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Abstract

Quantum groups, character varieties and integrable systems

by

Gus Schrader

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Nicolai Reshetikhin, Chair

In this thesis we address several questions involving quantum groups, quantum cluster
algebras, and integrable systems, and provide some novel examples of the very useful inter-
play between these subjects. In the Chapter 2, we introduce the classical reflection equation
(CRE), and give a construction of integrable Hamiltonian systems on G/K, where G is a
quasitriangular Poisson Lie group and K is a Lie subgroup arising as the fixed point set
of a group automorphism σ of G satisfying the CRE. As an application, we provide a de-
tailed treatment of the algebraic integrability of the XXZ spin chain with reflecting boundary
conditions.

In Chapter 3, we study doubles of Hopf algebras and dual pairs of quantum moment
maps. For any Hopf algebra A, we construct a natural generalization of the (quantized)
Grothendieck-Springer resolution; the standard resolution corresponds to taking A a quan-
tum Borel subalgebra. In this latter case, we apply the general construction to yield an
algebra embedding of the Drinfeld-Jimbo quantum group Uq(g) into a quantum torus alge-
bra which is a central extension of the quantum coordinate ring of the reduced big double
Bruhat cell in the corresponding simply-connected group G.

Chapter 4 gives an alternative geometric description of this quantum torus embedding.
Namely, we construct an embedding of Uq(sln) into a quantum cluster chart on a quantum
character variety associated to a marked punctured disk. We obtain a description of the
coproduct of Uq(sln) in terms of a quantum character variety associated to the marked twice
punctured disk, and express the action of the R-matrix in terms of a mapping class group
element corresponding to the half-Dehn twist rotating one puncture about the other. As a
consequence, we realize the algebra automorphism of Uq(sln)⊗2 given by conjugation by the
R-matrix as an explicit sequence of cluster mutations, and derive a refined factorization of
the R-matrix into quantum dilogarithms of cluster monomials.

We conclude by mentioning some applications of our cluster realization of quantum groups
to the decomposition of tensor products of positive representations, and the construction of
a modular functor from quantum higher Teichmuller theory.
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Chapter 1

Introduction

In the present thesis we address several problems involving integrable systems, quantum
groups, and cluster algebras. The central strategy we pursue is to exploit the rich and fruit-
ful relationship between geometric objects such as moduli spaces and integrable systems,
corresponding algebraic ones, including Poisson-Lie groups, Hopf algebras, and quantum
groups. We begin in Chapter 2 by developing the theory of Poisson homogeneous spaces of
quasitriangular Poisson-Lie groups, which turns out to be governed by an algebraic struc-
ture called the classical reflection equation. From solutions of this reflection equation, we
explain how one can construct a general class of integrable Hamiltonian systems whose time
evolution is given by a Lax equation, and whose trajectories can be computed by solving
a certain factorization problem of Iwasawa type in the underlying Poisson-Lie group. This
class of integrable systems turns out to often admit a physical interpretation as models with
integrable reflecting boundary conditions. An example of particular interest, which is re-
lated to a homogeneous space for the the loop group LSL2, is the XXZ spin chain with
open boundaries, and we apply our formalism to give a complete treatment of the algebraic
integrability of this model.

In Chapter 3, we pass from classical to quantum and turn our attention to the the-
ory of doubles of Hopf algebras. Motivated by the Poisson geometry of the Grothendieck-
Springer simultaneous resolution of a complex semisimple Lie group, we explain how to
construct an analog of the quantization of that resolution starting from any Hopf alge-
bra. The Grothendieck-Springer resolution is recovered when the underlying Hopf algebra
is the quantum Borel subalgebra in the corresponding quantum group Uq(g). The key to
the construction is the notion of a commuting dual pair of quantum moment maps. As
an interesting by product, we also obtain non-trivial homomorphisms of certain reflection
equation algebras, whose defining relations are given by the quantum analog of the reflection
equation studied in Chapter 2. In the case of the Grothendieck-Springer resolution, we are
able to combine our general algebraic construction with certain properties of the R-matrix
and quantum Weyl group of Uq(g) in order to obtain an algebra embedding of Uq(g) into a
quantum torus algebra; that is, an associative algebra generated by variables X±1

1 , . . . , X±1
l

subject to the q-commutativity relations XiXj = qbijXjXi for some bij ∈ Z. This embedding
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can be regarded as a q-deformation of the familiar realization of U(g) in terms of the Weyl
algebra of differential operators on the big cell of the flag variety.

Our goal in Chapter 4 is to provide an alternative geometric description of the quantum
torus embedding of Uq(sln), using the tools of higher Teichmüller theory and quantum cluster
algebras. More precisely, we construct an embedding of Uq(sln) into a quantum cluster chart

on the moduli space of framed PGLn-local systems on a disk Ŝ with a single puncture p, and
with two marked points x1, x2 on its boundary. Our embedding has the property that for
each Chevalley generator of Uq(sln), there is a cluster mutation-equivalent to Dn in which
the image of that generator is a cluster monomial. We also solve the problem of describing
the coproduct and R-matrix of Uq(sln) in geometric terms, this time involving the moduli
space of framed local systems on a twice punctured disk. Conjugation by the R-matrix is
realized as the element of the cluster mapping class group corresponding to the half-Dehn
twist rotating one puncture about the other.

We conclude in Chapter 5 by commenting on some exciting applications of our cluster
realization of quantum groups to the decomposition of tensor products of positive repre-
sentations, and the construction of a modular functor from quantum higher Teichmüller
theory.

1.1 Introduction to Chapter 2

A large and well-studied class of integrable Hamiltonian systems consists of those whose
phase space can be realized as a Poisson submanifold of a quasitriangular Poisson-Lie group
G. In this situation, the conjugation invariant functions IG ⊂ C(G) form a Poisson commu-
tative subalgebra, and particular integrable systems arise by restricting these functions to
symplectic leaves in G.

In this Chapter we construct integrable systems on Poisson homogeneous spaces of the
form G/K, where (G, r) is a quasitriangular Poisson Lie group and K is a Lie subgroup of G
which arises as the fixed point set of a Lie group automorphism σ : G→ G. In this setting,
the condition for G/K to inherit a Poisson structure from G is equivalent to the requirement
that the quantity

Cσ(r) = (σ ⊗ σ) (r) + r − (σ ⊗ 1 + 1⊗ σ)(r)

be a Lie(K)-invariant in g⊗g. In the special case Cσ(r) = 0, we say that (r, σ) is a solution of
the classical reflection equation (CRE). In this case, we construct a classical reflection mon-
odromy matrix T with the property that the classical reflection transfer matrices obtained
by taking the trace of T in finite dimensional representations of G form a Poisson commuting
family of functions in C(G/K) ⊂ C(G). These functions are no longer AdG-invariant, but
are instead bi-invariant under the action of K ×K on G by left and right translations.

The motivation for our construction comes from the quantum spin chains with reflect-
ing boundary conditions introduced by Sklyanin [57]. It is known [7] that these quantum
integrable systems are closely related to coideal subalgebras in the quantum affine algebras
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Uq(ĝ). When g is a finite dimensional simple Lie algebra, coideal subalgebras in Uq(g) have
been studied by many authors [44],[38],[18],[60] and may be regarded as quantizations of the
classical symmetric spaces G/K. Of particular relevance is the work of Belliard, Crampé
and Regelskis [11],[12], who introduced the notion of Manin triple twists to understand the
semiclassical limit of coideal subalgebras.

We will show that the semiclassical limit of Sklyanin’s quantum reflection equation co-
incides with the CRE for an appropriate choice of group G and automorphism σ. We shall
also explain how to derive local Hamiltonians for the corresponding homogeneous classical
spin chain, the XXZ spin chain with reflecting boundaries.

Next, we proceed to a give a detailed analysis of the reflection XXZ chain. Namely, we
solve the following three fundamental problems

• Separation of variables on the system’s phase space

• Integration of the system’s equations of motion

• Construction of the system’s action-angle variables.

Crucial to our analysis is the so-called algebraic integrability of the system: the tori on
which the flows of the reflection Hamiltonians are linearized are in fact abelian varieties,
arising as Jacobians of the spectral curves of the reflection monodromy matrix. For general
background on the notion algebraic integrability and examples of its applications, we refer
the reader to the books and surveys [65],[64], [24].

Let us also say a word about the broader physical and mathematical context in which
the classical spin chains appear. On the one hand, they may be regarded as lattice versions
of Landau-Lifshitz type continuum models, see [48] and [58], [14]. On the other, they can
also be obtained as infinite spin or mean-field limits of lattice models in quantum statistical
physics, see [32]. We hope that the analysis presented here can also prove useful in the study
of the continuum and quantum systems related to the classical XXZ chain with reflecting
boundaries.

1.2 Introduction to Chapter 3

The Grothendieck-Springer simultaneous resolution of a complex simple Lie group G plays a
central role in the geometric representation theory. Recall that if B ⊂ G is a Borel subgroup
in G, and we write g, b for the Lie algebras of G,B respectively, then the Grothendieck-
Springer resolution is the following map of Poisson varieties:

G×B b −→ g, (g, x)B 7−→ gxg−1. (1.2.1)

Indeed, the Poisson map (1.2.1) admits a quantization, yielding an embedding of the en-
veloping algebra U(g) into the ring of global differential operators on the principal affine
space G/N .
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It was shown in [49] that both sides of the multiplicative Grothendieck-Springer resolution

G×B B −→ G, (g, b)B 7−→ gbg−1 (1.2.2)

admit natural, nontrivial Poisson structures such that the resolution map is Poisson. In [25],
we showed that the resolution (1.2.2) can be also quantized, this time to yield an embedding
of the quantized universal enveloping algebra Uq(g) into a certain ring of quantum differential
operators on G/N .

One remarkable property of Uq(g) is that it can be realized as a quotient of the Drinfeld
double D(Uq(b)) of a quantum Borel subalgebra Uq(b) ⊂ Uq(g). In this note, we observe that
an analog of the quantization of the resolution (1.2.2) exists under mild conditions for the
Drinfeld double D(A) of a topological Hopf algebra A. The key to the construction of this
quantization is the existence of a pair µL, µR : D(A)→ H(D(A)∗,op) of commuting quantum
moment maps from D(A) to the Heisenberg double of a certain Hopf algebra D(A)∗,op oppo-
site dual to D(A). In this general setting, the role of quantum differential operators on G/N
is played by the quantum Hamiltonian reduction of H(D(A)∗,op) by µL(A), and the resolution
map is given by the residual quantum moment map µR : D(A)→ H(D(A)∗,op)//µL(A).

Although a similar construction has appeared before in the context of the quantum
Beilinson-Bernstein theorem, we believe that the following results are new. First, we show
that the quantum Hamiltonian reduction H(D(A)∗,op)//µL(A) is isomorphic to the Heisen-
berg double H(A). Recall [43] that the Heisenberg double H(A) of a finite-dimensional Hopf
algebra A is isomorphic to the algebra of its endomorphisms End(A). Thus, the natural
action of D(A) on A yields a homomorphism D(A) → H(A). We show that it coincides
with the map µR : D(A)→ H(A) when A is finite dimsensional. Second, we provide an ex-
plicit Faddeev-Reshetikhin-Takhtajan type presentation of the map µR in terms of universal
R-matrices, which leads to a homomorphism between certain reflection equation algebras.

Having explained the general theory, we proceed to apply it in the important special
case of the quantized enveloping algebra Uq(g), and as an application obtain an algebra
embedding of Uq(g) into a quantum torus algebra.

1.3 Introduction to Chapter 4

In [23], an intriguing realization of the quantum group Uq(sl2) and the Drinfeld double of
its Borel subalgebra was presented in terms of a quantum torus algebra D. Explicitly, the
algebra D has generators {w1, w2, w3, w4}, with the relations

wiwi+1 = q−2wi+1wi, and wiwi+2 = wi+2wi (1.3.1)

where i ∈ Z/4Z. In terms of the standard generators E,F,K,K ′ of the Drinfeld double (see
Section 3 for the definitions), the embedding proposed in [23] takes the form

E 7→ i(w1 + w2), K 7→ qw2w3,

F 7→ i(w3 + w4), K ′ 7→ qw4w1,
(1.3.2)
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where i =
√
−1.

The embedding (1.3.2) has some striking properties. Firstly, as proposed in [23], one can
use the Weyl-type relations (1.3.1) to define a modular double of Uq(sl2) compatible with
the regime |q| = 1. Next, the image of the quasi R-matrix under this embedding admits a
remarkable factorization into the product of four quantum dilogarithms:

R̄ = Ψq (w1 ⊗ w3) Ψq (w1 ⊗ w4) Ψq (w2 ⊗ w3) Ψq (w2 ⊗ w4) . (1.3.3)

These properties have been exploited in [10], [9], [2] to define and study a new continuous
braided monoidal category of ‘principal series’ representations of Uq(sl2).

On the other hand, factorizations of the Uq(sl2) R-matrix of the form (1.3.3) have also
appeared in quantum Teichmuller theory. In [37], the action of the R-matrix is identified,
up to a simple permutation, with an element of the mapping class group of the twice punc-
tured disc. The mapping class group element in question corresponds to the half-Dehn twist
rotating one puncture about the other. After triangulating the punctured disc, this trans-
formation can be decomposed into a sequence of four flips of the triangulation, as shown
in Figure 4.8. One is thus led to interpret each dilogarithm in the factorization (1.3.3) as
corresponding to a flip of a triangulation. In [36], this observation was used to re-derive
Kashaev’s knot invariant.

In this chapter, we explain how to generalize Faddeev’s embedding (1.3.2) to the case of
the quantum group Uq(sln+1) using the language of quantum cluster algebras. The key to
our construction is the quantum cluster structure associated to moduli spaces of PGLn+1-
local systems on a decorated, marked surface, see [63]. Cluster charts on these varieties are
obtained from an ideal triangulation of the surface by ‘gluing’ certain simpler cluster charts
associated to each triangle. In the case of moduli spaces of PGLn+1-local systems, a flip of
a triangulation can be realized as sequences of

(
n+2

3

)
cluster mutations.

Taking a particular cluster chart on the moduli space associated to a triangulation of the
punctured disk (defined precisely in Section 2), we obtain by this gluing procedure a quiver
and a corresponding quantum torus algebra Dn. Our first main result, Theorem 4.4.4, is
to describe an explicit embedding of Uq(sln+1) into Dn. Our embedding has the property
that each Chevalley generator Ei, Fi of Uq(sln+1) is a cluster monomial in some cluster torus
mutation equivalent to Dn. In the simplest case n = 1, our result reproduces Faddeev’s
realization (1.3.2) of Uq(sl2) in terms of the quantum torus D1 associated to the cyclic
quiver with four nodes (see Figure 4.4). Moreover, our cluster embedding turns out to be
compatible with the action of Uq(sln+1) in its positive representations [30], which are higher
rank generalizations of the principal series representations of Uq(sl2).

Next, we turn to the problem of describing the coproduct and R-matrix of Uq(sln+1) in
terms of our embedding. We formulate this description in terms of a quantum cluster chart
Zn from another quantum cluster variety, this time corresponding to a quiver built from a
triangulation of the twice punctured disk. As we explain in Remark 4.6.4, the coproduct
admits a simple description in terms of the cluster variables of Zn.

Finally, we prove in Theorem 4.6.1 that the automorphism P ◦AdR of Uq(sln+1)⊗2, given
by conjugation by the R-matrix followed by the flip of tensor factors, restricts to Zn and
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coincides with a cluster transformation given by the composite of the half-Dehn twist and
a certain permutation. In the course of the proof, we obtain (Theorem 4.7.4) a refined
factorization of R with 4

(
n+2

3

)
quantum dilogarithm factors, one for each mutation required

to achieve the half-Dehn twist realized as a sequence of four flips. In the case of Uq(sl2),
when each flip can be achieved by a single cluster mutation, we again recover Faddeev’s
factorization (1.3.3).



7

Chapter 2

Integrable systems with reflecting
boundary conditions

2.1 Lie bialgebras and Poisson-Lie groups

In this section we collect some standard definitions and facts about Poisson-Lie groups and
their Lie bialgebras that we shall use throughout this Chapter. For further details, see for
example [17, 22]. Recall that a Lie bialgebra is a Lie algebra g together with a linear map
δ : g→ g ∧ g satisfying the following two conditions:

1. The dual mapping δ∗ : g∗ ∧ g∗ → g∗ defines a Lie bracket on g∗

2. The map δ satisfies the 1-cocycle condition

δ([X, Y ]) = X · δ(Y )− Y · δ(X)

where the g acts on g ∧ g by the exterior square of the adjoint representation.

We shall focus on Lie bialgebras for which the 1-cocycle δ is actually a coboundary. This
means that there exists an element r ∈ g⊗ g such that δ(X) = X · r. One checks [17] that
the induced bracket on g∗ will be skew and satisfy the Jacobi identity if and only if the
symmetric part J = 1

2
(r + r21) of r as well as the quantity

[[r, r]] := [r12, r13] + [r13, r23] + [r12, r23]

are g-invariants in g⊗ g and g⊗ g⊗ g respectively. In the case that [[r, r]] = 0, we say r is a
solution of the classical Yang-Baxter equation, and that the Lie bialgebra g is quasitriangular.
If g is a quasitriangular Lie bialgebra and the symmetric bilinear form on g∗ defined by J is
nondegenerate, we say that g is factorizable.

A Poisson-Lie group is Lie group equipped with a Poisson structure such that the group
multiplication is a Poisson map. As is well known [17], the category of Lie bialgebras is
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equivalent to the category of connected, simply connected Poisson-Lie groups. The Lie
bialgebra corresponding to a given Poisson-Lie group is called its tangent Lie bialgebra. We
say that a Poisson-Lie group G is quasitriangular (resp. factorizable) if its tangent Lie
bialgebra is.

The Poisson bracket on a coboundary Poisson-Lie group (G, r) may be described quite
explicitly. If {Xs} is a basis for g, let us expand

r =
∑
s,t

rs,tXs ⊗Xt

Then if f1, f2 ∈ C[G], we have

{f1, f2} =
∑
s,t

rs,t
(
XL
s [f1]XL

t [f2]−XR
s [f1]XR

t [f2]
)

(2.1.1)

where Y L,R denote left/right derivatives with respect to Y ∈ g:

Y L[f ](g) =
d

dt

∣∣∣∣
t=0

f(etY g), Y R[f ](g) =
d

dt

∣∣∣∣
t=0

f(getY )

2.2 Poisson homogeneous spaces and the classical

reflection equation

Let g be a Lie bialgebra, and let k ⊂ g be a Lie subalgebra in g. We say that k is a coideal
Lie subalgebra in g if

δ(k) ⊂ g⊗ k + k⊗ g

Our interest in coideal Lie subalgebras stems from the following fact, whose straightforward
proof may be found in [22].

Proposition 2.2.1. Let K ⊂ G be a closed Lie subgroup in G. Then the homogeneous
space G/K inherits a unique Poisson structure from G such that the natural projection
π : G→ G/K is Poisson if and only if k = Lie(K) is a coideal Lie subalgebra in g.

Note that this condition is weaker than the condition that the subgroup K be a Poisson
submanifold of G, for which we require η(k) ⊂ TkK

⊗2 ⊂ TkG
⊗2 for all k ∈ K.

It is also worthing noting that Proposition 2.2.1 may also be stated in a dual form at
the level of function algebras; in this formulation, which goes back to [54], the subalgebra
C[G/K] of right K-invariant functions on G is a Poisson subalgebra in C[G] if and only if
the annihilator k⊥ ⊂ g∗ of k is a Lie subalgebra in the dual Lie bialgebra g∗.
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Suppose now that (g, r) is a coboundary Lie bialgebra, and that σ : g→ g is a Lie algebra
automorphism. Then the fixed point set

k = gσ = {x ∈ g
∣∣σ(x) = x}

is a Lie subalgebra of g. Our first goal is to characterize when k is a coideal Lie subalgebra.
For this purpose, we shall introduce the quantity

Cσ(r) = (σ ⊗ σ)(r) + r − (σ ⊗ 1 + 1⊗ σ) (r) (2.2.1)

Note that if Ω ∈ g⊗ g is any g-invariant, then Cσ(Ω) is a k-invariant. In particular, we have
that Cσ(J) is a k-invariant, where J = 1

2
(r + r21) denotes the symmetric part of r.

Theorem 2.2.2. Let (g, r) be the coboundary Lie bialgebra determined by an element r ∈ g⊗g.
Then the Lie subalgebra k = gσ is a coideal Lie subalgebra in (g, r) if and only if the quantity
Cσ(r) is a k-invariant in g⊗ g.

Proof. The subspace g⊗ k + k⊗ g ⊂ g⊗ g is the kernel of the vector space endomorphism
A = (σ − 1) ⊗ (σ − 1). So k is a coideal Lie subalgebra if and only if A ◦ δ(k) = 0. Let us
expand the r-matrix as r =

∑
i ai ⊗ bi for some ai, bi ∈ g, and take x ∈ k. Then we compute

A ◦ δ(x) = A([x, ai]⊗ bi + ai ⊗ [x, bi])

= σ[x, ai]⊗ σbi + [x, ai]⊗ bi − σ[x, ai]⊗ bi − [x, ai]⊗ σbi
+ σai ⊗ σ[x, bi] + ai ⊗ [x, bi]− σai ⊗ [x, bi]− ai ⊗ σ[x, bi]

= [x, σai]⊗ σbi + [x, ai]⊗ bi − [x, σai]⊗ bi − [x, ai]⊗ σbi
+ σai ⊗ [x, σbi] + ai ⊗ [x, bi]− σai ⊗ [x, bi]− ai ⊗ [x, σbi]

= [x, (σ ⊗ σ)r] + [x, r]− [x, (σ ⊗ 1)r]− [x, (1⊗ σ)r]

= [x,Cσ(r)]

This is zero if and only if Cσ(r) is a k-invariant.

Corollary 2.2.3. If Cσ(r) is a k-invariant, the corresponding homogeneous space G/K in-
herits the structure of a Poisson manifold.

The simplest way to satisfy this condition is to demand Cσ(r) = 0. In this case, we say
that the pair (r, σ) is a solution of the classical reflection equation

(σ ⊗ σ)(r) + r − (σ ⊗ 1 + 1⊗ σ)(r) = 0 (2.2.2)

Additionally, it is important to note that, because of the g-invariance of the symmetric part
J of the r-matrix, the condition that Cσ(r) be a k-invariant will also be satisfied if we assume
that the skew part r̂ of the r-matrix satisfies the reflection equation Cσ(r̂) = 0.
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We will mostly be interested in the case when the automorphism σ is an involution, i.e.
σ2 = id. Then if p is the (−1)-eigenspace of σ, we have the decomposition of k-modules
g = k⊕ p. If we decompose the r-matrix as

r = rkk + rkp + rpk + rpp (2.2.3)

we find Cσ(r) = 4rpp. Hence, we have

Proposition 2.2.4. If σ is an involution, k is a coideal Lie subalgebra if and only if rpp is
k-invariant. The pair (r, σ) is a solution of the CRE if and only if rpp = 0.

Remark 2.2.5. In this work, we only consider Poisson structures on G/K with the property
that the projection G → G/K is a Poisson map. In [20], Drinfeld classifies Poisson struc-
tures on G/K compatible with the Poisson structure on G in the sense that the mapping
G×G/K → G/K is Poisson. Such Poisson structures are shown to correspond to Lagrangian
subalgebras in the double D(g) = g⊕ g∗, those under consideration in the present work be-
ing given by Lagrangians Lk = k⊕ k⊥. It would be interesting to try to construct integrable
systems on the more general class of Poisson homogeneous spaces classified in [20].

Remark 2.2.6. Let us conclude this section by commenting on the relation between our
construction and the one outlined in [11] in terms of Manin triple twists. Suppose we have
a quasitriangular Lie bialgebra (g, r), with the corresponding Manin triple d = g ⊕ g∗, and
suppose also that we have a Lie algebra involution φ of g. We may then attempt to extend
φ to an anti-invariant Manin triple twist simply by declaring that σ acts on g∗ by

(φ(ξ), X) = −〈ξ, φ(X)〉

where the round brackets to refer to the invariant symmetric bilinear form on d and the
angle brackets to refer to the canonical pairing of g with g∗. What must be checked is
that this extension respects the Lie algebra structure on d. In order for this to hold, we
require that (φ ⊗ φ)(r) + r = 0. Note, by applying φ ⊗ 1, that this condition also implies
(φ⊗ 1 + 1⊗ φ)(r) = 0. Therefore, the Manin triple twist constructed in this fashion gives a
solution of the classical reflection equation. The solutions constructed in this fashion have
the special property that both ‘sides’ of the reflection equation vanish in their own right.

2.3 Construction of integrable systems

Quasitriangular Poisson-Lie groups play a prominent role in the theory of classical integrable
systems because of the following simple consequence of formula (2.1.1) for the Poisson bracket
on G.

Proposition 2.3.1. [48] If (G, r) is a quasitriangular Poisson-Lie group, then the subspace
IG ⊂ C(G) of conjugation-invariant functions is a Poisson commutative subalgebra.
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Restricting this Poisson commutative subalgebra of functions to symplectic leaves of ap-
propriate dimension in G, it is often possible to obtain classical integrable systems. Examples
of integrable systems that can be derived in this framework include the Coxeter-Toda lattice
[61], its affine counterpart [67], and the classical XXZ spin chain with periodic boundaries,
see the survey [47] and references therein. We will now explain how to construct integrable
systems on the Poisson homogeneous spaces G/K described in the previous section.

In order to describe K-invariant functions on G explicitly, we introduce the classical
reflection monodromy matrix

T (g) = gσ(g)−1 (2.3.1)

Observe that if k ∈ K = Gσ, we have T (gk) = T (g). Hence matrix elements T V of T in
any finite dimensional representation V are elements of the ring of K-invariant functions
C(G/K). Taking the trace, we obtain the reflection transfer matrix

τV (g) = trV T V (g) (2.3.2)

In contrast to those arising from the standard construction of integrable systems on G, the
reflection transfer matrices τV (g) are not in general AdG-invariant. On the other hand,
observe that τV (kg) = τV (g), so the reflection transfer matrices lie in C(K\G/K), the
subalgebra of K-bi-invariant functions on G.

