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ABSTRACT OF THE DISSERTATION

Analysis of Discrete Data Models with Endogeneity, Simultaneity, and Missing
Outcomes

By

Angela Vossmeyer

Doctor of Philosophy in Economics

University of California, Irvine, 2015

Professor Ivan Jeliazkov, Chair

This thesis is concerned with specifying and estimating multivariate models in dis-

crete data settings. The models are applied to several empirical applications with

an emphasis in banking and monetary history. The approaches presented here are of

central importance in model evaluation, policy analysis, and prediction.

The first chapter develops a framework for estimating multivariate treatment effect

models in the presence of sample selection. The methodology deals with several

important issues prevalent in program evaluation, including non-random treatment

assignment, endogeneity, and discrete outcomes. The framework is applied to evaluate

the effectiveness of bank recapitalization programs and their ability to resuscitate the

financial system. This paper presents a novel bank-level data set and employs the new

methodology to jointly model a bank’s decision to apply for assistance, the central

bank’s decision to approve or decline the assistance, and the bank’s performance. The

article offers practical estimation tools to unveil new answers to important regulatory

and government intervention questions.

The second chapter examines an important but often overlooked obstacle in multivari-

ate discrete data models which is the proper specification of endogenous covariates.

xi



Endogeneity can be modeled as latent or observed, representing competing hypothe-

ses about the outcomes of interest. This paper highlights the use of existing Bayesian

model comparison techniques to understand the nature of endogeneity. Considera-

tion of both observed and latent modeling approaches is emphasized in two empirical

applications. The first application examines linkages for banking contagion and the

second application evaluates the impact of education on socioeconomic outcomes.

The third chapter, which is joint work with Professor Ivan Jeliazkov, studies the

formulation of the likelihood function for simultaneous equation models for discrete

data. The approach rests on casting the required distribution as the invariant distri-

bution of a suitably defined Markov chain. The derivation resolves puzzling paradoxes

highlighted in earlier work, shows that such models are theoretically coherent, and

offers simple and intuitive linkages to the better understood analysis of continuous

outcomes. The new methodology is employed in two applications involving simulta-

neous equation models of (i) female labor supply and family financial stability, and

(ii) the interactions between health and wealth.

xii



Chapter 1

Sample Selection and Treatment

Effect Estimation of Lender of Last

Resort Policies

1.1 Introduction

Many policies and programs that are the foci of economic research operate within a

specific decision structure. This is commonly recognized as an application stage and

an approval stage, where interested parties have to apply to be considered for a treat-

ment and a governing body reviews the submitted applications and assigns treatment.

The econometric complexities involved in dealing with multiple selection mechanisms

and a larger set of treatment response outcomes have moved attention away from

this decision structure toward simple, potentially misspecified models. This paper of-

fers a general methodological framework for these application-approval settings, and

extends conventional treatment models to allow for non-randomly missing data, en-

1



dogeneity, and discrete outcomes. The model is applied to study the effectiveness

of lender of last resort (LOLR) policies and their ability to resuscitate the banking

system.

Existing treatment models consider two subgroups in the data, the treated group and

the untreated (control) group. When this structure is applied to an LOLR study, it

divides the sample into banks that receive assistance from the LOLR and banks that

do not receive assistance. Complications arise because the initial selection mechanism

in which banks choose to apply for assistance is ignored. Overlooking the application

stage erroneously groups banks that do not apply for assistance with those that are

declined assistance. Thus, the untreated group comprises the most and least healthy

banks, leading to a fundamental misspecification. Motivated by these difficulties, this

paper develops and implements a multivariate treatment effect model in the presence

of sample selection to offer a framework for evaluating the impact of LOLR programs

and banking policies.

The empirical focus of this paper is on the Reconstruction Finance Corporation (RFC)

as the LOLR during the Great Depression. The RFC was a government-sponsored

rescue program created to provide assistance to weak banks to reduce the incidence

of bank failure and alleviate banking crises. It is one of the largest recapitalization

programs ever implemented and continues to be an important case study for under-

standing and preventing financial panics, especially with regard to the recent financial

crisis. The analysis of LOLR policies poses a number of challenges because regulator

data are generally not publicly available and modeling must accommodate a difficult

decision structure, endogenous treatments, correlation between outcomes, and non-

random selection into policies and programs. This paper contributes to the existing

literature on emergency financial regulation by constructing a novel bank-level data

set and employing the new methodology to jointly model a bank’s decision to apply

2



for assistance from the LOLR, the LOLR’s decision to approve the assistance, and the

bank’s performance following the disbursements. It should be noted that the model is

not limited to banking contexts and other literatures face these obstacles as well, e.g.,

labor supply decisions, college admittance studies, credit approval decisions, health

outcomes and drug treatments, welfare or housing program evaluation, and many

others. Any scenario that features an application-approval decision structure can

utilize the model and estimation strategy presented in this paper.

Figure 1.1 displays a graphical presentation of the multivariate treatment effect model

in the presence of sample selection. The initial selection mechanism represents the

application decision and is observed for every unit in the sample. The selected sample

then enters a selected treatment (approval) stage where the program determines treat-

ment assignment. Note that this stage is not observed for the non-selected sample.

Following these 2 selection mechanisms are 3 potential outcomes for the non-selected

(non-applicant) sample, selected untreated (applied-declined) sample, and selected

treated (applied-approved) sample. The model considered here differs from existing

work on treatment assignment by acknowledging whether an observation opts into or

out of treatment to disentangle the information content in not selecting. Modeling

this additional selection mechanism offers critical features of the data because without

it, it is impossible to separately identify non-selected and selected untreated observa-

tions. In the LOLR study, the initial selection mechanism, deciding whether or not

to apply for assistance from the central bank, is a very revealing step in the bailout

process. Recognizing and modeling the decisions for the applicant and non-applicant

groups allow for a broader understanding of the outcomes of interest.

This methodology incorporates and jointly models both sample selection and poten-

tial outcomes. Individually, these models are used frequently in economics. Sample

selection (i.e., incidental truncation or informative missingness) arises when a depen-

3



Figure 1.1: Multivariate treatment effect model in the presence of sample selection.

dent variable of interest is non-randomly missing for a subset of the sample. The

factors that determine whether or not data are missing for an observation are often

correlated with those that determine an outcome. Ignoring sample selection causes

a researcher to base inference on a sample that does not represent the population of

interest, which leads to specification errors. Classical estimation methods of sample

selection models are developed in Gronau (1974) and Heckman (1976, 1979), and

are further discussed in Wooldridge (2002). Bayesian developments in these models

can be found in Greenberg (2008), Chib et al. (2009), van Hasselt (2011), and are

discussed in van Hasselt (2014). The framework and estimation strategy for multiple

selection mechanisms are discussed in Yen (2005), Li (2011), and Vossmeyer (2014).

Treatment models, also referred to as models of potential outcomes, are employed to

compare responses of individuals that belong either to a treatment or control group

(Roy, 1951; Rubin, 1978; Heckman and Honoré, 1990; Heckman and Vytlacil, 2007).

These models feature two potential responses; however, only one is ever observed,

the other is the counterfactual. Bayesian approaches motivated by the missingness

of the counterfactual are given in Vijverberg (1993) and Poirier and Tobias (2003),

who formulate an analysis for this model with the joint distribution of the poten-

4



tial outcomes. This involves placing a prior on the non-identified elements in the

variance-covariance matrix, and simulating a posterior of the parameters and the

counterfactuals. Alternatively, Chib (2007) provides a Bayesian analysis without the

joint distribution of the potential outcomes. Chib’s (2007) approach does not involve

simulating the counterfactuals and as a result, is simpler in terms of prior inputs,

computational burden, and improves the mixing properties of the Markov chain. For

a discussion of Bayesian approaches to treatment models, see Li and Tobias (2014).

This paper contributes to the vast literature on sample selection and treatment ef-

fect models by extending the techniques in Chib (2007) and Chib et al. (2009), and

developing a Bayesian framework for treatment effect modeling while dealing with

the missing data that occur from sample selection. Furthermore, this paper designs

a computationally efficient estimation algorithm that does not require simulation of

the missing outcomes or the joint distribution of the potential outcomes and offers

techniques for model comparison and treatment effect calculations. The rest of the

paper is organized as follows: Section 1.2 presents the model, Section 1.3 presents

estimation methods to fit the model, and Section 1.4 reports the performance of these

techniques in a simulation study. The new methodology is applied to study bank re-

capitalization in Section 1.5. Section 1.6 contains additional considerations, including

model comparison and sensitivity analysis, and finally, Section 1.7 offers concluding

remarks.

1.2 The Model

The model stemming from Figure 1.1 contains 5 equations of interest: 1 selection

mechanism, 1 selected treatment, and 3 treatment response outcomes for the differ-

ent subsets of the sample (non-selected, selected untreated, and selected treated).

5



Note that the model is generalizable to larger systems of equations and additional

endogenous regressors. For specificity, the model considered here will contain 5 equa-

tions. In detail, below are the equations for subjects i = 1, . . . , n:

Selection Mechanism: y∗i1 = x′
i1β1 + εi1 (always observed) (1.1)

Selected Treatment: y∗i2 = x′
i2β2 + εi2 (observed for selected sample)

(1.2)

Potential Outcomes − Treatment Responses (only one is observed)

Selected untreated sample: y∗i3 = (x′
i3 yi1)β3 + εi3 (1.3)

Selected treated sample: y∗i4 = (x′
i4 yi1 yi2)β4 + εi4 (1.4)

Non-selected sample: y∗i5 = x′
i5β5 + εi5 (1.5)

The model is characterized by 5 dependent variables of interest where y∗
i ≡ (y∗i1, y

∗
i2,

y∗i3, y
∗
i4, y

∗
i5)

′ are the continuous latent data and yi ≡ (yi1, yi2, yi3, yi4, yi5)
′ are the

corresponding discrete observed data. In the application, the latent variables relate

to the observed censored outcomes by yij = y∗ij · 1{y∗ij > 0} for equations j = 1, . . . , 5,

which is the basis for the model throughout the paper (Tobin, 1958). However, the

general system can take outcome variables that are continuous, binary, censored, or

ordered. The continuous setting occurs when y∗ij = yij, the binary setting is when

yij = 1{y∗ij > 0}, and the ordered setting is when yij =
∑H

h=1 1{y∗ij > δh−1} for H

ordered alternatives where δh is a cutpoint between the categories. Note that yi1 and

yi2 enter potential outcome equations (1.3) and (1.4) as endogenous regressors for the

selected sample. This can be understood as the requested and approved treatments

entering the performance equations. Treatment effects are calculated from these

regressors and are discussed in Section 1.5.2.b.

Data missingness restricts the model to systems of 2 or 3 equations depending on

6



the subsample to which the observation belongs and highlights the presence of non-

identified parameters that will be examined shortly. If yi1 = 0, the observation is

in the non-selected sample – yi1 and yi5 are observed, and yi2, yi3, and yi4 are not

observed. If yi1 > 0 and yi2 = 0, the observation is in the selected untreated sample –

yi1, yi2 and yi3 are observed, and yi4 and yi5 are not observed. If yi1 > 0 and yi2 > 0,

the observation is in the selected treated sample – yi1, yi2 and yi4 are observed, and

yi3 and yi5 are not observed.

The exogenous covariates xi = (xi1,xi2,xi3,xi4,xi5) are needed only when their cor-

responding equations are observed. For identification reasons, assume that the co-

variates in xi2 contain at least one more variable than those included in the other

equations. This variable is regarded as the instrumental variable used in treatment

models that is correlated with the treatment and not the errors (Chib, 2007; Green-

berg, 2008). Although identification in models with incidental truncation does not

require exclusions, they are typically empolyed so the resulting inference does not

solely depend on distributional assumptions. Finally, the model assumes that the er-

rors εi = (εi1, εi2, εi3, εi4, εi5)
′ have a multivariate normal distribution N5(0,Ω), where

Ω is an unrestricted symmetric positive definite matrix. Restrictions placed on this

matrix can occur due to model variants, such as a probit selection mechanism. Algo-

rithm adjustments due to these restrictions can be found in Chib et al. (2009). It is

possible to explore other distributional forms for this joint model, but the normality

assumption provides the groundwork for more flexible distributions, including finite

mixtures, dirichlet processes, and scale mixtures.

7



1.2.1 The Likelihood Function

For the i-th observation, define the following vectors and matrices,

y∗
iC = (y∗i1, y

∗
i5)

′, y∗
iD = (y∗i1, y

∗
i2, y

∗
i3)

′, y∗
iA = (y∗i1, y

∗
i2, y

∗
i4)

′,

XiC =

 x′
i1 0

0 x′
i5

 , XiD =


x′
i1 0 0

0 x′
i2 0

0 0 (x′
i3 yi1)

 , XiA =


x′
i1 0 0

0 x′
i2 0

0 0 (x′
i4 yi1 yi2)

 .

Let N1 = {i : yi1 = 0} be the n1 observations in the non-selected sample and N2 =

{i : yi1 > 0 and yi2 = 0} be the n2 observations in the selected untreated sample.

Set N3 = {i : yi1 > 0 and yi2 > 0} to be the n3 observations in the selected treated

sample. Let θ be the set of all model parameters.

Upon defining β = (β′
1,β

′
2,β

′
3,β

′
4,β

′
5)

′ and

Ω =



Ω11 Ω12 Ω13 Ω14 Ω15

Ω21 Ω22 Ω23 Ω24 Ω25

Ω31 Ω32 Ω33 Ω34 Ω35

Ω41 Ω42 Ω43 Ω44 Ω45

Ω51 Ω52 Ω53 Ω54 Ω55


,

note that in Ω, the elements Ω25, Ω35, Ω45, and Ω34 are not identified because their

corresponding equations cannot be observed at the same time. Thus, there are 11

unique estimable elements in Ω, whereas the remaining ones are non-identified pa-
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rameters due to the missing outcomes. The covariance matrix of interest is,

Ω =



Ω11 Ω12 Ω13 Ω14 Ω15

Ω21 Ω22 Ω23 Ω24 ·

Ω31 Ω32 Ω33 · ·

Ω41 Ω42 · Ω44 ·

Ω51 · · · Ω55


.

In order to isolate the observed vectors and matrices that correspond to the 3 different

subsets of the sample, define

JC =

 I 0 0 0 0

0 0 0 0 I


(k1+k5)×K

, JD =


I 0 0 0 0

0 I 0 0 0

0 0 I 0 0


(k1+k2+k3)×K

,

JA =


I 0 0 0 0

0 I 0 0 0

0 0 0 I 0


(k1+k2+k4)×K

where K = k1 + k2 + k3 + k4 + k5, which represents the number of covariates in each

equation, so

JCβ = (β′
1,β

′
5)

′, JDβ = (β′
1,β

′
2,β

′
3)

′, JAβ = (β′
1,β

′
2,β

′
4)

′

ΩC =

 Ω11 Ω15

Ω51 Ω55

 , ΩD =


Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 , ΩA =


Ω11 Ω12 Ω14

Ω21 Ω22 Ω24

Ω41 Ω42 Ω44

 .

(1.6)
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For i ∈ N1 (non-selected sample),

f(y∗
iC |θ) ∝ |ΩC |−1/2 exp

{
−1

2
(y∗

iC −XiCJCβ)
′Ω−1

C (y∗
iC −XiCJCβ)

}
η∗
iC = y∗

iC −XiCJCβ,

for i ∈ N2 (selected untreated sample),

f(y∗
iD|θ) ∝ |ΩD|−1/2 exp

{
−1

2
(y∗

iD −XiDJDβ)
′Ω−1

D (y∗
iD −XiDJDβ)

}
η∗
iD = y∗

iD −XiDJDβ,

and for i ∈ N3 (selected treated sample),

f(y∗
iA|θ) ∝ |ΩA|−1/2 exp

{
−1

2
(y∗

iA −XiAJAβ)
′Ω−1

A (y∗
iA −XiAJAβ)

}
η∗
iA = y∗

iA −XiAJAβ,

which provide the terms for the complete-data likelihood, f(y,y∗|θ). This is given

by,

[ ∏
i∈N1

f(y∗
iC |θ)

][ ∏
i∈N2

f(y∗
iD|θ)

][ ∏
i∈N3

f(y∗
iA|θ)

]
∝ |ΩC |−n1/2 exp

{
−1

2

∑
i∈N1

η∗′
iCΩ

−1
C η∗

iC

}

× |ΩD|−n2/2 exp

{
−1

2

∑
i∈N2

η∗′
iDΩ−1

D η∗
iD

}
× |ΩA|−n3/2 exp

{
−1

2

∑
i∈N3

η∗′
iAΩ

−1
A η∗

iA

}
. (1.7)

The likelihood is defined in terms of the 3 subsets of the sample, without components

for the non-identified parameters, which follows from Chib (2007). This decomposi-

tion is the basis for the computationally efficient estimation algorithm. Chib’s (2007)

approach is employed here, as opposed to modeling the non-identified parameters as

in Vijverberg (1993) and Poirier and Tobias (2003), mainly for computational ease.

The censoring of multiple outcome variables renders this likelihood analytically in-

tractable and hence estimation relies on simulation-based techniques.
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1.2.2 Prior Distributions

The model is completed by specifying the prior distributions for the parameters. It is

assumed that β has a joint normal distribution with mean β0 and variance B0 and

(independently) that the covariance matrix Ω has an inverse Wishart distribution

with parameters υ and Q, so that the prior density is given by,

π(β,Ω) = fN (β |β0, B0)fIW(Ω|υ,Q). (1.8)

Note that the prior on Ω implies a distribution on functions of the elements in Ω that

will be used in sampling and marginal likelihood computations, which only involve the

identified components. Further details on this approach are provided in the updating

formulas for Ω in Section 1.3.2. While Vijverberg’s (1993) and Poirier and Tobias’s

(2003) approach is not adopted in this paper, specifying the prior in such a way makes

this model easily generalizable to their approach of learning about the non-identified

parameters.

