
UCLA
UCLA Electronic Theses and Dissertations

Title
Co-optimizing High-Level Synthesis and Physical Design for Rapid Timing Closure of
Large-Scale FPGA Designs

Permalink
https://escholarship.org/uc/item/3xc7b89f

Author
Guo, Licheng

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xc7b89f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Co-optimizing High-Level Synthesis and Physical Design for Rapid Timing Closure of

Large-Scale FPGA Designs

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Licheng Guo

2022

© Copyright by

Licheng Guo

2022

ABSTRACT OF THE DISSERTATION

Co-optimizing High-Level Synthesis and Physical Design for Rapid Timing Closure of

Large-Scale FPGA Designs

by

Licheng Guo

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Jingsheng Jason Cong, Chair

High-level synthesis (HLS) tools simplify the FPGA design processes by allowing users to

express their designs in high-level languages such as C/C++ or OpenCL. In this way, users

could focus on algorithmic optimization with less concern for the cycle-by-cycle details at

the register-transfer level (RTL). However, FPGA development flows still have two major

limitations that hinder the adoption of FPGAs:

• Limited achievable frequency. There still exists a considerable gap between the quality-

of-result (QoR) of an HLS-generated design and what is achievable by an RTL expert,

especially the maximum operating frequency of the design. With the designs being

scaled up in size, the final achievable frequency will be even lower. Unfortunately, a

frequency degradation will directly lead to a proportional performance drop.

• Prolonged compilation time. In the current FPGA CAD flow, the RTL generated

by the HLS compiler will be passed to the traditional synthesis and implementation

tool. Although the C-to-RTL compilation is relatively quick, the RTL-to-bitstream

implementation process will take much longer. With the designs becoming increasingly

complex and the FPGA devices larger, the compile time surges from hours to days. Such

an overlong process will seriously limit the working efficiency of engineers, especially

when compared to software compilation that only takes seconds or minutes.

ii

We observe that the existing FPGA CAD flows have not taken full advantage of HLS for

further timing optimization and compilation reduction. Currently, the synthesis, placement,

and routing tools are implemented and optimized to handle arbitrary RTL inputs. Those

tools will adhere to the cycle-accurate behavior of the input design to ensure the correctness

of the output. However, HLS-generated RTL is highly flexible and may tolerate additional

pipeline registers without causing functional errors. Such latency-insensitive properties could

significantly help the downstream compilation with timing closure. However, in the current

toolchains, the HLS compilation is a standalone step, and the HLS-generated RTL will be

treated in the same way as manually-written RTL by the logic synthesis tool. As a result, the

information on pipeline flexibility in HLS designs will be lost, and the downstream physical

implementation process cannot insert pipeline registers for timing closure.

Based on this observation, we propose methods to co-optimize the HLS compilation and the

physical design process, which will enable frequency improvement and speed up the hardware

accelerator development process simultaneously. Different from the conventional compilation

stacks that separate the HLS compilation from the downstream physical implementation

process, we propose to bridge the gap between HLS and physical design organically. By

facilitating placement and routing with the latency-insensitive information of HLS, and in

turn by guiding the HLS compilation with the physical layout information, we could achieve

significant improvement in QoR and reduction in compile time.

Centered around this core idea, my thesis consists of three major parts. First, we explore

how to improve the inherent timing quality of the RTL generated by HLS. Next, we couple

HLS scheduling with coarse-grained floorplanning to improve the achievable frequency. Finally,

we take one step further by partitioning the design for parallel placement and routing, then

efficiently stitch them together without losing timing quality.

First, the thesis addresses the timing-closure challenge by improving the inherent timing

quality of the machine-generated RTL. This chapter studies the timing issues in a diverse

set of realistic and complex FPGA HLS designs, including two of my previously-published

accelerator designs for genome sequencing. We observe that in almost all cases, the frequency

degradation is caused by the broadcast structures generated by the HLS compiler. We

iii

classify three major types of broadcasts and propose a set of effective yet easy-to-implement

approaches. Our experimental results show that our methods can improve the maximum

frequency of a set of nine representative HLS benchmarks by 53% on average.

In addition to optimizing the QoR of HLS by itself, the thesis further pushes up the

final frequency by coupling HLS compilation with floorplanning. We propose AutoBridge,

an automated framework that couples a coarse-grained floorplanning step with pipelining

during HLS compilation. Since pipelining may introduce additional latency, we further

present analysis and algorithms to ensure the added latency will not compromise the overall

throughput. In our experiments with a total of 43 design configurations, we improve the

average frequency from 147 MHz to 297 MHz (a 102% improvement) with no loss of throughput

and a negligible change in resource utilization. Notably, in 16 experiments, we make the

originally unroutable designs achieve 274 MHz on average. AutoBridge was recognized with

the Best Paper Award in FPGA 2021.

Finally, we take one step further to enable parallel physical implementation on top

of our HLS-floorplan co-design methodology. We propose a split compilation approach

based on the pipelining flexibility at the HLS level. The pipeline flexibility allows us to

partition designs for parallel placement and routing without timing degradation. Our research

produces RapidStream, a parallelized and physical-integrated compilation framework that

takes in a latency-insensitive program in C/C++ and generates a fully placed and routed

implementation. When tested on the AMD/Xilinx U280 FPGA, we observed a 5-7× compile

time reduction and a 1.3× frequency increase. RapidStream was recognized with the Best

Paper Award in FPGA 2022.

In conclusion, my thesis targets two of the most challenging problems for modern EDA

tools: timing closure and agile compilation. We first study the fanout optimization at the HLS

level. Next, we explore the co-optimization of HLS and floorplanning, which has been used

by at least eight other accelerator design projects. Finally, we enable the split compilation of

HLS designs to reduce the compile time significantly. At the end of the thesis, we discuss

future directions, including extending the methodology to support the compilation of RTL

designs, multi-FPGA designs, and ASIC designs.

iv

The dissertation of Licheng Guo is approved.

Zhiru Zhang

George Varghese

Anthony John Nowatzki

Jingsheng Jason Cong, Committee Chair

University of California, Los Angeles

2022

v

This dissertation is dedicated to my family, my teachers, my friends, and all who have

helped and inspired me.

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Current Challenges in FPGA CAD Flow . 2

1.2 Thesis Overview . 3

1.2.1 Broadcast-Aware Optimization of HLS Code Generation. 5

1.2.2 Coupling Global Floorplanning with HLS Pipelining. 5

1.2.3 HLS-Based Partitioning and Stitching Methodology for Parallel Physi-

cal Design . 6

2 Background . 8

2.1 High-Level Synthesis . 9

2.2 Logic Synthesis . 10

2.3 Placement . 12

2.4 Routing . 12

2.5 Related Works . 13

2.5.1 Physical-Aware HLS Timing Optimization 14

2.5.2 Physical-Independent HLS Timing Optimization 15

2.5.3 Accelerating the FPGA CAD Flow 15

2.5.4 Latency Insensitive Design . 17

2.5.5 Other Related Works . 19

3 Analysis and Optimization of the Implicitly Broadcasts by HLS 21

3.1 Introduction . 22

3.2 Classification of HLS Broadcasts . 24

3.2.1 Data Signal Broadcast . 24

vii

3.2.2 Control Signal Broadcast - Synchronization 26

3.2.3 Control Signal Broadcast - Pipeline 28

3.3 Approaches . 28

3.3.1 Broadcast-Aware Scheduling . 29

3.3.2 Synchronization Logic Pruning . 30

3.3.3 Skid-Buffer-Based Pipeline Control 31

3.4 Experiments . 33

3.4.1 Benchmarks . 33

3.4.2 Case Study for Broadcast-Aware Scheduling 33

3.4.3 Synchronization Logic Pruning . 35

3.4.4 Skid-Buffer-Based Pipeline Control 36

3.4.5 Combined Effect . 38

3.5 Conclusion . 39

4 AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for

High-Frequency HLS Design on Multi-Die FPGAs 40

4.1 Introduction . 40

4.2 Background and Motivating Examples . 44

4.2.1 Multi-Die FPGA Architectures . 44

4.2.2 Motivating Examples . 45

4.3 Coupling HLS with Coarse-Grained Floorplanning 46

4.3.1 Coarse-Grained Floorplanning Scheme 46

4.3.2 Problem Formulation . 48

4.3.3 Solution . 48

4.4 Floorplan-Aware Pipelining . 51

viii

4.4.1 Pipelining Followed by Latency Balancing for Dataflow Designs . . . 52

4.4.2 Latency Balancing Algorithm . 53

4.4.3 Extension to Non-Dataflow Designs 55

4.5 Experiments . 57

4.5.1 Implementation Details . 57

4.5.2 Benchmarks . 59

4.5.3 Frequency Improvements . 61

4.5.4 Control Experiments . 65

4.5.5 Scalability . 66

4.6 Conclusions . 67

5 Parallel Physical Implementation of HLS Designs for Fast Timing Closure. 68

5.1 Introduction . 69

5.2 Preliminaries . 74

5.2.1 Problem Scope . 74

5.2.2 Organization of the FPGA Fabric . 74

5.2.3 Flow Overview . 74

5.3 Partitioning . 75

5.3.1 Problem Description . 76

5.3.2 Approaches . 76

5.4 Parallel Placement . 79

5.4.1 Iterative Placement of Anchors and Islands 79

5.4.2 Anchor Placement by Min-Cost Matching 80

5.5 Clock Routing . 82

5.5.1 Problem Description . 82

ix

5.5.2 Challenges and Previous Approaches 82

5.5.3 Routing the Clock Trunk (S10) . 83

5.5.4 Locking the Clock Buffers for Anchors (S10) 83

5.5.5 Routing and Merging the Local Clocks (S11) 84

5.6 Stitching and Inter-Island Routing . 85

5.6.1 Island Merging (S12, S13) . 85

5.6.2 Inter-Island Routing (S14) . 85

5.7 Accelerate Routing with Customized Partial Router (RapidStream 1.0) . . . 87

5.8 Pre-Partial-Routing of Inter-Island Nets (RapidStream 2.0) 90

5.8.1 Avoid Routing Conflicts . 91

5.9 Comparison of RapidStream 1.0 and 2.0 . 93

5.10 Evaluation of RapidStream 1.0 . 94

5.10.1 Implementation Details . 94

5.10.2 Benchmarks . 95

5.10.3 Runtime Reduction . 96

5.10.4 Fast Inter-Island Routing . 98

5.10.5 Anchor Placement . 98

5.10.6 Clock Management . 100

5.11 Evaluation of RapidStream 2.0 . 101

5.11.1 Implementation Details . 101

5.11.2 Benchmarks . 102

5.11.3 Profiling of RapidStream 2.0 Compilation 103

5.12 Conclusion . 104

6 Conclusion . 105

x

6.1 Thesis Summary and Contributions . 105

6.2 Vision and Future Work . 107

6.2.1 Extension to RTL designs . 107

6.2.2 Extension to Other FPGA Devices and ASIC 108

6.2.3 Efficient Emulation . 109

6.2.4 Multi-FPGA Programming . 109

6.3 Thesis Impact . 110

References . 112

xi

LIST OF FIGURES

1.1 A typical FPGA CAD flow. 2

1.2 A motivating example showing the compile time and the achievable frequency of

a set of systolic array designs. 4

2.1 A typical FPGA design flow starting from behavior-level specifications. 8

2.2 A typical FPGA HLS flow. [CLN11] . 9

2.3 Overview of how RapidWright and Vivado interacts [LK18]. 17

3.1 Code of data broadcast - Example #1: loop unrolling. 25

3.2 HLS-generated architecture of Fig. 3.1. 25

3.3 Code of data broadcast - Example #2: large array. 26

3.4 HLS-generated architecture of Fig. 3.3 . 26

3.5 Code of synchronization - Example #1. 27

3.6 Code of synchronization - Example #2. 27

3.7 HLS-generated architecture of the code above. 27

3.8 Code example of pipeline control signal broadcast. 28

3.9 HLS-generated architecture of pipeline control. 28

3.10 Vivado HLS estimated delay, our calibrated delay, and raw experimental delay on

different operators. 30

3.11 Pruned architecture corresponding to Figure 3.7. 30

3.12 Skid-buffer-based pipeline control architecture. 32

3.13 Multi-level skid-buffer-based pipeline control. 32

3.14 Finding estimated overlap region. 34

3.15 Overview of a processing element array. 35

xii

3.16 Design code snippet from [GLR19]. The loop-invariant variables (broadcast

sources) are marked blue. 36

3.17 An operation chain with broadcast operators. 36

3.18 Optimization of data broadcast. 37

3.19 The achieved frequency of the Jacobi kernels. 37

3.20 Bitwidth of the passed data between stages. 38

3.21 Code for the large buffer access example. 38

3.22 Achieved frequencies of the stream buffer design. 39

4.1 Core idea of the proposed methodology. 42

4.2 Overview of the AutoBridge Framework. Grey boxes represent the original software

flow and blue boxes represent components of AutoBridge. 43

4.3 Block diagrams of three representative FPGA architectures: the Xilinx Alveo

U250, U280 (based on the Xilinx UltraScale+ architecture), and the Intel Stratix 10. 45

4.4 Implementation results of a CNN accelerator on the Xilinx U250 FPGA. Spreading

the design across the device helps reduce local congestion, while the die-crossing

wires are additionally pipelined. 46

4.5 Implementation results of a stencil computing design on U280. Floorplanning

during HLS compilation significantly benefits the physical design tools. 47

4.6 Generating the floorplan for a target 2 × 4 grid. Based on the floorplan, all

the cross-slot connections will be accordingly pipelined (marked in red) for high

frequency. 49

4.7 Assume that the edges e13, e37 and e27 are pipelined according to some floorplan,

and each of them carries 1 unit of inserted latency. Also, assume that the bit

width of e14 is 2 and all other edges are 1. In the latency balancing step, the

optimal solution is adding 2 units of latency to each of e47, e57, e67 and 1 unit of

latency to e12. Note that edge e27 and e37 can exist in the same cut-set. 53

xiii

4.8 Example SDC formulation for the latency balancing problem. 55

4.9 Example of AutoBridge on a key-value store. 57

4.10 Pipelining FIFO interfaces using almost-full FIFOs. 58

4.11 Topologies of the benchmarks. Blue rectangles represent external memory ports

and black circles represent the computation kernels of the design. In the genome

sequencing design, the arrows represent BRAM channels; in other designs, the

arrows represent FIFO channels. 60

4.12 Results of the stencil computation designs. 62

4.13 Results of the CNN accelerator designs. 63

4.14 Results of the Gaussian elimination designs. 64

4.15 Control experiments with the CNN accelerators. 66

5.1 The upper figure shows the number of active CPU cores when implementing a CNN

benchmark by Vivado (8 threads) on a 56-core server. The total implementation

process takes about 14 hours, with an average CPU utilization of 2.1 cores. The

lower figure displays the runtime as we increase the number of threads. 69

5.2 An overview of our RapidStream workflow. We use [*] to denote a parallelized step. 70

5.3 Illustration of results obtained in different phases. In the final output, the orange

part shows the anchor registers, the cyan part shows the implemented partitions. 70

5.4 Comparison of RapidStream 1.0 and 2.0. 72

5.5 Organization of the FPGA device. 75

5.6 (A) three potential routes for a connection. (B) Each anchor region (in green)

only has 5 Flip-Flops, so the two connections (both of width 4) cannot go through

the same anchor region. 77

5.7 Inserting anchor registers. 78

5.8 Demonstration of the iterative placement. 80

5.9 Illustration of the anchor placement formulation. 81

xiv

5.10 Route different segments of the clock separately and maintain a stable clock skew

in one pass. Step 1: route the clock trunk. Step 2: lock the delay level of the

clock buffers for anchors. Step 3: route each island and merge with the clock trunk. 83

5.11 By introducing an artificial clock delay of 0.5 ns to FF-2, the critical path is

reduced from 3 ns to 2.5 ns. 84

5.12 Detailed view of anchor region. Only one switch box is shown. 86

5.13 Pairwise inter-island routing will not work because it may cause conflicts inside

the island. 86

5.14 Required long routing detours outside of the initial net bounding box. 88

5.15 Make anchors trigger on negative clock edges. 89

5.16 Partial routing of the inter-island nets using a skeleton design. We first do a

complete routing of the nets from the anchor registers to the source/sink cells

inside the island, then we prune away most routing nodes inside the island and

leave the net in an antenna state. The endpoints of the inter-island nets are

viewed as virtual partition pins. Later when we route the island, the router will

connect the island cells to those partition pins. 90

5.17 Example of a route with a multi-output node. The red FF is made unreachable

by other nets since routing node 2 has been occupied. 92

5.18 Example of a route with an SLL node. The red FFs are made unreachable since

the SLL node is the only input/output connection to them. 92

5.19 Comparison of the runtime and achievable frequency between RapidStream and

Vivado. 96

5.20 CPU and memory usage of the RapidStream run on the CNN design. No re-route

is needed after die-level stitching (Sec. 5.10.1). 97

5.21 Number of active jobs in Phase 2. 98

5.22 Runtime comparison in conflict resolution. 99

xv

5.23 Post-placement slack between using the Vivado placer or the min-cost matching

placer for anchor placement. 100

5.24 Timing loss after stitching w/o clock management. 100

5.25 Clock preservation reduces timing degradation. 101

5.26 An example shell for RapidStream 2.0 corresponding to Figure 5.16(C). 102

5.27 Profiling of the CPU and memory usage in RapidStream 2.0 for the gaussian-float

benchmark. 104

6.1 Example annotation to an RTL module interface. 108

xvi

LIST OF TABLES

3.1 Timing improvements and post-implementation resources on HLS designs using

our proposed solutions. 33

3.2 Experiment results on 512-wide vector product. 38

3.3 Experiment results on pattern matching. 39

4.1 Coordinates of selected vertices in Figure 4.6. 51

4.2 Post-placement results of the CNN designs on U250. The design point of 13× 12

failed placement and 13× 10 and 13× 14 failed routing with the original tool flow. 63

4.3 Results of Gaussian elimination designs on U250. 63

4.4 Experiment result of genome sequencing on U250. 64

4.5 Results of the bucket sort designs on U280. 65

4.6 Computing time for the CNN test cases targeting the U250 FPGA. Div-1 and

Div-2 denote the first and the second vertical decomposition, and Div-3 denotes

the first horizontal decomposition. Re-balance denotes the delay balancing. . . 67

5.1 Benchmarks for RapidStream evaluation. 96

5.2 Benchmarks for RapidStream 2.0 evaluation. 102

5.3 Detailed comparison between RapidStream 2.0 and Vivado 103

xvii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support, encouragement,

advice, and help from my family, teachers, mentors, friends, and all who have inspired me

and helped me along the way to get to this point both academically, professionally, and

personally.

First and foremost, I would like to thank my advisor and committee chair, Prof. Jason

Cong, for his advice, support, and guidance throughout the last 5 years. I am fortunate to

have the opportunity to study at and grow with the VAST lab and learn a lot more than

just EDA. I would like to thank Jason for allowing me to explore topics I found interesting,

for trusting me with highly risky projects, for providing invaluable guidance and advice, for

connecting me to domain experts outside the lab, and for his unconditional support and

constant availability throughout my time at UCLA. I am grateful to Jason for my fruitful

Ph.D. experience like no other.

I would also like to thank Prof. Zhiru Zhang for participating in every one of my projects

and providing insightful guidance. Zhiru is always available to discuss my problems and

responds quickly when I need help. In addition, Zhiru has helped with my writing significantly.

I enjoy discussing with him and learning valuable lessons from him.

I appreciate the advice from Prof. George Varghese and Prof. Tony Nowatzky. I want to

thank Prof. George Varghese for teaching me the engineering principles that I will always

remember. I learned important lessons about computer architecture and domain-specific

accelerators from Prof. Tony Nowatzki. George and Tony have brought up invaluable

suggestions on extending my research projects to broader applications; I feel lucky to have

them on my committee.

I want to thank Pongstorn Maidee, Chris Lavin, Eddie Hung, and Alireza Kaviani for their

crucial support for the RapidStream project. The RapidStream project will never succeed

without their devotion and support.

I would also like to thank all of my collaborators, without whom our projects would

xviii

never have succeeded. First, I want to thank Jason Lau, Yuze Chi, Weikang Qiao, Jie Wang,

Linghao Song, Yun Zhou, Peng Wei, Zhenyuan Ruan, Tianhe Yu, and Cody Yu, for working

together with me. I want to thank Prof. Zhenman Fang, Prof. Peipei Zhou, Prof. Young-Kyu

Choi, Prof. Po-Tsang Huang, Prof. Luciano Lavagno, Prof. David Pan, Jianyi Cheng,

Atefeh Sohrabizadeh, Karl Marrett, Danial Tan, Suhail Basalama, Stephane Pouget, Chengdi

Cao, Neha Prakriya, Jason Kimko, Lorenzo Ferretti, Di Wu, DJ Wang, Gai Liu, Wuxi Li,

Zhengrong Wang, Sihao Liu, Jian Weng, Yuanlong Xiao, Xingyu Tian, Alec Lu, Moazin

Khatti, Shaojie Xiang, Yi-Hsiang Lai, Ecenur Ustun, Wenqi Cao, Andreas Nowatzyk, Zeyu

Kuang, Yue Zhong, Guangcan Li, Haowen Chen, Wenping Wang, Sida Peng, Zixuan Jiang,

Pengfei Li, Qiuxiao Chen, Feiyu Chen, Junpei Zhou and many others for their help, guidance

and suggestions.

I deeply appreciate the efforts by Jason Lau and Yuze Chi to maintain our server system

and voluntarily provide technical support. I want to thank Alexandra Luong and Joseph

Brown for all the help on the administrative side.

I am fortunate that my Ph.D. journey turns out to be the best years of my life. Although

I was half a world away from home, I have never felt lonely, and I could not be more grateful

for my friends. I want to thank Bing Han, Jason Lau, Weikang Qiao, Jie Wang, Zhengrong

Wang, and many others for being an irreplaceable part of my Ph.D. journey.

Besides my academic advisors, I also want to thank all my teachers and friends since I was

young. Specifically, I want to thank Prof. Peiyong Zhang and Prof. Zheng Shi at Zhejiang

University, who led me into the fascinating world of EDA and FPGA. I want to thank my

flute teacher, Erika Andres, for helping me find great joy in music through her professional

and inspiring lessons. I want to thank my middle school math teacher, Yibo Ji, who helped

me build confidence and find joy in learning. I want to thank my middle school Chinese

teacher, Qin Li, who played an important role in my cultivating a positive outlook on the

world, life, and values. She also taught me important lessons on academic writing that I

still find helpful to this day. I want to thank Wei Xie, who was always there to answer my

questions and discuss tricky puzzles with me for the entire middle school and high school. I

want to thank Feng Xiao, for his encouragement and support, especially in my most difficult

xix

days before and after the college entrance exam. I want to thank Ding Zhang for his support

and accompany throughout the years. I want to thank Yike Li, we have worked side by side

on many of the most important projects, and I have learned a lot from him; I always feel

that he is like-minded, and we had much fun together. I want to thank Yifan Yuan, Yifan

is one of my most visionary peers, and I appreciate all his advice and guidance. I want to

thank Lijun Wang, his perseverance and optimism toward life have inspired me a lot.

I want to thank UCLA and Zhejiang University for providing a free, encouraging, tolerant,

vibrant, warm, and supportive environment for their students. I want to thank the Advanced

Class of Engineering Education (ACEE) at Zhejiang University, I am honored to be a part of

the group, and it has broadened my perspective and connected me to so many good friends.

Most importantly, I thank my parents, Yingtong Xiong and Ling Guo, and my grandpar-

ents, Xiaojing Guo, Lamei Zhu, Zhongyin Xiong, and Aifen Ni, for all their extremely hard

work that made me who I am, for always being understanding and supportive no matter the

situation, and for creating an environment of love, warmth, tolerance, trust, and equality at

home. I deeply thank my wife, Xinyi Li, for always being supportive and understanding and

for all the love and happiness that we have shared together.

The contents of Chapter 3 is from a collaboration between Jason Lau and me. We

made equal contributions to our DAC ’20 paper [GLC20], which is the basis of Chapter 3.

Specifically, the problem classification part (Section 3.2) is accredited to me, and the solution

part (Section 3.3) is accredited to Jason Lau.

This thesis is partially supported by CRISP, one of the six centers in JUMP, a Semi-

conductor Research Corporation (SRC) program, member companies under the Center for

Domain-Specific Computing (CDSC) Industrial Partnership Program, the Intel/NSF CAPA

program, the NSF NeuroNex Award No. DBI-1707408 and the NIH Award No. U01MH117079.

The authors acknowledge the valuable support of the Xilinx Adaptive Compute Clusters

(XACC) Program. We thank Gurobi and GNU Parallel for their support to academia.

xx

VITA

2014–2018 B.S., Electronic Engineering,

Zhejiang University, Hangzhou, China.

2018–2021 Master, Computer Science,

University of California, Los Angeles, U.S.A.

PUBLICATIONS

Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi, Weikang Qiao,

Alireza Kaviani, Zhiru Zhang, Jason Cong, RapidStream: Parallel Physical Implementation

of FPGA HLS Designs, Proceedings of the 2022 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA 2022)

Yuze Chi, Licheng Guo, Jason Cong, RapidStream: Accelerating SSSP for Power-Law Graphs,

Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA 2022)

Linghao Song, Yuze Chi, Licheng Guo, Jason Cong, Serpens: a high bandwidth memory

based accelerator for general-purpose sparse matrix-vector multiplication, Proceedings of the

59th ACM/IEEE Design Automation Conference (DAC 2022)

Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru Zhang,

Jason Cong, AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-

Frequency HLS Design on Multi-Die FPGAs, Proceedings of the 2021 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays (FPGA 2021)

xxi

Jie Wang, Licheng Guo, Jason Cong, AutoSA: A Polyhedral Compiler for High-Performance

Systolic Arrays on FPGA, Proceedings of the 2021 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA 2021)

Yuze Chi, Licheng Guo, Young-kyu Choi, Jie Wang, Jason Cong, Extending High-Level

Synthesis for Task-Parallel Programs, Proceedings of the IEEE 2021 Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM 2021)

Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, Jason Cong, FANS:

FPGA Accelerated Near-Storage Sorting Solution, Proceedings of the IEEE 2021 Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM 2021)

Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru Zhang, Jason

Cong, Proceedings of the 2020 Annual Design Automation Conference (DAC 2020)

Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, Jason Cong, Hardware Acceleration of

Long Read Pairwise Overlapping in Genome Sequencing: A Race Between GPU And FPGA,

Proceedings of the IEEE 2019 Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM 2019)

Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, Tianhe Yu, SMEM++: Pipelined

and Time-Mux SMEM Seeding Accelerator for Genome Sequencing, Proceedings of the IEEE

28th International Conference on Field Programmable Logic and Applications (FPL 2018)

xxii

CHAPTER 1

Introduction

The slowdown in transistor scaling and the end of Moore’s law are pushing us to new comput-

ing paradigms. Compared to general computing, specialized hardware devices, such as Field

Programmable Gate Arrays (FPGAs), provide a promising solution to achieve intensive com-

putation and energy efficiency [CWA22]. FPGA is a type of reconfigurable integrated circuit

designed to be configured by designers. Because of their lower non-recurring engineering costs,

reconfigurability, and short time-to-market, FPGAs are becoming increasingly attractive.

Beyond the success in traditional applications like fast prototyping for application-specific

integrated circuits (ASIC), FPGAs have also demonstrated their applicability as hardware

accelerators in modern applications, such as machine learning [FOP18, WLC19, WGC21],

genome sequencing [CGH18, GLR19], compression [QDF18, QFC19] and network process-

ing [CCP16, FSP20] and many other fields.

The advancement of FPGA-based design methodologies is inseparable from the support

of FPGA computer-aided design (CAD). A typical modern FPGA CAD flow is illustrated in

Figure 1.1. Users first describe the architecture of their designs in certain software languages

(e.g., OpenCL and C/C++). After that, the high-level synthesis (HLS) tool compiles the

program into a cycle-accurate representation in a hardware description language (e.g., Verilog

and VHDL). The logic synthesis and the technology mapping step further translate the

architectural design into a gate-level netlist. Given the results of the logic design steps, the

physical design process will map these abstract logical representations onto physical function

units and interconnects on the FPGA fabric. The placement step determines the physical

locations of each operator, and the routing step computes the physical interconnects among

the function units.

1

Figure 1.1: A typical FPGA CAD flow.

While RTL design methodology used to be the dominant choice, HLS has emerged as

an increasingly popular and promising alternative to cope with the design productivity gap

as the complexity of applications and hardware platforms continues to scale up. The key

advantage of HLS is that the compiler will automatically convert the untimed high-level

software programs into cycle-accurate RTL hardware implementations because the process

of manual RTL optimization is becoming unequivocally difficult. By raising the level of

abstraction from cycle-accurate hardware to untimed software, HLS reduces design effort while

optimizing over a larger solution space regarding performance, area, and timing. Such benefits

have led to growing development and adoption of both commercial and open-source HLS tools,

including AMD/Xilinx Vitis HLS [Xil20b], LegUp HLS [HLS20a], Intel OpenCL [Exa20],

Mentor Catapult HLS [HLS20b], and Cadence Stratus HLS [Cad20].

