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ABSTRACT 

 

Serum antibody repertoire analysis for  

high-throughput epitope discovery and characterization 

 

by 

Joel David Bozekowski 

 

The serum antibody repertoire is a unique repository of information regarding past 

immune encounters. Antibodies are produced in response to exposures and bind specifically 

to their target antigens. Antibodies associated with infection and disease can serve as 

diagnostic biomarkers upon detection. However, many disease-specific antibodies and their 

targets remain undiscovered. Therefore, to discover antibody biomarkers, reagents must be 

developed to specifically bind the disease-specific antibodies. Peptides are suitable reagents 

as they can often mimic native antibody epitopes with high affinity and specificity. 

Moreover, the sequences of antibody-binding peptides can be determined and used to 

identify the original antibody targets, revealing previously unknown antigens that contribute 

to disease progression and creating new opportunities for therapeutic development. Here, we 

developed and applied high-throughput methods to discover and characterize peptide 

epitopes from immune-related diseases. 

A large bacterial display peptide library composed of randomized peptides was 

constructed to screen against human serum specimens and discover peptides that bind 

antibodies. For each specimen, millions of antibody-binding peptide sequences were 



 

ix 

determined using next-generation sequencing and analyzed computationally to reveal 

disease-specific binding motifs. This screening methodology was first employed to discover 

and characterize epitopes from two highly similar viruses, herpes simplex virus type 1 

(HSV-1) and type 2 (HSV-2). Following antibody repertoire analysis, we discovered HSV 

type-specific motifs that could be used as diagnostic classifiers to achieve 100% diagnostic 

accuracy when distinguishing HSV-1 from HSV-2 and vice versa. Furthermore, numerous 

type-specific motifs were mapped to HSV antigens using protein sequence database 

alignments, including known antigens such as glycoproteins G and D as well as previously 

unreported antigens. We then applied this screening methodology to age-related macular 

degeneration (AMD). We identified a large panel of antibody-binding motifs associated with 

the onset of advanced AMD and developed a classifier with 84% accuracy when 

distinguishing specimens at high risk of advanced AMD from those at low risk. However, as 

the risk of developing advanced AMD increased, the classifier performance worsened 

suggesting a unique antibody signature associated with AMD progression. 

Additional methods were developed to improve the discovery and characterization of 

epitopes from the antibody repertoire. We developed a method to selectively deplete highly 

abundant antibodies from a specimen to reduce repertoire complexity, improve the limits of 

detection, and enable the discovery of rare antibodies and their targets. Additionally, we 

developed a novel computational algorithm to rapidly determine binding motifs for epitopes 

by utilizing the full extent of next-generation sequencing datasets. Ultimately, these tools for 

analyzing the antibody repertoire at great depth can be applied to a broad range of infectious, 

autoimmune, and allergic diseases. The discovery of disease-associated epitopes will create 

new opportunities for the development of diagnostics, vaccines, and therapeutics. 



 

x 

TABLE OF CONTENTS 

1 Introduction ..........................................................................................................................1 

1.1 Motivation & background ....................................................................................1 

1.2 Screening peptide libraries for antibody binding .................................................6 

1.3 Infections & diseases .........................................................................................15 

1.4 Techniques .........................................................................................................21 

2 Bacterial display peptide library construction, characterization, and application for 

antibody repertoire analysis .....................................................................................................28 

2.1 Introduction ........................................................................................................29 

2.2 Results ................................................................................................................32 

2.3 Discussion ..........................................................................................................42 

2.4 Materials and methods .......................................................................................45 

3 Discovery and mapping of epitopes from herpes simplex viruses using random 

peptide library screening ..........................................................................................................55 

3.1 Introduction ........................................................................................................56 

3.2 Results ................................................................................................................58 

3.3 Discussion ..........................................................................................................67 

3.4 Materials and methods .......................................................................................70 

4 Serum antibody repertoire analysis reveals unique binding signatures associated with 

risk of age-related macular degeneration .................................................................................74 

4.1 Introduction ........................................................................................................75 

4.2 Results ................................................................................................................77 



 

xi 

4.3 Discussion ..........................................................................................................89 

4.4 Materials and methods .......................................................................................92 

5 High-titer antibody depletion enhances discovery of diverse serum antibody 

specificities ..............................................................................................................................97 

5.1 Introduction ........................................................................................................98 

5.2 Results ..............................................................................................................100 

5.3 Discussion ........................................................................................................112 

5.4 Materials and methods .....................................................................................116 

6 Mapping antibody binding to epitopes using multiplexed epitope substitution analysis 120 

6.1 Introduction ......................................................................................................121 

6.2 Results ..............................................................................................................123 

6.3 Discussion ........................................................................................................131 

6.4 Materials and methods .....................................................................................134 

7 Conclusion .......................................................................................................................140 

7.1 Perspectives......................................................................................................140 

7.2 Future directions ..............................................................................................146 

8 References ........................................................................................................................149 

 

  



 

xii 

LIST OF FIGURES 

Figure 1.1 Bacterial display eCPX scaffold for peptide screening. .........................................13 

Figure 1.2. Bacterial display peptide library sorting using magnetic selection. ......................22 

Figure 2.1. Stop codon usage was significantly reduced in the trimer-X12 library. .................35 

Figure 2.2. Amino acid frequencies in naive libraries were identified using NGS. ................36 

Figure 2.3. Peptide library enrichment was quantified via flow cytometry. ............................37 

Figure 2.4. Amino acid frequencies in peptide libraries enriched for antibody binding 

were highly dependent on naive library. ............................................................................39 

Figure 2.5. Antibody-binding motifs discovered using random peptide libraries have a 

distinct distribution for widths and numbers of conserved residues. .................................40 

Figure 2.6. Monoclonal antibody motifs were identified through peptide library screening 

and NGS. ............................................................................................................................42 

Figure 3.1. HSV-2 binding motifs were discovered with high sensitivities and 

specificities. .......................................................................................................................59 

Figure 3.2. HSV-2 motifs were highly sensitive and specific in a large general population...60 

Figure 3.3. HSV-1 motifs were discovered with moderate sensitivity and high specificity. ..63 

Figure 3.4. Motif panel classifier demonstrated high sensitivity and specificity for 

classifying HSV-1 from HSV-2. ........................................................................................64 

Figure 3.5. HSV-1 motifs exhibited reactivity in a large proportion of an adult population 

consistent with the expected HSV-1 prevalence. ...............................................................65 

Figure 4.1. Antibody-binding motifs demonstrated reactivity correlated with increased 

risk of late AMD. ...............................................................................................................81 



 

xiii 

Figure 4.2. Utilization of a panel of motifs enabled coverage of entire onset late AMD 

cohort. ................................................................................................................................82 

Figure 4.3. Motif panel classifier exhibited improved performance as risk of developing 

late AMD decreased. ..........................................................................................................84 

Figure 4.4. Consensus binding motifs demonstrated reactivity in subsets of onset late 

AMD specimens and cohorts with increased risk of late AMD. .......................................86 

Figure 4.5. Consensus binding motifs showed sustained reactivity over years of disease 

progression. ........................................................................................................................88 

Figure 5.1. Conceptual approach for high-titer antibody depletion. ......................................101 

Figure 5.2. High-titer depletion method using bacterial display peptide libraries.................102 

Figure 5.3. High-titer depletion improves mAb motif enrichment at low concentrations. ....104 

Figure 5.4. High-titer depletion removes dominant species and increases coverage of 

serum antibody specificities. ............................................................................................106 

Figure 5.5. Modified HTD conditions reduce exhaustive depletion while maintaining 

increased coverage of antibody specificities....................................................................110 

Figure 5.6. High-titer specificities were identified to be present in multiple specimens. ......112 

Figure 6.1. An overview of Multiplexed Epitope Substitution Analysis (MESA). ...............124 

Figure 6.2. MESA determined binding motifs for monoclonal antibody epitopes. ...............125 

Figure 6.3. MESA identified binding motifs for antibodies in an individual serum 

specimen. .........................................................................................................................127 

Figure 6.4. Consensus binding motifs from multiple specimens were identified using 

MESA. .............................................................................................................................129 

Figure 6.5. MESA determined binding motifs of public epitopes from a large population. .130 



 

xiv 

Figure 6.6. A binding motif from a EBNA1 public epitope was discovered exclusively 

using MESA. ....................................................................................................................131 

 

  



 

xv 

LIST OF TABLES 

Table 1.1. Serum antibody biomarker diagnostics.................................................................... 4 

Table 1.2. Summary of platforms used for random peptide library screening. ........................ 8 

Table 2.1. Trimer nucleotides for random libraries optimized for E. coli. ............................. 33 

Table 2.2. Next-generation sequencing statistics for naive peptide libraries. ........................ 34 

Table 3.1. HSV-2 candidate antigens. .................................................................................... 61 

Table 3.2. HSV-1 candidate antigens. .................................................................................... 66 

Table 4.1. Clinical characteristics of the study population. .................................................... 79 

Table 4.2. Motif panel classification statistics. ....................................................................... 84 

 

 

 



 

1 

1 Introduction 

 

1.1 Motivation & background 

1.1.1 Serum antibody repertoire 

The serum antibody repertoire is a collection of immunoglobulin (Ig) protein molecules, 

known as antibodies, circulating the human body surveilling for foreign target molecules. 

These target molecules, termed antigens, are often proteins from viruses or bacteria but can 

also be molecules from the body mistaken as foreign, leading to autoimmunity. Antibodies 

bind antigens to neutralize and signal for destruction and removal. B cells, a type of white 

blood cell, constantly produce unique antibody variants in anticipation of possible encounters 

with diverse antigens. Antibodies are key aspects of adaptive immunity, responsible for 

mounting an immune response to foreign encounters and establishing immunological 

memory. When antibodies recognize target antigens for the first time, the strength of binding 

(affinity) is relatively low but increases through a process of antibody mutation and selection, 

known as affinity maturation [1]. The antibodies are then produced for extended periods of 

time, possibly lifelong [2], to circulate the body and function as a component of 

immunological memory. Upon additional encounters, these antibodies can facilitate an 

enhanced, targeted response to quickly thwart infection and disease, the mechanism 

harnessed for vaccines [3]. Over time, the body amasses a set of serum antibodies with high 

affinity and high specificity towards previously encountered antigens. 

Due to immunological memory, the antibody repertoire serves as a unique repository of 

information regarding immune responses such as infections, inflammation, allergies, and 
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autoimmunity. Because highly specific serum antibodies are produced long after initial 

exposure, these antibodies are biomarkers that can be detected to inform of previous and 

current immune encounters. However, the complexity and diversity of the antibody repertoire 

presents unique challenges for discovering and detecting antibodies. It is estimated that the 

antibody repertoire contains upwards of 10
6
 unique antibody species [4]. While the total 

concentration of antibodies in serum is homeostatically controlled and is thus relatively 

stable over time [5], the concentrations of individual antibody species can span orders of 

magnitudes and are subject to fluctuations due to acute immune responses such as infections 

and vaccines [6,7]. Additional complexities arise due to the production of different antibody 

classes (isotypes) that are specialized for various immune responses. For instance, the isotype 

IgG makes up ~75% of serum antibodies, IgA is primarily located in mucosal tissues, and 

IgM is expressed during the initial phase of an immune response [8]. The vast diversity of the 

antibody repertoire therefore presents countless opportunities to detect antibody biomarkers 

associated with diseases, but significant challenges exist for biomarker discovery and reliable 

detection. 

1.1.2 Antibody biomarkers for diagnostics 

Substantial progress has been made for discovering antibody biomarkers and developing 

antibody-based diagnostic tests. The serum antibody repertoire is easily accessed from blood 

samples by relatively inexpensive and non-invasive procedures in comparison to other 

diagnostic tests such as positron emission tomography (PET), magnetic resonance imaging 

(MRI), lumbar punctures, and tissue biopsies. Additionally, blood/serum is fairly stable and 

suitable for transport and storage in various forms such as dried blood spots, expanding the 

options for antibody diagnostics in nonclinical settings [9,10]. Antibody-based diagnostics 
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rely on determining the presence of specific antibodies. This is often accomplished by 

detecting and measuring antibody binding to known antigens using assays such as 

immunoblotting, immunofluorescence, and enzyme-linked immunosorbent assays (ELISA). 

Every diagnostic test has a diagnostic accuracy, which is often reported as the sensitivity and 

specificity. Sensitivity measures the proportion of positive (disease) classifications correctly 

identified while specificity measures the proportion of negative (control) classifications 

correctly identified. Many factors impact the sensitivity and specificity including the type of 

assay, the antibody biomarkers, and the reagents used for detection such as the antigens and 

fluorescent probes. While the objective is to have high sensitivity and specificity, there is 

often a trade-off between the two statistics. To avoid false positive diagnoses, sensitivity is 

often sacrificed for higher specificity. 

Many antibody biomarkers have been identified and utilized for diagnostics in a variety 

of infectious and autoimmune diseases (Table 1.1). Many diseases have multiple antibody 

biomarkers that can be used for diagnosis, such as rheumatoid arthritis [11], type 1 diabetes 

[12,13], and celiac disease [14]. In rheumatoid arthritis, antibodies that bind to human 

IgG-Fc (rheumatoid factor) or cyclic citrullinated peptides can be used as biomarkers. 

However, rheumatoid factor antibodies may also be present in other rheumatic diseases such 

as systemic lupus erythematosus and even healthy subjects, leading to a lower diagnostic 

specificity [15]. The accuracy of antibody-based diagnostics can often be improved by 

targeting specific antibody isotypes. As celiac disease primarily affects the intestinal tissues 

where IgA is predominant, an IgA anti-tissue transglutaminase biomarker has been identified 

with high sensitivity (98%) and specificity (98%) [14]. For infectious diseases, antibody 

biomarkers can indicate past and present infections. However, early diagnosis is crucial for 
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facilitating treatments and therapies and thus IgM antibodies can be targeted at the early 

infection stages [16–18]. While many diagnostic tests focus on individual antigens for 

detecting antibody biomarkers, advances in multiplexed diagnostics for detecting numerous 

biomarkers will enable higher diagnostic accuracy and personalized testing [19]. Despite the 

success of many antibody biomarkers, many antigens for diseases remain unknown. As these 

diagnostics require knowledge of antigens associated with disease, there is an increasing 

need to develop technologies capable of efficiently mining the serum antibody repertoire for 

unbiased biomarker discovery. 

Table 1.1. Serum antibody biomarker diagnostics. 

Disease Antigen Isotype 
Sensitivity 

(%) 

Specificity 

(%) 
 

Infectious      

Herpes Simplex Virus 1 Glycoprotein G-1 IgG 99 95 [20] 

Herpes Simplex Virus 2 Glycoprotein G-2 IgG 97 89 [21] 

Lyme disease VlsE C6    [22] 

 Early localized  IgG 69 99  

 Early disseminated  IgG 89 99  

 Late disseminated  IgG 98 96  

      

Autoimmune      

Graves’ disease Thyrotropin receptor IgG 98 99 [23] 

Celiac disease     [14] 

 Deamidated gliadin IgA 88 95  

  IgG 80 98  

 Tissue transglutaminase IgA 98 98  

  IgG 70 95  

Scleroderma Topoisomerase 1 IgG 43 100 [24] 

Rheumatoid arthritis IgG-Fc IgM 69 85 [11] 

 
Cyclic citrullinated 

peptide 
IgG 67 95 [11] 

Type 1 diabetes Insulin IgG 54 98 [12] 

 
Glutamic acid 

decarboxylase 
IgG 82 96 [13] 

 Islet antigen-2 IgG 70 99 [13] 

Sensitivity = true positive rate; specificity = true negative rate 
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1.1.3 Peptide epitopes 

To enable antibody biomarker discovery and detection, it is useful to identify and 

characterize the specific region of the antigen that an antibody binds, the epitope. For protein 

antigens, epitopes are classified as continuous (linear) or discontinuous (structural). Linear 

epitopes are typically peptides with six to nine amino acids [25], while discontinuous 

epitopes consist of amino acid residues that are distant in the protein sequence but brought 

together near the surface and thus depend on the three-dimensional protein structure [26]. 

While the majority of epitopes are technically discontinuous [27], these epitopes often 

contain stretches of short linear epitopes [25]. An analysis of antibody-antigen structures 

from the Protein Data Bank found that more than 85% of the epitopes contained a contiguous 

stretch of at least five residues [28]. It has also been shown that for many structural epitopes, 

only three to five residues contribute significantly to antibody binding [29]. Thus, antibody 

epitopes can often be mimicked by short linear peptides. 

The utilization of antibody-binding peptides as diagnostic reagents has numerous 

advantages. Antigens are often large proteins that contain numerous epitopes and regions 

susceptible to cross-reactive antibody binding [26], leading to diagnostic false positives. 

Peptides that mimic epitopes approximate the smallest region responsible for antibody 

binding, reducing cross-reactivity while maintaining high affinity and specificity. Peptides 

are also simple, easily produced, and cost-effective, while antigens often require complex 

production, folding, and purification. Diverse peptides can thus be efficiently screened for 

antibody binding using high-throughput technologies to discover and characterize epitopes. 

In addition to identifying diagnostic reagents for detecting antibody biomarkers, peptide 

reagents can be used to identify unknown antigens associated with diseases. By determining 
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the epitope sequence, numerous methods can be used to identify the antigen containing the 

epitope. Antibody-binding peptides can be mapped to antigens using computational epitope 

mapping algorithms such as EpiSearch [30] and Pepsurf [31], functional binding and 

inhibition assays [32], or proteome alignments using protein sequence databases [33]. The 

identification of antigens responsible for antibody production and reactivity can provide 

important insights into disease pathology and treatments. The identification of gluten 

antigens responsible for celiac disease allows patients to adopt a gluten-free diet to alleviate 

symptoms [14]. Autoantibodies in Graves’ disease bind and stimulate the thyrotropin 

receptor leading to hyperthyroidism, which can be treated with antithyroid drugs [34]. 

Epitopes associated with diseases can also lead to the development of novel therapeutics. The 

discovery of a complement factor H epitope has led to the development of a therapeutic 

antibody for early-stage non-small cell lung cancer (NSCLC) entering clinical trials [35]. 

Additionally, the discovery and characterization of immunodominant epitopes in infectious 

diseases can aid in designing improved vaccines [36]. As antigens involved in a variety of 

diseases are still unknown, it is necessary to develop broad, high-throughput technologies to 

identify disease-specific epitopes and antigens. 

 

1.2 Screening peptide libraries for antibody binding 

To effectively probe the antibody repertoire for biomarkers, a vast set of binding targets 

needs to be utilized. Peptides are suitable targets because diverse ensembles of peptides 

(libraries) can be readily produced and analyzed. By mimicking epitopes, these peptide 

libraries can be screened for antibody binding in a high-throughput manner. To accomplish 

this, numerous platforms have been developed to identify antibody-binding peptides 
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including microarrays [37], phage display [38], and bacterial display [39]. Often, these 

platforms have been utilized for focused discoveries based on known or suspected antigens. 

Targeted peptide libraries are composed of overlapping peptides (tiling) that span the entire 

sequence of a single antigen or a set of antigens. This peptide tiling has been completed for 

whole proteomes including the human proteome with T7-Pep [40], a phage display library 

composed of over 400,000 peptides representing all open reading frames in the human 

genome. T7-Pep screening has been applied to autoimmune diseases such as multiple 

sclerosis, narcolepsy, rheumatoid arthritis, and type 1 diabetes to discover previously 

reported and potentially novel autoantigens [41]. A large library (>10
8
 peptides) was also 

constructed with overlapping peptides spanning the proteomes of nearly all viruses that infect 

humans [42]. This analysis led to the discovery of many novel epitopes and additional 

insights into viral prevalence. 

While targeted peptide screening approaches have led to many interesting discoveries for 

epitopes and antigens, the focus on specific antigens and proteomes limits the discovery 

process. Targeted approaches require hypotheses about the candidate antigens and overlook 

unsuspecting antigens. Moreover, requiring the peptides to represent exact sequences derived 

from target proteomes is restrictive, as peptide binders with high affinity and specificity can 

deviate from the cognate epitope sequence. It has also been shown that peptides can bind to 

antibodies with little to no sequence resemblance to the cognate epitope [43–45]. Therefore, 

to maximize the scope of peptide discovery, a vast set of peptides with randomized 

sequences can be screened, termed a random peptide library. Because of the combinatorics of 

random peptide sequences, an immense number of epitopes can be mimicked providing a 

relatively unbiased platform for epitope discovery. These random peptide libraries can then 
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be interrogated for antibody binding using high-throughput analyses such as next-generation 

sequencing (NGS) [46]. Here, a review of random peptide library screening using 

microarray, phage display, and bacterial display platforms is presented (Table 1.2). While 

additional platforms such as ribosome display [44] and yeast display [47] have been used for 

random peptide screening, these methods are more often used for single-chain antibody 

screening and discovery applications [48,49] and are not discussed here. 

Table 1.2. Summary of platforms used for random peptide library screening. 

Peptide Screening 

Platform 

Peptide 

Diversity 
Advantages Disadvantages 

Microarray 10
4
–10

6
  

Reproducibility 

Quality control 

Low diversity 

Cost 

Phage display 10
9
–10

11 
High diversity 

Cost 

Widely used 

Low avidity 

Technical experiments 

Time consuming 

Bacterial display 10
9
–10

11
 

High diversity 

High avidity 

Cost 

Flow cytometry 

Technical experiments 

Time consuming 

 

 

1.2.1 Peptide microarrays 

Peptide libraries can be spotted on a solid substrate, often a glass slide, in a two-

dimensional array, termed peptide microarrays [37]. The peptides are then interrogated for 

antibody binding from biological samples such as serum. Antibody binding is detected by 

utilizing fluorescent secondary probes followed by image analysis to quantify binding. 

Random peptide microarrays have been used to identify unique antibody-binding signatures 

associated with various immunological diseases, a method termed immunosignaturing [50]. 