1.3 Estimation

Combining the complete-data likelihood in (1.7) and the priors in (1.8) leads to a

posterior distribution for θ and y∗,

π(θ,y∗|y) ∝

[∏
i∈N1

f(y∗
iC |θ)

][∏
i∈N2

f(y∗
iD|θ)

][∏
i∈N3

f(y∗
iA|θ)

]
× π(β,Ω), (1.9)

which is simulated by Markov chain Monte Carlo (MCMC) methods. The sampling

algorithm is summarized as follows, where the notation “\” represents “except”, e.g.,

y∗\ y∗
1 says all elements in y∗ except y∗

1:
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Algorithm 1.1. MCMC Estimation Algorithm for Censored Outcomes

1. Sample β from the distribution β |y,y∗,θ \ β.

2. Sample Ω from the distribution Ω|y,y∗,θ \ Ω in a 1-block, multi-step procedure.

3. For i ∈ N1, sample y∗i1 from the distribution y∗i1|y,θ,y∗\ y∗
1.

4. For i ∈ N2, sample y∗i2 from the distribution y∗i2|y,θ,y∗\ y∗
2.

5. For i : yi3 = 0, sample y∗i3 from the distribution y∗i3|y,θ,y∗\ y∗
3.

6. For i : yi4 = 0, sample y∗i4 from the distribution y∗i4|y,θ,y∗\ y∗
4.

7. For i : yi5 = 0, sample y∗i5 from the distribution y∗i5|y,θ,y∗\ y∗
5.

Following Chib et al. (2009), the algorithm does not augment the selected sample

with data from the potential sample. Not augmenting the full sample and employing

a collapsed Gibbs sampler eases computational and storage demands, and provides

improved simulation performance (Liu, 1994; Liu et al., 1994; Chib et al., 2009; Li,

2011). Furthermore, simulation of the posterior distribution is of the parameters and

not the counterfactuals to simplify the prior inputs and improve the mixing proper-

ties of the Markov chain (Chib, 2007). Details of the sampler are in the following

subsections.
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1.3.1 Sampling β

The posterior distribution displayed in (1.9) implies β |y∗,θ \ β ∼ N (b,B), where

b =B(B−1
0 b0 +

∑
i∈N1

J′
CX

′
iCΩ

−1
C y∗

iC +
∑
i∈N2

J′
DX

′
iDΩ

−1
D y∗

iD+

∑
i∈N3

J′
AX

′
iAΩ

−1
A y∗

iA),

B =(B−1
0 +

∑
i∈N1

J′
CX

′
iCΩ

−1
C XiCJC +

∑
i∈N2

J′
DX

′
iDΩ

−1
D XiDJD+

∑
i∈N3

J′
AX

′
iAΩ

−1
A XiAJA)

−1.

Computations for β are done efficiently by updating observations in the N1, N2,

and N3 subsamples separately using the J matrices to select the relevant covariates.

Thereby, the observed parts of the model are isolated and estimation proceeds without

sampling conditional on unobserved components.

1.3.2 Sampling Ω

The sampling of Ω|y,y∗,θ \ Ω is complicated because Ω never enters the complete-

data likelihood in (1.7) in its full form, and instead, enters as in (1.6) where Ω is

different for the 3 subgroups, N1, N2, and N3. Thus, sampling must be done in

multiple steps, or layers, for the different indices, as opposed to a single inverse

Wishart step. Utilizing the sampling techniques in Chib et al. (2009), this paper

initially samples from Ω11|y,y∗,θ \ Ω11 followed by sampling from the conditionals:

Ωtt·l|y,y∗,θ \ Ωtt·l and Blt|y,y∗,Ωtt·l, where

Ωtt·l = Ωtt −ΩtlΩ
−1
ll Ωlt

Blt = Ω−1
ll Ωlt,

(1.10)
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and t and l are indices for the elements in Ω being updated.

Partition the hyperparameter Q from the inverse Wishart prior

Q =



Q11 Q12 Q13 Q14 Q15

Q21 Q22 Q23 Q24 ·

Q31 Q32 Q33 · ·

Q41 Q42 · Q44 ·

Q51 · · · Q55


,

where Q conforms suitably with Ω for the 3 subgroups. To sample from the set of

conditionals in (1.10), a change of variable technique is employed and the resulting

density is proportional to a set of inverse Wisharts and matrix-variate normals. Thus,

Ω updates in a 1-block, multi-step procedure that samples in layers and conditions

only on the identified parts of the model. Similar techniques are used in Li (2011),

where he shows the computational efficiency of this approach. The step-by-step al-

gorithm is described here.

From step 2 of Algorithm 1.1, sample Ω|y,y∗,θ \ Ω in a 1-block, nine-step procedure

by drawing Ω11 , Ωtt·l = Ωtt−ΩtlΩ
−1
ll Ωlt, and Blt = Ω−1

ll Ωlt, and then reconstructing

Ω from these quantities

2. (a) Ω11|y,y∗,θ \ Ω ∼ IW(ν − 1 + n, Q11 +
∑

N1,N2,N3
η∗
i1η

∗′
i1)

i. η∗
i1 = y∗i1 − xi1J1β, where J1 =

[
I 0 0 0 0

]
k1×K

(b) Ω22·1|y,y∗,θ \ Ω ∼ IW(ν + n2 + n3, R22·1)

(c) B12|y,y∗,Ω22·1 ∼ MN (R−1
11 R21,Ω22·1 ⊗R−1

11 )

(d) Define Ωu =

 Ω11 Ω12

Ω21 Ω22


(e) Ω55·1|y,y∗,θ \ Ω ∼ IW(ν + n1, R55·1)
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(f) B15|y,y∗,Ω55·1 ∼ MN (R−1
11 R51,Ω55·1 ⊗R−1

11 )

(g) Ω33·u|y,y∗,θ \ Ω ∼ IW(ν + n2,R33·u)

(h) Bu3|y,y∗,Ω33·u ∼ MN (R−1
u R3u,Ω33·u ⊗R−1

u )

(i) Ω44·u|y,y∗,θ \ Ω ∼ IW(ν + n3,R44·u)

(j) Bu4|y,y∗,Ω44·u ∼ MN (R−1
u R4u,Ω44·u ⊗R−1

u )

where R = Q +
∑

η∗
iη

∗′
i , and the following subsections are obtained by partitioning

R to conform to Q, and Rtt·l = Rtt −RtlR
−1
ll Rlt. From these sampling densities, Ω

can be recovered.

1.3.3 Sampling y∗

For censored outcomes, y∗ is sampled following Chib (1992) from a truncated normal

with the usual conditional mean and conditional variance,

y∗i1|y,θ,y∗\ y∗
1 ∼ T N (−∞,0)(x

′
i1β1 + E(εi1|εi\1), var(εi1|εi\1)), i ∈ N1,

y∗i2|y,θ,y∗\ y∗
2 ∼ T N (−∞,0)(x

′
i2β2 + E(εi2|εi\2), var(εi2|εi\2)), i ∈ N2,

y∗i3|y,θ,y∗\ y∗
3 ∼ T N (−∞,0)((x

′
i3 yi1)β3 + E(εi3|εi\3), var(εi3|εi\3)), i : yi3 = 0,

y∗i4|y,θ,y∗\ y∗
4 ∼ T N (−∞,0)((x

′
i4 yi1 yi2)β4 + E(εi4|εi\4), var(εi4|εi\4)), i : yi4 = 0,

y∗i5|y,θ,y∗\ y∗
5 ∼ T N (−∞,0)(x

′
i5β5 + E(εi5|εi\5), var(εi5|εi\5)), i : yi5 = 0.

1.4 Simulation Study

This section evaluates the performance of the algorithm from Section 1.3 using simu-

lated data. The model being considered is the system of 5 equations from (1.1)–(1.5),

which is motivated by the subsequent application to bank recapitalization in Sec-
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tion 1.5. The simulated data contains 4 explanatory variables in the first equation,

5 in the second, 5 in the third (including y1), 6 in the fourth (including y1 and y2),

and 4 in the fifth equation. Therefore, β is a 24 × 1 vector. Similarly, vech(Ω)

has 11 unique estimable elements. Generalizations to more variables do not require

conceptual changes to the estimation algorithm.

For the study, 36% of the observations are in the N1 subsample, 16% are in the

N2 subset, and 48% are in the N3 subset for n = 1000. The priors set for the

equations are: β ∼ N (0, 5 × I) and Ω ∼ IW(9, 1.2 × I5). These priors and

subsamples were selected to mimic the following bailout application. Note that

various combinations of priors, observations, censoring, and explanatory variables

were considered but the results are not presented as they did not vary much from

the performance pattern in this base case. Posterior mean estimates are based on

11,000 MCMC draws with a burn-in of 1,000. The total run time of the algo-

rithm is about 1 minute and 8 seconds. The true values are uncovered accurately

and quickly. To exemplify the correct sampling, posterior means for vech(Ω) =

(0.24, 0.10, 0.25, 0.08, 0.12, 0.24, 0.09, 0.10, 0.26, 0.07, 0.23)′ and the corresponding true

values are (0.25, 0.10, 0.25, 0.10, 0.10, 0.25, 0.10, 0.10, 0.25, 0.10, 0.25)′. For reference,

the posterior standard deviations are (0.01, 0.01, 0.01, 0.02, 0.03, 0.03, 0.01, 0.01, 0.02,

0.03, 0.02)′. Benefits of this sampling approach include the computational speed and

the low storage costs, which arise from collapsing the Gibbs sampler.

Further evaluations of the sampler are studied with inefficiency factors over 25 Monte

Carlo repetitions. Inefficiency factors are a “measure of the extent of mixing of the

Markov chain output” (Chib, 2007). The inefficiency factor of the k-th parameter is

defined as 1+ 2
∑L

l=1 ρk(l)(
L−l
L
), where ρk(l) is the sample autocorrelation at the l-th

lag and L is the lag in which the autocorrelations taper off (Chib et al., 2009). Small

values (near 1) imply that the output is mixing well. Boxplots of the inefficiency
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factors are displayed in Figure 1.2.

Figure 1.2: Boxplots of inefficiency factors for β and Ω. The left panel
is β, the right panel is vech(Ω): β = (β′

1,β
′
2,β

′
3,β

′
4,β

′
5)

′, vech(Ω) =
(Ω11,Ω21,Ω22,Ω31,Ω32,Ω33,Ω41,Ω42,Ω44,Ω51,Ω55)

′.

The plots suggest these parameters are sampled efficiently as the values for all of the

parameters are low and near one. The fifth β has the highest inefficiency factor. This

variable is the constant for equation 2, and poor mixing of the constant is also found

in Li (2011). In addition, the inefficiency factors for Ω vary between 1 and 4, with the

higher values occurring where y∗ is being sampled more frequently. Given that every

dependent variable in this system is censored, the inefficiency factors are promis-

ing. The lack of augmentation in the sampler, which arises from not simulating the

outcomes that are missing due to the selection mechanism and non-identified param-

eters in the treatment outcomes, shows decreased storage costs while still maintaining

tractability in the sampling densities. Chib et al. (2009) and Li (2011) compare sam-

plers with less augmentation to samplers that simulate missing outcomes and both

studies find improved sampler performance in the former case. Following their results,

the algorithm developed here does not augment the outcomes that are missing or the

counterfactuals, and the results show excellent sampler performance.
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1.5 Application

This section applies the multivariate treatment effect model with sample selection

to study LOLR polices and bank recapitalization. Bailout programs and the central

bank’s LOLR function emphasize a trade-off between liberal and strict lending poli-

cies. Research in favor of these programs finds that LOLR policies play a positive

role in reducing bank failures and improving monetary conditions (Butkiewicz, 1995;

Richardson and Troost, 2009). Loose lending policies can prevent the spread of con-

tagion, bank runs, and mass liquidation. Other studies find that rescue programs

can be harmful either by requiring banks to hypothecate their best collateral or by

creating moral hazard incentives for banks to take on excessive risk (Mason, 2001;

Freixas and Rochet, 2008). These issues have been deliberated since the concept of

LOLR was described in the 19th-century by Bagehot (1873). Bagehot established

modern LOLR theory which states that monetary authorities, in the face of panic,

should lend unsparingly at a penalty rate to illiquid but solvent banks. This mech-

anism should prevent struggling healthy banks from falling victim to undue deposit

losses, bank runs, and insolvency.

This paper focuses on the Reconstruction Finance Corporation (RFC) as the LOLR

during the Great Depression.1 The RFC was established in early 1932 during the

Hoover administration with the primary objective of providing liquidity to the bank-

ing system, and later became part of the New Deal under President Roosevelt. It

was created as a government-sponsored agency of the Executive Branch of the United

States. The RFC operated under two regimes. From February 1932–March 1933, the

RFC made loans collateralized by banks’ best assets. The Emergency Banking Act of

1933 liberalized the powers of the RFC and allowed it to recapitalize banks through

1At its conception, the RFC was an LOLR and closely followed Bagehot’s theory. Over time,
the power of the RFC expanded beyond the usual LOLR duties. However, the LOLR terminology
is used here because the paper focuses on the RFC’s role in the banking system.
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preferred stock purchases. Despite the changes in the program, the application pro-

cess for banks remained similar across both periods. Therefore, this paper looks at

the effectiveness of the RFC across both regimes.2 For a thorough explanation of the

RFC and its operations, see Butkiewicz (1995) and Mason (2001, 2003).

Previous work on the LOLR function of the RFC includes Butkiewicz (1995), Mason

(2001), Calomiris et al. (2013), and Vossmeyer (2014). Examining the RFC presents

limitations because data are not readily available and need to be hand-coded from

record books. As a result, many of these previous papers either look at a time series

of RFC lending (Butkiewicz, 1995) or bank-level data restricted to Federal Reserve

member banks (Mason, 2001; Calomiris et al., 2013). In addition, dealing with sam-

ple selection is difficult because the quarterly and monthly Reports of Activities of

the Reconstruction Finance Corporation do not report applied or declined assistance.

This paper overcomes these limitations and contributes to this literature by construct-

ing a novel bank-level data set from the original applications to the RFC. With this

more detailed data, the new methodology can be employed to jointly model a bank’s

decision to apply for assistance from the RFC, the RFC’s decision to approve the

assistance, and the bank’s performance following the disbursements. This modeling

structure can be seen in Figure 1.3 (which is the applied version of Figure 1.1).

Figure 1.3 displays a system of 5 equations as in (1.1)–(1.5). The initial selection

mechanism (equation 1.1) represents a bank’s decision to apply for assistance from the

RFC and is observed for every bank in the sample. The selected sample of banks that

apply for assistance enters the selected treatment stage, whereas, the non-applicant

sample is missing in the next stage. The selected treatment stage (equation 1.2) rep-

resents the RFC’s decision to approve or decline the submitted application. Following

2Although the two regimes differ by the responsibilities imposed on banks and risk taken by the
RFC, examining each period individually is complicated because, for much of the sample, banks
that received assistance in the first regime, also received assistance in the second regime.
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Figure 1.3: Model of the application-approval decision structure for RFC assistance.

these 2 equations are 3 potential outcomes, or treatment responses (equations 1.3–

1.5). The treatment responses represent bank performance following the assistance.

Banks that apply and are granted assistance comprise the selected treated sample.

Banks that apply and are denied assistance comprise the selected untreated sample,

and banks that do not apply comprise the non-selected sample. Estimating separate

treatment response equations for each group is important because selection into these

groups is non-random, thus it allows for the coefficients on the estimated parameters

and the error variance to differ across equations.

The additional dimension modeled here that has lacked in the literature is the mech-

anism in which banks select into or opt out of treatment – a critical step in this

emergency bailout process. Ignoring this stage makes disentangling non-applicant

and declined banks impossible, which is problematic because these banks are funda-

mentally different. Modeling the full bailout process offers a more complete framework

for understanding the impacts of the RFC.
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1.5.1 Data

This paper employs two bank-level data sets: RFC data and bank balance sheet

data. The RFC data set is constructed from the RFC Card Index to Loans Made

to Banks and Railroads, 1932-1957, acquired from the National Archives. The cards

report the name and address of the borrower, date, request and amount of the loan,

whether the loan was approved or declined, and loan renewals. Further information

is obtained from the Paid Loan Files and Declined Loan Files, which include the

exact information regulators had on the banks from the applications and the original

examiners’ reports on the decisions. This data set is merged with a separate data

set constructed from the Rand McNally Bankers’ Directory. This directory describes

balance sheets, charters, correspondent relationships, and other characteristics for all

banks (Federal Reserve members and nonmembers) in a given state for a given year.

This information identifies the non-selected, or non-applicant sample. Additional

data are gathered from the 1930 U.S. census of agriculture, manufacturing and popu-

lation, describing the characteristics of the county and a bank’s business environment.

Census covariates include the number of wholesale retailers, number of manufacturing

facilities, acres of cropland, and percent of votes which were Democratic.

The data are applied to the 5 equation model as follows: the outcome variable for

equation (1.1), yi1, is the total amount of RFC assistance requested by each bank by

December 1933.3 This outcome is censored with point mass at zero for banks that do

not apply for assistance and a continuous distribution for the different loan requests.

The outcome variable for equation (1.2), yi2, is the total amount of RFC assistance

approved. This outcome is also censored with point mass at zero for banks that are

declined assistance and a continuous distribution for the different loan approvals. The

3The RFC started in early 1932, so by the end of 1933 many banks submitted multiple applica-
tions. Thus, this outcome is the sum of the RFC assistance requested from each bank.
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RFC’s decision to lend was based on the solvency of the banks. However, after going

through the examiners’ reports, it is apparent that the RFC also considered banks’

importance to their local market and features of that market. In addition, there is

a debate in the existing literature on whether or not there was political influence in

the decision-making process (Kroszner, 1994; Mason, 2003). To control for these past

findings, the covariates that enter equation (1.2) include information from the RFC

loan applications and political indicators.

Finally, the outcome variable for equations (1.3)–(1.5) is the total amount of “loans

and discounts” (hereafter, referred to as LD) for each bank taken from its January

1935 balance sheet. The year 1935 is selected because the intervening time allowed

banks to utilize their relief funds.4 The outcome for the treatment responses is again

censored with point mass at zero for banks that failed since the time of the loan

application period in 1932–1933 and a continuous distribution with LD representing

a bank’s health and the state of the local economy. LD is chosen to measure a bank’s

performance following the literature on the credit crunch and its relation to economic

activity (Bernanke, 1983; Calomiris and Mason, 2003a).

Descriptive Statistics

The data set includes all banks operating in 1932 in Alabama, Arkansas, Michi-

gan, Mississippi, and Tennessee. Unlike previous studies on the RFC, this includes

non-Federal Reserve member banks, as well as member institutions. Solely looking at

members may misrepresent the banking population because these institutions were of-

ten healthier and had additional outlets for relief funds through the discount window.

The sample consists of 1,794 banks, of which 908 banks applied for RFC assistance

4Later years are not considered because the FDIC was established in 1934 and its operations
increased greatly over time, thus disentangling this financial restructuring becomes more difficult.
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and 800 of those were approved while 108 were declined assistance. Roughly half

of the banks in each state applied for assistance from the RFC. From the applicant

pool, about 88% of the submitted applications were approved. Table 1.1 presents

descriptive statistics on the RFC applications and approvals organized by state.

