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ABSTRACT OF THE DISSERTATION

The Sample Complexity of Learning Dynamical Systems

by

Yahya Sattar

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2023

Professor Samet Oymak, Chairperson

Machine learning has emerged as a leading force in revolutionizing technology,

education, and almost every aspect of our lives. Reinforcement learning is a sub-field of

machine learning that deals with the effects of dynamic feedback and systems that interact

with the environment. In these settings, classic statistical and algorithmic guarantees often

do not hold because of non i.i.d. data, dynamic feedback, and distribution shift.

We develop a framework for single trajectory learning of nonlinear dynamical

systems using mixing arguments. Our main result studies the landscape of empirical risk

minimization for learning nonlinear dynamical systems from a single trajectory, and provides

uniform gradient convergence guarantee, which is combined with novel one-point convexity

to facilitate the learning of nonlinear dynamical systems. Our proposed framework allows for

non-convex loss landscape and our sample complexity and statistical error rates are optimal

in terms of the trajectory length, dimensions of the system and input/noise strength.

Next, we study the problem of learning bilinear dynamical systems from a single

trajectory of the system’s states and inputs. Our main contribution is the application

viii



of martingale small-ball arguments to derive learning guarantees for non-mixing bilinear

dynamical systems. We further extend our analysis to time varying dynamical systems by

studying the problem of learning non-mixing Markov jump systems. Specifically, we learn

the dynamics in each mode and the Markov transition matrix, underlying the evolution of

the mode switches, from a single trajectory of the system’s states, inputs, and modes. Our

sample complexity and statistical error rates are optimal in terms of the trajectory length,

the dimensions of the system and the input/noise strength.

Lastly, as a preliminary to the problem of finding the best LTI dynamical system

that can minimize least-squares loss given a single trajectory of an unknown dynamical

system, we study the simpler problem of finding the best linear model in high dimensions,

given a dataset. Specifically, we analyze projected gradient descent algorithm to estimate

the population minimizer in the finite sample regime. We show that the nonlinearity of

the problem can be treated as uncorrelated noise and establish linear convergence rate and

data-dependent estimation error bounds for the projected gradient descent algorithm.
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Chapter 1

Introduction

Dynamical systems are fundamental for modeling a wide range of problems ap-

pearing in complex physical processes, cyber-physical systems, natural language processing,

and machine learning. Classical optimal control literature heavily relies on modeling the

underlying system as a linear time-invariant (LTI) dynamical system to synthesize control

policies leading to elegant solutions such as PID controller and Kalman filter [1–3]. Kalman

filters have been vital in the planning and control of vehicles, particularly aircraft, spacecraft

and ships. They have been used in the implementation of navigation systems of space-

crafts [4], and in the trajectory estimation for the famous Apollo program [5]. Reinforcement

learning (RL) is a sub-field of machine learning that studies how to use past data to enhance

the future manipulation of a dynamical system. Modern RL algorithms have attained

super-human level performance in playing Atari games from the pixels [6] to mastering the

game of Go [7, 8]. They also find critical applications in many fields including robotics,

self-driving cars, finance and smart grids [9, 10].
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Further, modern approaches for processing sequential data in natural language

processing (NLP), such as recurrent neural networks (RNNs), long short-term memory

networks (LSTMs), and transformers have connections to nonlinear dynamical systems [11,12].

RNNs and LSTMs are integral components in language modeling and NLP applications,

and they are inherently dynamical systems because they maintain hidden states. While

transformers are not dynamical systems, they are sequence models that infer the auto-

regressive nature of NLP tasks [13]. Thus, learning and decision-making with temporally-

dependent data represent a common challenge that connect transformers and dynamical

systems.

In many of the real world problems, we have to estimate or approximate the

underlying dynamical system from data, either because the system is initially unknown or

because it is time-varying. This is alternatively known as the system identification problem

which is the task of learning an unknown dynamical system from the time series of its

trajectories [14–18]. In this thesis, we aim to learn the dynamical systems which are governed

by a general nonlinear state equation,

xt+1 = ϕ(xt, ut; θ⋆) +wt, t = 0, . . . T − 1, (1.0.1)

where θ⋆ ∈ Rd is the system dynamics, xt ∈ Rn is the state vector, ut ∈ Rp is the input

and wt ∈ Rn is the additive noise at time t. Our goal is understanding the statistical and

computational efficiency of square-loss empirical risk minimization algorithms for learning

the system dynamics from a single finite trajectory (xt, ut)
T−1
t=0 .
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1.1 Background

Learning dynamical systems has a long history, with major theoretical results

being related to asymptotic properties [19] under strong assumptions on persistence of

excitation [20]. More recently, the trend has been to move away from asymptotics [21]. There

is a recent surge of interest toward understanding the sample complexity of learning standard

linear time-invariant (LTI) dynamical systems from a single finite trajectory under mild

assumptions, using statistical tools like martingales [22–25] or mixing-time arguments [26,27].

Specifically, [28] provides precise rates for the non-asymptotic identification of standard

LTI dynamical systems using a single trajectory. Single trajectory learning of dynamical

systems is challenging because of temporally correlated data [22,23, 29]. Moreover, if the

dynamical systems are governed by nonlinear, bilinear or time-varying state equations, then

deriving non-asymptotic learning guarantees is even more challenging. The reason is that, it

is not straightforward to extend the above mentioned statistical tools like martingales or

mixing-time arguments to nonlinear dynamical systems.

There has been some recent works on non-asymptotic learning of certain classes of

nonlinear dynamical systems. [30] proposes an active learning approach for non-asymptotic

identification of nonlinear dynamical systems whose state transitions depend linearly on

a known feature embedding of state-action pairs. [31, 32] study theoretical properties of

nonlinear state equations with a goal towards understanding recurrent networks and nonlinear

systems. [33] provides theoretical guarantees for the recovery of generalized linear dynamical

systems and [34] provides the first offline algorithm that can learn generalized linear models

without the mixing assumption. In the non-parametric setting, [29] analyzes the performance
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of the non-parametric least squares estimator (LSE) and shows that the non-parametric LSE

converges to the ground truth regression function at the minimax optimal rate. In a follow

up work, [35] provides a fast rate excess risk bound which shows that whenever a trajectory

hypercontractivity condition holds, the risk of the LSE on dependent data matches the i.i.d.

rate order-wise after a burn-in time.

1.2 Contributions and Thesis Outline

The main contributions of this thesis is to develop a framework for single trajectory

learning of dynamical systems beyond standard LTI dynamical systems, such as nonlinear,

bilinear and markov jump systems.

Chapter 2: In this chapter, we study the problem of learning nonlinear dynamical systems,

xt+1 = ϕ(xt, ut; θ⋆) +wt, t = 0, . . . T − 1, (1.2.1)

where θ⋆ ∈ Rd is the system dynamics, xt ∈ Rn is the state vector, ut ∈ Rp is the input

and wt ∈ Rn is the additive noise at time t. We assume the system is driven by inputs

ut = π(xt) + zt, where π(⋅) is a fixed control policy and zt is excitation for exploration.

With our choice of inputs, the state equation (1.2.1) becomes,

xt+1 = ϕ̃(xt, zt; θ⋆) +wt, t = 0, . . . T − 1, (1.2.2)

where ϕ̃ denotes the closed-loop nonlinear system. Towards estimating θ⋆, we formulate an

empirical risk minimization (ERM) problem over single finite trajectory as follows,

θ̂ = arg min
θ∈Rd
L̂(θ), L̂(θ) ∶=

1
2(T −L)

T−1
∑
t=L
∥xt+1 − ϕ̃(xt, zt; θ)∥2ℓ2 , (1.2.3)
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where L ≥ 1 is the approximate mixing-time of the nonlinear dynamical system. To solve

(1.2.3), we investigate the properties of the gradient descent algorithm, given by the following

iterate

θτ+1 = θτ − η∇L̂(θτ), (1.2.4)

Our goal in this chapter is to study the statistical and computational efficiency of

the gradient descent algorithm (1.2.4) for learning θ⋆ from a single finite trajectory. For

this purpose, first, we develop new statistical guarantees for the uniform convergence of

the gradients of the empirical loss, which is combined with a novel one-point convexity

and smoothness (OPCS) condition to estimate θ⋆ with an error rate of O(
√

dL/T ), where

L ≥ 1 is the mixing-time. While we focus on nonlinear state equations in this chapter, our

technical ideas (e.g., combining mixing-time and optimization landscape arguments) have

implications for richer class of dynamical systems. Finally, we specialize our main results to

two special cases of interest: (a) Standard LTI dynamical systems xt+1 =Axt +But +wt,

and (b) Nonlinear state equation xt+1 = ϕ(Axt) + ut +wt. This chapter is based on the

following publications:

[36] Yahya Sattar and Samet Oymak. A simple framework for learning stabilizable systems.

IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), pages 116–120. IEEE, 2019.

[37] Yahya Sattar and Samet Oymak. Non-asymptotic and accurate learning of nonlinear

dynamical systems. The Journal of Machine Learning Research, 23(1):6248–6296,

2022.
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Chapter 3: In this chapter, we study the problem of learning bilinear dynamical systems

which are governed by the state equation,

xt+1 =A0xt +
p

∑
k=1

ut[k]Akxt +wt+1, t = 0, . . . T − 1, (1.2.5)

where xt ∈ Rn is the state, ut ∈ Rp is the input, and wt ∈ Rn is the process noise at time t.

{Ak}
p
k=0 ∈ R

n×n are the state matrices which govern the dynamics of the system.

Our goal in this chapter is to analyze the performance of the least-squares estimator

for estimating the state matrices {Ak}
p
k=0 given a single finite trajectory of (1.2.5). Specifi-

cally, we are able to show that the least-squares estimator converges to the true dynamics

with an error rate of O(
√

n(p + 1)/T ). We obtain this result by extending the martingale

small-ball argument to bilinear dynamical systems. This chapter is based on the following

publication:

[38] Yahya Sattar, Samet Oymak, and Necmiye Ozay. Finite sample identification of

bilinear dynamical systems. IEEE 61st Conference on Decision and Control (CDC),

pages 6705–6711. IEEE, 2022.

Chapter 4: In this chapter, we study the problem of learning Markov jump linear dynamical

systems (MJS) which are governed by the following state equation,

xt+1 =Aω(t)xt +Bω(t)ut +wt ω(t) ∼Markov Chain(T ), t = 0, . . . T − 1, (1.2.6)

where xt ∈ Rn, ut ∈ Rp and wt ∈ Rn are the state, input, and process noise of the MJS at

time t. There are s modes in total, and the dynamics of mode i is given by the state matrix

Ai and input matrix Bi. The active mode at time t is indexed by ω(t) ∈ [s].
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In this chapter, we provide the first comprehensive non-asymptotic learning guar-

antees for MJS given a single finite trajectory of (1.2.6). We provide an algorithm (2) to

estimate the MJS dynamics with an error rate of O(
√
(n + p)/T ). We obtain this result by

extending the martingale small-ball argument to MJS. This chapter is based on the following

publication:

[39] Yahya Sattar, Zhe Du, Davoud Ataee Tarzanagh, Laura Balzano, Necmiye Ozay, and

Samet Oymak. Identification and adaptive control of markov jump systems: Sample

complexity and regret bounds. IEEE Transactions on Automatic Control (TAC), under

submission, 2023.

Chapter 5: System dynamics often exhibit sparse structure which can improve sample

complexity. However we lack theory to estimate such sparse structures through nonlinearities.

Towards this goal, this chapter studies the simpler problem of finding the best linear model

that can minimize least-squares loss given the data (xi, yi)
n
i=1 ∈ Rp ×R. Specifically, we are

interested in the high-dimensional regime where we have fewer samples than the parameter

dimension, i.e., we assume n ≪ p. In this case, the problem is ill-posed; however, if

the population minimizer θ⋆ ∶= E[yx] lies on a low-dimensional manifold, we can take

advantage of this information to solve a constrained empirical risk minimization problem.

Let R ∶ Rp → R be the regularization function, that promotes the desired structure, such as

sparsity or low-rank. Then, we are interested to solve the following constrained empirical

risk minimization (ERM),

θ̂ = arg min
θ

1
2
∥y −Xθ∥2ℓ2 subject to R(θ) ≤ R. (1.2.7)
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where y = [y1 . . . yn]
⊺ ∈ Rn and X = [x1 . . . xn]

⊺ ∈ Rn×p are the output labels and data

matrix respectively. To solve (1.2.7), we investigate the properties of the projected gradient

descent algorithm, given by the following iterate

θτ+1 = PK(θτ − η∇Lθ(θτ , µτ)), (1.2.8)

where PK projects onto the constraint set K ∶= {θ ∈ Rp ∣ R(θ) ≤ R} and η is the step size.

The main contribution of this chapter is to study the statistical and computational

efficiency of the projected gradient descent algorithm (1.2.8) for finding the best linear model

θ⋆ given the data (xi, yi)
n
i=1. Our results in this chapter hold for both sub-gaussian and

sub-exponential data (xi, yi)
n
i=1. This chapter is based on the following publication:

[40] Yahya Sattar and Samet Oymak. Quickly finding the best linear model in high

dimensions via projected gradient descent. IEEE Transactions on Signal Processing,

68:818–829, 2020.

Chapter 6: In this chapter, we present numerical experiments to verify our theoretical

findings from the previous chapters.

Chapter 7: In this chapter, we provide concluding remarks for the thesis and also discuss

possible future directions.

Lastly, the supplementary proofs for the results in Chapters 2 and 5 are presented in

Appendices A, B and C, respectively.
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1.3 Work Outside the Scope of this Thesis

The following articles, while relevant to the theme of this thesis and completed

during our doctoral studies, are not part of this thesis:

[41] Zhe Du, Yahya Sattar, Davoud Ataee Tarzanagh, Laura Balzano, Necmiye Ozay, and

Samet Oymak. Data-driven control of markov jump systems: Sample complexity and

regret bounds. American Control Conference (ACC), pages 4901–4908. IEEE, 2022.

[42] Yahya Sattar, Zhe Du, Davoud Ataee Tarzanagh, Samet Oymak, Laura Balzano,

and Necmiye Ozay. Certainty equivalent quadratic control for markov jump systems.

American Control Conference (ACC), pages 2871–2878. IEEE, 2022.

The following article, while completed during our doctoral studies, is unrelated to

the theme of this thesis:

[43] Mingchen Li, Yahya Sattar, Christos Thrampoulidis, and Samet Oymak. Exploring

weight importance and hessian bias in model pruning. arXiv preprint arXiv:2006.10903,

2020.

1.4 Notations

We use boldface uppercase (lowercase) letters to denote matrices (vectors). For a

vector v, we denote its Euclidean norm by ∥v∥ℓ2 , its ℓ1 norm by ∥v∥ℓ1 , and its ℓ∞ norm by

∥v∥ℓ∞ , respectively. For a matrix M , ρ(M), ∥M∥ and ∥M∥F denote the spectral radius,

spectral norm and Frobenius norm respectively. vec(M) ∈ Rmn denotes the vectorization

of a matrix M ∈ Rm×n, and mtx(⋅) denotes its inverse, that is, mtx(vec(M)) = M .
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The Kronecker product of two matrices M and N is denoted as M ⊗N . We denote

by V1∶s a set of s matrices {Vi}si=1 of same dimensions. We define [s] ∶= {1, 2, . . . , s} and

∥V1∶s∥ ∶=maxi∈[s] ∥Vi∥. The i-th row or column of a matrix M is denoted by [M]i,∶ or [M]∶,i

respectively. We use 1 to denote a vector of all ones.

c, c0, c1, . . . , C, C0 denote positive absolute constants. Sd−1 denotes the unit sphere

while Bd(a, r) denotes the Euclidean ball of radius r, centered at a, in Rd. For ease of

notation, Bd ∶= Bd(0, 1) denote the unit ball in Rd. The normal distribution is denoted by

N(µ, σ2). For a random vector v, we denote its covariance matrix by Σ[v]. We use ≳ and ≲

for inequalities that hold up to a constant factor. We denote by a ∨ b, the maximum of two

scalars a and b. Similarly, a ∧ b denotes the minimum of the two scalars. Given a number

a, ⌊a⌋ denotes the largest integer less than or equal to a, whereas, ⌈a⌉ denotes the smallest

integer greater than or equal to a. Finally, orders of magnitude notation Ô(⋅) hides log(1/δ)

or log2(1/δ) terms.

Given a set S, let cl(S) and clconv(S) be the minimal closed set and minimal

closed-convex set containing S respectively. Let rad(S) denote the set radius supv∈S ∥v∥ℓ2 .

For closed sets, let PS(⋅) be the projection operator defined as PS(a) = arg minv∈S ∥a − v∥ℓ2 .

10



Chapter 2

Nonlinear System Identification

2.1 Introduction

Dynamical systems are fundamental for modeling a wide range of problems appear-

ing in complex physical processes, cyber-physical systems and machine learning. Classical

optimal control literature heavily relies on modeling the underlying system as a linear

time-invariant (LTI) dynamical system to synthesize control policies leading to elegant

solutions such as PID controller and Kalman filter [1–3]. Contemporary neural network

models for processing sequential data, such as recurrent networks and LSTMs, can be

interpreted as nonlinear dynamical systems and establish state-of-the-art performance in

machine translation and speech recognition [44–48]. In many of these problems, we have

to estimate or approximate the system dynamics from data, either because the system is

initially unknown or because it is time-varying. This is alternatively known as the system

identification problem which is the task of learning an unknown system from the time series

of its trajectories [14–18].
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We aim to learn the dynamics of nonlinear systems which are governed by following

state equation,

xt+1 = ϕ(xt, ut; θ⋆) +wt, (2.1.1)

where θ⋆ ∈ Rd is the system dynamics, xt ∈ Rn is the state vector, ut ∈ Rp is the input

and wt ∈ Rn is the additive noise at time t. Our goal is understanding the statistical and

computational efficiency of gradient based algorithms for learning the system dynamics from

a single finite trajectory.

2.1.1 Relation to Prior Work

Nonlinear dynamical systems relate to the literature in control theory, reinforcement

learning, and recurrent neural networks. We study nonlinear dynamical systems from

optimization and learning perspective rather than control. While such problems are known

to be challenging (especially under nonlinearity), there is a growing interest in understanding

system identification and associated optimal control problems (e.g. LQR) in a non-asymptotic

and data-dependent fashion [21]. Recently [22–25,49–61] explore linear system identification

in great depth. [11] provides preliminary guarantees for recurrent networks (RNN) and [12]

shows the role of stability in RNNs. There is also a substantial amount of work on model-free

approaches [62–66] which avoid learning the dynamics and find the optimal control input by

directly optimizing over policy space. In a different line of work, [67] proposed a learning

framework for trajectory planning from learned dynamics. They propose a regularizer of

dynamics that promotes stabilizability of the learned model, which allows tracking reference

trajectories based on estimated dynamics. Also, [68,69] developed learning methods that
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exploit other control-theoretic priors. Nonetheless, none of these works characterize the

sample complexity of the problem.

More recently, [30] proposes an active learning approach for non-asymptotic identi-

fication of nonlinear dynamical systems whose state transitions depend linearly on a known

feature embedding of state-action pairs. [70] extends this to an online nonlinear control

problem, and provides the lower confidence-based continuous control algorithm, which enjoys

O(
√

T ) regret bound. [71] studies the problem of adaptive control of a known discrete-time

nonlinear system subject to unmodeled disturbances, and uses online least squares algorithms

to estimate the unknown parameter. In a similar line of work, [72] proposes an online model

learning predictive control framework to control unknown nonlinear dynamical systems, [73]

proposes a learning-theoretic framework for continuous control in which the environment is

summarized by a low-dimensional continuous latent state with linear dynamics and quadratic

costs, but the agent operates on high-dimensional, nonlinear observations, and [34] provides

the first offline algorithm that can learn generalized linear models without the mixing

assumption.

Closer to our work, [31,32] study theoretical properties of nonlinear state equations

with a goal towards understanding recurrent networks and nonlinear systems. While some

high-level ideas, such as mixing-time arguments, are shared, our results (a) apply to a broader

class of nonlinear systems (e.g. mild assumptions on nonlinearity), (b) utilize a variation of

the spectral radius for nonlinear systems1, (c) account for process noise, and (d) develop

new statistical guarantees for the uniform convergence of the gradient of the empirical

1Rather than enforcing contraction (i.e. 1-Lipschitzness)-based stability which corresponds to using spectral
norm rather than spectral radius.
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loss. The concurrent work of [33] provides related results for the recovery of generalized

linear dynamical systems (xt+1 = ϕ(Θ⋆xt) +wt) using complementary techniques. [33] uses

martingale arguments and analyze GLMtron algorithm of [74], while we use mixing time

arguments and analyze gradient descent.

Perhaps the most established technique in the statistics literature for dealing with

non-independent, time-series data is the use of mixing-time arguments [75]. In the ma-

chine learning literature, mixing-time arguments have been used to develop generalization

bounds [27, 76–78] which are analogous to the classical generalization bounds for i.i.d. data.

We utilize mixing-time for nonlinear stabilizable systems to connect our temporally-dependent

problem to standard supervised learning task with a focus on establishing statistical guaran-

tees for gradient descent.

Finite sample convergence of the gradients of the empirical loss (to the population

gradient) is studied by [79,80]. These guarantees are not sufficient for our analysis as they

only apply to problems with bounded nonlinearities and do not accurately capture the

noise dependence. We address this by establishing stronger uniform convergence guarantees

for empirical gradients and translate our bounds to the system identification via mixing-

time/stability arguments.

2.1.2 Contributions

Although system identification is classically well-studied, obtaining non-asymptotic

sample complexity bounds is challenging especially when it comes to nonlinear systems. We

address this challenge by connecting the system identification problem (which has temporally

dependent samples) to classical statistical learning setup where data is independent and
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identically distributed (see Figure 2.1). We leverage this connection to show that gradient

descent achieves stellar computational and statistical guarantees for nonlinear system

identification. We establish this under a novel one-point convexity and smoothness (OPCS)

condition (see Assumption 3) which allows for non-convex optimization landscape. Thus,

our central contribution is providing an analysis framework for system identification through

first-order methods with finite sample estimation guarantees. Specifically, we make the

following contributions.

● Learning nonlinear systems via gradient descent: We work with (properly

defined) stable nonlinear systems and use stability in conjunction with mixing-time arguments

to address the problem of learning the system dynamics from a single finite trajectory. Under

proper and intuitive assumptions, this leads to sample complexity and convergence guarantees

for learning nonlinear dynamical systems (2.1.1) via gradient descent. Unlike the related

results on nonlinear systems by [31,32], our analysis accounts for the noise, achieves optimal

statistical error rates in terms of the dimension d and the sample size N , and applies to a

broader class of nonlinear systems.

● Accurate statistical learning: Of independent interest, we develop new

statistical guarantees for the uniform convergence of the gradients of the empirical loss.

Improving over earlier works of [79, 80], our bounds properly capture the noise dependence

and allow for learning the ground-truth dynamics with high accuracy and small sample

complexity (see Section 2.3.1 for further discussion).

● Applications: We specialize our results by establishing theoretical guarantees

for learning linear (xt+1 =A⋆xt +B⋆ut +wt) as well as nonlinear (xt+1 = ϕ(Θ⋆xt) + zt +wt)
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dynamical systems via gradient descent which highlight the optimality of our guarantees.

We verify our theoretical results through various numerical experiments with nonlinear

activations.

● Broader implications: Finally, while we focus on nonlinear state equations,

our technical ideas (e.g., combining mixing-time and optimization landscape arguments, see

Assumptions 1 and 3) have implications for richer class of systems. For instance, nonlinear

ARX form xt = ϕ(A1xt−1 + A2xt−2 + ⋯ + Amxt−m) + wt−1 is a powerful generalization

of the state equations that we investigate. Koopman lifting provides another class of

nonlinear problems. We anticipate that our framework (i.e., merging one-point convexity

and smoothness with mixing-time arguments to enable success of gradient descent) will also

find applications for these systems.

2.2 Preliminaries and Problem Setup

We assume the system is driven by inputs ut = π(xt) + zt, where π(⋅) is a fixed

control policy and zt is excitation for exploration. For statistical analysis, we assume the

excitation and noise are random, that is, (zt)t≥0
i.i.d.
∼ Dz and (wt)t≥0

i.i.d.
∼ Dw for some

distributions Dz and Dw. With our choice of inputs, the state equation (2.1.1) becomes,

xt+1 = ϕ(xt, π(xt) + zt; θ⋆) +wt ∶= ϕ̃(xt, zt; θ⋆) +wt, (2.2.1)

where ϕ̃ denotes the closed-loop nonlinear system. Throughout, we assume the nonlinear

functions ϕ(⋅, ⋅; θ) and ϕ̃(⋅, ⋅; θ) are differentiable in θ. For clarity of exposition, we will

not explicitly state this assumption when it is clear from the context. To estimate θ⋆ in

a non-asymptotic setting, we assume access to a finite trajectory (xt, zt)
T−1
t=0 generated by
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the nonlinear system (2.2.1). We also assume access to a stabilizing control policy π(⋅). A

special case of (2.2.1) is a linear state equation with θ⋆ = [A⋆ B⋆], π(xt) = −Kxt and

xt+1 = (A⋆ −B⋆K)xt +B⋆zt +wt, (2.2.2)

Towards estimating θ⋆, we formulate an empirical risk minimization (ERM) problem over

single finite trajectory as follows,

θ̂ = arg min
θ∈Rd
L̂(θ), subject to L̂(θ) ∶=

1
2(T −L)

T−1
∑
t=L
∥xt+1 − ϕ̃(xt, zt; θ)∥2ℓ2 , (2.2.3)

where L ≥ 1 is a churn period which is useful for simplifying the notation later on, as L will

also stand for the approximate mixing-time of the system. To solve (2.2.3), we investigate

the properties of the gradient descent algorithm, given by the following iterate

θτ+1 = θτ − η∇L̂(θτ), (2.2.4)

where η > 0 is the fixed learning rate. ERM with i.i.d. samples is a fairly well-understood

topic in classical machine learning. However, samples obtained from a single trajectory of a

dynamical system are temporally dependent. For stable systems (see Definition 1), it can be

shown that this dependence decays exponentially over the time. Capitalizing on this, we

show that one can obtain almost i.i.d. samples from a given trajectory (xt, zt)
T−1
t=0 . This

will in turn allow us to leverage techniques developed for i.i.d. data to solve problems with

sequential data.

2.2.1 Assumptions on the System and the Inputs

We assume that the closed-loop system ϕ̃ is stable. Stability in the case of standard

linear time-invariant dynamical systems is connected to the spectral radius of the closed-loop
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system [22,65]. The definition below provides a natural generalization of stability to nonlinear

dynamical systems.

Definition 1 ((Cρ, ρ)-stability) Given excitation (zt)t≥0 and noise (wt)t≥0, denote the

state sequence (2.2.1) resulting from initial state x0 = α, (zτ)t−1
τ=0 and (wτ)

t−1
τ=0 by xt(α). Let

Cρ ≥ 1 and ρ ∈ (0, 1) be system related constants. We say that the closed loop system ϕ̃ is

(Cρ, ρ)-stable if, for all α, (zt)t≥0 and (wt)t≥0 triplets, we have

∥xt(α) −xt(0)∥ℓ2 ≤ Cρρ
t
∥α∥ℓ2 . (2.2.5)

Note that, for a stable LTI dynamical system (ρ(A⋆) < 1), as a consequence of Gelfand’s

formula, there exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆), 1) such that (Cρ, ρ)-stability holds. A concrete

example of nonlinear stable system is a contractive system where ϕ̃ is ρ-Lipschitz function

of xt for some ρ < 1. We remark that, our interest in this work is not verifying the

stability of a nonlinear system, but using stability of the closed-loop nonlinear system as an

ingredient of the learning process. Verifying stability of the nonlinear systems can be very

challenging, however, system analysis frameworks such as integral quadratic constraints [81]

and sum-of-squares [82] may provide informative bounds.

Assumption 1 (Stability) The closed-loop system ϕ̃ is (Cρ, ρ)-stable for some ρ < 1.

Assumption 1 implies that the closed-loop system forgets a past state exponentially fast.

This is different from the usual notion of “exponential Lyapunov stability” which requires

the exponential convergence to a point in the state space. On the other hand, in the case

of (Cρ, ρ)-stability, the trajectories xt(α) and xt(0) do not have to converge, rather their

difference ∥xt(α) −xt(0)∥ℓ2 exponentially converges to zero (assuming ∥α∥ℓ2 is bounded).
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To keep the exposition simple, we will also assume x0 = 0 throughout. For data driven

guarantees, we will make use of the following independence and boundedness assumptions

on excitation and noise.

Assumption 2 (Boundedness) There exist scalars B, cw, σ > 0, such that (zt)t≥0 i.i.d.
∼ Dz

and (wt)t≥0
i.i.d.
∼ Dw obey ∥ϕ̃(0, zt; θ⋆)∥ℓ2 ≤ B

√
n and ∥wt∥ℓ∞ ≤ cwσ for 0 ≤ t ≤ T − 1 with

probability at least 1 − p0 over the generation of data.

2.2.2 Optimization Machinery

To concretely show how stability helps, we define the following loss function,

obtained from i.i.d. samples at time L − 1 and can be used as a proxy for E[L̂].

Definition 2 (Auxiliary Loss) Suppose x0 = 0. Let (zt)t≥0 i.i.d.
∼ Dz and (wt)t≥0

i.i.d.
∼ Dw.

The auxiliary loss is defined as the expected loss at timestamp L − 1, that is,

LD(θ) = E[L(θ, (xL, xL−1, zL−1))],

where L(θ, (xL, xL−1, zL−1)) ∶=
1
2
∥xL − ϕ̃(xL−1, zL−1; θ)∥2ℓ2 .

(2.2.6)

Our generic system identification results via gradient descent will utilize the one-point

convexity hypothesis. This is a special case of Polyak-Łojasiewicz inequality and provides a

generalization of strong convexity to nonconvex functions.

Assumption 3 (One-point convexity & smoothness (OPCS)) There exist scalars β ≥

α > 0, r > 0 such that, for all θ ∈ Bd(θ⋆, r), the auxiliary loss LD(θ) of Definition 2 satisfies

⟨θ − θ⋆,∇LD(θ)⟩ ≥ α∥θ − θ⋆∥
2
ℓ2 , (2.2.7)

∥∇LD(θ)∥ℓ2 ≤ β∥θ − θ⋆∥ℓ2 . (2.2.8)
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We emphasize that, as opposed to traditional strong convexity and smoothness

assumptions [83], Assumption 3 is fairly mild, as it only assumes strong convexity and

smoothness with respect to θ⋆. One-point convexity (OPC) is also known as restricted

secant inequality and implies Polyak-Lojasiewicz condition [84]. To our knowledge, ours is

the first work that use OPC with one-point smoothness (rather than global smoothness).

A concrete example of a nonlinear system satisfying OPCS is the nonlinear state equation

xt+1 = ϕ(Θ⋆xt) + zt +wt, with γ-increasing activation (i.e., ϕ′(x) ≥ γ > 0 for all x ∈ R)

and Gaussian excitation/noise (see Lemma 65). We expect many activations including

ReLU to work as well. The main challenge is verifying OPCS of the population loss. For

ReLU, Lemma 6.1 of [85] shows this property for i.i.d. Gaussian features. Extending this to

subgaussian features would yield the ReLU result. The OPCS assumption can also be verified

for nonlinear ARX xt = ϕ(A1xt−1 +A2xt−2 + ⋯ +Amxt−m) +wt−1 when the joint feature

vector [x⊺L−1 x⊺L−2 ⋯ x⊺L−m]
⊺ has favorable covariance properties (e.g., positive definiteness)

and ϕ is γ-increasing.

To proceed, if the gradient of L̂(θ) is close to that of LD(θ) and Assumption 3 holds,

gradient descent converges to the population minimum up to a statistical error governed by

the noise level. The following statement summarizes our main results in Theorems 12 and

13. Below ≲ subsumes the logarithmic factors involving the problem variables.

Theorem 3 (Main result – informal) Suppose we run gradient descent algorithm (2.2.4)

to solve the ERM problem (2.2.3). Suppose Assumptions 1 - 5 hold. Suppose r ≳ σ
α

√
d

T (1−ρ)

and T ≳ d
α2(1−ρ) . The following statements hold with high probability over the trajectory.
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● Uniform convergence of gradient: For all θ ∈ Bd(θ⋆, r), ∇L̂(θ) satisfies

∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≲ (σ + ∥θ − θ⋆∥ℓ2)

√
d

T (1 − ρ)
(2.2.9)

● Convergence of gradient descent: Set the learning rate η = α/(16β2) and fix

θ0 ∈ B
d(θ⋆, r). All gradient descent iterates θτ on L̂(θ) satisfy

∥θτ − θ⋆∥ℓ2 ≲ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥ℓ2 +

σ

α

√
d

T (1 − ρ)
. (2.2.10)

Observe that, our bounds exhibit optimal scaling in terms of the dimension d, the noise

level σ and the trajectory length T . However, they degrade when stability parameter ρ

approaches to one. Also note that this behavior is common in stability/mixing-based learning

of dynamical systems [33, 71, 86]. We remark that finite time identification of nonlinear

dynamical systems without using stability arguments or establishing milder ρ-dependence is

an exciting direction. Finally, observe that the computational convergence rate of (2.2.10) is

1− α2

128β2 . This rate can be strenghtened to 1−O(α/β) if one assumes the stronger condition

of global β-smoothness of LD(θ) through existing arguments [84]. In contrast, we enforce

weaker local one-point smoothness at the expense of β/α (condition number) times more

computation.

In the following sections, we provide our formal results on the uniform conver-

gence of gradient of the empirical loss L̂(θ) and the identification of nonlinear dynamical

systems (2.2.1).
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Figure 2.1: We learn nonlinear dynamical systems from a single trajectory by
minimizing the empirical loss L̂(θ). The idea is to split L̂(θ) as an average of L
sub-trajectory losses as L̂(θ) = 1

L ∑
L−1
τ=0 ℓ̂τ(θ), through shifting and sub-sampling.

Observing that each sub-trajectory has weakly dependent samples because of
stability, we use a mixing time argument to show that ∥∇ℓ̂τ(θ) − ∇ℓ̂tr

τ (θ)∥ℓ2 ≲
(σ + ∥θ − θ⋆∥ℓ2)Cρρ

L−1, where ℓ̂tr
τ (θ) is the loss constructed with finite i.i.d.

samples. Next, we show the uniform convergence of the empirical gradient as
∥∇ℓ̂tr

τ (θ) − ∇LD(θ)∥ℓ2 ≲ (σ + ∥θ − θ⋆∥ℓ2)
√

d/N , where LD(θ) = E[ℓ̂tr
τ (θ)] is the

population loss. Finally, we combine these with the local one-point convexity of
the population loss to get our main results.

2.3 Main Results

2.3.1 Accurate Statistical Learning with Gradient Descent

To provide finite sample guarantees, we need to characterize the properties of the

empirical loss and its gradients. Towards this goal, this section establishes new gradient

based statistical learning guarantees. Let S = (xi)Ni=1 be N i.i.d. samples from a distribution

D and L(⋅, x) be a loss function that admits a sample x and outputs the corresponding

loss. When learning the nonlinear system (2.2.1), the sample x corresponds to the variables

(xL, xL−1, zL−1) triple and the loss function L(θ, x) is given by (2.2.6). Define the empirical

and population losses,

L̂S(θ) =
1
N

N

∑
i=1
L(θ, xi) and LD(θ) = E[L(θ, x)]. (2.3.1)
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Let θ⋆ denotes the population minimizer which we wish to estimate via gradient descent.

Recent works by [79,80] provide finite sample learning guarantees via uniform convergence

of the empirical gradient over a local ball Bd(θ⋆, r). However these works suffer from two

drawbacks which we address here. To contrast the results, let us consider the following toy

regression problem which is a simplification of our original task (2.2.3).

Generalized linear model: Suppose labels yi are generated as, yi = ϕ(z⊺i θ⋆) +wi for some

activation ϕ ∶ R → R where zi ∈ Rd is the input, wi is the noise and i = 1, . . . , N . Assume

N ≳ d, zi is zero-mean subgaussian vector with identity covariance and wi has variance σ2.

Consider the quadratic loss

L̂Q(θ) =
1

2N

N

∑
i=1
(yi − ϕ(z⊺i θ))2. (2.3.2)

● The role of noise: Suppose ϕ is identity and the problem is purely linear regression.

Then, gradient descent estimator will achieve statistical accuracy ∥θ̂ − θ⋆∥ℓ2 ≲ σ
√

d/N .

[79, 80] yield the coarser bound ∥θ̂ − θ⋆∥ℓ2 ≲ (σ + rC)
√

d/N for some scalars r, C > 0

coming from the uniform convergence of the empirical gradient over a local ball

Bd(θ⋆, r).

● Activation ϕ: Both [79,80] can only handle bounded activation ϕ. [80] uses bound-

edness to control Rademacher complexity, whereas, [79] requires bounded activation

to make sure that the gradient of the loss is subgaussian. On the other hand, even

for pure linear regression, gradients are subexponential rather than subgaussian (as it

involves ziz
⊺
i ).

Below we address both of these issues. We restrict our attention to low-dimensional

setup, however we expect the results to extend to sparsity/ℓ1 constraints in a straightforward

23



fashion by adjusting covering numbers. In a similar spirit to [79], we study the loss landscape

over a local ball Bd(θ⋆, r). We first determine the conditions under which empirical and

population gradients are close.

Assumption 4 (Lipschitz gradients) There exist numbers LD, p0 > 0 such that with

probability at least 1 − p0 over the generation of data, for all pairs θ, θ′ ∈ Bd(θ⋆, r), the

gradients of empirical and population losses in (2.3.1) satisfy

max(∥∇LD(θ) − ∇LD(θ′)∥ℓ2 , ∥∇L̂S(θ) − ∇L̂S(θ
′
)∥ℓ2) ≤ LD∥θ − θ′∥ℓ2 . (2.3.3)

Observe that, by definition, the Lipschitz constant obeys LD ≥ β where β is the one-point

smoothness parameter in Assumption 3. However, LD is allowed be much larger than β.

Specifically, LD will only appear logarithmically in our bounds, hence, we can tolerate very

large values of LD. On the other hand β controls the convergence rate of gradient descent,

hence, it must not be very large, compared to α, to guarantee fast linear convergence.

Assumption 5 (Subexponential gradient noise) There exist scalars K, σ0 > 0 such

that, given x ∼ D, at any point θ, the subexponential norm of the gradient of single sample

loss L in (2.3.1) is upper bounded as a function of the noise level σ0 and distance to the

population minimizer via

∥∇L(θ, x) −E[∇L(θ, x)]∥ψ1 ≤ σ0 +K∥θ − θ⋆∥ℓ2 , (2.3.4)

where the subexponential norm of a random variable X is defined as ∥X∥ψ1 ∶= supk≥1
(E[∣X ∣k])1/k

k

and that of a random vector x ∈ Rn is defined as ∥x∥ψ1 ∶= supv∈Sn−1∥v⊺x∥ψ1
.