1.1 Current Challenges in FPGA CAD Flow

Despite the increasing adoption of HLS because of its design productivity advantage, the

overall FPGA CAD flows still have unsatisfactory quality-of-results (QoR) and productivity.

Such limitations continue to curb the adoption of FPGA accelerators.

2

• First, it is challenging to achieve a satisfactory frequency for HLS designs. The downside

of a higher abstract level is the lack of control over low-level details. Regarding the

frequency bottleneck, current HLS tools work like a black box when generating RTL

from the user input. Unfortunately, the compiler does not provide helpful feedback or

guidelines on improving the clock frequency at the source level or using additional tool

options. It is also challenging for regular HLS users to reverse engineer the synthesized

RTL code to identify the timing bottlenecks and optimize the corresponding critical

paths in the source program.

• Second, the long end-to-end compilation still takes significant time and hinders produc-

tivity. While it only takes a few minutes for the HLS compilation, the generated RTL

has to be synthesized into a physical netlist, then goes through the physical design

process, including placement and routing. With the ever-increasing size of FPGA

designs, the scalability issue of the physical design process becomes more serious, which

results in tens of hours or even days of compilation.

Figure 1.2 shows a motivating example that exposes the limitation of the current FPGA

CAD stack. We measure the compilation time and final frequency of a set of systolic array

designs of varying sizes. Each processing element of the systolic array is the same. Although

this type of design is highly regular in shape, the final frequency is still relatively low. Worse,

scaling up the array size leads to a significant increase in compilation time.

1.2 Thesis Overview

This thesis targets two of the most challenging tasks for modern EDA tools: improving the

timing quality and reducing the compile time. While these two goals are orthogonal and

potentially conflicting1 to some extent, we manage to address both of them using the same

methodology.

The core idea throughout the thesis is to bridge the gap between physical design steps (e.g.,

1Generally, spending a longer time on more optimization iterations may lead to better QoR and vice versa.

3

Figure 1.2: A motivating example showing the compile time and the achievable frequency of
a set of systolic array designs.

global floorplanning and global routing) and the HLS compilation steps (e.g., scheduling and

binding). Since HLS compiles the untimed source code into the cycle-accurate RTL code, it

can introduce additional pipelining registers without breaking the overall functionality. With

the help of HLS, we can rely less on manual timing optimization, where the designer must

carefully adjust the surrounding logic of inserted pipeline registers, which is an error-prone

and ad-hoc process.

Built on this important idea, we propose effective and scalable methods to facilitate timing

closure and parallelize the physical design process. We start by optimizing the QoR of the

code generation of HLS by itself. This step improves the timing quality of the generated

RTL regardless of the underlying FPGA fabric. Next, we break the abstraction boundaries

by coupling HLS scheduling with floorplanning. This combination significantly helps the

placer determine a much better overall distribution of the logic by utilizing the high-level

4

topology of the design; in turn, it helps HLS to identify and pipeline the global interconnects

accurately instead of relying on inaccurate modeling. To further extend the idea, we partition

an input design at latency-insensitive boundaries to enable parallel placement and routing,

dramatically reducing the end-to-end compilation time. Specifically, we made the following

contribution.

1.2.1 Broadcast-Aware Optimization of HLS Code Generation.

This part of the thesis improves the QoR of the HLS code generation by itself (without

interaction with other steps in the FPGA CAD flow). We study the timing issues in a diverse

set of realistic and complex FPGA HLS designs and observe that in almost all cases, the

frequency degradation is caused by the broadcast structures generated by the HLS compiler.

We classify three major types of broadcasts in HLS-generated designs, including high-fanout

data signals, pipeline flow control signals, and synchronization signals for concurrent modules.

We further reveal several limitations of the current HLS tools that result in those broadcast-

related timing issues. Finally, we propose a set of effective yet easy-to-implement approaches,

including broadcast-aware scheduling, synchronization pruning, and skid-buffer-based flow

control. Our experimental results show that our methods can improve the maximum frequency

of a set of nine representative HLS benchmarks by 53% on average. In some cases, the

frequency gain is more than 100 MHz.

1.2.2 Coupling Global Floorplanning with HLS Pipelining.

This part of the thesis shifts the global floorplanning step into the HLS compilation to improve

the final QoR. First, our approach provides HLS with a view of the global physical layout

of the design, allowing HLS to more easily identify and pipeline the long wires, especially

those crossing the die boundaries. Second, by exploiting the flexibility of HLS pipelining, the

floorplanner can distribute the design logic across multiple dies on the FPGA device without

degrading clock frequency. This prevents the placer from aggressively packing the logic on

a single die which often results in local routing congestion that eventually degrades timing.

5

Since pipelining may introduce additional latency, we further present analysis and algorithms

to ensure the added latency will not compromise the overall throughput.

Our framework, AutoBridge, can be integrated into the existing CAD flow for Xilinx

FPGAs. In our experiments with a total of 43 design configurations, we improve the average

frequency from 147 MHz to 297 MHz (a 102% improvement) with no loss of throughput and

a negligible change in resource utilization. Notably, in 16 experiments, we make the originally

unroutable designs achieve 274 MHz on average. AutoBridge was recognized with the Best

Paper Award in FPGA 2022.

1.2.3 HLS-Based Partitioning and Stitching Methodology for Parallel Physical

Design

The aforementioned idea of combining HLS compilation with global floorplanning could

be further extended to support parallel placement and routing. Conventionally, a major

challenge in separately implementing different design parts is achieving a good timing quality

on boundary nets that span different partitions. This problem could be addressed by utilizing

the pipeline flexibility of HLS to fix the critical paths on the partition boundaries while

maintaining the overall functionality and the throughput. In this way, the design can be

partitioned at latency-insensitive boundaries into decoupled sub-designs, which could be

separately placed and routed in parallel with minimal synchronization. The partial bitstream

of all sub-designs will be later stitched together, and the tool will add additional pipeline

registers to boundary nets for timing closure. In the thesis, we outline a number of technical

challenges of such a split compilation approach. To address the challenges, we break the

conventional boundaries between different stages in a typical CAD flow, and we reorganize

the steps to achieve a fast end-to-end compilation.

Our research produces RapidStream, a parallelized and physical-integrated compilation

framework that takes in a latency-insensitive program in C/C++ and generates a fully placed

and routed implementation. We present two approaches. The first approach (RapidStream

1.0) resolves inter-partition routing conflicts at the end when separate partitions are stitched

6

together. When tested on the Xilinx U250 FPGA with a set of realistic HLS designs,

RapidStream achieves a 5-7× reduction in compile time and up to 1.3× increase in frequency

when compared to a commercial-off-the-shelf toolchain. In addition, we provide preliminary

results using a customized open-source router to reduce the compile time up to an order of

magnitude in cases with lower performance requirements. The second approach (RapidStream

2.0) prevents routing conflicts using virtual pins. Testing on Xilinx U280 FPGA, we observed

5-7× compile time reduction and 1.3× frequency increase. RapidStream was recognized with

the Best Paper Award in FPGA 2022.

7

CHAPTER 2

Background

As the FPGA architecture evolves and its complexity increases, CAD software has advanced

significantly as well. Nowadays, FPGA vendors provide a comprehensive set of design

tools that allow automatic synthesis and compilation from design specifications in hardware

specification languages all the way down to a bitstream to program FPGA chips. Fig 2.1

shows a typical FPGA design flow.

Figure 2.1: A typical FPGA design flow starting from behavior-level specifications.

8

2.1 High-Level Synthesis

The rapid increase of complexity in FPGA design has pushed the industry and academia

to raise the design abstractions with better productivity than register transfer level (RTL).

High-level synthesis (HLS) plays a crucial role by enabling the automatic compilation of

high-level, untimed, or partially timed specifications (e.g., C/C++ or OpenCL) to low-level

cycle-accurate RTL specifications for efficient implementation in field programmable gate

arrays (FPGAs) or application-specific integrated circuits (ASICs). This synthesis can

be optimized considering the performance, power, and cost requirements of a particular

system [CLN11]. The typical flow of modern FPGA HLS tools usually consists of three core

steps: (1) scheduling, (2) binding, and (3) RTL generation, as shown in Figure 2.2.

Figure 2.2: A typical FPGA HLS flow. [CLN11]

• The scheduling phase inserts clock boundaries into the original untimed specification.

It takes in the control data flow graph (CDFG) generated by a compiler front-end from

the high-level description, for example, C/C++, and then maps the operations in the

9

CDFG to the states and the control flow to state transitions specified by a finite-state

machine (FSM). In each clock cycle, the controller will be in a state in the corresponding

FSM.

• The binding process maps high-level operations and variables to RTL-level resources,

such as functional units and registers. It maps variables to registers and links wires

from registers to functional units as operands of operations. The result of a functional

unit is then wired to another functional unit or a register to store the computed value.

• The RTL generation phase creates concrete RTL based on the results of the scheduling

and the binding step. The key in this step is to properly create the control logic to

orchestrate the datapath, controlling each stage to execute at its scheduled cycle.

One general limitation of today’s HLS is that the HLS scheduler relies on a high-level

estimation of the operation delay. This estimation is usually based on pre-characterized

statistics, which include the delay of common components for computing, storage, and

interconnects (e.g., adders, multipliers, registers, BRAMs, multiplexers, etc). However, such a

delay model is inherently inaccurate. HLS tools lack consideration of the additional net delay

in broadcast structures. The predicted delay by HLS tools for a certain operator is fixed

regardless of the actual environment. Thus, the actual value for operators near broadcasts

is usually larger than the predicted value. The situation is worse for global signals because

HLS has no layout information on how the designs will be floorplanned and placed, thus it

can hardly determine which signals will span a long distance.

2.2 Logic Synthesis

Logic synthesis is the process of transforming an RTL-specified design into a gate-level

representation [Rud89, Sas93, DGK94]. The development and maturity of logic synthesis

came before that of HLS, and RTL-based development used to be the dominant way and is

still irreplaceable in many situations today. Logic synthesis is a highly automated procedure

bridging the gap between high-level synthesis and the physical design process. Given an

10

RTL digital design, logic synthesis transforms it into a gate-level or transistor-level network.

This process explores different potential mappings of a logic function optimally under certain

desired design constraints. After logic synthesis, the physical positions of primitive elements

and the shapes and positions of the interconnections of the gate layouts are then further

determined at the time of physical design.

Given an RTL design, a set of design constraints, and the target FPGA device, the overall

FPGA synthesis process goes through the following steps:

• RTL elaboration. This step identifies and/or infers datapath operations (e.g. additions,

multiplications, floating point arithmetic operations, register files, memory blocks, etc)

and the corresponding control logic. Then they are elaborated into a set of finite-state

machines or generic Boolean networks. Since most of the datapath elements have

dedicated architectural support in modern FPGAs, it is important to recognize those

elements such as adders with dedicated fast-carry chains and embedded DSP.

• Architecture-independent optimization. This step includes both datapath optimization

(e.g., constant propagation, strength reduction, operation sharing, expression optimiza-

tion, etc.) and control optimization. The control logic optimization includes sequential

optimization such as finite-state machine encoding/minimization and retiming, and

combinational logic optimization such as constant propagation, redundancy removal,

logic network restructuring, etc.

• Technology mapping and architecture-specific optimization. This step maps the pre-

viously generated control logic and datapath to physical units of the target FPGA

device. Specifically, this step maps the optimized datapath to on-chip dedicated circuit

structures, such as DSPs, adders with dedicated carry-chains, embedded block RAMs,

or the basic LUTs. It maps the optimized control logic to LUTs and registers.

11

2.3 Placement

The task of placement is to assign exact locations for each functional unit in the netlist to

a physical component within the FPGA layout [LJG20, SM91, CCS05]. To a great extent,

placement determines the overall quality of the final FPGA implementation. An inferior

placement solution can hinder the downstream routing step by producing excessive wire

length, which not only hampers the design performance and may even cause routing failure.

Modern placement tools optimize toward various objectives, typically including wire length,

routability, timing, and power. Minimizing the total wire length is often a major optimization

goal because it is a reasonable approximation of routability, timing, and power. In addition

to minimizing the wire length, another important factor to consider is the local routing

feasibility. The placement tool must predict and distribute routing demand to avoid excessive

local routing congestion. To meet a given frequency target, the placement tool has to ensure

the total signal delay of the critical path is no greater than the according delay requirement.

Given the complexity of modern large-scale designs and the NP-hard nature of various

algorithms involved, the FPGA placement problem is usually decomposed into several easier

sub-problems, including global placement, packing, legalization, and detailed placement.

Global placement targets producing a coarse-grained placement solution while globally

optimizing the aforementioned placement objectives. Packing aims at grouping LUTs and

FFs into architectural-legal and placement-friendly CLBs. Legalization produces a feasible

placement solution by locally perturbing the result of global placement and packing. Detailed

placement further conducts local refinement while maintaining the problem’s feasibility.

2.4 Routing

Given a placed netlist where the physical location of each element in the netlist has been

determined, the routing problem is to assign each net to the physical wire segments and

switches such that all nets are connected while an objective function is optimized. Typical

objectives for routing include total wirelength and segments [ZML21, CZ05, AR95].

12

Since modern FPGAs have limited and discrete interconnects and switch boxes, the routing

step is a complex combinatorial optimization problem. Modern routing algorithms often

abstract an FPGA as a weighted graph whose topology can represent the routing architecture

of the target FPGA fabric. Each edge is associated with a weight that corresponds to the

congestion level. During the routing process, the router will dynamically update the edge

weights based on the available resource and applies graph-search techniques to look for desired

connections.

Most FPGA routing algorithms will separate the routing task into two stages: the global

routing stage and the detailed routing stage. First, global routing splits the available routing

area into coarse-grained routing regions or channels to reduce the problem size. Then the

router determines the coarse routing topology of each net regarding which routing regions

the net is assigned to. The global routing step typically has the objectives of minimizing and

balancing the overall estimated congestion and satisfying the timing constraints of critical

nets. Next, the detailed routing stage produces the exact routing geometry to map every net

onto each individual routing channel or region.

Due to the NP-hard nature of the routing problem, such a hierarchical approach has the

advantage of being more computationally scalable. Otherwise, it will be extremely complex

to determine the exact routing details directly in one step, considering that there are millions

of nets and the design sizes have been increasing explosively in the last decade. However,

the downside of such a two-step approach is the potential disconnection between the two

stages. Since the global router relies on an estimated model for the distribution of available

routing resources, the model’s accuracy is critical. However, the early stage estimation often

lacks consideration of the details of routing obstacles, and the final timing quality may be

degraded.

2.5 Related Works

There are two major goals in our proposal: improving the achievable frequency and reducing

the compilation time. Correspondingly, we present the previous works related to the two

13

topics.

2.5.1 Physical-Aware HLS Timing Optimization

• Co-optimize HLS and logic synthesis. Zhao et al. [ZTD15] and Tan et al. [TDG15]

show that HLS typically has an over-conservative prediction of the signal delay of logic

operations (e.g., AND, OR, NOT, etc). As a result, they propose methods to improve HLS

scheduling by considering the technology mapping process.

• Co-optimize HLS and physical design. Zheng et al. [ZGR14] propose to iteratively

run placement and routing for fine-grained calibration of the delay estimation of wires.

The long runtime of placement and routing prohibits their methods from benefiting

large-scale designs, and their experiments are all based on small examples (1000s of

registers and 10s of DSPs in their experiments). Cong et. al. [CFH04] presented

placement-driven scheduling and binding for multi-cycle communications in an island-

style reconfigurable architecture. Xu et. al. [XK97] proposed to predict a register-level

floorplan to facilitate the binding process. Some commercial HLS tools [Cad20, Syn20]

have utilized the results of logic synthesis to calibrate HLS delay estimation, but they

do not consider the interconnect delays.

However, the major issue with the previous works is scalability. The previous approaches

share the common aspect of focusing on the fine-grained interaction between HLS and

physical design, where individual operators and the associated wires and registers are all

involved during the delay prediction and iterative HLS-layout co-optimization. While such a

fine-grained method can be effective on relatively small HLS designs and FPGA devices, it is

too expensive (if not infeasible) for today’s large designs targeting multi-die FPGAs, where

each implementation iteration from HLS to bitstream may take days to complete.

14

2.5.2 Physical-Independent HLS Timing Optimization

Cong et al. [CWY18b] propose to pipeline the data transfer logic from the external interfaces

to the many individual processing elements. As we will introduce later in Chapter 3, this is

a special case of data broadcast. They attempted to alleviate the critical path by accessing

large buffers, which may be mapped to scattered BRAM units. However, they require explicit

user intervention and iterative tuning to explore the best topology. They do not consider the

ultimate limitation of the HLS. Moreover, they can only re-arrange the data interconnect

between the external port and each explicitly-defined processing element, but not fine-grained

datapath. Lau et al. [LSZ20] propose a new dynamic invariant analysis and automated

refactoring technique, which reduces BRAM by 83% and increases frequency by 42% for

recursive programs. The techniques used by HeteroRefactor have inspired our work, and

its source-to-source transformation has motivated the implementation of the data broadcast

optimization in Chapter 3.

2.5.3 Accelerating the FPGA CAD Flow

Overlay-Based Compilation Flow. One major direction to speed-up FPGA compilation

is to implement an overlay on top of the FPGA device and compile the source design onto

the overlay [PXM18, XAD20, XPB19, MAA16, WS19, XMB22, XD22, PXD22]. Usually, an

overlay divides the FPGA fabric into disjoint slots, which are connected through dedicated

interconnect logic, such as a Network-on-Chip (NoC) [PH12, HD12, KMD06, KG17, Kap17,

VGK17]. Since each slot only communicates with the NoC, the slots could be implemented in

parallel. However, such a method introduces nontrivial area overhead (due to the dedicated

interconnect logic and resource under-utilization in each slot), performance degradation

(limited bandwidth of the interconnect logic), and may require human intervention to modify

the design to fit the overlay (since each slot has fixed size).

Specifically, [PXM18, XPB19] proposed to manually decompose a set of HLS designs into

small, separate sub-parts for parallel implementation and used a packet-switched NoC to

connect them. They experience performance degradation of as much as 12.5× with an area

15

overhead of as much as 5×. [XAD20] further replaces the NoC by direct wire connection,

reducing the area overhead and throughput degradation. However, they have to design the

overlay structure based on the target designs manually, make nontrivial modifications to the

designs to fit into the overlay, and manually assign each sub-part to specific slots. In addition,

[MAA16] provides an overlay that connects all the reconfigurable tiles similar to the switch

boxes, but it only routes word-wide data. [WS19] provided an FPGA overlay consisting

of HLS-generated circuits, an execution manager, and a soft processor function unit. The

execution manager can move some functionality from HLS-generated RTL circuits to the

soft-processor incrementally without hardware re-compilation but at the cost of performance

degradation and significant area overhead. In comparison, we have negligible area overhead

or performance degradation as we use direct wire connection, and we achieve one-click

automation for users. Instead of modifying the design to suit the size of the slots, we choose

the proper slot sizes according to the given design. We propose methods to automatically

partition the design into suitable sub-parts and floorplan them accordingly.

[LPL11] present a CAD flow that allows users to reuse pre-implemented hard macros,

but the reuse flow is purely manual. Instead, we propose methods to automatically identify

repetitive patterns in the given design and reuse the placement and routing results.

Acceleration of Physical Design Algorithms. Previous efforts have attempted to

parallelize the numerical optimization process of placement [LBP08, CZ09, LCW15, LLW17,

LJG20, ASB14] and routing [Sto17, SL15, GA10, GA11]. However, as these algorithms are

generally serial, only a limited degree of parallelism can be exploited. There is frequent

synchronization between the job workers, which limits the speed-up. In addition, heuristics

to parallelize the original serial algorithm often come with compromised quality of results

(QoR). As a result, the placement and routing steps remain the bottleneck.

Customizable FPGA CAD Flow FPGA tools, such as Vivado from AMD/Xilinx and

Quartus Prime from Intel/Altera, have become highly complex software systems that must

perform the entire CAD flow for all devices in the vendor’s product portfolio. However, the

necessity of breadth coverage and priority to generality by commercial tools often make the

16

Figure 2.3: Overview of how RapidWright and Vivado interacts [LK18].

commercial tools less suitable for domain-specific situations. For example, Vivado performs

poorly in partial placement or partial routing problems. Even if the majority of the cells in

the design have already been placed, Vivado still takes a long time for initialization and for

optimization iterations over the already fixed cells.

To address this issue, AMD/Xilinx rolls out the RapidWright framework [LK18], an

open-source platform that provides a gateway to Vivado’s back-end implementation tools

(see Figure 2.3) to realize the full potential of advanced FPGA silicon. RapidWright works

synergistically with Vivado to produce highly tuned, custom implementations for emerging

applications. It can read the checkpoint of a Vivado project at any stage and correctly expose

the logical and physical netlist to users for customized processing. Then RapidWright could

generate another checkpoint that includes the user modification, which can be seamlessly

inserted back into the Vivado tool for further optimization.

2.5.4 Latency Insensitive Design

Latency Insensitive Design (LID) [CMS01, CS00] has been proposed as a design methodology

where design components are made insensitive to the latency of the communication logic among

them. LID enables the flexible pipelining of communication channels between computation

17

components while ensuring that the correctness of the design will be preserved. Doing so

allows the designer to add adequate pipeline stages between components to meet the desired

clock frequency without breaking the functionality of the design.

The LID methodology has been used as a design methodology for designers so that

they could easily fix critical paths or port the accelerator design to different FPGAs [AB18,

CSN14, HKK16, MOD20, KVC18, XMB22]. For example, Abbas et al. [AB18] present a

modified LID solution suitable for modern FPGAs. Chacko et al. [CSN14] develops a latency-

insensitive hardware accelerator of the physical layer for cognitive wireless communication

systems that use orthogonal frequency division multiplexing (OFDM) schemes. Hofmann et

al. [HKK16] present a highly parametrized FPGA implementation of Semi-Global Matching

(SGM). By using a latency-insensitive design style and high-level synthesis, an automated

design-space exploration flow can effectively examine many implementation alternatives with

high productivity. However, there is limited research on how to adopt the LID methodology

into the EDA tools and automate the pipeline insertion for timing optimization.

One challenge of automatic pipelining at latency-insensitive links is that the tool needs

to derive the high-level meaning of certain modules, such as FIFOs. Due to the difficulty

in extracting high-level semantics from an RTL program, existing tools take a conservative

approach and strictly preserve the cycle-accurate specification. Given an RTL input, it remains

an open question of how to automatically differentiate the cycle-by-cycle timing behavior of

RTL from the functional behavior of a design. Fleming et al. [FAP12] proposed to introduce

a special primitive to the programming language that represents a latency-insensitive unit,

and then the compiler could automatically synthesize the actual logic. However, no timing

optimization based on pipelining was proposed in their work.

As will be shown later, in this thesis, we propose to obtain the latency-insensitive

information at the HLS abstract level, where we can easily identify interfaces that can tolerate

extra latency. More importantly, we utilize such flexibility to automatically fix the potential

critical paths to improve the achievable frequency by 2X over a set of benchmarks. In our

future work section, we will also discuss methods to extend our tool to RTL designs.

18

2.5.5 Other Related Works

In this section, we present some other general topics that are related to the proposal. First,

since we will discuss methods to reduce the broadcast structures generated by HLS in

Chapter 3, we include the previous works on RTL-based fanout optimization techniques.

Second, as we will present the HLS-level floorplanning method in Chapter 4, we include some

previous works on floorplanning. Finally, we present related works on latency-insensitive

designs, which are related to our proposal to additionally pipeline the global interconnects.

• General high-fanout optimization. fanout optimization has been extensively studied

in logic-synthesis [PB91, HKP84, SS90] and physical design [OC97, BL03, WMP03,

Wea08]. However, optimization approaches at these levels are restricted by the cycle-

accurate timing specification of the RTL input. For example, they cannot arbitrarily

divide the broadcast delay into two or more clock cycles; retiming [Wea08, VHB] will

not work without enough registers on the path, etc. In contrast, eliminating high fan-out

structures at the behavior level is more effective as we can change the schedule of the

broadcast. Even though the original designs are implemented with modern backend

broadcast optimization, our behavior-level optimizations still bring huge frequency gain.

• Floorplanning Algorithms. Floorplanning has been extensively studied [AMS08,

CW06, BSB09, MB15]. Conventionally, floorplanning consists of 1) feasible topology

generation and 2) determining the aspect ratios for goals such as minimal total wire

length. In Chapter 4, we propose to perform coarse-grained floorplanning during the HLS

step to help gain layout information for the HLS tool. Similar to [Lau88, LD86, MK87],

our algorithm adopts the idea of the partitioning-based approach. As our problem size

is relatively small, so we use ILP for each partitioning.

• Throughput Analysis of Dataflow Designs. In Chapter 4, we will discuss how to

preserve throughput after pipelining the global data transfer logic. This is related to

the study of throughput analysis of dataflow designs. Various dataflow models have

been proposed in other literature, such as the Kahn Process Network (KPN) [Gil74],

19

Synchronous Data Flow (SDF) [LM87], among many others. The more simplified the

model is, the more accurately we can analyze its throughput. In the SDF model, it is

restricted that the number of data produced or consumed by a process for each firing

is fixed and known. Therefore, it is possible to analytically compute the influence of

additional latency on throughput [GGS06]. The latency insensitive theory (LIT) [CS00,

LK03, LK06, CC07, AB18] also enforces similar restrictions as SDF. [VG14] proposes

methods to insert delays when composing IP blocks of different latency. [JSG20] studies

the buffer placement problem in dataflow circuits [JGI18, CJC20]. In our situation,

each function will be compiled into an FSM that can be arbitrarily complex, thus it is

difficult to quantitatively analyze the effect of the added latency on the total execution

cycles. Therefore, we adopt a conservative approach to balance the added latency on all

reconvergent paths. Other works have studied how to map dataflow programs to domain-

specific coarse-grained reconfigurable architectures [WLD19, WLK22, DLN22, LWV21]

20

CHAPTER 3

Analysis and Optimization of the Implicitly Broadcasts

by HLS

High-level synthesis (HLS) tools simplify the process of implementing new applications on

FPGAs. However, there still exists considerable room to the timing qualities of the HLS-

synthesized designs. Unfortunately, current HLS tools do not provide helpful feedback or

guidelines on how to improve the clock frequency at the source level or use additional tool

options. It is also challenging for regular HLS users to reverse engineer the synthesized RTL

code to identify the timing bottlenecks and optimize the corresponding critical paths in the

source program.

Designs generated by HLS tools typically achieve a lower frequency compared to manual

RTL designs. As the first step in our journey to improve the achievable frequency, we study

the timing issues in a diverse set of realistic and complex FPGA HLS designs. We observe

that in almost all cases, the frequency degradation is caused by the broadcast structures

generated by the HLS compiler. Based on our observation, we classify three major types of

broadcasts in HLS-generated designs: high-fanout data signals, pipeline flow control signals,

and synchronization signals for concurrent modules. Next, we reveal a number of limitations

of the current HLS tools that result in those broadcast-related timing issues.

In collaboration with Jason Lau, we propose a set of effective yet easy-to-implement

approaches, including broadcast-aware scheduling, synchronization pruning, and skid-buffer-

based flow control. The solution part is accredited to Jason Lau. We briefly present them

here for the sake of completeness. Our experimental results show that our methods can

improve the maximum frequency of a set of nine representative HLS benchmarks by 53% on

21

average. In some cases, the frequency gain is more than 100 MHz.

In this chapter, the proposed optimization is architecture-independent, where we improve

the inherent quality of the produced RTL to be passed to downstream tools. In comparison,

we will present techniques to co-optimize HLS compilation and the downstream tools for

further optimization.

3.1 Introduction

In this work, we analyze the timing issues of a diverse set of real-world HLS designs that are

implemented and optimized using state-of-the-art commercial tools. To our surprise, in most

cases, the frequency degradation is related to signal broadcasts. The signal broadcasts are

automatically inferred or created by the HLS compiler, either in the datapath or the control

logic. These broadcast structures are typically not explicitly presented in the source code,

thereby often overlooked by HLS users. However, they will result in high-fanout interconnects

that pose challenges for downstream physical design tools to close timing.

Here, we briefly discuss two case studies to motivate the importance of optimizing the

implicit broadcasts in FPGA HLS. One is the genome sequencing accelerator [GLR19], where

we identify a data signal broadcast that sends the output of one register to tens of targets.

We observe that the tool underestimates the delay of the broadcast operation, which leads to

sub-optimal scheduling results. Fixing the problem boosts the final frequency from 264 MHz

to 341 MHz when implemented on an Amazon F1 instance. Another example is the streaming

Jacobi accelerator [CCW18], where the pipeline control signal broadcast becomes the critical

path. By optimizing the control strategy and removing its unnecessary broadcast, we improve

the maximum operating frequency from 120 MHz to 253 MHz (2.1×).

Motivated by these encouraging results, we conduct a systematic analysis of the timing-

critical broadcast structures in HLS, which naturally fall into two major categories:

• Data broadcast refers to a high-fanout signal in the datapath, which is typically

formed after loop unrolling or array partitioning during the HLS compilation process.