Immunosignaturing has been applied to vaccines [51], infectious diseases [37,50,52], and 

cancers [37,53]. For cancer, immunosignatures were identified for six different cancer types 
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utilizing microarrays composed of 330,000 unique peptides [37]. The immunosignatures that 

resulted from antibody binding to 50 unique peptides for each cancer type achieved 100% 

diagnostic accuracy using a cross-validation classification approach. For infectious diseases, 

immunosignatures have been identified for pathogens including Trypanosoma cruzi, hepatitis 

B, hepatitis C, and West Nile virus, demonstrating high diagnostic accuracies and the ability 

to elucidate disease subclasses [52]. 

A main advantage for using peptide microarrays to interrogate the antibody repertoire is 

the ability to control fabrication. Microarray production and synthesis is controlled by highly 

refined fabrication equipment and thus has high reproducibility and quality control. When 

spotting and printing peptides, these methods also have the ability to finely control the 

peptide density, which can be adjusted to alter the avidity and improve antibody detection 

capabilities [54]. Another advantage of peptide microarrays is that quantitative binding 

information is obtained for all peptides [55]. Methods such as phage and bacterial display 

select for peptides based on a certain binding stringency and no quantitative information 

pertaining to weak binders is obtained. This has ramifications for large libraries when it is 

unknown if all peptides are being sampled for antibody binding. However, peptide 

microarrays are limited to diversities in the range of 10
4
–10

6
 which restricts peptide 

discovery and leads to challenges for antigen identification. Microarrays with 330,000 unique 

peptide sequences only sample 83% of all possible tetramers and 27% of pentamers [56]. 

Thus, these libraries are missing many peptides with sequence information related to cognate 

antigens, making it very difficult to connect the antibody-binding peptides to antigens. 

Microarrays also have higher costs relative to other screening methods such as phage and 
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bacterial display that depend on biological growth which ultimately reduces experimental 

costs. 

1.2.2 Phage display 

For the screening method phage display, bacteriophage viruses are genetically engineered 

to display peptides on their surface [38]. Phage display peptide libraries are produced in 

Escherichia coli (E. coli) cultures, purified, and screened for antibody binding using a 

selection process known as panning. Panning requires incubation of the phage display library 

with antibodies bound to a plate well or magnetic beads, followed by removal of unbound 

phages via washing. Successive panning rounds can be completed to further enrich peptide 

libraries. To complete additional panning rounds, the phage library must be infected into a 

bacterial culture to amplify the phage particles. After the final panning round, the DNA 

encoding peptide binders from the phage library is extracted and sequenced to reveal peptide 

sequences. Phage panning has been utilized extensively over the years for identifying and 

characterizing epitopes [38,43]. Recently, NGS has been integrated with random phage 

display libraries and used for massively parallel DNA sequencing to deeply characterize 

antibody-binding peptides, a process referred to as deep panning [57]. Deep panning has 

been used to discover epitopes from HIV [57], dengue virus [58], and cancers [59]. A similar 

phage display panning procedure was utilized to identify common epitopes from an 

individual antibody repertoire [60], but this also required numerous follow-up experiments 

such as peptide microarray analysis and exhaustive peptide mutagenesis. 

Phage display is the most commonly used surface display technology. Phage display 

libraries can be readily purchased from companies such as New England BioLabs, enabling 

easy integration into laboratories and companies. Random phage display libraries can have 
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large library diversities (10
9
–10

11
) due to high transformation efficiencies during library 

construction in E. coli [38,57,61], leading to improved epitope discovery and enabling 

antigen identification. Numerous phage display systems have been developed utilizing 

different types of bacteriophages and displaying peptides on various phage coat proteins. 

Most phage display systems utilize filamentous phages (M13) [38]. These are non-lytic 

phage, simplifying phage amplification as new phage particles are secreted during E. coli 

growth. Peptides are often engineered to be displayed on the N-terminus of the minor coat 

protein 3 (pIII) at the tip of the filamentous phage. However, only five copies of pIII are 

displayed on the phage surface and therefore the peptides have a low surface density and low 

avidity. Avidity is a measure of the net affinity for interactions between an antibody and 

multiple epitopes. A high concentration of epitopes on a surface increases the net binding 

strength for antibody interactions and increases the likelihood of selecting the corresponding 

peptides during screening. For complex systems such as serum antibody repertoires and 

random peptide libraries, higher avidity is beneficial for binding dilute antibodies or 

antibodies with low affinity. Therefore, systems with high avidity are more likely to select 

for peptides that bind rare antibodies associated with diseases. Other phage coat proteins with 

higher surface density have been engineered for peptide display such as the major coat 

protein pVIII with 2,700 copies on the surface [38]. However, inserting random peptides into 

pVIII can cause problems with capsid assembly. Strategies to increase assembly stability 

have been attempted by interspersing wild-type pVIII proteins with pVIII proteins containing 

peptide inserts, resulting in 10-100 pVIII stable surface copies [57]. However, the peptide 

density remains relatively low and difficult to adjust. Another disadvantage of phage display 

is the panning procedure requires time-consuming experimental screening rounds and 
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amplification stages. Furthermore, the amplification stages of phage libraries in E. coli have 

been demonstrated to decrease library diversity over multiple rounds due to competition 

between phages [62]. Thus, peptide binders may be lost during the panning process due to 

the requirement of consecutive infection and amplification stages. However, fewer panning 

and amplification rounds are required when utilizing NGS and thus these difficulties may be 

reduced in the future. 

1.2.3 Bacterial display 

Bacterial display is a screening platform that utilizes bacteria engineered to display 

peptides on the cell surface. While bacterial species from the Staphylococcus genus have 

been utilized for display systems [63], E. coli is an ideal species to use due to its ubiquity in 

biotechnology and the accompanying wealth of knowledge and opportunities for 

bioengineering. To facilitate peptide screening using E. coli bacterial display, a display 

scaffold was engineered by circularly permuting an outer membrane protein, allowing both 

termini to be accessible on the cell surface [64]. Additionally, this display scaffold was 

evolutionarily optimized for improved surface localization and screening efficiency [65]. The 

enhanced circularly permuted outer membrane protein X (eCPX) can then be engineered to 

contain a peptide at the N-terminus or C-terminus for screening applications (Figure 1.1). 
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Figure 1.1 Bacterial display eCPX scaffold for peptide screening. E. coli cells are genetically engineered 

with plasmid DNA encoding an outer membrane protein engineered for efficient peptide surface display 

(eCPX). For bacterial display peptide libraries, each cell displays a unique peptide that can be sorted for 

antibody binding using a variety of techniques such as magnetic selection or fluorescence-activated cell sorting 

(FACS). The plasmid DNA can then be extracted and sequenced for peptide sequence analysis and epitope 

discovery. 

 

Bacterial display is well-suited for peptide screening applications for its ease of genetic 

manipulation, fast growth rates, and high transformation efficiencies [65,66]. Bacterial 

display peptide libraries have high diversities (10
9
–10

11
) enabling efficient sampling of 

potential epitopes from the antibody repertoire. These large library diversities are more stable 

compared to phage display because of the tightly regulated growth of E. coli [67,68]. 

Another advantage of bacterial display is the ability to utilize flow cytometry for cell 

population analysis and fluorescence-activated cell sorting (FACS) [39]. The ability to sort 

cells based on fluorescent binding enables precise selection of cell populations with desired 

peptide binders and directed evolution of peptides [69–71]. Bacterial library cells can also be 

efficiently sorted using magnetic selection, a process that uses magnetic beads functionalized 

with antibody capture reagents to perform a bulk selection of all cells bound by serum 

antibodies [39].  

The eCPX bacterial display system also allows for high avidity antibody binding [39,66]. 

The eCPX protein is displayed as ~10,000 copies on the bacterial cell surface. Compared to 

many phage display systems, this increased surface concentration can greatly impact 
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antibody repertoire analysis due to the increased peptide concentration and decreased off-

rates for antibody binding, leading to retention and selection of rare antibody-peptide 

interactions. Other E. coli display systems have been developed such as the FliTrx system 

[66,72], however this system has low avidity and requires a panning procedure similar to 

phage display rather than magnetic selection or FACS [66]. Additionally, the FliTrx peptides 

are presented as constrained insertions in exposed loops in the scaffold protein, restricting 

epitope discovery and leading to poor affinities in solution [64]. Therefore, the eCPX system 

is an optimal bacterial display system for antibody repertoire analysis. 

By screening bacterial display random peptide libraries with FACS, epitopes have been 

discovered and characterized for various diseases. Peptides with high diagnostic accuracy 

were identified for celiac disease [70,73,74]. Moreover, preliminary epitopes were further 

expanded using iterative FACS screening rounds to identify additional epitope sequence 

information, ultimately enabling the identification of gluten antigens associated with celiac 

disease [70]. A similar procedure was applied to discover epitopes associated with pre-

eclampsia, identifying an epitope with increased binding in pre-eclampsia patients and 

elucidating a potential mechanism of molecular mimicry between the Epstein–Barr nuclear 

antigen 1 (EBNA-1) and a G protein-coupled receptor [75].  

While bacterial display and FACS has been successful for discovery applications, these 

methods required numerous and time-consuming experimental screening rounds to reduce 

the peptide library diversity to a manageable set of peptides capable of low-throughput 

Sanger sequencing. Additionally, serum specimens were often pooled before analysis to 

reduce screening rounds needed to identify consensus epitopes. With the advent of NGS, a 

high-throughput approach is now possible for in-depth characterization of peptide binding to 
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the serum antibody repertoire of individual subjects. To accomplish this, magnetic selection 

was applied using magnetic beads functionalized with antibody capture reagents to perform a 

bulk selection of all cells bound by serum antibodies. Analyzing serum specimens from 

subjects with celiac disease and healthy controls with this next-generation approach revealed 

gluten associated epitopes with high diagnostic accuracy after only two rounds of magnetic 

selection, NGS, and computational sequence analysis [76]. The ability to massively catalog 

antibody-binding peptides for individual specimens coupled with advances in bioinformatics 

will greatly improve antibody repertoire analysis. A detailed overview of the next-generation 

methods using bacterial display to identify antibody-binding peptides and characterize 

epitopes is discussed in Section 1.4. 

 

1.3 Infections & diseases 

A main advantage of random peptide library screening is the arbitrary applicability to any 

disease eliciting unique antibody production. Here, we investigated the serum antibody 

repertoires for diverse systems including the infectious disease herpes simplex and the 

inflammatory disease age-related macular degeneration (AMD). 

1.3.1 Herpes simplex virus 

The herpesvirus family contains eight viral species that commonly infect humans [77]. 

Two of these species are the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The 

World Health Organization (WHO) estimated that in 2012, the worldwide prevalence of 

HSV-1 in people under the age of 50 was 67% [20]. The worldwide prevalence of HSV-2 in 

people aged 15-49 was estimated to be 11% [21]. HSV-1 infection can lead to orofacial 

herpes resulting in lesions on the face or mouth (cold sores). Infection of HSV-2 can lead to 
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genital herpes resulting in lesions in the genital area, a sexually transmitted disease. 

Following primary infection of HSV, the viruses infect ganglion neurons and become latent 

where they remain as lifelong infections. Recurrent infections (reactivation) can occur due to 

provocative stimuli such as injury, stress, or immunosuppression. However, most HSV 

infections are asymptomatic and the host remains unaware [78]. HSV is primarily transmitted 

by physical contact with bodily fluids or lesions of an infected individual but transmission 

can occur during asymptomatic recurrences. 

HSV-1 and HSV-2 are closely related viruses and thus have many physical similarities. 

HSVs are enveloped, double-stranded DNA viruses with fast replication cycles. The HSV 

genome contains over 70 genes, all of which are present in both HSV-1 and HSV-2 [79,80]. 

The HSV structure consists of a protein capsid enclosing the viral DNA, a tegument protein 

layer surrounding the capsid, all wrapped in a lipid membrane envelope with protruding 

glycoproteins [81]. The HSVs have at least a dozen different glycoproteins, five of which are 

involved in viral entry and infection of host cells [82]. Due to the surface exposure and 

critical role in viral replication, the glycoproteins are convenient antigenic targets for 

antibodies to neutralize and protect against infection. Detection of these antibodies in serum 

can therefore inform of HSV infection. 

To develop diagnostics for HSV-1 and HSV-2, highly sensitive and specific epitopes for 

each HSV species need to be identified to enable detection of serum antibodies in infected 

patients. However, due to the high sequence similarity between the HSV types, few antigenic 

targets exist that differentiate the two viruses. Numerous studies have therefore been 

completed to identify epitopes specific to each HSV species, including peptide tiling and 

epitope mapping of glycoproteins B [83,84], D [85,86], and H/L [87]. Recent studies have 



 

17 

utilized microarrays for epitope mapping seven glycoproteins from each HSV species [82]. 

While type-specific epitopes have been identified using these methods, the most effective 

epitope for diagnosis has been glycoprotein G. Glycoprotein G has the lowest sequence 

homology of the glycoproteins due to a large truncation in HSV-1 [80,88] and is therefore an 

ideal candidate for distinguishing the HSVs. Various targeted peptide screening methods 

were utilized to identify distinct, type-specific epitopes [89–91]. Glycoprotein G epitope 

discoveries have enabled the development of antibody-based diagnostics including 

immunoblots and ELISAs with high diagnostic utility [92,93]. 

Despite the advances in antibody-based HSV diagnostics, significant limitations exist 

with these methods. In particular, antibody-based methods are often dependent on the stage 

of infection and careful assessments need be completed when classifying tests as positive or 

negative [94]. Therefore, older methods are still widely used for diagnosing active infections, 

including viral culturing and PCR of viral DNA from a blood/tissue sample [95,96]. These 

methods are low-cost and fairly reliable, but are still limited by sensitivity and specificity 

issues and require clinicians and laboratory facilities [92,94]. Given the increasing 

prevalence of HSV worldwide and the availability of effective antiviral therapy, there is an 

increasing need to discover and develop highly sensitive and specific reagents to enable 

point-of-care HSV diagnosis. 

1.3.2 Age-related macular degeneration 

Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly 

worldwide [97]. AMD results from the deterioration of the macula, a small region of the 

retina responsible for sharp, central vision. The degeneration of the macula can lead to a 

blurry, dark, and distorted central field of view which severely impacts performing simple 
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tasks and quality of life. A major risk factor for AMD is simply age, as the disease is most 

likely to occur after age 60 [98]. Other risk factors include race, as AMD is more prevalent in 

Caucasians than other races [99], environmental factors such as smoking and nutrition [100], 

and numerous genetic factors including polymorphisms in immune-related proteins like 

various complement factors [101,102]. According to the AMD Alliance International, 40 

million individuals worldwide will suffer visual impairment due to AMD by 2020, resulting 

in $300 billion annual direct costs [103]. As the population of older individuals grows rapidly 

and life expectancy increases, AMD will become increasingly prevalent in the coming 

decades [104]. 

AMD progresses slowly over time in stages designated as early, intermediate, and late. A 

hallmark of AMD is the formation of extracellular deposits of cellular debris in the retina, 

known as drusen, that accumulate with age [105,106]. Early AMD is first diagnosed by the 

presence of medium-sized drusen seen at the back of the eye during a dilated eye exam. 

Intermediate AMD is characterized by large-sized drusen and/or retinal pigment 

abnormalities, but vision loss is not common at this stage. Advanced, or late, AMD involves 

extensive drusen and/or deterioration of the macula and often some degree of vision loss. It is 

unknown if drusen are a symptom or cause of the disease but an increase in size and number 

of drusen increases the risk of late AMD [107]. Specifically, the presence of large drusen 

increases the likelihood of developing late AMD over a five year span by a factor of five. It 

is postulated that the formation of drusen can stimulate a chronic immune response, 

exacerbating macular degeneration [105,108], signifying the role drusen could play in AMD 

progression. Importantly, the presence of drusen does not ensure the development of late 
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AMD, as only 20% of individuals with early AMD progressed to late AMD over a five year 

span [97]. 

There are two different types of late AMD: geographic atrophy (GA) and neovascular 

(NV). GA is typically characterized by degeneration of the retinal pigment epithelium (RPE) 

and outer retina while NV is caused by choroidal vascularization under the RPE and is 

typically associated with the more severe cases of vision loss [98]. GA often develops 

gradually, while the progression of NV, and therefore the damage, can be rapid. Much work 

has been devoted to determining ways of slowing or impeding disease progression, including 

the identification of nutritional supplements that reduce the risk of developing late AMD by 

25% over five years [109]. With millions at risk for AMD, this convenient and low cost 

solution for decreasing risk has enormous potential. Various therapies have been developed 

to impede vision loss in NV AMD by targeting and inhibiting angiogenesis. NV therapies 

include photodynamic therapy [110], laser surgery [111], and anti-vascular endothelial 

growth factor (VEGF) therapies using antibodies (Avastin, Lucentin) [112,113] and aptamers 

(Macugen) [114,115]. There are currently no therapies for GA AMD although there are many 

in clinical development to address this unmet need [116]. Additionally, there are no therapies 

to reverse damage from AMD but there is promising work being done in phase 1 clinical 

trials using human embryonic stem cell–derived RPE monolayers [117,118]. 

Fundamental questions remain regarding the complex progression from early and 

intermediate stages to late AMD, along with the bifurcation of GA and NV AMD. It is 

known that immune system activation plays a significant role in the development and 

progression of AMD, but the exact origins and targets of the immune response are still being 

investigated [98,119]. Compelling evidence has implicated the complement system as a key 
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factor in AMD pathology. Specifically, a single nucleotide polymorphism in complement 

factor H can account for up to 50% of AMD cases [97,101]. Additionally, numerous 

complement proteins have been identified as elevated components in drusen using 

proteomics [106,120]. Targeting complement activation to suppress inflammation has 

recently been investigated with numerous therapies in clinical development, further 

demonstrating the role of the complement pathways in AMD pathogenesis [121,122]. 

Antibodies associated with AMD have also been observed, suggesting a link between the 

adaptive immune response and AMD. Antibodies targeting carboxyethylpyrrole (CEP) 

protein adducts have been identified, often generated due to oxidative stress involved with 

aging [123]. Anti-retinal antibodies have also been identified in AMD [124,125], and unique 

antibody profiles have been observed at different stages of progression [126]. Despite these 

discoveries, the roles of antibodies in AMD pathology are still unclear and the exact targets 

remain undiscovered. 

While progress has been made on determining the role of immune activation in AMD, 

limitations in diagnostics and therapies are largely due to the complexities of the pathology 

and a lack of understanding the etiology. The detection of antibody biomarkers associated 

with AMD provides an opportunity for AMD prognostics and diagnostics. However, based 

on the diversity of antibody targets observed in AMD, it is unlikely that a single antibody 

species can effectively diagnose the disease [127]. Therefore, a technology such as random 

peptide library screening could be utilized to discover numerous antibodies associated with 

AMD and reveal their unique binding targets. These discoveries could lead to the 

development of antibody-based tests for early diagnosis, the identification of novel 

therapeutic targets, and insights into disease etiology. 
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1.4 Techniques 

With the recent advances in NGS, the techniques used here focus on screening random 

bacterial display peptide libraries for antibody binding to individual serum specimens. 

Enrichment is completed using magnetic selection followed by DNA extraction and 

sequencing using NGS platforms. A suite of computational algorithms is then applied to 

mine large peptide sequence datasets for significant binding patterns and motifs. This process 

enables a deep characterization of binding interactions from the serum antibody repertoire. 

1.4.1 Magnetic cell selection 

Magnetic cell selection utilizes superparamagnetic microbeads functionalized with 

capture reagents for separating cells of interest. When screening bacterial display peptide 

libraries for antibody binding, the magnetic beads are coated with protein A/G, a 

recombinant fusion protein that binds to antibodies. Protein A/G combines six 

immunoglobulin binding domains derived from protein A, found in Staphylococcus aureus, 

and protein G, found in Streptococcus species [128,129]. Protein A/G binds to the fragment 

crystallizable (Fc) region of antibodies and therefore does not interfere with epitope binding. 

In human serum, protein A/G preferentially binds to IgG although weak binding towards IgA 

and IgM occurs. Protein A/G also has strong binding for mouse and rabbit IgG and can 

therefore be used in assays with many commercially available monoclonal antibodies [129]. 

When screening bacterial display peptide libraries for antibody binding, magnetic 

selection enables the separation of library cells bound by human serum antibodies (Figure 

1.2). This screening methodology utilizes a library of E. coli cells, each genetically encoded 

to display a randomized peptide on the N-terminus of the outer membrane protein eCPX. 

Prior to screening, serum antibodies that bind to E. coli displaying eCPX without an N-
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terminal peptide must be depleted by incubating the serum specimen with E. coli and 

separating cells bound by antibodies from unbound antibodies using centrifugation. Depleted 

serum can then be incubated with the random bacterial display peptide library to facilitate 

antibody-peptide binding. Antibodies that do not bind to displayed peptides are washed away 

and protein A/G magnetic beads are added to facilitate the formation of a cell-antibody-bead 

ternary complex. A magnet can then be used to physically separate the cells bound by serum 

antibodies from unbound cells. This process can be repeated for further enrichment of the 

peptide library towards patient-specific serum antibodies. The resulting library cells contain 

the genetic information encoding millions of peptides that bound to patient-specific 

antibodies, which can be accessed and analyzed using NGS and bioinformatics. 

 

Figure 1.2. Bacterial display peptide library sorting using magnetic selection. A random bacterial display 

peptide library is incubated with a patient serum specimen to facilitate antibody-peptide binding. Magnetic 

selection using magnetic particles coated with protein A/G is then applied to physically separate cells bound by 

antibodies, resulting in a patient-specific library of cells encoding antibody-binding peptides. 