This assumption is an improvement over the work of [79] and will help us distinguish the
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gradient noise due to optimization (K∥θ − θ⋆∥ℓ2) and due to noise σ0 at the population

minima.

As an example, consider the quadratic loss in (2.3.2). In the case of linear regres-

sion (ϕ(x) = x), it is easy to show that Assumption 4 holds with LD = 2 and p0 = 2 exp(−100d),

whereas, Assumption 5 holds with K = c and σ0 = c0σ for some scalars c, c0 > 0. Moreover, in

Appendix B, we show that in the case of nonlinear state equations xt+1 = ϕ(Θ⋆xt) + zt +wt,

Assumptions 4 and 5 hold as long as ϕ has bounded first and second derivatives, that is,

∣ϕ′(x)∣, ∣ϕ′′(x)∣ ≤ 1 for all x ∈ R. Specifically, using zt
i.i.d.
∼ N(0, Ip) and wt

i.i.d.
∼ N(0, σ2In), if

we bound the state covariance as Σ[xt] ⪯ β2
+In (see the proof of Lemma 68), then Assump-

tion 4 holds with LD = c((1 + σ)β2
+n + ∥Θ⋆∥Fβ3

+n
3/2 log3/2(2T )) and p0 = 4T exp(−100n),

whereas, Assumption 5 holds with K = cβ2
+ and σ0 = cσβ+.

The next theorem establishes uniform concentration of the gradient as a function

of the noise level and the distance from the population minima. To keep the exposition

clean, from here on we set Clog = log(3(LDN/K + 1)).

Theorem 4 (Uniform convergence of gradient) Suppose the gradients of LD and L̂S

obey Assumptions 4 and 5. Then, there exists c0 > 0 such that, with probability at least

1 − p0 − log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂S(θ) − ∇LD(θ)∥ℓ2 ≤ c0(σ0 +K∥θ − θ⋆∥ℓ2)Clog

√
d

N
. (2.3.5)

Proof sketch: Our proof technique uses peeling argument [87] to split the Euclidean ball

Bd(θ⋆, r) into P + 1 sets {Si}Pi=0. Given a set Si ⊂ Bd(θ⋆, r) and the associated radius ri,

we pick an ϵi-covering of the set Si. We then apply Lemma D.7 of [86] (by specializing it

to unit ball) together with a union bound over the elements of P + 1 covers, to guarantee
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uniform convergence of the empirical gradient over the elements of P + 1 covers. Combining

this with Assumption 4, we guarantee a uniform convergence of the empirical gradient to its

population counterpart over all θ ∈ Bd(θ⋆, r).

Theorem 4 provides a refined control over the gradient quality in terms of the

distance ∥θ − θ⋆∥ℓ2 . The reason why [79,80] are getting coarser dependence on the noise level

as compared to ours is their assumption that the gradient of the loss is subgaussian over all

θ ∈ Bd(θ⋆, r) with subgaussian norm bounded by σ + rC, that is, there is a universal upper

bound on the subgaussian norm of the gradient of the loss function over all θ ∈ Bd(θ⋆, r).

To show the uniform convergence of the empirical gradient, [79] requires the

following assumptions on the gradient and the Hessian of the loss over all θ ∈ Bd(θ⋆, r):

(i) the gradient of the loss is subgaussian, (ii) the Hessian of the loss, evaluated on a unit

vector, is subexponential, and (iii) the Hessian of the population loss is bounded at one point.

Comparing (i) with Assumption 5, we observe that Assumption 5 is milder and is satisfied

by a broader class of loss functions as compared to (i). For example, even for pure linear

regression, the gradients are subexponential rather than subgaussian (as it involves ziz
⊺
i ).

On the other hand, our uniform convergence result requires Assumption 4 which might look

restrictive. However, observe that the Lipschitz constant only appears logarithmically in our

bounds, hence, Assumption 4 is fairly mild.

Going back to the original problem (2.2.3), observe that Theorem 4 bounds the

impact of finite samples. In the next section, we provide bounds on the impact of learning

from a single trajectory. Combining them relates the gradients of the auxiliary loss LD and

the finite trajectory loss L̂ which will help learning θ⋆ from a single finite trajectory.
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2.3.2 Learning from a Single Trajectory

In this section we bound the impact of dependence in the data obtained from

a single trajectory. For this purpose we use perturbation-based techniques to relate the

gradients of the single trajectory loss L̂ and the multiple trajectory loss L̂tr (defined below).

Before that, we introduce a few more concepts and definitions.

Definition 5 (Truncated state vector [31]) Consider the state equation (2.2.1). Sup-

pose ϕ̃(0, 0; θ) = 0, x0 = 0. Given, t ≥ L > 0, for each state xt, we define its fictional proxy

xt,L by resetting xt−L = 0 but preserving the excitation zτ and noise wτ from t −L to t − 1.

Alternately, xt,L is obtained by driving the system with excitations z′τ and additive noise w′τ

until time t − 1, where

z′τ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ < t −L

zτ else

and w′τ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ < t −L

wτ else

. (2.3.6)

We call the obtained state xt,L as the L-truncated (or simply truncated) state at time t.

The L-truncated state vector xt,L is identically distributed as xL. Hence, using truncation

argument we can obtain i.i.d. samples from a single trajectory which will be used to bound

the impact of dependence in the data. At its core our analysis uses a mixing time argument

based on contraction and is used in related works by [31, 32]. The difference between

L-truncated and non-truncated state vectors is guaranteed to be bounded as

∥xt −xt,L∥ℓ2 ≤ Cρρ
L
∥xt−L∥ℓ2 . (2.3.7)

This directly follows from Definition 1. To tightly capture the effect of truncation, we also

bound the Euclidean norm of states xt as follows.
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Lemma 6 (Bounded states) Suppose Assumptions 1 and 2 hold. Then, with probability

at least 1 − p0, we have ∥xt∥ℓ2 ≤ β+
√

n for all 0 ≤ t ≤ T , where β+ ∶= Cρ(cwσ +B)/(1 − ρ).

Following this and (2.3.7), we can obtain weakly dependent sub-trajectories by properly

sub-sampling a single trajectory (xt, zt)
T−1
t=0 . For this purpose, we first define a sub-trajectory

and its truncation as follows.

Definition 7 (Truncated sub-trajectories [31]) Let sampling period L ≥ 1 be an integer.

Set the sub-trajectory length N = ⌊T−LL ⌋. We sub-sample the trajectory (xt, zt)
T−1
t=0 at points

τ +L, τ +2L, . . . , τ +NL and truncate the states by L−1 to get the τth truncated sub-trajectory

(x̄(i), z(i))Ni=1, defined as

(x̄(i), z(i)) ∶= (xτ+iL,L−1, zτ+iL) for i = 1, . . . , N (2.3.8)

where 0 ≤ τ ≤ L − 1 is a fixed offset.

For notational convenience, we also denote the noise at time τ + iL by w(i). The following

lemma states that the τth truncated sub-trajectory (x̄(i), z(i))Ni=1 has independent samples.

Lemma 8 (Independence) Suppose (zt)∞t=0
i.i.d.
∼ Dz and (wt)

∞
t=0

i.i.d.
∼ Dw. Then, the

τth truncated states (x̄(i))Ni=1 are all independent and are identically distributed as xL−1.

Moreover, (x̄(i))Ni=1, (z(i))Ni=1, (w(i))Ni=1 are all independent of each other.

For the purpose of analysis, we will define the loss restricted to a sub-trajectory and show

that each sub-trajectory can have favorable properties that facilitate learning.

Definition 9 (Truncated sub-trajectory loss) We define the truncated loss in terms of

truncated (sub-sampled) triplets (ȳ(i), x̄(i), z(i))Ni=1 ∶= (xτ+iL+1,L, xτ+iL,L−1, zτ+iL)
N
i=1 as

ℓ̂tr
τ (θ) ∶=

1
2N

N

∑
i=1
∥ȳ(i) − ϕ̃(x̄(i), z(i); θ)∥2ℓ2 . (2.3.9)
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Observe that the triplets (ȳ(i), x̄(i), z(i))Ni=1 are independent and identically distributed

as (xL, xL−1, zL−1). Therefore, we have LD(θ) = E[ℓ̂tr
τ (θ)], that is, ℓ̂tr

τ is a finite sample

approximation of LD and we will use results from Section 2.3.1 to bound the Euclidean

distance between them. Before, stating our results on uniform convergence of empirical

losses, we want to demonstrate the core idea regarding stability. For this purpose, we define

the truncated loss which is truncated version of the empirical loss (2.2.3).

Definition 10 (Truncated loss) Let xt+1,L = ϕ̃(xt,L−1, zt; θ⋆) +wt. We define the trun-

cated (empirical) risk as

L̂
tr
(θ) ∶=

1
2(T −L)

T−1
∑
t=L
∥xt+1,L − ϕ̃(xt,L−1, zt; θ)∥2ℓ2 =

1
L

L−1
∑
τ=0

ℓ̂tr
τ (θ). (2.3.10)

Let X be the convex hull of all states xt and Z be the convex hull of all the inputs zt such

that Assumptions 1 and 2 are valid. As a regularity condition, we require the problem to

behave nicely over state-excitation pairs (x, z) ⊂ X ×Z. Throughout, ϕ̃k denotes the scalar

function associated to the kth entry of ϕ̃.

The following theorem states that, in the neighborhood of θ⋆, the empirical risk L̂

behaves like the truncated risk L̂tr, when the approximate mixing-time L is chosen sufficiently

large.

Theorem 11 (Small impact of truncation) Consider the state equation given by (2.2.1).

Suppose Assumptions 1 and 2 hold. Suppose there exists r > 0 such that, for all θ ∈ Bd(θ⋆, r)

and for all (x, z) ⊂ X × Z, we have that ∥∇xϕ̃(x, z; θ)∥ ≤ Bϕ̃, ∥∇θϕ̃k(x, z; θ)∥ℓ2 ≤ Cϕ̃ and

∥∇x∇θϕ̃k(x, z; θ)∥ ≤ Dϕ̃ for some scalars Bϕ̃, Cϕ̃, Dϕ̃ > 0 and 1 ≤ k ≤ n. Let β+ > 0 be as
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defined in Lemma 6. Then, with probability at least 1 − p0, for all θ ∈ Bd(θ⋆, r), we have

∣L̂(θ) − L̂tr
(θ)∣ ≤ 2nβ+Cρρ

L−1Bϕ̃(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2), (2.3.11)

∥∇L̂(θ) − ∇L̂tr
(θ)∥ℓ2 ≤ 2nβ+Cρρ

L−1Dϕ̃(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2). (2.3.12)

Proof sketch: To prove Theorem 11, we use the Mean-value Theorem together with

Assumptions 1 and 2. First, using (2.2.3) and (2.3.10), we obtain

∣L̂(θ) − L̂tr
(θ)∣ ≤

1
2

max
L≤t≤(T−1)

∣∥ϕ̃(xt, zt; θ⋆) +wt − ϕ̃(xt, zt; θ)∥2ℓ2

− ∥ϕ̃(xt,L−1, zt; θ⋆) +wt − ϕ̃(xt,L−1, zt; θ)∥2ℓ2 ∣. (2.3.13)

Suppose, the maximum is achieved at (x, x̄, z, w) (where x̄ is the truncated state). Then,

we use the identity a2 − b2 = (a + b)(a − b) to upper bound the difference ∣L̂(θ) − L̂tr(θ)∣

as a product of two terms ∣a + b∣ and ∣a − b∣ with a ∶= ∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 and

b ∶= ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥ℓ2 . We upper bound the term ∣a + b∣ by bounding each

quantity a and b using the Mean-value Theorem together with Assumption 2. Similarly,

the term ∣a − b∣ is upper bounded by first applying triangle inequality and then using the

Mean-value Theorem together with Assumptions 1 and 2 (to bound the difference ∥x − x̄∥ℓ2).

Combining the two bounds gives us the statement (2.3.11) of the Theorem. A similar proof

technique is used to upper bound the gradient distance ∥∇L̂(θ) − ∇L̂tr(θ)∥ℓ2 .

Combining Theorems 4 and 11 allows us to upper bound the Euclidean distance between

the gradients of the empirical loss L̂(θ) and the auxiliary loss LD(θ) which is the topic of

the next section.
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2.3.3 Non-asymptotic Identification of Nonlinear Dynamical Systems

In this section, we provide our main results on statistical and convergence guarantees

of gradient descent for learning nonlinear dynamical systems, using finite samples generated

from a single trajectory. Before stating our main result on non-asymptotic identification

of nonlinear systems, we state a theorem to bound the Euclidean distance between the

gradients the empirical loss L̂(θ) and the auxiliary loss LD(θ).

Theorem 12 (Uniform convergence of gradient) Fix r > 0. Suppose Assumptions 1

and 2 on the system and Assumptions 4 and 5 on the Auxiliary Loss hold. Also suppose for all

θ ∈ Bd(θ⋆, r) and (x, z) ⊂ X × Z, we have ∥∇θϕ̃k(x, z; θ)∥ℓ2 ≤ Cϕ̃ and ∥∇x∇θϕ̃k(x, z; θ)∥ ≤

Dϕ̃ for all 1 ≤ k ≤ n for some scalars Cϕ̃, Dϕ̃ > 0. Define Kϕ̃ ∶= (2/c0)β+Dϕ̃(cwσ/σ0 ∨Cϕ̃/K).

Let β+ > 0 be as in Lemma 6 and N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CρKϕ̃n

√
N/d)

1 − ρ
⌉. (2.3.14)

Then, with probability at least 1−2Lp0−L log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ 2c0(σ0 +K∥θ − θ⋆∥ℓ2)Clog

√
d

N
. (2.3.15)

Proof sketch: Theorem 12 can be proved by combining the results of Theorems 4

and 11. The idea is to split the truncated loss L̂tr (Definition 10) as an average of L

truncated subtrajectory losses ℓ̂tr
τ (Definition 9) as: L̂tr(θ) = 1

L ∑
L−1
τ=0 ℓ̂tr

τ (θ). Recall that

LD(θ) = E[ℓ̂tr
τ (θ)]. Then, we use Theorem 4 with a union bound over all 0 ≤ τ ≤ L − 1 to

upper bound ∥∇ℓ̂tr
τ (θ) − ∇LD(θ)∥ℓ2 which is used to show the uniform convergence of the

truncated loss L̂tr as: ∥∇L̂tr(θ) − ∇LD(θ)∥ℓ2 ≤
1
L ∑

L−1
τ=0 ∥∇ℓ̂tr

τ (θ) − ∇LD(θ)∥ℓ2 . Combining

this with Theorem 11 and picking L via (2.3.14), we get the statement of the theorem.
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Observe that Kϕ̃ depends on the system related constants and the noise level. For

example, for a linear dynamical system (2.2.2), we can show that Kϕ̃ = c
√

n + p. Note that,

if we choose N ≳K2C2
logd/α2 in Theorem 12, we get ∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≲ σ0Clog

√
d/N +

(α/2)∥θ − θ⋆∥ℓ2 . Combining this result with Assumption 3 gives our final result on non-

asymptotic identification of nonlinear dynamical systems from a single trajectory.

Theorem 13 (Non-asymptotic identification) Consider the setup of Theorem 12. Also

suppose the Auxiliary loss satisfies Assumption 3. Let N = ⌊(T −L)/L⌋, where we pick L as in

Theorem 12. Suppose N ≳K2C2
logd/α2. Given r > 0, set learning rate η = α/(16β2) and pick

θ0 ∈ B
d(θ⋆, r). Assuming σ0 ≲ rK, with probability at least 1− 2Lp0 −L log(Krσ0

) exp(−100d),

all gradient descent iterates θτ on L̂ satisfy

∥θτ − θ⋆∥ℓ2 ≤ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥ℓ2 +

cσ0
α

Clog

√
d

N
. (2.3.16)

Proof sketch: To prove Theorem 13, we first show that, when (i) the auxiliary loss

LD satisfies one-point convexity and smoothness (Assumption 3), (ii) for all θ ∈ Bd(θ⋆, r),

∇L̂ satisfies ∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ ν + (α/2)∥θ − θ⋆∥ℓ2 , and (iii) r ≥ 5ν/α; then, setting

learning rate η = α/(16β2) and fixing θ0 ∈ B
d(θ⋆, r), all gradient descent iterates θτ on L̂

satisfy ∥θτ − θ⋆∥ℓ2 ≤ (1 − α2

128β2 )
τ
∥θ0 − θ⋆∥ℓ2 +

5ν
α . Combining this with Theorem 12, we get

the desired result. Specifically, we use Theorem 12 with N ≳K2C2
logd/α2, to get the gradient

convergence in the form of (ii) with ν = cσ0Clog
√

d
N . Plugging this back to the gradient

descent convergence result established above, we get the statement of the theorem.

Observe that, Theorem 13 requires O(d) samples to learn the dynamics θ⋆ ∈ Rd, hence, our

sample complexity captures the correct dependence on the dimension of unknown system

dynamics. Furthermore, it achieves σ
√

d/N error rate, which is optimal in both d and N .
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Recall that the gradient noise σ0 is a function of the process noise σ, and role of σ will be

more clear in Section 2.4. We remark that while this theorem provides strong dependence,

the results can be further refined when the number of states n is large since each sample in

(2.2.1) provides n equations. For example, we can accomplish better sample complexity for

separable dynamical systems (see Section 2.3.4) which is the topic of next section.

Lastly, observe that L is proportional to 1/(1−ρ). As a result, our sample complexity

bound degrades with stability. In the extreme case, when ρ = 1, the approximate mixing

time L goes to infinity, and our analysis does not hold. This has been previously observed

in stability/mixing-based learning of nonlinear dynamical systems [31, 33, 71]. In contrast, it

is well-known that this dependency (on ρ(A⋆)) can be avoided for learning linear dynamical

systems [22]. Recently, [34] showed, under a strong invertibility condition, that dependency

on the mixing time can be avoided for the generalized linear models xt+1 = ϕ(A⋆xt) +wt.

This leaves open the question of whether learning without mixing is possible in situations

beyond the generalized linear models.

2.3.4 Non-asymptotic Identification of Separable Dynamical Systems

Suppose now that the nonlinear dynamical system is separable, that is, the nonlinear

state equation (2.2.1) can be split into n state updates via

xt+1[k] = ϕ̃k(xt, zt; θ⋆k) +wt[k], for 1 ≤ k ≤ n, (2.3.17)

where xt[k] and wt[k] denote the kth entry of xt and wt respectively while ϕ̃k denotes

the scalar function associated to the kth entry of ϕ̃. The overall system is given by the

concatenation θ⋆ = [θ
⋆⊺
1 ⋯ θ⋆⊺n ]

⊺. For simplicity, let us assume θ⋆k ∈ R
d̄, where d̄ = d/n. In
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the case of separable dynamical systems, the empirical loss in (2.2.3) is alternately given by,

L̂(θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L
(xt+1[k] − ϕ̃k(xt, zt; θk))

2. (2.3.18)

As before, we aim to learn the system dynamics θ⋆ via gradient descent. The gradient of

the empirical loss simplifies to ∇L̂(θ) = [∇L̂1(θ1)
⊺ ⋯ ∇L̂n(θn)⊺]⊺. From this, we observe

that learning θ⋆ via (2.2.3) is equivalent to learning each of its components θ⋆k by solving n

separate ERM problems in Rd̄. Denoting θ̂ to be the solution of the ERM problem (2.2.3),

we have the following equivalence: θ̂ ≡ [θ̂⊺1 ⋯ θ̂⊺n]
⊺, where θ̂k ∈ Rd̄ is the solution to the

following minimization problem,

θ̂k = arg min
θk∈Rd̄

L̂k(θk). (2.3.19)

Similarly global iterations (2.2.4) follows the iterations of the subproblems, that is, the GD

iterate (2.2.4) implies θ
(τ+1)
k = θ

(τ)
k −η∇L̂k(θ

(τ)
k ). Before, stating our main result on learning

separable nonlinear dynamical systems, we will show how the Auxiliary loss LD and its finite

sample approximation L̂S can be split into the sum of n losses as follows,

L̂S(θ) =
n

∑
k=1
L̂k,S(θk) where L̂k,S(θk) =

1
N

N

∑
i=1
Lk(θk, xi),

LD(θ) =
n

∑
k=1
Lk,D(θk) where Lk,D(θk) = E[Lk(θk, x)],

(2.3.20)

where Lk(⋅, x) is a loss function that admits a sample x and outputs the corresponding loss.

When learning (2.3.17), the sample x corresponds to the variables (xL, xL−1, zL−1) triple

and the loss function Lk(θ, x) is given by

Lk(θk, (xL, xL−1, zL−1)) ∶=
1
2
(xL[k] − ϕ̃k(xL−1, zL−1; θk))

2. (2.3.21)

The following theorem gives refined sample complexity for learning the dynamics of separable

nonlinear dynamical systems.
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Theorem 14 (Refined complexity) Suppose Assumptions 1 and 2 on the system and

Assumptions 3, 4 and 5 on the Auxiliary Loss (2.3.20) hold for all 1 ≤ k ≤ n. Additionally,

suppose the nonlinear dynamical system is separable, that is, the nonlinear state equation

follows (2.3.17). Let Kϕ̃ be as in Theorem 12. Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CρKϕ̃n

√
N/d̄)

1 − ρ
⌉. (2.3.22)

Suppose N ≳ K2C2
logd̄/α2. Given r > 0, set the learning rate η = α/(16β2) and pick

θ0 ∈ B
d(θ⋆, r). Assuming σ0 ≲ rK, with probability at least 1−2Lnp0−Ln log(Krσ0

) exp(−100d̄),

all gradient descent iterates θτ = [θ
(τ)⊺
1 ⋯ θ

(τ)⊺
n ]⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥ℓ2 ≤ (1 −

α2

128β2 )
τ
∥θ
(0)
k − θ⋆k∥ℓ2 +

cσ0
α

Clog

√
d̄

N
for all 1 ≤ k ≤ n. (2.3.23)

Proof sketch: The proof technique for Theorem 14 is similar to that of Theorem 13.

First, using Assumptions 4 and 5 on the Auxiliary loss (2.3.20), we get an upper bound

on ∥∇L̂k,S(θk) − ∇Lk,D(θk)∥ℓ2 for all 1 ≤ k ≤ n. Next, using Assumption 1 and 2 on the

system, we upper bound ∥∇L̂k(θk) − ∇L̂tr
k (θk)∥ℓ2 for all 1 ≤ k ≤ n. Combining these two

bounds, we get an upper bound on the gradient distance ∥∇L̂k(θk) − ∇Lk,D(θk)∥ℓ2 for all

1 ≤ k ≤ n. After picking N and L in the same way as we we did in Theorem 13, we use

Theorem 3 with Assumption 3 on the Auxiliary loss (2.3.20) and the derived bound on

∥∇L̂k(θk) − ∇Lk,D(θk)∥ℓ2 to get the statement of the theorem.

Observe that, in the case of separable dynamical systems we require O(d̄) samples to learn

the dynamics θ⋆ ∈ Rd. We achieve refined sample complexity because each sample provides

n equations and d̄ = d/n. Common dynamical systems like standard LTI dynamical systems

and nonlinear state equations are very structured and have separable state equations. Hence,
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applying Theorem 14 to these systems results in accurate sample complexity and error rates

which is the topic of the next section.

2.4 Applications of Theorems 13 and 14

In this section, we apply our results from the previous section to learn two different

dynamical systems of the following form,

xt+1 = ϕ(A⋆xt) +B⋆zt +wt, (2.4.1)

where A⋆ ∈ Rn×n, B⋆ ∈ Rn×p are the unknown system dynamics, zt
i.i.d.
∼ N(0, Ip) and

wt
i.i.d.
∼ N(0, σ2In). Specifically we learn the dynamics of the following dynamical systems:

(a) Standard LTI dynamical systems (ϕ = In); and (b) Nonlinear state equations

xt+1 = ϕ(Θ⋆xt) + zt +wt, (2.4.2)

where the nonlinear function ϕ ∶ R→ R applies entry-wise on vector inputs. For the clarity

of exposition, we focus on stable systems and set the feedback policy π(xt) = 0. For linear

dynamical systems, this is equivalent to assuming ρ(A⋆) < 1. For nonlinear state equation,

we assume (Cρ, ρ)-stability holds according to Definition 1.

2.4.1 Linear Dynamical Systems

To simplify the notation, we define the following concatenated vector/matrix:

ht ∶= [x
⊺
t z⊺t ]

⊺ and Θ⋆ ∶= [A⋆ B⋆]. Letting ϕ = In, the state update (2.4.1) is alternately given

by: xt+1 =Θ⋆ht +wt. To proceed, let θ⋆⊺k denotes the kth row of Θ⋆, then Θ⋆ ≡ [θ⋆1 ⋯ θ⋆n]
⊺.

Observe that the standard LTI dynamical system is separable as in (2.3.17). Therefore, given
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a finite trajectory (xt, zt)
T−1
t=0 of the linear dynamical system (2.4.1) (ϕ = In), we construct

the empirical loss as follows,

L̂(Θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L
(xt+1[k] − θ⊺kht)

2. (2.4.3)

Before stating our main result, we introduce a few more concepts to capture the properties

of gradient descent for learning the dynamics θ⋆k . Define the matrices,

Gt ∶= [A
t−1
⋆ B⋆ At−2

⋆ B⋆ ⋯ B⋆] and Ft ∶= [A
t−1
⋆ At−2

⋆ ⋯ In]. (2.4.4)

Then, the matrices GtG
⊺
t and FtF

⊺
t are the finite time controllability Gramians for the

control and noise inputs, respectively. It is straightforward to see that the covariance matrix

of the concatenated vector ht satisfies the following bounds (see Section A for detail)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯Σ[ht] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t )In+p). (2.4.5)

Define, γ− ∶= 1 ∧ λmin(GL−1G⊺L−1 + σ2FL−1F ⊺L−1), γ+ ∶= 1 ∨ λmax(GL−1G⊺L−1 + σ2FL−1F ⊺L−1)

and β+ = 1 ∨max1≤t≤T λmax(GtG
⊺
t + σ2FtF

⊺
t ). The following corollary of Theorem 14 states

our main result on the statistical and convergence guarantees of gradient descent for learning

the dynamics of linear dynamical systems.

Corollary 15 Consider the system (2.4.1) with ϕ = In. Suppose ρ(A⋆) < 1. Let Cρ ≥ 1 and

ρ ∈ (ρ(A⋆), 1) be scalars. Suppose zt
i.i.d.
∼ N(0, Ip) and wt

i.i.d.
∼ N(0, σ2In). Let γ+ ≥ γ− > 0

be as defined in (2.4.5) and set κ = γ+/γ−. Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CCρβ+N(n + p)/γ+)

1 − ρ
⌉. (2.4.6)

Suppose N ≳ κ2 log2(6N +3)(n+p). Set the learning rate η = γ−/(16γ2
+) and the initialization

Θ0 = 0. Assuming σ ≲ ∥Θ⋆∥F
√

γ+, with probability at least 1 − 4T exp(−100n) − Ln(4 +
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log( ∥Θ⋆∥F
√
γ+

σ )) exp(−100(n + p)), for all 1 ≤ k ≤ n, all gradient descent iterates Θτ =

[θ
(τ)
1 ⋯ θ

(τ)
n ]

⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥ℓ2 ≤ (1 −

γ2
−

128γ2
+
)
τ
∥θ
(0)
k − θ⋆k∥ℓ2 +

cσ
√

κ
√

γ−
log(6N + 3)

√
n + p

N
. (2.4.7)

Observe that Corollary 15 requires O(n + p) samples to learn the dynamics A⋆ ∈ Rn×n and

B⋆ ∈ Rn×p. The sample complexity captures the correct dependence on the dimension of

unknown system dynamics, because each sample provides n equations and there are n(n+p)

unknown parameters. Our sample complexity bound correctly depends on the condition num-

ber κ of the covariance matrix Σ[hL−1]. Moreover, γ− = 1 ∧ λmin(GL−1G⊺L−1 + σ2FL−1F ⊺L−1)

is a non-decreasing function of the mixing time L. The intuition for this is that larger L

takes into account more long-term excitations to lower bound the size of covariance matrix

Σ[hL−1]. Lastly, our statistical error rate σ
√
(n + p)/N is optimal in the dimension (n + p)

and sample size N . The logarithmic dependence on ∥Θ⋆∥F is an artifact of our general

framework. We believe it can be possibly removed with a more refined concentration analysis.

2.4.2 Nonlinear State Equations

In this section, we apply Theorem 14 to learn the nonlinear state equation (2.4.2).

Observe that the nonlinear system (2.4.2) is separable because we assume that the nonlinear

function ϕ ∶ R→ R applies entry-wise on vector inputs. Let θ⋆⊺k denotes the kth row of Θ⋆.

Given a finite trajectory (xt, zt)
T−1
t=0 of (2.4.2), we construct the empirical loss as follows,

L̂(Θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L
(xt+1[k] − ϕ(θ⊺kxt) − zt[k])

2. (2.4.8)

The following corollary of Theorem 14 states our main result on the statistical and convergence

guarantees of gradient descent for learning the nonlinear system (2.4.2).
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Corollary 16 Suppose the nonlinear system (2.4.2) satisfies (Cρ, ρ)-stability according to

Def. 1. Suppose ϕ is γ-increasing (i.e. ϕ′(x) ≥ γ > 0 for all x ∈ R), has bounded first

and second derivatives, that is, ∣ϕ′∣, ∣ϕ′′∣ ≤ 1, and ϕ(0) = 0. Suppose zt
i.i.d.
∼ N(0, In) and

wt
i.i.d.
∼ N(0, σ2In). Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CCρ(1 + ∥Θ⋆∥FCρ(1 + σ)/(1 − ρ))Nn)

1 − ρ
⌉. (2.4.9)

Setting Dlog = log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2(2T )N/(1 − ρ) + 3), suppose N ≳

C4
ρ

γ4(1−ρ)4 D2
logn. Set the learning rate η =

γ2(1−ρ)4
32C4

ρ(1+σ)2n2 and pick the initialization Θ0 = 0.

Assuming σ ≲ ∥Θ⋆∥F , with probability at least 1 −Ln(4T + log( ∥Θ⋆∥FCρ(1+σ)σ(1−ρ) )) exp(−100n),

for all 1 ≤ k ≤ n, all gradient descent iterates Θτ = [θ
(τ)
1 ⋯ θ

(τ)
n ]

⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥ℓ2 ≤ (1 −

γ4(1 − ρ)4

512C4
ρn2 )

τ
∥θ
(0)
k − θ⋆k∥ℓ2 +

cσ

γ2(1 − ρ)
CρDlog

√
n

N
. (2.4.10)

We believe that the condition of γ-increasing ϕ can be relaxed and we expect many nonlinear

activations including ReLU to work. The main challenge is verifying one-point convexity of

the population loss when ϕ is ReLU. Lemma 6.1 of [85] shows this property for i.i.d. Gaussian

features. Extending this to subgaussian features, would yield the ReLU result. Theorem 16

requires O(n) samples to learn the dynamics Θ⋆ ∈ Rn×n since each sample gives n equations.

The sample complexity bound depends on the condition number of the covariance matrix

Σ[xt], which can be shown to be bounded by C2
ρ/(1 − ρ)2 (see Section B). Lastly, similar to

the linear case, our statistical error rate σ
√

n/N is optimal in the dimension n and sample

size N .

Remark 17 (Probability of success) For our main results, instead of achieving 1 − δ

probability of success with variable δ ∈ (0, 1), we are content with achieving 1−Klog exp(−cd)
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probability of success for an absolute constant c > 0, where Klog is a fixed constant which

depends either logarithmically or linearly on the values of n, L, T, N, σ0, K etc. Please note

that, the probability of success in Theorems 12, 13 and 14 is coming from an application of

Lemma 18 in Section 2.5. We simply apply this lemma using a fixed choice of t = c0
√

d. This

gives the error bound Õ(σ0
√

d/N) and the probability of success 1−Klog exp(−cd). One can

also obtain 1 − δ probability of success by setting t = c0
√

log(Klog/δ) (instead of t = c0
√

d),

when applying Lemma 18 in Section 2.5. This gives the error bound Õ(σ0

√
d log(Klog/δ)

N ). In

this case, one can easily see the trade-off between the probability of success and the error

bound.

2.5 Proofs of the Main Results

2.5.1 Proof of Theorem 4

Before we begin our proof, we state a lemma to bound the Euclidean norm of

a sum of i.i.d. subexponential random vectors. The following lemma is a restatement of

Lemma D.7 of [86] (by specializing it to unit ball) and it follows from an application of

generic chaining tools.

Lemma 18 Let C > 0 be a universal constant. Suppose N ≥ d. Let (vi)Ni=1 ∈ Rd be

i.i.d. vectors obeying µ = E[vi] and subexponential norm ∥vi −µ∥ψ1 ≤K. With probability at

least 1 − 2 exp(−c min(t
√

N, t2)), we have that

∥
1
N

n

∑
i=1

vi −µ∥ℓ2 ≤ CK

√
d + t
√

N
. (2.5.1)
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Alternatively, setting t = τ
√

d for τ ≥ 1, with probability at least 1 − 2 exp(−cτd), we have

∥
1
N

N

∑
i=1

vi −µ∥ℓ2 ≤ CK(τ + 1)
√

d/N. (2.5.2)

Throughout the proof of Theorem 4. we pick the constraint set C = Bd(θ⋆, r), however, these

ideas are general and would apply to any set with small covering numbers (such as sparsity,

ℓ1, rank constraints).

Proof. Uniform convergence with covering argument: We will use a peeling

argument [87]. Split the ball Bd(θ⋆, r) into P + 1 = ⌈log(Kr/σ0)⌉ + 1 sets via following

arguments,

B
d
(θ⋆, r) = ∪Pi=0Si where Si =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bd(θ⋆, σ0/K) if i = 0,

Bd(θ⋆, min(r, eiσ0/K)) − B
d(θ⋆, ei−1σ0/K) else.

By Assumption 4, with probability at least 1−p0, ∇L̂S(θ), ∇LD(θ) are LD-Lipschitz. Given

a set Si and the associated radius ri =min(r, eiσ0/K), pick an εi ≤ ri ≤ r covering Ni of the

set Si ⊂ Bd(θ⋆, ri) such that log ∣Ni∣ ≤ d log(3ri/εi). Observe that over Si, by construction,

we have

max(σ0/K, ∥θ − θ⋆∥ℓ2) ≤ ri ≤max(σ0/K, e∥θ − θ⋆∥ℓ2). (2.5.3)

Applying Lemma 18 together with a union bound over the P + 1 covers and elements of the

covers, we guarantee the following: With probability at least 1−∑Pi=0 exp(−100d log(3ri/εi)),

within all covers Ni, gradient vector at all points θ ∈ Ni satisfies

∥∇L̂S(θ) − ∇LD(θ)∥ℓ2 ≲ (σ0 +Kri) log(3ri/εi)
√

d/N. (2.5.4)
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Given both events hold with probability at least 1− p0 −∑
P
i=0 exp(−100d log(3ri/εi)), for any

θ ∈ Si, pick θ′ ∈ Ni so that ∥θ − θ′∥ℓ2 ≤ ε. This yields

∥∇L̂S(θ) − ∇LD(θ)∥ℓ2

≤ ∥∇LD(θ) − ∇LD(θ
′
)∥ℓ2 + ∥∇L̂S(θ) − ∇L̂S(θ

′
)∥ℓ2 + ∥∇LD(θ

′
) − ∇L̂S(θ

′
)∥ℓ2 ,

≲ εiLD + (σ0 +Kri) log(3ri/εi)
√

d/N. (2.5.5)

Setting εi =min(1, K
LD

√
d/N)ri for 0 ≤ i ≤ P , for any θ ∈ Si (and thus for any θ ∈ Bd(θ⋆, r)),

we have

∥∇L̂S(θ) − ∇LD(θ)∥ℓ2 ≲ (σ0 +Kri) log(3(1 +LDN/K))
√

d/N,

≲ (σ0 +K∥θ − θ⋆∥ℓ2) log(3(1 +LDN/K))
√

d/N, (2.5.6)

where we used (2.5.3) to get the last inequality. Finally, observing that log(3ri/εi) ≥ 1, the

probability bound simplifies to

1 − p0 −
P

∑
i=0

exp(−100d log(3ri/εi)) ≥ 1 − p0 − log(Kr

σ0
) exp(−100d). (2.5.7)

This completes the proof.

2.5.2 Proof of Lemma 6

Proof. Suppose x0 = 0. We claim that ∥xt∥ℓ2 ≤ β+
√

n(1 − ρt) with probability at

least 1 − p0, where β+ ∶= Cρ(cwσ +B)/(1 − ρ). Note that, using the bounds on zt, wt, the

state vector x1 satisfies the following bound and obeys the induction

∥x1∥ℓ2 ≤ B
√

n + cwσ
√

n ≤ Cρ

√
n(B + cwσ) = β+

√
n(1 − ρ1

). (2.5.8)
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Suppose the bound holds until t − 1, where t ≤ T , and let us apply induction. First observe

that ∥xt,L∥ℓ2 obeys the same upper bound as ∥xL∥ℓ2 by construction. Recalling (2.3.7), we

get the following by induction

∥xt −xt,t−1∥ℓ2 ≤ Cρρ
t−1
∥x1∥ℓ2 Ô⇒ ∥xt∥ℓ2 ≤ Cρρ

t−1
∥x1∥ℓ2 + ∥xt,t−1∥ℓ2 ,

(a)
≤ Cρρ

t−1
∥x1∥ℓ2 + β+

√
n(1 − ρt−1

),

(b)
≤
√

n(Cρρ
t−1
(B + cwσ) + β+(1 − ρt−1

)),

≤ β+
√

n(1 − ρt), (2.5.9)

where, we get (a) from the induction hypothesis and (b) from the bound on x1. This bound

also implies ∥xt∥ℓ2 ≤ β+
√

n with probability at least 1 − p0, for all 0 ≤ t ≤ T , and completes

the proof.

2.5.3 Proof of Lemma 8

Proof. By construction x̄(i) only depends on the vectors {zt, wt}
τ+iL−1
t=τ+(i−1)L+1. Note

that the dependence ranges [τ +(i−1)L+1, τ +iL−1] are disjoint intervals for each i′s. Hence,

{x̄(i)}Ni=1 are all independent of each other. To show the independence of {x̄(i)}Ni=1 and

{z(i)}Ni=1, observe that the inputs z(i) = zτ+iL have timestamps τ + iL; which is not covered

by [τ +(i−1)L+1, τ + iL−1] - the dependence ranges of {x̄(i)}Ni=1. Identical argument shows

the independence of {x̄(i)}Ni=1 and {w(i)}Ni=1. Lastly, {z(i)}Ni=1 and {w(i)}Ni=1 are independent

of each other by definition. Hence, {x̄(i)}Ni=1,{z(i)}Ni=1,{w(i)}Ni=1 are all independent of each

other. This completes the proof.
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2.5.4 Proof of Theorem 11

Proof. Our proof consists of two parts. The first part bounds the Euclidean

distance between the truncated and non-truncated losses while the second part bounds the

Euclidean distance between their gradients.