Theorem 2.3.2. Suppose (r, σ) is a solution of the classical reflection equation. Then the
subalgebra C(K\G/K) is Poisson commutative. In particular, for any pair of finite dimen-
sional representations V,W of G, the reflection transfer matrices τV , τW satisfy

{τV , τW} = 0

Proof. IfH ∈ C(K\G/K) is a bi-invariant function, then for allX ∈ k we have XL,R[H] = 0.
Hence the result follows from the decomposition (5) of the r-matrix.

Poisson commutativity of the reflection transfer matrices also follows immediately from
the following expression for the Poisson brackets of matrix elements of the reflection mon-
odromy matrix:

Proposition 2.3.3. Let r be the r-matrix of a quasitriangular Lie bialgebra, and let r̂ denote
its skew part. If (r, σ) is a solution of the classical reflection equation, matrix elements of
the reflection monodromy matrix satisfy

{T1 ⊗ T2} = [r, T1T2] + T1[T2, σ1r] + T2[T1, σ2r] (2.3.3)

Similarly, if (r̂, σ) is a solution of the classical reflection equation, then matrix elements of
the reflection monodromy matrix satisfy

{T1 ⊗ T2} = [r̂, T1T2] + T1[T2, σ1r̂] + T2[T1, σ2r̂] (2.3.4)
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Proof. Recall [17] that the matrix elements ρ(g) of g in a finite dimensional representation
have the Poisson brackets

{ρ1 ⊗ ρ2} = [r12, ρ1ρ2]

= [r̂12, ρ1ρ2]

Now since σ is a group automorphism, we have

{ρ1 ◦ σ, ρ2} = [σ1r, (ρ1 ◦ σ)ρ2]

et cetera. Moreover, since T (g) = ρ(g) · (ρ−1 ◦ σ)(g), applying the Leibniz rule yields

{T1 ⊗ T2} = ρ1{(ρ−1
1 ◦ σ), ρ2}(ρ−1

2 ◦ σ) + ρ1ρ2{ρ−1
1 ◦ σ, ρ−1

2 ◦ σ}
+ {ρ1, ρ2}(ρ−1

1 ◦ σ)(ρ−1
2 ◦ σ) + ρ2{ρ1, ρ

−1
2 ◦ σ}(ρ−1

1 ◦ σ)

= rT1T2 + T1T2(σ1σ2r)− T1(σ1r)T2 − T2(σ2r)T1

+ ρ1ρ2 (σ1r + σ2r − r − σ1σ2r) (ρ−1
2 ◦ σ)(ρ−1

1 ◦ σ)

This expression may be rewritten as

{T1 ⊗ T2} = [r, T1T2] + T1[T2, σ1r] + T2[T1, σ2r] (2.3.5)

+ T1T2Cσ(r)− ρ1ρ2Cσ(r)(ρ−1
2 ◦ σ)(ρ−1

1 ◦ σ)

Applying the CRE Cσ(r) = 0, one arrives at formula (2.3.4). Of course, the case in which it
is the skew part r̂ that satisfies the CRE is treated identically.

Let us conclude this section by observing that the commutativity of the reflection transfer
matrices continues to hold under the weaker assumption that Cσ(r) is a (possibly nonzero)
k-invariant.

Proposition 2.3.4. Suppose σ is an involution, and (r, σ) satisfies the condition (2.2.1):
i.e. Cσ(r) is a k-invariant. Then the reflection transfer matrices form a Poisson commutative
subalgebra.

Proof. As in the previous section, write g = k ⊕ p for the decomposition of g into the ±1
eigenspaces of σ. Recall [29] that we may take neighborhoods Vk, Vp in k, p such that the
map Vp × Vk → G, (z, y) 7→ exp(z) exp(y) is a diffeomorphism onto an open neighborhood
U of the identity in G. For g = exp(z) exp(y) =: pk ∈ U , the K-invariance of Cσ(r) implies

trV⊗W (g ⊗ g)Cσ(r)(σ(g−1)⊗ σ(g−1)) = trV⊗W (p2 ⊗ p2)Cσ(r)

Since gσ(g−1) = p2, the terms involving Cσ(r) in (2.3.5) cancel and we obtain the result.
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2.4 Twisting

The construction of the previous section also admits a twisted version, which we shall now
describe. Let σ be an involution on (g, r) which is a solution of the classical reflection
equation Cσ(r) = 0, and suppose that ϕ± are two automorphisms of g. As usual, we denote
the Lie algebra of fixed points of σ by k, and the corresponding Lie group by K. The
automorphisms ϕ± allow us to define twisted left and right actions of K on G:

k . g = ϕ+(k)g, g / k = gϕ−(k) (2.4.1)

Proposition 2.4.1. Suppose that the involutions σ± = ϕ± ◦ σ ◦ ϕ−1
± are again solutions of

Cσ±(r) = 0. Then the subalgebra C(K+\G/K−) of twisted K-bi-invariant functions on G is
Poisson commutative.

Proof. Since Cσ±(r) = 0, we have rp±p± = 0 in the corresponding decompositions (5) of r.
The σ± fixed-subalgebras k± are related to k by k± = ϕ±(k). But f is a twisted K-bi-invariant
function we have

ϕ+(X)Lf = 0 = ϕ−(X)Rf

for all X ∈ k, and from formula (2.1.1) for the Poisson bracket the result follows.

Of particular interest to us is when the the automorphisms ϕ± are of the form Adh± for
some h± ∈ G. In this case, we may form the (right) twisted monodromy matrix

T (g) = gh−σ(h−1
− g

−1) (2.4.2)

whose matrix elements in any finite dimensional representation V are invariant under twisted
right action of K. Then the twisted transfer matrices

τV = trV
(
T (g)σ(h+)h−1

+

)
(2.4.3)

are twisted bi-invariant functions on G. Putting K+ = σ(h+)h−1
+ and K− = h−σ(h−)−1, we

may write the twisted transfer matrix more economically as

τV = trV
(
gK−σ(g−1)K+

)
(2.4.4)

2.5 Factorization dynamics

We now proceed to the description of the dynamics of the systems constructed in the previous
sections. In the case of flows on factorizable Poisson-Lie groups generated by AdG-invariant
Hamiltonians, it is well-known that the dynamics is governed by the solution of a certain
factorization problem in G. The first statement of this result in the Poisson-Lie context
can be found in [54]; for further details see [48]. In the present case, we will show that the
solution of the reflection dynamics generated by K-bi-invariant Hamiltonians is related to a
factorization problem of Iwasawa-type.
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For simplicity, we shall work in the untwisted setting. Let us begin by writing down the
equations of motion generated by K-bi-invariant Hamiltonians.

Given a function H ∈ C(G), its left and right gradients at a point g ∈ G are functionals
∇±H(g) ∈ g∗ defined by

〈∇+H(g), X〉 =
d

dt

∣∣∣∣
t=0

H(etXg), 〈∇−H(g), X〉 =
d

dt

∣∣∣∣
t=0

H(getX)

Let r̂ = 1
2

(r − r21) be the skew part of the r-matrix, and let J = 1
2

(r + r21) be its symmetric
part. We may regard the tensors r, J, r̂ ∈ g⊗ g as linear maps g∗ → g by contraction in the
first tensor factor.

In this section, we shall assume that we have fixed a finite dimensional representation
(ρ, V ) of G, and to simplify notation we shall confuse group elements g ∈ G with their images
ρ(g) ∈ End(V ). Now, it follows from formula (2.1.1) that the matrix g evolves under the
Hamiltonian flow of H by

ġ(t) = r̂
(
∇+H

)
g − gr̂

(
∇−H

)
(2.5.1)

Proposition 2.5.1. Suppose (r̂, σ) is a solution of the classical reflection equation, and that
H ∈ C(K\G/K) is a K-bi-invariant Hamiltonian. Then the Hamiltonian flow of H takes
place on K×K-orbits in G, and the reflection monodromy matrix evolves in time by the Lax
equation

Ṫ (t) = [r̂
(
∇+H

)
(t), T (t)] (2.5.2)

Proof. If H ∈ C(K\G/K), then for X ∈ k, 〈∇±H,X〉 = 0, and so from the decomposition
(5) for the skew r-matrix r̂, it follows that r̂pp = 0 and r̂(∇±H) ∈ k. In view of the equation
of motion (2.5.1), this proves the first part of the proposition. The equation of motion for
the reflection monodromy matrix is obtained by straightforward calculation using formula
(2.1.1).

Let us now assume that (G, r) is factorizable, with r satisfying the classical Yang-Baxter
equation in the form

[r12, r13] + [r13, r23] + [r12, r23] = 0 (2.5.3)

and suppose that the skew part r̂ of r satisfies Cσ(r̂) = 0 for some involution σ. By the
Yang-Baxter condition (2.5.3), the linear map

r : g∗ → g, ξ 7−→ 〈ξ ⊗ 1, r〉 (2.5.4)

is a homomorphism of Lie algebras, so its image b = r(g∗) is a Lie subalgebra in g. We will
further assume that g admits an Iwasawa decomposition g = b⊕ k. At the group level, this
means that in a neighborhood of the identity, each element of g admits a unique factorization
g = bk−1 with b ∈ B, k ∈ K.
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Proposition 2.5.2. Under the above assumptions on (G, r̂, σ), the time evolution of the
matrix g(t) under the Hamiltonian flow of H ∈ C(K\G/K) is given for sufficiently small
time t by

g(t) = k−1
+ (t)g0k−(t) (2.5.5)

where the matrices k±(t) are solutions of the following factorization problems in G:

exp
(
tJ(∇±H(g0))

)
= b(t)k−1

± (t)

Proof. For brevity, let us denote Q± = J(∇±H(g0)). By the Iwasawa decomposition, for
sufficiently small time we have a unique factorization

etQ± = b(t)k−1
± (t)

where b(t) ∈ B, k±(t) ∈ K. Differentiating with respect to time shows that

b−1ḃ− k−1
± k̇± = k−1

± Qk±

Now set g(t) = k−1
+ (t)g0k−(t). By the bi-invariance of H and the Ad-invariance of J , we

have

k−1
± (t)Qk±(t) = J

(
∇±g(t)H

)
= r

(
∇±g(t)H

)
− r̂

(
∇±g(t)H

)
But by the Iwasawa decomposition at the Lie algebra level this implies

k−1
± k̇± = r̂

(
∇±g(t)H

)
and by comparison with the equation of motion (2.5.1) the result follows.

Corollary 2.5.3. Under the above assumptions on (G, r̂, σ), the isospectral evolution of
the reflection monodromy matrix under the Hamiltonian flow of H ∈ C(K\G/K) is given
explicitly by

T (t) = k−1
+ (t)T0k+(t) (2.5.6)

In particular, it follows that all spectral invariants of the reflection monodromy matrix
are conserved quantities for the reflection Hamiltonians.

2.6 Finite dimensional examples

We will now show how our construction may be applied to split real semisimple Lie algebras.
For simplicity, we will focus on the case of type An, when g = sln+1(R).
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Let us choose a triangular decomposition g = n− ⊕ h ⊕ n+, and a system of Chevalley
generators {Ei, Fi, Hi} . We denote the set of positive roots by ∆+. The standard Lie
bialgebra structure on g is defined by

δ(Hi) = 0, δ(Ei) = Ei ∧Hi, δ(Fi) = Fi ∧Hi, (2.6.1)

or equivalently by the r-matrix

r =
∑
α∈∆+

Eα ∧ Fα

The Cartan involution on g is the Lie algebra automorphism θ defined by

θ(Hi) = −Hi, θ(Ei) = −Fi, θ(Fi) = −Ei

This involution gives rise to a decomposition g = k⊕ p into its ±1 eigenspaces known as the
Cartan decomposition. The fixed point set k = son(R) is a Lie subalgebra in g, the anti-fixed
point set p consisting of traceless symmetric matrices is a k-module.

Proposition 2.6.1. The pair (r, θ) is a solution of the classical reflection equation.

From this (or by inspection of the formulas for the cobracket), it follows that k is a coideal
Lie subalgebra in g. Note also that k does not satisfy δ(k) ⊂ k⊗ k, so K is not a Poisson-Lie
subgroup in G.

Denote by A,B the analytic subgroups of G with Lie algebras h, b = h⊕n respectively. By
virtue (see [29]) of the Iwasawa decomposition G = BK, we may identify the homogeneous
space G/K with B. Observe that B ⊂ G is a Poisson submanifold.

Proposition 2.6.2. The Poisson structure on G/K coincides with the Poisson structure on
B coming from its inclusion into G.

Proof. Let π : G → G/K ' B be the projection with respect to Iwasawa decomposition,
and ι : G/K ' B → G be inclusion. We must show that ι is Poisson, where B ' G/K is
equipped with the quotient Poisson structure. For b ∈ B, we calculate ι⊗2

∗
(
ηG/K(bK)

)
. By

definition of the quotient Poisson structure and the chain rule, we have

ι⊗2
∗
(
ηG/K(bK)

)
= ι⊗2
∗ π

⊗2
∗ (ηG(b))

= (ι ◦ π)⊗2
∗ (ηG(b))

Since B ⊂ G is Poisson, ηG(b) ⊂ TB ⊗ TB. Moreover, we have (ι ◦ π)|B = idB. Hence

(ι ◦ π)⊗2
∗ (ηG(b)) = ηG(b)

which shows that ι is Poisson.
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Remark 2.6.3. Recall [29] that we also have the global Cartan decomposition G = PK: any
element of g may be uniquely factored g = pk, where k ∈ SOn and p is a symmetric positive
definite matrix. This shows that we may also identify G/K with the space P of symmetric
positive definite matrices. The element p in the factorization of g is essentially the reflection
monodromy matrix, since it may be explicitly computed as p2 = ggT = gθ(g−1).

By the so-called KAK decomposition (see again [29]) , the reflection Hamiltonians may
be regarded as functions on K\G/K ' A, where A is the n-dimensional Cartan subgroup of
unit determinant diagonal matrices. Thus in order to describe integrable systems on G/K,
we must identify symplectic leaves of dimension 2n. Recall [61], [67] that the double Bruhat
cells Gu,v are A-invariant Poisson subvarieties of G. Consider the 2n-dimensional double
Bruhat cell Gc,1 ⊂ B where c is the Coxeter element c = sn · · · s1 in the symmetric group
Sn+1.

Proposition 2.6.4. The double Bruhat cell Gc,1 is mapped isomorphically under the quotient
projection to a symplectic manifold Mc ⊂ G/K of dimension 2n, to and the restriction of
C(K\G/K) to Mc defines an integrable system.

Indeed, Gc,1 consists of all upper triangular matrices X with positive diagonal entries
and with all entries of distance > 1 from the diagonal equal to zero. If we write

ak = Xkk, k = 1, . . . , n+ 1, bk = Xk,k+1,

the non-zero Poisson brackets of coordinates are given by

{ak, bk} = akbk, {ak+1, bk} = −ak+1bk

The coordinates (ak, bk) can be expressed in terms of canonically conjugate coordinates
{pk, qk} = 1, k = 1, . . . n by

ak = eqk−1−qk , bk = epk , k = 1, . . . , n

where we understand q0 = qn+1 = 0. The reflection monodromy matrix takes the symmetric
tridiagonal form

T =



a2
1 + b2

1 b1a2 0 0 0 0
b1a2 a2

2 + b2
2 b2a3 0 0 0

0 b2a3 a2
3 + b2

3 b3a4 0 0
. . .

. . .

0 0 0 bn−1an a2
n + b2

n bnan+1

0 0 0 0 bnan+1 a2
n+1
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Its trace is the quadratic local Hamiltonian

tr T =
n+1∑
k=1

e2(qk−1−qk) +
n∑
k=1

e2pk

This system essentially coincides with the open Coxeter-Toda system with phase space
Gc,c−1

/A [27]. Explicitly, Gc,c−1
/A consists of the unit determinant tridiagonal matrices, mod-

ulo conjugation by diagonal matrices, where we equip SLn+1(R) with the Poisson structure
defined by the scaled r-matrix 2r. Then under this normalization, the map

Mc → Gc,c−1

/A, T 7→ [T ] ∈ SLn+1/A

is Poisson, and carries open Coxeter-Toda Hamiltonians to reflection Hamiltonians. Hence,
our construction gives a “symmetric” Lax representation of the open Coxeter-Toda system.
This result is a non-linear analog of the fact that the phase space of the non-relativistic open
Toda chain with its linear Poisson structure may be realized in two ways: either as lower
Hessenberg matrices, or as symmetric tridiagonal matrices, see [55] and [28].

One may also restrict the reflection Hamiltonians to the 2n-dimensional symplectic leaves
of the double Bruhat cells Gc,c, although we have been unable to identify the integrable
systems obtained in this fashion with those in the existing literature.

Remark 2.6.5. Although the restriction of the reflection Hamiltonians to symplectic leaves
of dimension greater than 2n cannot yield an integrable system, the explicit solution of the
equations of motion in terms of the factorization problem inG given in Section 6 remains valid
on such leaves. This leads us to suspect that such systems may be degenerately integrable, as
their AdG-invariant counterparts were shown to be in [46]. We leave the detailed investigation
of this subject for a future work.

2.7 Classical XXZ spin chain with reflecting

boundaries

We will now apply our general scheme to the case of the formal loop algebra Lsl2 = sl2⊗C[z±1].
In doing so, we shall recover the semiclassical limit of Sklyanin’s XXZ model with reflecting
boundary conditions [57]. Let

E =

[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
be the usual root basis of g = sl2. The infinite dimensional Lie algebra Lg has a basis
{x[n] = x ⊗ zn |x ∈ {E,H, F}, n ∈ Z}. It admits several pseudo-triangular Lie bialgebra
structures [17], the one of interest to us being determined by the (trigonometric) r-matrix
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r(z, w) =
z2 + w2

z2 − w2

(
H ⊗H

2

)
+

2zw

z2 − w2
(E ⊗ F + F ⊗ E) (2.7.1)

Here we regard Lsl2 ⊗ Lsl2 ' (g ⊗ g)[z±1, w±1] as being embedded in the larger space
(g ⊗ g)(z, w) of g ⊗ g-valued rational functions of z and w. The cobracket is given by the
formula

δ(x)(z, w) =
(
adx(z)⊗1 + 1⊗ adx(w)

)
r(z, w)

Setting r12(z/w) = r(z, w), we obtain a solution of the classical Yang-Baxter equation in
(g⊗ g)(z, w) with multiplicative spectral parameter:

[r12(z), r13(zw)] + [r12(z), r23(w)] + [r13(zw), r23(w)] = 0

Observe that r(z) satisfies the ‘unitarity’ condition

r12(z−1) = −r12(z)

Now let ρ : sl2 → End(C2) be the vector representation of sl2, and consider evaluation
representations ρz = C2 ⊗ C[z±1], ρw = C2 ⊗ C[w±1]. Again, we embed ρz ⊗ ρw inside
(C2 ⊗ C2)(z, w). Then the image of r(z, w) is

r(z, w) =
1

2(z2 − w2)


z2 + w2 0 0 0

0 −(z2 + w2) 4zw 0
0 4zw −(z2 + w2) 0
0 0 0 z2 + w2


The classical monodromy matrix T (z) is defined as the matrix elements of LSL2 in the

evaluation representation ρz. Poisson brackets of its elements are given by

{T1(z), T2(w)} = [r12(z, w), T1(z)T2(w)] (2.7.2)

The loop algebra Lsl2 has an involution θ defined by (θx)(z) = x(z−1) for x(z) ∈ Lsl2.
Conjugation by any element of the loop group LGL2 also defines an automorphism of Lsl2.
Let us define a one-parameter family of loop group elements h(z; ξ) by

h(z; ξ) =

(
1 0
0 ξz−1 − zξ−1

)
and consider the composite automorphism σξ = Adh(z;ξ) ◦θ ◦ Adh−1(z;ξ). Note that setting
ξ = i recovers σi = θ.

Proposition 2.7.1. We have

(σξ ⊗ σξ)r(z, w) + r(z, w)− (σξ ⊗ 1 + 1⊗ σξ)r(z, w) = 0 (2.7.3)

so that σξ defines a one-parameter family of solutions of the classical reflection equation.
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Introducing

K(z; ξ) = h(z; ξ)h−1(z−1; ξ) =

(
1 0

0 ξz−1−ξ−1z
ξz−z−1ξ−1

)
equation (2.7.3) may be written more explicitly as

r12(z/w)K1(z)K2(w) +K1(z)r12(zw)K2(w)

= K2(w)r12(zw)K1(z) +K2(w)K1(z)r12(z/w)

where we for brevity we have suppressed in our notation the ξ-dependence of the matrix
K(z).

Remark 2.7.2. This latter formula can be recognized as the semiclassical limit of Sklyanin’s
quantum reflection equation [57]

R12(z1/z2)K1(z1)R12(z1z2)K2(z2) = K2(z2)R12(z1z2)K1(z1)R12(z1/z2)

where the quantum R-matrix

R(z) =


1 0 0 0
0 b(z) c(z) 0
0 c(z) b(z) 0
0 0 0 1

 for b(z) =
z − z−1

qz − q−1z−1
, c(z) =

q − q−1

qz − q−1z−1

is related to r(z) by

f(z)R(z) = 1 + hr(z) +O(h2), q = eh, h→ 0

where

f(z) =
q1/2z − q−1/2z−1

z − z−1

By virtue of Proposition 2.7.1, we may perform the twisting outlined in section 5. If
ξ+, ξ− are complex numbers, we shall twist on the left by Adh(z;ξ−1

+ ), and on the right by

Adh(z;ξ−). The corresponding twisted (right) reflection monodromy matrix is

T (z) = T (z)K−(z)T−1(z−1)

A simple calculation along the lines of the proof of formula (2.3.4) shows that

{T1(z)⊗ T2(w)} = [r12(z/w), T1(z)T2(w)]

+ T1(z)r12(zw)T2(w)− T2(w)r12(zw)T1(z)

which coincides with the formula given in Sklyanin’s original paper [57].
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In order to describe particular finite dimensional systems, we must identify symplec-
tic leaves in LSL2. The leaves we will consider can be described in terms of (SL2)∗, the
Poisson-Lie group dual to SL2 with its standard Poisson structure. Explicitly, we have
C[SL∗2] ' C[e, f, k±1] with the Poisson brackets

{k, e} = ke

{k, f} = −kf
{e, f} = 2(k2 − k−2)

The function ω = k2 + k−2 + ef is a Casimir element of the Poisson algebra C[SL∗2], and it
is thus constant on symplectic leaves. We shall parameterize its value by ω = t2 + t−2. The
generic level set ωt is a two-dimensional symplectic leaf Σt in SL∗2.

One can check that the Local Lax matrix

L(z) =

(
zk − z−1k−1 e

f zk−1 − z−1k

)
(2.7.4)

satisfies {L1(z), L2(w)} = [r12(z/w), L1(z)L2(w)]. Hence the mapping

T (z) = L1(z) · · ·LN(z)

defines a Poisson embedding of the 2N -dimensional symplectic manifold Σt1×· · ·×ΣtN into
LSL2.

Let us conclude by deriving the local Hamiltonian of the homogeneous chain where
ωi ≡ ω = t2 + t−2, using the technique explained in [47] and references therein. Note
that since

detL(z) = z2 + z−2 − ω

when z = t±1 the Lax matrix degenerates into the projector

L(t) = α⊗ βT

for

α =

(
1

(tk−1 − t−1k)/e

)
, β =

(
tk − t−1k−1

e

)
We also have the identity

L(z)L(z−1) = − detL(z)Id

To describe the local Hamiltonian of the chain, we introduce the regularized reflection mon-
odromy matrix

S(z) =
(
(−1)N detT (z)

)
T (z) = L1(z) · · ·LN(z)K−(z)LN(z) · · ·L1(z)
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One then computes

tr S(t)K+(z) = (K−(t)αN , βN)(β1, K+(t)α1)
N−1∏
n=1

(βn, αn+1)(βn+1, αn)

But

(βn, αn+1)(βn+1, αn) = tr (Ln(t)Ln+1(t))

= enfn+1 + fn+1en + ω(knkn+1 + k−1
n k−1

n+1)− 2(knk
−1
n+1 + kn+1k

−1
n )

and
(K±(t)αn, βn) = const.× (ξ±kn − ξ−1

± k−1
n )

Hence setting

Hn,n+1 = log
(
enfn+1 + en+1fn + ω(knkn+1 + k−1

n k−1
n+1)− 2(knk

−1
n+1 + kn+1k

−1
n )
)

H0 = log(ξ+k1 − ξ−1
+ k−1

1 ), HN = log(ξ−kN − ξ−1
− k−1

N )

we obtain the local reflection Hamiltonian

H = H0 +
N−1∑
n=1

Hn,n+1 +HN .

2.8 Algebraic integrability of the XXZ model with

reflecting boundaries: preliminaries

We now proceed towards our goal of establishing the algebraic integrability of the XXZ
model with reflecting boundary conditions. Let us begin by making a few further general
remarks on the model that will prove useful in the sequel.

Firstly, we observe that the local Lax matrix (2.7.4) satisfies satisfies

detL(z) = z2 + z−2 − ω (2.8.1)

as well as the identities

L(z)L(z−1) = − detL(z)Id (2.8.2)

L(z−1)t = −σ2L(z)σ−1
2 (2.8.3)

L(−z) = −σ3L(z)σ−1
3 (2.8.4)

where

σ2 =

(
0 −1
1 0

)
, σ3 =

(
1 0
0 −1

)
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are the Pauli matrices. From the symmetries (2.8.2) of L(z), it follows that the reflection
monodromy matrix T (z) satisfies

T (−z) = σ3T (z)σ−1
3 (2.8.5)

T (z−1)t = −σ2T (z)σ−1
2 (2.8.6)

Later, we will need the following explicit formulae for the Poisson brackets of matrix elements
of T (z):

{A(z1), A(z2)} =
2

z1z2 − z−1
1 z−1

2

(
B(z1)C(z2)− C(z1)B(z2)

)
(2.8.7)

{C(z1), A(z2)} =
2z1

(z2
2 − z2

1)(z2
1z

2
2 − 1)

(
z1z

4
2C(z1)A(z2)− z2

1z
3
2A(z1)C(z2)− (2.8.8)

z2
1z2D(z1)C(z2) + z3

2D(z1)C(z2)− z1C(z1)A(z2) + z2A(z1)C(z2)

)
Note that unlike in the periodic case, the functions A(z) do not form a Poisson commutative
family.

