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Abstract
Accurate characterization of microcalcifications (MCs) in 2D digital mammography is a necessary step toward reducing 
the diagnostic uncertainty associated with the callback of indeterminate MCs. Quantitative analysis of MCs can better 
identify MCs with a higher likelihood of ductal carcinoma in situ or invasive cancer. However, automated identification and 
segmentation of MCs remain challenging with high false positive rates. We present a two-stage multiscale approach to MC 
segmentation in 2D full-field digital mammograms (FFDMs) and diagnostic magnification views. Candidate objects are first 
delineated using blob detection and Hessian analysis. A regression convolutional network, trained to output a function with 
a higher response near MCs, chooses the objects which constitute actual MCs. The method was trained and validated on 
435 screening and diagnostic FFDMs from two separate datasets. We then used our approach to segment MCs on magnifi-
cation views of 248 cases with amorphous MCs. We modeled the extracted features using gradient tree boosting to classify 
each case as benign or malignant. Compared to state-of-the-art comparison methods, our approach achieved superior mean 
intersection over the union (0.670 ± 0.121 per image versus 0.524 ± 0.034 per image), intersection over the union per MC 
object (0.607 ± 0.250 versus 0.363 ± 0.278) and true positive rate of 0.744 versus 0.581 at 0.4 false positive detections per 
square centimeter. Features generated using our approach outperformed the comparison method (0.763 versus 0.710 AUC) 
in distinguishing amorphous calcifications as benign or malignant.

Keywords Breast cancer · Full-field digital mammography · Microcalcifications · Segmentation

Introduction

Breast cancer is the most common cancer in women, 
accounting for 12% of cancer cases worldwide [1]. Stud-
ies have shown that early detection using mammography 
reduces breast cancer mortality [2]. In many countries, 
screening programs have been established with sensitiv-
ity levels ranging between 80 and 95% [3, 4]. However, 
screening also results in false positive outcomes, leading to 

patient anxiety, unnecessary biopsies, and the identification 
of clinically insignificant cancers, raising concerns about 
overdetection.

Microcalcifications (MCs), which are small calcium 
deposits, are common mammographic findings where they 
typically appear as high optical density structures. Nearly 
50% of the biopsied MCs are associated with ductal car-
cinoma in situ (DCIS) [5], an early form of cancer but a 
nonobligate precursor to invasive cancer [6, 7]. MCs are 
reported by radiologists using a set of qualitative descriptors 
related to morphology (shape) and distribution, as defined by  
the American College of Radiology Breast Imaging Report-
ing and Data System (BI-RADS) using a combination of 
full-field digital mammograms (FFDMs) and magnification 
views. Descriptors correspond to varying levels of suspicion 
for cancer. For example, amorphous MCs are assigned a 
moderate suspicion level (i.e., BI-RADS 4B) with a positive 
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predictive value  (PPV3)1 of 21% [8]. However, the assigned 
level of suspicion can be open to interpretation and var-
ies by radiologists due to subtle differences in MCs’ size, 
shape, texture, and heterogeneity in the background tissue 
[9]. Hence, determining whether a group of calcifications is 
associated with malignancy is challenging, and the current 
 PPV3 of biopsied suspicious MCs on 2D mammography is 
in the range of 20–41% [10].

Many computerized methods have been developed to aid 
radiologists in detecting MCs [9, 11–15]. These methods, 
generally categorized as computer-aided detection (CADe) 
systems, automatically mark groups of suspicious MCs in 
mammograms. Current CADe systems achieve high sensitiv-
ity but at the cost of a large number of false positive marks 
per mammogram, increasing the interpretation time. In work 
similar to ours, Wang et al. [9] developed a context-sensitive 
deep convolutional neural network, focusing on detecting 
MCs with low false positives. Their approach generated 
candidate locations using a difference of Gaussians (DoG) 
blob detection, filtering out non-MCs using a convolutional 
neural network. Our approach goes beyond detection by seg-
menting the boundaries of each MC.

In addition, studies have shown that using shape and 
intensity features from segmented MCs can improve malig-
nancy classification [16–20]. Precise segmentation also 
allows for more accurate quantitative characterization of 
the shape and distribution of MCs and texture analysis of 
the surrounding breast parenchyma that could be used to 
classify cancerous regions better. Prior studied techniques 
include wavelet transform for isolating high-frequency 
components [21, 22], gray-level morphological operations 
[11, 23–26], fuzzy logic [27], and binary pixel classifica-
tion using machine learning [17]. Although segmentation of 
MCs is performed in these studies, all but Ciecholewski [24] 
evaluated the performance of their algorithm as a detection 
task (using free-response operating characteristic analysis), 
not a segmentation task (measured by the overlap of deline-
ated regions). Ciecholewski reported an intersection over 
the union of 70.8% between the segmented MCs and the 
radiologist annotations on a set of 200 regions, which we 
use as a basis for comparing our algorithm.

