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A B S T R A C T

A Computational Pipeline to Improve Clinical Alarms

Using a Parallel Computing Architecture

Andrew V. Nguyen

Physicians, nurses, and other clinical staff rely on alarms from various bedside moni-

tors and sensors to alert when there is a change in the patient’s clinical status, typically

when urgent intervention may be necessary. These alarms are usually embedded directly

within the sensor or monitor and lack the context of the patient’s medical history and

data from other sensors. A missed alarm may result in severe morbidity or mortality so

alarm algorithms tend to err on the side of sensitivity at the expense of increased false

positives.

Consequently, 40-90% of alarms within the clinical setting are false. These false alarms

have a negative impact on patient care as clinicians become desensitized to the alarms.

False alarms also directly impact patient recovery due to sleep interruption and in-

creased anxiety.

There is an increasing amount of research dedicated to improving clinical alarms but

the field lacks a standardized approach to capturing, storing, processing, and analyzing

physiological sensor data. This work focuses on the informatics issues for conducting

research involving the combination of various clinical data sources (e.g. EHR/EMR)

with physiological sensor data (including high resolution waveforms).

The described platform can also be easily extended into the clinical environment to

provide clinical decision support. There is also the additional benefit that researchers

do not have to concern themselves with how to connect, retrieve, or format the data.

Instead, they can focus solely on the higher level problems of designing experiments,

implementing algorithms, and interpreting results.
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A 3-stage computational pipeline was implemented on top of a Hadoop-based parallel

computing platform to reduce the number of false alarms of ventricular fibrillation and

ventricular tachycardia. Waveforms were fed through feature extraction and change

(point) detection algorithms, then through supervised learning algorithms to generate a

model that was able to better detect true alarm situations.
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1 I N T R O D U C T I O N

The field of medical informatics has been a cross-, inter-, and multi-disciplinary field

since its inception. This intersection includes (but is definitely not limited to) scientists

and researchers in medicine, physiology, clinical research, biostatistics, computer science,

information science, and information technology. Each field brings unique insight and

no single field can adequately address the many problems we face in medical informat-

ics.

The problems that medical informatics seeks to solve come from those on one end of

the spectrum - those who are clinically oriented and bring with them a deep domain

expertise. On the other end of the spectrum, we have technologists who are bringing

solutions from other domains such as finance, advertising, and the internet/web. This

intersection typically results in domain experts looking for any solution to solve their

particular need or problem and technologists looking to apply their technique to any

problem.

In the context of this work, such an intersection has often manifested itself as a clinician

looking for any analytic approach that would do a better job at segmenting patient

populations. For example, cardiologists would like to do a better job at detecting critical

arrhythmias, or hospitalists would like to improve the detection of septic patients. On

the technology side, there are computer scientists looking to apply neural networks to

many different clinical questions across different specialties.

The underlying theme of this research has been to build a better bridge to connect the

domain experts with the technology. By standardizing the infrastructure or “plumbing”

and some of the scientific approaches, the domain experts and technologists can focus

on solving the critical problems instead of wasting time trying to build (and rebuild) the

data and computational infrastructure.
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The need for a scalable infrastructure becomes even more necessary as the entire

healthcare industry moves to digitize everything. Clinicians, clinical researchers, and

data scientists should not need to concern themselves with how to scale the computa-

tion or how to connect the data. They should be able to focus on the problem itself and

expect that the infrastructure is there to support them.

This research is specifically targeted towards those who are attempting to apply data

mining and analytics techniques to biometric, physiological, signal/sensor data. From

point-in-time data such as a blood glucometer to waveforms such as EKG’s, the main

goal was to build and characterize a scalable system that could be applied to a wide

variety of problems. In addition to the plumbing, another goal is to begin the process

of defining the structure and processes of the data mining process when dealing with

sensor data.
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2 C L I N I C A L A L A R M S

Clinical alarms represent one of the primary means that clinicians use to monitor the

status of their patients. These alarms are critical to ensuring a workflow that allows

clinicians to care for more than one patient. These alarms are based on physiologi-

cal sensors such as an electrocardiogram (ECG/EKG), blood pressure, or intracranial

pressure. These physiological sensors offer one of few truly objective windows into a

patient’s clinical status or condition.

Many studies over the past decade have hinted at patterns within physiological signal

data that may be indicative of disease states or clinical conditions[11, 16, 18, 22, 27, 42,

50, 58, 59]. However, due to limitations in computational infrastructure, there have only

been limited attempts at elucidating complex patterns to drive clinical decision support.

These clinical alarms, however, are the primary mechanism for detecting problems

within the clinical environment. Given the staffing levels within the typical in-patient

floor, the alarms play a critical role in helping allocate limited resources effectively. How-

ever, this assumes that the clinical alarms are accurate in identifying urgent or critical

changes in a patient’s clinical status.

The literature is filled with numerous examples where the number of false alarms

far outweighs the number of true alarms[7, 13, 19, 34, 39]. While these vary between

different in-patient settings, the false alarm rate varies from 40% to 90%. Especially on

the higher end, false alarms have detrimental effects to both the healthcare providers

as well as the patients. For clinicians, constantly shutting off an alarm is training to

ignore future alarms, especially critical ones. For patients, the constant alarms create an

environment of restlessness and anxiety, neither of which are conducive to healing.

The alternative, however, is to make alarm algorithms much more stringent, only

letting through conditions that are guaranteed to be critical. The obvious problem is

that this may cause a legitimate alarm to be masked, thus defeating the purpose of
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having alarms in the first place. This highlights the core of the problem - how to balance

false alarms against missed alarms.

Given that the existing alarms have been tuned to be overly sensitive, they form the

first layer of data for the research described herein. The main goal is to take the alarms

and craft a data mining system that is capable of extracting interesting features from the

sensor data and use this information to do a better job at filtering the alarms.

The first step is to be able to extract features of individual sensor streams, many of

which may not be perceptible by the clinician without a mathematical transformation.

The next step would be to combine multiple features of a single sensor stream to improve

alarm accuracy. At this point, however, the solution is still a univariate solution - where

the alarm is based solely on the data and information coming from a single sensor

stream.

Multivariate solutions become the next layer where multiple different sensor streams

are connected together to provide a more comprehensive “view” of the patient’s status.

This is typically how the clinician operates looking at both the EKG monitor and pulse

oximeter to determine if a heart rate alarm is legitimate. Another input to multivariate

solutions involves looking at the patient’s medical record for previous diagnoses, pre-

scribed or administered medications, and other pertinent data that can be added to the

underlying model.

By combining as much data and information as possible, a system could be created

that bolts onto existing alarm algorithms to do a better job at filtering out false alarms.
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3 P H Y S I O L O G I C A L A N D B I O M E T R I C S E N S O R S

Physiological sensors have become an integral part of the practice of medicine, playing a

crucial role in giving the clinician a small window into the inner workings of the human

body. These sensors range from detecting changes in electrical activity of neurons to

changes in blood concentration of glucose.

When doing a survey of the literature, most studies that examine physiological data

focus on lower resolution data. These include measurements that range anywhere from

minutes to months. For example, a patient’s heart rate or cuff-based blood pressure may

be taken every 5 minutes in more critical situations or may be taken once every 6 months

when the patient visits the doctor.

This research is focused on higher resolution physiological data such as waveform

data from EKG’s or arterial blood pressures. These data range anywhere from seconds

to sub-seconds. For example, arterial pressure sensors from Philips were recorded at

125Hz as part of the MIMICII dataset[54]. EEG’s, on the other hand, can be sampled up

to several kHz.

3.1 physiological signal data as time-series data

In order to simplify the problem of data mining physiological signal data, one useful

abstraction is to treat any physiological signal as time-series data. Whether looking at

daily blood glucose measurements or an EKG waveform, any physiological signal can

be described as a set of key-value pairs where the key is a timestamp and the value is the

measurement. This measurement can be a voltage, concentration, or any other recording

by a sensor.

By treating all of these data as time-series data, a system can be constructed that is able

to absorb data from nearly any type of sensor and process and analyze it accordingly.

5



Historically, there have been several major issues when dealing with physiological

signal data, and especially the data mining of such data. Each of these poses a sepa-

rate challenge, none specific to medicine. However, there are some differences in the

healthcare industry that magnify these problems.

1. Synchronization of sensors

2. Gaps in the data

3. Artifact/noise in the data stream

These differences are due to the regulatory overhead of the FDA and HIPAA as well

as the evolutionary path of the “sciences” of biology and medicine.

One of the first problems researchers encounter is the synchronization of sensors. As

with any system, each device maintains its own clock which results in some jitter when

comparing data from different sensors. One natural solution is to centralize the time-

keeping in order to do a better job of synchronizing sensors. The other may be to

centralize the data capture to ensure that there is a deterministic approach to recording

the data.

However, due to FDA regulatory overhead, most device manufacturers have created

completely isolated devices that are fully independent. The centralization of the data

capture is then laid on top of the individual devices which makes it very difficult to

accurately synchronize the devices.
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4 H A D O O P : A PA R A L L E L C O M P U T I N G P L AT F O R M

With the continued growth and expansion of the internet, several web companies have

discovered new ways to reuse old concepts in order to deal with the ever increasing

amount of data being generated. The concepts of Map and Reduce have been around and

integrated into functional programing languages[9, 32, 33, 63] and are familiar to those

who have programmed in Lisp or similar. In 2004, Google adapted these concepts to

assist in the parallelization of certain types of problems giving birth to the idea of parallel

mapreduce[20]. Though patented by Google, several other companies have implemented

their own parallel mapreduce platforms.

After a brief overview of the parallel mapreduce concepts, details of the specific im-

plementation being used will be reviewed.

4.1 parallel mapreduce

4.1.1 Map

The concept of mapping is familiar to functional programming language and is a very

simple concept: define a function to map one key-value pair to another key-value pair.

4.1.2 Reduce

The concept of reducing is also familiar to functional programming languages and sim-

ply reduces a set of key-value pairs that share the same key to a single key-value pair.

Implicit within this process is some sort of operation that combines or aggregates the

values. For example, the map function may emit a series of key-value pairs where the

key is a particular sensor ID and the values are its measurements. The reduce function

would take these values and average them such that the reducer output is the average

value of the sensor.
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4.1.3 Make it parallel

Google popularized and patented the application of the mapreduce paradigm to parallel

computational problems. The concepts of mapreduce allow for easy parallelization due

to their inherent characteristics. Each parallel map task is given a subset of the input

and applies its mapping, emitting the intermediate key-value pairs. The intermediate

key-value pairs are then sorted and shuffled to parallel reduce tasks. All key-value pairs

that share the same key get sent to the same reduce task. For those problems that fit

this paradigm, their parallelization becomes trivial when compared to other parallel

computing solutions such as MPI[56].