The reflection transfer matrix is the Laurent polynomial t(z) defined by

t(z) =
1

2
tr T (z)

Proposition 2.8.1. ([57],[52]) The reflection transfer matrix satisfies

{t(z1), t(z2)} = 0

and thus its coefficients generate a Poisson commutative subalgebra in C[MN ].

Proof. The commutativity of the reflection transfer matrices follows immediately by taking
the trace over C2 ⊗ C2 in formula (2.3.4) for the Poisson bracket of matrix elements of the
reflection monodromy matrix.

Let us describe some properties of the transfer matrix. Firstly, by the symmetries (2.8.2)
of T (z), we have

t(−z) = t(z), t(z−1) = −t(z)

The transfer matrix t(z) therefore a function of the variable w = z2, which admits an
expansion

t(z) =
1

2

(
w + 1

w − 1

)(
PN

(
wN + w−N

2

)
+ PN−1

(
wN−1 + w1−N

2

)
+ · · ·+ P0

)
(2.8.9)

Note also that

t(z) =
A(z)− A(z−1)

2
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with the function A(z) taking the form

A(z) =
Pz2N+1 + · · · − P−1z−2N−1

z − z−1

where the leading coefficient

P = ξ−

N∏
j=1

k2
j

is proportional to the deformed total σz-component of spin. The leading coefficient of the
transfer matrix is

PN
2

= ξ−

N∏
j=1

(kj)
2 − ξ−1

−

N∏
j=1

(kj)
−2

= P − P−1

The following lemma, giving a linear relation between the reflection Hamiltonians, is a simple
consequence of formulas (2.8.1) and (2.8.2).

Lemma 2.8.2. The reflection transfer matrix t(z) satisfies

lim
z→1

(z − z−1)t(z) =
N∑
j=0

Pj =
(
ξ− − ξ−1

−
) N∏
k=1

(ωk − a2
k − a−2

k )

We also have the following proposition, which shows that the functions (P1, . . . , PN) form
a set of N functionally independent Hamiltonians.

Proposition 2.8.3. For generic values of the constants ξ, ωi, ai, the reflection Hamiltonians
P1, . . . , PN are functionally independent.

Proof. Since the functional independence is an open condition, it suffices to consider the
case ξ = ai ≡ 1. We will prove the stronger statement that the P1, . . . , PN remain in-
dependent when restricted to the N -dimensional subvariety of phase space cut out by
{fj = 0|j = 1, . . . , N}. On this locus, the local Lax operators become upper triangular,
so the reflection monodromy matrix becomes

t(z) =

(
z + z−1

z − z−1

)( N∏
j=1

(zkj − z−1k−1
j )2 +

N∏
j=1

(zk−1
j − z−1kj)

2

)

Note that the reflection Hamiltonians Pj are functions of the variables k̃j = k2
j : explicitly,

for 1 ≤ j ≤ N , we have

Pj =
∑

ri∈{0,±1},r1+···+rk=j

( N∏
i=1

(−2)δri,0(k̃rii + k̃−rii )

)
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To verify their algebraic independence, it suffices to check that the Jacobian J(k̃) = det

[
∂Pi
∂k̃j

]
is not identically zero. Indeed, by counting degrees one sees that the Laurent monomial
kN−1

1 kN−2
2 · · · kN−1 can only be obtained from the diagonal term in the expansion of the

determinant J(k̃), where it appears with coefficient (−2)N(N+1)/2.

This proposition shows that the classical XXZ spin chain with reflecting boundary con-
ditions is an integrable system. Note that the reflection Hamiltonians can be written

Pk = 22−δk,0Resz=0

(
z − z−1

z + z−1

)
z−2k−1t(z)dz

Let us now write down the equations of motion generated by the Pk. For this we need to
introduce some notations. Given any Laurent polynomial

f(z) =
∑
n∈Z

anz
n ∈ C[z, z−1]

we may uniquely decompose f as
f = fσ + f+

where fσ satisfies fσ(z) = fσ(z−1) and f+ ∈ zC[z]. Let us also introduce the matrices

Mσ
k (z) = 22−δk,0

((
z − z−1

z + z−1

)
z−2kT (z)

)σ

M+
k (z) = 21−δk,0

((
z − z−1

z + z−1

)
z−2kT (z)

)+

Taking the trace over the first space in equation (2.3.4), we find that the equations of motion
take the following Lax form:

∂

∂tk
T (z) := {T (z), Pk} = [T (z),Mσ

k (z)] (2.8.10)

=
[
M+

k (z), T (z)
]

(2.8.11)

We therefore obtain the following corollary, which opens the door to studying the system
using the algebro-geometric techniques explained in [66],[45],[33],[48] and references therein.

Corollary 2.8.4. The spectrum of the reflection monodromy matrix T (z) is preserved under
the Hamiltonian flows of the reflection Hamiltonians. In particular, the coefficients of the
characteristic polynomial det (ζ − T (z)) are invariant under these flows.
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2.9 Spectral curves

Motivated by Corollary 2.8.4, we consider the invariant spectral curve

M : det (ζ − T (z)) = 0 (2.9.1)

cut out of C×C∗ by the characteristic polynomial of the reflection monodromy matrix T (z).
More precisely, we shall work with the compact Riemann surface obtained by adding four
points at infinity, two points over z = 0 and another two points over z =∞. In what follows,
we will use the notation M to refer to this compact Riemann surface. Introducing

y = ζ − t(z) (2.9.2)

we have
y2 = t(z)2 − det T (z)

By (2.8.1), the coefficients of det T (z) are constant on a symplectic leaf, so that all degrees
of freedom for the moduli of M are in fact encoded by the transfer matrix t(z) and its
coefficients {Pj}.

Let us introduce the notations λ = z2 + z−2 and

Q(z) = t(z)2 − det T (z)

Lemma 2.9.1. We have Q(z) = Q2N(λ) where Q2N(λ) is a polynomial of degree 2N in λ.

This fact has the following geometric meaning. Firstly, the curve M is a 4-fold cover of
a genus N − 1 hyperelliptic curve

Γ : y2 −Q2N(λ) = 0

and a 2-fold cover of the intermediate genus 2N − 1 spectral curve

Σ : y2 − Q̃(w) = 0

where w = z2 and Q(z) = Q̃(w) = Q2N(λ). The projection π : Σ → Γ is given by
λ = w + w−1. Note that Γ = Σ/τ , where τ : Σ→ Σ is the involution τ(w, y) = (w−1, y).

We now turn to the description of the holomorphic differentials on the various spectral
curves. The space H0(Σ, K) of holomorphic differentials on Σ has dimension g(Σ) = 2N−1.
We may decompose H0(Σ, K) into its ±1 eigenspaces V± with respect to the induced action
of the involution τ . Bases may be chosen as

V+ = span

{
ω+
j =

(w − w−1)(wj + w−j)

yw
dw

∣∣∣∣ 0 ≤ j ≤ N − 2

}
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V− = span

{
ω−k =

(wk + w−k)

yw
dw

∣∣∣∣ 0 ≤ k ≤ N − 1

}
The subspace V+ coincides with π∗H0(Γ, K), and its elements may be regarded as holomor-
phic differentials on Γ. The following basis for V+ will prove well adapted to the description
of the flows of our chosen basis of reflection Hamiltonians Pj:

Ωj =

(
w + 1

w − 1

)
(wj + w−j − 2)

8yw
dw , 1 ≤ j ≤ N − 1

We will also need the following differential of the third kind

ΩN = −(P + P−1)

(
w + 1

w − 1

)
(wN + w−N − 2)

2yw
dw

which has simple poles at the two points∞± lying over λ =∞ and is regular elsewhere. We
shall label the points ∞± by

(λ−Ny)(∞±) = ±
(
P + P−1

2

)
Observe that ΩN is defined so as to have the normalization

Res∞+ΩN = 1 = −Res∞−ΩN

2.10 Separation of variables

The next step in our analysis of the model is to find a system of local Darboux coordinates
on the symplectic manifold MN . To do this, we apply Sklyanin’s method of (classical)
separation of variables, as explained in [59].

From the symmetries (2.8.2) of T (z), we have that

A(z−1) = −D(z), C(z−1) = C(z) (2.10.1)

C(−z) = −C(z), A(−z) = A(z) (2.10.2)

In view of the symmetries of C(z), it is natural to consider

C̃(z) =
C(z)

z + z−1

which satisfies
C̃(z−1) = C̃(z), C̃(−z) = C̃(z)
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and is therefore a function of λ. In fact, C̃(λ) is a polynomial of degree N − 1, and following
Sklyanin [59], we may introduce coordinates (λ1, . . . , λN−1, Q) as its zeros and asymptotic
as λ→∞:

C̃(z) = Q

N−1∏
k=1

(λ− λk) (2.10.3)

Note that in order to obtain a well defined set of coordinates in this fashion one must specify
a locally consistent ordering of the roots λj. However, the angle coordinates constructed
in Section 5 will turn out to be independent of this choice of ordering. Note also that the
leading coefficient Q is given by

Q =
N∑
j=1

fj

(
(kj/aj)

∏
i>j

k2
i ξ− − (kj/aj)

−1
∏
i>j

k−2
i ξ−1
−

)
We also introduce the corresponding multi-valued w-coordinates

wj + w−1
j = λj

Observe that since when C(z) vanishes the reflection monodromy matrix becomes upper
triangular, the points (w, ζ) = (wj, A(z±1

j )) where z2
j = wj lie on the curve Σ, and the points

(λ, ζ) = (λj, A(z±1
j )) lie on the curve Γ.

Let us fix a particular branch of the equation w+w−1 = λ to give us a locally defined set
of functions w1, . . . , wN−1. Again, the angle coordinates we construct will be independent of
this choice. We may then introduce a further (N − 1) local coordinates

ζk = A(wk) (2.10.4)

In terms of the function y defined by (2.9.2), we have

yj := ζj − t(zj) =
A(zj)−D(zj)

2

which by (2.10.1) is independent of our choice of branch of w.

We now have the following proposition, which is proved by direct calculation using for-
mulae (2.8.7) for the Poisson brackets of reflection monodromy matrix elements.

Proposition 2.10.1. The coordinates (Q,w1, . . . , wN−1 ; P, ζ1, . . . , ζN−1) are log-canonical:
we have

{wk, ζj} = 2δj,kwjζk, {Q,P} = 2QP (2.10.5)

and the Poisson brackets of all other pairs of coordinates are zero.

To summarize, we obtain a system of log-canonical coordinates consisting of the asymp-
totics Q,P of C̃(λ), A(z) respectively, together with a degree (N−1) divisor (w, ζ) = (wk, ζk)
on Σ which projects onto the zero locus of the polynomial C̃(λ).
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2.11 Linearization of flows and algebraic integrability.

In this section we explain how to construct affine coordinates on the Liouville tori in MN

cut out by the reflection Hamiltonians {Pj}, with respect to which the Hamiltonian flows
of the Pj correspond to linear motion with constant velocity. To do this, we will use the
Hamilton-Jacobi method; for further details, see [8],[45],[33] and references therein.

The first step is to use the log-canonical coordinates constructed in the previous section
to write down a local expression for a primitive α for the symplectic form on MN . We find

α =
logP

2Q
dQ+

1

2

∑
k

log(ζk)
dwk
wk

(2.11.1)

We must now restrict α to the level sets of the reflection Hamiltonians Pj and integrate
in order to form the Hamilton-Jacobi action. The final step consists of differentiating with
respect to the invariants Pj to obtain the canonically conjugate angle variables Fj. The
action is given by

S(Q, λ1, · · · , λN−1, P1, . . . , PN) =
(logP )(logQ)

2
+

1

2

N−1∑
k=1

∫ wk

w0

log(ζ)
dw

w

where the integral is understood as being taken on the spectral curve Σ. We therefore find

Fj =
∂S

∂Pj
=



N−1∑
k=1

∫ λk

λ0

Ω+
j 1 ≤ j ≤ N − 1

log(Q)

4(P + P−1)
− 1

4(P + P−1)

N−1∑
k=1

∫ λk

λ0

ΩN j = N

(2.11.2)

where we may now regard the integrals as being taken on the genus N − 1 curve Γ. The
symplectic form being written as

ω =
N∑
k=1

dFk ∧ dPk

the time evolution under the reflection flows becomes linear in these coordinates:

Fj(tk) = Fj(0) + tkδjk

Note that the coordinates F1, . . . , FN−1 coincide with the Abel map applied to the degree
g(Γ) = N − 1 divisor

D = p1 + · · ·+ pN−1

on Γ, where we write pj for the point (λ, y) = (λj, yj). Hence the reflection flow is linearized
on the Jac(Γ), the Jacobian variety of Γ, which establishes the algebraic integrability of the
system.
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2.12 Action-angle variables

In this section we explain how to construct complex action-angle variables for the system.
Let us choose a canonical basis

(A1, . . . , AN−1, B1, . . . , BN−1)

for H1(Γ0,Z), where Γ0 is some fixed spectral curve. By Gauss-Manin, this choice of basis
has a well defined propagation to a canonical homology basis for all nearby spectral curves
Γ. We will also need to introduce γ := AN , a contractible loop on Σ winding once around
the point ∞+.

In order to define the action-angle variables, we must choose a lifting of A1, . . . , AN to
homology classes Ã1, . . . , ÃN on the curve Σc obtained by deleting slits between the branch
points of the multi-valued function log(ζ) on Σ. On the cut Riemann surface Σc, we have a
well-defined meromorphic differential

η = log(ζ)
dw

w
(2.12.1)

Then the action variables J1, . . . , JN are defined as the A-periods of the differential η:

Jk =

∮
Ak

η, 1 ≤ k ≤ N (2.12.2)

A priori, this definition of the action variables depends on our choice of lifting of the homology
classes Ai. However, the following proposition shows that this dependence is of a tame nature.

Proposition 2.12.1. Let {Jk}, {J ′k} be two sets of coordinates defined by formula (2.12.2)
for two different choices of sets of lifts {Ãk}, {Ã′k} of the homology classes {[Ak]} ⊂ H1(Γ,Z),
having the same winding numbers around ∞+. Then each difference Jk − J ′k is a constant
function on M , and the map

(P1, . . . , PN) 7−→ (J1, . . . , JN) (2.12.3)

is a change of coordinates.

Proof. Let us first show that (2.12.3) is a change of coordinates. For this, note that

∂Ji
∂Pk

=

∮
Ai

Ωk (2.12.4)

Since the pairing between H0(Γ, K) and the span of the A-cycles is perfect, and ΩN is the
only differential of the Ωj with nonzero residue at ∞+, it follows that the Jacobian matrix
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of (2.12.3) is of full rank, which shows that (2.12.3) is a change of coordinates. Now to prove
the first assertion of proposition amounts to showing that

{Fk, (Ji − J ′i)} =
∂

∂Pk
(Ji − J ′i) = 0

for all j, k. But since the differentials Ω1, . . . ,ΩN−1 are well defined meromorphic differentials
on Γ, and by definition AN , A

′
N have the same winding number around ∞+, we have

∂Ji
∂Pk

=

∮
Ai

Ωk =

∮
A′i

Ωk =
∂J ′i
∂Pk

Let us also note that , again up to a shift by an additive constant, the action variable
JN is given by JN = 2πi logP .

With these results in hand we can proceed to the construction of the angle variables ωk
as the coordinates canonically conjugate to the Jk by the Hamilton-Jacobi method:

ωk =
∂S

∂Jk
(2.12.5)

Note that these coordinates are independent of our choices of representative for the homol-
ogy classes Ak, and the differentials dωk are τ -invariant and thus descend to the curve Γ.
Moreover, for 1 ≤ k ≤ N − 1 we have∮

Ai

dωk =
∂

∂Jk

∮
Ai

dS

=
∂

∂Jk

∮
Ai

(∑
r

prdqr + FrdPr

)
=

∂

∂Jk

∮
Ai

α

= δik

which shows that the angle variables are indeed normalized correctly with respect to the
A-cycles of Γ, and that all A-periods of the differential dωN vanish. Note that if p ∈ {∞±},
and γp is a contractible loop in Γ with winding number 1 around p, we also have∮

γp

dωk =
∂

∂Jk

∮
γp

dS

=
∂

∂Jk

∮
γp

η

= ±δkN
which shows that the differentials dω1, . . . , dωN−1 are holomorphic, and that

Res∞+dωN = 1 = −Res∞−dωN .
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2.13 Solutions in theta functions

We will now apply the geometric description of the system given in the previous sections
to write explicit formulas for the flows of the reflection Hamiltonians using Riemann theta
functions.

Let (Ai, Bi) be the canonical homology basis and {dwj} be the normalized abelian dif-
ferentials constructed in the previous section. The matrix of b-periods corresponding to this
data is the (N − 1)× (N − 1) symmetric matrix

Bjk =

∮
Bj

dωk, 1 ≤ j, j ≤ N − 1

This matrix gives the rise to the model

Jac(Γ) = CN−1/(ZN−1 + BZN−1)

for the Jacobian of Γ. Expanding dωj =
∑

kNjkΩk where Njk ∈ C, we define the normalized
angle variables

F̃j =
∑
k

NjkFk, j = 1, . . . , N − 1

F̃N = 4(P + P−1)

(
N∑
k=1

NjkFk

)
Note that NjN = 0 for j = 1, . . . , N − 1 and NNN = 1 so that we have

F̃N = logQ−
N−1∑
k=1

∫ λk

λ0

dωN

In these coordinates the time evolution takes the form

F̃i(tk) = F̃i(0) + tkNik, i = 1, . . . , N − 1 (2.13.1)

F̃N(tk) = F̃N(0) + cktk (2.13.2)

where ck = 4(P + P−1)NNk. If we define the normalized Abel map with base point p0

Aj(p1 + . . .+ pN−1) =
N−1∑
k=1

∫ pk

p0

dωj (2.13.3)

we have
A(D(t)) = A(D(0)) + tkU

(k)
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where the velocity vector U (k) is given by

U
(k)
j = Njk

and
F̃N(t) = F̃N(0) + cktk.

Let us now recall some background on theta functions. For a more detailed discussion of
this subject, see [66] and references therein. The Riemann theta function associated to the
spectral curve Γ and its matrix of b-periods B is the following holomorphic function on CN−1:

θ(z) =
∑

m∈ZN−1

e2πi(m,z)+πi(Bm,m) (2.13.4)

The theta function is automorphic with respect to the lattice of periods of Γ: if n ∈ ZN−1,
we have

θ(z + n) = θ(z)

θ(z + Bn) = exp (−2πi(n, z)− πi(Bn, n)) θ(z) (2.13.5)

From these formulas, it follows that the divisor Θ of θ(z) is a well defined analytic subset
of the Jacobian Jac(Γ). Let us fix a so-called odd non-singular point e ∈ Θ ⊂ CN−1 of the

theta divisor. Then the third kind differential Ω̃N can be expressed in terms of the odd theta
function θe(z) := θ(z + e) as

Ω̃N(p) = d log

(
θe(
∫ p
∞+

ω)

θe(
∫ p
∞− ω)

)
where we use the shorthand notation∫ p

q

ω = A(p)−A(q)

Hence from our formula (2.13.2) for the time evolution of F̃N , we obtain the following expres-
sion for the time evolution of the observable Q under the Hamiltonian flow of the reflection
Hamiltonian Pk:

Q(tk) = Q(0)ecktk
N−1∏
j=1

θe(
∫∞+

pj(tk)
ω)θe(

∫∞−
pj(0)

ω)

θe(
∫∞+

pj(0)
ω)θe(

∫∞−
pj(tk)

ω)
(2.13.6)

However this formula is of limited practical value, in that it requires knowledge of the points
pk(t) for all times t, whereas all we know explicitly is the (linear) time evolution of A(D(t)).
We may remedy this defect as follows. Let K denote the Riemann point for the based Abel
map (2.13.3). Consider two non-special effective degree g = N − 1 divisors

D = p1 + · · ·+ pg, D′ = q1 + · · ·+ qg
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and form the meromorphic function

m(p) =

g∏
j=1

θe(
∫ p
pj
ω)

θe(
∫ p
qj
ω)
· θ(A(p)−A(D′)−K)

θ(A(p)−A(D)−K)

which must be constant since it has no poles. We therefore obtain, for any point q on the
curve,

g∏
j=1

θe(
∫ p
pj
ω)θe(

∫ q
qj
ω)

θe(
∫ p
qj
ω)θe(

∫ q
pj
ω)

=
θ(A(p)−A(D)−K)

θ(A(p)−A(D′)−K)

θ(A(q)−A(D′)−K)

θ(A(q)−A(D)−K)

Applying this formula to in the case D = p1(t) + · · · + pg(t),D′ = p1(0) + · · · + pg(0),
p =∞+, q =∞−, we find

Q(tk) = Q(0)ecktk
θ(A(∞+)−A(D(t))−K)

θ(A(∞+)−A(D(0))−K)

θ(A(∞−)−A(D(0))−K)

θ(A(∞−)−A(D(t))−K)

= Q(0)ecktk
θ(A(∞+)−A(D(0))− tkU (k) −K)θ(A(∞−)−A(D(0))−K)

θ(A(∞−)−A(D(0))− tkU (k) −K)θ(A(∞+)−A(D(0))−K)

which is an explicit formula for the time evolution of Q.

We now turn to the problem of reconstructing the full reflection monodromy matrix. For
this, we introduce the following meromorphic function on Γ:

ρ =
Q(z + z−1)

P + P−1
· y + h(λ)

C(z)
(2.13.7)

=
1

P + P−1
· y + h(λ)

(λ+ 2)
∏N−1

k=1 (λ− λk)
(2.13.8)

where we write

h(λ) =
A(z)−D(z)

2
.

The relevance of the function ρ to our problem is that the vector

ψ =

(
1,

(P + P−1)

Q(z + z−1)
· ρ
)t

spans the eigenspace of T (z) corresponding to the given point on the spectral curve. We
have the following proposition characterizing the function ρ.

Proposition 2.13.1. The meromorphic function ρ has exactly N poles, N − 1 of them at
the divisor D, and one at the point q+ = (−2, h(−2)) lying over λ = −2. In addition, ρ has
a zero at ∞−. Its value at ∞+ is

ρ(∞+) = 1
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Proof. The assertion about the pole at q+ follows from the identity

h2(−2) = Q2N(−2) =

(
ξ − ξ−1

4

) N∏
k=1

(ωk + a2
k + a−2

k )2

By the Riemann-Roch theorem there is generically a unique such ρ, which can be written
as

ρ =
θe(
∫ p
∞− ω)θ(A(p)−A(D)−K +W )

θe(
∫ p
q+
ω)θ(A(p)−A(D)−K)

·
θe(
∫∞+

q+
ω)θ(A(∞+)−A(D)−K)

θe(
∫∞+

∞− ω)θ(A(∞+)−A(D)−K +W )

where the vector W is defined as the vector of b-periods of the unique normalized third kind
differential Ω∞−,q+ with residue 1 at ∞− and residue −1 at q+:

Wj =

∮
Bj

Ω∞−,q+

Hence the time evolution of ρ under the flow of the reflection Hamiltonian Pk is given by the
explicit formula

ρ(p, tk) =
θe(
∫ p
∞− ω)θ(A(p)−A(D(0))− tkU (k) −K +W )

θe(
∫ p
q+
ω)θ(A(p)−A(D(0))− tkU (k) −K)

·
θe(
∫∞+

q+
ω)θ(A(∞+)−A(D(0))− tkU (k) −K)

θe(
∫∞+

∞− ω)θ(A(∞+)−A(D(0))− tkU (k) −K +W )

From this we can reconstruct the eigenvector ψ(p) and therefore the full reflection mon-
odromy matrix T (z).



36

Chapter 3

Doubles of Hopf algebras and
quantization of the Grothendieck-
Springer resolution

3.1 Poisson geometry

Preliminaries

Recall that a Poisson-Lie group is a Lie group G with a Poisson structure such that the
multiplication map G×G→ G is a morphism of Poisson varieties. Let G∗ be the (connected,
simply-connected) Poisson-Lie dual of G, and D(G) be the double of G. The Lie algebra
d = Lie(D(G)) can be written as d = g⊕g∗. We will say that there exist local isomorphisms

D(G) ' G×G∗ ' G∗ ×G.

Let us consider a pair of dual bases (xi) and (xi) of the Lie algebras g and g∗ respectively.
Then the element r ∈ d ∧ d defined by

r =
1

2

∑
i

(xi, 0) ∧ (0, xi)

is independent of the choice of bases. Let XR, XL denote respectively the right- and left-
invariant tensor fields on a Lie group, taking the value XR(e) = XL(e) = X at the identity
element of the group. Then the bivectors

π± = rR ± rL

define a pair of Poisson structures on the Lie group D(G). We abbreviate the resulting
Poisson manifolds by D±(G). In fact, D−(G) is a Poisson-Lie group, while D+(G) is only a
Poisson manifold.
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Remark 3.1.1. As a manifold, the group D−(G) is locally isomorphic to D−(G)∗. In general,
however, this is neither an isomorphism of Lie groups, or of Poisson manifolds.

The action of a Poisson-Lie group G on a Poisson variety P is said to be Poisson, if so is
the map G× P → P . Given a Poisson map P → G∗, one can obtain a local Poisson action
G × P → P using the group-valued moment map. Recall that the group-valued moment
map is defined (see [40]) as follows.

Definition 3.1.2. Let π be the Poisson bivector field defining the Poisson structure on
the manifold P . A map µ : P → G∗ is said to be a moment map for the Poisson action
G× P → P , if for every X ∈ g one has

µX =
〈
π, µ∗XR ⊗−

〉
,

where µX is the vector field on P generated by the action µexp(tX).

Remark 3.1.3. A moment map is Poisson, if exists.