 

1.4.2 Flow cytometry 

Flow cytometry can be utilized for a quantitative, real-time analysis of bacterial display 

peptide libraries. Using a flow cytometer, a suspension of bacterial display cells is 

hydrodynamically focused into a stream of single cells that are individually interrogated by 

one or more lasers. Upon interrogation, the light scatter and fluorescence of a single cell are 
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measured and converted to an electronic signal for immediate analysis. Light scattered in a 

forward direction is used to measure particle size while light scattered at an angle is related to 

the granularity and internal complexity of the cell. After a random bacterial display peptide 

library has been screened for antibody binding, the library enrichment can be quantified 

using flow cytometry. The enriched library is incubated with the corresponding serum 

specimen to facilitate antibody binding followed by addition of a secondary fluorescent probe 

that binds to human antibodies, such as phycoerythrin (PE)-conjugated anti-human IgG 

antibodies. These antibodies bind specifically to the Fc region of human IgG antibodies and 

have a PE fluorescent protein tag to indicate the presence of antibodies bound to a cell. Flow 

cytometry can then be used to quantify the proportion of library cells bound by antibodies. 

Flow cytometry can also be used to precisely sort cells based on fluorescent signal, a method 

termed fluorescence-activated cell sorting (FACS). FACS is not used here but could be used 

in future studies to further elucidate epitope sequence information for various disease 

applications. 

1.4.3 Next-generation sequencing 

Next-generation sequencing (NGS) can be utilized with bacterial display peptide 

screening to determine the sequences for millions of antibody-binding peptides [76]. Here, 

the Illumina NextSeq platform was exclusively used to perform massively parallelized 

sequencing [130]. To determine the peptide sequences following bacterial display screening, 

the DNA plasmids encoding display peptides are extracted from the library cells. Upon 

plasmid recovery, the peptide sequence regions are amplified using PCR. During PCR, 

various adapter sequences are added to the DNA construct (amplicon) flanking the peptide 

sequence, which are required for the Illumina platform. These adapter sequences are used to 
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hybridize the amplicons to the flow cell used for sequencing. Additionally, a unique DNA 

“barcode” sequence is added to the library amplicons as an identifier for patient-specific 

libraries, enabling pooling of multiple sample libraries for multiplexed sequencing.  

A high-output sequencing run on the Illumina NextSeq can achieve over 400 million 

sequences per run. A control genome (PhiX) must be spiked into each sequencing run to 

increase sequence diversity for imaging and to serve as a quality control. PhiX is often spiked 

into these NextSeq runs at 40–50% to provide sufficient sequence diversity, leaving over 200 

million sequence reads available for library sequences. Therefore, libraries from 40 

specimens can be sequenced to obtain ~5 million sequence reads per sample. This provides 

sufficient coverage of the peptide library sequences to characterize antibody repertoire 

binding. 

1.4.4 Antibody-binding motif discovery and analysis 

The size and complexity of the peptide sequence datasets obtained from random peptide 

library screening requires the use of computational algorithms to identify and characterize 

epitopes. The antibody-binding peptide sequences contain short patterns of amino acids that 

are critical for antibody binding, known as motifs. These motifs can be contiguous amino 

acid sequences or a series of amino acids interspersed with undefined residues indicating 

which positions were conserved for antibody binding and which positions were allowed 

variation. Numerous computational tools have been developed to analyze peptide sequence 

datasets for binding motifs. MEME is a motif discovery tool that utilizes an expectation 

maximization algorithm to identify motifs within a set of peptide sequences [131,132]. 

MEME is a convenient motif discovery platform with an online platform. However, analysis 

of 5,000 sequences for MEME motif discovery requires ~10 hours. Because NGS datasets 
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often contain millions of peptide sequences, MEME can only be used on small subsets of 

sequences, thus narrowing the discovery space. 

To efficiently analyze large NGS datasets, the algorithm IMUNE was developed [76]. 

IMUNE includes a suite of computational tools including tools for processing NGS data files 

and translating the DNA sequences encoding peptides. More importantly, IMUNE performs 

comprehensive motif searches within the peptide datasets to identify motifs that were 

statistically enriched in libraries from disease specimens and not enriched in control 

specimens. This enables the unbiased discovery of disease-specific motifs. 

The vast diversity and complexity of the peptide datasets following bacterial display 

screening and NGS lead to many redundant binding motifs. To reduce redundancy and 

identify concise motifs, various clustering algorithms can be used to cluster similar motifs 

and form consensus motifs. The similarity between two motifs can be quantified by aligning 

the motif sequences and generating a similarity score based on the PAM30 substitution 

matrix [76,133]. Given a set of motifs, all motif similarity alignments can be calculated and 

hierarchical clustering can be applied to group motifs based on sequence similarity. The 

peptide sequences containing the clustered motifs can then be input into MEME to determine 

the consensus motif. 

1.4.5 Disease classification algorithms 

The motifs and peptides discovered through random peptide screening can be used as 

diagnostic reagents for detecting antibody biomarkers in diseases. It has been demonstrated 

that individual peptides can yield high diagnostic accuracy for autoimmune diseases such as 

celiac disease [70]. Peptide reactivity to patient sera can be quantified using various methods 

such as ELISAs, microarrays, and flow cytometry with bacterial display. Patient samples can 
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then be classified as disease or control based on the reactivity towards the diagnostic peptide 

reagent. Additionally, the enrichment of a motif in a patient-specific peptide library screened 

for antibody binding can be used as a quantitative metric for classification [76]. However, an 

individual motif is often insufficient for accurate diagnosis and more sophisticated 

classification schemes must be utilized to classify a specimen as disease or control. In these 

cases, reactivity towards numerous peptides or motifs can be used a diagnostic reagents. 

Algorithms such as support vector machines (SVM) [134] are then applied to classify 

specimens based on reactivity to the various peptides [73]. An SVM projects the 

multidimensional data of motif reactivities from groups of specimens into higher dimensions 

and constructs a hyperplane to optimally separate the disease specimens from the control 

specimens. The SVM is trained on a discovery cohort of specimens to construct the classifier 

hyperplane and tested on an independent cohort using the same parameters for classification. 

1.4.6 Protein database searches 

Following antibody-binding motif discovery, online protein databases can be searched for 

protein antigens containing motifs of interest. Various protein sequence databases exist 

including the NCBI protein Basic Local Alignment Search Tool (BLASTp) [135] and 

ExPASy ScanProsite [136]. Search tools align binding motifs to proteins based on sequence 

similarity to identify candidate antigens containing the motifs. Sequence alignment similarity 

is often scored using substitution matrices such as PAM and BLOSUM [133]. Candidate 

searches can remain unbiased by searching all non-redundant proteins or searches can be 

targeted by only searching specific proteomes or antigens. These protein alignments can be 

conducted rapidly for mapping motifs to protein sequences. Other epitope mapping strategies 

require detailed protein structure data which are unavailable for the overwhelming majority 
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of possible antigens. However, protein sequence database alignments will be unsuccessful for 

discontinuous epitopes. 

A consequence of relying solely on sequence alignments is that sufficient motif or 

epitope sequence information needs to be determined. For short motifs and epitopes, protein 

alignments result in too many irrelevant, false positive matches. As a heuristic, the motifs 

and epitopes must contain at least seven amino acids with >70% sequence resemblance to the 

native antigen for successful alignments [33]. To determine statistical significance of protein 

sequence searches in BLASTp, a significance factor (E-value) is reported for each alignment. 

The E-value is an expected value that estimates the number of alignment matches one can 

expect to observe by random chance when searching a database of a certain size. The E-value 

decreases exponentially as the alignment score increases, dependent on factors such as the 

database size, motif length, and motif accuracy. 
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2 Bacterial display peptide library construction, 

characterization, and application for antibody repertoire 

analysis 

 

Biological systems engineered to display ligands such as phage display and bacterial 

display have been utilized for applications ranging from discovering protease substrates to 

developing diagnostic reagents. Recently, random peptide libraries have been utilized to 

profile the antibody repertoire using these display systems and identify antibody-binding 

motifs. However, there are limitations to utilizing these biological systems including amino 

acid frequency biases and stop codon usage which can alter peptide discovery. Here, we 

constructed a high-quality random bacterial display peptide library. The library (trimer-X12) 

contains ~10 billion unique peptides with restricted codon usage optimized for random 

sequences and Escherichia coli growth. Next-generation sequencing was utilized to sequence 

a portion of the naive trimer-X12 library and generate statistics to evaluate the quality. We 

determined that less than 4% of the trimer-X12 sequences contained a stop codon, a greater 

than 10-fold improvement compared to a previously constructed random display library. 

Additionally, the range of amino acid frequencies was only 5.5% in trimer-X12 compared to 

an 11% range in the previously constructed library. The trimer-X12 library was then screened 

for antibody-binding peptides against serum specimens. We determined that the amino acid 

frequencies in libraries following selection were highly dependent on the naive library and 

therefore biases in the naive library propagated forward through the screening process. With 

the improved trimer-X12 constructed and evaluated, we performed various experiments to 
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benchmark the high-throughput screening method for analyzing the antibody repertoire. 

Additionally, by analyzing fundamental characteristics of antibody-peptide binding, we have 

gained important insights into how to efficiently and accurately discover motifs, exemplified 

by discovering monoclonal antibody binding motifs. These results demonstrate that the high-

quality trimer-X12 library can be readily applied to diverse systems such as infectious, 

inflammatory, and autoimmune diseases to develop diagnostics, reveal antigens associated 

with disease, and lead to antibody-based therapeutics. 

 

2.1 Introduction 

Random peptide library screening has been successfully utilized for a wide range of 

applications such as determining protease substrates [69,71], discovering peptide reagents for 

diagnosing diseases [52,73], and identifying antigens associated with diseases [56,137]. Due 

to the combinatorial nature of random peptide libraries, the peptides mimic a vast set of 

naturally occurring epitopes. This unbiased scope can be useful for probing the antibody 

repertoire for binding motifs due to the large diversity of antibody species and their 

corresponding targets [4,5]. While there are applications that are useful for targeted 

approaches such as screening peptides tiled from the proteomes of viruses [42], parasites 

[138], and humans [40], random peptide libraries avoid the need to bias experiments toward 

suspected targets. For instance, a random peptide library can be used to identify diverse 

targets such as dietary antigens in celiac disease [70], viral epitopes associated with pre-

eclampsia [75], and antibody signatures in various types of cancers [139]. 

Random peptide libraries can be utilized with various platforms including synthetic 

systems such as microarrays [37] as well as biological systems such as phage display [57] 
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and bacterial display [66]. While microarrays have precise control over the peptide synthesis 

and therefore control over the initial library composition, they are limited by peptide 

diversities ranging from 10
4
–10

6
 as well as fabrication and assembly costs [55,140]. 

Biological systems such as phage display and bacterial display are capable of having much 

higher diversities of ~10
11 

[141] but must rely on biological processes which have inherent 

limitations and biases [142]. One such limitation is with the use of codons, sequences of 

three nucleotides (guanine (G), cytosine (C), adenosine (A), or thymine (T)) that encode for a 

specific amino acid. The genetic code is redundant due to the existence of 64 codons but only 

20 naturally occurring amino acids. A consequence of this redundancy is that the amino acids 

have varying frequencies which leads to a usage bias. Another limitation of using biological 

systems for random library construction is the use of stop codons. Stop codons signal 

termination during protein translation and therefore sequences containing stop codons 

correspond to non-functional sequences in the library. There are three stop codons in the 

genetic code. A high frequency of stop codons in the initial, naive library leads to 

inefficiencies in the screening process as the library diversity is effectively reduced and 

functional sequences are diluted. 

To maximize the scope of random peptide libraries and optimize the discovery of diverse 

targets, the quality of the naive library is crucial [143]. A classic strategy to circumvent the 

biases and deficiencies of codon usage is to utilize NNS codons, where N refers to any of the 

four nucleotides and S refers to the nucleotides C and G [61,144]. In this approach, 

oligonucleotides are synthesized by sequential addition of single nucleotides. The use of 

NNS codons reduces the number of possible codons to 32 in a way that reduces the bias of 

amino acid frequencies while maintaining representation of all 20 amino acids. Additionally, 
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it reduces the number of stop codons from three to one. However, significant bias still exists 

with several amino acid frequencies three times higher than others, as well as the inclusion of 

one stop codon. Therefore, to improve screening applications for serum antibody profiling, 

we sought to construct a new random peptide library with reduced frequency bias and stop 

codon usage. 

To construct an improved random library using the bacterial display system, we utilized a 

random library of oligonucleotides synthesized using trimer phosphoramidites [145–147]. 

The oligonucleotides were synthesized by the sequential addition of trimer nucleotides, three 

nucleotides pre-synthesized in the form of NNN, where N can be any of the four nucleotides 

but the combination of possible codons is limited to 20 codons corresponding to the naturally 

occurring amino acids. This is a recently developed alternative approach to synthesize 

randomized oligonucleotides while avoiding the redundancy, frameshift mutations, and stop 

codons accompanied by using sequential nucleotide addition. Using trimer phosphoramidites, 

we constructed a 12-mer random bacterial display library (trimer-X12). With next-generation 

sequencing (NGS) affordable and readily available, we sequenced the naive library to 

determine baseline statistics and evaluate stop codon usage and amino acid frequency bias. 

For a comparison to the trimer-X12 library, we analyzed a 15-mer display library previously 

constructed in the Daugherty Group at UCSB using NNS codons, which has been utilized 

extensively for various peptide screening applications [70,73–75,148]. We demonstrated that 

the trimer-X12 library had reduced amino acid frequency bias and significantly lower stop 

codon usage. We utilized this new library to evaluate the screening platform using magnetic 

selection and NGS for identifying antibody-binding motifs. Following peptide selection, the 

amino acid frequencies were highly dependent on the naive library frequencies. This 



 

32 

indicates that codon bias is propagated through the screening process which could skew 

motif discovery, demonstrating the importance of a minimally biased naive library. Finally, 

we used the trimer-X12 library to characterize monoclonal antibody (mAbs) motifs and 

determined general motif characteristics for serum antibody binding. These results 

demonstrate that the trimer-X12 library is high quality and can be utilized for a wide range of 

applications. 

 

2.2 Results 

2.2.1 Random bacterial display peptide library construction 

To construct a random bacterial display peptide library with reduced codon bias and 

minimal stop codons, we obtained oligonucleotides for 12-mer library construction that were 

synthesized using 20 trimer phosphoramidites optimized for Escherichia coli (E. coli) codon 

usage (Table 2.1). The 12-mer library (trimer-X12) was designed and constructed to display 

on the N-terminus of the enhanced circularly permuted outer membrane protein X (eCPX). 

The trimer-X12 oligonucleotide library was ligated into the eCPX scaffold plasmid vector and 

transformed into E. coli. The diversity of the library was estimated to be 8×10
9
 unique 

transformants based on the colony-forming units (cfu) measured following serial dilutions of 

transformed cultures. A 15-mer eCPX display library previously constructed in the 

Daugherty Group at UCSB using NNS codons (NNS-X15) was analyzed for comparison. The 

NNS-X15 library had a similar diversity estimated to also be 8×10
9
. 
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Table 2.1. Trimer nucleotides for random 

libraries optimized for E. coli. 

Trimer  

Nucleotide 

Amino Acid  

Encoded 

TAC Tyr (Y) 

TCT Ser (S) 

GGT Gly (G) 

CGT Arg (R) 

GCG Ala (A) 

GAT Asp (D) 

AAC Asn (N) 

CAG Gln (Q) 

GAA Glu (E) 

CAT His (H) 

ATC Ile (I) 

CTG Leu (L) 

AAA Lys (K) 

ATG Met (M) 

TTC Phe (F) 

CCA Pro (P) 

ACC Thr (T) 

TGG Trp (W) 

GTT Val (V) 

TGC Cys (C) 
 

 

2.2.2 Next-generation sequencing of naive peptide libraries 

To generate statistics for each random display library and evaluate the compositions, 

NGS was performed on the random (naive) libraries. Sequencing was completed using the 

Illumina NextSeq 500 platform and sequencing and data processing statistics for both 

libraries were generated (Table 2.2). NGS identified 1.5×10
8
 and 8.8×10

7
 sequences for 

NNS-X15 and trimer-X12, respectively, containing the correct barcode indices and primer 

annealing regions. The variation in the number of sequences obtained was solely a result of 

variation in the sequencing process such as the amount of library DNA loaded onto the flow 

cell and does not reflect the library quality. While these sequences amount to only 1-2% of 

the estimated library diversities, these proportions are sufficient to garner useful statistics 

about the naive libraries. 
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Table 2.2. Next-generation sequencing statistics for naive peptide libraries. 

Naive 

Library 

Sequences 

Obtained 

Correct  

Length 

(%) 

Unique 

Sequences 

(%) 

Stop Codon 

Sequences 

(%) 

Functional 

Unique 

Sequences 

NNS-X15 1.5×10
8
 92 82 43 6.2×10

7
 

Trimer-X12 8.8×10
7
 95 94 3.5 7.3×10

7
 

 

 

For both libraries, >90% of the sequences were the correct base pair length. Additionally, 

>80% of the sequences for both libraries were observed only once in the datasets (unique), 

suggesting there was minimal overrepresentation of individual sequences which is expected 

if the estimated diversity is sufficiently large. The discrepancy in the percent unique 

sequences observed between the libraries is likely due to the discrepancy in sequences 

obtained and therefore we cannot conclude anything regarding differences in the actual 

diversities. The most drastic difference between the two libraries was the presence of stop 

codons, as 43% of sequences in NNS-X15 contained at least one stop codon compared to only 

3.5% in trimer-X12, consistent with theoretical usages (Figure 2.1). While the trimer-X12 

library should theoretically have zero stop codons, we did observe a small yet finite 

percentage of stop codon sequences likely due to errors during oligonucleotide synthesis, 

PCR, and sequencing. However, the construction of the random peptide library using trimer 

nucleotides ultimately resulted in ~10-fold reduction in stop codon usage compared to NNS. 
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Figure 2.1. Stop codon usage was significantly reduced in the trimer-X12 library. Next-generation 

sequencing was completed for the naive NNS-X15 and trimer-X12 libraries. The stop codon frequency was 

identified and compared to theoretical frequencies. For NNS-X15, the theoretical usage is based on the expected 

frequency of at least one stop codon appearing in a 15-mer peptide using NNS codons. For trimer-X12, the 

theoretical frequency is zero due to the exclusion of stop codons using trimer nucleotide synthesis. As expected, 

trimer-X12 had significantly reduced stop codon frequencies. 

 

After removing all sequences with stop codons, there were 6.2×10
7
 and 7.3×10

7
 

functional sequences identified for NNS-X15 and trimer-X12, respectively, from which the 

amino acid frequencies were evaluated for bias and skew. The NNS-X15 frequencies were 

first compared to the theoretical frequencies based on NNS expected usages (Figure 2.2A). 

For NNS codons, the theoretical frequencies have a standard deviation of 2.4% and a range 

of 6.3%. For the NNS-X15 library we observed a similar distribution with a standard 

deviation of 3.2% but a larger range of 11%. The trimer-X12 exhibited less frequency bias 

with a standard deviation of 1.4% and a range of only 5.5%, in agreement with the uniform 

theoretical usage of 5% for all amino acids (Figure 2.2B). Although alanine (A) and 

threonine (T) frequencies were notably lower than expected at 2.1% and 2.5%, respectively, 

the trimer-X12 library demonstrated reduced frequency bias as only 30% of amino acids were 

outside of a 4–6% usage range, while 80% of NNS-X15 amino acids had frequencies outside 

of this range. The utilization of trimer nucleotides therefore produced a more uniform 
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frequency distribution in the naive library, providing a less biased platform for screening 

applications. 

 
Figure 2.2. Amino acid frequencies in naive libraries were identified using NGS. Next-generation 

sequencing was completed for the naive NNS-X15 and trimer-X12 libraries to identify amino acid usages. (A) 

For NNS-X15, the observed frequencies were calculated and compared to the theoretical frequencies based on 

the expected NNS codon usages. (B) For trimer-X12, the observed frequencies were compared to the theoretical 

frequency of 5% for all amino acids due to the equimolar synthesis using trimer nucleotides. Observed 

frequencies generally followed expected trends with greater variance in NNS-X15 and a more uniform 

distribution in trimer-X12. 

 

2.2.3 Screening random peptide libraries for antibody-binding peptides 

After the construction and analysis of the trimer-X12 random library, antibody repertoires 

were characterized by screening the library against human serum specimens. The random 

library was screened against individual serum specimens resulting in subject-specific peptide 

libraries enriched for antibody-binding. Library enrichment was completed using two rounds 
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of magnetic selection, reducing the peptide diversity to ~10
6
 antibody-binding peptides. 

Library enrichment was analyzed using flow cytometry with fluorescent probes to quantify 

the fraction of E. coli cells displaying peptides bound by serum antibodies (Figure 2.3). A 

typical magnetic selection using our standardized protocol, described in Section 2.4.2, often 

achieves >50% enrichment in the first round of selection followed by near-complete 

enrichment (>95%) after the second selection round. This screening method can then be 

completed in parallel for many serum specimens and the resulting enriched libraries can be 

sequenced using multiplexed NGS [76]. 

 
Figure 2.3. Peptide library enrichment was quantified via flow cytometry. The trimer-X12 library was 

enriched for peptides that bound antibodies from a serum specimen using a first round of magnetic selection 

(blue) followed by a final round of magnetic selection (red). An eCPX E. coli population was analyzed as a 

negative control of unbound cells (black) and used as a background threshold to calculate library enrichment. 

Enrichment was quantified using flow cytometry with fluorescent anti-human IgG probes to identify cells 

bound by antibodies. After two rounds of magnetic selection, the peptide library was completely enriched 

(>95%) for antibody binding. 

 

2.2.4 Amino acid frequencies in libraries following peptide selection 

To evaluate the impact that the naive library composition has on peptide selection, we 

analyzed the peptide sequences obtained from screening random libraries against human 

serum specimens. The NNS-X15 and trimer-X12 libraries were each screened against 30 

serum specimens to isolate antibody-binding peptides and evaluate the amino acid 
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frequencies in the enriched peptide libraries. For libraries enriched from NNS-X15, the 

average amino acid frequencies did not deviate greatly from the naive library, with an 

average absolute difference of 0.6% (Figure 2.4A). The exception was arginine (R) which 

had an average decrease in frequency of 5.2% following selection. This could be due to the 

abnormally high frequency of 13% in the naive library and possible epitope sequence bias. 