22

The wire delay of an operator will increase as the broadcast factor increases. Such

varying delays may cause trouble to the HLS scheduler, which generally relies on static

pre-characterized delay estimation.

• Control broadcast refers to a high-fanout control signal which typically originates

from an FSM (or controller) and reaches numerous datapath components such as

registers or multiplexers. In our study, we particularly focus on two critical classes of

control broadcast: (1) synchronization signal broadcast and (2) pipeline control signal

broadcast. These structures commonly cause timing degradation in deeply pipelined

and/or highly parallelized designs. Compared to the data broadcasts, the control

broadcasts are less studied in HLS.

The timing issues caused by such broadcasts are extremely hard to debug. On the one

hand, data broadcast structures are hard to notice in the source code. It is difficult for HLS

users to realize and understand the fact that certain “innocent-looking” software code has

negative implications on the timing of the synthesized hardware. On the other hand, since

most of the control signals are created by the HLS tool, they are much more challenging (if not

impossible) to optimize through source code changes. Hence, a sub-optimal control broadcast

may completely offset the performance gains from other sophisticated HLS optimizations.

Moreover, data and control broadcasts often entangle with each other. As we will see, an

HLS design as innocent as a simple buffer can suffer from both of these two broadcasts. Both

data and control broadcasts must be eliminated to achieve frequency improvements.

Although the broadcasts cause serious problems in the current HLS tools, we manage to

find concise and easy-to-integrate solutions. First, we use synthetic designs to capture the

relationship between the increased net delay versus the broadcast factor, which serves as an

effective approximation. Second, we utilize a different pipeline control methodology to trade

area for a lower broadcast factor, while we further minimize the area overhead. Third, we

propose to prune redundant synchronization signals to simplify the design. Our experimental

results based on Vivado HLS show that (1) the timing problems caused by broadcast are

indeed widespread, and (2) our proposed methods can improve the frequency of a set of

23

representative HLS benchmarks significantly. In some cases, the gain is more than 100 MHz.

Our main technical contributions are as follows:

• We are the first to identify that the implicit signal broadcast is a major cause of the

frequency degradation in highly-optimized designs synthesized using industrial-strength

HLS tools. We further provide a classification of the timing-critical data and control

broadcast structures.

• We propose a set of simple but effective techniques to optimize the timing of the implicit

broadcasts in HLS automatically, which includes broadcast-aware scheduling, redundant

synchronization pruning, and skid-buffer-based pipeline control.

• We apply our approaches to a set of nine real-world HLS benchmarks, and improve

their frequency by 53% on average, with a marginal area overhead.

3.2 Classification of HLS Broadcasts

3.2.1 Data Signal Broadcast

By implicit data broadcast, we broadly refer to signal broadcasts in the HLS-synthesized

datapath. These broadcasts are specified by the source code and directives, though they are

less obvious to the users. As is explained in Section 2.1, current HLS tools have a fixed delay

estimation for a certain operator. However, such estimation is no longer accurate with large

data broadcasts.

We create two synthetic examples of common HLS design patterns to show how data

signal broadcast structures are formed, and what limitations in current HLS tools lead to

this problem:

1) Loop unrolling, as in Figure 3.1. The variable source is defined outside the loop body

and is loop-invariant. Since it is accessed in each iteration, in the corresponding hardware

shown in Figure 3.2, the register for source is connected to 1024 instances of the loop body,

resulting in a data signal broadcast.

24

Obviously, in this case, the actual delay of the add operator in "source + foo" (line

5) includes the additional wire delay between the source register and the add operators.

However, the current HLS delay model does not consider such a broadcast cost. Therefore,

the scheduler still views the delay of this 1024-broadcast-add the same as a normal add

without broadcast.

For example, in Figure 3.2, assume the delay of a simple add or sub operator is 1.5ns,

while the actual delay for the 1024-broadcast-add is 2.5ns. If the timing target is 3ns, the

HLS tool will schedule the add and sub to be performed within the same cycle, while they

should have been separated to meet the timing constraint.

1 data_t source = ...; // loop-invariant variable

2 for (size_t i = 0; i < 1024; i++) {

3 #pragma HLS unroll

4 foo = ...i...; bar = ...i...; // loop-dependent

5 dest[i] = source + foo - bar; /* ... */ }

Figure 3.1: Code of data broadcast - Example #1: loop unrolling.

+ -

+ -
……

Figure 3.2: HLS-generated architecture of Fig. 3.1.

2) Large buffer and memory arrays, as in Figure 3.3. On FPGAs, a large on-chip

buffer will be implemented as multiple block RAMs (BRAMs). Thus, the data source will

fan out to many physically scattered memories, though they jointly form a single logical

entity.

When the buffer size increases, the load and store operations will also suffer extra

wire delays. However, most existing HLS tools do not take them into consideration either.

The predicted delay remains the same regardless of the size of the buffer. This results in

inadequate pipelining between the BRAM units and the data source/sink. For example, the

25

1 data_t buffer[737280]; // mapped to multiple BRAM units

2 buffer[idx] = source; // ‘source‘ connects to every BRAM unit

Figure 3.3: Code of data broadcast - Example #2: large array.

source

+3.0ns

CLB

CLB

BRAM

CLB

CLB BRAM

CLB

CLB BRAM

b
u
ff
er

b
u
ff
er

b
u
ff
er

store
i32 %source

, i32* %b_addr

Actual
HLS-estimated 1.2ns

1.2ns
+3.0ns

Figure 3.4: HLS-generated architecture of Fig. 3.3

double-buffer technique requires distributing data to the local buffers of multiple parallel

processing elements (PEs) [CWY18a], which tend to be inadequately pipelined; the HLS

support for dynamic data structures also requires large buffers [LSZ20], where their accesses

degrades the maximum frequency.

3.2.2 Control Signal Broadcast - Synchronization

The synchronization logic originates from the parallelization of the sequential source code.

The HLS scheduler automatically infers parallelism and schedules independent functions

and operations to the same state for concurrent execution. To guarantee correctness, the

HLS strictly follows the original semantics and generates control logic to wait for all parallel

modules to complete before proceeding to the following operations. However, this fixed

synchronization template may not be optimal for large designs and may introduce critical

paths if the degree of parallelism scales up. Meanwhile, the FSM proceeds to the next stage

only when all concurrent modules at the current stage signal their completion to the controller.

This aggregated condition of dones is used as the next start signal and will be broadcast to

the parallel modules in the next stage.

Figure 3.5 shows one scenario of this broadcast. For streaming designs, users describe

the dataflow graph in sequential C++ code and let the HLS tools infer the parallelism.

However, if multiple streaming kernels are defined in the same loop, the HLS will pedantically

26

synchronize them at the granularity of one iteration. As a result, independent flows are

glued together and form a broadcast of the synchronization signal. Figure 3.7a visualizes this

situation.

Figure 3.6 shows another example, where multiple independent instances of PE *() are

called, and they execute in parallel. The controller waits for all of them to finish, then

reads their outputs together and proceeds to the next FSM stage. Figure 3.7b shows the

corresponding logic generated by HLS.

Although functionally correct, such a synchronization strategy is not scalable. The

complexity of routing such “reduce-broadcast” signals will soon explode with increasing

degrees of parallelism. Optimization of the synchronization logic is necessary.

1 #pragma HLS dataflow

2 while (1) {

3 /* --- inferred parallelization --- */

4 inFifoA.read(&a);

5 outFifoA1.write(a.foo); outFifoA2.write(a.bar); // #A

6 inFifoB.read(&b);

7 outFifoB1.write(b.foo); outFifoB2.write(b.bar); // #B

8 /* --- HLS infers excessive synchronization --- */ }

Figure 3.5: Code of synchronization - Example #1.

1 data_t kernel(......) {

2 /* --- inferred parallelization --- */

3 aOut = PE_1(aIn); bOut = PE_2(bIn); cOut = PE_3(cIn); // ...

4 /* --- inferred synchronization --- */

5 return aOut + bOut + cOut /* ... */; }

Figure 3.6: Code of synchronization - Example #2.

full

proceed

inFifoA
outFifoA_1

outFifoA_2

inFifoB
outFifoB_1

outFifoB_2

ready

empty ready

proceed
output_enPE_1 done

output_enPE_2 done

output_enPE_3 done

#A

#B

(a) Architecture of Example #1 (b) Architecture of Example #2

Figure 3.7: HLS-generated architecture of the code above.

27

3.2.3 Control Signal Broadcast - Pipeline

For fully-pipelined [ZPF16] datapath, the enable signals for activation or the stall signals

for flow control will be broadcast to every element of the pipeline to operate the datapath as

a whole.

For a pipeline that interacts with modules with flow control interfaces (e.g., FIFOs),

the most common approach of current HLS tools is to broadcast the back-pressure signals

(e.g., empty/full and valid/ready) to control the flow. Figure 3.8 shows an example, and

Figure 3.9 shows the corresponding inferred broadcast structure.

Previous works based on the theory of latency-insensitive design analyze the role of

back-pressure in a theoretical way [Car06], but lack consideration in the aspect of circuit

implementation. Though effective for small designs, this methodology will soon become the

critical path with increasing pipeline sizes.

1 for (int i = 0; i < ITER; i++) {

2 #pragma HLS pipeline

3 input_fifo.read(&a); /* implicit "empty"-based stall */

4 b = inlined_datapath_foo(a);

5 output_fifo.write(b); /* implicit "full"-based stall */ }

Figure 3.8: Code example of pipeline control signal broadcast.

enable

datapath

valid

data data

ready

ready valid

&

Figure 3.9: HLS-generated architecture of pipeline control.

3.3 Approaches

In the last section, we present specific examples of the implicit broadcasts in FPGA HLS,

and why the current HLS tools fail to properly handle them. In this section, we present

28

corresponding automated solutions to address these limitations1.

3.3.1 Broadcast-Aware Scheduling

As previously mentioned, the current HLS delay estimation does not consider the extra wire

delay caused by the broadcast. Decades of research on HLS have shown that it is extremely

hard to have an accurate delay estimation without the placement information [ZGR14].

However, here we propose a simple but effective method that can be used to approximate

this extra delay.

We implement skeleton broadcast structures on an empty FPGA to obtain the post-routed

delay. For example, in one skeleton design, we instantiate 64 adders, and one of the two input

ports of every adder is connected to a common source register. For buffer access operations

(load, store), we record the actual delays of different buffer sizes when targeting an empty

FPGA. Although the placement results may differ from the real situation, it serves as an

effective lower bound to the delay penalty. In this way, we collect reusable statistics of

calibrated delays for each combination of operator, data type, and broadcast factor. When

the broadcast factor is small, the delay obtained from our experiment is consistent with

the predicted delay of the Vivado HLS tool. In fact, current HLS tools adopt a similar

pre-characterized approach to build up their delay model, except that they do not characterize

the effects of broadcasts as we do.

Figure 3.10 shows our measured delay of the add operation and the BRAM buffer access

of the int type, and multiplication of the float type by Xilinx Vivado. For the add and

buffer access operations, the delay values obtained by our experiments perfectly match with

the Vivado-HLS-predicted values when the broadcast factor is small. For large broadcast

factors, our measurement significantly surpasses the HLS-predicted values, which reveals the

inaccuracy of current delay estimations under large broadcast factors. For the multiplication,

the HLS-predicted delays are much higher than that in our experiments, possibly because

1The contents of Chapter 3 is from a collaboration between me and Jason Lau. We made equal contributions
to our DAC ’20 paper [GLC20], which is the basis of Chapter 3. Specifically, the problem classification part
(Section 3.2) is accredited to me and the solution part (Section 3.3) is accredited to Jason Lau.

29

Figure 3.10: Vivado HLS estimated delay, our calibrated delay, and raw experimental delay
on different operators.

the Vivado HLS tool is deliberately conservative about multiplication for floating points.

Therefore, we choose the maximum between the HLS-predicted delay and our experimented

results as our calibrated delay.

3.3.2 Synchronization Logic Pruning

The redundant synchronization logic may severely limit the maximum achievable frequency.

From the perspective of the downstream logic synthesis tools, they cannot be optimized away;

but with high-level information, we are able to identify and get rid of these synchronizations.

For instance, [QDF18] removes the redundant synchronization logic by directly modifying

the RTL design. We are motivated by their design and performance optimization at the HLS

level.

latest

independent

Figure 3.11: Pruned architecture corresponding to Figure 3.7.

30

For the first case—dataflow synchronization, as shown in Fig. 3.5, we propose to isolate

the independent flow paths in the flow graph. We reconstruct the dataflow graph, not based

on the user-defined streaming kernels, but at the granularity of the elementary flow control

units. We identify the isolated sub-graphs within user-defined streaming kernels and split

the independent flows explicitly into separate loops, which avoids unwanted synchronization

from the HLS compiler. Figure 3.11a shows the optimized logic.

For the second case — synchronizing parallel modules, as shown in Figure 3.6, the key

challenge is to properly pipeline the control signals. To do so, we need the layout information

of the design. This problem is addressed by our later work that couples floorplanning with

HLS compilation, which will be detailed in the next Chapter.

3.3.3 Skid-Buffer-Based Pipeline Control

We identify that the flow control broadcast can be avoided by a common practice of adopting

additional bounded-size buffering called a skid buffer [Int22b], which is shown in Figure 3.12.

We further improve this method by minimizing the area overhead.

Instead of switching the whole pipeline between two modes—active and stalled, we

transform the control logic to keep the pipeline always flowing, and associate a valid bit with

each data. The key to avoiding overflow is the skid buffer (an extra bypass FIFO) appended

at the end of the pipeline. When the downstream is not ready, data will accumulate in the

buffer. Then the buffer will become non-empty, and the pipeline will stop reading from the

upstream so that the later pipeline inputs will be invalid bubbles. Assuming the length of

the pipeline is N , as long as the depth of the buffer is no smaller than N + 1 (+1 since the

empty signal will be reset one cycle after the first element is in), no overflow will happen. We

refer to this practice as skid-buffer-based pipeline control. Note that this approach has the

exact same throughput as the original stall-based back-pressure control.

However, this method introduces area overhead. For the original implementation, the

area overhead will be:

BufferArea = (N + 1) · wβ

31

depth = N+1

ready

data

valid

data
N stages

skid
buffer

valid

&
empty

valid

ready

α β

Figure 3.12: Skid-buffer-based pipeline control architecture.

where N is the depth of the pipeline and wβ is the width of the output data of stage β, as

marked in Figure 3.12.

Observe that the skid buffer can be split and distributed into the datapath, as shown in

Figure 3.13. Instead of an N -depth buffer of width wβ at the end of the whole pipeline, we

can insert an (M+1)-depth buffer of width wα after the M -th stage, and an (N -M+1)-depth

buffer of width wβ after the final stage.

N-M+1

ready

data
valid

ready

data
M depth=M+1

validvalid

N-M

& &
empty

valid

ready empty

α β

Figure 3.13: Multi-level skid-buffer-based pipeline control.

The new area overhead will be:

BufferArea ′ = (M + 1) · wα + (N −M + 1) · wβ

To obtain the data width between stages, we parse the schedule report and collect the

definition location and usage location for each variable, thus obtaining the total data width

passed between stages. Due to the engineering challenges to modify the HLS tool without

access to the source code, our proof-of-concept implementation of the proposed solutions still

involves some manual parts. We hope that the identified issues and corresponding solutions

appeal to HLS vendors and can be integrated into their commercial tools.

32

3.4 Experiments

Our experiments are based on the Vivado HLS since most open-source HLS benchmarks are

developed using it. We use the Vivado version 2018.2 with default mode. Retiming and

fan-out optimization are enabled. The target FPGA chips are based on the choices of the

original sources of the designs.

Table 3.1: Timing improvements and post-implementation resources on HLS designs using
our proposed solutions.

Application Broadcast type Target FPGA
LUT (%) FF (%) BRAM (%) DSP (%) Freq (MHz)

Orig Opt Orig Opt Orig Opt Orig Opt Orig Opt Diff

Genome Sequencing [GLR19] Data UltraScale+ (AWS F1) 22 22 11 12 6 6 8 8 264 341 29%
LSTM Network [CHB18] Data UltraScale+ (AWS F1) 8 9 6 6 2 2 14 14 285 325 14%
Face Detection [SDM17] Data ZYNQ (ZC706) 21 22 14 15 16 16 9 9 220 273 24%
Matrix Multiply Pipe. Ctrl. & Data UltraScale+ (AWS F1) 23 23 24 27 25 25 74 74 202 299 48%
Stream Buffer Pipe. Ctrl. & Data UltraScale+ (AWS F1) 1 1 1 1 95 95 0 0 154 281 82%
Stencil [CCW18] Pipe. Ctrl. UltraScale+ (AWS F1) 40 40 41 41 30 29 83 83 120 253 111%
Vector Arithmetic Pipe. Ctrl. & Sync. UltraScale+ (AWS F1) 17 17 16 15 0 ¡1 60 60 195 301 54%
HBM-Based Stencil [CCW18] Pipe. Ctrl. & Sync. UltraScale+ (Alveo U50) 21 23 23 23 34 31 37 37 191 324 70%
Pattern Matching [CWY18a] Data & Sync. Virtex-7 (Alpha-Data) 17 17 5 7 9 9 0 0 187 278 49%

3.4.1 Benchmarks

Our results are in Table 3.1. The genome sequencing design is from [GLR19]. We adjust the

broadcast factor by changing BACK SEARCH COUNT. The LSTM inference network design is

from [CHB18]. We adopt the HLS N-Node part, change the data type to floating point, and

set N to 256. The face detection design is from the Rosetta benchmark [ZGD18]. The matrix

multiply and the pattern matching design are adapted from [CWY18a]. We further increase

the parallelism of the matrix multiplication design to expose the problem. The Jacobi stencil

kernel and its HBM version are generated by the SODA compiler [CCW18]. The streaming

buffer design consists of two loops, which first write to a very large buffer and then read from

the buffer.

3.4.2 Case Study for Broadcast-Aware Scheduling

We illustrate the experiment with [GLR19], an genome sequencing accelerator designed by

the author, as a case study to present our broadcast-aware scheduling method.

33

In genome sequencing, it is a crucial but time-consuming task to detect potential overlaps

between any pair of input reads, especially those that are ultra-long. The state-of-the-art

overlapping tool Minimap2 outperforms other popular tools in speed and accuracy. It has a

single computing hot-spot, chaining, that takes 70% of the time and needs to be accelerated.

There are several crucial issues for hardware acceleration because of the nature of chaining.

First, the original computation pattern is poorly parallelizable and a direct implementation

will result in low utilization of parallel processing units. We propose a method to reorder

the operation sequence that transforms the algorithm into a hardware-friendly form. Second,

the large but variable sizes of input data make it hard to leverage task-level parallelism.

Therefore, we customize a fine-grained task dispatching scheme that could keep parallel PEs

busy while satisfying the on-chip memory restriction. Based on these optimizations, we map

the algorithm to a fully pipelined streaming architecture on FPGA using HLS, which achieves

significant performance improvement. Compared to the multi-threading CPU baseline, our

FPGA accelerator achieves 28× acceleration.
Minimap2

GGGCCGGA

GACT TGAG

potential overlap region

TGAG ACGGT

ACGGT

TAACTG AGTCCGGA TGAGCTACTATA TGA ACGGT

! " = max
'() *+ ,'

-./010234 5.60ℎ["], 5.60ℎ[;] + ! ; , = ≈ 50

AB, CB, DB AE, CE, DE AF, CF, DF AG, CG, DG
AH, CH, DH

AI, CI, DI

ACTAACTTACG GGGCCGGA

potential overlap region

GTTACGGACTAA

chaining anchors

read 1

read 2

Figure 3.14: Finding estimated overlap region.

Figure 3.15 shows the micro-architecture of the accelerator and Figure 3.17 shows an

operation chain scheduled by HLS. Since curr.x is consumed by 64 sub operators, in

comparison to the HLS predicted delay, we adjust the predicted delay of the sub from 0.78ns

to 2.08ns according to our measurement of the skeleton designs. Therefore, we insert a

register module to force the splitting of the operation chain. Figure 3.18 shows the frequency

gain.

Experiment results show that our method approximates the actual delay in a more

reasonable way, while the HLS-estimated delay is invariant to broadcast factors. Although

34

Figure 3.15: Overview of a processing element array.

our result does not match the actual perfectly, our frequency gain shows that this is helpful for

broadcast operations, since less neighboring logic will be put in the same cycle of the broadcast,

which will facilitate downstream retiming and fanout optimization. As for overhead, the

length of the pipeline is 9 originally and 10 after optimization. Both have the same initiation

interval of 1. There will be a fairly small overhead in the usage of flip-flops, which is generally

negligible.

3.4.3 Synchronization Logic Pruning

We use the HBM-based (High-Bandwidth Memory) Jacobi stencil acceleration kernel generated

by the SODA compiler [CCW18, CC20], which uses 28 independent memory ports of the

HBM. The 512-bit data from each HBM port is scattered into 8 64-bit FIFOs, later to

different streaming kernels. However, the SODA compiler expresses the 28 independent flows

together in a single loop, forming a sync broadcast pattern similar to Figure 3.7a. Thus

there is synchronization among all HBM ports and all destination FIFOs. We prune the

unnecessary sync by splitting the independent parts into different loops. This boosts the

frequency from 191 MHz to 324 MHz.

35

1 #pragma HLS pipeline

2 #define UNROLL_FACTOR 64

3 //

4 for (int j = 0; j < UNROLL_FACTOR; j++) {

5 #pragma HLS unroll

6 dist_x = prev[j].x - curr.x;

7 dist_y = prev[j].y - curr.y;

8
9 dd = dist_x > dist_y ? dist_x - dist_y : dist_y - dist_x;

10 min_d = dist_y < dist_x ? dist_y : dist_x;

11 log_dd = log2(dd); // a series of if-else

12 temp = min_d > prev[j].w ? prev[j].w : min_d;

13
14 dp_score[j]= temp - dd * avg qspan - (log_dd>>1)

15 if((dist_x == 0 || dist_x > max dist x)||

16 (dist_y > max dist y || dist_y <= 0) ||

17 (dd > bw) || (curr.tag != prev[j].tag)){

18 dp_score[j] = NEG_INF_SCORE;

19 } }

Figure 3.16: Design code snippet from [GLR19]. The loop-invariant variables (broadcast
sources) are marked blue.

curr.x
dist_x sub

dd
sub >

0.78ns
0.79ns 0.26ns 0.59ns

clock new clock

2.08ns

Line 6 Line 9 Line 11

target delay: 2.80 ns
HLS estimate delay: 2.80 ns
Calibrated delay: 3.179 ns (normal)
Calibrated delay: 5.665 ns (normal)
Actual delay: 4.278 ns

clock

target = 2.8ns
uncertainty = 0.35 ns

Figure 3.17: An operation chain with broadcast operators.

3.4.4 Skid-Buffer-Based Pipeline Control

We again experiment with the SODA compiler [CCW18], but this time generate the 2D

Jacobi kernel as a whole pipeline. We concatenate different iterations of the kernel to change

the size of the pipeline. Each iteration takes about 5% of LUT, 5% of Flip-Flop, 4% of

BRAM, and 10% of DSP. Figure 3.19 shows the improvements by changing the pipeline

control logic to the skid-buffer-based method. The super pipeline of eight Jacobi iterations

has 370 datapath stages and produces 512-bit results. Since this pipeline has a spindle shape,

the best strategy is to add the entire buffer at the end of the pipeline. The corresponding

36

Figure 3.18: Optimization of data broadcast.

Figure 3.19: The achieved frequency of the Jacobi kernels.

buffer only costs about 23KB of BRAM resources.

We present a synthetic example to further demonstrate the benefit of our dynamic

programming algorithm to minimize the area of the extra buffer. Assume the pipeline computes

(a·b)c, where the dot-product of vector a and b is scalar-multiplied with vector c. A reduction

tree is inferred for a ·b, and the output scalar is multiplied with c. Figure 3.20 shows the case

for a 32-wide vector of float numbers. Note that in stage #56 only one number (the result of

a · b) is passed through. Thus, the first stages #1 to #56 should be buffered separately from

the stages after #56. Directly adding a buffer at the end results in (61+1)×1024 = 63488 bits

while the optimized version costs (56 + 1)× 32 + (5 + 1)× 1024 = 7968 bits. Table 3.2 shows

the results for the 512-wide vector product.

37

Table 1: Timing improvements and post-implementation resources on real-world HLS designs using our proposed solutions.

Application Broadcast type Target FPGA
LUT (%) FF (%) BRAM (%) DSP (%) Freq (MHz)

Orig Opt Orig Opt Orig Opt Orig Opt Orig Opt Di�
Genome Sequencing [20] Data UltraScale+ 17 17 9 9 5 5 6 6 264 341 29%
Face Detection [21] Data Kintex-7 21 22 14 15 16 16 9 9 220 273 24%
Video Decoder [22] Data Virtex-7 38 38 22 22 2 2 10 10 192 230 20%
Matrix Multiply [19] Pipe. Ctrl. & Data UltraScale+ 23 23 24 27 25 25 74 74 202 299 48%
Stream Bu�er Pipe. Ctrl. & Data UltraScale+ 1 1 1 1 95 95 0 0 154 281 82%
Stencil [23] Pipe. Ctrl. UltraScale+ 40 40 41 41 30 29 83 83 120 253 111%
HBM-Based Stencil [23] Pipe. Ctrl. & Sync. UltraScale+ HBM 21 23 23 23 34 31 37 37 191 324 70%
Pattern Matching [19] Data & Sync. Virtex-7 17 17 5 7 9 9 0 0 187 278 49%

0 5 10 15 20 25 30 35 40 45 50 55 60

512
1,024
1,536
2,048

Pipeline Stage Number

D
at

a
W

id
th

(b
its

)

Figure 17: Canton Tower

1 loop1: for (int i = 0; i < BIG_SIZE; i++) {
2 #pragma HLS pipeline II=1
3 in_fifo.read(&buffer[i]); } // data into buffer
4 loop2: for (...) ... // data out of buffer

Figure 18: Code for the large bu�er access example.

With the bubble-based pipeline control, the broadcast of enable is
avoided. Figure 19 shows the achieved frequency of varying bu�er
size. Three batches of experiments are done: the original one; only
�x the data broadcast; �x both the data and control broadcast. As
is obvious, we need to optimize both the data broadcast and the
control broadcast to achieve scalable performance.

160 320 480 640 800 960 1,120 1,280

100
150
200
250
300
350

Elements in the Bu�er (k)

Fr
eq

ue
nc

y
(M

H
z)

Original
Optimize Datapath
Optimize Datapath & Control

Figure 19: Achieved frequencies of the stream bu�er design
with di�erent bu�er sizes.

The simple design is representative to a large class of FPGA
accelerator designs. Transferring the data from external ports to
the local bu�ers of processing elements is the very foundation in the
pursuit of tremendous parallelism, which however ultimately boils
down to the few lines of code in Figure 18. The Pattern Matching
and Matrix Multiplication designs in our benchmark both fall into
this category.

7 CONCLUSION
In this paper, we �rst classify and analyze the common types of
broadcasts in the context of HLS. We present how these broadcasts
can become the critical paths due to the limitations of current HLS
tools. We propose corresponding solutions to each of the limitation
and test our solutions on both synthetic and real-world HLS designs.
Experiments show that our methods bring over 40% of frequency
gain on average.

REFERENCES
[1] M. Pedram et al. Layout driven logic restructuring/decomposition. ICCAD’91.
[2] H. J. Hoover et al. Bounding fan-out in logical networks.
[3] K. J. Singh et al. A heuristic algorithm for the fanout problem. DAC’90.
[4] T. Okamoto et al. Bu�ered steiner tree construction with wire sizing for inter-

connect layout optimization. ICCAD ’96.
[5] G. Beraudo et al. Timing optimization of FPGA placements by logic replication.

DAC ’03.
[6] N. Weaver et al. Post-placement c-slow retiming for the Xilinx Virtex FPGA.

FPGA ’03.
[7] N. Weaver. Retiming, repipelining and c-slow retiming, Recon�gurable Com-

puting.
[8] B. Van Antwerpen et al. Register retiming technique. US Patent 7,120,883.
[9] H. Zheng et al. Fast and e�ective placement and routing directed high-level

synthesis for FPGAs. FPGA ’14.
[10] R. Zhao et al. Area-e�cient pipelining for FPGA-targeted high-level synthesis.

DAC ’15.
[11] M. Tan et al. Mapping-aware constrained scheduling for LUT-based FPGAs.

FPGA ’15.
[12] K. Fujiwara et al. Clock skew estimate modeling for FPGA high-level synthesis

and its application. ASICON ’15.
[13] K. Fujiwara et al. A high-level synthesis algorithm for FPGA designs optimizing

critical path with interconnection-delay and clock-skew consideration. VLSI-
DAT ’16.

[14] K. Fujiwara et al. Interconnection-delay and clock-skew estimate modelings
for �oorplan-driven high-level synthesis targeting FPGA designs. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences.