● Convergence of loss: To start, recall L̂(θ) and L̂tr(θ) from (2.2.3) and (2.3.10)

respectively. The distance between them can be bounded as follows.

∣L̂(θ) − L̂tr
(θ)∣

= ∣
1

2(T −L)

T−1
∑
t=L
∥xt+1 − ϕ̃(xt, zt; θ)∥2ℓ2 −

1
2(T −L)

T−1
∑
t=L
∥xt+1,L − ϕ̃(xt,L−1, zt; θ)∥2ℓ2 ∣,

≤
1

2(T −L)

T−1
∑
t=L
∣∥xt+1 − ϕ̃(xt, zt; θ)∥2ℓ2 − ∥xt+1,L − ϕ̃(xt,L−1, zt; θ)∥2ℓ2 ∣,

≤
1
2

max
L≤t≤(T−1)

∣∥xt+1 − ϕ̃(xt, zt; θ)∥2ℓ2 − ∥xt+1,L − ϕ̃(xt,L−1, zt; θ)∥2ℓ2 ∣,

≤
1
2
∣∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥2ℓ2 − ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥2ℓ2 ∣,

≤
1
2
(∣∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 − ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥ℓ2 ∣)

(∣∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 + ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥ℓ2 ∣), (2.5.10)

where, (x, x̄, z, w) corresponds to the maximum index and we used the identity a2 − b2 =

(a + b)(a − b). Denote the kth element of ϕ̃(x, z; θ) by ϕ̃k(x, z; θ) and that of w by wk for
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1 ≤ k ≤ n. To proceed, using Mean-value Theorem, with probability at least 1 − p0, we have

∣ϕ̃k(x, z; θ⋆) − ϕ̃k(x, z; θ) +wk∣ ≤ cwσ + sup
θ̃∈[θ,θ⋆]

∥∇θϕ̃k(x, z; θ̃)∥ℓ2∥θ − θ⋆∥ℓ2 ,

≤ cwσ +Cϕ̃∥θ − θ⋆∥ℓ2 for all 1 ≤ k ≤ n, (2.5.11)

Ô⇒ ∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 ≤
√

n max
1≤k≤n

∣ϕ̃k(x, z; θ⋆) − ϕ̃k(x, z; θ) +wk∣,

≤
√

n(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2). (2.5.12)

This further implies that, with probability at least 1 − p0, we have

1
2
∣∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 + ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥ℓ2 ∣

≤
√

n(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2). (2.5.13)

To conclude, applying triangle inequality along-with the Mean-value Theorem, the difference

term ∆ ∶= ∣∥ϕ̃(x, z; θ⋆) +w − ϕ̃(x, z; θ)∥ℓ2 − ∥ϕ̃(x̄, z; θ⋆) +w − ϕ̃(x̄, z; θ)∥ℓ2 ∣ is bounded as

follows,

∆ ≤ ∥ϕ̃(x, z; θ⋆) − ϕ̃(x, z; θ) − ϕ̃(x̄, z; θ⋆) + ϕ̃(x̄, z; θ)∥ℓ2 ,

≤ ∥ϕ̃(x, z; θ) − ϕ̃(x̄, z; θ)∥ℓ2 + ∥ϕ̃(x, z; θ⋆) − ϕ̃(x̄, z; θ⋆)∥ℓ2 ,

≤ sup
x̃∈[x,x̄]

∥∇xϕ̃(x̃, z; θ)∥∥x − x̄∥ℓ2 + sup
x̃∈[x,x̄]

∥∇xϕ̃(x̃, z; θ⋆)∥∥x − x̄∥ℓ2 ,

(a)
≤ Bϕ̃Cρρ

L−1β+
√

n +Bϕ̃Cρρ
L−1β+

√
n,

= 2Bϕ̃Cρρ
L−1β+

√
n, (2.5.14)

with probability at least 1 − p0, where we get (a) from (2.3.7) and the initial assumption

that ∥∇xϕ̃(x, z; θ)∥ ≤ Bϕ̃. Multiplying this bound with (2.5.13) yields the advertised bound

on the loss difference.
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● Convergence of gradients: Next, we take the gradients of L̂(θ) and L̂tr(θ) to

bound Euclidean distance between them. We begin with

∥∇L̂(θ) − ∇L̂tr
(θ)∥ℓ2 ≤

1
T −L

T−1
∑
t=L
∥∇θϕ̃(xt, zt; θ)

⊺
(ϕ̃(xt, zt; θ) −xt+1)

− ∇θϕ̃(xt,L−1, zt; θ)
⊺
(ϕ̃(xt,L−1, zt; θ) −xt+1,L)∥ℓ2 ,

≤ max
L≤t≤(T−1)

∥∇θϕ̃(xt, zt; θ)
⊺
(ϕ̃(xt, zt; θ) −xt+1)

− ∇θϕ̃(xt,L−1, zt; θ)
⊺
(ϕ̃(xt,L−1, zt; θ) −xt+1,L)∥ℓ2 ,

≤ ∥∇θϕ̃(x, z; θ)
⊺
(ϕ̃(x, z; θ) − ϕ̃(x, z; θ⋆) −w)

− ∇θϕ̃(x̄, z; θ)
⊺
(ϕ̃(x̄, z; θ) − ϕ̃(x̄, z; θ⋆) −w)∥ℓ2 ≤

√
nΛ, (2.5.15)

where (x, x̄, z, w) corresponds to the maximum index (x̄ be the truncated state) and we

define Λ to be the entry-wise maximum

Λ ∶= max
1≤k≤n

∥(ϕ̃k(x, z; θ) − ϕ̃k(x, z; θ⋆) −wk)∇θϕ̃k(x, z; θ)

− (ϕ̃k(x̄, z; θ) − ϕ̃k(x̄, z; θ⋆) −wk)∇θϕ̃k(x̄, z; θ)∥ℓ2 , (2.5.16)

where ϕ̃k(x, z; θ) denotes the kth element of ϕ̃(x, z; θ). Without losing generality, suppose k

is the coordinate achieving maximum value and attaining Λ. Note that Λ = α(x) − α(x̄) for

some function α. Using Mean-value Theorem, we bound Λ ≤ supx̃∈[x,x̄] ∥∇xα(x̃)∥∥x − x̄∥ℓ2 ,
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Λ ≤ sup
x̃∈[x,x̄]

∥(ϕ̃k(x̃, z; θ) − ϕ̃k(x̃, z; θ⋆) −wk)∇x∇θϕ̃k(x̃, z; θ)

+ ∇θϕ̃k(x̃, z; θ)(∇xϕ̃k(x̃, z; θ)⊺ −∇xϕ̃k(x̃, z; θ⋆)
⊺
)∥∥x − x̄∥ℓ2 ,

≤ sup
x̃∈[x,x̄]

[∣ϕ̃k(x̃, z; θ) − ϕ̃k(x̃, z; θ⋆) −wk∣∥∇x∇θϕ̃k(x̃, z; θ)∥

+ ∥∇θϕ̃k(x̃, z; θ)∥ℓ2∥∇xϕ̃k(x̃, z; θ) − ∇xϕ̃k(x̃, z; θ⋆)∥ℓ2]∥x − x̄∥ℓ2 ,

(a)
≤ sup

x̃∈[x,x̄]
[Dϕ̃∣ϕ̃k(x̃, z; θ) − ϕ̃k(x̃, z; θ⋆) −wk∣

+Cϕ̃∥∇xϕ̃k(x̃, z; θ) − ∇xϕ̃k(x̃, z; θ⋆)∥ℓ2]∥x − x̄∥ℓ2 , (2.5.17)

where we get (a) from the initial assumptions ∥∇θϕ̃k(x, z; θ)∥ℓ2 ≤ Cϕ̃ and ∥∇x∇θϕ̃k(x, z; θ)∥ ≤

Dϕ̃. To proceed, again using Mean-value Theorem, we obtain

sup
x̃∈[x,x̄]

∥∇xϕ̃k(x̃, z; θ) − ∇xϕ̃k(x̃, z; θ⋆)∥ℓ2 ≤ sup
x̃∈[x,x̄]
θ̃∈[θ,θ⋆]

∥∇θ∇xϕ̃k(x̃, z; θ̃)∥∥θ − θ⋆∥ℓ2 ,

≤Dϕ̃∥θ − θ⋆∥ℓ2 . (2.5.18)

Finally, plugging the bounds from (2.5.11) and (2.5.18) into (2.5.17), with probability at

least 1 − p0, we have

∥∇L̂(θ) − ∇L̂tr
(θ)∥ℓ2 ≤

√
nΛ ≤

√
n(Dϕ̃(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2) +Cϕ̃Dϕ̃∥θ − θ⋆∥ℓ2)∥x − x̄∥ℓ2 ,

≤ 2nβ+Cρρ
L−1Dϕ̃(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2), (2.5.19)

This completes the proof.
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2.5.5 Proof of Theorem 12

Proof. Theorem 12 is a direct consequence of combining the results from Sec-

tions 2.3.1 and 2.3.2. To begin our proof, consider the truncated sub-trajectory loss ℓ̂tr
τ

from Definition 9 which also implies that LD(θ) = E[ℓ̂tr
τ (θ)]. Hence, ℓ̂tr

τ it is a finite sample

approximation of the Auxiliary loss LD. To proceed, using Theorem 4 with Assumptions 4

and 5 on the Auxiliary loss LD and its finite sample approximation ℓ̂tr
τ , with probability at

least 1 −Lp0 −L log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇ℓ̂tr
τ (θ) − ∇LD(θ)∥ℓ2 ≤ c0(σ0 +K∥θ − θ⋆∥ℓ2) log(3(LDN/K + 1))

√
d/N, (2.5.20)

for all 0 ≤ τ ≤ L − 1, where we get the advertised probability by union bounding over all

0 ≤ τ ≤ L − 1. Next, observe that the truncated loss L̂tr can be split into (average of)

L sub-trajectory losses via L̂tr(θ) = 1
L ∑

L−1
τ=0 ℓ̂tr

τ (θ). This implies that, with probability at

least 1 −Lp0 −L log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂
tr
(θ) − ∇LD(θ)∥ℓ2 ≤

1
L

L−1
∑
τ=0
∥∇ℓ̂tr

τ (θ) − ∇LD(θ)∥ℓ2 ,

≤ max
0≤τ≤(L−1)

∥∇ℓ̂tr
τ (θ) − ∇LD(θ)∥ℓ2 ,

≤ c0(σ0 +K∥θ − θ⋆∥ℓ2) log(3(LDN/K + 1))
√

d/N. (2.5.21)

Combining this with Theorem 11, with the same probability, for all θ ∈ Bd(θ⋆, r), we have

∥L̂(θ) − LD(θ)∥ℓ2 ≤ ∥L̂
tr
(θ) − LD(θ)∥ℓ2 + ∥L̂(θ) − L̂

tr
(θ)∥ℓ2 ,

≤ c0(σ0 +K∥θ − θ⋆∥ℓ2) log(3(LDN/K + 1))
√

d/N

+ 2nβ+Cρρ
L−1Dϕ̃(cwσ +Cϕ̃∥θ − θ⋆∥ℓ2). (2.5.22)
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To simplify the result further, we pick L to be large enough so that the second term in the

above inequality becomes smaller than or equal to the first one. This is possible when

2nβ+Cρρ
L−1Dϕ̃ ≤ c0(σ0/cwσ ∧K/Cϕ̃) log(3(LDN/K + 1))

√
d/N,

⇐⇒ ρL−1
≤ (σ0/cwσ ∧K/Cϕ̃)

c0 log(3(LDN/K + 1))
√

d/N

2nβ+CρDϕ̃

,

⇐⇒ L ≥ 1 + [ log (
2nβ+CρDϕ̃

√
N/d

c0 log(3(LDN/K + 1))
) + log(cwσ/σ0 ∨Cϕ̃/K)]/ log(ρ−1

),

⇐Ô L ≥ ⌈1 +
log((2/c0)nβ+CρDϕ̃

√
N/d(cwσ/σ0 ∨Cϕ̃/K))

1 − ρ
⌉. (2.5.23)

Hence, picking L via (2.5.23), with probability at least 1 − 2Lp0 −L log(Krσ0
) exp(−100d), for

all θ ∈ Bd(θ⋆, r), we have

∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ 2c0(σ0 +K∥θ − θ⋆∥ℓ2) log(3(LDN/K + 1))
√

d/N. (2.5.24)

This completes the proof.

2.5.6 Proof of Theorem 13

Before we begin the proof, we state a theorem to show the linear convergence of

gradient descent for minimizing an empirical loss L̂ when the population loss LD satisfies

one-point convexity and the Euclidean distance between the gradients of the two losses is

upper bounded as follows: ∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ ν + (α/2)∥θ − θ⋆∥ℓ2 .

Theorem 19 (OPCS convergence) Suppose Assumption 3 holds. Assume for all θ ∈

Bd(θ⋆, r), ∇L̂ satisfies ∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ ν+(α/2)∥θ − θ⋆∥ℓ2 and r ≥ 5ν/α. Set learning

rate η = α/(16β2) and pick θ0 ∈ B
d(θ⋆, r). All gradient descent iterates θτ on L̂ satisfy

∥θτ − θ⋆∥ℓ2 ≤ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥ℓ2 +

5ν

α
. (2.5.25)
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Proof. Set δτ = θτ − θ⋆. At a given iteration τ we have that δτ+1 = δτ − η∇L̂(θτ) which

implies

∥δτ+1∥
2
ℓ2 = ∥δτ∥

2
ℓ2 − 2η ⟨δτ ,∇L̂(θτ)⟩ + η2

∥∇L̂(θτ)∥
2
ℓ2 . (2.5.26)

Using Assumptions 3 and ∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ ν + (α/2)∥θ − θ⋆∥ℓ2 , we have that

⟨δτ ,∇L̂(θτ)⟩ ≥ ⟨δτ ,∇LD(θτ)⟩ − ∣ ⟨δτ ,∇L̂(θτ) − ∇LD(θτ)⟩ ∣,

≥ α∥δτ∥
2
ℓ2 − (ν + (α/2)∥δτ∥ℓ2)∥δτ∥ℓ2 ≥ (α/2)∥δτ∥

2
ℓ2 − ν∥δτ∥ℓ2 . (2.5.27)

Similarly,

∥∇L̂(θτ)∥ℓ2 ≤ ∥∇LD(θτ)∥ℓ2 + ∥∇L̂(θτ) − ∇LD(θτ)∥ℓ2 ≤ (3/2)β∥δτ∥ℓ2 + ν. (2.5.28)

Suppose ∥δτ∥ℓ2 ≥ 4ν/α. Then, (α/2)∥δτ∥2ℓ2 − ν∥δτ∥ℓ2 ≥ (α/4)∥δτ∥2ℓ2 and (3/2)β∥δτ∥ℓ2 + ν ≤

2β∥δτ∥ℓ2 . Hence, using the learning rate η = α
16β2 , we obtain

∥δτ+1∥
2
ℓ2 ≤ ∥δτ∥

2
ℓ2(1 − ηα/2 + 4η2β2

) ≤ (1 − α2

64β2 )∥δτ∥
2
ℓ2 . (2.5.29)

Now, imagine the scenario ∥δτ∥ℓ2 ≤ 4ν/α. We would like to prove that δτ+1 satisfies a similar

bound namely ∥δτ+1∥ℓ2 ≤ 5ν/α. This is shown as follows.

∥δτ+1∥
2
ℓ2 ≤ ∥δτ∥

2
ℓ2(1 − ηα + (9/4)η2β2

) + 2ην∥δτ∥ℓ2 + η2
(3νβ∥δτ∥ℓ2 + ν2

),

≤ (1 − 3α2

64β2 )∥δτ∥
2
ℓ2 +

α

8β2 ν∥δτ∥ℓ2 +
α2

256β4 (3νβ∥δτ∥ℓ2 + ν2
),

≤ (
16
α2 +

1
2β2 +

3α

64β3 +
α2

256β4 )ν
2
≤

25
α2 ν2, (2.5.30)

which implies ∥δτ+1∥ℓ2 ≤ 5ν/α. To get the final result observe that during initial iterations,

as long as ∥δτ∥ℓ2 ≥ 4ν/α, we have

∥δτ∥
2
ℓ2 ≤ (1 −

α2

64β2 )
τ
∥δ0∥

2
ℓ2 Ô⇒ ∥δτ∥ℓ2 ≤ (1 −

α2

128β2 )
τ
∥δ0∥ℓ2 . (2.5.31)
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After the first instance ∥δτ∥ℓ2 < 4ν/α, iterations will never violate ∥δτ∥ℓ2 ≤ 5ν/α, because

● If ∥δτ∥ℓ2 < 4ν/α: we can only go up to 5ν/α and δτ+1 ≤ 5ν/α.

● If 4ν/α ≤ ∥δτ∥ℓ2 ≤ 5ν/α: we have to go down hence δτ+1 ≤ 5ν/α.

This completes the proof.

The proof of Theorem 13 readily follows from combining our gradient convergence

result (i.e., Theorem 12) with Theorem 19. We begin by picking N ≥ 16c2
0K2 log2(3(LDN/K+

1))d/α2 in Theorem 12 to obtain

∥∇L̂(θ) − ∇LD(θ)∥ℓ2 ≤ (α/2)∥θ − θ⋆∥ℓ2 + 2c0σ0 log(3(LDN/K + 1))
√

d/N, (2.5.32)

with probability at least 1 − 2Lp0 −L log(Krσ0
) exp(−100d) for all θ ∈ Bd(θ⋆, r). We then use

Theorem 19 with ν = 2c0σ0 log(3(LDN/K + 1))
√

d/N and set c = 10c0 to get the statement

of the theorem. Lastly, observe that by choosing N ≥ 16c2
0K2 log2(3(LDN/K + 1))d/α2, the

statistical error rate of our non-asymptotic identification can be upper bounded as follows,

5ν

α
=

10c0σ0
α

log(3(LDN/K + 1))
√

d/N ≲ σ0/K. (2.5.33)

Therefore, to ensure that Theorem 19 is applicable, we assume that the noise is small enough,

so that σ0 ≲ rK. This completes the proof.

2.5.7 Proof of Theorem 14

Proof. Our proof strategy is similar to that of Theorem 13, that is, we first show

the gradient convergence result for each component L̂k of the empirical loss L̂. We then

use Theorem 19 to learn the dynamics of separable dynamical systems using finite samples

obtained from a single trajectory.
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● Uniform gradient convergence: In the case of separable dynamical systems,

Assumption 4 states that, there exist numbers LD, p0 > 0 such that with probability at least

1 − p0 over the generation of data, for all pairs θ, θ′ ∈ Bd(θ⋆, r), the gradients of empirical

and population losses in (2.3.20) satisfy

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥ℓ2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ
′
k)∥ℓ2) ≤ LD∥θk − θ′k∥ℓ2 , (2.5.34)

for all 1 ≤ k ≤ n. Similarly, Assumption 5 states that, there exist scalars K, σ0 > 0 such that,

given x ∼ D, at any point θ, the subexponential norm of the gradient is upper bounded as a

function of the noise level σ0 and distance to the population minimizer via

∥∇Lk(θk, x) −E[∇Lk(θk, x)∥ψ1 ≤ σ0 +K∥θk − θ⋆k∥ℓ2 for all 1 ≤ k ≤ n. (2.5.35)

To proceed, using Theorem 4 with Assumptions 4 and 5 replaced by (2.5.34) and (2.5.35)

respectively, with probability at least 1 − np0 − n log(Krσ0
) exp(−100d̄), for all θ ∈ Bd(θ⋆, r)

and 1 ≤ k ≤ n, we have

∥∇L̂k,S(θk) − ∇Lk,D(θk)∥ℓ2 ≤ c0(σ0 +K∥θk − θ⋆k∥ℓ2) log(3(LDN/K + 1))
√

d̄/N. (2.5.36)

● Small impact of truncation: Next, we relate the gradients of the single

trajectory loss L̂k in (2.3.18) and the multiple trajectory loss L̂tr
k (defined below). Similar

to (2.3.18), the truncated loss for separable dynamical systems is alternately given by

L̂
tr
(θ) =

n

∑
k=1
L̂

tr
k (θk),

where L̂
tr
k (θk) ∶ =

1
2(T −L)

T−1
∑
t=L
(xt+1,L[k] − ϕ̃k(xt,L−1, zt; θk))

2,

(2.5.37)

where xt,L[k] denotes the kth element of the truncated vector xt,L. We remark that

Assumptions 1 and 2 are same for both non-separable and separable dynamical systems.
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Therefore, repeating the same proof strategy of Theorem 11, with L̂tr and L̂ replaced by L̂tr
k

and L̂k respectively, with probability at least 1 − np0, for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we

have

∥∇L̂k(θk) − ∇L̂
tr
k (θk)∥ℓ2 ≤ 2nβ+Cρρ

L−1Dϕ̃(cwσ +Cϕ̃∥θk − θ⋆k∥ℓ2). (2.5.38)

● Combined result: Next, we combine (2.5.36) and (2.5.38) to obtain a uniform

convergence result for the gradient of the empirical loss L̂k. Observe that, similar to L̂tr,

the truncated loss L̂tr
k can also be split into L truncated sub-trajectory losses (see the proof

of Theorem 12). Each of these truncated sub-trajectory loss is identically distributed as

L̂k,S . Therefore, using a similar line of reasoning as we did in the proof of Theorem 12, with

probability at least 1−Lnp0 −Ln log(Krσ0
) exp(−100d̄), for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we

have

∥∇L̂
tr
k (θk) − ∇Lk,D(θk)∥ℓ2 ≤ c0(σ0 +K∥θk − θ⋆k∥ℓ2) log(3(LDN/K + 1))

√

d̄/N. (2.5.39)

Combining this with (2.5.38), with probability at least 1 −Lnp0 −Ln log(Krσ0
) exp(−100d̄),

for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we have

∥∇L̂k(θk) − ∇Lk,D(θk)∥ℓ2 ≤ ∥∇L̂
tr
k (θk) − ∇Lk,D(θk)∥ℓ2 + ∥∇L̂k(θk) − ∇L̂

tr
k (θk)∥ℓ2 ,

≤ c0(σ0 +K∥θk − θ⋆k∥ℓ2) log(3(LDN/K + 1))
√

d̄/N

+ 2nβ+Cρρ
L−1Dϕ̃(cwσ +Cϕ̃∥θk − θ⋆k∥ℓ2). (2.5.40)

To simplify the result further, we pick L to be large enough so that the second term in the

above inequality becomes smaller than or equal to the first one. This is possible when

L ≥ ⌈1 +
log((2/c0)nβ+CρDϕ̃

√
N/d̄(cwσ/σ0 ∨Cϕ̃/K))

1 − ρ
⌉. (2.5.41)
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Hence, picking L as above, with probability at least 1 − 2Lnp0 −Ln log(Krσ0
) exp(−100d̄), for

all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we have

∥∇L̂k(θk) − ∇Lk,D(θk)∥ℓ2 ≤ 2c0(σ0 +K∥θk − θ⋆k∥ℓ2) log(3(LDN/K + 1))
√

d̄/N,

(a)
≤ (α/2)∥θk − θ⋆k∥ℓ2 + 2c0σ0 log(3(LDN/K + 1))

√

d̄/N, (2.5.42)

where we get (a) by choosing N ≥ 16c2
0K2 log2(3(LDN/K + 1))d̄/α2.

● One-point convexity & smoothness: Lastly, Assumption 3 on the Auxiliary

loss Lk,D states that, there exist scalars β ≥ α > 0 such that, for all θ ∈ Bd(θ⋆, r) and

1 ≤ k ≤ n, the auxiliary loss Lk,D(θk) of (2.3.20) satisfies

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ α∥θk − θ⋆k∥
2
ℓ2 , (2.5.43)

∥∇Lk,D(θk)∥ℓ2 ≤ β∥θk − θ⋆k∥ℓ2 . (2.5.44)

● Finalizing the proof: We are now ready to use Theorem 19 with gradient

concentration bound given by (2.5.42) and the OPCS Assumptions given by (2.5.43) and

(2.5.44). Specifically, we use Theorem 19 with ν = 2c0σ0 log(3(LDN/K + 1))
√

d̄/N , the

one-point convexity assumption (2.5.43) and the one-point smoothness assumption (2.5.44)

to get the statement of the theorem. This completes the proof.
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Chapter 3

Bilinear System Identification

3.1 Introduction

Bilinear systems constitute an important class of nonlinear systems used in modeling

systems in a variety of domains from engineering to biology [88]. They, together with state

affine systems, also provide global approximators for more general nonlinear systems [89,90],

and have recently been invoked in the study of Koopman operators for systems with control

inputs [91–93]. Due to the ubiquity of bilinear models, identification of such models from

input-output data has also received interest in the literature both in continuous-time [94,95]

and discrete-time [96]. However, a theoretical understanding of learning a bilinear model

from a finite noisy trajectory, and in particular, how the accuracy of the learned model

depends on the trajectory length is lacking. We aim to answer this question for discrete-time

bilinear models, learned from a single state-input trajectory using least squares.
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3.1.1 Relation to Prior Work

There is a growing body of literature on non-asymptotic properties and sample

complexity of learning dynamical systems. For linear systems, the recent results include

[22–25,28,50–52,54,55,60,97–99] that establish that accuracy of the learned models improve

at a rate O(1/
√

T ), where T is the trajectory length. These results are extended to certain

classes of switched [39,41,100] and nonlinear systems [29,31,34,101,102], where, with the

exception of [34], mixing-time arguments are used to ease the statistical analysis. One

shortcoming of such arguments is that while, in general, as the contraction rate or “stability"

of the system decreases, the signal to noise ratio increases and identification gets better due

to stronger excitation, mixing-time based arguments capture the opposite dependence [51].

By adapting the martingale small-ball condition as in [51], we show this shortcoming can

also be avoided for bilinear system identification.

3.1.2 Contributions

To summarize, we make the following contributions towards bilinear system identi-

fication: (i) For a bilinear system with state dimension n and input dimension p, the system

dynamics involve p + 1 matrices of size n × n. We estimate these dynamics with an error

rate O(
√

n(p + 1)/T ). Our error rate is optimal in terms of the trajectory length T and the

dimension of the unknown matrices. (ii) Recently, [29] asked an important question, “Is

learning without mixing possible in situations beyond generalized linear models?” We provide

a positive answer to this by extending martingale small-ball argument to bilinear systems.

(iii) We correctly capture the dependence of random input and noise on the identification of
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marginally mean-square stable bilinear systems. Finally, we perform numerical experiments

to support our theoretical results.

3.2 Preliminaries and Problem Setup

3.2.1 Bilinear Dynamical Systems

We consider the identification of bilinear dynamical systems which are governed by

the state equation,

xt+1 =A0xt +
p

∑
k=1

ut[k]Akxt +wt+1. (3.2.1)

Here xt ∈ Rn is the state, ut ∈ Rp is the input, and wt ∈ Rn is the process noise at time t.

{Ak}
p
k=0 ∈ R

n×n are the state matrices which govern the dynamics of the system. Throughout,

we assume that the input signal and noise are normally distributed.

Assumption 6 We have {ut}∞t=0
i.i.d.
∼ N(0, σ2

uIp) and {wt}
∞
t=1

i.i.d.
∼ N(0, σ2

wIn), where

σu, σw > 0.

Our primary goal in this chapter is to estimate the unknown state matrices {Ak}
p
k=0 from

finite samples obtained from a single trajectory of (3.2.1). For this purpose, we introduce

the following concatenated matrix/vector notation,

A⋆ ∶= [A0 σuA1 ⋯ σuAp
] ,

x̃t ∶= [x⊺t σ−1
u ut[1]x⊺t ⋯ σ−1

u ut[p]x
⊺
t
]

⊺
= ũt ⊗xt,

(3.2.2)
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where A⋆ ∈ Rn×n(p+1), x̃t ∈ Rn(p+1) and we define ũt ∶= [1 σ−1
u u⊺t ]

⊺. With these definitions,

the state update equation (3.2.1) can alternately be written as,

xt+1 =A⋆x̃t +wt+1. (3.2.3)

Suppose we have access to a single finite trajectory {(ut, xt, xt+1)}
T
t=0 of the bilinear

dynamical system (3.2.1). Then, to carry out finite sample identification of A⋆ using the

method of linear least squares, we define the following concatenated matrices,

YT ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x⊺2

⋮

x⊺T+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X̃T ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃⊺1

⋮

x̃⊺T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, WT ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w⊺2

⋮

w⊺T+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.2.4)

To estimate the dynamics, we solve the following least-squares problem,

Â = arg min
A∈Rn×n(p+1)

1
2T
∥YT − X̃TA⊺∥2F . (3.2.5)

When the problem is over-determined, the solution to the least-squares problem (3.2.5) is

given by Â⊺ = (X̃⊺
T X̃T )

−1X̃⊺
TYT and the associated estimation error is given by, Â⊺ −A⊺⋆ =

(X̃⊺
T X̃T )

−1X̃⊺
TWT . This implies that the estimation error can be upper-bounded as follows,

∥Â −A⋆∥ = ∥(X̃
⊺
T X̃T )

−1X̃⊺
TWT ∥ ≤ ∥X̃

⊺
TWT ∥/λmin(X̃

⊺
T X̃T ). (3.2.6)

To make the problem (3.2.5) well-conditioned, we also need a stability guarantee on the

bilinear system (3.2.1). This will make sure that the design matrix X̃T has smaller condition

number to help better estimation. However, because of the randomness in ut, the dynamical

behavior of the bilinear system (3.2.1) is also random. Therefore, it is common to define the

stability of bilinear dynamical systems in the mean-square sense [103], which is the topic of

our next subsection.
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Algorithm 1 Bilinear System Identification
Input: Trajectory {(ut, xt, xt+1)}

T
t=1 of bilinear dynamical system (3.2.1)

Estimate {Ak}
p
k=0:

Construct {x̃t}Tt=1 according to (3.2.2)

Construct X̃T , YT according to (3.2.4)

Find the least-squares estimator Â = ((X̃⊺
T X̃T )

−1X̃⊺
TYT )

⊺

We have Â0 = Â[∶ , 1 ∶ n], and Âk = σ−1
u Â[∶ , kn + 1 ∶ (k + 1)n] for k = 1, . . . , p

Output: {Âk}
m
k=0

3.2.2 Mean-square stability of bilinear systems

Definition 20 ( [103]) The bilinear system in (3.2.1) is mean-square stable (MSS) if there

exists x∞ ∈ Rn and Σ∞ ∈ Rn×n+ , such that for any initial state x0, as t→∞, we have

∥E[xt] −x∞∥ℓ2 → 0, ∥E[xtx⊺t ] −Σ∞∥ → 0. (3.2.7)

Here the expectation is over the input sequence {ut}∞t=0, the noise process {wt}
∞
t=1 and the

initial state x0. In the noise free case (wt = 0), we have x∞ = 0 and Σ∞ = 0.

The mean square stability of the bilinear system in (3.2.1) is related to the spectral radius

of the following augmented state matrix [103],

Ã ∶= F ⊗F +
p

∑
k=1

p

∑
ℓ=1

γkℓAℓ ⊗Ak,

where F ∶=A0 +
p

∑
k=1

E[ut[k]]Ak,

and γkℓ ∶= E[ut[k]ut[ℓ]] −E[ut[k]]E[ut[ℓ]].

(3.2.8)

Moreover, under Assumption 6, this further simplifies to,

Ã =A0 ⊗A0 + σ2
u

p

∑
k=1

Ak ⊗Ak. (3.2.9)
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From Proposition 3 in [103], Ã can be viewed as a mapping from E[xtx⊺t ] to E[xt+1x⊺t+1].

Specifically, in the noise-free case, we have vec(E[xt+1x⊺t+1]) = Ãvec(E[xtx⊺t ]). Therefore,

the bilinear system in (3.2.1) is MSS if and only if ρ(Ã) < 1. This leads to our second

assumption, which is stated as follows.

Assumption 7 The bilinear system (3.2.1) is marginally mean-square stable, i.e., ρ(Ã) ≤ 1.

Using marginal mean-square stability, we can show that the second moment properties of

the states {xt}∞t=0 can be bounded as follows.

Lemma 21 Consider the bilinear system in (3.2.1). Suppose Assumption 6 holds and let Ã

be as in (3.2.9). Then, for all t ≥ 0, we have

vec(E[xtx⊺t ]) = Ãtvec(E[x0x⊺0]) + σ2
w

t−1
∑
i=0

Ãivec(In),

E[∥xt∥2ℓ2] ≤ CÃρ(Ã)tnE[∥x0∥
2
ℓ2] + σ2

wn
t−1
∑
i=0

CÃρ(Ã)i.

Lemma 21 shows that if {wt}t≥1 = 0 and ρ(Ã) < 1, then starting from any initial state x0

with finite E[∥x0∥
2
ℓ2
], the state xt exponentially converges to 0. This implies, when ρ(Ã) < 1,

the process noise can assist learning by providing excitation and not allowing the trajectory

to converge to 0.

3.3 Main Results

At the core of our analysis is showing that the random process {x̃t = ũt ⊗ xt}t≥1

satisfies the martingale small-ball condition which is defined as follows.

Definition 22 (Martingale small-ball [22]) Let {Ft}t≥1 denotes a filtration and {Zt}t≥1

be an {Ft}t≥1-adapted random process taking values in R. We say {Zt}t≥1 satisfies the (k, ν, q)-
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block martingale small-ball (BMSB) condition if, for any j ≥ 0, one has 1
k ∑

k
i=1 P (∣Zj+i∣ ≥

ν ∣ Fj) ≥ q almost surely. Given a process {xt}t≥1 taking values in Rd, we say it satisfies

the (k, Γsb, q)-BMSB condition for Γsb ≻ 0 if, for any fixed v ∈ Sd−1, the process Zt = ⟨v, xt⟩

satisfies (k,
√

v⊺Γsbv, q)-BMSB.

To show that {x̃t}t≥1 satisfies BMSB condition, let Ft ∶= σ(x0, . . . , xt, u0, . . . , ut, w1, . . . , wt)

denotes the filtration generated by the states, the input and the noise processes when

t ≥ 1. Furthermore, let F0 ∶= σ(x0, u0). Then, xt, ut and wt become Ft-measurable and,

recalling (3.2.2), x̃t is also Ft-measurable.

Theorem 23 (BMSB condition for {x̃t}t≥1) Consider the bilinear dynamical system in

(3.2.1). Suppose Assumption 6 holds and let x̃t be as in (3.2.2). Then, the process {x̃t}t≥1

satisfies the (k, c2σ2
wIn(p+1), q)-martingale small-ball condition, with the constants k = 1, c =

1/2 and q = 9/320.

The theorem above uses martingale small-ball with k = 1. We remark that using k > 1 is

expected to help capture the role of additional excitation terms in the BMSB lower bound,

specifically, the dependence on Ã. However, this requires bounding higher order moments

that involve cross-products of the input signal and noise terms and is left as future research.

We are now ready to state our main result to estimate the dynamics {Ak}
p
k=0 from

a single finite trajectory {(ut, xt, xt+1)}
T
t=0 of the bilinear dynamical system (3.2.1).

Theorem 24 (Bilinear system identification) Fix δ ∈ (0, 1) and suppose we are given

a single trajectory {(ut, xt, xt+1)}
T
t=0 of the bilinear dynamical system in (3.2.1). Suppose

61



Assumptions 6 and 7 hold, and the trajectory length T satisfies the following lower bound,

T ≳ n(p + 1) + log(12Γ̄/(σ2
wδ)) + log(3/δ),

where, Γ̄ ∶= CÃ(nE[∥x0∥
2
ℓ2] + σ2

wnT )(p + 1).
(3.3.1)

Then, with probability at least 1 − δ, Algorithm 1 ensures

max {∥Â0 −A0∥,{σu∥Âk −Ak∥}
p
k=1} ≲

√
n(p + 1) + log(12Γ̄/(σ2

wδ)) + log(3/δ)
T

. (3.3.2)

In words, (3.3.2) ensures the estimation of all state matrices as soon as the sample size

exceeds the effective degrees of freedom n(p + 1). The estimation of {Ak}
p
k=1 naturally

depends on the input strength, as ut[k] is a multiplier of Ak in (3.2.1). Please note that

Theorem 24 only holds under the condition that ρ(Ã) ≤ 1. This implies that we cannot

increase σu arbitrarily to obtain better estimation. This is because, under Assumption 6,

we have Ã = A0 ⊗A0 + σ2
u∑

p
k=1 Ak ⊗Ak. Therefore, the largest possible σu is given by

σu,max ∶=max{σu > 0 ∶ ρ(A0 ⊗A0 + σ2
u∑

p
k=1 Ak ⊗Ak) ≤ 1}.

Our estimation error is independent of the noise variance σ2
w. This is because the

size of the noise variance σ2
w directly influences the size of the states leading to a cancellation

in the signal-to-noise ratio. On the other hand the size of the input variance σ2
u indirectly

influences the size of the states by influencing the spectral radius of Ã. As a result, increasing

σ2
u helps learning. These observations are further strengthened by numerical experiments in

Section 6.2.

Unlike the existing results [29, 33, 71, 101] on finite time identification of nonlinear

dynamical systems, the error bounds in Theorem 24 do not degrade with increasing instability.

We emphasize that, our result guarantees identification even in the case of non-mixing bilinear

systems. This shows learning without mixing is possible beyond generalized linear models.

62



3.4 Proofs of the Main Results

3.4.1 Proof of Theorem 23

Proof. In this subsection, we will show that the random process {x̃t}t≥1 satisfies

(1, c2σ2
wIn(p+1), q)-BMSB condition, for some constants c, q > 0. For this purpose, we

need to show that, for any fixed v ∈ Sn(p+1)−1, the random process {Zt}t≥1 ∶= {⟨v, x̃t⟩}t≥1

satisfies (1, cσw∥v∥ℓ2 , q)-BMSB condition, that is, for any j ≥ 0, we need to show that

P(∣Zj+1∣ ≥ cσw∥v∥ℓ2 ∣ Fj) ≥ q almost surely. To proceed, for any j ≥ 0, consider the

concatenated state vector,

x̃j+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xj+1

σ−1
u uj+1[1]xj+1

⋮

σ−1
u uj+1[p]xj+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A⋆x̃j +wj+1

ūj+1[1](A⋆x̃j +wj+1)

⋮

ūj+1[p](A⋆x̃j +wj+1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4.1)

where we set ūt = σ−1
u ut, so that {ūt}∞t=0

i.i.d.
∼ N(0, Ip). To proceed, using (3.4.1), we have

that

Zj+1 ∶= ⟨v, x̃j+1⟩ = ⟨v0 + ūj+1[1]v1 +⋯ + ūj+1[p]vp, A⋆x̃j +wj+1⟩ , (3.4.2)

where we set v = [v⊺0 v⊺1 ⋯ v⊺p ]
⊺ such that vi ∶= v[ni + 1 ∶ n(i + 1)]. Next, we concatenate

vi’s to form the matrix,

V ∶= [v1 ⋯vp] ∈ Rn×p. (3.4.3)

Combining this with (3.4.2), we have that Zj+1 = ⟨v0 +V ūj+1, A⋆x̃j +wj+1⟩. Therefore, we

are interested in lower bounding the following probability,

= P (∣ ⟨v0 +V ūj+1, A⋆x̃j +wj+1⟩ ∣ ≥ cσw∥v∥ℓ2 ∣ Fj). (3.4.4)
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To lower bound the probability in (3.4.4), we define the following three events,

Ez ∶= {∣ ⟨v0 +V ūj+1, A⋆x̃j +wj+1⟩ ∣ ≥ cσw∥v∥ℓ2 ∣ Fj},

Ew ∶= {∣ ⟨v0 +V ūj+1, A⋆x̃j +wj+1⟩ ∣ ≥ σw∥v0 +V ūj+1∥ℓ2 ∣ Fj},

Eu ∶= {∥v0 +V ūj+1∥ℓ2 ≥ c∥v∥ℓ2 ∣ Fj}.

