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2. A. Muñoz-Hernández and G. Diaz, Heat transfer analysis of graphite rods
subject to Joule heating using a modified semiconductor formulation. Proc. of
2nd Thermal and Fluid Engr. Conf, and 4th Int. Workshop on Heat Transfer,
2-5 April 2017, Las Vegas, NV, USA.
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ABSTRACT

CHARGE AND JOULE HEAT TRANSPORT IN
CARBONACEOUS MATERIALS AND ACTIVATION OF

BIOCHAR

Andres Munoz Hernandez
Doctor of Philosophy

in
Mechanical Engineering

University of California, Merced
2018

Professor Gerardo Diaz, Advisor

The combination of recent drought conditions, closing of biomass processing
plants, increased open-burning permit costs, and current practices of agriculture and
forest management have created an abundant amount of biomass that is causing
increased green house gas (GHG) emissions and potential for catastrophic wild fires.
This has motivated the search for innovative solutions for the usage of biomass and
its byproducts.

Activated carbons are highly valuable products with endless applications in
the food and pharmaceutical industries, among others. While the conventional (phys-
ical) activation process involves exposing biochar to superheated steam, the addition
of electric fields is being analyzed as an innovative alternative to the energy-intensive
physical activation process. The application of an electric field creates a plasma dis-
charge in the gases and induces Joule heating in the carbonaceous material. The
main objective of this dissertation is to investigate the dynamics of charge/Joule
heat transport and thermal runaway. The purpose is to induce thermal breakdown
(high temperatures) in biomass, biochar, and graphite with low energy input and
in short amounts of time. This concept was explored through numerical simulation
using an electric-thermal model and two variations of a hydrodynamic model, which
were developed as part of this work. Results show that Joule heating indeed produces
high temperatures in the order of seconds for wood, and in fractions of a second for
biochar and graphite – with low energy input.
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A second objective is to produce and assess activated carbons derived from
agricultural residues and forest woody biomass. In this work, physical activation
of peach pit biochar was explored. BET surface areas up to nearly 600 m2/g were
obtained. Though these values are significant, they are still lower than those of
commercial activated carbons (>1000 m2/g). However, these are promising results,
especially, because these materials have the potential to be used in industrial filtering
applications, not only in soils, as is mainly the case for raw biochar. Moreover, in
addition to providing a new market for biomass utilization, biochar and activated
carbon provide a stable method for capturing and sequestering carbon.
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Chapter 1

INTRODUCTION

1.1 Breakdown Of Solid Materials

Breakdown is an important mechanism that affects all materials, from gases
to liquids to solids. In dielectric solids in particular, when a sufficiently high electric
field is applied to the material, it loses its insulating properties temporarily or perma-
nently, and this process is known as breakdown. While the mechanism of breakdown
of gases had been studied and understood to some extent in the late 1800s [1], there
was little or no information of the breakdown mechanism of liquids and solids.

During the early 1900s, the mechanism of dielectric breakdown was divided
into two categories: thermal breakdown or ‘non-thermal breakdown,’ mainly due to
insufficient knowledge of the distinct breakdown mechanisms. A few decades later,
between the 1930s and the 1950s, the non-thermal breakdown mechanism received
a great deal of interest from the research community, and through intensive data
gathering from experimental work and theoretical developments the non-thermal
breakdown process was beginning to be understood from a more fundamental stand-
point. During those years of intensive research the non-thermal type of breakdown
was found to be electronic in nature and became known as ‘electrical breakdown.’

In 1934, a theory to explain electrical breakdown in solid dielectrics was pro-
posed by Zener [2]. He proposed that electrical breakdown occurs due to the excita-
tion of electrons from one energy band to the next under the presence of an electric
field; and when this field is large enough, it leads to a large flux of electrons which
are the cause of breakdown. Subsequently, Whitehead and Nethercot [3] performed
some experimental work on solid dielectrics under high voltages to study the devel-
opment of breakdown following the theory of ionization coefficients from gases, but
they found that the ionization potentials do not have the same physical meaning
as those of gases. Two years later, Fröhlich [4] published the theory of electrical
breakdown in ionic crystals. This theory was based on the mechanism as proposed
by Von Hippel et al. [5] that electrical breakdown occurred when free electrons, those
that had been excited to the conduction band, gained sufficient energy to ionize the
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lattice ions causing an abrupt increase of electrons which then leads to breakdown.
Fröhlich found that the field strength increased with temperature up to a charac-
teristic temperature, above which, thermal breakdown is the leading mechanism.
Moreover, Fröhlich determined that the field strength also increases with the addi-
tion of foreign ions as well as for samples of thicknesses of about 10−6 cm. These
results had somewhat fair agreement with experimental results.

A key individual who significantly advanced the understanding of electrical
breakdown in solid dielectrics through intensive and detailed experimental work was
Von Hippel. Von Hippel [6] was the first researcher to point out that Paschen’s
Law [1] failed to predict the breakdown strength of solids, and differentiated the
breakdown mechanism of solid dielectrics from the breakdown mechanism of gases.
Through experimental work on alkali halide crystals he determined that under the
presence of an electric field, electrons collide with the atoms and transfer some of
their energy exciting lattice vibrational states, which in time create a positive charge
distribution, distorting the electric field, and leading to weakening and breakdown of
the structure. He also determined that in these crystals breakdown occurs in prefer-
ential directions, a mechanism which is absent in glasses because of their amorphous
structure. Moreover, he also determined that slow electrons transfer all the surplus
energy to lattice vibrations and become attached.

In a later paper, Von Hippel [7] studied electronic conduction in insulating
crystals under very high electric field strengths. He obtained current-voltage char-
acteristic curves that showed that breakdown was electrical in nature, and thermal
breakdown was not present even at such high field strengths as other researches
had reported. In addition, he measured very low currents even at breakdown field
strengths. Von Hippel also determined that the conduction process is not only due to
electrons being excited to the conduction band, but also by electrons being excited
to other locally bound states with lower energy than the conduction band. More-
over, he determined that the electric current was composed of the migration of both
electrons and holes under the effect of the electric field.

Buehl and Von Hippel [8], in contrast to other authors, showed that the
field strength of ionic crystals is temperature-dependent. They measured the field
strength of KBr as a function of temperature and found that it was constant for
temperatures up to about 200 K, it increased steeply to a maximum just above room
temperature, and decreased steeply thereafter. Von Hippel and Maurer [9] carried
out more experimental work to further investigate the temperature dependency of
electrical breakdown on disordered and ordered structures by using glassy and crys-
talline materials. They found that the breakdown strength of glass is relatively high
at low temperatures, it decreases slowly up to about room temperature, then de-
creases steeply. In contrast, the breakdown strength of crystals had a lower value
than glasses and increased monotonically and steadily with temperature. In the case
of Silica, it was shown that the breakdown strength of the glass phase was surpassed
by that of the crystalline phase above 30 ◦C. Moreover, Von Hippel and Maurer
determined that at low temperatures electrical breakdown of glasses occurred due
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to an abrupt increase in current, while at higher temperatures thermal breakdown
occurred due to the continuous increase of the current. In a subsequent paper, Von
Hippel and Lee [10] analyzed the electrical breakdown strength of mixed NaCl and
AgCl crystals. They determined that the increase of breakdown strength from low
temperatures to near room temperature was due to the scattering and capture of
electrons, while the decrease of breakdown strength at higher temperatures was due
to the release of the electrons. They also found that the addition of AgCl up to a
certain concentration increased the breakdown strength of NaCl in the lower tem-
perature range and decreased its strength in the higher temperature range.

Von Hippel [11] gave a recount of the most relevant research work on electrical
breakdown that accumulated over the past several years. In that paper he gives an
overview of the experimental achievements towards understanding the breakdown
mechanisms in solid dielectrics as well as an assessment of the relevant theories. He
concluded that existing theories were only adequate to describe a subset of the re-
sults, and further improvements were necessary. Shorty after, Fröhlich [12] revisited
his existing theory of electrical breakdown [4] and obtained results that had better
agreement with experimental data. In a later paper, Von Hippel and Alger [13] per-
formed more experiments to further investigate electrical breakdown of ionic crystals.
They used transient voltages, evaporated metal electrodes, and various forms of irra-
diation to study the influence of field emission and space charges on the breakdown
strength. They reported that preferred breakdown paths seemed to be related to the
Brillouin zones as a result of electron diffraction or electron collisions with lattice
vibrations.

In 1951 in a monograph, Whitehead [14] compiled the developments on elec-
trical breakdown that had accumulated over the past two decades, as well as the
pre-existing knowledge of thermal breakdown. In addition, he gave an overview of
breakdown caused by discharges, electrochemical deterioration, and breakdown from
a practical standpoint. He also summarized that the breakdown strength of most
insulators was in the order of 106 V/cm.

Another important player in the investigation of dielectric breakdown in solids
was O’Dwyer, who, in 1958, wrote a short review discussing the advances in the
field [15]. A few years later, based on Fröhlich’s theory of electrical breakdown [12],
O’Dwyer [16] analyzed the current-voltage characteristics of dielectric films assuming
different mechanisms: space charge limited with constant electron mobility, tunnel
emission from cathode with no space charge, and Schottky emission from cathode
with no space charge. He found that the characteristic current-voltage curves were
not Ohmic and that they depended on the dielectric thickness and temperature. A
year later, Sze [17] investigated current transport and maximum dielectric strength
of silicon nitride films. He determined that the current-voltage characterisics are
bulk controlled and behaved differently under the following conditions: (1) at high
temperatures and high fields, the current is mainly due to field-enhanced thermal
excitation of trapped electrons into the conduction band and is independent of the
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substrate material, film thickness, and polarity of the electrodes; (2) at low tempera-
tures and high fields, the current is mainly due to field ionization of trapped electrons
into the conduction band; and (3) at low fields and moderate temperatures, the cur-
rent is due to the hopping of thermally excited electrons from one isolated state
(trap) to another. Moreover, he reported field strengths in the order of 107 V/cm.
In that same year, O’Dwyer [18] proposed a new theory of avalanche breakdown
assuming continuation of electronic current given by the cathode by field emission.
He estimated the collision ionization rate as well as the electron mobility by fitting
the theory to experimental data for NaCl and Al2O3. Two years later, O’Dwyer [19]
published a short review with particular interest in the theories of thermal break-
down and avalanche breakdown. Around the same time, Klein [20] reviewed the
thermal and electrical breakdown mechanisms in electronic thin films. In addition,
Klein [21] published a comprehensive review of breakdown in solids, including semi-
conductors and insulators. In 1973, O’Dwyer [22] wrote a book covering the topics
of electrical conduction and breakdown in solid dielectrics, where he summarized the
most relevant work to date.

Budenstein [23], based on experimental work, reported that under high field
strengths, the steep increase in the conductivity of the dielectric materials is due
to the formation of highly conductive channels in the material rather than loss of
insulating properties in the bulk as a whole, and began development of a new theory
to explain this phenomenon.

The analysis of breakdown of polymer insulators attracted great interest in
Japan around the mid 1970s. Hikita et al. [24] analyzed the breakdown strength of
thin films of poly(vinylidene-fluoride) using various voltage rising rates above room
temperature. They determined the breakdown strength to be in the order of 106

V/cm, and that it decreased with temperature and was independent of thickness.
Above 50 ◦C, they determined suitable to apply the theory of impulse breakdown
mechanism to explain the results, and fitted the data to obtain the values of the
relevant parameters. In a subsequent paper, Hikita et al. [25] solved the heat equa-
tion for impulse breakdown numerically, and by using the properties of the same
material they showed that the breakdown strength is greatly affected by the ability
of the sample to dissipate heat through the electrodes. In other works, Hikita et
al. studied the breakdown of plasma polymerized styrene films. In one paper [26],
they carried out experiments to determine the field strength of the films. They
found that the field strength was nearly constant for the temperature range between
-196 and 200 ◦C, and that it was strongly dependent on the rise rate of the applied
field. On a second paper [27], they proposed a model for impulse breakdown coupled
with current controlled by Fowler-Nordheim cathode emission, disregarding charge
accumulation. They compared the model to their experimental data and obtained
satisfactory results, which confirmed a low charge accumulation in the bulk of the
material. In a subsequent paper, Hikita et al. [28] performed a numerical analysis of
steady-state thermal breakdown of relatively thick poly(ethylene-terephtalate) films.
They determined that the degree of distortion of the field in the bulk of the material
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depends on the field and temperature dependencies of the conductivity, and that
thermal breakdown is indeed a possible mechanism of breakdown. In another study,
Hikita et al. [29] analyzed high field conduction and breakdown of polyethylene films
at high temperatures. They determined that even at high temperatures, breakdown
was electronic in nature. Nagao et al. [30] analyzed the effect of local Joule heat-
ing on electrical breakdown of polyethylene films. They pointed out that local hot
spots appeared at relatively high electric fields, and that the current flowed around
these hot spots. They also reported that the current increased with time and that
breakdown occurred at these hot spots. In the mid 1980s, Mizutani and Ieda [31]
published a review of the most recent advances in several topics related to electrical
conduction and breakdown of polymer insulators: pre-breakdown currents, interfa-
cial phenomena, effects of polymer structures and impurities, and behavior of ions
at electrodes.

1.1.1 Thermal breakdown

Thus far, the discussion of dielectric breakdown has been general. In this sec-
tion, the discussion is focused on the particular mechanism of thermal breakdown.
When a sufficiently strong electric field is applied to a dielectric at relatively high
temperatures, the leading breakdown mechanism tends to be thermal breakdown.
Under a high electric field, the current density rises rapidly creating large amounts
of Joule heating. Uncontrolled Joule heating causes thermal instabilities that can
lead to thermal breakdown, which occurs when the heat generated inside the de-
vice is greater than the heat dissipated to the environment. Breakdown of a device
happens when the material reaches its glass or melting temperature, which leads to
irreversible changes in the material properties and device failure. The electrical con-
ductivity is a key property that can help enhance or prevent the thermal instabilities
leading to thermal breakdown. When the electrical conductivity depends positively
on the temperature, an increase in temperature leads to an increase in electrical
conductivity, and if not controlled, this process leads to an almost instantaneous
breakdown [22, 32]. The mechanisms leading to breakdown of dielectric materials
have been investigated ever since the early 1900s [14] and have thus lead to the well
known theory of thermal breakdown in solids [14, 21,22].

In the mid 1970s and 1980s, the study of thermal breakdown of polymer
insulators attracted great attention [24–28,30], and the understading of such mecha-
nism on polymers was greatly advanced [31]. In earlier theories of breakdown it was
common to assume no charge accumulation in the bulk, which also meant no time
dependency. And as reported by several authors, the assumption yielded satisfac-
tory results when compared with experiments. Nevertheless, a comprehensive set of
equations to describe thermal breakdown would need to be composed of Maxwell’s
equations, coupled with the current continuity and the energy equations, as sug-
gested by Budenstein [23]. Nearly a couple of decades later, Noskov et al. [32] used
a model composed of all three coupled equations to analyze thermal instabilities of
a thin polymer film with an exponential temperature dependence of the electrical
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conductivity. In addition to reporting charge and temperature distributions in the
bulk, they found that the temperature began increasing exponentially reaching val-
ues of over 1000 ◦C in just over 50 microseconds. These characteristic times were
comparable to the times reported, nearly a decade later, by Neff et al. [33] for their
analysis on crystalline polymer insulators using impulse thermal breakdown. Neff et
al. also reported the thermal breakdown strength to be in the order of magnitude
of 106 V/cm, which falls in the range of values reported by other authors. During
the same year, Yothi et al. [34] analyzed temperature distributions in a newer type
of insulator, i.e., resin impregnated paper, a material that is used in transformer
bushings. Under an alternating voltage, they calculated temperature distributions
with a maximum value under 380 K, and estimated the thermal breakdown voltage
to be 750 kV; a lower value than most other insulators.

Thermal breakdown analyses are performed not only in thin/bulk insulators
(or other solids), but also on systems. For instance, Brandao et al. [35] analyzed
various characteristics of the thermal stability and runaway in microbolometers. In
addition to determining the stability conditions, they also reported that steady-state
was achieved in the order of milliseconds under current biased conditions, and within
seconds under voltage biased conditions. Steady-state temperatures near 2000 and
4000 ◦C were reached in two cases when thermal runaway occurred. The magnitude
of the bias currents was in the order of µA to mA, and that of the bias voltages
under 10 V.

In yet another study, Yune et al. [36] carried out numerical simulations to
analyze the behavior of thermal instabilities in graphite brushes. They reported
steady-state temperatures in the range of 37 to over 3000 ◦C for corresponding current
densities of 0.32× 106 to 4.06× 106 A/m2, produced with applied voltages of 0.25 to
3.14 V. It is worth noting that solid dielectrics have been used in most of the studies
thus far, in contrast, graphite is not a dielectric. In fact, it is a great conductor,
and because of its high electrical conductivity, at low applied voltages the current
densities obtained are really high. Let us bear this in mind as a major portion of the
theoretical/modeling work in this dissertation is based on graphite.

The simultaneous advancement of technology and the development of mi-
cro/nanodevices and new micro/nanomaterials, such as graphene and carbon nan-
otubes, over the past two decades has led to ever increasing power (current) den-
sities that require high heat dissipation rates. For example, carbon nanotubes and
graphene nanoribbons have been reported to sutain current densities in the order of
109 A/cm2 and 108 A/cm2, respectively [37, 38]. Pop et al. [37] investigated Joule
heating and breakdown of carbon nanotubes numerically and experimentally. They
determined a nearly linear dependence of the breakdown voltage with length. They
also found that the current tends to saturate at higher voltages due to Joule heating;
a similar trend was found by Kuroda et al. [39]. Durkan et al. [38] analyzed break-
down of graphene devices due to Joule heating under current stressing conditions. In
addition to measuring the current-voltage characteristics, they estimated resistivity
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values for the devices. Graphene transistors have also been subject to studies ana-
lyzing Joule heating. Several studies have determined the appearance of hot spots
under different biased conditions. It has been determined that hot spots appear at
locations with minimum carrier densities, which also correspond to large gradients
in electric field [40–42]. Modeling of these devices has also enabled the estimation of
carrier densities, temperature, field, and electrical resistance. Other studies have also
shown the impact of Joule heating in organic semiconductors [43], where transient
simulations using a drift-diffusion model coupled with the heat equation have been
used to analyze the dynamic and steady-state behavior of the temperature, current
and capacitance.

Thermal breakdown has been and will continue to play a significant role in the
design and development of electronic and semiconductor devices, especially as the
device size decreases. Simulations will continue to aid in the understanding of charge
transport and Joule heat generation/dissipation, which in turn will help reduce the
risk of thermal breakdown.

From a different perspective, by having a better understanding of these mech-
anisms, they can be exploited for a different purpose. For instance, based on the stud-
ies mentioned heretofore, thermal breakdown (high temperatures) can be reached in
fractions of a second. These mechanisms may be used in applications where high
temperatures are desired, such as in gasification systems. This concept is a driving
motivation for some of the studies in this dissertation and will be discussed in further
detail in future chapters.

1.2 Hydrodynamic Modeling Of Semiconductors

As discussed in the previous section, thermal breakdown affects all solids: from
dielectrics to conductors. Over the past few decades the size of semiconductor devices
has decreased from the micrometer size to the nanometer size. Charge and Joule
heat transport in microscale devices had been analyzed successfully using thermally-
coupled drift-diffusion models [44–46]. However, as the devices reached and surpassed
the submicrometer scale, hydrodynamic models needed to be employed to capture
these dynamics [47–51]. It is the purpose of this section to introduce hydrodynamic
modeling of semiconductor devices.

Semiconductor materials have been crucial components in the advancement
of technology – computers in particular. As such, semiconductors have been under
intensive investigation from theoretical analyses and numerical simulations to exper-
iments [44–46,51–53]. The performance of semiconductor devices, such as field effect
transistors (FETs), relies on the effectiveness of these devices to transport charge and
(Joule) heat. These phenomena have been analyzed comprehensively through exper-
iments, which have yielded vast amounts of data on semiconductor characteristics
and properties [54].

In order to further understand these phenomena beyond experiments, fine tune
the devices, and extend the range of applications, numerical simulations are often
used. The simplest and probably the most common numerical technique to analyze
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semiconductor devices is the well-known drift-diffusion model [45,46]. However, this
model was developed to capture steady-state processes under thermal equilibrium
conditions. In addition, it is only applicable to devices for which the characteristic
length is much larger than the mean free path of electron-phonon collisions. Yet, with
the current advancement of technology, devices have been decreasing in size beyond
the submicrometer scale, and faster response times of the devices are desired. Thus,
more adequate models which can capture the physical phenomena for submicrometer
devices have been under development.

To numerically analyze submicrometer semiconductor devices the Monte Carlo
method [52] and hydrodynamic models are generally used [51, 52]. Hydrodynamic
models are composed of a set of coupled nonlinear partial differential equations that
are similar to those of Navier-Stokes used in Fluid Dynamics, in addition to being
coupled to Maxwell’s equations [48, 51, 52, 55–57]. The collisionless terms of these
equations are derived from the general Boltzmann transport equation (BTE) [56,58],
and assume that electrons/holes behave like a fluid substance. Their applicability to
a given device is also limited by a lower characteristic size, in this case it has to be
larger than the mean-free-path of electron-electron collisions [57]. While the majority
of the terms making up the hydrodynamic model are obtained directly from the mo-
ments of the BTE, the collision terms need to be derived independently. Bløtekjær
performed this job based on strong theoretical developments [55]. Bløtekjær derived
the collision terms using relaxation time approximations which yielded a hydrody-
namic model with all explicit terms. His approach has been widely used there-
after [48, 49, 51, 52, 59]. These models, however, are quite complex to solve and
are numerically expensive, requiring advanced numerical schemes [50–52, 56, 59–62].
Further details about the derivation of the hydrodynamic model utilized in this dis-
sertation are presented in Chapter 2 and Appendix A.

1.3 Activated Carbon

Preamble. Though there is a change in topics between the previous sections
and this section, the link between these works will be discussed next –and in the
‘Motivation and Objectives’ section below. The idea linking previous topics related
to Joule heating/dielectric breakdown and activated carbon is the following. The
process of carbon activation – and biomass gasification – is typically carried out at
high temperatures. Based on our global and scientific interests, two concepts moti-
vated the work in this dissertation: (1) the concept of using Joule heating-induced
thermal breakdown of carbonaceous materials to achieve high temperatures in a short
amount of time, and (2) the utilization of dielectric breakdown of carbonaceous ma-
terials to change their surface properties. While the former concept was analyzed
in great extent through modeling work in this dissertation, the latter concept is
not part of this dissertation. Nonetheless, the latter concept refers to using plasma
discharges at atmospheric pressure where carbonaceous materials are part of the cir-
cuit, see Fig. 1.1. Moreover, plasma discharges are being explored – in other works
in our research group – as a novel technique to activate biochar. However, before
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being able to analyze the extent of plasma activation of biochar, a benchmark using
conventional activation procedures needed to be developed. As a consequence, the
work done in this dissertation focuses on the development of the benchmark carbon
(biochar) activation process using the standard physical activation method. The re-
sults and comparison of plasma-enhanced carbon activation and physical activation
will be published elsewhere.

Activated carbons are highly porous materials that are produced from coals or
biomass – coconut shells in particular – using different methods [63–65]. Commercial
grade activated carbon, which is commonly produced in kilns under a steam atmo-
sphere, has BET surface areas larger than 1000 m2/g. In addition to high porosity,
activated carbon has various chemical surface characteristics. For example, surface
functional groups enhance the chemical reactivity of activated carbons and improve
their adsorption capabilities. In laboratory investigations, conventional activation
processes usually consist of physical or chemical activation. Physical activation is
usually carried out in the neighborhood of 800 ◦C under the presence of steam or
carbon dioxide. To reach these temperatures in laboratory scale units, furnaces that
require power in the range of kiloWatts and reach maximum temperatures between
1000 and 1200 ◦C have been used [66–68]. On the other hand, the chemical activa-
tion process is usually performed at temperatures around 400-500 ◦C. The material
is washed with a strong acid or base such as phosphoric acid or potassium hydrox-
ide [66]. The process is usually performed at laboratory scales yielding surface areas
larger than physical activation, however, scaling up this method is neither econom-
ical nor environmental friendly. A review on the usage of agricultural residues as
precursors for activated carbons is given by Ioannidou and Zabaniotou [64].

1.4 Motivation And Objectives

1.4.1 Global motivation

In the past few decades there has been increasing interest on using renewable
energy sources and reducing the usage of fossil fuels. There has also been increased in-
terest in finding other non-energy-related applications for these renewable resources.
Biomass, for example, has been commonly used in the production of energy by di-
rect combustion and by gasification. In addition, the effect of biochar as an additive
for soil enrichment has been undergoing heavy investigations. Moreover, by acti-
vating the post-gasification biochar, its BET surface area can be increased, and its
applications expanded, as in filter media for water treatment or for air pollution
control, for example. To date, gasification of biomass at the industrial scale has been
achieved, as well as the production of both biochar and biomass-derived activated
carbons. Much of the commercially activated carbons, however, are made from coal
or coconut shells. While coal-derived activated carbons are produced in the United
States, coal is a non-renewable source. On the other hand, coconut shell activated
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carbons are typically imported from Asia. The United States exports about $384
million and imports about $192 million worth of activated carbon per year1.