Figure 1: Parallel MapReduce Splitting

As you can see in figure 1, the data are split into multiple “splits” which are computed

upon by each slave in the cluster. Where possible, the splits are assigned to nodes in the

cluster that contain a local copy of the data. This concept of data locality is an important

part of making the parallel mapreduce computationally efficient by minimizing network

traffic of the data to be processed.
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4.2 hadoop

The Apache Software Foundation now manages an open-source parallel mapreduce im-

plementation called Hadoop. It was originally developed as an internal tool at Yahoo!

and later open-sourced under the Apache license. Hadoop has evolved into a computa-

tional platform or ecosystem on which many different tools are built. These include the

Hadoop Distributed File System (HDFS), HBase, Pig, Hive, among many others. Due to

its evolving nature, the Hadoop ecosystem contains many tools with varying degrees of

overlap. In some cases, there is a nearly complete functional overlap with the difference

being purely syntactic.

At a minimum, users of the Hadoop platform will utilize at least the Hadoop Core and

HDFS. For this project, a distributed, column-store database that is part of the NoSQL

trend, called HBase, was also integrated into the technology stack.

4.2.1 Hadoop Core

The Hadoop Core provides the mapreduce functionality as outlined in Google’s pa-

per and patent. It is a Java implementation of the mapreduce parallel programming

paradigm and provides a framework on which applications can be built. The two pri-

mary components of the mapreduce core are the JobTracker and TaskTracker. The Job-

Tracker acts as a master, coordinating all of the TaskTracker slaves.

4.2.2 Hadoop Distributed File System

The Hadoop Distributed File System, or HDFS, provides the underlying storage mech-

anism for the Hadoop platform. While there are several alternatives to HDFS currently

being introduced, HDFS remains the default file system. As its name implies, HDFS is

a distributed file system, spread across the entire cluster. As with any file system, data

stored in HDFS are split into blocks. Each block is replicated across the cluster, typically

3 nodes; however, this value is customizable. This replication provides both redundancy

and efficiency during computation.
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With the blocks replicated across multiple nodes, the cluster can suffer the failure of

hard disks or entire slave machines without any loss of data. This becomes especially

important when dealing with datasets that do not fit on a single server or storage system.

The replication of blocks also enables data-local computation where the algorithms being

executed are moved to the server containing the data as opposed to the other way around.

While data-locality is a priority, it isn’t always possible to ensure this. In these situations,

the node performing the computation may need to request the data via the network. By

increasing the number of nodes that contain a copy of the data to be processed, there is

a greater chance at achieving data-locality.

The HDFS is designed to facilitate parallel mapreduce and, as a result, isn’t very

good at storing small files or providing random access to data stored within it. When

designing the system, one of the requirements was to be able to plot the signal(s) of any

patient at any time. As a result, HBase was chosen as the primary data storage system.

4.2.3 HBase

HBase is a distributed, column-store database and is part of the NoSQL variety of

databases (as opposed to SQL-based relational databases). As a column-store database,

HBase is designed to store sparse data efficiently unlike a relational database. The trade-

off is that every value within the database is stored as a triplet - the row identifier, the

column identifier, and the value (along with some other HBase-specific overhead).

4.2.4 MongoDB

While HBase contains all of the data from the sensors, the metadata are stored separately

in MongoDB[4], a document-oriented, NoSQL database. By separating the sensor data

from the metadata, the storage and management of each is optimized.

MongoDB was chosen as the underlying data store for two primary reasons: 1) Sim-

plifying the development process, and 2) Storing disparate data in a single location.
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During any sort of software development that frequently interacts with an underlying

data store, there is a constant need to add, remove, and modify portions of the database

schema. While there are many frameworks (e.g. Hibernate) that assist with abstracting

the underlying database schema changes, they inherently add an additional layer of

complexity to the system. Changes need to be tracked, organized, and managed in such

a way that any modifications do not affect other developers or production systems.

MongoDB provides a document-oriented data store that is schema-less. As a result,

changes can be made at the application-level and no changes to the data store are neces-

sary. While this simplifies the development process, it also makes it possible to store two

records that are very similar but still have very functional differences. When compared

to a traditional, relational database, MongoDB negates the need for an overly complex

table structure or the need to add a second table that looks nearly identical.

The schema-less nature of MongoDB also allows for the storage of disparate metadata

in a single data store. For example, some sensors may have more parameters or descrip-

tors than another sensor. MongoDB allows both of these records to be treated nearly

identically, pushing any differences to runtime. This becomes especially useful when

integrating an ontology-based management layer. Any sensor-specific metadata can be

encoded within an ontology and applied when actually processing or interacting with

the data.

4.2.5 Online Processing with Hadoop

While the dataset was previously collected and thus all data is immediately available for

processing, one of the goals was to create a system and algorithms that can be applied

to streaming data. By using the Hadoop ecosystem, the community of researchers and

commercial providers can be leveraged. This community has been working to provide

“real-time” or “online” versions of the mapreduce paradigm. Several examples include

Hadoop Online[17] and Twitter Storm[46]. However, online or real-time processing will

be the focus of future research.
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5 A 3 - S TA G E C O M P U TAT I O N A L P I P E L I N E

A 3-stage computational pipeline was designed to address the many problems with

analyzing and data mining physiological signal data:

1. Feature extraction

2. Change detection

3. Machine learning

These concepts are not novel, nor is their combination. They are present in almost any

attempt at data mining, whether or not with time-series data. However, there is nothing

in the literature that examines this particular sequence for analyzing physiological signal

data.

The main goal of this computational pipeline was to create a framework in which any

clinical condition can be described as a set of changes of extracted features of a set of

physiological signals. Due to the focus on change detection, this approach can only be

used to detect and describe changes in a patient’s clinical status. It cannot be used to

identify a steady-state clinical condition.

To illustrate this limitation, consider the detection of an arrhythmia (such as ventricu-

lar fibrillation) in a patient:

situation 1 : A patient presents to the ED and is immediately connected to an EKG

monitor. The nurse notices that the patient has a normal sinus rhythm. After

some unknown period of time, the patient developed an arrhythmia - ventricular

fibrillation.

In this example, the onset of the arrhythmia can potentially be detected and de-

scribed using the this change detection approach.
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situation 2 : A patient comes to the ED but is left in the waiting room awaiting the

triage nurse. At some point, the patient experiences severe chest pain and is

brought into the ED and immediately connected to an EKG monitor. The nurse

notices that the patient is in ventricular fibrillation.

In this example, the arrhythmia could not be detected or described using this

change detection approach.

In other words, this change detection approach is limited to detecting changes in a

patient’s clinical state or clinical condition and cannot identify or classify the current

state or condition. Because this approach focuses on detecting changes in clinical status,

it can detect both the onset of a clinical condition as well as it’s resolution.

5.1 multivariate analysis

One key benefit of the proposed approach is the ability to integrate multiple different

physiological signals into the detection algorithms. While certain current alarm algo-

rithms such as those for arrhythmia detection use multiple sensors as input, they are

confined to the same physiological signals such as different leads from an electrocardio-

gram. The proposed approach combines multiple different physiological signals such as

electrocardiograms and arterial blood pressures. This combination of multiple different

physiological sensors beings to mimic the process that clinicians use to judge the veracity

of an alarm.

5.2 feature extraction

Feature extraction is typically used to refer to a specific form of dimensionality reduction

- the transformation of data into a smaller set of features that can accurately describe the

original data. However, in this context, feature extraction is a data processing algorithm

that is being applied to highlight a particular characteristic of the underlying data. These

algorithms can be domain-specific such as the RR-interval of an EKG or they can be

generic mathematical algorithms such as the rolling mean of a series of values.
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These two main classes of feature extraction algorithms - those that are specific to a

particular domain or clinical focus and those that are generic, mathematical algorithms.

5.2.1 Domain-specific algorithms

5.2.1.1 RR-interval

The RR-interval is the time duration between two R-waves within an EKG waveform.

This effectively represents the time between one heartbeat and the next and numerous

studies in the literature have attempted to correlate RR-interval variability with various

clinical conditions.

In order to implement an RR-interval extraction algorithm, a slightly modified version

of the Pan-Tompkins algorithm[51] was used to isolate the QRS complexes within the

source EKG waveform.

5.2.1.2 Systolic Pressure Detection

One of the input signals was an arterial pressure waveform. A feature extraction algo-

rithm was implemented that extracted the systolic pressure of each beat. At their core,

systolic pressure detection algorithms are “intelligent” peak detection algorithms. For

this project, the implemented algorithm was a relatively simple peak detector with a

tunable threshold. As a feature extraction algorithm, several different parameters were

used in order to generate different feature series.

5.2.1.3 QRS Complex Detection

In order to extract the RR-interval, it was necessary to first extract the QRS complexes

from the EKG. The Pan-Tompkins[51] algorithm was implemented within the context of

the Hadoop mapreduce paradigm.
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5.2.2 General algorithms

5.2.2.1 Point-to-Point Delta

The Point-to-Point Delta algorithm simply obtains the difference between two successive

values within a time series. It does not account for any particular characteristics of the

signal or underlying time-domain characteristics. Example usages include the calcula-

tion of the beat-to-beat variance of the systolic pressures. This algorithm supports both

the magnitude and time deltas from one point to the next.

5.2.3 Sliding Window Algorithms

This next class of algorithms utilizes a sliding window in order to facilitate the change

(point) detection process. The non-sliding-window version of these algorithms tend

to produce a single value for a series of inputs. So, they are of limited value when

trying to detect changes within a particular signal. As a sliding window, however, these

algorithms can be used to highlight a particular characteristic and its change over time.

5.2.3.1 Sliding-Window Central Tendency Measure

The Central Tendency Measure calculates the chaos or variability within a system by

first calculating the second-order difference, then determining the percentage of points

within a certain radius of the origin. This radius is user-defined and is typically depen-

dent on the characteristics of the dataset and/or question being studied.

Given a set of data consisting of points at where t=1,2,3. . . , the CTM can be computed

as:

ρ(i) =
√

(ai+2 − ai+1)2 + (ai+1 − ai)2

δ(di) =

 1 : if ρ(i) < r

0 : otherwise
where r is the user-defined radius

CTM =
∑t−2

i=1 δ(di)
t−2
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On its own, the CTM algorithm only provides a single piece of information from an

entire input dataset - the percentage of points within a certain radius. While this has

been used with some success in medicine (e.g. detection of congestive heart failure

using RR-intervals), it would not work in the computational pipeline since it requires a

change series in which specific change points can be detected.

As a result, the CTM algorithm was adapted to use a sliding window. Along with

the sliding window, the output of the algorithm was also changed to output the radius

which contains N-percentage of the points, where N is a user-defined parameter.

5.2.3.2 Sliding-Window Power Spectral Density

There are several different possibilities for incorporating some type of frequency domain

analysis with the most common being the Fast Fourier Transform, or FFT. In order to

combine some sort of temporal aspect with the frequency domain analysis, the Fourier

transform was applied on top of a sliding window, as in short-time Fourier transforms.

Additionally, in order to use the Fourier transform within the change detection pipeline,

the Fourier transform needed to be distilled down to produce a time series in which

change points could be detected. Currently, the power spectral density is calculated

and then the root-sum-square of the PSD is taken. This results in a one-dimensional

time series that is loosely representative of the underlying frequency components of the

signal.