[15] J. Cong et al. Towards layout-friendly high-level synthesis. ISPD ’12.
[16] M. Tatsuoka et al. Physically aware high level synthesis design �ow. DAC’15.
[17] M. Tatsuoka et al. Wire congestion aware high level synthesis �ow with source

code compiler. ICICDT’18.
[18] J. Cong et al. Latte: locality aware transformation for high-level synthesis.

FCCM ’18.
[19] J. Cong et al. Automated accelerator generation and optimization with com-

posable, parallel and pipeline architecture. DAC ’18.
[20] L. Guo et al. Hardware acceleration of long read pairwise overlapping in

genome sequencing: a race between FPGA and GPU. FCCM ’19.
[21] N. K. Srivastava et al. Accelerating face detection on programmable SoC using

C-based synthesis. FPGA ’17.
[22] X. Liu et al. High level synthesis of complex applications: an H. 264 video

decoder. FPGA ’16.
[23] Y. Chi et al. SODA: stencil with optimized data�ow architecture. ICCAD ’18.

6

reduction tree for a·b

scalar multiply with celement-wise multiply
of a and b

Figure 3.20: Bitwidth of the passed data between stages.

Table 3.2: Experiment results on 512-wide vector product.

Implementation Frequency LUT FF BRAM DSP

Stall 195 MHz 17% 16% 0% 60%
Skid Buffer 299 MHz 18% 16% 12% 60%
Min-Area Skid Buf. 301 MHz 17% 15% 0.02% 60%

3.4.5 Combined Effect

In many real-world cases, we must combine these two aforementioned approaches to truly

resolve the timing degradation. For example, Figure 3.21 shows a simple stream buffer with

both data and control broadcasts. The source data register is connected to each of the

BRAM units, forming an implicit data broadcast. Besides, the enable back-pressure signal

is broadcast to all BRAM units.

1 loop1: for (int i = 0; i < BIG_SIZE; i++) {

2 #pragma HLS pipeline II=1

3 in_fifo.read(&buffer[i]); } // data into buffer

4 loop2: for (...) ... // data out of buffer

Figure 3.21: Code for the large buffer access example.

Based on the size of the array and the pipeline environment, additional latency is added

to optimize the data broadcast. Meanwhile, the skid-buffer-based pipeline control is used to

avoid the broadcast of enable. Figure 3.22 shows the achieved frequency of varying buffer

sizes. Three batches of experiments are done: the original one; the version which only has the

data broadcast optimized; the version with both the data and control broadcast optimized.

38

As is obvious, we need to optimize both the data broadcast and the control broadcast to

achieve scalable performance.

160 320 480 640 800 960 1,120 1,280

150

200

250

300

350

Elements in the Buffer (k)

F
re
q
u
en
cy

(M
H
z)

Original
Opt. Data
Opt. Data & Ctrl

Figure 3.22: Achieved frequencies of the stream buffer design.

Another example is pattern matching from [CWY18a] with both data and sync con-

trol broadcast similar to Figure 3.7b. Addressing both of them lead to a large frequency

improvement, as in Table 3.3.

Table 3.3: Experiment results on pattern matching.

Implementation Frequency LUT FF BRAM DSP

Original 187 MHz 17% 5% 9% 0%
Opt. Data 208 MHz 18% 7% 9% 0%
Opt. Data & Ctrl 278 MHz 17% 7% 9% 0%

3.5 Conclusion

In this paper, we analyze the common types of broadcast in HLS. We present delay model

calibration, synchronization pruning, and min-area skid-buffer-based pipeline control. We

bring over 50% of frequency gain on real-world designs.

39

CHAPTER 4

AutoBridge: Coupling Coarse-Grained Floorplanning

and Pipelining for High-Frequency HLS Design on

Multi-Die FPGAs

In the previous chapter, we present techniques to improve the inherent timing quality of the

RTL produced by HLS. Note that the proposed optimization targets the HLS compilation

process alone, without involving other parts of the overall CAD tool stack.

In this chapter, we explore further improvements in the final frequency by considering

HLS compilation and placement together. The key idea is that HLS has the flexibility to add

additional pipelining without breaking the overall functionality, while the placer knows which

connections are the critical paths and need additional pipelining. Coupling them together

brings brand-new opportunities to improve the frequency even for the largest designs today.

4.1 Introduction

One major cause that leads to the unsatisfactory frequency is that HLS cannot easily predict

the physical layout of the design after placement and routing. Current HLS tools typically

rely on pre-characterized operation delays and a very crude interconnect delay model to

insert clock boundaries (i.e., registers) into an untimed design to generate a timed RTL

implementation [ZGR14, TDG15, GLC20]. Afterward, optimizations in RTL and physical

synthesis such as retiming are expected to fix the potential critical paths due to inadequate

pipelining. However, while retiming can redistribute the registers along a path, the total

number of registers along each path or cycle must remain a constant [LS91], significantly

40

limiting the scope of improvement. Hence, as the HLS designs get larger, the timing quality

of the synthesized RTLs usually further degrades.

This timing issue is worsened as modern FPGA architectures become increasingly het-

erogeneous [Xil20c]. The latest FPGAs integrate multiple dies using silicon interposers

to pack more logic on a single device; however, the interconnects that go across the die

boundaries will carry a non-trivial delay penalty. In addition, specialized IP blocks such

as PCIe and DDR controllers are embedded in the programmable logic. These IP blocks

usually have fixed locations near the dedicated I/O banks and will consume a large number

of programmable resources nearby. As a result, these dedicated IPs often detour the nearby

wires toward more expensive and/or longer routing paths. Further, modules interacting with

such fixed-location IPs are also more constrained in their layout. This, in turn, results in

long-distance communication with other modules. Together these factors tend to further

lower the final clock frequency.

There are a number of prior attempts that couple the physical design process with HLS

compilation [ZGR14, CFH04, XK97, Cad20, Syn20], as we discuss in Section 2.5.1. The

previous approaches share the common aspect of focusing on the fine-grained interaction

between HLS and physical design, where individual operators and the associated wires and

registers are all involved during the delay prediction and iterative HLS-layout co-optimization.

While such a fine-grained method can be effective on relatively small HLS designs and FPGA

devices, it is too expensive (if not infeasible) for today’s large designs targeting multi-die

FPGAs, where each implementation iteration from HLS to bitstream may take days to

complete.

In this paper, we propose AutoBridge, a coarse-grained floorplan-guided pipelining ap-

proach that addresses the timing issue of large HLS designs in a highly effective and scalable

manner. Instead of coupling the entire physical design process with HLS, we guide HLS with

a coarse-grained floorplanning step, as shown in Figure 4.1. Our coarse-grained floorplanning

involves dividing the FPGA device into a grid of regions and assigning each HLS function to

one region during HLS compilation. For all the inter-region connections we further pipeline

them to facilitate timing closure while we leave the intra-region optimization to the default

41

Figure 4.1: Core idea of the proposed methodology.

HLS tool.

Our methodology has two major benefits. First, the early floorplanning step provides HLS

with a view of the global physical layout which helps HLS more accurately identify and pipeline

the long wires, especially those crossing the die boundaries. Compared to retiming [LRS83],

HLS-level pipelining creates more optimization opportunities for the downstream synthesis

and physical design steps, thus potentially leading to higher performance. Second, pipeline-

aware floorplanning can reduce local routing congestion by guiding the subsequent placement

steps to better distribute logic across multiple dies, instead of attempting to pack the logic

into a single die as much as possible.

While AutoBridge can improve the frequency with additional interconnect pipelining, we

also need to ensure the added latency does not negatively impact the overall throughput of

the design. To this end, we present analysis and latency balancing algorithms to guarantee

the throughput of the resulting design is not negatively impacted.

Our specific contributions are as follows:

• To the best of our knowledge, we are the first to tackle the challenge of high-frequency

HLS design on multi-die FPGAs by coupling floorplanning and pipelining.

• We design a coarse-grained floorplan scheme tailored for HLS which can distribute the

design logic across multiple dies on an FPGA to effectively reduce local congestion and

facilitate HLS to adequately pipeline global interconnects.

• We analyze how the additional latency may affect the throughput of the design and

42

Figure 4.2: Overview of the AutoBridge Framework. Grey boxes represent the original
software flow and blue boxes represent components of AutoBridge.

propose algorithms to offset the potential negative influence of the added latency.

• Our framework, AutoBridge, interfaces with the commercial FPGA design tool flow,

with a compile-time overhead in the order of seconds. It improves the average frequency

of 43 designs from 147 MHz to 297 MHz with a negligible area overhead.

Figure 4.2 shows the overall flow of our proposed methodology. The rest of the paper

is organized as follows: Section 4.2 introduces background information on modern FPGA

architectures and shows motivating examples; Section 4.3 details our coarse-grained floorplan

scheme inside the HLS flow; Section 4.4 describes our floorplan-aware pipelining methods;

Section 4.5 presents experimental results; Section 2.5 provides related work, followed by

conclusion and acknowledgments.

43

4.2 Background and Motivating Examples

4.2.1 Multi-Die FPGA Architectures

Figure 4.3 shows three representative multi-die FPGA architectures, each of which is described

in more detail as follows.

• The Xilinx Alveo U250 FPGA is one of the largest FPGAs with four dies. All the

I/O banks are located in the middle column and the four DDR controller IPs are

positioned vertically in a tall-and-slim rectangle in the middle. On the right lies the

Vitis platform region [Xil20d], which incorporates the DMA IP, the PCIe IP, etc, and

serves to communicate with the host CPU.

• The Xilinx Alveo U280 FPGA is integrated with the latest High-Bandwidth Memory

(HBM) [CCW20, CCQ21, HBM20], which exposes 32 independent memory ports at the

bottom of the chip. I/O banks are located in the middle columns. Meanwhile, there is

a gap region void of programmable logic in the middle.

• The Intel Stratix 10 FPGA [Int20] also sets the DDR controller and I/O banks in

the middle of the programmable logic. The embedded multi-die interconnect bridges

and the PCIe blocks are distributed at the two sides of the chip, allowing multiple

FPGA chips to be integrated together. Although this paper uses the Xilinx FPGAs to

demonstrate the idea, our methodology is also applicable to Intel FPGAs and other

architectures.

Compared to previous generations, the latest multi-die FPGA architectures are divided

into disjoint regions, where the region-crossing naturally incurs additional signal delay. In

addition, the large pre-located IPs consume significant programmable resources near their

fixed locations which may also cause local routing congestion. These characteristics can

hamper the existing HLS flows from achieving a high frequency.

44

Figure 4.3: Block diagrams of three representative FPGA architectures: the Xilinx Alveo
U250, U280 (based on the Xilinx UltraScale+ architecture), and the Intel Stratix 10.

4.2.2 Motivating Examples

We show two examples to motivate our floorplan-guided HLS approach. First, Figure 4.4

shows a CNN accelerator implemented on the Xilinx U250 FPGA. It interacts with three

DDR controllers, as marked in grey, pink, and yellow blocks in the figure. In the original

implementation result, the whole design is packed close together within die 2 and die 3. To

demonstrate our proposed idea, we first manually floorplan the design to distribute the logic

in four dies and to avoid overlapping the user logic with DDR controllers. Additionally, we

pipeline the FIFO channels connecting modules in different dies as demonstrated in the figure.

The manual approach improves the final frequency by 53%, from 216 MHz to 329 MHz.

Second, Figure 4.5 shows a stencil computation design on the Xilinx U280 FPGA. It

consists of four identical kernels in linear topology with each color representing a kernel. In

the original implementation, the tool’s selection of die-crossing wires is sub-optimal and one

kernel may be divided among multiple regions. Instead in our approach, we pre-determine all

the die-crossing wires during HLS compilation and pipeline them, so the die boundaries will

not cause any problems for the placement and routing tool. For this example, we achieve 297

MHz while the design is originally unroutable.

45

Figure 4.4: Implementation results of a CNN accelerator on the Xilinx U250 FPGA. Spreading
the design across the device helps reduce local congestion, while the die-crossing wires are
additionally pipelined.

4.3 Coupling HLS with Coarse-Grained Floorplanning

In this section, we present our coarse-grained floorplanning scheme that can be integrated

with HLS. We assume that HLS preserves the hierarchy of the source code, and each function

in the HLS source code will be compiled into an RTL module .

Note that the focus of this work is not on improving floorplanning algorithms; instead,

we intend to properly use coarse-grained floorplan information to guide HLS and placement.

4.3.1 Coarse-Grained Floorplanning Scheme

Instead of finding a dedicated region with a detailed aspect ratio for each module, we choose to

view the FPGA device as a grid that is formed by the die boundaries and the large IP blocks.

These physical barriers split the programmable fabric apart into a series of disjoint slots in

46

Figure 4.5: Implementation results of a stencil computing design on U280. Floorplanning
during HLS compilation significantly benefits the physical design tools.

the grid where each slot represents a sub-region of the device isolated by die boundaries and

IP blocks. Using our coarse-grained floorplanning, we will assign each function of the HLS

design to one of these slots.

For example, for the Xilinx Alveo U250 FPGA, the array of DDR controllers forms a

vertical split in the middle column; and there are three horizontal die boundaries. Thus the

device can be viewed as a grid of 8 slots in 2 columns and 4 rows. Similarly, the U280 FPGA

can be viewed as a grid of 6 slots in 2 columns and 3 rows.

In this scheme, each slot contains about 700 BRAM 18Ks, 1500 DSPs, 400K Flip-Flops,

and 200K LUTs. Meanwhile, to reduce the resource contention in each slot, we set a maximum

utilization ratio for each slot to guarantee enough blank space. Experiments show that such

slot sizes are suitable, and HLS has a good handle on the timing quality of the local logic

within each slot, as in Section 4.5.

47

4.3.2 Problem Formulation

We first assume the HLS design adopts a dataflow programming model, where each function

corresponds to one dataflow process, and each function will be compiled into an RTL module.

Functions communicate with each other through FIFO channels.

Given: (1) a graph G(V,E) representing the HLS design where V represents the set of

functions1 of the dataflow design and E represents the set of FIFO channels between vertices;

(2) the number of rows R and the number of columns C of the grid representation of the

target device; (3) maximum resource utilization ratios for each slot; (4) location constraints

such that certain IO modules must be placed nearby certain IP blocks. In addition, we

may have constraints that certain vertices must be assigned to the same slot. This is for

throughput concerns and will be explained in Section 4.4.

Goal: Assign each v ∈ V to one of the slots such that (1) the resource utilization ratio2

of each slot is below the given limit; (2) the cost function is minimized. We choose the total

number of slot-crossings as the cost instead of the total estimated wire lengths. Specifically,

the cost function is defined as

∑
eij∈E

eij.width× (|vi.row − vj.row|+ |vi.col − vj.col|) (4.1)

where eij.width is the bit width of the FIFO channel connecting vi and vj and module v

is assigned to the v.col-th column and the v.row-th row. The physical meaning of the cost

function is the sum of the number of slot boundaries that every wire crosses.

4.3.3 Solution

Our problem is small in size as HLS-level FPGA designs seldom have more than a few

hundred functions. We adopt the main idea of top-down partitioning-based placement

algorithms [Bre77, DK85, MAB03] to solve our problem. Meanwhile, due to the relatively

1Inlined functions will be merged accordingly in the C++ front-end processing.

2Based on the estimation of resource utilization by HLS.

48

Figure 4.6: Generating the floorplan for a target 2× 4 grid. Based on the floorplan, all the
cross-slot connections will be accordingly pipelined (marked in red) for high frequency.

small problem size, we plan to pursue an exact solution for each partitioning.

Figure 4.6 demonstrates the floorplanning of an example design through three iterations

of partitioning. The top-down partitioning-based approach starts with the initial state where

all modules are assigned to the same slot, iteratively partitions the current slots in half into

two child slots and then assigns the modules into the child slots. Each partitioning involves

splitting all of the current slots in half either horizontally or vertically.

Since the problem size is relatively small, we formulate the partitioning process of each

iteration using integer linear programming (ILP). In every partitioning iteration, all current

slots need to be divided in half. Since some of the modules in a slot may be tightly connected

to modules outside of the slot, ignoring such connections can adversely affect the quality

of the assignment. Therefore our ILP formulation considers the partitioning of all slots

together for an exact solution which is possible due to the small problem size. Experiments

in Section 4.5 show that our ILP formulation is solvable within a few seconds or minutes for

designs of hundreds of modules.

Performing an N-way partitioning is another potential method. However, compared to

our iterative 2-way partitioning, experiments show that it is much slower than iterative 2-way

49

partitioning.

ILP Formulation of One Partitioning Iteration.

The formulation declares a binary decision variable vd for each v to denote whether v

is assigned to the left or the right child slot during a vertical partitioning (or to the upper

or the lower child slot for a horizontal one). Let R denote the set of all current slots. For

each slot r ∈ R to be divided, we use rv to denote the set of all vertices that r is currently

accommodating. To ensure that the child slots have enough resources for all modules assigned

to them, the ILP formulation imposes the resource constraint for each child slot rchild and for

each type of on-chip resource.

∑
v∈rv

vd × varea < (rchild)area

where varea is the resource requirement of v and (rsub)area represents the available resources

in the child slot divided from r.

To express the cost function that is based on the coordinates of each module, we first

need to express the new coordinates (v.row, v.col) of v based on the previous coordinates

((v.row)prev, (v.col)prev) and the decision variable vd. For vertical partitioning, the new

coordinates of v will be

v.col = (v.col)prev × 2 + vd

v.row = (v.row)prev

And for horizontal partitioning, the new coordinates will be

v.row = (v.row)prev × 2 + vd

v.col = (v.col)prev

Finally, the objective is to minimize the total slot-crossing shown in Formula (4.1) for

each partitioning iteration.

50

For the example in Figure 4.6, Table 4.1 shows the row and col indices of selected vertices

in each partitioning iteration.

Table 4.1: Coordinates of selected vertices in Figure 4.6.

v2 v1 v4 v5

Init row = 0; col = 0

iter-1
vd = 1;

row = 0 × 2 + 1 = 1
vd = 0;

row = 0 × 2 + 0 = 0

iter-2
vd = 1;

row = 1 × 2 + 1
vd = 0;

row = 1 × 2 + 0
vd = 1;

row = 0 × 2 + 1
vd = 0;

row = 0 × 2 + 0

iter-3
vd = 0;

col = 0 × 2 + 0
vd = 1;

col = 0 × 2 + 1

In summary, we will create |V | binary decision variables for each type of resource, and a

typical Xilinx FPGA has 5 types of resources (Flip-Flop, LUT, BRAM, DSP, URAM). We

will create |E| variables to express the length of each edge. For each resource type, we will

have 2 area constraints for each of the sub-slots in our partition problem. The optimization

goal involves the weighted sum of all edges, thus it includes |E| variables. Table 4.6 shows

the actual number of vertices and edges of representative real-world designs.

4.4 Floorplan-Aware Pipelining

Based on the generated floorplan, we aim to pipeline every cross-slot connection to facilitate

timing closure.

Although HLS has the flexibility to pipeline them to increase the final frequency , the

additional latency could potentially lead to a large increase of the execution cycles , which

we need to avoid. This section presents our methods to pipeline slot-crossing connections

without hurting the overall throughput of the design.

We will first focus on pipelining the dataflow designs, then extend the method to other

types of HLS design. In Section 4.4.1 we introduce our approach of pipelining with latency

balancing; and Section 4.4.2 presents the detailed algorithm. In Section 4.4.3 we discuss

pipelining other types of HLS designs.

51

4.4.1 Pipelining Followed by Latency Balancing for Dataflow Designs

In our problem, an HLS dataflow design consists of a set of concurrently executed functions

communicating through FIFO channels, where each function will be compiled into an RTL

module controlled by a finite-state machine (FSM) [PP91]. The rich expressiveness of FSM

makes it difficult to statically determine how the additional latency will affect the total

execution cycles. Note that our problem is different from other simplified dataflow models

such as the Synchronous Data Flow (SDF) [LM87] and the Latency Insensitive Theory

(LIT) [CMS01], where the firing rate of each vertex is fixed. Unlike SDF and LIT, in our

problem, each vertex is an FSM and the firing rate is not fixed and can have a complex

pattern.

Therefore, we adopt a conservative approach, where we first pipeline all edges that cross slot

boundaries, then balance the latency of parallel paths based on the cut-set pipelining [Par07].

A cut-set is a set of edges that can be removed from the graph to create two disconnected sub-

graphs; and if all edges in a cut-set are of the same direction, we could add an equal amount

of latency to each edge and the throughput of the design will be unaffected. Figure 4.7 (a)

illustrates the idea. If we need to add one unit of latency to e13 (marked in red) due to the

floorplan results, we need to find a cut-set that includes e13 and balance the latency of all

other edges in this cut-set (marked in blue).

Since we can choose different cut-set to balance the same edge, we need to minimize the

area overhead. For example, for e13, balancing the cut-set 2 in Figure 4.7 (b) costs smaller

area overhead compared to cut-set 1 in Figure 4.7 (a), as the width of e47 is smaller than

that of e14. Meanwhile, it is possible that multiple edges can be included in the same cut-set.

For example, the edges e27 and e37 are both included in the cut-set 3, so we only need to

balance the other edges in cut-set 3 once.

Cut-set pipelining is equivalent to balancing the total added latency of every pair of

reconvergent paths [Par07]. A path is defined as one or multiple concatenated edges of the

same direction; two paths are reconvergent if they have the same source vertex and destination

vertex. When there are multiple edges with additional latency from the floorplanning step, we

52

Figure 4.7: Assume that the edges e13, e37 and e27 are pipelined according to some floorplan,
and each of them carries 1 unit of inserted latency. Also, assume that the bit width of e14 is
2 and all other edges are 1. In the latency balancing step, the optimal solution is adding 2
units of latency to each of e47, e57, e67 and 1 unit of latency to e12. Note that edge e27 and
e37 can exist in the same cut-set.

need to find a globally optimal solution that ensures all reconvergent paths have a balanced

latency, and the area overhead is minimized.

4.4.2 Latency Balancing Algorithm

Problem Formulation.

Given: A graph G(V,E) representing a dataflow design that has already been floorplanned

and pipelined. Each vertex v ∈ V represents a function in the dataflow design and each

edge e ∈ E represents the FIFO channel between functions. Each edge e ∈ E is associated

with e.width representing the bit width of the edge. For each edge e, the constant e.lat

represents the additional latency inserted to e in the previous pipelining step. We use the

integer variable e.balance to denote the number of latency added to e in the current latency

balancing step.

Goal: (1) For each edge e ∈ E, compute e.balance such that for any pair of reconvergent

paths {p1, p2}, the total latency on each path is the same:

∑
e∈p1

(e.lat+ e.balance) =
∑
e∈p2

(e.lat+ e.balance)

53

and (2) minimize the total area overhead, which is defined as:

∑
e∈E

e.balance× e.width

Note that this problem is different from the min-cut problem [Cut20] for DAG. One näıve

solution is to find a min-cut for every pipelined edge and increase the latency of the other

edges in the cut accordingly. However, this simple method is suboptimal. For example in

Figure 4.7, since edge e27 and e37 can be in the same cut-set, we only need to add one unit of

latency to the other edges in the cut-set (e.g., e47, e57 and e67) so that all paths are balanced.

Solution.

We formulate the problem in a restricted form of ILP that can be solved in polynomial

time. For each vertex vi, we associate it with an integer variable Si that denotes the maximum

latency from pipelining between vi and the sink vertex of the graph. In other words, given

two vertices vx and vy, (Sx − Sy) represents the maximum latency among all paths between

the two vertices. Note that we only consider the latency on edges due to pipelining.

For each edge eij, we have

Si ≥ Sj + eij.lat

According to our definition, the additional balancing latency added to edge eij in this

step can be expressed as

eij.balance = (Si − Sj − eij.lat)

since we want every path from vi to vj have the same latency.

The optimization goal is to minimize the total area overhead, i.e. the weighted sum of

the additional depth on each edge:

minimize
∑
eij∈E

eij.balance× eij.width

In total, for a graph G(V,E), we introduce |V | variables and |E| constraints.

54

Figure 4.8: Example SDC formulation for the latency balancing problem.

For example, assume that there are two paths from v1 to v2 where path p1 has 3 units of

latency from pipelining while p2 has 1 unit. Thus from our formulation, we will select the

edge(s) on p2 and add 2 additional units of latency to balance the total latency of p1 and

p2 so that the area overhead is minimized. Figure 4.8 provides an example to illustrate the

formulation. In this graph, assume that we need to add one unit of latency to edge e12 based

on the floorplanning results. Therefore, for edge e12 we have the constraints S1 ≥ S2 + 1. In

the optimization target, since the edge e34 has a width of 2 while all other edges have a width

of 1, the item (S3 − S4) has the coefficient 2.

Our formulation is essentially a system of differential constraints (SDC), in which all

constraints are in the form of xi − xj ≤ bij, where bij is a constant and xi, xj are variables.

Because of this restrictive form of constraint, we can solve SDC as a linear programming

problem while the solutions are guaranteed to be integers. As a result, it can be solved in

polynomial time [LS91, CZ06].

If the SDC formulation does not have a solution, there must be a dependency cycle in the

dataflow graph [CZ06]. This means that at least one of the edges in the dependency cycle is

pipelined based on the floorplan. In this situation, we will feedback to the floorplanner to

constrain those vertices into the same region and then re-generate a new floorplan.

4.4.3 Extension to Non-Dataflow Designs

In the previous subsections, we focus on pipelining and latency balancing for dataflow designs

as they can be easily pipelined. However, our methodology applies to other types of HLS

55

designs as well. Since most interface protocols of HLS-generated modules have pre-determined

operation latency, we can accurately predict at compile time whether the additional latency

on certain interfaces will cause throughput degradation, in which case we will adjust the

constraints for the floorplanning step.

When a C++ function is compiled into an RTL module, the arguments to the function

become ports of the module with IO protocols according to the type of C++ arguments.

Here we discuss how to add latency to interfaces with Vivado HLS [Xil20b] designs, but the

concept and implementation are similar in other HLS compilers. Besides the FIFO interface,

there are four major types of ports on RTL modules generated by HLS:

• Control signals. For example, the start, ready, and done indicate when the module

starts executing and whether it has finished. They can be directly pipelined without

influencing functionality. We require that the function is not invoked inside a loop to

prevent the added latency from increasing the initiation interval of the loop.

• Scalar or input pointer. By default, the pass-by-value input arguments and pointers

are implemented as simple input wire ports. They can be directly pipelined, and the

start should be pipelined accordingly.

• Output pointers. These are implemented with an associated output valid signal to

indicate when the output data is valid. We can directly pipeline the output signals

along with the valid signals.

• Array arguments. The compiler will compile them into a standard block RAM interface

with data, address, chip-enable, and write-enable ports. For such an interface, the

configuration option specifies the read or write latency of the RAM resource driving the

interface, which is known at compile time. Adding pipelining to all signals of the RAM

interface will change the latency of RAM access operations, thus we require that the

array should only be accessed inside a pipelined loop, where increasing the latency of

the RAM operation will not increase the initiation interval of the pipeline. Figure 4.9

visualizes the process. Assuming the module foo sends out an address and the module

56

Figure 4.9: Example of AutoBridge on a key-value store.

bar returns the value, we could pipeline the two connections. Since the latency of

the key-value store operation has changed, we could go back and redo the scheduling

process to apply the change.

In addition, we must re-run HLS synthesis for each function after annotating the new

interface latency in the source code. In comparison, this is not needed for dataflow designs

with latency-insensitive interfaces.

4.5 Experiments

4.5.1 Implementation Details

We implement our proposed methods in Python interfaced with the CAD flow for Xilinx

FPGAs, including Vivado HLS, Vivado, and Vitis (2019.2). We parse the scheduling and

binding reports of dataflow HLS designs to create the graph representation of the design and

obtain the resource utilization of each RTL module. We use the Python MIP package [ST20]

coupled with Gurobi [Gur20] to solve the various ILP problems introduced in previous sections.

We generate TCL constraint files to be used by Vivado to enforce our high-level floorplanning

scheme. Our RTL generator parses the RTL from Vivado HLS using PyVerilog [Tak15], then

57

almost_full

wr_enable

wr_data

full

wr_en

data

empty

read

data

Producer ConsumerFIFO

Figure 4.10: Pipelining FIFO interfaces using almost-full FIFOs.

traverses the AST to add the additional pipelining and regenerate the optimized RTL.

We mainly implement the AutoBridge prototype for Vivado HLS dataflow designs, where

the top function instantiates all the dataflow processes and the FIFO connections. In addition,

we support the TAPA compiler [CGC20, GCL22], which serves as a front-end to the existing

HLS tools to enable more expressibility over task-level parallel programs [DLN21]. We also

include tools to process non-dataflow designs and some manual help is necessary due to the

limited access to the internals of the HLS compiler. A certain coding style is expected and

we provide examples in our open-sourced repository.

Figure 4.10 shows how we add pipelining to a FIFO-based connection. We adopt FIFOs

that assert their full pin before the storage actually runs out, so that we could directly

register the interface signals without affecting the functionality.