(3.4.5)

Note that, Ew ∩ Eu ⊂ Ez. This implies that, we have, P(Ez) ≥ P(Ew ∩ Eu) = P(Ew ∣ Eu)P(Eu).

Therefore, to lower bound the probability of the event Ez, it suffices to lower bound the

probability of these two events: Ew ∣ Eu and Eu.

(a) P(Ew ∣ Eu): Given that, we have wj+1 ∼ N(0, σ2
wIn), for any fixed vector q ∈

Rn, ⟨q, A⋆x̃j +wj+1⟩ ∣Fj ∼ N( ⟨q, A⋆x̃j⟩ , σ2
w∥q∥

2
ℓ2
). Therefore, integrating the probability

density function of a standard Gaussian random variable, it can be shown that,

P (∣ ⟨q, A⋆x̃j +wj+1⟩ ∣ ≥ σw∥q∥ℓ2 ∣ Fj) ≥ 3/10. (3.4.6)

We obtain the above result by integrating the probability density function of a Gaussian

random variable as follows,

∀α ∈ R PZ∼N(0,σ2)(∣α +Z ∣ ≥ σ) ≥ PZ∼N(0,σ2)(∣Z ∣ ≥ σ) = PZ′∼N(0,1)(∣Z ′∣ ≥ 1),

= 1 − PZ′∼N(0,1)(∣Z ′∣ ≤ 1) = 1 − 2∫
1

0

1
√

2π
e−z

′2/2dz′,

≥ 1 − 2(7/20) = 3/10. (3.4.7)

To proceed, setting q = v0 + V ūj+1 and p = A⋆x̃j + wj+1, let fQ(q), fP (p) denote the

probability density functions of the random vectors q ∣ Fj and p ∣ Fj , respectively, under
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the event Eu. Observe that q ∣ Fj and p ∣ Fj are independent under Eu. Therefore, we have

P(Ew ∣ Eu) = ∫ ∫ fQ(q)fP (p)1(∣⟨q,p⟩∣≥σw∥q∥ℓ2)dpdq,

= ∫ fQ(q)∫ fP (p)1(∣⟨q,p⟩∣≥σw∥q∥ℓ2)dp

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P(∣⟨q,p⟩∣≥σw∥q∥ℓ2) for fixed q∈Rn

dq
(i)
≥ (3/10)∫ fQ(q)dq = 3/10, (3.4.8)

where 1(⋅) denotes the indicator function, and we obtain (i) from (4.5.4). Hence, we showed

that P(Ew ∣ Eu) ≥ 3/10.

(b) P(Eu): Next, to lower bound the probability of the event Eu, we consider the

following,

∥v0 +V ūj+1∥
2
ℓ2 = ∥v0∥

2
ℓ2 + ∥V ūj+1∥

2
ℓ2 + 2 ⟨v0, V ūj+1⟩ ,

= ∥v0∥
2
ℓ2 + ∥V ūj+1∥

2
ℓ2 + 2 ⟨V ⊺v0, ūj+1⟩ .

(3.4.9)

Let EΞ = {∥v0∥
2
ℓ2
+ ∥V ūj+1∥

2
ℓ2
≥ Ξ} and E+ = {⟨V ⊺v0, ūj+1⟩ ≥ 0}. Since ūj+1 is rotationally

invariant and V ⊺v0 is a fixed vector P(E+) = 1/2. More generally, EΞ and E+ are independent

again due to rotational invariance (sign and magnitude of ūj+1 are independent). Combining

this with (3.4.9), for any Ξ, we have

P (∥v0 +V ūj+1∥
2
ℓ2 ≥ Ξ) ≥ P(EΞ ∩ E+) = 0.5P(∥v0∥

2
ℓ2 + ∥V ūj+1∥

2
ℓ2 ≥ Ξ). (3.4.10)

Therefore, to lower bound the probability of event Eu, it suffices to lower bound the probability

of the event {∥V ūj+1∥
2
ℓ2
≥ c∥V ∥2F }, for some constant c > 0. Let V have singular value

decomposition V =QΣR⊺ with ∥V ∥2F = ∥Σ∥2F = ∑
p
i=1 σ2

i . Furthermore, since ūj+1 ∼ N(0, Ip)

and Q, R are orthogonal matrices, we have g ∶=R⊺ūj+1 ∼ N(0, Ip). Therefore, we have

∥V ūj+1∥
2
ℓ2 = ∥QΣR⊺ūj+1∥

2
ℓ2 = ∥ΣR⊺ūj+1∥

2
ℓ2 = ∥Σg∥2ℓ2 =

p

∑
i=1

σ2
i g[i]

2. (3.4.11)
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This further implies,

E[∥V ūj+1∥
2
ℓ2] = E [

p

∑
i=1

σ2
i g[i]

2] =
p

∑
i=1

σ2
i E[g[i]

2
] =

p

∑
i=1

σ2
i = ∥V ∥

2
F . (3.4.12)

Similarly, we also have,

E[∥V ūj+1∥
4
ℓ2] = E [(

p

∑
i=1

σ2
i g[i]

2
)

2] = E [
p

∑
i=1

σ4
i g[i]

4
+

p

∑
i=1

p

∑
j=1
j≠i

σ2
i σ

2
jg[i]

2g[j]2],

=

p

∑
i=1

σ4
i E[g[i]

4
] +

p

∑
i=1

p

∑
j=1
j≠i

σ2
i σ

2
j E[g[i]

2g[j]2]
(i)
= 3

p

∑
i=1

σ4
i +

p

∑
i=1

p

∑
j=1
j≠i

σ2
i σ

2
j ,

≤ 3(
p

∑
i=1

σ2
i )

2
= 3∥V ∥4F ,

(3.4.13)

where we get (i) from E[g[i]4] = 3 and the independence of g[i] and g[j] for all i ≠ j.

Combining (3.4.12) and (3.4.13) with the Paley-Zygmund inequality, for a fixed γ ∈ (0, 1),

we have

P (∥V ūj+1∥
2
ℓ2 ≥ γ E[∥V ūj+1∥

2
ℓ2]) ≥ (1 − γ)2

E[∥V ūj+1∥
2
ℓ2
]2

E[∥V ūj+1∥4ℓ2]
,

Ô⇒ P (∥V ūj+1∥
2
ℓ2 ≥ γ∥V ∥2F ) ≥ (1 − γ)2

1
3

,

Ô⇒ P (∥V ūj+1∥
2
ℓ2 ≥ (1/4)∥V ∥

2
F ) ≥ 3/16,

(3.4.14)

where we obtain the last line by setting γ = 1/4. Finally, combining (3.4.10) and (3.4.14),

we have

P (∥v0 +V ūj+1∥
2
ℓ2 ≥ ∥v0∥

2
ℓ2 + (1/4)

p

∑
i=1
∥vi∥

2
ℓ2) ≥ (1/2)(3/16) = 3/32. (3.4.15)

Combining this with ∥v∥2ℓ2 = ∑
p
i=0 ∥vi∥

2
ℓ2

, we obtain

P (∥v0 +V ūj+1∥ℓ2 ≥ (1/2)∥v∥ℓ2) ≥ 3/32. (3.4.16)

Hence, setting c = 1/2, we found that P(Eu) ≥ 3/32. Putting all together, we have

P(Ez) ≥ P(Ew ∣ Eu)P(Eu) ≥ 9/320. This verifies our claim that the process {x̃t}t≥1 sat-

isfies (1, c2σ2
wIn(p+1), q)-BMSB condition, with the constants c = 1/2 and q = 9/320.
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3.4.2 Proof of Theorem 24

Proof. For the sake of completeness, before we present the proof of Theorem 24,

we present a meta result from [22] which will be used to prove Theorem 24.

Theorem 25 (Meta-theorem [22]) Fix δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb ≺ Γ̄. Then if

(xt, yt)
T
t=1 ∈ (Rd ×Rn)T is a random sequence such that (a) yt =A⋆xt +wt, where wt ∣ Ft−1

is σ2
w-subgaussian and mean zero, (b) x1, . . . , xT satisfy the (k, Γsb, q)-small ball condition,

and (c) such that P (∑Tt=1 xtx
⊺
t ⪯̸ T Γ̄) ≤ δ. Then if

T ≥
10k

q2 ( log(1/δ) + 2d log(10/q) + log(det(Γ̄Γ−1
sb ))),

we have

P(∥Â(T ) −A⋆∥ ≥
90σw

q

√
n + d log(10/q) + log(det(Γ̄Γ−1

sb )) + log(1/δ)
Tλmin(Γsb)

) ≤ 3δ.

Our proof strategy is to verify that the conditions (a), (b), and (c) of Theorem 25 hold for

the bilinear dynamical system in (3.2.1) and then apply Theorem 25 to estimate A⋆.

(a) Sub-gaussian noise: Following the re-parameterization in (3.2.3), we have

xt+1 = A⋆x̃t + wt+1. Moreover, under Assumption 6, the process noise wt ∣ Ft−1 is σ2
w-

subgaussian and mean zero.

(b) BMSB condition: Theorem 23 proves that the random process {x̃t}t≥1 satisfies

(1, c2σ2
wIn(p+1), q)-BMSB condition, with the constants c = 1/2 and q = 9/320.

(c) State correlation bound: Recall the definition of ũt, x̃t from (3.2.2) and X̃T

from (3.2.4). We have

∥X̃⊺
T X̃T ∥ = ∥

T

∑
t=1
(ũt ⊗xt)(ũ

⊺
t ⊗x⊺t )∥ = ∥

T

∑
t=1
(ũtũ

⊺
t ⊗xtx

⊺
t )∥,

(i)
≤

T

∑
t=1
∥ũtũ

⊺
t ∥∥xtx

⊺
t ∥ ≤

T

∑
t=1
∥ũt∥

2
ℓ2∥xt∥

2
ℓ2 ,

(3.4.17)
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where we obtain (i) from the triangle inequality and the fact that ∥C ⊗D∥ ≤ ∥C∥∥D∥. This

further implies,

E [∥X̃⊺
T X̃T ∥] ≤

T

∑
t=1

E[∥ũt∥2ℓ2∥xt∥
2
ℓ2]

(ii)
≤

T

∑
t=1
(p + 1)CÃ(nE[∥x0∥

2
ℓ2] + σ2

wnt),

≤ TCÃ(nE[∥x0∥
2
ℓ2] + σ2

wnT )(p + 1),

(3.4.18)

where we obtain (ii) from the independence of ut and xt. Moreover, we have E[∥ũt∥2ℓ2] =

1+σ−2
u E[∥ut∥2ℓ2] = 1+p, and we use Lemma 21 along with Assumption 7 to bound E[∥xt∥2ℓ2].

Hence, setting

Γ̄ ∶= CÃ(nE[∥x0∥
2
ℓ2] + σ2

wnT )(m + 1), (3.4.19)

we have, E[∥∑Tt=1 x̃tx̃
⊺
t ∥] = E[∥X̃

⊺
T X̃T ∥] ≤ T Γ̄. Next, we use Markov inequality to show that

P (
T

∑
t=1

x̃tx̃
⊺
t ⪯̸ (T Γ̄/δ)In(p+1)) = P (λmax(

T

∑
t=1

x̃tx̃
⊺
t ) ≥ T Γ̄/δ),

≤ E [λmax(
T

∑
t=1

x̃tx̃
⊺
t )]δ/(T Γ̄) ≤ δ.

(3.4.20)

We are now ready to use Theorem 25 from [22] to obtain our final result.

(d) Finalizing the proof: In Theorem 25, we set Γ̄ = (1/δ)CÃ(nE[∥x0∥
2
ℓ2
] +

σ2
wnT )(p + 1)In(p+1), Γsb = (1/4)σ2

wIn(p+1), k = 1, q = 9/320, and d = n(p + 1). This

gives,

Γ̄Γ−1
sb = 4Γ̄/(σ2

wδ)In(p+1) = (4/δ)CÃ(nE[∥x0∥
2
ℓ2]/σ

2
w + nT )(p + 1)In(p+1). (3.4.21)

Using this in Theorem 25, and replacing δ with δ/3, when the trajectory length T satisfies,

T ≳ n(p + 1) + log(12Γ̄/(σ2
wδ)) + log(3/δ), (3.4.22)

we have

P(∥Â −A⋆∥ ≲

√
n(p + 1) + log(12Γ̄/(σ2

wδ)) + log(3/δ)
T

) ≥ 1 − δ. (3.4.23)
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Finally, using the fact that the spectral norm of a sub-matrix is upper bounded by that of

the original matrix establishes the statement of the theorem. This completes the proof.

3.4.3 Proof of Lemma 21

Proof. To begin, consider the following

vec(E[xt+1x⊺t+1])

= vec(E [((A0 +
p

∑
k=1

ut[k]Ak)xt +wt+1)((A0 +
p

∑
k=1

ut[k]Ak)xt +wt+1)
⊺
])

(i)
= vec(E [(A0 +

p

∑
k=1

ut[k]Ak)xtx
⊺
t (A0 +

p

∑
k=1

ut[k]Ak)
⊺
] +E[wt+1w⊺t+1]),

(ii)
= E [(A0 +

p

∑
k=1

ut[k]Ak) ⊗ (A0 +
p

∑
k=1

ut[k]Ak)vec(xtxTt )] + vec(σ2
wIn),

(iii)
= (A0 ⊗A0 + σ2

u

p

∑
k=1

Ak ⊗Ak)vec(E[xtx⊺t ]) + σ2
wvec(In),

= Ãvec(E[xtx⊺t ]) + σ2
wvec(In), (3.4.24)

where we get (i) from the independence of ut and xt, (ii) from the linearity of vec(⋅) operator,

and (iii) from Assumption 6. Here we use the definition of Ã from (3.2.9). Repeating the

recursion in (3.4.24) till t = 0, we have

vec(E[xtx⊺t ]) = Ãtvec(E[x0x⊺0]) + σ2
w

t−1
∑
i=0

Ãivec(In). (3.4.25)
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Next, using (3.4.25), we bound the expected squared Euclidean norm of the states {xt}∞t=0

as follows,

E[∥xt∥2ℓ2] = E[x
⊺
txt] = E[trace(xtx⊺t )] = trace(E[xtx⊺t ]) =

n

∑
j=1

λj(E[xtx⊺t ]),

≤

√
n

n

∑
j=1

λ2
j(E[xtx

⊺
t ]) =

√
n∥E[xtx⊺t ]∥F =

√
n∥vec(E[xtx⊺t ])∥ℓ2 ,

=
√

n∥Ãtvec(E[x0x⊺0]) + σ2
w

t−1
∑
i=0

Ãivec(In)∥ℓ2 ,

≤
√

n∥Ãtvec(E[x0x⊺0])∥ℓ2 +
√

n∥σ2
w

t−1
∑
i=0

Ãivec(In)∥ℓ2 ,

≤
√

n∥Ãt
∥∥vec(E[x0x⊺0])∥ℓ2 + σ2

w

√
n
t−1
∑
i=0
∥Ãi
∥∥vec(In)∥ℓ2 ,

≤ CÃρ(Ã)t
√

n∥E[x0x⊺0]∥F + σ2
wn

t−1
∑
i=0

CÃρ(Ã)i

≤ CÃρ(Ã)tnE[∥x0∥
2
ℓ2] + σ2

wn
t−1
∑
i=0

CÃρ(Ã)i,

where λj(E[xtx⊺t ]) denotes the j-th eigenvalue of E[xtx⊺t ], for j = 1, . . . , n. This completes

the proof.
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Chapter 4

Learning Markov Jump Systems

4.1 Introduction

A canonical problem at the intersection of machine learning and control is that

of adaptive control of an unknown dynamical system. An intelligent autonomous system

is likely to encounter such a task; from an observation of the inputs and outputs, it needs

to both learn and effectively control the dynamics. A commonly used control paradigm is

the Linear Quadratic Regulator (LQR), which is theoretically well understood when system

dynamics are linear and known. LQR also provides an interesting benchmark, when system

dynamics are unknown, for reinforcement learning (RL) with continuous state and action

spaces and for adaptive control [104–109].

A generalization of linear dynamical systems called Markov jump linear systems

(MJSs) models dynamics that switch between multiple linear systems, called modes, according

to an underlying finite Markov chain. MJS allows for modeling a richer set of problems where

the underlying dynamics can abruptly change over time. One can, similarly, generalize the
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LQR paradigm to MJS by using mode-dependent cost matrices, which allow different control

goals under different modes. For instance, a Mars rover optimally exploring an unknown

heterogeneous terrain, optimal solar power generation on a cloudy day, or controlling

investments in financial markets may be modeled as MJS-LQR problems with unknown

system dynamics [110–114].

While the MJS-LQR problem is well understood when one has perfect knowledge of

the system dynamics [115,116], in practice, such knowledge is not always possible, and one

may have to resort to adaptive control. Earlier works have aimed at analyzing the asymptotic

properties (i.e., stability) of adaptive controllers for unknown MJSs both in continuous-

time [117] and discrete-time [118] settings. However, despite the practical importance of

MJSs, non-asymptotic sample complexity results and regret analysis for MJSs are lacking.

When the Markovian modes switch in an i.i.d. fashion, and the Markov matrix is the only

unknown, recent works study data-driven stability verification [119] and stabilization [120]

with non-asymptotic guarantees. However, it is difficult to extend these works to more

general MJSs with completely unknown dynamics. One major challenge brought by MJSs is

that one needs to consider both the state/input in the continuous space and the Markovian

mode switching sequence in the discrete space. Furthermore, the state data generated by

the same mode are temporally separated with the mode switching, thus having time-varying

statistical properties and posing difficulties to sample complexity analysis.

One advantage of MJSs is that, stability is only required in the mean-square sense,

which relaxes the deterministic counterpart that is commonly needed for non-switched

systems. This, however, brings new challenges to the analysis since unstable realization is
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Figure 4.1: State trajectories for a two-modes MJS: Mode 1: xt+1 = 1.2xt,
Mode 2: xt+1 = 0.7xt, Markov matrix [[0.6, 0.4]⊺, [0.3, 0.7]⊺]⊺, and x0 = 1. Blue
and red curves: mode switching sequences Ω1 = {1, 1, . . .} and Ω2 = {2, 2, . . .}.
Yellow curve: average over all realizations. Gray area: region for all possible
trajectories.

possible with mean-square stability. Figure 4.1 shows an example (adapted from [116]) of an

MJS that is stable in the mean-square sense despite having an unstable mode. Clearly, under

an unfavorable mode switching sequence, the system trajectory can still blow up. Therefore,

statistical tools such as high probability light-tail bounds are not applicable without strong

assumptions on the joint spectral radius of the system (cf. [57]). Perhaps more surprisingly,

there are examples of MJS with all modes individually stable, however due to switching,

the system exhibits an unstable behavior on average, and the MJS is not mean-square

stable [116, Example 3.17]. Therefore, finding controllers to individually stabilize the mode

dynamics does not guarantee that the overall system will be stable when mode switches

over time. This more relaxed notion of mean-square stability presents major challenges in

learning, controlling, and statistical analysis.

4.1.1 Relation to Prior Work

Our work is related to several topics in model-based reinforcement learning, system

identification, and adaptive control.
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● System Identification: Learning dynamical models has a long history in the

control community, with major theoretical results being related to asymptotic properties

under strong assumptions on persistence of excitation [20]. The problem becomes harder

for hybrid and switched systems where the initial focus was on computational complexity

as opposed to sample complexity of learning [121, 122]. There are some recent results on

asymptotic consistency [123] in the stochastic jump systems, a special case of MJSs where

the modes switch in an i.i.d. manner. Identification of MJSs with hidden mode sequence

has also attracted significant attention [124,125].

● Sample Complexity of System Identification: There is a recent surge of

interest toward understanding the sample complexity of learning linear dynamical systems

from a single trajectory under mild assumptions [61], using statistical tools like martingales

[22,24,25] or mixing time arguments [26,27]. Recently, [28] provides precise rates for the

finite-time identification of LTI (linear time-invariant) systems using a single trajectory. The

literature gets scarcer for switched systems. In [126], a novel approach based on Lyapunov

equation is proposed for systems with stochastic switches, yet theoretical guarantees are

lacking. [57] is one of the early works – and it seems to be the only work not assuming

persistence of excitation – to provide finite sample analysis for learning systems with

stochastic switches, yet with additional strong assumptions like independent switches and

small joint spectral radius. The proof techniques developed within our work aim to obviate

such assumptions. We tackle the open problem of learning MJS from finite samples, obtained

from a single trajectory, with theoretical guarantees under mild assumptions.
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4.1.2 Contributions

We provide the first comprehensive system identification and regret guarantees for

learning and controlling Markov jump linear systems using a single trajectory while assuming

only marginal mean-square stability (see Definition 26). Specifically, our contributions are

as follows1: We provide an algorithm (Algorithm. 2) to estimate the MJS dynamics with an

error rate of O(
√
(n + p)/T ), where n and p are the state and input dimensions respectively,

and T is the trajectory length. Our error rate is optimal in terms of the trajectory length T

and the dimensions (n and p) of the unknown matrices.

4.2 Preliminaries and Problem Setup

We consider the identification and adaptive control of MJSs which are governed by

the following state equation,

xt+1 =Aω(t)xt +Bω(t)ut +wt s.t. ω(t) ∼Markov Chain(T ), (4.2.1)

where xt ∈ Rn, ut ∈ Rp and wt ∈ Rn are the state, input, and process noise of the MJS at time

t with {wt}
∞
t=0

i.i.d.
∼ N(0, σ2

wIn). There are s modes in total, and the dynamics of mode i is

given by the state matrix Ai and input matrix Bi. The active mode at time t is indexed by

ω(t) ∈ [s]. Throughout, we assume the state xt and the mode ω(t) can be observed at time

t. The mode switching sequence {ω(t)}∞t=0 follows a Markov chain with transition matrix

T ∈ Rs×s+ such that for all t ≥ 0, the ij-th element of T denotes the conditional probability

[T ]ij ∶= P (ω(t + 1) = j ∣ ω(t) = i) for all i, j ∈ [s]. Throughout, we assume the initial state

x0, the mode switching sequence {ω(t)}∞t=0, and the noise {wt}
∞
t=0 are mutually independent.

1orders of magnitude here are up to polylogarithmic factors

75



We use MJS(A1∶s, B1∶s, T ) to refer to an MJS with state equation (4.2.1), parameterized by

the matrix tuple (A1∶s, B1∶s, T ). We call a sequence of controllers K1∶s ∶= {K1, . . . , Ks} a

mode-dependent state-feedback controller for the MJS if the input is given by ut =Kω(t)xt.

Under K1∶s, the MJS becomes closed-loop with state matrices L1∶s where Li ∶=Ai +BiKi.

Due to the randomness in the mode sequence {ω(t)}∞t=0, it is common to consider

the stability of MJS in the mean-square sense which is defined as follows.

Definition 26 (Mean-square stability [116]) We say the MJS in (4.2.1) is mean-square

stable (MSS) if when setting ut = 0, there exists x∞, Σ∞ such that for any initial state x0

and mode ω(0), as t→∞, we have

∥E[xt] −x∞∥ℓ2 → 0, ∥E[xtx⊺t ] −Σ∞∥ → 0, (4.2.2)

where the expectation is over the Markovian mode switching sequence {ω(t)}∞t=0, the noise

{wt}
∞
t=0 and the initial state x0. In the noise-free case (i.e., wt = 0), we have x∞ = 0,

Σ∞ = 0. We say the MJS in (4.2.1) is (mean-square) stabilizable if there exists mode-

dependent controller K1∶s such that the closed-loop MJS xt+1 = (Aω(t) +Bω(t)Kω(t))xt is

MSS. We call such K1∶s a stabilizing controller.

Similarly to the Lyapunov stability of LTI systems, MJSs also have the spectral

radius criterion to determine the MSS. For notation brevity, let L1∶s denote the MJS

state matrices, where Li = Ai + BiKi for the closed-loop case and Li = Ai otherwise.

Define the augmented state matrix L̃ ∈ Rsn2×sn2 with the ij-th n2×n2 block given by

[L̃]ij ∶= [T ]jiLj ⊗Lj . Then, ρ(L̃) < 1 if and only if the MJS is MSS [116, Theorem 3.9].

This follows from the fact that the matrix L̃ maps E[xtx⊺t ] to E[xt+1x⊺t+1] (see (4.4.5) in the

appendix). Particularly, when the MJS has ρ(L̃) ≤ 1, we refer to it as marginally MSS. The

76



notions of marginally (mean-square) stabilizability and marginally (mean-square) stabilizing

controller follow similarly.

● System Identification: System identification problems seek to estimate unknown system

dynamics from a single (or multiple) trajectory(ies) of the system’s states, inputs and mode

observations. In the MJS setting, our goal is to estimate the state/input matrices A1∶s, B1∶s

and the Markov transition matrix T from a single trajectory of the system’s states, inputs

and mode observations {xt, ut, ω(t)}Tt=0, and provide finite sample estimation guarantees.

In this work, the main assumption for the MJS to be identified is as follows.

Assumption 8 The MJS in (4.2.1) has ergodic Markov chain and is marginally mean-

square stabilizable.

Ergodicity guarantees that the distribution of the mode sequence ω(t) converges to a

unique strictly positive stationary distribution [127, Theorem 4.3.5]. Throughout, we

let π∞ ∈ Rs+ denote the stationary distribution of T such that π⊺∞ = π⊺∞T , and define

πmin ∶=mini∈[s]π∞(i), πmax ∶=maxi∈[s]π∞(i). Ergodicity ensures that the MJS could have

enough “visits” to every mode i ∈ [s], thus providing enough number of samples to learn

[T ]i,∶, Ai and Bi for all i ∈ [s]. We further define the mixing time [128] that describes how

fast a Markov chain converges to its stationary distribution.

Definition 27 (Markov chain mixing time) Consider an ergodic Markov matrix T ∈

Rs×s+ with stationary distribution π∞ ∈ Rs+. For ϵ ≥ 0, define the mixing time as

tMC(ϵ) ∶=min {t ∈ N ∶max
i∈[s]

1
2
∥([T t

]i,∶)
⊺
−π∞∥ℓ1 ≤ ϵ}. (4.2.3)

Particularly, when the parameter ϵ is omitted, tMC ∶= tMC(
1
4).
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Algorithm 2 MJS-SYSID
Input:A marginally mean-square stabilizing controller K1∶s; variances σ2

w and σ2
z; MJS

trajectory {xt, zt, ω(t)}Tt=0, generated using inputs ut = Kω(t)xt + zt; exploration niose

{zt}
T
t=0

i.i.d.
∼ N(0, σ2

zIp)

Estimate A1∶s, B1∶s: for all modes i ∈ [s] do

Si = {t ∣ ω(t) = i}

Θ̂1,i, Θ̂2,i = arg min
Θ1∈Rn×n,Θ2∈Rn×p

1
2∣Si∣ ∑t∈Si ∥xt+1 −Θ1xt/σw −Θ2zt/σz∥

2
ℓ2

B̂i = Θ̂2,i/σz and Âi = Θ̂1,i/σw − B̂iKi

Estimate T : [T̂ ]ij = ∑Tt=1 1(ω(t−1)=i,ω(t)=j)/∑
T
t=1 1(ω(t−1)=i)

Output:Â1∶s, B̂1∶s, T̂

As mentioned earlier, MJS presents unique statistical analysis challenges due to

Markovian jumps and MSS. In the following, Section 4.3 presents our system identification

procedures together with theoretical guarantees overcoming these challenges.

4.3 Main Results

Our MJS identification procedure is given in Algorithm 2. We assume one has

access to an stabilizing controller K1∶s to start the identification, which has been a standard

assumption in data-driven control of LTI systems [50, 129–132]. Note that, if the open-

loop MJS is already marginally MSS, then one can simply set K1∶s = 0 and carry out

MJS identification. Given an MJS trajectory {xt, zt, ω(t)}Tt=0, generated using the input

ut = Kω(t)xt + zt, we solve s least-squares regression problems to estimate A1∶s, B1∶s.

Moreover, using the empirical frequency of observed modes, we estimate T .
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The following theorem gives our main results on learning the dynamics of an

unknown MJS from finite samples obtained from a single trajectory. One can refer to

Theorems 32 and 36 in Section 4.4 for the detailed theorem statements and proofs.

Theorem 28 (Identification of MJS) Suppose we run Algorithm 2 with the trajectory

length T ≥ max {2T0, Ô(
(n+p) log(T )
πmin(1−γ) )}, where T0 ∶= tMC(πmin/2) and γ ∶= Ô( 1

πmin

√
πmaxT0
T
).

Suppose, {zt}Tt=0
i.i.d.
∼ N(0, σ2

zIp) and {wt}
T
t=0

i.i.d.
∼ N(0, σ2

wIn). Then, under Assumption 8,

with probability at least 1 − δ, for all i ∈ [s], we have

max{ σz

σw + σz
∥Âi −Ai∥,

σz

σw
∥B̂i −Bi∥} ≤ Ô(

√
(n + p) log(T )
πmin(1 − γ)T

),

and ∥T̂ − T ∥ ≤ Ô(
1

πmin

√
log(T )

T
).

(4.3.1)

Proof sketch: Let ht ∶= [x
⊺
t /σw z⊺t /σz]

⊺ and Θ⋆i ∶= [σw(Ai +BiKi) σzBi] for all i ∈ [s].

Then the output of each sample in {(xt+1, xt, zt, ω(t))}t∈Si can be related to the inputs as

follows,

xtk+1 =Θ⋆i htk +wtk for k = 1, 2, . . . , ∣Si∣, (4.3.2)

where we set Si ∶= {t ∣ ω(t) = i} ≡ {t1, t2,⋯, t∣Si∣}. This shows that, for each i ∈ [s], the

problem of estimating (Ai, Bi) is equivalent to the problem of estimating Θ⋆i from the

sequence of covariate-response pairs (htk , xtk+1)k≥1. Specifically, following Algorithm 2, we

solve a regression problem. For this purpose, we define the following concatenated matrices:

Yi has {x⊺t+1}t∈Si on its rows, Hi has {h⊺t }t∈Si on its rows and Wi has {w⊺t }t∈Si on its rows.

Observe that, we have Yi =HiΘ⋆⊺i +Wi and the regression problem in Algorithm 2 becomes,

Θ̂⊺i = arg min
Θi∈Rn×(n+p)

1
2∣Si∣
∥Yi −HiΘ⊺i ∥

2
F . (4.3.3)
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When the problem is over-determined, the solution to the least-squares problem (4.3.3)

is given by Θ̂⊺i =H†
i Yi = (H

⊺
i Hi)

−1H⊺
i Yi and the associated estimation error is given by,

Θ̂i−Θ⋆i = ((H⊺
i Hi)

−1H⊺
i Wi)

⊺. This implies that the estimation error can be upper-bounded

as follows,

∥Θ̂i −Θ⋆i ∥ = ∥(H⊺
i Hi)

−1H⊺
i Wi∥ ≤

∥H⊺
i Wi∥

λmin(H
⊺
i Hi)

, (4.3.4)

We upper bound the estimation error in (4.3.4) as follows: (a) First, we prove that the

covariates process {htk}
∣Si∣
k=1 satisfies (k, In+p, q)-block Martingale small-ball condition, with

the constants k = 1 and q = 3/10. (b) Next, we use Assumption 8 and Markov inequality

to show that P (H⊺
i Hi ⪯̸ (∣Si∣Γ̄/δ)In+p) ≤ δ, for some Γ̄ = O(T ). (c) Next, we use As-

sumption 8 (ergodicity) and Freedman’s inequality to show that, using T ≥ 2T0, where

T0 ∶= tMC(πmin/2), we have P(⋂si=1{∣Si∣ ≥ πmin(1−γ)T}) ≥ 1−δ, where γ ∶= Ô( 1
πmin

√
πmaxT0
T
).

Finally, we combine (a), (b) and (c) with Theorem 2.4 from [22] to obtain our main result

on single trajectory learning of A1∶s, B1∶s.

Our system identification result achieves near-optimal (Ô(
√
(n + p)/T )) dependence

on the trajectory length T . Note that the overall sample complexity grows as T ≳ (n+p)/πmin.

A degrees-of-freedom counting argument would show that the dependency of T ≳ (n+p)/πmin

is optimal. The reason is that, each vector state equation we fit has n scalar equations.

The total degrees of freedom for each dynamics pair (Ai, Bi) is n × (n + p). Additionally,

for the least-frequent mode, in steady-state, we should observe πminT equations. Putting

these together, we would minimally need n × πminT ≥ n × (n + p), which means we need

T ≥ (n + p)/πmin samples to estimate the MJS dynamics (A1∶s, B1∶s). Note that, our sample

complexity is not effected directly by the number of MJS modes s. However, s indirectly
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effects sample complexity via πmin, which is the probability of least-frequent mode in the

steady state.

It is well known that the least squares problem has a unique solution when the

regressor matrix has full rank. For the least squares problem in Algorithm 2, the unknown

input matrix Bi has regressor given by the random exploration noise {zt}t∈Si , which can

be guaranteed to be full-rank when zt has non-degenerate covariance. This ensures one

can uniquely recover Bi thus is the reason we apply the additional zt to the input ut. On

the other hand, the regressor {xt}t∈Si associated with the state matrix Ai is automatically

guaranteed to be full-rank due to the presence of the additive process noise wt in the MJS

dynamics (4.2.1). This implies that, when B1∶s are known a priori, the exploration noise zt

is no longer needed, and one is still able to learn the remaining A1∶s. The sample complexity

guarantee for this case is provided in Corollary below.

Corollary 29 (Identification with known B1∶s) Consider the same setting of Theo-

rem 28. Additionally, suppose B1∶s are known. Then, setting σz = 0 and solving only

for the state matrices, with probability at least 1 − δ, for all i ∈ [s], we have ∥Âi −Ai∥ ≤

Ô(

√
(n+p) log(T )
πmin(1−γ)T ).

In Corollary 29, we show that, when B1∶s is assumed to be known, A1∶s can be estimated

regardless of the exploration strength σz. This is because the excitation for the state matrix

arises from noise wt.
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4.4 Proofs of the Main Results

4.4.1 MJS Covariance Dynamics Under MSS

Consider MJS(A1∶s, B1∶s, T ) with process noise wt ∼ N(0, Σw) and input ut =

Kω(t)xt +zt under a stabilizing controller K1∶s and excitation for exploration zt ∼ N(0, Σz).

Let Li ∶= Ai +BiKi be the closed-loop state matrix. Let L̃ ∈ Rsn2×sn2 be the augmented

closed-loop state matrix with ij-th n2×n2 block given by [L̃]ij = [T ]jiLj ⊗Lj . Let τL̃ > 0

and ρL̃ ∈ [0, 1] be two constants such that ∥L̃k∥ ≤ τL̃ρk
L̃

. By definitions of τ(L̃) and ρ(L̃), one

can choose them for τL̃ and ρL̃ respectively. Let Σi(t) ∶= E[xtx⊺t 1(ω(t)=i)], Σ(t) ∶= E[xtx⊺t ],

st ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec(Σ1(t))

⋮

vec(Σs(t))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃t ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
s
j=1 πt−1(j)Tj1(Bj ⊗Bj)

⋮

∑
s
j=1 πt−1(j)Tjs(Bj ⊗Bj)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and Π̃t ∶= πt ⊗ In2 . (4.4.1)

The following lemma shows how st depends on s0, Σz, and Σw, which will be used to upper

bound E[∥xt∥2ℓ2] in Lemma 31.

Lemma 30 The vectorized covariance st has the following dynamics,

st = L̃ts0 + (B̃t + L̃B̃t−1 +⋯ + L̃t−1B̃1)vec(Σz) + (Π̃t + L̃Π̃t−1 +⋯ + L̃t−1Π̃1)vec(Σw).

Proof. To begin, we evaluate Σi(t), from the equivalent MJS dynamics xt+1 =

Lω(t)xt +Bω(t)zt +wt, as follows,

E[xt+1x⊺t+11(ω(t+1)=i)] =
s

∑
j=1

E[Ljxtx
⊺
tLj1(ω(t+1)=i,ω(t)=j)]

+
s

∑
j=1

E[Bjztz
⊺
t B⊺j 1(ω(t+1)=i,ω(t)=j)] +E[wtw

⊺
t 1(ω(t+1)=i)].

(4.4.2)
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Since wt ∼ N(0, Σw) and zt ∼ N(0, Σz), we get

Σi(t + 1) =
s

∑
j=1

TjiLjΣj(t)L
⊺
j +

s

∑
j=1

πt(j)TjiBjΣzB⊺j +πt+1(i)Σw. (4.4.3)

Vectorizing both sides of the above equation, we have

vec(Σi(t + 1)) =
s

∑
j=1

Tji(Lj ⊗Lj)vec(Σj(t))

+
s

∑
j=1

πt(j)Tji(Bj ⊗Bj)vec(Σz) +πt+1(i)vec(Σw). (4.4.4)

Stacking this for every i ∈ [s], we obtain
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec(Σ1(t + 1))

⋮

vec(Σs(t + 1))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= L̃

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec(Σ1(t))

⋮

vec(Σs(t))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ B̃t+1vec(Σz) + Π̃t+1vec(Σw). (4.4.5)

Propagating this dynamics from t to 0 gives the desired result.

We next provide a key lemma that upper bounds E[∥xt∥2ℓ2] and ∥Σ(t)∥F , which

are later used extensively in system identification analysis.