The Central Valley in California, is a major agricultural hub which produces
abundant amounts of byproduct biomass. While some of the agricultural byproduct
biomass has several markets, excess biomass tends to be incinerated or ends up in the
landfills. In addition to the agricultural byproduct biomass, the drought over the last
years brought a disease that killed over 100 million trees in the Sierra Nevada [69].
The State of California is currently looking for viable solutions for the removal and
usage of the dead trees in order to prevent the spread of forest fires. The overall
goal of this work is to look for viable solutions to these problems. More specifically,
our goal is to investigate alternate and efficient methods of biomass gasification and
activation of biomass-derived biochar. Our approach will have four expected benefits:
(1) added value to excess biomass, (2) expansion to new markets, (3) reduced waste
in landfills, and (4) reduced emissions due to open incineration of the excess biomass.

1.4.2 Scientific motivation

Figure 1.1: Schematic representation of plasma discharge through air and biomass.

The work performed in this dissertation is motivated by the potential appli-
cations that would affect the society at large, as discussed in the previous subsection.
Nonetheless, there are several scientific questions of interest behind these applica-
tions, which are also motivating the work behind this dissertation.

Though in this dissertation two distinct topics are being addressed, namely,
(1) modeling of charge and Joule heat transport in carbonaceous materials, and (2)
biochar activation, they were both motivated by our initial scientific questions and
potential applications. The following research questions were posed (Fig. 1.1 depicts
these questions):

1https://atlas.media.mit.edu/en/profile/hs92/3802/
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• What happens to electrons as they flow from a plasma discharge to a solid?
Our particular interest is in a plasma discharge in air at atmospheric pressure,
and the solids being wood and biochar.

• How do electrons move through the solid? That is, what are their densities,
velocities, and energies? Other relevant dynamics? Thus, the use of the hy-
drodynamic models and the use of graphite.

• What properties of the solid change temporarily or permanently? For example,
electrical conductivity, surface chemistry, porosity of the material – this is
related to activated carbon.

• Can thermal breakdown of the air plus the biomass/biochar be used as a gasi-
fication/activation technique? Thus, the study of Joule heating and thermal
runaway, as well as, carbon activation.

The work in this dissertation was motivated by these questions. However, the work
found herein, only answers part of these questions. The remaining work serves as
motivation for future research.

1.4.3 Objectives

The main objective of this work is to investigate Joule heating as a potential
method to heat biomass up to pyrolysis temperatures. There have been extensive
studies on solid dielectrics analyzing how thermal instabilities arise due to Joule
heating, which when uncontrolled lead to the thermal breakdown of the materials.
While in past studies the main purpose was to prevent breakdown, our purpose is
to induce breakdown, and use it as a sustainable method for biomass pyrolysis or
gasification. During thermal breakdown, the energy (current) input from the power
supply is directly released inside the biomass as Joule heating. Such conditions can
make this system more efficient than a conventional plasma assisted gasifier, in which
a plasma torch is used to gasify biomass, where a significant fraction of the plasma
energy is lost to the environment before it reaches the biomass. Moreover, as opposed
to non-plasma gasifiers, where a fraction of the gases produced is used to dry and
heat the biomass by combusting it, using thermal breakdown reduces the need for
combusting part of the biomass for heat production since part of the heat can be
provided by Joule heating.

The second objective is to develop the experimental setup and procedure
for physical activation of biochar with superheated steam. Though, as opposed
to most lab experiments, most of the raw biochar that is used in our experiments
is the byproduct of a commercial gasification power plant – Phoenix EnergyTM.
The purpose of the study is to determine whether post-gasification biochar from
agricultural residues and Ponderosa pine, available in the Sierra Nevada, can be
successfully activated, i.e., to approximate properties of coconut shell- and coal-based
activated carbons. If proven successful, this could open a new market for agricultural
residues and Ponderosa pine dead trees. In addition, the activated biochar that is
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obtained with physical activation will serve as the benchmark for plasma activated
biochar – a novel approach currently being explored by our research group, which
will be published elsewhere.

1.5 Dissertation Structure

The structure of the dissertation is presented as follows. Chapter 2 gives
a detailed description of the two models used in the dissertation: (I) conventional
electric-thermal modeling that has been used mostly in the analysis of thermal break-
down of solid dielectric materials, and (II) hydrodynamic models, used mostly in the
study of charge and energy transport in conventional semiconductors. Chapter 2
also presents more details of the electrical conductivity of biochar, and the electronic
properties of pyrolytic graphite, and the fact that graphite is considered a zero-gap
semiconductor or a semimetal. Because graphite is virtually a pure carbon material
and single-crystal-capable, it will provide the link between carbonaceous materials –
which tend to be non-crystalline – and semiconductor materials – which are virtually
single crystal materials. In Chapter 3, the steady-state one-dimensional version of
the hydrodynamic model, better known as a drift-diffusion model, is used to investi-
gate the dynamics of carrier transport under the effects of Joule heating. In Chapter
4, a transient one-dimensional version of the hydrodynamic model is developed along
with a suitable numerical scheme. In addition, because hydrodynamic models are
composed of highly coupled nonlinear partial differential equations, and they have
been typically applied to semiconductors only, the stability and range of applicabil-
ity of this model when using graphite properties is analyzed. The work from this
chapter will serve as the basis for future work to actually solve the hydrodynamic
model using properties of graphite (and perhaps multilayer graphene). In Chapter
5, the conventional electric-thermal model, which, historically, has been used in the
analysis of thermal breakdown assuming no charge accumulation [22], is used to an-
alyze thermal runaway of graphite, biochar, and biomass. In Chapter 6, activation
of biochar from agricultural residues from California’s Central Valley and Ponderosa
pine – a material available at the Sierra Nevada – is explored through physical ac-
tivation with superheated steam. Physical activation is a mature industrial process.
The results will be used as a benchmark to compare to activated biochar samples
obtained with a novel technique using plasma in the form of dielectric barrier dis-
charge, along with other types of discharges. Though, the work pertaining to this
dissertation is only that of the physical activation. The plasma activation and the
comparison of the activated carbons obtained with the two different processes will
be presented elsewhere.
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Chapter 2

BACKGROUND: MODELING AND CARBONACEOUS
MATERIAL PROPERTIES

2.1 Introduction

In this Chapter, a simple conventional electric-thermal model and a hydrody-
namic model to analyze the dynamics of charge and heat transport in carbonaceous
materials will be introduced. In addition, the strong effect of the treatment temper-
ature on the electrical conductivity of heat-treated biomass will be briefly discussed,
and it will be shown that at higher treatment temperatures, the electrical conductiv-
ity is about three to four orders of magnitude lower than that of graphites. Moreover,
the electronic properties of pyrolytic graphite will be discussed, and graphite’s simil-
itude with semiconductor materials will be pointed out.

The main objective of this dissertation is to analyze the dynamics of Joule
heating towards achieving high temperatures in carbon materials using two types of
modeling techniques: (1) electric-thermal modeling and (2) hydrodynamic modeling.
The electric-thermal model can be easily applied to crystalline and non-crystalline
materials. On the other hand, because the hydrodynamic model was developed based
on single crystals (semiconductor materials), it would be a great challenge, or per-
haps not viable, to extend it to analyze non-crystalline materials. Because biomass
and biochar are virtually non-crystalline, it is ideal to use another material that
is both crystalline and carbonaceous, and that is called pyrolytic graphite. Thus,
graphite is a carbon material that will help link the two worlds: (low to no crys-
tallinity) carbon materials and (inorganic) single crystal materials, Fig. 2.1 depicts
this statement. Moreover, using properties of graphite, the results obtained with the
conventional electric-thermal model will be compared to the results obtained with
the hydrodynamic model. In summary, the two models complement each other, and
the more suitable model can be used when analyzing different problems depending
on the information of the thermophysical properties available for each material, and
on the parameters of interest to the user.
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Figure 2.1: Pyrolytic graphite provides the link between non-crystalline carbona-
ceous materials and single crystal, inorganic semiconductor materials.

2.2 Conventional Electric-Thermal Modeling

As discussed in the introduction, historically, the study of thermal breakdown
has been focused primarily in the analysis of solid dielectrics, such as alkali halides
(KBr, NaCl, etc.), silicon oxides, in both glass and crystal forms, and polymers. In
most of those cases, it was common and fair to assume that no charges accumulated in
the bulk of the sample [22]. The set of equations used to analyze thermal breakdown
typically consisted of the energy equation coupled with the equation for total current
continuity, with the assumption of no charge accumulation (∂ρ/∂t = 0), where ρ is
the electric charge density, as follows:

0 = ∇ · (σ∇V ) , (2.1a)

CL,v
∂TL
∂t

= ∇ · (kL∇TL) + σ|∇V |2, (2.1b)

where V is the electrostatic potential, TL is the lattice temperature, CL,v is the
volumetric specific heat, kL is the thermal conductivity, and t is the time. Integrating
Eq. (2.2b), the total current density can be readily obtained J = σE, where the
electrical conductivity, σ(E, TL), may be dependent on both electric field, E = −∇V ,
and lattice temperature, TL, where the bolded parameters denote vector quantities.

Nonetheless, a more complete set of equations to analyze thermal breakdown,
including Gauss’ Law (which allows quantification of charge accumulation), can be
obtained by using a subset of Maxwell’s equations coupled with the energy equation
for the lattice. Such a model is described by the following equations which consists
of Gauss’ Law, Eq. (2.2a), current continuity, Eq. (2.2b), and the energy equation
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for the lattice, Eq. (2.2c), after Noskov et al. [32]:

∇2V = − ρ

εrε0
, (2.2a)

∂ρ

∂t
= ∇ · (σ∇V ) , (2.2b)

CL,v
∂TL
∂t

= ∇ · (kL∇TL) + σ|∇V |2 − qc+r, (2.2c)

where εr is the relative permittivity, ε0 is the permittivity of free space, CL,v is the
volumetric heat capacity, kL is the thermal conductivity, t is the time, and T∞ is the
ambient temperature. Although in the research of dielectric materials thin films of
the order of µm have been used, we are interested in analyzing problems with length
scales in the order of mm to cm. Thus, heat losses by convection and radiation
may become more important. Therefore, the term representing such heat losses,
qc+r, has been added to the energy equation, (2.2c). In certain cases, especially
in microelectronics, the material or device in question is placed on top of a solid
substrate, therefore, heat losses by conduction should be included in the overall heat
losses term.

These equations are very useful because they are relatively simple, and they
can be solved using inexpensive, conventional numerical techniques. In addition, the
application of these equations can be extended to non-crystalline materials due to
the fact that they are based on macroscale thermophysical properties, i.e., σ, kL, and
CL,v. These properties can be measured experimenally for all materials regardless of
their structure. In the case of single crystals, these properties can also be deduced
from their more fundamental definitions, e.g., σ = e(µene + µhnh), where e is the
elementary charge, µe (µh) is the electron (hole) mobility, and ne (nh) is the electron
(hole) density.

The applicability of this model, which is sometimes referred to as a type
of drift-diffusion model, in solid crystalline materials will be limited to devices with
length scales that are larger than the mean free path of electron-phonon collisions [57].
In addition, to electron-electron and electron-phonon collisions in single crystals, in
poly-crystalline and amorphous materials, the mean free path of the electrons will
be affected by the presence of foreign atoms, and defects due to domain boundaries,
vacancies, etc; the extent of the effect will depend on their concentration. It is
important to note that this model assumes thermal equilibrium between the lattice
and charge carriers. Moreover, it only allows the calculation of a limited number of
variables, i.e., total current density, charge density (and possibly the charge carrier
densities), voltage, and lattice temperature. To obtain information related to the
charge carriers, such as velocities, and temperatures, a hydrodynamic model or a
simplified version of it must be used.

In this work, variations of this model will be used to analyze charge and heat
transport in biomass, biochar, and graphite.
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2.3 Hydrodynamic Modeling

The conservation equations for hydrodynamic models are analogous to those
of Navier-Stokes used in fluid dynamics [48, 51, 52, 55–57]. Hydrodynamic models
are used to analyze charge and energy transport in semiconductor devices [46, 52,
55, 59, 61, 70], as well as, in plasma discharges [71–73]. Their applicability to such
problems in semiconductor devices is justified when the characteristic size of the
device is greater than the average mean free path of electron-electron and electron-
phonon interactions [57]. The collisionless terms of the conservation equations for
the hydrodynamic models are derived by taking the first three momments of the
general Boltzmann transport equation (BTE) [56,58,74].

The general BTE is written as follows [74,75]:

∂f

∂t
+ v · ∇vf +

F

m
· ∇rf =

(
∂f

∂t

)
c

(2.3)

where f(r,v, t) is the distribution function of particles in six-dimensional space, or
phase space, t is the time, v is the particle velocity, F represents external forces, m
is the particle mass, and r is the spacial coordinate. The term on the right-hand-
side represents the particle collisions, which is usually approximated using relaxation
times [48,55,76].

The equations for the hydrodynamic model to analyze charge and heat trans-
port in semiconductor devices can include one [49,52,55,57,74] or more [47,50,56,58,
60,77,78] charge carriers and their momentum and energy. Often times the velocity
and temperature values are more useful than the momentum and energy quantities,
and are therefore utilized. Moreover, some models contain conservation equations
for specific phonon (acoustic, optical, etc.) energies while others contain an energy
equation for the lattice only. The choice of the equations depends on the application,
available material and system properties, and the desired outcome.

It is our interest to use the hydrodynamic model to analyze charge and heat
transport in a graphite device. Because intrinsic (not doped) graphite containes
two-charge carriers, i.e., electrons and holes [79, 80], our analyses will be based on a
two-charge carrier hydrodynamic model. This model includes the carrier velocities
and temperatures, as well as, the lattice temperature.

The following general set of equations may be referred to as a three-temperature,
two-carrier hydrodynamic model because it has three different energy (temperature)
equations and contains two charge carriers. This model is similar to other models
found in the literature [48,50,59]. The model is composed of Gauss’s law in Eq. (2.4a),
charge conservation equations for electrons and holes in Eqs. (2.4b) and (2.4c), mo-
mentum conservation equations for electrons and holes in Eqs. (2.4d) and (2.4e), the
changes of kinetic energy of electrons and holes due to their interactions with the
lattice in Eqs. (2.4f) and (2.4g), and the lattice thermal energy in Eq. (2.4h). The
set of equations is
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∇2V = − e

εrε0
(nh − ne) , (2.4a)

∂ne

∂t
+∇ · (uene) = Ge −Re, (2.4b)

∂nh

∂t
+∇ · (uhnh) = Gh −Rh, (2.4c)

∂ue

∂t
+ ue · ∇ue =

e

m?
e

∇V − kB
m?

ene

∇(neTe)−
ue

τM,e

, (2.4d)

∂uh

∂t
+ uh · ∇uh = − e

m?
h

∇V − kB
m?

hnh

∇(nhTh)− uh

τM,h

, (2.4e)

∂Te
∂t

+ ue · ∇Te = −2

3
Te∇ · ue +

2

3nekB
∇ · (ke∇Te)−

Te − TL
τE,e

+
2m?

e|ue|2

3kBτM,e

(
1− τM,e

2τE,e

)
, (2.4f)

∂Th
∂t

+ uh · ∇Th = −2

3
Th∇ · uh +

2

3nhkB
∇ · (kh∇Th)− Th − TL

τE,h

+
2m?

h|uh|2

3kBτM,h

(
1− τM,h

2τE,h

)
, (2.4g)

CL,v
∂TL
∂t

= ∇ · (kL∇TL) +
3nekB

2

(
Te − TL
τE,e

)
+

3nhkB
2

(
Th − TL
τE,h

)
+ q′′′l , (2.4h)

where V is the electrostatic potential, ne is the electron density, nh is the hole density,
ue is the electron velocity, uh is the hole velocity, TL is the lattice temperature, Te
is the electron temperature, Th is the hole temperature, Ge is the generation rate
of electrons, Gh it the generation rate of holes, Re is the recombination rate of
electrons, Rh it the recombination rate of holes, q′′′l represents the heat losses, which
may include radiation, convection, and/or conduction, and t is the time.

The physical parameters are the elementary charge, e, the permittivity of
free space, ε0, the relative permittivity of the material, εr, the effective electron
mass, m?

e, the effective hole mass, m?
h, Boltzmann’s constant, kB, the momentum

relaxation time for electrons, τM,e, the momentum relaxation time for holes, τM,h,
the energy relaxation time for electrons, τE,e, the energy relaxation time for holes,
τE,h, the thermal conductivity of electrons, ke, the thermal conductivity of holes, kh,
the thermal conductivity of the lattice, kL, and the volumetric heat capacity of the
lattice CL,v.

In this work, simplified versions of this hydrodynamic model are used to ana-
lyze charge and heat transport in graphite rods in Chapters 3 and 4. The simplified
versions of the hydrodynamic model were obtained based on specific criteria; the
detailed step-by-step process is given in Appendix A.
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2.4 Electrical Conductivity Of Heat-Treated Biomass And Biomass-Based
Products

Biomass materials are insulators by nature. Their conductivity is affected by
many factors, but specially moisture content and temperature [81–84]. For instance,
the electrical conductivity of raw dry wood is in the order of 10−14 to 10−16 (Ω
m)−1, while that of saturated wood is in the order of 10−3 to 10−4 (Ω m)−1 [83], a
tremendous increase in conductivity!

In addition to moisture, heat-treating the biomass to (carbonization) tem-
peratures, approximately above 500 to 600 ◦C, significantly increases the electrical
conductivity of the material. However, this increase comes at the expense of mass
losses, mostly due to the volatile matter, and in the process, the biomass becomes
charcoal, also known as biochar. The effect of the carbonization temperature on the
electrical conductivity of various wood and wood-based materials has been analyzed
by several authors [85–87]. Their results show that the electrical conductivity in-
creases by several orders of magnitude with carbonization temperature, as shown in
Fig. 2.2 [86]. For example, the conductivity of solid wood carbonized at 600 ◦C was
nearly 10−3 (Ω m)−1, while the conductivity increased to about 102 (Ω m)−1 after
carbonization at 1100 ◦C. This is an increase of about five orders of magnitude. In
comparison, the conductivity for pyrolytic graphite is about 106 (Ω m)−1 while that
of POCOR© graphites [88] is in the order of 105 (Ω m)−1. Thus, at a carbonization
temperature of 600 ◦C the conductivity of heat-treated wood (biochar) is already
more than 11 orders of magnitude larger than raw dry wood! Moreover, the electri-
cal conductivity of carbon-based materials tends to increase even more with higher
carbonization temperatures. This trend is seen in graphite, whose electrical conduc-
tivity tends to increase with (graphitization) temperature due to the development of
larger single crystal domains [79,80,88].

2.5 Pyrolytic Graphite

Graphite and graphite-derived materials, such as graphene, play a key role
in many engineering applications. The electronic properties of graphite have been
studied experimentally and theoretically to a great extent. For example, Wallace [89]
applied the band theory of solids to analyze the physical properties of graphite, in-
cluding its electrical and thermal conductivities. He also noted the high anisotropy
of electrical conductivity along the parallel and perpendicular directions to the layer
planes. In addition, Wallace found graphite to have a zero gap between the conduc-
tion and valence bands. As a consequence, graphite is sometimes referred to as a
zero-gap semiconductor.

Kinchin [90] performed pioneering work in analyzing the electronic properties
of polycrystalline and single crystal graphite at high temperatures. He found the
number of free electrons to be about 6 × 1024 m−3 at room temperature. He also
estimated the ratio of the mobilities of holes to electrons to be about 0.80. In
addition, Kinchin calculated the resistivity, the thermal mean free path and the
product of the effective mass times the velocity of free electrons as a function of
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Figure 2.2: Conductivity of biochars at different carbonization temperatures [86].

temperature. Kinchin’s findings served a key role in later investigations, and his
findings were found to agree fairly well with later results of other researchers.

McClure [91,92] performed more work related to the band structure of graphite,
where he estimated the band overlap of graphite to be about 0.03 eV [91]. In later
investigations, McClure [93] and Soule [94, 95] performed additional studies which
included quantification of the electron/hole densities, carrier mobilities, and carrier
effective masses at low and room temperatures. McClure [93] found the electron/hole
densities to be about 7×1024 m−3, and the mobility to be about 1 V/(m2 s) at room
temperature. Soule [94] further determined that the magnitude of the electron/hole
density varied from 5× 1024 to 2× 1024 m−3, and the ratio of the electron/hole mo-
bility to vary from 1.1-0.79, for temperatures in the range between 298 K and 4.2 K.
In addition, Soule [94, 95] calculated the effective masses for electrons and holes to
be about 0.03me and 0.06me, respectively, along the layer planes at a temperature
of 4.2 K.

Further work on the electronic properties of graphite was carried out by Klein
[79, 80]. Klein described graphite as a semimetal, and he proposed a model which
assumes parabolic bands, known as the Simple Two Band (STB) Model to describe
the Fermi energy/carrier densities of graphite at high temperatures. This model
is based on a carrier effective mass, an average carrier mobility, and an overlap
energy. The different parameter values measured/calculated by Klein agree well
with previous publications. Yet Klein provided simple expressions to determine the
values of different parameters and their variation with temperature. For instance, he
provided an expression to calculate the value of the intrinsic density of graphite and
its variation with temperature. Klein also noted that the electron and hole densities
are roughy equal [80]. This information motivated us to investigate the extent of the
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equality/inequality among the electron, hole, and intrinsic densities.
Based on the fact that graphite is considered a zero-gap (crystalline) semicon-

ductor, it will be used to bridge the gap between non-crystalline carbon materials
and crystalline semiconductor materials. That is, the properties of graphite will be
used in the two models introduced earlier in the chapter. This will allow us to ana-
lyze charge and heat transport of carbon materials using both models. Though the
properties of graphite, biochar, and biomass are very different, it will allow us to
have a representative case when using the hydrodynamic model.
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Chapter 3

STEADY-STATE ONE-DIMENSIONAL
ELECTRIC-THERMAL DRIFT-DIFFUSION MODEL

3.1 Introduction

In this chapter, a steady-state one-dimensional version of the hydrodynamic
model, Eqs. (2.4), is used for two purposes in mind: (1) to numerically quantify
the difference between the electron, hole, and thermal densities; and (2) to analyze
charge transport and Joule heating in intrinsic pyrolytic graphite rods. This model is
referred to as a drift-diffusion steady-state one-dimensional electric-thermal model.
The derivation of the drift-diffusion model starting from Eqs. (2.4) is given in detail
in Appendix A.

It is noted here that this model used temperature-dependent material prop-
erties, something not done very commonly in the literature. It is important for us
to use temperature-dependent properties because we are interested in reaching very
high temperatures with this model.

The chapter is organized as follows: Sec. 3.2 presents the problem definition,
and Sec. 3.3 presents the governing equations. The thermophysical properties of
graphite are given in Sec. 3.4, and the results are given and discussed in Sec.3.5. A
discussion about applying Joule heating to enhance the gasification process is given
in Sec. 3.5.9, and lastly, the chapter is wrapped up with the conclusion in Sec. 3.6.

The main results from this chapter have been published as Ref. [96].
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3.2 Description Of The Problem

Figure 3.1: Schematic: Graphite rod under an applied voltage exposed to cooling by
free convection and radiation.

In this work, a drift-diffusion steady-state one-dimensional mathematical model
is developed to describe the charge carrier transport and lattice temperature distri-
bution in a graphite rod of length L and diameter D, with L ≥ D. Voltage drop,
temperature changes, and transport of electrons and holes vary only along the x-
direction, as shown in Fig. 3.1. A DC voltage, Vapp, is applied on the left end of the
rod while the right end is grounded. Due to the electric field, charge carriers, i.e.,
electrons and holes, move across the rod producing a total current density J , which
generates Joule heating in the rod. Consequently, due to Joule heating, the lattice
temperature rises and results in thermal generation of electrons and holes. Both
ends of the rod have a fixed temperature equal to T∞. The rod is exposed to heat
losses by natural convection to the surrounding air and radiation exchange with the
surrounding surfaces; the surfaces and the air are at the same temperature T∞.

3.3 Governing Equations

This model is a subset of Eqs. (2.4), and it resembles the form of a drift-
diffusion model, which has been used extensively in the analysis of charge transport
in conventional semiconductors [44–46, 59], and more recently, in graphene devices
[40, 42]. However, in this model there are no diffusion terms. This model has been
derived in detail in Appendix A.

