata(x) from the real data.

4: Sample {z(j)}Lj=1 ∼ p(z) a batch of samples from prior noise.

5: Compute the per-example gradient

6: gw(x(j)) = ∇wfw(x(j)) for x(j) ∈ Lt,i

7: gw(z(j)) = ∇wfw(G(z(j); θ)) for j ∈ [L].

8: Clip gradients

9: ḡw(x(j)) = gw(x(j))/max(1, ||gw(x(j))||2
cp

) for x(j) ∈ Lt,i

10: ḡw(z(j)) = gw(z(j))/max(1, ||gw(z(j))||2
cp

) for j ∈ [L]

11: Add Noise

12: g̃w = 1
L

(∑L
j=1 ḡw(x(j)) +N (0, σ2c2

pI)
)
− 1

L

∑L
j=1 ḡw(z(j))

13: w ← w + α · RMSProp(w, g̃w)

14: w ← clip(w,−c, c)

15: end for

16: Sample {z(j)}mj=1 ∼ p(z) a batch of samples from prior noise.

17: gθ ← −∇θ
1
m

∑m
j=1 fw(G(z(j); θ))

18: θ ← θ − α · RMSProp(θ, gθ)

19: end for
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8.3.4 Proof of Privacy

Our proof of privacy for algorithm 7 follows from the following:

Differential Privacy Proof for Critic:

To ensure that critic is differentially-private, we changed the WGAN training algorithm 6 into

algorithm 7 by adding the following steps:

• We apply gradient clipping to bound the l2 sensitivity of the gradient computed for each

example.

• We then add noise to the sum of the clipped gradients using the Gaussian mechanism. In

above step, we bound the per-sample gradient to have a maximum l2 norm equal to cp. This

ensures that the sum of clipped gradients will also be l2 bounded for any two neighbouring

data-sets (using Cauchy-Schwartz inequality) with the norm bound equal to cp (assuming

bounded differential privacy).

• We use the moments accountant method to select the proper scale of Gaussian noise that we

add to the gradients.

By bounding the l2 sensitivity of the gradient updates and applying Gaussian mechanism, each

update step becomes (ε, δ)-differentially private when the noise scale σ is at least
√

2 log 1.25
δ

ε
[DR14]

with respect to the training lot. Since the lot itself is a random sample of the training database,

the privacy amplification theorem [KLN11, BKN10] states that each step will be (O(qε), qδ)-

differentially private with respect to the training database where sampling ratio q = L
N

.

Using the moments accountant[ACG16] we can compute the total privacy loss of the training

algorithm to show that our final model is (O(q ε
√
T ncritic), δ)-differentially private. The proof

of this bound can be found in [ACG16]. It is important to notice that the only restrictions for

the results of sequential composition to hold is that the internal randomness of the noise generated

at each gradient update step is independent for each repeated gradient sanitization step and that

that real training data remains hidden from the adversary [KOV17]. It does not matter even if the
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adversary (which is the discriminator in our case) can control which part of the dataset to access or

to make any choices based on previous outcomes [KOV17].

When (ε, δ)-privacy budget is very small. We prefer to use a privacy accountant based on

the strong composition theorem [BST14] rather than the moments accountant [ACG16]. Even

though the bounds of strong-composition theorem accumulate faster, it allows us to run training

for few steps before running out of privacy budget. The proof of correctness the privacy-bounds

computed by strong composition theorem can be found in [BST14] (Lemma 2.3).

Differential Privacy Proof for Generator:

In WGAN training, only the critic parameters w are updated directly using the real dataset entries.

While the generator parameter θ updates are updated as a function of the critic output values.

Therefore, if the critic itself is differentially private, the generator will also be differentially private

(Using the post-processing invariance property of differential privacy[DR14]).

8.3.5 Tracking Privacy Loss

In our implementation, we use the privacy accountant method of [ACG16], to keep track of the

accumulated privacy loss spending after each training step that updates the critic weight values. If

the accumulated privacy loss spent exceeds the maximum allowed limits of (ε, δ), then we abort the

training early and don’t perform any further updates to the generator model.