Meanwhile, we turn off the hierarchy rebuild process during RTL synthesis [Xil20a] to

prevent the RTL synthesis tool from introducing additional wire connections between RTL

modules. The hierarchy rebuild step first flattens the hierarchy of the RTL design and then

tries to rebuild the hierarchy. As a result, hierarchy rebuild may create unpredictable new

connections between modules. As a result, if two modules are floorplanned far apart, these

additional wires introduced during RTL synthesis will be under-pipelined as they are unseen

during HLS compilation. Note that disabling this feature may lead to slight differences in

the final resource utilization.

We test out designs on the Xilinx Alveo U250 FPGA3 with 4 DRAMs and the Xilinx

3The U250 FPGA contains 5376 BRAM18K, 12288 DSP48E, 3456K FF, and 1728K LUT

58

Alveo U280 FPGA4 with High-Bandwidth Memory (HBM). As the DDR controllers are

distributed in the middle vertical column while the HBM controller lies at the bottom row,

these two FPGA architectures present different challenges to the CAD tools. Thus it is

worthwhile to test them separately.

To run our framework, users first specify how they want to divide the device. By default,

we divide the U250 FPGA into a 2-column × 4-row grid and the U280 FPGA into a 2-column

× 3-row grid, matching the block diagram of these two architectures shown in Figure 4.3. To

control the floorplanning, users can specify the maximum resource utilization ratio of each

slot. The resource utilization is based on the estimation by HLS. Users can also specify how

many levels of pipelining to add based on the number of boundary crossings. By default,

for each boundary crossing, we add 2 levels of pipelining to the connection. The processed

design is integrated with the Xilinx Vitis (2019.2) infrastructure to communicate with the

host. A snapshot of the original evaluated artifact is available [GCW21b].

4.5.2 Benchmarks

We use six representative benchmark designs with different topologies and change the

parameter of the benchmarks to generate a set of designs with varying sizes on both the U250

and the U280 board. The six designs are all large-scale designs implemented and optimized

by HLS experts. Figure 4.11 shows the topology of the benchmarks. Note that even for those

benchmarks that seem regular (e.g., CNN), the location constraints from peripheral IPs can

highly distort their physical layouts.

• The stencil designs created by the SODA [CCW18] compiler have a set of kernels in

linear topologies.

• The genome sequencing design [GLR19] performing the Minimap2 overlapping algo-

rithm [Li18] has processing elements (PE) in broadcast topology. This benchmark is

based on shared-memory communication and all other benchmarks are dataflow designs.

4The U280 FPGA contains 4032 BRAM18K, 9024 DSP48E, 2607K FF and 434K LUT

59

Figure 4.11: Topologies of the benchmarks. Blue rectangles represent external memory ports
and black circles represent the computation kernels of the design. In the genome sequencing
design, the arrows represent BRAM channels; in other designs, the arrows represent FIFO
channels.

• The CNN accelerators created by the PolySA [CW18] compiler are in a grid topology.

• The HBM graph processing design [CGC20] performs the page rank algorithm. It

features eight sets of processing units and one central controller. This design also

contains dependency cycles, if viewed at the granularity of computing kernels.

• The HBM bucket sort design adapted from [SQA20, QOG21] which includes 8 parallel

processing lanes and two fully-connected layers.

• The Gaussian elimination designs created by the AutoSA [WGC21] compiler are in

triangle topologies.

60

4.5.3 Frequency Improvements

By varying the size of the benchmarks, in total, we have tested the implementation of 43

designs with different configurations. Among them, 16 designs failed in routing or placement

with the baseline CAD flow, compared AutoBridge which succeeds in routing all of them and

achieves an average of 274 MHz. For the other 27 designs, we improve the final frequency

from 234 MHz to 311 MHz on average. In general, we find that AutoBridge is effective for

designs that use up to about 75% of the available resources. We execute our framework on

an Intel Xeon CPU running at 2.2GHz. Both the baseline designs and optimized ones are

implemented using Vivado with the highest optimization level. The final checkpoints of all

experiments are available in our open-sourced repository.

In some experiments, we may find that the optimized versions have even slightly smaller

resource consumption. Possible reasons are that we adopt a different FIFO template and

disable the hierarchy rebuild step during RTL synthesis. Also, as the optimization leads to

very different placement results compared to those of the original version, we expect different

optimization strategies will be adopted by the physical design tools. The correctness of the

code is verified by cycle-accurate simulation.

Next, we present the detailed results of each benchmark.

Stencil Computation.

For the stencil computing design, the kernels are connected in a chain format through

FIFO channels. By adjusting the number of kernels, we can vary the total size of the design.

We test anywhere from 1 kernel up to 8 kernels, and Figure 4.12 shows the final frequency

of the eight design configurations on both U250 and U280 FPGAs. In the original flow,

many design configurations fail in routing due to routing resource conflicts. Those that are

routed successfully still achieve relatively low frequencies. In comparison, with the help of

AutoBridge, all design configurations are routed successfully. On average, we improve the

timing from 86 MHz to 266 MHz on the U280 FPGA, and from 69 MHz to 273 MHz on the

U250 FPGA.

Starting from the 7-kernel design, we observe a frequency decrease on the U280 FPGA.

61

This is because each kernel of the design is very large and uses about half the resources of a

slot; thus starting from the 7-kernel design on the relatively small U280, two kernels have to

be squeezed into one slot which will cause more severe local routing congestion. Based on this

phenomenon, we recommend that users avoid designing very large kernels and instead split

the functionality into multiple functions to allow the tool more flexibility in floorplanning the

design.

Figure 4.12: Results of the stencil computation designs.

CNN Accelerator.

The CNN accelerator consists of identical PEs in a regular grid topology. We adjust the

size of the grid from a 2× 13 array up to a 16× 13 array to test the robustness of AutoBridge.

Figure 4.13 shows the result on both U250 and U280 FPGAs.

Although the regular 2-dimensional grid structure is presumed to be FPGA friendly, the

actual implementation results from the original tool flow are not satisfying. With the original

tool flow, even small-size designs are bounded at around 220 MHz when targeting U250.

Designs of larger sizes will fail in placement (13 × 12) or routing (13 × 10 and 13 × 14).

Although the final frequency is high when the design is small for the original tool flow

targeting U280, the timing quality is steadily dropping as the designs become larger.

In contrast, AutoBridge improves from 140 MHz to 316 MHz on U250 on average, and

from 214 MHz to 328 MHz on U280. Table 4.2 lists the resource consumption and cycle

counts of the experiments on U250. Statistics on U280 are similar and are omitted here.

62

Table 4.2: Post-placement results of the CNN designs on U250. The design point of 13× 12
failed placement and 13× 10 and 13× 14 failed routing with the original tool flow.

Size
LUT(%) FF(%) BRAM(%) DSP(%) Cycle
orig opt orig opt orig opt orig opt orig opt

13x2 17.82 17.90 14.11 14.25 21.69 21.67 8.57 8.57 53591 53601
13x4 23.52 23.59 18.98 19.04 25.74 25.73 17.03 17.03 68630 68640
13x6 29.26 29.24 23.86 23.80 29.80 29.78 25.50 25.50 86238 86248
13x8 34.98 34.90 28.72 28.56 33.85 33.84 33.96 33.96 103882 103892
13x10 40.71 40.48 33.58 33.25 37.91 37.89 42.42 42.42 121472 121491
13x12 - 46.18 - 38.06 - 41.95 - 50.89 139098 139108
13x14 52.10 51.92 43.28 42.93 46.02 46.00 59.35 59.35 156715 156725
13x16 57.82 57.61 48.13 47.70 50.07 50.06 67.81 67.81 174377 174396

Figure 4.13: Results of the CNN accelerator designs.

Gaussian elimination.

The PEs in this design form a triangle topology. We adjust the size of the triangle and

test on both U250 and U280. Table 4.3 shows the results. On average, we improve the

frequency from 245 MHz to 334 MHz on U250, and from 223 MHz to 335 MHz on U280.

Table 4.3: Results of Gaussian elimination designs on U250.

Size
LUT(%) FF(%) BRAM(%) DSP(%) Cycle
orig opt orig opt orig opt orig opt orig opt

12×12 18.58 18.69 13.05 13.14 13.24 13.21 2.79 2.79 758 781
16×16 26.62 26.68 17.36 17.30 13.24 13.21 4.99 4.99 1186 1209
20×20 38.55 38.28 23.46 23.38 13.24 13.21 7.84 7.84 1728 1738
24×24 54.05 53.59 32.16 32.06 13.24 13.21 11.34 11.34 2361 2375

63

Figure 4.14: Results of the Gaussian elimination designs.

Genome Sequencing.

The genome sequencing design contains eight parallel PEs that communicate with the

external memory through local buffers of a BRAM interface. The design provides parameters

to adjust the computation accuracy of each PE and higher accuracy will result in a larger

area. Thus, we test three design configurations where each PE is of 1×, 1.5×, and 2× the

original size. For this non-dataflow design, AutoBridge first performs floorplanning and

creates a wrapper for each PE to pipeline all I/O signals. Then we manually add pragmas to

the source code to specify the modified latency on shared memory blocks and re-run HLS to

update the internals of each PE. On average, we improve the frequency from 132 MHz to 248

MHz as in Table 4.4. When the original size of the PE is small Vivado performs well, but

AutoBridge outperforms Vivado with larger PEs.

Table 4.4: Experiment result of genome sequencing on U250.

Fmax (MHz) LUT % FF % BRAM % DSP % Cycle (K)
Orig, Size=1 265 25.43 16.12 17.21 4.38 11710
Opt, Size=1 267 25.48 16.29 17.21 4.38 11830
Orig, Size=1.5 - - - - - 12350
Opt, Size=1.5 272 31.73 19.39 15.14 6.46 12470
Orig, Size=2 131 38.89 23.11 17.21 8.54 12990
Opt, Size=2 206 38.91 23.31 17.21 8.54 13110

64

HBM Bucket Sort.

The bucket sort design has two complex fully-connected layers. Each fully-connected layer

involves an 8 × 8 crossbar of FIFO channels, with each FIFO channel being 256-bit wide.

AutoBridge pipelines the FIFO channels to alleviate the routing congestion. Table 4.5 shows

the frequency gain, where we improve from 255 MHz to 320 MHz on U280. As the design

requires 16 external memory ports and U250 only has 4 available, the test for this design is

limited to U280 only.

Because the original source code has enforced a BRAM-based implementation for some

small FIFOs, which results in wasted BRAM resources, the results of AutoBridge have slightly

lower BRAM and flip-flop consumption than the original implementation. In comparison,

we use a different FIFO template that chooses the implementation style (BRAM-based or

shift-register-based) based on the area of the FIFO. Cycle-accurate simulation has proven

the correct functionality of our optimized implementation.

Table 4.5: Results of the bucket sort designs on U280.

Fmax (MHz) LUT % FF % BRAM % DSP % Cycle
Original 255 28.44 19.11 16.47 0.04 78629
Optimized 320 29.39 16.66 13.69 0.04 78632

4.5.4 Control Experiments

First, we test whether the frequency gain comes from the combination of pipelining and

HLS-floorplanning, or simply pipelining alone. To do this, we set a control group where we

perform floorplanning and pipelining as usual, but we do not pass the floorplan constraints

to the physical design tools. The blue curve with triangle markers in Figure 4.15 shows the

results. As can be seen, the control group has a lower frequency than the original design

for small sizes and has limited improvements over the original designs for large sizes. In

all experiments, the group with both pipelining and floorplan constraints (green curve with

crossing markers) has the highest frequency. This experiment proves that the frequency gain

65

is not simply a result of more pipelining.

Meanwhile, if we only do floorplanning without pipelining, obviously the frequency will

be much degraded, as visualized by Fig. 4.4.

Second, we test the effectiveness of setting a slot boundary based on the DDR controllers.

We run a set of experiments where we only divide the FPGA into four slots based on the die

boundaries, minus the division in the middle column. The yellow curve with diamond markers

in Figure 4.15 shows the results. As can be seen, it achieves lower frequency compared to our

default eight-slot scheme.

0

100

200

300

400

13x2 13x4 13x6 13x8 13x10 13x12 13x14 13x16

Fr
eq

 (M
H

z)

Original Pipe. w/o Constraints AutoBridge No Horizontal Parition

Figure 4.15: Control experiments with the CNN accelerators.

4.5.5 Scalability

To show that the tool works well on designs with large numbers of small functions, we utilize

the CNN experiments to test the scalability of our algorithms, as the CNN designs have

the most vertices (HLS functions) and edges. Table 4.6 lists The compile time overhead for

the floorplanning and the latency balancing when using Gurobi as the ILP solver5. For the

largest CNN accelerator that has 493 modules and 925 FIFO connections, the floorplan step

only takes around 20 seconds and the latency balancing step takes 0.03s. Usually, FPGA

designs are not likely to have this many modules and connections [Lib20] [Exa20], and our

method is fast enough.

5Meanwhile, we observed that many open-sourced ILP solvers are much slower.

66

Table 4.6: Computing time for the CNN test cases targeting the U250 FPGA. Div-1 and
Div-2 denote the first and the second vertical decomposition, and Div-3 denotes the first
horizontal decomposition. Re-balance denotes the delay balancing.

Size # V # E Div-1 Div-2 Div-3 Re-balance
13 × 2 87 141 0.02 s 0.02 s 0.01 s <0.01 s
13 × 4 145 253 0.05 s 0.02 s 0.20 s <0.01 s
13 × 6 203 365 0.07 s 1.02 s 0.56 s <0.01 s
13 × 8 261 477 0.07 s 1.07 s 3.58 s 0.01 s
13 × 10 319 589 3.17 s 1.61 s 2.63 s 0.01 s
13 × 12 377 701 3.42 s 1.43 s 9.84 s 0.01 s
13 × 14 435 813 3.54 s 1.55 s 6.18 s 0.03 s
13 × 16 493 925 4.95 s 2.02 s 12.56 s 0.03 s

4.6 Conclusions

We propose to couple coarse-grained floorplanning with pipelining to improve the frequency

of the HLS designs on multi-die FPGAs. Our methodology has two key advantages: (1) it

helps HLS identify and pipeline the long wires, especially those that will cross die boundaries;

(2) it further reduces local routing congestion since early floorplanning can distribute the logic

across multiple dies. According to our evaluation of 43 realistic benchmarks, our framework

effectively improves the average frequency from 147 MHz to 297 MHz without compromising

the throughput of the design.

We are extending our methodology to support latency-insensitive RTL designs as well. For

example, automatic domain-specific generation framework like DSAGEN [WLD20, LWK22]

opens a new research topic on building overlay for coarse-grain accelerators on FPGA. We

adopt DSAGEN as an application driver to study the extension of AutoBridge to latency-

insensitive RTL designs. The extensions of AutoBridge to support general-purpose RTL

designs and ASIC remain as future work.

67

CHAPTER 5

Parallel Physical Implementation of HLS Designs for

Fast Timing Closure.

FPGAs require a much longer compilation cycle than conventional computing platforms

like CPUs.In this paper, we shorten the overall compilation time by co-optimizing the HLS

compilation (C-to-RTL) and the back-end physical implementation (RTL-to-bitstream). We

propose a split compilation approach based on the pipelining flexibility at the HLS level,

which allows us to partition designs for parallel placement and routing. We outline a number

of technical challenges and address them by breaking the conventional boundaries between

different stages of the traditional FPGA tool flow and reorganizing them to achieve a fast

end-to-end compilation.

Our research produces RapidStream, a parallelized and physical-integrated compilation

framework that takes in a latency-insensitive program in C/C++ and generates a fully placed

and routed implementation. We present two approaches. The first approach (RapidStream

1.0) resolves inter-partition routing conflicts at the end when separate partitions are stitched

together. When tested on the Xilinx U250 FPGA with a set of realistic HLS designs,

RapidStream achieves a 5-7× reduction in compile time and up to 1.3× increase in frequency

when compared to a commercial-off-the-shelf toolchain. In addition, we provide preliminary

results using a customized open-source router to reduce the compile time up to an order of

magnitude in cases with lower performance requirements. The second approach (RapidStream

2.0) prevents routing conflicts using virtual pins. Testing on Xilinx U280 FPGA, we observed

5-7× compile time reduction and 1.3× frequency increase.

68

5.1 Introduction

FPGA compilation techniques have traditionally been adopted from the EDA industry, where

designers have a higher tolerance for a long turn-around time. However, this significantly

impedes the adoption of FPGAs by the computing industry, where software programmers are

used to a much shorter compile cycle [LUX21].

One general approach to speeding up FPGA compilation is to utilize multi-core CPUs

or GPUs to parallelize the CAD algorithms, such as logic synthesis [DB94, DCR95], place-

ment [LBP08, CZ09, LCW15, LLW17, DSI19, ASB14], and routing [Sto17, SL15, GA10,

GA11, WDT17, HK18, ZVS20]. However, many important algorithms used in the FPGA

CAD tool flow are inherently sequential. Moreover, the slowest steps of the FPGA physical

compilation extensively involve timing optimizations. Since optimizing timing typically

requires global knowledge of the designs, it further increases the difficulty of parallelization.

In Figure 5.1, we profile the CPU utilization of a 14-hour FPGA compilation task by the

commercial Xilinx Vivado tool suite. As the figure shows, Vivado only uses 2.1 cores on

average when attempting to close timing.

0

2

4

6

8

0 55 110 164 219 274 329 383 438 493 548 602 657 712 767 821 876

C
or

e

Synthesis Placement Routing

Time(min)

10

15

20

25

1 2 3 4 5 6 7 8

H
ou

rs

Number of Threads

Figure 5.1: The upper figure shows the number of active CPU cores when implementing
a CNN benchmark by Vivado (8 threads) on a 56-core server. The total implementation
process takes about 14 hours, with an average CPU utilization of 2.1 cores. The lower figure
displays the runtime as we increase the number of threads.

Another approach to fast FPGA compilation is splitting the whole application into several

69

Please Do Not Distribute

13

HLS compilation

Phase 1: Partitioning

Phase 2: Parallel Compilation

Phase 3: Stitching

Input: HLS Dataflow Designs

Output: Fully Routed Checkpoint

Bi-partition Floorplanning

Floorplan Legalization

Global Routing

Invert-Clock Pipelining

RTL Hierarchy Rebuild

[*] Synthesis

[*] Initial Placement

[*] Anchor Placement

[*] Placement Optimization

[*] Slot Routing

Global Clock Routing

Die-Level Netlist Stitching

Die-Level Preserve Routing

Multi-Die Netlist Stitching

Final Rule Check

Overall Flow Phase 1: Partitioning Phase 2: Parallel Compilation
[*] marks the parallel steps

Phase 3: Stitching

HLS Scheduling & Binding

RTL Generation

Logic Synthesis

Floorplanning

Detailed Placement

Global Routing

Detailed Routing

HLS Scheduling & Binding

Floorplanning into Islands

Inter-Island Routing & Pipelining

Inserting Anchor Registers

RTL Generation

[*] Island Synthesis

[*] Island Placement

[*] Anchor Placement

[*] Island Placement Opt.

Route Clk Trunk; Lock Buffer

Island Merging

Clock Tree Merging

Routing Conflict Resolution

Conventional CAD Stack

Phase 1: Partitioning Phase 2: Parallel Compilation Phase 3: Stitching

Phase 1: Partitioning

Phase 2: Parallel Compilation

Phase 3: Stitching

Input: HLS Dataflow Designs

Output: Fully Routed Checkpoint

Overall Flow

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S12

S13

S14

[*] Island RoutingS11

Figure 5.2: An overview of our RapidStream workflow. We use [*] to denote a parallelized
step.

Please Do Not Distribute

17

Die (SLR) Boundary

Clock Region

Cross Die Wire
(SLL)

Register
(Laguna)

Alveo U250

Phase 1:
Partitioning

Clock
Source

PE

PE

PE

PE

PE

Input dataflow design
in C/C++

PE

PE PE

Phase 2:
Parallel

Compilation

Each island separately
placed & routed

Phase 3:
Stitching

All islands stitched
together

PE PE

PE PE

PE

PE PE

PE

PE

anchors

Partitioned RTL that fits into
the physical islands

Figure 5.3: Illustration of results obtained in different phases. In the final output, the orange
part shows the anchor registers, the cyan part shows the implemented partitions.

partitions and then compiling different parts in parallel. A new challenge naturally arises

here — how to achieve timing closure with many inter-partition nets? Given an RTL design

or a netlist, it is relatively easy to partition the design and achieve timing closure within

each partition, but it is difficult to achieve good timing on the inter-partition nets. Either we

perform global cross-partition optimizations iteratively at the cost of high runtime overhead,

or we sacrifice the timing quality of inter-partition nets for runtime efficiency, rendering the

acceleration less meaningful.

Our prior work, RapidStream 1.0 [GMZ22], proposes an end-to-end split compilation

flow for FPGAs that utilizes an architecture-level, latency-insensitive approach to address

the timing closure challenges. Instead of targeting an arbitrary design, we focus on latency-

insensitive designs where modules communicate through latency-insensitive protocols such as

the AXI protocol or normal FIFO. The motivating fact we have observed is that real-world

large-scale designs are, in general, highly modularized and hierarchical, but existing CAD

tools fail to utilize the architecture-level information of the input design. We instead propose

that, if we partition the design only at the latency-insensitive boundaries, we can add extra

pipelining to the boundary nets for timing closure without affecting the functionality of the

70

design.

As illustrated in Figure 5.3, RapidStream 1.0 includes three major phases. During the

partitioning phase, we organize the FPGA device as a mesh of disjoint islands and floorplan

a latency-insensitive design into the islands; we then utilize the pipeline flexibility to insert

pipeline registers into the inter-island nets, which we call anchor registers. The anchor registers

provide crucial timing isolation between islands to enable parallel implementation. Finally,

we stitch together the layout results of each island to generate the complete implementation.

The key technical contributions of RapidStream 1.0 are summarized as follows:

• To the best of our knowledge, we are the first to propose an automated, parallelized,

and physically-integrated flow to map a latency-insensitive design into a fully placed

and routed FPGA implementation while achieving fast timing closure.

• We identify and address several technical challenges for a practical split compilation

flow. Specifically, we propose new and effective methods for (1) inserting pipeline

registers and optimizing their placement at the latency-tolerant borders of partitions,

(2) clock management in parallel routing, and (3) efficient island stitching and routing

of inter-island nets.

• Our evaluation shows that the proposed approach significantly increases the degree

of parallelism of FPGA-targeted split compilation. RapidStream uses ∼26 cores on

average, whereas a commercial CAD tool only utilizes about two cores on average. As a

result, we achieve an end-to-end speedup of 5-7× over the commercial tool. Additionally,

we achieve an improvement in frequency by up to 1.3×.

The major limitation of RapidStream 1.0 is that it involves a global routing step after

assembling the islands together because we need to address the routing conflicts between

islands. Since a general-purpose router requires a lengthy initialization process, nearly half of

the total compilation time is consumed by this step, even though only 5% of the nets need

minor adjustments. To address this issue, in RapidStream 1.0, we proposed to adopt an

open-source router, RWRoute, that specializes in quick initialization and fixing local routing

71

Figure 5.4: Comparison of RapidStream 1.0 and 2.0.

conflicts. While RWRoute can finish the routing task quickly and efficiently compared to

Vivado, the open-source router lacks an accurate hold time model and the final results contain

some hold violations. Therefore, in RapidStream 1.0 we still rely on the Vivado router to

produce a fully legal solution and bear the overhead in router initialization.

As an extension, we present RapidStream 2.0, which adopts a different approach to

address the bottleneck in the routing step. Compared to our prior methods, we propose to

first partially route the inter-island nets. The partial routes will connect the anchor register to

a virtual pin inside the island. Although partial routing of anchor nets will also be performed

globally, we propose methods to speed up the process by using a skeleton design instead of

the full design. In our skeleton design, the majority of the inner-island elements are pruned

away and only source/sink connections annotated with virtual pins to the anchor registers

are preserved. By connecting to virtual pins, the global routing problem is decomposed into

a local one and allows us to safely route each island independently. Since the virtual pins of

boundary nets are all placed inside the island, we eliminate conflicts outside the island region.

In this way, we do not need a separate global routing step at the end and can generate the

bitstream of each island directly. These partial bitstreams will make a whole design when

they are loaded onto the device.

72

Another major improvement in RapidStream 2.0 is that we have supported partial

implementation, where part of the design is allowed to be pre-placed and pre-routed in

an offline process. One notable application of this new feature is the integration with the

AMD/Xilinx Vitis framework. The Vitis framework provides an efficient way to set up

host-device communication. To do so, the Vitis framework provides a fixed shell, consisting

of a group of pre-built IPs including DMA, PCIe, DDR, HBM subsystem, etc. In a Vitis

development flow, the shell is pre-implemented in the boundary area of the chip and the

user logic can use the remaining unoccupied area of the FPGA. By integrating support for

pre-built shells, RapidStream 2.0 can support CPU-FPGA communication through Vitis.

We build a prototype of RapidStream 2.0 with the AMD/Xilinx Alveo U280 HBM boards

and achieve 5-7X end-to-end speedup compared to a normal implementation process. Notably,

our generated bitstream is fully functional and has passed onboard tests. Compared to

RapidStream 1.0, we observe as much as 2× speedup in RapidStream 2.0.

This chapter is organized as follows. We first present the background information and

the overview of our workflow in Section 5.2. Then we present the major steps that are

shared between version 1.0 and 2.0, i.e. design partitioning (Section 5.3) parallel placement

(Section 5.4) clock management (Section 5.5). Next, we present the routing solution of

RapidStream 1.0 and 2.0, respectively. For RapidStream 1.0, we discuss island stitching and

inter-island routing (Section 5.6). We present our efforts to accelerate further the inter-island

routing step for RapidStream 1.0 (Section 5.6). Next, for RapidStream 2.0, we present how

to set up the partial reconfiguration environment to enable parallel routing (Section 5.8).

We also show our work-in-progress to speed up the construction of a partial reconfiguration

environment through RWRoute. As for implementation, we first show the experiment results

of RapidStream 1.0 in Section 5.10, and then we evaluate RapidStream 2.0 in Section 5.11.

We also compare with related works in Section 2.5.

73

5.2 Preliminaries

5.2.1 Problem Scope

RapidStream focuses on latency-insensitive FPGA designs. By our definition, a latency-

insensitive design consists of (1) a collection of processing elements (PE) working in parallel

and (2) a set of FIFOs that connect the communicating PEs. Each PE can be arbitrarily

complex internally, but it must send or receive data through FIFO interfaces.

5.2.2 Organization of the FPGA Fabric

To facilitate the split compilation, we divide the FPGA fabric into two types of regions.

As illustrated in Figure 5.5, these regions include (1) large disjoint islands (in blue) that

are equally sized and (2) thin columns/rows of anchor regions (in green) between adjacent

islands. Here we define an island as a square-shaped region reserved for (a subset of) the

user logic; we further require that different islands are non-overlapping. Meanwhile, the

anchor regions are reserved to place the anchor registers (in orange) needed for inter-island

communications; each inter-island connection is equipped with one anchor register, which

isolates the inter-island timing paths.

Note that we need to distinguish the anchor regions located at die boundaries. The Xilinx

multi-die FPGAs have discrete channels for die-crossing signals. To facilitate timing closure,

the anchor registers will be placed in the die-crossing channels to bridge the islands that are

on different sides of the die boundary (see Figure 5.5).

5.2.3 Flow Overview

Figure 5.3 shows the input and output of each phase of our proposed workflow. In Phase 1,

we take in an HLS dataflow design and floorplan it to the disjoint islands (steps S1 and S2

in Figure 5.2). We take advantage of the elasticity of dataflow designs to ensure that every

inter-island connection is pipelined with an anchor register (S3 and S4). This provides timing

isolation that is crucial in the later parallel placement and routing.

74

Die
boundary

Die-Crossing
Channels

Also used as
anchor region

Anchor region

Anchor
registersIsland

……

……

Figure 5.5: Organization of the FPGA device.

Phase 2 performs parallel placement and routing of the disjoint islands and inserts the

anchor registers. In the placement step (S7-S9), we propose to iteratively co-optimize the

placement of anchors and islands since they are interdependent. In the routing step (S10-S11),

we propose a clock management scheme to ensure that the clock skew is consistent when

the islands are routed and later stitched together. Without this step, we will run into hold

violations after stitching.

In Phase 3, we implement a stitcher using the RapidWright framework [LK18] to stitch

the physical netlists of post-routing islands together (S12, S13). Although the nets inside each

island remain legal after stitching, conflicts may arise among the inter-island anchor nets.

This is a routing problem unique to our flow, and we propose a lightweight method to resolve

the potential routing conflicts (S14). Compared to the full-fledged commercial router, we

achieve a 4× speedup on average while retaining nearly the same setup slacks.

5.3 Partitioning

This section describes steps S1-S5 of the partitioning phase of RapidStream, as shown in

Figure 5.2.

75

5.3.1 Problem Description

In this phase, we exploit the pipelining flexibility of HLS to transform the design into a

parallelization-friendly structure. We first discuss what features are needed in later phases

that parallelize the physical implementation of islands.

Objective 1: Non-overlapping partitioning – Since we aim to parallelize the physical

implementations of different islands, each island is required to host a unique and non-

overlapping partition of the original design.

Objective 2: Pipelined inter-island connections – To facilitate the timing closure on the

inter-island nets, we want each inter-island connection to be pipelined with an anchor register.