Remark 3.1.4. Recall that there are open subsets of factorizable elements G∗ ·G and G ·G∗
in the double D−(G). Hence we may regard G∗ as a submanifold in D−(G)/G, and may
regard the moment map µ in Definition 2.2 as taking values in D−(G)/G or G\D−(G).

The following theorem is well-known (see e.g. [54, 40]).

Proposition 3.1.5. Let G be a Poisson-Lie group, and D±(G) its double with Poisson
bivectors π±. Then

1. the actions of D−(G) on D+(G) by left and right multiplications are Poisson;

2. the moment map for the Poisson action of the subgroup G ⊂ D−(G) on D+(G) by
left (resp. right) multiplication is the natural projection D(G) → D(G)/G (resp.
D(G)→ G\D(G)).

Remark 3.1.6. Let P be the category of Poisson-Lie groups. Consider a Poisson-Lie group
G and its connected, simply-connected Poisson-Lie dual G∗. Then the assignment G → G∗

defines a functor P → Pop. Therefore, any Poisson-Lie subgroup H ⊂ G induces a map
p : G∗ → H∗. Now consider a Poisson action G×P → P with the moment map µG. It gives
rise to the Poisson action H × P → P with the moment map µH = p ◦ µG.

Double of the double construction

Now, let us start with the Poisson-Lie groupD = D−(G) and consider its doubleD(D) = D(D(G)).
The Lie algebra D = Lie(D(D)) may be written as D = d⊕ d = d∆ ⊕ d∗ where

d∆ = {((x, α), (x, α)) ∈ g⊕ g∗ ⊕ g⊕ g∗}
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is the diagonal embedding of d into d⊕ d and

d∗ = {((y, 0), (0, β)) ∈ g⊕ g∗ ⊕ g⊕ g∗} .

Using the local isomorphism D(D) ' D∆×D∗ we may coordinatize the moment map νr for
the right Poisson action of D∆ ⊂ D−(D) on D+(D) as

νr : D+(D) −→ D∗, (dg, dα) 7−→ α−1g

for any triple of elements g ∈ G, α ∈ G∗, d ∈ D(D(G)). Similarly, using the local iso-
morphism D(D) ' D∗ × D∆ we write the moment map νl for the left Poisson action of
D∆ ⊂ D−(D) on D+(D) as

νl : D+(D) −→ D∗, (gd, αd) 7−→ gα−1.

Hamiltonian reduction

Consider the Poisson action of the subgroup D∆ ⊂ D−(D) on D+(D) by left multiplications
and the Poisson action of G ⊂ D∆ ⊂ D−(D) on D+(D) by right multiplications. Clearly,
the two actions commute, because so do the left and right actions of D−(D). We illustrate
these actions as follows

D∆ y D+(D) x D∆ ⊃ G.

By Remark 3.1.6, the moment map µr for the right action of G is given as

µr : D+(D) −→ (G×D)\D+(D).

The Hamiltonian reduction of D+(D) by the moment map µr becomes

µ−1
r (e)/G∆ = {(dg, d) | d ∈ D, g ∈ G} /G∆.

Therefore, we can identify
µ−1
r (e)/G∆ ' D ×G G,

where D ×G G denotes the set of G-orbits through D ×G under the right action

(D ×G)×G −→ D ×G, ((d, g), h) 7−→ (dh, h−1gh)

with g, h ∈ G and d ∈ D.
On the other hand, since the left and right D∆-actions on D(D) commute, the variety

D ×G G admits the residual D∆-action by left multiplication. The corresponding moment
map is

µl : D ×G G −→ D(D)/D∆.

As explained in Remark 3.1.1, we may use local diffeomorphism of D with D∗ to write a
local expression for the map µl as µl ((q, g)G) = qgq−1 ∈ D.

The following Proposition follows easily from considering Poisson bivectors for the Poisson
varieties under consideration.
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Proposition 3.1.7. There is a local Poisson isomorphism

D+(G) −→ D ×G G, αg 7−→ (α, g)G,

where g ∈ G, α ∈ G∗ and we identify D(G) ' G∗ ×G.

Under this identification, the moment map µl becomes

D+(G) −→ D−(G), αg 7−→ αgα−1. (3.1.1)

3.2 Reminder on Hopf algebras

To fix our notations, we will recall some standard notions from the theory of Hopf algebras.
In what follows, we choose to work in the setting of topological Hopf algebras over the ring
k[[~]] of formal power series over a ground field k. In particular, all tensor products are to
be understood as completed in the ~-adic topology.

Basic notations.

Let A be a topological Hopf algebra over K := k[[~]], with the quadruple (m,∆, ε, S) denoting
the multiplication, comultiplication, counit, and antipode of A respectively. We say that a
pair of topological Hopf algebras A and A∗ form a dual pair if there exists a non-degenerate
Hopf pairing 〈−,−〉 : A⊗ A∗ → K, that is a non-degenerate pairing satisfying

1. 〈ab, x〉 = 〈a⊗ b,∆(x)〉

2. 〈a, xy〉 = 〈∆(a), x⊗ y〉

3. 〈1A,−〉 = εA∗ and 〈−, 1A∗〉 = εA

4. 〈S(a), x〉 = 〈a, S(x)〉

for all a, b ∈ A and x, y ∈ A∗. In fact, condition (4) follows from the other three, see [6,
Section 1.2.5, Proposition 9]. We will also use the notation Aop for the Hopf algebra
(A,mop,∆, S−1), and Acop for the Hopf algebra (A,m,∆op, S−1).

Module algebras.

The category of modules ModA over a Hopf algebra A has a monoidal structure determined
by the coproduct ∆: A→ A⊗ A. We say that M is an A-module algebra if it is an algebra
object in the monoidal category ModA, that is

a · 1M = ε(a)1M and a · (mn) = (a1 ·m)(a2 · n)

for any a ∈ A and m,n ∈M .
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A Hopf algebra A can be naturally regarded as a module algebra over itself using the
adjoint action

ad: A⊗ A −→ A, a⊗ b 7−→ a . b := a1bSa2.

A Hopf algebra A∗ dually paired with A can also be regarded as a module algebra over A
using the left coregular action

coreg : A⊗ A∗ −→ A∗, a⊗ x 7−→ a ⇀ x := 〈a, x2〉x1.

There is also a right coregular action of Aop on A∗, defined by

a⊗ x 7−→ x ↼ a := 〈a, x1〉x2.

The Drinfeld double

Suppose A,A∗ is a dual pair of Hopf algebras. In what follows, we assume that the pairing
〈·, ·〉 is such that a topological basis {ai} for A gives rise to a dual topological basis {xi} in A∗

with the property that 〈ai, xj〉 = δji , and there is a well-defined element
∑

i ai⊗xi ∈ A⊗A∗,
where as usual tensor product is completed in the ~-adic topology. For instance, this hy-
pothesis will be satisfied whenever A and A∗ are a dual pair of QUE-algebras in the sense
of Drinfeld [19], and of course whenever A is finitely generated and projective over k[[~]].

Under the above assumption, there exists a Hopf algebra D(A) called the Drinfeld double
of A, with the following properties:

1. as a coalgebra, D(A) ' (A∗)cop ⊗ A;

2. the maps a 7→ 1⊗ a and x 7→ x⊗ 1 are embeddings of Hopf algebras;

3. let (ai) and (xi) be dual bases for A and A∗ respectively. Then the canonical element

R =
∑
i

(1⊗ ai)⊗ (xi ⊗ 1) ∈ D(A)⊗2,

called the universal R-matrix of the Drinfeld double, satisfies

R∆D(d) = ∆op
D (d)R

for all d ∈ D(A).

From the above properties one derives the following explicit formula for the multiplication
in D(A):

(x⊗ a)(y ⊗ b) = 〈a1, y3〉〈a3, S
−1y1〉xy2 ⊗ a2b. (3.2.1)

It also follows from the definition of the double, that the R-matrix is invertible, with inverse

R−1 = (SD ⊗ id)(R)
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and that the Yang-Baxter equation

R12R13R23 = R23R13R12 ∈ D(A)⊗3

holds in the triple tensor product D(A)⊗3.

Proposition 3.2.1. If A is a Hopf algebra and D(A) its Drinfeld double, the following
formula equips A with the structure of a D(A)-module algebra:

(1⊗ a) · b = a1bSa2

(x⊗ 1) · b = b ↼ S−1x
(3.2.2)

In the action (3.2.2), the Hopf subalgebra A ⊂ D(A) acts adjointly on A, while the Hopf
subalgebra (A∗)cop ⊂ D(A) acts by its right coregular action.

The dual of the Drinfeld double.

In addition to the Drinfeld double, we will also make use of another Hopf algebra T (A) = D(A)∗

dually paired with D(A). As an algebra, we have T (A) ' Aop ⊗ A∗, and the pairing
〈〈·, ·〉〉 : D(A)⊗ T (A)→ k[[~]] is defined by

〈〈x⊗ a, b⊗ y〉〉 = 〈b, x〉〈a, y〉. (3.2.3)

The formula for its comultiplication can be found by dualizing (3.2.1) and reads

∆T (a⊗ x) =
(
a1 ⊗ xrx1x

t
)
⊗
(
S−1ata2ar ⊗ x2

)
∈ T (A)⊗2.

Similarly, the antipode in T (A) can be written as

ST (a⊗ x) = arS
−1(a)S−1(at)⊗ xtS(x)xr.

The Heisenberg double

Given a Hopf algebra A and its module algebra M , one defines their smash-product M#A
as an associative algebra on the vector space M ⊗ A with the multiplication given by

(m#x)(n#y) = m(x1 · n)#y2b

for any elements x, y ∈ A and m,n ∈ M . Recall [41], that the Heisenberg double H(A) of
an associative algebra A is the smash product H(A) = A#A∗ with respect to the coregular
action of A∗ on A. Thus, the multiplication in H(A) is determined by the formula

(a#x)(b#y) = a(x1 ⇀ b)#x2y = 〈x1, b2〉 ab1#x2y
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for any a, b ∈ A and x, y ∈ A∗. Note that one has the following inclusions of algebras

A −→ H(A), a 7→ a#1,

A∗ −→ H(A), x 7→ 1#x.

By construction, the Heisenberg double H(A) acts on A via

(a#x) ·L (b) = a(x ⇀ b) = 〈x, b2〉 ab1 (3.2.4)

In fact, H(A) also acts on A via

(a#x) ·R (b) = (b ↼ S−1x)Sa = 〈x, Sb1〉 b2S
−1a (3.2.5)

The Heisenberg double H(A) has the following well-known properties:

Proposition 3.2.2. [56] The antipode ST of T (A), when regarded as an operator ι : H(A)→ H(A)
via

ι : H(A) −→ H(A), a⊗ x 7−→ arS
−1(a)S−1(at)⊗ xtS(x)xr, (3.2.6)

defines an algebra automorphism of H(A).

Note that the automorphism ι intertwines the two actions 3.2.4, 3.2.5 of H(A) on A.

Corollary 3.2.3. One has the following inclusions of algebras

A −→ H(A), a 7→ ι(a#1) = arS
−1(a)S−1(at)⊗ xtxr,

A∗ −→ H(A), x 7→ ι(1#x) = arS
−1(at)⊗ xtS(x)xr.

Since the actions (A#1, ·L), (A#1, ·R) commute, we have

Proposition 3.2.4. [56] The maps

A⊗ A −→ H(A), a⊗ b 7−→ (a#1)ι(b#1),

A∗ ⊗ A∗ −→ H(A), x⊗ y 7−→ (x#1)ι(1#y)

are homomorphisms of associative algebras.

Quantum Hamiltonian reduction

Let us briefly recall the notion of quantum Hamiltonian reduction. Suppose that A is a Hopf
algebra, V is an associative algebra, µ : A → V is a homomorphism of associative algebras,
and I is a 2-sided ideal in A preserved by the adjoint action of A. Then, by the ad-invariance
of I, the action of A on V defined by the formula

a ◦ v = µ(a1)vµ(Sa2)
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descends to an action of A on the V -module V/µ(I), where we abuse notation and write µ(I)
for the left ideal in V generated by µ(I). The quantum Hamiltonian reduction V//µ(A) of V
by the quantum moment map µ : A→ V at the ideal I is defined as the set of A-invariants

V//µ(A) := (V/V µ(I))A

={a ∈ V/V µ(I) | a ◦ v = ε(a)v for all a ∈ A}

One checks that V//µ(A) inherits a well-defined associative algebra structure from that of
V , such that V//µ(A) is an A-module algebra.

3.3 Construction of the quantum resolution

The double of a double

Suppose that A is a Hopf algebra, and let D(A), T (A), and H(A) be its Drinfeld double,
dual to the Drinfeld double, and the Heisenberg double respectively. Consider the Heisenberg
double

H(T (A)op) = T (A)op#D(A)cop,

of the algebra T (A)op. One has an algebra embedding

µL : D(A) −→ H(T (A)op), u 7→ 1#u ∈ H(T (A)op)

which may be regarded as the quantum moment map for the following D(A)-module algebra
structure on H(T (A)op):

u ◦L (φ#v) = (u3 ⇀ φ)#u2vS
−1
D(A)u1. (3.3.1)

As in Corollary 3.2.3, there exists another algebra embedding defined by

µR : D(A) −→ H(T (A)op), u 7→ ι−1(1#u). (3.3.2)

It generates the following D(A)-module algebra structure on H(T (A)op):

u ◦R (φ#v) = (φ ↼ S−1
D(A)u)#v (3.3.3)

By Proposition 3.2.4, the subalgebras µL(D(A)) and µR(D(A)) commute with each other
in H(T (A)op). This forces the actions (3.3.1) and (3.3.3) to commute as well.

Dual pairs of quantum moment maps.

We shall now restrict the action (3.3.1) to the Hopf subalgebra A ⊂ D(A), and consider
the quantum Hamiltonian reduction of H(T (A)op) at the augmentation ideal IA = ker(εA)
of A. We denote the algebra obtained as a result of the quantum Hamiltonian reduction by
H(T (A)op)//µL(A).

We also have the moment map µR : D(A) → H(T (A)op) given in (3.3.2), and the ac-
tion (3.3.3) of D(A) on H(T (A)op) that it defines.
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Proposition 3.3.1. The action (3.3.3) of D(A) on H(T (A)op) descends to a well-defined
action

D(A)×H(T (A)op)//µL(A) −→ H(T (A)op)//µL(A) (3.3.4)

In turn, the map µR descends to a well-defined homomorphism of D(A)-module algebras

µR : D(A) −→ H(T (A)op)//µL(A)

which is a moment map for the action (3.3.4).

Proof. The Proposition is a simple consequence of the fact that the subalgebras µL(D(A))
and µR(D(A)) commute with one another. Indeed, this commutativity implies that for all
a ∈ A, u ∈ D(A), one has

a ◦L (µR(u) + µL(IA)) = a1µR(u)Sa2 + µL(IA)

= µR(u)a1Sa2 + µL(IA)

= ε(a) (µR(u) + µL(IA))

which shows that

µR(u) + µL(IA) ∈
(
H(T (A)op)/µL(IA)

)A
=: H(T (A)op)//µL(A).

It follows from the definition of the algebra structure of the quantum Hamiltonian reduc-
tion H(T (A)op)//µL(A) that µR : D(A) → H(T (A)op)//µL(A) is a homomorphism of alge-
bras. Regarding this homomorphism as a quantum moment map, we obtain an action of
D(A) on H(T (A)op)//µL(A) which by construction descends from (3.3.3), and such that
µR : D(A)→ H(T (A)op) is a morphism of D(A)-module algebras.

H(A) from quantum Hamiltonian reduction

We now examine the algebra structure of the Hamiltonian reduction H(T (A)op)//µL(A) in
more detail.

Proposition 3.3.2. There is an isomorphism of algebras

ϕ : H(T (A)op)//µL(A) −→ H(A) (3.3.5)

Proof. Let us begin by making explicit the structure of the Hamiltonian reductionH(T (A)op)//µL(A).
Firstly, note that we can identify the quotientH(T (A)op)/IA with the vector space T (A)op⊗A∗.
It is easy to check that induced action of A on T (A)op ⊗ A∗ is then given by

a ◦L
(
(b⊗ y)⊗ x

)
= (b⊗ a2 ⇀ y)⊗ ad∗a1(x)

where
ad∗a(x) = 〈a1, x3〉〈S−1a2, x1〉x2.
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Hence the algebra H(T (A)op)//µL(A) of A-invariants in H(T (A)op)/IA may be identified
with H(A) = A#A∗, as a vector space, under the map

ϕ : H(A) −→ H(T (A)op)//µL(A), a#x 7−→ (a⊗ x1Sx3)⊗ x2. (3.3.6)

Finally, we claim that the map (3.3.6) is in fact an isomorphism of algebras. Indeed, in
H(T (A)op)//µL(A), one computes

ϕ(a#x)ϕ(b#y) = ((a⊗ x1Sx3)⊗ x2) ((b⊗ y1Sy3)⊗ y2)

= 〈x2, S
−1atb2ar〉(ab1 ⊗ xry1Sy3x

tx1Sx3)⊗ x3y2

= 〈x3, b2〉(ab1 ⊗ x4y1Sy3S
−1x2x1Sx6)⊗ x5y2

= 〈x1, b2〉(ab1 ⊗ x2y1Sy3Sx4)⊗ x3y2

= ϕ(〈x1, b2〉ab1 ⊗ x2y)

= ϕ ((a#x)(b#y))

which completes the proof.

Corollary 3.3.3. Under the isomorphism ϕ defined in (3.3.5), the moment map

µR : D(A)→ H(T (A)op)//µL(A) ' H(A)

takes the form

µR : D(A) −→ H(A), by 7−→ b1arSb2at#S
−1xtS−1yxr. (3.3.7)

Using the homomorphism µR, one can pull back the defining representation (3.2.4) of
H(A) on A to obtain a representation of D(A). A straightforward computation establishes

Proposition 3.3.4. The pullback under µR of the action (3.2.4) coincides with the repre-
sentation (3.2.2) of D(A) on A.

Remark 3.3.5. In [39], the formula (3.3.7) is derived in the finite-dimensional setting from
the action (3.2.2) of D(A), together with the fact, see e.g. [43], that H(A) ' End(A) as
algebras.

Example: quantized Grothendieck-Springer resolution

Suppose now that g is a complex simple Lie algebra, and denote by U~(g) the quantized
universal enveloping algebra of g, see [19, 17]. Recall that U~(g) may be regarded as the
quantized algebra of functions on a formal neighborhood of the identity element e ∈ G∗,
where G is a simple Lie group endowed with its standard Poisson structure. Let us apply
our constructions to the case A = U~(b), where U~(b) is the quantum Borel subalgebra
in U~(g). Then there is an isomorphism of algebras D(A) ' U~(g) ⊗ U~(h), where h ⊂ g
is the Cartan subalgebra of g, see [19]. The restriction of the homomorphism (3.3.7) to
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U~(g) ⊂ D(A) defines a map of algebras Φ: U~(g) → H(A). In [25], it was shown (in the
setting of the rational form Uq(g)) that Φ is injective, and that its image is contained in a
certain subalgebra H(A)h of U~(h)-invariants.

In the above setup, the semiclassical limit of the map Φ is closely related to the well-
known Grothendieck-Springer resolution

G×B B −→ G, (g, b)B 7−→ gbg−1

where G is a complex simple Lie group, and B ⊂ G is a Borel subgroup. More precisely,
the algebra H(A)h can be regarded as the quantized algebra of functions on a formal neigh-
borhood of (e, e)B ∈ G×B B. The Poisson geometric structure is exactly the one described
in [49].

3.4 R-matrix formalism

In this section we rewrite the homomorphism (3.3.7) in terms of canonical elements of the
algebras D(A) and T (A). As before, let

R = R12 =
∑
i

ai ⊗ xi ∈ D(A)⊗D(A)

be the universal R-matrix of D(A). In what follows we make use of elements

R21 =
∑
i

xi ⊗ ai

and
L = R21R12 ∈ D(A)⊗D(A).

Recall [56] that the element L satisfies the reflection equation

L1R12L2R21 = R12L2R21L1 ∈ D(A)⊗3 (3.4.1)

where L1 = R31R13, L2 = R32R23. Let us also introduce canonical elements Θ,Ω ∈ D(A)⊗H(A)
defined by

Θ =
∑
i

ai ⊗ xi and Ω =
∑
i

xi ⊗ ai.

These elements satisfy the relations

R12Θ1Θ2 = Θ2Θ1R12

R12Ω1Ω2 = Ω2Ω1R12

R12Θ1Ω−1
2 = Ω−1

2 Θ1

(3.4.2)

If ι is the automorphism of H(A) defined by (3.2.6), we write

Θ̃ = (id⊗ι) (Θ) and Ω̃ = (id⊗ι) (Ω).

The following proposition is straightforward.
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Proposition 3.4.1. Let µR : D(A)→ H(A) be the homomorphism defined by (3.3.7). Then
one has

(id⊗µR) (R12) = Θ̃,

(id⊗µR) (R21) = ΩΩ̃,

and hence
(id⊗µR) (L) = ΩΩ̃Θ̃.

Recall [6, Section 8.1.3, Proposition 5] that the element u ∈ D(A) defined by

u = SaiSx
i ∈ D(A)

satisfies
udu−1 = S2

D(d) for all d ∈ D(A).

Proposition 3.4.2. The following identity holds in D(A)⊗H(A)

Θ−1Ω−1 = u1Ω̃Θ̃,

where u1 = u⊗ 1 ∈ D(A)⊗H(A).

Proof. We have

Θ−1Ω−1 =
∑

SaiSx
j ⊗ xiaj

=
∑

S(akat)S(xrxk)⊗ (ar#x
t)

=
∑

atux
r ⊗ (Sar#Sx

t)

= u1

∑
atx

r ⊗ (Sar#S
−1xt).

Using the formula
ax = 〈a(1), x(3)〉〈S−1a(3), x(1)〉x(2) ⊗ a(2)

for the multiplication in the Drinfeld double D(A), we arrive at

Θ−1Ω−1 = u1

∑
atx

r ⊗ (Sar#S
−1xt)

= u1

∑
xpaq ⊗

(
aαSaqS

−1aβ#xβS−1xpxα
)

= u1Ω̃Θ̃

which completes the proof.

Corollary 3.4.3. One has
(id⊗µR) (L) = Ωu−1

1 ΘΩ−1. (3.4.3)
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Remark 3.4.4. Since the first tensor factor in L runs over the basis of D(A), the homo-
morphism µR is completely defined by the formula (3.4.3). The latter can be thought of as
a quantization of the map (3.1.1), where u1 is a quantum correction, invisible on the level of
Poisson geometry.

Corollary 3.4.5. The element

L̂ = Ωu−1
1 ΘΩ−1 ∈ D(A)⊗H(A) (3.4.4)

provides a solution to the reflection equation (3.4.1).

Remark 3.4.6. In fact, one can check using the relations (3.4.2) that the element

L̂′ = ΩΘΩ−1 ∈ D(A)⊗H(A)

obtained from (3.4.4) by omitting u−1
1 , also satisfies the reflection equation (3.4.1). In general,

however, the linear map D(A) → H(A) defined by L 7→ L̂′ will fail to be a homomorphism
of algebras. On the other hand, suppose that R ∈ End(V ⊗ V ) is a scalar solution of
the Yang-Baxter equation. Then, following Faddeev-Reshetikhin-Takhtajan, one can define
a reflection equation algebra A as the algebra generated by entries of L ∈ A ⊗ End(V ),
subject to the defining relations (3.4.1). Similarly, one can define an algebra H generated
by entries of the elements Θ,Ω ∈ H⊗ End(V ) subject to the relations (3.4.2). Then we get
a well-defined homomorphism of algebras

A −→ H, L 7−→ ΩΘΩ−1.

3.5 Application to the quantized

Grothendieck-Springer resolution

We now consider in detail the application of the general formalism developed in this chapter
to the important special case of the Grothendieck-Springer resolution. We begin by recalling
the definitions and various well-known properties of the quantum groups that will be used
extensively in the sequel. Our conventions match those of of [35]. We refer the reader to [42,
35, 6] for further details and proofs of many of the results in this section.

Conventions

In what follows, g will denote a finite-dimensional complex simple Lie algebra of rank r,
equipped with a choice of Cartan subalgebra h and a set of simple roots {α1, . . . , αr}. We
write P,Q for the weight and root lattices associated to the corresponding root system Π,
and denote the fundamental weights by ω1, . . . , ωr. Denote by (·, ·) the unique symmetric
bilinear form on h∗ invariant under the Weyl group W , such that (α, α) = 2 for all short roots
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α ∈ Π. Let k = C(q1/N) be the field of rational functions in a formal variable q1/N , where
N ∈ N is such that 1

2
(λ, µ) ∈ 1

N
Z for any pair of weights λ, µ ∈ P . If A is a Hopf algebra, we

denote by Aop the Hopf algebra with the opposite multiplication to A, and denote by Acop

the Hopf algebra with the opposite comultiplication to A. We will use the Sweedler notation

∆(a) =
∑

a1 ⊗ a2

to express coproducts. Throughout the paper, all modules for the quantum group Uq(g) are
assumed to be of type I.

Quantized enveloping algebras

The (simply-connected) quantized universal enveloping algebra U
def
= Uq(g) is the k-algebra

generated by elements
{Ei, Fi, Kλ | i = 1, . . . , r, λ ∈ P}

subject to the relations

KλEi = q(λ,αi)EiK
λ, KλKµ = Kλ+µ,

KλFi = q−(λ,αi)FiK
λ, [Ei, Fj] = δij

Ki −K−1
i

qi − q−1
i

.

together with the quantum Serre relations (see [35], p.53). In the relations above we have

set Ki
def
= Kαi and qi = q(αi,αi)/2. The algebra U is a Hopf algebra, with the comultiplication

∆(Kλ) = Kλ ⊗Kλ, ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi

the antipode

S(Kλ) = K−λ, S(Ei) = −K−1
i Ei, S(Fi) = −FiKi

and the counit
ε(Kλ) = 1, ε(Ei) = 0, ε(Fi) = 0.