For libraries enriched using trimer-X12, the average amino acid frequencies again did not 

deviate from the naive library with an average absolute difference of 0.7% (Figure 2.4B). 

However, the largest absolute difference observed was only a 1.8% decrease for cysteine (C). 

Therefore, the naive library frequencies were largely maintained following selection for 

antibody-binding peptides, indicating that selected peptide compositions were skewed based 

on the initial library screened. These results demonstrate the importance of having an 

unbiased and a uniform library for random library screening applications. 
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Figure 2.4. Amino acid frequencies in peptide libraries enriched for antibody binding were highly 

dependent on naive library. Antibody-binding peptide selection was completed for 30 human serum 

specimens using (A) NNS-X15 and (B) trimer-X12 libraries. Next-generation sequencing was completed to 

identify amino acid frequencies after selection compared to naive library frequencies. Amino acid usages did 

not largely deviate from the naive frequencies, demonstrating the importance of a uniform naive library to avoid 

bias during selection. 

 

2.2.5 Antibody-binding motif analysis 

After screening numerous serum specimens, we analyzed the resulting peptide libraries to 

obtain general motif characteristics for antibodies that bound linear peptides. Specifically, we 

were interested in determining the average motif width as well as the average number of 

conserved positions present in each motif. We analyzed libraries from 20 serum specimens 

using both NNS-X15 and trimer-X12 and identified the 10 highest enriched motifs from each 

library using the motif search algorithm MEME. Of these motifs, 90% were five to eight 

amino acids wide with four to six conserved positions (Figure 2.5). Because the majority of 
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motifs were at most eight amino acids wide, there were no discernable differences in motifs 

identified using random libraries with either 12-mers or 15-mers. These results indicate that 

many serum antibodies have similar motif preferences when binding linear peptides. We can 

now target our discovery efforts based on this description of common motif profiles for a 

more efficient and precise discovery platform. 

 
Figure 2.5. Antibody-binding motifs discovered using random peptide libraries have a distinct 

distribution for widths and numbers of conserved residues. Antibody-binding motifs were discovered from 

peptide libraries enriched for antibody binding, using both NNS-X15 and trimer-X12 libraries. The 1,000 highest 

enriched sequences from 20 serum specimens were used to discover motifs using MEME. The 10 most 

significant motifs for each library were analyzed for motif widths and numbers of conserved positions. 

Therefore, a motif characteristic profile was generated for 200 independent motifs from both NNS-X15 and 

trimer-X12 derived libraries. Almost all motifs were five to eight amino acids wide with four to six conserved 

positions. The distribution of widths and numbers of conserved residues using the 12-mer library did not differ 

from the 15-mer library. 

 

2.2.6 Monoclonal antibody epitope analysis 

To validate antibody detection and discovery with random peptide library screening, we 

utilized mAbs with known linear epitopes as model systems. Three mAbs were analyzed for 

motif discovery: anti-myc with epitope EQKLISEEDL, anti-V5 with epitope 

GKPIPNPLLGLDST, and anti-HA with epitope YPYDVPDYA. The trimer-X12 library was 

screened against each mAb and the enriched libraries were sequenced with NGS. To identify 

consensus binding motifs, 5,000 of the highest enriched peptides from each library were 

analyzed for motifs using MEME. Of the 5,000 sequences analyzed from each mAb library, 

A B
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80% contributed to the myc motif LxSEE[DE], 79% contributed to the V5 motif 

[KR]PxPNxxL, and 87% contributed to the HA motif [YQ]PYD[VI]xD. The mAb binding 

motifs were displayed graphically as sequence logo plots (Figure 2.6A-C). The total height 

of letters (representing amino acids) at a position indicates the degree of conservation and 

therefore the importance of that position for binding. The height of individual letters reflects 

the frequency of specific amino acids at each position. While the exact linear epitopes for 

each mAb were previously known, we were able to precisely determine which residues were 

important for binding and the selectivity at each position. The high degrees of sequence 

convergence and consistency of motifs with the known linear epitopes indicate that these 

motifs are representative of the conserved mAb binding residues. Furthermore, we 

determined the enrichment of each motif in the corresponding library and found each motif to 

be enriched >1,000-fold (Figure 2.6D). By studying mAbs as model systems, we 

successfully integrated random library screening with NGS to discover precise binding 

motifs and quantify the corresponding enrichment. 
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Figure 2.6. Monoclonal antibody motifs were identified through peptide library screening and NGS. 
Binding motifs for three mAbs (anti-myc, anti-V5, and anti-HA) were discovered by screening trimer-X12 

libraries followed by NGS. MEME was utilized to discover consensus binding motifs for each mAb and 

sequence logos were identified: (A) myc motif LxSEE[DE] from epitope EQKLISEEDL, (B) V5 motif 

[KR]PxPNxxL from epitope GKPIPNPLLGLDST, and (C) HA motif [YQ]PYD[VI]xD from epitope 

YPYDVPDYA. Enrichments of mAb motifs following selection were calculated and determined to be greater 

than 1,000 for each mAb motif demonstrating the success of high-throughput screening for binding motifs. 

 

2.3 Discussion 

While utilizing biological systems for random peptide display libraries has many 

advantages, inherent biases and limitations exist that have been difficult to circumvent, such 

as codon bias and stop codon usage [143,149]. However, due to advances in oligonucleotide 

synthesis, it is now possible to design and construct improved libraries that circumvent these 

limitations. Moreover, the advent of high-throughput sequencing has enabled an in-depth 

characterization of libraries not previously possible. Here, we constructed a random bacterial 

display peptide library (trimer-X12) using oligonucleotides synthesized with trimer 

phosphoramidites. This enabled the library to be restricted to codons representing the 20 

natural amino acids with minimal overrepresentation and optimized for E. coli growth. 

Utilizing NGS, we obtained ~70 million sequences from the naive library and assessed the 

quality by generating statistics such as the sequence lengths, stop codon usage, and amino 
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acid frequencies. More than 95% of the sequences identified were the correct length and 

>89% were unique with only ~4% stop codons, indicating a highly diverse and functional 

library. By comparison, we sequenced a 15-mer library constructed using NNS codons 

(NNS-X15) and found that the library contained 43% stop codon sequences. Experimentally, 

this severely limits the sampling of random peptides because almost every other cell is not 

displaying a peptide for interrogation. A 10-fold reduction in stop codon usage is therefore a 

significant improvement to expand the functionality and true diversity of the naive library. In 

addition, we determined that the trimer-X12 library had a more uniform distribution of amino 

acid frequencies with a range of only 5.5% compared to a range of 11% in NNS-X15, 

demonstrating the decreased variance. These results signify a high-quality naive library that 

minimizes biases that were once inherent to biological systems such as bacterial display. 

With the trimer-X12 library constructed, we utilized a high-throughput protocol to screen 

for antibody-binding peptides using magnetic selection and NGS. After screening 30 serum 

specimens for both trimer-X12 and NNS-X15, we determined that the amino acid frequencies 

following selection were highly dependent on the naive library frequencies. The average 

frequency of glycine (G) following selection was 4.0% using the trimer-X12 library but it was 

13% using NNS-X15. This large variation in amino acid frequencies due simply to the naive 

library will negatively impact peptide screening and motif discovery by biasing the motif 

sequences. Specifically, when quantifying motif enrichment (Equation (2.1)), the 

frequencies of amino acids in the selected library are used to calculate the expected 

observations. Frequencies that are skewed by the naive library will therefore lead to skewed 

enrichment calculations. Additionally, when searching protein databases such as BLASTp for 

proteins that contain the motifs identified during screening, it is critical to have accurately 
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determined as many motif positions as possible to reduce false positive matches [33]. Thus, 

the trimer-X12 library provides an improved platform for discovering antibody-binding motifs 

and epitopes with minimal amino acid bias. 

After determining the quality of the trimer-X12 library, we performed high-throughput 

experiments aimed at evaluating the fundamentals of antibody repertoire profiling. While 

linear peptides cannot mimic all antibody-antigen interactions [29], an analysis of antibody-

antigen structures in the protein data bank found that more than 85% of the epitopes 

contained a contiguous stretch of at least five residues [28]. By analyzing hundreds of motifs 

from 20 serum specimens, we determined that the large majority of motifs had a distinct 

range of widths and numbers of conserved residues, consistent with previous findings. 

Knowing these ranges enables a targeted approach to motif discovery by focusing discovery 

on short patterns of amino acids enriched in the peptide sequences, ranging from five to eight 

amino acids wide. Computationally, this greatly improves the efficiency of searching through 

the millions of peptide sequences. While we only utilized the 10 most enriched motifs from 

each specimen library, we can readily identify hundreds of motifs suggesting a broad 

coverage of many antibody interactions. The precision of discovery was exemplified by 

analyzing model systems using three mAbs, discovering the distinct binding specificities, and 

quantifying the enrichment for each motif.  

In the past, identifying distinct antibody-binding motifs required laborious rounds of 

experimental screening using flow cytometry [70,75], constraining throughput and discovery. 

With the availability and affordability of NGS, the focus has shifted towards fewer 

experimental stages and more reliance on computational analysis. However, this leaves less 

room for error in the few experimental stages used, emphasizing the importance of using 
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high quality libraries for screening applications. With an improved random peptide display 

library and better understanding of the fundamentals of antibody repertoire profiling, we are 

better suited to apply this technology to more complicated and diverse immunological 

systems such as infectious and autoimmune diseases for diagnostics, antigen discovery, and 

therapeutic development. 

 

2.4 Materials and methods 

2.4.1 Construction of bacterial display peptide libraries 

To construct a random 12-mer peptide library on the N-terminus of the outer membrane 

protein scaffold eCPX, E. coli strain MC1061 (F
–
 araD139 Δ(ara-leu)7696 galE15 galK16 

Δ(lac)X74 rpsL (Str
R
) hsdR2 (rK

–
 mK

+
) mcrA mcrB1) [67] was used with surface display 

vector pB33eCPX [65]. Library construction was adapted from a protocol previously 

described [39]. Forward oligonucleotide primers were designed to contain the trimer-X12 

random library and anneal upstream of eCPX and extend to a SfiI site: 

ACTTCCGTAGCTGGCCAGTCTGGCCAGGGTGGA-NNN-NNN-NNN-NNN-NNN-

NNN-NNN-NNN-NNN-NNN-NNN-NNN-GGAGGGCAGTCTGGGCAGTCTG 

where -NNN- represents one of 20 codons optimized for E. coli expression (Table 2.1) 

(Metkinen Chemistry). The reverse primer was designed to anneal downstream of a SfiI site 

on the C-terminal end of eCPX: GGCTGAAAATCTTCTCTC (Eurofins MWG Operon). 

To prepare the insert DNA for library construction, PCR amplification was accomplished 

using a KAPA HiFi HotStart ReadyMix PCR Kit (Kapa Biosystems). Touchdown PCR was 

used to increase specificity (20 cycles with annealing at 67 °C and reduced 0.5 °C/cycle 

followed by 20 cycles with annealing at 57 °C). The PCR products were purified and 
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concentrated with a PCR purification kit (GeneJET) and double digested with SfiI in 

CutSmart buffer (10 U/µg insert DNA) (NEB) for 4 hrs at 50 °C. The digested insert product 

(~550 bp) was extracted using a gel DNA recovery kit (Zymo Research). To prepare vector 

DNA, pB33eCPX vector was isolated using a plasmid maxiprep kit (Qiagen) and double 

digested with SfiI in CutSmart buffer (10 U/µg vector DNA) (NEB) for 4 hrs at 50 °C. The 

large product band (~5,400 bp) was extracted using a gel DNA recovery kit (Zymo 

Research). The extracted vector product was dephosphorylated with Antarctic Phosphatase 

(5 U/µg vector DNA) (NEB) for 1 hr at 37 °C followed by heat inactivation for 5 min at 

70 °C. Insert and vector products were ligated using T4 DNA Ligase (1 U/50 ng vector) 

(Invitrogen) overnight at 14 °C for 16 hrs followed by heat inactivation for 10 min at 70 °C. 

The ligation product was concentrated and purified by DNA precipitation and desalted via 

drop dialysis. Transformation of the ligated product was completed by electroporation 

(1.8 kV, 50 uF, and 100 Ω) (Bio-Rad Gene Pulser II) in batches of 1 µg vector added to 

70 µL electrocompetent MC1061 cells in 1 mm electroporation cuvettes (Fisher). 

Transformation batches were recovered in 1.75 mL of SOB media (BD Difco) supplemented 

with 15% (v/v) glycerol for 1 hr at 37 °C with 250 rpm shaking. If batch electroporation time 

constants were consistent, the transformations were pooled and expanded overnight in LB 

(10 g tryptone, 5 g yeast extract, 10 g/L NaCl) (BD Difco & Fisher) supplemented with 

34 μg/mL chloramphenicol (CM) and 0.2% (w/v) glucose. Serial dilutions were performed 

and plated on LB-agar/CM plates to estimate the library diversity under the assumption that 

each colony was a unique transformant. Glycerol stocks of ~10
11

 cells were aliquoted in 

cryovials (Nalgene) and stored at -80 °C. 
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2.4.2 Random bacterial display peptide library screening 

To screen bacterial display peptide libraries for serum antibody-binding peptides, a 

previous protocol was adapted for high-throughput magnetic selection and NGS [150]. Prior 

to screening, antibodies that bind to E. coli must be removed from serum specimens of 

interest to ensure that cells will be selected only if displayed peptides are bound by 

antibodies. To accomplish this, E. coli cultures expressing the eCPX scaffold with no peptide 

insert are used as depletion reagents. First, this eCPX E. coli strain is grown overnight at 

37 °C with shaking (250 rpm) in LB supplemented with 34 μg/mL CM (LB + CM) and 0.2% 

glucose. The next day, LB + CM is inoculated at 1:50 with the overnight culture, grown to an 

OD600 of 0.4–0.6, and induced for eCPX expression for 1 hr at 37 °C with 0.02% (w/v) 

L(+)-arabinose. After induction, cells are centrifuged at 3,000 rcf for 5 min, washed once 

with PBST (1x PBS with 0.05% Tween 20), and resuspended in serum diluted 1:50 in PBST. 

For every μL of undiluted sera, ~10
9
 cells (~1 mL of induced culture) are used for depletion. 

The samples are incubated overnight at 4 °C with gentle mixing on an orbital shaker 

(20 rpm). Antibodies that bound to E. coli or the eCPX scaffold are then removed by 

centrifugation at 5,000 rcf for 5 min twice, with depleted serum recovered as the supernatant 

after each centrifugation step. The depleted serum is stored at 4 °C for at most two weeks. All 

serum specimens utilized for library screening were depleted in this process unless stated 

otherwise. 

Following serum depletion, a random bacterial display peptide library is screened for 

antibody binding towards an individual serum specimen using magnetic selection. A 

trimer-X12 or NNS-X15 library glycerol stock containing ~10
11

 cells (>10x the estimated 

diversity) is thawed and inoculated into at least 500 mL of LB + CM. The culture is grown to 
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an OD600 of 0.4–0.6 at 37 °C with 250 rpm shaking and induced with 0.02% arabinose for 

1 hr. For each serum specimen being analyzed, 5×10
10

 cells (>5x oversampling) are collected 

by centrifugation at 3,000 rcf for 10 min and resuspended in 1 mL PBST. The library cells 

are then cleared of peptides that bind to the selection reagents, protein A/G magnetic beads 

(Pierce), by incubating cells with beads at a ratio of 1 bead per 200 cells for 45 min at 4 °C 

with gentle mixing. Protein A/G beads are washed with PBST (x3) using magnetic separation 

prior to use. Two rounds of magnetic separation are then used to recover the unbound cells. 

The recovered cells are centrifuged, resuspended in 1 mL serum diluted 1:100, and incubated 

for 45 min at 4 °C with gentle mixing. Following serum incubation, cells are washed with 

PBST by centrifugation (x3) and resuspended in 1.5 mL PBST. After washing and 

resuspension, protein A/G beads are added at a ratio of 1 bead per 50 cells and incubated for 

45 min at 4 °C with gentle mixing. Magnetic separation is utilized to separate cells displaying 

peptides that are bound by antibodies. The unbound cells in the supernatant are discarded and 

the separated cells bound by beads are washed with 1 mL PBST. This process is repeated five 

times to enrich the library population for antibody binding. After the final wash, the cells are 

resuspended in 1 mL of LB, inoculated into 10 mL LB + CM and 0.2% glucose, and grown 

overnight at 37 °C with shaking at 250 rpm. 

The first magnetic selection enriches the library for antibody binding and also reduces the 

library size to facilitate a more efficient selection process in subsequent rounds. A second 

magnetic selection round is then completed to further enrich the peptide library. Here, the 

protocol for the first magnetic selection is modified to accommodate smaller working 

volumes. Following the overnight library growth of the first magnetic selection, cells are 

inoculated at 1:50 into 10 mL LB + CM, grown to an OD600 of 0.4–0.6, and induced with 
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0.02% arabinose for 1 hr. A volume of cells containing >20x the library diversity is collected, 

centrifuged, and resuspended in 200 μL PBST. Library cells are again cleared of cells that 

bind the magnetic separation reagents using the same protocol as the first selection but with a 

higher ratio of 1 bead per 2 cells. After magnetic separation, the recovered unbound library 

cells are centrifuged, resuspended in 200 μL serum diluted 1:100, and incubated for 45 min at 

4 °C with gentle mixing. After the serum incubation, cells are washed with PBST by 

centrifugation (x3) and resuspended in 200 μL PBST. Protein A/G beads are added at a ratio 

of 1 bead per cell and incubated for 45 min at 4 °C with gentle mixing. Magnetic separation 

is utilized in the same manner as the first selection round to separate cells displaying peptides 

that are bound by antibodies. After the final wash, the separated cells are resuspended in 

1 mL of LB, inoculated into 10 mL LB + CM and 0.2% glucose, and grown overnight at 

37 °C with shaking at 250 rpm. Glycerol culture stocks are prepared the following day after 

each selection round for storage at -80 °C. All serums specimens were de-identified and 

obtained with consent according to institutional guidelines. 

2.4.3 Peptide library enrichment analysis using flow cytometry 

To quantify the enrichment of peptide libraries toward serum antibody binding, the 

libraries cells can be analyzed using flow cytometry. Enriched library cultures are grown and 

induced as described for magnetic selection (Section 2.4.2). After the libraries are induced, 

~10
7
 cells are centrifuged and resuspended in 50 μL serum diluted 1:100 for 45 min at 4 °C 

with gentle mixing. The antibody bound cells are then washed with PBST and resuspended in 

50 μL of anti-human goat IgG conjugated to phycoerythrin (Jackson ImmunoResearch) 

diluted 1:100 in PBST. The library is incubated at 4 °C for 45 min and the cells are washed 

and resuspended in 500 μL PBS for flow cytometry on a FACSAria (BD Bioscience). A 
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culture of eCPX scaffold cells is also included in this protocol and analyzed to quantify 

background serum reactivity (negative control) for each serum specimen used for library 

enrichment. Library cells are analyzed with flow cytometry using a blue excitation laser 

(488 nm) and a 576 nm PMT to quantify the number of library cells with red fluorescence 

above the eCPX culture background reactivity. A gate is created as a background threshold 

containing >99% of negative control events and any library cell with fluorescent signal 

greater than this threshold is considered enriched. Libraries with >90% enrichment are 

processed for NGS. 

2.4.4 Amplicon library DNA preparation for next-generation sequencing 

To isolate the DNA encoding bacterial displayed peptides, library cultures grown 

overnight following the second magnetic selection round were harvested and the plasmid 

DNA was extracted using a plasmid miniprep kit (Qiagen). To sequence the peptide region, a 

DNA amplicon must be constructed. The Nextera XT (Illumina) protocol was adapted for 

this system [151]. The peptide region was amplified using a two-step touchdown PCR. For 

the first PCR, the primers contain adaptors specific to the Illumina sequencing platform with 

annealing regions that flank the peptide region on the eCPX scaffold. The forward primer 

sequence is TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGVBHDVGGCCAGTC 

TGGCCAG, with bolded sequences indicating eCPX scaffold annealing regions. Five semi-

random base pairs, VBHDV (IUPAC codes), were inserted at the beginning of the annealing 

region to provide sequence diversity for cluster identification during sequencing with the 

Illumina platform. The reverse primer is GTCTCGTGGGCTCGGAGATGTGTATAAGAG 

ACAGGTGATGCCGTAGTACTGG. The first PCR uses 12.5 ng of library plasmid DNA, 

5 μL of forward and reverse primers (1 μM), and 12.5 μL 2x KAPA HiFi HotStart ReadyMix 
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(Kapa Biosystems) in a 25 μL reaction volume. Touchdown PCR was completed using 15 

cycles with the annealing temperature at 72 °C and reduced 0.5 °C/cycle followed by 15 

additional cycles with annealing at 65 °C. The PCR products were purified using Agencourt 

AMPure XP magnetic beads (Beckman Coulter). The resulting product undergoes a second 

PCR to index the amplicon for specific samples and provide flanking adaptor regions for 

Illumina NGS according the Nextera XT protocol. These adaptors provide unique base pair 

barcodes enabling the identification of DNA sequences corresponding to individual samples. 

The second PCR is completed according to the Nextera XT protocol using 8 cycles with 

annealing at 70 °C. The PCR products are again purified using Agencourt AMPure XP 

magnetic beads, quantified, and pooled for sequencing. All sequencing was completed using 

a NextSeq500 (Illumina). 

