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ABSTRACT OF THE THESIS

Multiobjective Deep Learning

by

Jayanth

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Kai Wei Chang, Chair

Many current challenges in natural language processing and computer vision have to deal

with multiple objectives simultaneously. In this article, we study different methods to solve

such multi-objective problem for CIFAR-100 and SEMEVAL datasets, and compare with

traditional deep learning methods. The multi-output method achieves better results than

training a single neural net from scratch with its own model for each objective. Multi-

objective deep learning with weights achieves comparable results too.
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CHAPTER 1

Introduction

Many current challenges in natural language processing and computer vision have to deal

with multiple objectives simultaneously. Multi-objective optimization or classification in-

volve more than one objective function that are to be minimized or maximized simultane-

ously. In this article, we understand the solution of multiple decision problems on same

dataset. In this introductory chapter, we shall first give some examples. Informally, we shall

understand such problems as mathematical models of decision problems. The remainder

of the thesis is organized as follows. Current Chapter discusses previous approaches used

for multi-objective optimization. Chapter 2 gives detailed explanation about the algorithm.

Chapter 3 gives detailed explanation about the dataset being used. Chapter 4 then dis-

cusses the experiments and the results obtained from it on CIFAR dataset. Chapter 4 then

discusses the experiments and the results obtained from it on SEMEVAL dataset.

1.1 Examples

Let us consider the following examples from different fields:

Economics : Predicting consumer’s demand for various goods is determined by the pro-

cess of maximization of the consumer’s satisfaction derived from those goods, subject to a

constraint based on how much income is available to spend on those goods and on the prices

of those goods. The consumer’s demand for separate goods are the multiple objective in this

use-case.

Vision: Given an image, identify the shape, the color and other such physical properties,

followed by finally identifying the object or object category. Shape, color, physical proper-

1



ties, object category etc each can serve as seperate objective. Similarly, given the image,

identifying what categories the image belongs to each level as separate objective, before

identifying the exact object, reinforcing from the previous labels and improving the final

prediction. For example, CIFAR100 has two separate level of labels - coarse and fine, with

fine being one level deeper than coarse.

Natural Language Processing : Predicting how many retweets and likes a news headline

will receive on Twitter as two separate objectives. Given a text for sentiment analysis,

identifying whether it is subjective or objective, if subjective, whether positive or negative,

whether sentiment is implicit or explicit, whether it is irony or not, each serving as seperate

objective across different levels.

1.2 Typical Approaches

Typical approaches to deal with multi-objectives are to convert all but one into constraints

during problem modeling phase. Another approach is to project it onto R1 or other lower

space by giving them weights as hyperparameter and then, optimizing the weighted sum.

Typically, all these approaches simplify the problem consideration, losing information and

requirements along the way.

1.3 Literature Survey

Multiobjective optimization is an active area of research. It is an area of multiple criteria

decision making that is concerned with mathematical optimization problems involving more

than one objective function to be optimized simultaneously. Multi-objective learning has

been used successfully across all applications of machine learning, from natural language

processing [3] and speech recognition [4] to computer vision [5] and drug discovery [6].

2



CHAPTER 2

Algorithm

Hard parameter sharing is the most commonly used approach to Multi-Task Learning in

neural networks and goes back to [2]. It is generally applied by sharing the hidden layers

between all tasks, while keeping several task-specific output layers.

Hard parameter sharing greatly reduces the risk of overfitting. In fact, [1] showed that

the risk of overfitting the shared parameters is an order N – where N is the number of tasks

– smaller than overfitting the task-specific parameters, i.e. the output layers. This makes

sense intuitively: The more tasks we are learning simultaneously, the more our model has to

find a representation that captures all of the tasks and the less is our chance of overfitting

on our original task.

The algorithm is to decompose the network graph into separate branches. Calculate

loss with respect to each branch end and then, use the loss to calculate weights for gradient

update. The loss can be used directly as weights as in algorithm 1 or as inversely as harmonic

weights as in algorithm 2.