The set of equations is composed of the following: the potential distribution
described by Gauss’ Law in Eq. (3.1a), the continuity equations for electrons and
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holes, Eqs. (3.1b) and (3.1c), the momentum equations for electrons and holes in
Eqs. (3.1d) and (3.1e), and the equation for the lattice temperature (3.1f)

d2V (x)

dx2
= − e

εrε0
(nh(x)− ne(x)), (3.1a)

d (−ene(x)ue(x))

dx
= −eGe,net(x), (3.1b)

d (enh(x)uh(x))

dx
= eGh,net(x), (3.1c)

ue(x) = µe(TL)
dV (x)

dx
− µe(TL)kBTc

e

1

ne(x)

dne(x)

dx
, (3.1d)

uh(x) = −µh(TL)
dV (x)

dx
− µh(TL)kBTc

e

1

nh(x)

dnh(x)

dx
, (3.1e)

0 =
d

dx

(
kL(TL)

dTL(x)

dx

)
− 4hTot

D
(TL(x)− T∞)

− e (−ne(x)ue(x) + nh(x)uh(x))
dV (x)

dx
, (3.1f)

where V (x) is the electrostatic potential, ne(x) is the electron density, nh(x) is the
hole density, ue(x) is the electron velocity, uh(x) is the hole velocity, TL(x) is the
lattice temperature, T∞ is the ambient temperature, and Ge,net(x) and Gh,net(x) are
the net generation rates of electrons and holes, respectively. Lattice temperature
changes only occur along the x-direction. This approximation is valid because the
Biot number is lower than 0.1 [97]. It is also assumed that the electrons and holes
are in thermal equilibrium [59, 98], for which the temperature will be referred to as
the carrier temperature, Tc. It is further assumed that Tc is constant throughout the
rod, but it can be set to different values. Further details regarding these assumptions
are provided in Appendix A. Having a carrier temperature different from the lattice
temperature allows the analysis of non-equilibrium transport. It will be shown,
however, that under the assumptions and operating conditions relevant to this study,
the value of Tc does not have a significant effect on the results.

The physical parameters are the elementary charge, e, the permittivity of free
space, ε0, the relative permittivity (dielectric constant) of graphite, εr, Boltzmann
constant, kB, the mobility of electrons, µe(TL), the mobility of holes, µh(TL), and
the thermal conductivity of graphite, kL(TL), where the carrier mobilities and the
thermal conductivity depend on the lattice temperature. The total heat transfer
coefficient is defined as hTot = hconv + hrad, where hconv is the convection coefficient
and hrad = εσSB(TL,ave + T∞)(T 2

L,ave + T 2
∞) is the linearized radiation coefficient; ε is

the emissivity of graphite and σSB is the Stefan-Boltzmann constant [97].
The current densities for electrons, Je(x), holes, Jh(x), and the total current
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density, J , are defined as follows:

Je(x) = −ene(x)ue(x), (3.2a)

Jh(x) = enh(x)uh(x), (3.2b)

J = Je(x) + Jh(x). (3.2c)

Global current continuity requires the total current density to be constant, thus the
following relationship holds

dJ

dx
=
d(Je(x) + Jh(x))

dx
= 0. (3.3)

In addition, the electric field is related to the potential as

E(x) = −dV (x)

dx
. (3.4)

The net generation rate of electrons is equal to the net generation rate of holes, [99]
that is

Ge,net(x) = Gh,net(x) = Gnet(x). (3.5)

This means that when an electron gains sufficient energy to jump from the valence
band to the conduction band, a hole is created and left behind in the valence band.

Because we do not know the net generation rates explicitly, we take a different
approach in solving the continuity equations for the electron and hole densities.
Substituting Eqs. (3.1d) and (3.1e) into Eqs. (3.2), and rearranging, we get

J = −e (ne(x)µe(TL) + nh(x)µh(TL))
dV (x)

dx

+ kBTc

(
µe(TL)

dne(x)

dx
− µh(TL)

dnh(x)

dx

)
. (3.6)

Since intrinsic graphite is being used, the electron and hole mobilities are replaced
with an average carrier mobility, µave(TL), hereafter called mobility. Thus,

J = 2eµave(TL)nth(TL)E(x)− kBTcµave(TL)
d

dx
(nh(x)− ne(x)) , (3.7)

where we have used the expression 2µave(TL)nth(TL) in place of ne(x)µe(TL)+nh(x)µh(TL);
nth(TL) is the thermal or intrinsic density. Thermal density and intrinsic density refer
to the same parameter, and will be used interchangeably in this dissertation.

Graphite is sometimes referred to as a zero-gap semiconductor [89] or as a
semimetal [79] because it does not have a band gap. Instead grahite has a small
overlap between the valence band and the conduction band [79,80,91]. The presence
of a band overlap indicates that the electron and hole densities are nearly equal to
each other (and to the thermal density) [79, 80]. Based on the two-band model, the
thermal density can be approximated as [80]

nth(TL) =
16πm?

c

h2
P c0

kBTL ln

[
1 + exp

(
Ebo

2kBTL

)]
, (3.8)

24



where m?
c is the effective carrier mass, c0 is twice the layer spacing, hP is Planck’s

constant, and Ebo is the band overlap energy.
The first term on the right hand side of Eq. (3.7) is the drift current density,

JDrift, and the second term is the diffusion current density, JDiff . Under the con-
ditions used here, and using graphite properties, the drift current density becomes
much larger than the diffusion current density for all physically meaningful values
of the carrier temperature Tc. Thus, the diffusion term can be safely neglected, and
the total current density is fully determined by the drift current density

J ≈ 2eµave(TL)nth(TL)E(x). (3.9)

The group of parameters multiplying the electric field in Eq. (3.9) is defined as the
electrical conductivity, σ = 2eµaventh, and the well-known expression for current
density may be obtained, J = σE.

Making use of subsequent expressions, Eqs. (3.1) can be simplified and recast
as follows:

J = 2eµave(TL)nth(TL)E(x), (3.10a)

0 =
d

dx

(
kL(TL)

dTL(x)

dx

)
− 4hTot

D
(TL(x)− T∞) + JE(x), (3.10b)

E(x) = −dV (x)

dx
, (3.10c)

d2V (x)

dx2
= − e

εrε0
(nh(x)− ne(x)). (3.10d)

The boundary conditions are as follows: V = Vapp at x = 0, V = 0 at x = L, and
TL = T∞ at x = 0, L, as shown in Fig. 3.1.

Experimental data suggests that the electron, hole, and thermal densities are
nearly equal to each other [80], which may lead us to assume that they are exactly
equal. However, in Sec. 3.5, it will be shown that for the biased intrinsic graphite
rods, all three carrier densities are nearly equal to each other, but not exactly equal.
Moreover, assuming their equality does not lead to a consistent solution. In addition,
we will show that the maximum absolute difference among the carrier densities is
several orders of magnitude smaller than the thermal density.

In the absence of a gate voltage, the small differences among the electron, hole,
and thermal densities in intrinsic graphite are important because, though small, they
give rise to non-constant electric fields. On the contrary, in graphene transistors, for
example, the gate voltage gives rise to large differences among the electron, hole, and
thermal densities, which results in very large variations in the electric field [40–42].
Therefore, the small differences in carrier densities of the intrinsic material become
insignificant.

3.4 Thermophysical Properties Of Pyrolytic Graphite

The properties of pyrolytic graphite are presented in Table 3.1. The experi-
mental data for the temperature-dependent mobility [80], from room temperature to
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1000 K, was fitted with the following function, with an R2 value of 0.9954, in order
to use it in the simulations

µave(TL) = 7211.2T−1.555
L . (3.11)

Similarly, the experimental data for the temperature-dependent thermal conductivity
[100,101], was fitted with the following function, with an R2 value of 0.9988,

kL(TL) = 839269.0T−1.068
L . (3.12)

A value for the dielectric constant of graphite for a constant (DC) voltage was not
found, but values were found for exfoliated graphite for frequencies as low as 50
Hz [102]. The values for washed and unwashed exfoliated graphite samples at 50 Hz
were 38 and 364, respectively [102]. Nonetheless, there is an uncertainty as to how the
dielectric constant changes at lower frequencies and for a DC voltage. On the other
hand, dielectric constant values for conventional semiconductors are well known. For
example, the values for Si and GaAs are 11.9 and 12.9, respectively [45]. Based on
this information, a dielectric constant of 13 will be used for graphite throughout this
dissertation. The effect of the dielectric constant will be analyzed and discussed in
Sec. 3.5.

Table 3.1: Properties of pyrolytic graphite [80,88,100,101].

Property Symbol Value

Twice the graphene layer spacing c0 0.672× 10−9 m
Band overlap energy Ebo 0.01 eV
Emissivity ε 0.8
Relative permittivity εr 13.0
Free electron mass m0 9.109× 10−31 kg
Effective carrier mass m?

c/m0 0.0125
Thermal conductivity at TL = 298 K kL,ref 1911 W/(m K)
Ave. carrier mobility at TL = 298 K µave,ref 1.02 m2/(V s)

Unless otherwise stated, the system parameter values used for cases I.A,B,
and for some of the other cases, are listed in Table 3.2.

Table 3.2: System parameter values.

Parameter Symbol Value

Rod length L 10−2 m
Rod diameter D 10−3 m
Convection heat transfer coefficient hconv 10 W/(m2 K)
Ambient temperature T∞ 298 K
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3.5 Results And Discussion

In the published literature, several approximations for the intrinsic density
of pyrolytic graphite have been proposed based on available experimental data. A
popular expression to calculate the intrinsic density of pyrolytic graphite, Eq. (3.8),
has been developed by Klein [80] according to his two-band theory. The fact that
there is a band overlap rather than a band gap means that there are nearly equal
numbers of electron and holes. As a result, it has been generally assumed that
the electron and hole densities are exactly equal. In this section, several cases are
solved to demonstrate that although the electron and hole densities are nearly equal
to each other and to the thermal density, there exists a small difference among
them. In addition, the difference is also bounded to a maximum value dictated by
material properties, geometry and operating conditions. The order of magnitude of
the maximum absolute difference between holes and electrons is here quantified with
the aid of Gauss’ law in the form of the Poisson equation.

3.5.1 Exploring the equality of the electron, hole, and thermal densities

In this subsection, the consistency in the solution of the governing equations
is analyzed based on the assumption of equality of the electron, hole, and thermal
densities. From Eq. (3.3) we deduce that the total current density, J , is constant.
Also, in Eqs. (3.10a) and (3.10b), the thermal density nth(TL) and carrier mobility
µave(TL) are dependent on the lattice temperature TL(x), and the electric field E(x)
is a function of position. In order to solve the system of equations, Eqs. (3.10) were
discretized using a second order finite difference numerical scheme with a mesh of
101 nodes. Convergence was achieved when the maximum absolute relative error for
temperature falls below a tolerance of δ = 10−5, i.e, max|TL,new − TL,old|/TL,new ≤ δ.
The appropriate grid size and tolerance value were chosen based on a grid indepen-
dence analysis.

Case I.A: D = 10−3 m, L = 10−2 m, and Vapp = 1.0 V; assume ne(x) = nh(x) ≈
nth(TL). When ne(x) = nh(x), the right side of Poisson’s equation, Eq. (3.10d), be-
comes equal to zero, and Poisson’s equation reduces to Laplace’s equation, d2V/dx2 =
0. Solution of the Laplace equation leads to a linear voltage distribution, and con-
sequently to a constant electric field E(x) = E0 = Vapp/L. The thermal density
can be obtained from two expressions, i.e., directly from Eq. (3.8), or by rewriting
Eq. (3.10a) in the form:

ñth(x) =
J

2eµave(TL)E0

, (3.13)

where it has been labeled as ñth to differentiate from the value of nth obtained from
Eq. (3.8).

The results obtained for this case are shown in Fig. 3.2, where the current
density was obtained iteratively by evaluating the thermal density and the mobility
at the average lattice temperature, and using a constant electric field, i.e., J = 2e
µave(TL,ave)nth(TL,ave)E0. As expected, Fig. 3.2(a) shows a constant electric field and
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a linear variation of the voltage due to the assumption of ne(x) = nh(x). However,
Fig. 3.2(b) shows that the values of nth and ñth are not equal, except in a couple
of locations where the curves intersect each other, and thus, under this assumption,
the system of equations is inconsistent. This solution suggests that the electric
field should not be constant; and therefore the electron, hole, and thermal densities
should be approximately equal but not exactly equal. Under these assumptions, the
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Figure 3.2: Results for Case I.A: ne(x) = nh(x). Parameter values: D = 10−3 m,
L = 10−2 m, Vapp = 1.0 V.

only possibility for the electric field to be constant would be if nth(TL) and µave(TL)
had an exactly inversely proportional dependence on the lattice temperature TL(x).
However this is not the case. The thermal density increases with temperature in
a nearly linear fashion, while the mobility decreases much faster with temperature,
following a power law.

Now that it has been determined that the electron, hole, and thermal densities
are slightly different, the maximum absolute difference between electron and hole
densities will be quantified in Subsection 3.5.2.

3.5.2 Quantification of the maximum absolute difference between hole
and electron densities

The results shown in Subsection 3.5.1 suggest that while the hole and electron
densities are nearly equal to each other and to the thermal density, i.e., ne(x) ≈
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nh(x) ≈ nth(TL), there is a small difference between the hole and electron densities
|nh(x)−ne(x)| � nth(TL). On of the main objectives in this chapter is to numerically
quantify the difference between hole and electron densities nh(x)−ne(x), which may
change along the rod. The first step is to quantify the maximum absolute difference,
max|nh(x)− ne(x)|, which may occur anywhere along the rod.

To simplify the analysis, the electric potential and the position parameter x
will be nondimensionalized as follows: V ∗ = V/Vapp, and x∗ = x/L. Thus, Poisson’s
equation (3.10d) becomes

d2V ∗(x∗)

dx∗2
= − eL2

εrε0Vapp
max|nh(x∗)− ne(x

∗)| (3.14)

In order to quantify the maximum difference between hole and electron densities,
only the magnitude of this value is considered, which is independent of position.
Integrating Eq. (3.14) analytically from 0 to 1 yields the equation for a parabola

V ∗(x∗) =
eL

2εrε0E0

max|nh(x∗)− ne(x
∗)|
[
x∗ − x∗2

]
+ [1− x∗] , (3.15)

where E0 = Vapp/L.
Typical values for this problem are taken as length L = 10−2 m and electric

field of 100 V/m, where the dielectric constant used for graphite is 13.0. Substituting
and simplifying, the following expression is obtained:

V ∗(x∗) = (6.96× 10−14 m3) max|nh(x∗)− ne(x
∗)|
[
x∗ − x∗2

]
+ [1− x∗] . (3.16)

Because the units of the electron/hole densities are in m−3, the units will
cancel out upon multiplication. Although integration of the Poisson equation yields
a parabolic equation, a nearly linear voltage distribution is expected. This means
that the coefficient multiplying the quadratic term should be of order 1, nearly
equal to the linear term. In order for this coefficient to have such magnitude, the
maximum absolute difference between holes and electrons, max|nh(x)−ne(x)|, must
be of the order of 1014 m−3 or lower. The potential distribution using Eq. (3.16) was
plotted for various values of max|nh(x) − ne(x)| in Fig. 3.3(a). It can be seen that
as max|nh(x) − ne(x)| increases, the voltage distribution becomes more parabolic
than linear, and the peak voltage is higher than the applied voltage. When the peak
voltage becomes higher than the applied voltage, it is considered as a non-physical
solution. In order to obtain a meaningful physical solution for the given length
L = 10−2 m and applied voltage Vapp = 1.0 V, the maximum absolute difference,
max|nh(x)−ne(x)|, should be in the order of 1013 m−3. As expected, this number is
much smaller than the thermal density.

Based on this analysis, it can be estimated that in order to obtain a meaningful
physical solution for the voltage distribution, the maximum difference between holes
and electrons is limited to a certain value. This value is dictated directly by the
dielectric constant of the material εr, the applied voltage Vapp, the length L, and
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Figure 3.3: (a) Voltage distribution for various values of max|nh(x)−ne(x)| obtained
with Eq. (3.16). Parameter values: D = 10−3 m, L = 10−2 m, Vapp = 1.0 V,
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indirectly affected by the carrier mobility µave, the effective carrier mass m?
c , and

diameter D.
On the other hand, in order to have a slightly nonlinear voltage distribution

there needs to be a small difference between the electron and hole densities. More-
over, note that the electron, hole, and thermal densities vary along the rod due to
a non-uniform temperature distribution; therefore, it is expected that the difference
nh(x)− ne(x) also varies along the length of the rod. In conclusion, it can be stated
that for a given εr, knowing that nh(x) ≈ ne(x) ≈ nth(TL), it is expected that 0 <
max|nh(x)− ne(x)| < ξ(L/E0), where ξ(L/E0) is a function of L/E0.

Poisson’s equation can also be written incorporating the Reynolds number,
Re, which is analogous to the Reynolds number used in fluid mechanics. Rewriting
Eq. (3.14) we obtain

d2V ∗(x∗)

dx∗2
= −µ

2
avem

?
c

εrε0

1

Re
max|nh(x∗)− ne(x

∗)| (3.17)

where the Reynolds number is defined as [59]

Re =
µ2
avem

?
c(|Vapp|/L)

eL
(3.18)

In fluid mechanics, the Reynolds number quantifies the ratio of the inertia to the
viscous forces; as Re increases the inertia forces dominate. Based on Eq. (3.18), for
the given material properties µave, meff , and εr, Re increases with E0/L. Thus, as a
consequence, max|nh(x)− ne(x)| increases with Re.

Before wrapping up this subsection, it is noted that the results were obtained
using a value of 13 for the dielectric constant, εr. Because this value was not found,
let us explore what happens when this value changes in magnitude. The dielectric
constant is in the denominator on the coefficient multiplying the first term on the
right-hand side of Eq. (3.15). Therefore, as εr increases the coefficient decreases and
max|nh(x)−ne(x)| increases. For instance, if εr = 1300 instead of 13, the coefficient
in Eq. (3.16) is decreased by two orders of magnitude to 6.96 × 10−16 m3. As a
consequence, max|nh(x)− ne(x)| increases by two orders of magnitude as well.

3.5.3 Determining the spatial variation of the difference between hole
and electron densities

The analyses in Subsections 3.5.1 and 3.5.2 showed that indeed the electron,
hole, and thermal densities are nearly equal, yet slightly different. The order of
magnitude of the maximum absolute difference between hole and electron densities
was quantified in Subsection 3.5.2 under different operating conditions. In this sub-
section, the governing equations given by Eqs. (3.10) are solved consistently taking
into account the discussions from Subsections 3.5.1 and 3.5.2, i.e., the electric field
is not constant due to the fact that the electron and hole densities are not exactly
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equal. The system of equations (3.10) is rewritten for convenience, and rearranged
to resemble the numerical algorithm as follows:

E(x) =
J

2eµave(TL)nth(TL)
, (3.19a)

0 =
d

dx

(
kL(TL)

dTL(x)

dx

)
− 4hTot

D
[TL(x)− T∞] + JE(x), (3.19b)

−dV (x)

dx
= E(x), (3.19c)

nh(x)− ne(x) =
εrε0
e

dE(x)

dx
= −εrε0

e

d2V (x)

dx2
. (3.19d)

The equations were discretized using finite differences. The algorithm is as follows:
given an initial value for the total current density, Eqs. (3.19a) and (3.19b) are solved
iteratively until convergence for temperature is obtained. Once the temperature
converges, Eq. (3.19c) is integrated to determine the voltage distribution, and the
voltage solution at the left boundary is compared to the applied voltage. If the
solution voltage at the left end differs from the applied voltage by more than the
given tolerance, |(Vapp − V (0))/Vapp| ≤ δ, the current density is increased/decreased
accordingly; this procedure is a form of the shooting method. Equations (3.19a)
through (3.19b) are then solved iteratively until convergence for both temperature
and voltage is achieved. Consequently, Eq. (3.19d) is used to solve for nh(x)−ne(x).

Case I.B: D = 10−3 m, L = 10−2 m, and Vapp = 1.0 V. Results for this case are shown
in Fig. 3.4, where it can be seen that the electric field is not constant, and its average
magnitude is close to the nominal value E0 = Vapp/L = 100 throughout the rod. The
fact that the electric field is not constant gives rise to a nonlinearity in the voltage
distribution, which can be seen as a slight distortion on the almost linear solid line,
shown in Fig. 3.4(a). The thermal density and the difference between the hole and
electron densities are shown in Fig. 3.4(b). Because the thermal density has a nearly
linear dependence with respect to temperature, the thermal density curve resembles
that of the temperature distribution, reaching a maximum value slightly higher than
9 × 1024 m−3. The difference between hole and electron densities is represented by
the dashed black curve. It can be seen that the values vary approximately between
+0.5×1013 m−3 and −0.5×1013 m−3, displaying a non-symmetric distribution, where
the difference becomes zero at the midpoint along the length of the rod. It is also
observed that the maximum difference between holes and electrons coincides with
the largest gradient of electric field and temperature, which in this case occurs near
the boundaries. In addition, there are more holes than electrons on the left half
of the rod due to the positive voltage and more electrons than holes on the right
half of the rod near the grounded end. Although max|nh(x) − ne(x)| � nth(TL),
the small difference gives rise to the small non-linearity in the voltage and a non-
constant electric field. The operating conditions used for this case corresponds to
the black circle depicted in Fig. 3.3(b). These results corroborate the hypothesis
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from Subsection 3.5.1 and the results from Subsection 3.5.2; and Eqs. (3.19) have
been solved in a consistent fashion.

3.5.4 General results for both charge and heat transport parameters

In addition to the results shown in Subsection 3.5.3, Eq. (3.19b) is used to
quantify the Joule heating power and the heat losses. Moreover, Eqs. (3.1b) and
(3.1c) are used to compute the net generation terms for electrons and holes, respec-
tively, and the second term on the right-hand-side of Eq. (3.7) is used to compute
the diffusion current density, JDiff .

Case I.B: in this case the parameter values from Table 5.3 are used together with
an applied voltage, Vapp, equal to 1.0 V to obtain the distribution of the lattice
temperature, electric field, electron and hole densities, as well as, the Joule heating
effect. These parameter values correspond to those used in case I.A. For consistency
across the figures in this subsection, the results for Case I.B shown in Fig. 3.4 are
included in Fig. 3.5. Fig. 3.5(c) shows the Joule heating power and heat losses due
to convection and radiation, given in a per-unit-length basis.

The Joule heating power, P ′Jh, has an order of magnitude of about 1.5× 104

W/m, about three to four orders of magnitude higher than the heat losses, q′r+c =
(4hTot(TL(x) − T∞)/D)Ac. The heat losses are small due to the relatively small
surface area of the rods. The temperature distribution profile is shown in Fig. 3.5(d).
The maximum temperature reaches about 173 ◦C in the middle of the rod, due to
the symmetric boundary conditions.

The electron and hole velocities are equal in magnitude, but have opposite
signs. Their magnitude ranges from about 85 m/s at the boundaries to a minimum
of about 60 m/s in the middle of the rod, see Fig. 3.5(e). The velocity is proportional
to the mobility, and because the mobility decreases with temperature, so does the
velocity. Since the mobility has an order of magnitude close to one, the magnitude
of the velocity follows closely the magnitude of the electric field. The total, elec-
tron and hole current densities are shown in Fig. 3.5(f). The total current density
has a constant value of about 1.74 × 108 A/m2. It is the sum of the electron and
hole densities, which have equal values. The diffusion current density is shown in
Fig. 3.5(g). Its value was calculated using a carrier temperature, Tc = 298 K. It
can be seen that its value is positive, varies with position, and is several orders of
magnitude lower than the total current density. For this case, Tc would have to be
several orders of magnitude higher in order for the diffusion current density to have
a significant contribution to the total current density. Thus, this result corroborates
the assumptions made in Sec. 3.3, i.e., J ≈ JDrift, and JDiff ≈ 0.

The net generation rates for electrons and holes are shown in Fig. 3.5(h). Both
values are negative and equal to each other, as mentioned in Sec. 3.3. The value of
the net generation rate is negative, meaning that recombination rate is larger than
the generation rate. The absolute value of the net generation rate is in the order of
1016 m−3 s−1. The curve shows a significant amount of noise because Gnet is obtained
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Figure 3.5: Results for Case I.B with parameter values: Vapp = 1.0 V, L = 10−2 m,
D = 10−3 m.
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by dividing over the elementary charge, which has an order of magnitude of 10−19.
Also, Gnet is a secondary variable, i.e., it is calculated after the overall solution of
the problem is obtained.

At this time it is noted that the results presented in Subsections 3.5.3 through
3.5.9 were obtained using a dielectric constant value of 13. Additional cases were
run using higher values of εr to determine its effect on the overall results. However,
except for increases in the difference between electrons and holes there are no visible
changes to the rest of the results.

Case II: the parameter values from Table 5.3 are used again, but with an applied
voltage, Vapp = −2.0 V, in order to analyze the effects of polarity and magnitude
of the applied voltage. The voltage distribution and the electric field are shown in
Fig. 3.6(a). The electric field has a larger variation, and therefore, the non-linearity
of the voltage distribution is more pronounced compared to Case I.B.

The thermal density and the difference between the hole and electron densities
are shown in Fig. 3.6(b). It can be seen that the magnitude of the difference increased
compared to Case I.B. A maximum absolute difference between holes and electrons
of about 0.5 × 1013 m−3 was calculated for Case I.B compared to about 2.7 × 1013

m−3 for Case II. Also, because the polarity of the voltage changed, the variation of
the difference between holes and electrons changed, there are more electrons on the
left half of the rod and more holes on the right (grounded) half.

The Joule heating power and heat losses are shown in Fig. 3.6(c), where it is
seen that the magnitude of both the Joule heating power and the heat losses increased
with voltage. The maximum Joule heating power increased from 1.49×104 W/m for
Case I.B to 4.86 × 104 W/m for Case II, while the maximum heat losses increased
from 8.16 W/m for Case I.B to 85.4 W/m for Case II. Although the heat losses
increased more with voltage, the order of magnitude of the Joule heating power is
still about two to three orders of magnitude higher.