2.4.5 Peptide sequence processing 

Following NGS, the Illumina platform automatically de-multiplexes the sequencing data 

and separates sequences based on the individual barcode indices. The algorithm IMUNE [76] 

is used to convert the FASTQ formatted files containing DNA sequences into library-specific 

files containing peptide sequences. Each DNA sequence contains primer annealing regions 

that flank the peptide sequence region. IMUNE identifies the upstream and downstream 

annealing sequences and if either of the annealing regions contains greater than 25% 

sequence errors such as insertions, deletions and/or mutations, the sequence is discarded. 

Once both annealing regions are successfully identified and located, the DNA sequence 

encoding the peptide is determined and translated. Only sequences that correspond to the 

correct peptide length are retained. To be conservative not to propagate any sequence errors, 
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peptide sequences with nine or more identical positions were assumed to be the result of PCR 

or sequencing errors and were combined into a single peptide sequence. 

2.4.6 Motif discovery using MEME 

To determine motifs from peptide sequence datasets, the discovery algorithm MEME 

[131] was utilized. For this application, MEME takes peptide sequences as input and outputs 

motifs that were significantly present in the dataset. MEME determines the sequence logo 

plot as well as the motif regular expression. MEME is not suitable to analyze large NGS 

datasets and therefore the MEME algorithm is run locally with a maximum of 5,000 

sequences. 

To determine general motif characteristics from serum antibodies, motifs were analyzed 

from 20 libraries enriched against human serum specimens. Following library sequencing, 

the 1,000 highest enriched peptide sequences from each sample library were input into 

MEME for motif discovery. The 10 most significant motifs discovered via MEME for each 

library were examined for motif widths and numbers of conserved positions. Regular 

expressions were determined using default MEME output, with amino acids included in the 

expression if the frequency was greater than 0.2 at each position. This analysis was 

completed using both the NNS-X15 and trimer-X12 libraries for a total of 40 independent 

libraries. 

2.4.7 Monoclonal antibody analysis 

For mAb analysis, three rabbit mAbs were used to screen peptide libraries for binding 

and identify specificities: myc-Tag 71D10 (EQKLISEEDL), V5-Tag D3H8Q 

(GKPIPNPLLGLDST), and HA-Tag C29F4 (YPYDVPDYA) (Cell Signaling Technology). 

The trimer-X12 library was screened against each mAb at 20 nM in PBST and sequenced 
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with NGS to reveal consensus binding motifs. To resolve the consensus binding motif for 

each mAb, the 5,000 most enriched peptides from each library were used as input for MEME 

motif discovery with minimum widths of seven for myc and HA and eight for V5 due to a 

longer epitope. The mAb motifs were defined using the default regular expressions reported 

via MEME. 

2.4.8 Motif enrichment calculations 

Motif enrichment is defined as the ratio of actual motif observations in the library to the 

expected observations, where expected observations were calculated using the amino acid 

frequencies observed in the library and assuming all positions were independent of one 

another. To calculate the enrichment of a motif in a peptide library, enrichment is calculated 

as: 

𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =
𝑁

𝐸
 

(2.1) 

where N is the number of motif observations in the library and E is the expected observations 

calculated as: 

𝐸 = 𝑁𝑡𝑜𝑡𝑎𝑙 ∗ (𝐿𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 − 𝐿𝑚𝑜𝑡𝑖𝑓 + 1) ∗ 𝑃𝑚𝑜𝑡𝑖𝑓 
(2.2) 

where Ntotal is the total number of sequences in the library, Lsequence and Lmotif are the lengths 

of sequences and motifs, respectively, and Pmotif is the probability of observing the motif in 

the library given the amino acid frequencies in the library and assuming each position occurs 

independently. For example, the probability of the motif ACxDx[EF]G, where “x” is any of 

the 20 amino acids and bracketed positions indicate one of the enclosed amino acids is 

present at that position, would be calculated as: 

𝑃𝑚𝑜𝑡𝑖𝑓 = 𝑃𝐴 ∗ 𝑃𝐶 ∗ 𝑃𝑥 ∗ 𝑃𝐷 ∗ 𝑃𝑥 ∗ (𝑃𝐸 + 𝑃𝐹) ∗ 𝑃𝐺 
(2.3) 

where Pi represents the frequency of amino acid in the enriched library.  
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We generally use frequencies from selected libraries as opposed to naive library 

frequencies for the enrichment calculations because the naive library frequencies do not 

account for bias in the expression of peptides containing certain amino acids, which could 

impact the peptide screening. Therefore it is often more accurate to use the library 

frequencies following selection as it is known that those peptides were actually expressed, 

displayed, and bound. For the mAb screens in PBST, the amino acid frequencies in the 

enriched library were highly biased due to the presence of a single antibody species. In this 

case, the naive library frequencies were used to calculate enrichments. 

To determine statistical significance of motif enrichment, Poisson distribution statistics 

are used. The probability P of observing N motifs when E are expected is calculated with: 

𝑃(𝑁, 𝐸) =
𝐸𝑁𝑒−𝐸

𝑁!
 (2.4) 

and the probability of at least N observations is: 

𝑃(≥ 𝑁, 𝐸) = 1 −∑ 𝑃(𝑖, 𝐸)

𝑁−1

𝑖=0

 
(2.5) 
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3 Discovery and mapping of epitopes from herpes simplex 

viruses using random peptide library screening 

 

Herpes simplex viruses (HSV) are highly prevalent and endemic throughout the world. 

There are two HSV species, HSV-1 and HSV-2, which cause numerous diseases including 

oral and genital herpes. While diagnostics for HSV exist, including viral culturing and PCR, 

difficulties in accurate diagnosis arise due to the high degree of similarity between the two 

species as well as the asymptomatic nature of HSV infections. Additionally, diagnosis often 

requires a laboratory facility and time-consuming experiments. There is an increasing need to 

develop highly specific reagents that can be used for rapid and accurate detection of HSV. 

Here, high-throughput random peptide library screening was applied to identify antibody-

binding motifs associated with HSV infections. Specifically, we identified 14 HSV-2 specific 

motifs that each demonstrated 100% sensitivity and 100% specificity when distinguishing 

HSV-2 from HSV-1. We also identified nine HSV-1 specific motifs with high specificities 

and moderate sensitivities. The diagnostic sensitivity was improved by developing a 

classifier utilizing multiple HSV-1 specific motifs, achieving 100% sensitivity and 100% 

specificity. Further validation was completed by analyzing HSV-specific motif enrichments 

in peptide libraries from general populations including youth and adult cohorts to assess 

diagnostic utility and estimate HSV prevalence. Finally, online protein databases were used 

to align motifs to HSV proteomes and determine candidate antigens. We discovered motifs 

that mapped to known HSV antigens including glycoproteins G and D as well as additional 

antigens such as viral tegument proteins not previously investigated for epitopes. These 

discoveries could lead to improved diagnostics for HSV and help prevent the spread of 
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disease. Additionally, antigen identification could lead to a better understanding of HSV 

pathogenesis and the development of novel therapeutics and vaccines. Moreover, the 

successful application of this high-throughput peptide screening to the highly similar HSV 

species demonstrates the versatility of this platform for epitope discovery and 

characterization. 

 

3.1 Introduction 

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly infectious viruses 

that are widespread in humans and cause numerous diseases. HSV-1 is the primary cause of 

oral herpes (cold sores) while HSV-2 is responsible for most cases of genital herpes. 

Following primary infections, HSVs establish lifelong latent infections in the nervous system 

[77]. While many infections are asymptomatic, viral reactivation can occur leading to 

recurrent lesions. HSVs are usually transmitted by direct contact with active lesions or bodily 

fluids of an infected individual but transmission can also occur during asymptomatic periods 

[78]. Active infections are often diagnosed by viral culturing or PCR, but these methods are 

limited by requiring a laboratory facility and long experimental procedures, while often 

lacking sensitivity (true positive rate) and specificity (true negative rate) [94–96]. Recently, 

various serological antibody diagnostics have been developed and utilized to detect type-

specific HSV infections during asymptomatic periods [89,92–94]. However, these tests can 

be highly dependent on the stage of infection and therefore need to be conducted and 

interpreted correctly. Despite these limitations, antibody-based diagnostics have a promising 

future for rapid and accurate HSV diagnosis [94,152]. 
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To enable the development of novel antibody-based diagnostics, there is an increasing 

need to identify and characterize epitopes specific to each HSV types. Difficulties in HSV 

type-specific diagnosis arise due to the high degree of antigen similarity between HSV-1 and 

HSV-2, as over 80% of the protein-coding regions from each virus share sequence homology 

[94]. There have been many efforts to identify epitopes, largely focused on HSV surface 

glycoproteins, using peptide tiling methods [82,85,90,153] and predictive epitope mapping 

[154]. However, the majority of the studies utilizing peptide tiling methods identified 

epitopes with low precision by identifying large epitope regions that bound to HSV 

antibodies. Additionally, there have been many efforts to identify epitopes and antigens for 

vaccine development [83,155,156], however no vaccine has been proven safe and efficacious 

[157,158]. To enable the development of highly sensitive and specific reagents for use in 

diagnostics and vaccines, detailed epitope mapping at the amino acid resolution may be 

required.  

Here, we applied an unbiased, high-throughput peptide screening technology to identify 

and map HSV epitopes. By screening a random bacterial display peptide library against 

HSV-1 and HSV-2 patient sera, millions of peptides were sequenced and analyzed to identify 

HSV type-specific binding motifs. These binding motifs were utilized as diagnostic reagents 

to classify patient serum specimens with high sensitivity and specificity. Additionally, 

binding motifs were associated with native HSV antigens by sequence alignment using 

protein databases. These discoveries could lead to the development of novel diagnostic 

reagents and vaccines. Moreover, these results demonstrate the success of high-throughput 

peptide screening which can be readily applied to discover and characterize epitopes from 

diverse pathogens. 
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3.2 Results 

3.2.1 Identification of HSV-specific antibody-binding peptides 

To identify epitopes associated with HSV-1 and HSV-2, we analyzed the antibody 

repertoires from serum specimens from 11 subjects positive for HSV-1, 12 subjects positive 

for HSV-2, and six subjects negative for both HSV types. A random 12-mer bacterial display 

peptide library was screened for antibody-binding peptides against individual serum 

specimens. Peptides were selected for antibody-binding using two rounds of magnetic cell 

selection. Following peptide screening, the DNA plasmids encoding the library peptides were 

extracted and sequenced using next-generation sequencing (NGS). An average of two million 

unique 12-mer sequences was obtained for each specimen analysis. Peptide sequence 

libraries were then analyzed for HSV type-specific binding motifs. Specimen cohorts were 

divided into discovery cohorts used for identifying type-specific motifs and validation 

cohorts used for independently evaluating the diagnostic accuracy of motifs. Additional 

specimens from a general population were utilized for analysis including a youth cohort 

composed of 22 specimens under the age of 16 years and an adult cohort composed of 128 

specimens over the age of 50. 

3.2.2 Discovery of HSV-2 specific motifs 

To identify antibody-binding motifs specific to HSV-2, the algorithm IMUNE was 

utilized to identify highly enriched motifs in HSV-2 libraries but absent in control libraries. 

These motifs were clustered based on sequence similarity to identify distinct, consensus 

binding motifs. Motif enrichment was then evaluated in the validation cohort libraries to 

determine highly sensitive and specific motifs for HSV-2. We identified 14 motifs that were 

highly enriched (average enrichment >10) in HSV-2 libraries and exhibited minimal 
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enrichment in negative controls and HSV-1 libraries (Figure 3.1). The validation HSV-2 

specimens exhibited high enrichment for all motifs, comparable to the discovery cohort. The 

motifs were non-reactive in HSV-1 specimens, indicating the motifs were HSV-2 type-

specific. Additionally, the motifs displayed 100% specificity for the youth cohort, which we 

expect to be HSV-2 negative based on demographics. Therefore, we identified 14 distinct 

antibody-binding motifs that demonstrated high diagnostic accuracy for HSV-2. 

 

Figure 3.1. HSV-2 binding motifs were discovered with high sensitivities and specificities. Antibody-

binding motifs highly enriched in HSV-2 discovery libraries (N=6, red closed circles) and absent in negative 

control libraries (N=6, black closed circles) were identified and motif enrichments were evaluated. Enrichment 

was then calculated in the validation cohorts of HSV-2 libraries (N=6, red open circles), HSV-1 libraries (N=11, 

blue open circles), and youth specimens (N=22, black open circles). Enrichment is calculated as the ratio of the 

number of motifs observed to the number of expected motifs given random chance. The plot uses a logarithmic 

scale and any specimens with motif enrichment of zero were omitted from the plot but still included in the 

average calculation (black line) for each cohort. All motifs demonstrated 100% sensitivity and 100% specificity. 

 

To further assess the diagnostic accuracy of the HSV-2 binding motifs, adult specimens 

from a general population were evaluated for motif enrichment. The four HSV-2 motifs with 

the highest enrichments were analyzed in the adult cohort (Figure 3.2). By utilizing an 

enrichment threshold of >10 for classifying a specimen as HSV-2 positive, each motif 

demonstrated reactivity in 2–4% of the adult cohort with 10% of specimens positive for at 
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least one motif. Based on the estimate of 14% of the adult population being positive for 

HSV-2 in America [21], and assuming a similar prevalence in the adult cohort utilized, these 

motifs displayed high diagnostic specificity in a large population. 

 

Figure 3.2. HSV-2 motifs were highly sensitive and specific in a large general population. Four HSV-2 

specific motifs were evaluated for enrichment in an adult cohort (N=128), representing a general population, 

and compared to the discovery and validation HSV-2 cohort enrichments (N=12). An enrichment threshold of 

>10 (dashed line) was used to estimate the proportion of adult cohort specimens positive for HSV-2 for each 

motif: (A) YxRHTP (2% positive), (B) PWxP[IL][YF] (3% positive), (C) RxTPWQ (4% positive), and (D) 

PPxMHxP (2% positive). In total, 10% of adult cohort specimens were positive for at least one HSV-2 specific 

motif. 

 

3.2.3 Determining candidate antigens from the HSV-2 proteome 

After discovery of HSV-2 specific motifs, we sought to map the binding motif sequences 

to the HSV-2 proteome to identify candidate antigens containing the motifs. The protein 
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database BLASTp was utilized for proteome alignments with the HSV-2 motifs. To improve 

the accuracy of antigen identification, the motifs were expanded to include additional 

positions and amino acids based on the clustering results. The expanded motifs were aligned 

and five significant antigen matches (E-value <1) were reported (Table 3.1). Among the 

candidate antigens identified, the motifs PWxP[IL][YF] and RSVGxC mapped to envelope 

glycoproteins G2 and D2, respectively. Numerous candidate antigens were therefore readily 

identified by proteome alignment using highly sensitive and specific HSV-2 motifs. 

Table 3.1. HSV-2 candidate antigens. 

Motif  

Sequence Logo 
Expanded Motif 

Candidate 

Epitope 

Candidate 

Antigen 

BLASTp 

E-Value 

PWxP[IL][YF] 

 

PWPP[IL][YFW] PWPPIW 

Envelope 

glycoprotein  

G2 

0.70 

PPxMHxP 

 

PPR[ML]H[QM]P PPRLHQP 

Transcriptional 

regulator 

RS1 

0.16 

FxDYxGA 

 

F[DQ][DE]YPGA[VMI] FDDYPGAV 

Tegument 

protein 

UL47 

 

0.20 

Kx[VI]DWxx[YF] 

 

KY[VI][DN]W[DQ]D[YF] KYIDWDDY 

Minor 

capsid 

UL6 

0.14 

RSVGxC 

 

RS[VAIL]G[VIY]C RSLGVC 

Envelope 

glycoprotein 

D2 

0.17 
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3.2.4 Discovery of HSV-1 specific motifs 

To identify antibody-binding motifs specific to HSV-1, we utilized a procedure similar to 

that applied to HSV-2 motif discovery. IMUNE was used to discover highly enriched motifs 

in HSV-1 libraries and absent from negative control libraries. Motifs were again clustered to 

reveal consensus HSV-1 binding motifs. Motif enrichments were quantified in the discovery 

cohorts and displayed in a heatmap (Figure 3.3A). Nine motifs were identified but individual 

motifs demonstrated lower sensitivities, as each motif was reactive in at least two of five 

HSV-1 specimens. The motifs were then evaluated for enrichment in the validation cohorts 

of HSV-1 and HSV-2 specimens to assess motif capabilities for type-specific diagnostic 

utility (Figure 3.3B). The motifs exhibited minimal enrichment in HSV-2 libraries and 

similar sensitivities to those observed in the discovery cohort, suggesting the motifs 

discovered were HSV-1 specific motifs. However, the lower sensitivity of individual motifs 

indicates poor diagnostic utility. To circumvent this, we combined the nine motifs into a 

diagnostic panel to improve the accuracy for classifying HSV-1 specimens apart from HSV-2 

specimens. A support vector machine (SVM) classifier was trained using the motif 

enrichments from the discovery cohorts to classify HSV-1 specimens and then tested on the 

validation cohorts. A receiver operating characteristic (ROC) curve was generated for the 

classification of HSV-1 from HSV-2 validation specimens (Figure 3.4) which illustrates the 

number of true positive and false positive classifications based on varying discrimination 

thresholds. The area under the curve (AUC) was determined to be 1, indicating correct 

classification for all validation HSV-1 (100% sensitivity) and HSV-2 specimens (100% 

specificity). Thus, utilizing multiple HSV-1 specific motifs enabled accurate type-specific 

diagnosis of HSV-1 from HSV-2. 
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Figure 3.3. HSV-1 motifs were discovered with moderate sensitivity and high specificity. (A) Nine motifs 

were identified as significantly enriched in multiple HSV-1 specimen libraries (N=5) and not enriched in 

negative control specimen libraries (N=6). (B) Enrichments were evaluated in independent validation cohorts 

including HSV-1 specimen libraries (N=6) and HSV-2 specimen libraries (N=12). Enrichments were 

standardized for each motif (row) across specimens (columns). 
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Figure 3.4. Motif panel classifier demonstrated high sensitivity and specificity for classifying HSV-1 from 

HSV-2. Enrichments of nine HSV-1 specific motifs were utilized to classify specimens. A support vector 

machine (SVM) was trained using the discovery cohort of HSV-1 specimens (N=5) and negative controls 

(N=6). The classifier was then tested on the validation cohort of HSV-1 specimens (N=6) and HSV-2 specimens 

(N=12). A receiver operating characteristic (ROC) curve was generated to illustrate the true positive rate 

(sensitivity) and false positive rate (100% - specificity) for the validation cohort classification based on varying 

discrimination thresholds. The area under the curve (AUC) was 1 indicating perfect classification. The identity 

line (dashed) represents a classification due to random chance (AUC=0.5). 

 

The enrichments of four HSV-1 motifs were then evaluated in the adult cohort libraries to 

estimate the prevalence of HSV-1 in a general population (Figure 3.5). Utilizing an 

enrichment threshold of >10 for classifying a specimen as HSV-1 positive, the motifs 

demonstrated reactivity ranging from 18–55% in HSV-1 specimens. In the adult cohort, the 

motifs exhibited reactivity in 10–14% of specimens with 41% of specimens positive for at 

least one motif, suggesting a sufficient proportion of the adult population had been exposed 

to HSV-1. The prevalence of HSV-1 in American adults is estimated to be 40–50% [20]. 

These results further indicate that the motifs discovered are specific to HSV-1 and could be 

utilized as diagnostic reagents. 
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Figure 3.5. HSV-1 motifs exhibited reactivity in a large proportion of an adult population consistent with 

the expected HSV-1 prevalence. Four HSV-1 specific motifs were evaluated for enrichment in an adult cohort 

(N=128) and compared to the HSV-1 discovery and validation cohort enrichments (N=11). An enrichment 

threshold of >10 (dashed line) was used to estimate the proportion of adult cohort specimens positive for 

HSV-1. (A) The motif [RM]IRLP had 18% sensitivity for HSV-1 specimens and was 10% positive in adults. 

(B) The motif PPMPxI had 36% sensitivity for HSV-1 specimens and was 14% positive in adults. (C) The 

motif SMGGxK had 55% sensitivity for HSV-1 specimens and was 13% positive in adults. (D) The motif 

QxVP[ST]L had 36% sensitivity for HSV-1 specimens and was 10% positive in adults. In total, 41% of adult 

cohort specimens were positive for at least one HSV-1 specific motif. 

 

3.2.5 Determining candidate antigens from the HSV-1 proteome 

To identify HSV-1 candidate antigens, the protein database BLASTp was utilized to align 

the HSV-1 specific motifs to the HSV-1 proteome. Due to the small sample size, we applied 
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a cross-validation procedure to discover additional HSV-1 specific motifs. The discovery and 

validation cohorts were exchanged, and motifs were discovered in the new discovery cohort. 

All motifs were again expanded based on the clustering results to include additional sequence 

information and improve the accuracy of proteome database alignments. Following BLASTp 

alignments, four significant candidate antigens were identified containing HSV-1 specific 

motifs (Table 3.2). Three of the four antigens mapped to either envelope glycoproteins D1 or 

G1. The high-throughput peptide library screening therefore revealed motifs specific to 

HSV-1 and enabled the mapping of numerous candidate antigens associated with HSV-1 

infection. 

Table 3.2. HSV-1 candidate antigens. 