Lemma 31 For E[∥xt∥2ℓ2] and ∥Σ(t)∥F , under MSS given in Definition 26, we have

E[∥xt∥2ℓ2] ≤
√

nsτL̃(ρ
t
L̃
E[∥x0∥

2
ℓ2] +

√
n∥B1∶s∥

2
∥Σz∥

t

∑
t′=1

ρt−t
′

L̃
+
√

n∥Σw∥
t

∑
t′=1

ρt−t
′

L̃
), (4.4.6)

∥Σ(t)∥F ≤
√

sτL̃(ρ
t
L̃
E[∥x0∥

2
ℓ2] +

√
n∥B1∶s∥

2
∥Σz∥

t

∑
t′=1

ρt−t
′

L̃
+
√

n∥Σw∥
t

∑
t′=1

ρt−t
′

L̃
). (4.4.7)

Proof. First we derive an upper bound for E[∥xt∥2ℓ2]. The upper bound for

∥Σ(t)∥F follows similarly. For state xt, we have

E[∥xt∥2ℓ2] =
s

∑
i=1

E[∥xt∥2ℓ21(ω(t)=i)] =
s

∑
i=1

trace (E[xtx⊺t 1(ω(t)=i)]) =
s

∑
i=1

trace(Σi(t)),

=
s

∑
i=1

n

∑
j=1

λj(Σi(t)) ≤

√
ns

s

∑
i=1

n

∑
j=1

λ2
j(Σi(t)) ≤

√
ns

s

∑
i=1
∥Σi(t)∥2F . (4.4.8)
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Then, by definition of st in (4.4.1), we have

E[∥xt∥2ℓ2] ≤
√

ns∥st∥ℓ2 . (4.4.9)

Now, applying the dynamics of st from Lemma 30, we have

E[∥xt∥2ℓ2] ≤
√

ns(∥L̃t
∥∥s0∥ℓ2 +

t

∑
t′=1
∥L̃t−t′

∥∥B̃t′vec(Σz)∥ℓ2 +
t

∑
t′=1
∥L̃t−t′

∥∥Π̃t′vec(Σw)∥ℓ2)

≤
√

nsτL̃(ρ
t
L̃
∥s0∥ℓ2 +

t

∑
t′=1

ρt−t
′

L̃
∥B̃t′vec(Σz)∥ℓ2 +

t

∑
t′=1

ρt−t
′

L̃
∥Π̃t′vec(Σw)∥ℓ2),

(4.4.10)

where the second line follows from ∥L̃t∥ ≤ τL̃ρt
L̃

.

Now, we evaluate ∥s0∥ℓ2 , ∥B̃t′vec(Σz)∥ℓ2 , and ∥Π̃t′vec(Σw)∥ℓ2 separately. For the

first term, we have

∥s0∥ℓ2 =

√
s

∑
i=1
∥Σi(0)∥2F =

√
s

∑
i=1

π0(i)2∥E[x0x⊺0]∥
2
F ≤ ∥E[x0x⊺0]∥F ≤ E[∥x0∥

2
ℓ2]. (4.4.11)

Let [B̃t′]i denote the ith block of B̃t′ , i.e., [B̃t′]i = ∑
s
j=1 πt−1(j)Tji(Bj ⊗Bj), then

∥B̃t′vec(Σz)∥ℓ2 =

√
s

∑
i=1
∥[B̃t′]ivec(Σz)∥

2
ℓ2
≤

s

∑
i=1
∥[B̃t′]ivec(Σz)∥ℓ2

=
s

∑
i=1
∥
s

∑
j=1

πt′−1(j)Tji(Bj ⊗Bj)vec(Σz)∥ℓ2

=
s

∑
i=1
∥
s

∑
j=1

πt′−1(j)Tji(BjΣzB⊺j )∥F

≤ ∥B1∶s∥
2
∥Σz∥ ⋅

s

∑
i=1
∥
s

∑
j=1

πt′−1(j)TjiIn∥F

= ∥B1∶s∥
2
∥Σz∥ ⋅

s

∑
i=1
∥πt′(i)In∥F

≤
√

n∥B1∶s∥
2
∥Σz∥.

(4.4.12)
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Lastly, we have

∥Π̃t′vec(Σw)∥ℓ2 =

√
s

∑
i=1
∥πt′(i)vec(Σw)∥

2
ℓ2
≤ ∥vec(Σw)∥ℓ2 = ∥Σw∥F =

√
n∥Σw∥. (4.4.13)

Plugging (4.4.11)–(4.4.13) into (4.4.10), we obtain

E[∥xt∥2ℓ2] ≤
√

nsτL̃(ρ
t
L̃
E[∥x0∥

2
ℓ2] +

√
n∥B1∶s∥

2
∥Σz∥

t

∑
t′=1

ρt−t
′

L̃
+
√

n∥Σw∥
t

∑
t′=1

ρt−t
′

L̃
), (4.4.14)

which gives the bound for E[∥xt∥2ℓ2] in (4.4.6). To obtain the bound for ∥Σ(t)∥F in (4.4.7),

note that ∥Σ(t)∥F = ∥∑si=1 Σi(t)∥F ≤
√

s∑si=1 ∥Σi(t)∥2F ≤
√

s∥st∥ℓ2 . We then follow a similar

line of reasoning as above to get the statement of the lemma. This completes the proof.

4.4.2 Estimation of T

The following theorem adapted from [133, Lemma 7] provides the sample complexity

result for estimating Markov matrix T , which is a corresponds to the sample complexity on

∥T̂ − T ∥ in Theorem 28.

Theorem 32 Suppose we have an ergodic Markov chain T ∈ Rs×s with mixing time tMC

and stationary distribution π∞ ∈ Rs. Let πmax ∶=maxi∈[s]π∞(i) and πmin ∶=mini∈[s]π∞(i).

Given a state sequence ω(0), ω(1), . . . , ω(T ) of the Markov chain, define the empirical

estimator T̂ of the Markov matrix as follows,

[T̂ ]ij =
∑
T−1
t=1 1(ω(t)=i,ω(t+1)=j)

∑
T−1
t=1 1(ω(t)=i)

, (4.4.15)

Assume for some δ > 0, T ≥ TMC,1(CMC , δ4) ∶= {68CMCπmaxπ−2
min log(4s

δ )}
2, where CMC ∶=

tMC ⋅max{3, 3 − 3 log(πmax log(s))}. Then, we have with probability at least 1 − δ,

∥T̂ − T ∥ ≤
4∥T ∥
πmin

√
17πmaxCMC log(T ) log(4sCMC log(T )/δ)

T
. (4.4.16)
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Proof. We first consider estimators computed using a sub-trajectory of ω(0), ω(1), . . . , ω(T ),

then combine them together to show the error bound for T̂ in the claim. For CMC ∶=

tMC ⋅ max{3, 3 − 3 log(πmax log(s))}, let L = CMC log(T ). Then, for ℓ = 0, 1, . . . , L − 1,

define T̂ (ℓ) ∈ Rsxs such that [T̂ (ℓ)]ij =
∑⌊T /L⌋k=1 1

(ω(kL+ℓ)=i,ω(kL+1+ℓ)=j)

∑⌊T /L⌋k=1 1
(ω(kL+ℓ)=i)

. In other words, T̂ (ℓ)

is the estimator computed using data with sub-sampling period L. Following the proof

of [133, Lemma 7], we know for any ϵ < πmin/2, suppose L ≥ 6tMC log(ϵ−1).

P{∥T̂ (ℓ) − T ∥ ≤ 4π−1
min∥T ∥ϵ} ≥ 1 − 4s exp{− Tϵ2

17πmaxL
}. (4.4.17)

By setting δ = 4s exp{− Tϵ2

17πmaxL
}, one can also interpret the above result as: for all δ > 0,

suppose

L ≥ 3tMC log( T

17πmaxL log(4s
δ )
) , (4.4.18)

then when

T ≥ 68Lπmaxπ−2
min log(4s

δ
), (4.4.19)

we have with probability at least 1 − δ

∥T̂ (ℓ) − T ∥ ≤
4∥T ∥
πmin

√
17πmaxCMC log(T ) log(4s/δ)

T
. (4.4.20)

One can verify (4.4.18) holds by plugging in L = CMC log(T ) and using definition CMC ∶= tMC⋅

max{3, 3−3 log(πmax log(s))}; (4.4.19) holds under the premise condition T ≥ TMC,1(CMC , δ4) ∶=

{68CMCπmaxπ−2
min log(4s

δ )}
2.

Note that by definition, T̂ can be viewed as a convex combination of T̂ (ℓ) for all

ℓ = 0, 1, . . . , L, thus by triangle inequality and union bound, we have with probability 1 −Lδ,

∥T̂ − T ∥ ≤
4∥T ∥
πmin

√
17πmaxCMC log(T ) log(4s/δ)

T
. (4.4.21)

Finally, by replacing Lδ with δ, we could show (4.4.16) and conclude the proof.
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4.4.3 Estimation of A1∶s and B1∶s

In this section, we estimate the unknown MJS dynamics A1∶s and B1∶s from finite

samples obtained from a single trajectory of (4.2.1). Given a stabilizing controller K1∶s,

under the input ut =Kω(t)xt + zt, the MJS state equation (4.2.1) becomes,

xt+1 = Lω(t)xt +Bω(t)zt +wt, s.t. ω(t) ∼Markov Chain(T ), (4.4.22)

where Lω(t) ∶= Aω(t) +Bω(t)Kω(t) denotes the closed-loop state matrix, and {zt}Tt=0
i.i.d.
∼

N(0, σ2
zIp) is the i.i.d. excitation for exploration. To estimate the unknown system dynamics

(A1∶s, B1∶s), we run the closed-loop MJS (4.4.22) for T time-steps and collect the trajectory

(xt, zt, ω(t))Tt=0. Then, we run Algorithm 2 on the collected trajectory to obtain the estimates

(Â1∶s, B̂1∶s). To proceed, let ht ∶= [x
⊺
t /σw z⊺t /σz]

⊺ and Θ⋆i ∶= [σwLi σzBi] for all i ∈ [s].

Then the output of each sample in {(xt+1, xt, zt, ω(t))}t∈Si can be related to the inputs as

follows,

xtk+1 =Θ⋆i htk +wtk for k = 1, 2, . . . , ∣Si∣, (4.4.23)

where we set Si ∶= {t ∣ ω(t) = i} ≡ {t1, t2,⋯, t∣Si∣}. This shows that, for each i ∈ [s], the

problem of estimating (Ai, Bi) is equivalent to the problem of estimating Θ⋆i from the

sequence of covariate-response pairs (htk , xtk+1)k≥1. Specifically, following Algorithm 2, we

solve a regression problem. For this purpose, we define the following concatenated matrices,

Yi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x⊺t1+1

x⊺t2+1

⋮

x⊺t
∣Si ∣
+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Hi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h⊺t1

h⊺t2

⋮

h⊺t
∣Si ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Wi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w⊺t1

w⊺t2

⋮

w⊺t
∣Si ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.4.24)
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that is, Yi has {x⊺t+1}t∈Si on its rows, Hi has {h⊺t }t∈Si on its rows and Wi has {w⊺t }t∈Si on

its rows. Observe that, we have Yi =HiΘ⋆⊺i +Wi and the regression problem in Algorithm 2

becomes,

Θ̂⊺i = arg min
Θi∈Rn×(n+p)

1
2∣Si∣
∥Yi −HiΘ⊺i ∥

2
F . (4.4.25)

When the problem is over-determined, the solution to the least-squares problem (4.4.25)

is given by Θ̂⊺i =H†
i Yi = (H

⊺
i Hi)

−1H⊺
i Yi and the associated estimation error is given by,

Θ̂i−Θ⋆i = ((H⊺
i Hi)

−1H⊺
i Wi)

⊺. This implies that the estimation error can be upper-bounded

as follows,

∥Θ̂i −Θ⋆i ∥ = ∥(H⊺
i Hi)

−1H⊺
i Wi∥ ≤

∥H⊺
i Wi∥

λmin(H
⊺
i Hi)

, (4.4.26)

To make the problem (4.4.25) well-conditioned, we also need a stability guarantee on the

closed-loop MJS (4.4.22). This will make sure that the design matrix Hi has smaller condition

number to help better estimation. Specifically, we will use the notion of mean-square stability

introduced by Definition 26 to achieve this.

At the core of our analysis is showing that the process {ht ∶= [x⊺t /σw z⊺t /σz]
⊺}t∈Si

satisfies the martingale small-ball condition (for each i ∈ [s]), which is defined as follows.

Definition 33 (Martingale small-ball [22]) Let {Ft}t≥1 denotes a filtration and {Zt}t≥1

be an {Ft}t≥1-adapted random process taking values in R. We say {Zt}t≥1 satisfies the (k, ν, q)-

block martingale small-ball (BMSB) condition if, for any j ≥ 0, one has 1
k ∑

k
i=1 P (∣Zj+i∣ ≥

ν ∣ Fj) ≥ q almost surely. Given a process {xt}t≥1 taking values in Rd, we say it satisfies

the (k, Γsb, q)-BMSB condition for Γsb ≻ 0 if, for any fixed v ∈ Sd−1, the process Zt = ⟨v, xt⟩

satisfies (k,
√

v⊺Γsbv, q)-BMSB.
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To show that the random process {ht ∶= [x⊺t /σw z⊺t /σz]
⊺}t∈Si satisfies BMSB condition, let

Ft ∶= σ(x0, . . . , xt, z0, . . . , zt, w0, . . . , wt−1, ω(1), . . . , ω(t)) denotes the filtration generated

by the states, the excitation and the noise processes, and the mode switching sequence when

t ≥ 1. Furthermore, let F0 ∶= σ(x0, z0, ω(0)). Then, xt, zt and ω(t) become Ft-measurable

and wt is Ft+1-measurable.

Theorem 34 (BMSB condition for {ht}t≥1) Consider closed-loop MJS (4.4.22). Sup-

pose {zt}∞t=0
i.i.d.
∼ N(0, σ2

zIp) and {wt}
∞
t=0

i.i.d.
∼ N(0, σ2

wIn). Then, the covariate process

{ht = [x
⊺
t /σw z⊺t /σz]

⊺}t≥1 satisfies the (k, In+p, q)-martingale small-ball condition, with the

constants k = 1 and q = 3/10.

The theorem above uses martingale small-ball with k = 1. We remark that using k > 1 is

expected to help capture the role of additional excitation terms in the BMSB lower bound,

specifically, the dependence on L̃. However, this requires bounding higher order moments

that involve cross-products of the input signal and noise terms and is left as future research.

Next, under the ergodicity of Markov chain (Assumption 8), we establish a high

probability lower bound on the cardinality of the set Si ∶= {t ∣ ω(t) = i} ≡ {t1, t2,⋯, t∣Si∣}.

Our result is stated in the following theorem, which plays a critical role in establishing finite

sample learning guarantees for the unknown MJS state and input matrices A1∶s, B1∶s.

Theorem 35 (Lower bound on ∣Si∣) Let {ω(t)}∞t=0 be an ergodic Markov chain with the

transition matrix T ∈ Rs×s+ . Let tMC(ϵ) be as in Definition 27, and define T0 ∶= tMC(πmin/2).

Let Si be as in Algorithm 2. Fix δ ∈ (0, 1), such that
√

17πmaxT0 log(sT0/δ)
T−2T0

≤ πmin/2. Then,
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choosing T ≥ 2T0, we have

P(
s

⋂
i=1
{∣Si∣ ≥

πminT

4
(1 − 1

πmin

√
17πmaxT0 log(sT0/δ)

T − 2T0
)}) ≥ 1 − δ. (4.4.27)

The theorem above states that, choosing T ≥ 2tMC(πmin/2), an ergodic Markov chain is

guaranteed to visit each mode i ∈ [s], at least Ô(πminT ) times. We remark that, our estimate

is consistent with the asymptotic case when T →∞. Note that, the term
√

17πmaxT0 log(sT0/δ)
T−2T0

in (4.4.27) can be made arbitrary small by choosing sufficiently large trajectory length T .

Finally, we combine Theorems 34 and 35 with Theorem 2.4 from [22] to obtain our main

result on single trajectory learning of A1∶s, B1∶s.

Theorem 36 (Identification of MJS) Fix δ ∈ (0, 1), such that,

γ ∶=
1

πmin

√
17πmaxT0 log(2sT0/δ)

T − 2T0
≤

1
2

. (4.4.28)

Suppose we run Algorithm 2 with the trajectory length T satisfying the following lower bound,

T ≳max{2T0,
(n + p) + log(6sΓ̄/δ) + log(6s/δ)

πmin(1 − γ)
}, (4.4.29)

where T0 ∶= tMC(πmin/2) and Γ̄ ∶=
√

nsτL̃(E[∥x0∥
2
ℓ2
]/σ2

w + (σ
2
z/σ

2
w)
√

n∥B1∶s∥2T +
√

nT ) + p.

Suppose {zt}Tt=0
i.i.d.
∼ N(0, σ2

zIp), {wt}
T
t=0

i.i.d.
∼ N(0, σ2

wIn). Let CK ∶= maxi∈[s] ∥K∥. Then,

under Assumption 8, we have

P(
s

⋂
i=1
{∥Âi −Ai∥ ≲

(CKσw + σz)

σz

√
(n + p) + log(6sΓ̄/δ) + log(6s/δ)

πmin(1 − γ)T
}) ≥ 1 − δ,

P(
s

⋂
i=1
{∥B̂i −Bi∥ ≲

σw

σz

√
(n + p) + log(6sΓ̄/δ) + log(6s/δ)

πmin(1 − γ)T
}) ≥ 1 − δ. (4.4.30)

Here, a few remarks are in place. First, the result appears to be convoluted however most of

the dependencies are logarithmic (specifically, the dependency on the failure probability δ
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and log(T ) terms). Besides these, the dominant term, when estimating A1∶s, B1∶s reduces to

(CKσw + σz)

σz

√
n + p

πminT
and σw

σz

√
n + p

πminT
,

respectively, which is identical to our statement in Theorem 28. Note that the overall sample

complexity grows as T ≳ (n + p)/πmin. A degrees-of-freedom counting argument would show

that the dependency of T ≳ (n + p)/πmin is optimal. The reason is that, each vector state

equation we fit has n scalar equations. The total degrees of freedom for each dynamics

pair (Ai, Bi) is n × (n + p). Additionally, for the least-frequent mode, in steady-state,

we should observe πminT equations. Putting these together, we would minimally need

n × πminT ≥ n × (n + p), which means we need T ≥ (n + p)/πmin samples to estimate the

MJS dynamics (A1∶s, B1∶s). Note that, our sample complexity is not effected directly by the

number of MJS modes s. However, s indirectly effects sample complexity via πmin, which is

the probability of least-frequent mode in the steady state.

4.5 Proofs of Intermediate Theorems and Lemmas

4.5.1 Proof of Theorem 34

Proof. In this subsection, we will show that the process {ht = [x⊺t /σw z⊺t /σz]
⊺}t≥1

satisfies (1, In+p, q)-BMSB condition, for some constant q > 0. For this purpose, we need

to show that, for any fixed v ∈ Sn+p−1, the random process {Zt}t≥1 ∶= {⟨v, ht⟩}t≥1 satisfies

(1, ∥v∥ℓ2 , q)-BMSB condition, that is, for any j ≥ 0, we need to show that P(∣Zj+1∣ ≥

∥v∥ℓ2 ∣ Fj) ≥ q almost surely. For any j ≥ 0, consider the concatenated state vector,
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hj+1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xj+1/σw

zj+1/σz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(Lω(j)xj +Bω(j)zj +wj)/σw

zj+1/σz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.5.1)

For any fixed v ∈ Sn+p−1, let v1 ∈ Rn and v2 ∈ Rp such that v = [v⊺1 v⊺2 ]
⊺. Combining this

with (4.5.1), we get

Zj+1 ∶= ⟨v, hj+1⟩ = σ−1
w ⟨v1, Lω(j)xj +Bω(j)zj +wj⟩ + σ−1

z ⟨v2, zj+1⟩ . (4.5.2)

To proceed, let {Ft}t≥1 denotes the filtration as defined before Theorem 34. Then, it is easy

to see that σ−1
w ⟨v1, Lω(j)xj +Bω(j)zj +wj⟩ ∣ Fj ∼ N(σ

−1
w ⟨v1, Lω(j)xj +Bω(j)zj⟩ , ∥v1∥

2
ℓ2
).

This is because xj , zj and ω(j) are Fj-measurable, whereas, wj is Fj+1-measurable. Simi-

larly, σ−1
z ⟨v2, zj+1⟩ ∣ Fj ∼ N(0, ∥v2∥

2
ℓ2
). Furthermore, since wj and zj+1 are independent,

Zj+1 ∣ Fj has the following distribution,

Zj+1 ∣ Fj ∼ N(σ
−1
w ⟨v1, Lω(j)xj +Bω(j)zj⟩ , ∥v1∥

2
ℓ2 + ∥v2∥

2
ℓ2). (4.5.3)

Therefore, integrating the probability density function of a standard Gaussian random

variable, it can be shown that,

P (∣ ⟨v, hj+1⟩ ∣ ≥ ∥v∥ℓ2 ∣ Fj) ≥ 3/10, (4.5.4)

where we obtain the above result by integrating the probability density function of a Gaussian

random variable as follows,

∀α ∈ R PZ∼N(0,σ2)(∣α +Z ∣ ≥ σ) ≥ PZ∼N(0,σ2)(∣Z ∣ ≥ σ) = PZ′∼N(0,1)(∣Z ′∣ ≥ 1),

= 1 − PZ′∼N(0,1)(∣Z ′∣ ≤ 1),

= 1 − 2∫
1

0

1
√

2π
e−z

′2/2dz′,

≥ 1 − 2(7/20) = 3/10. (4.5.5)
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This verifies our claim that the process {ht = [x⊺t /σw z⊺t /σz]
⊺}t≥1 satisfies (1, In+p, 3/10)-

BMSB condition. This completes the proof.

4.5.2 Proof of Theorem 35

Proof. To begin, recall that tMC(ϵ) ∶= min{t ∈ N ∶ maxj∈[s] 1
2∥([T

t]j,∶)⊺ −π∞∥ℓ1 ≤

ϵ}, and ([T L]i,∶)1 = π⊺∞1 = 1, for all i ∈ [s]. Therefore, choosing L ≥ tMC(πmin/2), we have

max
j∈[s]
∥([T L

]j,∶)
⊺
−π∞∥ℓ∞ ≤

πmin
2

. (4.5.6)

To proceed, let Z+ ∶= {1, 2, 3, . . .} denotes the set of positive integers. Then, to lower bound

∣Si∣ in Algorithm 2, we split the set Si ∶= {t ∣ ω(t) = i} into L ≥ 1 subsets via Si = ⋃
L−1
ℓ=0 S

(ℓ)
i ,

such that

S
(ℓ)
i ∶= {t ∣ ω(t) = i, (t − ℓ)/L ∈ Z+⌋}, (4.5.7)

where 0 ≤ ℓ ≤ L − 1 is a fixed offset. Let {Ft}t≥1 denotes the filtration as defined before

Theorem 34. To ease the notation, we let ω̃(k) ∶= ω(ℓ + kL), and F̃k ∶= Fℓ+kL, for all k ∈ Z+.

Then, one can see that ω̃(k) is F̃k-measurable. To proceed, define δk, ∆k ∈ Rs such that

δk(i) ∶= 1(ω̃(k)=i) −E[1(ω̃(k)=i) ∣ F̃k−1],

∆k(i) ∶=
k

∑
j=1

δj(i).

(4.5.8)

Note that for all i ∈ [s], the random process {∆k(i)}k∈Z+ , adapted to the filtration {F̃k}k∈Z+ ,

forms a martingale, that is, we have

E[∆k+1(i) ∣ F̃k] = E[
k+1
∑
j=1

δj(i) ∣ F̃k]

=
k

∑
j=1

δj(i) +E[1(ω̃(k+1)=i) −E[1(ω̃(k+1)=i) ∣ F̃k] ∣ F̃k]

=
k

∑
j=1

δj(i) =∆k(i).

(4.5.9)
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Therefore, δk(i) =∆k(i)−∆k−1(i) can be viewed as the martingale difference sequence. Since

E[δk(i) ∣ F̃k−1] = 0, we have E[δk(i)2 ∣ F̃k−1] = Var(δk(i) ∣ F̃k−1) = Var(1(ω̃(k)=i) ∣ F̃k−1) ≤

E[12
(ω̃(k)=i) ∣ F̃k−1] ≤ E[1(ω̃(k)=i) ∣ F̃k−1] = P(ω̃(k) = i ∣ ω̃(k − 1)) = [T L]ω̃(k−1),i. When L ≥

tMC(πmin/2), then using (4.5.6), we get [T L]ω̃(k−1),i ≤ π∞(i)+maxj∈[s] ∥([T L]j,∶)⊺ −π∞∥ℓ∞ ≤

2πmax. Therefore,
T̃

∑
k=1

E[δk(i)2 ∣ F̃k−1] ≤ 2πmaxT̃ , (4.5.10)

where we use the definition T̃ ∶= ⌊T−ℓL ⌋. Combining this with the observation that ∣δk(i)∣ < 1,

we have

P(∣
T̃

∑
k=1

1(ω̃(k)=i) −
T̃

∑
k=1

E[1(ω̃(k)=i) ∣ F̃k−1]∣ ≥
ϵ

2
T̃)

(i)
= P(∣∆T̃ (i)∣ ≥

ϵ

2
T̃ ),

(ii)
≤ exp(− T̃ ϵ2/8

2πmax + ϵ/6
),

(iii)
≤ exp(− T̃ ϵ2

17πmax
),

(4.5.11)

where (i) follows from the definition of ∆T̃ (i), (ii) follows from Freedman’s inequality [134],

and (iii) follows from picking ϵ ≤ πmin/2. Moreover, when L ≥ tMC(πmin/2), we also have

∣
T̃

∑
k=1

E[1(ω̃(k)=i) ∣ F̃k−1] −π∞(i)T̃ ∣ = ∣
T̃

∑
k=1

P(ω̃(k) = i ∣ ω̃(k − 1)) −π∞(i)T̃ ∣,

≤
T̃

∑
k=1
∣[T L
]ω̃(k−1),i −π∞(i)∣,

≤ T̃ max
j∈[s]
∥([T L

]j,∶)
⊺
−π∞∥∞,

≤
πmin

2
T̃ .

(4.5.12)

Combining (4.5.12) with (4.5.11), and union bounding over 0 ≤ ℓ ≤ L − 1, we obtain

P(
L−1
⋂
ℓ=0
{∣S

(ℓ)
i ∣ ≥ π∞(i)T̃ −

πmin
2

T̃ −
ϵ

2
T̃}) ≥ 1 −

L−1
∑
ℓ=0

exp(− T̃ ϵ2

17πmax
). (4.5.13)

To proceed, define the events E1 ∶= ⋂
L−1
ℓ=0 {∣S

(ℓ)
i ∣ ≥ (πmin/2− ϵ/2)T̃} and E2 ∶= {∣Si∣ ≥ (πmin/2−

ϵ/2)(T −L)}. Note that E1 ⊂ E2 because, ∣Si∣ = ∑L−1
ℓ=0 ∣S

(ℓ)
i ∣ and ∑L−1

ℓ=0 T̃ = ∑L−1
ℓ=0 ⌊

T−ℓ
L ⌋ = T −L.
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This implies that P(E2) ≥ P(E1). Combing this with (4.5.13), and union bounding over all

i ∈ [s], we have

P(
s

⋂
i=1
{∣Si∣ ≥ (πmin/2 − ϵ/2)(T −L)}) ≥ 1 − sL exp ( − (T /L − 2)ϵ2

17πmax
),

Ô⇒ P(
s

⋂
i=1
{∣Si∣ ≥ (πmin/4 − ϵ/4)T})

(i)
≥ 1 − sL exp ( − (T /L − 2)ϵ2

17πmax
),

(4.5.14)

where (i) follows from choosing T ≥ 2L. Finally, setting δ = sL exp(− (T /L−2)ϵ2
17πmax

) and replacing

ϵ with
√

17πmaxL log(sL/δ)
T−2L , we obtain the statement of the theorem,

P(
s

⋂
i=1
{∣Si∣ ≥

πminT

4
(1 − 1

πmin

√
17πmaxL log(sL/δ)

T − 2L
)}) ≥ 1 − δ. (4.5.15)

This completes the proof.

4.5.3 Proof of Theorem 36

Proof. For the sake of completeness, before we present the proof of Theorem 36,

we present a meta result from [22] which will be used to prove Theorem 36.

Theorem 37 (Meta-theorem [22]) Fix δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb ≺ Γ̄. Then if

(xt, yt)
T
t=1 ∈ (Rd ×Rn)T is a random sequence such that (a) yt =A⋆xt +wt, where wt ∣ Ft

is σ2
w-subgaussian and mean zero, (b) x1, . . . , xT satisfy the (k, Γsb, q)-small ball condition,

and (c) such that P (∑Tt=1 xtx
⊺
t ⪯̸ T Γ̄) ≤ δ. Then if

T ≥
10k

q2 ( log(1/δ) + 2d log(10/q) + log(det(Γ̄Γ−1
sb ))),

we have

P(∥Â −A⋆∥ ≥
90σw

q

√
n + d log(10/q) + log(det(Γ̄Γ−1

sb )) + log(1/δ)
Tλmin(Γsb)

) ≤ 3δ.
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Our proof strategy is to verify that the conditions (a), (b), and (c) of Theorem 37 hold

for the MJS in (4.4.22) and then apply Theorem 37 to estimate (A1∶s, B1∶s). Before that,

let Si be as defined in Algorithm 2, that is, Si ∶= {t ∣ ω(t) = i}. Then, the samples

{(xt+1, xt, zt, ω(t))}t∈Si used to estimate (Ai, Bi) are related as follows,

xtk+1 =Θ⋆i htk +wtk for k = 1, 2, . . . , ∣Si∣, (4.5.16)

where we set Si ∶= {t ∣ ω(t) = i} ≡ {t1, t2,⋯, t∣Si∣}, htk ∶= [x
⊺
tk
/σw z⊺tk/σz]

⊺ and Θ⋆i ∶=

[σwLi σzBi]. This shows that, for each i ∈ [s], the problem of estimating (Ai, Bi) is

equivalent to the problem of estimating Θ⋆i from the sequence of covariate-response pairs

(htk , xtk+1)k≥1. Moreover, let {Ft}t≥1 denotes the filtration as defined before Theorem 34.

(a) Sub-Gaussian noise: Following the re-parameterization in (4.5.16), the covariate-

response pairs (htk , xtk+1)k≥1 are generated from a linear response time series xtk+1 =Θ⋆i htk+

wtk for k = 1, 2, . . . , ∣Si∣. Moreover, under the Assumption that {wt}
T
t=0

i.i.d.
∼ N(0, σ2

wIn) and

that wtk is Ftk+1-measureable, wtk ∣ Ftk ∼ N(0, σ2
wIn).

(b) BMSB condition: Theorem 34 proves that the covariates process {htk}
∣Si∣
k=1

satisfies (k, In+p, q)-BMSB condition, with the constants k = 1 and q = 3/10.

(c) Covariates correlation bound: Recalling the definition of htk and Hi from

(4.4.24), we have

E[∥H⊺
i Hi∥] = E[∥

∣Si∣
∑
k=1

htkh⊺tk∥] ≤
∣Si∣
∑
k=1

E[∥htkh⊺tk∥] ≤
∣Si∣
∑
k=1

E[∥htk∥
2
ℓ2],

=

∣Si∣
∑
k=1
(E[∥xtk∥

2
ℓ2]/σ

2
w +E[∥ztk∥

2
ℓ2]/σ

2
z),

(i)
≤

∣Si∣
∑
k=1

√
nsτL̃(E[∥x0∥

2
ℓ2] + σ2

ztk
√

n∥B1∶s∥
2
+ σ2

wtk
√

n)/σ2
w +

∣Si∣
∑
k=1

p,

≤
√

nsτL̃(E[∥x0∥
2
ℓ2]/σ

2
w + (σ

2
z/σ

2
w)
√

n∥B1∶s∥
2T +

√
nT )∣Si∣ + p∣Si∣

(4.5.17)
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where we obtain (i) from combining Lemma 31 with Assumption 8 (which says ρ(L̃) ≤ 1).

Hence, setting

Γ̄ ∶=
√

nsτL̃(E[∥x0∥
2
ℓ2]/σ

2
w + (σ

2
z/σ

2
w)
√

n∥B1∶s∥
2T +

√
nT ) + p, (4.5.18)

we have, E[∥∑∣Si∣k=1 htkh⊺tk∥] = E[∥H
⊺
i Hi∥] ≤ ∣Si∣Γ̄. Next, we use Markov inequality to show

that

P (
∣Si∣
∑
k=1

htkh⊺tk ⪯̸ (∣Si∣Γ̄/δ)In+p) = P (λmax(
∣Si∣
∑
k=1

htkh⊺tk) ≥ ∣Si∣Γ̄/δ),

≤ E [λmax(
∣Si∣
∑
k=1

htkh⊺tk)]δ/(∣Si∣Γ̄) ≤ δ.

(4.5.19)

We are now ready to use Theorem 2.4 from [22] to obtain our final result.

(d) Finalizing the proof: We use Theorem 37, with Γ̄ = (Γ̄/δ)In+p, Γsb = In+p, k = 1,

q = 3/10, and d = n + p to upper bound the estimation error (4.4.26) with high probability.

Suppose the cardinality of the set Si = {t ∣ ω(t) = i} satisfies,

∣Si∣ ≳ (n + p) + log(3sΓ̄/δ) + log(3s/δ), (4.5.20)

for each i ∈ [s]. Then, using Theorem 37, we have

P(
s

⋂
i=1
{∥Θ̂i −Θ⋆i ∥ ≲ σw

√
(n + p) + log(3sΓ̄/δ) + log(3s/δ)

∣Si∣
}) ≥ 1 − δ. (4.5.21)

Combining (4.5.21) with Theorem 35, we fix δ ∈ (0, 1), such that
√

17πmaxT0 log(sT0/δ)
T−2T0

≤ πmin/2,

and choose the trajectory length T satisfying

T ≳max{2T0,
(n + p) + log(3sΓ̄/δ) + log(3s/δ)

πmin(1 − 1
πmin

√
17πmaxT0 log(sT0/δ)

T−2T0
)

}, (4.5.22)

then, we have

P(
s

⋂
i=1
{∥Θ̂i −Θ⋆i ∥ ≲ σw

√
(n + p) + log(3sΓ̄/δ) + log(3s/δ)

Tπmin(1 − 1
πmin

√
17πmaxT0 log(sT0/δ)

T−2T0
)

}) ≥ 1 − 2δ. (4.5.23)
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To proceed, using standard result from linear algebra that the spectral norm of a sub-matrix

is upper bounded by the spectral norm of the original matrix, we have

P(
s

⋂
i=1
{∥Âi −Ai∥ ≲

(CKσw + σz)

σz

√
(n + p) + log(3sΓ̄/δ) + log(3s/δ)

Tπmin(1 − 1
πmin

√
17πmaxT0 log(sT0/δ)

T−2T0
)

}) ≥ 1 − 2δ,

P(
s

⋂
i=1
{∥B̂i −Bi∥ ≲

σw

σz

√
(n + p) + log(3sΓ̄/δ) + log(3s/δ)

Tπmin(1 − 1
πmin

√
17πmaxT0 log(sT0/δ)

T−2T0
)

}) ≥ 1 − 2δ,

(4.5.24)

where we used the relation ∥Âi −Ai∥ ≤ ∥L̂i −Li∥ + ∥B̂i −Bi∥∥Ki∥ and ∥Ki∥ ≤ CK to upper

bound the estimation error of the state matrices {Ai}
s
i=1. Finally, replacing δ with δ/2, we

get the statement of the theorem. This completes the proof.
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Chapter 5

Finding Best Linear Model

5.1 Introduction

Supervised learning is concerned with finding a relation between the input-output

pairs (xi, yi)
n
i=1 ∈ Rp ×R. The simplest relations are linear functions where the output yi is

estimated by a linear function of the input, that is, ŷi = ⟨xi, θ⟩. Using quadratic loss, we

can find the optimal θ with a simple linear regression which minimizes

L(θ) =
1
2

n

∑
i=1
(yi − ⟨θ, xi⟩)

2. (5.1.1)

If the samples are i.i.d. and input has identity covariance, the minimizer of the population

loss (n→∞) is simply given by

θ⋆ = arg min
θ

E[L(θ)] = E[yx]. (5.1.2)

where (x, y) is drawn from same distribution as data. We will refer to this population

minimizer as the best linear model (BLM). In many applications, we operate in the high-

dimensional regime where we have fewer samples than the parameter dimension i.e. n≪ p. In
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this case, the problem is ill-posed; however, if θ⋆ lies on a low-dimensional manifold, we can

take advantage of this information to solve the problem. We assume θ⋆ is structured-sparse,

for instance, it can be a signal that is sparse in a dictionary or it can be a low-rank matrix.

If R ∶ Rp → R is a regularization function, that promotes this structure, we can solve the

constrained empirical risk minimization (ERM)

θ̂ = arg min
θ

1
2
∥y −Xθ∥2ℓ2 subject to R(θ) ≤ R. (5.1.3)

where y = [y1 . . . yn]
⊺ ∈ Rn and X = [x1 . . . xn]

⊺ ∈ Rn×p are the output labels and data

matrix respectively. This problem is well-studied in the statistics and compressed sensing

(CS) literature. However, much of the theory literature is concerned with the scenario where

the problem is realizable i.e. the outputs are explicitly generated with respect to some

ground truth vector a. In the simplest scenario, input/output relation can be y = ⟨x, a⟩ + z

where z is an independent zero-mean noise variable. In this case, one simply has θ⋆ = a.

Realizability also appears in the literature on semi-parametric single-index models [135–137]

where the conditional expectation satisfies E[y ∣ x] = g(x⊺a) for some a. Interestingly, as

discussed in (5.3.3), these works often assume problem setups to ensure BLM coincides with

the ground truth parameter a. We remark that the realizability assumption is typically more

suitable for signal processing applications where the task is reconstructing a ground truth

signal or image. In contrast, machine learning (ML) aims to find a model minimizing the test

error however exact model parameters are not the primary concern. Our work is closer to

ML and analyzes constrained ERM problem (5.1.3) while circumventing realizability issue.

While linear models find ubiquitous use due to their simplicity and interpretability,

their performance might be non-ideal if the input/output relation is highly nonlinear. In
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these instances, linear models can be used as building blocks for more complex machine

learning models by employing boosting [138]. Essentially, after learning the BLM, one can

fit a more complex model on the residual to further capture nonlinearity. This approach has

the potential to improve the model interpretability [139] and it can also reduce the sample

complexity required for fitting the more complex model thanks to the reduced residual

variance [140–142]. Indeed, residual learning is very popular in deep learning applications

thanks to the success of residual networks [143]. We also remark that problem might be fully

nonlinear and (5.1.3) might be non-informative. A classic example is quadratic dependence

(e.g. phase retrieval problem) where y = ∣a⊺x∣ so that E[yx] = 0 for normally distributed

inputs. Finally, we remark that even if BLM estimator may fail to achieve small population

loss (test error) single-handedly, it can be used for determining useful input features which

is critical for interpretability. In the small sample regime, this is facilitated by using ℓ1 or

sparsity constraints.