Let U≥0 denote the subalgebra of U generated by all Kλ, Ei, and U≤0 denote the subal-
gebra generated by all Kλ, Fi. We also write U0 for the subalgebra generated by Kλ, λ ∈ P .
The algebras U≥0, U≤0, U0 are Hopf subalgebras in U . Recall that (U≤0)cop stands for the
co-opposite Hopf algebra to U≤0. There is a non-degenerate Hopf pairing

〈·, ·〉 : U≥0 × (U≤0)cop −→ k (3.5.1)

defined by

〈Kλ, Kµ〉 = q−(λ,µ), 〈Kλ, Ei〉 = 0 = 〈Kλ, Fi〉, 〈Ei, Fj〉 = − δij

qi − q−1
i

.
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Let U+ and U− denote the subalgebras generated by all Ei and by all Fi respectively.
Then the quantum group U admits a triangular decomposition: the natural multiplication
map defines an isomorphism of C(q)-modules

U+ ⊗ U0 ⊗ U− −→ U (3.5.2)

The algebra U is graded by the root lattice Q. Indeed, setting

Uν =
{
u ∈ U | Kλu = q(λ,ν)uKλ

}
, (3.5.3)

we have U =
⊕

ν∈Q Uν . If we set U+
ν = U+ ∩Uν and U−ν = U− ∩Uν , then the pairing (3.5.1)

has the orthogonality property

〈U+
ν , U

−
−µ〉 = 0 if µ 6= ν. (3.5.4)

Remark 3.5.1. The Hopf algebra U can be described as a quotient of the Drinfeld double
of the dual pair (U≥0, U

cop
≤0 ), which in particular implies the relation

xy = 〈x1, y1〉〈x3, Sy3〉y2x2 for all x ∈ U≥0, y ∈ U≤0. (3.5.5)

Quantized coordinate rings.

Let G be the connected, simply connected algebraic group with Lie algebra g. The quantized
algebra of functions on G, which we denote by Oq[G], is defined to be the Hopf algebra of
matrix elements of finite-dimensional U -modules. For a finite-dimensional U -module V of
highest weight λ and a pair of elements v ∈ V and f ∈ V ∗ we denote the corresponding
matrix element by cλf,v, or simply by cf,v when it does not cause ambiguity. By construction,
there is a Hopf pairing

〈〈·, ·〉〉 : Oq[G]⊗ U −→ k (3.5.6)

defined by evaluation of matrix elements against elements of U . Pairing (3.5.6) is non-
degenerate, since no non-zero element of U acts as zero in all finite-dimensional representa-
tions [35].

The algebra Oq[G] is a left U ⊗ U cop module algebra via the left and right coregular
actions

((x⊗ y) ◦ ψ)(u) = ψ(Syux) where x, u ∈ U, y ∈ U cop, ψ ∈ Oq[G]. (3.5.7)

As a U ⊗ U cop-module, Oq[G] admits the Peter-Weyl decomposition

Oq[G] =
⊕
λ∈P+

L(λ)∗ ⊗ L(λ)

where L(λ) is the finite-dimensional U -module of highest weight λ, and L(λ)∗ is its dual.
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The algebra Oq[G] is graded by two copies of the weight lattice P as follows

Oq[G] =
⊕
λ,µ∈P

Oq[G]λ,µ

where
Oq[G]λ,µ =

{
ψ ∈ Oq[G] | (Kν ⊗Kρ)ψ = q(µ,ν)+(λ,ρ)ψ

}
.

If V is a representation of U and v ∈ V satisfies Kλv = q(λ,µ)v for all λ ∈ P , we say that v
is a weight vector of weight µ, and write wt(v) = µ. The subspace Oq[G]λ,µ is spanned by
matrix elements cf,v with wt(f) = λ, wt(v) = µ. Note that S(Oq[G]λ,µ) = Oq[G]µ,λ and for
xν ∈ Uν , ψλ,µ ∈ Oq[G]λ,µ we have

ψλ,µ(xν) 6= 0 =⇒ ν + λ+ µ = 0

Moreover, if ψ ∈ Oq[G]λ,µ its coproduct takes the form

∆(ψ) =
∑
i

ψλ,νi ⊗ ψ−νi,µ where ψα,β ∈ Oq[G]α,β.

Quantum Weyl group

Let Û be the completion of U with respect to the weak topology generated by all matrix
elements of finite-dimensional U -modules (see [34, Section 3]). As an algebra Û , is isomorphic

to
∏

λ∈P+
EndC(q) L(λ). We will also regard an element u ∈ Û as a functional on Oq[G] via

the evaluation pairing 〈〈cf,v, u〉〉 = f(uv).

Definition 3.5.2. [42] Define an element Ti of Û which acts on any weight vector v by

Ti(v)
def
=

∑
a,b,c>0

a−b+c=(wt(v),αi)

(−1)bqac−bF
(a)
i E

(b)
i F

(c)
i (v).

By [42, Theorem 39.4.3], the elements Ti generate an action of the braid group on any

finite-dimensional U -module. The subalgebra of Û generated by U together with the Ti is
often referred to as the quantum Weyl group, and it is known [5] to in fact be a Hopf algebra.
Moreover, let w0 be the longest element of the Weyl group, and w = si1 . . . sik any of its
reduced decompositions into simple reflections. Then the element Tw0 defined by

Tw0 = Ti1 . . . Tik (3.5.8)

is independent of the choice of reduced expression for w0.
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Quantum minors

We now recall the definition of certain elements of Oq[G] that will prove useful in the sequel.
For each dominant weight λ ∈ P+, we fix a highest weight vector vλ ∈ L(λ). Then, as in
[34], we define the corresponding lowest weight vectors vw0(λ) ∈ L(λ) by

Tw0vw0(λ) = (−1)〈2λ,ρ
∨〉q−2(λ,ρ)vλ

Proposition 3.5.3. [34, Comment 5.10] The vectors vλ, vw0(λ) satisfy

Tw0vλ = vw0(λ).

For each λ ∈ P+, there is a unique pairing

〈−,−〉λ : L(−w0(λ))⊗ L(λ) −→ k

satisfying conditions

〈v−λ, vλ〉λ = 1 and 〈xw, v〉λ = 〈w, Sxv〉λ

for all x ∈ U , v ∈ L(λ), and w ∈ L(−w0(λ)). The following definition coincides with the one
given in [1].

Definition 3.5.4. The quantum principal minor ∆λ is the element of Oq[G] whose value on
any x ∈ U is given by

∆λ(x) = 〈v−λ, xvλ〉λ
Given (u, v) ∈ W ×W we choose reduced decompositions u = sil · · · si1 and v = sjl′ · · · sj1
and set

nk = 〈si1 · · · sik−1
(α∨ik), λ〉, mk = 〈sj1 · · · sjk−1

(α∨ik), λ〉.

Then the quantum minor ∆λ
u,v is defined by

∆λ
u,v(x) = ∆λ

(
E

(n1)
i1
· · ·E(nl)

il
xF

(ml′ )
jl′
· · ·F (m1)

j1

)
where a(n) stands for the n-th q-divided power of a.

Oq[G] as a co-quasitriangular Hopf algebra

Write Θν for the canonical element in U+
ν ⊗U−ν with respect to the pairing 3.5.1. If V,W are

two finite-dimensional representations of U , then the action of the formal sum Θ =
∑

ν∈Q Θν

is well defined in the tensor product V ⊗W . Let fV,W be the operator in V ⊗W defined by

fV,W (v ⊗ w) = q−(wt(v),wt(w))(v ⊗ w)
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for any weight vectors v, w ∈ V,W . Then define RVW to be the following operator in V ⊗W

RVW (v ⊗ w) = Θ ◦ fVW

The operator R gives rise to a bilinear form r : Oq[G]×Oq[G] −→ k defined by

r(cf,v, cg,w) = (f ⊗ g)(RVW (v ⊗ w))

=
∑
α

q−(wt(v),wt(w))f(Θαv)g(Θ−αw).

The form r equips Oq[G] with the structure of a co-quasitriangular Hopf algebra [6, 51]. This
means that, for all triples φ, ψ, ρ ∈ Oq[G], we have

r(φ1, ψ1)φ2ψ2 = ψ1φ1r(φ2, ψ2), (3.5.9)

r(φψ, ρ) = r(φ, ρ1)r(ψ, ρ2), (3.5.10)

r(ρ, φψ) = r(ρ1, ψ)r(ρ2, φ). (3.5.11)

As the following Proposition shows, the form r is closely related to the longest element Tw0

of the quantum Weyl group.

Proposition 3.5.5. [5, 34] Let C be the element of Û defined by

C(v) = q(wt(v),ρ)−(wt(v),wt(v))/2v

where ρ is the half-sum of positive roots. Then setting

Y = CTw0 , (3.5.12)

we have the following equality in Oq[G]∗ ⊗Oq[G]∗

r = (Y −1 ⊗ Y −1)∆(Y ). (3.5.13)

l-operators

Let Oq[G]∗ be the full linear dual of Oq[G], and define maps

l±, ′l± : Oq[G] −→ Oq[G]∗

by

l+(φ) = r(·, φ), ′l+(φ) = r(·, S−1φ),
′l−(φ) = r(φ, ·), l−(φ) = r(Sφ, ·).
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Lemma 3.5.6. [51, Lemma 1.4] The maps l± : Oq[G] → Oq[G]∗ are anti-homomorphisms
of algebras, while the maps ′l± are homomorphisms of algebras. Additionally, we have

l+, ′l+ : Oq[G] −→ U≥0, l−, ′l− : Oq[G] −→ U≤0

with explicit formulas given by

l+(cf,v) =
∑
α

f(Θ−αv)ΘαK
−wt(v)

′l−(cf,v) =
∑
α

f(Θαv)Θ−αK
−wt(v)

We also have

Lemma 3.5.7. Let ∆, SU denote the coproduct and antipode in U . Then

′l± = SU ◦ l±

and

∆ ◦ l±(φ) = l±(φ1)⊗ l±(φ2),

∆ ◦ ′l±(φ) = ′l±(φ2)⊗ ′l±(φ1).

Proof. These identities follow directly from the properties (3.5.10), (3.5.11) of r, together
with the non-degeneracy of the Hopf pairing between U and Oq[G].

We will make frequent use of the following lemma relating the universal r-form to the
Hopf pairing (3.5.1).

Lemma 3.5.8. Let 〈·, ·〉 be the pairing (3.5.1) of U≥0 with U≤0. Then

〈l+(φ), ′l−(ψ)〉 = r(ψ, φ)

Proof. We verify the claim for any pair of matrix elements cf,v, cg,w ∈ Oq[G]. Let us expand
Θ =

∑
i Θ+i ⊗Θ−i where 〈Θ+i,Θ−j〉 = δij. Then using the relation

〈Θ+iK
λ,Θ−jK

µ〉 = q−(λ,µ)δij

from [35, p. 6.13] we compute

〈l+(cg,w), ′l−(cf,v)〉 =
∑
i,j

g(Θ−iw)f(Θ+jv)〈Θ+iK
−wt(w),Θ−jK

−wt(v)〉

=
∑
i

q−(wt(v),wt(w))f(Θ+iv)g(Θ−iw) = r(cf,v, cg,w).
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The ad-integrable part of U

Consider the left (right) adjoint actions adl (respectively, adr) of U on itself defined by

adl(x)(y) = x1ySx2 (3.5.14)

adr(x)(y) = Sx1yx2 (3.5.15)

Definition 3.5.9. The left ad-integrable part of U is defined as the subset

Fl(U) = {x ∈ U | dim adl(U)x <∞}

Similarly, the right ad-integrable part of U is defined as the subset

Fr(U) = {x ∈ U | dim adr(U)x <∞}

Proposition 3.5.10. [6] The ad-integrable parts Fl(U), Fr(U) are subalgebras in U . More-
over, they are left and right coideals respectively:

∆(Fl(U)) ⊂ U ⊗ Fl(U), ∆(Fr(U)) ⊂ Fr(U)⊗ U.

Now consider the maps

I : Oq[G] −→ U≥0 ⊗ U≤0, I = (l+ ⊗ ′l−) ◦∆ (3.5.16)

and
J : Oq[G] −→ U, J = m ◦ I (3.5.17)

where
m : U≥0 ⊗ U≤0 −→ U, u+ ⊗ u− 7→ u+u−

is the multiplication in U . Note also that the action (3.5.15) induces a coadjoint action
ad∗r : U ⊗Oq[G] −→ Oq[G] given by

〈ad∗r(x)(ψ), y〉 = 〈ψ, S(x1)yx2〉, x, y ∈ U, ψ ∈ Oq[G]. (3.5.18)

The following theorem was proven by Joseph and Letzter in [4], building on results of Caldero
[16].

Theorem 3.5.11. [4] The map J is an injection of U-modules, with respect to the ac-
tion (3.5.14) on U and the action (3.5.18) on Oq[G]. Its image is

Fl(U) =
⊕
λ∈P+

(adl U)(K−2λ) (3.5.19)
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Since S(Fl(U)) = Fr(U), the theorem implies that the map

J ′
def
= S ◦ J : Oq[G] −→ Fr(U)

is also an isomorphism of U -modules. Indeed, for all x ∈ U , φ ∈ Oq[G] we have

x2J
′(φ)S−1x1 = J ′(ad∗r(S

−2x)φ) (3.5.20)

Despite being a morphism of U -modules, the map J is not a morphism of algebras. However,
as explained in [51], one can equip Oq[G] with a twisted algebra structure so that J becomes
an algebra homomorphism:

Proposition 3.5.12. The following formula defines an associative product •F in Oq[G]

φ •F ψ = r(φ1, ψ2)r(φ3, Sψ1)φ2ψ3

= r(φ2, ψ3)r(φ3, Sψ1)ψ2φ1

If we write FOq[G] for the algebra obtained by equipping Oq[G] with the product •F , then the
map J : FOq[G] −→ Fl(U) is an isomorphism of U-module algebras.

Similarly, the map J ′ is an isomorphism of algebras (FOq[G])op ' Fr(U).

The Heisenberg double of U≥0

We define the Heisenberg double of U≥0 to be the smash product Hq = U≥0#U≤0 of the dual
pair of Hopf algebras U≥0 and U cop

≤0 with respect to the pairing (3.5.1). The product in Hq

can be written explicitly as

(a#x)(b#y) = 〈b2, x2〉ab1 ⊗ x1y

Let us make a few remarks on the structure of Hq that will prove useful in the sequel.
Consider the torus

T = U0 ⊗ U0 ⊂ Hq

and the following three subtori

T+ = U0 ⊗ 1, T− = 1⊗ U0, and Tc = (1⊗ S) ◦∆(U0).

The Heisenberg double Hq has the following T−-module algebra structure

(1⊗Kλ) ◦ (a#x) = (1#Kλ)(a#x)(1#K−λ) = 〈Kλ, a2〉a1#KλxK−λ.

It also admits a T+-module algebra structure given by

(Kµ ⊗ 1) ◦ (a#x) = 〈Kµ, x1〉a#x2
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Since the actions of T+ and T− commute, we may combine them into an action of T on Hq.
Using the grading (3.5.3), the restriction of this T-action to the subalgebras T− and Tc can
be computed explicitly as

(1⊗Kρ) ◦ (xνK
λ#yαK

µ) = q(ρ,α−λ)xνK
λ#yαK

µ

(Kρ ⊗K−ρ) ◦ (xνK
λ#yαK

µ) = q(ρ,λ−α−µ)xνK
λ#yαK

µ

for any xν ∈ U+
ν and yα ∈ U−α . Therefore, we have

Proposition 3.5.13. The T− invariants in Hq coincide with the subalgebra

HT−
q =

⊕
ν∈Q+

U+K−ν#U−−νT,

the T c invariants coincide with the subalgebra

HTc
q =

⊕
λ∈P, ν∈Q+

U+Kλ#U−−νK
λ+ν , (3.5.21)

and the T-invariants coincide with the subalgebra

HT
q =

⊕
λ∈P, ν∈Q+

U+K−ν#U−−ν .

Note that, the subalgebra of T− invariants HT−
q commute with the subalgebra 1#T .

Hence we obtain

Corollary 3.5.14. Multiplication in Hq yields an algebra isomorphism

HT
q ⊗ T −→ HT−

q , (a#x)⊗ (1#Kρ) 7−→ a#xKρ.

Remark 3.5.15. The torus T(A) is naturally embedded into the Drinfeld double of the dual
pair (U≥0, U

cop
≤0 ). The action of T used in this section arises from the action of the Drinfeld

double on the Heisenberg double considered in [41].

The following formula defines an action of Hq on U≥0

(a#x) ◦ b = 〈x, b2〉ab1 (3.5.22)

where a#x ∈ Hq and b ∈ U≥0. We have the following lemma regarding the restriction of
this action to the subalgebra HT−

q ⊂ Hq.

Lemma 3.5.16. As HT−
q -modules, we have

U≥0 =
⊕
λ∈P

U+Kλ
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Proof. It suffices to check that K−ν#y−ν ∈ HT−
q preserves U+Kλ. This follows from the or-

thogonality property (3.5.4) of the pairing 〈·, ·〉 and the fact that given x ∈ U+
α , its coproduct

can be expanded as

∆(x) =
∑
β

xα−βK
β ⊗ xβ

where xβ ∈ U+
β and xα−β ∈ U+

α−β.

3.6 Embedding Fl(U) into the Heisenberg double Hq.

In the language of l-operators, Corollary (3.3.7) specializes to the following statement in the
present case.

Proposition 3.6.1. The maps

ζ : FOq[G] −→ Hq, φ 7−→ l+(S−1φ3φ1)#′l−(S−1φ2) (3.6.1)

ζ̂ : Fl(U) −→ Hq, ζ̂ = ζ ◦ J−1 (3.6.2)

are homomorphisms of algebras.

Proposition 3.6.2. The image of ζ is contained in the subalgebra HT−
q of T− invariants.

Proof. Suppose that ψ ∈ Oq[G]λ,µ. Then we may expand

∆2(ψ) =
∑
ν1,ν2

ψλ,ν1 ⊗ ψ−ν1,ν2 ⊗ ψ−ν2,µ

with ψα,β ∈ Oq[G]α,β. Note that

S−1ψ−ν2,µψλ,ν1 ∈ Oq[G]λ+µ,ν1−ν2 and S−1ψ−ν1,ν2 ∈ Oq[G]ν2,−ν1

and recall that ψα,β(xρ) is non-zero only if ρ+ α + β = 0. Therefore we have

ζ(ψ) =
∑

ν1,ν2,α,β

(S−1ψ−ν2,µψλ,ν1)(Θ−α)ΘαK
−ν1+ν2#(S−1ψ−ν1,ν2)(Θβ)Θ−βK

−ν1

=
∑
ν1,β

(S−1ψν1−β,µψλ,ν1)(Θ−λ−µ−β)(S−1ψν1,ν1−β)(Θβ)Θλ+µ+βK
−β#Θ−βK

−ν1

which implies ζ(ψ) ∈ HT−
q .

Recall the defining representation (3.5.22) of Hq on U≥0. Pulling this representation
back under the algebra homomorphism (3.6.2), we obtain an action of the algebra Fl(U) on
U≥0. In studying this representation, it will be convenient to describe U≥0 by means of the
surjective homomorphism l+ : Oq[G] → U≥0. The following formula is easily deduced from
the formula (3.6.1) for ζ, the coquasitriangularity of r, and Lemma 3.5.8.
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Lemma 3.6.3. The action of J(ψ) ∈ Fl(U) on l+(ϕ) ∈ U≥0 induced by ζ̂ is given by

J(ψ) · l+(ϕ) = r(S−1ψ3, ϕ1) l+(S−1ψ2ϕ2ψ1)

Since ζ(FOq[G]) ⊂ HT−
q , it follows from Lemma 3.5.16 that the space U≥0 decomposes as

an Fl(U)-module as

U≥0 =
⊕
λ∈P

U+Kλ (3.6.3)

We will now identify the Fl(U)-modules U+Kλ. Recall the definition of the contragredient
Verma module M(µ)∨ for U . Let Cµ be the one-dimensional U≥0-module with basis wµ and
U≥0-module structure defined by

a · wµ = 〈a,Kµ〉,

which is a slight abuse of notation for µ /∈ P . Regard U as a U≥0 module via the action
a · u = uS(a). Then

M(µ)∨
def
= HomU≥0

(U,Cµ)

where HomU≥0
denotes the restricted (graded) Hom of U≥0-modules. The action of U on

M(µ)∨ is then given by
(u · φ)(v) = φ(Suv).

Note that because of the triangular decomposition of U , elements of M(µ)∨ are uniquely
determined by their values on U≤0 ⊂ U .

Proposition 3.6.4. The Fl(U)-module U+Kλ in the decomposition (3.6.3) is isomorphic to
the restriction to Fl(U) of the contragredient Verma module M(λ/2)∨.

Proof. Given a ∈ U+Kλ, define an element φa ∈M(λ/2)∨ by declaring

φa(y) = 〈aK−λ/2, y〉

for all y ∈ U≤0. We claim that the map a 7→ φa is an isomorphism of Fl(U)-modules. By the
non-degeneracy of 〈·, ·〉, it is an isomorphism of linear spaces. To show that it respects the
Fl(U)-module structure, we compute the action of the subalgebras U≥0 and U≤0 on M(λ/2)∨.

Suppose first that z ∈ U≤0, with Sz ∈ U−Kρ. Then for all y ∈ U≤0 we have

(z · φa)(y) = φa(Szy) = 〈aK−λ/2, Szy〉 = 〈a1K
−λ/2, Sz〉〈a2K

−λ/2, y〉 = q
1
2

(λ,ρ)〈a1, Sz〉φa2(y)

At the same time, for b ∈ U+Kρ, we have

(b · φa)(y) = φa(Sby) = 〈Sb3, y3〉〈b1, y1〉φa(y2Sb2) = 〈Sb3, y3〉〈b1, y1〉〈Sb2, K
λ/2〉〈aK−λ/2, y2〉

= 〈b1aK
−λ/2Sb3, y〉〈Sb2, K

λ/2〉 = q
1
2

(λ,ρ)φb1aSb2(y).
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Here we used formula (3.5.5) for the product in U , together with the homogeneity of the
coproduct in U≥0. Now given ψ ∈ FOq[G]γ,µ, we compute the action of J(ψ) = l+(ψ1)′l−(ψ2)
on φa ∈M(λ/2)∨ with the help of Lemma 3.6.3. Note that in the expansion

∆(ψ) =
∑
ν

ψγ,ν ⊗ ψ−ν,µ

we have
′l−(S−1ψ−ν,µ) ∈ U−Kν and l+(ψγ,ν) ∈ U+K−ν .

Then

J(ψ) · φa = l+(ψ1) ·
(
q

1
2

(λ,ν)〈a1,
′l−(S−1ψ2)〉φa2

)
= 〈a1,

′l−(S−1ψ3)〉φl+(ψ1)a2l+(S−1ψ2).

Therefore taking a = l+(ϕ), we find

J(ψ) · φa = r(S−1ψ3, ϕ1)φl+(S−1ψ2ϕ2ψ1) = φψ·a

which shows that the map a 7→ φa intertwines the two actions of Fl(U).

Corollary 3.6.5. The homomorphisms ζ̂ and ξ̂ are injective.

Proof. For any λ ∈ P+, the contragredient Verma module M(λ)∨ contains the finite-
dimensional U -module L(λ) as a submodule. Hence the corollary follows from the fact
[35, p. 5.11] that no non-zero element of U acts by zero in all finite-dimensional representa-
tions.

As in Corollary ??, we may extend ζ̂ to obtain a homomorphism of algebras

ζ̃ : Fl(U)⊗Z U0 −→ HT−

q , u⊗ t 7→ µ(u)t. (3.6.4)

Proposition 3.6.6. The homomorphism ζ̃ is injective.

Proof. Since U0 ' C[P ] we may regard Ũ
def
= Fl(U) ⊗Z U0 as a quasi-coherent sheaf on

SpecC[P ], whose stalk at λ ∈ C[P ] we denote by
(
Ũ
)
λ
. We may similarly regard HT−

q as a

sheaf over SpecC[P ] and denote its stalk at λ ∈ C[P ] by
(
HT−
q

)
λ
. Let ζ̃λ :

(
Ũ
)
λ
−→

(
HT−
q

)
λ

be the induced map. Then ker ζ̃ is a subsheaf of Ũ , and ker ζ̃λ is its stalk at point λ. Thus,
it is enough to show that ker ζ̃λ = 0 for any λ.

Let Iλ ⊂ Ũ denote the ideal generated by
〈
1⊗Kµ − q〈λ,µ〉

〉
µ∈P and Jλ ⊂ HT−

q denote

the ideal generated by
〈
1#Kµ − q〈λ,µ〉

〉
µ∈P . Let Uλ be the quotient of U by the central

character of the Verma module of weight λ. Note, that Ũ/Iλ ' Uλ. Set Hλ
q

def
= HT−

q /Jλ
and let ζ̂λ : Uλ −→ Hλ

q be the induced homomorphism. By quantum Duflo theorem, we
know that Uλ acts faithfully on the Verma module M(λ). In view of Proposition 3.6.4 and
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the existence of a nondegenerate pairing between a Verma module and the corresponding
contragredient Verma module, we obtain ker ζ̂λ = 0.

Now, let C[P ]λ denote the local ring at λ and mλ be its maximal ideal. Then one has

Uλ =
(
Ũ
)
λ
/mλ

(
Ũ
)
λ

and Hλ
q =

(
HT−
q

)
λ
/mλ

(
HT−
q

)
λ
,

so that
mλ ker ζ̃λ = ker ζ̃λ.

At this point the Proposition would from Nakayama’s lemma if ker ζ̃λ were a finitely-
generated C[P ]λ module. Therefore, it remains to filter ker ζ̃λ by finitely generated sub-

modules. There is a natural filtration on
(
Ũ
)
λ

(by the sum of modulus of exponents in

the Poincaré-Birkhoff-Witt basis), so let kern ζ̃λ denote the intersection of the n-th filtered

component with ker ζ̃λ. Then the submodules kern ζ̃λ are finitely generated (as submodules
of a finitely generated module over a Noetherian ring) and deliver the required filtration on

ker ζ̃λ.

3.7 The R-twisted quantum coordinate ring

In this section we introduce the R-twist ROq[G] of the quantum coordinate ring Oq[G], and
explain its relation with the Heisenberg double Hq.