Motif  

Sequence Logo 
Expanded Motif 

Candidate 

Epitope 

Candidate 

Antigen 

BLASTp  

E-Value 

HxP[LM][FM]Y 

 

H[QM]P[LMF][FM]Y HQPLFY 

Envelope 

glycoprotein 

D1 

0.03 

DA[ML]GR 

 

[RP][DE][AQY][MLI]G[RK][YV][IVLM] PDYMGRYL 

Tegument 

protein  

UL7 

0.48 

PPMPxI 

 

[PIV]PMP[SDP]I PPMPSI 

Envelope 

glycoprotein 

G1 

0.05 

[RM]IRLP 

 

[RM]IRLP[HF] RIRLPH 

Envelope 

glycoprotein 

D1 

0.07 
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3.3 Discussion 

In this study, we utilized a high-throughput peptide screening technology to identify 

antibody-binding motifs specific to HSV-1 or HSV-2. This non-targeted approach utilizing a 

large random peptide display library enabled the identification of highly sensitive and 

specific motifs for both types of HSVs, despite the high degree of antigen similarity between 

the viruses. For HSV-2, 14 motifs were identified demonstrating 100% sensitivity and 100% 

specificity. Additionally, many motifs displayed a large dynamic range between HSV-2 and 

HSV-1 specimens, with a 250-fold difference in enrichment on average for the top four 

motifs. The large dynamic range and homogeneity of response observed in the HSV-2 cohort 

is likely a consequence of HSV-2 infection status, as the specimens were IgM positive and 

therefore likely had active or recent infections [159,160]. For HSV-1, nine motifs were 

identified as moderately sensitive and highly specific. Sensitivities were likely lower as these 

specimens were IgG positive, likely corresponding to previous HSV-1 exposure but not 

active infections. A classifier was then developed utilizing multiple motifs to improve 

diagnostic sensitivity. By utilizing a random peptide library for high-throughput peptide 

screening, we readily identified diverse antibody-binding motifs that exhibited type-specific 

diagnostic utility for both HSV-1 and HSV-2. 

While motif discovery was successful and diagnostic utility was demonstrated, the 

discovery was limited due to relatively small sample sizes. Diagnostic utility is ultimately 

established by analyzing hundreds of clinical samples and therefore additional work will be 

required to further validate the motifs identified here. However, one advantage of utilizing 

random peptide library screening and NGS is the ability to assemble large databases of 

peptide libraries screened for antibody binding from diverse specimens. Here, a youth cohort 
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composed of specimens with ages ranging from 2–16 years was utilized as a cohort likely 

negative for HSV-2, a primarily sexually transmitted virus. By evaluating HSV-2 specific 

motifs in the youth cohort, we were able to further confirm that the motifs were highly 

specific for HSV-2. Similarly, a cohort consisting of adult specimens was analyzed for 

enrichment of HSV type-specific motifs to assess reactivity in a general population. Based on 

the epidemiological data for HSV, we observed reactivity trends consistent with HSV-1 and 

HSV-2 prevalence. Therefore, discovery of disease-specific motifs can be improved by 

analyzing motif enrichments in these large databases where false positives can be readily 

identified and discarded if reactivity is significantly different than expected. While caution 

needs to be taken when generating hypotheses regarding expected prevalences in 

uncontrolled cohorts, these large databases can be useful tools for additional validation of 

disease-specific motifs. 

Along with motif discovery, another capability of random peptide library screening is the 

identification of candidate antigens. The HSV proteomes were searched for antigens 

containing the motifs discovered through screening to determine possible viral proteins 

responsible for antibody binding. Numerous candidate antigens were determined for both 

HSV-1 and HSV-2, including envelope glycoproteins D and G. These are known antigenic 

proteins that have been studied previously for antigen mapping and discovery [82,85,90]. 

Moreover, multiple epitopes discovered previously contain motifs identified in this study, 

such as the HSV-1 epitopes DDQPSSHQPLFY and HRRTRKAPKRIRLPHIR from 

glycoprotein D1 [85] containing the motifs HxP[LM][FM]Y and [RM]IRLP, respectively. 

Additionally, the HSV-1 epitope AISLTTPDHTPPMPSIGLEE has been identified from 

glycoprotein G1 [82] which contains the motif PPMPxI identified here. While the HSV 
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glycoproteins are useful antigens to investigate for epitopes, less-studied but relevant 

antigens may exist and go overlooked. Notably, we identified multiple tegument proteins as 

candidate antigens for both HSV-1 and HSV-2, which could be the source of valuable 

antibody biomarkers previously undiscovered. 

While numerous candidate antigens were identified, many motifs were not connected to 

candidates. One main reason for this is that short motifs (four to six amino acids) generally 

do not contain enough sequence information to reliably connect to candidate antigens 

through database alignments [33]. Follow-up experiments are likely required to elucidate 

additional sequence information to enable antigen identification [70]. Additionally, some 

motifs are likely structural mimics (mimotopes) with low sequence resemblance to the 

cognate epitopes and thus protein database alignments will not be successful [161]. Random 

peptide library screening therefore facilitated the identification of binding motifs belonging 

to a diverse set of antigens as well as possible mimotopes with diagnostic utility. 

Ultimately, the identification of HSV type-specific motifs with high diagnostic accuracy 

could facilitate the development of new gold standard HSV diagnostics. Random peptide 

library screening enabled the discovery of numerous motifs that could be used in a 

multiplexed manner to detect antibodies associated with various stages of HSV infection. 

Multiple antigens were also identified as potential antibody targets that could reveal insights 

into viral pathogenesis and lead to the development of novel therapies and vaccines. 

Moreover, this versatile screening and discovery platform can be applied to any infectious 

disease for developing diagnostic reagents and determining antigens. As point-of-care 

technology continues to advance [162,163], these binding motifs could be integrated for 

rapid and accurate detection of antibody biomarkers for various diseases. In addition to 



 

70 

improving diagnostics and enabling therapeutic intervention, these types of reagents could be 

used to monitor changes in the prevalence and spread of infectious diseases worldwide. 

 

3.4 Materials and methods 

3.4.1 Study population 

HSV serum specimens were obtained from subjects positive for HSV-1 IgG (N=11) 

(Discovery Life Sciences) and subjects positive for HSV-2 IgM (N=12) (NOVA Biologics). 

Serum specimens negative for HSV-1 and HSV-2 (N=6) (Discovery Life Sciences) were 

utilized as a negative control cohort. Additionally, serum specimens were analyzed from a 

youth cohort (N=22) composed of specimens under the age of 16 and an adult cohort 

(N=128) composed primarily of Caucasian American specimens over the age of 50. 

3.4.2 Bacterial display peptide library screening 

To determine antibody-binding peptides from individual serum specimens, the screening 

procedure described in Section 2.4.2 was applied. Briefly, a 12-mer random bacterial display 

peptide library (trimer-X12) was screened for antibody binding using serum specimens 

diluted 1:100. Cells displaying peptides bound by antibodies were sorted and enriched using 

two rounds of magnetic selection using protein A/G magnetic beads. From each enriched 

peptide display library, plasmid DNA was extracted and DNA amplicons containing the 

peptide sequence region were amplified and sequenced using NGS from Illumina. 

3.4.3 Identifying antibody-binding motifs 

The motif identification algorithm IMUNE [76] was used to identify antibody-binding 

motifs specific for HSV-1 or HSV-2. For HSV-2 discovery, the HSV-2 cohort was divided 
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into a discovery cohort (N=6) and a validation cohort (N=6). IMUNE was then used to 

identify motifs significantly enriched (-log10 p >8) in all HSV-2 validation libraries and not 

significant enriched (-log10 p >2) in any discovery cohort controls. Motif enrichment was 

calculated as the ratio of motifs observed to motifs expected, and Poisson distribution 

statistics were used to determine statistical significance (Section 2.4.8). Motifs were 

restricted to four defined amino acids in a frame of four to eight positions possibly 

interspaced by undefined positions. Following HSV-2 specific motif identification, motifs 

with an average enrichment >15 in HSV-2 discovery libraries (N=548) were selected for 

clustering to determine consensus motifs. A similarity score between two motifs was 

generated by aligning the motifs and evaluating the sequence similarity based on PAM30 

alignment scoring [76,164]. Hierarchical motif clustering was then applied based on the 

similarity scores using average distance clustering (MATLAB, clustergram). Motifs within a 

cluster were traced back to the peptide sequences containing the motif that were observed at 

least once in all discovery HSV-2 libraries. A maximum of 1,000 cluster sequences were 

input into the motif discovery algorithm MEME to determine the consensus binding motif. 

Using the consensus motifs, a second round of hierarchical clustering and MEME discovery 

was applied to reduce motif redundancy and generate the final set of consensus motifs. For 

each cluster, MEME generated a sequence logo profile and a motif regular expression, 

restricted to the five most significant positions in the motif and including amino acids with 

frequencies greater than 20% at a given position. Bracketed positions in a consensus motif 

indicate one of the amino acids enclosed was present at that position while an “x” represents 

any amino acid. Following motif discovery, motif enrichments were calculated in the 

remaining validation cohorts. 
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HSV-1 motif discovery was accomplished using the same procedure as used for HSV-2, 

but with parameters adjusted to optimize discovery. The discovery cohorts included HSV-1 

specimens (N=5) and negative control specimens (N=6). IMUNE was used to discover 

motifs significantly enriched (-log10 p >8) in at least three HSV-1 specimens and not 

significantly enriched (-log10 p >4) in any negative control specimens. Motifs were restricted 

to five defined amino acids in a frame of five to eight positions possibly interspaced by 

undefined positions. Motifs with an average enrichment >20 in HSV-1 specimens were 

utilized for hierarchical clustering and motif identification. Following hierarchical clustering, 

peptide sequences containing motifs were identified and used for MEME motif discovery if 

the sequence was observed in at least two of the five HSV-1 discovery libraries. Consensus 

motif discovery was then accomplished using the procedure outlined for HSV-2. 

Fewer motifs were identified for HSV-1 than HSV-2. To enable the discovery of 

additional candidate antigens, a second discovery process was completed by exchanging the 

HSV-1 discovery and validation cohorts and repeating the procedure. Motifs discovered in 

this cross-validation were only utilized for candidate antigen identification, not diagnostic 

validation. 

3.4.4 Support vector machine classification 

Due to the moderate sensitivities of HSV-1 specific motifs, a binary support vector 

machine (SVM) classifier was developed to classify HSV-1 positive specimens from HSV-1 

negative specimens. A support vector machine (MATLAB, fitcsvm) with a linear kernel was 

trained using nine HSV-1 motif enrichments from the original discovery cohort of HSV-1 

specimens (N=5) and negative control specimens (N=6). The SVM classifier was then tested 
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on HSV-1 (N=6) and HSV-2 (N=12) validation specimens to evaluate the diagnostic 

accuracy. 

3.4.5 Motif alignments using protein sequence databases 

The protein basic local alignment search tool (BLASTp) was utilized to align HSV type-

specific motifs to HSV proteomes for candidate antigen identification. Motifs were first 

expanded to include additional sequence information from the MEME motif discovery to 

improve antigen identification and reduce false positive alignments. Expanded motifs were 

defined as MEME regular expressions including all amino acids with frequency greater than 

10% at a given position. Each unique variant of the expanded motif was then aligned to the 

corresponding HSV proteome using the BLASTp non-redundant database search and default 

parameters for short input sequences. Organism queries were either herpes simplex virus 1 

(taxid 10298) or herpes simplex virus 2 (taxid 10310). Candidate motifs were reported if the 

E-value was less than one. 
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4 Serum antibody repertoire analysis reveals unique binding 

signatures associated with risk of age-related macular 

degeneration 

 

Age-related macular degeneration (AMD) is the leading cause of blindness in the 

developed world. AMD progresses over time, predominantly after the age of 60, and is 

classified into early, intermediate, and late stages of the disease. As the prevalence of AMD 

continues to increase, there is an increasing need to identify novel biomarkers associated with 

the onset of late AMD to enable earlier intervention. However, current AMD classification 

schemes are largely limited to clinicians and researchers analyzing and grading fundus 

photographs of the retina based on abnormalities. Here, we analyzed the antibody repertoire 

for serological biomarkers at early stages of AMD. Specifically, we utilized high-throughput 

peptide screening to identify antibody-binding motifs associated with the onset of late AMD 

progression. An SVM binary classifier was developed using the reactivities of 1,125 binding 

motifs to distinguish onset late AMD serum specimens from specimens at varying risk of 

developing late AMD. When testing classification of onset late AMD specimens versus 

specimens in a youth cohort, the diagnostic accuracy was 89%. Similarly, classification of 

onset late AMD versus an age-matched cohort with low risk of developing AMD exhibited a 

diagnostic accuracy of 84%. However, the classifier performance worsened as the risk of 

developing late AMD increased, suggesting a unique antibody response associated with 

AMD progression. From the set of motifs used for classification, we identified three 

consensus binding motifs that demonstrated increased reactivity in onset late AMD 



 

75 

specimens. Furthermore, these motifs exhibited reactivity over years of disease progression, 

indicating that the corresponding antibodies were sustained over time. These findings suggest 

that antibody-binding motifs could be utilized to assess risk of late AMD at early stages and 

assist in monitoring disease progression. Additionally, the binding motifs could lead to the 

identification of novel targets for therapies and improve our understanding of AMD 

development and progression. 

 

4.1 Introduction 

Age-related macular degeneration (AMD) is the most common cause of blindness in 

developed countries [165,166] and the number of individuals with AMD worldwide is 

projected to increase to 288 million by 2040 [167]. AMD progresses slowly over time, 

predominantly after the age of 60, and is classified into early, intermediate, and late stages of 

disease [168]. The early and intermediate stages of AMD are typically asymptomatic but can 

be detected during a dilated eye exam by the presence of yellowish extracellular deposits 

under the retina, known as drusen, as well as possible pigmentary irregularities [169]. The 

relationship between drusen formation and AMD progression is correlative, with an 

increased risk of developing late AMD as the number and size of drusen increase [107]. Late 

AMD is further classified as either geographic atrophy (GA) or neovascular (NV) AMD 

which are both often accompanied by vision impairment. GA AMD is characterized by 

atrophy of the retinal pigment epithelium (RPE) and photoreceptor cells whereas NV AMD 

is characterized by the abnormal growth of leaky choroidal blood vessels which leads to 

photoreceptor degeneration [98]. While therapies are limited, there are interventions that can 

reduce the risk of developing late AMD, such as nutritional supplements [109] and 
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antiangiogenic therapeutics for NV AMD to impede additional retinal damage [112]. 

Because damage occurs at the late stages of AMD, it is critical to detect AMD early to enable 

risk assessment and appropriate intervention. 

An ideal strategy for early diagnosis would be to detect serological biomarkers associated 

with AMD progression as these tests would be convenient and readily available. It is known 

that immune activation plays a critical role in the development and progression of AMD [98]. 

Accumulating evidence has implicated the complement system as a key factor in AMD, 

including a single nucleotide polymorphism in complement factor H that can account for up 

to 50% of AMD cases [97,101]. Additionally, numerous complement proteins have been 

identified as elevated components in drusen using proteomics [106]. The formation of drusen 

can also stimulate a chronic immune response exacerbating AMD progression [105,108,170]. 

Thus, there have been many efforts to identify serological biomarkers associated with 

inflammation in AMD. Elevated levels of various serum/plasma biomarkers have been 

associated with AMD [169] including C-reactive protein [171,172] and numerous 

complement proteins [173]. Additionally, various antibodies associated with AMD have been 

identified, including antibodies targeting carboxyethylpyrrole (CEP) protein adducts which 

are generated due to oxidative stresses involved with aging [123]. Anti-retinal antibodies 

have also been associated with AMD [124,125] and observed in patients with early AMD 

[174]. Moreover, unique antibody profiles have been observed at different stages of AMD 

progression [126]. While these findings suggest a link between the adaptive response and 

AMD, it is unclear whether antibodies associated with AMD are causal or epiphenomenal. 

Despite these uncertainties, serological antibodies provide a unique opportunity to serve as 

biomarkers for AMD prognostics and diagnostics and even provide insights into disease 
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etiology and/or pathology. However, due to the complexity and progressive nature of AMD, 

it is unlikely that a single antibody species will perform as an effective prognostic or 

diagnostic [127]. Therefore, a promising strategy is to identify an antibody profile that 

encompasses a set of diverse antibody species associated with AMD. 

Here, we applied an unbiased, high-throughput peptide screening platform to identify 

antibody-binding peptides associated with AMD. We utilized a large random bacterial 

display peptide library [76] to screen against serum specimens from the Age-Related Eye 

Disease Study (AREDS). Specifically, we focused on serum specimens collected years prior 

to the development of GA and/or NV AMD to identify antibody biomarkers associated with 

the onset of late stage progression. By discovering peptides reactive in onset late AMD 

specimens, we identified unique antibody profiles that could be used to classify the onset of 

late AMD from healthy controls. Additionally, consensus binding motifs associated with 

onset late AMD were identified and determined to be reactive to antibodies throughout the 

progression of early to late AMD. These results suggest that unique antibodies exist at the 

early stages of AMD progression and could be used to inform of the risk of late AMD and 

enable earlier diagnosis and therapy. Furthermore, the binding motifs could reveal targets 

associated with late AMD to provide insights into the disease pathology and be used as 

therapeutic targets. 

 

4.2 Results 

4.2.1 Discovery of antibody-binding motifs associated with onset late AMD 

Five cohorts of serum specimens from subjects with various stages of AMD were 

analyzed in this study to identify antibody profiles associated with onset late AMD (Table 
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4.1). Four distinct cohorts from AREDS were analyzed. Three cohorts were composed of 

subjects that had either small, medium, or large drusen and did not progress beyond that 

stage throughout the trial. As the focus of this study was the onset of late AMD, these three 

cohorts were treated as various controls. The fourth cohort, deemed onset late AMD, 

developed GA and/or NV AMD during the trial. Serum specimens obtained at the beginning 

of the trial were analyzed, before the development of late AMD, to focus on antibody 

biomarkers associated with the early stages of progression. The final cohort was composed of 

non-AREDS youth subjects with an average age of 6 years (range of 2–16 years). 
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Table 4.1. Clinical characteristics of the study population. 
  

Youth 
Small 

Drusen 

Medium 

Drusen 

Large 

Drusen 

Onset 

Late 

AMD 

Population, no. 22 19 30 30 49 

Age (years), mean (SD) 6 (5)* 69 (5) 68 (4) 69 (5) 70 (5) 

Gender, no. (%) 
     

 Male 12 (55) 9 (47) 8 (27) 14 (47) 15 (31) 

BMI (kg/m
2
), mean (SD) NA 26 (4) 27 (4) 26 (4) 27 (4) 

Ethnicity, no. (%) 
     

 White NA 17 (89) 29 (97) 30 (100) 49 (100) 

 Black/Hispanic/Asian/Other NA 2 (11) 1 (3) 0 (0) 0 (0) 

Smoking, no. (%) 
     

 Never NA 9 (47) 13 (43) 16 (53) 25 (51) 

 Former smoker NA 8 (42) 17 (57) 13 (43) 20 (41) 

 Current smoker NA 2 (11) 0 (0) 1 (3) 4 (8) 

AREDS treatment*, no. (%) 
     

 Placebo n/a 11 (58) 8 (27) 10 (33) 11 (22) 

 Antioxidant n/a 8 (42) 3 (10) 4 (13) 4 (8) 

 Zinc n/a 0 (0) 14 (47) 10 (33) 22 (45) 

 Antioxidant + Zinc n/a 0 (0) 5 (17) 6 (20) 12 (24) 

AMD subtype developed, no. (%) 
     

 Geographic atrophy (GA) n/a n/a n/a n/a 18 (37) 

 Neovascular (NV) n/a n/a n/a n/a 18 (37) 

 Both n/a n/a n/a n/a 13 (27) 

BMI = body mass index; NA = not available; n/a = not applicable; no. = number; SD = standard deviation. 

Significant differences (*p <0.05): analysis of variance for continuous variables followed by Dunnett’s 

multiple comparisons test and chi-square test for nominal variables. 

 

To identify antibody-binding profiles associated with the onset of late AMD, we screened 

a random bacterial display peptide library for antibody-binding peptides with each serum 

specimen. Peptides were enriched for antibody-binding using two rounds of magnetic cell 

selection. Following library screening, the DNA plasmids encoding the library peptides were 

extracted and sequenced using NGS. Therefore, for every serum specimen, we obtained a 

peptide sequence library enriched for antibody binding. 
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To focus discovery on late AMD onset, the peptide libraries were analyzed for binding 

motifs highly enriched in AMD specimens but not enriched in control cohorts. The study 

population was divided into a discovery cohort used to identify motifs specific to onset late 

AMD and a validation cohort to independently validate the motif enrichments (reactivities). 

For discovery, motifs were identified that were significantly enriched in at least 4 of 26 

libraries (>15%) from onset late AMD specimens. Additionally, the motifs identified were 

not significantly enriched in all small drusen specimens (N=10) and all medium drusen 

specimens (N=20). In total, 1,470 motifs were discovered that met these criteria. We then 

evaluated each cohort for reactivity towards each motif. Pie charts were generated to display 

the number of motifs that were reactive in different proportions of each cohort (Figure 4.1). 

Small and medium drusen controls in the discovery cohort were not reactive to any motifs as 

per the discovery criteria. For onset late AMD, the motifs demonstrated reactivity in only a 

subset of specimens, as 87% of motifs (1,282) were reactive in only 15% of the cohort 

(Figure 4.1A), corresponding to the minimum criteria used for motif discovery. There were 

only three motifs that exhibited reactivity in 27% of the cohort, the maximum proportion 

observed. This demonstrates the diversity of antibody reactivity in AMD, as no single 

binding motif was reactive in a majority of specimens. 

Each motif was then evaluated for reactivity in the validation cohorts (Figure 4.1B). We 

observed increased motif reactivity across the cohorts as drusen size, and therefore risk of 

late AMD, increased. For the youth and small drusen cohorts, 81% (1,188) and 85% (1,249) 

of motifs, respectively, were non-reactive in all specimens. In the medium drusen cohort, 

72% of motifs (1,064) were non-reactive in all specimens. Conversely, 56% of motifs (830) 

were reactive in at least one large drusen specimen and 63% of motifs (924) were reactive in 
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at least one onset late AMD specimen. The majority of motifs were again reactive in a subset 

of the onset late AMD specimens, exhibiting a similar reactivity profile to that observed in 

the discovery cohort. Thus, we observed increased antibody reactivity correlated with 

increased risk of developing late AMD. 

 

Figure 4.1. Antibody-binding motifs demonstrated reactivity correlated with increased risk of late AMD. 