The temperature distribution is shown in Fig. 3.6(d), where the maximum
temperature increased from 173 ◦C for Case I.B to 763 ◦C for Case II. The total
current density for Case II is −2.42× 108 A/m2, which is about a 39% increase from
the Case I.B. This result suggests that the Joule heating power (or total current
density), does not vary linearly with applied voltage. This will be explored and
discussed in more detail in Secs. 3.5.6 and 3.5.9.

The electron/hole velocities are shown in Fig. 3.6(e). Because the applied
voltage changed sign from positive to negative, their values also changed sign. The
magnitude of the velocities increased due to the increase in applied voltage. The
total current density also changed sign due to the negative applied voltage, it is
shown in Fig. 3.6(f). Its magnitude increased to 2.42 × 108 A/m2. Again, its value
is the sum of the electron and hole current densities, which are equal in magnitude.

The diffusion current density is shown in Fig. 3.6(g). Its value varies between
about +1.26× 10−5 A/m2 near the boundaries to about −7.83× 10−6 A/m2 at the
middle. In this case the diffusion current density became negative at and around
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Figure 3.6: Results for Case II with parameter values: Vapp = −2.0 V, L = 10−2 m,
D = 10−3 m.
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the middle section. This means that while electrons and holes are diffusing to the
right near both boundaries, the are diffusing to the left near the middle. In addition,
the order of magnitude is still similar to Case I.B. The net generation rate is shown
in Fig. 3.6(h). The values still remain negative, but about one order of magnitude
higher than Case I.B.

As discussed previously, both the thermal conductivity and mobility are de-
pendent on the lattice temperature, and results were obtained and analyzed using
the temperature-dependent values, cases I.B and II. Several more cases are solved
assuming quasi-constant values for kL, µave, and nth. Thus, a single value of kL, µave,
and nth evaluated at the lattice average temperature, TL,ave, will be used across the
rod. To a lesser extent, this methodology still allows to take into account the effect
of the increasing temperature without having to evaluate kL and µave at each node.
Thus, saving some computational effort, especially in transient modeling. However,
making such simplifications may reduce the accuracy of the results, as will be shown
next.

Case I.B.1: uses the same parameter values as in Case I.B, but with kL = kL(TL,ave).
The results for this case are shown in Fig. 3.7. Comparing these results to the results
from Case I.B, it is observed that E(x), V (x), nth(x), P ′Jh(x), q′r+c(x), uh(x), and
ue(x) remain nearly equal. The difference nh(x) − ne(x) has less curvature, and its
magnitude reaches slightly larger values near the boundaries, Fig. 3.7(b); the temper-
ature curve is smoother, Fig. 3.7(d), and TL,max = 185 ◦C, which is 12 degrees higher
than Case I.B; J had a small decrease, seen in Fig. 3.7(f), from 1.74× 108 A/m2 to
1.70 × 108 A/m2; the curvature of JDiff flipped, Fig. 3.7(g), and its magnitude de-
creased by about ten times; lastly, the value of Gnet, shown in Fig. 3.7(h), increased
by nearly one order of magnitude. In this case, TL,max reached a higher value be-
cause the thermal conductivity near the boundaries has a smaller magnitude, since
kL decreases significantly with temperature, therefore, less heat is dissipated to the
boundaries. In addition, because the electrical conductivity of pyrolytic graphite de-
creases with temperature, the total current density also decreased by a small amount.

Case I.B.2: uses the same parameter values as in Case I.B, but with kL = kL(TL,ave)
& µave = µave(TL,ave). The results for this case are shown in Fig. 3.8. Comparing
to Case I.B, it is readily observed that the curvature of the electric field is flipped,
Fig. 3.8(a), and its highest magnitude has increased from about 109 to 127 V/m.
The fact that the electric field is lower near the middle of the rod is due to the higher
temperature at this location. Recall that σ = 2eµaventh, and in this case we have
only evaluated µave at TL,ave, while nth has been evaluated at the local temperature
at each node. This means that while µave has a constant value across the rod, the
magnitude of nth will increase from the boundaries to the middle of the rod. Thus, σ
increases in the same manner, i.e., σ increases with temperature, which contradicts
the real dependency with temperature. Since J = σE is constant, higher values of σ
mean lower values of E. The voltage curve, Fig. 3.8(a) has changed from a “Z” shape
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Figure 3.7: Results for Case I.B.1: kL = kL(TL,ave), with parameter values: Vapp =
1.0 V, L = 10−2 m, D = 10−3 m.
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Figure 3.8: Results for Case I.B.2: kL = kL(TL,ave), µave = µave(TL,ave), with
parameter values: Vapp = 1.0 V, L = 10−2 m, D = 10−3 m.
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to an “S” shape, and the curvature is more pronounced. While the thermal density
remains nearly the same, the difference between holes and electrons increases mono-
tonically from left to right, Fig. 3.8(b), and the magnitude also increases by about a
factor of three compared to Case I.B. The curvature of the Joule heating curve also
flips, following the shape of the electric field, while the magnitude increases near the
boundaries and decreases around the middle of the rod, Fig. 3.8(c); the curvature
and magnitude of the heat losses remains about the same. The temperature distri-
bution again is smoother, Fig. 3.8(d), and TL,max reaches 167 ◦C, which is 6 degrees
lower than Case I.B. This occurs because the Joule heating (and electric field) has
a smaller magnitude than Case I.B near the middle of the rod. The carrier veloc-
ities, uh(x) & ue(x), Fig. 3.8(e), are also nearly equal to Case I.B. The velocities
depend on both the mobility and electric field, and because the mobility is constant
the velocities have a scaled curvature of the electric field. The total current density,
J = 1.72 × 108 A/m2, Fig. 3.8(f), which is slightly smaller than Case I.B. The dif-
fusion current density has changed sign from positive to negative, Fig. 3.8(g), and
the magnitude is one order smaller than Case I.B. Lastly, the net generation rate is
positive, Fig. 3.8(g), with an order of magnitude of 1017 m−3s−1.

Case I.B.3: uses the same parameter values as in Case I.B, but with kL = kL(TL,ave),
µave = µave(TL,ave), and nth = nth(TL,ave). The fact that both the mobility and
the thermal density have a constant value across the rod means that the electrical
conductivity also has a constant value across the rod. This causes several curves to
also be constant across the rod, such is the case for E(x), nh(x)−ne(x) = 0, P ′Jh(x),
uh(x) & ue(x), JDiff = 0, and Gnet = 0, as shown in Fig. 3.9. A constant electric
field yields a linear voltage distribution as seen on Fig. 3.9(a). A constant electric
field also creates a difference between electrons and holes equal to zero, Fig. 3.9(b),
though the curve shows a small value near the boundaries due to numerical error.
The Joule heating power has constant value of 1.34 × 104 W/m, Fig. 3.9(c), which
appears to be the mean power when compared to case I.B. The heat losses, Fig. 3.9(c),
remain about equal because the lattice temperature is nearly the same as Case I.B.
The lattice temperature, Fig. 3.9(d), reaches a maximum value of 178 ◦C, 5 degrees
hotter than Case I.B. The carrier velocities, Fig. 3.9(e), have a constant value of 65.1
m/s, which is 5 m/s faster than the minimum velocity from Case I.B. The current
density, Fig. 3.9(f), has a value of J = 1.71× 108 A/m2, compared to J = 1.74× 108

A/m2 from Case I.B. The diffusion current density and the net generation rate are
both zero, Figs. 3.9(g) & 3.9(h), respectively.

While using a constant value of the thermal conductivity only shifts the curves
slightly, evaluating the mobility, or both the mobility and the thermal density, at
the average lattice temperature affects the results quite significantly. However, the
temperature distribution and the total current density remain relatively equal to
those values from case I.B. If this are the only results of interest, then the the quasi-
constant values for the mobility and thermal conductivity can be used to produce
the desired results knowing that the results will contain some error. However, if one
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Figure 3.9: Results for Case I.B.3: kL = kL(TL,ave), µave = µave(TL,ave), nth =
nth(TL,ave) with parameter values: Vapp = 1.0 V, L = 10−2 m, D = 10−3 m.
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desires an accurate account of the rest of the parameters, one needs to evaluate the
temperature-dependent values at each node.

It is also noted that when the applied voltage was set to 2 Volts, keeping the
rest of the parameters the same, i.e, Case II, it took less than 1,000 iterations for
the voltage to converge and less than 100 iterations for temperature to converge.
In contrast, for the cases using quasi-constant values, similar to cases I.B.1 through
I.B.3, with Vapp = 2.0 V, the code exceeded 1,000,000 iterations and still did not
converge. Nonetheless, if the properties are kept constant at a given temperature, the
code converges faster than when using temperature-dependent properties. Though
the similar trends as using quasi-constant values are obtained.

3.5.5 Comparison with published results

In order to verify the model developed in this work, the temperature distri-
bution obtained with the present model is compared to the analytical expression for
steady-state temperature distribution for graphene, nanowires, and filaments devel-
oped by Chandran [103]. His analytical expression was validated against experimen-
tal data from Ref. [104]. In his work, the steady-state temperature distribution is
determined from knowledge of the volumetric power generation, end contact temper-
ature, and ambient temperature as follows:

TL(x) = TL,ec +

[
P ′′′JhAc

hconvp
+ T∞ − TL,ec

][
1−

cosh(
√
hconvp/kLAcx)

cosh(
√
hconvp/kLAcl)

]
(3.20)

where TL(x) is the steady-state temperature distribution, TL,ec is the end contact
temperature, P ′′′Jh is the volumetric power generation due to Joule heating, Ac is
the cross-sectional area, hconv is the convection heat transfer coefficient, p is the
perimeter, T∞ is the ambient temperature, kL is the thermal conductivity, and l is
half the length of the rod. The parameter values used are as follows: Vapp = −1.2
V, L = 2l = 10−4 m, D = 10−5 m, kL = 1100 W/(m K), hTot = hconv = 10 W/(m2

K), with no radiation losses, and where TL,ec = T∞ = 298 K. The temperature
distributions are compared in Fig. 3.10. The solid black line is the temperature
distribution obtained with our model, and the dashed blue line is the temperature
distribution obtained using Eq. (3.20). The results show very good agreement, with
only a 15 degree difference on the peak temperature. Note that the Joule heating
power on Eq. (3.20) is constant, i.e., it is defined as the total input power divided
by the total volume P ′′′Jh = JVapp/L =constant, whereas, in our model, in addition
to this constant value, we also know the Joule heating power variation in space
P ′′′Jh(x) = JE(x); the Joule heating power varies in space due to the temperature
dependence of the mobility and carrier density. If we were to use this definition
on Eq. (3.20), though not strictly correct, a temperature distribution would be as
shown by the red dotted line in Fig. 3.10. In this case there is also about 15 degrees
of difference on the peak temperature. Finally, it is mentioned that the comparison
of the results is limited to that of the lattice temperature distribution as this is the
only relevant solution found in the literature.
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3.5.6 Parametric analyses

The developed model is used in this section to perform several parametric
analyses to investigate the effects of applied voltage, rod diameter, rod length, and
heat transfer coefficient.

Applied voltage: The first parametric analysis consisted in increasing the applied
voltage from 0.2 to 2.0 V, for which the results are shown in Figs. 3.11 and 3.12.
The results for the thermal density are shown in Fig. 3.11(a), while the temper-
ature distributions are shown in Fig. 3.11(b). Since the thermal density depends
almost linearly with temperature, both curves show a similar behavior. While the
maximum temperature for an applied voltage of 0.4 V increases to about 47 ◦C, the
maximum temperature for 2.0 V reaches about 763 ◦C, showing a nonlinear increase
of temperature with respect to applied voltage.

The results for Joule heating power are shown in Fig. 3.11(c), and the heat
losses are shown in Fig. 3.11(d). It is observed that both Joule heating power and
heat losses increase with voltage, where the Joule heating power is about three orders
of magnitude larger than the heat losses, producing the sharp temperature increase
with higher applied voltages.

Figure 3.12 summarizes the parametric study for applied voltage in terms of
two important parameters: total current density, J , and maximum lattice tempera-
ture, TL,max. It is seen that as the applied voltage increases from 0.2 V to 2.0 V, the
current density increases. However, for higher applied voltages, the current density
tends to reach a saturation value. On the other hand, as the applied voltage is set
to higher values, TL,max increases almost exponentially. Because the electrical con-
ductivity decreases with temperature, the current density does not increase linearly
with voltage, thus, the current density shows this saturation effect.

Rod diameter: The second parametric study consisted of increasing the rod diam-
eter from 0.5 mm to 8.0 mm, for which the results are shown in Fig. 3.13. This
study revealed that there is negligible change on the heat losses due to an increase in
diameter within the stated range. Therefore, there is only a small change on the max-
imum temperature and total current density. While the total current density slightly
decreases with increasing diameter, the maximum temperature increases only a frac-
tion of a degree. The small decrease in current density is mainly due to the slight
increase in temperature, for as the temperature increases the electrical conductivity
(σ = 2eµaventh) decreases, and so does the current density. The nonlinearity arises
because the cross sectional area depends on the square of the diameter.

Heat transfer coefficient: The third parametric study consisted of increasing the
convection heat transfer coefficient from 1.0 to 100.0 W/(m2 K), for which the results
are shown in Fig. 3.14. As indicated before, the linearized radiative heat transfer
coefficient is a function of temperature, and is included in these simulations. In this
case, higher convection coefficients translate into slightly larger heat losses that result
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in a reduction in temperature of less than half of a degree. Although the convection
coefficient was increased by two orders of magnitude, the heat losses are still relatively
small because of the small surface area of the rods. A linear dependency on hconv of
both, the total current density and maximum temperature is observed.
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Figure 3.14: Parametric study based on Heat transfer coefficient. Parameter values:
Vapp = 1.0 V, L = 10−2 m, and D = 10−3 m.

Rod length: The fourth parametric study consisted of varying the rod length while
keeping all other parameters constant; the length was varied from 0.5 × 10−3 to
1.0 × 10−2 m with a diameter of 0.5 × 10−3 m, and an applied voltage of 1.0 V.
The dependence of the total current density and maximum lattice temperature with
length is shown in Fig. 3.15. It is observed that initially the total current density
has a sharp decrease with length, then it levels off as the magnitude of the length is
increased further. Although the maximum temperature remains virtually constant,
meaning negligible changes in the resistivity of graphite, larger lengths translate into
larger resistances. Under a fixed applied voltage, the average electric field decreases
with length, therefore, larger resistances are generated by longer rod lengths, which
coupled to lower average electric fields, result in smaller current densities. The fact
that the maximum lattice temperature remains virtually constant is attributed to
the fact that the thermal conductivity of pyrolytic graphite is rather high and the
boundaries act as heat sinks, and for shorter rod lengths more heat is dissipated into
the boundaries.

Figure 3.16 shows more detailed results for a few selected rod lengths, i.e.,
L = 0.5 × 10−3, 1.0 × 10−3, 5.0 × 10−3, 10 × 10−3 m, where the positions along
the rod have been normalized with the respective length for each simulated case.
The voltage and electric field distributions are shown in Figs. 3.16(a) and 3.16(b),
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respectively. Because the applied voltage is fixed, increasing the length decreases the
magnitude of the electric field. The difference between holes and electrons is shown
in Fig. 3.16(c), where the magnitude decreases with larger lengths, which agrees with
the trends shown in Figs. 3.5 & 3.6. Lastly, the Joule heating power also decreases
with length because both the current density and the electric field decrease.
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Figure 3.15: Parametric study based on Rod length. Parameter values: Vapp = 1.0
V and D = 0.5× 10−3 m.

3.5.7 Nondimensional analysis

Equations (3.19) are nondimensionalized using the following parameter defi-
nitions: V ∗ = V/Vapp, n

∗
e = ne/nth,ref , n∗h = nh/nth,ref , x∗ = x/L, and T ∗L = TL/T∞,

and re-written as follows:

J∗ =
µave(T

∗
L)

µave,ref

nth(T ∗L)

nth,ref

E∗(x∗), (3.21a)

0 =
d

dx∗

(
kL(TL)

kL,ref

dT ∗L(x∗)

dx∗

)
+

1

β
J∗E∗(x∗)

− γ

β

hTot(T
∗
L)

hTot,ref

[T ∗L(x∗)− 1] , (3.21b)

E∗(x∗) = −dV
∗(x∗)

dx∗
, (3.21c)

d2V ∗(x∗)

dx∗2
= −ζ(n∗h(x∗)− n∗e(x∗)), (3.21d)

where, ζ = eL2nth,ref/Vappεrε0, β = kL,refT∞/J0VappL, γ = 4hTot,refT∞L/J0VappD,
J∗ = J/J0, and J0 = 2eµave,refnth,refVapp/L.
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Figure 3.17: Comparison of the magnitude of the nondimensional coefficients in the
energy equation (3.21b).

Equations (3.21), being in nondimensional form, allow for a quick comparison
of the orders of magnitude of the various terms involved. Let us focus in the heat
equation (3.21b) for instance. The diffusion term has a coefficient of order one, the
Joule heating term has a coefficient equal to 1/β, and the convection plus radiation
losses term has a coefficient of γ/β. Both coefficients, 1/β and γ/β, can be re-written
as follows:

1

β
=

J0E0L
2

kL,refT∞
, (3.22)

and
γ

β
=

4hTot,refL
2

kL,refD
, (3.23)

which resembles the well-known Biot number, Bi = hD/k. A comparison of the three
terms can be made by varying the value of 1/β through the applied voltage, and the
value of γ/β through the length and diameter, keeping the heat transfer coefficient
fixed. The results are shown in Fig. 3.17. Above the diagonal blue dashed line, γ/β >
1/β, which means that the convection and radiation losses dominate, while below
the line, γ/β < 1/β, which means that conduction losses through the boundaries
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dominate. However, the vertical magenta dashed line separates the regions where
Joule heating is low and high, left and right, respectively. In other words, to the left
of the vertical magenta line, there is low amounts of Joule heating to be removed
regardless of which losses dominate. To the right of the vertical magenta line and to
the bottom of the diagonal blue curve, most of the Joule heating will be removed by
heat conduction through the boundaries. Lastly, to the right of the vertical magenta
dashed line and above the blue dashed line most of the Joule heating will be removed
by convection plus radiation losses. Moreover, the intersection of both dashed lines
means that all three coefficients have an order of magnitude of one, which means
that all three terms are equally important. Consequently, three different ratios of
L2/D were used, representing the range of interest in our studies. The three cases are
represented by the different symbols in the same figure. It can be seen that all three
cases fall well below the intersection of the dashed lines. Two major conclusions can
be drawn. First, Joule heating is significant for values of 1/β & 1, which corresponds
to an applied voltage greater than about 0.54 Volts. Second, all our cases fall well
below the intersection point of the dashed lines. This means that heat losses by
convection plus radiation are negligible for all our cases when high Joule heating is
present. In order for convection plus radiation losses to become significant for the
high Joule heating cases, the ratio of L2/D has to be about 100 m or larger.

To further explore the extent of the effect of the convection and radiation
losses, the ratio of hTot/D was varied over more than three orders of magnitude. It
was found that the difference in the maximum lattice temperature reached was less
than about 1 ◦C. In addition, the current density was only affected in the fourth
significant digit. Thus, again, convection and radiation losses are insignificant for all
operating conditions considered in this study.

3.5.8 Scaling analysis

Using scaling analysis, and safely ignoring the convection term, the energy
equation (3.19b) can be written as follows:

kL∆TL
L2

∼ JE, (3.24)

or by taking ∆TL ∼ TL,max, kL ∼ kL(TL,max), and JE ∼ P ′′′Jh,max, we get

kL(TL,max)TL,max ∼ P ′′′Jh,maxL
2. (3.25)

The order of magnitude of the two terms can be compared for a given range of
applied voltages, similarly as done in Subsection 3.5.7. Notice that P ′′′Jh,maxL

2/
kL(TL,max)TL,max ≡ 1/β, evaluated at TL,max instead of T∞. The ratio of these
two quantities may be seen as the efficiency at which the input energy, i.e., electrical
current, is converted into heat, i.e., high temperature. Figure 3.18 presents the de-
pendency of this ratio vs. applied voltage. It can be seen that as the applied voltage
increases, the ‘efficiency’ of heating the material increases. Rather than following
a straight line, the efficiency increases in a non-linear fashion. This is due to the
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fact that because the mobility decreases with temperature, so does the conductivity,
which in turn means the current density saturates at higher temperatures, and thus
it affects this ratio. As explained in Subsection 3.5.7, the Joule heating effects are
usually stronger at applied voltages larger than about 0.5 Volts, as can also be seen
in Fig. 3.18.
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Figure 3.18: Comparison of the ratio of Joule heating over thermal energy vs. length
and applied voltage.

The results just described can also be reached by plotting the ratio of the
heat losses at the boundaries over the Joule heating, as can be seen in Fig. 3.19.
The ratio is defined as |q′′|/P ′′′Jh,maxL, where |q′′| = kLdTL/dx, and kL was evaluated
at the mid point of the one sided second order finite difference. Also, it is observed
that the total heat loss at the boundaries is 2|q′′|. It can be readily seen in Fig. 3.19
that only for values of applied voltage of 0.5 Volts and higher, the heat losses at
the boundaries cannot dissipate the Joule heating generated, and the ratio decreases
very sharply. In addition, the ratio is smaller for larger values of L, thus reaching
the same conclusions as in the previous paragraph.

Lastly, applying scaling to Eq. (3.19d) the following expression can be ob-
tained:

Vapp
L2
∼ e

εrε0
max|nh − ne|, (3.26)

thus, Vapp ∝ max|nh − ne|L2. Equation (3.26) also resembles the definition of ζ
from Subsection 3.5.7. Using this relationship, the dependency of the maximum
difference between holes and electrons was plotted vs. the applied voltage shown
in Fig. 3.20. As the applied voltage is increased, the maximum difference between
holes and electrons increases in a non-linear fashion due to temperature-dependent
properties, especially the mobility.
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Figure 3.19: Comparison of the ratio of heat losses over Joule heating vs. length
and applied voltage.

As a summary, these parametric studies, under the range of conditions ana-
lyzed here, show that there is a very small dependency of lattice temperature with
respect to rod diameter, length, and heat transfer coefficient. However, an increase
in applied voltage generates a significant rise in temperature. Therefore, in order to
keep the rods at a certain temperature, the voltage has to be carefully controlled to
avoid overheating of the rods. On the contrary, if one desires to heat up the rods
quickly, relatively large values of applied voltage should be used.

3.5.9 Application of Joule heating as an efficient method of thermochem-
ical decomposition of carbon-based materials

Joule heating can be utilized as an enhancement of thermochemical conversion
processes such as pyrolysis and gasification, which tend to produce biochar, a carbon-
rich material, as a byproduct. As discussed in Subsections 3.5.4 through 3.5.6, the
combination of large Joule heating with low heat losses produces a sharp tempera-
ture rise in the rods. Although in conventional semiconductors and graphene-based
semiconductors high temperatures are avoided, high temperatures are desired in car-
bonization processes, and therefore, Joule heating may be used as to enhance these
processes. It was shown in Fig. 3.12 that as the applied voltage is increased the
total current density tends to reach a saturation value, while the maximum lattice
temperature increases sharply with higher applied voltages. For instance, comparing
the total power, P = VappJAc, used in cases I.B and II described in Subsection 3.5.4,
P = 137 Watts for Case I.B, while P = 190 Watts for Case II. Therefore, an increase
in power of 39% raised the maximum lattice temperature from 173 ◦C to nearly 800
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Figure 3.20: Dependency of the maximum difference of holes and electrons vs. length
and applied voltage.

◦C. No thermochemical conversion occurs in Case I.B but with a modest increase
in power, temperatures suitable for carbonization can be reached. The model devel-
oped in this work can be utilized as a first approximation of the behavior of graphitic
materials in the presence of Joule heating.

3.6 Conclusions

A one-dimensional steady-state drift-diffusion thermal-electric model has been
developed to determine the difference between hole and electron densities, and to
simulate charge and heat transport in rods of intrinsic pyrlolytic graphite. Although
the electron, hole, and thermal densities are nearly equal to each other for intrinsic
pyrolytic graphite, there exists a small difference among them, i.e., nh(x) ≈ ne(x) ≈
nth(TL), and the maximum absolute difference, max|nh(x) − ne(x)| � nth(TL). It
was found that the difference between hole and electron densities, nh(x) − ne(x),
varies along the rod and that the maximum absolute difference occurs where the
gradient of the electric field is largest, while the difference is zero at the midpoint
along the rod. It was also determined that there are more holes than electrons on the
half corresponding to the positive polarity of voltage, while there are more electrons
on the half near the grounded end. Furthermore, when the applied voltage was
negative, the variation of the difference between holes and electrons was inverted.
It was further determined that the maximum absolute difference between holes and
electrons, given a dielectric constant, decreases with increasing ratio of length over
electric field. Lastly, for our arbitrary problem of interest with L = 10−2 m and
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applied voltage Vapp = 1.0 V, max|nh(x)− ne(x)| is of the order of 1013 m−3, which
is orders of magnitude lower than the intrinsic density.