Objective 3: Direct neighbor connections – We further enforce that each island only has

direct connections with adjacent islands. This property is key to parallelizing the placement

and routing process.

5.3.2 Approaches

Next, we introduce how RapidStream partitions and transforms the original dataflow design

to satisfy the above-mentioned objectives.

Mapping PEs to Islands (S2). To achieve objective 1, we exclusively assign each PE to

one island. The assignment problem is formulated as follows:

The input dataflow design is represented as a graph G(V,E), where each vertex v ∈ V

represents one PE; each edge eij ∈ E represents an inter-PE FIFO connection between vi

and vj. Given an array of islands that has N rows and M columns, the goal is to map each

v ∈ V to one unique island such that the resource of each island is not overused and the

total wirelength is minimized. We use the weighted Manhattan distance to calculate the

total wirelength:

∑
eij∈E

eij.width× (|vi.row − vj.row|+ |vi.col − vj.col|) (5.1)

76

where eij.width is the bitwidth of the FIFO between vi and vj and each v is assigned to the

v.col-th column and the v.row-th row.

The rationale behind the formulation is that a shorter wirelength results in a lower latency

overhead. Our problem is typically small in size since an HLS design usually only instantiates

up to a few thousand PEs. Hence we use integer linear programming (ILP) to formulate and

solve a top-down partitioning-based placement problem iteratively. Notably, the placement

problem is similar to the ones described in several prior works [GCW21a, Bre77, DK85,

MAB03].

Global Planing & Pipelining Inter-Island Connections (S3). Before we pipeline the

connections between non-adjacent islands, we need to first determine which intermediate

islands the connections will go through. Essentially, we need to first solve a routing problem

at the island level. Next, we insert pipeline registers in the islands that the connection

passes through. As an example, Figure 5.6(A) shows the potential routes (P1, P2, P3) for an

connection between two non-adjacent islands.

FF

 =
 5

FF = 5

P1
P2

P3

Distant Connection Island-level routing & Pipelining

width =4

Island 1 Island 2

Island 3

(A) (B)

Figure 5.6: (A) three potential routes for a connection. (B) Each anchor region (in green)
only has 5 Flip-Flops, so the two connections (both of width 4) cannot go through the same
anchor region.

The main constraint in this routing problem is the number of available flip-flops (FFs)

in the anchor regions. Recall in Figure 5.5 that we reserve a thin region between islands to

hold the anchor registers for inter-island nets and each inter-island net has an anchor register.

Therefore, when routing the connections at the island level, we must ensure the participating

anchor regions have sufficient FFs for pipelining all the nets passing through, as illustrated

in Figure 5.6(B).

77

Since the number of islands being mapped to is typically small, we again formulate the

problem in ILP. For each connection, we generate all potential routes with the shortest

Manhattan distance that have at most two bends. For each anchor region between a pair of

adjacent islands, we add a constraint to ensure that the number of passing-through nets is

no greater than the available FFs. We also assign a cost to each route based on the average

resource utilization of the passing islands. The ILP is set up to minimize the total cost in

this path selection problem.

Inserting Anchor Registers (S4). To facilitate timing closure and inter-island routing,

each island will register all input/output signals. Figure 5.7 shows how we insert anchor

registers into the inter-island nets between adjacent islands. We leverage an almost-full

FIFO which asserts the full signal before the FIFO is actually full. This signal increases

the tolerance of the round-trip latency between adjacent islands, which allows us to add a

pipeline register without causing an overflow.

5

almost
full

wr_en

wr_data

full

wr_en

data

empty

read

data

PE PEFIFO

Anchor region

Island 1 Island 2

Anchors

Register each
IO of the island

Figure 5.7: Inserting anchor registers.

Note that we choose to use the ILP formulations because they are sufficiently fast and

scalable for today’s HLS designs and FPGA devices. This is validated by our experiments in

Section 5.10. For future FPGA designs that may become much larger, we can incorporate other

well-known techniques such as multi-level placement [CCS05] and hierarchical routing [YVA07]

to handle the increased complexity.

78

5.4 Parallel Placement

Phase 1 produces an optimized version of the RTL that is floorplanned to the island regions

and anchor regions (Fig. 5.5). In step S2, we determine which PEs are assigned to each island

region; and in step S3 we compute which anchor registers each anchor region accommodates.

In Phase 2, we first synthesize the RTL of each island into the netlist representation (S6).

As all islands are non-overlapping, we are able to run logic synthesis for all islands in parallel.

Next, we place all island regions and anchor regions in parallel based on the previous

floorplanning (S7-S9).

5.4.1 Iterative Placement of Anchors and Islands

Compared to logic synthesis, it is more challenging to parallelize the placement step. Two

neighbor islands that are independently placed should have their interface properly aligned.

This requires the separate placer processes to properly synchronize on inter-island connections.

We adopt an iterative approach to gradually align the interfaces of separately-placed

islands by utilizing the anchor regions between islands. Figure 5.8 sketches the main ideas of

our approach. The intuition is that we lock the placement of all islands and then incrementally

re-place the anchor regions, then alternate their roles in the next iteration.

Iteration 1 (S7). In the first iteration, we determine the initial placement of the islands.

To place an island by itself, the placer needs the locations of all anchors around the island,

which are unknown at the time. So we only impose a partial constraint that each anchor

should be within the anchor region on its corresponding side of the island.

Iteration 2 (S8). With the initial placement of each island, we compute the exact locations

of the anchors between the islands to connect the inter-island nets. This step is also carried

out by parallel placer processes. Each process handles a pair of adjacent islands and places the

anchors in between to best connect both sides. We further elaborate this step in Section 5.4.2.

Iteration 3 (S9). We fine-tune the placement of islands based on the exact anchor locations.

79

Lock the placement
of anchorsBlue box: allowed

area for the PEs

Green boxes: anchors could
be placed anywhere inside

Lock the placement of
islands at the two sides

Re-place the anchors
between two islands Refine the placement

of the islands

Iteration 1:
Initial placement

of islands

Iteration 2:
Place the anchors

between island pairs

Iteration 3:
Adjust island

placement

...

Figure 5.8: Demonstration of the iterative placement.

Since the resulting anchor locations from the first two iterations may differ, iteration 3 further

refines the placements of the islands to best match the latest anchor locations from iteration 2.

Through the three iterations, all islands are placed in a parallel manner. It is possible

to repeat iteration 2 (S8) and iteration 3 (S9) to further improve the overall timing quality.

However, our experiments indicate that applying them just once already achieves a post-

placement frequency of 400 MHz.

5.4.2 Anchor Placement by Min-Cost Matching

Motivation. While we use the standard placer for iterations 1 and 3, we formulate the

anchor placement problem (iteration 2) as a min-cost matching problem. Iteration 2 places

the anchors based on the placement of the islands on the two sides. First, since the anchor

region is very thin1, it is effectively a 1-D placement problem and the solution space tends to

be small. Second, using the standard placer would incur unnecessary overhead in compile

time as it is optimized for general situations. Finally, we need control in a finer granularity

1Typically, an anchor region requires 1-3 FF columns, about 1/25 the width of an island.

80

to make sure that all anchors are exactly inside the feasible regions.

A

B

C

D

src of
anchor 1 sink of

anchor 1

src of
anchor 2

sink of
anchor 2

A B C D

Anchor 1 1 1 2 3

Anchor 2 4 3 2 1

Synthetic cost of placing an anchor to a Flip-Flop

4 potential Flip-Flops for anchors

island 1

FF-1 FF-2 FF-3

clock

0.5 ns
delay

3 ns 2 ns

island 2

Figure 5.9: Illustration of the anchor placement formulation.

Method. We propose a simple yet effective distance-driven placement formulation specifically

for iteration 2 (S8), which can achieve a similar timing quality compared to a standard placer

but with a much shorter running time. Given an anchor, we assign a heuristic value for

each FF in the anchor region representing the cost to place the anchor onto that FF. Then

we minimize the total cost of placing all anchors. This formulation is a min-cost matching

problem that can be solved in polynomial time [Che10]. Specifically, we formulate the problem

in linear programming (LP), which in this case guarantees integer solutions because the

constraint matrix is totally unimodular [JZP08].

We use a heuristic method to determine the cost function. To place an anchor onto an

FF, the cost consists of two parts: (1) the total wirelength from the anchor to the source

and sink cells; (2) the wirelength difference between the longest and the shortest net of the

anchor. We sum the two parts with empirical weights. This distance-based heuristic will

push the anchors close to their source and sink cells and avoid being too close to one cell but

far away from the other.

Consider the example in Figure 5.9, where we need to place two anchors to four potential

FFs (A, B, C, and D) between the islands. Since the source and sink of anchor 1 are at the

top, A has a smaller cost than the others. Likewise, D has the smallest cost for anchor 2.

Our LP placement scheme for the anchors is on average 20× faster than the commercial

placer and the timing quality is similar.

81

5.5 Clock Routing

5.5.1 Problem Description

After we finalize the placement of the islands and anchors, we next aim to route the islands

in parallel. Since all inter-island connections are anchored, we only need to route each island

to connect to its surrounding anchors. However, we need to take special care of the clock

signal because it is a global net that fan-outs to all islands.

5.5.2 Challenges and Previous Approaches

Clock routing and data signal routing are interdependent. In a general non-split routing

process, the router will first generate an initial clock tree and then route all the data signals.

Later, the router may adjust the clock tree for timing optimization.

However, when we route standalone islands separately, the router is unaware of the final

clock tree for the entire design. If the island is routed under a different clock tree compared

to the final clock tree, the variation in the clock skew will cause timing degradation as well

as hold violations. Consider a simple example where the clock signal may enter an island

either from the left side or the right side. If the island is routed assuming the clock is from

the left, but the actual clock signal arrives from the right in the final stitched design, then

the variation in clock skew will cause timing degradation.

A common solution is to first route each island using estimated clock delays and skews;

after all islands are combined, the router will globally finalize the clock and re-route the

islands to deal with clock skew variations [Xil21b]. However, this approach requires an

additional global routing step that compromises the compile time.

To address this challenge, we propose dedicated clock management steps to ensure a

consistent clock skew before and after the stitching process. Our clock routing flow consists

of three steps, which are elaborated on in the following subsections. Figure 5.10 visualizes

the key concepts in our clock management scheme.

82

Please Do Not Distribute

19

Island 2Island 1 Island 1 Island 2

Parallel Task 1 Parallel Task 2After Phase 1 Transformation

a2a1a

b b1 b2

Island 1 Island 2

anchor

clock trunk

clock leaf

clock
buffer

clock
entry point

clock source

Figure 5.10: Route different segments of the clock separately and maintain a stable clock
skew in one pass. Step 1: route the clock trunk. Step 2: lock the delay level of the clock
buffers for anchors. Step 3: route each island and merge with the clock trunk.

5.5.3 Routing the Clock Trunk (S10)

The goal of this step is to route from the clock source to the clock entry points of each island.

We refer to this route segment as the clock trunk. Here we aim to minimize the clock skew

among those entry points. To do so, we first route the clock signal from the clock source to

the geometry center of all islands. From there, we fan-out the clock to reach all islands while

minimizing the skew. The obtained clock trunk will be used to constrain the clock routing of

each island.

5.5.4 Locking the Clock Buffers for Anchors (S10)

With the clock trunk, we have determined the clock entry points for each island. Since two

adjacent islands will route to the same set of anchors in between, we need to disable the

time-borrowing optimization [Fis90, YM05, DL09] on the anchor registers to prevent clock

skew variations of inter-island paths.

In modern FPGAs, the clock network is equipped with buffers that have configurable

delay levels to fine-tune the clock skews [Xil21a, KS16]. The time-borrowing optimization can

utilize the configurable buffers to redistribute the timing slack between consecutive pipeline

stages, as demonstrated by Figure 5.11.

In our flow, we separately route two adjacent islands that connect to the anchors be-

tween them. The two independent router processes may result in different time-borrowing

83

A

B

C

D

src-1
sink-1

src-2sink-2

A B C D

Anchor 1 1 1 2 3

Anchor 2 4 3 2 1

Synthetic cost of placing an anchor to a Flip-Flop

4 potential Flip-Flops for anchors

2 adjacent islands

FF-1 FF-2 FF-3

clock

0.5 ns
delay

3 ns 2 ns

Figure 5.11: By introducing an artificial clock delay of 0.5 ns to FF-2, the critical path is
reduced from 3 ns to 2.5 ns.

schemes and thus different clock buffer configurations for the shared anchors. Such potential

inconsistency in the clock delay levels for the shared anchors will cause unpredictable timing

degradation when the islands are stitched together in the final phase.

To prevent this potential issue, we lock the delay level to the default value for all clock

buffers associated with anchor registers.2 To mitigate the negative impact of this disabled

optimization, two aforementioned techniques are beneficial: (1) the source and sink of each

anchor net are both pipelined; (2) the local placement optimization performed after fixing

the anchor locations (S8).

5.5.5 Routing and Merging the Local Clocks (S11)

With the setup from the previous steps, we are ready to route each island (S11). We enforce

the constraint that the local clock net starts from the pre-determined entry point and prevent

the clock buffers for anchors from being adjusted. A routed island will contain a complete

clock route, including the clock trunk. During the final island stitching, redundant clock

trunks are unified (S13).

Summary. The clock management steps (S10, S11) ensure that the clock skew remains

consistent before/after we stitch the islands together. Since the clock entry points within an

island are the same before and after the stitching, the clock skew for intra-island timing paths

will remain unchanged. In addition, since we lock the delay level for the anchor registers, the

2In Vivado, this can be achieved by setting the FIXED ROUTE property of the clock net.

84

clock skew for inter-island timing paths is also stable. Section 5.10 shows that without the

clock management, we will run into severe hold violations; meanwhile, the measured impact

of this method on the achievable frequency is negligible.

5.6 Stitching and Inter-Island Routing

5.6.1 Island Merging (S12, S13)

In the previous sections, we present how to place and route the islands in parallel. As a

result, we will obtain separate post-routing checkpoints, each for one island. Next, we need

to assemble them together into the complete physical implementation. While this step is

conceptually simple, it is not supported by off-the-shelf commercial tools. We utilize the

open-source RapidWright framework [LK18] to edit the netlists and assemble the physical

information of the island checkpoints. RapidWright is an open-source framework that enables

netlist and implementation manipulation of modern AMD/Xilinx FPGA and SoC designs.

The checkpoint of each island also includes its surrounding anchor registers. Thus when we

stitch the netlists together, we need to unify (or merge) the duplicated anchor registers, as the

same anchor is included in the checkpoints of both islands on its two sides. Since the physical

information of the duplicated anchors is consistent after the parallel placement (Section 5.4),

we can safely merge them without causing conflicts in anchor locations. Further, our clock

routing scheme (Section 5.5) ensures that different islands are routed under the same clock

trunk, thus the clock net can also be merged without conflicts (S13).

5.6.2 Inter-Island Routing (S14)

After the individual checkpoints are assembled together, we need to resolve the routing

conflicts in the anchor regions. This is the last step of the RapidStream flow.

Problem Description:

Figure 5.12 shows the low-level routing resources in the anchor region and why routing

85

conflicts may arise. Since the switch boxes in the anchor region are shared, the two router

processes may both exploit the same physical wire segments when they separately route

islands 1 and 2. According to our profiling, the conflicting nets in the anchor region amount

to 5-10% of all the nets. Those conflicts will be exposed after we glue the post-routing

checkpoints of the islands together.

Figure 5.12: Detailed view of anchor region. Only one switch box is shown.

One potential solution is to resolve the inter-island conflicts pair by pair. Figure 5.13

illustrates why this will not work. In Figure 5.13 we could try to separately re-route the

conflict nets between islands (1, 2) and between islands (2, 3). However, while pairwise

re-routing resolves the anchor region conflicts, it will lead to new conflicts within the islands.

In Figure 5.13, assume the black and the yellow net are separately routed by two router

processes, conflicts may show up inside the islands (the red segment).

Switch
Box

(conflicts)
Island 1

(conflict-free)
Island 2

(conflict-free)

anchors

……

……

a1
a2

Island 1

Island 2 Island 3

Anchor Region

Figure 5.13: Pairwise inter-island routing will not work because it may cause conflicts inside
the island.

Therefore, we have to do a global routing pass to fix the inter-island conflicts. We present

two solutions for this routing task. One set of experiments uses the Vivado router in order to

maintain the best performance, while the other solution relies on a customized open-source

routing solution for the best compile time.

86

Commercial routers can resolve inter-island conflicts at the expense of some runtime

overhead because they are optimized for general-purpose routing. The Vivado router spends

about 1/4 of the time for initialization; 1/4 of the time for the actual routing and timing

closure; and 1/2 of the time looping through a set of optimization steps even after timing

closure.

However, our routing problem has two unique features. First, 90-95% of the nets (intra-

island) are fully routed and have been well optimized for timing. Second, the conflicts are

clustered in the anchor region between islands. In this case, we can potentially utilize the

special properties of the problem for further speedup.

5.7 Accelerate Routing with Customized Partial Router (Rapid-

Stream 1.0)

For this unique problem, we build a lightweight partial router that only rips up and reroutes

the conflicting nets from/to the anchor regions. Meanwhile, the partial router preserves other

fully routed nets, i.e., masking the routing resources used by those nets and skipping any

processing on those nets.

One challenge of preserving the non-conflicting nets is how to determine suitable sizes for

the bounding boxes. During the routing process, the bounding boxes restrict the accessible

routing resources for the net. Usually, their sizes are determined based on the pin locations of a

net. A large bounding box allows more flexibility for the net but will incur extra runtime; while

a small bounding box limits the routability but also reduce the route time. In a typical routing

process with no preserved nets, the effective bounding boxes for all nets could be determined

in advance and will remain fixed during routing [GA11, LGW14, WDT17, HK18, ZVS20].

However, the conventional approach does not work in our situation due to the reduced routing

flexibility after we preserve all the intra-island nets.

Figure 5.14 shows a case where a net needs long horizontal routing detours outside of its

bounding box. This is because there is resource blockage within the initial bounding box

87

resulting from the preserved nets. Without expanding the bounding box, the net cannot be

routed. There are also cases where vertical long routing detours are needed for successful

routing. Therefore, it is difficult to determine suitable bounding boxes for all the target nets

before routing.

a1

Initial bounding box

Initial bounding box

Increased bounding box

Preserved
routes

Island

anchor

Figure 5.14: Required long routing detours outside of the initial net bounding box.

To address this issue, we use a simple heuristic to start with small bounding boxes and

incrementally increase the box size. Starting from the second iteration, our router expands

the four sides of the bounding box for each net that will be ripped up and rerouted.

We achieve the goal by customizing an open-source router called RWRoute [ZML21].

We upgrade its partial routing function to be timing-driven and enable the tool to expand

bounding boxes at runtime. With a single thread, our customized router achieves a 4×

speedup compared to the Vivado router.

As of now, RWRoute relies on an open timing model [MNK19] to achieve timing-driven

routing. However, this model provides only the slow path delay estimation of routing resources.

As a result, RWRoute could not resolve hold violations which require the fast path delay

estimation of the routing resources. We present a temporary workaround in the next section

to eliminate hold time requirements at the expense of some performance.

Workaround for Hold Violation in Solution 2

Since the customized RWRoute will only route the nets to/from the anchor registers,

we make all anchor registers to be triggered by the negative clock edge, e.g., in Figure 5.7,

modify the registers in the green box to be triggered by the negative clock edge while keeping

88

everything else triggered by the positive clock edge.

Pipeline Data Transfer Logic

9

src anchor

t0

thold

tdelay

anchor
triggered

signal arrives at
t0 + tdelay

tsetup

src triggered

anchor
triggered

Figure 5.15: Make anchors trigger on negative clock edges.

Figure 5.15 depicts the idea when the anchor is the signal sink. The same reasoning

applies when the anchor is the signal source. Assuming a zero clock skew, the source FF is

triggered at t0 and the anchor FF is triggered at t0 + tperiod/2 to transfer Signal i. The signal

will arrive at the anchor at t0 + tdelay. For Signal i to be properly captured at the anchor FF

while still not interfering with the capturing of Signal i− 1, both Equation (5.2) and (5.3)

must be satisfied.

t0 + tslow delay < t0 + tperiod/2− tsetup (5.2)

t0 + tfast delay > t0 − tperiod/2 + thold (5.3)

Equation (5.2) and (5.3) can be reduced to (5.4) and (5.5):

tperiod > 2(tsetup + tslow delay) (5.4)

tperiod > 2(thold − tfast delay) (5.5)

Therefore, with negatively-triggered anchors, we can always increase the clock period to

satisfy the conditions and thus avoid any setup/hold violation on the anchor nets when

RWRoute re-routes them to fix conflicts in the anchor region. Meanwhile, the intra-island

nets are routed by Vivado and are free of hold violation.

Note that this technique of clock phase shifting is a temporary measure, which will no

longer be needed if an open fast-path timing model is provided. This experiment shows us

the potential for the best runtime and advantages of an open-source partial router.

89

5.8 Pre-Partial-Routing of Inter-Island Nets (RapidStream 2.0)

The divide-and-conquer approach used in Rapidstream 1.0 requires a combining phase, which

is time-consuming. Since the RWRoute approach in the previous section does not yet support

hold time modeling, we have to rely on a standard router for the combining phase, which

becomes a compile time bottleneck. In this section, we present a different approach to

accelerate routing that generates fully legal routing results. Instead of fixing routing conflicts

in the anchor region after routing the island, we partially route the anchor nets at the

beginning. Figure 5.16 shows the process.

Figure 5.16: Partial routing of the inter-island nets using a skeleton design. We first do a
complete routing of the nets from the anchor registers to the source/sink cells inside the
island, then we prune away most routing nodes inside the island and leave the net in an
antenna state. The endpoints of the inter-island nets are viewed as virtual partition pins.
Later when we route the island, the router will connect the island cells to those partition
pins.

Figure 5.16(A) shows the pre-built shell that includes the PCIe, DMA, and HBM subsystem

IPs. Then in Figure 5.16(B) we partition the unused (white) area into the anchor regions

(light red) and disjoint island regions (white). To route the inter-island nets efficiently, we

prune away the majority of the logic elements in the island region and only preserve the

source and sink nodes for the anchor registers. This significantly speeds up the routing of the

inter-partition nets.

Instead of preserving the full route of the inter-partition nets, we trim away the majority

of the routing of each inter-island net and only preserve the part between the anchor register

and a virtual partition pin inside the island, as shown in Figure 5.16(C). In this way, we

90

can later route each island independently and connect the inner-island logic to the virtual

partition pins without causing a conflict in the anchor region. The routing of each individual

island could be further accelerated using the abstract shells shown in Figure 5.16(D), which

prunes away all irrelevant elements and only preserves the cells that directly connect to an

island.

5.8.1 Avoid Routing Conflicts

Now that we are partially routing the inter-island nets using a skeleton design, the router

will not consider the routability of other placed elements inside the island. Therefore, it is

possible that the routing results with the skeleton design will not be compatible with the

full island, because the routes of the anchor nets may block the only way to reach certain

resources. For example, in AMD/Xilinx FPGAs, certain routing node has several outputs,

which we refer to as multi-fanout nodes. If we use such a routing node between the anchor

register and the virtual partition pin, the logic elements at the other outputs of the node will

be blocked and become unroutable. Figure 5.17 shows an example. To route from the source

FF to the sink FF, three routing nodes are used. However, node 2 is a multi-output node

that has one input and two outputs. If node 2 is used for the net, then the net connecting

to the blocked FF (shown in red) can not be routed without causing conflicts. In a normal

flow where the router has full knowledge of the design placement, the router will avoid using

such nodes. But in our situation, we prune away the majority of the island logic to speed up

the routing of inter-island nets, thus the router has no knowledge of whether a multi-output

node will cause conflicts.

Another situation is shown in Figure 5.18. For a Super Long Logic (SLL) node used to

cross the die boundary, it is shared among multiple connections. If a net occupies the SLL

node in its routing, then certain Laguna FF will be made unreachable.

Problems like this will not occur in a conventional routing process where the router has full

knowledge of all placed elements and the router will prevent a route to block other elements

as the first priority. However, in our flow the routing of inter-island nets is performed out

91

Figure 5.17: Example of a route with a multi-output node. The red FF is made unreachable
by other nets since routing node 2 has been occupied.

Figure 5.18: Example of a route with an SLL node. The red FFs are made unreachable since
the SLL node is the only input/output connection to them.

of the placement context, thus we must add extra constraints to prevent such problems. In

the actual routing process, multi-output nodes are mostly used to connect the endpoints to

the switch boxes. Thus we enforce a gap of one row of resources between the island region

and the anchor region during placement. Meanwhile, we will pre-collect all the SLL nodes

occupied by the static shell using RapidWright [LK18] and mark the corresponding laguna

registers as prohibited in placement.

92

5.9 Comparison of RapidStream 1.0 and 2.0

The core difference between the two versions is the order between routing intra-island nets and

routing inter-island nets. From an algorithmic perspective, there is not too much difference

and both methods should work. The major reason that pushes us for the change is whether

the split-compilation flow could be efficiently supported by existing tools. As we do not

have a router that could quickly fix the local routing conflicts (RWRoute can, but it does

not support hold time modeling yet), we explore and pivot to the 2.0 fashion that utilizes a

standard router in a much more efficient way to achieve our goal.

Another practical advantage of RapidStream 2.0 is that we can enable more re-use of

robust components of a standard FPGA CAD flow. As we switch to routing the inter-island

nets first, RapidStream 2.0 could be built on top of the AMD/Xilinx Partial Reconfiguration

flow, which is now branded as Dynamic Function eXchange (DFX). The anchor region will

become the static region and each island will become a dynamic region in the DFX flow.

The PCIe and HMSS parts are also part of the static region, and we utilize the nested DFX

feature to create multiple layers of static regions. The DFX flow will ensure the isolation

of the static and the dynamic region and performs clock management as an inherent step,

which makes our flow more robust. Moreover, Rapidstream 2.0 uses the abstract shell feature

of DFX to quickly set up a customized routing environment for each island and prunes away

irrelevant logic elements that are not directly connected to the island. As a result, routing

an island in an abstract shell is significantly faster than routing in a full shell. It is through

the DFX environment we are able to integrate RapidStream 2.0 with the AMD/Xilinx Vitis

accelerator workflow, so that we can re-use the host-device communication infrastructure to

execute our generated bitstream on a real FPGA board.

93

5.10 Evaluation of RapidStream 1.0

5.10.1 Implementation Details

We implement the key modules of RapidStream 1.0 in Python with approximately 8K lines

of code (LoC). We evaluate RapidStream using four servers, each with the 56-core Intel Xeon

E5-2680 v4 CPU at 2.40GHz and 128 GB of memory. All servers use the Ubuntu 18.04

operating system. In our experiments, we target the Xilinx UltraScale+ U250 FPGA, which

consists of four dies that are stacked vertically. The target frequency is 400 MHz (i.e., a clock

period of 2.5 ns). The CAD tools used in the RapidStream flow are summarized as follows.

Phase 1: We use Vivado HLS 2020.1 to generate the initial RTL, then RapidStream

floorplans the HLS dataflow design (S1, S2). Based on the floorplanning results, RapidStream

post-processes the RTL generated by Vivado HLS to insert the inter-island pipelines (anchor

registers) and rebuilds the RTL hierarchy for each island (S3-S5).

Phase 2: We use Vivado 2021.1 to synthesize each island (S6). During placement, we first

use Vivado (place design) to get the initial island placement (iteration 1, S7); then use our

ILP-based method to place the anchors (iteration 2, S8); finally we switch back to Vivado

(phys opt design) to incrementally optimize the placement of islands (iteration 3, S9). In

island routing (S10, S11), we pre-build the clock trunk and lock the clock buffer (set property

FIXED ROUTE)3 for anchors (S10), which are passed as constraints to the Vivado router (S11).

We use the ”Explore” directive in Vivado.

Phase 3: We build a stitcher based on RapidWright to edit the netlist of islands and put

them together (S12, S13). We then use Vivado for inter-island routing (S14). We separately

compare Vivado and our timing-driven partial router RWRoute on S14.

Island Organization: We currently employ an empirical scheme to organize the U250

FPGA fabric as 32 islands in eight rows (four islands per row), where each island has a

3Please refer to our open source repository for more details.

94

uniform height of 120 CLBs.4 Between adjacent islands, we reserve three empty columns (or

ten rows for vertically adjacent islands) of CLBs as the anchor region to accommodate the

anchor registers. The width of the anchor region is approximately 1/25 as that of an island.

At die boundaries, we use all Laguna columns as the anchor region (see Figure 5.5).

Two-Level Stitching: Specifically for Xilinx UltraScale+ devices, we employ a two-level

method in Phase 3. We first stitch the island-level checkpoints into die-level checkpoints and

route the inter-island nets; we then stitch together all the die-level checkpoints into the final

checkpoint. Note that in the second stitching step, the die-level checkpoints can be readily

assembled without any re-routing. As shown in Figure 5.5, the anchor regions at the die

boundary of the Xilinx UltraScale+ FPGAs are different, where the islands on the two sides

of the die boundary rely on the dedicated Laguna channels for cross-die signals. Since the

actual wires within the channel are point-to-point and separated from each other [Xil20c],

there are no conflicts when die-level checkpoints are merged.