Table 1.1: RFC applications and approvals by state

AL AR MI MS TN
No. banks applied for RFC funds 120 157 332 142 157
% of banks applied 48 56 52 60 40
No. banks approved RFC funds 102 141 288 130 139
No. banks declined RFC funds 18 16 44 12 18
% of applications approved 85 90 87 92 89
Total RFC assistance approved ($ millions) 18.7 16.7 155.6 21.5 55.4

Table 1.2 presents descriptive statistics on bank balance sheets, charters, member-

ships, correspondent networks, departments, and market shares. In addition, the

table includes average county characteristics for each state. These 5 states are stud-

ied because many relief efforts were focused in these areas, and they provide variation

across bank and county characteristics, sizes, and Federal Reserve districts. Federal

Reserve district variation is necessary because RFC lending was concurrent with lend-

ing through the discount window. Federal Reserve policies differed across districts

and hence impacted the rate at which banks failed (Richardson and Troost, 2009).

Richardson and Troost (2009) find that the loose lending policies in the 6th district

reduced bank failures, relative to the strict policies in the 8th district. The lending

capabilities of the RFC were larger than that of the Federal Reserve’s discount lend-

ing because the RFC could assist nonmember banks, which is 81% of this sample.

County characteristics are important because previous work finds that bank distress

is a continuation of agricultural distress (Calomiris and Mason, 2003b; Richardson,

2007). In addition, apparent from the applications and examiners’ reports, the RFC

considered some county characteristics in its approval process.
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Table 1.2: Financial characteristics of the banks in each state in 1932 and county
characteristics.

Variable Alabama Arkansas Michigan Mississippi Tennessee
No. Banks 250 278 638 235 393
Average Age 24 22 30 25 25
Fed District(s) 6 8 7, 9 6, 8 6, 8
Financial Ratios (averages)
Cash / Assets 0.160 0.235 0.115 0.161 0.143
Deposits / Liabilities 0.612 0.750 0.751 0.730 0.675

Financial Characteristics (averages - $1000)
Total Assets 1027 558 2309 695 1121
Loans & Discounts (LD) 582 273 1203 356 649
Bonds & Securities 228 131 611 187 178
Cash & Exchanges 138 121 280 110 177
Paid-Up Capital 106 53 157 55 101
Deposits 716 437 1750 528 765
Surplus & Profits 92 41 126 47 80

Charters, Memberships, Depts. (counts)
State Bank 166 222 438 208 308
National Bank 82 44 102 26 83
Amer Bk Ass’n (ABA) 160 188 370 171 185
State Bank Ass’n 215 252 542 219 374
Safe Deposit Dept. 123 121 451 94 145
Bond Dept. 23 25 113 29 35
Savings Dept. 74 126 557 152 189
Trust Dept. 63 47 118 52 133

Correspondents (averages)
Total Correspondents 2.6 2.4 2.8 2.9 2.4
Out of State Corres. 1.5 1.4 1.5 2.5 1

Market Shares (averages)
Liab. / County Liab. 0.27 0.26 0.13 0.33 0.24
Liab. / Town Liab. 0.68 0.75 0.17 0.74 0.69
HHI 0.66 0.60 0.29 0.70 0.54

County Characteristics (averages)
No. Wholesale Retailers 31.3 22.4 45.3 15.4 25.3
% Voted Democratic 79.8 81.6 47.2 85.2 71.1
No. Manufact. Est. 41.4 22.5 44.5 33.8 30.4
Cropland (×1000 acres) 115.6 96.6 122.9 81.9 78.1
Town Pop. (×1000) 14.6 4.7 49.6 4.5 14.2
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Table 1.2 also describes banks’ correspondent relationships, which are considered

pathways for financial contagion. Correspondent banks were designated in reserve

cities of the Federal Reserve system and often provided smaller, local banks with

liquidity (Richardson and Troost, 2009). Correspondent relationships between bigger

and smaller banks built a structure for the Federal Reserve to influence nonmem-

ber institutions. However, they also created linkages for contagion to spread, thus

controlling for them is important.

Table 1.3: Characteristics of the banks in each subgroup in 1932 and county charac-
teristics.

Variable Non-Applicant Declined Approved
No. Banks 886 108 800
Average Age 25 25 27
Financial Ratios (averages)
Cash / Assets 0.17 0.11 0.13
Deposits / Liabilities 0.71 0.70 0.72
Cash / Deposits 0.29 0.17 0.19
Equity 0.21 0.18 0.20

Charters and Memberships (counts)
State Bank 609 73 660
National Bank 198 23 116
ABA Member 487 63 518

Correspondents (averages)
Total Correspondents 2.5 2.7 2.7
Out of State Corres. 1.4 1.6 1.5

Market Shares (averages)
Liab. / County Liab. 0.21 0.20 0.23
Liab. / Town Liab. 0.71 0.66 0.73

County Characteristics (averages)
No. Wholesale Retailers 27 33 28
% Vote Democratic 67 65 67
No. Manufact. Est. 34 44 37
Cropland (×1000 acres) 100 116 102

Table 1.3 reports similar statistics, but separated by the three subgroups: banks that

do not apply for assistance, banks that apply and are declined, and banks that apply

and are approved. The table displays some fundamental differences between these
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groups of banks, particularly in the financial ratios. Banks that apply for assistance

hold less cash, with the declined sample holding the lowest amount, relative to banks

that do not apply for assistance. Approved banks tend to be more important to

their local market, coinciding with information in the examiners’ files. Additionally,

declined banks appear to operate in areas with more manufacturing and agricultural,

relative to the other subsamples. Before the fall of 1930, the decrease in agricultural

prices concentrated bank failures in farming areas, explaining the harsh economic

condition of these regions (Richardson, 2007). These fundamental differences across

the banks’ balance sheets and locations motivate the joint model employed in this

paper.

1.5.2 Results

Table 1.4 displays the results for the multivariate treatment effect model with sam-

ple selection. The following discussion reviews the results for each equation, Sec-

tion 1.5.2.a describes the results for the variance-covariance matrix, and Section 1.5.2.b

presents covariate and treatment effects. The results presented in Table 1.4 are from

the model with the highest marginal likelihood and posterior model probability, which

is referred to as the benchmark model. Marginal likelihood computations and dis-

cussions are in Section 1.6.1. The priors on β in the benchmark model are centered

at 0 with a variance of 5, and the priors on Ω imply that E(Ω) = .4 × I and

SD(diag(Ω)) = 0.57 × I. Section 1.6.2 reports the sensitivity of the results to the

prior specification.

Column 2 of Table 1.4 presents the results for the application step of the recapitaliza-

tion process, equation (1.1). The results indicate that banks with high cash to asset

ratios are less likely to apply for loans, and banks with high deposit to liability ratios
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Table 1.4: Posterior means and standard deviations are based on 11,000 MCMC draws
with a burn-in of 1,000. Columns 2-6 display the results for equations 1-5, respectively.
In the raw data, financial characteristics and RFC requested and approved amounts
are divided by 1,000,000.

Variable 1) Application 2) RFC Decision 3) Declined 4) Approved 5) Non-applicant
Intercept -0.796 (0.172) -0.748 (0.208) -0.947 (0.043) 0.369 (0.218) -0.206 (0.084)
Bank Age 0.002 (0.001) -0.003 (0.006) -0.001 (0.001) -0.001 (0.001)

Financial Characteristics
Paid-Up Capital 1.478 (0.167) 1.447 (0.191) 8.458 (2.172) 3.436 (0.190) 1.694 (0.171)
Loans & Discounts 0.265 (0.021) 0.325 (0.023) -0.737 (0.175) -0.086 (0.18) 0.060 (0.019)
Bonds & Securities -0.497 (0.044) -0.549 (0.052)
Cash / Assets -1.74 (0.296) -1.608 (0.353) -0.262 (1.045) 0.913(0.290) -0.121 (0.112)
Deposit / Liab. 0.273 (0.073) 0.197 (0.078)
Total Assets 0.227 (0.110) 0.184 (0.007) 0.261 (0.011)

Correspondents
No. Corres. -0.107 (0.107) 0.060 (0.021) 0.023 (0.017)
Corres. Out State 0.154 (0.114) 0.014 (0.021) 0.009 (0.017)

Charters, Memberships, and Depts.
Bond Dept. 0.115 (0.035)
Savings Dept. -0.046 (0.026)
Trust Dept. 0.042 (0.029)
ABA Member -0.028 (0.026)
National Bank -0.056 (0.037) 0.707 (0.375) -0.077 (0.076) -0.048 (0.049)
State Bank 0.435 (0.338) -0.044 (0.070) -0.010 (0.043)

County Characteristics
Wholesale Retail 0.005 (0.003) 0.003 (0.000) 0.000 (0.000)
% Vote Demo. 0.000 (0.000)
Manufact. Est. 0.000 (0.000) -0.004 (0.003) -0.001 (0.000) 0.000 (0.000)
Acres Cropland -0.310 (0.170) -0.340 (1.115) 0.572 (0.280) 0.289 (0.193)
Town Pop. 1932 -0.950 (0.184) -1.494 (0.208)
Town Pop. 1935 -0.511 (0.143) -3.560 (0.720) -5.412 (0.677)

Market Shares
Liab./County Liab. 0.116 (0.050)
Liab./Town Liab. 0.178 (0.074) 0.442 (0.266) 0.000 (0.056) -0.019 (0.038)

Dummies
Fed Dist. 6 0.138 (0.168) 0.068 (0.208) 0.241 (0.450) -0.050 (0.193) 0.155 (0.060)
Fed Dist. 7 0.341 (0.067) 0.244 (0.206) 0.271 (0.431) -0.282 (0.194) 0.002 (0.061)
Fed Dist. 8 0.337 (0.171) 0.329 (0.212) 0.124 (0.463) -0.277 (0.197) 0.157 (0.001)

RFC Request (y1) 1.155 (0.660) -1.028 (0.217)
RFC Approve (y2) 1.460 (0.192)
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are more likely to apply. These results are intuitive because a high cash to asset ratio

implies a bank is liquid and does not need assistance from the RFC. Whereas, a high

deposit to liability ratio implies a bank may be at risk for a run on its deposits. Bank

runs were the main mechanism that caused bank failure in the 1930s (Bernanke, 1983)

and were a credible threat to many depository institutions. A bank’s vulnerability to

a run is also apparent in the result for market share. The higher the share of liability

at all banks in the town held at an individual bank, the more likely the bank is to

apply for assistance. With financial panics spreading through many towns, a bank

that is responsible for a large share of depositors is more likely to protect itself from

liquidation by applying for RFC assistance.

The results also indicate that banks with more paid-up capital are more likely to

apply for relief funds. This finding accords well with the existing literature, which

states that the wealth of insider shareholders increases firms’ reliance on outside funds

(Calomiris, 1993). Furthermore, banks in the 7th and 8th Federal Reserve districts

are more likely to apply for RFC assistance, coinciding with Richardson and Troost’s

(2009) results. The authors show that the loose discount lending policies practiced

in the 6th district were more effective at reducing bank failures, relative to the 8th

district. Thus, banks in the 8th district sought additional assistance from the RFC

since their regional Federal Reserve office practiced strict lending policies.

Column 3 of Table 1.4 presents the results for the approval step of the recapitaliza-

tion process, equation (1.2). The results indicate that paid-up capital and LD have

a positive impact on loan approval, whereas, bonds and securities have a negative

impact. During this time, there was an “increased desire by banks for very liquid or

rediscountable assets” (Bernanke, 1983). In order for a bank to receive liquid assets

from the RFC, they must offer their illiquid assets as collateral, such as LD. The RFC

28



accepted LD as collateral and rarely accepted bonds.5 As a result, LD positively af-

fects the receipt of assistance, and bonds and securities negatively affect the receipt

of funds. Furthermore, Calomiris and Wilson (2004) find that a low deposit default

risk is achieved by sufficient capital and limited asset risk. Thus, the RFC preferred

to lend to banks with more capital and lower deposit default risk.

Also in equation (1.2), town population and acres of cropland have a negative impact

on loan approval. These results coincide with the information reported on the applica-

tions to the RFC and in the examiners’ reports. The examiners often commented on

balance sheet characteristics, agriculture, town population, and county market size.

They rarely commented on manufacturing, which explains why it is not supported in

this equation. Cropland is negatively related to RFC approval because farmers were

experiencing more difficulty than homeowners and nearly half were delinquent in loan

payments (Bernanke, 1983). As a result, banks in these areas were unstable and the

RFC may have been reluctant to offer relief. Also, a bank’s county liability ratio has

a positive impact on loan approval. This finding agrees with the comments in the

examiners’ reports and Mason’s (2001) finding that “banks’ importance to their local

market has a significant positive effect on whether banks receive loans.”

The results for the RFC’s approval decision do not present any political, charter,

or regional bias. The membership dummies (national bank6, American Banking As-

sociation (ABA) member, and Federal Reserve districts) and the Democratic votes

variable have 95% credibility intervals that include zero, which are computed using

quantiles. These results accord well with Mason’s (2003) finding that the distribu-

tion of RFC funds is not associated with political measures. It should be noted that

although this paper controls for county-level political measures, it does not control

5Defaults on bonds from 1930 to 1939 were nearly triple the number from the previous decade
(Calomiris, 1993).

6National banks are members of the Federal Reserve.
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for politicians’ personal appeals and relationships. Jesse Jones, the director of the

RFC from 1933 to 1939, documents a number of personal solicitations for RFC funds

from business acquaintances and members of the Executive Branch (Jones, 1951).

Although he mentions he did not give in to these proposals, it would be difficult for a

statistical study to control for the personal relationships of the RFC board members.

However, this paper does show that there is no general geographic or membership

influence.

The results for the treatment responses, equations (1.3)–(1.5), correspond to different

subsets of the sample depending on which equation is observed. The outcome variable

for each equation is LD in 1935. The results for equation (1.3), column 4 of Table 1.4,

correspond to banks that apply for RFC assistance and are declined – the selected

untreated sample. The endogenous covariate, RFC requested amount, has a positive

impact on bank lending. This result is likely picking up an effect of the bank’s health

during the application process because in order to apply for an RFC loan, a bank had

to make a collateral offering. The more collateral a bank was offering, the more RFC

assistance they requested. Thus, application amounts played a positive role because

healthier banks offered more collateral. Lagged LD from 1932 has a negative effect

on LD in 1935. This result is intuitive given that it is in the class of declined banks.

Credit extended in 1932 may have been defaulted on, reducing banks’ health and

making fewer funds available for LD in 1935. The national bank indicator is positive,

suggesting that Federal Reserve member banks are more stable than nonmember

institutions in the selected untreated sample. Federal Reserve member banks operate

within a specific regulatory structure that restricts their ability to take on risk, so in

a panic, they perform better. Furthermore, these banks have an additional outlet for

relief funds beyond the RFC because they can receive assistance through the discount

window.

30



The results for equation (1.4), column 5 in Table 1.4, correspond to banks that apply

for RFC funds and are approved (i.e., the selected treated sample). The endogenous

covariate for RFC lending yi2 is positive, advocating that RFC assistance increases

bank lending and demonstrating the benefits of recapitalization and LOLR policies.

Further examinations and interpretations of this result are in Section 1.5.2.b. Lagged

LD does not appear to be supported in this subgroup. This result is especially

interesting when compared to the estimates for lagged LD in the other subsamples,

or treatment responses, in which cases it is statistically different from 0. This is

suggestive of a “resetting” effect. The RFC accepted LD in 1932 as collateral in

exchange for liquidity. Therefore, lagged LD has no impact on these banks because

they were provided a fresh platform for lending.

Unlike the other treatment responses, several of the county characteristics in equa-

tion (1.4) (approved banks) affect bank lending. The number of wholesale retailers

and acres of cropland in a county positively impact bank lending. Once a bank re-

ceives RFC funds, they use these funds to stimulate the local economy and promote

confidence in their bank, which is clear from these results. Alternatively, the number

of manufacturing facilities in a county negatively affects bank lending. In general,

heavy manufacturing areas were in worse conditions during the Depression, so their

recovery may have been prolonged (Rosenbloom and Sundstrom, 1999).

The indicators for national bank, state bank, and Federal Reserve districts have

credibility intervals overlapping zero, displaying a sense of homogeneity across banks

in different regions and of different charters, all of which receive RFC assistance. A

bank’s correspondent relationships in 1932 positively impacts LD in 1935. This result

aligns with intuition because correspondent banks provided local banks with liquidity,

often by discounting short-term commercial paper, and urged smaller institutions to

extend credit. Thus, the more correspondent relationships a bank has, the more access
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it has to liquidity. The selected treated, or approved bank, sample is the only subgroup

where the number of correspondent relationships is statistically different from 0. This

finding illustrates the positive impact the RFC has on a network of banks and the

banking system as a whole. With support from the RFC, correspondent relationships

remain healthy and positive for individual banks, which increases lending to local

communities and stabilizes the financial system.

The results for equation (1.5), the last column in Table 1.4, correspond to banks that

do not apply for RFC assistance (i.e., the non-selected sample). Banks’ LD in 1932

positively affects their LD in 1935. This result differs from the other two subsamples

where it was negative for declined banks and not supported for approved banks. Banks

that were stable enough to not apply for RFC assistance, continued their stability

through 1935. Unlike the results for the other treatment response equations where the

Federal Reserve district indicators are not supported, the indicators for the Federal

Reserve districts 6 and 8 in the non-applicant sample have a positive effect on bank

lending. For banks that do not apply for RFC funds, access to the discount window

may have provided assistance, positively impacting lending in these regions.

The importance of recognizing the multi-step bailout process is emphasized in the

results for the treatment response equations. Modeling each subsample separately

is important because the parameter estimates are vastly different across equations.

Discrepancies include: the sign and credibility interval for estimates of lagged LD are

different in equations (1.3)–(1.5), county characteristics and correspondent relation-

ships are only supported in the approved subsample, Federal Reserve membership is

only impactful for the declined subsample, and Federal Reserve districts only matter

for the non-applicant subsample. Banks are non-randomly placed into these sub-

groups by properly modeling the selection mechanisms and the application-approval

decision structure, which stresses the value of the multivariate setup.
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1.5.2.a Results for Omega

This section presents the estimates for the variance-covariance matrix, Ω. The results

display the importance of joint modeling because there is a high degree of correlation

between the selection equations and outcomes.

Table 1.5: Posterior means, standard deviations, and implied correlation form for Ω.