Antibody-binding motifs were identified by screening random peptide libraries against serum specimens. A 

total of 1,470 motifs were discovered in onset late AMD specimen libraries and evaluated for reactivity in 

validation cohorts. Pie charts depict the number of motifs that were reactive in various proportions of specimens 

from the (A) discovery cohort with 10 small drusen specimens, 20 medium drusen specimens, and 26 onset late 

AMD specimens and (B) the validation cohort with 22 youth specimens, 9 small drusen specimens, 10 medium 

drusen specimens, 30 large drusen specimens, and 23 onset late AMD specimens. Statistically significant motifs 

were determined using Poisson distribution statistics for motif observations given an expected value. Motifs 

were considered reactive if -log10 p >8 for all cohorts except small and medium drusen discovery cohorts where 

a higher stringency was used (-log10 p >2). 

 

4.2.2 Classification of onset late AMD using a motif panel 

Although antibody-binding motifs were identified in onset late AMD specimens, 

reactivity was limited to subsets of the cohort suggesting individual motifs were not 

sufficient to serve as biomarkers and therefore a multiplexed approach must be taken. We 

observed that numerous motifs could be utilized in parallel to increase the coverage of 
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reactivity for all specimens, as displayed in a heatmap of enrichments for motifs identified in 

the discovery cohort (Figure 4.2). Therefore, we utilized a support vector machine (SVM) to 

classify onset late AMD using a set of motifs. To train the classifier, the 1,470 motif 

enrichments were used to classify specimens from the discovery cohort as either onset late 

AMD or controls (small or medium drusen). A cross-validation procedure was performed to 

determine a subset of motifs (N=1,125) with minimal misclassification rate in the discovery 

cohort.  

 

Figure 4.2. Utilization of a panel of motifs enabled coverage of entire onset late AMD cohort. Motifs 

(N=1,470) were discovered in onset late AMD specimens and motif enrichments were displayed in a heatmap, 

with each row representing enrichment values for a motif in small drusen (N=10), medium drusen (N=20), and 

onset late AMD (N=26) discovery specimens (columns). Enrichments were transformed using 

log10(enrichment+1) and standardized for each motif. Hierarchical motif clustering based on enrichment was 

utilized to aid visualization of distinct motif clusters and reactivity patterns across the cohorts. 

 

The motif panel was then tested on the validation cohorts to assess independent 

classification. Specifically, the binary classifier was utilized to classify onset late AMD 

against each remaining cohort (youth and small, medium, and large drusen). For each test, a 

receiver operating characteristic (ROC) curve was generated (Figure 4.3) which determines 
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the number of true positive and false positive classifications based on varying discrimination 

thresholds. The area under the curve (AUC) was calculated for each ROC curve to estimate 

the probability of correctly classifying a validation sample chosen randomly. We observed an 

increased AUC as the risk of late AMD decreased. Classifications with the youth 

(AUC=0.95) and small drusen (AUC=0.84) controls were significantly different than 

classification by random chance (identity line, AUC=0.5). Classifications with the medium 

(AUC=0.66) and large (AUC=0.53) drusen controls were not statistically significant. For 

additional validation, we randomized all AREDS samples, identified discovery and 

validation cohorts, and repeated the motif discovery and classifier development to determine 

the AUC obtained with randomized samples. By completing this procedure 10 times, we 

generated an average AUC of 0.52 with a standard error (SE) of 0.03 (data not shown). Using 

this set of random classifiers as a null distribution, we again determined that onset late AMD 

classifications using our original SVM classifier with the youth cohort and small drusen 

cohort were statistically significant. A summary of ROC curve classification results is 

presented (Table 4.2). These results demonstrate that motif enrichments could be utilized as 

classifiers to discriminate onset late AMD from cohorts with varying risks of developing 

AMD.  
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Figure 4.3. Motif panel classifier exhibited improved performance as risk of developing late AMD 

decreased. A support vector machine (SVM) algorithm for binary classification of onset late AMD was trained 

using a panel of motif enrichments (N=1,125). Training and optimization were performed on the discovery 

cohort. The SVM classifier was tested on an independent validation cohort of onset late AMD specimens 

(N=23) and various control cohorts including a youth cohort (N=22) and small (N=9), medium (N=10), and 

large (N=30) drusen cohorts. For each binary classification, the classifier performance was displayed using a 

receiver operating characteristic (ROC) curve which determines the number of true positive and false positive 

classifications based on varying discrimination thresholds. The area under the curve (AUC) represents an 

estimate of the overall accuracy of correctly classifying a validation sample chosen randomly. The identity line 

(dashed) represents a classification due to random chance (AUC=0.5). The AUCs for the youth and small 

drusen cohorts were determined significantly different (*p <0.01) than the identity AUC, as well as the average 

AUC of 10 randomly generated classifiers (data not shown).  

 

 

Table 4.2. Motif panel classification statistics. 

Disease Control AUC SE 95% CI Accuracy 
p-value 

(Identity) 

p-value 

(Randomized 

Trials) 

Onset 

Late 

AMD 

N=23 

Young N=22 0.95 0.03 0.89–1 0.89 <0.0001 <0.0001 

Small 

Drusen 
N=9 0.84 0.07 0.70–0.98 0.84 0.0031 <0.0001 

Medium 

Drusen 
N=10 0.66 0.11 0.44–0.87 0.73 0.1585 0.2373 

Large 

Drusen 
N=30 0.53 0.08 0.37–0.68 0.57 0.7331 0.9256 

          

AUC = area under the curve; CI = confidence interval; SE = standard error. 
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4.2.3 Identification of consensus binding motifs associated with onset late AMD 

From the set of motifs discovered and utilized for classification of onset late AMD, we 

sought to identify distinct, consensus binding motifs. Of the motifs discovered, some have 

similar sequence identity and likely bind to the same antibody species. Motifs with similar 

sequence identity therefore exhibit similar reactivities, as observed in the enrichment 

heatmap (Figure 4.2) where motifs were clustered based on enrichments revealing distinct 

clusters of motifs. To further investigate and identify these consensus motifs, the motifs were 

grouped using hierarchical clustering based on the PAM30 similarity score between each 

motif. Three of the largest clusters were selected for analysis. For each cluster, the motifs 

were traced back to the peptide sequences containing the motifs from the enriched peptide 

libraries. These sequences were input into the motif discovery algorithm MEME [131] to 

determine a single consensus binding motif for each cluster. A sequence logo plot was 

determined for each cluster to visualize the consensus binding motif and enrichments were 

evaluated in the discovery and validation cohorts (Figure 4.4). The first consensus motif was 

identified as [ASN]LVN and exhibited reactivity (enrichment >3) in a subset of the onset late 

AMD validation specimens. Similarly, the second consensus motif, AGxx[VI]N, 

demonstrated reactivity in multiple onset late AMD specimens in addition to moderate 

enrichment in multiple medium and large drusen specimen. The third motif, [KR]DLxYP, 

exhibited high reactivity in a subset of large drusen and onset late AMD validation specimens 

but also showed moderate reactivity in two specimens from the youth cohort, suggesting it 

may not be highly specific. All motifs were non-reactive in the validation small drusen 

control specimens. The distributions of enrichments for each cohort were tested for 

normality, as non-reactive cohorts should have enrichments normally distributed around a 
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mean enrichment of one. Onset late AMD cohorts had non-normal distributions for all three 

motifs due to reactivity in a subset of specimens. Conversely, the small drusen cohorts for all 

three motifs were normally distributed. 

 

Figure 4.4. Consensus binding motifs demonstrated reactivity in subsets of onset late AMD specimens 

and cohorts with increased risk of late AMD. Motifs were clustered using hierarchical clustering to determine 

consensus binding motifs. Peptide sequences containing motifs from within a cluster were input into MEME to 

determine the consensus motif. Three consensus motifs (A) [ASN]LVN, (B) AGxx[VI]N, and (C) [KR]DLxYP 

were identified and the enrichments were evaluated and plotted for the discovery (black) and validation (red) 

cohorts. The discovery cohort includes small (N=10) and medium drusen (N=20) specimens and onset late 

AMD specimens (N=26). The validation cohort includes youth specimens (N=22), small (N=9), medium 

(N=10), and large (N=30) drusen specimens, and onset late AMD specimens (N=23). The distributions of 

enrichments for each cohort were tested for normality using the D'Agostino-Pearson normality test 

(*p <0.0001). 
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With consensus binding motifs determined, we then sought to evaluate motif reactivity 

over time as AMD progressed. For 19 specimens from both the onset late AMD cohort 

(discovery) and small drusen cohort (discovery and validation), two additional serum 

specimens obtained at later time points in the trial were analyzed for motif reactivity. The 

average time span between the three longitudinal specimens was 7 years (SD=1). All but six 

onset late AMD specimens developed GA and/or NV by the third time point. For the 

remaining six specimens, GA and/or NV developed within three years of the third time point. 

For the three consensus motifs, enrichment was calculated at each time point for both cohorts 

and plotted to observe changes in motif reactivity over time (Figure 4.5). For the onset late 

AMD cohort, the general trend was that motif enrichment did not fluctuate greatly over time. 

Therefore, if a specimen was positive for reactivity at the beginning of the trial, the reactivity 

was sustained over time as AMD increased in severity. Additionally, if a specimen was non-

reactive at the beginning of the trial, there were no substantial increases in enrichment over 

time. Specifically, all but one small drusen specimen were non-reactive throughout the 

longitudinal span. The specimen with increased reactivity was for the motif [KR]DLxYP 

(Figure 4.5C) with an enrichment of eight at the final time point, which was still ~10-fold 

lower than the average enrichment for reactive onset late AMD specimens. We therefore 

identified distinct antibody-binding motifs that were reactive in subsets of specimens with 

increased risk of developing late AMD. Furthermore, these motifs were reactive for years 

with minimal reactivity in control specimens that did not develop AMD during the trial. 

These results suggest that the corresponding antibodies persisted over time as AMD 

progressed from early/intermediate stages towards late AMD. 
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Figure 4.5. Consensus binding motifs showed sustained reactivity over years of disease progression. 

Enrichments of three consensus motifs (A) [ASN]LVN, (B) AGxx[VI]N, and (C) [KR]DLxYP were evaluated 

over time from serum specimens obtained at three visits throughout the AREDS. Each line represents a different 

subject. For onset late AMD (N=19), the specimens at the first time point were specimens utilized for motif 

discovery and correspond to time points prior to late AMD development. Each subject developed late AMD 

during the AREDS. Small drusen specimens (N=19) at the first time point were used for motif discovery 

(N=10) and validation (N=9). Each subject had small or no drusen for the entire trial. The years correspond to 

the time since the first serum specimen collection (within three years of baseline). 
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4.3 Discussion 

As the prevalence of AMD increases, millions of lives will be impacted worldwide and 

an estimated $300 billion will be spent on direct costs annually in 2020 [103]. Currently, 

assessment of risk and diagnosis is largely limited to standardized classification schemes 

conducted by clinicians and researchers based on drusen size and pigment abnormalities in 

the retina [168]. There is an increasing need for more sophisticated, analytical methods 

utilizing various biomarkers for diagnosing AMD at the earliest stages and monitoring 

progression. In this study, we utilized high-throughput peptide screening to identify 

antibody-binding motifs associated with the onset of late AMD progression. Specimens from 

the onset late AMD cohort correspond to subjects with medium or large drusen at the time of 

serum collection, but who eventually developed late AMD. These specimens therefore 

provide a unique opportunity to study the antibody repertoire at the early stages of late AMD. 

After identifying motifs significantly enriched in a discovery cohort of onset late AMD 

specimens, we evaluated the motif enrichments in independent validation cohorts. We 

observed that cohorts with increased risk of developing late AMD demonstrated increased 

reactivity towards the motifs. However, the motifs were only reactive in subsets of onset late 

AMD specimens. Individual motifs therefore demonstrated poor diagnostic utility, likely due 

to the complexity of AMD and the diversity of antibody targets. Similar trends have been 

observed in previous studies where fractions of late AMD specimens were highly reactive to 

diverse autoantigens [124]. To overcome these diagnostic limitations, we developed a 

classifier using a combination of motifs. The classifier exhibited improved diagnostic 

capabilities for correctly classifying specimens as onset late AMD when compared to cohorts 

with lower risk of developing late AMD, such as the youth cohort and the small drusen 
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cohort. The small drusen cohort serves as a useful age-matched control due to the low risk 

(<2%) of subjects with small drusen developing late AMD over the course of 10 years [168]. 

Classifier performance decreased when distinguishing between onset late AMD and medium 

drusen specimens. The 10-year risk of developing late AMD when medium drusen is present 

is ~4% for unilateral drusen and ~13% for bilateral drusen [168]. Over 60% of the medium 

drusen specimens tested had bilateral medium drusen and were therefore at higher risk of 

developing late AMD. The classifier performed the poorest when classifying onset late AMD 

from the large drusen cohort, which was only slightly better than binary classification by 

random chance (AUC=0.5). The risk of late AMD in subjects with bilateral large drusen 

varies based on additional risk factors such as pigment abnormalities, but the five-year risk 

factor can be upwards of 50% [168,175]. All large drusen specimens in this study had large 

drusen in both eyes at baseline and were therefore at higher risk of late AMD. Therefore, the 

panel of motifs demonstrated increased reactivity as the risk of developing late AMD 

increased, suggesting a unique antibody response associated with the progression of AMD.  

By clustering motifs based on sequence similarity, we identified distinct consensus 

binding motifs enriched in subsets of onset late AMD specimens. By analyzing the 

enrichments of consensus motifs in longitudinal specimens, obtained over years during the 

AREDS, we observed that motif enrichment did not fluctuate in onset late AMD specimens 

positive for reactivity. These findings indicate that the antibodies present at the early stages 

of AMD progression were sustained over time as AMD progressed to the late stages. 

Moreover, specimens with small drusen remained non-reactive across all time points. These 

consensus motifs could be used as specific biomarkers associated with late AMD progression 

and lead to the identification of novel targets for AMD therapy. For example, elevated levels 
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of CEP protein adducts and autoantibodies targeting these adducts have been observed in 

AMD [123]. It has been hypothesized that CEP adducts stimulate angiogenesis and a 

monoclonal antibody targeting CEP adducts demonstrated potential for neutralizing 

angiogenesis [176]. The identification of antibody targets such as CEP could therefore 

provide novel therapeutic opportunities and inform about AMD development and 

progression. 

In this study, we demonstrated the potential of serum antibody repertoire analysis for 

identifying biomarkers associated with the onset of late AMD. Due to the complexities of 

AMD, a multifaceted approach is necessary to appropriately assess risk and monitor the 

disease. By identifying antibody-binding motifs associated with onset late AMD, these 

peptides could be utilized as reagents for detecting antibody biomarkers. The low sensitivity 

(true positive rate) of motifs observed in this study exemplifies the need to utilize 

multiplexed antibody biomarkers. Follow-up studies with larger sample sizes will be critical 

to validating and advancing the diagnostic performance of these motifs. Due to limitations of 

motif sensitivities and sample sizes, we could not significantly evaluate differences between 

the late AMD categories of GA and NV. Future analyses of these cohorts could identify 

additional biomarkers and improve our understanding of late AMD. Recent studies have 

taken a different approach, focusing on plasma biomarkers at various stages of AMD using 

metabolomics [177]. These diverse analytical approaches to AMD biomarker discovery 

could be used in tandem with conventional protocols to strengthen diagnosis and risk 

assessment. As more advanced therapies emerge for treating AMD [117,118], these 

biomarkers could provide the opportunity to intervene earlier, limit AMD progression, and 

prevent vision impairment. 
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4.4 Materials and methods 

4.4.1 Study population 

Serum specimens were obtained from the AREDS conducted in collaboration with the 

National Eye Institute (NEI), part of the National Institutes of Health (NIH). This study 

consisted of four cohorts from the AREDS. The specimens were categorized based on the 

AREDS categories [104]. Briefly, subjects in the small drusen cohort (N=19) were 

essentially free of AMD abnormalities, with no drusen or small drusen (<63 μm diameter), 

for the duration of the trial. Subjects in the medium drusen cohort (N=30) had unilateral or 

bilateral medium drusen (63–124 μm) at the baseline examination and had medium drusen 

observed at least 80% of the time during follow-up while never developing large drusen or 

GA or NV AMD. The large drusen cohort (N=30) had large drusen (≥125 μm) at baseline 

and had large drusen observed at least 80% of the time during follow-up and never developed 

GA or NV AMD. Lastly, the onset late AMD cohort (N=49) had small, medium, or large 

drusen at baseline and developed GA and/or NV during follow-up. For motif discovery, 

serum specimens obtained within the first three years of the trial were analyzed. Serum 

specimens from two additional follow-up visits were obtained for longitudinal analysis from 

19 subjects in both the small drusen and onset late AMD cohorts. For one small drusen 

subject, only a single follow-up specimen was obtained for analysis. For additional 

validation, specimens from an independent youth cohort (N=22) were analyzed, with an 

average age of 6 years ranging from 2 years to 16 years. All specimens were de-identified 

and obtained with consent according to institutional guidelines. 

To describe the clinical and demographic characteristics of the study population, the 

mean and standard deviation for continuous variables were reported and percentages of 



 

93 

nominal variables were reported. The different cohorts were analyzed for statistical 

differences (p <0.05) using chi-squared tests or analysis of variance, followed by Dunnett’s 

multiple comparison tests for comparing the young cohort to the AREDS cohorts. 

4.4.2 Bacterial display peptide library screening 

To identify antibody-binding peptides, the screening procedure described in Section 2.4.2 

was utilized. Briefly, a 12-mer random bacterial display peptide library (trimer-X12) was 

screened for antibody binding using individual serum specimens diluted 1:100. Cells 

displaying peptides bound by antibodies were enriched with two rounds of magnetic 

selection using protein A/G magnetic beads. Following magnetic selection, plasmid DNA 

was extracted from the enriched cellular libraries and DNA amplicons containing the peptide 

sequence region were constructed and sequenced using Illumina NGS. 

4.4.3 Antibody-binding motif discovery 

To discover antibody-binding motifs associated with onset late AMD, we utilized the 

motif identification algorithm IMUNE [76]. The cohorts were divided into a discovery cohort 

used for motif identification and a validation cohort to independently validate the motif 

reactivity. The discovery cohort was composed of 26 onset late AMD specimens as disease 

positive and 10 small drusen and 20 medium drusen specimens as disease negative (controls). 

The validation cohort was composed of 23 onset late AMD specimens as disease positive 

with various disease negative control cohorts including 9 small, 10 medium, and 30 large 

drusen specimens, as well 22 youth specimens. 

The peptide sequence libraries from each specimen in the discovery cohort were searched 

for motifs that were statistically enriched in onset late AMD while absent from designated 

controls. Motifs are stretches of amino acid sequences possibly interspersed with undefined 
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residues. Here, we restricted motifs to five defined amino acids in a frame of five to eight 

positions, denoted by a regular expression such as ACDEF, ACxDxEF, or AxCxDExF, 

where the capital letters represent the corresponding amino acids and an “x” represents any 

of the 20 amino acids. Motif enrichment was calculated as the ratio of motif observations to 

expected observations, where expected observations were calculated using the amino acid 

frequencies observed in the enriched library while assuming all positions were independent 

of one another (Section 2.4.8). Additionally, statistical significance was determined using 

Poisson distribution statistics to evaluate the probability of observing a motif in a sequence 

dataset given the expected value. Motifs were identified if they were statistically significant 

(-log10 p >8) in at least 15% of the onset late AMD discovery cohort and not significant in 

any discovery cohort controls (-log10 p >2). Different p-values were utilized for discovery to 

provide additional stringency for what was considered significantly enriched in control 

specimens. Motifs were then evaluated in the validation cohorts for statistical significance 

(-log10 p >8). 

4.4.4 Motif panel construction and classification 

Motifs that met the discovery criteria were used in a diagnostic panel for binary 

classification. Motif enrichments were transformed using a log10(enrichment+1) 

transformation and standardized for each motif. A support vector machine with a linear 

kernel (MATLAB, fitcsvm) was trained using the motif enrichments from the discovery 

cohort. To optimize the SVM classifier, the number of motifs included in the panel was 

varied and a 10-fold cross-validation was performed to evaluate misclassification rate in the 

discovery cohort. Motifs were added to the classifier based on rank of sensitivity (true 

positive rate), specificity (true negative rate), and average enrichment, starting with the 
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highest ranked motif and ending with the full set. This procedure was repeated 100 times and 

the set of motifs with the lowest average misclassification rate was used in the classifier. The 

classifier was then tested on the validation cohort for its ability to correctly classify onset late 

AMD specimens from various controls, including small, medium and large drusen cohorts as 

well as the young cohort. A ROC curve was generated for each classification and the AUC 

was calculated. Statistical significance (p <0.01) was determined based on the null hypothesis 

that the classification was by random chance (AUC=0.5) assuming normal distributions. 

Diagnostic accuracy was calculated using the maximum Youden’s index [178] as a threshold 

for classification. 

An additional statistical test was completed by generating the average ROC curve AUC 

for motif panels constructed based on randomized specimen cohorts. All AREDS samples 

were randomized and divided into cohorts sized equivalently to the actual study cohorts for 

discovery and validation. Motifs were identified that met the defined criteria and used to 

build an SVM classifier, trained on the randomized discovery cohort. The AUC from the 

ROC curve was generated for classification of 23 random specimens designated “positive” 

from 9 random specimens designated “negative”, a test equivalent to the classification of 

onset late AMD specimens from small drusen specimens. This procedure was repeated 10 

times and the average AUC and SE were determined. This randomized trial was then used as 

the null distribution to determine statistical significance (p <0.01) for determining an AUC 

from a given trial compared to random chance. 