One of the key trade-offs with this type of algorithm is the resolution in both the time

and frequency domains. Increasing the size of the sliding window will yield higher

frequency domain resolution at the sacrifice of temporal specificity. On the other hand,

decreasing the size of the sliding window will improve temporal specificity at the sacri-

fice of frequency domain resolution.
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5.2.4 Online vs. Offline Algorithms

In this work, there is little distinction given to online (real-time) and offline (batch pro-

cessed) algorithms. For research purposes, either class of algorithms can be used suc-

cessfully to process and analyze physiological signal data. However, only online algo-

rithms would be useful in migrating this system towards (near) real-time clinical decision

support. Offline algorithms, by their very nature, preclude any sort of streaming uses

because they require access to the entire data stream.

Where possible, online algorithms have been chosen instead of their offline counter-

parts in anticipation of uses for clinical decision support.

5.3 change (point) detection

Each of the feature extraction algorithms effectively creates a new time-series data stream.

For each of these streams, change detection algorithms are applied to detect any change

points. Like most algorithms, change detection algorithms perform differently depend-

ing on characteristics of the underlying data, parameter choices, thresholds, etc. For this

study, only one change detection algorithm was employed - a simple difference of means

algorithm.

5.3.1 Difference of Means

The Difference-of-Means algorithm is extremely simple - for any given point p, the mean

of the N points to the left is compared to the mean of the N points to the right. If this

mean is greater than a threshold τ, then a change (point) has been detected.

For the rest of the analysis presented, two values of τ were used: 0.1 and 0.9.

5.4 machine learning

As previously mentioned, one of the main goals is to describe changes in a patient’s clin-

ical status or condition in terms of a set of detected changes in physiological signals. In

order to address the problem of synchronizing the plethora of sensors, sliding windows
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were again used to aid in the machine learning phase. After the application of a sliding

window to the change points, a combination of supervised and unsupervised methods

were used to examine the data.

Because there was a gold standard for the clinical alarms (see section 9.4), the primary

machine learning approach was supervised learning. The unsupervised learning was

used only as an exploration tool.

5.4.1 Sliding Windows

A sliding window was used to create the learning instances to be passed to either su-

pervised or unsupervised learning algorithms. Each of these instances represents a set

of change points from the various feature extraction algorithms. The sliding window

approach was chosen because it addresses several issues:

1. Mitigates issues arising from unsynchronized timestamps

2. Simplifies integration of sensor and non-sensor data

3. Enables the use of algorithms that are not temporally aware

5.4.2 Supervised Learning

5.4.2.1 Neural Networks

Neural networks provide an interesting approach to supervised learning because they

are a non-linear, statistical learning approach. As a result, they are able to be adapted to

a wide variety problems when looking for patterns or other relationships within complex

data sources. Neural networks are implemented as a series nodes or neurons between

which connections are created. The learning occurs by the manipulation of these connec-

tions and their weights.

Neural networks have been used to learn a wide variety of problems such facial

recognition[26, 40, 53] or speech recognition[43, 62], or the detection of congestive heart
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failure when looking at the RR interval[15]. As with any learning algorithm or model,

however, neural networks run the risk of being overfitted to the data.

Additionally, neural networks are oftentimes not preferred in fields where there is a

desire or need to examine the model in more detail. Typically, the end user may be inter-

ested to see how or why the model decided on a particular classification. This usually

occurs when researchers or scientists would like to know how or why a model arrived at

a particular conclusion. Inherent within the design and function of a neural network, it

is not possible to develop any explicit understanding of how or why a particular result

was obtained.

5.4.2.2 Support Vector Machines

Support vector machines are another class of statistical learning algorithms that are also

oftentimes used when looking at non-linear learning. Unlike neural networks, SVM’s

offer researchers the ability to look into the model and review the statistical basis for how

the model classifies the input data. SVM’s have also been used as one-class classifiers

which makes them an interesting option for clinical alarms.

One-class classification is useful when the training data consists only of one class of

data. After being trained on the class, the model is then used to classify input data as

either a “match” to the learned class or an “outlier.” As the naming convention implies,

they are well-suited to outlier detection problems. In the clinical context, the one-class

classifier may work well if there is a dataset that is expressive in terms of healthy patients

and the goal was to identify those who are not healthy, as opposed to sick.

5.4.2.3 Random Forests

Random forests are yet another class of statistical learning algorithms that can potentially

mitigate the need for complex feature selection. This may be especially useful when

dealing with a large number of features. The random forest is essentially a collection

of decision trees with which the most commonly occurring result is taken as the overall
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result. As such, they provide implicit feature selection because relevant features are

more likely to result in the same output.

5.4.3 Unsupervised Learning

5.4.3.1 k-Means Clustering

k-Means clustering is a commonly used unsupervised learning or clustering approach.

The general idea is that a particular dataset can be segmented into k, typically unknown,

classes. This algorithm is an iterative algorithm and is a specific implementation of the

expectation-maximization set of algorithms. The initial clusters are chosen at random

(or using some other heuristic). Based on a distance function, subsequent points are

assigned to a particular cluster and scored. This process is repeated until the clustering

reaches a steady state or some other condition or criterion is met.

While not specific to the k-Means algorithm, this approach enables researchers to

“explore” their data and see if there are any interesting patterns within the data. For

this research, the main goal of implementing and using the k-Means algorithm was to

demonstrate the ability to integrate an unsupervised learning algorithm.
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6 R E S E A R C H D E TA I L S

6.1 main goals

The main goal of this project is to demonstrate the application of the 3-stage computa-

tional pipeline to improve clinical alarms. Due the computational resources necessary,

the pipeline was overlaid on the Hadoop parallel computing framework to create MICC,

the Medical Informatics Compute Cluster.

Clinically, the goal was to improve the detection of arrhythmias through a multivariate

analysis of physiological waveform data. Specifically, this project attempted to decrease

the number of false positives of ventricular fibrillation alarms by combining electrocar-

diograms with arterial blood pressures. The rate of false negatives were not considered

because there was no gold standard with which to compare. In general, attempting to

examine the rate of false negatives would require manual review of ALL collected data

in order to generate the gold standard.

From an informatics perspective, the initial goal was to create a centralized platform

with the following features:

1. Centralized data repository that is device agnostic

2. Integrated data access and visualization

3. Scalable storage and processing to accommodate large numbers of patients or high-

resolution waveform data, or both

4. Clear pipeline to unify and simplify the approach to learning patterns in physio-

logical signal data

The second goal is to create a “computable phenotype” rooted in truly objective, phys-

iological signal data. That is, a model needs to be created that can be used to encode

clinical conditions in such a way that they can be used by a computer. For example, if
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you were to ask a cardiologist to describe atrial fibrillation, you will receive a qualita-

tive description. From one patient to the next or from one cardiologist to the next, it is

difficult to have a computer compare or operate on the concept of “atrial fibrillation.”

However, if atrial fibrillation can be described in terms of quantifiable characteristics,

it becomes easier for a computer-based algorithms to attempt to detect the onset or

existence of this particular arrhythmia.

The underlying, general hypothesis of the work was:

The onset of any clinical condition can be described as a set of change points within a

set of features extracted from sensor signals.

6.2 mimicii dataset

The primary clinical problem is the detection of ventricular fibrillation through multi-

variate analysis of the EKG and arterial pressure signals. The dataset being used is the

MIMICII dataset which was collected through a combined Harvard/MIT collaboration[54].

The data were collected at the Beth Israel Deaconess Medical Center from Philips bedside

monitors within the intensive care environment.

The exact type and number of sensors varies from patient to patient due to differences

in the underlying clinical condition and treatment protocol. However, most of the patient

records contain at least one EKG signal and the arterial blood pressure. The MIMICII

dataset has gone through several revisions and contains over 5000 patient records of

waveform data and over 26000 patient records of clinical data.

For this work, a subset of the MIMICII dataset (approximately 400 patient records) is

being used where every patient record has at least one EKG signal and the arterial blood

pressure. Additionally, this subset also has the corresponding alarms that were gener-

ated by the Philips EKG monitors and reviewed by expert cardiologists from Harvard.

Each alarm was reviewed by two different cardiologists with disagreements being arbi-

trated by a third. As per the IEEE standard, each valid alarm occurs within 10 seconds

of the onset of the arrhythmia. The five arrhythmias are:
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1. Ventricular Fibrillation

2. Ventricular Tachycardia

3. Extreme Bradycardia

4. Extreme Tachycardia

5. Asystole

The extreme bradycardia and tachycardia alarms were set using thresholds deter-

mined by the clinician and vary from patient to patient. The remaining three alarms

detect ventricular fibrillation, ventricular tachycardia, and asystole, as commonly under-

stood. The primary focus of this investigation was on ventricular fibrillation alarms as

the clinical problem.

In the ventricular fibrillation subset, there are 143 patient records that have been im-

ported into MICC. Each of these contains at least one V-Fib alarm (as determined by the

Philips EKG built-in algorithms). The dataset was further distilled down to 138 patient

records to include those that have lead II of the EKG. This simplifies the application of

the computational pipeline to the EKG waveform data. Ideally, there would be an ontol-

ogy backing the sensors and signals so that the algorithms could be applied to “any EKG

lead,” negating the need to specify or manage every single possible manufacturer/model

combination.

The data were recorded in the MIMIC2 database at at 125 Hz despite higher sampling

rates in some cases such as the EKG. Specifically for the EKG, the original signal was

sampled with 12-bit precision at a very high sampling rate. The signal was then scaled

and decimated which reduced the effective amplitude to 7-10 bits. Then, for every 4

consecutive samples, one was chosen and recorded using a turning-point compressor.

As a result, the recorded signal was captured at 125 Hz (a period of 8 ms). However, the

actual intervals between data points vary between 2 and 14 ms with an average of 8 ms.

As a result, frequency domain analysis techniques may not be valid for the EKG signals.
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6.3 hadoop and mapreduce

6.3.1 HBase Distributed Column-Store

HBase is a column-oriented data store that is part of the Hadoop ecosystem. It was de-

signed as a fully integrated solution for low-latency data requirements that also allowed

for parallel mapreduce. Low-latency access to the data is important primarily for visu-

alization purposes. When examining the data of a particular patient, an access time of

seconds to minutes would make the overall workflow cumbersome and unusable. How-

ever, it is also important to be able to process the data using the mapreduce framework

since the heart of the system is the ability to process and analyze large amounts of data.

6.3.2 Data Storage Schema

Because HBase is a column-oriented store, the schema in table 1 was designed to store

the data. The rows are identified using the timestamp which is an 10-byte value that

represents the number of picoseconds elapsed since the epoch (January 1st, 1970). The

columns (TSID - Time Series ID) are a 4-byte Integer that is randomly generated and

represents an instance of a signal. A signal instance is a particular type of signal (e.g.

EKG Lead I, arterial blood pressure, pulmonary arterial pressure, etc.) from a particular

patient. While a composite key of <patient identifier & signal type> could have been

used, the creation of the TSID was chosen in order to save on storage overhead.

<TSID> <TSID> . . .
<Timestamp> <Value> <Value> . . .
<Timestamp> <Value> <Value> . . .