3



Figure 2.1: Hard parameter sharing for multi-task learning in deep neural networks
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define model:

return branch1, branch2...branchn

pred1, pred2...predn = model(X)

for i← 1 to n do

lossi = lossfni(predi, yi)

end

for i← 1 to n do

αi = lossi
loss1+loss2+...lossn

end

for i← 1 to n do

optimizeri.step(αi)

end

Algorithm 1: Arithmetic weighted update algorithm

define model:

return branch1, branch2...branchn

pred1, pred2...predn = model(X)

for i← 1 to n do

lossi = lossfni(predi, yi)

end

for i← 1 to n do

1
αi

=
1

lossi
1

loss1
+ 1

loss2
+... 1

lossn

end

for i← 1 to n do

optimizeri.step(αi)

end

Algorithm 2: Harmonic weighted update algorithm
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CHAPTER 3

Dataset

The multi-objective deep learning method has been applied to two datasets - one in vision,

CIFAR-100 dataset and one in NLP, SEMEVAL Irony dataset.

3.1 CIFAR-100

The CIFAR-100 dataset consists of 60000 32x32 colour images, containing 50000 training

images and 10000 test images. The dataset is divided into five training batches and one test

batch, each with 10000 images. The training batches contain the images in random order,

but some training batches may contain more images from one class than another. This

dataset has 100 classes containing 600 images each. There are 500 training images and 100

testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses.

Each image comes with a ”fine” label (the class to which it belongs) and a ”coarse” label

(the superclass to which it belongs).

Here is the list of classes in the CIFAR-100:
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Superclass Classes

aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers

household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk

non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman

reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel

trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train

vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 3.1: Superclass and subclass in CIFAR100 dataset

7



Figure 3.1: CIFAR-100 images

Here is a sample image containing images in the CIFAR-100.

3.2 SEMEVAL Irony

The SEMEVAL2018 task proposes two different subtasks for the automatic detection of irony

on Twitter. For the first subtask, participants should determine whether a tweet is ironic

or not (by assigning a binary value 0 or 1). For the second subtask, participants are tasked

with distinguishing between non-ironic and ironic tweets, the latter of which are subdivided

into three categories. More details of both subtasks are described below.

3.2.1 Ironic vs. non-ironic

The first subtask is a two-class (or binary) classification task where the system has to predict

whether a tweet is ironic or not. The following sentences present examples of an ironic and

non-ironic tweet, respectively.

• I just love when you test my patience!! #not

8



• Had no sleep and have got school now #not happy

3.2.2 Different types of irony

The second subtask is a multiclass classification task where the system has to predict one

out of four labels describing i) verbal irony realized through a polarity contrast, ii) verbal

irony without such a polarity contrast (i.e., other verbal irony), iii) descriptions of situational

irony, iv) non-irony. A brief description and example for each label are presented below.

3.2.2.1 Verbal irony by means of a polarity contrast

Instances containing an evaluative expression whose polarity (positive, negative) is inverted

between the literal and the intended evaluation.

Examples:

• I love waking up with migraines #not :’(

• I really love this year’s summer; weeks and weeks of awful weather.

In the above examples, the irony results from a polarity inversion between two evaluations.

In sentence 4 for instance, the literal evaluation (”I really love this year’s summer”) is

positive, while the intended one, which is implied by the context (”weeks and weeks of awful

weather”), is negative.

3.2.2.2 Other verbal irony

Instances which show no polarity contrast between the literal and the intended evaluation,

but are nevertheless ironic.

Examples:

• @someuser Yeah keeping cricket clean, that’s what he wants #Sarcasm

• Human brains disappear every day. Some of them have never even appeared.

9



#brain #humanbrain #Sarcasm

3.2.2.3 Situational irony

Instances describing situational irony, or situations that fail to meet some expectations. As

explained by [7], firefighters who have a fire in their kitchen while they are out to answer a

fire alarm would be a typically ironic situation.

Examples:

• Most of us didn’t focus in the #ADHD lecture. #irony

• Event technology session is having Internet problems. #irony #HSC2024

• Just saw a non-smoking sign in the lobby of a tobacco company #irony

3.2.2.4 Non-ironic

Instances that are clearly not ironic, or which lack context to be sure that they are ironic.