Distributed Execution: Each step of RapidStream is launched as soon as its input is ready.

For example, the placer process for an island will start immediately after the corresponding

synthesis process has finished, and no synchronization is needed to wait for all synthesis

processes to complete. Likewise, the process to optimize the island placement will start as

soon as the dependent anchor placement processes have exited and all surrounding anchors

have been placed.

5.10.2 Benchmarks

To evaluate RapidStream, we use six large-scale dataflow designs listed in Table 5.1. We

denote the number of PEs as ”#V” and the number of FIFO connections between PEs as

”#E”. The matrix multiplication (MM), CNN, L/U decomposition (LU), and MTTKRP

are from the AutoSA project [WGC21]; the 2-D and 3-D stencil accelerators are from the

SODA project [CCW18].

4Each CLB in Xilinx FPGAs contains 16 FFs. Note that the width of islands may vary slightly based on
clock region boundaries.

95

The benchmarks are mapped onto the target U250 FPGA, which contains 5376 BRAMs,

12288 DSPs, 3456K FFs, and 1728K LUTs. The mapped designs consume 60-70% of the

available resources.

Table 5.1: Benchmarks for RapidStream evaluation.

Name # V # E Topology DSP % BRAM % FF % LUT %
MM 463 854 2-D Mesh 62 23 34 69
CNN 439 813 2-D Mesh 59 33 32 50
LU 1691 4483 Triangular 20 41 26 66

MTTKRP 360 760 2-D Mesh 66 33 30 48
2-D Stencil 266 1562 Irregular DAG 52 21 27 45
3-D Stencil 1314 2866 Irregular DAG 64 39 35 53

5.10.3 Runtime Reduction

Figure 5.19 shows the comparison of runtime and the achievable frequency between the vanilla

Vivado flow and RapidStream. Since RapidStream will insert additional pipelining to the

RTL, we consider two Vivado baselines: (1) the original RTL generated by HLS and (2) the

version pipelined by RapidStream.

R
un

tim
e

(m
in

)
Fr

eq
ue

nc
y

(M
H

z)

0

200

400

600

800

1000

1200

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream Vivado + Pipelined RTL Vivado + Orig RTL

0
20
40
60
80

100
120
140

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream with Vivado RapidStream with RWRoute

Fr
eq

ue
nc

y
(M

H
z)

R
un

tim
e

(m
in

)

Figure 5.19: Comparison of the runtime and achievable frequency between RapidStream and
Vivado.

96

By default, we use Vivado for inter-island routing (S13) to pursue the best timing quality.

In this case, we achieve a 5-7× speed up and reduce the otherwise >10-hour compile time to

around 2 hours.

In terms of frequency, we achieve better results than both baselines. Since each island is

much smaller than the entire design, Vivado can better optimize the timing of each island.

The only exception is the LU benchmark, which has many division operations that become

the critical paths in both flows.

Figure 5.20 shows the CPU and memory utilization when we use RapidStream to compile

the same CNN design as in Figure 5.1. While Vivado uses 2.1 cores on average and runs for

about 14 hours, RapidStream uses 26 cores on average and runs for about 2 hours.

0

50

100

150

200

250

M
em

or
y

(G
B)

0

20

40

60

80

100

0 7 15 22 29 37 44 51 59 66 73 81 88 95 103 110 117 125

C
or

es

Time(min)

Inter-island conflict
resolution (Vivado)

Stitching into die-
level checkpoints

Stitching into final
checkpoints

Phase 2 Phase 3 (with Vivado router)Phase 1

Figure 5.20: CPU and memory usage of the RapidStream run on the CNN design. No
re-route is needed after die-level stitching (Sec. 5.10.1).

Figure 5.21 breaks down the parallel compilation process of Phase 2 for the CNN design

by plotting how many islands are active in each step at a given time. For example, after 11

minutes, there are 24 islands in synthesis while 8 islands have started placement. Notably,

the asynchronous execution of RapidStream alleviates the load imbalance issue within each

step.

97

0

10

20

30

40

0 3 5 8 11 13 16 19 21 24 27 29 32 35 37 40 43 45 48 51 53 56 59 61

N
um

be
r o

f I
sl

an
ds

Synthesis (S6) Island Placement (S7) Island Placement Opt (S9)
Island Routing (S11) Anchor Placement (S8)

(min)

Figure 5.21: Number of active jobs in Phase 2.

5.10.4 Fast Inter-Island Routing

Figure 5.20 shows a long tail in compile time during Phase 3, where we use Vivado to resolve

the inter-island routing conflicts. As mentioned in Section 5.6.2, we customize the open-source

RWRoute to further accelerate this step. Figure 5.22 shows the comparison between using

the customized RWRoute and using Vivado for S14.

On average, we achieve a 4× speedup over the Vivado router, reducing the conflict

resolution time from about 25 minutes to 6 minutes. The RWRoute flow achieves a lower

frequency as it relies on negatively-triggered anchors (Section 5.7) to prevent hold violations,

which sacrifices the setup slack. This performance loss can be avoided if a timing model with

fast-path delays is available.

In addition to reducing routing time, we further minimize the unnecessary interactions

between Vivado and RapidWright through reading/writing checkpoints. Since our custom

router is also implemented under the RapidWright framework, we can directly pass the

stitcher’s output in memory to RWRoute. This can also alleviate the long tail issue in the

compile time of Phase 3. By our projection, we can reduce the end-to-end time reported in

Section 5.10.3 down to ∼80 minutes, which is a 7-10× speedup over the Vivado flow.

5.10.5 Anchor Placement

In our three-iteration approach to placing the islands and anchors (S7-S9), we propose a

min-cost matching formulation for the anchor placement (iteration 2, S8). We use the MM

98

R
un

tim
e

(m
in

)
Fr

eq
ue

nc
y

(M
H

z)

0

200

400

600

800

1000

1200

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream Vivado + Pipelined RTL Vivado + Orig RTL

0
20
40
60
80

100
120
140

CNN LU MTTKRP MM 3D Stencil 2D Stencil

0

100

200

300

400

500
RapidStream with Vivado RapidStream with RWRoute

Fr
eq

ue
nc

y
(M

H
z)

R
un

tim
e

(m
in

)

Figure 5.22: Runtime comparison in conflict resolution.

benchmark to compare our lightweight placer with the Vivado placer. With 32 islands, there

are 52 island pairs, and we will have 52 placer processes, each of which handles one pair of

islands.

In terms of speed, the min-cost matching placer takes less than a minute to place the

anchors between pairs of islands, while it takes Vivado 21 minutes on average (including the

time to read the checkpoints). As for the timing quality, both placement schemes can achieve

above the 2.5 ns target period after three iterations, as shown in Figure 5.23. Note that the

timing report is based on placement-level timing estimation by Vivado.

In some cases, our min-cost matching placement even achieves higher setup slacks than

Vivado. This is because our min-cost matching formulation will always place the anchors

at die boundaries onto the die-crossing channels to balance the signal delays on two sides.

However, Vivado often places the anchors outside the die-crossing channels as the timing

target is still met.

After we place all the anchors (iteration 2), we will perform local optimization of the

island placement (iteration 3). We measure the setup slack of all nets from/to anchors to

check the placement quality of our min-cost matching placement formulation. Based on

Vivado’s timing report, the average setup slack of anchor nets after iteration 2 is 0.55 ns

(when targeting 2.5 ns or 400 MHz), while iteration 3 improves the average slack to 0.69 ns.

99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sl
ac

k
(n

s)

Place anchors with RapidStream Place anchors with Vivado

Figure 5.23: Post-placement slack between using the Vivado placer or the min-cost matching
placer for anchor placement.

5.10.6 Clock Management

Here we demonstrate the advantages of preserving the clocking trunk using a number of

experiments with the MM benchmark. Figure 5.24 shows the timing degradation when we

stitch the islands together and route the clock net afterward. In this case, we route each

island without preserving the clock trunk. The router relies on an estimation of the clock

skew when routing the data signals. As a result, the actual clock skew after stitching may be

different. As shown by the figure, all islands run into hold violations after stitching. Notably,

the setup/hold slack times deteriorate by about 0.25 ns for the islands, which will almost

always cause hold violations.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID
Setup Slack Drop Hold Slack Drop

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID

Figure 5.24: Timing loss after stitching w/o clock management.

Figure 5.25 shows the setup slack differences when an island is routed with preserved

clock trunk. This is compared to the reference case used in Figure 5.24 without any clocking

100

constraints. The drop in setup slack is at most 0.15 ns, which is much smaller than that

in Figure 5.24. The key takeaway is that we avoid the setup/hold loss during stitching by

keeping the clock consistent.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID
Setup Slack Drop Hold Slack Drop

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ns

Island ID

Figure 5.25: Clock preservation reduces timing degradation.

5.11 Evaluation of RapidStream 2.0

In this section, we describe the implementation and evaluation of RapidStream 2.0.

5.11.1 Implementation Details

RapidStream 2.0 takes a TAPA [GCW21a] dataflow program as input. Compared to Version

1.0, the benefit of using a TAPA program as input is that the TAPA compiler will help check

if the input is a valid dataflow program. It can also take in a pre-built shell that exposes

AXI interfaces to the TAPA dataflow program. In our prototype, we build a shell that uses 4

HBM channels on the AMD/Xilinx U280 FPGA, shown in Figure 5.26. The rightmost block

is provided by the Vitis framework which includes the PCIe and DMA module. The logic

surrounding the PCIe block is the HBM subsystem that instantiates 4 HBM channels. For

now, we adopt a fixed device partition strategy where the FPGA is divided into 6 islands.

We will discuss our plan in the future work section to make the shell more general. All

computation jobs are executed on only one Intel Xeon server with 16 physical cores and

256 GB of memory.

101

Figure 5.26: An example shell for RapidStream 2.0 corresponding to Figure 5.16(C).

Table 5.2: Benchmarks for RapidStream 2.0 evaluation.

LUT FF DSP BRAM # Task # FIFO
gaussian-int 32% 14% 27% 46% 840 2440
gaussian-float 52% 40% 77% 13% 232 648

5.11.2 Benchmarks

We have evaluated RapidStream 2.0 with two benchmark designs that are compatible with

our prototype shell with 4 HBM channels enabled. The two designs implement accelerators

for stencil computation and are generated using the SODA compiler. Table 5.2 shows the

details of the two designs. Table 5.3 shows a detailed comparison of the compile time between

RapidStream 2.0 and Vivado. For each benchmark design, we run three groups of experiments:

(1) compile by the vanilla Vivado, (2) compile by Vivado but with the floorplan guidance

from AutoBridge [GCW21a], (3) compile by RapidStream 2.0. The table records the time of

each major step and the final frequency.

Compared to the vanilla Vivado flow, RapidStream 2.0 is 7.5× and 5.1× faster on the two

designs while achieving even higher frequency. RapidStream 2.0 could achieve more than 300

MHz, but in our prototype shell, we only set the clock to 300 MHz. We observe that adding

102

Table 5.3: Detailed comparison between RapidStream 2.0 and Vivado

Test \ Time (min) Synthesis Placement Routing Total Time MHz
gaussian-int-vivado 74 (6.2×) 131 (6.6×) 243 (4.6×) 455 (5.1×) 268
gaussian-int-vivado-autobridge 80 (6.7×) 93 (4.7×) 143 (2.7×) 386 (4.3×) 300
gaussian-int-rapidstream 12 20 53 89 300
gaussian-float-vivado 196 (9.6×) 236 (6.7×) 454 (7×) 897 (7.5×) 237
gaussian-float-vivado-autobridge 208 (10.4×) 220 (6.3×) 248 (3.8×) 683 (5.7×) 300
gaussian-float-rapidstream 20 35 65 120 300

floorplan hints to Vivado could slightly reduce its optimization time, but RapidStream still

achieves 5.7× and 4.3× speedup with the same final frequency.

Note that the speedup on routing is noticeably smaller than on placement. This is because

we have the extra overhead to route the inter-island nets and create the abstract shells. A

more detailed time breakdown is shown in the next subsection.

5.11.3 Profiling of RapidStream 2.0 Compilation

Figure 5.27 shows the CPU and memory usage of the RapidStream 2.0 compilation process.

On average, 10.3 CPU cores are active and the peak memory usage is around 90 GB. The

metrics have a difference compared to RapidStream 1.0 because the 2.0 prototype only

partitions the design into 6 islands.

As we construct a skeleton design for the routing of inter-island nets, the time of this

step is acceptable even with a standard router (about 15 min). We are in the progress to

update RWRoute for this task and our initial profiling shows that we can reduce this step to

around 3 minutes. Currently, the abstract shell generation also takes around 15 minutes and

it remains future work to speed up this step with a customized logic pruning tool based on

RapidWright.

Still, the routing overhead in RapidStream 2.0 is significantly lower than RapidStream 1.0.

We test the gaussian-float design using the RapidStream 1.0 flow. RapidStream 1.0 needs

almost three hours to fix the inter-island routing conflicts after routing the islands; while

RapidStream 2.0 routes the inter-island nets first with a skeleton design, which only requires

about 15 minutes for routing and 15 minutes for abstract shell generation. As a result,

103

Figure 5.27: Profiling of the CPU and memory usage in RapidStream 2.0 for the gaussian-float
benchmark.

RapidStream 2.0 is almost 2× as fast as RapidStream 1.0 for this design. Again, we want to

note that such a difference is only due to practical engineering factors, and RapidStream 1.0

could be just as efficient if the router is optimized toward local routing fixes.

5.12 Conclusion

RapidStream is an automated split compilation flow for HLS dataflow designs. It features

tight integration of HLS-level pipelining and physical design automation to enable split

compilation while maintaining a high timing quality. Compared to a commercial toolchain,

RapidStream achieves about 5-7× reduction in compile time and up to 1.3× increase in

frequency for HLS dataflow designs. In addition, our results show potential for up to an order

of magnitude speed-up by leveraging customized open-source routers.

104

CHAPTER 6

Conclusion

Despite the increasing adoption of HLS for its design productivity advantage, it still has

a long journey to achieve a high QoR out-of-box. Meanwhile, the prolonged compile time

continues to curb the productivity of the FPGA development process. In this thesis, we

identify that we can enable additional timing optimization and compile time reduction by

marrying the high-level flexibility of HLS with the low-level physical information. In this

section, we first summarize how we address the QoR and compile time challenge of FPGA

EDA tools by co-optimization of HLS and physical design. Then we discuss the potential

future research directions. Finally, we present the impacts our methods have achieved.

6.1 Thesis Summary and Contributions

Although (HLS) tools have simplified the design processes by allowing users to express their

designs in high-level languages, existing FPGA development tools are still troubled by the

limited achievable frequency and the long end-to-end compilation time. To address these two

challenges, this thesis presents methods and explorations to reconsider how HLS should be

organically composed with the backend physical implementation process.

Unlike the traditional methodology, where HLS compilation is completely decoupled from

the downstream process, we propose to center the placement and routing steps around HLS

tightly. The core insight is that the existing CAD flow does not utilize the flexibility of

HLS to insert additional pipelining without affecting overall functionality. By guiding the

lower-level placement and routing step with the high-level information of HLS and by utilizing

HLS’s pipeline flexibility to fix critical paths, we could have significant improvement in QoR

105

and compilation time. Built around such a core idea, the thesis includes three major parts.

We first explore the timing optimization at the HLS stage alone; then we expand our scope

to investigate the co-optimization of HLS pipelining and floorplanning; finally, we take one

step forward to enable parallel compilation on top of our HLS-floorplan co-optimization.

First, the thesis proposes methods to improve the inherent timing quality of the HLS-

generated RTL. We study and classify the timing issues observed in a diverse set of real-world

FPGA HLS designs and we generalize three major types of broadcasts in HLS-generated

designs. The common broadcasts include high-fanout data signals, pipeline flow control

signals, and synchronization signals for concurrent modules. We propose a set of effective

yet easy-to-implement approaches to address the issues. Our proposed approaches include

broadcast-aware scheduling, synchronization pruning, and skid-buffer-based flow control. Our

experimental results show that our methods can improve the maximum frequency of a set of

nine representative HLS benchmarks by 53% on average. In some cases, the frequency gain is

more than 100 MHz.

Next, we present techniques that couple HLS compilation with the floorplanning step. We

propose AutoBridge, an automated framework that couples a coarse-grained floorplanning

step with pipelining during HLS compilation. Through this co-design methodology, we ensure

that global interconnects are adequately pipelined while the local congestion is alleviated

as the logic is evenly distributed around the whole device. Since pipelining may introduce

additional latency, we further present analysis and algorithms to ensure the added latency

will not compromise the overall throughput. In our experiments with a total of 43 design

configurations, we improve the average frequency from 147 MHz to 297 MHz (a 102%

improvement) with no loss of throughput and a negligible change in resource utilization.

Notably, in 16 experiments, we make the originally unroutable designs achieve 274 MHz on

average. AutoBridge received the Best Paper Award in FPGA 2021.

Finally, this thesis addresses the technical challenges to enable parallel physical imple-

mentation on top of AutoBridge. We propose a split compilation approach based on the

pipelining flexibility at the HLS level, which allows us to partition designs for parallel place-

ment and routing. We outline several technical challenges and address them by breaking

106

the conventional boundaries between different stages of the traditional FPGA tool flow and

reorganizing them to achieve a fast end-to-end compilation. Our framework, RapidStream,

takes in a latency-insensitive program in C/C++ and generates a fully placed and routed

implementation. RapidStream is compatible and integrated with the Xilinx Vitis toolchain

through partial reconfiguration. Tested on Xilinx U280 FPGA, we observed a 5-7× compile

time reduction and 1.3× frequency increase. RapidStream was selected for the Best Paper

Award in FPGA 2022.

6.2 Vision and Future Work

In this section, we discuss the future directions of the work presented in this thesis.

6.2.1 Extension to RTL designs

In this thesis, we present methods that utilize the latency-insensitive information of HLS

designs to facilitate the timing closure of the physical design process. Since RTL is still

the dominant programming model in the industry, a natural question is can we extend the

methodology to manual RTL designs?

One challenge of automatic pipelining at latency-insensitive links is that the tool needs

to derive the high-level meaning of certain modules, such as FIFOs. Due to the difficulty

in extracting high-level semantics from an RTL program, existing tools take a conservative

approach and strictly preserve the cycle-accurate behavior of the original design. In this

thesis, we choose to obtain latency-insensitive information at the C/C++ level. By analyzing

the connection between an RTL port and a C++ variable, we can infer which ports compose

a latency-insensitive interface. While such information is not readily available in a manual

RTL design, we could let the designer add pragmas to assist the compiler. We plan to design

a set of pragmas that the designer could attach to their RTL design to guide the compiler to

properly partition, floorplan, and pipeline the design.

Figure 6.1 shows a potential scheme for the proposed RTL annotation. In this example,

107

there is a module foo that has three ports, my valid, my ready, my data. The programmer

could add certain pragmas informing that these three ports together represent a latency-

insensitive interface and the maximal number of extra latency allowed is 3 cycles. With this

information, the compiler could search for an optimal floorplan that properly utilizes the

latency-insensitive information here.

In this way, we can extend our framework to handle real-world designs that consist of a

mix of HLS modules, manual RTL modules, and even encrypted IP modules. As long as the

modules have latency-insensitive interfaces, our methods for floorplanning, pipelining, and

partitioning will apply in the same way. Such an enhancement will significantly enlarge the

application range as most industrial designs are mixtures of different sources.

6.2.2 Extension to Other FPGA Devices and ASIC

Although our experiments so far have only targeted Xilinx FPGA devices, the technique

could be potentially extended to other FPGAs as well. Specifically, Intel FPGAs are known

for their HyperFlex registers [Int22a] that are embedded in the routing segments, which

can be utilized for more accurate and less intrusive pipelining. Further, we believe that

the technology has a lot of potential even for ASICs as well. Regardless of the vendor or

technology target, modern FPGA and ASIC designs are highly modularized and decoupled

in general, giving us the opportunity to apply our techniques to partition and pipeline the

designs accordingly for timing closure and parallelization.

1 module foo (

2 /* begin LI interface */

3 /* max_latency = 3 */

4 /* LI valid */ input my_valid,

5 /* LI ready */ output my_ready,

6 /* LI data */ input my_data,

7 /* end LI interface */

8 ...

9)

10 ...

11 endmodule

Figure 6.1: Example annotation to an RTL module interface.

108

6.2.3 Efficient Emulation

We envision that our techniques could significantly benefit the hardware emulation flow.

Conventionally, an emulation tool will map a large ASIC design onto a cluster of FPGAs for

verification before taping out. Since emulation requires iterative re-compilation for debugging

purposes, the overlong compilation will severely limit the working efficiency. Therefore, if we

employ the techniques from this thesis, we can speed up the compilation process and improve

the working efficiency. Although emulation requires maintaining the cycle-accurate netlist

so we cannot insert pipeline registers, it also has a low timing requirement since emulation

commonly runs at as low as 10 MHz [Syn20]. Therefore, we could employ the RapidStream

partitioning methodology without inserting additional pipeline registers and still meet the

timing target. To do that, we can replace the pipeline registers with LUTs that will not

introduce extra latency.

6.2.4 Multi-FPGA Programming

The techniques discussed in this thesis mainly target single-FPGA compilation. An important

future direction is to extend the methodology to map a unified program to execute on a

system consisting of multiple interconnected FPGAs [DHC17, JSZ19, Hau95]. Currently, the

major overhead and hurdle of designing a multi-FPGA system are implementing the cross-

FPGA communication infrastructures. To address this issue, we propose to present a unified

programming interface, where computation kernels communicate through latency-insensitive

channels, and the underlying FPGA cluster is abstracted as one device. In this way, users

are free from concerns about design partitioning and low-level details about inter-device

communication. To implement the design, we can extend our floorplan tool to automatically

partition the design into different FPGA devices and synthesize the corresponding inter-FPGA

communication structure.

109

6.3 Thesis Impact

The technologies developed under this thesis have generated an impact in academia and the

industry and have benefited dozens of peer researchers.

First, the proposed pipeline flow control using a skid buffer is an essential reference to

the commercial Vitis HLS compiler. Starting from Version 2020.2, Vitis HLS provides an

option to allow users to choose the skid-buffer-based pipeline flow control method instead of

the broadcast-based flow control [Xil20b].

Second, the AutoBridge framework has been recognized with the Best Paper Award in

FPGA 2021 and has been directly used in multiple other projects to improve the maximal

frequency:

• A convolution neural network accelerator [WGC21] targeting Xilinx U250 is improved

from routing failure to 300 MHz.

• A sparse matrix-matrix multiplication accelerator [SCS22] targeting Xilinx U280 is

improved from 216 MHz to 245 MHz.

• A sparse matrix-vector multiplication accelerator [SCG21] targeting Xilinx U280 is

improved from 193 MHz to 283 MHz.

• A stencil accelerator [TYL22] targeting Xilinx U280 is improved from routing failure to

250 MHz.

• A Bayesian inference accelerator [CSS22] is improved from 234 MHz to 300 MHz.

• By manually applying the methodology to an RTL latency-insensitive design, a merge

sort accelerator [QGF22] targeting Xilinx U280 is improved from routing failure to 214

MHz. Specifically, the designer manually assigns sub-kernels to different regions of the

device and adjusts the interconnects between the kernels. This example also motivates

our extension to support manual RTL design with latency-insensitive interfaces.

110

Finally, the RapidStream framework reveals new opportunities to tackle the unbearably

long compile time of large-scale FPGA designs. The paper is recognized with the Best Paper

Award at FPGA 2022; the work is covered in a dedicated article on the EE Journal [Lei22].

Furthermore, some part of RapidStream has been directly implemented into the AMD/Xilinx

RapidWright framework, specifically in the router module named “RapidStreamRoute” and

the block stretching module, demonstrating the commercial applications of this work. Large

industrial companies like Google, Samsung, and AMD have invited the author to present

RapidStream to their research and development teams.

111

REFERENCES

[AB18] Mustafa Abbas and Vaughn Betz. “Latency insensitive design styles for FPGAs.”
In 2018 28th International Conference on Field Programmable Logic and Applica-
tions (FPL), pp. 360–3607. IEEE, 2018.

[AMS08] Charles J Alpert, Dinesh P Mehta, and Sachin S Sapatnekar. Handbook of
algorithms for physical design automation. CRC press, 2008.

[AR95] Michael J Alexander and Gabriel Robins. “New performance-driven FPGA
routing algorithms.” In Proceedings of the 32nd annual ACM/IEEE Design
Automation Conference, pp. 562–567, 1995.

[ASB14] Matthew An, J Gregory Steffan, and Vaughn Betz. “Speeding up FPGA place-
ment: Parallel algorithms and methods.” In 2014 IEEE 22nd Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines, pp.
178–185. IEEE, 2014.

[BL03] Giancarlo Beraudo and John Lillis. “Timing optimization of FPGA placements
by logic replication.” In DAC ’03, 2003.

[Bre77] Melvin A Breuer. “A class of min-cut placement algorithms.” In Proceedings of
the 14th Design Automation Conference, pp. 284–290, 1977.

[BSB09] Pritha Banerjee, Susmita Sur-Kolay, and Arijit Bishnu. “Fast unified floorplan
topology generation and sizing on heterogeneous FPGAs.” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 28(5):651–661,
2009.

[Cad20] Cadence. “https://www.cadence.com/.”, 2020.

[Car06] Luca P Carloni. “The role of back-pressure in implementing latency-insensitive
systems.” Electronic Notes in Theoretical Computer Science, 146(2):61–80, 2006.

[CC07] Rebecca L Collins and Luca P Carloni. “Topology-based optimization of maximal
sustainable throughput in a latency-insensitive system.” In Proceedings of the
44th annual Design Automation Conference, pp. 410–415, 2007.

[CC20] Yuze Chi and Jason Cong. “Exploiting computation reuse for stencil accelerators.”
In DAC ’20, 2020.

[CCP16] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. “A cloud-scale accelera-
tion architecture.” In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1–13, 2016.

112

[CCQ21] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.
“HBM Connect: High-performance HLS interconnect for FPGA HBM.” In Proceed-
ings of the 2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021.

[CCS05] Tony Chan, Jason Cong, and Kenton Sze. “Multilevel generalized force-directed
method for circuit placement.” In Proceedings of the 2005 international symposium
on physical design, pp. 185–192, 2005.

[CCW18] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. “SODA: Stencil with
optimized dataflow architecture.” In 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8. IEEE, 2018.

[CCW20] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. “When
HLS meets FPGA HBM: benchmarking and bandwidth optimization.” arXiv
preprint arXiv:2010.06075, 2020.

[CFH04] Jason Cong, Yiping Fan, Guoling Han, Xun Yang, and Zhiru Zhang. “Architecture
and synthesis for on-chip multicycle communication.” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23(4):550–564, 2004.

[CGC20] Yuze Chi, Licheng Guo, Young-kyu Choi, Jie Wang, and Jason Cong. “Extending
high-level synthesis for task-parallel programs.” arXiv preprint arXiv:2009.11389,
2020.

[CGH18] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng Wei, and Tianhe Yu.
“SMEM++: A pipelined and time-multiplexed SMEM seeding accelerator for
genome sequencing.” In FPL ’18, 2018.

[CHB18] Zhe Chen, Andrew Howe, Hugh T Blair, and Jason Cong. “CLINK: Compact
LSTM inference kernel for energy efficient neurofeedback devices.” In ISLPED’18,
p. 2, 2018.

[Che10] Chandra Chekuri. “https://courses.engr.illinois.edu/cs598csc/sp2010/Lectures/
Lecture11.pdf.”, 2010.

[CJC20] Jianyi Cheng, Lana Josipovic, George A Constantinides, Paolo Ienne, and John
Wickerson. “Combining dynamic & static scheduling in high-level synthesis.” In
The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 288–298, 2020.

[CLN11] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. “High-level synthesis for FPGAs: From prototyping to deployment.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(4):473–491, 2011.

[CMS01] Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli.
“Theory of latency-insensitive design.” IEEE Transactions on computer-aided
design of integrated circuits and systems, 20(9):1059–1076, 2001.

113

[CS00] Luca P Carloni and Alberto L Sangiovanni-Vincentelli. “Performance analysis
and optimization of latency insensitive systems.” In Proceedings of the 37th
Annual Design Automation Conference, pp. 361–367, 2000.

[CSN14] James Chacko, Cem Sahin, Danh Nguyen, Doug Pfeil, Nagarajan Kandasamy, and
Kapil Dandekar. “FPGA-based latency-insensitive OFDM pipeline for wireless
research.” In 2014 IEEE high performance extreme computing conference (HPEC),
pp. 1–6. IEEE, 2014.

[CSS22] Young-kyu Choi, Carlos Santillana, Yujia Shen, Adnan Darwiche, and Jason
Cong. “FPGA acceleration of probabilistic sentential decision diagrams with
high-Level synthesis.” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2022.

[Cut20] Minimum Cut. “https://en.wikipedia.org/wiki/Minimum cut.”, 2020.