Ω Ω11 Ω12 Ω22 Ω13 Ω23 Ω33 Ω14 Ω24 Ω44 Ω15 Ω55

Mean 1.17 1.33 1.64 -0.83 -0.97 0.93 -1.05 -1.28 1.20 -0.04 0.11
SD 0.05 0.06 0.08 0.42 0.50 0.50 0.13 -0.16 0.25 0.02 0.01
Correlation 1 0.95 1 -0.79 -0.78 1 -0.88 -0.91 1 -0.10 1

Estimates of Ω capture aspects of the model that are unobserved, e.g., loss of con-

fidence, panic, corporate governance, and unmeasurable elements of a bank’s risk,

decisions, or health. Results for the third equation display a negative relationship

between applying for RFC assistance and bank lending. Recall that the endogenous

covariate, yi1 in equation (1.3), is positive for this relationship. The characteristics

a researcher cannot observe or control for present a negative correlation between

applications and lending.

Similarly, the results for Ω24 display a negative correlation between the unobserved

factors of RFC loan approval and bank lending. Again, the direct effect of RFC

lending on bank lending is positive; however, unobservables not captured within the

model are negatively related to bank success. This result is coherent because the

selected sample of banks that apply for RFC loans are banks fearing a run on their

deposits or liquidation. By non-randomly selecting into the applicant class of banks,

they are revealing worse health or vulnerability to the market. Ignoring correlation

in the outcomes and joint modeling can lead to specification errors and biases, which

are considered in detail in the next section.

33



1.5.2.b Covariate and Treatment Effects

Interpretation of the resulting parameter estimates presented in Table 1.4 is compli-

cated by the censoring of the outcome variables. Analysis up to this point has been

based on sign and 95% credibility intervals. Further interpretation is afforded using

covariate and treatment effect calculations, which are important for understanding

the model and for determining the impact of a change in one or more of the covariates.

This section considers the magnitude of the parameter estimates and discusses two

treatment effects.

A key estimate of interest is βRFC , which is the coefficient on the endogenous covariate

yi2 in equation (1.4). After controlling for a bank’s health, business environment, and

contagion channels, βRFC reflects the impact of RFC assistance on bank lending. To

calculate how a change in RFC lending transfers to bank lending, the covariate effect

is averaged over both observations and MCMC draws from the posterior distribution.

The marginal effect of the RFC is 0.571, which can be interpreted as $10,000 of RFC

assistance translates to $5,710 of LD in 1935. This is a strong, positive result and it

accords well with the loan-to-deposit ratios during the 1930s and banking panics, in

general. In normal economic times, this would be considered low; however, in adverse

macroeconomic conditions this ratio is standard.7 RFC assistance is effectively pushed

beyond banks, trickling into local economies through lending, thus promoting and

restoring confidence in the financial system.

To stress the importance of this new methodology, which properly considers the de-

cision structure and composition of treatment and control groups, several erroneous

models are estimated. A model that ignores correlation in the outcomes and non-

random selection (“Ignore Joint Modeling”) is considered, as well as a model that not

7Banks curtail their lending during the crises – loan-to-deposit ratios fell from 0.85 in 1929 to
0.58 in 1933 (Calomiris, 1993).
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only ignores joint modeling but also ignores the censoring in the outcome variables

(“OLS”). The results are presented in Table 1.6. The marginal effect of the RFC in

the first erroneous model is 0.41. This result is nearly 30% downward biased, severely

underestimating the effectiveness of LOLR policies. This error arises as a result of

selection bias. If a researcher interprets this result, it would show that liquidity in-

jections from the RFC have a lower conversion to LD than a standard deposit. Thus,

banks would be hoarding their relief funds and not extending credit to the local com-

munities, mitigating the RFC’s impact on economic activity. The second erroneous

model employs ordinary least squares and displays a near 1-to-1 conversion of RFC

funds to bank lending. This result demonstrates the attenuation bias that can occur

if censoring in the outcome variable is ignored. These fundamental misspecifications

can have detrimental effects on the results and interpretations, which highlights the

importance of the multivariate treatment effect model developed in this paper.

Table 1.6: Differing results from erroneous models.

Model βRFC Marg. Eff.
Benchmark Model 1.46 (0.19) 0.57
Ignore Joint Modeling 1.07 (0.09) 0.41
OLS (eq. 4) 0.94 (0.08) ·

Up to this point, this paper has shown how RFC lending impacts bank lending. An-

other aspect to consider is how RFC lending affects the probability of bank failure,

which can be done with treatment effects. To illustrate the main ideas of the treat-

ment effects, suppose that one is interested in the average difference in the implied

probabilities between the cases when x†i is set to the value x
‡
i , representing a change in

a covariate. Given the values of the other covariates zi, and those of the model param-

eters θ, one can obtain the probabilities Pr(yi = 0|x†i , zi,θ) and Pr(yi = 0|x‡i , zi,θ).

Interest centers upon the predictive distribution {Pr(yi = 0|x†i ) − Pr(yi = 0|x‡i )},

which is marginalized over {zi} and θ (Jeliazkov et al., 2008). Formally, the objec-
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tive is to obtain a sample of draws and evaluate

{Pr(yi = 0|x†i )− Pr(yi = 0|x‡i )} =∫
{Pr(yi = 0|x†i , zi,θ)− Pr(yi = 0|x‡i , zi,θ)}π(zi)π(θ|y)dzidθ,

where yi is set to zero to motivate the application to bank failure. The mean of

this predictive distribution gives the expected difference in the computed pointwise

probabilities as x†i is changed to x‡i . Computation of these probabilities is afforded

by employing the CRT method, developed in Jeliazkov and Lee (2010).

This method is employed to calculate 2 treatment effects. The first case to consider is

the difference in the probability of bank failure if the RFC did not offer any assistance.

To see how removing the treatment from the treated banks affects bank success, two

probabilities need to be considered, Pr(yi4 = 0|xi4, y
‡
i2,θ) and Pr(yi4 = 0|xi4, y

†
i2,θ),

where y‡i2 represents zero RFC assistance and y†i2 represents the original treatment.

Thus, interest lies in how a bank’s probability of failure changes if the RFC never

approved any loans. The mean of the predictive distribution {Pr(yi4 = 0|y‡i2) −

Pr(yi4 = 0|y†i2)} is 0.126. In other words, if the RFC did not offer any assistance, the

probability of bank failure for the selected treated sample (approved banks) increases

by 12.6 percentage points. To shed some light on the result, this is about 101 banks

or about 6% of the entire sample of 1,794 banks. Nearly 40 percent (10,000 of the

approximately 25,000 banks) of all banks in existence in the United States in 1929

were suspended by 1933 and were closed during the intervening period of economic

hardship (Mitchener, 2005). Generally speaking, without the RFC, thousands of

additional banks could have suspended operations. Therefore, this paper finds major

evidence of how RFC assistance resuscitated the banking system.

Thus far, the RFC has been shown in a positive light. However, one might wonder
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if the RFC could have done more to mitigate banking panics. To address this, the

second treatment effect looks at how RFC assistance could have changed the outcomes

for banks that were declined loans. For this scenario, the RFC approved loans are

equated to the amounts requested on declined banks’ applications. Two probabilities

to consider are, Pr(yi3 = 0|xi3, y
‡
i2,θ) and Pr(yi3 = 0|xi3, y

†
i2,θ), where y

‡
i2 represents

declined loans (the original case) and y†i2 represents the case where the RFC approved

the full requested amounts. This situation displays the difference in the probability

of bank failure if the RFC approved applications for the selected untreated sample

(declined banks). The mean of the predictive distribution {Pr(yi3 = 0|y‡i2)−Pr(yi3 =

0|y†i2)} is 0.025. If the RFC assisted banks that were declined loans, the probability

of failure for the selected untreated sample decreases by 2.5 percentage points. This

is much different than the 12.6 finding for approved banks, which demonstrates the

importance of the selection process. RFC assistance is almost 5 times more effective

in the approved bank subsample. The banks the RFC declined to assist were helpless

because full assistance from the RFC would not have had a major impact on their

ability to survive and thrive in the economy.

The results of the two scenarios are clear. LOLR policies and bank recapitalization

aided a bank’s survival if the bank was healthy enough to receive a loan. Once non-

randomly appointed to the treated group, banks that received RFC loans converted

a majority of their relief funds to LD, supporting local economies. The results also

indicate that the selection procedures adopted by the RFC were successful. Assistance

to all struggling banks would have been wasteful because most of the untreated banks

were not healthy enough to have benefitted from an influx of funds. The focal point

of these results is that proper consideration of the decision structure and composition

of treatment and control groups are of fundamental importance because the results

vary for different subgroups of banks. The only way to identify the differences in

these subgroups is by modeling the preceding selection mechanisms and the overall
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decision structure, which offers a more complete evaluation of the effectiveness of

LOLR programs.

1.6 Additional Considerations

1.6.1 Model Comparison

An issue in the analysis of LOLR policies is model formulation since the appropri-

ate specification is subject to uncertainty. Uncertainty due to variable selection is

especially prevalent here because there are a number of financial ratios and char-

acteristics that represent a bank’s health and risk, as well as county characteristics

that represent a bank’s business environment, which can be included in the model.

However, including all of these measures may lead to overfitting. Existing techniques

in Bayesian model comparison can be employed to discover which set of covariates

selected to explain the relationships in the model is best supported by the data.

Uncertainty also lies in the exclusion restrictions useful for inference. Arguing for

the inclusion of a variable in the selected treatment equation and exclusion from the

treatment responses is difficult and presents dubious constraints. Complications lie

in disentangling aspects that influence the LOLR’s decision to approve assistance

and other factors that affect bank profitability. This paper not only utilizes Bayesian

model comparison methods to address issues of variable selection, but also to address

restriction uncertainty.

For model comparison, given the data y, interest centers upon a collection of mod-

els {M1, ...,ML}, each characterized by a model-specific parameter vector θl and

sampling density f(y|Ml,θl). Bayesian model selection proceeds by comparing the
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models through their posterior odds ratio which is written as,

Pr(Mi|y)
Pr(Mj|y)

=
Pr(Mi)

Pr(Mj)
× m(y|Mi)

m(y|Mj)

for models Mi and Mj. Chib (1995) recognized the basic marginal likelihood identity

(BMI) in which the marginal likelihood for model Ml can be expressed as

m(y|Ml) =
f(y|Ml,θl)π(θl|Ml)

π(θl|y,Ml)
.

Calculation of the marginal likelihood is then reduced to finding an estimate of the

posterior ordinate, typically taken as the posterior mean or mode. Evaluation of the

likelihood is done by employing the CRT method from Jeliazkov and Lee (2010).

This paper compares 12 models that differ by variable and restriction selection. Mo-

tivation for the exclusion restrictions is based on information provided in the ap-

plications to the RFC. Information the RFC requested and commented on for each

bank includes: all balance sheet information, charters, county agriculture, and county

market density. However, there are several other characteristics that are not on the

applications or mentioned in the examiners’ reports, implying the RFC did not have

this information on hand when making their decisions. This includes bank age, town

information, departments, and correspondent networks. These natural exclusions

motivate the restrictions considered in the competing model specifications.

Results for the model comparison are displayed in Table 1.7. The first column of

the table describes deviations from the benchmark model, e.g., Model 1 includes

additional variables for asset ratios, HHI, and state effects in each equation that do

not appear in the benchmark model. The second column lists the unique variables

for each covariate vector in the selection equation (x1), selected treatment (x2), and

treatment responses (x3 − x5), respectively, that are excluded from 1 or more stages.
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The third column presents the log-marginal likelihood estimate and the forth column

reports the numerical standard error.

Results for the variable selection show that state effects are unnecessary. The marginal

likelihood decreases by 25 on the log scale when state indicators are included. In gen-

eral, the data support more parsimonious models without including numerous finan-

cial characteristics. When multiple financial measures representing similar aspects of

a bank’s health are included, the marginal likelihood decreases, thus overfitting the

model. In addition, the data support specifications that have both financial ratios

and levels, which grasp both bank profitability and size. Models that include mostly

ratios are not only less supported by the data, but also have poor mixing properties

of the Markov chain.8

Competing hypotheses about the direct effect of RFC assistance are tested. Model

7 is nearly identical to the benchmark model, however, without the endogenous co-

variates yi1 and yi2 (RFC requested and approved amounts) entering equations (1.3)

and (1.4). This model hypothesizes that there is no direct effect of RFC assistance,

just an indirect effect through the correlation in the unobservables. When this model

is compared to the benchmark model, the marginal likelihood decreases by 454 points

on the log scale. The data overwhelmingly support the benchmark model, where the

actions of the RFC have a direct impact on bank success. Furthermore, the bench-

mark model supports the notion that the size of the loan matters. If the data allow

these endogenous covariates to enter the treatment response equations, as a result of

not using binary selection, they can have immense explanatory power. Model 12 is

considered to detect potential nonlinearities in the endogenous regressors. Table 1.7

displays a lower marginal likelihood. Additionally, the point estimates and credibil-

ity intervals did not support the polynomial functions of the endogenous regressors.

8Poor mixing properties are also found when log-transformations are considered.
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Table 1.7: Results of the model comparison. The first column describes deviations
from the benchmark model, the second column identifies unique variables in each
covariate vector for the selection equation (x1), selected treatment (x2), and treatment
responses (x3 − x5), respectively, that are excluded from 1 or more stages. The third
column shows the log-marginal likelihood estimate and the forth column reports the
numerical standard error.

Model Unique Vars. Marg-lik. NSE

1) State effects, asset ratios, HHI
Safe deposit dept.

Manufacturing, cropland
Town market shares

-8,100.8 0.85

2) Town shares, equity ratios
Bank age

% vote Democratic
State bank association member

-8,063.9 0.50

3) Total assets, loan/dep ratios
All departments

HHI
Correspondents

-8,055.2 0.56

4) Correspondents, cropland
Bank age

% vote Democratic
Departments

-8,031.4 0.73

5) Additional financial vars.
Bank age, departments

Cropland, county shares, % Democratic
Wholesale, town shares, corresp.

-7,982.7 0.47

6) Benchmark
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-7,978.6 0.43

7) No endogenous covarites
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-8,433.2 0.46

8) No yi1 endogeneity
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-8,013.4 0.42

9) All financial ratios (no levels)
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-8,504.3 0.91

10) State effects
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-8,003.0 0.71

11) Non-app. restrictions
Bonds & securities
Surplus & profits

Equity
-8,227.0 0.68

12) Quadratic endogenous vars.
Bank age, departments

Cropland, county shares, % Demo.
Wholesale, town shares, corresp., 1935 pop.

-7,992.5 0.48
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Therefore, there is no evidence of nonlinearity in this case, however, it is an important

issue to explore in empirical applications.

Results of the model comparison with different restrictions strongly favor the natural

exclusions from the applications. Unique variables excluded from the selected treat-

ment stage include bank age, departments, town market shares, and correspondent

relationships – all of which are not included in a bank’s application to the RFC. Al-

though the RFC did not request this information, these features do explain a bank’s

decision to apply for assistance and its performance. Consider Model 11 where the ex-

clusions are not based on information in the applications, but instead, other financial

characteristics. The marginal likelihood falls by 248.4 points on the log scale, giving

it a posterior model probability of approximately 0. Understandably, exclusions are

a tough argument, however, with the use of Bayesian model comparison techniques,

the data show support for the application-based exclusions over others.

Across the models in Table 1.7, the impact of the RFC remains positive and statis-

tically different from 0.9 The results are robust to the competing specifications and

hypotheses about the RFC. Most importantly, the results highlighted in this paper

arise from the model that is best supported by the data and that has the highest

posterior model probability.

1.6.2 Sensitivity Analysis

The priors for the benchmark model appear at the beginning of Section 1.5.2. Prior

selection generally involves some degree of uncertainty and this section evaluates how

9The marginal effect of the RFC on bank lending varies from .38–.74, with the lowest and highest
values coming from models 8 and 5, respectively. When specification 8 is considered in the erroneous
model “Ignore Joint Modeling” from Table 1.6, the marginal effect drops to 0.02, which again stresses
the importance of modeling the non-random selection mechanisms and allowing for correlation in
the outcomes and endogeneity.
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sensitive the results are to the assumptions about the prior distribution.

The key coefficient of interest, βRFC , is the estimate on the endogenous variable yi2

in equation (1.4). The coefficient reported in Table 1.4 shows βRFC = 1.460, which

implies that RFC assistance has a positive impact on bank lending. To check the

sensitivity of this result to the prior specification, Table 1.8 reports the coefficient

βRFC for different hyperparameters.

Table 1.8: βRFC as a function of the hyperparameters. The priors for β in the
benchmark model are centered at zero with a variance of 5.

SD(βRFC)
Mean(βRFC) 1.5 4.4 14.14

-1 1.418 1.481 1.491
0 1.436 1.483 1.491
1 1.453 1.486 1.491

The results indicate nearly no sensitivity around the benchmark result of 1.460. This

finding holds true for all of the parameter estimates. Skeptics of bank recapitalization

who would place strong negative priors on their economic benefit would be overridden

by the data. The data speak loudly for the benchmark results and the overall findings.

Note that the model rankings in Section 1.6.1 are also not sensitive to the different

prior specifications.

1.7 Concluding Remarks

This paper presents a methodological framework for multivariate treatment effect

models in the presence of sample selection and discrete data, and provides a general

modeling framework for application-approval decision structures. The model is not

limited to banking contexts and is applicable to a multitude of problems prevalent in

economics, including modeling the effectiveness of job training and housing programs,
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health treatments, education policies, credit approval decisions, and many others.

The algorithm designed in this paper is computationally efficient, modular, and easily

extendable. Furthermore, the paper offers straightforward techniques for treatment

effects and model comparison.

The methods established in this paper are applied to the analysis of LOLR regu-

lation. The results indicate that bank recapitalization is effective at decreasing the

probability of bank failure, stimulating bank lending, and resuscitating a struggling

economy. Rescue programs not only keep individual banks healthy, but they also

promote positive relationships with correspondent networks and counties in which

the banks operate. The importance of the multivariate treatment effect model and

accommodating the RFC’s selection procedure is highlighted in the findings because

the results vary for the different subgroups of banks and there are strong correlations

between the equations. Although RFC assistance is beneficial for the treated group,

it would have been minimally helpful for banks that are declined assistance because

their economic condition is too severe.