The Heisenberg double and ROq[G]

Proposition 3.7.1. The following formula defines an associative product •R in Oq[G]

φ •R ψ = r(φ1, ψ1)φ2ψ2 (3.7.1)

Proof. This follows straightforwardly from the co-quasitriangularity properties (3.5.9) of
the universal r-form.

Definition 3.7.2. We define ROq[G] to be the associative algebra with multiplication defined
by (3.7.1).

Proposition 3.7.3. The map I given by (3.5.16) defines an embedding of algebras

I : ROq[G] −→ Hq.

Proof. That I is injective follows from the injectivity of the map J = m ◦ I. To prove that
I is a homomorphism of algebras, we compute

I(φ •R ψ) = r(φ1, ψ1)I(φ2ψ2) = r(φ1, ψ1)l+(φ2ψ2)#′l−(φ3ψ3)
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On the other hand, in Hq we have

I(φ) · I(ψ) =
(
l+(φ1)#′l−(φ2)

)
·
(
l+(ψ1)#′l−(ψ2)

)
=
〈
l+(ψ1)2,

′l−(φ2)2

〉
l+(φ1)l+(ψ1)1#′l−(φ2)1

′l−(ψ2)

=
〈
l+(ψ2), ′l−(φ2)

〉
l+(φ1)l+(ψ1)#′l−(φ3)′l−(ψ3)

= r(φ2, ψ2)l+(ψ1φ1)#′l−(φ3ψ3)

= r(φ1, ψ1)l+(φ2ψ2)#′l−(φ3ψ3)

= I(φ •R ψ)

Proposition 3.7.4. The image I(ROq[G]) ⊂ Hq is contained in the subalgebra HT c

q of T c-
invariants.

Proof. Suppose that ψ ∈ Oq[G]λ,µ, and

∆(ψ) =
∑
ν

ψλ,ν ⊗ ψ−ν,µ

Then
I(ψ) =

∑
ψλ,ν(Θ−α)ψ−ν,µ(Θβ)ΘαK

−ν#Θ−βK
−µ

The only non-zero terms in the sum must have β + µ− ν = 0, λ+ ν −α = 0. Hence we find

I(ψ) =
∑

ψλ,µ+β(Θ−λ−µ−β)ψ−µ−β,µ(Θβ)Θλ+µ+βK
−µ−β#Θ−βK

−µ ∈ HTc
q

Although I : ROq[G] → HTc
q is an embedding, it is not surjective. In order to obtain an

isomorphism, we must localize at certain elements of ROq[G]. We define elements φ±i ∈ Oq[G]
by

φ+
i = (q−1

i − qi)−1∆ωi
si,1
,

φ−i = (q−1
i − qi)−1∆ωi

1,si
.

Lemma 3.7.5. The following equalities hold

I(∆ωi) = K−ωi#K−ωi ,

I(φ+
i ) = EiK

−ωi#K−ωi ,

I(φ−i ) = K−ωi#FiK
αi−ωi .

Proof. One can see that

φ+
i = (1− q−2

i )−1 ad∗r(Ei)(∆
ωi) and φ−i = (q−1

i − qi)−1 ad∗r(Fi)(∆
ωi).

The rest of the proof is a straightforward calculation using the U -equivariance of J .
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Proposition 3.7.6. The algebra HTc
q is generated by I

(
ROq[G]

)
together with the elements

Kωi#Kωi = q(ωi,ωi)I (∆ωi)−1 .

Hence, we have the isomorphism

I : ROq[G][(∆ωi)−1]ri=1 −→ HTc
q (3.7.2)

Proof. Existence of the map and its injectivity follow from the fact that I(∆ωi) is invertible
in Hq, with inverse given by

I(∆ωi)−1 = q−(ωi,ωi)Kωi#Kωi

The surjectivity follows from Lemma 3.7.5 together with the description (3.5.21) of HTc
q .

Set
Oq[G◦]

def
= Oq[G][(∆ωi)−1]ri=1

and let
Oq[G◦/H]

def
=
{
φ ∈ Oq[G◦] | (Kλ ⊗ 1) · φ = φ for any λ ∈ P

}
.

be the subalgebra of U0-invariants in Oq[G◦] under the coregular action defined by (3.5.7).

Corollary 3.7.7. The restriction of the map (3.7.2)

I : ROq[G◦/H] −→ HT
q

is an isomorphism of algebras.

Images of the Chevalley generators under ζ̂

By Lemma 3.7.5, it suffices to calculate ζ(∆ωi), ζ(φ±i ). First, suppose that φ ∈ Oq[G]λ,µ
satisfies φ(xu) = ε(x)φ(u) for all x ∈ U−, u ∈ U . Then we have l+(φ) = ε(φ)Kλ, so

ζ(φ) = (1#Kλ)I(S−1φ)

which implies

ζ(∆ωi) = q−(ωi,ωi)I(∆ωi) · I(S−1∆ωi)tωi ,

ζ(φ−i ) = q−(ωi,ωi)I(∆ωi) · I(S−1φ−i )tωi ,

where tλ stands for 1#Kλ.
In order to calculate ζ(φ+

i ), suppose that φ ∈ Oq[G]λ,µ satisfies φ(ua) = ε(a)φ(u) for all
a ∈ U+ and u ∈ U . Then we have J(φ) = l+(φ)K−µ, and hence

∆U(J(φ)) = l+(φ1)K−µ ⊗ J(φ2), (3.7.3)

where ∆U denotes the comultiplication in U . In turn, this implies

ζ(φ+
i ) = q−(ωi,ωi)

(
I(φ+

i ) · I(S−1∆ωi)tωi + q(αi−ωi,ωi)I(∆[αi]−) · I(∆ωi)−1 · I(S−1φ+
i )tωi−αi

)
,

where [αi]− ∈ P+ is defined by αi = 2ωi − [αi]−.
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Corollary 3.7.8. We have

ζ̂(K−2ωi) = q−(ωi,ωi)I(∆ωi) · I(S−1∆ωi)tωi ,

ζ̂(FiK
αi−2ωi) = q−(ωi,ωi)q−1

i I(∆ωi) · I(S−1φ−i )tωi ,

ζ̂(EiK
−2ωi) = q−(ωi,ωi)

(
I(φ+

i ) · I(S−1∆ωi)tωi + q(αi−ωi,ωi)I(∆[αi]−) · I(∆ωi)−1 · I(S−1φ+
i )tωi−αi

)
.

An isomorphism between ROq[G] and Oq[G]

We now explain how to use the quantum Weyl group to construct an isomorphism between
ROq[G] and Oq[G]. Recall the element Y defined by (3.5.12). Then the identity (3.5.13)
implies the following proposition.

Proposition 3.7.9. The element Y defines an isomorphism of algebras

ιY : Oq[G] −→ ROq[G], φ 7−→ 〈Y, φ1〉φ2

Proof. Using the relation (3.5.13), we compute

ιY (φ) •R ιY (ψ) = 〈Y, φ1〉〈Y, ψ1〉φ1 •R ψ2 = 〈Y, φ1〉〈Y, ψ1〉r(φ2, ψ2)φ3ψ3

= 〈Y, φ1〉〈Y, ψ1〉〈(Y −1 ⊗ Y −1)∆(Y ), φ2 ⊗ ψ2〉φ3ψ3

= 〈∆(Y ), φ1 ⊗ ψ1〉φ2ψ2 = 〈Y, φ1ψ1〉φ2ψ2 = ιY (φψ).

Definition 3.7.10. Let θ be the Dynkin diagram automorphism such that w0si = sθ(i)w0

holds for all simple reflections si.

Using the definition of Y one obtains the following explicit formulas for ιY in terms of
generalized minors.

Lemma 3.7.11. One has

(ιY )−1(∆ωi) = q(ωi,ρ+ωi/2)∆ωi
w0,1

(ιY )−1(S−1∆ωi) = (−1)〈2ωi,ρ
∨〉q(ωi,ρ+ωi/2)∆

ωθ(i)
1,w0

(q−1
i − qi)(ιY )−1(φ+

i ) = −q(ωi,ρ+ωi/2)∆ωi
w0si,1

(q−1
i − qi)(ιY )−1(S−1φ+

i ) = (−1)〈2ωi,ρ
∨〉+1q−1

i q(ωi,ρ+ωi/2)∆
ωθ(i)
1,siw0

(q−1
i − qi)(ιY )−1(S−1φ−i ) = (−1)〈2ωi,ρ

∨〉qiq
(ωi,ρ+ωi/2)∆

ωθ(i)
sθ(i),w0

Corollary 3.7.12. The map ιY establishes an isomorphism between the localizations

ιY : Oq[G][(∆ωi
w0,1

)−1]i=1,...,r −→ ROq[G][(∆ωi)−1]i=1,...,r.

As explained in [1], the algebra Oq[G][(∆ωi
w0,1

)−1]i=1,...,r can be regarded as the quantum
coordinate ring Oq[Gw0 ] of the big open Bruhat cell Gw0 = B+w0B+ ⊂ G.
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3.8 Main results

Let us introduce the notation

Oq[Gw0/H]
def
=
{
φ ∈ Oq[Gw0 ] | (Kλ ⊗ 1) · φ = φ for any λ ∈ P

}
for the subalgebra of U0-invariants in Oq[Gw0 ] under the coregular action defined by (3.5.7).
By Corollary 3.7.7 and Corollary 3.7.12 the map

(ι−1
Y ◦ I

−1)⊗ id : HT
q ⊗ T ' HT−

q −→ Oq[Gw0/H]⊗ T (3.8.1)

is an isomorphism of algebras. Combining this isomorphism with Corollary 3.5.14, we arrive
at

Theorem 3.8.1. The map Φ obtained by composing the homomorphism ζ̃ defined in (3.6.4)
with the isomorphism (3.8.1) is an embedding of algebras

Φ: Fl(U)⊗Z U0 −→ Oq[Gw0/H]⊗ T.

Remark 3.8.2. Note that by Corollary 3.7.8, in order to extend the homomorphism Φ to the
entire quantum group Uq(g), we must localize further by inverting the products ∆ωi

w0,1
∆
ωθ(i)
1,w0

for all i = 1, · · · r. Hence the target of the homomorphism becomes Oq[Gw0,w0/H], the
quantum coordinate ring of the reduced big double Bruhat cell in G. In fact, we must also

adjoin the square roots
(
∆ωi
w0,1

∆
ωθ(i)
1,w0

)1/2
to Oq[Gw0,w0/H], although this poses no difficulties.

This phenomenon is related to the fact that the maps ηi : G
∗ → G∗ in (??), (??), while local

diffeomorphisms, are in fact 2r-fold coverings.

Notation 3.8.3. O′q[Gw0,w0/H] denotes the algebra obtained by adjoining
(
∆ωi
w0,1

∆
ωθ(i)
1,w0

)1/2

for i = 1, . . . , r to Oq[Gw0,w0/H]. Similarly, T ′ stands for C[P/2] ⊃ T .

Corollary 3.8.4. Let χ : T → C be a character of the torus T . Denote by the same letter the
induced character of the center Z ⊂ Uq(g) coming from the embedding ξ̂|Z : Z ↪→ T . Then
Φ extends to an embedding Φ′ : Uq(g)→ O′q[Gw0,w0/H]⊗ T ′ such that the following diagram
commutes

Uq(g) Φ′ //

��

O′q[Gw0,w0/H]⊗ T ′

id⊗χ
��

Uq(g)/Iχ // O′q[Gw0,w0/H]

where Iχ is the ideal generated by the kernel of χ.

Corollary 3.8.5. One has the following explicit formulas for Φ′

Φ′(K−2ωi) = (−1)〈2ωi,ρ
∨〉q2(ωi,ρ)∆ωi

w0,1
∆
ωθ(i)
1,w0

tωi ,

Φ′(F̂iK
αi) = qi∆

ωθ(i)
sθ(i),w0

(
∆
ωθ(i)
1,w0

)−1
,

Φ′(Êi) = −
(

∆ωi
w0si,1

(
∆ωi
w0,1

)−1
+ q−1

i ∆
[αi]−
w0,1

∆
ωθ(i)
1,w0sθ(i)

(
∆
ωθ(i)
1,w0

)−1 (
∆ωi
w0,1

)−2
t−αi

)
,
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where Êi = (q−1
i − qi)Ei and F̂i = (q−1

i − qi)Fi.

Proof. This follows from combining Corollary 3.7.8 with Lemma 3.7.11.

Remark 3.8.6. As mentioned in the Introduction, the Feigin homomorphisms [13] allow us
to further explicitize our formulas for Φ′ and compare our realization of Uq(g) to those of
[30, 53]. While we save the full details of this comparision for the forthcoming paper [26],
let us present the essential idea in the case g = sln. In [53], the quantized moduli space of
decorated PGLn-local systems on a punctured disk with two boundary marked points was
used to construct an embedding of Uq(g) into a quantum torus. That quantum torus arises
as a quantum cluster chart on the moduli space, corresponding to an ideal triangulation of
the punctured disk in which two triangles are glued by two sides. In [31], it was checked
that this geometric approach reproduces the embedding of [30]. On the other hand, one
can consider the quantum cluster chart corresponding to a self-folded triangulation of the
punctured disk; this quantum torus is related to the original one by an explicit sequence
of
(
n+1

3

)
quantum cluster mutations. Now recall that to specify a Feigin homomorphism

amounts to picking a pair of reduced expressions i1, i2 for the longest element w0 of the Weyl
group; for an appropriate choice of i1, i2 one verifies that Φ′ coincides with the embedding
of Uq(g) into the quantum cluster chart corresponding to the self-folded triangulation. Thus
the quantum torus realization of Uq(g) presented here is mutation equivalent to those of [30,
53].

We end this section with the following conjecture:

Conjecture 3.8.7. We have an isomorphism of non-commutative fraction fields

Frac (Fl(U)⊗Z U0) = Frac (Oq[G/H]⊗ T ) .

In particular, Frac (Fl(U)⊗Z U0) coincides with a non-commutative fraction field of a quan-
tum torus algebra, i.e. the quantum Gelfand-Kirillov property holds for Fl(U)⊗Z U0.

3.9 Example for g = sl2

We conclude by providing a detailed example of our construction for the case g = sl2. Let
us write E,F,K1/2 for the generators of the simply-connected form of Uq(sl2). Recall that
the fundamental representation of Uq(sl2) on C2 is determined by

E 7→
(

0 1
0 0

)
, F 7→

(
0 0
1 0

)
, K1/2 7→

(
q1/2 0
0 q−1/2

)
.

The Hopf algebra Oq(SL2) is generated by the matrix coefficients of the fundamental repre-
sentation. More explicitly, Oq(SL2) has generators 〈x11, x12, x21, x22〉 subject to the relations

x11x12 = qx12x11 x12x22 = qx22x12 x12x21 = x21x12

x11x21 = qx21x11 x21x22 = qx22x21 [x11, x22] = (q − q−1)x12x21
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as well as the quantum determinant relation

x11x22 − qx12x21 = 1.

The coalgebra structure of Oq(SL2) is given by

∆(xij) = xi1 ⊗ x1j + xi2 ⊗ x2j and ε(xij) = δij

while the antipode is given by

S(x11) = x22, S(x12) = −q−1x12, S(x21) = −qx21, S(x22) = x11.

The quantum coordinate ring of the big Bruhat cell Bw0B ⊂ SL2 is

Oq[SLw0
2 ] = Oq[SL2][x−1

21 ]

while the quantum coordinate ring of the big double Bruhat cell Bw0B ∩B−w0B− ⊂ SL2 is
given by

Oq[SLw0,w0

2 ] = Oq[SL2][x−1
12 x

−1
21 ].

The quantum coordinate ring of the reduced big double Bruhat cell Oq[SLw0,w0

2 /H] ⊗ T
embeds into the quantum torus algebra

A = C〈u±1, v±1, z±1〉
/

(uv = q2vu, zu = uz, zv = vz)

via the identification

u = −q2x22x21, v = −q−1x−1
12 x

−1
21 , z = t.

As in Corollary 3.8.5, we introduce the normalized generators of Uq(sl2)

Ê = (q−1 − q)E and F̂ = (q−1 − q)F.

Then the values of the l-operators on the matrix coefficients xij are easily computed to be

l+(x11) = K−1/2 ′l−(x11) = K−1/2

l+(x12) = 0 ′l−(x12) = F̂K1/2

l+(x21) = ÊK−1/2 ′l−(x21) = 0

l+(x22) = K1/2 ′l−(x22) = K1/2

It follows that the isomorphism J : Oq(SL2) −→ Fl(Uq(sl2)) is given by

J(x11) = K−1, J(x12) = qF̂ , J(x21) = ÊK−1, J(x22) = K + qÊF̂ .
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The homomorphism ζ : Oq(SL2) −→ HT−
q takes the form

ζ(x11) =
(
1 + q−1ÊK−1#F̂

)
· t

ζ(x12) = −q
(
K−1#F̂

)
· t

ζ(x21) =
(
Ê#1 + q−1Ê2K−1#F̂

)
· t−

(
Ê#1

)
· t−1

ζ(x22) = −q
(
ÊK−1#F̂

)
· t+ t−1

where we write t = 1#K1/2 ∈ HT−
q .

The isomorphism ιY : Oq(SL2) −→ ROq(SL2) is given by

ιY (x11) = −q−3/4x21, ιY (x21) = q−3/4x11,

ιY (x12) = −q−3/4x22, ιY (x22) = q−3/4x12.

and the isomorphism I : ORq (SL2)[∆−1
i ]ri=1 −→ HTc

q is

I(x11) = K−1/2#K−1/2 I(x21) = ÊK−1/2#K−1/2

I(x12) = K−1/2#F̂K1/2 I(x22) = K1/2#K1/2 + ÊK−1/2#F̂K1/2

The algebra embedding Φ: Fl(Uq(sl2)) −→ Oq[SLw0
2 /H]⊗ T in Theorem 4.6.1 takes the

form
K−1 7→ −qx12x21t,

F̂ 7→ −q2x22x21t,

ÊK−1 7→ qx11x12t+ x11x
−1
21 t
−1.

(3.9.1)

As explained in Remark 3.8.2, in order to embed Uq(sl2) we must localize further at x12x21

and adjoin (x12x21)1/2. Therefore let A′ be the quantum torus algebra obtained from A by
adjoining the elements v1/2 and z1/2. Then we obtain the following quantum torus algebra
realization of Uq(sl2):

Φ′ : Uq(sl2) −→ A′

K1/2 7→ v1/2z−1/2, F̂ 7→ uz, Ê 7→ z−1u−1(qv1/2 − q−1v−1/2)(v−1/2z − v1/2z−1).



69

Chapter 4

Quantum character varieties, cluster
algebras and quantum groups

4.1 Quantum cluster X -tori

In this section we recall a few basic facts about cluster X -tori and their quantization follow-
ing [63]. We shall need only skew-symmetric exchange matrices, and we incorporate this in
the definition of a cluster seed.

A seed i is triple (I, I0, ε) where I is a finite set, I0 ⊂ I is a subset and ε = (εij)i,j∈I
is a skew-symmetric1 Q-valued matrix, such that εij ∈ Z unless i, j ∈ I0. To a seed i we
associate an algebraic torus Xi = (C×)|I|, equipped with a set of coordinates {X1, . . . , X|I|}
and a Poisson structure defined by

{Xi, Xj} = 2εijXiXj, i, j ∈ I.

We refer to the torus Xi as the cluster torus and to the matrix ε as the exchange matrix.
The coordinates Xi are called cluster variables and they are said to be frozen if i ∈ I0.

Given a pair of seeds i = (I, I0, ε), i′ = (I ′, I ′0, ε
′), and an element k ∈ I \ I0 we say that

an isomorphism µk : I → I ′ is a cluster mutation in direction k if µk(I0) = I ′0 and

ε′µk(i),µk(j) =


−εij if i = k or j = k,

εij if εikεkj 6 0,

εij + |εik|εkj if εikεkj > 0.

(4.1.1)

A mutation µk induces an isomorphism of cluster tori µ∗k : Xi → Xi′ as follows:

µ∗kXµk(i) =

X
−1
k if i = k,

Xi

(
1 +X

− sgn(εki)
k

)−εki
if i 6= k.

1in general, the matrix ε is allowed to be skew-symmetrizable.
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Note that the data of a cluster seed can be conveniently encoded by a quiver with vertices
{vi} labelled by elements of the set I and with adjacency matrix ε. The arrows vi → vj
between a pair of frozen variables are considered to be weighted by εij. Then the mutation
µk of the corresponding quiver can be performed in three steps:

1. reverse all the arrows incident to the vertex k;

2. for each pair of arrows k → i and j → k draw an arrow i→ j;

3. delete pairs of arrows i→ j and j → i going in the opposite directions.

The algebra of functionsO(Xi) admits a quantization X q
i called the quantum torus algebra

associated to the seed i. It is an associative algebra over C(q) defined by generators X±1
i ,

i ∈ I subject to relations
XiXj = q2εjiXjXi.

The cluster mutation in the direction k induces an automorphism µqk of X q
i called the quantum

cluster mutation, defined by

µqk(Xi) =



X−1
k , if i = k,

Xi

εki∏
r=1

(
1 + q2r−1X−1

k

)−1
, if i 6= k and εki > 0,

Xi

−εki∏
r=1

(1 + q2r−1Xk) , if i 6= k and εki 6 0.

The quantum cluster mutation µqk can be written as a composition of two homomor-
phisms, namely

µqk = µ]k ◦ µ
′
k

where µ′k is a monomial transformation defined by

Xi 7−→


X−1
k , if i = k,

qεikεkiXiX
εki
k , if i 6= k and εki > 0,

Xi, if i 6= k and εki 6 0.

and
µ]k = AdΨq(Xk)

is a conjugation by the quantum dilogarithm function

Ψq(x) =
1

(1 + qx)(1 + q3x) . . .
.

Mutation of the exchange matrix is incorporated into the monomial transformation µ′k. The
following lemma will prove very useful.



CHAPTER 4. QUANTUM CHARACTER VARIETIES, CLUSTER ALGEBRAS AND
QUANTUM GROUPS 71

Lemma 4.1.1. A sequence of mutations µqik . . . µ
q
i1

can be written as follows

µqik . . . µ
q
i1

= Φk ◦Mk

where
Φk = AdΨq(Xi1)

AdΨq(µ′i1(Xi2))
. . .Ad

Ψq
(
µ′ik−1

...µ′i1(Xik)
)

and
Mk = µ′ik . . . µ

′
i2
µ′i1 .

Proof. We shall prove the lemma by induction. Assume the statement holds for some
k = r − 1. Then

µqir . . . µ
q
i1

= AdΨq(Φr−1(Mr−1(Xir ))) µ
′
irΦr−1Mr−1.

Now the proof follows from the fact that the homomorphisms µ′ir and Φr−1 commute and
the following relation:

AdΨq(Φr−1(Mr−1(Xir ))) Φr−1 = Φr−1 AdΨq(Mr−1(Xir )) = Φr.

We conclude this section with the two properties of the quantum dilogarithm which we
will use liberally throughout the paper. For any u and v such that uv = q−2vu we have

Ψq(u)Ψq(v) = Ψq(uv) (4.1.2)

Ψq(v)Ψq(u) = Ψq(u)Ψq(qvu)Ψq(v) (4.1.3)

The first equality is nothing but a q-analogue of the addition law for exponentials, while the
second one is known as the pentagon identity.

4.2 Quantum character varieties

We now recall some elements of the theory of quantum character varieties as defined in [63].

Let Ŝ be a decorated surface — that is, a topological surface S with boundary ∂S, equipped
with a finite collection of marked points x1, . . . , xr ∈ ∂S and punctures p1, . . . , ps. In [63],
the moduli space XŜ,PGLm of PGLm-local systems on S with reductions to Borel subgroups
at each marked point xi and each puncture pi, was defined and shown to admit the structure
of a cluster X -variety. In particular, suppose that T is an ideal triangulation of S: recall
that this means that all vertices of T are at either marked points or punctures. Then it
was shown in [63] that for each such ideal triangulation, one can produce a cluster X -chart
on XŜ,PGLm . Moreover, the Poisson algebra of functions on such a chart admits a canonical
quantization, whose construction we shall now recall.

The first step is to describe the quantum cluster X -chart associated to a single triangle.
To do this, consider a triangle ABC given by the equation x + y + z = m, x, y, z > 0 and
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intersect it with lines x = p, y = p, and z = p for all 0 < p < m, p ∈ Z. The resulting
picture is called the m-triangulation of the triangle ABC. Let us now color the triangles of
the m-triangulation in black and white, as in Figure 4.1 so that triangles adjacent to vertices
A, B, or C are black, and two triangles sharing an edge are of different color. We shall
also orient the edges of white triangles counterclockwise. Finally, we connect the vertices
of the m-triangulation lying on the same side of the triangle ABC by dashed arrows in the
clockwise direction. The resulting graph is shown in Figure 4.1. Note that the vertices on
the boundary of ABC are depicted by squares. Throughout the text we will use square
vertices for frozen variables. All dashed arrows will be of weight 1

2
, that is a dashed arrow

vi → vj denotes the commutation relation XiXj = q−1XjXi.

A

B

C 2 5 9

1 4 8 12

3 7 11

6 10

Figure 4.1: Cluster X -coordinates on the configuration space of 3 flags and 3 lines.

Now, let us recall the procedure of amalgamating two quivers by a subset of frozen
variables, following [62]. In simple words, amalgamation is nothing but the gluing of two
quivers by a number of frozen vertices. More formally, let Q1, Q2 be a pair of quivers, and
I1, I2 be certain subsets of frozen variables in Q1, Q2 respectively. Assuming there exists a
bijection φ : I1 → I2 we can amalgamate quivers Q1 and Q2 by the subsets I1, I2 along φ.
The result is a new quiver Q constructed in the following two steps:

1. for any i ∈ I1 identify vertices vi ∈ Q1 and vφ(i) ∈ Q2 in the union Q1 tQ2;

2. for any pair i, j ∈ I1 with an arrow vi → vj in Q1 labelled by εij and an arrow
vφ(i) → vφ(j) in Q2 labelled by εφ(i),φ(j), label the arrow between corresponding vertices
in Q by εij + εφ(i),φ(j)

Amalgamation of a pair of quivers Q1, Q2 into a quiver Q induces an embedding X → X1⊗X2

of the corresponding cluster X -tori:

Xi 7→


Xi ⊗ 1, if i ∈ Q1 \ I1,

1⊗Xi, if i ∈ Q2 \ I2,

Xi ⊗Xφ(i), otherwise.
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An example of amalgamation is shown in Figure 4.2. There, the left quiver is obtained
by amalgamating a triangle ABC from Figure 4.1 with a similar triangle along the side BC
(or more precisely, along frozen vertices 10, 11, and 12 on the edge BC). Another example
is shown in Figure 4.7 where a triangle ABC is now amalgamated by 2 sides. Finally, the
process of amalgamation is best shown in Figure 4.6.