. . . . . . . . . . . .

Table 1: HBase Time Series Data Schema

The number of rows in this schema will grow with time but not the number of sensors

or patients. The number of columns grow with the number of patients AND the number
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of sensors being used. This should not be a problem because HBase is designed to store

billions of rows and millions of tables[30].

HBase is being used to store only the time-series data; all of the metadata is being

stored in a separate MongoDB database.

6.3.3 Data Storage

All of the data, whether waveforms or point-in-time data, are stored as <key, value>

pairs, representing individual data points. In order to properly store individual data

points from waveforms with frequencies such as 1024 Hz, the data needed to be stored

with at least picosecond resolution. While this also allows for the storage of very high

resolution signals, the main factor was the ability to capture periods such as 0.0009765625

seconds (976 562 500 nanoseconds or the period of 1024 Hz).

To maximize storage, picosecond timestamps were stored as a 10-byte value, 2-bytes

storing the number of days from the epoch (January 1, 1970) and 8-bytes storing the

number of picoseconds elapsed within the day. The limiting factor before an overflow is

the 2-byte portion which limits the storage of timestamps through the year 2060.

The actual numeric data are stored as 8-byte double-precision, floating-point num-

ber (IEEE-754[1]). The performance and bandwidth costs of using a double-precision,

floating-point number were not a concern though the added precision was important.

However, any floating-point format would incur some loss of precision. By storing the

numeric data as double-precision also leverages the bulk of algorithmic and numeric pro-

gramming libraries that assume the data is already formatted as floating-point values of

double-precision.

Both the keys and values described above are stored as binary data within HBase.

Though this adds an additional level of (minor) complexity when trying to manually

interact with the data or debug the system, it is much more efficient than storing the

data as text.
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6.3.4 Metadata Storage

Metadata in the current context consists of basic identifiers and descriptors of the sensor

data such as patient ID, sensor ID, units of measure, etc. By separating out the metadata,

a known issue is addressed when trying to associate data from a particular sensor to

a particular patient. As patients are moved around the hospital for a procedure, they

are not always reconnected to the same sensor. Because the metadata is separated, such

“assignment” errors can be fixed without altering the underlying data.

Separating the metadata also makes it easier to integrate with an existing EHR or other

clinical data management system. While all of the metadata have been stored inside of

a MongoDB instance, these data can also be stored in the EHR while the sensor data

remains within HBase.

6.4 limitations

6.4.1 Parallel Mapping Can Result in Data Anomalies

As described in section 4.1.3, the data are split into multiple chunks with each being

processed independently. Within the context of HBase, splits occur at the row level

with each node processing a contiguous set of rows. Algorithms that require access to

previous values will be “starting over” with each chunk. This can cause anomalies to be

inserted into the data due to the lack of history.

To illustrate this effect, figure 2 is introduced and is a graphical representation of the

calculation of the rolling mean. In figure 2, the three shaded color sections represent

the split of this data into two equally sized chunks. The black and green lines represent

the rolling mean of the underlying signal (not displayed) - the green is the actual rolling

mean of the entire signal, and the black represents the rolling mean within each chunk.

Due to the splitting of the data into chunks with each chunk being processed inde-

pendently, the rolling mean of each chunk starts out at 0 and slowly reaches the rolling

mean as expected.
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Figure 2: MR Splits - Data Anomalies

6.4.1.1 Sliding Windows Unaffected

The data anomalies due to the splitting does not affect those algorithms where the calcu-

lations are performed on sliding windows. During the map phase, the sliding windows

are constructed with no other calculations being performed. The actual algorithm is ap-

plied during the reduce phase where the complete window is available to the algorithm.

6.5 feature extraction

There are many different feature extraction algorithms that may be relevant to the de-

tection of cardiac arrhythmias or other clinical conditions. However, only a small subset

of these algorithms was chosen. The primary criteria for deciding which algorithms to

use were driven by three primary goals: (1) Demonstration of the MICC pipeline and

platform, (2) Adaptation of existing work, and (3) Improving the detection of cardiac

arrhythmias, specifically ventricular fibrillation.

As part of the demonstration of the MICC pipeline and platform, it is also important

to begin the process of categorizing different types of feature extraction algorithms. In

chapter 5, the feature extraction algorithms were split into two main categories: (1)

Domain-specific algorithms, and (2) General algorithms. However, even within each of

these two categories, the algorithms can be further divided into smaller subgroups.

By examining the differences (and similarities) between feature extraction algorithms,

concepts such as ontologies can be incorporated into the process, aiding in the automated

application of algorithms to unknown problems in the future.
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6.5.1 Single-Pass Algorithms

One of the long-term goals is to create a system and algorithms that are capable of

being deployed in the clinical setting as a decision support tool. As a result, the focus is

primarily on online algorithms using a single pass over the data.

Some of the algorithms that were used require some parameters such as the mean or

maximum value. Using Matlab, these algorithms were re-implemented to use a rolling

mean or a rolling maximum value.

6.6 change (point) detection

Though there are many different types and approaches to change (point) detection in the

literature[8, 24, 29, 36, 37, 38, 44, 45, 49, 52, 55, 60], this work focused on applying one

particular change detection algorithm. The chosen change detection algorithm may not

be suitable and sensitive to all changes in the extracted features. However, to simplify

the overall problem, and specifically the number of possible combinations, this work

focuses on the Difference of Means algorithm (5.3.1).

6.7 statistical / machine learning

Through the feature extraction phase of the pipeline, the overall amount of data for the

learning phase is relatively very small. There was not a need to parallelize any single

learning job so Weka[31] was chosen as the machine learning library. Using standard

object-oriented programming techniques, Weka was integrated in such a way that it

would be fairly easy to use a library such as R[61] instead.

6.7.1 Unsupervised Learning

The dataset used contains a gold standard which makes it an ideal candidate for super-

vised learning. However, in order to demonstrate the feasibility of integrating unsuper-

vised learning and also to better understand the overall system and underlying data,
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unsupervised learning techniques were applied to the dataset prior to any supervised

learning techniques.

Unsupervised learning is oftentimes referred to as “clustering” and is an attempt at

detecting or identifying (previously unknown) patterns within the data. Sometimes, the

patterns may already be evident but further characterization is desired. Other times, it

may be true, open-ended data mining where they may or may not be any relationships

or patterns within the data.

For this particular dataset, the application of unsupervised learning techniques was

not intended as a data mining exercise. Instead, it was intended to test and demonstrate

that the 3-stage computational pipeline and underlying parallel computing infrastruc-

ture were capable of handling unsupervised learning jobs.

As a result, the only unsupervised learning algorithm tested was k-means clustering[10],

specifically the version was implemented as a Weka library. When using the k-means

clustering approach, the number of desired clusters must be specified as an input pa-

rameter. Two input parameters were chosen: 2 (clustering the data into “alarm” and

“non-alarm” states) and 5 (clustering the data into each of the five alarms).

Another input parameter is the distance measure to use and the Euclidean distance

was used. Upon completion of the clustering, the results were manually inspected by

overlaying onto plots of the original waveforms.

6.7.1.1 Extraction of Unsupervised Learning Instances

Figure 3 is an example learning configuration file that was used as the primary input to

the machine learning phase. This file is essentially a filter of all available change series

data that will be used to create the learning instances input. It specifies the alarm(s) of

interest, the patient identifiers (allowing for the division of the dataset into training and

test sets, if necessary), and the change series of interest.

Because the unsupervised learning experiments that were executed did not require

parallelization on the Hadoop platform, this file was used as input to a regular Groovy-

29



Figure 3: Example machine learning input configuration file

based script[3] that extracted the desired data into Weka’s standard file format (ARFF).

The ARFF file was then loaded into Weka directly via the Weka graphical user interface,

after which the unsupervised learning job was executed within the Weka environment.

The data were extracted into sliding windows (see section 5.4.1) which were encoded

as learning instances. Because integrating multiple different sensors/algorithms is a core

feature of the system, only those sliding windows with change points from two or more

different change series were used as learning instances.
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6.7.2 Supervised Learning

6.7.2.1 Parallelization of Supervised Learning

Though each individual supervised learning job did not require parallelization, there

was a need to run many jobs due to changes in parameters of the features extraction

algorithms, or of the learning instance extraction algorithms (section 6.7.2.2). In order

to address this particular issue, the supervised learning phase was implemented within

the Hadoop framework such that multiple learning jobs could be run in parallel. While

Hadoop is intended as a parallel mapreduce framework for data processing, in this

particular situation, it was being used primarily as a job coordination system where

multiple jobs were being run concurrently, where each job was nearly identical except

for particular parameters.

Given the number of parameters available to be tuned, there was a combinatoric ex-

plosion of the number of jobs to be run. Despite some pruning of the number of combi-

nations, there were still upwards of hundreds of thousands of jobs to run. The Hadoop

cluster became an ideal target for parallelizing this portion of the pipeline.

In order to streamline the process, the extraction of the learning instances was inte-

grated directly into both the training and testing of the supervised learning model. The

map phase took a configuration file as input and emitted learning instances extracted

from the underlying data store. The reduce phase grouped all learning instances that

corresponded to a particular learning job and then invoked the Weka library to do the

actual learning.

While there are many ways to adapt the parallel mapreduce paradigm to this partic-

ular problem, the outlined approach operates under the assumption that the amount

of data (i.e. the number of learning instances) is relatively low and that the training of

the model does not require any parallelization. Should the amount of training data in-

crease to a point where individual reduce tasks are unable to handle the computational
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load, projects such as Apache Mahout[28] attempt to make parallelization of learning

algorithms simpler to implement.

6.7.2.2 Extraction of Supervised Learning Instances

The same input file format (figure 3) as described in section 6.7.1.1 was also used as the

input for the extraction of learning instances for supervised learning jobs. However, be-

cause these experiments resulted in many supervised learning jobs, parallel mapreduce

was used to run multiple experiments in parallel.

The input file is parsed and combinations of the change series are emitted as map

tasks. Each map task receives the alarm(s) of interest, patient identifiers, and a subset of

the change series of interest. The map tasks then perform the actual job of extracting the

relevant data from the data store and then group these data into sliding windows. Each

sliding window along with an identifying key is emitted and sent to the reduce phase

where the actual learning job is executed.
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7 O V E RV I E W O F R E S U LT S & D I S C U S S I O N

Generally, the results of the described research can be broken down into two primary

categories, those related to informatics and those related to engineering. Given the

nature of the problem and infrastructure necessary to carry out the research, there were

several non-trivial engineering hurdles to overcome. However, the bulk of the work

was dedicated to solving problems in the field of informatics, regardless of the specific

system or tools used.

7.1 engineering

7.1.1 Data Storage

Some design decisions were not dependent or related to Hadoop and, instead, were

based on the high-level architecture such as the abstraction of all sensor data to time-

series data. This also includes the separation of the data from the metadata, making

everything easier to manage.

7.1.2 Hadoop

Hadoop served as the computational foundation, delivering both a scalable storage so-

lution as well as a scalable computational engine. Many design decisions were made in

order to adapt the approach specifically to Hadoop (including HBase). These were pri-

marily to distributed storage of the data and optimizing the data-locality during parallel

task execution.