In this study, a quantitative morphology-based approach 
for characterizing MCs is demonstrated. Given a 2D digital 
mammogram, we initially identify bright salient structures 
using the DoG blob detection algorithm. Hessian analysis is 
then applied to segment these structures. Next, dense regres-
sion is employed to segment regions containing structures 
that are likely to be MCs. Dense regression has been used 

for similar tasks such as cell and nuclei detection [28, 29], 
retinal optical disc and fovea detection [30], and focal vas-
cular lesion localization on brain MRI [31]. The idea is 
that human experts’ reference annotations are mapped to a 
smooth proximity function that reaches its maximum value 
when corresponding to the annotated points. Dense regres-
sion models are then trained to map the input mammogram 
to the proximity function. The proximity function method is 
advantageous when objects are annotated by a single pixel 
rather than their actual boundaries (e.g., many MCs are tiny 
and time-consuming to delineate). A fully convolutional net-
work with pretrained weights is utilized to perform dense 
regression. The outputs of the dense regression model and 
the blob segmentation algorithm are combined to generate 
the final MC segmentation.

The contributions of our work are summarized as follows:

• Obtaining precise annotations of all MCs is impractical, 
given the time and labor required. As a result, manual 
annotations of MC boundaries are often inconsistently 
drawn with high variability. To accommodate this uncer-
tainty, we use proximity functions to represent individual 
MCs as part of regression model training.

• A dense regression model and a novel blob segmenta-
tion algorithm are applied to generate MCs’ accurate 
segmentation while achieving fewer false positives than 
comparable state-of-the-art algorithms.

• Our approach is trained and tested on a set of screening 
and diagnostic mammograms from two cohorts (INbreast 
and local data). We demonstrate the generalizability of 
our approach by applying our method to a set of magni-
fication views.

Materials and Methods

Data

INbreast Dataset For model training and internal validation, 
we utilized a public dataset called INbreast [32], a collection 
of 2D screening and diagnostic FFDMs, which were gener-
ated using a Siemens MammoNovation system. 115 screen-
ing cases with 410 images were collected at a 0.070 mm per 
pixel resolution and 14-bit greyscale. The dataset included 
detailed annotations provided by two experts for several types 
of lesions (i.e., masses, MCs, asymmetries, and distortions). 
Fifty-six cases had pathology-confirmed diagnoses, of which 
45 were cancerous (DCIS and invasive). We used 294 images 
(147 craniocaudal (CC) and 147 mediolateral oblique (MLO) 
views) from 86 screening cases with annotations of individ-
ual MCs. MCs were annotated in two ways: (1) small MCs 
were annotated by a single pixel to denote their location, and 

1 PPV3 is the proportion of cases that underwent biopsy due to 
abnormal breast imaging findings which resulted in a breast cancer 
diagnosis.
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(2) larger MCs were annotated using pixel-wise contours. 
It should be noted that a guideline of what was considered 
small versus larger MC was not reported.

Local Dataset As an additional test set, data collected retro-
spectively from patients who had 2D diagnostic FFDMs per-
formed at our institution, following an institutional review 
board (IRB)-approved protocol, was used. The dataset con-
sisted of 79 diagnostic cases with 141 FFDM images (46 
CC, 21 MLO, and 74 mediolateral (ML) views) where MCs 
were present. All images were acquired using Hologic Sele-
nia full-field digital mammography equipment at a 0.070 
mm per pixel resolution and 12-bit greyscale. After collect-
ing the data, suspicious MCs were annotated by a breast fel-
lowship-trained, board-certified radiologist with five years of 
experience. An open-source medical image viewer, Horos, 
was utilized to generate the annotations. Individual MCs 
were annotated by single pixels indicating their locations. 
A second board-certified radiologist annotated a sample of 
5 cases to assess the annotation task’s interreader reliability. 
The index of specific agreement and the kappa statistic was 
determined. The two radiologists’ agreement was moderate, 
with an index of specific agreement of 0.664 (0.606–0.729, 
95% confidence interval), see Supplementary Information.

Local Magnification View Dataset We used magnification 
views obtained from 248 patients with amorphous calcifi-
cations seen at our institution to evaluate the performance 
of a malignancy classification. The model utilized features 
extracted from segmentations generated by our approach to 
classifying cases as benign or malignant (see the case study 
described in the Sect. “Case study: Identifying breast can-
cers among amorphous calcifications’’).

Overall Approach

The overall approach is illustrated in Fig. 1.

Blob Segmentation

The first stage is the segmentation of granular structures that 
are candidate MCs. To generate candidate MC segments, we 
developed Hessian DoG for blob segmentation. This mod-
ule’s objective is the accurate segmentation of bright salient 
structures that are candidate MC objects, as shown in Fig. 1.