In addition to the previous results, the model was used to investigate other
Joule heating effects for intrinsic pyrolytic graphite rods. The distribution of voltage,
electric field, electron and hole velocities, diffusion and total current densities, net
generation rate of electrons and holes, as well as, lattice temperature, Joule heat-
ing power, and heat losses were determined. Additional results were obtained by
evaluating the mobility, thermal conductivity, and/or thermal density at the rod’s
average lattice temperature rather than at the local temperature. These results were
less accurate than when the properties are evaluated at the local temperature, and
in some cases convergence was not achieved.

Lastly, parametric analyses for voltage, diameter, length, and heat transfer
coefficient were carried out for various operating conditions, followed by nondimen-
sional and scale analyses. It was found that while the diameter, length and overall
heat transfer coefficient values have a negligible effect on the maximum steady-state
lattice temperature, the applied voltage affected the lattice temperature significantly.
The results also showed that the total current density increases with applied voltage.
In addition, the total current density tends to saturate at higher voltages, while the
lattice temperature increases almost at an exponential rate. It was also discussed
that the Joule heating effect can be utilized to enhance carbonization processes.
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Chapter 4

HYDRODYNAMIC MODEL

4.1 Introduction

The drift-diffusion model used in Chapter 3 was used to analyze charge and
Joule heat transport in graphite rods. The drift-diffusion model is a highly sim-
plified version of the hydrodynamic model from Eqs. (2.4); however, it was solved
successfully and yielded a significant amount of results and physical insights. In this
chapter, the goal is to develop a more complete version of the hydrodynamic model
along with a stable numerical scheme – in this dissertation a complete hydrodynamic
model refers to Eqs. (2.4). The purpose for these developments – to be done in the
near future – is to use the hydrodynamic model to analyze charge and Joule heat
transport in a graphite rod or device. Moreover, the model might be applicable in
the analysis of multilayer graphene devices, which are being highly investigated in
the present time.

Though, the transition from the drift-diffusion model to the hydrodynamic
model may seem trivial, this transition is not as straightforward. Because the hydro-
dynamic model is composed of highly-coupled nonlinear partial differential equations,
they have various sources of instabilities [74, 105]. In addition, hydrodynamic mod-
els have been used extensively to analyze charge and heat transport in conventional
semiconductors, such as GaAs and Si, but they have never been used to analyze
charge/heat transport in graphite. As a consequence, the adaptation of the hydro-
dynamic model and the development of the numerical scheme to graphite need to be
done with extreme care.

The hydrodynamic model used in this dissertation, Eqs. (2.4), was developed
based on similar models in the literature, as has been stated in previous chapters.
Starting from Eqs. (2.4), Eqs. (4.1) below are obtained by making certain simplifica-
tions based on physical characteristics of the system. The complete derivation of the
hydrodynamic model in Eqs. (4.1) is given in Appendix A. Once a suitable hydro-
dynamic model for graphite (and perhaps multilayer graphene) has been developed,
the next step consists of performing a detailed analysis based on the nondimensional
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equations, Eqs. (4.1). This analysis will help determine a proper range of operating
conditions and the importance of each term on the equations. In addition, it will
help determine (a) proper characteristic time(s) and proper grid spacing to improve
the stability of the numerical scheme. This analysis is presented in Sec. 4.5.

Subsequently, a numerical scheme is developed for the transient model in
Sec. 4.6. The numerical scheme adopted is also based on similar approaches found
in the literature. The numerical scheme uses a fourth-order Runge-Kutta method
to integrate in time, and second order finite difference approximations in space.
The numerical scheme is then validated by solving a similar problem found in the
literature in Subsection 4.6.1 and Appendix B. This validation is very strong because
the model solved in that article was steady-state and the numerical solution was based
on perturbation methods, while we used our transient numerical scheme and finite
difference method to extend the range of validity of the results. Thus, these two
steps complete the main goals of this chapter.

The next steps are needed to be able to apply the hydrodynamic model to
graphite. Though the boundary conditions for electron and hole densities are typ-
ically well known when using conventional semiconductors, these are not so trivial
when using intrinsic (not doped) graphite, see Subsection 4.6.2. Thus, determining
these boundary conditions is a critical step. In addition, the net generation rates
of electrons and holes need to be determined. To aid in this front, two steady-state
versions of the transient model are developed. In one version, the net generation
rates of electrons and holes are canceled out, and the mass action law is invoked
in order to have a single carrier density as the only unknown variable. Thus, it is
easier to explore and determine the boundary conditions for graphite. This analysis
is presented in Subsection 4.6.4. The second version is utilized to ensure that the
equations are stable. This analysis is presented in Subsection 4.6.5.

4.2 Description Of The Problem

In this chapter, a similar problem to that described in Chapter 3 is considered,
see Fig. 4.1. The hydrodynamic model is developed to describe the charge carrier and
Joule heat transport in a graphite rod of length L and diameter D, with L ≥ D. A
DC voltage, Vapp, is applied on the left end of the rod while the right end is grounded.
Due to the electric field, charge carriers, i.e., electrons and holes, move across the rod
producing a current density, which generates Joule heating on the rod. Consequently,
due to Joule heating, the lattice temperature rises and results in thermal generation
of electrons and holes. Both ends of the rod have a fixed temperature equal to T∞.
The rod is exposed to generic heat losses to the surroundings. The heat losses might
be due to convection and radiation to the environment, or to conduction losses to a
substrate in the case of a semiconductor device.

4.3 Governing Equations

The governing equations for the hydrodynamic model are explained in detail
in Sec. 2.3 and Appendix A, where they have also been nondimensionalized and
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Figure 4.1: Schematic: Graphite rod under an applied voltage with generic heat
losses, and with boundary conditions shown.

simplified. Hence, in this section the nondimensional hydrodynamic model is given
with few details.

The general hydrodynamic model used in this chapter is referred to as a
transient one-dimensional two-temperature two-carrier hydrodynamic model, where
two-temperature refers to one lattice temperature and one carrier temperature, and
two-carrier refers to the presence of both electrons and holes. Having a single carrier
temperature means that the electrons and holes are in thermal equilibrium, thus, a
single carrier temperature. A detailed discussion about this is given in Sec. A.3.

The parameters used to nondimensionalize the equations are the following:
x∗ = x/L, V ∗ = V/V0, n∗e = ne/N0, n∗h = nh/N0, u∗e = ue/U , u∗h = uh/U ,
T ∗L = TL/T0, T ∗c = Tc/T0, and t∗ = tU/L, with V0 a reference voltage, N0 a ref-
erence density, and T0 a reference temperature. Where, x∗ is the space variable, t∗

is the time, V ∗(x∗, t∗) is the electrostatic potential, n∗e(x
∗, t∗) is the electron den-

sity, n∗h(x∗, t∗) is the hole density, u∗e(x
∗, t∗) is the electron velocity, u∗h(x∗, t∗) is the

hole velocity, T ∗c is the (constant) carrier temperature, and T ∗L(x∗, t∗) is the lattice
temperature. The asterisk denotes the nondimensional parameters.

The nondimensional equations of the hydrodynamic model include Gauss’s law
in Eq. (4.1a), charge conservation equations for electrons and holes in Eqs. (4.1b)
and (4.1c), momentum conservation equations for electrons and holes in Eqs. (4.1d)
and (4.1e), and energy conservation for the lattice in (4.1f). The system of equations
is
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∂2V ∗

∂x∗2
= −ζ (n∗h − n∗e) , (4.1a)

∂n∗e
∂t∗

+
∂(u∗en

∗
e)

∂x∗
= G∗e,net, (4.1b)

∂n∗h
∂t∗

+
∂(u∗hn

∗
h)

∂x∗
= G∗h,net, (4.1c)

u∗e =
µe

µe,ref

[
∂V ∗

∂x∗
− β 1

n∗e

∂n∗e
∂x∗

]
, (4.1d)

u∗h = − µh

µe,ref

[
∂V ∗

∂x∗
+ β

1

n∗h

∂n∗h
∂x∗

]
, (4.1e)

ψ0
CL,v

CL,v,ref

∂T ∗L
∂t∗

= ψ1
∂

∂x∗

(
kL

kL,ref

∂T ∗L
∂x∗

)
− β

(
n∗e
∂u∗e
∂x∗

+mrn
∗
h

∂u∗h
∂x∗

)
+

(
1− 1

2
ν

)[
τM,e,ref

τM,e

n∗eu
∗2
e +

τM,e,ref

τM,h

n∗hu
∗2
h

]
+ q∗′′′l . (4.1f)

where ζ = eL2N0/εrε0V0, β = kBTc/eV0, mr = m?
e/m

?
h, ν = τM,e/τE,e = τM,h/τE,h,

ψ0 = τM,e,refCL,v,refT0/m
?
eN0UL, and ψ1 = τM,e,refkL,refT0/m

?
eN0U

2L2. In addition,
G∗e,net = Ge,netL/N0U is the net generation rate of electrons, G∗h,net = Gh,netL/N0U is
the net generation rate of holes, q∗′′′l = q′′′l τM,e/N0m

?
eU

2 is the generic heat losses term,
and U = eV0τM,e,ref/m

?
eL = µe,refV0/L is the maximum average electron velocity.

The physical parameters are the elementary charge, e, the relative permittivity
of the material, εr, the permittivity of free space, ε0, the effective electron mass, m?

e,
the effective hole mass, m?

h, Boltzmann’s constant, kB, the momentum relaxation
time for electrons, τM,e, the momentum relaxation time for holes, τM,h, the energy
relaxation time for electrons, τE,e, the energy relaxation time for holes, τE,h, the
thermal conductivity of electrons, ke, the thermal conductivity of holes, kh, the
thermal conductivity of the lattice, kL, and the volumetric heat capacity of the
lattice CL,v.

Note that the transient and convective terms on the momentum equations for
electrons and holes, Eqs. (4.1d) and (4.1e), have been discarded. This is because
the Reynolds number is presumed to be small due significant scattering events. The
equivalent physics in fluid dynamics would be a viscous flow, for which the inertia
terms may be safely neglected [50, 57, 59, 106] – in this case, based on our nondi-
mensional parameters, the transient terms have also been safely neglected. In a
semiconductor, Re = UτM,e,ref/L, which is the Reynolds number for the electron
cloud [50, 57, 59, 106]. Please refer to Secs. A.4 and A.5 for more details. Also, note
that in the definition of ν it was assumed that the ratio of momentum relaxation
time to energy relaxation time was equal for both electrons and holes. More details
about this assumption are given in Sec. A.7.

In order to make the solution of Eqs. (4.1) more tractable, the continuity and
momentum equations for electrons and holes are combined and the equations are
re-written as follows:
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∂n∗e
∂t∗

= − 1

µe,ref

∂

∂x∗

(
µen

∗
e

∂V ∗

∂x∗

)
+

β

µe,ref

∂

∂x∗

(
µe
∂n∗e
∂x∗

)
+G∗net, (4.2a)

∂n∗h
∂t∗

=
1

µe,ref

∂

∂x∗

(
µhn

∗
h

∂V ∗

∂x∗

)
+

β

µe,ref

∂

∂x∗

(
µh
∂n∗h
∂x∗

)
+G∗net, (4.2b)

where G∗net represents both the net generation of electrons and holes; in intrinsic ma-
terials, the generation of electrons and holes is equal. This is explained as follows: as
an electron gains sufficient energy to ‘jump’ from the valence band to the conduction
band, a hole is left in the valence band. On the other hand, when an electron loses
enough energy it decays to the valence band, where it recombines with a hole.

Note that the electron and hole momentum (velocity) equations, Eqs. (4.1d)
and (4.1e), are still included explicitly. However, the electron and hole velocities
have become secondary variables. They were kept in order to avoid writing an extra
long energy equation (4.1f).

4.4 Thermophysical Properties Of Pyrolytic Graphite

A few of the thermophysical properties of pyrolytic graphite have been given in
Chapter 3. The temperature-dependent thermal density, mobility, and thermal con-
ductivity are given in Eqs. (3.8), (3.11), and (3.12), respectively. Studies performed
at ambient and lower temperatures show that while the thermal conductivity of com-
mercial and pyrolytic graphites can be very different in magnitude, the specific heat
is within the same order of magnitude [107]. It will be assumed here that this sim-
ilarity holds above room temperature. Thus, the specific heat of pyrolytic graphite
above room temperature will be assumed to be equal to that of POCO graphite. The
temperature dependence of the specific heat from ambient temperature to 3200 K is
described by the following expression

cp(TL) = 4184(0.44391 + 0.30795× 10−4TL − 0.61257× 105T−2
L

+ 0.10795× 108T−3
L ), (4.3)

which is accurate to within 1.5% of the experimental value [88]. The mass density
of commercial polycrystalline graphites is typically lower than 80 percent of the
theoretical density, 2260 kg/m3 [88]. The mass density of pyrolytic graphites on the
other hand tends to virtually reach the theoretical value upon intense heat treatment
[88, 107]. In light of this information, a mass density of 2200 kg/m3 will be used in
this dissertation. For this initial analysis, based on the fact that the electron and
hole mobilities are almost equal, they have actually been assumed to be equal. Also
the effective masses have been assumed to be equal. A summary of the properties at
room temperature is given in Table 4.1.

As a final note, it is reiterated here that the properties are temperature-
dependent. While the mobility and thermal conductivity vary greatly with temper-
ature, the thermal density and the specific heat do not vary as much. However,

61



Table 4.1: Properties of pyrolytic graphite at various temperatures [80,88,100,101].

Temperature (K)
298 398 498

Property Value Value Value Units

εr 13
µe = µave 1.02 0.65 0.46 m2/(V s)
µh = µave 1.02 0.65 0.46 m2/(V s)
m?

e = m?
c 0.0125m0 kg

m?
h = m?

c 0.0125m0 kg
τM = µavem

?
c/e 7.3× 10−14 4.6× 10−14 3.3× 10−14 s

τE = 50τM 7.3× 10−12 4.6× 10−12 3.3× 10−12 s
kL 1911 1403 1104 W/(m K)
ρm 2200 kg/m3

CL,v 1.58× 106 2.22× 106 2.76× 106 J/(m3 K)

the thermal conductivity and mobility play critical roles in the results, thus if the
temperature increases significantly from room temperature, the results may also be
significantly affected. The effect of using temperature (in)dependent properties was
shown in Chapter 3. As such, the numerical schemes developed in this chapter will
be applicable to devices with temperature-dependent material properties.

4.5 Nondimensional Analysis

The purpose of this section is to perform a thorough analysis of the non-
dimensional equations to gain more physical insights from the hydrodynamic model.
This will also allow us to determine the range of operating conditions that are suitable
for the model.

Let us start by revisiting the voltage distribution in nondimensional form,
Eq. (3.15), from Subsection 3.5.2. The equation is re-written here using the nondi-
mensional coefficient ζ

V ∗(x∗) = ζmax|n∗h(x∗)− n∗e(x∗)|
[
x∗ − x∗2

]
+ [1− x∗] , (4.4)

This equation was obtained through integration of Gauss’ Law by considering the
maximum absolute value of the difference between electrons and holes; the results
are shown in Fig. 3.3. The voltage distribution is expected to be nearly linear, which
requires the quadratic term to be of order one, as is the linear term. Since ζ is
proportional to max|n∗h(x∗)− n∗e(x∗)|, as ζ decreases max|n∗h(x∗)− n∗e(x∗)| increases.
The development of hydrodynamic models arose based on the need to analyze submi-
crometer semiconductor devices. Nonetheless, the range of lengths considered here
spans from 100 to 0.1 micrometers in order to better capture the effect of the length.
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In addition, though the length of the devices became smaller than a micrometer, the
voltage has remained constant at 1 Volt, thus yielding electric fields of 106 V/m or
higher. Lastly, it has been reported that smaller values of ζ (smaller lengths and/or
higher voltages) make the equations less stable [105].

Three different lengths are considered, which are given in Table 4.2 – in add-
ition to other system parameters. The nondimensional coefficient ζ decreases with
length since the voltage and other parameters are fixed. Consider L = 1.0× 10−6 m,
for which ζ = 2.78× 104, see Table 4.3. This means that the value of max|n∗h(x∗)−
n∗e(x

∗)| needs to be close to 10−4 to keep the quadratic term near a value of 1.
Consequently, the dimensional value, after multiplying by N0, becomes about 2×1021

m−3. This value is significantly larger than the value 1013 m−3 obtained for a one-
centimeter-long rod in Chapter 3.

The coefficient β is considered next. This nondimensional coefficient depends
on the carrier energy (temperature) and on the characteristic voltage, V0, but it
is independent of length. Since V0 is fixed, β increases with carrier temperature
Tc. A value of Tc = 3000 K has been chosen as a maximum foreseeable carrier
temperature [50, 59], and it results in β = 2.59 × 10−1. On the other hand, in
the drift-diffusion model in Chapter 3, β was about one order of magnitude lower
because the carriers were considered to be in thermal equilibrium with the lattice
energy, that is, Tc = TL. Since the coefficient was smaller, it was safer to discard
the diffusion terms based on the nondimensional analysis. Based on the momentum
equations, Eqs. (4.1d) and (4.1e), the only other term inside the square brackets is
the gradient of the voltage (drift term), which has a coefficient of one. Thus, the drift
term has a coefficient nearly 5 times larger than the diffusion term regardless of the
length. Though, the diffusion terms are not too small, so they cannot be neglected
right away. The diffusion terms will need to be included in the simulations and only
after obtaining a solution can they be compared to the drift term more thoroughly.
This can be achieved by calculating the gradient of the voltage and the gradient of
the densities. Once the derivatives are known, both terms can be fully evaluated.
This analysis can also be applied to the energy equation, Eq. (4.1f). Lastly, early
analysis using various steady-state versions of the hydrodynamic equations suggest
that smaller values of β make the momentum equations less stable. This might
happen because small values of β cause the main diagonal of the matrix to lose its
dominance.

The next nondimensional number to be considered is the Reynolds number as
it also relates to the momentum equations. The Reynolds number is a measure of the
scattering rates, a smaller Reynolds number means more collisions and vise versa.
The Reynolds number in semiconductors is based on the relaxation time times the
velocity divided by the length. Based on these definitions the Reynolds number may
also be defined as the ratio of the electron mean free path and the device length,
i.e., Re= le−e/L [50], which corresponds to the Knudsen number. The definition
of the electron mean free path is le−e = UτM,e [50, 108]. In the case of graphite,
the hole mobility is similar to that of the electrons so the hole mean free path will
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be very close to that of the electrons. The Reynolds number for three different
lengths is given in Table 4.3. It is readily seen that Re is generally a small number;
however, when L = 0.1 micrometer, Re= 7.45 at room temperature – meaning
that le−e is slightly smaller than one micrometer. This result can be interpreted
in various manners. For example, it means that L has become larger than le−e, for
which scattering has decreased significantly, and ballistic transport has become more
dominant than diffusion transport [57]. It also means that the inertia terms cannot
be neglected and that the complete momentum equations should be used. However,
the continuum assumption on which the hydrodynamic is based, breaks down, and
the hydrodynamic model is no longer able to capture the carrier dynamics at this
or smaller lengths. As a consequence, the hydrodynamic model cannot be used in
devices smaller than about 1 micrometer when graphite properties are used despite
the fact that hydrodynamic models were developed for the purpose of analyzing
submicrometer devices. The main reason for which the Reynolds number is quite
large at submicrometer sizes is due to the fact that the mobility of electrons for
graphite at ambient temperature is about 1 m2/(V s) [80], compared to 0.145 m2/(V
s) for Silicon [45].

For the first analysis the effective mass of electrons and holes, m?
e and m?

h, will
be assumed to be equal, based on the fact that they have similar values [80, 94, 95].
As consequence, their ratio, mr is equal to 1. This in turn causes the relaxation
times of electrons and holes to be equal to each other, see Table 4.1. The value of
mr affects the magnitude of the electron diffusivity relative to the hole diffusivity in
the energy equation, Eq. (4.1f).

The dimensionless coefficient ν is the ratio of the momentum to the energy
relaxation time. Since the electron and hole momentum relaxation times are approx-
imated to be equal, so will be the energy relaxation times. Thus, the value of
ν is equal for both electrons and holes, which was already assumed in the model
considered in this chapter, see Sec. A.7. Since the values for the energy relaxation
times have not been found yet, their effect will be analyzed systematically through
ν. In fact, a quick analysis was already performed in Appendix A. It was found that
ν modulates the value of the Joule heating. As ν increases, the fraction of Joule
heating affecting the system decreases, and vise versa. For example, when ν = 1,
only 50 percent of the energy is dissipated as Joule heating, and when ν = 0.02, 99
percent of the energy will be dissipated as Joule heating into the system.

The energy equation, Eq. (4.1f), and its dimensionless coefficients are con-
sidered next. First the steady-state terms will be discussed, but the genetic term
for heat losses, q∗′′′l , will be excluded. The importance of each of the steady-state
terms can be quickly assessed by evaluating the magnitude of the dimensionless co-
efficients. The three coefficients ψ1, β, and ν are independent of L, while ψ1 and β
decrease with V0. Because V0, which is equal to 1 V, is the characteristic voltage of
the system, it is kept constant. Thus, all three coefficients remain constant for the
three different lengths considered here, see Table 4.3. As a summary, heat diffusion
is the leading term with a coefficient of ψ1 = 1.75, followed by the Joule heating
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term with the coefficient (1− ν/2) = 0.99, and the last term being diffusion, whose
coefficient is β = 0.259. Based on these coefficients, the conclusion is that the Joule
heat will be successfully diffused by the lattice (phonons) to the boundaries, and
only a small portion will be transported by the diffusion of the carriers. The heat
diffusion coefficient ψ1 is large mainly because the thermal conductivity of graphite
is large.

At this time the transient terms in Eqs. (4.1) will be discussed. The en-
ergy equation will be considered first to continue the discussion from the last para-
graph. Comparing the coefficient ψ0 to the steady-state coefficients, it is read-
ily seen that ψ0 is about 3 to 4 orders of magnitude larger. This means that
the lattice temperature will take a long time to reach steady-state. In contrast,
the electrons and holes reach steady-state quite fast, that is one of the reasons
the transient terms on the momentum equations were discarded, for the electron
and hole velocities change almost instantaneously. An equivalent explanation is
as follows. The carrier (or electronic) dynamics are typically determined by the
momentum relaxation time, which for graphite is τM = 7.3 × 10−14 seconds. In
contrast, the heat transport dynamics are driven by a thermal characteristic time
τth = (D/4)2/α = (10−7/4)2/5.5 × 10−7 = 1.1 × 10−9 seconds. Thus, the electronic
dynamics are about 105 times faster.

Table 4.2: Characteristic parameters of the system.

Parameter Value Value Value Units

L 1.0× 10−7 1.0× 10−6 1.0× 10−4 m
D 1.0× 10−8 1.0× 10−7 1.0× 10−5 m
N0 2.0× 1025 m−3

V0 1.0 V
T∞ 298 K
Tc 3000 K
T0 3000 K

4.6 Development And Testing Of Numerical Schemes

The end-goal of the analysis presented in this chapter is to aid in the solution
of Eqs. (4.1) in their most general form using the properties of graphite. In addition
to the understanding obtained from nondimensional analysis from the last section,
it would be ideal to find an existing hydrodynamic model that is similar to this one,
so that we could develop the numerical scheme and apply it to an already existing
semiconductor problem. This comparison will help ensure that (1) the code is error-
free, (2) the numerical scheme is stable, and (3) to better understand possible sources
of instability and (4) determine suitable ranges of operation. Because graphite is very
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Table 4.3: Dimensionless parameters (and velocity U) for various temperatures and
lengths.

Length (m)
1.0 × 10−7 1.0 × 10−6 1.0 × 10−4

Parameter Value Value Value

TL = 298 K
ζ 2.78× 102 2.78× 104 2.78× 108

β 2.59× 10−1

mr 1.0
ν 2.0× 10−2

ψ0 1.48× 103

ψ1 1.75× 100

U 1.02× 107 m/s 1.02× 106 m/s 1.02× 104 m/s
Re 7.45× 100 7.45× 10−2 7.45× 10−6

TL = 398 K
ψ0 2.08× 103

ψ1 2.01× 100

U 6.53× 106 m/s 6.53× 105 m/s 6.53× 103 m/s
Re 3.03× 100 3.03× 10−2 3.03× 10−6

TL = 498 K
ψ0 2.58× 103

ψ1 2.24× 100

U 4.61× 106 m/s 4.61× 105 m/s 4.61× 103 m/s
Re 1.51× 100 1.51× 10−2 1.51× 10−6
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different from conventional semiconductors, this step is crucial in the development
of the numerical scheme.