7.2 informatics

7.2.1 Data Management and Processing

One of the large benefits of this approach is the separation of the sensor data from their

associated metadata. This provides an extremely valuable flexibility in constructing the
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high-level data management layer while providing an immediate ability to begin loading

and working with the sensor data.

7.2.2 Unsupervised Learning

While unsupervised learning was not an objective of this research, we wanted to demon-

strate the ability to integrate unsupervised learning algorithms. However, in doing so,

we learned several valuable lessons regarding the high-level workflow and tooling nec-

essary when attempting to apply any sort of unsupervised learning to clinical data.

7.2.3 Supervised Learning

Since the data contained gold-standard annotations, the primary approach was super-

vised learning of the data. It became very evident that sensor-based data is inherently

imbalanced. There were also some issues regarding population-based learning versus

learning by individual patients.
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8 R E S U LT S & D I S C U S S I O N : E N G I N E E R I N G

8.1 data storage

8.1.1 Timestamp Resolution

As described in section 3.1, the major abstraction is to treat all sensor data as time-series

data. Whether these are point-in-time readings (e.g. lab tests or glucometer measure-

ments) or continuous readings (e.g. EKG), all data are stored as a measurement at a

particular time. Originally, the data were stored using an 8-byte integer timestamp rep-

resenting the number of microseconds elapsed from the epoch. This allowed for the

storage of data up to 1 MHz in frequency resolution.

While this worked fine for point-in-time data and waveforms recorded at 125 Hz, it

was unable to properly capture data from a NeuroSky EEG, which records data at 256

Hz. An easy “fix” was to store timestamps as an 8-byte double-precision, floating-point

number. While this increased the precision and allowed for the capture of most of the

data, some data was being lost due to the rounding inherent to floating-point numbers.

Given the specific dataset being used (MIMIC2[54]) and in anticipation of future data

requirements, the decision was made to support timestamps up to picosecond resolution.

This captures nearly any resolution that appeared during a quick search of device spec-

ifications. The main concern was the need to balance the supported resolution against

the storage overhead to be incurred.

8.1.2 Storage Overhead

Because all of the data were being stored as key-value pairs, the size of each individual

data point was a major concern. This becomes critical when considering high-resolution

waveform signals that can have up to billions of data points per second. Using a 10-byte

timestamp for a sensor generating data at 1024 Hz would result in a storage requirements
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of roughly 864 MiB per day. Increasing each timestamp by only two bytes would increase

the storage requirement to over 1 GiB per day. Extrapolating this over thousands of

patients would result in an overall effect in the terabytes per day of data.

Once capturing and storing high-resolution continuous or waveform data is consid-

ered, the data storage requirements can quickly explode. This is the primary reason

Hadoop was chosen as the computational foundation. Hadoop allows the entire system

to scale quickly and easily, without the need to rebuild anything. As the amount of data

grows, the only necessary change is the addition of new servers to support either the

storage or computational load.

8.2 hadoop and hbase

Given its success in both the web and enterprise markets, Hadoop became a natural

choice as the foundation on which to build. There would be a natural explosion of data

if waveform data were to be captured, especially when looking at very high-resolution

data sources such as clinical EEG’s which are capturing data into the GHz (billions of

data points per second). With Hadoop, a system could be designed and implemented

that does not require any modifications or changes regardless of the size of the data (and

resulting cluster).

For example, for much of the development, various algorithms were implemented and

tested on a single-node cluster, a laptop. This “cluster” only contained 10 patients worth

of data. There was also a 6-node cluster that contained several hundred patients worth

of data. Whether using one cluster or the other, none of the source code needed to be

changed or altered in any way.

8.2.1 Hadoop Data-Locality and Job Splitting

As described in section 4.1.3, one of the primary benefits to Hadoop is data-local process-

ing. That is, of all the nodes in a cluster, the processing of any chunk of data is primarily

handled by a node that has a local copy of the data. This is a large differentiator from
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other parallel computing approaches such as MPI because it minimizes the amount of

network traffic related to synchronizing parallel tasks.

8.2.1.1 Default Splitting Mechanism

Originally, the default splitting mechanism provided by Hadoop and HBase was used.

There was some consideration that this may cause a certain amount of artifact during

the feature extraction and change-detection phases of the pipeline. However, the de-

fault splitting algorithm optimized job-splitting and the overall time it took to apply a

particular algorithm to the data with minimal implementation complexity.

However, as expected, the default mechanism resulted in artifact during feature ex-

traction that was significant enough to not continue with the rest of the computational

pipeline. While working on an implementation of the Pan-Tompkins QRS detection

algorithm[51] , the results were being visually inspected. During this process, some un-

expected behavior was observed that resulted in erroneous detection of QRS complexes.

After some significant testing and debugging of the QRS detection algorithm implemen-

tation, it was determined that the only explanation was artifact due to the Hadoop job

splits.

While there was not a rigorous investigation or testing of the relationship between the

artifact and default splitting mechanism, it was easily confirmed that the QRS detection

algorithm worked as expected once the splitting mechanism was modified.

8.2.1.2 Splits Aligned with Natural Gaps in the Data

Experience working with physiological sensor data has highlighted that there are numer-

ous problems with gaps and other anomalies within the data. While the MIMIC2 data

is somewhat cleaner than what would be expected in a production clinical environment,

the data still contained obvious gaps within the data. This was exhibited by completely

missing data and also data that was impossible (e.g. negative pressure).
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Within this section, “missing data” refers to data that is completely missing, where no

values were recorded or stored.

During a review of the sensor data, few patients had sensor data that was completely

contiguous for the entirety of the record. In other words, for nearly all patients, data

that appeared to be “contiguous” still had missing data points. In order to better split

the data to avoid injecting any artifact, the obvious choice was to align the splits with

gaps in the data.

With the default splitting scheme, any given feature extraction job generated roughly

300-700 splits. By naively aligning the splits with gaps in the data, the number of splits

increased to over 50 000 splits in many cases. Such a large increase in the number of

splits actually created two major problems:

1. Too much overhead for the Hadoop job

By default, Hadoop limits the information available to a particular job in order to

minimize the job’s metadata, which gets sent around to every node in the cluster.

The “easy” fix to this problem is to increase the limit accordingly.

2. Splits were only 1 data point apart

The bigger issue, however, was that most of these splits were separated by a gap of

only a single data point. As a result, many splits were being created with too few

data points or were potentially unnecessary.

By default, Hadoop limits the overall size of a parallel job with respect to the number

of splits. Typically, a large number of splits should be avoided due to the overhead in

starting up each parallel task. While the limit could have been increased, this would have

been a sub-optimal solution since it addresses a particular symptom without addressing

the underlying problem.

By addressing the larger problem of having gaps of only one or two data points, the

problem of too many splits would also be addressed implicitly. With the addition of the
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parameter gap tolerance, the size of the gap in data that would result in the creation of a

new split could be controlled. Obviously, depending on the specified gap tolerance, the

number of splits was dramatically reduced.

Gap tolerance is an algorithm-specific parameter and tuned accordingly. Either through

a theoretical, analytical, or empirical process, the system was designed such that the gap

tolerance was tunable based on the algorithm and not particular patients. In other words,

the gap tolerance parameter is part of a particular algorithm’s metadata, not a particular

sensor or patient.

In conclusion, by adding the gap tolerance parameter, the problem of splitting the data

was addressed. There was also the added benefit of improving the overall performance

of the feature extraction algorithms.

8.2.2 Duplication of Data for Processing and Viewing

When reading any documentation related to Hadoop and its overall architecture, there

is usually a theme of “duplication.” Basically, the suggested, general approach is to

duplicate the data as necessary in order to satisfy any other requirements. These other

requirements typically include, but are not limited to, access latency or processing/com-

putational performance. In other words, storage requirements tend to fall much lower

on the list of priorities. If storage is an issue, the solution is to just add additional hard

disks or servers.

The recommended approach was to set up two parallel clusters, each built around:

1. HBase for low-latency access

2. HDFS for batch processing

HBase was originally designed for low-latency access to data store within Hadoop and

is obviously well-suited for this purpose. However, most batch processing is performed

with data stored directly in HDFS, the Hadoop Distributed File System. By setting up

two parallel clusters, it would be possible to provide low-latency access while optimizing
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batch processing. Using a single cluster for both functions would decrease visualization-

related performance if the cluster were running a concurrent batch-processing job.

Given budgetary restrictions, however, it was not possible to set up and maintain two

clusters at the same time. Also, for the duration of this project, it was unlikely to have

any visualization-related activities compete for overall computing resources. However,

the system still needed to be designed as a general architecture that would allow both

low-latency visualization and efficient batch processing, even if suboptimal.

The next section discusses many of the observations and lessons-learned when at-

tempting to use HBase as both a source and sink of batch-processing data. Despite some

difficulties, it was possible to construct a system that provided expected performance

because there would be a maximum of two users at any point. Without the need for

true concurrent users, the main focus was to design a “schema” that was conducive to

analytics that could efficiently read/write data from HBase.

8.2.3 HBase “Schema”

As outlined in section 6.3.2, the schema consisted of storing data by timestamp and signal

identifier (either the identifier of the sensor or algorithm). This is a very similar approach

to how an open-source project, OpenTSDB[5] stores server-related diagnostic data for

StumbleUpon[6]. While this addresses the storage and access of data for visualization,

it was only part of the overall design when also combining analytics.

As with any standard approach, two tables were setup with the exact same structure

within HBase. One was used as the source from which data was read and the other as

the sink to which data was written. For example, consider the following series of feature

extraction algorithms to be applied to the data:

Figure 4: An example flow of two feature extraction algorithms applied
to a raw EKG signal. Red represents data stored in the “red”
table and blue represents data stored in the “blue” table
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Figure 4 above outlines the consecutive application of two feature extraction algo-

rithms to an EKG waveform. In the first step, the source table is the “red” table and

the target is the “blue” table. In the second step where the RR interval is extracted, the

source table is the “blue” table and the target is the “red” table. Consequently, the “red”

table contains both the raw EKG waveform (at 125 data points per second) and the RR

interval data (at roughly 1-3 data points per second). The two types of data are stored

with resolutions differing by two orders of magnitude.

This highlighted an interesting problem with respect to how HBase stores and reads

data given the particular usage pattern. When applying the feature extraction algorithms

to the data, the data is read using linear scans over a subset of the data. However, as a

distributed key-value store, HBase reads in all possible row keys and then checks for the

existence of a particular column. In order to better illustrate this, consider the following

table:

Sig A Sig B . . .
<Timestamp> <Value> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> . . .
<Timestamp> <Value> <Value> . . .

. . . . . . . . . . . .

Table 2: Differing resolutions of data stored in the same table

Given the example in table 2, when reading in the data corresponding to column “Sig

B,” three additional row keys are scanned for every data point of interest. As a result,

scanning over all of the data available for “Sig B” is about 3x slower due to the data
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residing in “Sig A.” In the case where the RR interval was being stored in the same table

as the raw EKG waveform, there was a slowdown of approximately 100x.