Scale-space theory is a framework formulated to repre-
sent signals at multiple scales. The Gaussian scale-space 
representation of an image I(x, y) is defined as [33]:

where ∗ is the convolution and G(x, y, �) the two-dimensional 
Gaussian function

(1)L(x, y;�) = G(x, y;�) ∗ I(x, y),

In the DoG method, blobs with associated scale levels are 
detected from scale-space maxima of the scale-normalized 
DoG function. The normalized DoG function is defined as:

where Δ� is the difference between two scales. To construct 
the DoG scale-space representation, a sequence of scales 
is considered �n = kn�min where k is a constant multipli-
cative factor and n = [0, 1,⋯ , nmax] . The DoG represen-
tations Eq. (3) are computed for all adjacent scales (i.e., 
Δ� = �n+1 − �n ) forming a 3-dimensional representation:

with x, y the two spatial dimensions and n = [0, 1,⋯ , nmax−1] 
a scale dimension. Local maxima in the 3-dimensional rep-
resentation are computed giving a blob set (x(i), y(i), �(i)) 
where i identifies each blob. The number of blob detections 
is controlled by a threshold, TDoG , that is applied as a lower 
bound on the DoG representation before obtaining the local 
maxima. Moreover, in the case of overlapping blobs, the 
smaller blob is eliminated if the overlapping fraction is 
greater than the threshold ODoG.

(2)G(x, y;�) =
1

2��2
e−(x

2+y2)∕(2�2).

(3)DoG(x, y;�) =
�

Δ�
(L(x, y;� + Δ�) − L(x, y;�))

(4)DoG(x, y, n) =
�n

�n+1 − �n

(

L(x, y;�n+1) − L(x, y;�n)
)

Fig. 1  Approach for segmenting MCs. While the segmentation 
is performed on the entire 2D FFDM, for visualization purposes, a 
small patch is shown. In the upper branch, blob segmentation is per-
formed to segment bright blob-like and tubular structures. In the 
lower branch, a regression convolutional neural network gives a con-
tinuous function with a higher response close to MCs. A threshold is 
then applied to segment regions where MCs are likely to be present. 
The two branches’ output is combined based on an overlap criterion 
(e.g., retain blobs that have at least 30% overlap with the segmented 
region), resulting in the final segmentation mask
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The DoG algorithm outputs the location and scale of 
the detected blobs. To extract the blob shapes, we extended 
this method using Hessian analysis. The geometrical struc-
ture (i.e., convexity structure) of a blob-like object can be 
described by the eigenvalues of the Hessian [34]. In particu-
lar, a bright blob-like structure corresponds to two negative 
and large eigenvalues, whereas a bright tubular structure 
corresponds to one large negative eigenvalue and a small 
eigenvalue of an arbitrary sign. These structures correspond 
to the target MC candidates.

The Hessian DoG (H) representation at scale � is given by

H is computed across all scales in the sequence �n . At each 
scale, the following constraints are imposed:

where hthr is a tunable parameter. The constraints ensure 
that the Hessian is either negative definite or has a small 
positive eigenvalue. In this way, only bright salient blob-like 
and tubular structures are segmented. The constraint gener-
ates a binary mask at each scale. Iterating over the blob set 
found in the DoG algorithm (x(i), y(i), �(i)) , the corresponding 
objects are found in the Hessian masks. More specifically, 
for the Hessian mask at scale �(i) , the object spanning the 
location (x(i), y(i)) is found. The output of this step consists 
of all detected objects merged into a single binary mask.

Regression Convolutional Neural Network

While the blob segmentation step identifies objects that 
are candidate MCs, many will be false positives. This step 
identifies regions where MCs are most likely present by 
segmenting the MCs’ area to choose relevant MC objects 
from the previous stage. This task was performed using a 
fully convolutional neural network, commonly used in image 
segmentation, as the regression model. The model’s output 
is a smooth proximity map reaching a maximum value at the 
predicted MC locations.

The MC region segmentation task is analogous to cell and 
nuclei detection in microscopy images. The two tasks share 
the following characteristics: (1) they are highly imbalanced 
(i.e., the positive class captures a small region compared to 
the background within an image, and it often consists of 
many small structures), (2) the background is highly inho-
mogeneous, (3) individual objects exhibit large variation in 
sizes, shapes, and textures, (4) boundaries of the structures 
are often blurry, (5) the resolution of both types of images 
is large, and (6) the annotations are usually a mixture of 

(5)H(x, y;�) =

(

�2DoG(x,y;�)

�x2

�2DoG(x,y;�)

�x�y
�2DoG(x,y;�)

�x�y

�2DoG(x,y;�)

�y2

)

.

(6)tr(H) < 0 ∧

(

det(H) < 0 ∨
det(H)

tr(H)2
≤ hthr

)

individual points or exact boundaries. Inspired by this anal-
ogy, we adapted methods previously used in cell and nuclei 
detection [28, 29]. In [28], the authors used regression to 
detect cell centers. The human-annotated binary masks 
containing cell centers’ locations were transformed into a 
continuous function flat on the background with localized 
peaks at each cell’s center. These functions were then used 
to train a Random Forest Regression algorithm on a set of 
image patches. The cell centers were identified with local 
maxima in the model’s output. In [29], the authors showed 
that the same technique could be applied using a deep learn-
ing model. Their regression model was a fully convolutional 
neural network with a large receptive field capable of encod-
ing high-resolution information.