The numerical scheme adopted is presented next. Equations (4.1) and (4.2)
were discretized using second order finite differences as follows:

Vk+1 − 2Vk + Vk−1

(∆x)2
= −α (nh,k − ne,k) , (4.5a)

∂ne,k

∂t
= − 1

µe,ref∆x

[
µe,k+1/2ne,k+1/2

Vk+1 − Vk
∆x

− µe,k−1/2ne,k−1/2
Vk − Vk−1

∆x

]
+

β

µe,ref∆x

[
µe,k+1/2ne,k+1/2

1

∆x
ln

(
ne,k+1

ne,k

)
− µe,k−1/2ne,k−1/2

1

∆x
ln

(
ne,k

ne,k−1

)]
+Gnet,k, (4.5b)

∂nh,k

∂t
=

1

µe,ref∆x

[
µh,k+1/2nh,k+1/2

Vk+1 − Vk
∆x

− µh,k−1/2nh,k−1/2
Vk − Vk−1

∆x

]
+

β

µe,ref∆x

[
µh,k+1/2nh,k+1/2

1

∆x
ln

(
nh,k+1

nh,k

)
− µh,k−1/2nh,k−1/2

1

∆x
ln

(
nh,k

nh,k−1

)]
+Gnet,k, (4.5c)

ue,k =
µe,k

µe,ref

[
Vk+1 − Vk

∆x
− β

∆x
ln

(
ne,k+1

ne,k

)]
, (4.5d)

uh,k = − µh,k

µe,ref

[
Vk+1 − Vk

∆x
+

β

∆x
ln

(
nh,k+1

nh,k

)]
, (4.5e)

ψ0
CL,v

CL,v,ref

∂TL,k
∂t

=
ψ1

kL,ref∆x

[
kL,k+1/2

TL,k+1 − TL,k
∆x

− kL,k−1/2
TL,k − TL,k−1

∆x

]
+

(
1− 1

2
ν

)
τM,e,ref

[
ne,ku

2
e,k

τM,e,k

+
nh,ku

2
h,k

τM,h,k

]
−β
[
ne,k

ue,k+1 − ue,k
∆x

+mrnh,k
uh,k+1 − uh,k

∆x

]
+ q′′′l,k, (4.5f)

where the index ‘k’ denotes the node location, and the logarithm was introduced in
the diffusion terms – those containing the coefficient β. The use of the logarithm
improves the numerical scheme when the gradient becomes very large [109]. In addi-
tion, the Debye length can be used as a starting point to determine an appropriate
grid size [50]. The Debye length for an intrinsic semiconductor material is defined as
follows [110,111]:

LD =

√
2εrε0kBT

e2nth

. (4.6)

The Debye length for graphite at a temperature of 298 K is equal to 2.4 nanome-
ters. The temporal evolution of the equations was computed using an explicit fourth
order Runge-Kutta method. In the case of time integration, the charge and heat
characteristic times will help determine an appropriate time step, as was discussed
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in the last paragraph of Sec. 4.5. The Poisson equation, Eq. (4.5a) was solved at each
time step using the Tri-Diagonal Matrix Algorithm (TDMA). The system of equa-
tions was solved in the same order as they are listed. In addition to the numerical
schemes, grid independence tests need to be done, and a stable time step needs to be
determined. Lastly, it is mentioned here that this numerical scheme was developed
for temperature-dependent material properties.

4.6.1 Replication of results from Ref. [59].

The hydrodynamic model used in this chapter is similar to that used to study
charge and energy transport in GaAs PN junctions [59]. This presents a great op-
portunity to use the numerical scheme developed in this chapter and ensure the code
is error-free and that the numerical scheme is stable. Osses-Márquez and Calderón-
Muñoz [59] solved their steady-state hydrodynamic model using perturbation meth-
ods, which are very different from the numerical scheme developed in this chapter.
Upon applying this numerical scheme to their problem, their results were successfully
replicated. A detailed discussion and a set of the results is presented in Appendix B.

4.6.2 Initial conditions, boundary conditions, and net generation rate

The appropriate initial conditions for the hydrodynamic model will be ex-
plored. However, based on the electric-thermal model from Chapter 5, the following
initial boundary conditions will be explored first: E∗(x∗, 0) = Vapp/V0, T ∗L(x∗, 0) =
T∞/T0, n∗e(x

∗, 0) = nth/N0, and n∗h(x, 0) = nth/N0.
The hydrodynamic model of Eqs. (4.1) requires 8 boundary conditions (BCs):

• 2 BCs for voltage

• 2 BCs for the lattice temperature

• 2 BCs for the electron density

• 2 BCs for the hole density

The boundary conditions for voltage are V ∗(0, t∗) = Vapp/V0, and V ∗(L∗, t∗) = 0,
and for temperature are T ∗L(0, t∗) = T∞/T0 and TL(L, t) = T∞/T0. The appropriate
boundary conditions for electrons and holes are not known yet. Though, there are a
number of options in the literature, the correct boundary conditions for this problem
need to be determined. The boundary conditions are critical parameters because
they significantly affect the physics inside the device.

In addition to the boundary condition, the net generation rate of electron
and holes, G∗net, is unknown. The effect of this parameter will be explored in the
simulations.
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4.6.3 Sample set of results with transient hydrodynamic model applied
to graphite

A sample set of results using the transient hydrodynamic model applied to
graphite rods is shown next. This is done only for the purpose of showing the
capabilities and types of solutions of the model and numerical scheme; the results
will not be explained here. The boundary conditions for voltage and temperature
are as given in the last section. The boundary values for electrons and holes are
extrapolated at each time step. The net generation rates were set to zero. Sample
results for a rod with L = 1.0×10−6 m, D = 1.0×10−7 m, and Vapp = 1 V are shown
in Fig. 4.2, where ∆t∗ = 1.0×10−8, or ∆t = 9.77×10−21 seconds, and 101 grid points
were used. The arbitrary time shown is 3.66×10−11 seconds. Because the simulations
take a long time to run, the applied voltage and current density are rather high in
this particular instance. This was done to be able to raise the temperature quickly to
show its effect on the variables. The current density (voltage) will be kept to lower
values in more realistic scenarios.

4.6.4 Steady-state hydrodynamic model

Based on the fact that there are four unknown boundary conditions (2 for
electrons and 2 for holes), and the net generation rate is unknown at this time, it
was determined that a simpler model would be of great benefit in order to reduce
the number of unknowns. The hydrodynamic model was reduced to a steady-state
version, where the net generation rate does not appear and only one carrier density
is solved at a time.

As a first step, Eqs. (4.1) and (4.2) were simplified to a steady-state version.
Then subtracting Eq. (4.2a) from Eq.(4.2b) the equations reduce to one as follows:

∂

∂x∗

[
(µhn

∗
h + µen

∗
e)
∂V ∗

∂x∗

]
+ β

∂

∂x∗

[
µh
∂n∗h
∂x∗
− µe

∂n∗e
∂x∗

]
= 0. (4.7)

The following step is to use the mass action law [112, 113], namely, n2
th/N

2
0 = n∗en

∗
h,

solving for n∗e and substituting, the equations become

∂

∂x∗

[(
µhn

∗
h + µe

n2
th

N2
0n
∗
h

)
∂V ∗

∂x∗

]
+ β

∂

∂x∗

[
µh
∂n∗h
∂x∗
− µe

∂

∂x∗

(
n2
th

N2
0n
∗
h

)]
= 0. (4.8)

In this equation the hole density is the only unknown variable. The net generation
rates have been canceled out, and by now only the two boundary conditions for holes
are unknown. This equation coupled with Gauss’ Law, Eq. (4.1a), and the energy
equation, Eq. (4.1f), will help determine the most appropriate boundary conditions
for the hole density. Moreover, once the distribution of the hole density is obtained,
the electron density can be solved for by invoking the mass action law. And finally,
the net generation rate can also be back-calculated. The spacial discretization scheme
is the same as that used in Eqs. (4.5). Lastly, in order to avoid the non-linearities,
the hole densities which resulted because of the mass action law are evaluated at
the previous iteration, while the other linear terms are evaluated at the present time
step.
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Figure 4.2: Sample set of solutions with hydrodynamic model when applied to
graphite. Parameter values: Vapp = 1 V, L = 10−6 m, D = 10−7 m.
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4.6.5 Stability of the steady-state hydrodynamic model

Knowing that the hydrodynamic model is prone to some instabilities, some are
due to the diffusion term, the stability of the steady-state version of Eqs. (4.1) will
be checked in this section. To accomplish this goal, Eq. (4.8) was further simplified.
By considering the electron and hole mobilities to be equal, the following equation
is obtained

∂

∂x∗

[
µh

(
n∗h +

n2
th

N2
0n
∗
h

)
∂V ∗

∂x∗

]
+ β

∂

∂x∗

[
µh

∂

∂x∗
(n∗h − n∗e)

]
= 0. (4.9)

Making use of Gauss’ Law, Eq. (4.1a), to substitute the difference of holes and
electrons on the second term, and rearranging yields

∂

∂x∗

[
µh

(
n∗h +

n2
th

N2
0n
∗
h

)
∂V ∗

∂x∗
− β

ζ
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Integrating once
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N2
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∗
h
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∂V ∗

∂x∗
− β

ζ
µh
∂3V ∗
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and solving for n∗h

n∗2h −

(
β

ζ

∂3V ∗

∂x∗3

µh
∂V ∗

∂x∗

+
C1

µh
∂V ∗

∂x∗

)
n∗h +

n2
th

N2
0

= 0, (4.12)

which is a quadratic equation in n∗h. If a value of C1 is found for which a root to this
equation is found, then the equations are stable. Though, to be able to solve this
equation, the voltage and thermal density distributions need to be known a priori. In
this situation, an existing solution that was obtained with the drift-diffusion model
can be used, for example. In this case, the solution for Case I.B from Chapter 3 is
taken as an input solution. The value of the constant C1 is changed iteratively until
a solution is found for n∗h. The density distributions for electron, hole, and thermal
densities are shown in Fig.4.3, and the value of C1 was found to be equal to -1.8080.

4.7 Conclusions And Future Work

In this chapter, a simplified transient one-dimensional hydrodynamic model
was successfully developed. The hydrodynamic model is applicable to a material
with two charge carriers, which need not be in thermal equilibrium with the lattice.
In addition, nondimensional analysis gave deep physical insights of the equations.
Moreover, a numerical scheme based on finite differences and a fourth order Runge-
Kutta was developed and validated using a problem from the literature. This work
completed the goals of the chapter.

Nonetheless, the end-goal is to apply this model to graphite, and possibly,
multilayer graphene devices. Based on these goals, the steady-state version of the
hydrodynamic model was considered to aid in determining the electron and hole
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Figure 4.3: Density distributions obtained iteratively using Eq. (4.12).

densities, as well as the net generation rates. Moreover, an iterative scheme was
developed to solve a simpler steady-state version to verify that the equations are
stable.

Finally, the transient model will be applied to graphite devices. Because
multilayer graphene has similar properties as graphite, it might be possible to apply
this model to analyze multilayer graphene devices – a material of great interest in
contemporary research.
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Chapter 5

CONVENTIONAL ELECTRIC-THERMAL MODEL

5.1 Introduction

Extensive studies have been made regarding electronic/thermal breakdown
on thin dielectric films with the purpose of understanding breakdown and devising
preventive measures [14, 20–22]. In contrast, there is a lack of studies regarding
thermal breakdown of biomass and other carbonaceous materials.

In this chapter, the objective is to elucidate the dynamics of the development
of thermal breakdown. The main purpose is to use thermal breakdown as a mech-
anism for achieving conditions (temperatures) for thermochemical conversion, i.e.,
pyrolysis and gasification, of carbonaceous materials.

With this purpose in mind, a transient one-dimensional version of Eqs. (2.2)
is used to obtain the temperature and voltage distributions for various carbonaceous
materials whose thermophysical properties are very different: graphite, biochar, and
wood. It is of special interest to compare the magnitude of the applied voltage
and power needed to produce pyrolysis temperatures, as well as the time that such
temperatures are reached under different applied voltages.

It is noted that because one of the main material properties used in this model,
namely the electrical conductivity, is a ‘macroscale’ property, it can be readily mea-
sured for most materials. The electrical conductivity can be measured on crystalline
and non-crystalline materials, as such, this model can be applied to either type of
material. In contrast, hydrodynamic models are based on ‘microscale’ properties,
such as carrier mobilities and densities. It is very difficult to define, and perhaps not
viable to measure, these properties on non-crystalline materials such as biochar and
wood. Therefore, the versatility of the electric-thermal model in this chapter will be
exploited to analyze the three distinct carbonaceous materials of interest: graphite,
biochar, and wood.

This chapter has been published as Ref. [114].
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5.2 Description Of The Problem

In this study, a rod of carbonaceous material of length L and diameter D
is subject to a constant voltage, Vapp, applied on the left end of the rod while the
right end is grounded, as shown in Fig. 5.1. Due to the electric field, the motion
of charge carriers produces a total current density J , which generates Joule heating
in the rod that results in a temperature rise. Both sides of the rod have a fixed
temperature equal to the ambient temperature T∞. The rod is exposed to heat
losses by convection to the ambient air and radiation exchange with the surrounding
surfaces. The surrounding surfaces and the ambient air are at the same temperature
T∞.

Figure 5.1: Schematic representation of the rod under an applied voltage, with
boundary conditions and heat losses.

5.3 Governing Equations

A transient one-dimensional version of the electric-thermal coupled model is
composed of Gauss’ Law (5.1a), charge conservation (5.1b), and energy conservation
(5.1c), as follows:

∂2V

∂x2
= − ρ

εrε0
, (5.1a)

∂ρ

∂t
=

∂

∂x

(
σ(TL)

∂V

∂x

)
, (5.1b)

CL,v(TL)
∂TL
∂t

=
∂

∂x

(
kL(TL)

∂TL
∂x

)
+ σ(TL)

(
∂V

∂x

)2

− 4hTot

D
(TL − T∞) , (5.1c)

where V (x, t) is the electrostatic potential, ρ(x, t) is the electric charge density, and
TL(x, t) is the lattice temperature. The induced magnetic field effects are small, and,
therefore, have been neglected. The Biot number is below 0.1 for the three materials
analyzed in this paper. Consequently, temperature gradients in the radial and angu-
lar dimension have also been neglected. Thus, the problem effectively reduces to one
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dimension. The total heat transfer coefficient is defined as hTot = hconv +hrad, where
hconv is the convection coefficient, and hrad = εσSB(TL,ave +Tsur)(T

2
L,ave +T 2

sur) is the
linearized radiation coefficient [97]. The physical parameters are: the emissivity, ε,
Stefan-Boltzmann’s constant, σSB, the relative permittivity, εr, the permittivity of
free space, ε0, the electrical conductivity, σ(TL), the thermal conductivity, kL(TL),
and the volumetric heat capacity, CL,v(TL) = ρmcp(TL), where ρm is the mass density
and cp(TL) is the specific heat.

The boundary conditions are: TL(0, t) = TL(L, t) = T∞, and V (0, t) = Vapp
and V (L, t) = 0, as seen in Fig. 5.1. The initial conditions are as follows: the
initial lattice temperature across the rod is equal to the ambient temperature, i.e.,
TL(x, 0) = TL,i = T∞ = 298 K. The charge density is equal to zero everywhere,
i.e., ρ(x, 0) = 0, which gives rise to an initial linear voltage distribution V (x, 0) =
Vapp (1− x/L) and a constant electric field E0 = Vapp/L. The initial charge density
may take moderate nonzero values, generating a non-uniform initial electric field
distribution, however, this moderate change in initial conditions does not affect the
final results. A value of charge density equal to zero was chosen for simplicity. Note
that no boundary conditions are needed for the charge density.

In this model the current density is assumed to be uniform across the area of
the rods. This assumption is more realistic for graphite than for biochar or wood due
to the fibrous structure of these two materials, which affects the contact between the
material and the electrode. However, it constitutes a good approximation during the
onset of thermal runaway. The situation changes significantly for wood, a dielectric
material, when thermal breakdown occurs, since this mechanism typically involves
the formation of highly conductive channels.

5.4 Nondimensional Equations

Using the following dimensionless parameter definitions: x∗ = x/L, T ∗L =
TL/T∞, V ∗ = V/|Vapp|, and ρ∗ = ρ/ρ0, Eqs. (5.1) are nondimensionalized as follows:

∂2V ∗

∂x∗2
= −ρ∗, (5.2a)

∂ρ∗

∂t∗
= M1

∂

∂x∗

(
σ(TL)

σref

∂V ∗

∂x∗

)
, (5.2b)

CL,v(TL)

CL,v,ref

∂T ∗L
∂t∗

=

(
D/4

L

)2
∂

∂x∗

(
kL(TL)

kL,ref

∂T ∗L
∂x∗

)
+M2

(
D/4

L

)2
σ(TL)

σref

(
∂V ∗

∂x∗

)2

− Bi
hTot

hconv
(T ∗L − 1) ,

(5.2c)

where t∗ = Fo = αt/(D/4)2 is the dimensionless time or Fourier number, α =
kL,ref/CL,v,ref is the thermal diffusivity, ρ0 = |Vapp|εrε0/L2, and Bi = hconv(D/4)/kL,ref
is the Biot number. The characteristic length for both Fo and Bi numbers is

75



Lc = D/4, and (D/(4L))2 is the geometric aspect ratio of the rods. The subscript
‘ref ’ denotes reference value at room temperature. M1 = (σref (D/4)2/εrε0)/α, and
by defining σref/εrε0 ≡ 1/τd, where τd is the dielectric relaxation time, M1 can be
re-written as M1 = (D/4)2/(τdα) ≡ 1/Fo2, which has the form of the inverse of
a static Fourier number which represents a dimensionless time scale for the charge
dynamics; M2 = σrefV

2
app/kL,refT∞ can be interpreted as the effectiveness at which

the input electrical energy is removed by heat conduction. Typical values of these
dimensionless parameters are provided in Table 5.1.

5.5 Numerical Methods

Equations (5.2) were discretized using first and second order finite difference
approximations, and Eqs. (5.2b) and (5.2c) were integrated in time using Euler’s
method. The set of discretized equations become

Vk−1 − 2Vk + Vk+1

(∆x)2
= −ρ

n+1
k

εrε0
, (5.3a)

ρn+1
k − ρnk

∆t
=

1

∆x

[
σk+1/2

(Vk+1 − Vk)

∆x
− σk−1/2

(Vk − Vk−1)

∆x

]
, (5.3b)

CL,v,k

T n+1
L,k − T n

L,k

∆t
=

1

∆x

[
kk+1/2

(
T n
L,k+1 − T n

L,k

)
∆x

− kk−1/2

(
T n
L,k − T n

L,k−1

)
∆x

]
+ P ′′′Jh,k −

4hTot,k

D
(TL,k − T∞) , (5.3c)

where the Joule heating power is evaluated as

P ′′′Jh,k =

σk+1/2

(
Vk+1−Vk

∆x

)2

for 0 ≤ x ≤ L/2,

σk−1/2

(
Vk−Vk−1

∆x

)2

for L/2 < x ≤ L,
(5.4)

in order to improve the stability of the algorithm. Equations (5.3) were simplified by
substituting Eq. (5.3b) into Eq. (5.3a) for ρn+1

k , where the index ‘k’ denotes the grid
location and the superscript ‘n+1’ denotes the next time step, forming a single semi-
implicit equation. Upon this substitution, the charge density, ρ, becomes a secondary
variable. In addition, because no boundary condition is needed (or specified) for the
charge density, the boundary values are extrapolated.

The tri-diagonal matrix algorithm (TDMA) was employed to solve the tri-
diagonal matrix resulting from the combined Eqs. (5.3a) and (5.3b). In this chapter,
various carbonaceous materials with significantly different properties are analyzed.
Thus, grid size and time step independence tests were performed to determine the
necessary resolution for each material. The grid size and time step used for each
material is stated in the corresponding results section.
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5.6 Material Properties

Wood: The thermophysical properties of wood depend on various parameters, in-
cluding moisture content and temperature [81–84]. During the simulations, average
values for the thermal conductivity, heat capacity, and electrical conductivity were
used for wood at 12% moisture content. Above ambient temperature, the thermal
conductivity varies with absolute temperature, in Kelvin, as follows [83]:

kL(TL) = 0.0994 exp(0.002TL), (5.5)

where kL has units of W/(m K). Similarly, the specific heat depends on temperature
as [83]:

cp(TL) = 1916.8 ln(TL)− 9268.8, (5.6)

where cp has units of J/(kg K). Lastly, the electrical conductivity depends on tem-
perature as [82]:

σ(TL) = 371535.2× 10−3660/TL , (5.7)

where σ has units of (Ω m)−1. A constant value of 800 for the dielectric constant
was estimated from Refs. [81, 83]. The properties of wood at ambient temperature
are summarized in Table 5.2.
Biochar: It has been reported that the electrical conductivity of wood has a strong
dependence on temperature [83]. However, the electrical conductivity of dry wood
is so low that it still remains a good electrical insulator at moderate temperatures.
Nonetheless, when wood is heated to temperatures of about Tcarb ≈ 500 − 600 ◦C,
wood becomes char, also known as biochar, and the electrical conductivity increases
by several orders of magnitude [85–87]. For instance, measured at room temperature,
the electrical conductivity of oven dry wood is of the order of 10−15 (Ω m)−1 [83],
whereas the electrical conductivity of biochar produced at Tcarb = 600 ◦C is roughly
7 × 10−4 (Ω m)−1 [86]. In this study, average properties of biochar produced at
Tcarb = 800 ◦C are utilized, and they are summarized in Table 5.2. The specific heat
of biochar increases for the first 50 degrees above room temperature, then decreases
for the next 30 degrees [115], therefore, it has been considered as constant. The
thermal conductivity depends on temperature approximately as follows [85,116]:

kL(TL) = 0.0013TL − 0.01, (5.8)

and the electrical conductivity depends on temperature as [86, 117]:

σ(TL) = 64565× 10−1000/TL , (5.9)

where the units of kL and σ are the same as for wood. A value of 64 for the dielectric
constant was estimated from Ref. [117].
Graphite: As biomass is carbonized, its electrical conductivity increases by sev-
eral orders of magnitude. In a similar manner, graphite is made when a mixture of
hydrocarbons are heated to even higher (graphitization) temperatures. As opposed
to biochar, graphite may be a highly crystalline material with a comparatively low
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porosity. These attributes enhance the electrical conductivity of graphite, which is
about two to three orders of magnitude higher than that of biochar obtained at
temperatures above 700 ◦C. However, compared to metals, the electrical conduc-
tivity of graphite is more than two orders of magnitude lower. For example, the
electrical conductivity of POCO graphite is 7.8× 104 (Ω m)−1 compared to copper,
which is 3.58 × 107 (Ω m)−1 [88]. In this chapter, properties of (polycrystalline)
POCOR© Graphite AXF-5Q are used, so when future reference is made to graphite
without a qualifier, it means POCO graphite. The electrical conductivity and other
thermophysical properties of POCO and other commercial polycrystalline graphites
are nearly isotropic. The temperature dependence of the specific heat is given in
Eq. (4.3). From ambient temperature to 1000 K, the experimental data [88] for the
thermal conductivity were fitted with the following equation

kL(TL) = 9× 10−5T 2
L − 0.2048TL + 166.2, (5.10)

where R2 = 0.998. The temperature dependence of the electrical conductivity [88]
from ambient temperature to 1000 K was fitted as:

σ(TL) = −0.0937T 2
L + 174.7TL + 34298, (5.11)

where R2 = 0.998. The same dielectric constant value of 13 used for Pyrolytic
graphite in Chapter 3 is used for POCO graphite. The properties of graphite at
room temperature are summarized in Table 5.2.

Table 5.1: Nondimensional parameters.

Material Bi Fo2 ≡ 1/M1 M2

Wood 1.4× 10−2 9.37× 10−2 1 (at Vapp = 1.7× 104 V)
Biochar 6.6× 10−3 2.41× 10−10 1 (at Vapp = 2.1 V)
Graphite 2.2× 10−5 2.89× 10−11 1 (at Vapp = 3.0 V)

Table 5.2: Material properties at ambient temperature T∞ [81–86,88,97,115–117].

Material ρm,ref cp,ref kL,ref ε σref εr
(kg/m3) (J/(kg K)) (W/(m K)) - ((Ω m)−1) -

Wood 680 1650 0.18 0.82 1.9× 10−7 800
Biochar 500 1100 0.38 0.75 2.6× 101 64
Graphite 1770 721 113 0.8 7.8× 104 13
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Table 5.3: Simulation parameter values.

Parameter Symbol Value

Rod length L 10−2 m
Rod diameter D 10−3 m
Dimensionless ratio (D/(4L))2 6.25× 10−4

Convection heat transfer coefficient hconv 10 W/(m2 K)
Ambient temperature T∞ 298 K

5.7 Results And Discussion

The results from our previous steady-state drift-diffusion model for pyrolytic
graphite, see Chapter 3 and Ref. [96], are utilized in Subsection 5.7.1 to validate
the proposed transient model, which is run until steady-state is reached. Analyses
for charge and heat transport mechanisms for POCO graphite, biochar, and wood
are presented in Subsections 5.7.2, 5.7.3, and 5.7.4, respectively. Unless otherwise
stated, the parameter values used for the simulations are provided in Table 5.3. Sub-
sequently, the nondimensional energy equation (5.2c) is analyzed for two purposes:
(1) to compare the magnitude of the right-hand side terms for each material, and
(2) to calculate the nondimensional time needed to reach a certain maximum lattice
temperature (Subsection 5.7.5).

Let us pause here for a second to draw attention regarding the dielectric con-
stant, εr. The values for εr for the three carbonaceous materials under consideration
in this chapter have been estimated based on values found in the literature, see
Sec. 5.6; therefore, they constitute a source of uncertainty. As a consequence, the
values were varied to understand their effect on the overall results. Because εr is
inversely proportional to the charge density, ρ, (See Eq. (5.1a)), an increase in εr re-
sults in an increase in ρ to maintain the right-hand side term of Eq. (5.1a) constant.
Aside from a change in magnitude of ρ, there are no visible effects on the rest of the
results when this value is increased a few orders of magnitude, just as determined in
Subsections 3.5.2 and 3.5.4.