Bias in the data can negatively affect the estimation quality. Assuming input is

zero-mean, instead of solving (5.1.3) we can solve a modified problem which accounts for

the mean of the output as well. Again, denoting the regularization function by R, we shall

consider the intercept-enabled problem

θ̂, µ̂ = arg min
θ,µ
L(θ, µ) subject to R(θ) ≤ R. (5.1.4)

where the loss is given by L(θ, µ) = 1
2∥y − [X 1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ

µ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥
2
ℓ2

. We will show that solving

problem (5.1.4) is essentially equivalent to solving (5.1.3) with debiased output hence it will

result in more accurate estimation. The goal of this chapter is studying problem (5.1.4)
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under a general algorithmic framework, establishing finite-sample statistical and algorithmic

convergence, and addressing practical considerations on the data distribution. In particular,

we are interested in how well one can estimate the best linear model (BLM) given by the

pair (θ⋆ = E[yx], µ⋆ = E[y]). For estimation, we will utilize the projected gradient descent

algorithm given by the iterates

θτ+1 = PK(θτ − η∇Lθ(θτ , µτ)),

µτ+1 = µτ − η∇Lµ(θτ , µτ),

(5.1.5)

where PK projects onto the constraint set K = {θ ∈ Rp ∣ R(θ) ≤ R} and η is the step size.

5.1.1 Relation to Prior Work

There is a significant amount of literature on nonlinear (or one-bit) CS [136,144–153].

[145, 154–157] study algorithmic and statistical convergence rates for first order methods

such as projected/proximal gradient descent. For nonlinear CS, [145,146,148,158] provide

statistical analysis of single index estimation with a focus on Gaussian data. Recently,

one-bit CS techniques have been extended to subgaussian distributions using dithering trick

which adds noise before quantization [137,159–161]. Dithering is introduced to guarantee

consistent estimation of the ground-truth parameter. The papers [162–166] address non-

gaussianity by utilizing Stein identity which requires access to the distribution of the input

samples. Closer to us [167] studies the constrained empirical risk minimization with linear

functions and squared loss with a focus on convex problems. In comparison our analysis

applies to a broader class of distributions and focus on first order algorithms. Much of

our analysis focuses on addressing subexponential samples, which requires tools from high-

dimensional probability [86, 168, 169]. [170] similarly studies high-dimensional estimation
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with subexponential design matrix for a planted linear model where y = Xθ⋆ + w. In

contrast to [170], we consider the more general setup of (5.1.3) which allows for arbitrary

input/output relations and explore the properties of gradient descent rather than convex

programs.

Our results apply to general regularizers and borrow ideas from [145–148]. Similar

to these, we view the nonlinearity between input and output as an additive noise. The

convergence analysis of projected gradient descent is a rather well-understood topic and we

utilize insights from [154–157] for our analysis.

5.1.2 Contributions

At a high-level our work has three distinguishing features:

● Projected gradient descent to find BLM: Nonlinear CS literature is typically

concerned with a ground-truth vector to be recovered. For instance, one-bit CS aims to learn

θ from samples of type y = sgn(a⊺x). Unlike these, our approach applies to arbitrary input

/ outputs with subexponential tails, hence the results apply under much weaker assumptions.

For instance, closely related work [145] analyzes PGD for nonlinear compressed sensing

however their results are only valid for normally distributed inputs.

● Subexponential samples: Most nonlinear CS results apply to Gaussian or

subgaussian data when dithering trick is utilized [137, 159–161]. We take advantage of

the recent techniques for subexponential distributions to provide statistical/computational

guarantees for heavier-tailed distributions.

●Analyzing the intercept-enabled design matrix: Intercept term is commonly

used in regression analysis to estimate the output bias [171]. We analyze the intercept-
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enabled problem (5.1.4) by studying the statistical properties of the concatenated design

matrix [X 1]. Empirically this modification leads to a substantial performance improvement

when labels are not zero-mean.

5.2 Preliminaries and Problem Setup

In this section we introduce statistical quantities which are utilized to characterize

the benefits of the regularization R.

Suppose we are given n i.i.d. samples (xi, yi)
n
i=1 ∼ (x, y). To keep the exposition

clean, we assume that x is whitened, that is, it has zero-mean and identity covariance. Our

goal will be finding a linear relation between the modified input-output pairs ([x⊺i 1]⊺, yi)
n
i=1.

In the population limit, optimal model parameters are given by

θ⋆, µ⋆ = arg min
θ,µ

E[L(θ, µ)] = E[yx],E[y].

Thus, in the limiting case, µ⋆ captures the mean of the output and θ⋆ is the population

minimizer of L(θ). Our goal is estimating the population minimizers θ⋆, µ⋆ using finite

samples (xi, yi)
n
i=1. As discussed in Section 5.1, assuming θ⋆ is structured sparse, we consider

a non-asymptotic estimation of θ⋆, µ⋆ via problem (5.1.4). To proceed with analysis, we

assume R is a proper function (i.e. closed sub-level sets) and set

K = {θ ∈ Rp ∣ R(θ) ≤ R}, (5.2.1)

Kext = {[θ
⊺ µ]⊺ ∈ Rp+1 ∣ R(θ) ≤ R}. (5.2.2)
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We investigate the PGD algorithm (5.1.5) which can be written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θτ+1

µτ+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= PKext(

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θτ

µτ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ η[X 1]⊺(y − [X 1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θτ

µτ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

)), (5.2.3)

where η is a fixed learning rate and [X 1] ∈ Rn×(p+1) is the intercept-enabled design matrix

constructed as follows

[X 1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x⊺1 1

⋮

x⊺n 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.2.4)

Following [145,172] PGD analysis can be related to the tangent ball around the population

parameter θ⋆ which is given by

C = cl({αv ∣ v + θ⋆ ∈ K, α ≥ 0})⋂Bp. (5.2.5)

Similarly, we define the extended tangent ball as follows

Cext = {

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αv

γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∣ α ≥ 0, v ∈ C, γ ∈ R}⋂Bp+1. (5.2.6)

We remark that our (extended) tangent ball definition is the intersection of the

(extended) tangent cone with the unit Euclidian ball. While related literature mostly uses

tangent cone [172,173], we introduce the tangent ball for notational convenience.

The two definitions above (C and Cext) are closely related. For any vector v ∈ C

and scalar ∣γ∣ ≤ 1, we have that [
√

1 − γ2v⊺ γ]⊺ ∈ Cext. In the following we will express the

convergence rates and residual errors of the PGD algorithm (5.1.5) in terms of the statistical

properties of the tangent balls.
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● Technical approach: To keep the discussion focused, throughout we assume

that R is correctly specified i.e., R = R(θ⋆). Denoting the parameter estimation error in

(5.2.3) by hτ = [θτ
⊺ µτ ]

⊺ − [θ⋆
⊺ µ⋆]⊺, and the effective noise by w = y − [X 1][θ⋆⊺ µ⋆]⊺,

the PGD update can be shown to obey [155] (see Eq. (VI.10))

∥hτ+1∥ℓ2 ≤ κ (∥hτ∥ℓ2ρ(C) + ην(C)) (5.2.7)

where κ is a numerical constant which is equal to 1 for convex regularizer R and 2 for

arbitrary R and

ρ(C) = sup
u,v∈Cext

∣u⊺(I − η[X 1]⊺[X 1])v∣, (5.2.8)

ν(C) = sup
v∈Cext

∣v⊺[X 1]⊺w∣. (5.2.9)

Here ρ captures the algorithmic convergence and ν captures the statistical accuracy in

terms of regularization. To achieve statistical learning bounds, we need to characterize the

quantities above in finite sample. Existing literature provides a fairly good understanding of

the related terms when X has subgaussian rows or w is independent of X. The technical

contributions of this work are i) extending these results to subexponential samples, ii)

allowing for nonlinear dependencies between the noise and data, and iii) addressing the bias

term by studying the concatenated matrix [X 1]. To proceed with statistical analysis, we

introduce Gaussian width.

Definition 38 ((Perturbed) Gaussian width [86]) The Gaussian width of a set T ⊂ Bp

is defined as

ω(T ) = Eg∼N(0,Ip)[sup
v∈T

v⊺g]. (5.2.10)
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Let C ≥ 1 be an absolute constant. Given an integer n ≥ 1, the perturbed Gaussian width

ωn(T ) of T ⊂ Bd is defined as

ωn(T ) = min
clconv(S)⊇T

rad(S)≤C

ω(S) +
γ1(S)
√

n
(5.2.11)

where γ1(S) is Talagrand’s γ1-functional (see [168]) with ℓ2-metric. Note that one can

always choose S = T .

Gaussian width helps to quantify the complexity of the regularized problem and determines

the sample complexity of the linear inverse problems i.e. high-dimensional problems become

manageable in the regime n ≳ ω2(C) [172,173]. Perturbed width is introduced more recently

in [86] to address subexponential samples. [86] shows that, for standard regularizers such as

ℓ0, ℓ1, subspace, and rank constraints, one has

ω2
(C) ∼ ω2

n(C) (5.2.12)

in the interesting regime n ≥ ω2(C). For these regularizes, perturbed width leads to a similar

statistical accuracy as Gaussian width but also applies to subexponential samples. For

general sets C, the ratio ωn(C)/ω(C) may be large however it can be upper bounded by

using γ1(C) ≲ ω(C)
√

p log p.

As illustrated in Table 5.1, square of the Gaussian width captures the degrees of

freedom for practical regularizers [172,173]. Table 5.1 is obtained by setting R = R(θ⋆) in

(5.2.1). In practice, a good choice for R can be found by using cross validation or based on

the characteristics of data (e.g. [174]). We remark that setting R > R(θ⋆), leads to a large

tangent ball, specifically C = Bp. This can be addressed by using the fact that PGD output

is robust to the choice of R around R(θ⋆) (see Theorem 2.6 of [155]). Alternatively, one can
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utilize the proximal variation which solves the regularized problem minθ ∥y −Xθ∥2ℓ2 +λR(θ).

To keep our discussion focused, we (implicitly) assume R is correctly specified throughout.

The next statistical quantity required in our analysis is the Orlicz norm defined as follows.

Definition 39 (Orlicz norms) For a scalar random variable Orlicz-a norm is defined as

∥X∥ψa = sup
p≥1

p−1/a
(E[∣X ∣p])1/p

Orlicz-a norm of a vector x ∈ Rd is defined as ∥x∥ψa = supv∈Bd ∥v
⊺x∥ψa . Subexponential and

subgaussian norms are special cases of Orlicz-a norm given by ∥⋅∥ψ1 and ∥⋅∥ψ2 respectively.

Based on perturbed Gaussian width definition, we will show that one can upper bound

the critical quantities (5.2.8) and (5.2.9). In return, this will reveal the statistical and

computational performance of the PGD algorithm. This is the topic of the next section

which states our main results.

Constraint Parameter vector model ω2(((C)))
None θ⋆ ∈ Rp p

Sparsity ∥ ⋅ ∥ℓ0 s non-zero entries s log(6p/s)

ℓ1 norm ∥ ⋅ ∥ℓ1 s non-zero entries s log(6p/s)

Subspace θ⋆ ∈ S, dim(S) = k k

Matrix rank rank(mtx((θ⋆))) ≤ r rp1/2

Table 5.1: List of low-dimensional models and corresponding Gaussian widths
(up to a constant factor) for the constraint sets K = {θ ∣ R(θ) ≤ R(θ⋆)}. If
constraint is set membership such as subspace, R(θ) = 0 inside the set and
∞ outside. Furthermore, we represent the vector θ⋆ ∈ Rp in matrix form as
mtx(θ⋆) ∈ R

√
p×√p.
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5.3 Main Results

In this section we estimate the convergence rate and the statistical accuracy of the

PGD algorithm as a function of sample size, complexity of the parameter (e.g. sparsity level),

and the distribution of the data (whether subgaussian or subexponential). Our main theorem

establishes a linear convergence rate of PGD and shows that PGD achieves statistically

efficient error rates. We first describe the data model.

Definition 40 (Isotropic vector) x ∈ Rp is called an isotropic Orlicz-a vector if it is

zero-mean with identity covariance and if its Orlicz-a norm ∥x∥ψa is bounded by an absolute

constant.

Definition 41 (σ-noisy datasets) We call a dataset S with i.i.d. samples (xi, yi)
n
i=1 σ-

Orlicz-a if for all pairs (x, y) ∈ S, the input x is isotropic Orlicz-a vectors and the residual

at the BLM obeys ∥y −x⊺θ⋆ − µ⋆∥ψa ≤ σ.

We call σ-Orlicz-1 dataset σ-subexponential and σ-Orlicz-2 dataset σ-subgaussian.

Note that the residual at the BLM corresponds to the noise in our problem which may may

depend on the input in a nonlinear fashion. If we solve (5.1.3) rather than (5.1.4), the noise

term σ will essentially grow to σ + µ⋆ since zero-mean input features x cannot explain the

label mean. This highlights the advantage of (5.1.4). Our main results capture the PGD

performance for different dataset models described below.

Theorem 42 (Subgaussian) Suppose (xi, yi)
n
i=1 is a σ-subgaussian dataset. Assume n ≳

(ω(C) + t)2 and set learning rate η = 1/n. Let R be an arbitrary regularizer. Starting from

an initial estimate [θ⊺0 µ0]
⊺ obeying R(θ0) ≤ R, with probability at least 1 − 6 exp(−c0t2/2) −
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4n−100, all PGD iterates (5.2.3) obey

∥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θτ − θ⋆

µτ − µ⋆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥
ℓ2

≤ (c
ω(C) + t
√

n
)
τ
∥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ0 − θ⋆

µ0 − µ⋆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥
ℓ2

+Cσ
(ω(C) + t)

√
log(n)

√
n

. (5.3.1)

We remark that R(θ0) ≤ R is not a major assumption since one can first project θ0 to the

constrained set before starting PGD. For subexponential samples, we have the following

theorem which applies to convex regularizers.

Theorem 43 (Subexponential) Suppose (xi, yi)
n
i=1 is a σ-subexponential dataset. Set

q = (n + p) log3(n + p). Set learning rate η = c0/q, suppose R is convex and n ≳ (ωn(C) + t)2.

Starting from initialization [θ⊺0 µ0]
⊺ satisfying R(θ0) ≤ R, with probability at least 1 −

9 exp(−c0min(n, t
√

n, t2)) − 5(n + p)−100, all PGD iterates (5.2.3) obey

∥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θτ − θ⋆

µτ − µ⋆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥
ℓ2

≤ (1 − cn

q
)
τ

∥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ0 − θ⋆

µ0 − µ⋆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥
ℓ2

+Cσ
(ωn(C) + t) log(n)

√
n

. (5.3.2)

Both of these results show that PGD iterates converge to population parameters

θ⋆, µ⋆ at a linear rate. The subexponential theorem requires a more conservative choice

of learning rate. The statistical estimation error grows as ω(C)/
√

n for subgaussian and

ωn(C)/
√

n for subexponential. Since our results apply in the regime n ≳ ω2(C), following

(5.2.12), statistical errors associated with subgaussian and subexponential are same up to a

constant for typical regularizers.

Our main results follow from Theorems 44 and 45 which are the topics of the

following sections.

110



5.3.1 Controlling the Convergence Rate of PGD

In this section, we study the convergence rate characterized by the ρ(C) term. The

challenges we address are (i) characterizing the restricted singular values of the subexponential

data matrices and (ii) addressing the concatenated all ones vector.

Theorem 44 (Convergence rate) Suppose (xi, yi)
n
i=1 is a σ-subgaussian dataset and

[X 1] is the intercept-enabled design matrix, where 1 is a vector of all ones. Let C and Cext

be the tangent balls as defined in (5.2.5) and (5.2.6) respectively. Assume n ≳ (ω(C) + t)2.

Setting η = 1/n, with probability at least 1 − 4e−t
2 we have

ρ(C) ≲
ω(C) + t
√

n
. (5.3.3)

If the dataset is σ-subexponential, then setting η = c0/(n + p) log3(n + p) and assuming

n ≳ (ωn(C) + t)2, with probability 1 − 5 exp(−c min(n, t
√

n, t2)) − 3(n + p)−100, we have

ρ(C) ≤ 1 −C0ηn. (5.3.4)

Note that, subexponential requires a smaller choice of learning rate which results

in slower convergence.

5.3.2 Bounding the Error due to Nonlinearity

Next, we provide a bound on the effective noise level ν(C); which is crucial for

assessing statistical accuracy. This term arises from the nonlinearity and noise associated

with the relation between input and output. For example, for single-index models, we

have E[y ∣ x] = ϕ(x⊺θGT) for some link function ϕ and ground truth θGT, and ϕ becomes

the source of the nonlinearity. Our approach is similar to [145–148, 167] and treats the
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nonlinearity as a noise. The finite sample noise is captured by the residual vector

w = y −Xθ⋆ − 1µ⋆. (5.3.5)

Following the ν(C) term in (5.2.9), The contribution of the residual w to the estimated

parameter is captured by the vector

e = [X 1]⊺w =
n

∑
i=1
(yi − µ⋆ −x⊺i θ⋆)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.3.6)

Our key observation is that the properties of e can be characterized under fairly general

assumptions compared to the existing literature; which is mostly restricted to zero-mean

subgaussian samples.

Theorem 45 (Statistical error) Suppose (xi, yi)
n
i=1 ∼ (x, y) is a σ-subgaussian dataset.

Let the tangent balls C and Cext be as defined in (5.2.5) and (5.2.6) respectively. Assume

n ≳ (ω(C) + t)2. Then, with probability at least 1 − 2 exp(−t2/2) − 4n−100, we have

ν(C)

n
≲

σ(ω(C) + t)
√

log(n)
√

n
. (5.3.7)

where ν(C) is the effective noise given by (5.2.9). If (xi, yi)
n
i=1 is a σ-subexponential dataset

and n ≳ (ωn(C) + t)2, with probability at least 1 − 4 exp(−c min(t
√

n, t2)) − 2n−100, we have

ν(C)

n
≲

σ(ωn(C) + t) log(n)
√

n
. (5.3.8)

This theorem establishes the crucial finite sample upper bounds on ν(C) for both subgaussian

and subexponential data as a function of Gaussian width of the tangent ball. Combining

our bounds on ρ(C) and ν(C) and utilizing the recursion (5.2.7), we can obtain the PGD

convergence characteristics and prove the main theorems.
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5.3.3 Discussion on Realizability

Consider a single-index model where our dataset satisfies y = ϕ(a⊺x). For simplicity

assume ∥a∥ℓ2 = 1. As mentioned in the introduction, if we wish to recover a, it would be

ideal to ensure BLM θ⋆ corresponds to a. Below we highlight the two established ways of

achieving this [135–137,146,159–161].

● Gaussianity assumption: Suppose x ∼ N(0, Ip). In this case, we use the indepen-

dence of orthogonal projections of x. Specifically, g ∶= a⊺x ∼ N(0, 1) is independent of

x − aa⊺x. This yields

E[yx] = E[ϕ(a⊺x)x] = aE[ϕ(a⊺x)a⊺x] = aE[gϕ(g)] (5.3.9)

Hence θ⋆ is related to a by a simple scaling of E[gϕ(g)].

● Dithering can be used in quantization to prevent the bias in the quantization error.

Suppose the quantization function ϕ rounds its input to the nearest discrete level

(cδ)∞c=−∞. We can apply dithering during signal acquisition via y = ϕ(a⊺x+w) where w

is independent and uniformly distributed over [−δ/2, δ/2]. The application of dithering

guarantees that BLM is an unbiased estimate of a by noticing Ew[ϕ(c +w)] = c. This

gives

E[yx] = Ew,x[ϕ(a⊺x +w)x] = Ex[ax⊺x] = a. (5.3.10)

5.4 Proofs of the Main Results

This section proves our main results and outlines the proofs of Theorems 42, 43,

44 and 45. Throughout, we use the same notation as described in Section 5.2.
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5.4.1 Proof of Theorem 43

Proof. We provide our analysis for subexponential samples. The extension to

subgaussian samples is accomplished in an identical fashion. Set the estimation error at

iteration τ to be hτ = [θτ
⊺ µτ ]

⊺ − [θ⋆
⊺ µ⋆]⊺. Note that, when ρ(C) < 1 and R is a convex

regularizer, then the recursion (5.2.7) can be iteratively expanded as

∥hτ∥ℓ2 ≤ ∥h0∥ℓ2ρ(C)τ + ην(C)
τ−1
∑
k=0

ρ(C)k

≤ ∥h0∥ℓ2ρ(C)τ +
ην(C)

1 − ρ(C)
. (5.4.1)

With the advertised probability, subexponential statements of Theorems 44 and 45 hold.

Hence, for some constants, we have that ρ(C) ≤ 1 − c0ηn, ν(C) ≤ C
√

nσ(ωn(C) + t) log(n)

and η = c/q with q = (n + p) log3(n + p). Plugging these in (5.4.1), we find the following

upper bound on the right hand side,

∥hτ+1∥ℓ2 ≤ (1 − c0ηn)τ∥h0∥ℓ2 +
η

c0ηn
C
√

nσ(ωn(C) + t) log(n)

= (1 − c0cn

q
)
τ
∥h0∥ℓ2 + σ

C

c0

(ωn(C) + t) log(n)
√

n
, (5.4.2)

which is the desired bound. The case of subgaussian samples is again a corollary of Theorems

44 and 45. This concludes the proof of our main result.

5.4.2 Proof of Theorem 44 for subgaussian samples

Proof. We start our proof with the following lemma.

Lemma 46 Let (xi)ni=1 ∼ x ∈ Rp be i.i.d. isotropic subgaussian samples. Let X ∈ Rn×p be

concatenated data and [X 1] is the intercept-enabled design matrix, where 1 is a vector of
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all ones. Let T be a closed set with Euclidian radius bounded by a constant and

Text = {ṽ ∣ ṽ = [βv⊺ γ]⊺ where v ∈ T , ∣β∣ ≤ C1, ∣γ∣ ≤ C2}. (5.4.3)

for some positive constants C1, C2. Assume n ≳ (ω(T ) + t)2. Then, with probability at least

1 − 2e−t
2 we have

sup
ṽ∈Text

∣ṽ⊺(I −
1
n
[X 1]⊺[X 1])ṽ∣ ≲ ω(T ) + t

√
n

. (5.4.4)

The proof of Lemma 46 is deferred to Section C.1. To proceed, we apply the result of

Lemma 46 over the sets Text = Cext − Cext and Text = Cext + Cext to control u − v and u + v

vectors. Controlling these helps us bound the cross-product ∣u⊺(I − 1
n[X 1]⊺[X 1])ṽ∣. In

Section C.2, we use this argument to show that with the desired probability we have

sup
ũ,ṽ∈Cext

∣ũ⊺(I −
1
n
[X 1]⊺[X 1])ṽ∣ ≲ ω(C) + t

√
n

. (5.4.5)

Using the fact that left-hand side is the rate of convergence ρ(C) concludes the proof for

subgaussian samples.

5.4.3 Proof of Theorem 44 for subexponential samples

Proof. Let (xi)ni=1 ∼ x ∈ Rp be i.i.d. isotropic subexponential vectors and X be

the associated design matrix as previously. Let C and Cext be as defined in (5.2.5) and

(5.2.6) respectively. Assume n ≳ ω2
n(C). Our proof strategy is based on the observation that,

we can bound the (restricted) singular values of [X 1]⊺[X 1] with high probability for

subexponential data as follows.

● Upper bounding the singular values: In this section we will upper bound

the largest eigenvalue of the matrix [X 1]⊺[X 1] with high probability. Towards this goal,
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we utilize Matrix Chernoff bound from [175]. For the sake of completeness, we present the

Matrix Chernoff Theorem in the following.

Theorem 47 (Matrix Chernoff [175]) Consider a finite sequence {Xi}
n
i=1 of indepen-

dent, random, positive semidefinite matrices with common dimension d. Assume that

∥Xi∥ ≤ L for i = 1, . . . , n. (5.4.6)

Define the sum M = ∑
n
i=1 Xi and let ζmax be an upper bound on the spectral norm of the

expectation E[M] i.e. ζmax ≥ ∥E[M]∥ = ∥∑ni=1 E[Xi]∥. We have that

P (∥M∥ ≥ (1 + ϵ)ζmax) ≤ d [
eϵ

(1 + ϵ)1+ϵ
]

ζmax
L

, ϵ ≥ 0. (5.4.7)

We will use Theorem 47 to bound the largest eigenvalue of [X 1]⊺[X 1]. Observe that

[X 1]⊺[X 1] =
n

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[x⊺i 1]. (5.4.8)

Clearly this matrix is positive semidefinite. To bound ∥[x⊺i 1]⊺[x⊺i 1]∥, we use the following

lemma.

Lemma 48 (Spectral norm bound) Let (xi)ni=1 be i.i.d. isotropic subexponential sam-

ples in Rp. Then, with probability at least 1 − 2(n + p)−100 the spectral norm of all xix
⊺
i

matrices can be bounded as

∥xix
⊺
i ∥ ≤ ∥xi∥

2
ℓ2 ≤ cp log2

(n + p). (5.4.9)

The proof of lemma 48 is deferred to Section C.3. Lemma 48 guarantees that ∥[x⊺i 1]⊺[x⊺i 1]∥ ≤

∥[x⊺i 1]⊺∥2ℓ2 = ∥xi∥
2
ℓ2
+ 1 ≤ Cp log2(n + p). Hence, we do satisfy the conditions required by

Theorem 47. Before using Theorem 47 we will upper bound the spectral norm of the

expectation E[[X 1]⊺[X 1]] as follows.
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Lemma 49 (Spectral norm bound of expectation) Let x ∈ Rp be an isotropic subex-

ponential vector, x̃ = [x⊺ 1]⊺ and let B = Cp log2(n + p) for sufficiently large constant C > 0.

Then we have

E [x̃x̃⊺ ∣ ∥x̃∥2ℓ2 ≤ B] ⪯ 2Ip. (5.4.10)

The proof of Lemma 49 is deferred to Section C.4. Thus, applying Lemma 49 on the set

of all [x⊺i 1]⊺ satisfying ∥[x⊺i 1]⊺[x⊺i 1]∥ ≤ Cp log2(n + p), we find that with probability

1 − 2(n + p)−100 the following holds

∥E[[X 1]⊺[X 1]]∥ = ∥E[
n

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xi

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[x⊺i 1]]∥ ≤ ∥
n

∑
i=1

2Ip∥ = 2n. (5.4.11)

Hence, we can pick ζmax ≥ 2n to upper bound the largest eigenvalue of E[[X 1]⊺[X 1]].

Now, using Theorem 47 with ζmax = C0C(n + p) log3(n + p), L = Cp log2(n + p) and ϵ = e − 1

we get

P (∥[X 1]⊺[X 1]∥ ≥ eC0C(n + p) log3
(n + p)) ≤ p [

ee−1

ee
]

C0
n+p
p

log(n+p)

= pe
−C0

n+p
p

log(n+p)
≤ (n + p)−100. (5.4.12)

Union bounding, with probability at least 1 − 3(n + p)−100,

∥[X 1]⊺[X 1]∥ ≲ (n + p) log3
(n + p). (5.4.13)

● Lower bounding the singular values: In this section we will lower bound

the gain of [X 1] restricted to the tangent ball Cext. We will utilize the notion of restricted

singular value (RSV) to proceed.
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Definition 50 (Restricted singular value) Given a matrix M and a closed set C, the

RSV of M at C is defined as

σ(M ,C) =min
v∈C

∥Mv∥ℓ2
∥v∥ℓ2

. (5.4.14)

In the following, we will lower bound minṽ∈Cext,∥ṽ∥ℓ2=1 ∥[X 1]ṽ∥ℓ2 which is the RSV of [X 1]

at Cext. Observe that any ṽ ∈ Cext with unit Euclidian norm obeys ṽ = [
√

1 − γ2v⊺ γ]⊺ for

∣γ∣ ≤ 1 and v ∈ C, ∥v∥ℓ2 = 1. Consequently

∥[X 1]ṽ∥2ℓ2 = ∥
√

1 − γ2Xv + γ1∥2ℓ2

= (1 − γ2
) ∥Xv∥2ℓ2 + γ21⊺1 + 2γ

√
1 − γ21⊺Xv

≥ (1 − γ2
) ∥Xv∥2ℓ2 + γ2n + 2γ

√
1 − γ2v⊺

n

∑
i=1

xi. (5.4.15)

Setting x̄ = 1
n ∑

n
i=1 xi and minimizing both sides over ṽ ∈ Cext, ∥ṽ∥ℓ2 = 1, we get

min
ṽ∈Cext
∥ṽ∥ℓ2=1

∥[X 1]ṽ∥2ℓ2 ≥min
∣γ∣≤1
((1 − γ2

) min
v∈C
∥v∥ℓ2=1

∥Xv∥2ℓ2 + γ2n) − 2n sup
v∈C
∥v∥ℓ2=1

∣v⊺x̄∣

≥min( min
v∈C
∥v∥ℓ2=1

∥Xv∥2ℓ2 , n) − 2n sup
v∈C
∣v⊺x̄∣. (5.4.16)

In essence, (5.4.16) bounds RSV of [X 1] in terms of the RSV of X and some simpler terms.

The following theorem from [86] (Theorem D.11) gives a lower lower bound on the RSV of a

matrix X with i.i.d. subexponential rows.

Theorem 51 (Bounding RSV [86]) Let X ∈ Rn×d be a random matrix with i.i.d. isotropic

subexponential rows. Let C be a tangent ball as in (5.2.5) and suppose the sample size obeys

n ≳ (ωn(C) + t). Then with probability at least 1 − 3 exp(−c min(n, t
√

n, t2)), we have that

min
v∈C
∥v∥ℓ2=1

∥Xv∥2ℓ2 ≥ c0n. (5.4.17)
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Next, we shall state a lemma from [86] (Lemma D.7) to upper bound the term involving the

sample average x̄.

Lemma 52 (Bounding empirical width [86]) Suppose C is a subset of the unit Euclid-

ian ball and (xi)ni=1 are i.i.d. zero-mean vectors with bounded subexponential norm. Define

the empirical average vector x̄ = 1
n ∑ixi. We have that

P(sup
u∈C
∣u⊺x̄∣ ≤ C

(ωn(C) + t)
√

n
) ≥ 1 − 2 exp(−c ⋅min(t

√
n, t2
)). (5.4.18)

Plugging the bounds of Theorem 51 and Lemma 52 into (5.4.16) we find that, there exist

constants c, c0, C0 > 0 such that with probability at least 1 − 5 exp(−c min(n, t
√

n, t2)), we

can lower bound the RSV of [X 1] as,

min
ṽ∈Cext
∥ṽ∥ℓ2=1

∥[X 1]ṽ∥2ℓ2 ≥ c0n −C0n
ωn(C) + t
√

n
≥ c0n/2, (5.4.19)

where the last line follows from the assumption that n ≳ (ωn(C) + t)2.

● Upper bounding the convergence rate: Union bounding the events (5.4.13)

and (5.4.19), we obtain upper and lower bounds on the singular values of [X 1] with the

desired probability. Hence, we can bound the convergence rate of PGD as follows. Setting

q = (n + p) log3(n + p), we have (5.4.13) ∥[X 1]⊺[X 1]∥ ≤ Cq. Therefore, choosing learning

rate η = 1/Cq, the matrix I − η[X 1]⊺[X 1] is positive semidefinite (PSD). Hence, applying
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the generalized Cauchy-Schwarz inequality for PSD matrices, we find

ρ(C) = sup
ũ,ṽ∈Cext

∣ũ⊺(I − η[X 1]⊺[X 1])ṽ∣

= sup
ũ,ṽ∈Cext

∥ũ∥ℓ2=∥ṽ∥ℓ2=1

∣ũ⊺(I − η[X 1]⊺[X 1])ṽ∣

≤ sup
ũ,ṽ∈Cext

∥ũ∥ℓ2=∥ṽ∥ℓ2=1

[∣ũ⊺(I − η[X 1]⊺[X 1])ũ∣1/2∣ṽ⊺(I − η[X 1]⊺[X 1])ṽ∣1/2]

= sup
ṽ∈Cext
∥ṽ∥ℓ2=1

∣ṽ⊺(I − η[X 1]⊺[X 1])ṽ∣

= 1 − η min
ṽ∈Cext
∥ṽ∥ℓ2=1

∥[X 1]ṽ∥2ℓ2

≤ 1 − c0ηn/2. (5.4.20)

Here the last inequality follows from (5.4.19). This completes the proof for subexponential

samples.

5.4.4 Proof of Theorem 45 for subgaussian samples

Proof. Suppose the dataset (xi, yi)
n
i=1 ∼ (x, y) is σ-subgaussian. Let X, [X 1],C

and Cext be as defined in Section 5.2, recall w from (5.3.5) and assume n ≳ (ω(C) + t)2.
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Representing a vector ṽ ∈ Cext as ṽ = [
√

1 − γ2v⊺ γ]⊺ for v ∈ C and ∣γ∣ ≤ 1, we have

ν(C) = sup
ṽ∈Cext

∣ṽ⊺[X 1]⊺w∣

= sup
v∈C
∣γ∣≤1

∣
√

1 − γ2v⊺X⊺w + γ1⊺w∣

≤ sup
v∈C
∣γ∣≤1

∣
√

1 − γ2v⊺X⊺w∣ + sup
∣γ∣≤1
∣γ1⊺w∣

≤ sup
v∈C
∣v⊺X⊺w∣ + ∣1⊺w∣. (5.4.21)

In the following we will upper bound the terms supv∈C ∣v
⊺X⊺w∣ and ∣1⊺w∣ separately and

will combine them to get an upper bound on the residual error.

● Upper bounding the first term in (5.4.21): In order to upper bound the

first term in (5.4.21), define the clipping function

clip(a, B) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a if ∣a∣ ≤ B

sign(a)B else

. (5.4.22)

The following lemma immediately follows from union bounding the large deviations of

subgaussian and subexponential variables X and shows that X = clip(X, B) with high

probability.

Lemma 53 Let (wi)
n
i=1 be i.i.d. subgaussian random variables with ∥wi∥ψ2 ≤ σ. There exists

a constant C > 0 such that picking B = C
√

log(n), with probability 1 − 2n−100 for all i, we

have

wi = clip(wi, σB). (5.4.23)

If instead (wi)
n
i=1 are i.i.d. subexponential with ∥wi∥ψ1 ≤ σ, then picking B = C log(n) leads

to the same result.
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Using Lemma 53, ∥w∥ℓ∞ ≤ σB with probability 1 − 2n−100. Conditioned on this event, we

have

sup
v∈C
∣v⊺X⊺w∣ = sup

v∈C
∣v⊺

n

∑
i=1

clip(wi, σB)xi∣. (5.4.24)

Setting zi = clip(wi, σB)xi = wixi, (5.4.24) can be re-written as

sup
v∈C
∣v⊺X⊺w∣ =

1
n

sup
v∈C
∣v⊺

n

∑
i=1

zi∣

≤ sup
v∈C
∣v⊺

n

∑
i=1
(zi −E[zi])∣ + sup

v∈C
∣v⊺

n

∑
i=1

E[zi]∣

≤ sup
v∈C
∣v⊺

n

∑
i=1
(zi −E[zi])∣ + n∥E[z1]∥ℓ2 . (5.4.25)

Note that zi = wixi is subgaussian since wi is bounded. The subgaussian norm obeys

∥zi −E[zi]∥ψ2 ≲ ∥zi∥ψ2 ≲ σ
√

log(n)∥xi∥ψ2 ≲ σ
√

log(n). (5.4.26)

Define the average vector z̄ = n−1/2
∑
n
i=1(zi − E[zi]) which is still subgaussian with same

norm (up to a constant). Standard results from functional analysis (specifically generic

chaining) [168] guarantee

1
n

sup
v∈C
∣v⊺

n

∑
i=1
(zi −E[zi])∣ =

1
√

n
sup
v∈C
∣v⊺z̄∣

≲
σ(ω(C) + t)

√
log(n)

√
n

. (5.4.27)

with probability at least 1− 2e−t
2/2. This bounds the first term of (5.4.25). Next, we address

the expectation term ∥E[z1]∥ℓ2 via following lemma.

Lemma 54 Suppose x is an isotropic Orlicz-a vector and ∥w∥ψa ≤ σ where w = y−x⊺θ⋆−µ⋆.

Let B = C log1/a(n) for sufficiently large constant C > 0. For a = 1, 2, we have that

∥E[wx ∣ ∣w∣ ≤ σB]∥ℓ2 ≲ σp2n−201. (5.4.28)
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The proof of Lemma 54 is deferred to Section C.6. Combining (5.4.27) and Lemma 54 into

(5.4.25), with probability at least 1 − 2e−t
2/2 − 2n−100, we find that,

1
n

sup
v∈C
∣v⊺X⊺w∣ ≲

σ(ω(C) + t)
√

log(n)
√

n
+ σp2n−200

≲
σ(ω(C) + t)

√
log(n)

√
n

(5.4.29)

which is the desired bound for the first term in (5.4.21).

● Upper bounding the second term in (5.4.21): The vector w is zero-mean

with ∥w∥ψ2 ≤ σ. Hence, ∥1⊺w∥ψ2 ≤ σ
√

n which implies that with probability 1 − 2n−100,

∣1⊺w∣ ≲ σ
√

n log n. (5.4.30)

Combining the bound above with (5.4.29), we get the advertised bound on the residual,

namely

1
n

ν(C) ≲
σ(ω(C) + t)

√
log(n)

√
n

, (5.4.31)

with probability at least 1−2 exp(−t2/2)−4n−100. This completes the proof for σ-subgaussian

data.

5.4.5 Proof of Theorem 45 for subexponential samples

Proof. Suppose the dataset (xi, yi)
n
i=1 ∼ (x, y) is σ-subexponential. Let X, [X 1],C

and Cext be as defined in Section 5.2, recall w from (5.3.5) and assume n ≳ (ωn(C) + t)2.

Similar to the subgaussian case, we split the residual into two terms via (5.4.21) and bound

each term separately to get a final bound.

● Upper bounding the first term in (5.4.21): Let zi = wixi. With probability

1− 2n−100, we have that ∥w∥ℓ∞ ≲ σ log n. We continue the analysis conditioned on this event.