Studying the RFC is an important and relevant topic because it was used as a refer-

ence for the current program, the Troubled Asset Relief Program (TARP), employed

during the recent crisis. Further research on LOLR policies should focus on the

multi-step decision mechanisms that place banks into different policy treatments to

answer questions, such as whether and to what extent these programs stabilize the

economy or simply privatize the gains and nationalize the losses. Overall, this model

offers practical estimation tools to unveil new answers to questions involving sam-

ple selection and treatment response data as in the application and loan approval

settings.
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Chapter 2

Determining the Proper

Specification for Endogenous

Covariates in Discrete Data

Settings

2.1 Introduction

In empirical applications, endogenous regressors are generally the key variables of

interest. Treatment models, triangular systems with recursive endogeneity, and se-

quential decision-making all feature endogenous covariates that often represent the

main components of the study. In continuous data settings, modeling endogeneity

is simple and interpretation is straightforward. In discrete data settings, modeling

endogeneity is complicated because it can take several forms based on latent or ob-

served data. This is not a limitation of the system. Instead, this feature increases
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the flexibility of such models because unobservables can be captured as explanatory

variables separately from variables that are observable to the econometrician. This

is only beneficial if a formal model comparison can be performed to decipher which

depicted relationship is best supported by the data and to resolve competing hy-

potheses about the type of endogeneity. Investigating both approaches strengthens

the eventual results by increasing a researcher’s understanding of the relationships

and the dependence structure being modeled. Model testing is easily afforded by

existing Bayesian model comparison techniques.

Initial latent data modeling innovations occurred in psychometrics, where the tra-

ditional usage of latent variables focused on measurement error and hypothetical

constructs (Muthen, 2002). In econometrics, latent data analysis advances discrete

choice methods in which choice outcomes are linked to latent utility. For a review,

see Jeliazkov and Rahman (2012). Bayesian econometrics further benefited by the as-

sociation between data augmentation and latent variables (Tanner and Wong, 1987).

Although latent modeling approaches have captured a variety of statistical concepts,

including random coefficients, missing data, discrete choice, and finite mixture mod-

eling, latent variables are rarely employed as regressors since an investigator has not

or can not measure or observe them. Macroeconomics has moved in this direction

with factor models; however, latent covariates remain unexplored in applied microe-

conomic research. Furthermore, across all fields, little attention has been applied to

formally compare such models. In a recent marketing paper, Mintz et al. (2013) look

at both specifications and find that a latent measure of information processing pat-

tern better explains an individual’s propensity to buy. Overlooking the consideration

of both approaches can lead to specification errors and misrepresent the relationships

being examined.

This paper employs Bayesian model selection methods for comparing latent and ob-
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served endogeneity models in two empirical applications. Each application features

competing hypotheses discussed in the literature and a formal motivation for using

observed or latent endogeneity. The first application examines banking contagion and

the relative influence or spread of contagion from both regional and network linkages.

The second application considers the impact of education on adult socioeconomic

status. These applications highlight a key aspect of this research topic. While an ap-

plied researcher may have a priori expectations of the “correct” model, in most cases

and especially in these examples, arguments for both approaches are easily formed,

making it difficult for a researcher to completely rule out a specification without

performing model comparison.

The rest of this paper is organized as follows: Section 2.2.1 reviews each specifica-

tion in a simple bivariate system of equations and Section 2.2.2 discusses existing

techniques for model selection. Section 2.3 considers the application to financial con-

tagion and Section 2.4 considers the application to education. Finally, Section 2.5

offers concluding remarks.

2.2 Methodology

2.2.1 Model

To exemplify the approaches discussed in this paper, consider a bivariate model with

recursive endogeneity, where latent data are referred to as y∗
i and observed data are

referred to as yi. The two different modeling techniques, latent and observed, are
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shown as:

Observed Endogeneity

y∗i1 = x′
i1β1 + εi1, (2.1)

y∗i2 = x′
i2β2 + yi1γ2 + εi2,

Latent Endogeneity

y∗i1 = x′
i1β1 + εi1, (2.2)

y∗i2 = x′
i2β2 + y∗i1γ2 + εi2.

The latent data are related to the observed outcomes by a link function depending

on the values yik can take, for equations k = 1, 2. The binary setting occurs when

yik = 1{y∗ik > 0}, and the censored setting occurs when yik = y∗ik · 1{y∗ik > 0}.

The link function for ordered data is yik =
∑J

j=1 1{y∗ik > αk,j−1} for J ordered

alternatives, where αkj is a cut-point between the categories. In this context, the

observed endogeneity system differs from (2.1) and instead is:

y∗i1 = x′
i1β1 + εi1,

y∗i2 = x′
i2β2 + 1{yi1 = 2}γ22 + 1{yi1 = 3}γ23 + . . .+ 1{yi1 = J}γ2J + εi2, (2.3)

where there is a set of endogenous indicator variables for J−1 categories, as opposed

to a single endogenous regressor as in (2.1). This case is explored in the second appli-

cation to education in Section 2.4. For simplicity, assume εi ≡ (εi1, εi2)
′ ∼ N2(0,Ω)

and Ω =

 ω11 ω12

ω21 ω22

 in (2.1), (2.2), and (2.3). Models with endogeneity have

been difficult to estimate when the response variables of interest are not continuous

because standard two-stage estimators are inapplicable in this context. Therefore, es-

timation in this paper relies on Markov chain Monte Carlo (MCMC) methods, which
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are discussed in detail in each application.

The latent data have the customary random utility interpretation underlying the the-

ory on discrete choice analysis in econometrics. Therefore, even though the observed

data can only take certain values, the latent variables that determine those outcomes

are unrestricted. The fact that the latent utilities can be changing without neces-

sarily inducing a corresponding change in the observed variable is a key distinction

between these models (Mintz et al., 2013). Furthermore, the observed and latent

specifications pose different relationships between the variables of interest because la-

tent data measure intentions and observed data measure actual actions or outcomes.

In (2.2), latent endogeneity says that intentions about yi1 determine intentions about

yi2. In (2.1), observed endogeneity says that actions about yi1 determine intentions

about yi2 (Maddala, 1983). Despite the clear interpretation of each model, in most

cases, it is difficult for a researcher to decipher which specification is correct. Gener-

ally, convincing hypotheses or arguments can be made in support of either modeling

approach, hence motivating the need for model comparison.

It is important to note that these considerations extend to larger systems of equations,

models for sample selection, potential outcomes, simultaneous equations, and more.

For a review of some of these models, see van Hasselt (2014) and Li and Tobias

(2014). Any multivariate discrete outcome model should not overlook this problem.

The bivariate system is considered here to stress the importance of the issue, highlight

the ease of considering both models, and offer a more complete understanding of the

relationships in each application.
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2.2.2 Model Comparison

Model comparison techniques are often employed to deal with issues of model uncer-

tainty and variable selection. This paper utilizes these same approaches to determine

the nature of endogeneity. The methods used in this paper are from Chib (1995) and

Chib and Jeliazkov (2001), which are computationally convenient and do not require

much additional coding. The applications in this paper span a number of discrete

choice models, including ordered probit, Tobit, and binary probit. Therefore, the

model comparison methods discussed here are general across these classes of models.

Given the data y, interest centers upon the models {Ml,Mo} where Ml represents

the latent endogeneity model and Mo represents the observed endogeneity model.

Each model is characterized by a sampling density {f(y|Ml,θl), f(y|Mo,θo)} where

{θl,θo} are model-specific parameter vectors. Bayesian model selection proceeds by

comparing the models through their posterior odds ratio

Pr(Ml|y)
Pr(Mo|y)

=
Pr(Ml)

Pr(Mo)
× m(y|Ml)

m(y|Mo)
. (2.4)

Chib (1995) recognized the basic marginal likelihood identity in which the marginal

likelihood for model Ml can be expressed as

m(y|Ml) =
f(y|Ml,θl)π(θl|Ml)

π(θl|y,Ml)
. (2.5)

Calculation of the marginal likelihood is then reduced to finding an estimate of the

posterior ordinate π(θ∗
l |y,Ml) at a single point θ∗

l , which is often taken as the poste-

rior mean or mode. Since the topics in this paper involve multivariate discrete data,

sampling densities are often analytically intractable. A straightforward approach for

evaluating the likelihood function employed in this paper is the Chib-Ritter-Tanner
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(CRT) method, which was developed in Jeliazkov and Lee (2010).

Decomposition of the posterior ordinate varies across the examples in this paper, with

the most difficult being the multivariate ordered probit model used in the education

application. This case is a bit more complex due to the additional cut-point param-

eters δ.1 This section outlines the decomposition used for the ordered probit model,

which follows from Jeliazkov et al. (2008). It should be noted that the decomposition

for the binary probit and Tobit models are simplified versions of the ordered probit

without computations for the δ parameter vector. Let λ = (β′,γ ′)′ be a parame-

ter vector for all endogenous and exogenous covariates. Estimation of the posterior

ordinate can be facilitated using the decomposition

π(λ∗,Ω∗, δ∗|y) = π(λ∗|y)π(Ω∗|y,λ∗)π(δ∗|y,Ω∗,λ∗).

Estimation of π(λ∗|y) is done by averaging the full conditional density with draws{
y∗(g),Ω(g)

}
∼ π(y∗,Ω|y) from the main MCMC run for g = 1, . . . , G,

π(λ∗|y) ≈ G−1

G∑
g=1

π(λ∗|y,y∗(g),Ω(g)).

The next ordinate, π(Ω∗|y,λ∗), can be estimated using a reduced run to obtain

π(Ω∗|y,λ∗) ≈ G−1

G∑
g=1

π(Ω∗|y,λ∗,y∗(g)).

The last ordinate, π(δ∗|y,Ω∗,λ∗), which is unique to the ordered probit setting, is

estimated using the methods in Chib and Jeliazkov (2001).

The benefits of Bayesian model comparison go beyond dealing with issues of vari-

1The cut-points αkj , which are defined in the link function for ordinal data, are transformed such
that δkj = ln(αkj − αk,j−1). A discussion of this transformation is offered in Section 2.4.1.
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able selection and model uncertainty. In this context, additional benefits include

understanding the type of endogeneity and the dependence structure between a set of

outcome variables. This allows a researcher to distinguish between several competing

specifications and further investigate the relationships of interest. Emphasis is placed

on Bayesian techniques because considering both specifications is a straightforward

extension of the methodology. Gibbs sampling methods employed in discrete data

models already generate the latent y∗s in the data augmentation part of a sampler.

Employing these draws as data involves minimal additional coding as discussed in

the next section.

2.3 Bank Contagion

The first application addresses financial contagion in two ways. First, this application

examines both latent and observed measures of a bank failure and how these deter-

mine nearby bank performance. The impact of a regional bank failure on bank health

remains unclear in the existing literature. Calomiris and Mason (2003b) find that a

nearby failure decreases the probability of survival for the remaining banks. However,

there is also research on efficient bank runs (Freixas and Rochet, 2008), which finds

positive effects stemming from nearby bank failures due to market competition. If an

inefficient bank fails, its customers can go to the remaining banks in the market for

deposits and lending, thereby benefiting the existing depository institutions. Second,

the application evaluates different linkages for the spread of contagion. Channels for

contagion have been found in both regional and correspondent2 networks (Aharony

and Swary, 1996; Kaufman, 1994; Richardson, 2007; Richardson and Troost, 2009).

While both linkages may be present, financial regulators need to determine which

2Correspondents were banks with ongoing relationships facilitated by deposits of funds (Richard-
son, 2007). These networks linked banks across the country and indicated the extent to which a
bank was important within the national network of banking (Calomiris et al., 2013).
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channel is stronger in order to implement policies for restricting the spread of conta-

gion and preventing bank runs. This paper addresses these issues and examines the

consequences of bank failures during the 1930s by looking at town-wide failure rates

and changes to correspondent networks.

The models for banks i = 1, . . . , n, are those in (2.1) and (2.2) where εi ≡ (εi1, εi2)
′ ∼

N2(0,Ω) and Ω =

 1 ω12

ω21 ω22

. The models are characterized with two dependent

variables in which y∗
i ≡ (y∗i1, y

∗
i2)

′ are the continuous latent data and yi ≡ (yi1, yi2)
′ are

the corresponding discrete observed data. For the first outcome, the latent variables

relate to the observed binary outcomes by yi1 = 1{y∗i1 > 0} and

yi1 =

 0 No bank failure occurred nearby between 1929 - 1932

1 Bank failure occurred nearby between 1929 - 1932.

The first outcome yi1 indicates whether or not a bank failure occurred between 1929-

1932 in the town the subject bank does business. Ω incorporates the usual unit

variance restriction in probit models, which is a normalization for identification. The

second outcome (yi2) measures a bank’s performance in 1933, where there is point

mass at 0 for banks that were suspended since 1932 and a continuous distribution

with “loans and discounts” (hereafter referred to as LD) representing bank health.

LD is chosen to measure a bank’s performance following the literature on the credit

crunch and its relation to economic activity (Bernanke, 1983; Calomiris and Mason,

2003a). The latent variables {y∗i2} relate to the observed censored outcomes by yi2 =

y∗i2 · 1{y∗i2 > 0}.

The endogenous covariate, yi1 in (2.1) or y∗i1 in (2.2), displays the impact of a nearby

or regional bank failure on a bank’s health and lending. Both the latent and observed

specifications are easily motivated by hypotheses discussed in the existing literature.
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The latent counterpart of a regional bank failure can reveal unobserved factors that

affect bank distress and profitability, such as corporate governance, risk behavior,

and loss of confidence. Although an econometrician can observe whether a bank fails,

additional information bankers have on the performance of their bank and business

environment remains unobservable. In addition, existing evidence suggests that bank

runs, which were the main mechanisms that caused bank failure (Bernanke, 1983),

were often facilitated through “word-of-mouth” or information-based contagion (Park,

1991). For instance, if an individual’s neighbor speculated about a pending bank

failure, the individual is likely to withdraw deposits from his bank to avoid undue

losses. Depositors lack financial information, resulting in withdrawal decisions based

on the condition of the banking system as a whole (Park, 1991). Although researchers

cannot measure the speculative nature of banking panics, the latent specification

can act as a proxy for these factors. These arguments formally motivate the latent

endogeneity model.

On the other hand, the literature notes that bank failures trigger panic (Chen, 1999).

Despite speculation about bank health, depositors do not react until an indicator for

failure is triggered. The literature also notes that publicizing the names of failed banks

worsened remaining bank health. Additionally, the publication of the names of banks

receiving financial assistance mitigated lender of last resort relief efforts (Butkiewicz,

1995). These observed outcomes, or triggers, support the observed endogeneity model.

As mentioned previously, although a researcher may have an a priori expectation

of the correct specification, it is hard to completely rule out the opposing approach.

Therefore, a formal model comparison is necessary to better understand how a nearby

failure affects bank performance and to ensure the employed specification accurately

captures the interactions and decisions of banks during financial crises.

The data collected for this application are from the Rand McNally Bankers’ Directory.

54



This directory details balance sheets, correspondent relationships, and characteristics

for all banks in a given state. Additional data are gathered from the 1930 U.S. census

of agriculture, manufacturing and population, which describe the characteristics of

the county and banks’ business environment. The sample includes all banks operating

in 1932 in Alabama, Arkansas, Michigan, Mississippi, and Tennessee for a total of

1,794 banks. These 5 states are considered because they provide variation across bank

characteristics, size, Federal Reserve districts, and county characteristics. Table 2.1

presents descriptive statistics on the banks and average county characteristics for each

state. For further information on the data set, see Vossmeyer (2014).

Table 2.1: Financial characteristics of the banks in each state in 1932 and county
characteristics.

Variable Alabama Arkansas Michigan Mississippi Tennessee
Number of Banks 250 278 638 235 393
Average Age 24 22 30 25 25
Federal Reserve District 6 8 7, 9 6, 8 6, 8
Financial Characteristics (avg.-$1000)
Deposits 716 437 1750 528 765
Deposits/Liab. (ratio) 0.612 0.750 0.751 0.730 0.675
Loans & Discounts (LD) 582 273 1203 356 649

Charters and Memberships (counts)
State Bank 166 222 438 208 308
National Bank 82 44 102 26 83
Amer Bk Ass’n (ABA) 160 188 370 171 185

Correspondents (averages)
Total Correspondents 2.6 2.4 2.8 2.9 2.4
Out of State Corres. 1.5 1.4 1.5 2.5 1
△ Correspondents 0.19 0.31 0.22 0.28 0.40

Market Shares (averages)
Liab./County Liab. 0.27 0.26 0.13 0.33 0.24
Liab./Town Liab. 0.68 0.75 0.17 0.74 0.69
Herfindahl index (HHI) 0.66 0.60 0.29 0.70 0.54

County Characteristics (averages)
No. Wholesale Retailers 31.3 22.4 45.3 15.4 25.3
Cropland (×1000 acres) 115.6 96.6 122.9 81.9 78.1
Town Pop. (×1000) 14.6 4.7 49.6 4.5 14.2

A key covariate of interest listed in Table 2.1 is △ Correspondents – an indicator

variable that takes the value 1 if a correspondent was removed from a bank’s network

and 0 otherwise. Recall that there are two linkages for contagion, regional which
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the nearby bank failure variable (yi1) captures, and correspondent networks which

this variable captures. Correspondent banks are usually designated in reserve cities

of the Federal Reserve system and often provided smaller, local banks with liquid-

ity (Richardson and Troost, 2009). Correspondent relationships between bigger and

smaller banks built a structure for the Federal Reserve to influence nonmember insti-

tutions. However, this structure created pathways for contagion to spread. Therefore,

controlling for it in the model is important and of interest to policy-makers in order

to mitigate contagion through its many channels.

2.3.1 Estimation

The model is completed by specifying the prior distributions. For λ = (β′,γ ′)′,

π(λ) = N (λ|d0,D0) and π(Ω) ∝ IW(ν0,R0)1{ω11 = 1}, where the prior on Ω

(inverse Wishart) is on the derived quantities that appear in Algorithm 2.1. The

hyperparameters for the priors are selected using a training sample of 100 banks. A

thorough sensitivity analysis is provided in Section 2.3.2. Algorithm 2.1 presents the

Gibbs sampling and data augmentation methods to simulate the posterior distribution

for the observed endogeneity specification.

Algorithm 2.1. MCMC Estimation Algorithm - Observed Specification

1. Sample [λ|y∗,Ω] ∼ N
(
d̂, D̂

)
, where d̂ and D̂ are given by

d̂ = D̂
(
D−1

0 d0 +
∑n

i=1W
′
iΩ

−1y∗
i

)
and D̂ =

(
D−1

0 +
∑n

i=1W
′
iΩ

−1W i

)−1

where

W i =

 x′
i1 0 0

0 x′
i2 yi1

 .

2. Sample Ω in a one-block, two-step procedure by drawing ω22·1 ≡ ω22−ω21ω
−1
11 ω12

and ω21, then reconstructing Ω from these quantities,

56



(a) ω22·1 ∼ IW(ν0 + n,Q22)

(b) ω21 ∼ N (Q−1
11 Q12, ω22·1Q

−1
11 ), where

Q = R0 +
n∑

i=1

(y∗
i −Wiλ)(y

∗
i −Wiλ)

′,

and Q is partitioned conformably with Ω, i.e.,

Q =

 Q11 Q12

Q21 Q22

 .