As explained in [63], in order to construct the cluster X -coordinate chart on XŜ,PGLm
corresponding to an ideal triangulation T of Ŝ, one performs the following procedure:

1. m-triangulate each of the ideal triangles in T ;

2. for any pair of ideal triangles in T sharing an edge, amalgamate the corresponding pair
of quivers by this edge.

In general, different ideal triangulations of an Ŝ result in different quivers, and hence different
cluster X -tori. However, any triangulation can be transformed into any other by a sequence
of flips that replace one diagonal in an ideal 4-gon with the other one. Each flip corresponds
to the following sequence of cluster mutations that we shall recall on the example shown
in Figure 4.2. There, a flip is obtained in three steps. First, mutate at vertices 10, 11, 12,
second, mutate at vertices 7, 8, 14, 15, and third, mutate at vertices 4, 11, 18. Note, that the
order of mutations within one step does not matter. In general, a flip in an m-triangulated
4-gon consists of m− 1 steps. On the i-th step, one should do the following. First, inscribe
an i-by-(m − i) rectangle in the 4-gon, such that vertices of the rectangle coincide with
boundary vertices of the m-triangulation and the side of the rectangle of length m− i goes
along the diagonal of a 4-gon. Second, divide the rectangle into i(m− i) squares and mutate
at the center of each square. As in the example, the order of mutations within a single step
does not matter.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

flip

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 4.2: A pair of triangles amalgamated by 1 side.
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4.3 Quantum groups

In what follows, we consider the Lie algebra sln+1 = sln+1(C) equipped with a pair of
opposite Borel subalgebras b± and a Cartan subalgebra h = b+ ∩ b−. The corresponding
root system ∆ is equipped with a polarization ∆ = ∆+ t ∆−, consistent with the choice
of Borel subalgebras b±, and a set of simple roots {α1, . . . , αn} ⊂ ∆+. We denote by (·, ·)
the unique symmetric bilinear form on h∗ invariant under the Weyl group W , such that
(α, α) = 2 for all roots α ∈ ∆. Entries of the Cartan matrix are denoted aij = (αi, αj).

Let q be a formal parameter, and consider an associative C(q)-algebra Dn generated by
elements

{Ei, Fi, Ki, K
′
i | i = 1, . . . , n} ,

subject to the relations

KiEj = qaijEjKi, K ′iEj = q−aijEjK
′
i, KiKj = KjKi,

KiFj = q−aijFjKi, K ′iFj = qaijFjK
′
i, KiK

′
j = K ′jKi,

(4.3.1)

the relation
[Ei, Fj] = δij

(
q − q−1

)
(Ki −K ′i) , (4.3.2)

and the quantum Serre relations

E2
iEi±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0,

[Ei, Ej] = [Fi, Fj] = 0 if |i− j| > 1.

(4.3.3)

The algebra Dn is a Hopf algebra, with the comultiplication

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Ki) = Ki ⊗Ki,

∆(Fi) = Fi ⊗K ′i + 1⊗ Fi, ∆(K ′i) = K ′i ⊗K ′i,

the antipode

S(Ei) = −K−1
i Ei, S(Ki) = K−1

i ,

S(Fi) = −FiKi, S(K ′i) = (K ′i)
−1,

and the counit
ε(Ki) = ε(K ′i) = 1, ε(Ei) = ε(Fi) = 0.

The quantum group Uq(sln+1) is defined as the quotient

Uq(sln+1) = Dn/ 〈KiK
′
i = 1 | i = 1, . . . , n〉 .

Note that the quantum group Uq(sln+1) inherits a well-defined Hopf algebra structure from
Dn. The subalgebra Uq(b) ⊂ Dn generated by all Ki, Ei is a Hopf subalgebra in Dn. The
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algebra Uq(b) is isomorphic to its image under the projection onto Uq(sln+1) and is called the
quantum Borel subalgebra of Uq(sln+1). Note that Dn is nothing but the Drinfeld double of
Uq(b).

Let us fix a normal ordering ≺ on ∆+, that is a total ordering such that α ≺ α+ β ≺ β
for any α, β ∈ ∆+. We set Eαi = Ei, Fαi = Fi, and define inductively

Eα+β =
EαEβ − q−(α,β)EβEα

q − q−1
, (4.3.4)

Fα+β =
FβFα − q(α,β)FαFβ

q − q−1
. (4.3.5)

Then the set of all normally ordered monomials in Kα, K ′α, Eα, and Fα for α ∈ ∆+ forms a
Poincaré-Birkhoff-Witt (PBW) basis for Dn as a C(q)-module. In what follows, we denote

Eij = Eαi+αi+1+...+αj and Fij = Fαi+αi+1+...+αj .

Finally, let us introduce for future reference the automorphism θ of the Dynkin diagram of
Uq(sln+1) defined by

θ(i) = n+ 1− i, 1 ≤ i ≤ n. (4.3.6)

4.4 An embedding of Uq(sln+1)

Let us now explain how to embed Uq(sln+1) into a quantum cluster X -chart on the quantum

character variety of decorated PGLn+1-local systems on an disk Ŝ with a single puncture p,
and with two marked points x1, x2 on its boundary.

We consider the ideal triangulation of Ŝ in which we take the pair of triangles from
Figure 4.1 and amalgamate them by two sides as in Figure 4.6. The resulting quiver is
shown on Figure 4.3. Note that the vertices in the central column used to be frozen before
amalgamation. We shall refer to this quiver as the Dn-quiver and denote the corresponding
quantum torus algebra by Dn. The Dn-quivers for n = 1, 2, and 3 are shown on Figures 4.4,
4.5, and 4.7 respectively.

Let us explain our convention for labelling the vertices of the Dn-quiver. We denote
frozen vertices in the left column by Vi,−i with i = 1, . . . , n counting South to North. Now,
choose a frozen vertex Vi,−i and follow the arrows in the South-East direction until you hit
one of the vertices in the central column. Each vertex along the way is labelled by Vi,r,
r = −i, . . . , 0. Then, start from the central vertex Vi,0 and follow arrows in the North-East
direction labelling vertices Vi,r, r = 0, . . . , i, on your way until you hit a frozen vertex in the
right column, which receives the label Vi,i. This way we label all the vertices except for the
upper half of those in the central column. Now, let us rotate the Dn-quiver by 180◦, and
label the image of the vertex Vi,r by Λi,r. Now, we have labelled every vertex twice by some
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V1

V2

Vn

...
...

...
...

...
...
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...

...
...

Λ1

Λ2

Λn

Figure 4.3: Dn-quiver.

V and some Λ except for those in the central column. This way to label vertices, although
redundant, will prove very convenient in the sequel. The following relation is easy to verify:

Vi,±r = Λθ(±r),∓θ(i), 1 6 r 6 i 6 n.

In the above formula, θ denotes the diagram automorphism defined in (4.3.6). Finally, we
refer to the subset of vertices {Vi,r | − i 6 r < i} as the Vi-path. Similarly, the Λi-path is
{Λi,r | − i 6 r < i}.

Example 4.4.1. Let us refer to the i-th vertex in Figure 4.4 by Xi. Then the labelling
suggested above is as follows:

V1,−1 = X1, V1,0 = X2, V1,1 = X3,

Λ1,−1 = X3, Λ1,0 = X4, Λ1,1 = X1.
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Example 4.4.2. Similarly, we refer to the i-th vertex in Figure 4.5 by Xi. Then, one has

V1,−1 = X1, V1,0 = X2, V1,1 = X3, V2,−2 = X4,

V2,−1 = X5, V2,0 = X6, V2,1 = X7, V2,2 = X8,

Λ1,−1 = X8, Λ1,0 = X9, Λ1,1 = X4, Λ2,−2 = X3,

Λ2,−1 = X7, Λ2,0 = X10, Λ2,1 = X5, Λ2,2 = X1.

Remark 4.4.3. As shown in [25], for any semisimple Lie algebra g the algebra Uq(g) can
be embedded into the quantized algebra of global functions on the Grothendieck-Springer
resolution G ×B B, where B ⊂ G is a fixed Borel subgroup in G. On the other hand, the
variety G×B B is isomorphic to the moduli space of G-local systems on the punctured disc,
equipped with reduction to a Borel subgroup at the puncture, as well as a trivialization
at one marked point on the boundary. Classically, this moduli space is birational to XŜ,G,
and it would be interesting to understand the precise relation between the corresponding
quantizations.

We now come to the first main result of the paper.

Theorem 4.4.4. There is an embedding of algebras ι : Dn → Dn defined by the following
assignment for i = 1, . . . , n:

Êi 7−→ i
i−1∑
r=−i

qi+rVi,−iVi,1−i . . .Vi,r, (4.4.1)

Ki 7−→ q2iVi,−iVi,1−i . . .Vi,i, (4.4.2)

F̂θ(i) 7−→ i
i−1∑
r=−i

qi+rΛi,−iΛi,1−i . . .Λi,r, (4.4.3)

K ′θ(i) 7−→ q2iΛi,−iΛi,1−i . . .Λi,i. (4.4.4)

Remark 4.4.5. The algebra embedding (4.4.1) – (4.4.4) turns out to be equivalent to the
homomorphism from Uq(sln) into an algebra of difference operators used to constuct the
positive representations introduced in [30]. We thank I. Ip for pointing this out to us.

Remark 4.4.6. Formulas (4.4.1) and (4.4.3) can be rewritten as follows:

Ei 7−→ i AdΨq(Vi,i−1) . . .AdΨq(Vi,1−i) Vi,−i,

Fθ(i) 7−→ i AdΨq(Λi,i−1) . . .AdΨq(Λi,1−i) Λi,−i.

Note, that the right hand side of the formula (4.4.1) coincides with the cluster X-variable
corresponding to the vertexVi,−i, in the cluster obtained from the initial one by consecutive
application of mutations at variables Vi,r, where r runs from i − 1 to 1 − i. Similarly, the
right hand side of the formula (4.4.3) coincides with the cluster X-variable for vertex Λi,−i in
the cluster obtained from the initial one by consecutive application of mutations at variables
Λi,r, where r runs from i− 1 to 1− i.
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Example 4.4.7. For n = 1, in the notations of Figure 4.4, the embedding ι reads

E 7→ iX1(1 + qX2), K 7→ q2X1X2X3,

F 7→ iX3(1 + qX4), K ′ 7→ q2X4X3X2.

4

1

2

3

Figure 4.4: D1-quiver.

Example 4.4.8. For n = 2, in the notations of Figure 4.5, the embedding ι reads

E1 7→ iX1(1 + qX2), K2 7→ q4X3X4X5X6X7,

E2 7→ iX4(1 + qX5(1 + qX6(1 + qX7))), K1 7→ q2X1X2X3,

F1 7→ iX3(1 + qX7(1 + qX10(1 + qX5))), K ′2 7→ q2X8X9X4,

F2 7→ iX8(1 + qX9), K ′1 7→ q4X7X4X10X5X1.

1

2

3

4

5

6

7

8

9

10

Figure 4.5: D2-quiver.

The proof of Theorem 4.4.4 will follow from Propositions 4.4.9 and 4.4.10 stated below.

Proposition 4.4.9. The formulas (4.4.1) – (4.4.4) define a homomorphism of algebras.
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Proof. In what follows we abuse notations and denote an element of the algebra Dn and its
image under ι the same. For any 1 6 i 6 n and −i 6 r < i, let us define

wri = iqi+rVi,−i . . .Vi,r,

mr
i = iqi+rΛi,−i . . .Λi,r.

Then, the formulas (4.4.1) – (4.4.4) can be rewritten as follows:

Êi = w−ii + · · ·+ wi−1
i , Ki = −qwi−1

i m
−θ(i)
θ(i) ,

F̂θ(i) = m−ii + · · ·+mi−1
i , K ′θ(i) = −qmi−1

i w
−θ(i)
θ(i) .

It is immediate from inspecting the quiver that the relations (4.3.1) hold, as well as
[Ei, Ej] = [Fi, Fj] = 0 for |i− j| > 1. To verify (4.3.2) it suffices to notice that i < θ(j)
implies wrim

s
j = ms

jw
r
i , while

i = θ(j) =⇒ wrim
s
j =


q2ms

jw
r
i if r = −i, s = j − 1,

q−2ms
jw

r
i if r = i− 1, s = −j,

ms
jw

r
i otherwise,

i > θ(j) =⇒ wrim
s
j =


q2ms

jw
r
i if r = ±θ(j), s = ∓θ(i)− 1,

q−2ms
jw

r
i if s = ±θ(i), r = ∓θ(j)− 1,

ms
jw

r
i otherwise.

Let us now check the Serre relation

E2
i+1Ei + EiE

2
i+1 = (q + q−1)Ei+1EiEi+1.

Suppose −i 6 t 6 i− 1 and −i− 1 6 r 6 i. We write

tC r if wri+1w
t
i = q−1wtiw

r
i+1,

tB r if wri+1w
t
i = qwtiw

r
i+1.

It is easy to verify that

tC r ⇐⇒

{
t 6 r if r < 0,

t < r if r > 0
and tB r ⇐⇒

{
t > r if r < 0,

t > r if r > 0.
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We can now express

E2
i+1Ei =

∑
r,s,t

wri+1w
s
i+1w

t
i

=
∑

tBr,tBs

wri+1w
s
i+1w

t
i +

∑
tBr,tCs

wri+1w
s
i+1w

t
i

+
∑

tCr,tBs

wri+1w
s
i+1w

t
i +

∑
tCr,tCs

wri+1w
s
i+1w

t
i

= q
∑

tBr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tCs

wri+1w
t
iw

s
i+1

+ q
∑

tCr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tCr,tCs

wri+1w
t
iw

s
i+1.

Analogously, we have

EiE
2
i+1 = q

∑
tCr,tBs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tBs

wri+1w
t
iw

s
i+1

+ q
∑

tCr,tCs

wri+1w
t
iw

s
i+1 + q−1

∑
tBr,tCs

wri+1w
t
iw

s
i+1.

Observe that if t B r and t C s, then one necessarily has r < s, which in turn implies
wri+1w

s
i+1 = q−2wsi+1w

r
i+1. Similarly, if tCr and tBs, it follows that r > s and wri+1w

s
i+1 = q2wsi+1w

r
i+1.

Hence ∑
tBr,tCs

wri+1w
t
iw

s
i+1 =

∑
tBr,tCs

wsi+1w
t
iw

r
i+1,∑

tCr,tBs

wri+1w
t
iw

s
i+1 =

∑
tCr,tBs

wsi+1w
t
iw

r
i+1.

It therefore follows that

E2
i+1Ei + EiE

2
i+1

=
(
q − q−1

)( ∑
tBr,tBs

+
∑

tBr,tCs

+
∑

tCr,tBs

+
∑

tCr,tCs

)
wri+1w

t
iw

s
i+1

= Ei+1EiEi+1.

The other nontrivial Serre relations are proved in an identical fashion.

Proposition 4.4.10. The homomorphism ι : Dn → Dn is injective.

Proof. It will be convenient to choose a different PBW basis of Dn from the one we consid-
ered in Section 4.3. Namely, for any simple root α we set F ′α = Fα, then define inductively

F ′α+β =
F ′αF

′
β − q−(α,β)F ′βF

′
α

q − q−1
.
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By the PBW theorem, the set MonPBW of all normally ordered monomials in Kα, K ′α,
Eα, and F ′α, α ∈ ∆+, forms a basis for Dn over C(q). Let us now fix a degree-lexigocraphic
order on the set of all monomials in the quantum torus Dn, taken with respect to any total
order on the generators {Xi}. To establish injectivity of ι, it will suffice to show that there
are no two PBW monomials m1,m2 ∈ MonPBW , such that ι(m1) and ι(m2) have the same
leading term with respect to our chosen monomial order for Dn. Indeed, if this is true, our
monomial order induces a total order on MonPBW with respect to which the map ι becomes
triangular. In fact, given a monomial ~X ∈ Dn that arises as the leading term of some PBW
monomial, one can reconstruct the unique PBW monomial m ~X such that the leading term

of ι(m ~X) is ~X as follows. In the cluster monomial ~X, let nij, sij, eij, and wij be respectively
the degrees of the cluster variables corresponding to North, South, East, and West nodes of
the rhombus labelled by ij in the right triangle in Figure 4.6. Let us also declare w1n = 0.
Then the degree of Eij in m ~X is equal to nij + sij − eij − wij and the degree of Ki is equal
to eii − nin.

To see this, first observe that the leading term of ι(m) for m ∈ {Eα, Fα, Ki, K
′
i} will

contribute one to the power of a cluster variable in ~X iff the corresponding vertex of the
quiver appears in ι(m). Hence, the quantity N + S − E − W for any rhombus will be
an integer combination of exponents of the {Eα, Fα, Ki, K

′
i}. Now, the SE and NW edges

of any rhombus in the right triangle form part of some Vr, Vr+1-paths respectively. Note
that N appears in K ′i iff E does, and S appears in K ′i iff W does. Hence nK′i contributes
nothing to N + S − E −W . Similar arguments apply to show nK′i also contributes nothing
to N +S−E−W . Moreover, since we are in the right triangle, exactly the same arguments
also apply to nFα for any root α.

Now,suppose we have a root Ei,j. Then if i > r+ 1, or j < r, none of the rhomus vertices
appear in ι(Ei,j). If i ≤ r and r + 1 ≤ j, then S appears in Eij iff W does, and E appears
in Eij iff N does. Hence nEij , the power of Eij in a PBW monomial makes no contribution
N +S−E−W . Similarly, if i = r+ 1, then W appears in Ei,j iff N does, since N can never
be a frozen vertex. The only remaining case is when j = r: in this case, we see that Ei,j will
contribute to N + S − E −W iff S is the last vertex in Vr appearing in Ei,j. The formulas
for the exponents of Fα, Ki, K

′
i are proved by similar arguments.

Now, let nij, sij, eij, and wij denote the degrees in m ~X of the cluster variables correspond-
ing the North, South, East, and West nodes of the corresponding rhombus in the left triangle
in Figure 4.6, where we set e1n = 0. Then the degree of F ′θ(i)θ(j) equals nij + sij − eij − wij
in the left triangle where we set e1n = 0 and the degree of K ′θ(i) equals wi,i − si,n.

Corollary 4.4.11. The homomorphism ι induces an embedding of the quantum group Uq(sln+1)
into the quotient of the algebra Dn by relations

q2n+2Vi,−i . . .Vi,i · Λθ(i),−θ(i) . . .Λθ(i),θ(i) = 1

for all 1 6 i 6 n.
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Figure 4.6: A pair of triangles amalgamated by 2 sides.
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Figure 4.7: D3-quiver.

4.5 The Dehn twist on a twice punctured disk

In order to describe the coalgebra structure of Uq(sln+1), we will need to consider the moduli

space XŜ2,PGLn+1
of PGLn+1-local systems on Ŝ2, a disk with two punctures p1, p2, and two

marked points x1, x2 on its boundary. To obtain a quantum cluster chart on this moduli
space, we consider the quiver corresponding to the (n + 1)-triangulation of the left-most
disk in Figure 4.8. Note that this quiver is formed by amalgamating two Dn-quivers by one
column of frozen variables, see Figure 4.3. An example of two amalgamated D2-quivers is
shown in Figure 4.9, where one should disregard the gray arrows. We refer to the result of
this amalgamation as the Zn-quiver and denote the corresponding quantum torus algebra
by Zn.

Figure 4.8 shows four different ideal triangulations of a twice punctured disk with two
marked points on the boundary; the arrows correspond to flips of ideal triangulations. Note
that the right-most disk may be obtained from the left-most one by applying the half-Dehn
twist rotating the left puncture clockwise about the right one. Hence this half-Dehn twist
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may be decomposed into a sequence of 4 flips. Let Z ′n be the quiver obtained from the
(n+ 1)-triangulation of the right-most disk. It is evident from inspecting the corresponding
(n + 1)-triangulations that there exists an isomorphism σ between the Zn- and the Z ′n-
quivers that preserves all frozen variables. On the other hand, since there is no nontrivial
automorphism of the Zn-quiver fixing its frozen variables, we conclude that the isomorphism
σ is unique.

Let us now describe σ explicitly. Recall that each (n+ 1)-triangulated triangle contains
exactly n solid oriented paths parallel to each of its sides. For example, in the 4-triangulation
shown in Figure 4.1, one sees paths 1→ 2, 3→ 4→ 5, and 6→ 7→ 8→ 9, parallel to the
side BC. Now, consider the second disk in Figure 4.8, recall that the (n+1)-triangulation of
the pair of triangles in the middle is shown in the right part of Figure 4.2. For i = 1, . . . , n
we define the i-th permutation cycle to

• follow the i-th solid path parallel to the side a in the triangle ∆abc along the orientation,

• follow the i-th solid path parallel to the side d in the triangle ∆bde in the direction
opposite to the orientation,

• follow the i-th solid path parallel to the side g in the triangle ∆efg along the orientation,

• follow the i-th solid path parallel to the side d in the triangle ∆cdf in the direction
opposite to the orientation.

Now, the isomorphism σ is defined as follows: each vertex in the i-th permutation cycle is
moved i steps along the cycle, frozen variables are left intact, the rest of the vertices are
rotated by 180◦. In Figure 4.9, the 2 cycles in the quiver Z2 and the rotation of vertices 9
and 11 are shown by gray arrows; the action of σ reads

σ = (2 7 15 17 13 4) (3 16 18) (8 10 12) (9 11),

where the 2nd permutation cycle breaks into (3 16 18) (8 10 12).

4.6 Cluster realization of the R-matrix

Recall that the universal R-matrix of the quantum group Uq(sln+1) is an element

R ∈ ˜Uq(sln+1)⊗ Uq(sln+1)

a

b

c

d

e

f

g

Figure 4.8: The half Dehn twist as a sequence of 4 flips.
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Figure 4.9: Permutation on the Z2-quiver.

of a certain extension of its tensor square, and gives rise to a braiding on the category of
finite dimensional Uq(sln+1)-modues. The universal R-matrix admits decomposition

R = R̄K.

where
K = q

∑
i,j cijHi⊗Hj ,

(cij) is the inverse of the Cartan matrix, and H, H ′ are defined from the relations

K = qH and K ′ = qH
′
.

The tensor R̄ is called the quasi R-matrix and is given by the formula

R̄ =
→∏

α∈∆+

Ψq (−Eα ⊗ Fα) , (4.6.1)

where the product is ordered consistently with the previously chosen normal ordering ≺ on
∆+.

Let AdK and AdR̄ denote the automorphisms of Dn ⊗ Dn that conjugate by K and R̄
respectively. It is clear that both AdK and AdR̄ extend to automorphisms of Dn⊗Dn defined
in the same way. We write P for the automorphism of Dn⊗Dn permuting the tensor factors:

P (X ⊗ Y ) = Y ⊗X.

Recall the isomorphism of quivers described in the previous section. It defines a per-
mutation of cluster variables Xi 7→ Xσ(i) which we also denote by σ with a slight abuse of
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notation. Note that each of the 4 flips shown in Figure 4.8 corresponds to a sequence of(
n+2

3

)
cluster mutations, as explained at the end of Section 4.2. Let

N = 4 ·
(
n+ 2

3

)
and µN . . . µ1 be the sequence of quantum cluster mutations constituting the half-Dehn twist.
Now we are ready to formulate the next main result of the paper.

Theorem 4.6.1. The composition

P ◦ AdR : Dn ⊗Dn −→ Dn ⊗Dn

restricts to the subalgebra Zn. Moreover, the following automorphisms of Zn coincide:

P ◦ AdR = µN . . . µ1 ◦ σ,

where the sequence of quantum cluster mutations µN . . . µ1 constitutes the half Dehn twist.

Proof. By Lemma 4.1.1 we have

µN . . . µ1 = ΦN ◦MN ,

where MN is a monomial transformation, and ΦN is a conjugation by a sequence of N quan-
tum dilogarithms. The result of the theorem then follows from Propositions 4.6.2 and 4.6.3
below.

Proposition 4.6.2. The following automorphisms of Zn coincide:

P ◦ AdK = MN ◦ σ. (4.6.2)

Proof. We define the ΛVi-path in the Zn-quiver as the concatenation of the Λθ(i)-path in
the left Dn-quiver with the Vi-path in the right Dn-quiver. For example, in the notations
of Figure 4.9, the ΛV1-path consists of vertices 1, 7, 16, 9, 3, 4, 5. Each mutation from the
sequence µN . . . µ1 happens at a vertex that belongs to a certain ΛVi-path, has exactly two
outgoing edges within this path, and has exactly two incoming edges from vertices that do
not belong to the path. This claim can be easily verified by inspecting the Zn-quiver and the
sequence of mutations under discussion. In turn, it implies that the monomial transformation
MN restricts to each ΛV-path. The action of MN on the ΛVi-path is shown in Figure 4.10,
where

Z− = q2θ(i) ·X1X2 . . . X2θ(i)+1 · Y1,

Z0 = q−2n ·X−1
2θ(i) . . . X

−1
2 X−1

1 · Y −1
2i . . . Y −1

2 Y −1
1 ,

Z+ = q2i ·X1 · Y1Y2 . . . Y2i+1.
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X2θ(i)+1X2θ(i) X2 X1Y1 Y2 Y3 Y2i−1 Y2i Y2i+1

. . . . . .

Z− Y2 Y3 Y2i−1 Y2i Z0 X2θ(i) X2 Z+

. . . . . .