123



With bounded wi, zi −E[zi] is subexponential via

∥zi −E[zi]∥ψ1 ≲ ∥zi∥ψ1 ≲ σ log n∥xi∥ψ1 ≲ σ log n. (5.4.32)

Combining this with Lemma 52, guarantees that

1
n

sup
v∈C
∣v⊺

n

∑
i=1
(zi −E[zi])∣ ≲

σ(ωn(C) + t) log(n)
√

n
(5.4.33)

with probability at least 1−2 exp(−O(min(t
√

n, t2))). Next, using Lemma 54, we also upper

bound ∥E[z1]∥ℓ2 by Cσp2n−201. Combining this with (5.4.33) and substituting into (the

deterministic inequality) (5.4.25), with probability at least 1 − 2 exp(−O(min(t
√

n, t2))) −

2n−100 we have,

1
n

sup
v∈C
∣v⊺X⊺w∣ ≲

σ(ωn(C) + t) log(n)
√

n
. (5.4.34)

● Upper bounding the second term in (5.4.21): Using ∥wi∥ψ1 ≲ σ and applying

Lemma 52 (over one-dimensional R), we find that ∣1⊺w∣ ≲ σ(1 + t)
√

n with probability

1 − 2 exp(−c min(t
√

n, t2)). Combining this with (5.4.34) and plugging into (5.4.21), we get

the advertised upper bound

1
n

ν(C) ≲
σ(ωn(C) + t) log(n)

√
n

+
(1 + t)σ
√

n

≲
σ(ωn(C) + t) log(n)

√
n

(5.4.35)

which holds with probability at least 1 − 4 exp(−c min(t
√

n, t2)) − 2n−100. This completes

the proof for σ-subexponential data.
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Chapter 6

Numerical Experiments

6.1 Nonlinear System Identification

Leakage ∥A⋆∥ ∥A′⋆∥ ρ(A⋆) ρ(A′⋆) sup∥x∥ℓ2=1 ∥ϕ(A⋆x)∥ℓ2 sup∥x∥ℓ2=1 ∥ϕ(A
′

⋆x)∥ℓ2
λ = 0.00 2.07 1.85 1.12 0.65 1.79 1.56
λ = 0.50 2.07 1.85 1.12 0.65 1.84 1.60
λ = 0.80 2.07 1.85 1.12 0.65 1.92 1.70
λ = 1.00 2.07 1.85 1.12 0.65 2.07 1.85

Table 6.1: This table lists the core properties of the (random) state matrix in
our experiments. The values are averaged over 1000 random trials. For linear
systems, the state matrix A⋆ is unstable however the closed-loop matrix A′⋆
is stable. We also list the nonlinear spectral norms (i.e. sup∥x∥ℓ2=1 ∥ϕ(A⋆x)∥ℓ2)
associated with A⋆ and A′⋆, as a function of different leakage levels of leaky-
ReLUs, which are all larger than 1. Despite this, experiments show nonlinear
systems are stable with A′⋆ (some even with A⋆). This indicates that Definition
1 is indeed applicable to a broad range of systems.

For our experiments, we choose unstable nonlinear dynamical systems (ρ(A) > 1)

governed by nonlinear state equation xt+1 = ϕ(Axt +But) +wt with state dimension n = 80

and input dimension p = 50. A is generated with N(0, 1) entries and scaled to have its

largest 10 eigenvalues greater than 1. B is generated with i.i.d. N(0, 1/n) entries. For
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Figure 6.1: We run gradient descent to learn nonlinear dynamical system
governed by state equation xt+1 = ϕ(Axt +But) +wt. We study the effect of
nonlinearity, noise variance and trajectory length on the convergence of gradient
descent. The empirical results verify what is predicted by our theory.

nonlinearity, we use either softplus (ϕ(x) = ln(1 + ex)) or leaky-ReLU (max(x, λx), with

leakage 0 ≤ λ ≤ 1) activations. We run gradient descent with fixed learning rate η = 0.1/T ,

where T denotes the trajectory length. We choose a noisy stabilizing policy K for the linear

system (ignoring ϕ) and set ut = −Kxt + zt. Here K is obtained by solving a discrete-time

Riccati equation (by setting rewards Q, R to identity) and adding random Gaussian noise

with zero mean and variance 0.001 to each entry of the Riccati solution. We want to

emphasize that any stabilizing policy will work here. For some nonlinear activations, as

shown in Figure 6.2, one can learn the system dynamics using a policy which is unstable for

the linear system but remains stable for the nonlinear system. Lastly, zt
i.i.d.
∼ N(0, Ip) and

wt
i.i.d.
∼ N(0, σ2In).

We plot the normalized estimation error of A and B given by the formula

∥A − Â∥2F /∥A∥
2
F (same for B). Each experiment is repeated 20 times and we plot the

mean and one standard deviation. To verify our theoretical results, we study the effect of

the following on the convergence of gradient descent for learning nonlinear state equation

xt+1 = ϕ(Axt +But) +wt.
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Figure 6.2: For a properly chosen random unstable system the state vectors
diverge for LDS while they stay bounded for leaky ReLU systems with small
leakage.

● Nonlinearity: This experiment studies the effect of nonlinearity on the con-

vergence of gradient descent for learning nonlinear dynamical system with leaky-ReLU

activation. We run gradient descent over different values of λ (leakage). The trajectory

length is set to T = 2000 and the noise variance is set to σ2 = 0.01. In Figure 6.1a, we plot

the normalized estimation error of A over different values of λ. We observe that, decreasing

nonlinearity leads to faster convergence of gradient descent.

● Noise level: This experiment studies the effect of noise variance on the conver-

gence of gradient descent for learning nonlinear dynamical system with softplus activation.

The trajectory length is set to T = 2000. In Figure 6.1b, we plot the normalized estimation

error of A over different values of noise variance. We observe that, the gradient descent

linearly converges to the ground truth plus some residual which is proportional to the noise

variance as predicted by our theory.

● Trajectory length: This experiment studies the effect of trajectory length on

the statistical accuracy of learning system dynamics via gradient descent. We use softplus

activation and the noise variance is set to σ2 = 0.01. In Figure 6.1c, we plot the normalized
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estimation error of A over different values of T . We observe that, by increasing the trajectory

length (number of samples), the estimation gets better, verifying our theoretical results.

We remark that, we get similar plots for the input matrix B. Lastly, Figure 6.2 is

generated by evolving the state through 100 timesteps and recording the Euclidean norm

of xt at each timestep. This is repeated 500 times with ρ(A) > 1 and using leaky-ReLU

activations. In Figure 6.2, we plot the mean and one standard deviation of the Euclidean

norm of the states xt over different values of λ (leakage). The states are bounded when we

use leaky-ReLU with λ ≤ 0.5 even when the corresponding LDS is unstable. This shows

that the nonlinearity can help the states converge to a point in state space. However, this is

not always true. For example, when A = 2I and x0 has all entries positive. Then, using

leaky-ReLU will not help the trajectory to converge.

6.2 Bilinear System Identification

For our experiments, we choose a bilinear dynamical system (3.2.1) with state

dimension n = 8 and input dimension p = 4. A0 is generated with N(0, 1) entries and scaled

to have its largest eigenvalues equal to 0.6. Similarly, {Ak}
p
k=1 are generated with N(0, 1)

entries and scaled to have their largest eigenvalue equal to 1/p. Using x0
i.i.d.
∼ N(0, In),

{ut}
∞
t=0

i.i.d.
∼ N(0, σ2

uIp) and {wt}
∞
t=1

i.i.d.
∼ N(0, σ2

wIn), we generate a single finite trajectory

{(ut, xt, xt+1)}
T
t=0 of the bilinear dynamical system (3.2.1), which is given as an input to

Algorithm 1.

We plot, (i) the normalized estimation error of A0 given by ∥Â0 −A0∥/∥A0∥, and

(ii) the average normalized estimation error of {Ak}
p
k=1 given by (1/p)∑pk=1 ∥Âk −Ak∥/∥Ak∥.
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Figure 6.3: Identification with varying input variance σ2
u

Each experiment is repeated 20 times and we plot the mean and one standard deviation. We

also plot, (iii) the Euclidean norm of the states {∥xt∥ℓ2}Tt=0, and (iv) the condition number

of the design matrix X̃T . To verify our theoretical results from Section 3.3, We perform the

following two different types of experiments.

● Input strength: In this experiment, we run Algorithm 1 with different values

of σu and T , while setting the values of n, p, ρ(A) and ρ(Ak) as described above. We also

set σw = 0.3. The results of this experiment are plotted in Figure 6.3. As predicted by our

theory, the estimation errors of {Ak}
p
k=0 converge to 0 with the increasing trajectory length.

Another important observation is that the estimation errors also decrease with increasing

σu. This is more prominent in the case of {Ak}
p
k=1, which is consistent with the message of

Theorem 24. Furthermore, Table 6.2 shows that increasing σu results in an increase in the

spectral radius of the augmented state matrix Ã. This also implies that we cannot increase

σu above a certain threshold. Otherwise, the bilinear system might become unstable and we

might not be able to learn the dynamics {Ak}
p
k=0.

● Noise level: In this experiment, we run Algorithm 1 with different values of

σw and T , while setting the values of n, p, ρ(A) and ρ(Ak) as described above. We also

set σu = 1.5. The results of this experiment are plotted in Figure 6.4. Larger trajectory
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Figure 6.4: Identification with varying noise variance σ2
w

length helps here as well. Interestingly, the estimation errors are independent of the noise

strength σw. This is as predicted by Theorem 24. From Figure 6.4, we also see that, when

the trajectory length is sufficiently large, the condition number of X̃T is similar for different

noise levels. When the trajectory length and the noise level are very small, X̃T has larger

condition number because of the random initialization of x0 and the decrease in Euclidean

norm of xt with time (see Figure 6.4). If the noise is 0 and the unknown bilinear system

has ρ(Ã) < 1, then as shown in Lemma 21, the states will converge to 0 exponentially fast.

Therefore, most of the samples in the collected trajectory {(ut, xt, xt+1)}
T
t=0 will be zero.

σu 0.3 0.6 1.0 1.2 1.5
ρ(Ã) 0.369 0.402 0.509 0.595 0.764

Table 6.2: ρ(Ã) increases with increasing σu

6.3 Finding Best Linear Model in High Dimensions

We consider a standard single-index model where for some ground truth vector

a and link function ϕ, the input/output relation is given by yi = ϕ(aTxi). We pick a
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Figure 6.5: We run PGD with leaky-ReLU activation (max(x, αx)) using
subexponential design matrix [X 1]. We plot the normalized estimation error
∥θτ − θ⋆∥2ℓ2/∥θ

⋆∥2ℓ2 with varying degree of (a) nonlinearity, (b) sparsity and (c)
sample size. (c) also shows the bias estimation error ∥µτ −µ⋆∥2ℓ2/∥µ

⋆∥2ℓ2 . The
estimation error decays quickly however the eventual error varies as a function
of the nonlinearity, sparsity and sample size as predicted by Theorem 43. (d)
PGD with bias estimation outperforms vanilla PGD (using X alone).

to be an s sparse vector with i.i.d. N(0, 1) nonzero entries and set the dimension to be

p = 800. Based on the sparsity prior, we run PGD as iterative hard thresholding where θτ is

projected to be s-sparse after every iteration. As a link function, we considered leaky-ReLU

(i.e. max(x, αx) where 0 ≤ α ≤ 1); which is of interest for deep learning. We generate xi’s

with i.i.d. exponentially distributed entries (with parameter λ = 1) and then remove the

mean and normalize the covariance to identity. We pick a learning rate of η = 0.5/(n + p)

in all experiments, where n is the sample size and p is the dimension of parameter. The

shaded areas in the plots correspond to one standard deviation.

To assess the performance of PGD, we use the following metrics at a gradient

iterate θτ :

● normalized estimation error: ∥θτ − θ⋆∥2ℓ2/∥θ
⋆∥2ℓ2 ,

● normalized training error: ∥y −Xθτ − µτ1∥2ℓ2/∥y∥
2
ℓ2

.

● normalized test error: similarly defined but evaluated on a fresh dataset of size n.
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The population BLM θ⋆ is estimated using 100, 000 samples by solving a linear regression.

To verify our theoretical results, we study the effect of the nonlinearity, sparsity, and sample

size on the quality of the PGD estimate. Figures 6.5, 6.6, and 6.7 plot the estimation error,

training error, and test error for the same set of configurations described below. For Figures

6.6 and 6.7, the PGD errors are compared to the BLM baseline ∥y −Xθ⋆ − µ⋆1∥2ℓ2/∥y∥
2
ℓ2

which is the error at the BLM θ⋆, µ⋆ (highlighted as the dashed green line).

● The degree of nonlinearity: Figures 6.5a, 6.6a, 6.7a plot the errors over

different degrees of nonlinearity (quantified by the parameter α) with s = 20 and n = 500. The

estimation error grows with the increase in the degree of nonlinearity and we almost perfectly

recover θ⋆ for the linear case. We also state the effective noise level σ = E[(y−⟨θ⋆, x⟩−µ⋆)2]1/2.

σ is zero for the linear case (α = 1) and it increases with decreasing the value of α, resulting

in larger estimation error as predicted by our theory. Note that if nonlinearity is mild, BLM

can achieve good test accuracy (Fig. 6.7a). At α = 0.8 normalized test error is around

0.0043.

● Sparsity: Figures 6.5b, 6.6b, 6.7b plot the errors over different levels of sparsity (s)

while setting n = 500 and using ReLU function (α = 0). The estimation improves with

increasing sparsity (smaller s) which is consistent with Table 5.1 where larger s leads to

larger (perturbed) Gaussian width. Hence, these figures are consistent with Theorem 43,

which states that the statistical estimation error grows as ωn(C)/
√

n. Sparsity s = 20 achieves

same training error as the BLM baseline and has good test performance. As sparsity grows

(s = 60, 120), PGD achieves lower training error than the baseline. This implies that PGD is

overfitting as verified in Figure 6.7b.
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Figure 6.6: Normalized training errors ∥y −Xθτ − µτ1∥2ℓ2/∥y∥
2
ℓ2

associated with
the same set of experiments in Figure 6.5. Errors are plotted by varying (a) the
degree of nonlinearity, (b) sparsity, (c) sample size, and (d) the design matrix.

● Sample size: Figures 6.5c, 6.6c, 6.7c plot the errors over different sample sizes n

while setting s = 20 and using ReLU function (α = 0). Figure 6.5c also plots the normalized

estimation error of the output mean defined as ∣µτ − µ⋆∣2/∣µ⋆∣2. The estimation improves

with increasing sample size. This is again consistent with Theorem 43. Note that both

n = 250, n = 500 achieve similar training errors as the BLM baseline however n = 250 has

noticeably larger test error which can be anticipated from Figure 6.5c.

● Effect of debiasing: Figures 6.5d, 6.6d, 6.7d compare the errors over the design

matrices X and [X 1], setting s = 20 and n = 500 and using ReLU function (α = 0). We

observe that the design matrix [X 1] yields much better performance compared to the

original matrix X. While in theory the design matrix [X 1] has a similar convergence

guarantee to X, in practice it improves the estimation significantly thanks to addressing

the output mean and reducing the output variance. Finally, perhaps not surprisingly, we

remark that θ⋆ is not equal to the ground truth parameter a and it is not perfectly s

sparse. Measuring the correlation coefficient ρ =
⟨a,θ⋆⟩

∥a∥ℓ2∥θ⋆∥ℓ2
for varying sparsity s reveals

that ρ ≈ 0.969 for s = 20, ρ ≈ 0.982 for s = 60 and ρ ≈ 0.991 for s = 200. Here ρ is obtained by

averaging over 20 realizations of random a and θ⋆ is empirically found from 105 samples.

133



0 10 20 30 40 50 60 70 80
Iterations ( )

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

iz
ed

 T
es

t E
rr

or
=0.0, =1.38
=0.8, =0.28
=1.0, =0.0

(a) Nonlinearity
0 20 40 60 80 100 120

Iterations ( )

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

es
t E

rr
or

s=20
s=60
s=120
Population Baseline

(b) Sparsity
0 10 20 30 40 50 60 70 80

Iterations ( )

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

es
t E

rr
or

n=250
n=500
Population Baseline

(c) Sample size
0 10 20 30 40 50 60 70 80

Iterations ( )

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

es
t E

rr
or

PGD (X)
PGD ([X 1])
Population Baseline

(d) Bias estimation

Figure 6.7: Normalized test errors ∥ytest −Xtestθτ − µτ1∥2ℓ2/∥ytest∥
2
ℓ2

associated
with the same set of experiments in Figure 6.5. This is same as Figure 6.6
however evaluations are done on a test dataset (ytest, Xtest)

Increased correlation with larger s is previously pointed out by the interesting work [176].

Per discussion in Section 5.3.3, Gaussian samples are guaranteed to be consistent and achieve

correlation of 1. Indeed, repeating the same experiments with Gaussian data results in

ρ > 0.995 for all choices of s where 0.995 (rather than 1) is due to estimating BLM with

finite samples.
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Chapter 7

Conclusions and Future Directions

In this chapter, we present the conclusions of this thesis and discuss some possible

future directions. Specifically, we get the following conclusions:

●Nonlinear system identification: We can learn nonlinear dynamical systems by

utilizing stability and mixing-time arguments. We show that, under reasonable assumptions,

one can learn the dynamics of a nonlinear stabilized system from a single finite trajectory.

We find that, we can combine stability with one-point convexity and smoothness condition to

learn the nonlinear dynamical system (2.2.1) with an error rate O(
√

dL/T ), which is optimal

in terms of trajectory length T and the dimension of the unknown dynamics. Our general

approach can treat important dynamical systems, such as standard LTI dynamical systems

and the setups of [31–33] as special cases. We provide both sample size and estimation error

guarantees on standard LTI dynamical systems and certain nonlinear state equations.

● Bilinear system identification: We provide finite sample analysis for learning

discrete-time bilinear systems. We find that: (i) under marginal mean-square stability, we can
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estimate the bilinear systems of the form (3.2.1) with an error rate O(
√

n(p + 1)/T ), which

is optimal in terms of trajectory length T and the dimension of the unknown matrices, and

(ii) the estimation gets better with increasing input variance σ2
u, whereas, it is independent

of the noise variance σ2
w.

● Markov jump system identification: Markov jump systems are fundamental

to a rich class of control problems where the underlying dynamics are changing with time.

Despite its importance, statistical understanding (sample complexity and error rates) of MJS

have been lacking due to the technicalities such as Markovian transitions and weaker notion

of mean-square stability. At a high-level, this thesis overcomes these challenges to provide

finite sample system identification guarantees for MJS. Notably, the resulting estimation

error O(
√
(n + p)/T ) is optimal in the trajectory length and coincides with the standard

LTI system identification up to polylogarithmic factors.

● Finding best linear model: We study the problem of finding the best linear

model high dimensions. We analyze the projected gradient descent algorithm and show its

fast convergence as well as statistical accuracy in a data-dependent fashion. Our results

hold for sub-exponential data as well which is heavier tailed compared to well-studied

sub-gaussian. In both cases, we prove that nonlinearity of the problem can be treated as

uncorrelated noise, and we establish favorable statistical guarantees to estimate the best

linear model. Our bounds have a similar flavor to guarantees known for regularized linear

regression with independent noise.
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7.1 Future Directions

In this section, we discuss some possible future directions. Specifically, our technical

tools and ideas from Chapters 2, 3,4 and 5 can be extended or improved to solve the following

research problems:

● Learning nonlinear ARX models: While we focus on nonlinear state equations,

our technical ideas (e.g., combining mixing-time and optimization landscape arguments)

have implications for richer class of systems. For instance, nonlinear ARX form xt =

f⋆(xt−1, xt−2,⋯, xt−m) +wt−1 is a powerful generalization of the state equations that we

investigate. Koopman lifting provides another class of nonlinear problems. It would be

interesting to extend our framework (i.e., merging one-point convexity and smoothness with

mixing-time arguments to enable success of gradient descent) to provide non-asymptotic

learning guarantees for these systems.

● Learning non-mixing nonlinear models: It will be interesting to explore

alternative approaches to mixing-time arguments for learning nonlinear dynamical systems.

Martingale based arguments have the potential to provide tighter statistical guarantees

and mitigate dependence on the spectral radius [22]. It will be interesting to extend these

arguments to provide non-asymptotic learning guarantees for nonlinear dynamical systems.

● Adaptive control for nonlinear systems: It will be interesting to extend our

nonlinear system identification framework to nonlinear adaptive control. One can analyze

the nonlinear control problem in both model-free and model-based settings. In these settings,

one can analyze the Koopman operator theoretic framework as well as the model predictive

control framework to provide end-to-end guarantees. Combining learning and control in
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the nonlinear setting is challenging. A major challenge is the distribution shift induced by

deploying the learned policy. Mitigating the distribution shift in nonlinear adaptive control

is itself an interesting research direction.

● Learning bilinear systems with control: Our analysis from Chapter 3 can be

extended to estimate a more general bilinear system xt+1 =A0xt +∑
m
k=1 ut[k]Akxt +But +

wt+1. In this case, because of the additional But term, the estimation gets better with

increasing input variance σ2
u or decreasing the noise variance σ2

w. In the future, we would

like to apply these results for learning more general nonlinear systems by learning a bilinear

or state-affine approximation in a higher dimensional space using Koopman operator-like

techniques, with the main challenge being the need to jointly learn a lifting and the dynamics

in the lifted space.

● Finding best LTI model in high dimensions: It would be interesting to

extend our results from Chapter 5 to finding the best LTI dynamical system that can

minimize least-squares loss given a single trajectory of an unknown dynamical system.
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Appendix A

Proof of Corollary 15

A.1 Verification of Assumption 1

The following lemma states that a linear dynamical system satisfies (Cρ, ρ)-stability

if the spectral radius ρ(A⋆) < 1.

Lemma 55 ((Cρ, ρ)-stability) Fix excitations (zt)∞t=0 and noise (wt)
∞
t=0. Denote the state

sequence (2.4.1) (ϕ = In) resulting from initial state x0 = α, (zτ)tτ=0 and (wτ)
t
τ=0 by

xt(α). Suppose ρ(A⋆) < 1. Then, there exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆), 1) such that

∥xt(α) −xt(0)∥ℓ2 ≤ Cρρ
t∥α∥ℓ2 .

Proof. To begin, consider the difference,

xt(α) −xt(0) =A⋆xt−1(α) +B⋆zt−1 −A⋆xt−1(0) −B⋆zt−1 =A⋆(xt−1(α) −xt−1(0)).

Repeating this recursion till t = 0 and taking the norm, we get

∥xt(α) −xt(0)∥ℓ2 = ∥A
t
⋆(α − 0)∥ℓ2 ≤ ∥A

t
⋆∥∥α∥ℓ2 . (A.1.1)
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Given ρ(A⋆) < 1, as a consequence of Gelfand’s formula, there exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆), 1)

such that, ∥At
⋆∥ ≤ Cρρ

t, for all t ≥ 0. Hence, ∥xt(α) −xt(0)∥ℓ2 ≤ Cρρ
t∥α∥ℓ2 . This completes

the proof.

A.2 Verification of Assumption 2

To show that the states of a stable linear dynamical system are bounded with high

probability, we state a standard Lemma from [31] that bounds the Euclidean norm of a

subgaussian vector.

Lemma 56 Let a ∈ Rn be a zero-mean subgaussian random vector with ∥a∥ψ2 ≤ L. Then

for any m ≥ n, there exists C > 0 such that

P(∥a∥ℓ2 ≤ CL
√

m) ≥ 1 − 2 exp(−100m). (A.2.1)

To apply Lemma 56, we require the subgaussian norm of the state vector xt and the

concatenated vector xt. We will do that by first bounding the corresponding covariance

matrices as follows.

Theorem 57 (Covariance bounds) Consider the LDS in (2.4.1) with ϕ = In. Suppose

zt
i.i.d.
∼ N(0, Ip) and wt

i.i.d.
∼ N(0, σ2In). Let Gt and Ft be as in (2.4.4). Then, the covariance

matrix of the vectors xt and ht ∶= [x
⊺
t z⊺t ]

⊺ satisfies

λmin(GtG
⊺
t + σ2FtF

⊺
t )In ⪯Σ[xt] ⪯ λmax(GtG

⊺
t + σ2FtF

⊺
t )In, (A.2.2)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯Σ[ht] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t ))In+p, (A.2.3)
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Proof. We first expand the state vector xt as a sum of two independent components gt and

ωt as follows,

xt =
t−1
∑
i=0

At−1−i
⋆ B⋆zi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gt

+
t−1
∑
i=0

At−1−i
⋆ wi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ωt

. (A.2.4)

Observe that, gt denotes the state evolution due to control input and ωt denotes the state

evolution due to noise. Furthermore, gt and ωt are both independent and zero-mean.

Therefore, we have

Σ[xt] =Σ[gt +ωt] =Σ[gt] +Σ[ωt] = E[gtg⊺t ] +E[ωtω
⊺
t ]

=
t−1
∑
i=0

t−1
∑
j=0
(Ai
⋆)B⋆E[ziz

⊺
j ]B

⊺
⋆(A

j
⋆)
⊺
+
t−1
∑
i=0

t−1
∑
j=0
(Ai
⋆)E[wiw

⊺
j ](A

j
⋆)
⊺

(a)
=

t−1
∑
i=0
(Ai
⋆)B⋆B

⊺
⋆(A

i
⋆)
⊺
+ σ2

t−1
∑
i=0
(Ai
⋆)(A

i
⋆)
⊺, (A.2.5)

where we get (a) from the fact that E[ziz⊺j ] = Ip and E[wiw
⊺
j ] = σ2In when i = j, and

zero otherwise. To proceed, let Gt ∶= [A
t−1
⋆ B⋆ At−2

⋆ B⋆ ⋯ B⋆] and Ft ∶= [A
t−1
⋆ At−2

⋆ ⋯ In].

Observing GtG
⊺
t = ∑

t−1
i=0(A

i
⋆)B⋆B

⊺
⋆(A

i
⋆)
⊺ and FtF

⊺
t = ∑

t−1
i=0(A

i
⋆)(A

i
⋆)
⊺, we obtain the fol-

lowing bounds on the covariance matrix of the state vector xt and the concatenated vector

ht ∶= [x
⊺
t z⊺t ]

⊺.

λmin(GtG
⊺
t + σ2FtF

⊺
t )In ⪯Σ[xt] ⪯ λmax(GtG

⊺
t + σ2FtF

⊺
t )In, (A.2.6)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯Σ[ht] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t ))In+p, (A.2.7)

where to get the second relation, we use the fact that Σ[zt] = Ip. This completes the proof.

Once we bound the covariance matrices, using standard bounds on the subgaussian

norm of a random vector, we find that ∥xt∥ψ2 ≲
√

Σ[xt] ≤
√

λmax(GtG
⊺
t + σ2FtF

⊺
t ) and
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∥ht∥ψ2 ≲
√

Σ[ht] ≤ 1 ∨
√

λmax(GtG
⊺
t + σ2FtF

⊺
t ). Combining these with Lemma 56, we find

that, with probability at least 1 − 4T exp(−100n), for all 1 ≤ t ≤ T , we have ∥xt∥ℓ2 ≤ c
√

β+n

and ∥ht∥ℓ2 ≤ c0
√

β+(n + p), where we set β+ = 1 ∨max1≤t≤T λmax(GtG
⊺
t + σ2FtF

⊺
t ). This

verifies Lemma 6 and consequently Assumption 2.

A.3 Verification of Assumption 3

Recall that, we define the following concatenated vector/matrix for linear dynamical

systems: ht ∶= [x
⊺
t z⊺t ]

⊺ and Θ⋆ = [A⋆ B⋆]. Let θ⋆⊺k denotes the kth row of Θ⋆. Then, the

auxiliary loss for linear dynamical system is defined as follows,

LD(Θ) =
n

∑
k=1
Lk,D(θk), where Lk,D(θk) ∶=

1
2
E[(xL[k] − θ⊺khL−1)

2
]. (A.3.1)

Using the derived bounds on the covariance matrix, it is straightforward to show that the

auxiliary loss satisfies the following one-point convexity and smoothness conditions.

Lemma 58 (One-point convexity & smoothness) Consider the setup of Theorem 57

and the auxiliary loss given by (A.3.1). Define Γt ∶=GtG
⊺
t +σ2FtF

⊺
t . Let γ− ∶= 1∧λmin(ΓL−1)

and γ+ ∶= 1 ∨ λmax(ΓL−1). For all 1 ≤ k ≤ n, the gradient ∇Lk,D(θk) satisfies,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ γ−∥θk − θ⋆k∥
2
ℓ2 ,

∥∇Lk,D(θk)∥ℓ2 ≤ γ+∥θk − θ⋆k∥ℓ2 .

Proof. To begin, we take the gradient of the auxiliary loss Lk,D (A.3.1) to get ∇Lk,D(θk) =

E[hL−1h⊺L−1(θk − θ⋆k) −hL−1wL−1[k]]. Note that, E[hL−1wL−1[k]] = 0 for linear dynamical

systems because wL−1 and hL−1 are independent and we have E[wL−1] = E[hL−1] = 0.
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Therefore, using Theorem 57 with t = L − 1, we get the following one point convexity bound,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ = ⟨θk − θ⋆k ,E[hL−1h⊺L−1](θk − θ⋆k)⟩ ,

≥ γ−∥θk − θ⋆k∥
2
ℓ2 , (A.3.2)

where γ− ∶= 1 ∧ λmin(ΓL−1). Similarly, setting γ+ ∶= 1 ∨ λmax(ΓL−1), we also have

∥∇Lk,D(θk)∥ℓ2 ≤ ∥E[hL−1h⊺L−1]∥∥θk − θ⋆k∥ℓ2 ≤ γ+∥θk − θ⋆k∥ℓ2 . (A.3.3)

This completes the proof.

A.4 Verification of Assumption 4

Let S ∶= (x(i)L , x
(i)
L−1, z

(i)
L−1)

N
i=1 be N i.i.d. copies of (xL, xL−1, zL−1) generated from

N i.i.d. trajectories of the system (2.4.1) with ϕ = In. Let h
(i)
L−1 ∶= [x

(i)⊺
L−1 z

(i)⊺
L−1]

⊺ and

Θ ∶= [A B] be the concatenated vector/matrix. Then, the finite sample approximation of

the auxiliary loss LD is given by

L̂S(Θ) =
n

∑
k=1
L̂k,S(θk), where L̂k,S(θk) ∶=

1
2N

N

∑
i=1
(x
(i)
L [k] − θ⊺kh

(i)
L−1)

2. (A.4.1)

The following lemma states that both ∇Lk,D and ∇L̂k,S are Lipschitz with high probability.

Lemma 59 (Lipschitz gradient) Consider the same setup of Theorem 57. Consider

the auxiliary loss Lk,D and its finite sample approximation L̂k,S from (A.3.1) and (A.4.1)

respectively. Let γ+ > 0 be as in Lemma 58. For N ≳ n + p, with probability at least

1 − 2 exp(−100(n + p)), for all pairs Θ, Θ′ and for all 1 ≤ k ≤ n, we have

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥ℓ2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ
′
k)∥ℓ2) ≤ 2γ+∥θk − θ′k∥ℓ2 . (A.4.2)
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Proof. To begin, recall the auxiliary loss from (A.3.1). We have that

∥∇Lk,D(θk) − ∇Lk,D(θ
′
k)∥ℓ2 = ∥E[hL−1h⊺L−1](θk − θ⋆k) −E[hL−1h⊺L−1](θ

′
k − θ⋆k)∥ℓ2 ,

≤ ∥E[hL−1h⊺L−1]∥∥θk − θ′k∥ℓ2 ,

≤ γ+∥θk − θ′k∥ℓ2 . (A.4.3)

To obtain a similar result for the finite sample loss L̂k,S , we use Corollary 5.50 from [177] which

bounds the concentration of empirical covariance around its population when the sample size

is sufficiently large. Specifically, applying this corollary on the empirical covariance of h
(i)
L−1

with t = 10, ε = 1 shows that, for N ≳ n + p, with probability at least 1 − 2 exp(−100(n + p)),

we have

∥
1
N

N

∑
i=1

h
(i)
L−1(h

(i)
L−1)

⊺
−E[hL−1h⊺L−1]∥ ≤ γ+. (A.4.4)

Thus, the gradient ∇L̂k,S(θk) also satisfies the Lipschitz property, that is, for N ≳ n + p,

with probability at least 1 − 2 exp(−100(n + p)), we have

∥∇L̂k,S(θk) − ∇L̂k,S(θ
′
k)∥ℓ2

≤ ∥
1
N

N

∑
i=1

h
(i)
L−1(h

(i)
L−1)

⊺
(θk − θ⋆k) −

1
N

N

∑
i=1

h
(i)
L−1(h

(i)
L−1)

⊺
(θ′k − θ⋆k)∥ℓ2 ,

≤ ∥
1
N

N

∑
i=1

h
(i)
L−1(h

(i)
L−1)

⊺
∥∥θk − θ′k∥ℓ2 ,

≤ [∥E[hL−1h⊺L−1]∥ + ∥
1
N

N

∑
i=1

h
(i)
L−1(h

(i)
L−1)

⊺
−E[hL−1h⊺L−1]∥]∥θk − θ′k∥ℓ2 ,

≤ 2γ+∥θk − θ′k∥ℓ2 , (A.4.5)

for all 1 ≤ k ≤ n. Combining the two results, we get the statement of the lemma. This

completes the proof.
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A.5 Verification of Assumption 5

Given a single sample (xL, xL−1, zL−1) from the trajectory of a linear dynamical

system, setting hL−1 ∶= [x
⊺
L−1 z⊺L−1]

⊺, the single sample loss is given by,

L(Θ, (xL, hL−1)) =
n

∑
k=1
Lk(θk, (xL[k], hL−1)),

where Lk(θk, (xL[k], hL−1)) ∶=
1
2
(xL[k] − θ⊺khL−1)

2. (A.5.1)

The following lemma shows that the gradient of the above loss is subexponential.

Lemma 60 (Subexponential gradient) Consider the same setup of Theorem 57. Let

Lk(θk, (xL[k], hL−1)) be as defined in (A.5.1) and γ+ > 0 be as in lemma 58. Then, at any

point Θ, for all 1 ≤ k ≤ n, we have

∥∇Lk(θk, (xL[k], hL−1)) −E[∇Lk(θk, (xL[k], hL−1))]∥ψ1 ≲ γ+∥θk − θ⋆k∥ℓ2 + σ
√

γ+.

Proof. Using standard bounds on the subgaussian norm of a random vector, we find that

∥hL−1∥ψ2 ≲
√

Σ[hL−1] ≤
√

γ+, where γ+ > 0 is as defined in Lemma 58. Combining this with

∥wL−1[k]∥ψ2 ≤ σ, we get the following subexponential norm bound,

∥∇Lk(θk, (xL[k], hL−1)) −E[∇Lk(θk, (xL[k], hL−1))]∥ψ1

= ∥(hL−1h⊺L−1 −E[hL−1h⊺L−1])(θk − θ⋆k) −hL−1wL−1[k]∥ψ1 ,

≤ ∥(hL−1h⊺L−1 −E[hL−1h⊺L−1])(θk − θ⋆k)∥ψ1 + ∥hL−1wL−1[k]∥ψ1 ,

≲ γ+∥θk − θ⋆k∥ℓ2 + σ
√

γ+, (A.5.2)

where we get the last inequality from the fact that, the product of two subgaussian random

variables results in a subexponential random variable with its subexponential norm bounded

by the product of the two subgaussian norms.
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A.6 Finalizing the Proof of Corollary 15

Proof. Our proof strategy is based on verifying Assumptions 1, 2, 3, 4 and 5 for a

stable linear dynamical system and then applying Theorem 14. Since, we already verified all

the assumptions, we are ready to use Theorem 14. Before that, we find the values of the

system related constants to be used in Theorem 14 as follows.

Remark 61 Consider the same setup of Theorem 57. For a stable linear dynamical system,

with probability at least 1 − 4T exp(−100n), for all 1 ≤ t ≤ T , the scalars Cϕ̃, Dϕ̃ take the

following values:

∥∇θk(θ
⊺
kht)∥ℓ2 = ∥ht∥ℓ2 ≤ c0

√
β+(n + p) =∶ Cϕ̃, (A.6.1)

∥∇ht∇θk(θ
⊺
kht)∥ = ∥In+p∥ ≤ 1 =∶Dϕ̃, (A.6.2)

where β+ = 1 ∨max1≤t≤T λmax(GtG
⊺
t + σ2FtF

⊺
t ). Furthermore, the Lipschitz constant and

the gradient noise coefficients take the following values: LD = 2γ+, K = cγ+ and σ0 = cσ
√

γ+.

Lastly, we also have p0 = 2 exp(−100(n + p)).

Using these values, we get the following sample complexity bound for learning linear

dynamical system via gradient descent,

N ≳ κ2 log2
(3(2γ+)N/γ+ + 3)(n + p) ⇔ N ≳ κ2 log2

(6N + 3)(n + p), (A.6.3)

where κ = γ+/γ− is an upper bound on the condition number of the covariance matrix Σ[ht].

Similarly, the approximate mixing time for the linear dynamical system is given by,

L ≥ 1 + [ log(c0(n + p)
√

β+Cρ

√
N/(n + p)) + log(c/√γ+ ∨ c

√
β+(n + p)/γ+)]/ log(ρ−1

)

⇐Ô L ≥ ⌈1 +
log(CCρβ+N(n + p)/γ+)

1 − ρ
⌉, (A.6.4)
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where, C > 0 is a constant. Finally, given the trajectory length T ≳ L(N + 1), where N and

L are given by (A.6.3) and (A.6.4) respectively, starting from Θ(0) = 0 and using learning

rate η = γ−/(16γ2
+) (in Theorem 14), with probability at least 1 − 4T exp(−100n) −Ln(4 +

log( ∥Θ⋆∥F
√
γ+

σ )) exp(−100(n + p)) for all 1 ≤ k ≤ n, all gradient descent iterates Θ(τ) on L̂

satisfy

∥θ
(τ)
k − θ⋆k∥ℓ2 ≤ (1 −

γ2
−

128γ2
+
)
τ
∥θ
(0)
k − θ⋆k∥ℓ2 +

5c

γ−
σ
√

γ+ log(6N + 3)
√

n + p

N
. (A.6.5)

We remark that, choosing N ≳ κ2 log2(6N + 3)(n + p), the residual term in (A.6.5) can be

bounded as follows,

5c

γ−
σ
√

γ+ log(6N + 3)
√

n + p

N
≲ σ/
√

γ+.

Therefore, to ensure that Theorem 14 is applicable, we assume that the noise is small enough,

so that σ ≲
√

γ+∥Θ⋆∥F (we choose Θ(0) = 0 and r = ∥Θ⋆∥F ). This completes the proof.
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Appendix B

Proof of Corollary 16

B.1 Verification of Assumption 2

Lemma 62 Let X be a non-negative random variable upper bounded by another random

variable Y . Fix an integer k > 0. Fix a constant C > 1 + k log 3 and suppose for some B > 0

we have that P(Y ≥ B(1 + t)) ≤ exp(−Ct2) for all t > 0. Then, the following bound holds,

E[Xk
] ≤ (2k + 2)Bk.

Proof. Split the real line into regions Ri = {x ∣ Bi ≤ x ≤ B(i + 1)}. Observe that P(Y ∈

R0) + P(Y ∈ R1) ≤ 1 and P(Y ∈ Ri+1) ≤ exp(−Ci2) for i ≥ 1. Then,

E[Y k
] ≤

∞
∑
i=0
(B(i + 1))kP(Y ∈ Ri),

≤ (2k + 1)Bk
+
∞
∑
i=1
(i + 2)kBk exp(−Ci2

).

Next, we pick C > 0 sufficiently large to satisfy exp(−Ci2)(i+2)k ≤ exp(−i2) ≤ exp(−i). This
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can be guaranteed by picking C to satisfy, for all i

exp((C − 1)i2
) ≥ (i + 2)k ⇐⇒ (C − 1)i2

≥ k log(i + 2),

⇐⇒ C ≥ 1 + sup
i≥1

k log(i + 2)
i2 ,

⇐⇒ C ≥ 1 + k log 3.