The solution to this problem was to create tables based on the expected resolution of

the data. The two guidelines governing the tables to be used are:

1. Source and target tables must be different

2. The target table must only store data of comparable resolution

In practice, this resulted in three tables. One to store the raw source data (125 Hz), and

two to store the data at roughly 1Hz.

Once HBase’s architecture was understood, it was easy to tune the software and table

schema to provide for an efficient and scalable platform to store and process clinical

signal data.

8.2.4 Hadoop for Non-Technical Users

One of the major goals of the project was to create a platform that handled most, if not

all, of the plumbing necessary to interact with clinical signal data. Hadoop turned out to

be a very good framework on which to build because it allows the abstraction of nearly

all of the plumbing. Users looking to implement any sort of feature extraction algorithm

needed to only worry about creating functions that received a sequence of key-value

pairs and writing key-value pairs.

Given the structure of the framework, it was also very easy to integrate unit-testing

into the development process so that the algorithms could be tested on a known set of

data prior to being applied to the entire dataset. This proved to be invaluable when

debugging more complex algorithms such as QRS detection.
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9 R E S U LT S & D I S C U S S I O N : I N F O R M AT I C S

9.1 data management and processing

One of the core informatics problems to be addressed was the overall management of

sensor data with respect to the rest of a patient’s clinical record and some of the problems

when trying to collect data from the clinical environment. These problems are:

1. Integrating waveform data with existing electronic medical records

2. Linking sensor data to the proper patient (record)

3. Semantically link the sensor data

9.1.1 Separation of Data from Metadata

The core feature to address the above issues is the decoupling of the metadata from the

data. At a minimum, only three elements of metadata are necessary to retrieve sensor

date:

1. Time Series ID (see section 6.3.2)

2. Start timestamp

3. End timestamp

By separating the metadata from the data, it was possible to construct an extremely

simple design regarding the storage of sensor data. A randomly generated 4-byte integer

value was chosen to uniquely identify any given “signal” (what is referred to as the Time

Series ID, see section 6.3.2) which included both raw data as well as outputs of feature

extraction and change detection. During the development process, the storage of and

interaction with the metadata was changed several times. However, the sensor data and

its associated schema remained unaffected. The only situation that necessitated a change
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in the sensor data schema was the migration from microsecond to picosecond resolution

of the timestamps.

9.1.2 Integration with Existing Electronic Medical Records

While there has been an increasing rate of adoption of electronic medical records[21],

these records were designed to capture and manage clinical data generated by clinicians.

They have been adapted to manage some sensor data such as lab values or other point-

in-time data (e.g. glucometer, non-invasive blood pressures, basic vitals signs). However,

they are ill-equipped to store continuous sensor data, especially waveform data.

However, with this approach, there are only three metadata elements that need to be

tracked within the traditional EMR. While it would be easy enough to store a unique

identifier and start/stop timestamps, it may be easier to deploy a web service that acts

as a bridge between the EMR and MICC. This service would operate very similarly to an

URL-shortening service such as bit.ly[2] by generating a unique, random identifier that

links to the complete metadata record (which, in this case is the TSID, and start/stop

timestamps).

9.1.3 Integration with Ontological Approaches

Another benefit of this approach is the ability to integrate with some of the latest devel-

opments in data management and semantic computing. One approach that is specific to

biomedicine is the Health Ontology Mapper (HOM)[64]. This approach uses the Object

Web Language (OWL)[47] file format as a vehicle for defining, storing, and transmit-

ting “rules” that govern the semantic linking of disparate biomedical data. While it was

primarily created to harmonize standard terminologies such as SNOMED, LOINC, or

RxNORM[12], it was adapted and slightly modified to create a methodology for easily

managing sensor data.
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9.1.3.1 Health Ontology Mapping - HOM

Because the details of the HOM approach have not been published in their entirety, a

quick overview is provided:

The HOM approach is a mechanism where traditional ontological concepts and rela-

tionships can be augmented with data processing rules. These rules are codified directly

within the ontology though attributes referred to as HOM tags. In the current HOM ap-

proach, these tags can codify rules such as formatting (e.g. adding the period to an ICD-9

code which is usually stored without the period), or matching text against another ter-

minology (e.g. matching semi-structured text data against standard terminologies such

as LOINC).

9.1.3.2 Modifications to HOM

In this application of the HOM approach, an additional HOM tag was added that is

specific to the management of sensor data, HOM_Conversion.

To provide a more concrete example, assume that there is a base “ontology” that is

essentially a simple taxonomy:

Figure 5: Example sensor taxonomy

To make the example more complete, assume that the above concepts have an “is_a”

relationship to parent concepts (denoted by the arrows) and have attributes specifying
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the expected units of “mV” for the EKG and “mmHg” for the blood pressures. Then, for

any particular sensor, the HOM approach defines at least two additional attributes:

1. HOM_Parent - a unique PURL that resolves to a particular ontological concept

In this specific example, the HOM_Parent tag will be a PURL that points to a

concept in the above ontology (figure 5). This allows the concept of a specific EKG

sensor, such as the Philips EKG monitor used at the Beth Israel Deaconess Medical

Center, to inherit all of the ontological information from the parent ontology. In

this case, the elements being inherited are the “is_a” relationship to a parent as

well as the expected units.

2. HOM_Conversion - contains the conversion from stored units to the units specified

by the sensor ontology

Since there is no common standard to the units of measure that a device may

store raw data, this tag provides a mechanism for converting the data such that

it is stored in the same units as the parent ontology concept. For example, the

device may transmit and store raw data as Analog-to-Digital (ADC) counts with a

particular gain and offset in order to convert the data to the physical units of mV

or mmHg. This tag can also be used to encode any necessary normalization.

A very minimal demonstration of the above methodology was implemented in order

to demonstrate the feasibility of such an approach for managing and normalizing sensor

data. However, this approach was not incorporated into the overall pipeline. However,

incorporating such an approach into the pipeline would allow algorithms to refer to

signals purely based on high-level concepts. For example, instead of referring to specific

signals, a “Beat-to-Beat Time Delta” algorithm could be implemented to use any “Beat-to-

Beat” signal as a source. This would allow the algorithm to use the EKG, pulse oximeter,

or arterial blood pressure to extract the beat-to-beat variation.
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Regardless of the methods used, this ultimately only affects the metadata. The sensor

data can be collected and stored even without a clearly defined data management system

in place.

9.2 normalization of learning instances

Each learning instance consists of:

1. Alarm or Non-Alarm, indicating if it was a true positive or false positive

2. Set of detected change points within the specified window of time

The change points are originally extracted from the data as a real number, a positive

or negative value indicating the direction and magnitude of the detected change. As

a result, some normalization is necessary prior to feeding the data into the learning

algorithms, whether supervised or unsupervised.

9.2.1 Magnitude of Changes

The first pass at data normalization was to take the magnitudes of the change points,

take their absolute value, and then normalize them to the interval [0,1]. While the nor-

malization to the [0,1] interval is fairly trivial, the first issue encountered was that there

may be more than one detected change point within a single change series. Because

the learning instances are extracted using sliding windows, it is possible that a single

learning instance (i.e., a single sliding window) may be larger than the sliding window

size used during the change detection phase. In these situations, there may be more than

one change point for any given change series.

As a result, normalizing the magnitude of changes requires more than just mapping

the data to the [0,1] interval. Options include taking some sort of aggregate of the

magnitude of all change points within the window such as the mean, median, max,

min, etc. Given that these change points should be relatively similar, the mean of the

magnitudes were extracted and then normalized to the [0,1] interval.
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The main problem encountered when trying to use the magnitude of changes over the

entire set of data (i.e., over all patients) was that the magnitudes varied wildly between

patients. In other words, when applying the same feature extraction / change detection

chain of algorithms to the same data across multiple patients, the range is so large that

changes from a specific patient may effectively be zero. For example, for patient A, the

highest, average magnitude was 3 orders of magnitude higher than patient B. As a result,

after normalization, patient B’s data essentially had a value of 0.

9.2.2 Number of Changes

Given the wide range of magnitudes due to various combinations of sensors, algorithms,

and patients, an alternative to normalizing the magnitudes is to count the number of

change points detected. This was a very trivial implementation and provided much

better performance than using the actual magnitudes.

9.2.3 Binary Change - Yes or No

Since the number of change points had already been extracted, it was another trivial

normalization to extract a binary yes or no, depending on whether or not any change

points were detected within the particular window. A yes basically indicates that at least

one change was detected within the window. From a clinical execution standpoint, this

would be implemented but an algorithm that would trigger an alarm based on the first

detected change. While the duration or elapsed time from a detected change to the alarm

generated by the monitor was not measured, this would be an interesting data point to

see if the binary change approach may provide satisfactory sensitivity and specificity

while also decreasing the delay in detecting the alarm state.

9.3 unsupervised learning

Unsupervised learning methods, such as clustering, are an interesting tool when at-

tempting to mine data for new patterns. These methods allow researchers and scientists
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to explore their data for new relationships or patterns that can be linked to existing

theory or used to create new theories. In other words, unsupervised learning methods

facilitate the discovery process. These discoveries can then be compared against existing

knowledge or used as the basis from which to generate new knowledge.

Given that there was a gold-standard against which to compare, unsupervised learn-

ing was initially used as an initial test of the underlying data management mechanisms.

The Weka[31] machine learning toolkit was used given prior experience and ease of inte-

gration. Specifically, the provided k-means clustering algorithm was used to try and find

two or five clusters within the data. The k-means algorithm was run only on a subset of

the total available patients.

Once the learning instances had been extracted from the data, they were fed into the

k-means clustering algorithm. The learning itself was relatively very fast and took very

little time to cluster. However, once the clustering was finished, it was quickly evident

that the clustering itself was the easy part of the problem.

The difficulty comes from the need to “overlay” the clustering results over the real

data. At a minimum, there was a need to be able to take any given learning instance and

view the actual sensor data that corresponded to that particular learning instance. While

this was not a difficult feature to add, it immediately highlighted a workflow issue. If

this were a true unsupervised learning exercise to see how the data would cluster as part

of a discovery effort, there was no way to reasonably inspect all of the underlying sensor

data.

Any sort of unsupervised learning requires a solid workflow to actually review and sift

through the results of the learning process. This is especially important when attempting

to use unsupervised learning as one of the first methods for interacting with a brand new,

previously unanalyzed dataset.

Learning instances had been defined to be any window that contained one or more

detected changes in any of the source feature series. This results in an overwhelming

number of learning instances, most of which contain a single change. Intuitively, the
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majority of these learning instances would probably constitute a false positive; that is, a

change in a feature series that does not correspond to any actual changes in a patient’s

clinical status.

The next step was to try and reduce the number of learning instances, either through

a filter or by resampling the learning instances. One of the primary goals was to lay the

foundation for a multivariate approach to improving clinical alarms. As a result, it was

decided that any learning instances that consisted of only one change point would be

filtered out. These, by definition, were instances that were univariate.