Our MC segmentation model is formulated as fol-
lows: Given a mask generated from reference annotations 
M(x, y) ∈ {0, 1} , the MC locations are given by {(xi, yi)} 
where M(xi, yi) = 1 . The proximity function is then defined 
as:

where �, � are tunable parameters. The function maps MC 
locations on an exponentially curved surface, expanding to 
a distance � with decay rate � before it vanishes. An exam-
ple of the transformation is illustrated in Fig. 2. This trans-
formed mask compensated for the fact that we had mixed 
quality annotations (i.e., point-like and exact) and forced 
the model to learn information from the precise locations of 
MCs and the surrounding background.

We constructed a model which predicts the proximity 
function P(x, y) given the image I(x, y). A feature pyramid 
network (FPN) [35] was used with Inception-v4 [36] as the 
backbone. The FPN architecture was introduced for applica-
tions such as region proposal, object detection, and instance 
segmentation. It adopts a pyramidal shape structure simi-
lar to many segmentation networks, such as the U-net [37], 

(7)P(x, y) = max
i

g(x, y, xi, yi)

(8)g(x, y, xi, yi) =

{

(e𝛼(1−r∕𝜉) − 1)∕(e𝛼 − 1), r ≤ 𝜉

0, r > 𝜉

(9)r =

√

(x − xi)
2 + (y − yi)

2

(a) (b) (c)

Fig. 2  a A mammographic image patch which includes MCs; b The 
corresponding annotation mask; c The corresponding proximity func-
tion map with parameters � = 10 and � = 1
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with an encoder that produces semantic features at different 
scales and a decoder that combines the encoder features by 
upsampling them.

The FPN architecture is suitable because it allows fea-
tures from all scales to independently contribute to the 
final prediction. The network is illustrated in Fig. 3. The 
network consists of an encoding and a decoding branch. 
In the encoding branch, the Inception-v4 architecture was 
adopted with weights pretrained on ImageNet [38]. Features 
were extracted at four scales (down-sampled compared to 
the original image by factors of 4, 8, 16, and 32). The fea-
tures were then transferred to the decoding branch via skip 
connections. To match their spatial sizes, they were upsam-
pled by factors of 1, 2, 4, and 8. The resulting features were 
aggregated using addition and further upsampled to match 
the image size. The number of output channels was set to 1 
and passed through a sigmoid function to generate a value 
between 0 and 1. This value was thresholded to achieve the 
final segmentation.

The model was trained using a soft Dice loss function, 
which was introduced as an optimization objective in bio-
medical segmentation applications [39, 40]. The formulation 
in [39] was used:

with � set to 1 where � was introduced for numerical stability 
and P and P̂ correspond to the target and predicted proximity 
map, respectively. A segmentation binary mask was gener-
ated by applying a cut-off on the resulting proximity mask, 
P̂(x, y) ≥ pthr where pthr ∈ [0, 1].

(10)LDICE(P̂,P) = 1 −

2
∑

x,y

P(x, y)P̂(x, y) + 𝜖

∑

x,y

(P(x, y) + P̂(x, y)) + 𝜖

The regression model was trained using patches extracted 
from the images and corresponding masks. We applied the 
sliding window approach with a patch size of 512 pixels and 
a stride of 480 to permit overlapping patches. Only patches 
with annotated MCs present were considered. From INbreast 
cases, 1045 patches were extracted from the training set 
and 329 from the validation set. From our local dataset, 252 
patches from the training set were extracted.

The mask patches were transformed using the proximity func-
tion map Eq. (7). We set � = {6, 8, 10, 12} for the characteristic 
distance and � = {−1,−2, 10−4, 1, 2} for the decay rate. The 
proximity function Eq. (7) is not well defined when � = 0.

Data augmentation was performed to enrich the training set 
by randomly applying horizontal flipping, magnification, spatial 
translations in both directions, cropping, contrast enhancement, 
brightness adjustment, and gamma correction (details are given 
in supplementary materials). The resulting patches are 320x320 
pixels in size. The soft Dice loss was used to compute the error 
between target and predicted proximity functions Eq. (10). The 
model was trained for 40 epochs using the adaptive moment 
estimation (Adam) optimization method [41] with mini-batch 
size 8, learning rate 10−4 , �1 = 0.9 , �2 = 0.999 and � = 10−8 . 
At the end of each epoch, the model was evaluated on the image 
patches of the INbreast validation set, with the average IoU per 
patch as the metric. The model achieving the highest IoU over 
all epochs was kept. The Inception-v4 weights were initialized 
with weights pretrained on ImageNet. The rest of the model 
weights were initialized randomly following He initialization 
[42]. The configuration � = 10 , � = 1 achieved the highest per-
formance for our approach on the validation set. We updated 
our model to work with local data by training the model with 
an additional 40 epochs using a combination of patches from 
the INbreast and local datasets.