Following this, we obtain ∑∞i=1(i+ 2)kBk exp(−Ci2) ≤ Bk. Thus, we find E[Y k] ≤ (2k + 2)Bk.

Lemma 63 (Bounded states) Suppose, the nonlinear system (2.4.2) is (Cρ, ρ)-stable and

ϕ(0) = 0. Suppose, zt
i.i.d.
∼ N(0, In), wt

i.i.d.
∼ N(0, σ2In) and let β+ ∶= Cρ(1 + σ)/(1 − ρ).

Then, starting from x0 = 0, for all 0 ≤ t ≤ T , we have:

(a) P(∥xt∥ℓ2 ≤ cβ+
√

n) ≥ 1 − 4T exp(−100n).

(b) E[∥xt∥2ℓ2] ≤ β2
+n.

(c) E[∥xt∥3ℓ2] ≤ Cβ3
+(log(2T )n)3/2.

Proof. (a) Given ∥zt∥ψ2 ≤ 1 and ∥wt∥ψ2 ≤ σ, we use Lemma 56 to obtain P(∥zt∥ℓ2 ≲
√

n) ≥

1−2T exp(−100n) and P(∥wt∥ℓ2 ≲ σ
√

n) ≥ 1−2T exp(−100n) for all 0 ≤ t ≤ T −1. Using these

results along-with (Cρ, ρ)-stability in Lemma 6, we get the desired bound on the Euclidean

norm of the state vector xt.

(b) Recall that x0 = 0. We claim that E[∥xt∥2ℓ2] ≤ β2
+n(1 − ρt)2, where β+ ∶=

Cρ(1+σ)/(1−ρ). Note that, using standard results on the distribution of squared Euclidean

norm of a Gaussian vector, we have E[∥zt∥2ℓ2] = n and E[∥wt∥
2
ℓ2
] = σ2n, which implies

E[∥zt∥ℓ2] ≤
√

n and E[∥wt∥ℓ2] ≤ σ
√

n. Using this results, we show that x1 satisfies the
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following bound and obeys the induction

E[∥x1∥
2
ℓ2] = E[∥ϕ(0) + z0 +w0∥

2
ℓ2] ≤ (1 + σ2

)n ≤ C2
ρ(1 + σ)2n = β2

+n(1 − ρ1
)

2.

This implies E[∥x1∥ℓ2] ≤ β+
√

n(1 − ρ1) as well. Suppose the bound holds until t − 1, that

is, E[∥xt−1∥
2
ℓ2
] ≤ β2

+n(1 − ρt−1)2 (which also means E[∥xt−1∥ℓ2] ≤ β+
√

n(1 − ρt−1)). We now

apply the induction as follows: First observe that E[∥xt,L∥ℓ2] obeys the same upper bound as

E[∥xL∥ℓ2] by construction. To proceed, recalling (2.3.7), we get the following by induction

∥xt −xt,t−1∥ℓ2 ≤ Cρρ
t−1
∥x1∥ℓ2

Ô⇒ ∥xt∥ℓ2 ≤ Cρρ
t−1
∥x1∥ℓ2 + ∥xt,t−1∥ℓ2 ,

Ô⇒ ∥xt∥
2
ℓ2 ≤ (Cρρ

t−1
∥x1∥ℓ2 + ∥xt,t−1∥ℓ2)

2,

Ô⇒ E[∥xt∥2ℓ2] ≤ C2
ρρ2(t−1)E[∥x1∥

2
ℓ2] +E[∥xt−1∥

2
ℓ2] + 2Cρρ

t−1 E[∥x1∥ℓ2]E[∥xt−1∥ℓ2],

(a)
≤ C2

ρρ2(t−1)
(1 + σ)2n + β2

+n(1 − ρt−1
)

2
+ 2nCρρ

t−1
(1 + σ)β+(1 − ρt−1

),

(b)
≤ β2

+n(ρ
2(t−1)

(1 − ρ1
)

2
+ (1 − ρt−1

)
2
+ 2ρt−1

(1 − ρt−1
)(1 − ρ1

)),

= β2
+n[ρ

2t−2
(1 + ρ2

− 2ρ) + 1 + ρ2t−2
− 2ρt−1

+ (2ρt−1
− 2ρ2t−2

)(1 − ρ)],

= β2
+n(1 + ρ2t

− 2ρt),

= β2
+n(1 − ρt)2, (B.1.1)

where we get (a) from the induction hypothesis and (b) from the bound on x1. This bound

also implies E[∥xt∥2ℓ2] ≤ β2
+n and completes the proof.

(c) Recall that, we have ∥zt∥ψ2 ≤ 1, ∥wt∥ψ2 ≤ σ, E[∥zt∥ℓ2] ≤
√

n and E[∥wt∥ℓ2] ≤

σ
√

n. Combining these bounds with standard concentration inequalities of a Guassian
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random vector, we have

P(∥zt∥ℓ2 ≥ E[∥zt∥ℓ2] + t) ≤ exp(−t2
/2) and P(∥wt∥ℓ2 ≥ E[∥wt∥ℓ2] + t) ≤ exp(−t2

/(2σ2
)),

Ô⇒ P(∥zt∥ℓ2 ≥
√

2cn(1 + t)) ≤ exp(−cnt2
), (B.1.2)

and P(∥wt∥ℓ2 ≥ σ
√

2cn(1 + t)) ≤ exp(−cnt2
). (B.1.3)

To proceed, let X = ∥xt∥ℓ2 and Y = ∑t−1
τ=0 Cρρ

τ(∥zt∥ℓ2 + ∥wt∥ℓ2) and note that X ≤ Y . Now,

using (B.1.2), (B.1.3) and union bounding over all 0 ≤ t ≤ T − 1, we get the following high

probability upper bound on Y , that is,

P(Y ≥
t−1
∑
τ=0

Cρρ
τ
√

2cn(1 + σ)(1 + t)) ≤ 2T exp(−cnt2
),

Ô⇒ P(Y ≥ Cρ

√
10n log(2T )(1 + t)(1 + σ)/(1 − ρ)) ≤ exp(−5nt2

), (B.1.4)

where we choose c = 5 log(2T ) to get the final concentration bound of Y . Finally using this

bound in Lemma 62, we get

E[∥xt∥3ℓ2] ≤ 32β3
+(log(2T )n)3/2, (B.1.5)

where β+ = Cρ(1 + σ)/(1 − ρ), as defined earlier. This completes the proof.

B.2 Verification of Assumption 3

Theorem 64 Suppose the nonlinear system (2.4.2) satisfies (Cρ, ρ)-stability. Suppose zt
i.i.d.
∼

N(0, In) and wt
i.i.d.
∼ N(0, σ2In). Let β+ be as in Lemma 63. Then, the matrix E[xtx⊺t ]

satisfies

(1 + σ2
)In ⪯ E[xtx⊺t ] ⪯ β2

+nIn. (B.2.1)
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Proof. We first upper bound the matrix E[xtx⊺t ] by bounding its largest singular value as

follows,

E[xtx⊺t ] ⪯ E[∥xtx
⊺
t ∥]In ⪯ E[∥xt∥

2
ℓ2]In ⪯ β2

+nIn, (B.2.2)

where we get the last inequality by applying Lemma 63. To get a lower bound, note that

Σ[xt] = E[xtx⊺t ] − E[xt]E[xt]⊺. Since, all of these matrices are positive semi-definite, we

get the following lower bound,

E[xtx⊺t ] ⪰Σ[xt] =Σ[ϕ(Θ⋆xt−1) + zt−1 +wt−1] ⪰Σ[zt−1 +wt−1] = (1 + σ2
)In. (B.2.3)

Combining the two bounds gives us the statement of the lemma. This completes the proof.

To verify Assumption 3 for the nonlinear system (2.4.2), denoting the kth row of Θ

by θ⊺k , the auxiliary loss for the nonlinear system (2.4.2) is given by,

LD(Θ) =
n

∑
k=1
Lk,D(θk) where Lk,D(θk) ∶=

1
2
E[(xL[k] − ϕ(θ⊺kxL−1) − zL−1[k])

2
]. (B.2.4)

Using the derived bounds on the matrix E[xtx⊺t ], it is straightforward to show that the

auxiliary loss satisfies the following one-point convexity and smoothness conditions.

Lemma 65 (One-point convexity & smoothness) Consider the setup of Theorem 64

and the auxiliary loss given by (B.2.4). Suppose, ϕ is γ-increasing (i.e. ϕ′(x) ≥ γ > 0 for all

x ∈ R) and 1-Lipschitz. Let β+ be as in Lemma 63. Then, for all 1 ≤ k ≤ n, the gradients

∇Lk,D(θk) satisfy,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ γ2
(1 + σ2

)∥θk − θ⋆k∥
2
ℓ2 ,

∥∇Lk,D(θk)∥ℓ2 ≤ β2
+n∥θk − θ⋆k∥ℓ2 .
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Proof. Given two distinct scalars a, b we define ϕ′(a, b) ∶=
ϕ(a)−ϕ(b)

a−b . Observe that 0 < γ ≤

ϕ′(a, b) ≤ 1 because of the assumption that ϕ is 1-Lipschitz and γ-increasing. Now, recalling

the auxiliary loss Lk,D from (B.2.4), we have

∇Lk,D(θk) = E[(ϕ(θ⊺kxL−1) − ϕ(θ⋆⊺k xL−1) −wL−1[k])ϕ
′
(θ⊺kxL−1)xL−1],

= E[ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)(θ

⊺
kxL−1 − θ⋆⊺k xL−1)xL−1]

−E[wL−1[k]ϕ
′
(θ⊺kxL−1)xL−1],

= E[ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1(θk − θ⋆k)], (B.2.5)

where E[wL−1[k]ϕ
′(θ⊺kxL−1)xL−1] = 0 because xL−1 and wL−1 are independent and we have

E[wL−1] = 0. Next, using γ-increasing property of ϕ, we get the following one-point convexity

bound,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ = ⟨θk − θ⋆k ,E[ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1(θk − θ⋆k)]⟩ ,

≥ γ2 ⟨θk − θ⋆k ,E[xL−1x⊺L−1](θk − θ⋆k)⟩ ,

≥ γ2
(1 + σ2

)∥θk − θ⋆k∥
2
ℓ2 . (B.2.6)

Similarly, using 1-Lipschitzness of ϕ, we get the following smoothness bound,

∥∇Lk,D(θk)∥ℓ2 = ∥E[ϕ
′
(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ

′
(θ⊺kxL−1)xL−1x⊺L−1(θk − θ⋆k)]∥ℓ2 ,

≤ E[∥ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1∥]∥θk − θ⋆k∥ℓ2 ,

≤ E[∥xL−1x⊺L−1∥]∥θk − θ⋆k∥ℓ2 .

≤ β2
+n∥θk − θ⋆k∥ℓ2 , (B.2.7)

where β+ is as defined in Lemma 63. This completes the proof.
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B.3 Verification of Assumption 4

Let S = (x(i)L , x
(i)
L−1, z

(i)
L−1)

N
i=1 be N i.i.d. copies of (xL, xL−1, zL−1) generated from

N i.i.d. trajectories of the system (2.4.2). Then, the finite sample approximation of the

auxiliary loss LD is given by,

L̂S(Θ) =
n

∑
k=1
L̂k,S(θk) where L̂k,S(θk) ∶=

1
2N

N

∑
i=1
(x
(i)
L [k] − ϕ(θ⊺kx

(i)
L−1) − z

(i)
L−1[k])

2. (B.3.1)

The following lemma states that both ∇Lk,D and ∇L̂k,S are Lipschitz with high probability.

Lemma 66 (Lipschitz gradient) Consider the same setup of Theorem 64. Consider

the auxiliary loss Lk,D and its finite sample approximation L̂k,S from (B.2.4) and (B.3.1)

respectively. Suppose, ϕ has bounded first and second derivatives, that is, ∣ϕ′∣, ∣ϕ′′∣ ≤ 1. Let

β+ be as in Lemma 63. Then, with probability at least 1 − 4T exp(−100n), for all pairs

Θ, Θ′ ∈ Bn×n(Θ⋆, r) and for 1 ≤ k ≤ n, we have

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥ℓ2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ
′
k)∥ℓ2)

≲ ((1 + σ)β2
+n + rβ3

+n
3/2 log3/2

(2T ))∥θk − θ′k∥ℓ2 .

Proof. To begin recall that, ∇Lk,D(θk) = E[(ϕ(θ⊺kxL−1) − ϕ(θ⋆⊺k xL−1))ϕ
′(θ⊺kxL−1)xL−1].

To bound the Lipschitz constant of the gradient ∇Lk,D(θk), we will upper bound the spectral
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norm of the Hessian as follows,

∥∇
2
Lk,D(θk)∥ = ∥E[(ϕ(θ⊺kxL−1) − ϕ(θ⋆⊺k xL−1))ϕ

′′
(θ⊺kxL−1)xL−1x⊺L−1]

+E[ϕ′(θ⊺kxL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1]∥,

≤ E[∥ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)(θ
⊺
kxL−1 − θ⋆⊺k xL−1)ϕ

′′
(θ⊺kxL−1)xL−1x⊺L−1∥]

+E[∥ϕ′(θ⊺kxL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1∥],

≤ E[∥(θ⊺kxL−1 − θ⋆⊺k xL−1)xL−1x⊺L−1∥] +E[∥xL−1x⊺L−1∥],

≤ ∥θk − θ⋆k∥ℓ2 E[∥xL−1∥
3
ℓ2] +E[∥xL−1∥

2
ℓ2],

≲ β3
+(log(2T )n)3/2∥θk − θ⋆k∥ℓ2 + β2

+n, (B.3.2)

where we get the last inequality by applying Lemma 63. Similarly, to bound the Lipschitz

constant of the empirical gradient

∇L̂k,S(θk) =
1
N

N

∑
i=1
(ϕ(θ⊺kx

(i)
L−1) − ϕ(θ⋆⊺k x

(i)
L−1) −w

(i)
L−1[k])ϕ

′
(θ⊺kx

(i)
L−1)x

(i)
L−1,

we upper bound the spectral norm of the Hessian of the empirical loss L̂k,S as follows,

∥∇
2
L̂k,S(θk)∥ ≤

1
N

N

∑
i=1
∥(ϕ(θ⊺kx

(i)
L−1) − ϕ(θ⋆⊺k x

(i)
L−1) −w

(i)
L−1[k])ϕ

′′
(θ⊺kx

(i)
L−1)x

(i)
L−1(x

(i)
L−1)

⊺
∥

+
1
N

N

∑
i=1
∥ϕ′(θ⊺kx

(i)
L−1)ϕ

′
(θ⊺kx

(i)
L−1)x

(i)
L−1(x

(i)
L−1)

⊺
∥,

(a)
≤

1
N

N

∑
i=1
[∥(θ⊺kx

(i)
L−1 − θ⋆⊺k x

(i)
L−1)x

(i)
L−1(x

(i)
L−1)

⊺
∥ + (1 + ∣w(i)L−1[k]∣)∥x

(i)
L−1(x

(i)
L−1)

⊺
∥],

≤
1
N

N

∑
i=1
[∥θk − θ⋆k∥ℓ2∥x

(i)
L−1∥

3
ℓ2 + (1 + ∣w

(i)
L−1[k]∣)∥x

(i)
L−1∥

2
ℓ2],

≲ β3
+n

3/2
∥θk − θ⋆k∥ℓ2 + (1 + σ)β2

+n, (B.3.3)

with probability at least 1 − 4T exp(−100n), where we get (a) by using a similar argument

as we used in the case of auxiliary loss while the last inequality comes from Lemma 63.
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Combining the two bounds, gives us the statement of the lemma. This completes the proof.

B.4 Verification of Assumption 5

Given a single sample (xL, xL−1, zL−1) from the trajectory of the nonlinear sys-

tem (2.4.2), the single sample loss is given by,

L(Θ, (xL, xL−1, zL−1)) =
n

∑
k=1
Lk(θk, (xL[k], xL−1, zL−1[k])),

where Lk(θk, (xL[k], xL−1, zL−1[k])) ∶=
1
2
(xL[k] − ϕ(θ⊺kxL−1) − zL−1[k])

2. (B.4.1)

Before stating a lemma on bounding the subexponential norm of the gradient of the single

sample loss (B.4.1), we will state an intermediate lemma to prove the Lipschitzness of the

state vector.

Lemma 67 (Lipschitzness of the state vector) Suppose the nonlinear system (2.4.2)

is (Cρ, ρ)-stable, zt
i.i.d.
∼ N(0, In) and wt

i.i.d.
∼ N(0, σ2In). Let vt ∶= [z

⊺
t 1/σw⊺t ]

⊺ and x0 = 0.

Fixing all {vi}i≠τ (i.e., all except vτ ), xt+1 is Cρρ
t−τ(1 + σ2)1/2 Lipschitz function of vτ for

0 ≤ τ ≤ t.

Proof. To begin, observe that xt+1 is deterministic function of the sequence {vτ}tτ=0. Fixing

all {vi}i≠τ , we denote xt+1 as a function of vτ by xt+1(vτ). Given a pair of vectors (vτ , v̂τ),

170



using (Cρ, ρ)-stability of the nonlinear system (2.4.2), for any t ≥ τ , we have

∥xt+1(vτ) −xt+1(v̂τ)∥ℓ2 ≤ Cρρ
t−τ
∥xτ+1(vτ) −xτ+1(v̂τ)∥ℓ2 ,

≤ Cρρ
t−τ
∥ϕ(Θ⋆xτ) + zτ +wτ − ϕ(Θ⋆xτ) − ẑτ − ŵτ∥ℓ2 ,

≤ Cρρ
t−τ
(∥zτ − ẑτ∥ℓ2 + σ∥1/σwτ − 1/σŵτ∥ℓ2),

(a)
≤ Cρρ

t−τ
(1 + σ2

)
1/2
(∥zτ − ẑτ∥

2
ℓ2 + 1/σ2

∥wτ − ŵτ∥
2
ℓ2)

1/2,

≤ Cρρ
t−τ
(1 + σ2

)
1/2
∥vτ − v̂τ∥ℓ2 , (B.4.2)

where we get (a) by using Cauchy-Schwarz inequality. This implies xt+1 is Cρρ
t−τ(1+ σ2)1/2

Lipschitz function of vτ for 0 ≤ τ ≤ t and completes the proof.

We are now ready to state a lemma to bound the subexponential norm of the

gradient of the single sample loss (B.4.1).

Lemma 68 (Subexponential gradient) Consider the same setup of Lemma 67. Let

Lk(θk, (xL[k], xL−1, zL−1[k]) be as in (B.4.1) and β+ ∶= Cρ(1+σ)/(1−ρ). Suppose ∣ϕ′(x)∣ ≤ 1

for all x ∈ R. Then, at any point Θ, for all 1 ≤ k ≤ n, we have

∥∇Lk(θk, (xL[k], xL−1, zL−1[k])) −E[∇Lk(θk, (xL[k], xL−1, zL−1[k]))]∥ψ1

≲ β2
+∥θk − θ⋆k∥ℓ2 + σβ+. (B.4.3)

Proof. We first bound the subgaussian norm of the state vector xt following [31] as follows:

Setting vt = [z
⊺
t 1/σw⊺t ]

⊺, define the vectors qt ∶= [v
⊺
0 ⋯ v⊺t−1]

⊺ ∈ R2nt and q̂t ∶= [v̂
⊺
0 ⋯ v̂⊺t−1]

⊺ ∈

R2nt. Observe that xt is a deterministic function of qt, that is, xt = f(qt) for some function

f . To bound the Lipschitz constant of f , for all (deterministic) vector pairs qt and q̂t, we

find the scalar Lf satisfying

∥f(qt) − f(q̂t)∥ℓ2 ≤ Lf∥qt − q̂t∥ℓ2 . (B.4.4)
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For this purpose, we define the vectors {bi}ti=0 as follows: bi = [v̂
⊺
0 ⋯ v̂⊺i−1 v⊺i ⋯ vt−1]

⊺.

Observing that b0 = qt and bt = q̂t, we write the telescopic sum,

∥f(qt) − f(q̂t)∥ℓ2 ≤
t−1
∑
i=0
∥f(bi+1) − f(bi)∥ℓ2 . (B.4.5)

Observe that f(bi+1) and f(bi) differs only in vi, v̂i terms in the argument. Hence, viewing

xt as a function of vi and using the result of Lemma 67, we have

∥f(qt) − f(q̂t)∥ℓ2 ≤
t−1
∑
i=0

Cρρ
t−1−i
(1 + σ2

)
1/2
∥vi − v̂i∥ℓ2 ,

(a)
≤ Cρ(1 + σ2

)
1/2(

t−1
∑
i=0

ρ2(t−1−i))
1/2
(
t−1
∑
i=0
∥vi − v̂i∥

2
ℓ2)

1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥qt−q̂t∥ℓ2

,

(b)
≤

Cρ(1 + σ2)1/2

(1 − ρ2)1/2
∥qt − q̂t∥ℓ2 , (B.4.6)

where we get (a) by applying the Cauchy-Schwarz inequality and (b) follows from ρ < 1.

Setting βK = Cρ(1 + σ2)1/2/(1 − ρ2)1/2, we found that xt is βK-Lipschitz function of qt.

Since vt
i.i.d.
∼ N(0, I2n), the vector qt

i.i.d.
∼ N(0, I2nt). Since, xt is βK-Lipschitz function

of qt, for any fixed unit length vector a, a⊺xt is still βK-Lipschitz function of qt. This

implies ∥xt −E[xt]∥ψ2 ≲ βK . Secondly, βK-Lipschitz function of a Gaussian vector obeys

the variance inequality var[a⊺xt] ≤ β2
K (page 49 of [178]), which implies the covariance

bound Σ[xt] ⪯ β2
KIn. Combining these results with ∥wt[k]∥ψ2 ≤ σ, we get the following

172



subexponential norm bound,

∥∇Lk(θk, (xL[k], xL−1, zL−1[k])) −E[∇Lk(θk, (xL[k], xL−1, zL−1[k]))]∥ψ1

≤ ∥ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1(θk − θ⋆k)

−E[ϕ′(θ⊺kxL−1, θ⋆⊺k xL−1)ϕ
′
(θ⊺kxL−1)xL−1x⊺L−1(θk − θ⋆k)]∥ψ1

+ ∥ϕ′(θ⊺kxL−1)wL−1[k]xL−1∥ψ1 ,

≲ β2
K∥θk − θ⋆k∥ℓ2 + σβK ,

≲ β2
+∥θk − θ⋆k∥ℓ2 + σβ+, (B.4.7)

where we get the last two inequalities from the fact that the product of a bounded function (ϕ

is 1-Lipschitz because ∣ϕ′(x)∣ ≤ 1 for all x ∈ R) with a subgaussian/subexponential random

vector is still a subgaussian/subexponential random vector. This completes the proof.

B.5 Finalizing the Proof of Corollary 16

Proof. We have verified Assumptions 2, 3, 4 and 5 for the nonlinear system 2.4.2.

Hence, we are ready to use Theorem 14 to learn the dynamics Θ⋆ of the nonlinear sys-

tem (2.4.2) . Before that, we find the values of the system related constants to be used in

Theorem 14 as follows.

Remark 69 Consider the same setup of Lemma 67. Let β+ ≥ βK > 0 be as defined in

Lemmas 63 and 68 respectively. Then, with probability at least 1 − 4T exp(−100n), for all

1 ≤ t ≤ T , Θ ∈ Bn×n(Θ⋆, r) and 1 ≤ k ≤ n, the scalars Cϕ, Dϕ take the following values.

∥∇θkϕ(θ⊺kxt)∥ℓ2 = ∥ϕ
′
(θ⊺kxt)xt∥ℓ2 ≤ ∥xt∥ℓ2 ≲ β+

√
n =∶ Cϕ,

∥∇xt∇θkϕ(θ⊺kxt)∥ = ∥ϕ
′
(θ⊺kxt)In + ϕ′′(θ⊺kxt)xtθ

⊺
k∥ ≲ 1 + β+

√
n∥θk∥ℓ2 ≲ 1 + ∥Θ⋆∥Fβ+

√
n =∶Dϕ
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where without loss of generality we choose Θ(0) = 0 and r = ∥Θ⋆∥F . Furthermore, the

Lipschitz constant and the gradient noise coefficients take the following values: LD =

c((1 + σ)β2
+n + ∥Θ⋆∥Fβ3

+n
3/2 log3/2(2T )), K = cβ2

+ and σ0 = cσβ+. Lastly, we also have

p0 = 4T exp(−100n).

Using these values, we get the following sample complexity bound for learning nonlinear

system (2.4.2) via gradient descent,

N ≳
β4
+

γ4(1 + σ2)2
log2
(3((1 + σ)β2

+n + ∥Θ⋆∥Fβ3
+n

3/2 log3/2
(2T ))N/β2

+ + 3)n,

Ô⇒ N ≳
C4
ρ

γ4(1 − ρ)4
log2
(3(1 + σ)n + 3∥Θ⋆∥Fβ+n

3/2 log3/2
(2T )N + 3)n, (B.5.1)

where β2
+

1+σ2 ≤
C2
ρ(1+σ)2/(1−ρ)2
(1+σ)2/2 =

2C2
ρ

(1−ρ)2 is an upper bound on the condition number of the covari-

ance matrix Σ[xt]. Similarly, the approximate mixing time of the nonlinear system (2.4.2)

is given by,

L ≥ 1 + [ log(c0Cρβ+(1 + ∥Θ⋆∥Fβ+
√

n)n
√

N/n) + log(c/β+ ∨ c
√

n/β+)]/ log(ρ−1
),

⇐Ô L ≥ ⌈1 +
log(CCρ(1 + ∥Θ⋆∥Fβ+)Nn)

1 − ρ
⌉, (B.5.2)

where C > 0 is a constant. Finally, given the trajectory length T ≳ L(N + 1), where

N and L are as given by (B.5.1) and (B.5.2) respectively, starting from Θ(0) = 0 and

using the learning rate η =
γ2(1+σ2)
16β4

+
n2 ≥

γ2(1−ρ)4
32C4

ρ(1+σ)2n2 , with probability at least 1 − Ln(4T +

log( ∥Θ⋆∥FCρ(1+σ)σ(1−ρ) )) exp(−100n) for all 1 ≤ k ≤ n, all gradient descent iterates Θ(τ) on L̂
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satisfy

∥θ
(τ)
k − θ⋆k∥ℓ2 ≤ (1 −

γ4(1 + σ2)2

128β4
+n2 )

τ
∥θ
(0)
k − θ⋆k∥ℓ2

+
5c

γ2(1 + σ2)
σβ+ log(3(1 + σ)n + 3∥Θ⋆∥Fβ+n

3/2 log3/2
(2T )N + 3)

√
n

N
.

≤ (1 − γ4(1 − ρ)4

512C4
ρn2 )

τ
∥θ
(0)
k − θ⋆k∥ℓ2

+
10cCρ

γ2(1 − ρ)
σ log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2

(2T )N/(1 − ρ) + 3)
√

n

N
,

where we get the last inequality by plugging in the value of β+ = Cρ(1+ σ)/(1− ρ) and using

the inequality (1 + σ2) ≥ (1+σ)
2

2 . We remark that, choosing N ≳
C4
ρ

γ4(1−ρ)4 log2(3(1 + σ)n +

3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2(2T )N/(1 − ρ) + 3)n, the residual term in the last inequality can

be bounded as,

10cCρ

γ2(1 − ρ)
log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2

(2T )N/(1 − ρ) + 3)
√

n

N
≲ σ.

Therefore, to ensure that Theorem 14 is applicable, we assume that σ ≲ ∥Θ⋆∥F (where we

choose Θ(0) = 0 and r = ∥Θ⋆∥F ). This completes the proof.
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Appendix C

Remaining Proofs from Chapter 5

C.1 Proof of Lemma 46

Proof. We start by expanding the convergence term by substituting ṽ = [βv⊺ γ]⊺

as follows,

∣ṽ⊺(I −
1
n
[X 1]⊺[X 1])ṽ∣ = ∣ 1

n
∥[X 1]ṽ∥2ℓ2 − ∥ṽ∥

2
ℓ2 ∣

= ∣
1
n
∥βXv + γ1∥2ℓ2 − ∥[βv⊺ γ]⊺∥2ℓ2 ∣

= ∣
1
n
(β2
∥Xv∥2ℓ2 + γ21⊺1 + 2βγ1⊺Xv) − β2

∥v∥2ℓ2 − γ2
∣

= ∣
1
n

β2
∥Xv∥2ℓ2 − β2

∥v∥2ℓ2 +
1
n

γ2n − γ2
+ 2βγ

1
n

n

∑
i=1

v⊺xi

≤ β2
∣
1
n
∥Xv∥2ℓ2 − ∥v∥

2
ℓ2 ∣ + ∣2βγ∣∣v⊺

∑
n
i=1 xi
n
∣

≲ ∣v⊺(I −
1
n

X⊺X)v∣ + ∣v⊺x̄∣, (C.1.1)

176



where, x̄ = 1
n ∑

n
i=1 xi is the empirical average vector of i.i.d. subgaussian rows (xi)ni=1. Thus,

using (C.1.1), we can write

sup
ṽ∈Text

∣ṽ⊺(I −
1
n
[X 1]⊺[X 1])ṽ∣ ≲ sup

v∈T
∣v⊺(I −

1
n

X⊺X)v∣ + sup
v∈T
∣v⊺x̄∣. (C.1.2)

Given X ∈ Rn×p is isotropic subgaussian, Lemma 6.14 in [155] guarantees

sup
v∈T
∣v⊺(I −

1
n

X⊺X)v∣ ≲
ω(T ) + t
√

n
, (C.1.3)

with probability at least 1 − e−t
2 . Furthermore, since (xi)ni=1’s have bounded subgaussian

norm, x̄ is also bounded and standard generic chaining bounds guarantee that [168]

sup
v∈T
∣v⊺
∑
n
i=1 xi
n
∣ = sup

v∈T
∣v⊺x̄∣ ≲

ω(T ) + t
√

n
, (C.1.4)

with probability at least 1− e−t
2 . Combining the results (C.1.3) and (C.1.4) into (C.1.2), we

find that

sup
ṽ∈Text

∣ṽ⊺(I−
1
n
[X 1]⊺[X 1])ṽ∣ ≲ ω(T ) + t

√
n

(C.1.5)

holds with probability at least 1 − 2e−t
2 . This completes the proof of Lemma 46.

C.2 Proof of Equation 5.4.5

Proof. Let the tangent balls C and Cext be as defined in (5.2.5) and (5.2.6)

respectively. Define the sets

T− = Cext − Cext and T+ = Cext + Cext (C.2.1)

and note that

ω(C − C) = E[ sup
u,v∈C

g⊺(u − v)] ≤ E[sup
u∈C

g⊺u + sup
v∈−C

g⊺v] = 2ω(C). (C.2.2)
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Similarly, ω(C + C) ≤ 2ω(C). Applying Lemma 46 on T+ and T−, with advertised probability

of 1 − 4 exp(−t2), we have

sup
a∈T+∪T−

∣Λ(a, a)∣ ≲
ω(C) + t
√

n
(C.2.3)

where Λ(a, b) = a⊺(I − 1
n[X 1]⊺[X 1])b. Now, for any u, v ∈ Cext, picking u + v ∈

T+ and u − v ∈ T−, we have

∣Λ(u + v, u + v)∣, ∣Λ(u − v, u − v)∣ ≲
ω(C) + t
√

n
. (C.2.4)

To proceed, note that

Λ(u, v) =
Λ(u + v, u + v) −Λ(u − v, u − v)

4
. (C.2.5)

Hence, ∣Λ(u, v)∣ = ∣u⊺(I − 1
n[X 1]⊺[X 1])v∣ ≲ (ω(C) + t)/

√
n holds with the advertised

probability.

C.3 Proof of Lemma 48

Proof. Let (xi)ni=1 ∼ x ∈ Rp be i.i.d. isotropic subexponential samples and X ∈ Rn×p

is the corresponding design matrix. Let xij denotes the ijth element of the matrix X. Since

each xij has subexponential norm bounded by a constant, there exists a constant C > 0 such

that ∣xij ∣ ≤ C log(n + p) holds with probability at least 1 − 2(n + p)−102 using subexponential

tail bound. Union bounding over all entries of X yields that ∣xij ∣ ≤ C log(n+ p) holds for all

i, j with probability at least 1 − 2(n + p)−100. Hence, we can bound each row xi of X with

probability at least 1 − 2(n + p)−100 via

∥xi∥ℓ2 ≤ C
√

p log(n + p), (C.3.1)
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or equivalently, we have

∥xix
⊺
i ∥ ≤ ∥xi∥

2
ℓ2 ≤ cp log2

(n + p). (C.3.2)

This completes the proof of Lemma 48.

C.4 Proof of Lemma 49

Proof. Recall that (xi)ni=1 ∼ x ∈ Rp are i.i.d. isotropic subexponential vectors and

x̃ = [x⊺ 1]⊺. We can estimate the covariance matrix of x̃ given ∥x̃∥2ℓ2 ≤ B using law of total

probability as follows

E [x̃x̃⊺] = E [x̃x̃⊺ ∣ ∥x̃∥2ℓ2 ≤ B]P (∥x̃∥2ℓ2 ≤ B) +E [x̃x̃⊺ ∣ ∥x̃∥2ℓ2 > B]P (∥x̃∥2ℓ2 > B). (C.4.1)

Since a covariance matrix is positive-semidefinite, each term in (C.4.1) is individually positive

semidefinite. Hence, we will drop the second term in (C.4.1) to get the following lower bound

on the covariance matrix

E[x̃x̃⊺] ⪰ E[x̃x̃⊺ ∣ ∥x̃∥2ℓ2 ≤ B]P(∥x̃∥2ℓ2 ≤ B) (C.4.2)

Using Lemma 48, it follows that ∥x̃∥2ℓ2 = ∥[x
⊺ 1]⊺∥2ℓ2 ≤ Cp log2(n + p) = B holds with

probability at least 1 − 2(n + p)−100. Hence, following (C.4.2), we get

E [x̃x̃⊺ ∣ ∥x̃∥2ℓ2 ≤ B] ⪯
E [x̃x̃⊺]

P (∥x̃∥ℓ2 ≤ B)

⪯
1

1 − 2(n + p)−100 Ip ⪯ 2Ip. (C.4.3)

This completes the proof of Lemma 49.
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C.5 Proof of Lemma 53

Proof. Subgaussian case: Using subgaussian tail, for large enough constant

C > 0, for each i, we have ∣wi∣ ≤ Cσ
√

log(n) = σB with probability at least 1 − 2n−101. This

implies clip(wi, σB) = wi. Union bounding over all entries of w, we find the result which

holds with probability at least 1 − 2n−100.

Subexponential case: follows similarly with B = C log(n).

C.6 Proof of Lemma 54

Proof. We prove the result for subexponential samples. Subgaussian case follows

similarly. Without loss of generality, let σ = 1 as everything can be scaled accordingly.

Defining clip function as previously, set z = clip(w, B)x. Furthermore, let wtail denote the

tail of ∣w∣, such that,

wtail =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∣w∣ if ∣w∣ > B

0 otherwise

. (C.6.1)

wtail is an upper bound on the error due to clipping, that is,

∣w − clip(w, B)∣ ≤ wtail. (C.6.2)

We proceed by upper bounding ∥E[z]∥ℓ2 in terms of wtail, using subadditive property of

ℓ2-norm and the orthogonality of w and x (i.e., E[wx] = E[x(y − x⊺θ⋆ − µ⋆)] = E[yx] −
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E[xx⊺]θ⋆ − µ⋆E[x] = 0), as follows

∥E[z]∥ℓ2 = ∥E[clip(w, B)x]∥ℓ2

= ∥E[(w − clip(w, B))x]∥ℓ2

≤ E[∣w − clip(w, B)∣∥x∥ℓ2]

≤ E[wtail max(∥x∥ℓ2 ,
√

pB)]. (C.6.3)

Using subexponentiality, for some constant c > 0, we have that, P(wtail >
√

ct) ≤ 2e−t and

P(∥x∥ℓ2 >
√

cpt) ≤ 2pe−t, where, the latter follows from union bounding over all entries of x.

Union bounding these two events, we get the following tail bound for their product,

P(wtail∥x∥ℓ2 > c
√

pt2
) ≤ 4pe−t. (C.6.4)

For notational convenience, set

g = wtail max(∥x∥ℓ2 ,
√

pB), (C.6.5)

and note that g satisfies the following property due to (C.6.1)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

either g >
√

pB2

or g = 0

. (C.6.6)

Furthermore, from (C.6.4) we get the following tail distribution

Qg(t) = P(g > t) ≤ 4pe
−[ t
c
√
p
]1/2

. (C.6.7)
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for t ≥ α ∶=
√

pB2. Combining (C.6.5), (C.6.6) and (C.6.7) into (C.6.3) and denoting

probability density function of g by fg, we get

∥E[z]∥ℓ2 ≤ E[g] = ∫
∞

α
tfg(t)dt = −∫

∞

α
tdQg(t)

= −tQg(t)∣
∞
α
+ ∫

∞

α
Qg(t)dt

=
√

pB2Qg(
√

pB2
) + ∫

∞

α
Qg(t)dt

(a)
≤ 4p2B2e−B/

√
c
+ 4p∫

∞
√
pB2

e
−[ t
c
√
p
]1/2

dt. (C.6.8)

where, (a) follows from (C.6.7). To bound the term on the right hand side, we do a change

of variable in (C.6.8) by setting τ = [t/(c
√

p)]1/2 to get,

4p∫
∞
√
pB2

e
−[ t
c
√
p
]1/2

dt ≤ 8cp2
∫

∞
B
√
c

τe−τdτ

≤ 8cp2[ − τe−τ ∣
∞
B
√
c

+ ∫

∞
B
√
c

e−τdτ]

= 8cp2[
B
√

c
e
− B√

c + e
− B√

c ]

≤ 8cp2
(

B
√

c
+ 1)e−

B
√
c . (C.6.9)

Combining this with (C.6.8), we get

∥E[z]∥ℓ2 ≤ 4p2
(B2
+ 2c(B/

√
c + 1))e−B/

√
c

(a)
≤ C0p2n−201, (C.6.10)

where, we get (a) by picking B = C log(n) with sufficiently large C > 0. Finally, note that

conditioned on ∣w∣ ≤ B, z = wx and

∥E[z]∥ℓ2 ≥ ∥E[wx ∣ ∣w∣ ≤ B]∥ℓ2P(∣w∣ ≤ B). (C.6.11)
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Since P(∣w∣ ≤ B) > 1/2, this yields ∥E[wx ∣ ∣w∣ ≤ B]∥ℓ2 ≲ p2n−201 which is the advertised

result with σ = 1. Similarly for subgaussian samples, one can show that

∥E[z]∥ℓ2 ≲ p2B2e−B
2/c. (C.6.12)

Picking B = C
√

log(n) with sufficiently large C > 0, we get the same result, concluding the

proof of Lemma 54.
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