5.7.1 Comparison with steady-state drift-diffusion model for intrinsic
pyrolytic graphite

A one-dimensional steady-state drift-diffusion electric-thermal model was de-
rived in Chapter 3 and Ref. [96] to analyze charge carrier densities and Joule heating
on intrinsic pyrolytic graphite rods. The model was based on fundamental variables
such as electron/hole densities and their mobilities, and it was validated against pub-
lished results [103,104]. The drift-diffusion model cannot be used for non-crystalline
materials, such as wood and biochar, because the needed properties are not available.
In contrast, the present electric-thermal model is based on the electrical conductivity
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of the materials, which can be measured regardless of material structure or compo-
sition.

In this section, the drift-diffusion model is used to validate the transient
one-dimensional electric-thermal model. The electrical conductivity for pyrolytic
graphite is defined as σ = 2enthµave, where e is the elementary charge, nth is the ther-
mal/intrinsic density, and µave is the carrier mobility. The temperature-dependent
expressions for the thermal density and the mobility, in addition to the thermal con-
ductivity, are given in Sec. 3.4 and Ref. [96]. The mass density of pyrolytic graphite
is taken as 2200 kg/m3 [88], and the temperature-dependent specific heat is given in
Ref. [88]. It is noted that the electrical and thermal conductivities of pyrolytic and
POCO graphite are different. In this section, the properties of pyrolytic graphite
are used. The parameter values are the same as those used for Case I.B in Subsec-
tion 3.5.4: Vapp = 1.0 V, L = 10−2 m, and D = 10−3 m. The time step used was
∆t = 10−7 seconds, combined with a spatial resolution of 101 nodes, chosen after
grid size and time step independence tests.

The temporal and spatial distribution for the charge density, ρ/e = (nh−ne),
and the lattice temperature, TL, are shown in Figs. 5.2(a) and 5.2(b), respectively.
The charge density varies in space from left to right in an anti-symmetric fashion
from about 0.5×1013 m−3 to -0.5×1013 m−3, and the lattice temperature has a shape
similar to an inverted parabola with a maximum temperature value of 173 ◦C. For
this case, steady-state is reached in 8.0×10−2 seconds, and the corresponding current
density has a value of 1.74×108 A/m2, just as computed with the drift-diffusion model
from Chapter 3 and Ref. [96]. Figure 5.2 compares the charge distribution (difference
between holes and electrons) and the lattice temperature distribution obtained with
the two models, and it is seen that the steady-state results are virtually the same.
Figure 3.5 contains a full set of results for this case (Case I.B).

5.7.2 POCO graphite

Compared to biomass and biochar, POCO graphite has higher thermal and
electrical conductivities. While the electrical conductivity increases moderately with
temperature, the thermal conductivity decreases. This enhances the Joule heating
effect, which means that higher temperatures are reached faster.

Figure 5.3 shows the spatial and temporal evolution of relevant variables under
the following operating parameters: Vapp = 3 V, L = 10−2 m, and D = 10−3 m.
The spatial resolution needed for the numerical solution for this material is 1001
nodes with a time step of ∆t = 10−7 s. Figures 5.3(a), (c), and (e) show the
voltage distribution, electric field, and charge density, respectively. Because the
initial condition for charge density is zero, and the initial temperature is constant
across the rod, the electric field is initially constant across the domain. As time
advances, it starts displaying a minimum at the center of the rod, mainly due to the
positive temperature dependence of the electrical conductivity. While the nominal
value of the electric field is 300 V/m, its value at the center of the rod is 277 V/m
and the maximum value is 402 V/m, which occurs at both boundaries. Also as time
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Figure 5.2: Spatial distribution and temporal evolution of the charge density, ρ/e =
(nh − ne), and lattice temperature, TL, for pyrolytic graphite. Comparison of the
solution using the transient electric-thermal model (this chapter) and the steady-
state drift-diffusion (SS DD) electric-thermal model from Chapter 3 and Ref. [96].
Parameter values: Vapp = 1.0 V, L = 10−2 m, D = 10−3 m.
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progresses, the voltage distribution starts deforming from a perfect straight diagonal
line into an elongated “S” shape, while the distribution of charge density takes an
anti-symmetric shape, increasing smoothly from large negative values on the left end
of the rod to large positive values on the right end. The maximum magnitude of the
charge density at the boundaries is approximately ρ/e = 1014 m−3. Thus, most of
the charge accumulates near the boundaries.

Figures 5.3(b), (d), and (f) show Joule heating power, heat losses by convec-
tion and radiation, and the lattice temperature, respectively. From Fig. 5.3(b) it is
seen that as time progresses, the Joule heating power across the rod increases, due
to the increasing magnitude of the current density. The magnitude of Joule heating
power is larger at the boundaries and relatively flat towards the middle of the rod.
The highest value of the Joule heating power is 9900 W/m at the boundaries and
its lowest value is 6800 W/m. The magnitude of the radiation and convection losses
follow closely the distribution of the lattice temperature, with a maximum value in
the middle that reaches 46 W/m, and a value of zero at the boundaries where the
temperature is kept constant at T∞. As mentioned, the lattice temperature displays
a maximum value in the middle, where TL,max reaches 500 ◦C, which was the maxi-
mum temperature allowed in the simulation. From the figure, it is observed that the
maximum lattice temperature was reached at t = 1.4127 × 10−1 s, as noted in the
legend. In addition, the total current density at this time was 3.14× 107 A/m2.

A second case was simulated for graphite using the same rod diameter and
length, but with Vapp = 30 V, one order of magnitude higher than the previous
case. The results are shown in Fig. 5.4, where one of the most noticeable effects is
that the temperature reaches 500 ◦C at 1.1939 × 10−3 seconds, which is about two
orders of magnitude faster than for the case with Vapp = 3. It is also seen that the
spatial distribution for all the parameters became steeper near the boundaries and
the plateau covers the majority of the inner domain of the rod. Because a higher
applied voltage was used, the actual values of the relevant variables also increased.
For example, the maximum electric field at the boundaries has a value of 4250 V/m
while the minimum value is nearly the same as the nominal value of 2980 V/m, as
shown in Fig. 5.4(c). The sharp variation of electric field near the boundaries is
caused by a large increase of charge density, which reaches a maximum magnitude of
roughly 1016 m−3 with much less charge accumulation inside the domain, as shown in
Fig. 5.4(e). This higher charge at both ends of the rod causes the voltage distribution
to have a sharp curvature near the boundaries, as seen in Fig. 5.4(a). The maximum
value of the Joule heating power is 1.12× 106 W/m at the boundaries, while inside
the domain the minimum value is 7.88× 105 W/m. The maximum magnitude of the
heat losses is 62 W/m, shown in Fig. 5.4(d), and the total current density in this
case reached a value of 3.37× 108 A/m2, about one order of magnitude higher than
the previous case when 3 Volts were applied.

In order to analyze the temporal evolution of TL,max as a function of applied
voltage, a third case with Vapp = 10 Volts was simulated. The results of the thermal
runaway as a function of applied voltage are shown in Fig. 5.5(a), where it is seen
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Figure 5.3: Spatial distribution and temporal evolution of various variables for
POCO graphite. Parameter values: Vapp = 3 V, L = 10−2 m, D = 10−3 m.
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Figure 5.4: Spatial distribution and temporal evolution of various variables for
POCO graphite. Parameter values: Vapp = 30 V, L = 10−2 m, D = 10−3 m.
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that when Vapp = 30 V, a lattice temperature of 500 ◦C is reached in just 1.1939 ×
10−3 seconds, while for Vapp = 10 V, the same temperature is reached in 1.0978 ×
10−2 seconds, nearly 10 times slower. For the case of Vapp = 3 V, the maximum
temperature is reached in 1.4127 × 10−1 seconds, over 100 times slower than for
Vapp = 30 V. Thus, for an order of magnitude increase on the applied voltage, the
temperature of the rod increases two orders of magnitude faster, displaying a typical
behavior of thermal runaway. In addition to the maximum lattice temperature,
the total current density for all three cases is shown in Fig. 5.5(b), where it is
seen that all three current densities increase as time advances due to the positive
temperature dependence of the electrical conductivity of POCO graphite. Also, at
room temperature, the magnitude of the current density increases roughly by one
order of magnitude when the applied voltage is increased by the same amount.
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Figure 5.5: Temporal evolution of the maximum lattice temperature TL,max and total
current density J for graphite under various applied voltages Vapp, with L = 10−2 m
and D = 10−3 m.

5.7.3 Biochar

Biochar has lower electrical and thermal conductivities than graphite, but
the temperature dependence of the electrical conductivity is stronger. After grid
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size and time step independence tests, it was determined that a spatial resolution
consisting of 5001 nodes along with a time step of 10−7 seconds were needed for
this material. The dynamics of charge and heat transport in biochar were analyzed
using the following parameters: Vapp = 21 V, L = 10−2 m, and D = 10−3 m, where
the results are shown in Fig. 5.6. Because of the strong temperature dependence of
the electrical conductivity, the steepness of the curves near the boundaries is very
large for all the variables. Similar to the case for graphite when Vapp = 30 V, in
this case most of the charge accumulates at the boundaries of the rods, reaching a
charge density of 5.21× 1017 m−3, as shown in Fig. 5.6(e). The charge accumulation
produces an electric field of 9180 V/m at the boundary with a minimum value of 1970
V/m inside the domain, a value slightly lower than the nominal value of 2100 V/m
seen in Fig. 5.6(c). For the same reason, the voltage distribution also undergoes a
strong distortion near the boundaries, as observed in Fig. 5.6(a). The simulations of
biochar were performed until a maximum lattice temperature of TL,max = 100 ◦C was
obtained because of the high uncertainty in the properties of this material at higher
temperatures. This maximum lattice temperature was reached after 1.6556 × 10−1

seconds, as seen in Fig. 5.6(f). The heat losses by convection and radiation were
small, reaching a maximum value of 3.9 W/m, shown in Fig. 5.6(d), while Joule
heating power reached a much higher value of 413 W/m inside the rod and 1920 W/m
at the boundaries. The value of the Joule heating power inside the domain is more
than two orders of magnitude larger than the maximum heat losses by convection
and radiation at the same location along the rod. In addition, the current density
starts off at a value of 6.00× 104 A/m2 at room temperature and steadily increases
to a maximum value of 2.66× 105 A/m2 when TL,max reaches 100 ◦C.

5.7.4 Wood

The last material to be analyzed is wood. While both, the electrical and ther-
mal conductivities of wood are low, the former increases strongly with temperature.
This causes a large gradient of the electrical conductivity near the boundaries which
requires a large spatial resolution to resolve such gradients. In this case, 20001 nodes
were used to obtain the distribution of variables inside the domain with a time step
of 10−7 seconds. Due to the large gradients observed, the simulations were only run
until a maximum lattice temperature of 30 ◦C was reached.

The applied voltage needed to raise the lattice temperature was 3.4×104 Volts,
three orders of magnitude higher than for graphite and biochar, due to the low
conductivity (large resistivity) of wood. Figure 5.7 also shows that even though the
maximum lattice temperature reaches only 30 ◦C, the profiles for all variables, except
voltage, are very steep near the boundaries and have large plateaus covering most of
the interior domain of the rods. It is also seen that it took over 2.15 seconds for the
temperature to increase to 30 ◦C, which is over one order of magnitude longer than
the time needed for graphite to reach 500 ◦C when 3 Volts are applied.

The voltage, electric field, and charge density are shown in Figs. 5.7(a), (c),
and (e), respectively. The charge density increases from −2.62×1020 m−3 on the left

86



Figure 5.6: Spatial distribution and temporal evolution of various variables for
biochar. Parameter values: Vapp = 21 V, L = 10−2 m, D = 10−3 m.
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boundary to 2.62× 1020 m−3 on the right boundary. This causes the electric field to
reach a value of 5.17 × 106 V/m at the boundaries and a value of 3.27 × 106 V/m
in the middle of the rod, and the voltage distribution is distorted slightly from a
straight diagonal line. Joule heating power is shown in Fig. 5.7(b) with a maximum
value of 4.14 W/m at the boundary and a value of 2.64 W/m covering most of the
inner length of the rod, while convection and radiation heat losses reach a maximum
value of 0.236 W/m inside the rod, as seen in Fig. 5.7(d). Lastly, the initial current
density has a value of 0.67 A/m2 at room temperature and increases to 1.03 A/m2

when TL,max reaches 30 ◦C, which is several orders of magnitude lower than that of
graphite or biochar.

5.7.5 Nondimensional analyses

The nondimensional energy equation (5.2c) is used to generate Fig. 5.8, which
provides a quick visual comparison of the relative magnitude of the various terms
involved in the equation. It also serves as a guide to evaluate what terms are most
relevant under different operating conditions for each material. The vertical dashed
magenta line separates the low Joule heating area on the left from the high Joule
heating area on the right. The dimensionless parameter M2 on the horizontal axis
depends on Vapp, while the vertical axis depends on the geometry and the convection
plus radiation heat transfer coefficient, represented by Bi/(D/(4L))2. To the left of
the dashed diagonal blue line, convection and radiation losses dominate, while to the
right of this line, conduction losses through the boundaries are predominant.

Furthermore, Fig. 5.8 shows that due to the properties of graphite, even a
small applied voltage results in a large value of M2, while Bi remains quite small.
Therefore, most cases result in high Joule heating with negligible convection and
radiation losses. On the other hand, for biochar and wood, the heat losses will
strongly depend on the magnitude of the applied voltage and the dimensions of the
rod. For instance, the applied voltages that produce a value of M2 = 1 (vertical
dashed line) are 3 V for graphite, 2.1 V for biochar, and 1.7×104 V for wood. Thus,
similarly to graphite, biochar requires low values of Vapp to achieve high values of
M2, which results in high Joule heating; however, as opposed to graphite, biochar
has a much lower thermal conductivity, which increases the value of Bi, and thus,
both convective and radiative losses, as well as losses due to conduction at both ends
of the rod are important. For the case of wood, the very small electrical conductivity
implies that even high values of Vapp result in low values of M2 (low Joule heating)
and the small thermal conductivity implies large values of Bi. Therefore, convective
and radiative losses are large compared to other terms in the equation. Consequently,
for thermal runaway to occur in wood, much larger applied voltages are required.

The results presented in Subsections 5.7.1 through 5.7.5 show that significantly
different applied voltages are needed to raise the lattice temperature of the three
materials analyzed. Therefore, further analysis to determine the relationship between
lattice temperature, dimensionless applied voltage (M2) and time (Fo), considering
material and geometrical parameters, is performed in this section utilizing Eq. (5.2c).
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Figure 5.7: Spatial distribution and temporal evolution of various variables for wood.
Parameter values: Vapp = 3.4× 104 V, L = 10−2 m, D = 10−3 m.
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Figure 5.8: Comparison of the magnitude of the nondimensional coefficients in the
energy equation (5.2c). Legend: W: Wood, B: biochar, G: graphite. (D/(4L))2 is
the geometric aspect ratio of the rods.
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Figure 5.9 shows the relationship between Fo and M2, where the red, blue, and
black markers correspond to graphite, biochar, and wood, respectively, and where
the dimensionless time needed to reach a desired TL,max is plotted as a function
of M2(D/(4L))2. It is observed that for a prescribed TL,max, all markers fall on a
nearly straight line with a negative slope on a log-log plot. It is also seen that for
a given value of M2(D/(4L))2 and for a given material, e.g., graphite, Fo increases
nonlinearly with TL,max. Lastly, for a given value of M2(D/(4L))2 and a prescribed
TL,max, Fo for biochar and wood has nearly the same value, while Fo for graphite
is much lower. This means that, given a value of M2(D/(4L))2, it will take much
longer for the temperature of biochar and wood to reach a certain value of TL,max

than it will for graphite, as has been discussed in Subsections 5.7.2 through 5.7.4.
Therefore, Figs. 5.8 and 5.9 are complimentary.
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Figure 5.9: Nondimensional time Fo vs M2 required to achieve a prescribed maxi-
mum lattice temperature TL,max. Legend: G: graphite; B: biochar; W: wood.

For graphite, Eq. (5.12) correlates Fo and M2 for different values of TL,max ≤
773 K. The error on the computed value of Fo is less than 6 % from the value obtained
directly with the simulations.
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Fo(TL,max,M2) = A(TL,max)M
B(TL,max)
2 , (5.12)

where the constants A(TL,max) and B(TL,max) depend on the maximum lattice tem-
perature TL,max as follows:

A(TL,max) = −(1.38× 10−10)T 3
L,max + (2.52× 10−7)T 2

L,max

− (9.40× 10−6)TL,max − (1.59× 10−2), (5.13)

and

B(TL,max) = −(3.59× 10−8)T 2
L,max − (1.91× 10−5)TL,max − (9.88× 10−1), (5.14)

where TL,max is evaluated in Kelvin. Similar equations can be derived for biochar
and wood, as well as other materials suitable for analysis with the present model.

5.8 Conclusions

In this chapter, a transient one-dimensional model with coupled equations
for electric potential, charge conservation, and energy conservation was introduced.
The model was used to analyze the dynamics of charge and heat transport leading
to thermal runaway for various operating conditions using temperature-dependent
properties for three different carbonaceous materials, i.e., graphite, biochar, and
wood. It was found that for the materials with lower electrical conductivity, and for
larger values of applied voltage, the charge accumulated mostly near the boundaries.
In addition, due to the positive dependence of the electrical conductivity on tem-
perature, the temperature increased rapidly and the dynamics of thermal runaway
were observed. By performing nondimensional analyses, a plot was generated which
helped visualize under which conditions significant Joule heating was prone to hap-
pen. Moreover, an equation to calculate the dimensionless time to reach a certain
lattice temperature was developed for graphite. The concept of thermal runaway
can be applied, for example, to biomass gasification systems, where it could help,
especially during start-up conditions or for additional process control. Finally, the
model only requires the input operating parameters and relevant properties, so it
can be used to analyze other suitable materials.
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Chapter 6

ACTIVATION OF BIOCHAR

6.1 Introduction

In the state of California there is an abundance of biomass. For example,
the Central Valley is a major agricultural hub, and in addition to the main food
produce, it yields an abundance of agricultural residues. Other sources of biomass
include urban green waste and forest woody biomass, which has recently increased
due to the mortality of millions of trees in the Sierra Nevada – which was caused by
the prolonged drought, and a bark beetle infestation [69]. Dead trees in the Sierra
increase the risk of fire; therefore, the state of California is planning to remove a por-
tion of the trees to reduce the risk of fire and the spreading of the bark beetles. The
state of California is seeking viable solutions and applications for the excess biomass.
Gasification for electricity generation, biochar production, and biochar activation are
currently being explored by different research groups and organizations.

It has become apparent that commercial success in gasification, particularly
in the higher-cost forested settings depends on the sale of the biochar byproduct as
much as the sale of electricity. However, with more biomass gasification plants being
constructed, a rapid expansion of biochar supply is forcing the industry to create new
markets for this byproduct. The focus of this work is to produce activated carbons
from byproduct biochar produced in biomass gasification power plants and to assess
their characteristics compared to commercially available coconut shell activated car-
bons. The biochar used in the experiments was obtained from a biomass gasification
power plant from Phoenix EnergyTM, or from a commercial vendor.

This chapter continues with further information about the production, charac-
terization techniques, and applications of activated carbons. Then, the experimental
setup and procedure are provided. Finally, preliminary results of activated carbons
from peach pit biochar feedstock are presented.

The preliminary results presented in this chapter have been published as
Ref. [118].
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6.2 Production Of Activated Carbons

Activated carbons are highly porous materials with surface functional groups
that enhance the adsorption of a given adsorbate (pollutant) from a given aqueous
solution or gas. Commercial activated carbons are mainly produced from two sources:
coal and biomass. The former is produced in the United States from various types
of coal, while the latter is produced from coconut shells – mainly in Asian countries.

The focus of the work in this chapter is in the production of activated carbon
from biomass derived char, also known as biochar. At laboratory scales, biochar is
typically activated using two methods: chemical activation and physical activation
[63, 64]. Chemical activation consists of washing the biochar with strong chemicals
such as zinc chloride, phosphoric acid, and potassium chloride. The material is then
heated to temperatures below 500 ◦C. Physical activation can be achieved using
steam or carbon dioxide at temperatures above 700 ◦C, generally above 800 ◦C for
better results. Surface areas for the activated carbons can exceed 2000 m2/g. Biochar
activation by physical and chemical activation has been reviewed in Ref. [64].

There are other studies that focus on post-treatment of activated carbons
with the intent of enhancing their properties for specific applications. These studies
include post-treatment with microwaves, plasma discharges, and ozone [65,119–123].

6.3 Physical Activation Parameters

There are four key parameters involved in steam activation of a given biochar:
(1) activation temperature, (2) activation time, (3) steam/water flow rate, and (4)
particle size range. In this analysis, the particle size range has been selected to be
in the range from 0.6 to 2.36 mm. This range was selected for two main reasons:
particles that are too small are easily gasified, and (b) because activation happens
at the surface, much of the inner space of larger particles will not be activated.

Based on previous studies, using central composite design of experiments, it
has been shown that for (the same) 3 parameters, 20 different runs are needed to
fully optimize each parameter [66]. However, previous studies have been performed
at various temperatures ranging from about 400 to 900 ◦C [66–68, 124–127], and it
has been found that at temperatures below 700 ◦C the porosity and surface areas are
relatively lower [66,67,125]. On the other hand, at temperatures above 850 ◦C, more
than 50% of the biochar burns off relatively quickly, meaning that the higher surface
area comes at the expense of higher mass losses. Moreover, it has been shown that
at temperatures around 800 ◦C large surface areas and pore volumes are generally
obtained for various materials [67, 68, 126], while the activation times range from
about 15 to 60 minutes [67,68]. In addition, the steam flow rates reported in recent
articles also range from about 1 g/min to about 8 g/min [67,125,126]. Based on the
published data, in this work the steam flow rate will be kept within the stated flow
rates, 1 to 8 g/min. The activation temperature will be initially explored around the
800 ◦C, and the times varied within 15 to 75 minutes, as long as the mass losses are
kept within 50%.
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6.4 Characterization Of Activated Carbons

There are various characteristics of activated carbons that are of particular
interest. The most common characteristic of activated carbons is their large surface
area, which is typically larger than 1000 m2/g, but can exceed 2000 m2/g [122]. This
area is referred to as the Brunauer-Emmett-Teller (BET) surface area. The BET sur-
face area is calculated from the isotherm data and it is estimated to have an accuracy
of ±25 m2/g [63]. Adsorption isotherms are curves obtained by plotting the amount
of an adsorbed adsorbate over a range of relative pressures. They provide critical
information such as pore size distribution and total/micro pore volume. Adsorption
isotherms are usually obtained using nitrogen at 77 Kelvin but adsorbates such as
CO2, H2O, and butane are also used. [63]. The iodine number is also commonly
reported for commercial activated carbons.

Activated carbons are also imaged using the scanning electron microscope
(SEM). SEM images allow for a visual inspection of the overall surface morphology
of the carbons. Transmission electron microscope images are also used in some cases.

The ultimate/proximate analysis of the biochar and activated carbons is also
usually obtained in order to compare the composition of the carbons before and
after activation. In addition, the surface composition can also be obtained using
x-ray diffraction spectroscopy and energy dispersive x-ray spectroscopy.

The surface functional groups such as carboxyl and carbonyl groups, are iden-
tified using Fourier transform infra red (FTIR) spectroscopy and the Boehm titration
method [63,67]. The surface chemistry or reactivity of the activated carbons will be
enhanced by different groups.

In addition, the pH is also an important metric.

6.5 Physical Activation With Superheated Steam

6.5.1 Experimental setup

A schematic of the experimental setup for superheated steam activation is
shown in Fig. 6.1. A vertical tube furnace with a maximum operating temperature
of 1200 ◦C, and 24 in. heated length is used. A high temperature stainless steel
(310S) work-tube with an inner diameter (ID) of 2.01 in. and flanges at both ends
is placed inside the furnace. Inside the work-tube, a 2 in. outer diameter (OD) coil
made with 3 mm OD 310S stainless steel tube extends from the beginning (bottom)
of the heated region of the furnace to approximately 18 in. up into the heated region.
It then connects to a 2 in. OD reactor, where the biochar is placed during the
activation process. The reactor is 18 in. long and sits at the top of the work tube.
It extends down to about 7 inches into the heated portion of the furnace, where it
connects to the coil. The reactor has an end-cap at the top, into which an 18 in.
long thermocouple is inserted; it measures the actual temperature near the biochar.
In addition, a foot long, 1/4 in. pipe is connected to the reactor end-cap. The gases
coming out from the activation process are flared at the end of the pipe. At the inlet
(bottom) of the coil, a 1/4 in. OD stainless steel tube is attached, which extends
well below the bottom of the work tube. Towards the bottom end of the 1/4 in. OD
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Figure 6.1: Schematic representation of the biochar activation experimental setup.

tube, a pressure gauge is connected and then the tube ends at a tee. One end of
the tee receives a nitrogen line, while the other end receives a water line. The water
line is fed by a high-pressure low-flow water pump. Deionized water is used for the
experiments, which is stored in a container to feed the pump. On the other side of
the tee, the nitrogen is fed from a nitrogen tank. A picture of the experimental setup
is shown in Fig. 6.2.