Fig. 3  FPN with Inception-v4 encoder used for regression. In the 
encoding branch, the image is processed with the Inception-v4 clas-
sification network. Skip connections (dashed lines) are inserted after 
layers where the output was reduced in spatial size by factors of 4, 8, 
16, and 32, respectively. The skip connections feed FPN blocks where 
they undergo a series of convolutions. The outputs are upsampled 

independently by factors of 1, 2, 4, and 8, respectively. Their outputs 
are added and inserted in a spatial dropout layer activated only dur-
ing training for regularization purposes. After dropout, convolutions 
are followed by an upsampling by a factor of 4 to match the original 
image size and the sigmoid activation function
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Output Generation

Blob segmentation detects bright objects, whereas the 
regression CNN outputs a mask of relevant MC regions. 
The intersection of these outputs results in the final set of 
detected MCs and their segmentations. We retained the Hes-
sian DoG objects that overlap > othr with the CNN region 
mask, where othr is a tunable parameter, representing per-
centage overlap.

Comparison Methods

We compared our approach against two state-of-the-art 
methods. For the MC detection task, our approach was com-
pared to the paper by Wang and Yang [9], which used two 
subnetworks, one focusing on the local features and the other 
on features extracted from the background tissue around the 
location. They reported a detection performance of 80% true 
positive fraction (TPF) at a false positive rate of 1.03 FPs/
cm2. We implemented their context-sensitive deep neural 
network, classifying a location as MC or non-MC, train-
ing our implementation on the INbreast dataset. We imple-
mented DoG based on their reported parameters adjusting 
the scales to the resolution of our dataset.

For the MC segmentation task, our approach was com-
pared to Ciecholewski [24], where MC segmentation was 
performed using morphological operations. In the first step, 
morphological operators were applied to the original image 
to detect the MCs’ locations. Specifically, a morphological 
pyramid was generated using the closing-opening filter. Dif-
ferences in the pyramid representations of the original image 
were obtained and combined using the extended maximum 
of the original image and morphological reconstruction. In 
the second step, the MC shapes were extracted using water-
shed segmentation, where the output of the first step was 
utilized as a marker.

Evaluation Metrics

The segmentation performance was assessed using Intersec-
tion over the Union (IoU). We defined IoU per object as the 
averaged IoU between each reference annotation object and 
the object with the most overlap within the prediction mask2. 
The mean IoU between the background and the positive MC 
class per image was computed to evaluate the image-wise 
segmentation. The IoU per MC object was measured to 
examine the performance of segmenting individual MCs.

The detection performance of our approach was evalu-
ated using Free-Response Operating Characteristic (FROC) 

analysis, similar to prior work [9, 12]. In FROC analysis, the 
true positive rate (TPR) was plotted against false positive 
detections per image unit area  (cm2). The analysis required 
the definition of localization rules to determine true posi-
tives. We defined a detected object as a true positive if its 
distance from a ground truth object was at most 5 pixels 
(0.35 mm)3 or if it demonstrated an IoU value of at least 0.3 
with a ground truth object.

Results

Training, Validation, and Test Sets

The INbreast dataset was partitioned into a training set with 
51 cases (173 images), a validation set with 17 cases (56 
images), and a test set with 18 cases (65 images). The local 
dataset was partitioned into a training set for fine-tuning 
the model with 112 images and a held-out test set with 29 
images. We used the INbreast validation set to fine-tune our 
approach and the INbreast test set to assess the performance. 
Cases were kept independent (i.e., all images from an indi-
vidual case were included within the same subset) to avoid 
potential bias.

Model Selection and Optimization

We evaluated our model across hyperparameters using the 
INbreast validation set. The FROC analysis is presented in 
Table 1, and the mean IoU per image and IoU per object are 
summarized in Table 2. For the FROC analysis, 100 boot-
strap samples were used to find the partial area under the 
curve (pAUC) in each experiment. The pAUC was computed 
for the range between 0 and 1 FPs per unit area, and the 95% 
confidence interval was reported. For the computation of the 
segmentation metrics, a threshold on the predicted proximity 
function was applied. To determine the optimal threshold for 
each experiment, we referred to the corresponding FROC 
curve and found the point closest to a TPR of 1 and a false 
positive per unit area of 0. All configurations performed 
similarly in terms of the FROC analysis and segmentation 
metrics. We chose the model with the highest mean value of 
the FROC pAUC with � = 10 and � = 1 . We set �min = 1.18 , 
�max = 3.1 , overlapping fraction ODoG = 1 , DoG threshold 
TDoG = 0.006 and Hessian threshold hthr = 1.4 . To optimize 
the final output, we examined othr = {0.2, 0.3, 0.4, 0.5, 0.6} to 
determine the overlap threshold. Setting othr = 0.3 achieved 
the highest performance on the validation set.

2 MC objects annotated by a single pixel were disregarded in com-
puting IoU per MC object. IoU is not well defined in such cases.