3. For i = 1, . . . , n, sample y∗i1|y∗i2, yi1,λ,Ω ∼ T NAi
(µ1|2, V1|2), where T N is the

truncated normal distribution and µ1|2 and V1|2 are the usual conditional mean

and conditional variance, respectively. If yi1 = 0, Ai is (−∞, 0), and if yi1 = 1,

Ai is (0,∞).

4. For i : yi2 = 0, sample y∗i2|y∗i1, yi2,λ,Ω ∼ T NAi
(µ2|1, V2|1), where the region Ai

is (−∞, 0) implied by the censoring of yi2.

This sampler can be easily adapted to handle the latent specification. The most

convenient approach is to move to the reduced-form where the system in (2.2) can be

re-written as,

 1 0

−γ2 1


 y∗i1

y∗i2

 =

 x′
i1 0

0 x′
i2


 β1

β2

+

 εi1

εi2


Ay∗

i = Xiβ + εi

⇔ y∗
i = A−1Xiβ +A−1

i εi (2.6)

⇔ y∗
i = µi + νi

νi ∼ N (0,A−1ΩA−1′).
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Simply change the data augmentation steps of the sampler (steps 3-4) to use the

conditional mean and conditional variance from the reduced form, avoiding any ad-

ditional computational burden brought on by considering both specifications. This

is a straightforward adjustment because the y∗s are already being generated. In the

latent specification, they are generated and passed through the sampler as data, so

W i =

 x′
i1 0 0

0 x′
i2 y∗i1

 in steps 1 and 2 of Algorithm 2.1.

2.3.2 Results

The results for the application are based on 11,000 MCMC draws with a burn-in of

1,000. The inefficiency factors for the parameters remain low with slightly higher val-

ues occurring for the parameters on the endogenous covariates and variables common

to both equations. The point estimates for the exogenous covariates are similar across

both specifications except in cases where the variable has a 95% credibility interval

that includes 0. The following discussion covers the basic results for each equation,

followed by the model comparison and sensitivity analysis.

Table 2.2 presents the posterior means and standard deviations for both specifications.

The results indicate that a nearby bank failure (yi1) positively affects lending for

existing banks, which disagrees with some of the literature. However, unlike other

studies, this paper is looking at a longer window of impact. Previous papers examine

the immediate impact of a nearby failure, which is distress. Whereas, this paper

finds that the long-run impact is positive, corroborating the research on efficient

bank runs (Freixas and Rochet, 2008). This result supports the market competition

hypothesis where failing banks leave additional depositors in the market as customers

for the remaining banks. As a result, the failure of a nearby bank strengthens the

balance sheets for surviving depository institutions. The results also illustrate that the

58



Table 2.2: Banking application – posterior means and standard deviations for the
bivariate system of equations.

Observed Endogeneity Latent Endogeneity
Nearby Fail Lending Nearby Fail Lending

Intercept -5.023 (0.260) -0.480 (0.137) -6.514 (0.349) -0.122 (0.138)
Financial Characteristics
Bank Age 0.009 (0.002) 0.013 (0.002)
Lagged LD 0.134 (0.016) 0.107 (0.017)
National Bank 0.367 (0.093) 0.488 (0.102)
Deposits/Liabilities 0.115 (0.094) 0.143 (0.111)
△ Correspondents -0.176 (0.081) -0.138 (0.087)
Total Correspondents 0.041 (0.029) -0.014 (0.029) -0.021 (0.039) -0.032 (0.031)

County Characteristics
Town Population 1.262 (1.008) 0.193 (0.327) -0.658 (1.046) -2.627 (0.540)
Wholesale Retailers 0.001 (0.001) 0.001 (0.001)
Acres of Cropland 0.218 (0.481) -0.025 (0.570)
Liab./Town Liab. 2.273 (0.180) -0.025 (0.119) 3.106 (0.238) -0.152 (0.119)
Herfindahl index (HHI) 0.441 (0.111) 0.548 (0.131)
No. Banks in town 1.000 (0.051) 1.426 (0.074)

Fed. Dist 7 0.123 (0.110) -0.619 (0.097) 0.181 (0.132) -0.715 (0.097)
Fed. Dist 8 0.265 (0.101) -0.027 (0.093) 0.280 (0.113) -0.012 (0.092)
Fed. Dist 9 0.069 (0.207) -0.239 (0.206) 0.021 (0.238) -0.394 (0.213)
y1 1.314 (0.090)
y∗1 0.122 (0.017)

negative impacts of regional contagion diminish over time. Although the initial panic

is not captured here, the contagion channel disappears and presents market benefits.

The increased lending by the remaining banks in the town increases economic activity

and restores confidence in the financial system.

The second channel for the spread of contagion is represented by the variable △ Cor-

respondents. The result for this covariate demonstrates that a reduction in a bank’s

correspondent network has a negative impact on bank lending. This result aligns with

intuition because correspondent banks often provided short-term commercial paper to

smaller banks and urged them to extend credit (Richardson and Troost, 2009). When

a bank was removed or a failure occurred in these networks, it constrained the liquid

assets available and, as a result, banks extended less credit. The marginal effect of

a correspondent removal, averaged over both observations and MCMC draws, is ap-
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proximately -0.037 and -0.051 for the latent and observed specifications, respectively.

In other words, a reduction in a bank’s correspondent network decreases lending

by about $370 − $510 for every $10, 000. This contagion channel presents moder-

ate long-term negative effects. Policy-makers providing ex post liquidity following a

downturn may want to focus relief efforts on banks experiencing failures across their

correspondent networks as the negative effects may still be lingering.

Other results for the first equation display that the higher share of liability held at

an individual bank (Liab./Town Liab.) and the higher the market concentration in

a town (HHI ), the more likely that town was to experience a bank failure between

1929-1932. In addition, relative to the 6th Federal Reserve district, the 8th district

is more likely to experience bank failures, which accords well with Richardson and

Troost’s (2009) paper. The results for the second equation show that older banks

and national banks have higher lending in 1933 relative to younger and nonmember

institutions.

Model comparison results are presented in Table 2.3 and reveal that the data strongly

support the latent endogeneity specification, where the full magnitude of y∗i1, even

values whose extent is driven by observed covariates and unobserved factors outside

{0,1}, is relevant for bank lending. The marginal likelihood is nearly 50 points higher

on the log scale, giving the observed specification a posterior model probability of

approximately 0. The latent measure of a nearby bank failure captures unobserved

aspects of bank profitability and the loss of confidence cultivating through these strug-

gling local economies, which better explain bank lending. This result highlights an

interesting point from Calomiris and Mason’s (2003b) paper where they state, “In-

dicator variables are uninformative about the particular mechanism through which

illiquidity and contagion produces a bank failure.” Calomiris and Mason (2003b) fur-

ther urge researchers to interpret indicators with caution when examining contagion
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Table 2.3: Banking application – results for the variance-covariance matrix and
marginal likelihood estimates.

Observed Endogeneity Latent Endogeneity
ω12 -1.078 (0.053) -0.305 (0.130)
ω22 2.125 (0.087) 2.044 (0.088)

Ωcorr

(
1 −0.740

−0.740 1

) (
1 −0.214

−0.214 1

)
Log-Marginal Lik. -1713.1 -1666.3
Numerical S.E. (0.423) (0.245)

as there may be evidence of missing fundamentals and loss of financial confidence.

The issues these authors refer to can be mitigated by employing a latent measure for

a nearby bank failure. The authors’ analysis explains the strong support from the

data for the latent specification and further corroborates the underlying hypothesis.

Without considering both modeling approaches, a researcher using observed endo-

geneity could misinterpret the relationship between regional failures and bank lending,

and fundamentally mispecify financial panics. The nonlinear dichotomizing mecha-

nism in which regional failures determine bank performance is inadequate. The latent

variable approach encompasses the speculative nature of bank runs. One of the most

documented and well understood features of banking crises is asymmetric information,

which dates back to the original research by Bagehot (1873). Depositors, bankers,

and central bankers lack credible information (Diamond and Dybvig, 1983; Gorton,

1985), resulting in speculative and fundamental bank runs. When an econometrician

is examining the interactions involved in banking panics, asymmetric information

should be apparent and the models being considered should reflect this feature.

Table 2.3 also displays the results for the variance-covariance matrix Ω. There is a

negative correlation between the equations for a nearby bank failure and bank per-

formance. After controlling for a number of balance sheet and county characteristics,
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the errors present a negative relationship, which implies there are harmful effects of a

nearby bank failure not controlled for in the model. This result holds for both model

specifications but there is a clear magnitude difference between the two. The observed

specification may overstate the relationship and the “true incidence of panic, since

relevant fundamentals are likely omitted” from the model (Calomiris and Mason,

2003b).

The results discussed thus far employ a training sample prior of 100 banks. The

sensitivity of the results to the hyperparameters is displayed in Table 2.4. The model

rankings do not change across different training sample sizes. This indicates that

the data speak loudly for the results and support the latent endogeneity model. Re-

searchers interested in modeling and understanding decisions and relationships of

banks in adverse macroeconomic conditions can employ latent variables to accom-

modate asymmetric information and to better capture the interactions between the

outcomes of interest.

Table 2.4: Banking application – sensitivity analysis for different training sample
sizes.

Training Sample Size Observed Log-Marg. Lik. Latent Log-Marg. Lik.
No sample

(priors centered at zero) -1837.2 -1778.9
50 -1769.5 -1736.1
100 -1713.1 -1666.3
150 -1666.1 -1621.1
200 -1627.5 -1556.8

2.4 Education

The second application considers the impact of education on adult socioeconomic

status. The return on schooling has been an ongoing area of research for empirical
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economists. Despite the great deal of attention focused on accommodating issues

with survey responses, latent endogenous variables are lacking in this literature.

Education’s impact on adult socioeconomic status is of particular interest because

there are convincing arguments for both observed and latent endogeneity. Observed

endogeneity is motivated by societal evaluations of education, which are generally

looked at by crossing particular achievement thresholds or cut-points, e.g., high school

degree and college degree. Without a college degree, individuals cannot apply for

many jobs notwithstanding 15 years of schooling. Therefore, labor market outcomes

are determined by these observed degree or threshold crossing indicators. Alterna-

tively, a common issue in the analysis of returns to schooling is the inadequacy of

measures for motivation and ability, which also explain socioeconomic status. Ob-

served measures for ability have been proposed, such as standardized test scores.

However, these data are often not available. Therefore, the latent representation of

education can act as a proxy for unobservable characteristics linking education and

socioeconomic outcomes. While the hypotheses for each approach are convincing,

there have been no attempts to compare these models, which is necessary to ensure

the most accurate specification is employed. Furthermore, knowing which approach is

best supported by the data advances our understanding of how education determines

socioeconomic status.

Studying education provides a unique opportunity for model comparison. Most ed-

ucation and socioeconomic outcomes are discretized by ordered categories. For in-

stance, education categories can be defined by degree level and socioeconomic status

can be categorized by income brackets. This ordinal data setting makes the observed

specification in (2.1) invalid, and instead, the system in (2.3) can be employed. The

specification for observed endogeneity for 5 education categories (defined shortly) and
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individuals i = 1, . . . , n is:

y∗i1 =x′
i1β1 + εi1,

y∗i2 =x′
i2β2 + 1{yi1 = 2}γ22 + 1{yi1 = 3}γ23 + 1{yi1 = 4}γ24 + 1{yi1 = 5}γ25 + εi2,

(2.7)

where εi ≡ (εi1, εi2)
′ ∼ N2(0,Ω) and Ω =

 ω11 ω12

ω21 ω22

. This specification differs

from (2.1) because the endogenous covariate enters as a set of dummy variables for

each category, whereas previously it entered as a single endogenous regressor.3 The

latent specification remains identical to the system in (2.2), which is now a more

parsimonious model relative to the observed approach. It is important to note that

the elements in Ω are left free. Location and scaling restrictions are accommodated

by fixing two cut-points. The different approaches for identification in multivariate

ordered probit models are discussed in Jeliazkov et al. (2008).

The model is characterized by two dependent variables, where y∗
i ≡ (y∗i1, y

∗
i2)

′ are the

continuous latent data and yi ≡ (yi1, yi2)
′ are the corresponding discrete observed

data. For equations k = 1, 2, the latent variables relate to the observed ordered

outcomes by yik =
∑J

j=1 1{y∗ik > αk,j−1} for J ordered alternatives where αkj is a

cut-point between the categories given by,

yi1 =



1 Less than high school

2 High school degree

3 Some college

4 College degree

5 Graduate education

, yi2 =


1 Poverty line and below

2 Lower - middle class

3 Middle class and up.

3If yi1 entered directly, this would lead to a cardinal interpretation of the categories, which is
incorrect.
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The outcome yi1 represents the amount of education an individual completes and yi2

represents an individual’s socioeconomic status. The second outcome is measured

by an income-to-needs ratio. Income is measured using the actual amount of total

income, which is the sum of taxable income and transfer income. Needs is measured

as the poverty threshold taken from the Census Bureau. These thresholds are based

on family size and age of the household. An income-to-needs ratio below 1.3 indicates

the poverty line and below, between 1.3-3 indicates lower-middle class, and above 3

represents the middle class and up.4 The endogenous covariate yi1 represents the

impact of education on adult socioeconomic status.

The data collected for this application are from the Panel Study of Income Dynamics

(PSID). The sample includes 2, 779 respondents from the 1999 survey. The data set

contains information on childhood health, parental socioeconomic status, parental

education, adult socioeconomic status, adult health, and educational attainment for

individuals between the ages of 30-50. The year 1999 is selected because it features

retrospective reports on childhood health. Table 2.5 offers descriptive statistics on

the data and details the discretization for a number of variables.

2.4.1 Estimation

The model is completed by specifying the prior distributions,

λ ∼ N (d0,D0),

Ω ∼ IW(ν0,R0).

The hyperparameters are selected using a training sample of 200 individuals. Algo-

rithm 2.2 presents the sampling methods to simulate the posterior distribution for the

4The cut-point 1.3 is selected because it is the threshold for food stamps.
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Table 2.5: Descriptive statistics for the sample of 2,779 respondents from the PSID.

Variable Sample Proportion Variable Sample Proportion
Respondent Education (Educ) Mother’s Education (Meduc)

< High School Degree 0.17 < High School Degree 0.33
High School Degree 0.32 High School Degree 0.47
Some College 0.25 Some College 0.09
College Degree 0.17 College Degree 0.08
Graduate School 0.09 Graduate School 0.03

Father’s Education (Feduc) Childhood Health
< High School Degree 0.39 Poor 0.16
High School Degree 0.38 Average 0.38
Some College 0.07 Excellent 0.46
College Degree 0.10 Adult Health
Graduate School 0.06 Poor 0.10

Adult Socioeconomic Status Average 0.62
Low 0.13 Excellent 0.28
Medium 0.27 Marital Status
High 0.60 Single 0.16

Parental Socioeconomic Status (pSES) Divorced 0.24
Low 0.25 Married 0.60
Medium 0.45 Race
High 0.30 White / Asian 0.63

Debt Non-white 0.37
Debt 0.55 Employment
No Debt 0.45 Employed 0.88

Sex Unemployed 0.12
Male 0.76 Age (average) 40
Female 0.24

observed endogeneity specification, which follow from Jeliazkov et al. (2008). Note,

the cut-point parameters αkj are transformed to ensure the ordering constraints, so

δkj = ln(αkj − αk,j−1), where 2 ≤ j ≤ J − 1 for equations k = 1, 2.

Algorithm 2.2. MCMC Estimation Algorithm - Observed Specification

1. For each equation k, sample δk,y
∗
k|y,λ,y∗

\k as follows:

(a) Sample δk|y,λ,Ω,y∗
\k using the Metropolis-Hastings algorithm

(b) Sample y∗ik|y,λ,Ω,y∗
\k ∼ T N (αk,j−1,αkj)(µk|\k, Vk|\k) for i = 1, . . . , n.

2. Sample [λ|y∗,Ω] ∼ N
(
d̂, D̂

)
, where d̂ and D̂ are given by
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d̂ = D̂
(
D−1

0 d0 +
∑n

i=1W
′
iΩ

−1y∗
i

)
and D̂ =

(
D−1

0 +
∑n

i=1W
′
iΩ

−1W i

)−1
.

3. Sample Ω ∼ IW(ν0 + n,R0 + (y∗ −Wλ)′(y∗ −Wλ)).

As a matter of notation, “\k” is used to represent all elements in a set except the

kth one. Estimation of the latent specification follows these steps closely, however,

employs the reduced-form trick discussed in (2.6) for the data augmentation step in

1(b).

2.4.2 Results

The results are based on 11,000 MCMC draws with a burn-in of 1,000. Analysis

of the sensitivity of the results to the training sample size is conducted as in the

first application. The results again show no sensitivity to the training sample size

and model rankings do not change for different hyperparameters. The inefficiency

factors for the parameters remain low with the highest values (≈ 20) occurring for

the parameters on the endogenous covariates in both specifications. The following

discussion reviews the basic results for each equation, then the model comparison

results.

Table 2.6 presents the posterior means and standard deviations for both specifica-

tions. The results from the first equation accord well with the existing literature on

the determinants of educational attainment (Haveman and Wolfe, 1995). The results

show that parental education and parental socioeconomic status play a positive role

in educational attainment. Parents with more income are able to invest in their chil-

dren’s education with schooling supplies, tutors, and financial assistance in college.

Furthermore, parents who themselves achieve a higher level of education often mo-

tivate their children to do the same. The results also indicate that whites complete
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Table 2.6: Education application – posterior means and standard deviations for the
bivariate system of equations.