We employ two state-of-art methods to implement a privacy accountant that tracks the total

privacy budget spent after each step of training our models.

• moments accountant [ACG16] which tracks privacy loss using the tail bound of the log of

moments of privacy loss random variable.

• amortized accountant which uses privacy amplification theorem [BKN10, KLN11] and

strong composition theorem[BST14, DRV10] to provide an amortized bound of privacy loss.

Both methods are known to provide the state-of-art tight bounds of privacy loss tracking.

Although the moments accountant [ACG16] provides a tighter bound. Although the growth of
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privacy loss calculated with moments accountant is much less than the growth of privacy loss

calculated by strong-composition theorem, We have found that when εtotal is very small, the bounds

computed by strong composition theorem are actually less than the bounds of moments accountant.

Therefore, our calculations of privacy loss uses the amortized accountant when privacy loss

ε ≤ 0.7, otherwise we use the moments accountant.

8.3.6 Data Pre-Processing and Post-Processing

The datasets given to us during the match 3 competition was taken from the Public Use Microdata

Sample (PUMS) of the 1940 USA Census Data for the State of Colorado, fetched from the IPUMS

USA Website. In total, 662k records and 139 columns of data in CSV format. In this section, we

describe how to pre-process the data to prepare them for our model training and how we post-process

the model generation results.

8.3.6.1 Pre-processing

In order to prepare the input data for our model training, we apply the following transformations for

the input data columns. Each column is considered as one the three following types:

• Categorical: Categorical columns are pre-processed by applying a one-hot encoding to their

values. The transformation happens through two steps:

1. Assume the column has N distinct values, then we map the values for the columns to

values in the range {0, 1, ..., N − 1}. This process is needed to prepare the values for

the next step of one-hot-encoding. The number of distinct values N for each columns is

identified using either of the following ways:

– From the data-specs.json metadata file. We use the maxval property to identify

the maximum value of the column then the number of distinct values is equal to

maxval + 1.

– From the codebook codebook.cbk file that was included in the competitor pack

with description of the possible set of values for each column.
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– For the MIGSEA5 and OCC columns, due to the high sparsity of the column

values we identify the set of distinct values from the tables available on IPUMS

website:

https://usa.ipums.org/usa/volii/seacodes.shtml

https://usa.ipums.org/usa/volii/occ1940.shtml

– For the set of geographic state-dependent columns (SEA, METAREA, METAREAD,

COUNTY, CITY), we collect the number of distinct values from the input data.

2. Apply one hot encoding to the column value.

• numeric (integer): numeric columns are used as it is without any transformations.

• numeric or not-available: for columns which have ’not available’ (i.e. 99999) codes we

transform each column into two columns which are : a boolean column which denotes which

the column value is available or not. A numeric column which is equal to the input column

value if it is available (i.e. not equal to the 9999 code) or a zero otherwise.

8.3.6.2 Post-processing

After sampling synthetic data from the generator model, we apply post-processing step to format

the data in the same format as input data. The post-processing step does not require information

from the input data therefore it satisfies the post-processing in-variance property of differential

privacy.

Post-processing takes place by either or the following ways depending on the column type:

• Categorical: For categorical columns, we treat the generator output as a probability distribu-

tion over the set of distinct column values. The post processing happens in two steps

1. We randomly sample a value according the softmax distribution produced by the gen-

erator. This produces an integer value in the [0, N-1] range where N is the number of

distinct values for the data column.

2. We map the [0, N-1] values to the set of distinct values for the data column in the inverse
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direction of mapping that we did during the pre-processing. mapping between [0, N-1]

range and the set of distinct values was computed in pre-processing step.

• numeric (integer): numeric columns are used as it is without any transformations. We clip

the column value to the [0, maxval] range where maxval is identified from the metadata

data-specs.json file.