6.5.2 Procedure

Biochar sample preparation: Peach pit biochar was selected due to its local avail-
ability. This is byproduct biochar produced from the biomass gasification process
at, and donated by, Phoenix EnergyTM. It is sieved to the proper size range, 0.6 to
2.36 mm, and dried in an oven for 8 hours at 105 ◦C. A sample of 20 grams of the
sieved, dried biochar is used for each activation run.
Physical activation procedure: Large scale physical activation of biochar occurs in
large kilns where the input biochar is transported in conveyor belts and dropped
inside the reactor which operates between 800 and 1000◦C. Therefore, the material
experiences a very high rate of heating from near ambient conditions to the tempera-
ture of the activation process. Our laboratory procedure intends to mimic this large
heating rate by placing a biochar sample at ambient temperature inside a furnace
operating at steam activation temperature. The experimental procedure is as fol-
lows: the furnace is preset and heats up to the activation temperature at a maximum
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Figure 6.2: Biochar activation experimental setup.
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rate of 8 ◦C/min. Once the furnace reaches the activation temperature, the water
pump is turned on at the desired flow rate to initiate the production of superheated
steam. After about 30 minutes, the reactor where the biochar sample is placed, also
reaches the set furnace temperature. This happens since the reactor temperature
always lags the furnace temperature due to thermal inertia. At this time, the water
pump is turned off, the reactor end-cap is taken off, and the biochar sample is quickly
placed inside the reactor. Then the reactor is closed and the pump is switched back
on. Also, a propane torch is fired up to flare the outflowing gases. All these steps
are performed in approximately 30 seconds. Because the thermocouple is attached
to the end-cap, which is removed temporarily while inserting the biochar into the
reactor, the temperature reading falls well below the furnace temperature, however,
as soon as the thermocouple is re-inserted, the temperature reading goes back up
close to the furnace temperature and eventually reaches the same value. The tem-
perature profile is recorded for all the experiments, and a log-mean-temperature is
used to refer to an average activation temperature, which is close to the set furnace
temperature. Upon completion of the activation process, the water flow is stopped.
At this time, nitrogen flow is initiated, and runs continuously thereafter while the
activated carbon sample cools down to a temperature around 200 ◦C. The sample is
taken out of the reactor at low temperatures to avoid instantaneous combustion of
the biochar.

This process replicates what is done in industry more closely. Alternatively,
the biochar could be placed in the reactor when the furnace is turned on, and nitrogen
could flow during the heating process, as is typically done in laboratory experiments.

6.6 Results

The ultimate and proximate analyses for raw biochar and for an activated
sample (dark blue marker on Fig. 6.5) are shown in Tab. 6.1. The sample was
activated with a furnace temperature of 800 ◦C and a steam flow rate of 0.8 g/min
for 30 minutes.

The material loss due to the steam activation process is usually referred to as
burn off %. Equation 6.1 describes the way that the burn off percentage is calculated.

Burn off % =
initial mass− final mass

initial mass
× 100% (6.1)

Figure 6.3 shows the burn off percentage with respect to activation time for peach pit
biochar samples exposed to different operating temperatures and steam flow rates.
Operating temperatures range between 800◦C to 850◦C and the mass flow rates of
steam are in the range between 0.8 g/min and 4.3 g/min. It is observed that high burn
off percentages were obtained at high mass flow rates of steam, high temperature, and
longer activation times. High loss of mass is economically detrimental for large-scale
production of activated carbon. Figure 6.4 shows the BET surface area for the treated
biochar samples and one raw biochar sample. It is observed that the raw biochar
sample (in dark blue) has a surface area of less than 1 m2/g, which shows the low
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Table 6.1: Properties of raw and activated peach pit biochar.

Raw biochar Activated biochar

Proximate Analysis (wt %, dry basis)
Ash 21.24 35.00
Volatile matter 23.78 5.04
Fixed carbon 54.98 59.96

Ultimate Analysis (wt %, dry basis)
Carbon 65.62 63.17
Hydrogen 2.33 <0.10
Nitrogen 0.57 0.32
Oxygen (by difference) 10.12 1.44
Chlorine 0.10 0.05
Sulfur 0.02 0.02

capability of being used as a filtering material. On the other hand, BET surface areas
near 600 m2/g were obtained with 810◦C and a mass flow rate of steam of 4.3 g/min
for activation times of 40 and 70 minutes, shown in grey color. It is noted that high
flow rate of steam and higher operating temperatures translate into higher energy
consumption to produce activated carbon. The figure also shows a green marker that
corresponds to the BET surface area for a case where low heating rate was utilized
on the biochar sample by slowly reaching steam activation temperatures with the
biochar sample inside the reactor under nitrogen flow. Once the steam activation
temperature was reached, the nitrogen flow was stopped and steam flow was started.
The aspect of energy consumption to produce activated carbon is shown in Fig. 6.5,
where the BET surface area has been multiplied by fraction of mass left after the
activation process and divided by the energy used to produce the treated biochar
sample. It is observed that the samples with high steam flow rate and activation
times are at the bottom of the group, which means that it is very energy intensive to
produce these samples. On the other hand, even though the blue marker, produced
with 800◦C, 0.8 g/min of steam mass flow rate, and 30 minutes of activation time,
reached only 513 m2/g of BET surface area, it is a good compromise between surface
area per energy used in the process. The SEM picture of the sample with a blue
marker is shown in Fig. 6.6 which characterizes the surface geometry that features
a mean pore size of 20.7 Å and a total pore volume of 0.27 cm3/g. It is noted that
the burn off percentage of this sample was only 30.2%.

6.7 Conclusions

The abundance of agriculture and forest biomass is forcing the search for ways
to process this material in an environmentally conscious way. Biomass gasification
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Figure 6.3: Burn off % vs. activation time for different steam flow rates and fur-
nace temperatures. Legend: FT: Furnace temperature; SFR: Steam flow rate; N2:
Nitrogen.

produces synthesis gas that can be used for the production of power and/or heat, but
it also produces a byproduct called biochar. Research is currently being performed
to find ways to utilize this material. Steam activation is one path for potentially
using this material in industrial filters. In this work, several tests were performed to
analyze the BET surface characteristics of steam activated biochar from peach pits.
It is shown that raw biochar has a very low surface area but it can be augmented
several orders of magnitude after physical activation. A compromise of surface area is
reached by minimizing operating temperature, steam flow rate, and activation time.

In addition to these results, physical activation of ponderosa pine biochar is
being investigated. Results show surface areas with values up to 738 m2/g. These
results are very promising, therefore, more experiments are being carried out. Also,
these results will serve as a benchmark to compare to plasma activated samples. This
work will be published elsewhere.
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Figure 6.4: BET surface area vs. activation time for different steam flow rates and
furnace temperatures. Legend: FT: Furnace temperature; SFR: Steam flow rate; N2:
Nitrogen.

Figure 6.5: BET surface area per energy used in the process.
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Figure 6.6: Scanning electron microscope image of activated biochar sample.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

The abundance of biomass in California has forced the search for new markets
and more environmental friendly processes. The work on this dissertation aims to ad-
dress both issues. Part of the work in this dissertation, using numerical simulations,
explored Joule heating as a technique to induce thermal breakdown of carbonaceous
materials and obtain high temperatures using low power. The simulations showed
that thermal breakdown has the potential to be used to enhance biomass gasification.
These results serve as motivation to further explore this concept experimentally. In
addition, physical activation of biochar was achieved. Though the surface area values
of preliminary samples were significantly lower than commercial activated carbons,
the results are promising to continue analyzing more feedstock and to determine op-
timal activation parameters.

The concept of Joule heating-induced thermal breakdown was inspired be-
cause of its potential applicability in biomass gasification power plants. Nonetheless,
the drift-diffusion and hydrodynamic models of Chapters 3 and 4, respectively, have
been historically applied to inorganic semiconductor devices, though, more recently,
they have been applied to organic semiconductors and graphene devices. The use
of these models was motivated by the need to obtain a more in-depth fundamental
understanding of charge carrier and Joule heat transport in solid materials. Due
to the nature of these models, their use was restricted to graphite. In Chapter 3,
the drift-diffusion model was successfully used to determine electron/hole densities
and velocities, and the lattice temperature distribution – among other results – for
different operating conditions. In Chapter 4, a more complete hydrodynamic model
was developed, as well as, a numerical scheme to solve it. The work of Chapter 4 was
inspired by the successful use of the drift-diffusion model to analyze graphite. The
hydrodynamic model in Chapter 4 is less restrictive than the drift-diffusion model
from Chapter 3; thus, it can be used to explore smaller devices, extend the operating
conditions, and explore the effect of different properties and parameters. In addition,
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this model could be used to analyze multilayer graphene devices – a field undergoing
intense research.

Variations of the electric-thermal model in Chapter 5 were developed for the
purpose of better understanding thermal runaway, which ultimately leads to thermal
breakdown. Historically, this model has been mostly used to prevent thermal break-
down of insulating materials, such as polymers. In contrast, in this dissertation, this
model was used to better understand thermal runaway conditions and exploit its
aggressive nature to reach high temperatures in short amounts of time. While this
model is simple, it is very versatile as it can be used to analyze any material re-
gardless of structure; therefore, it was used to analyze three very different materials:
graphite, biochar, and wood. The results from this model suggest that this method
has the potential to be used in biomass gasification systems. Joule heating-induced
thermal breakdown creates high temperatures which could be used to provide some
of the heat that is needed during pyrolysis. Hence, it decreases the need to allow par-
tial combustion, which reduces the heating value of the product gases. Nonetheless,
experimental results should be performed to further explore this concept. Overall,
the numerical results motivate future research in which the experiments are carried
out.

In Chapter 6, the activation of post-gasification biochar was explored using
physical activation with superheated steam. Both the experimental setup and pro-
cedure were developed as part of the work in this dissertation. Preliminary activated
samples from peach pit biochar showed promising results. The BET surface area of
the best samples reached values near 600 m2/g. While this number is significantly
lower than the surface area of commercial activated carbons, the surface area of
other feedstock could be higher. In addition, larger surface areas could be obtained
by optimizing the process for the best feedstock. As a result, more research is being
performed using other biochar feedstock. Moreover, the activation process is being
streamlined, and optimum activation conditions for different types of biochar are
under investigation.

In addition, experiments are being performed to investigate the use of plasma
discharges as a method to enhance biochar activation. The results are being analyzed
and compared against the results with physical activation. Ponderosa pine biochar
is being used for this purpose. These results will be published elsewhere.

Other ongoing and near-future research include the activation of other biochar
feedstock. In addition, the activated biochar samples with the highest BET surface
areas will be subjected to specific applications to assess their performance. For
example, activated carbons with the capability to adsorb hydrogen sulfide is of great
interest to the wastewater treatment community. Thus, determining if activated
biochar is suitable for this application is of great interest.
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Appendix A

SIMPLIFICATION OF THE HYDRODYNAMIC MODEL

A.1 Introduction

In this chapter, the hydrodynamic model from Sec. 2.3 will be simplified to
the form that is used in Chapter 4 and to the drift-diffusion model that is used in
Chapter 3. The simplifications are achieved based on certain assumptions or criteria
driven by the underlying physics of the problem.

A.2 Transient One-Dimensional Hydrodynamic Model

Semiconductor devices such as transistors are based in the manipulation of
charge carrier (electron/hole) transport. Such semiconductor devices usually consist
of a single charge carrier, typically electrons. As a consequence, the majority of
the applications of hydrodynamic models are dedicated to analyze the flow of elec-
trons [49,52,55,57,74]. Nonetheless, the flow of holes is also important in silicon and
other semiconductor devices [47,50,56,58,60,77,78]. In modern times, in addition to
conventional semiconductor devices, upon its discovery [128], graphene has caught
the attention of many researchers because of its potential applications in electronic
devices [40, 41, 113, 129–131]. In graphene devices, the flow of holes may be as im-
portant as the flow of electrons. Given our interest in applying the hydrodynamic
model to graphite (stacked layers of graphene), and possibly extend it to bilayer and
multilayer graphene, it is in our interest to have a general enough hydrodynamic
model so that the flow of both electrons and holes is considered.

The one-dimensional (x-direction) transport of electrons and holes through a
rod is driven by a voltage difference and diffusion processes between the two con-
tacts at x = 0, L. The hydrodynamic equations for electron and hole flow include
Gauss’s law in Eq. (A.1a), charge conservation equations for electrons and holes in
Eqs. (A.1b) and (A.1c), and momentum conservation equations for electrons and
holes in Eqs. (A.1d) and (A.1e). The changes of kinetic energy of electrons and holes
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due to their interactions with the lattice and the lattice thermal energy are described
in Eqs. (A.1f), (A.1g), and (A.1h), repectively. The system of equations is
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+

3nekB
2

(
Te − TL
τE,e

)
+

3nhkB
2

(
Th − TL
τE,h

)
+ q∗′′′l , (A.1h)

where V (x, t) is the electrostatic potential, t is the time, ne(x, t) is the electron
density, nh(x, t) is the hole density, ue(x, t) is the electron velocity, uh(x, t) is the hole
velocity, Te(x, t) is the electron temperature, Th(x, t) is the hole temperature, TL(x, t)
is the lattice temperature, ql(x, t) represents the heat losses, Ge,net(x, t) = Ge(x, t)−
Re(x, t) is the net generation rate of electrons which is equal to the generation rate
Ge(x, t) minus the recombination rate Re(x, t), and Gh,net(x, t) = Gh(x, t)−Rh(x, t)
is the net generation rates of holes, which is equal to the generation rate Gh(x, t)
minus the recombination rate Rh(x, t).

The physical parameters are the elementary charge, e, the relative permittivity
of the material, εr, the permittivity of free space, ε0, the effective electron mass, m?

e,
the effective hole mass, m?

h, Boltzmann’s constant, kB, the momentum relaxation
time for electrons, τM,e, the momentum relaxation time for holes, τM,h, the energy
relaxation time for electrons, τE,e, the energy relaxation time for holes, τE,h, the
thermal conductivity of electrons, ke, the thermal conductivity of holes, kh, the
thermal conductivity of the lattice, kL, and the volumetric heat capacity of the
lattice CL,v.
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A.3 Charge Carriers In Thermal Equilibrium With Constant, Uniform
Temperature

Consider the case where electrons and holes are in thermal equilibrium, i.e.,
Te = Th = Tc, and their temperature is uniform in space and constant in time.
Thermal equilibrium is relevant for devices where the densities of electrons and holes
are similar in magnitude and when their mobilities are also similar in magnitude.
The former criterion is true for intrinsic materials, for materials whose donor and
acceptor doping levels are similar (not very common), and for transistor devices
where the gate voltage would give rise to similar levels of ‘instantaneous doping,’
such as in graphene devices [40–42]. Meeting both criteria would mean that both
of the carriers’ speeds/kinetic energies are approximately the same. This is the case
of intrinsic graphite, for which the ratio of the electron to the hole mobility is close
to one [80] and for graphene transistors [40–42]. While thermal equilibrium is more
physically feasible, keeping a constant and uniform carrier temperature may be a
more crude approximation. It would mean that the external forces (e.g., electric
field) are not large enough to change the carrier energy significantly in space or time.

Discarding the terms which involve a space or time derivative, and substituting
the remaining terms from Eqs. (A.1f) and (A.1g) into the lattice energy equation,
Eq. (A.1h), it becomes

CL,v
∂TL
∂t

=
∂

∂x

(
kL
∂TL
∂x

)
− nekBTc

∂ue
∂x

+
nem

?
eue

2

τM,e

(
1− τM,e

2τE,e

)
− nhkBTc

∂uh
∂x

+
nhm

?
huh

2

τM,h

(
1− τM,h

2τE,h

)
+ q∗′′′l . (A.2)

A.4 Nondimensional Equations

Nondimensionalization of equations is a well-known technique for simplifying
complex equations. Upon its discovery and development, this technique has been
utilized historically and has proven fruitful in the development of science. This
technique will be exploited here to significantly reduce the complexity of the hydro-
dynamic model.

Equations (A.1) along with Eq. (A.2) are nondimensionalized using the fol-
lowing parameter definitions: x∗ = x/L, V ∗ = V/V0, n∗e = ne/N0, n∗h = nh/N0,
u∗e = ue/U , u∗h = uh/U , T ∗L = TL/T0, T ∗c = Tc/T0, and t∗ = tU/L, with V0 a refer-
ence voltage, N0 a reference density, and T0 a reference temperature. The following
relationship will be used in this step. The mobility is related to the momentum
relaxation time as follows: µe = eτM,e/m

?
e; this is the simplest relationship between
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these parameters. The nondimensional version of the equations becomes

∂2V ∗

∂x∗2
= −ζ (n∗h − n∗e) , (A.3a)
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= G∗e,net, (A.3b)
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= G∗h,net, (A.3c)

Re
τM,e

τM,e,ref

[
∂u∗e
∂t∗

+ u∗e
∂u∗e
∂x∗

]
=

µe

µe,ref

[
∂V ∗

∂x∗
− β 1

n∗e

∂n∗e
∂x∗

]
− u∗e, (A.3d)

Re
τM,e

τM,e,ref

[
∂u∗h
∂t∗

+ u∗h
∂u∗h
∂x∗

]
= − µe

µe,ref

mr

[
∂V ∗

∂x∗
+ β

1

n∗h

∂n∗h
∂x∗

]
− γu∗h, (A.3e)
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]
+ q∗′′′l ,

(A.3f)

where ζ = eL2N0/εrε0V0, β = kBTc/eV0, γ = τM,e/τM,h, mr = m?
e/m

?
h, ν =

τM,e/τE,e = τM,h/τE,h, ψ0 = τM,e,refCL,v,refT0/m
?
eN0UL, ψ1 = τM,e,refkL,refT0/

m?
eN0U

2L2, G∗e,net = Ge,netL/N0U , G∗h,net = Gh,netL/N0U , q∗′′′l = q′′′l τM,e/N0m
?
eU

2,
and U = eV0τM,e,ref/m

?
eL = µe,refV0/L is the maximum average electron velocity.

Re = UτM,e,ref/L, which is the Reynolds number for the electron cloud [50,57,59,106].
The Reynolds number here is analogous to that used in fluid dynamics; a small
value means that the inertia forces in the momentum equations can be neglected
[50, 57, 59, 106]. Note that in the definition of ν it was assumed that the ratio of
momentum relaxation time to energy relaxation time was equal for both electrons
and holes. More details about this assumption in Sec. A.7.

A.5 Simplified Nondimensional Equations

Electrons and holes are expected to have significant scattering events when
they are traveling through the rod; as a consequence the Reynolds number becomes
very small. Based on our nondimensionalized equations, the Reynolds number multi-
plies the transient and inertia forces in the momentum equations for electrons (A.3d)
and holes (A.3e), which means that these terms can be safely discarded [50, 57, 59].
Because the hydrodynamic model is composed of highly-coupled nonlinear partial
differential equations, such simplifications prove crucial in reducing its complexity.

Discarding the transient and inertia terms, the system of nondimensional
equations (A.3) becomes
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This version of the hydrodynamic model is taken as the starting model in
Chapter 4.

A.6 Steady-State Equations

In this step the transient terms are discarded to obtain the steady-state equa-
tions as follows:
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A.7 Drift-Diffusion Model

In this step the nondimensional version of the drift-diffusion model utilized in
Chapter 3 will be obtained. It is noted that in this particular instance the diffusion
terms will be discarded based on certain criteria as explained below. Nonetheless,
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the model will still be called drift-diffusion because it is similar to drift-diffusion
models.

In this model, it is assumed that the carrier diffusion terms are small compared
to the rest of the terms in Eqs. (A.5); the diffusion terms are those containing the
coefficient β. This assumption is more appropriate for longer rods; as the length of
the rod decreases, the importance (magnitude) of the diffusion terms needs to be
assessed. Such an assessment will be shown in Chapter 4 under different operating
conditions. Discarding the diffusion terms yields the following equations:
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The momentum and energy relaxation times depend on the energy of the
carriers and the lattice [46, 47, 55, 58, 59, 61]. In our definition of ν it has been
assumed that ν = νe = νh to simplify the energy equation (A.6f). This definition is
less restrictive than it appears to be. The only restriction is that each ν, or ratio of
relaxation times, be equal. Yet, note that (1) the momentum relaxation times for
electrons and holes may have different values, and (2) they may even have different
energy dependencies.

It is known that the ratio of the electron to hole mobility in graphite is about
1.1 for low and near room temperatures [80], while in studies of graphene devices,
the same value for both the electron and hole mobility has been used [40, 104, 129].
The momentum relaxation time can be readily calculated from the mobility using
the relationship given in Sec. A.4. Though, values for the energy relaxation times
have not been found in the literature. As a consequence, the effect of the energy
relaxation time will be analyzed by changing the magnitude of ν.

Let us have a short discussion about the implications of the relaxation times.
The relaxation time is defined as the amount of time it takes a system to return to
its equilibrium mode after it has been perturbed. The relaxation time is also the
inverse of the frequency of collisions. In general, the momentum relaxation time is
smaller than the energy relaxation time because if a carrier collision occurs a change
in momentum (magnitude or direction) is more likely to occur than a change in
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energy (magnitude only). Upon collision of a charge carrier with the lattice, the
extent of energy transferred is determined by the energy relaxation time. A larger
energy relaxation time means a lower amount of energy is exchanged between the
charge carrier and the lattice. This can be easily seen through the third term on
the right-hand-side of Eqs. (A.1f) and (A.1g). However, as the energy relaxation
time τE increases, the coefficient (1− τM/τE) of the fourth term in Eqs. (A.1f) and
(A.1g) increases, and this term is really important because it represents Joule (self)
heating [55]. This coefficient is carried on from Sec. A.6 through Sec. A.6 and is now
represented by (1 − ν/2) in Eq. (A.6f), where ν acts as a modulator of the Joule
heating power. This coefficient ranges from a minimum of 0.5 (50%) Joule heating
power when ν = 1 to approximately (100%) Joule heating power when (ν � 1). For
instance, if τE = 50τM , ν = 0.02, and the coefficient (1− ν/2) = 0.99.

If we let the energy relaxation time τE be much greater than the momentum
relaxation time τM , i.e., (ν . 0.02), the coefficient multiplying the bracketed term
on Eq. (A.6f) becomes nearly equal to one. In addition, by substituting the velocity
for both electrons and holes, Eqs. (A.6d) and (A.6e), once into the energy equation
(A.6f), it can now be re-written as follows:
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Appendix B

REPLICATION OF PUBLISHED RESULTS

B.1 Introduction

In this chapter, a set of results that was obtained by applying our numerical
scheme to the hydrodynamic model by Osses-Márquez and Calderón-Muñoz [59] will
be compared to their original results. The first objective for doing this comparison
is to show a hydrodynamic model, its application, and a set of solutions that can be
obtained with it. The second objective is to show that our numerical scheme, differ-
ent from the one used in Ref. [59], is able to replicate the original set of results. Since
we will apply this numerical scheme to our hydrodynamic model, which is similar
to the one in Ref. [59], this step is crucial to make sure our numerical algorithm is
well-defined and that our code is free of syntax errors. This is especially important
because hydrodynamic models form a set of highly-coupled non-linear partial dif-
ferential equations whose numerical schemes are very unstable. In addition, we are
applying this hydrodynamic model to graphite – something that has not been done
in the literature – under very different operating conditions and with very different
properties than those of semiconductors. Thus, it is ideal to have an error-free code
before further development of the numerical scheme.

B.2 Replication Of Results

Osses-Márquez and Calderón-Muñoz published a paper where they have stud-
ied the “Thermal influence on charge carrier transport in solar cells based on GaAs
PN junctions” [59]. In their paper, the model equations have been simplified, nondi-
mensionalized, and only the steady-state version of the equations has been solved
using perturbation methods. Because the hydrodynamic model used in Chapter 4 is
similar to the hydrodynamic model from Ref. [59], this model and its results were
used to aid us in the development of the numerical solvers used in our simulations
applied to graphite.

Since we are interested in using our version of the hydrodynamic model to
analyze the transient behavior of our problem, their hydrodynamic model [59] was
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Figure B.1: Replication of Fig. 2 from Ref. [59]. The symbols represent the results
obtained with our code. The lines represent the results from Ref. [59], where ‘OC’
on the legend stands for each of the author’s last name.

solved including the transient terms. The transient hydrodynamic model was dis-
cretized using second order finite differences and integrated using an explicit fourth
order Runge-Kutta method.

The results from Fig. 2 from Ref. [59] were reproduced using our transient
model, and the comparison is made in Fig. B.1. All variables are nondimensional.
The symbols represent the results obtained with our numerical scheme, while the
lines represent the results from the cited reference. It can be seen that the results
agree very well. The operating conditions are the following: L = 840 µm and Vapp = 0
V; though, there is a built-in voltage due to the PN junction, thus, V ∗(x∗ = 0) =
Vapp − Vbi. The algorithm used 101 grid points and a time step ∆t = 8.82 × 10−12

seconds. The solution is shown at a time equal to t = 8.82× 10−7 seconds.
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