Examples:

• And then my sister should be home from college by time I get home from babysitting.

And it’s payday. THIS IS A GOOD FRIDAY

• Please dont fuck with me when I first wake up #not a morning person!

10



CHAPTER 4

CIFAR-100 Experiment

For CIFAR-100 dataset, the 20 ”coarse” superclass labels serve as first objective while, the

100 ”fine” subclass labels serve as the second objective. The aim of the deep learning model

is to predict both coarse and fine label simultaneously as separate objectives.

4.1 Motivation for CNN

Convolutional neural nets have an interesting ability to learn spatial relations from raw

data without prior feature selection or feature engineering. This end to end learning can

be leveraged for classification tasks where the data is image data because it is difficult to

make prior assumptions about features for this sort of data set. We designed a custom 4

layered convolutional neural net for the classification task. Please see Table 1 for performance

comparisons and Table 3 for architecture details.

4.2 Baseline Single Neural Net architecture

All the architecture was kept common across all the experiment. The baseline architecture

was single neural net for each objective separately.

The batch size was kept at 128, the epochs are set at 50, the optimizer is Adam with

learning rate of 3e − 4 with loss as categorical cross entropy. The total parameters are

1,255,988 in the single neural net coarse architecture. It achieved training loss of 0.7338 and

training accuracy of 75.15% with validation loss of 1.3746 and validation accuracy of 59.26%

for coarse predictions.
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Figure 4.1: Loss of baseline coarse neural net
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Figure 4.2: Accuracy of baseline coarse neural net
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Layer (type) Output Shape Parameters

conv2d1 (Conv2D) (None, 32, 32, 32) 896

activation1 (Activation) (None, 32, 32, 32) 0

conv2d2 (Conv2D) (None, 30, 30, 32) 9248

activation2 (Activation) (None, 30, 30, 32) 0

maxpooling2d1 (MaxPooling2) (None, 15, 15, 32) 0

dropout1 (Dropout) (None, 15, 15, 32) 0

conv2d3 (Conv2D) (None, 15, 15, 64) 18496

activation3 (Activation) (None, 15, 15, 64) 0

conv2d4 (Conv2D) (None, 13, 13, 64) 36928

activation4 (Activation) (None, 13, 13, 64) 0

maxpooling2d2 (MaxPooling2) (None, 6, 6, 64) 0

dropout2 (Dropout) (None, 6, 6, 64) 0

flatten1 (Flatten) (None, 2304) 0

dense1 (Dense) (None, 512) 1180160

activation5 (Activation) (None, 512) 0

dropout3 (Dropout) (None, 512) 0

dense2 (Dense) (None, 20) 10260

activation6 (Activation) (None, 20) 0

Table 4.1: Table for single neural network for coarse objective

The total parameters are 1,297,028 in the single neural net fine architecture. They only

differ in last layer, where there is a dense layer with 512 input and 100 output for fine, 20

output for coarse respectively. It achieved training loss of 15.957 and training accuracy of

1% with validation loss of 15.957 and validation accuracy of 1% for fine predictions.

The average accuracy of Single net models on both the task was around 30%.

14



Figure 4.3: Loss of baseline fine neural net
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Figure 4.4: Accuracy of baseline fine neural net
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Layer (type) Output Shape Parameters

conv2d1 (Conv2D) (None, 32, 32, 32) 896

activation1 (Activation) (None, 32, 32, 32) 0

conv2d2 (Conv2D) (None, 30, 30, 32) 9248

activation2 (Activation) (None, 30, 30, 32) 0

maxpooling2d1 (MaxPooling2) (None, 15, 15, 32) 0

dropout1 (Dropout) (None, 15, 15, 32) 0

conv2d3 (Conv2D) (None, 15, 15, 64) 18496

activation3 (Activation) (None, 15, 15, 64) 0

conv2d4 (Conv2D) (None, 13, 13, 64) 36928

activation4 (Activation) (None, 13, 13, 64) 0

maxpooling2d2 (MaxPooling2) (None, 6, 6, 64) 0

dropout2 (Dropout) (None, 6, 6, 64) 0

flatten1 (Flatten) (None, 2304) 0

dense1 (Dense) (None, 512) 1180160

activation5 (Activation) (None, 512) 0

dropout3 (Dropout) (None, 512) 0

dense2 (Dense) (None, 100) 51300

activation6 (Activation) (None, 100) 0

Table 4.2: Table for single neural network for fine objective

4.3 Multi-output Unbranched Neural Net

Next, we tried unbranched neural net for both the task. The penultimate layer gave the fine

output, while the last layer gave the coarse output.