Figure 4.10: Action of MN on the ΛVi-path.

On the other hand, it is easy to see that the automorphism P ◦ AdK acts as P on all
nonfrozen variables in the product Dn ⊗Dn. It is a matter of a straightforward calculation
to verify that P ◦ AdK acts on the frozen variables of Zn, and on those variables that used
to be frozen before the amalgamation, as follows:

P (AdK(X2θ(r)+1)) = q2θ(r) ·X1X2 . . . X2θ(r)+1 · Y1,

P (AdK(X1Y1)) = q−2n ·X−1
2θ(r) . . . X

−1
2 X−1

1 · Y −1
2r . . . Y −1

2 Y −1
1 ,

P (AdK(Y2r+1)) = q2r ·X1 · Y1Y2 . . . Y2r+1.

Now we can see that under the action of P ◦ AdK, the initial cluster X of the quiver Zn
is transformed into a different cluster X ′ with the underlying quiver isomorphic to Zn. At
the same time, MN also turns X into X ′, but the corresponding quiver is Z ′n. Since there
are no nontrivial automorphisms of the quiver Zn fixing the frozen variables, we conclude
that the permutation σ satisfies (4.6.2).

Proposition 4.6.3. The following automorphisms of Zn coincide:

AdP (R̄) = ΦN .

Proof. Consider the factorization (4.7.18) of the quasi R-matrix obtained in Theorem 4.7.4.
On the other hand, we have a different factorization of the R-matrix from inspecting the
sequence of flips realizing the Dehn twist along with the corresponding sequence of mutations.
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The latter factorization reads

R̄ =
n−1∏
k=0

n+1∏
j=θ(k)

θ(k+1)∏
i=1

ψ
(
m
i−θ(k)
j−i ⊗ w−ii+θ(j)

)

·
n−1∏
k=0

n+1∏
j=θ(k)

θ(k+1)∏
i=1

ψ
(
m
i−θ(k)
j−i ⊗ wθ(j)i+θ(j)

)

·
n∏
k=1

n+1∏
j=k+1

k∏
i=1

ψ
(
mi−1
i+θ(j) ⊗ w

k−j
j−i

)

·
n∏
k=1

n+1∏
j=k+1

k∏
i=1

ψ
(
mi−1
i+θ(j) ⊗ w

k−i
j−i

)
,

(4.6.3)

where all three products are taken in ascending order and expanded from left to right. Now,
it suffices to show that formulas (4.7.18) and (4.6.3) coincide.

Let us write (a1, . . . , aN) for the sequence of dilogarithm arguments appearing in the
factorization (4.7.18), read from left to right. Similarly, we write (b1, b2, . . . , bN) for the
sequence of dilogarithm arguments appearing in the factorization (4.6.3), again read from
left to right. It is easy to see that the underlying sets (a1, . . . , aN) and (b1, . . . , bN) coincide.
Moreover, we claim that for every pair (bi, bj) with i < j such that (bi, bj) = (ak, al) for some
k > l, we have [bi, bj] = 0. This follows from commutation relations

wriw
s
i = q2 sgn(r−s)wsiw

r
i ,

wriw
s
j = wsjw

r
i if |i− j| > 1,

wriw
s
i+1 =

{
qwsi+1w

r
i if r C s,

q−1wsi+1w
r
i if r B s,

and similar relations for variables mr
i , all of which can be read from the Dn-quiver. Hence

one can freely re-order the dilogarithms ψ(bi) to match the order arising in (4.7.18), and the
Proposition is proved.

Remark 4.6.4. The homomorphism (ι ⊗ ι) ◦∆: Dn → Dn ⊗ Dn given composition of the
comultiplication map with the tensor square of ι factors through the subalgebra Zn: we have

(ι⊗ ι) ◦∆: Dn → Zn ⊂ Dn ⊗Dn.

Let us refer to the concatenation of the two Vi-paths in a pair of amalgamated Dn-quivers
as a VVi-path. Then, the formula for ∆(Ei) is obtained by conjugating the first (frozen)
variable in the VVi-path by quantum dilogarithms with arguments running over consecutive
vertices in the VVi-path not including the last (frozen) vertex, and multiplying the result
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by i. In particular, in the notations of Figure 4.9 one gets

∆(E1) = iX1(1 + qX2(1 + qX3(1 + qX4))),

∆(E2) = iX6(1 + qX7(. . . (1 + qX12(1 + qX13)) . . . )).

The coproduct ∆(Ki) is equal to the product of all the variables along the VVi-path multi-
plied by q4i. Again, in the notations of Figure 4.9 one gets

∆(K1) = q4X1X2X3X4X5,

∆(K2) = q8X6X7X8X9X10X11X12X13X14.

Formulas for ∆(Fθ(i)) and ∆(K ′θ(i)) can be obtained from those for ∆(Ei) and ∆(Ki) via
rotating the Zn-quiver by 180◦. Similarly, one can get formulas for iterated coproducts
∆k(A), A ∈ Dn, by amalgamating k + 1 copies of the Dn-quiver.

4.7 Factorization of the R-matrix

In this section, we show that the embedding (4.4.4) gives rise to the refined factorization of
the R-matrix of Uq(sln+1) used in the proof of Theorem 4.6.1.

We begin with some preparatory lemmas and remarks. It follows from formulas (4.3.4)
and (4.4.1) that for every −i 6 r < i and −j 6 s < j there exist unique decompositions

Ei+1,j = E
↓r−
i+1,j + E

↓r+
i+1,j, Ei,j−1 = E

↑s−
i,j−1 + E

↑s+
i,j−1

where the summands satisfy

wriE
↓r±
i+1,j = q±1E

↓r±
i+1,jw

r
i , wsjE

↑s±
i,j−1 = q±1E

↑s±
i,j−1w

s
j .

In a similar fashion, formulas (4.3.5) and (4.4.3) imply decompositions

Fi+1,j = F
↓r−
i+1,j + F

↓r+
i+1,j, Fi,j−1 = F

↑s−
i,j−1 + F

↑s+
i,j−1

where the summands are defined by

mr
θ(i)F

↓r±
i+1,j = q±1F

↓r±
i+1,jm

r
θ(i), ms

θ(j)F
↑s±
i,j−1 = q±1F

↑s±
i,j−1m

s
θ(j).

It is also evident that Eij and Fij can be decomposed as

Eij = −q
j−1∑
s=−j

E
↑s+
i,j−1w

s
j = q2

r−1∑
s=−r

E
↑s+
i,r−1w

s
rE
↓s−
r+1,j = −q

i−1∑
s=−i

wsiE
↓s−
i+1,j, (4.7.1)

Fij =

θ(j)−1∑
s=−θ(j)

F
↑s+
i,j−1m

s
θ(j) =

θ(r)−1∑
s=−θ(r)

F
↑s+
i,r−1m

s
θ(r)F

↓s−
r+1,j =

θ(i)−1∑
s=−θ(i)

ms
θ(i)F

↓s−
i+1,j (4.7.2)

for any i < r < j. We say that formulas (4.7.1) show decompositions of Eij with respect
to the Vi-, Vr-, and Vj-paths. Similarly, formulas (4.7.2) show decompositions of Fij with
respect to the Λθ(i)-, Λθ(r)-, and Λθ(j)-paths.
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Lemma 4.7.1. For all a < b, we have(
E
↑a+
i,j−1w

a
j

)(
E
↑b+
i,j−1w

b
j

)
= q−2

(
E
↑b+
i,j−1w

b
j

)(
E
↑a+
i,j−1w

a
j

)
, (4.7.3)(

F
↑a+
i,j−1m

a
θ(j)

)(
F
↑b+
i,j−1m

b
θ(j)

)
= q−2

(
F
↑b+
i,j−1m

b
θ(j)

)(
F
↑a+
i,j−1m

a
θ(j)

)
, (4.7.4)

and(
E
↑a+
i,j−1w

a
jE
↓a−
j+1,k

)(
E
↑b+
i,j−1w

b
jE
↓b−
j+1,k

)
= q−2

(
E
↑b+
i,j−1w

b
jE
↓b−
j+1,k

)(
E
↑a+
i,j−1w

a
jE
↓a−
j+1,k

)
. (4.7.5)

Proof. We shall only prove the first relation as the proofs of the other two are similar. First,
note that since a < b we have

wajE
↑b+
i,j−1 = qE

↑b+
i,j−1w

a
j and wajw

b
j = q−2wbjw

a
j ,

therefore
waj

(
E
↑b+
i,j−1w

b
j

)
= q−1

(
E
↑b+
i,j−1w

b
j

)
waj .

Let us set
Ea5b
i,j−1 = E

↑a+
i,j−1 − E

↑b+
i,j−1.

Then by definition we have
E
↑b+
i,j−1w

b
j = q−1wbjE

↑b+
i,j−1

and it only remains to commute Ea5b
i,j−1 through E

↑b+
i,j−1w

b
j . For this, is enough to show that

Ea5b
i,j−1E

↑b+
i,j−1 = q−2E

↑b+
i,j−1E

a5b
i,j−1 (4.7.6)

since
Ea5b
i,j−1w

b
j = qwbjE

a5b
i,j−1.

We finish the proof by induction on j. Assume that equalities (4.7.3) and (4.7.6) hold for all
j < k. To prove the base of induction, it is enough to note that if j = i+1, the relation (4.7.6)
follows readily from inspecting the quiver, which in turn implies (4.7.3). In order to make

the step of induction, we decompose both Ea5b
i,k−1 and E

↑b+
i,k−1 with respect to the Vk−1-path

and apply (4.7.3) for j = k − 2.

Lemma 4.7.2. For i < j we have

Ei,jEk =


q−1EkEi,j if k = j,

qEkEi,j if k = i,

EkEi,j if i < k < j.

(4.7.7)
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Proof. The proof follows from the decomposition (4.7.1) and considerations similar to the
proof of those in the proof of Lemma 4.7.1.

For any i < j let us declare

F>s
i,j =

∑
r>s

F
↑r+
i,j−1m

r
θ(j).

Note that

F>s
i,j =

{
F
↑s+
i,j if s < 0,

F
↑0+
i,j−1m

0
θ(j) + F

↑s+
i,j if s > 0.

(4.7.8)

In what follows we use the following shorthand:

ψ(x) = Ψq(−x)

Note that the pentagon identity (4.1.3) now reads

ψ(v)ψ(u) = ψ(u)ψ(−quv)ψ(v) (4.7.9)

for any u and v satisfying vu = q2uv.

Lemma 4.7.3. We have

ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F>s

i,j+1

)
ψ
(
Ej+1 ⊗ms

θ(j+1)

)
= ψ

(
Ej+1 ⊗ms

θ(j+1)

)
ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F>s+1

i,j+1

)
.

(4.7.10)

Proof. By equality (4.1.2) and Lemma 4.7.1, there exists a factorization

ψ
(
Ei,j+1 ⊗ F>s

i,j+1

)
=
∏
r≥s

ψ
(
Ei,j+1 ⊗ F ↑r+i,j mr

θ(j+1)

)
,

where the product is taken in ascending order. Note that by Lemma 4.7.2, the dilogarithm

ψ
(
Ej+1 ⊗ms

θ(j+1)

)
commutes with all but the left-most factor in this product. Hence the

left-hand side of (4.7.10) may be re-ordered so that we have a triple of adjacent factors

ψ
(
Ei,j ⊗ F ↑s+i,j

)
ψ
(
Ei,j+1 ⊗ F ↑s+i,j ms

θ(j+1)

)
ψ
(
Ej+1 ⊗ms

θ(j+1)

)
.

Now, using (4.7.1) we get similar factorizations

ψ
(
Ei,j ⊗ F ↑s+i,j

)
=

i−1∏
r=−i

ψ
(
−qE↑r+i,j−1w

r
j ⊗ F

↑s+
i,j

)
(4.7.11)
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and

ψ
(
Ei,j+1 ⊗ F ↑s+i,j ms

θ(j+1)

)
=

i−1∏
r=−i

ψ
(
q2E

↑r+
i,j−1w

r
jE
↓r−
j+1 ⊗ F

↑s+
i,j ms

θ(j+1)

)
, (4.7.12)

with the products again being taken in ascending order. By Lemma 4.7.1, the rightmost

factor ψ
(
−qE↑(i−1)+

i,j−1 wi−1
j ⊗ F ↑s+i,j

)
in (4.7.11) commutes with all but the rightmost factor

in (4.7.12), so we can re-order again to get a triple of adjacent factors

ψ
(
−qE↑(i−1)+

i,j−1 wi−1
j ⊗ F ↑s+i,j

)
ψ
(
q2E

↑(i−1)+
i,j−1 wi−1

j E
↓(i−1)−
j+1 ⊗ F ↑s+i,j ms

θ(j+1)

)
·ψ
(
Ej+1 ⊗ms

θ(j+1)

)
.

(4.7.13)

On the other hand, we can factor

ψ
(
Ej+1 ⊗ms

θ(j+1)

)
= ψ

(
E
↓(i−1)−
j+1 ⊗ms

θ(j+1)

)
ψ
(
E
↑(i−1)+
j+1 ⊗ms

θ(j+1)

)
, (4.7.14)

and then apply the pentagon identity (4.7.9) to (4.7.13), yielding

ψ
(
E
↓(i−1)−
j+1 ⊗ms

θ(j+1)

)
ψ
(
−qE↑(i−1)+

i,j−1 wi−1
j ⊗ F ↑s+i,j

)
· ψ
(
E
↑(i−1)+
j+1 ⊗ms

θ(j+1)

)
.

(4.7.15)

Note that the right two factors in the product (4.7.15) commute, so it can be re-expressed
as

ψ
(
Ej+1 ⊗ms

θ(j+1)

)
ψ
(
−qE↑(i−1)+

i,j−1 wi−1
j ⊗ F ↑s+i,j

)
. (4.7.16)

Repeating the same procedure for each of the remaining factors in the product (4.7.11), one
arrives at (4.7.10).

Theorem 4.7.4. The quasi R-matrix of Uq(sln+1) can be factored as follows:

R̄n =ψ
(
E1 ⊗m−nn

)
ψ
(
E2 ⊗m1−n

n−1

)
· · ·ψ

(
En ⊗m−1

1

)
·ψ
(
E1 ⊗m1−n

n

)
ψ
(
E2 ⊗m2−n

n−1

)
· · ·ψ

(
En−1 ⊗m−1

2

)
...

·ψ
(
E1 ⊗m−2

n

)
ψ
(
E2 ⊗m−1

n−1

)
·ψ
(
E1 ⊗m−1

n

)
·ψ
(
E1 ⊗m0

n

)
·ψ
(
E2 ⊗m0

n−1

)
ψ
(
E1 ⊗m1

n

)
...

·ψ
(
En−1 ⊗m0

2

)
ψ
(
En−2 ⊗m1

3

)
· · ·ψ

(
E1 ⊗mn−2

n

)
·ψ
(
En ⊗m0

1

)
ψ
(
En−1 ⊗m1

2

)
· · ·ψ

(
E1 ⊗mn−1

n

)
.

(4.7.17)
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Equivalently, we have

R̄ =
n∏
k=1

θ(k)∏
j=1

j−1∏
i=−j

ψ
(
wij ⊗m

k−θ(j)−1
θ(j)

)

·
n∏
k=1

n∏
j=θ(k)

θ(j)−1∏
i=−θ(j)

ψ
(
wiθ(j) ⊗m

j−θ(k)
j

)
,

(4.7.18)

where in the above formula, the products are taken in ascending order2 and expanded from
left to right, that is one should first expand the formula in k, then in j, and then in i.

Example 4.7.5. In the case of Uq(sl3), formula (4.7.18) yields a factorization of the quasi
R-matrix into the following 16 factors:

R̄ =ψ
(
w−1

1 ⊗m−2
2

)
ψ
(
w0

1 ⊗m−2
2

)
ψ
(
w−2

2 ⊗m−1
1

)
ψ
(
w−1

2 ⊗m−1
1

)
·ψ
(
w0

2 ⊗m−1
1

)
ψ
(
w1

2 ⊗m−1
1

)
ψ
(
w−1

1 ⊗m−1
2

)
ψ
(
w0

1 ⊗m−1
2

)
·ψ
(
w−1

1 ⊗m0
2

)
ψ
(
w0

1 ⊗m0
2

)
ψ
(
w−2

2 ⊗m0
1

)
ψ
(
w−1

2 ⊗m0
1

)
·ψ
(
w0

2 ⊗m0
1

)
ψ
(
w1

2 ⊗m0
1

)
ψ
(
w−1

1 ⊗m1
2

)
ψ
(
w0

1 ⊗m1
2

)
.

Proof. Choosing the normal ordering

α1 ≺ (α1 + α2) ≺ (α1 + · · ·+ αn) ≺ α2 ≺ · · · ≺ (α2 + · · ·+ αn) ≺ · · · ≺ αn

in the formula (4.6.1), we can write

R̄n+1 = ψ (E1 ⊗ F1)ψ (E1,2 ⊗ F1,2) · · ·ψ (E1,n+1 ⊗ F1,n+1) · R̄n. (4.7.19)

where we may assume by induction that R̄n factors as follows:

R̄n =ψ
(
E2 ⊗m−nn

)
ψ
(
E3 ⊗m1−n

n−1

)
· · ·ψ

(
En+1 ⊗m−1

1

)
...

·ψ
(
E2 ⊗m−2

n

)
ψ
(
E3 ⊗m−1

n−1

)
·ψ
(
E2 ⊗m−1

n

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En ⊗m0

2

)
ψ
(
En−1 ⊗m1

3

)
· · ·ψ

(
E2 ⊗mn−2

n

)
·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗mn−1

n

)
.

(4.7.20)

2In fact, one only needs to order the product over k, for the reason that all factors with a fixed k commute.
However, it is slightly easier to check that formulas (4.7.18) and (4.6.3) coincide if all three products are
ordered.
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By Lemma 4.7.2, we may shuffle the prefix of (4.7.19) and the first row of (4.7.20) into the
following form:

ψ (E1 ⊗ F1)ψ (E1,2 ⊗ F1,2)ψ
(
E2 ⊗m−nn

)
· · ·ψ (E1,n ⊗ F1,n)ψ

(
En ⊗m−2

2

)
·ψ (E1,n+1 ⊗ F1,n+1)ψ

(
En+1 ⊗m−1

1

)
.

(4.7.21)

We can then apply Lemma 4.7.3 to write

ψ (E1 ⊗ F1)ψ (E1,2 ⊗ F1,2)ψ
(
E2 ⊗m−nn

)
= ψ

(
E1 ⊗m−n−1

n+1

)
ψ
(
E1 ⊗ F ↑(−n)+

1

)
ψ (E1,2 ⊗ F1,2)ψ

(
E2 ⊗m−nn

)
= ψ

(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
ψ
(
E1 ⊗ F ↑(−n)+

1

)
ψ
(
E1,2 ⊗ F ↑(1−n)+

1,2

)
.

After repeated applications of Lemma 4.7.3, the last of these being to write

ψ
(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ (E1,n+1 ⊗ F1,n+1)ψ

(
En+1 ⊗m−1

1

)
=ψ

(
En+1 ⊗m−1

1

)
ψ
(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ
(
E1,n+1 ⊗ F>0

1,n+1

)
,

we arrive at the following form of (4.7.21):

ψ
(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
· · ·ψ

(
En+1 ⊗m−1

1

)
·ψ
(
E1 ⊗ F ↑(−n)+

1

)
· · ·ψ

(
E1,n ⊗ F ↑(−1)+

1,n

)
ψ
(
E1,n+1 ⊗ F>0

1,n+1

)
.

We can now repeat this reasoning for each of the next n − 1 rows in the product (4.7.20).
This results in an expression for R̄n+1 of the form

R̄n+1 =ψ
(
E1 ⊗m−n−1

n+1

)
ψ
(
E2 ⊗m−nn

)
· · ·ψ

(
En+1 ⊗m−1

1

)
·ψ
(
E1 ⊗m−nn+1

)
ψ
(
E2 ⊗m−n+1

n

)
· · ·ψ

(
En ⊗m−1

2

)
...

·ψ
(
E1 ⊗m−2

n+1

)
ψ
(
E2 ⊗m−1

n

)
·ψ
(
E1 ⊗m−1

n+1

)
·ψ
(
E1 ⊗m0

n+1

)
·ψ
(
E1 ⊗ F ↑0+1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
· · ·ψ

(
E1,n+1 ⊗ F>0

1,n+1

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗m0

n

)
.
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Note that the first n+ 2 rows of factors in this product are now in the desired form. Now
we need to focus on the following factor:

ψ
(
E1 ⊗ F ↑0+1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
· · ·ψ

(
E1,n+1 ⊗ F>0

1,n+1

)
·ψ
(
E2 ⊗m0

n

)
·ψ
(
E3 ⊗m0

n−1

)
ψ
(
E2 ⊗m1

n

)
...

·ψ
(
En+1 ⊗m0

1

)
ψ
(
En ⊗m1

2

)
· · ·ψ

(
E2 ⊗m0

n

)
.

By Lemma 4.7.2, we can reshuffle this block so that it begins with an adjacent triple of terms

ψ
(
E1 ⊗ F ↑0+1

)
ψ
(
E1,2 ⊗ F>0

1,2

)
ψ
(
E2 ⊗m0

n

)
= ψ

(
E2 ⊗m0

n

)
ψ
(
E1 ⊗ F ↑0+1

)
Ψ
(
E1,2 ⊗ F ↑0+1,2

)
= ψ

(
E2 ⊗m0

n

)
ψ
(
E1 ⊗m1

n+1

)
ψ
(
E1 ⊗ F ↑1+1

)
ψ
(
E1,2 ⊗ F ↑0+1,2

)
,

where we once again used Lemma 4.7.3. Note that now this recovers the correct form of row
(n + 3) in (4.7.17), continuing in a similar fashion one arrives at the desired expression for
R̄.

4.8 Comparison with Faddeev’s results

We conclude by comparing the rank 1 case of our results with Faddeev’s embedding (1.3.2)
as promised in the introduction. Consider the quiver in Figure 4.4. The corresponding
quantum cluster D1 has initial variables 〈X1, X2, X3, X4〉 subject to the relations

XiXi+1 = q−2Xi+1Xi and XiXi+2 = Xi+2Xi where i ∈ Z/4Z.

In this case, the embedding (4.4.4) takes the form

Ê 7→ iX1(1 + qX2), K 7→ q2X1X2X3,

F̂ 7→ iX3(1 + qX4), K ′ 7→ q2X3X4X1,

while our formula (4.7.17) for the universal R-matrix reads R = R̄K, with

R̄ = Ψq (X1 ⊗X3)Ψq (qX1 ⊗X3X4) ·
Ψq (qX1X2 ⊗X3) Ψq

(
q2X1X2 ⊗X3X4

)
.

(4.8.1)

Hence, Faddeev’s formulas (1.3.2) and (1.3.3) are recovered from ours under the monomial
change of variables

w1 7→ X1, w2 7→ qX1X2, w3 7→ X3, w4 7→ qX3X4. (4.8.2)
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Chapter 5

Outlook

The results obtained in this thesis suggest several interesting directions for future research.
First, the explicit formula for the images of the Chevalley generators of Uq(sln) under the
embedding described in Chapter 5 turns out to be compatible with their action under the
positive representations of Uq(sln) defined by Frenkel and Ip in [30]. These representations
are obtained from representations of the quantum cluster torus in which the quantum cluster
variables Xi act by positive, essentially self-adjoint operators, and can be regarded as the
quantum analog of the celebrated totally positive part of the underlying cluster variety.

In the case of sl2, a remarkable theorem of Ponsot and Teschner [9] asserts that the
category of positive representations is in fact closed under tensor products in the sense of
a direct integral, and thus forms a ‘continuous tensor category.’ In higher rank, however,
the establishing the closure under tensor product has remained an important open problem.
Thus, it is natural to pose

Problem 5.0.1. Using the cluster embedding constructed in Chapter 5, apply the tools
of quantum Teichmüller theory to equip the positive representations of Uq(sln) with the
structure of a continuous tensor category.

In ongoing work [26] with A. Shapiro, we have developed a novel approach to Problem
5.0.1, which turns out to be closely related to the quantum analogs of classical integrable
systems like the ones studied in Chapter 1.

The essential idea is that the decomposition of the tensor product Pλ⊗Pµ of two positive
representations arises from the isomorphism of quantum higher Teichmüller spaces corre-
sponding to cutting along the simple closed curve γ shown in Figure 25. The right hand
side of Figure 2 corresponds to a ‘fiber product’ of two quantum Teichmüller spaces: the
diagonally acting copy of Uq(sln) corresponding to a punctured disk with two marked points
on its boundary; and the quantum Teichmüller space for a thrice-punctured sphere with two
specified monodromies λ, µ. The fiber product is taken over the unspecified monodromy ν
around the loop γ, which is associated to the remaining third puncture of the sphere, and
parameterizes the central characters of Uq(sln). Moreover, the quantum Teichmüller space
for the thrice punctured sphere on the right corresponds to the endomorphism algebra of the
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Figure 5.1: Teichmüller theory interpretation of the decomposition of the tensor product of
positive representations Pλ ⊗ Pµ into positive representations Pν .

multiplicity space Mν
λµ. Thus Problem 5.0.1 reduces to the problem of understanding the

spectrum of the commuting quantum Hamiltonians determining the monodromy ν. However,
it turns out that these Hamiltonians can be identified, after a natural sequence of cluster
transformations, with those of the q-difference open Toda chain [21]. The eigenfunctions of
these operators are the celebrated q-Whittaker functions, which have been extensively stud-
ied [21, 50, 3, 15]. In fact, we are confident that the analytic properties of the q-Whittaker
functions can be used to complete the solution of Problem 5.0.1.

Somewhat more ambitiously, one can hope to generalize our results to the infinite dimen-
sional setting of affine Kac-Moody algebras. This would represent a major advance for the
field, since the definition of positive representations of a quantum affine algebra Uq(ĝ) has
so far been unclear. So we conclude by posing the challenging

Problem 5.0.2. Generalize the results of [53] to give a quantum cluster realization of the
quantum affine algebras Uq(ĝ), and use this to define a category of positive representations
of Uq(ĝ).
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