While it may be safe to assume that this sort of filtering is acceptable, it does expose a

potential issue with making such decisions - what if there was a single feature extraction

algorithm that performed extremely well at detecting a particular (unknown) clinical

condition? Regardless, this filter was applied to the data and was successful in decreas-

ing the number of learning instances but not to a level where the results were any easier

to sift through.

After several iterations of attempting to narrow down the number of learning in-

stances, the focus of this particular series of experiments changed from the unsupervised

learning itself to highlighting potential workflow problems and technological solutions.

The MIMIC2 dataset already contained a gold standard (see section 9.4) to which the

machine learning results could be compared and the overall goal was to improve clinical

alarms, not to engage in the discovery process.

Because the primary gating factor is the lack of domain experts to manually review

and annotate the clustering results, the crowd-sourcing model was briefly examined to

see if it could be applied to this particular problem. The dominant issue is getting

qualified people to spend time reviewing the results. When looking at EKG’s and blood

pressures, an obvious, ideal candidate is someone trained in cardiology. At the very

least, a reviewer should have some understanding of cardiovascular physiology.
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9.3.1 Tooling and Workflow

Based on experience, any sort of technical solution must have at least three main func-

tions:

1. “One-click” overlaying of unsupervised learning results over actual sensor data

2. Easy annotation of clustering results in a computable format

3. Enables collaboration with other reviewers

As described earlier in this section, the most important feature is the ability to overlay

the learning results over the actual data in order to manually interpret or verify the

learning output. Once the reviewer can examine the data, s/he will need a method

for annotating the results. This may include a simple “yes” or “no” if the assigned

cluster makes sense or not. However, it will most likely include richer data such as the

observations of the reviewer. Ideally, these annotations would be recorded in such a way

that they may be fed back into a future unsupervised learning exercise or experiment.

Lastly, it is unrealistic to expect that a single person will review thousands to hundreds

of thousands of data points stemming from a single unsupervised learning experiment.

As a result, it is important to have a system that supports collaborative review of the

results.

9.4 supervised learning

The MIMIC2 dataset contained a subset of data specifically geared toward arrhythmias,

and specifically associated alarms. These data had been recorded with alarms generated

by the bedside monitors and manually reviewed by expert cardiologists. Each alarm

was reviewed by at least two cardiologists with adjudication by a third. As a result, the

bulk of the focus was on supervised learning of the alarms in an effort to improve the

detection of ventricular fibrillation or ventricular tachycardia.

51



9.4.1 False Negative Alarms

The cardiologists that reviewed the data only looked at EKG and other sensor data from

those segments surrounding recorded alarm events. In other words, they started with

alarms generated by the bedside monitors and determined if these alarms were true

positives or false positives. As a result, there is no way to track the number of false

negatives without a separate, manual review of all available data.

9.4.2 Feature Selection

From the perspective of the 3-stage pipeline, the inputs to the learning phase were called

change series. However, for the purpose of machine learning, these change series are

usually referred to as features. Feature selection is the process of distilling the input data,

removing redundant or spurious features that may have a negative effect on the overall

classification process. In the context of the pipeline, feature selection is the process of

deciding which change series to include in the learning phase.

If the “incorrect” features are selected and used as part of the learning phase, the

resultant model may be overfitted to the training data. In this situation, the model has

been so specifically tuned to the training data that it may perform extremely well on the

training data, but it will be unable to correctly classify any unseen data (to an expected

level of accuracy or performance). The feature selection process may also provide insight

or other visibility into the theory underlying the model.

As a result, feature selection is an important step of the learning phase of the pipeline.

However, this ultimately depends on the specific learning algorithm being used. For

example, random forests can implicitly handle feature selection based on the parameters

used. Because random forests were the primary choice of learning algorithm, there was

not as much focus on the feature selection process because it is implicitly embedded

within the random forest.

52



9.4.3 Data Imbalance

Once the learning instances were extracted for the purpose of supervised learning, it was

observed that the data were imbalanced when looking at the number of true positives

to false positives. Of the 409 learning instances across all patients, 280 represented non-

alarms (false positives) and 129 represented alarms (true positives). There was over a

2x difference in false positives to true positives. From the perspective of the supervised

learning algorithms, there were 129 positives and 280 negatives to be classified.

Supervised learning algorithms attempt to classify the learning instances such that

overall accuracy is maximized. When dealing with clinical alarms, the most “expensive”

error is the false negative, the failure to detect a life critical alarm. However, false posi-

tives also have an associated cost in the form of alarm fatigue and their effects on overall

patient recovery. As a result, not all errors can be treated the same and weighed equally.

Improving overall accuracy may result in a suboptimal classifier for clinical purposes.

Two common approaches for solving the data imbalance problem are Synthetic Minority

Oversampling TEchnique (SMOTE) and Cost-Sensitive Classifiers. SMOTE, as the name

implies, oversamples the minority class in an attempt to “balance” the two datasets. As

such, SMOTE is used to pre-process the data, prior to training the model. Cost-Sensitive

Classifiers (CSC), on the other hand, wrap other learning algorithms and assign a “cost”

to each class of results (true positives, true negatives, false positives, and false negatives).

This allows the tuning of the results towards or away from a particular class of results.

The SMOTE technique did not perform as well as the Cost-Sensitive classifier in the ex-

periments, both techniques using random forests as the learning algorithm. The problem

with any oversampling approach is that the oversampling draws from a much smaller

pool of samples (the reason why oversampling is needed in the first place). However,

in doing so, the “balanced minority” samples may be much more homogeneous than

“majority.”
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For example, within the data, there was a 2x difference between the non-alarms and

alarms. As a result, the SMOTE algorithm was parameterized to oversample the alarms

by a factor of 2. This would balance the two datasets such that there were 280 non-alarm

instances and 258 alarm instances within the input data. However, doubling the number

of alarm instances in the data risks skewing the model.

The Cost-Sensitive Classifier, on the other hand, yielded better performance while also

being more intuitive. Given the clinical context, the cost of a false negative (missed alarm)

is much more expensive than the cost of a false positive (false alarm). By assigning

increased costs to false negatives and false positives, the Cost-Sensitive Classifier is able

to “tune” the results and indirectly address the imbalance issue.

By increasing the cost of false negatives relative to false positives (and true posi-

tive/negative), it was possible to bias the model towards classifying any given input

as a positive. Naturally, this increased the number of false positives. The key in tuning

the relative cost was to track the increase in true positives versus false positives. Several

experiments were conducted where the cost of a false negative was steadily increased

while keeping all other costs constant. Figure 6 is a plot of the sensitivity and specificity

as a function of the relative cost of a false negative. As evident, there is a crossing point

where change in sensitivity and specificity no longer result in an overall improvement in

the C statistic.

In Figure 7, a pair of sensitivity and specificity curves from figure 6 were plotted,

along with their rates of change. This shows a rough relationship between how quickly

the sensitivity increases as compared to how quickly the specificity decreases. Aside

from overall performance, the relative difference between the two rates of change could

also be used to decide the cost that yields the preferred random forest model.

Generally speaking, the Cost-Sensitive Classifier can be parameterized using “real-

world” costs such as the (fictional) fact that a missed alarm costs a hospital 2x more than

a false alarm. On the other hand, CSC’s can be parameterized based on an empirical

approach and looking at the C statistic, accuracy, or other measure of performance.
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Figure 6: Performance as a function of increasing FN cost

9.4.4 Population-level vs. Patient-specific Learning

9.4.4.1 Population-level Learning

All of the results discussed to this point have revolved around population-based models.

That is, all of the alarm data were split into two sets, one for training and the other

reserved for testing. However, there are two methods for splitting the data:

1. Randomly sort all patients and then assign patients (and their alarm and non-alarm

instances) to either a training or test set

2. Randomly sort all alarms and non-alarms instances and then assign instance to

either a training or test set

In some of the figures and tables, the former are referred to as ordered and the latter

as random, indicating that the alarms were either ordered/grouped by patient or were

randomly sorted.

From a clinical perspective, grouping patients (and their respective alarm and non-

alarm data) into either a training or test set is similar to other clinical research. This
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Figure 7: Relative rate of change of sensitivity and specificity as a function
of increasing FN cost

allows the building of a model on one population of patients and then test or applied to

a different (e.g. future) population of patients. Given this parallel, the initial experiments

focused on dividing the data at the patient level. However, splitting in this manner

yielded generally poorer performance (see table 3 for a representative result).

Sensitivity Specificity AUC
Randomly split 0.822 0.755 0.849

Split by patient 0.544 0.707 0.563

Table 3: Representative example of the effect on performance of splitting
the training (66%) and test (33%) learning instances by patient or
randomly (with a random forest)

The alternative was to take all of the alarm and non-alarm data, regardless of the

patient, randomly sort them and then divide them into a training and test set. While this
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approach is very similar to the patient-level splitting discussed earlier, the key difference

is that the model being trained gets trained and then tested on the “same” patients.

For example, if the dataset consisted of 3 patients (PtA, PtB, and PtC), each with 6

(non-)alarm instances, the first approach would divide the data such that the training set

consists of all data from PtA and PtB (a total of 12 learning instances). The test set would

contain only data from PtC (6 learning instances). Obviously, this assumes a 66%/33%

split between training and test sets.

Using the second approach, the 18 learning instances from all three patients would be

randomly sorted together. Again, with a 66%/33% split, the training set would contain

12 learning instances and the test set would contain 6 learning instances. However, the

training data would contain a random number of instances from PtA, PtB, and PtC. This

is also true of the test data.

With the latter approach, any characteristics specific to one patient or another have the

opportunity to influence the overall model. With this alternative splitting scheme, the

same experiments as with the patient-level splitting were repeated. The random forest

models exhibited better performance (sensitivity, specificity, and C statistic) compared to

the patient-level approach (see table 4). In every case, the AUC is better when randomly

splitting the learning instances.