[CW06] Lei Cheng and Martin DF Wong. “Floorplan design for multimillion gate FPGAs.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(12):2795–2805, 2006.

[CW18] Jason Cong and Jie Wang. “PolySA: Polyhedral-based systolic array auto-
compilation.” In ICCAD ’18, 2018.

[CWA22] Yuze Chi, Qiao Weikang, Sohrabizadeh Atefeh, Wang Jie, and Jason Cong.
“Democratizing domain-specific computing.” arXiv preprint arXiv:2209.02951,
2022.

[CWY18a] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. “Automated accelerator
generation and optimization with composable, parallel and pipeline architecture.”
In DAC ’18, 2018.

[CWY18b] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. “Latte: Locality aware
transformation for high-level synthesis.” In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.
125–128. IEEE, 2018.

[CZ05] Jason Cong and Yan Zhang. “Thermal-driven multilevel routing for 3-D ICs.” In
Proceedings of the 2005 Asia and South Pacific Design Automation Conference,
pp. 121–126, 2005.

[CZ06] Jason Cong and Zhiru Zhang. “An efficient and versatile scheduling algorithm
based on SDC formulation.” In 2006 43rd ACM/IEEE Design Automation
Conference, pp. 433–438. IEEE, 2006.

[CZ09] Jason Cong and Yi Zou. “Parallel multi-level analytical global placement on
graphics processing units.” In 2009 IEEE/ACM International Conference on
Computer-Aided Design-Digest of Technical Papers, pp. 681–688. IEEE, 2009.

114

[DB94] Kaushik De and Prithviraj Banerjee. “Parallel logic synthesis using partitioning.”
In 1994 International Conference on Parallel Processing Vol. 3, volume 3, pp.
135–142. IEEE, 1994.

[DCR95] Kaushik De, LA Chandy, Sumit Roy, Steven Parkes, and Prithviraj Banerjee.
“Parallel algorithms for logic synthesis using the MIS approach.” In Proceedings
of 9th International Parallel Processing Symposium, pp. 579–585. IEEE, 1995.

[DGK94] Srinivas Devadas, Abhijit Ghosh, and Kurt William Keutzer. “Logic synthesis.”
1994.

[DHC17] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong
Yang. “ForeGraph: Exploring large-scale graph processing on multi-FPGA
architecture.” In Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 217–226, 2017.

[DK85] Alfred E Dunlop, Brian W Kernighan, et al. “A procedure for placement of
standard cell VLSI circuits.” IEEE Transactions on Computer-Aided Design,
4(1):92–98, 1985.

[DL09] Xiao Dong and Guy GF Lemieux. “PGR: Period and glitch reduction via clock
skew scheduling, delay padding and GlitchLess.” In 2009 International Conference
on Field-Programmable Technology, pp. 88–95. IEEE, 2009.

[DLN21] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. “Polygraph: Exposing the value
of flexibility for graph processing accelerators.” In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), pp. 595–608. IEEE,
2021.

[DLN22] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. “Systematically understanding
graph accelerator dimensions and the value of hardware flexibility.” IEEE Micro,
2022.

[DSI19] Shounak Dhar, Love Singhal, Mahesh Iyer, and David Pan. “FPGA accelerated
FPGA placement.” In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 404–410, 2019.

[Exa20] Intel OpenCL Examples. “https://www.intel.com/content/www/us/en/
programmable/products/design-software/embedded-software-
developers/opencl/support.html.”, 2020.

[FAP12] Kermin Elliott Fleming, Michael Adler, Michael Pellauer, Angshuman Parashar,
Arvind Mithal, and Joel Emer. “Leveraging latency-insensitivity to ease multiple
FPGA design.” In Proceedings of the ACM/SIGDA international symposium on
Field Programmable Gate Arrays, pp. 175–184, 2012.

[Fis90] John P. Fishburn. “Clock skew optimization.” IEEE transactions on computers,
39(7):945–951, 1990.

115

[FOP18] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug
Burger. “A configurable cloud-scale DNN processor for real-time AI.” In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–14, 2018.

[FSP20] Alex Forencich, Alex C. Snoeren, George Porter, and George Papen. “Corundum:
An open-source 100-Gbps NIC.” In 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.
38–46, 2020.

[GA10] Marcel Gort and Jason H Anderson. “Deterministic multi-core parallel routing for
FPGAs.” In 2010 International Conference on Field-Programmable Technology,
pp. 78–86. IEEE, 2010.

[GA11] Marcel Gort and Jason H Anderson. “Accelerating FPGA routing through
parallelization and engineering enhancements special section on PAR-CAD 2010.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(1):61–74, 2011.

[GCL22] Licheng Guo, Yuze Chi, Jason Lau, Linghao Song, Xingyu Tian, Moazin Khatti,
Weikang Qiao, Jie Wang, Ecenur Ustun, Zhenman Fang, et al. “TAPA: A
scalable task-parallel dataflow programming framework for modern FPGAs with
co-optimization of HLS and physical design.” arXiv preprint arXiv:2209.02663,
2022.

[GCW21a] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru
Zhang, and Jason Cong. “AutoBridge: Coupling coarse-grained floorplanning
and pipelining for high-frequency HLS design on multi-die FPGAs.” In The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
81–92, 2021.

[GCW21b] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. “https://doi.org/10.5281/zenodo.4412047.”, 2021.

[GGS06] Amir Hossein Ghamarian, Marc CW Geilen, Sander Stuijk, Twan Basten, Bart D
Theelen, Mohammad Reza Mousavi, Arno JM Moonen, and Marco JG Bekooij.
“Throughput analysis of synchronous data flow graphs.” In Sixth International
Conference on Application of Concurrency to System Design (ACSD’06), pp.
25–36. IEEE, 2006.

[Gil74] KAHN Gilles. “The semantics of a simple language for parallel programming.”
Information processing, 74:471–475, 1974.

[GLC20] Licheng Guo, Jason Lau, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen, Zhiru
Zhang, and Jason Cong. “Analysis and optimization of the implicit broadcasts in

116

FPGA HLS to improve maximum frequency.” In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2020.

[GLR19] Licheng Guo, Jason Lau, Zhenyuan Ruan, Peng Wei, and Jason Cong. “Hardware
acceleration of long read pairwise overlapping in genome sequencing: A race
between FPGA and GPU.” In FCCM ’19, 2019.

[GMZ22] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi,
Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. “RapidStream:
Parallel physical implementation of FPGA HLS designs.” In Proceedings of
the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 1–12, 2022.

[Gur20] Gurobi. “https://www.gurobi.com/.”, 2020.

[Hau95] Scott Alan Hauck. Multi-FPGA systems. University of Washington, 1995.

[HBM20] Xilinx HBM. “https://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale-plus-hbm.html.”, 2020.

[HD12] Yutian Huan and André DeHon. “FPGA optimized packet-switched NoC us-
ing split and merge primitives.” In 2012 International Conference on Field-
Programmable Technology, pp. 47–52. IEEE, 2012.

[HK18] Chin Hau Hoo and Akash Kumar. “ParaDRo: A parallel deterministic router
based on spatial partitioning and scheduling.” In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’18, p. 67–76, New York, NY, USA, 2018. Association for Computing
Machinery.

[HKK16] Jaco Hofmann, Jens Korinth, and Andreas Koch. “A scalable latency-insensitive
architecture for FPGA-accelerated semi-global matching in stereo vision appli-
cations.” In 2016 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), pp. 1–8. IEEE, 2016.

[HKP84] H James Hoover, Maria M Klawe, and Nicholas Pippenger. “Bounding fan-out
in logical networks.” In JACM, volume 31, pp. 13–18, 1984.

[HLS20a] LegUp HLS. “https://www.legupcomputing.com/.”, 2020.

[HLS20b] Mentor Catapult HLS. “https://eda.sw.siemens.com/en-US/ic/catapult-high-
level-synthesis/.”, 2020.

[Int20] Intel. “Intel Stratix 10 FPGA.”, 2020.

[Int22a] Intel. “https://www.intel.com/content/www/us/en/docs/programmable/683353/
21-3/fpga-architecture-introduction.html.”, 2022.

[Int22b] Intel. Intel Hyperflex architecture high-performance design handbook. 2022.

117

[JGI18] Lana Josipović, Radhika Ghosal, and Paolo Ienne. “Dynamically scheduled
high-level synthesis.” In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 127–136, 2018.

[JSG20] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi
Cortadella. “Buffer placement and sizing for high-performance dataflow circuits.”
In The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 186–196, 2020.

[JSZ19] Weiwen Jiang, Edwin H-M Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu
Shi, and Jingtong Hu. “Achieving super-linear speedup across multi-fpga for
real-time dnn inference.” ACM Transactions on Embedded Computing Systems
(TECS), 18(5s):1–23, 2019.

[JZP08] Wei Jiang, Zhiru Zhang, Miodrag Potkonjak, and Jason Cong. “Scheduling with
integer time budgeting for low-power optimization.” In 2008 Asia and South
Pacific Design Automation Conference, pp. 22–27. IEEE, 2008.

[Kap17] Nachiket Kapre. “Deflection-routed butterfly fat trees on FPGAs.” In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1–8. IEEE, 2017.

[KG17] Nachiket Kapre and Jan Gray. “Hoplite: A deflection-routed directional torus
noc for fpgas.” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 10(2):1–24, 2017.

[KMD06] Nachiket Kapre, Nikil Mehta, Michael Delorimier, Raphael Rubin, Henry Barnor,
Michael J Wilson, Michael Wrighton, and Andre DeHon. “Packet switched
vs. time multiplexed FPGA overlay networks.” In 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pp. 205–216.
IEEE, 2006.

[KS16] Parivallal Kannan and Satish Sivaswamy. “Performance driven routing for modern
FPGAs.” In Proceedings of the 35th International Conference on Computer-Aided
Design, pp. 1–6, 2016.

[KVC18] Brucek Khailany, Rangharajan Venkatesan, Jason Clemons, Joel S Emer, Matthew
Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney, Yakun Sophia
Shao, Shreesha Srinath, et al. “A modular digital VLSI flow for high-productivity
SoC design.” In Proceedings of the 55th Annual Design Automation Conference,
pp. 1–6, 2018.

[Lau88] Ulrich Lauther. “A min-cut placement algorithm for general cell assemblies based
on a graph representation.” In Papers on Twenty-five years of electronic design
automation, pp. 182–191. 1988.

[LBP08] Adrian Ludwin, Vaughn Betz, and Ketan Padalia. “High-quality, deterministic
parallel placement for FPGAs on commodity hardware.” In Proceedings of the

118

16th international ACM/SIGDA symposium on Field programmable gate arrays,
pp. 14–23, 2008.

[LCW15] Tao Lin, Chris Chu, and Gang Wu. “POLAR 3.0: An ultrafast global placement
engine.” In 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 520–527. IEEE, 2015.

[LD86] David P La Potin and Stephen W Director. “Mason: A global floorplanning
approach for VLSI design.” IEEE transactions on computer-aided design of
integrated circuits and systems, 5(4):477–489, 1986.

[Lei22] Steven Leibson. “Can HLS partitioning speed up placement and routing of FPGA
designs? Yes, Oh Yes!” In Electrical Engineering Journal, pp. 1–1, 2022.

[LGW14] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu,
Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed,
Kenneth B. Kent, Jason Anderson, Jonathan Rose, and Vaughn Betz. “VTR 7.0:
Next generation architecture and CAD system for FPGAs.” 7(2), 2014.

[Li18] Heng Li. “Minimap2: Pairwise alignment for nucleotide sequences.” Bioinfor-
matics, 34(18):3094–3100, 2018.

[Lib20] Xilinx Vitis Library. “https://github.com/Xilinx/Vitis Libraries.”, 2020.

[LJG20] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z Pan. “DREAMPlace: Deep learning toolkit-enabled GPU
acceleration for modern VLSI placement.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020.

[LK03] Ruibing Lu and Cheng-Kok Koh. “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels.” In ICCAD-2003.
International Conference on Computer Aided Design (IEEE Cat. No. 03CH37486),
pp. 227–231. IEEE, 2003.

[LK06] Ruibing Lu and Cheng-Kok Koh. “Performance analysis of latency-insensitive
systems.” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(3):469–483, 2006.

[LK18] Chris Lavin and Alireza Kaviani. “Rapidwright: Enabling custom crafted imple-
mentations for fpgas.” In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 133–140. IEEE,
2018.

[LLW17] Wuxi Li, Meng Li, Jiajun Wang, and David Z Pan. “UTPlaceF 3.0: A paral-
lelization framework for modern FPGA global placement.” In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 922–928.
IEEE, 2017.

119

[LM87] Edward A Lee and David G Messerschmitt. “Synchronous data flow.” Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[LPL11] Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan, Brent
Nelson, and Brad Hutchings. “HMFlow: Accelerating FPGA compilation with
hard macros for rapid prototyping.” In 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines, pp. 117–124.
IEEE, 2011.

[LRS83] Charles E Leiserson, Flavio M Rose, and James B Saxe. “Optimizing synchronous
circuitry by retiming (preliminary version).” In Third Caltech conference on very
large scale integration, pp. 87–116. Springer, 1983.

[LS91] Charles E Leiserson and James B Saxe. “Retiming synchronous circuitry.” Algo-
rithmica, 6(1-6):5–35, 1991.

[LSZ20] Jason Lau, Aishwarya Sivaraman, Qian Zhang, Muhammad Ali Gulzar, Ja-
son Cong, and Miryung Kim. “HeteroRefactor: Refactoring for heterogeneous
computing with FPGA.” In ICSE ’20, 2020.

[LUX21] Yi-Hsiang Lai, Ecenur Ustun, Shaojie Xiang, Zhenman Fang, Hongbo Rong,
and Zhiru Zhang. “Programming and synthesis for software-defined FPGA
acceleration: status and future prospects.” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 14(4):1–39, 2021.

[LWK22] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, et al.
“OverGen: Improving FPGA usability through domain-specific overlay genera-
tion.” In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 35–56. IEEE, 2022.

[LWV21] Sihao Liu, Jian Weng, Dadu Vidushi, and Tony Nowatzki. “Generality is the key
dimension in accelerator design.” 250:300, 2021.

[MAA16] Sen Ma, Zeyad Aklah, and David Andrews. “Just in time assembly of accelerators.”
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 173–178, 2016.

[MAB03] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan. “Fast timing-driven
partitioning-based placement for island style FPGAs.” In Proceedings of the 40th
annual design automation conference, pp. 598–603, 2003.

[MB15] Kevin E Murray and Vaughn Betz. “HETRIS: Adaptive floorplanning for het-
erogeneous FPGAs.” In 2015 International Conference on Field Programmable
Technology (FPT), pp. 88–95. IEEE, 2015.

[MK87] H Modarres and A Kelapure. “An automatic floorplanner for up to 100,000 gates.”
VLSI Systems Design, 8(13):38, 1987.

120

[MNK19] Pongstorn Maidee, Chris Neely, Alireza Kaviani, and Chris Lavin. “An open-
source lightweight timing model for RapidWright.” In 2019 International Con-
ference on Field-Programmable Technology (ICFPT), pp. 171–178. IEEE, 2019.

[MOD20] Federico Montaño, Tarek Ould-Bachir, and Jean Pierre David. “A latency-
insensitive design approach to programmable FPGA-based real-time simulators.”
Electronics, 9(11):1838, 2020.

[OC97] Takumi Okamoto and Jason Cong. “Buffered Steiner tree construction with wire
sizing for interconnect layout optimization.” In ICCAD ’96, 1997.

[Par07] Keshab K Parhi. VLSI digital signal processing systems: design and implementa-
tion. John Wiley & Sons, 2007.

[PB91] Massoud Pedram and Narasimha B Bhat. “Layout driven logic restructuring/de-
composition.” In ICCAD’91, 1991.

[PH12] Michael K Papamichael and James C Hoe. “CONNECT: Re-examining conven-
tional wisdom for designing NoCs in the context of FPGAs.” In Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate Arrays,
pp. 37–46, 2012.

[PP91] Wuxu Peng and S Puroshothaman. “Data flow analysis of communicating finite
state machines.” ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(3):399–442, 1991.

[PXD22] Dongjoon Park, Yuanlong Xiao, and André DeHon. “Fast and Flexible FPGA
Development using Hierarchical Partial Reconfiguration.” In IEEE International
Conference on Field-Programmable Technology, 2022.

[PXM18] Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon. “Case for fast
FPGA compilation using partial reconfiguration.” In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL), pp. 235–2353.
IEEE, 2018.

[QDF18] Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank Chang,
and Jason Cong. “High-throughput lossless compression on tightly coupled CPU-
FPGA platforms.” In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 37–44. IEEE,
2018.

[QFC19] Weikang Qiao, Zhenman Fang, Mau-Chung Frank Chang, and Jason Cong. “An
FPGA-Based BWT accelerator for bzip2 data compression.” In 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 96–99. IEEE, 2019.

[QGF22] Weikang Qiao, Licheng Guo, Zhenman Fang, Mau-Chung Frank Chang, and Jason
Cong. “TopSort: A high-performance two-phase sorting accelerator optimized on

121

HBM-based FPGAs.” In 2022 IEEE 30th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 1–1. IEEE, 2022.

[QOG21] Weikang Qiao, Jihun Oh, Licheng Guo, Mau-Chung Frank Chang, and Jason
Cong. “FANS: FPGA-accelerated near-storage sorting.” In 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 106–114. IEEE, 2021.

[Rud89] Richard L Rudell. Logic synthesis for VLSI design. University of California,
Berkeley, 1989.

[Sas93] Tsutomu Sasao. Logic synthesis and optimization, volume 2. Springer, 1993.

[SCG21] Linghao Song, Yuze Chi, Licheng Guo, and Jason Cong. “Serpens: A high
bandwidth memory based accelerator for general-purpose sparse matrix-vector
multiplication.” arXiv preprint arXiv:2111.12555, 2021.

[SCS22] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau,
and Jason Cong. “Sextans: A Streaming accelerator for general-purpose sparse-
matrix dense-matrix multiplication.” In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 65–77, 2022.

[SDM17] Nitish Kumar Srivastava, Steve Dai, Rajit Manohar, and Zhiru Zhang. “Acceler-
ating face detection on programmable SoC using C-based synthesis.” In FPGA
’17, 2017.

[SL15] Minghua Shen and Guojie Luo. “Accelerate FPGA routing with parallel recursive
partitioning.” In 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 118–125. IEEE, 2015.

[SM91] Khushro Shahookar and Pinaki Mazumder. “VLSI cell placement techniques.”
ACM Computing Surveys (CSUR), 23(2):143–220, 1991.

[SQA20] Nikola Samardzic, Weikang Qiao, Vaibhav Aggarwal, Mau-Chung Frank Chang,
and Jason Cong. “Bonsai: High-performance adaptive merge tree sorting.” In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architec-
ture, pp. 282–294. IEEE, 2020.

[SS90] Kanwar Jit Singh and Alberto Sangiovanni-Vincentelli. “A heuristic algorithm
for the fanout problem.” In DAC ’90, 1990.

[ST20] H.G. Santos and T.A.M. Toffolo. “Python MIP (Mixed-Integer Linear Program-
ming) tools.”, 2020.

[Sto17] Mirjana Stojilović. “Parallel FPGA routing: Survey and challenges.” In 2017
27th International Conference on Field Programmable Logic and Applications
(FPL), pp. 1–8. IEEE, 2017.

[Syn20] Synopsys. “https://www.synopsys.com/.”, 2020.

122

[Tak15] Shinya Takamaeda-Yamazaki. “PyVerilog: A python-based hardware design
processing toolkit for Verilog HDL.” In International Symposium on Applied
Reconfigurable Computing, pp. 451–460. Springer, 2015.

[TDG15] Mingxing Tan, Steve Dai, Udit Gupta, and Zhiru Zhang. “Mapping-aware
constrained scheduling for LUT-based FPGAs.” In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
190–199, 2015.

[TYL22] Xingyu Tian, Zhifan Ye, Alec Lu, Licheng Guo, Yuze Chi, and Zhenman Fang.
“SASA: A scalable and automatic stencil acceleration framework for optimized
hybrid spatial and temporal parallelism on HBM-based FPGAs.” arXiv preprint
arXiv:2208.10770, 2022.

[VG14] Girish Venkataramani and Yongfeng Gu. “System-level retiming and pipelining.”
In 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines, pp. 80–87. IEEE, 2014.

[VGK17] Kizhepatt Vipin, Jan Gray, and Nachiket Kapre. “Enabling partial reconfiguration
and low latency routing using segmented FPGA NoCs.” In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–8. IEEE,
2017.

[VHB] Babette Van Antwerpen, Michael D Hutton, Gregg Baeckler, and Richard Yuan.
“Register retiming technique.” US Patent 7,120,883.

[WDT17] Dekui Wang, Zhenhua Duan, Cong Tian, Bohu Huang, and Nan Zhang. “A
runtime optimization approach for FPGA routing.” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(8):1706–1710,
2017.

[Wea08] Nicholas Weaver. Retiming, Repipelining and C-Slow Retiming, pp. 383–399.
2008.

[WGC21] Jie Wang, Licheng Guo, and Jason Cong. “AutoSA: A polyhedral compiler
for high-performance systolic arrays on FPGA.” In Proceedings of the 2021
ACM/SIGDA international symposium on Field-programmable gate arrays, 2021.

[WLC19] Xuechao Wei, Yun Liang, and Jason Cong. “Overcoming data transfer bottlenecks
in FPGA-based DNN accelerators via layer conscious memory management.” In
DAC ’19, 2019.

[WLD19] Jian Weng, Sihao Liu, Vidushi Dadu, and Tony Nowatzki. “DAEGEN: A
modular compiler for exploring decoupled spatial accelerators.” IEEE Computer
Architecture Letters, 18(2):161–165, 2019.

[WLD20] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. “DSAGen: Synthesizing programmable spatial accelerators.” In 2020

123

ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pp. 268–281. IEEE, 2020.

[WLK22] Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. “Unifying spatial
accelerator compilation with idiomatic and modular transformations.” IEEE
Micro, 42(5):59–69, 2022.

[WMP03] Nicholas Weaver, Yury Markovskiy, Yatish Patel, and John Wawrzynek. “Post-
placement C-slow retiming for the Xilinx Virtex FPGA.” In FPGA ’03, 2003.

[WS19] David Wilson and Greg Stitt. “Seiba: An FPGA overlay-based approach to rapid
application development.” In 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–8. IEEE, 2019.

[XAD20] Yuanlong Xiao, Syed Tousif Ahmed, and André DeHon. “Fast linking of
separately-compiled FPGA blocks without a NoC.” In 2020 International Con-
ference on Field-Programmable Technology (ICFPT), pp. 196–205. IEEE, 2020.

[XD22] Yuanlong Xiao and Andre DeHon. “HiPR: Fast, Incremental Custom Partial
Reconfiguration for HLS Developers.” In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 155–155, 2022.

[Xil20a] Xilinx. “Vivado Design Suite.”, 2020.

[Xil20b] Xilinx. “Vivado High-Level Synthesis.”, 2020.

[Xil20c] Xilinx. “Xilinx UltraScale Plus Architecture.”, 2020.

[Xil20d] Xilinx. “Xilinx Vitis Unified Platform.”, 2020.

[Xil21a] Xilinx. “https://www.xilinx.com/support/documentation/user guides/ug572-
ultrascale-clocking.pdf.”, 2021.

[Xil21b] Xilinx. “Vivado Design Suite User Guide: Hierarchical Design.”, 2021.

[XK97] Min Xu and Fadi J Kurdahi. “Layout-driven RTL binding techniques for high-level
synthesis using accurate estimators.” ACM Transactions on Design Automation
of Electronic Systems (TODAES), 2(4):312–343, 1997.

[XMB22] Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc Alston,
Matthew Goldsmith, Andrew Merczynski-Hait, and André DeHon. “PLD: Fast
FPGA compilation to make reconfigurable acceleration compatible with modern
incremental refinement software development.” In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 933–945, 2022.

[XPB19] Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han, Rui
Ding, Nevo Magnezi, Raphael Rubin, and André DeHon. “Reducing FPGA
compile time with separate compilation for FPGA building blocks.” In 2019
International Conference on Field-Programmable Technology (ICFPT), pp. 153–
161. IEEE, 2019.

124

[YM05] Chao-Yang Yeh and Malgorzata Marek-Sadowska. “Skew-programmable clock
design for FPGA and skew-aware placement.” In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate arrays,
pp. 33–40, 2005.

[YVA07] Zhen Yang, Anthony Vannelli, and Shawki Areibi. “An ILP based hierarchical
global routing approach for VLSI ASIC design.” Optimization Letters, 1(3):281–
297, 2007.

[ZGD18] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen
Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,
et al. “Rosetta: A realistic high-level synthesis benchmark suite for software
programmable FPGAs.” In Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 269–278, 2018.

[ZGR14] Hongbin Zheng, Swathi T Gurumani, Kyle Rupnow, and Deming Chen. “Fast
and effective placement and routing directed high-level synthesis for FPGAs.”
In Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays, pp. 1–10, 2014.

[ZML21] Yun Zhou, Pongstorn Maidee, Chris Lavin, Alireza Kaviani, and Dirk Stroobandt.
“RWRoute: An open-source timing-driven router for commercial FPGAs.” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 15(1):1–27,
2021.

[ZPF16] P. Zhou, H. Park, Z. Fang, J. Cong, and A. DeHon. “Energy efficiency of full
pipelining: A case study for matrix multiplication.” In FCCM ’16, 2016.

[ZTD15] Ritchie Zhao, Mingxing Tan, Steve Dai, and Zhiru Zhang. “Area-efficient pipelin-
ing for FPGA-targeted high-level synthesis.” In Proceedings of the 52nd Annual
Design Automation Conference, pp. 1–6, 2015.

[ZVS20] Yun Zhou, Dries Vercruyce, and Dirk Stroobandt. “Accelerating FPGA routing
through algorithmic enhancements and connection-aware parallelization.” ACM
Trans. Reconfigurable Technol. Syst., 13(4), August 2020.

125

	Introduction
	Current Challenges in FPGA CAD Flow
	Thesis Overview
	Broadcast-Aware Optimization of HLS Code Generation.
	Coupling Global Floorplanning with HLS Pipelining.
	HLS-Based Partitioning and Stitching Methodology for Parallel Physical Design

	Background
	High-Level Synthesis
	Logic Synthesis
	Placement
	Routing
	Related Works
	Physical-Aware HLS Timing Optimization
	Physical-Independent HLS Timing Optimization
	Accelerating the FPGA CAD Flow
	Latency Insensitive Design
	Other Related Works

	Analysis and Optimization of the Implicitly Broadcasts by HLS
	Introduction
	Classification of HLS Broadcasts
	Data Signal Broadcast
	Control Signal Broadcast - Synchronization
	Control Signal Broadcast - Pipeline

	Approaches
	Broadcast-Aware Scheduling
	Synchronization Logic Pruning
	Skid-Buffer-Based Pipeline Control

	Experiments
	Benchmarks
	Case Study for Broadcast-Aware Scheduling
	Synchronization Logic Pruning
	Skid-Buffer-Based Pipeline Control
	Combined Effect

	Conclusion

	AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs
	Introduction
	Background and Motivating Examples
	Multi-Die FPGA Architectures
	Motivating Examples

	Coupling HLS with Coarse-Grained Floorplanning
	Coarse-Grained Floorplanning Scheme
	Problem Formulation
	Solution

	Floorplan-Aware Pipelining
	Pipelining Followed by Latency Balancing for Dataflow Designs
	Latency Balancing Algorithm
	Extension to Non-Dataflow Designs

	Experiments
	Implementation Details
	Benchmarks
	Frequency Improvements
	Control Experiments
	Scalability

	Conclusions

	Parallel Physical Implementation of HLS Designs for Fast Timing Closure.
	Introduction
	Preliminaries
	Problem Scope
	Organization of the FPGA Fabric
	Flow Overview

	Partitioning
	Problem Description
	Approaches

	Parallel Placement
	Iterative Placement of Anchors and Islands
	Anchor Placement by Min-Cost Matching

	Clock Routing
	Problem Description
	Challenges and Previous Approaches
	Routing the Clock Trunk (S10)
	Locking the Clock Buffers for Anchors (S10)
	Routing and Merging the Local Clocks (S11)

	Stitching and Inter-Island Routing
	Island Merging (S12, S13)
	Inter-Island Routing (S14)

	Accelerate Routing with Customized Partial Router (RapidStream 1.0)
	Pre-Partial-Routing of Inter-Island Nets (RapidStream 2.0)
	Avoid Routing Conflicts

	Comparison of RapidStream 1.0 and 2.0
	Evaluation of RapidStream 1.0
	Implementation Details
	Benchmarks
	Runtime Reduction
	Fast Inter-Island Routing
	Anchor Placement
	Clock Management

	Evaluation of RapidStream 2.0
	Implementation Details
	Benchmarks
	Profiling of RapidStream 2.0 Compilation

	Conclusion

	Conclusion
	Thesis Summary and Contributions
	Vision and Future Work
	Extension to RTL designs
	Extension to Other FPGA Devices and ASIC
	Efficient Emulation
	Multi-FPGA Programming

	Thesis Impact

	References