• numeric or not-available: for these columns, the generator model produces a boolean value

specifying whether the column has a valid value or not-available. If that value is true, then

the post-proceed value is maxval. The second output is a numeric value. The numeric value

is clipped to [0, maxval] range and if the boolean value

8.3.6.3 Using public data

As required by the competition rules, our solution does not use any public datasets to training the

generator. Once the generator model is trained from input data using differentially-private training

algorithm. The generator model is capable of producing new synthetic data.

• We assume that the metadata of each column (i.e. data provided in data-specs.json) such the

maximum value of each column are to be considered public information.

• Also we also consider as public information, the codebook.cbk provided in the competitor

pack and we use it to identify the set of possible values for categorical columns while doing

data pre-processing.

• For the MIGSEA5 and OCC columns, we identify the set of possible values (but not the

column values distribution) from IPUMS website : https://usa.ipums.org/usa/

volii/seacodes.shtml and https://usa.ipums.org/usa/volii/occ1940.

shtml.

• Since the final testing dataset will be for different states other than Colorado which was used

during the provisional testing phase, As posted in the competition forum (https://apps.

topcoder.com/forums/?module=Thread&threadID=935216) for the geographic
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state-dependent columns (SEA, METAREA, METAREAD, COUNTY, CITY), we collect

the set of distinct values for each of these columns from the input data, but we don’t collect

any information about the distribution of values.

8.3.7 Running Our Solution

To promote further research in this important area, we made all our experiments and imple-

mentation code publicly available as open-source at https://github.com/nesl/nist_

differential_privacy_synthetic_data_challenge. Our implementation uses the

TensorFlow open-source deep learning framework which is more efficiently run using GPU

enabled machines using. It can be also run in a container using NvidiaDocker. The runtime

is signficantlly improved when running on a GPU- powered machine. It has been tested to work

successfully on a machine with Titan X GPU.

Steps to install NvidiaDocker can be found in https://github.com/NVIDIA/nvidia-docker

After unziping the given zip file. First, build the docker image.

d oc ke r b u i l d − t u c l a n e s l _ w g a n .

then, run the image while giving the appropriate argument values.

then, run the image while giving the appropriate argument values.

d oc ke r run −−r u n t i m e = n v i d i a −v $ ( pwd ) : / x u c l a n e s l _ w g a n / x / d a t a .

c sv / x / o u t p u t . c sv / x / da t a−s p e c s . j s o n e p s i l o n [ d e l t a ]

where

• data.csv: input dataset file.

• output.csv: output file.

• data-specs.json: metadata file.

• epsilon ε privacy budget.
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• delta: (optional) value of δ parameter. If it is not given, then δ is chosen to be 1
n2 where n is

the size of private dataset.

8.4 Evaluation Results

8.4.1 Datasets

The competition dataset was taken from the Public Use Microdata Sample (PUMS) of the 1940

USA Census Data for the State of Colorado. In total the dataset had 662,000 rows and 139 columns.

During the final evaluation rounds, we submitted our code for final scoring where the organizers

used other datasets, unknown to us to evaluate our submission.

8.4.2 Evaluation Metrics

The utility of synthetic datasets is determined based on three scoring methods. The three scores

was later averaged together to produce the final score. The description of scoring methods is given

below:

8.4.2.1 Scoring Method 1

Scoring method one is based on the difference of density distributions for the original and privatized

datasets. It performs bucketizaiton of different sets of 3 randomly selected columns. The absolute

difference between density distribution of values in the original and privatized dataset is computed.

Since density distribution is between 0 and 1, the absolute difference s will be between 0 and 2.

This absolute difference value s is transformed into the score S which is in the range [0, 1000,1000]

using the equation

S = 1000000 ∗ (1− s

2
)

A set of 100 tests is created (by choosing different sets of 3 columns), and the final score is the

average of scores obtained from individual tests.a
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8.4.2.2 Scoring Method 2

To compute the score of scoring method 2, A set of tests are generated. Each test consists of different

columns selected at random with each column has 33% chance to be selected. To conduct the test,

the scoring code will pick a random subset of possible values for each column included in the test.

A dataset record will satisfy a test rule, if it has records that are within the ranges defined by the

columns of all columns in a test set. The tests are generated guarantees that original dataset always

have at least one record that satisfy each test.