3 Centroids of individual objects were used in computing their dis-
tance.
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Detection and Segmentation Results

Figure 5 compares the detection performance between our 
method and the method of Wang and Yang [9]. The true posi-
tive detection rate on the y-axis was plotted against the false 
positive counts per unit area (1 cm2 ). The FROC analysis was 
performed on the INbreast validation and test sets. Our method 
achieved FROC pAUC 0.819 ± 0.046 with a TPR of 0.852 at 
0.4 false positives per unit area on the validation set. On the 

Fig. 4  Five 256x256 patches 
extracted from different mam-
mograms showing the results 
of our approach and a com-
parison method on a variety of 
microcalcifications. From left 
to right: a unannotated images, 
b reference annotations, c 
results using our approach, and 
d results applying the approach 
described in [24]. The first three 
rows are from INbreast data, 
and the last two are from local 
data. For better visualization, 
the patches were normalized. 
Note the inherent difference in 
the appearance of the mam-
mograms between INbreast and 
local data due to differences in 
acquisition systems

(a) (b) (c) (d)

Table 1  Detection performance for different regression models on the 
validation set. The highest pAUC is bolded

�∕� 6 8 10 12

-2 0.804 ± 0.048 0.812 ± 0.049 0.793 ± 0.040 0.773 ± 0.045
-1 0.783 ± 0.058 0.808 ± 0.047 0.790 ± 0.047 0.794 ± 0.045
10-4 0.813 ± 0.054 0.783 ± 0.056 0.790 ± 0.044 0.784 ± 0.048
1 0.799 ± 0.054 0.776 ± 0.056 0.819 ± 0.046 0.790 ± 0.053
2 0.775 ± 0.056 0.791 ± 0.055 0.802 ± 0.049 0.789 ± 0.053
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test set, the FROC pAUC was 0.697 ± 0.078 with a TPR of 
0.744 at 0.4 false positives per unit area. In comparison, our 
implementation of [9] achieved FROC pAUC 0.703 ± 0.057 
and 0.581 ± 0.072 in the validation and test sets, respectively.

Figure 6 shows the detection performance of our approach 
on the local dataset. We also compared the model’s per-
formance trained solely on INbreast data and fine-tuned on 
local data. The performance of the two models was compa-
rable since the original model achieved 0.313 ± 0.109 FROC 
pAUC, and the fine-tuned model achieved 0.420 ± 0.107. 
However, for the range of 0.2 to 0.6 FPs per unit area, the 
fine-tuned model outperformed the original based on TPR.

Table 3 reports the segmentation performance of our 
approach on the INbreast validation and test sets. For com-
parison, the segmentation results of the morphological 
method of Ciecholewski (see the Sect. “Comparison Meth-
ods’’ ) are also presented. Based on the paired Wilcoxon 
signed-rank test, we achieved superior performance in both 
mIoU per image and IoU per object for both subsets with 
p < 0.01 . Figure 4 presents a sampling of model outputs.

Case Study: Identifying Breast Cancers Among 
Amorphous Calcifications

We present a case study that utilized features computed 
from regions segmented by our method to classify whether 
MCs identified as amorphous were benign or malignant. We 
compared the predictive value of these features with those 
computed from regions delineated by another “baseline” 
method [24].

Data The local magnification view dataset consisted of diag-
nostic exams performed at our institution between 2017 and 
2019. In particular, 284 mammographic cases with biopsied 
amorphous MCs were selected. The cases were chosen such 
that for the same case and laterality (left/right breast), all biopsy 

Table 2  Segmentation results of different regression models on the validation set. The highest IoUs are bolded

Mean IoU per image

�∕� 6 8 10 12

-2 0.593 ± 0.109 0.590 ± 0.102 0.576 ± 0.088 0.560 ± 0.066
-1 0.590 ± 0.105 0.579 ± 0.094 0.572 ± 0.089 0.566 ± 0.077
10-4 0.596 ± 0.115 0.584 ± 0.098 0.586 ± 0.097 0.584 ± 0.093
1 0.619 ± 0.125 0.601 ± 0.109 0.583 ± 0.105 0.587 ± 0.098
2 0.610 ± 0.123 0.588 ± 0.108 0.592 ± 0.105 0.580 ± 0.094

IoU per image

�∕� 6 8 10 12

-2 0.645 ± 0.207 0.645 ± 0.206 0.648 ± 0.200 0.626 ± 0.228
-1 0.647 ± 0.203 0.648 ± 0.201 0.643 ± 0.208 0.640 ± 0.212
10-4 0.648 ± 0.201 0.644 ± 0.207 0.641 ± 0.214 0.644 ± 0.207
1 0.649 ± 0.200 0.646 ± 0.206 0.647 ± 0.203 0.643 ± 0.208
2 0.650 ± 0.197 0.648 ± 0.202 0.649 ± 0.200 0.643 ± 0.208