Observed Endogeneity Latent Endogeneity
Education SES Education SES

Intercept -0.683 (0.593) -1.706 (0.193) -0.696 (0.597) -1.353 (0.199)
Child Health-Exc -0.269 (0.586) -0.265 (0.586)
Child Health-Avg -0.429 (0.587) -0.425 (0.586)
Feduc-High School 0.188 (0.058) 0.189 (0.059)
Feduc-Some College 0.616 (0.097) 0.613 (0.095)
Feduc-College 0.840 (0.094) 0.835 (0.093)
Feduc-Graduate 1.033 (0.114) 1.028 (0.115)
Meduc-High School 0.197 (0.060) 0.204 (0.060)
Meduc-Some College 0.499 (0.093) 0.498 (0.092)
Meduc-College 0.534 (0.103) 0.531 (0.102)
Meduc-Graduate 0.780 (0.147) 0.775 (0.147)
pSES-High 0.339 (0.067) 0.073 (0.065) 0.351 (0.064) 0.035 (0.067)
pSES-Med 0.344 (0.053) 0.079 (0.058) 0.351 (0.060) 0.049 (0.059)
Single -0.003 (0.064) 0.005 (0.064)
Married 0.154 (0.062) 0.168 (0.062)
Employed 0.634 (0.067) 0.637 (0.067)
Debt 0.202 (0.042) 0.196 (0.042)
Adult Health-Exc 0.359 (0.080) 0.352 (0.080)
Adult Health-Avg 0.244 (0.069) 0.245 (0.070)
Educ-High School 0.553 (0.086)
Educ-Some College 0.813 (0.127)
Educ-College 1.312 (0.172)
Educ-Graduate 1.702 (0.241)
Latent Educ (y∗1) 0.424 (0.055)
White 0.344 (0.053) 0.416 (0.056) 0.347 (0.053) 0.389 (0.056)
Age 0.030 (0.004) 0.015 (0.004) 0.030 (0.004) 0.014 (0.004)
Male 0.101 (0.055) 0.359 (0.064) 0.101 (0.054) 0.358 (0.063)

more education relative to non-whites, and males complete more schooling relative to

females.

The results of the second equation coincide well with intuition and what is often

found in the literature on socioeconomic achievement. Parental socioeconomic status

positively affects adult socioeconomic status and individuals who are married have

a higher income-to-needs ratio relative to divorced individuals. An interesting result

is the positive coefficient on the debt variable. The debt variable is measured by
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Table 2.7: Education application – results for the variance-covariance matrix and
marginal likelihood estimates.

Observed Endogeneity Latent Endogeneity
ω11 1.258 (0.043) 1.263 (0.043)
ω12 -0.168 (0.074) -0.195 (0.072)
ω22 0.739 (0.049) 0.744 (0.057)

Ωcorr

(
1 −0.174

−0.174 1

) (
1 −0.200

−0.200 1

)
Log-Marginal Lik. -7864.0 -7862.9
Numerical S.E. (0.053) (0.044)
Pr(Mk|y) 0.333 0.667

summing all debt excluding debt from the purchase of a house. However, debt does

not necessarily indicate financial distress, as wealthier individuals have more access

to debt and may finance other purchases, including vehicles, businesses, and school

loans. The results also indicate that health has a positive relationship with wealth.

Healthy individuals are less likely to miss work due to illness or disability and are

likely to be more productive.

The covariate of interest, education, positively impacts adult socioeconomic status in

both specifications. Relative to no high school degree, the coefficient on each discrete

category for additional schooling gets incrementally larger in the observed specifica-

tion. The results for Ω, presented in Table 2.7, demonstrate that after controlling

for family background, health, and other demographics, there is a negative correla-

tion between education and adult socioeconomic status. Although the direct effect of

education on wealth is positive, there is a negative relationship between the errors.

This result has been noted in the literature (Becker and Chiswich, 1966; Griliches,

1977), and a simple explanation for this is luck. The basic explanatory variables do

not control for instances of good fortune.

Table 2.7 also presents the model comparison results. The marginal likelihoods and
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posterior model probabilities are very close for both specifications with a slight pref-

erence toward the latent endogeneity model. The latent specification is more parsi-

monious, with three less covariates than the observed endogeneity model. Further

investigation into this relationship is necessary due to the lack of model preference.

An approach for understanding these interactions is to separate the sample by age

cohort. The intuition for this comes from recognizing that individuals’ degree level

may only be influential in obtaining their first few jobs. As the amount of time an in-

dividual is in the labor force increases, the individual accumulates work history, skills,

and references, which mitigate the importance of degree level. Consider job postings

for entry-level positions, the salary level is often listed as “competitive”, whereas for

more senior positions, “depending on experience” is a common listing. Following this

intuition, both models are compared for two separate age cohorts. The results are

displayed in Table 2.8.

The results align with the age group hypotheses. The data support the observed

specification for the 30-35 age cohort. Alternatively, the data support the latent

specification for the 40-50 age cohort. This is a major result because it displays how

the dependence structure between educational attainment and adult socioeconomic

status changes with age. For younger individuals, the primary way to signal intelli-

gence and ability is through degree-level. As a result, society evaluates the amount

of education completed by observed threshold crossing indicators, thus resulting in

labor market outcomes for these individuals. On the other hand, for older individuals,

the data support the underlying latent specification, capturing ability, work history,

and other factors unobserved by the econometrician. The importance of education

diminishes as other elements become more prominent and, eventually, better explain

labor market outcomes and wealth. Additionally, the latent approach offers a unique

opportunity for studies examining outcomes of older cohorts. Surveys often do not

contain a comprehensive work history of the respondents, therefore, if these data
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Table 2.8: Education application – model comparison and marginal likelihood esti-
mates for different age cohorts.

Ages 30–35 Ages 40–50
Observed Latent Observed Latent

Observations 843 843 1489 1489
Log-Marginal Lik. -2450.6 -2455.3 -4196.1 -4192.0
Pr(Mk|y) 0.991 0.009 0.017 0.983

are unavailable, the latent measure of education can offer some insight into these

characteristics.

These results truly stress the importance of considering and comparing both speci-

fications and contribute to the literature on returns to schooling by demonstrating

the evolution in the dependence structure between education and socioeconomic sta-

tus. Pathway models employed in labor economics attempt to capture life-cycle in-

teractions and intergenerational transmissions of education, health, and wealth. The

complexity of these models increases because these outcomes are dynamic and change

over time. Future research can employ both observed and latent measures of these

outcomes to better explain these relationships pertaining to age cohorts.

2.5 Concluding Remarks

This paper addresses an important but often overlooked issue, which is the proper

specification of endogenous covariates. In multivariate discrete data models, endo-

geneity can be based on latent or observed data. Bayesian model comparison tech-

niques can be employed to determine which approach is best supported by the data,

thus increasing the understanding of the nature of endogeneity and the dependence

structure between the relationships being modeled.
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While most applied researchers have an a priori expectation of the correct model, it

is extremely difficult to rule out hypotheses in support of the alternative approach,

which is apparent from the two empirical applications considered in this paper. There-

fore, model selection provides important insights that resolve competing hypotheses

about the interactions of interest. The results from the first application show that

the latent representation of a bank failure better explains regional financial contagion,

relative to conditioning on its observed counterpart. The latent measure captures the

speculative nature of banking panics and accommodates asymmetric information is-

sues discussed in the literature, thus providing a more accurate model of banking

crises. The results for the second application show that the observed representation

of education better explains socioeconomic outcomes for younger cohorts. This de-

pendence structure changes as individuals age and the latent measure of education

becomes more meaningful. This paper employs a bivariate system of equations in the

applications, however, these approaches are generalizable to a number of methodolo-

gies.

These results stress the importance of employing model selection techniques to dis-

tinguish between competing specifications. The issues discussed here are present in

any multivariate discrete data setting and should be addressed in a number of ap-

plied literatures. Ignoring these techniques can cause a researcher to misinterpret the

depicted relationships and misunderstand the nature of endogeneity.
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Chapter 3

The Likelihood Function for

Discrete Simultaneous Equations

3.1 Introduction

Simultaneous equation models constitute one of the main contributions of economics

to statistical science and are of central importance in the analysis of supply and

demand systems, strategic games, interactions, and multivariate decision making,

among others. Despite the relative complexity of the setting, the analysis of simul-

taneous equation models for continuous data is now well understood. In contrast,

matters are quite different when it comes to models for discrete outcomes. Earlier

work has pointed out a variety of complications where basic analogies with the contin-

uous case appear to break down and, even more fundamentally, call into question the

very sensibility of specifying simultaneous equation models for discrete data. Specifi-

cally, in the case of binary data, an important paradox is that outcome probabilities

need not sum up to 1 unless parameter constraints are imposed which essentially
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remove the simultaneity and replace it with recursive endogeneity. Such constraints

have been viewed as questionable and entirely unfounded in economic theory, and

even though the problem has perplexed a long line of researchers, it has remained

unsolved for over three decades.

This paper provides results that confirm the skeptics’ suspicions about the dubious

necessity of such constraints. As we show, the problem is not with values that certain

parameters can take, but with the proper formulation of the likelihood function. Not

only does the derivation of the likelihood function point out that such constraints are

not necessary, but it also provides insights on the heretofore tenuous link between

continuous and discrete simultaneous equation models. The derivation also clarifies

the set of constraints that must be met in order for the model to be identified, yet those

are of a much more familiar (perfect classification) type that is sample (not model)

specific, and therefore does not call into question the sensibility of the specification.

The formulation, coherency, and estimation of simultaneous equation models with

discrete dependent variables were initially considered in Amemiya (1974, 1978), Heck-

man (1978), Nelson and Olson (1978), and Maddala (1983) and has been an on-going

research topic for econometricians. In these papers, a coherency condition is required

to guarantee the existence of a unique reduced form, which as mentioned previously,

puts dubious constraints on the parameter values in the model. This condition is also

known as “principle assumption” or condition for “logical consistency”. In addition

to the coherency condition, the standard identifiability conditions hold, namely that

each equation has a unique element in its matrix of covariates that appears in no

other equations (Judge et al., 1985). For a discussion of the appropriate coherency

conditions and identification for each model, see Blundell and Smith (1994).

More recently, the industrial organization literature has discussed these models in

the form of discrete games with complete information (Bresnahan and Reiss, 1991;
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Berry, 1992). This literature formulates the absence of a one-to-one mapping between

parameters and outcomes as a problem of multiplicity of equilibria and has proposed

several ways to deal with this multiplicity, including obtaining the identified set esti-

mates rather than unidentified point estimates of parameters (Ciliberto and Tamer,

2009) and estimating an equilibrium selection rule (Bajari et al., 2010; Narayanan,

2013).

The goal of this paper is to provide a new derivation of the likelihood function for

discrete simultaneous equation models, which is based on Markov chain theory, and to

resolve these coherency paradoxes highlighted in earlier work. Furthermore, the paper

suggests a new methodological approach for econometric modeling, where models can

be built from a set of seemingly circular conditional relations. The methods in this

paper employ a conditional-conditional decomposition, which is a new alternative

to those used in other econometric models. The outline of the paper is as follows:

Section 3.2 provides an overview of the problems that arise in discrete simultaneous

equation models, Section 3.3 offers the derivation of the likelihood function, and

Section 3.4 provides both classical and Bayesian estimation methods, discusses new

identification conditions, and presents a simulation study. Two real-data applications

are considered in Section 3.5 and Section 3.6 offers concluding remarks.

3.2 Overview of the Problem

In the interest of clarity and simplicity, we begin with a simple bivariate probit model

for binary data in the absence of simultaneity and gradually increase the generality

of the setting. Once the basic ideas are presented, this task turns out to be relatively

straightforward.
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Consider the basic bivariate probit with no simultaneity where,

zi1 =x
′
i1β1 + εi1

zi2 =x
′
i2β2 + εi2

(3.1)

for i = 1, . . . , n and εi ≡ (εi1, εi2) ∼ N2(0,Σ), where Σ =

 1 ρ

ρ 1

. The unit

variance on the diagonal of Σ is the usual normalization for identification in the probit

model. The observed choice yi ≡ (yi1, yi2)
′, is related to the latent data through

yij =

 1 if zij > 0

0 if zij ≤ 0
. (3.2)

Figure 3.1 provides a graphical representation of the model, where the latent zi ≡

(zi1, zi2)
′ comes from a bivariate normal density with mean µi ≡ (x′i1β1, x

′
i2β2)

′ and

the contours represent the correlation implied by Σ. The four possible outcome

probabilities, Pr(yi1 = 1, yi2 = 1), Pr(yi1 = 0, yi2 = 1), Pr(yi1 = 0, yi2 = 0), and

Pr(yi1 = 1, yi2 = 0), are captured in quadrants 1 through 4, respectively. In this case,

it is easy to see that these probabilities sum to 1.

Figure 3.1: The simple bivariate probit model. The shaded regions of the 4 possible
outcome probabilities sum to 1.
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To illustrate the apparent logical inconsistency that appears in models with simul-

taneity, consider a simple example in Maddala (1983), where the model is specified

as

zi1 =x
′
i1β1 + yi2γ1 + εi1

zi2 =x
′
i2β2 + yi1γ2 + εi2

(3.3)

and the relationship between yi and zi is given in (3.2). The system generalizes

trivially to models with q equations by writing

zi = BXi + Γyi + εi, where B =



β′
1 0 · · · 0

0 β′
2

. . .
...

...
. . . . . . 0

0 · · · 0 β′
q


, Xi =



xi1

xi2
...

xiq


, (3.4)

and Γ is a suitably defined matrix with zeros on the main diagonal. In the bivariate

case, because of the simultaneity in the model, the mean of zi shifts for each possible

outcome yi, and hence there are 4 separate distributions as shown in Figure 3.2. Given

a specific value of yi, the distribution with the corresponding mean is integrated over

the relevant quadrant implied by that outcome. However, because the integrals are

computed with respect to different distributions (the shaded regions in Figure 3.2),

they need not sum to 1 unless certain coherence constraints are imposed.

Whereas Figure 3.2 captures the general case, Maddala (1983) shows that even when

the errors are independent and there are no exogenous covariates, the probabilities

77



Figure 3.2: The simultaneous system. The shaded regions of the 4 possible outcome
probabilities no longer sum to 1.

need not sum to 1. In particular, given these simplifying assumptions, we have

Pr(y1 = 1, y2 = 1) =F1(γ1)F2(γ2)

Pr(y1 = 1, y2 = 0) =F1(0)[1− F2(γ2)]

Pr(y1 = 0, y2 = 1) =[1− F1(γ1)]F2(0)

Pr(y1 = 0, y2 = 0) =[1− F1(0)][1− F2(0)],

where F1(·) and F2(·) are the distribution functions of εi1 and εi2, which sum to

1 + F1(0)F2(0)− F1(γ1)F2(0)− F1(0)F2(γ2) + F1(γ1)F2(γ2).

Unless γ1 = 0 or γ2 = 0, these probabilities do not sum to 1. The case where

γ1 = 0 is depicted in Figure 3.3, where because of the constraint, the sum of the

two shaded regions equals 1. The implication of such constraints is rather strong –

they rule out full simultaneity and only allow recursive endogeneity. Moreover, these

kinds of constraints will typically have no economic justification and will often be

challenged by applied researchers. In the next section, we show that such constraints

are not required and that discrete data models with full simultaneity are indeed quite
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Figure 3.3: Example of coherency constraint, forcing the shaded regions to sum to 1.

reasonable. As we point out, the problem lies with the proper formulation of the

likelihood function and not with particular parameter restrictions.

Before we continue, however, we briefly digress to mention that this problem does not

arise in systems of simultaneous equations that are specified in terms of the latent

data, e.g.,

zi1 =x
′
i1β1 + zi2γ1 + εi1

zi2 =x
′
i2β2 + zi1γ2 + εi2.

(3.5)

In this specification, the structural equations do not involve the observed values yi but

their unobserved latent counterparts zi. This greatly simplifies estimation because

the reduced form system can be easily obtained from equation (3.5) and inference can

proceed as in the usual multivariate probit model. To see this, note that in matrix

notation, the model can be written as

zi = BXi+Γzi+εi, where B =

β′
1 0

0 β′
2

 , Xi =

xi1
xi2

 , Γ =

 0 γ1

γ2 0

 ,

(3.6)
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resulting in the reduced form

zi =(1− Γ)−1BXi + (1− Γ)−1εi

=ΠXi + νi,

where Π = (1− Γ)−1B is a matrix of reduced form coefficients. A variety of existing

methods, e.g., maximum simulated likelihood or Bayesian Markov chain Monte Carlo

(MCMC) simulation, can be implemented to estimate the model and recover the

structural parameters, subject to proper identification. Early reviews of different

estimators for the structural parameters in the latent specification are offered in

Blundell and Smith (1989). A priori, however, the fact that the latent specification

does not suffer from the same difficulties as the one based on observed outcomes,

does not mean that we should not consider models where outcomes depend on the

observed yi. As Maddala (1983) has argued, the appropriate model could often be

one where the “intentions about yi1 depend on actual actions on yi2 and intentions

about yi2 depend on actual actions on yi1”, which justifies formulation (3.3).

3.3 Derivation of the Likelihood Function

3.3.1 Continuous Outcomes

To motivate the derivation of the discrete data likelihood, we first revisit the contin-

uous data case

yi = BXi + Γyi + εi,
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where the matrices B, Xi and Γ are defined as in (3.6). The value of yi that solves

this system

yi = (1− Γ)−1(BXi + εi)

produces the likelihood contribution f(yi|θ), for i = 1, . . . , n, where θ represents the

model parameters β1, β2, γ1, γ2, and the unique free elements of Σ. For a simple

two equation case, the reduced-form is often found by substituting or plugging one

equation into the other, e.g.,

yi1 =x
′
i1β1 + γ1(x

′
i2β2 + yi1γ2 + εi2) + εi1

yi1 =
1

1− γ1γ2
(x′i1β1 + γ1x

′
i2β2 + γ1εi2 + εi1) .

(3.7)

The solution for yi can also be obtained as the fixed point in the dynamic system

y
(t+1)
i =(BXi + εi) + Γy

(t)
i

y
(t)
i =y

(t+1)
i ,

(3.8)

which is initialized with some starting value y
(0)
i .

Figure 3.4: The dashed line represents the iterative solution and the solid line repre-
sents the analytical solution.

Figure 3.4 shows examples of how the iterative solution emerging from (3.8) reaches
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(1− Γ)−1(BXi + εi).
1 The representation in (3.8) also implies a useful way of think-

ing about simultaneous equation systems as models of sequential feedback and partial

adjustment, conceptually similar to the more familiar impulse response analysis in dy-

namic systems, where values of one variable affect, and are affected by, other variables

until the system reaches steady state. The reason that this alternative way of ob-

taining f(yi|θ) is discussed here is that it provides an analogy with the derivation of

f(yi|θ) in the discrete case, as discussed next.

3.3.2 Discrete Outcomes

To understand the difficulty of obtaining the likelihood function in the discrete si-

multaneous equation model in (3.3), first consider the multivariate probit model in

equations (3.1) and (3.2). These two equations identify f(zi|θ) and f(yi|zi, θ), respec-

tively, whereby f(yi|θ) is obtained as

f(yi|θ) =
∫
f(yi|zi, θ)f(zi|θ)dzi (3.9)

using simulated maximum likelihood or MCMC methods. This marginal-conditional

decomposition is not available in the simultaneous case. Instead, we have two condi-

tional distributions, f(zi|yi, θ) and f(yi|zi, θ), obtained from equations (3.3) and (3.2),

respectively. The problem of obtaining f(yi|θ) cannot be approached as in (3.9) be-

cause the joint distribution f(yi, zi|θ) is not the product of the 2 ingredient distri-

butions defining the model. This is the fundamental complication motivating our

analysis and has hampered earlier theoretical approaches and empirical applications

for some time.