The way tests are generated guarantees that in the original dataset there was at least a single

record matching test rules.

The score of method two for the i-th test is defined on the missmatch between the number of

rows satisifying the test from the original dataset fo,i and those satisfying the test from the privatized

dataset fp,i. The missmatch score is computed according the the following equations:

di = ln(max(fp,i, 10−6))− ln(fo,i)

δ =

√√√√ 1

N

N∑
i=1

d2
i

score =106 max

(
0, 1 +

δ

ln(10−3)

)
where N = 300, the total number of tests.

8.4.2.3 Scoring Method 3

Scoring method 3 was calculated based on comparing the gender pay gap for each city in the original

dataset. The first component is based on the mean-square deviation between Gini indices obtained

for the original and privatized dataset, averaged over the cities present in the original dataset. The

second component ranks the cities by the gender pay gap, and calculate the score component based

on the mean-square deviation between the resulting city ranks in the original and privatized datasets.

The overall score from the third method is the average between these two score components and

normalized to the [0; 1 000 000].
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8.4.3 Evaluation Results

Score 1 Score 2 Score 3 Average

No Privacy 550679.36 467903.27 690474.40 569685.68

ε = 10.0 674409.70 649732.57 704674.97 704674.97

ε = 3.0 637677.48 608017.73 738434.54 661376.58

ε = 1.0 636014.04 603058.82 805215.98 681429.61

ε = 0.3 457963.07 494882.80 814078.46 588974.78

ε = 0.1 342467.27 355310.08 753246.78 483674.71

Table 8.1: Utility scores of the synthetic datasets gen different levels of privacy loss.

Figure 8.1: Utility scores of synthetic datasets under different levels of privacy loss.

Table 8.1 shows the evaluation results of the different scores using our submission under
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different values of the privacy loss ε. The first row represents the scores achieved from a GAN

model trained without differential privacy.

Figure 8.1 illustrates the relationship between the maximum privacy loss ε and the final score

(average of the three scoring methods). Interestingly, we observe that for values ε > 1, the privatized

synthetic datasets have higher utility score than the synthetic dataset produced by GAN model

trained without differential privacy. This might be because the small noise added at this levels of

privacy helps to regularize the model training and prevent the generator for overfitting to the critic

causing ‘mode collapse‘ [TOB15] which is a common pitfall for generative models.

8.5 Conclusion and Future Work

In this chapter, we have presented the algorithms and privacy proofs for training Wasserstein GAN

models with differential privacy. Methods described in this chapter were used in the submissions

of team UCLANESL in the NIST synthetic dataset differential privacy challenge. All models and

experiments are also available as open-source.

Future work: Our future work directions including performing analysis into how to further

increase the utility score and how to apply the methods described in this chapter in the generation

of the synthetic time-series sensor data (e.g., physiological sensors).
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CHAPTER 9

Conclusion and Future Work

The primary goal of this dissertation was to, in the context of smart devices and sensor data, study

the vulnerability of machine learning models against attacks, how to make them more robust and

how to protect the privacy of individuals contributing their sensor data to train machine learning

models.

We introduced, GenAttack, new algorithm for query-efficient generation of adversarial exam-

ples under the black-box threat model. We demonstrated the query efficiency of GenAttack by

experiments against different image classification models for different datasets, MNIST, CIFAR-10

and ImageNet, and comparing the results to ZOO attack, the previous state-of-the-art black-box

attack algorithm. We have also shown that adversarial examples are not limited to the computer

vision domain but can also be performed against different kinds of models which process other data

types such as speech and text. In Chapter 3, we demonstrated how to use GenAttack algorithm to

perform targeted classification attack against speech classification model with 87% attack success

rate. The magnitude of adversarial noise added by GenAttack to the original audio waveform

is limited therefore it does not affect the classification outcome made by a human listener to the

adversarial audio clips. In Chapter 4, we described how to craft adversarial examples against

natural language understanding models. The attack algorithm replaces few words of the original text

by another word in order to cause targeted miss-classification attack. The new replacement words

are chosen to preserve the semantic and syntactic integrity of the modified text. Our experiments

have demonstrated that we can attack and IMDB movie review classification model and a textual

entailment model with 97% and 70% attack success rate, respectively.