The distribution of the (non-)alarm learning instances within the data offers a potential

explanation for such behavior. Figure 8 contains a histogram of the number of learning

instances (alarms and non-alarms) for patients in the dataset. Of the 143 patients in the

dataset, 73 have only a single non-alarm. In other words, 51% of the patients have only

a single data point to contribute to the model and it is a false alarm. Only 41 of the

patients had 1 or more true alarms and only 15 had 3 or more true alarms. So, when

training the data on a random subset of patients, almost half of the patients (statistically

speaking) contain only a single data point, a false alarm.
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Cost of FN AUC - Split per Pt AUC - Randomly Split
0.5 0.584 0.610

1.0 0.583 0.624

1.5 0.612 0.669

2.0 0.606 0.694

2.5 0.599 0.714

3.0 0.588 0.714

3.5 0.584 0.714

4.0 0.578 0.723

4.5 0.587 0.713

5.0 0.587 0.703

5.5 0.590 0.710

6.0 0.590 0.713

6.5 0.634 0.703

7.0 0.636 0.697

7.5 0.639 0.687

8.0 0.623 0.682

8.5 0.632 0.742

9.0 0.637 0.744

9.5 0.637 0.744

10.0 0.637 0.744

Table 4: Comparison of splitting training and test sets randomly or by
patient using a random forest with cost-sensitive classification in
the context of increasing the cost of false negatives

9.4.4.2 Patient-specific Learning

Given this distribution of the data, the next step was to take those patients with at least

3 true alarms and see if it was possible to construct a patient-specific model. In this case,

a model was trained to data from a single patient and then tested on data from the same

patient. To mimic real-world behavior, the learning instances were sorted temporally

and then 66% were selected for the training set. This would be equivalent to training on

data from the patient over a period of time and then applying the model to future data

from the same patient.
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Figure 8: Histogram of the true positive (red) and false positive (blue) V-
Fib alarms

The main issue with this approach was that few patients had both false alarms and

true alarms within the data. Patients either had all false alarms or all true alarms. After

running patient-specific models, the data were aggregated which yielded 23 true alarms

and 23 missed alarms with 1 false alarm over 15 patients. This is a sensitivity of 0.5 and

a specificity of 0.75, generally very poor performance. However, if the model were con-

structed to always classify the data as an alarm, regardless of the input data, the result

would be 46 true alarms, 0 missed alarms, and 1 false alarm. This yields a sensitivity of

1 and a specificity of 0. This highlights the fact that the dataset is not large nor diverse

enough to make this a truly meaningful exercise.

9.4.5 Neural Networks, Support Vector Machines, Random Forests

When looking through the literature, several supervised learning techniques are more

popular than others. These include neural networks, support vector machines, and ran-
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dom forests. This, however, is not to say that there are not other common approaches

such as Bayesian networks and other statistical models. However, given their success in

the literature, these three were chosen.

9.4.5.1 Neural Networks

Neural networks are especially interesting when applied to biomedical problems given

their biological roots. However, their very nature also makes them difficult to apply

in clinical practice because the models they generate are inherently vague or unclear.

The power behind neural networks lies in the various weights between nodes. This

makes them especially useful in problems of high dimensionality and where many other

techniques breakdown.

Clinical scientists and researchers, however, must be able to examine the resultant

model (of any supervised learning process) and understand its behavior and perfor-

mance before using the model to treat patients. Though neural networks may provide

superior empirical performance in many cases, there is no model that can be easily in-

spected and understood. Consequently, neural networks are oftentimes referred to as

“black boxes” where data comes in on one side and a result pops out on the other side;

however, the how or why behind the classification remains largely unknown.

In any case, a neural network was implemented, mostly as an exercise to show that

this pipeline can integrate nearly any type of supervised learning algorithm. However,

it was interesting to see how a neural network may perform, recognizing that it was a

conscious decision not to invest heavily in this particular approach.

9.4.5.2 Support Vector Machines

Support vector machines (SVM) have become a popular learning approach [14, 25, 41,

48] because they are capable of handling multi-dimensional learning problems and are

statistically based. This allows researchers and scientists to “peek” inside the model to

gain additional insight or see why a particular model behaved a certain way.
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Generally, SVM’s did not perform as well as random forests. Specifically, the perfor-

mance of the top two sets of features is shown in table 5.

Sensitivity Specificity AUC
Feature Set A 0.522 0.942 0.732

Feature Set B 0.567 0.895 0.731

Table 5: Top two performing sets of features using an SVM (with minimal
SVM parameter tuning)

As with neural networks and most other supervised learning approaches, feature se-

lection can be an important factor in the overall performance of the SVM. This was not

a specific area of focus so there was no effort to rigorously tune SVM parameters or fea-

tures. Instead, SVM’s were another data point in demonstrating that the pipeline could

integrate any type of learning approach.

9.4.5.3 Random Forests

Random forests (RF) are another popular learning approach, including biomedical in-

formatics [23, 35, 57]. One of the interesting benefits of the RF approach is that there is

built-in feature selection, depending on the RF parameters. Because the classification of

an RF algorithm is the most frequent result from hundreds or thousands of individual

trees, the algorithm effectively performs a feature selection. Several experiments were

conducted that involved numerous parameter options but, generally, a very low number

(2-5) of features per tree and many trees (hundreds to thousands) were used (see table

4).

Given the implicit feature selection and overall preliminary results of random forests,

RF’s were chosen as the basis for subsequent experiments to identify and further under-

stand other characteristics of the 3-stage pipeline.
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9.4.5.4 Effects of Feature Extraction Thresholds

Most of the feature extraction algorithms have parameters that can be tuned and are

specific to the particular algorithm. When tuning various parameters, the end effect

can be grouped into several categories, those that affect sensitivity, specificity, or both

(or neither). Ideally, the parameters increase both sensitivity and specificity. However,

this is often not the case. With clinical alarms, the tendency is to increase sensitivity at

the cost of specificity since the cost of a false negative (undetected clinical condition) is

typically more expensive than the cost of a false positive (false alarm).

One argument regarding false positives is that they should “fall away” when other,

multivariate data are incorporated into the learning process. While it is unfeasible to

test this argument as a generality, several experiments were conducted where a particular

parameter was varied and the resulting C statistic was compared. This gave provided

a sense of the general performance of a particular algorithm as its parameters were

modified.

Generally, as thresholds were lowered, the sensitivity increased and the specificity de-

creased. However, this was not always the case. For example, in one set of experiments,

the arterial pressure and EKG waveforms were used as the input signals. While any

algorithms with varying parameters can be used, the ones of particular interest are the

Systolic Pressure Detector (SPD) and Point-to-Point Time Delta (P2PDelta-Time) when

applied to the arterial pressure waveform. For the SPD, the thresholds of 20.0, 30.0, 35.0,

and 40.0 were used. Lower threshold would result in an increased sensitivity for the

detection of “systolic peaks.” When sorting all of the machine learning runs (using ran-

dom forests) by sensitivity, the top 100 combinations of features all have the SPD with a

threshold of 30.0 or 35.0 and not the expected lower threshold of 20.0. Specifically, the

particular algorithms and thresholds were:

1. Sliding Window CTM of P2P Time Delta of SPD with threshold 30.0

2. P2P Time Delta of SPD with threshold 35.0
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3. P2P Amplitude Delta of SPD with threshold 35.0

Intuitively, it was expected that the lower threshold would result in more change

points thus resulting in more positives (whether true or false), thus increasing the sensi-

tivity. However, the data show that this is not always the case (see table 6). Given that

the learning is based on multiple variables, the threshold of any one input variable tunes

the overall model. By decreasing the threshold of one of the variables, the model may

“break” in the sense that it is unable to learn from the training set. This results in overall

poorer performance, including a decrease in sensitivity and/or specificity, despite the

intuition that the sensitivity would increase.

Increasing R-wave detection threshold Specificity
0.6 0.710

0.65 0.710

0.7 0.702

0.75 0.710

0.8 0.710

0.85 0.710

0.9 0.723

Table 6: Example of the lack of correlation between feature extraction
thresholds and overall sensitivity (0.822 for all thresholds) and
specificity

9.4.5.5 Overall Comparison

The overall “best” performing model was a random forest wrapped with a cost-sensitive

classifier. The confusion matrix of the test set is detailed in table 7. The sensitivity was

0.857 and specificity was 0.742 with a C statistic of 0.799. The cost of a false negative

was 8.5 and the cost of a false positive was 2.5, relative to a cost of 1.0 for both true

positives and true negatives. In this specific set of experiments, increasing the cost of a

false negative did not increase the sensitivity but decreased the specificity.
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Predicted
Positive Negative

Positive 42 7

Negative 23 66

Table 7: Overall best performing run
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10 F U T U R E W O R K

This work has laid the foundation for much more research of physiological sensors and

their role in healthcare. This research can be broken into two main categories, clinical

and technological research.

10.1 clinical work

This research focused only on cardiovascular sensor data (EKG’s and arterial blood pres-

sures) as the primary source of data. The dataset used also contains a significant amount

of clinical data that could be used to augment the sensor data. However, one of the major

problems with incorporating more and more data is the problem of context. Taking all

available data and feeding it to any data mining process may cause two problems: 1)

computationally overwhelming the data mining process, or 2) finding a “signal” within

the data when there isn’t any.

The former problem becomes less of an issue as we learn how to scale the technology

through graphics processor units (GPU’s) and other forms of parallel computing. The

latter remains a problem and will only increase as the healthcare industry does a better

job of capturing and storing increasing amounts of data.

However, by incorporating knowledge about the system (in this case, knowledge of

the human physiology and the practice of medicine), researchers may be able to include

only the relevant data. This, however, means that some data is being included and others

discarded. The underlying model is then influenced by the contextual data and those

interpreting it.

The key problem for informatics is to create a framework that assists researchers in

systematically including (or excluding) contextual clinical data. It will be especially

important to learn how to deal with potentially “circular” information. For example,

if we are attempting to detect arrhythmias, do we include a prior diagnosis of that
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arrhythmia? What if the diagnosis was incorrectly coded into the patient’s record due to

a previous false alarm?

The issue of context also affects open-ended data mining, another interesting area

of future work. Since my computational pipeline can also be used for unsupervised

learning or discovery, it would be very interesting to feed increasing amounts of data

to the system for true data mining. The “discoveries” can be reconciled with existing

knowledge in order to validate their viability. Viable “discoveries” can then be used

to seed other clinical research projects whether through other machine and statistical

learning approaches or through more conventional clinical research.

10.2 technological work

10.2.1 Genetic algorithms

Many of the experiments conducted involved manually changing various parameters in

a semi-educated fashion to try and improve the overall performance of the system. In

some sense, this was effectively a “search” for the best combination of parameters and

features - best as defined by the combination of sensitivity, specificity, and C statistic.

Consequently, this is the perfect setup for the application of search algorithms such as

genetic algorithms.

The fitness function would be defined as some combination of sensitivity, specificity,

and C statistic, most likely dependent on the current state of the art. Then, the evolu-

tionary nature of genetic algorithms can be used to create random offspring of varying

parameters and combinations of features. This would largely automate the general ap-

proach that I took with my work. Instead of focusing on the manual tuning of param-

eters and/or feature selection, the researcher can then focus on the curation of results

and seeing they “made sense.”
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10.2.2 Real-time processing

While the algorithms were constructed and coded as either online or offline algorithms,

the underlying infrastructure is based on Hadoop. While it is an extremely powerful

and flexible platform, Hadoop is a batch processing system. There are ways of utilizing

Hadoop so that it behaves as a real-time or streaming system. The next step would be

to integrate one of these approaches such as Hadoop Online[17] to extend the system to

provide real-time, clinical decision support.

Another alternative to the Hadoop ecosystem is the Twitter Storm[46] framework. It is

oftentimes referred to as a “real-time Hadoop” but was designed from the bottom up to

be a real-time, stream processing system. This makes it well-suited to real-time decision

support applications. Since it passes data between “bolts” in a mechanism similar to

Hadoop, many of the algorithms implemented for Hadoop would take minimal changes

to make them work with Storm.

In either case, the key is modifying the system to “stream” the data to the parallel

processing framework and then connecting this information to a dashboard. The overar-

ching clinical research question is if such a system helps improve the clinical workflow

and patient outcomes.
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