Table 3  Segmentation Results of Final Model on Validation and Test 
Sets

Our Approach

Metric/dataset Validation Test

mean IoU per image 0.583 ± 0.105 0.670 ± 0.121
IoU per object 0.647 ± 0.203 0.607 ± 0.250
Ciecholewski et al. [24]
mean IoU per image 0.517 ± 0.037 0.524 ± 0.034
IoU per object 0.408 ± 0.286 0.363 ± 0.278 Fig. 5  Individual MC FROC analysis for our final model compared 

with a baseline model
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results were either benign or malignant (high-risk results were 
omitted). The cases corresponded to a total of 642 diagnostic 
images (318 ML/MLO/LM and 324 CC). A doctoral-trained 
researcher annotated the most suspicious regions, providing the 
regions of interest (ROIs) as bounding boxes. A board-certified 
radiologist validated these ROIs. In total, 674 ROIs were pro-
vided, i.e., 612 images with one ROI, 28 images with two ROIs, 
and 2 images with three ROIs. Incorporating the pathology 
information, 390 (57.9%) ROIs were benign and 284 (42.1%) 
malignant. To eliminate the annotation bias associated with the 
size and shape of ROIs, we transformed the bounding boxes of 
ROIs to a fixed size. The mean ROI height and width were 222 
and 256 pixels, respectively. Therefore, we decided to transform 
each bounding box to a 256x256 pixel size retaining its center 
location. Another reason for adopting fixed-sized ROIs was to 
make the classification model focus on segmentation-related 
features.

MC Segmentation MCs were segmented using two different 
methods: 

1. Our Approach: For the regression network, the FPN was 
trained on both local and INbreast data (see the Sect. 
“Data’’). For the Hessian DoG blob segmentation, we fine-
tuned the parameters mentioned in Sect. “Blob Segmenta-
tion’’ to achieve the best classification performance.

2. We used the method developed by Ciecholewski [24] as 
the “baseline” segmentation method, described in the 
Sect. “Comparison Methods’’.

Feature Extraction Upon segmentation of the ROIs, relevant 
features were extracted (n=31). The extracted features are cat-
egorized into two main groups: (1) regional features describing 
all ROI MCs as a whole and (2) individual MC features. The 
regional features were: the area of the foreground (all MCs), 
the area of the convex hull enclosing all MCs, major and minor 

axis length, the orientation of the major axis with respect to 
the horizontal line, eccentricity, solidity, moments of inertia 
(n=2), Hu moments (n=7) and number of MCs. The MCs were 
also described individually by their area, major and minor axis 
length, maximum, minimum, and mean intensity within, and 
eccentricity. Individual MC features were statistically aggre-
gated using mean and standard deviation per ROI.

Classification Features were inputted into a gradient tree boost-
ing classifier. Gradient boosting generates weak predictive 
models, i.e., in our case, decision trees, which are enhanced 
in each iteration, targeting residual errors, and are linearly 
combined to give the final model. We applied fivefold cross-
validation to train and test our task. Partitioning the data into 
folds was performed patient-wise. For each training and test 
split, the data were pre-processed using imputation by mean 
value followed by standardization (i.e., subtracting the mean 
and scaling to unit variance). Imputation was needed for cases 
where the segmentation was empty. The parameters for both 
imputation and standardization were derived from the training 
set and applied to both training and test sets.

Evaluation Classification was performed on different sets of 
features derived from different MC segmentation techniques. 
ROC analysis was performed to evaluate each model, and clas-
sification metrics were obtained, i.e., ROC AUC, accuracy, sen-
sitivity, specificity, and positive predictive value. The mean and 
standard deviation of each metric was computed across folds.

Fig. 6  Individual MC FROC analysis on local data

Fig. 7  ROC curves for the classification models obtained using our 
approach and a baseline segmentation method. Lines correspond to 
mean values across folds and the filled area captures one standard 
deviation
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The parameters of each segmentation method were fine-
tuned, and the configurations that achieved the highest ROC 
AUC were kept (details are given in Supplementary Infor-
mation). The best models obtained using our method and 
baseline segmentations were compared using ROC analysis. 
Figure 7 depicts the ROC curves of each model. Other clas-
sification metrics are presented in Table 4. We deliberately 
chose operating thresholds to achieve high sensitivity (close 
to 90%) for both models. The model trained on features gen-
erated from our method’s segmentations achieved superior 
values for all other classification metrics.

In Fig. 8, we compared the performance of our approach 
with respect to its components: FPN and Hessian DoG 
blob segmentation. Although the performance of blob seg-
mentation was low (AUC=0.562 ± 0.056), the combina-
tion of blob segmentation and FPN resulted in the highest 
performance (AUC=0.763 ± 0.056).

Discussion

We presented an approach that combines DoG with Hessian 
analysis and dense regression to achieve precise MC seg-
mentation in 2D digital mammograms. To our knowledge, 
this is one of the first works applying a fully convolutional 
architecture for MC segmentation, which permits concurrent 
prediction on multiple adjacent locations. The method was 
trained and validated on 435 mammograms from two sepa-
rate datasets. The results show that our method outperforms 
comparable approaches that have been recently published. 
In the FROC analysis using the INbreast dataset, our method 
achieves a TPR of 0.744 at false positives per unit area of 
0.4 in comparison with a TPR of 0.618 at the same level of 
false positives as what is reported in [9]. On the segmentation 
task, our approach achieves a mean IoU per image of 0.670 
and IoU per object of 0.607 compared to 0.524 mean IoU 
per image and 0.363 IoU per object for the morphological 
approach presented in [24]. The addition of local data, even 
when coarsely annotated by a human reader, improved the 
performance of our method. The ability to utilize a mixture 
of annotations, ranging from precise segmentations of larger 
calcifications to point estimates representing the centroid of 
smaller calcifications, is a strength of our approach. As an 
indirect validation of our method, we conducted segmenta-
tion-based MC malignancy classification. In this downstream 
task, our method outperformed the baseline segmentation 
method with a ROC AUC of 0.763 versus 0.710. Also, our 
approach demonstrated incremental performance in terms 
of its constituents (i.e., the Hessian DoG blob segmentation 
and the regression model). We also showed the ability to 
generalize our approach to other mammographic views (e.g., 
magnification views).