We also, in Chapter 5, we proposed NeuroMask algorithm that can be used to generate

explanations for the neural network result. The explanation of a neural network is useful to gain
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more trust in the classification outcome. We then, in Chapter 6, focused on how to make smart

devices that rely on speech input, such as the smart home devices, more robust against audio

spoofing attacks. In Chapter 7, we introduced, PhysioGAN, a model architecture and training

technique to generate synthetic samples of physiological sensor data conditioned on their class

labels. Compared to existing methods of training generative models for physiological sensors data,

PhysioGAN generates samples that exhibit a good balance between their accuracy and diversity.

Therefore, it can be used to replace the real dataset of collected physiological sensors data to protect

the privacy of the individuals from identifications or unwanted inferences. Finally, in chapter 8

we showed how to utilize the techniques of differential privacy to train generative models with a

formal proof of their disclosure of private information from the training dataset. As the limits of the

disclosure of private information can be quantified using the privacy loss parameter.

9.1 Directions for Future Work:

Due to the increasing role played by smart devices in our daily lives, and the wide adoption of

machine learning models in these devices. The goals of studying the vulnerability of machine

learning against the different security and privacy attacks and how to increase their robustness

remain interesting questions for further research.

• Query efficient adversarial attacks against hard-label black box models: In this disser-

tation, we presented a query efficient method to generate adversarial attacks against black-box

models that return prediction scores of classification labels for the input examples. A more

strict model to consider is to attack machine learning models in the hard-label black box

where the model outcome is only the prediction label without providing prediction confidence

scores. The hard-label black-box setting is very challenging because the attacker has very

limited and sparse feedback from the victim model on the effect of changes made to the

adversarial noise. Recently, researchers [BRB18, CLC18] have proposed attack methods that

succeed under this setting. However, these methods are still inefficient in terms of the number

of required queries to the victim model.
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• Physical world attacks against speech recognition model: In this dissertation, we demon-

strated successful attacks against speech classification models. We have found that adversarial

audio clips we generate are successful under the direct model access setting where the audio

clip is fed directly into the victim audio classification model. However, we have noticed

that the adversarial audio clips are no longer successful when we play them from a speaker

device and record them over-the-air by a microphone and feed that recording into the victim

model. Audio adversarial attacks that remain successful in the physical world setting would

be considered a serious threat against smart devices because they allow attackers an easier

channel to attack voice-controlled devices.

• Defenses against adversarial examples: We have shown that the different kinds (image,

speech, and text) of classification models are vulnerable to adversarial examples of attacks.

We have also demonstrated that some of the recently proposed defenses can be broken. The

search for a robust defense mechanism remains an important goal of research to pursue.

Ideally, the robustness of the defense technique should be formally certified to prevent being

broken by future attacks. Recent research such as [WK17, WZC18, LAG18] has provided

promising directions to pursue this goal.

• Generation and evaluation of explanations of deep neural network models results: We

have proposed, NeuroMask, a technique to generate explanations of deep neural network

image classification results. The explanations are important to gain more trust in the neural

network results. In the future, I would like to extend this work by applying it to other kinds

of neural network models (e.g., text and speech models). Also, I would like to study how to

provide a quantitative metric to compare the results of NeuroMask against the explanations

generated by other solutions.

• Generation of differentially-private synthetic datasets of physiological sensors: We have

presented, PhysioGAN, as an approach to build and train generative models to produce

synthetic samples of physiological sensors data. Compared to prior methods of generating

synthetic sensor data, samples generated by PhysioGAN have high utility because they can

be used to replace the real datasets in training machine learning with a moderate decrease in
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their classification accuracies. A future direction of research I would like to pursue is to train

PhysioGAN with differential privacy to quantify the limits of private identifiable information

from training examples that are disclosed by PhysioGAN.
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