The total parameters are 1,299,048 in the above architecture. The layer dense2 followed

by activation6 serves as fine output and the layer dense3 followed by activation7 serves

as coarse output. It achieved training loss of 18.9527 with validation loss of 18.9527 and

17



Layer (type) Output Shape Parameters

conv2d1 (Conv2D) (None, 32, 32, 32) 896

activation1 (Activation) (None, 32, 32, 32) 0

conv2d2 (Conv2D) (None, 30, 30, 32) 9248

activation2 (Activation) (None, 30, 30, 32) 0

maxpooling2d1 (MaxPooling2) (None, 15, 15, 32) 0

dropout1 (Dropout) (None, 15, 15, 32) 0

conv2d3 (Conv2D) (None, 15, 15, 64) 18496

activation3 (Activation) (None, 15, 15, 64) 0

conv2d4 (Conv2D) (None, 13, 13, 64) 36928

activation4 (Activation) (None, 13, 13, 64) 0

maxpooling2d2 (MaxPooling2) (None, 6, 6, 64) 0

dropout2 (Dropout) (None, 6, 6, 64) 0

flatten1 (Flatten) (None, 2304) 0

dense1 (Dense) (None, 512) 1180160

activation5 (Activation) (None, 512) 0

dropout3 (Dropout) (None, 512) 0

dense2 (Dense) (None, 100) 51300

activation6 (Activation) (None, 100) 0

dense3 (Dense) (None, 20) 2020

activation7 (Activation) (None, 20) 0

Table 4.3: Table for single neural network for fine objective

validation accuracy of 5% for coarse, 1% for fine leading to average accuracy of 3%. As we

can see, the outputs get stagnant at fixed values of random classification because we used

single neural net without branching, leading to low accuracy.
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Figure 4.5: Model loss of unbranched neural net
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Figure 4.6: Last layers of Multi-output Branched Neural Net

4.4 Multi-output Branched Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into

two layers, that gave the fine output and the coarse output. The loss gave equal weights to

both objective loss with update as arithmetic weighted (page 5).

The total parameters are 1,307,288 in the above architecture. It achieved training loss of

2.2288 with validation loss of 3.4648 and validation accuracy of 59.2% for coarse, 46.13% for

fine leading to average accuracy of 52.665%. As we can see, the average accuracy is 52.66%

for coarse and fine label based single multi-output neural net model, which is more than

single output models by more than 20

4.5 Weighted Multi-output Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into

two layers, that gave the fine output and the coarse output. The loss gave inverse weights

to both objective loss with update as harmonic weighted (page 5).

It achieved training loss of 3.4873 with validation loss of 4.211 and validation accuracy

of 42% for coarse, 32% for fine leading to average accuracy of 37% .
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Figure 4.7: Fine loss of multi-output branched neural net
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Figure 4.8: Coarse loss of multi-output branched neural net
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Figure 4.9: Model loss of multi-output branched neural net
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Figure 4.10: Accuracy of weighted multi-output branched neural net
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Figure 4.11: Coarse Accuracy of weighted multi-output branched neural net
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Figure 4.12: Fine Accuracy of weighted multi-output branched neural net
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Figure 4.13: Loss of weighted multi-output branched neural net
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4.6 Multi-output Resnet

Next, we modified Resnet architecture with depth of 32 to multi-output architechture . The

penultimate layer branched into two layers, that gave the fine output and the coarse output.

The loss gave equal weights to both objective loss with update as arithmetic weighted (page

5).