1Recall that (I − Γ)−1 = I + Γ+ Γ2 + Γ3 + . . .. For some parameter settings, the set of starting
values for which the iterative solution converges to (1 − Γ)−1(BXi + εi) is a proper subset of ℜd,

i.e., there could be starting values which lead to divergent sequences {y(t)i }. This problem does not
arise in discrete data models—our main object of interest—and hence we do not dwell on it here.
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Further complications arise because the substitution approach to finding the reduced

form for continuous simultaneous equations in (3.7) only obfuscates matters for dis-

crete outcomes, where substituting leads to

zi1 = x′i1β1 + γ11{x′i2β2 + γ21{zi1 > 0}+ εi2 > 0}+ εi1.

This argument is circuitous because Pr(zi1 > 0) = Pr(yi1 = 1) depends on 1{zi1 > 0}.

This is a tautology because if 1{zi1 > 0} = 1 then Pr(zi1 > 0) = 1. Looking at this

differently, it is clear that

yi1 =1{x′i1β1 + yi2γ1 + εi1 > 0}

yi2 =1{x′i2β2 + yi1γ2 + εi2 > 0}
(3.10)

is not the likelihood or data generating process. It tells you what yi would be if you

had yi, and therefore it cannot be used to generate data. Later in this section we will

come back to (3.10) and discuss it in terms of the actual likelihood function.

Here, we derive the likelihood contribution f(yi|θ) from the theory of Markov pro-

cesses and use it to show that many of the aforementioned paradoxes vanish. The

derivation rests on the observation that the two conditional densities, f(yi|zi, θ) and

f(zi|yi, θ), can form a Markov chain (densities in a Gibbs sampler), which can be

iterated to yield the joint distribution f(yi, zi|θ). Ignoring zi yields draws from the

distribution f(yi|θ). This approach presents an important avenue for future model-

ing – employing conditional distributions – which is a new alternative to the existing

conditional-marginal and marginal-marginal decompositions. Conditional-marginal

modeling is popular and well understood in econometrics, as is demonstrated in the

multivariate probit example in (3.9). Marginal-marginal decompositions are employed

in copula modeling frameworks which “couple” marginal distributions (Trivedi and

Zimmer, 2005). An important consideration with the conditional-conditional ap-
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proach is that, in general, the existence of full conditionals is not sufficient for the

existence of a joint distribution. The existence of f(yi, zi|θ) in this case is guaran-

teed under the mild condition that yi takes only a finite number of possible values.

Because we are dealing with discrete data, the existence of f(yi, zi|θ) is not an issue;

however, in continuous data settings, the existence would require more attention. By

iterating f(yi|zi, θ) and f(zi|yi, θ) to yield f(yi, zi|θ), we can obtain f(yi|θ), which is

our original object of interest.

A simple approach to obtaining f(yi|θ) is to use the draws y(g)i available from {z(g)i , y
(g)
i } ∼

f(zi, yi|θ) for g = 1, . . . , G. The draws can then be used to evaluate f(yi|θ) through

the frequency estimator

f̂(yi|θ) =
1

G

G∑
g=1

1
{
y
(g)
i = yi

}
.

This estimator is general and applicable to a variety of settings, however, its practical

appeal is limited because it is not bounded away from 0 or 1, it is not differentiable,

and it is not suitable for evaluating low probability events. To deal with these de-

ficiencies, we present another way of evaluating f(yi|θ), based on recognizing that

Markov chains have a unique invariant distribution that can be obtained by consid-

ering the Markov transition matrix between states. To clarify, consider the setup

in (3.3) where the possible outcomes can be assigned to the following state vector

s = (s1, . . . , sp)
′ (in this case p = 4)

ys1 =

 1

1

 , ys2 =

 0

1

 , ys3 =

 0

0

 , ys4 =

 1

0

 .
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The Markov transition matrix P where

P =



p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


,

can be used to obtain the steady state as the left eigenvector of P which satisfies

π′ = π′P , where π′ is the characteristic vector of P corresponding to characteristic

root equal to 1 or

πj =
∑
i

πipij, j = 1, . . . , S,

(Meyn and Tweedie, 1993; Greenberg, 2008, Ch. 6). The reason we are interested in

the vector π is because it contains the likelihood values f(yi|θ) for the possible states,

i.e.,

π = (π1, π2, . . . , πs)
′ = (f(ys1 |θ), . . . , f(yS|θ))′.

In other words, the quantity we seek to evaluate – the likelihood contribution f(yi|θ)

– is the element of π where ysj = yi, i.e. f(yi|θ) = πij where πi is the eigenvector

corresponding to P and yi is the index of the state in the state vector where ysj = yi.

Looking back at (3.10), we can now view a similar equation as a transition equation

in a Markov chain whose iteration yields f(yi|θ),

y
(t+1)
i1 =1{x′i1β1 + y

(t)
i2 γ1 + εi1 > 0}

y
(t+1)
i2 =1{x′i2β2 + y

(t)
i1 γ2 + εi2 > 0}.

(3.11)

The solution is a long sequence of instantaneous adjustments and the model is com-
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pleted by requiring the distribution of yi on the right side of (3.11) to be that of yi

on the left side. Equation (3.11) bears striking similarity to the continuous case in

(3.8).

Identification here is obtained via the usual conditions in Markov chain theory. In

order for the Markov chain defined by P to converge to a suitable invariant distri-

bution π, it must be irreducible and aperiodic. For example, P should not be block

diagonal and the chain should not cycle through the states at regularly-spaced inter-

vals. It is unlikely that P can be reducible or periodic, but it can be nearly reducible

or periodic. This problem will manifest itself similarly to perfect classification, and

therefore is sample (not model) specific. The contentious parameter restrictions that

were previously necessary for identification are no longer required and the sensibility

of these models is no longer questionable. These models are coherent and can be

estimated in several ways, which will be discussed next.

3.4 Estimation

In this section we discuss estimation of the simultaneous equation model presented

earlier. Classical maximum likelihood estimation proceeds as usual under appropriate

identification restrictions, in particular, rank and order conditions as well as the

restrictions presented in Section 3.3. As usual, the maximum likelihood estimator is

defined as

θ̂ = argmax
θ

ln f(y|θ), (3.12)

where f(y|θ) =
∏

i f(yi|θ), and in our context f(yi|θ) is set equal to the element of

π where ysj = yi. To obtain π, we need estimates of the elements of the Markov
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transition matrix P . Numerical integration may be suitable for bivariate models, but

higher dimensions call for simulation-based integration, i.e. Geweke-Hajivassiliou-

Keane (GHK), Stern, CRB, CRT, ARK, and ASK methods. For a review of these

simulation-based algorithms, see Jeliazkov and Lee (2010). Under typical regularity

conditions for maximum likelihood estimation, asymptotically θ̂ ∼ N(θ0,Θ) with

Θ = −E[∂2 ln f(yi|θ)/∂θ∂θ′]−1.

The model can also be estimated using MCMC algorithms. Gibbs sampling à la

Albert and Chib (1993) is not available because the likelihood function is now quite

complicated compared to that of the multivariate probit and standard data aug-

mentation techniques do not apply. Therefore, this paper presents the accept-reject

Metropolis-Hastings (ARMH) algorithm (Tierney, 1994). For a review of this algo-

rithm, see Chib and Greenberg (1995) and Chib and Jeliazkov (2005). With Bayesian

methods, we are interested in the posterior density as the target density

π(θ|y) ∝ f(y|θ)π(θ),

where f(y|θ) is the likelihood obtained from the Markov transition matrix. Here, we

will describe the general ARMH algorithm. Let h(θ|y) denote a source density and

D = {θ : f(y|θ)π(θ) ≤ ch(θ|y)}, where c is a constant and Dc is the complement of

D. Then the ARMH algorithm is defined as follows.

Algorithm 3.1. ARMH Algorithm

1. A-R Step: Generate a draw θ′ ∼ h(θ|y). Accept the draw with probability

αAR(θ
′|y) = min

{
1,
f(y|θ′)π(θ′)
ch(θ′|y)

}

and repeat the process until the draw is accepted.
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2. M-H step: Given the current value θ and the proposed value θ′

(a) If θ ∈ D, set αMH(θ, θ
′|y) = 1

(b) If θ ∈ Dc and θ′ ∈ D, set αMH(θ, θ
′|y) = ch(θ|y)

f(y|θ)π(θ)

(c) If θ ∈ Dc and θ′ ∈ Dc, set αMH(θ, θ
′|y) = min

{
1, ch(θ|y)

f(y|θ)π(θ)

}
Return θ′ with probability αMH(θ, θ

′|y), otherwise return θ.

Both estimation techniques, maximum likelihood and ARMH, are tested on artificially

generated data. The model considered for the simulation study is a bivariate probit

where,

zi1 =xi11β11 + xi12β12 + yi2γ1 + εi1

zi2 =xi21β21 + xi22β22 + yi1γ2 + εi2,

for i = 1, . . . , 2000. Table 3.1 reports maximum likelihood estimates and standard

errors as well as posterior means and standard deviations. Both estimation techniques

recovered the true parameters accurately and quickly.

Table 3.1: Artificial data illustration. The table reports posterior means and stan-
dard deviations, which are based on 5,000 MCMC draws, and maximum likelihood
estimates.

MLE ARMH

Parameters True β̂MLE s.e. mean s.d.
β11 0.40 0.354 (0.035) 0.355 (0.035)
β12 0.50 0.471 (0.038) 0.472 (0.038)
γ1 1.30 1.300 (0.059) 1.301 (0.065)
β21 0.20 0.199 (0.037) 0.200 (0.036)
β22 0.60 0.599 (0.046) 0.602 (0.045)
γ2 1.50 1.526 (0.077) 1.530 (0.081)
ρ 0.20 0.219 (0.062) 0.222 (0.058)

To further evaluate the performance of the ARMH algorithm, inefficiency factors are
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studied over 20 Monte Carlo repetitions. Inefficiency factors are a measure of the

extent of mixing of the Markov chain output (Chib, 2001, 2007; Chib et al., 2009).

The inefficiency factor of the k-th parameter is defined as 1 + 2
∑L

l=1 ψk(l)(
L−l
L
),

where ψk(l) is the sample autocorrelation at the l-th lag and L is the lag in which

the autocorrelations taper off. Small values (near 1) imply that the output is mixing

well. Boxplots of the inefficiency factors are displayed in Figure 3.5. The plots suggest

these parameters are sampled efficiently as the values for all of the parameters are

low and near one. Poor mixing properties are often found for endogenous covariates,

however in this case, we see that all parameters are sampled well.
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Figure 3.5: Boxplots of the inefficiency factors for (β11, β12, β21, β22, γ1, γ2, ρ), respec-
tively, over 20 Monte Carlo repetitions.

3.5 Application

Data involving simultaneous relationships are very common in the economics litera-

ture. In addition to basic supply and demand relationships that involve simultaneity,

empirical studies have explored a number of other relationships, including wages and

fringe benefits (Vella, 1993), female labor supply and household income (Blundell and

Smith, 1989), wages and discrimination (Heckman, 1978), husband and wife fertility

decisions (Sobel and Arminger, 1992), travel demand analysis of modal choice (van
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Wissen and Golob, 1990), along with many more. Another empirical literature that

employs simultaneous equations is that of entry decisions in airline markets (Berry,

1992; Ciliberto and Tamer, 2009). Ciliberto and Tamer (2009) obtain identified set

estimates for their application. Their setup is more game-theoretic, so it is not di-

rectly comparable to the one in this paper. However, the results reported for the

present study are identified point estimates.

This paper considers two canonical examples of simultaneous relationships in labor

economics involving data from the Panel Study of Income Dynamics (PSID). The first

application is motivated by Blundell and Smith (1994) who study a joint model of

women’s labor force participation and household income. The second application con-

siders the relationship between health and wealth outcomes for a sample of 30–60 year

old individuals. Much attention has been devoted to determining the causal direction

of this relationship, however, many studies have concluded that the relationship is

reciprocal (Luo and Waite, 2005; Currie and Madrian, 1999), making simultaneous

equation modeling appropriate for this context.

The data set for the first application consists of variables for wife labor force status

and family financial stability for a sample of 2,920 families from the 1999 PSID survey.

The model we consider is that in equations (3.3) and (3.2) where yi1 = 1 if the wife

is currently in the labor force – employed or currently looking for a job – and is zero

otherwise; yi2 = 1 if the family is financially stable and zero otherwise. Financial

stability is defined as an income-to-needs ratio greater than 2. In the sample, nearly

74% of married women are in the labor force, and 32% of families encounter financial

difficulties. The covariates xi1 that enter the labor force participation equation include

the wife’s age, the presence of a young child (child under 5), and the wife’s years

of education. The covariates xi2 that enter the financial stability equation include

husband’s age, race, education, employment, and number of children. Whereas the
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covariates follow closely the specification in Blundell and Smith (1994), the main

distinguishing feature of our specification is that it includes two discrete outcome

variables, unlike Blundell and Smith (1994) where income is measured as a continuous

variable and only labor force participation is discrete.

Table 3.2: ARMH and MLE results. Posterior means and standard deviations are
based on 5,000 MCMC draws.

Variable Eq. 1: Wife Employment Eq. 2: Financially Stable
ARMH MLE ARMH MLE

Intercept -1.990 (0.354) -1.952 (0.337) -5.292 (0.975) -5.242 (0.908)
Age (f) -0.010 (0.173) -0.015 (0.147) 0.442 (0.438) 0.457 (0.398)
Educ (f) 2.443 (0.325) 2.413 (0.334)
Educ (m) 5.129 (0.757) 5.103 (0.731)
Child under 5 -0.260 (0.004) -0.268 (0.044)
No. Child -2.870 (0.291) -2.919 (0.334)
White (f) -0.217 (0.064) -0.218 (0.065)
White (m) 0.955 (0.154) 0.930 (0.170)
Emp (m) 0.936 (0.166) 0.917 (0.162)
Emp (f) (y1) 2.651 (0.253) 2.573 (0.368)
Income (y2) 1.220 (0.180) 1.224 (0.190)
ρARMH 0.407 (0.073)
ρMLE 0.400 (0.075)

Table 3.2 presents the MLE and ARMH results of the bivariate system. The results

support the simultaneous relationship between married women’s labor force partici-

pation and household financial situation as both endogenous variables are statistically

different from zero. A married woman is more likely to participate in the labor force if

her family is financially stable. Similarly, if a married woman is working in the labor

force, it positively impacts her family’s financial stability. The correlation between

the two equations is about 0.40, implying a strong relationship between these two

discrete outcomes.

The second application also employs data from the PSID. The data set consists of

4,405 survey respondents, where yi1 = 1 if a respondent reports better than “good”

health and zero otherwise; yi2 = 1 if a respondent reports an income-to-needs ratio
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greater than 2 and zero otherwise. This represents wealth categories higher than the

“middle-lower” class. The covariates included in each equation and the results are

presented in Table 3.3.

Table 3.3: ARMH and MLE results. Posterior means and standard deviations are
based on 5,000 MCMC draws.

Variable Eq. 1: Health Eq. 2: Wealth
ARMH MLE ARMH MLE

Intercept -2.453 (0.626) -2.060 (0.485) 0.493 (0.050) 0.490 (0.053)
Fedu HS 0.183 (0.043) 0.176 (0.043)
Fedu Coll 0.154 (0.073) 0.145 (0.077)
Fedu Grad 0.201 (0.102) 0.191 (0.106)
Medu HS 0.251 (0.045) 0.254 (0.044)
Medu Coll 0.420 (0.092) 0.407 (0.088)
Medu Grad 0.248 (0.114) 0.261 (0.112)
Edu HS 0.104 (0.066) 0.119 (0.062) 0.352 (0.043) 0.353 (0.047)
Edu Coll 0.309 (0.062) 0.314 (0.071) 0.798 (0.066) 0.803 (0.071)
Edu Grad 0.242 (0.076) 0.239 (0.085) 0.930 (0.104) 0.942 (0.102)
ChildHealth GD -1.255 (0.040) -1.252 (0.045)
ChildHealth PR -0.989 (0.112) -0.976 (0.110)
Race Black -0.009 (0.061) -0.022 (0.057) -0.443 (0.055) 0.430 (0.046)
Female -0.031 (0.055) -0.032 (0.053) -0.070 (-0.068) 0.062 (0.045)
Single 0.360 (0.088) 0.343 (0.010) -0.744 (0.069) -0.739 (0.731)
Divorce -0.146 (0.056) -0.148 (0.059) -0.596 (0.044) -0.597 (0.046)
Single Black 0.369 (0.181) 0.336 (0.217) -0.417 (0.098) -0.426 (0.106)
Health (y1) 0.411 (0.155) 0.377 (0.145)
Wealth (y2) 2.332 (0.639) 1.930 (0.499)
ρARMH 0.081 (0.029)
ρMLE 0.080 (0.032)

The results again display the importance of the simultaneous model. Both endoge-

nous covariates are statistically different from zero and the correlation between the

two equations is 0.08. These results accord well with the literature and intuition.

Healthier individuals are able to be more productive in their work leading to increased

wealth. Similarly, wealthy individuals have more access to health and preventative

care, positively impacting their health.

These 2 illustrations display the importance of simultaneous equation models in dis-
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crete data settings. Previously, models for these applications would not be estimable

because the values the parameters take violate the coherency condition. Our deriva-

tion of the likelihood function and estimation methods flexibly allow these applica-

tions to be considered and help us learn about two important relationships – female

labor supply and family income, and health and wealth – which are of interest to

many policy-makers.

3.6 Conclusion

This article provides a formulation of the likelihood function for simultaneous equa-

tions with discrete data, which employs Markov chain theory to cast the required

distribution as the invariant distribution of a Markov chain. The framework is ap-

plied to simultaneous probit equations, but it extends nicely to other discrete data,

e.g., ordinal, censored, etc. Additionally, the methods can be extended to higher di-

mensions with more discrete outcomes and endogenous covariates. Both classical and

Bayesian estimation techniques are considered and both perform well in an artificial

data setting and real data applications.

The approach presented in this paper overcomes several challenges that have long hin-

dered these models. Namely, they required a coherency condition that put dubious

constraints on the values the parameters can take, calling into question the sensi-

bility of the model. The methodology presented here does not require a coherency

condition and allows for these models to be estimated under minor identification re-

strictions. Moreover, we employ a conditional-conditional modeling approach which

can be generalized to several frameworks, including random coefficients, hierarchical

models, and state space models.
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