While we achieved a lower number of false positives than 
other approaches, the overall number of false positives per 
image is still high. Our approach would benefit from a false 
positive reduction step. Most false positives occur near larger 
calcifications and correspond to more irregular shapes than 
actual MCs. The irregular detection can be attributed to the 
regression model, designed to segment regions containing cal-
cifications. In the case of larger calcifications, the segmented 
regions span larger areas, increasing the likelihood of retaining 
false positive objects. Additional filtering based on size and 
shape criteria in areas where large calcifications are identi-
fied could lead to a substantial false positive reduction. Human 

Fig. 8  ROC curves breaking down our method’s segmentation per-
formance in terms of its constituent parts. The ROC curves for blob 
segmentation and the convolutional regression model (FPN) are pre-
sented. Lines correspond to mean values across folds and the filled 
area captures one standard deviation. The graph highlights the com-
plementary value the two components (Hessian DoG and FPN) con-
tribute to the overall method

Table 4  Fivefold cross-validation classification metrics compared 
between our method and baseline segmentations. Mean values and 
standard deviations across folds are presented. The threshold is cho-
sen to achieve a sensitivity closest to 0.9

Metric/Segmentation Our Approach Baseline

ROC AUC 0.763 ± 0.056 0.710 ± 0.060
Accuracy 0.563 ± 0.059 0.512 ± 0.036
Sensitivity 0.901 ± 0.076 0.901 ± 0.052
Specificity 0.323 ± 0.075 0.234 ± 0.023
PPV

3
0.490 ± 0.067 0.459 ± 0.049
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annotation and confirmation of every MC on an image is an 
impractical task, and algorithms should emphasize identify-
ing MCs that are at the highest risk of being associated with 
cancerous lesions. Moreover, our algorithm likely identified 
MCs missed by human readers, inflating the false positive 
count. Our approach also under-segments or over-segments 
in certain scenarios. Undersegmentation occurs most often 
in large objects due to: (1) interior regions of objects having 
lower intensities that are omitted and (2) incorrect delineation 
of boundaries due to subtle contrast differences between the 
MC and surrounding tissue. Nevertheless, large calcifications 
are typically considered benign and not clinically significant. 
Their undersegmentation will not affect quantitative features 
that may predict invasive cancers. Oversegmentation occurs 
primarily when bright objects identified with Hessian DoG are 
close together and erroneously combined into a single object 
when only part corresponds to an actual MC.

Several limitations of our approach exist. Labeling all MCs in 
full-field mammograms is time-consuming and prone to human 
error and inter-annotator variability. Hence, our work is limited 
by the dataset size and variations in how MCs are annotated, 
ranging from point-like annotations to detailed contours. Using a 
proximity function to reflect the uncertainty associated with MC 
annotations makes our approach robust to training data variations. 
Moreover, the inherent differences in mammograms acquired with 
equipment manufactured by different vendors present another 
challenge. The local dataset was obtained using equipment man-
ufactured by Hologic, whereas the public dataset INbreast was 
obtained using Siemens equipment. The brightness and contrast 
levels of the images varied substantially between manufacturers. 
Given that the INbreast dataset had four times as many cases as 
the local dataset, our model was fine-tuned with a limited number 
of training patches. The method was trained and evaluated using 
existing data prone to selection bias, making the model susceptible 
to underspecification. Moreover, with the increased adoption of 
digital breast tomosynthesis, our method has not yet been evalu-
ated on these scans. Ongoing work includes annotating additional 
cases from our institution that would allow us to fine-tune the 
model further and experiment with different training strategies to 
improve the generalizability of our approach.

Conclusions

We described a new quantitative approach for MC segmenta-
tion based on blob segmentation and dense regression. We 
showed that our method performs better than state-of-the-art 
MC segmentation and detection methods. In our case study, 
we evaluated the effect of the segmentation method on com-
puted quantitative image features and classification perfor-
mance. Our results suggested that our method has the poten-
tial to segment calcifications on a variety of images (FFDMs, 

magnification views) with minimal fine-tuning. Moreover, our 
method exhibited better performance than features generated 
using a comparison segmentation method. The case study also 
demonstrated the potential of quantitative characterization of 
MCs in improving the management of women with amor-
phous calcifications. Shape, intensity, and texture features 
can be extracted from individually segmented MCs to yield 
quantitative descriptors of MC morphology and distribution. 
While further studies are needed to evaluate the  PPV3 and 
reproducibility of our quantitative features, these features, ena-
bled by accurate segmentation of MCs, may provide a basis 
for reducing false positives and unnecessary biopsies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10278- 022- 00751-3.
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