The total parameters are 477,368 in the above architecture, with 475,096 trainable param-

eters and 2,272 non-trainable parameters. It achieved validation loss of 3.108 and validation

accuracy of 69.19% for coarse, 53.68% for fine leading to average accuracy of 61.435% .

4.7 Results

Architecture Loss Coarse Accuracy Fine Accuracy Average Accuracy

Baseline Single net 17.33 59.26% 1% 30.13%

Multi-output Unbranched 18.95 5% 1% 3%

Multi-output branched 3.46 59.2% 46.13% 52.66%

Weighted multi-output 4.211 42% 32% 37%

Multi-output Resnet 3.108 69.19% 53.68% 61.43%

Table 4.4: Table of results for CIFAR-100 Experiment
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CHAPTER 5

SEMEVAL Irony Experiment

For SEMEVAL dataset, the 2 ”coarse” superclass labels - irony vs non-irony serve as first

objective while, the 4 ”fine” irony subclass labels serve as the second objective. The aim of

the deep learning model is to predict both coarse and fine label simultaneously as separate

objectives.

5.1 Motivation for recurrent net

Recurrent Neural Networks (RNN) are a powerful and robust type of neural networks and

belong to the most promising algorithms out there at the moment because they are the only

ones with an internal memory.

Because of their internal memory, RNN’s are able to remember important things about

the input they received, which enables them to be very precise in predicting what’s coming

next.

This is the reason why they are the preferred algorithm for sequential data like time series,

speech, text, financial data, audio, video, weather and much more because they can form a

much deeper understanding of a sequence and its context, compared to other algorithms.

5.2 Baseline Single Neural Net architecture

We created two architectures to model the prediction for SEMEVAL Irony dataset. The first

was simple GRU net, which used word embeddings as features.

The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with
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Figure 5.1: GRU Model

learning rate of 1e − 4 with loss as negative log likelihood loss. It achieved training loss of

0 and training accuracy of 100% with validation loss of 4.6688 and validation accuracy of

60.16% for coarse predictions. It achieved training loss of 0.0158 and training accuracy of

99.36% with validation loss of 5.7352 and validation accuracy of 47.66% for fine predictions.

The average accuracy for both predictions was 53.91%.

5.3 Multi-output Branched Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into

two layers, that gave the fine output and the coarse output. The loss gave equal weights to

both objective loss with update as arithmetic weighted (page 5).

The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with

learning rate of 1e − 4 with loss as negative log likelihood loss. It achieved training loss of

0 and training accuracy of 100% with validation loss of 10.4498 and validation accuracy of
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Figure 5.2: Accuracy of baseline coarse neural net
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Figure 5.3: Loss of baseline coarse neural net
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Figure 5.4: Accuracy of baseline fine neural net
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Figure 5.5: Loss of baseline fine neural net
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Figure 5.6: Multi-output Branched GRU Neural Net

56.64% for both predictions on average.

5.4 Weighted Multi-output Neural Net

Next, we tried branched neural net for both the task. The penultimate layer branched into

two layers, that gave the fine output and the coarse output. The loss gave inverse weights

to both objective loss with update as harmonic weighted (page 5).

The batch size was kept at 3, the epochs are set at 50, the optimizer is Adam with

learning rate of 1e − 4 with loss as negative log likelihood loss. It achieved training loss of

0.0022 and training accuracy of 100% with validation loss of 5.8202 and validation accuracy

of 61.59% for both predictions on average.

5.5 Results
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Figure 5.7: Accuracy of GRU multi-output neural net
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Figure 5.8: Loss of GRU multi-output neural net
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Figure 5.9: Multi-output Branched GRU Neural Net

Architecture Training Loss Training Accuracy Val Loss Val Accuracy

Baseline Single net 0.0158 99.68% 10.404 53.91%

Multi-output branched 0 100% 10.4498 56.64%

Weighted multi-output 0.0022 100% 5.8202 61.59%

Table 5.1: Table of results for SEMEVAL Irony Experiment
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Figure 5.10: Accuracy of GRU weighted multi-output neural net
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Figure 5.11: Loss of GRU weighted multi-output neural net
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