4.4.5 Hierarchical motif clustering to determine consensus motifs 

To identify consensus motifs, the motifs from the diagnostic panel were clustered using 

hierarchical clustering based on motif similarity. A similarity score between each motif was 
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generated by aligning the motifs and evaluating the sequence similarity based on PAM30 

alignment scoring [76,164]. Hierarchical motif clustering based on similarity was completed 

using single-linkage clustering (MATLAB, clustergram). Three of the four largest clusters 

were selected for consensus analysis, as the fourth cluster did not show reactivity in the 

validation cohort. Each motif within a cluster was traced back to the peptide sequences 

containing the motif (observed in at least one onset late AMD library), and a maximum of 

4,000 sequences were input into the motif discovery algorithm MEME to determine the 

consensus binding motif. MEME generated a sequence logo profile and a motif regular 

expression. Regular expressions were restricted to positions with >1 bit of information and 

amino acids with frequencies >10% at a given position. Bracketed positions in the consensus 

motif indicate one of the amino acids enclosed was present at that position. 

After determining a consensus motif, the motif enrichments were calculated for each 

cohort. Here, specimen reactivity was evaluated based on an enrichment value >3. 

Additionally, the distributions of enrichments for each cohort were tested for normality using 

the D'Agostino-Pearson normality test (p <0.0001), as only subsets of specimens were 

reactive and thus the distributions were highly skewed. Non-reactive cohorts should therefore 

have enrichments normally distributed around a mean of one. The consensus motif 

enrichments were also calculated from AREDS specimens collected at various time points. 

For 19 specimens from both the onset late AMD and small drusen cohorts, a total of three 

serum specimens spanning an average of seven years were analyzed from the AREDS (one 

specimen only had two longitudinal time points). Exact dates for specimen collection were 

used when available, however if a date was unavailable, the date was interpolated from other 

visit dates.  
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5 High-titer antibody depletion enhances discovery of diverse 

serum antibody specificities 

 

The human antibody repertoire is a unique repository of information regarding infection, 

inflammation, and autoimmunity of the past, present, and future. However, antibodies can 

span vast ranges of concentrations with varying affinities and the repertoire is often heavily 

polarized by a few species. These complexities lead to difficulties detecting and 

characterizing low abundance antibody species that may be relevant to disease. We therefore 

developed a method to selectively remove antibodies from a sample in proportion to the titer 

of the species prior to analysis, referred to as high-titer depletion (HTD). Peptides from a 

large random peptide display library were enriched for binding towards high-titer antibody 

species and utilized as binding reagents to deplete the corresponding species from the 

specimen. HTD enabled the discovery of antibody-binding specificities using random peptide 

library screening with reduced cross-reactivity and background signal and improved 

coverage of low abundance species. With HTD, three monoclonal antibody species were 

detected at concentrations at least an order of magnitude lower than without HTD. 

Additionally, 92 serum antibody specificities were readily discovered from an individual 

specimen using HTD compared to only 25 specificities without HTD. Parameters affecting 

the extent of depletion such as the concentration of depleted serum were also adjusted to 

reproducibly improve the coverage of antibody specificities. These results demonstrate that 

HTD could be employed for the discovery of rare specificities related to disease and enable 

extensive characterization of the antibody repertoire. Moreover, the strategy of depletion in 
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proportion to titer could be extended to other applications with complex biological samples 

to improve discovery. 

 

5.1 Introduction 

Technological advancements in biomedical research have facilitated the analysis of 

complex biological samples for the identification and development of prognostics, 

diagnostics, therapeutic targets, and patient-specific therapies [179,180]. The serum 

proteome can be mined for protein biomarkers [181], the transcriptome sequenced to identify 

splice variants [182], and circulating tumor cells quantified for predictions of survival [183]. 

Recently, due largely to innovations in sequencing capabilities and other high-throughput 

platforms, the antibody repertoire has garnered significant attention [184]. This collection of 

antibodies produced by the adaptive immune system, acting as an immunological history 

record, can be analyzed by sequencing B cell populations and/or by elucidating antibody 

functions and binding specificities [5]. In-depth analysis of the antibody repertoire has 

revealed antibody biomarkers for diagnosing disease [37,185,186], disease-specific antibody 

epitopes [40,76], and fundamental insights into dynamics of the adaptive immune system 

with implications for pathology [187,188], vaccine design [6,189,190], and therapeutic 

antibody development [191]. 

When analyzing biological samples, a significant challenge involves sufficiently 

detecting targets of interest due to the complexity and diversity of samples. For example, the 

serological antibody repertoire is estimated to have 10
3
–10

6
 distinct binding specificities [4] 

and can be highly polarized by dominant antibody species [6,7]. This complicates the use of 

technologies designed to probe antibody binding such as peptide/protein arrays and libraries 
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by diluting low abundance species while increasing background activity and cross-reactivity 

[192]. Similarly, the serum proteome has an extremely large dynamic concentration range 

spanning greater than 10 orders of magnitude and is dominated by a small number of proteins 

such as albumin and immunoglobulins [193]. The asymmetries in the serum proteome 

severely impede protein biomarker discovery by masking lower abundance proteins related 

to disease [194]. However, researchers have addressed this issue by selectively depleting 

known, highly abundant serum protein species prior to profiling, thereby reducing the 

dynamic range and enhancing coverage of low abundance species [195,196]. This type of 

targeted depletion strategy has also been employed for analyzing other complex biological 

samples such as the bulk removal of ribosomal RNA for improved RNA-seq capabilities 

[197] and the depletion of blood cells to enable quantification of circulating tumor cells 

[198,199]. Unfortunately, when analyzing the antibody specificity repertoire, targeted 

depletion strategies to improve detection do not exist largely because there are no 

ubiquitously abundant species, as repertoires vary greatly across individuals and time.  

To improve discovery of antibody specificities for low abundance species, we therefore 

developed a method to remove high-titer serum antibody species from a sample prior to 

analysis, referred to as high-titer depletion (HTD). Peptides from a large random peptide 

display library were preferentially enriched towards binding high-titer antibody species and 

then utilized as binding reagents to deplete the corresponding antibody species from the 

sample. This approach was designed to deplete antibody species in proportion to their titer 

(i.e. concentration and affinity), enabling the depleted serum sample to be analyzed with 

reduced cross-reactivity and background signal and improved coverage of low abundance 

species. We compared antibody specificity repertoire analysis with and without HTD using 
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bacterial display and NGS and found that HTD increased detection limits and coverage of the 

specificity repertoire. Importantly, HTD does not require information about the specimen 

prior to depletion and can therefore be robustly applied. Our results suggest that HTD could 

be used for discovery of rare specificities related to disease or infection and aid 

characterization of the antibody repertoire at a depth not previously possible. Furthermore, 

this general strategy of depletion based on concentration/titer could be extended to other 

areas of biological research to enhance discovery capabilities. 

 

5.2 Results 

5.2.1 Depleting highly abundant antibody species to improve antibody specificity 

discovery 

To enhance the discovery of low-titer antibody specificities in human sera, a method was 

developed for high-titer depletion (HTD) of antibody species prior to library enrichment by 

magnetic selection. We reasoned that enrichment of a peptide display library against 

antibody-containing serum would generate a pool of peptide binders whose prevalence would 

be roughly proportional to the serum antibody titers and that the resulting binder pool could 

be used as a reagent to effectively deplete antibodies from a sample in proportion to their titer 

(Figure 5.1). Briefly, a bacterial display peptide library of 10 billion members [76], 

composed of Escherichia coli (E. coli) cells engineered to display a unique 12-mer peptide 

on the surface of each cell, is enriched for peptides binding to antibodies from an individual 

serum sample. Enrichment is completed via two rounds of magnetic separation using protein 

A/G coated magnetic beads. The enriched peptide library (the depletion reagent) is then 

incubated with the original serum sample to allow antibody binding, followed by 
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centrifugation to separate unbound antibodies from antibodies bound to peptides displayed 

on cell surfaces. The unbound fraction, or depleted serum, is collected and used for a new 

peptide library enrichment (Figure 5.2). The library is then sequenced using NGS to enable 

peptide enrichment analysis. 

 

 

Figure 5.1. Conceptual approach for high-titer antibody depletion. The pie charts illustrate the abundance 

of various antibody species in a serum sample. The histograms demonstrate the titer (combination of 

concentration and affinity) of individual antibody species. On the left, high-titer antibodies (red) dominate the 

antibody repertoire and obscure lower-titer species (blue). On the right, by removing high-titer species through 

antibody depletion, a depleted serum sample will contain a higher fraction of low-titer species enabling 

improved detection. 
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Figure 5.2. High-titer depletion method using bacterial display peptide libraries. (A) A random bacterial 

display peptide library is screened for antibody binding from serum using magnetic selection. Peptide 

enrichment will be skewed toward binding high-titer species (red) that dominate the repertoire. (B) The 

enriched library, functioning as a depletion reagent, is incubated with the serum and the unbound fraction, the 

depleted serum, is recovered. (C) The depleted serum is then used to enrich a random bacterial display peptide 

library for antibody binding, enabling enhanced detection of low-titer antibodies (blue). 

 

5.2.2 Effects of antibody depletion on discovering individual antibody specificities 

To determine whether depleting serum of high-titer antibodies improves antibody 

specificity detection capabilities, a serum specimen (Specimen 1) was spiked with three 

monoclonal antibodies (mAbs) that have known peptide epitopes (anti-V5, anti-myc, and 

anti-HA), enabling corresponding peptide enrichments to be monitored. The mAbs were 

A

B

C
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spiked into serum at equal concentrations for a range of concentrations (200, 20, 2, 0.2, and 

0.02 nM) to reflect the large dynamic range of titers within the antibody repertoire. A 

bacterial display peptide library was enriched with each spiked serum sample, as well as 

serum without spiked mAbs, diluted 1:100. Each enriched library, functioning as a depletion 

reagent, was then incubated with the corresponding spiked serum sample and the unbound 

serum fraction was recovered. The depleted sera were then used to enrich new peptide 

libraries using 1:50 serum dilutions. To allow comparisons with the depletion method, 

peptide libraries were also enriched using non-depleted spiked sera diluted 1:20. A higher 

concentration of non-depleted sera was used to demonstrate the effects of high antibody titers 

on the peptide enrichment process. The compositions of the twelve enriched libraries (six 

with HTD and six without HTD) were determined by preparing amplicon libraries from 

isolated plasmid DNA and performing NGS to obtain 1–9×10
6 
total sequences and 5–9×10

5
 

unique sequences per enriched library. 

To assess the improvements of discovering antibody specificities with depleted serum, 

the enrichments of the mAb binding motifs were quantified for each library enriched with 

spiked serum. The consensus binding motifs for each mAb were previously determined 

(Section 2.2.6) to be [KR]PxPNxxL (anti-V5), LxSEE[DE] (anti-myc), and 

[YQ]PYD[VI]xD (anti-HA). For V5 and myc, motif enrichment values were increased or 

maintained with HTD at 200 and 20 nM mAbs (Figure 5.3A,B). This observation indicated 

that the mAbs at these concentrations were not completely removed during the depletion, 

either because they were not sufficiently high-titer or they were in such abundance that 

depletion did not sufficiently reduce their concentration. Moreover, motif enrichment was 

improved due to the extensive polyclonal depletion of numerous other serum antibody 
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species. At 2 nM spiked mAb, V5 and myc motif enrichments with HTD were statistically 

significant (p <0.001), with 5-fold and 18-fold increases from enrichments without HTD, 

respectively. Without HTD, HA motif enrichment was observed at as low as 2 nM (Figure 

5.3C). The increased detection range suggests that the anti-HA mAb has a higher affinity 

than the other two mAbs. After depletion, HA motif enrichment increased at 200 nM (for the 

same reasons as V5 and myc) but decreased at 20 and 2 nM. This result suggests that anti-

HA mAbs present at concentrations between 2-20 nM were depleted by the depletion reagent 

because they were effectively high-titer antibodies. Correspondingly, HTD increased the 

sensitivity of anti-HA detection at the lowest concentrations of 0.2 and 0.02 nM (i.e. 

increased sensitivity for low-titer antibodies) demonstrating that the removal of abundant 

serum antibody species enabled the detection of this antibody species at very low 

concentrations. 

 

Figure 5.3. High-titer depletion improves mAb motif enrichment at low concentrations. Three mAbs were 

spiked into a serum sample at various concentrations and used to screen bacterial peptide libraries with and 

without HTD. Histograms demonstrate enrichment of the mAb motifs at a range of concentrations after 

screening spiked serum with (blue) or without (red) HTD. (A) V5-mAb (GKPIPNPLLGLDST) with motif 

[KR]PxPNxxL, (B) myc-mAb (EQKLISEEDL) with motif LxSEE[DE], and (C) HA-mAb (YPYDVPDYA) 

with motif [YQ]PYD[VI]xD. Enrichment was calculated as the ratio of actual motif observations to expected 

observations. Statistically significant enrichment (*p <0.001) at each concentration was determined using 

Poisson distribution statistics based on motif observations and expected observations. 
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5.2.3 Quantifying the extent of antibody specificity discovery with antibody depletion 

To fully investigate the potential benefits of HTD, the richness of the resulting peptide 

sequence datasets from screening Specimen 1 serum was assessed by determining the 

number of distinct epitope motif clusters identified using the motif discovery algorithm 

MEME [131]. Because the MEME algorithm is poorly suited for clustering the large peptide 

sequence sets of ~millions that result from each serum-specific library enrichment, we 

reduced the dataset size by only considering peptides that were reproducibly enriched. 

Without HTD, 146,783 unique peptides were observed at least once in all six replicate 

libraries (i.e., reproducibly enriched peptides). With this reduced dataset, MEME was used 

for motif discovery within the top 4,000 most enriched peptide sequences. In total, MEME 

identified 25 unique motifs (E-value <0.05) representing the serum antibody-binding motifs 

enriched without HTD. For libraries enriched with HTD, 114,341 unique peptides were 

observed at least once in each of the six replicate libraries. After MEME analysis of the top 

4,000 sequences, 92 unique motifs were identified. By comparing the motifs between the two 

data sets using a modified PAM30 similarity matrix, 10 motifs were common to both data 

sets and represented prominent motifs discovered with both methods. Thus, depletion 

increased the capacity of unique motif discovery by 5- to 6-fold (Figure 5.4A). Further 

analysis of all motifs revealed that 69% of the top 4,000 sequences enriched without HTD 

belonged to one of the top five motif clusters (Figure 5.4B). In contrast, the top five motifs 

discovered with HTD comprised only 17% of the sequences analyzed, signifying a more 

uniform distribution of motif enrichment. Taken together these results demonstrate that 

depletion of high-titer antibodies increased data richness and enabled discovery of a greater 

number of distinct antibody-binding specificities. 
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Figure 5.4. High-titer depletion removes dominant species and increases coverage of serum antibody 

specificities. (A) Motifs were discovered using MEME from peptide libraries screened with (blue) and without 

(red) HTD. The Venn diagram shows the number of unique motifs (E-value <0.05) discovered by analyzing 

4,000 enriched peptides from each library, with shared motifs common to both discovery sets (purple) at the 

intersection. (B) The MEME motifs discovered with and without HTD were ranked by significance (E-value) 

within each dataset and the percentage of the sequences that contributed to each motif was reported. (C) The 

enrichment of each motif discovered with and without HTD was calculated from each peptide dataset. The log2 

ratio of enrichment with HTD to enrichment without HTD was calculated for each motif and plotted against the 

motif’s MEME significance (E-value). 

 

To further quantify the impact HTD had on the discovery of serum antibody-binding 

motifs, enrichment of each motif within the full sequence datasets was determined with and 

without HTD. In particular, the ratio of motif enrichment obtained with HTD to that obtained 
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decreased ~7-fold on average in libraries with HTD, with four of the five most significant 

motifs decreasing ~13- to 40-fold, demonstrating substantial depletion of the antibodies that 

bind these peptides (Figure 5.4C). In contrast, the 82 additional motifs discovered using 

HTD had on average 2-fold greater enrichment than obtained without HTD, verifying that 

enrichment was broadly improved and not skewed towards any particular antibody species. 

Lastly, motifs common to both data sets exhibited no average change in enrichment (average 

fold change ~1) with a maximum fold increase or decrease of 3. These results demonstrated 

that HTD effectively removed antibodies that otherwise dominate peptide enrichment and 

that screening depleted serum allowed for the discovery of many more antibody specificities 

with greater sensitivity. 

5.2.4 Optimizing antibody specificity discovery and coverage 

While one of the major benefits of HTD is that information regarding which species are 

abundant is not required prior to depletion, the possibility of exhaustively depleting 

unbeknownst antibody species may be undesirable for certain applications. Here, “exhaustive 

depletion” is the removal of an antibody species prior to peptide screening resulting in 

enrichment indistinguishable from statistical chance. We therefore adjusted the screening 

conditions to minimize exhaustive depletion of highly abundant species while maintaining 

increased sensitivity and coverage of low-titer antibody species. To accomplish this, we 

increased the depleted serum concentration during screening, hypothesizing that the 

concentrations of highly depleted species in previous experiments were below detection level 

but not zero. Specifically, a bacterial display peptide library was first enriched toward serum 

antibodies diluted 1:100. This depletion reagent was then used to deplete the serum sample of 

antibodies, resulting in depleted serum. A new bacterial display library was then enriched 
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against the depleted serum diluted 1:25, a 2-fold increase in concentration compared to the 

previous screens of Specimen 1 samples. To allow comparisons with and without HTD, both 

the depletion reagent (enriched at 1:100) and the library enriched via depleted serum 

(enriched at 1:25) were sequenced using NGS. Although this library was screened without 

HTD using a 1:100 dilution instead of the previous 1:20 dilution, we found that enrichments 

for high-titer samples with 1:100 or 1:20 dilution only vary slightly (data not shown). This 

process was completed for three additional serum specimens. Libraries screened without 

HTD had 2–3×10
6
 total sequences and 5–6×10

5
 unique sequences and libraries screened with 

HTD had 6–10×10
6
 total sequences and 2×10

6
 unique sequences per library. 

Antibody specificities were discovered by analyzing the 4,000 highest enriched peptide 

sequences with MEME for each sample with and without HTD. Depletion again resulted in 

improved discovery capacity with 2- to 3-fold more unique motifs discovered (Figure 5.5A). 

Without HTD, enrichment profiles were skewed towards few motifs for each specimen with 

~40–60% of the sequences analyzed belonging to the top five motifs (Figure 5.5B). In 

contrast, the top five motifs for each depletion sample contained only 8–14% of the 

sequences analyzed, suggesting depletion allowed a more uniform enrichment. To determine 

the extent to which high-titer antibody species were depleted, the fold change enrichment 

was again determined for each motif (Figure 5.5C). The motif enrichment analysis for all 

three specimens revealed that 79% of motifs discovered without HTD had log2 ratios 

between -2 and 0, independent of motif significance, with a ~3-fold decrease on average and 

a maximum decrease of 7-fold. These more modest decreases suggest that antibodies with the 

highest abundance were not completely removed and were still available for enrichment. 

Motifs discovered with HTD had larger variations in fold enrichment but over 60% of motifs 
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had increased enrichment with a maximum of 25-fold increase. Although some motifs had 

moderate decreases in enrichment, the net effect of HTD enabled discovery of these motifs. 

All shared motifs decreased in enrichment after HTD with an average decrease of 2.5-fold. 

These results demonstrate that HTD reproducibly improved motif discovery and enrichment 

while reducing inadvertent, exhaustive depletion of antibody species. However, there exist 

trade-offs between minimizing exhaustive depletion and maximizing discovery because 

minimizing depletion inherently reduces the advantageous effects depletion can have on 

enrichment. Furthermore, these findings indicate that HTD parameters, such as concentration 

of depleted serum, can be tuned to optimize antibody specificity discovery. 
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Figure 5.5. Modified HTD conditions reduce exhaustive depletion while maintaining increased coverage 

of antibody specificities. Three additional serum specimens, Specimen 2 (circles), Specimen 3 (squares), and 

Specimen 4 (triangles), were analyzed with (blue) and without (red) HTD. The concentration of serum used for 

screening was increased with HTD to reduce the exhaustive depletion of antibody species. (A) The Venn 

diagrams show the number of unique motifs (E-value <0.05) discovered through MEME analysis of 4,000 

highly enriched peptides with and without HTD for each specimen with shared motifs common to both 

discovery sets (purple) at the intersection. (B) The MEME motifs discovered with and without HTD were 

ranked by significance (E-value) within each dataset and the percentage of the sequences that contributed to 

each motif was reported. (C) For each specimen, the enrichment of each motif discovered with and without 

HTD was calculated from the two datasets. The log2 ratio of enrichment with HTD to enrichment without HTD 

was calculated for each motif and plotted against the motif’s MEME significance (E-value) to determine the 

fold change enrichment. 
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After analyzing individual repertoires for high-titer antibody specificities, which were 

significantly depleted with HTD, we found that some high-titer specificities were common 
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from these three samples, 29–44% of the sequences contained this motif. This suggests that 

there may exist high-titer specificities common among human specimens that could be 

utilized for a targeted HTD approach.  

To identify high-titer specificities present in multiple specimens, libraries from 

Specimens 2, 3, and 4 were analyzed, as these three samples were analyzed using the same 

HTD conditions. From libraries analyzed without HTD, there were 31,631 peptides observed 

in at least two of the three specimens. Of these shared peptides, the 4,000 highest enriched 

sequences were analyzed for motif discovery using MEME. In total, 30 unique motifs 

(E-value <0.05) were discovered, representing specificities common to at least two of the 

three specimens. To determine if these motifs corresponded to high-titer antibodies and were 

subsequently depleted after HTD, the enrichments for the 10 most significant motifs were 

evaluated with and without HTD (Figure 5.6). Motif enrichment decreased at least 2-fold for 

five or six motifs in each subject library after applying HTD, while enrichment increased 

over 2-fold after HTD in only one motif (Motif 4, Specimen 4). These findings indicate that 

the serum antibodies that bound these motifs were high-titer and present in multiple human 

specimens and were effectively depleted following HTD. Therefore, if enough common, 

high-titer specificities like these exist, it is possible that a targeted depletion approach could 

be taken based on catalogued high-titer specificities to improve the efficiency of the 

depletion process and reduce inadvertent depletion. 
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Figure 5.6. High-titer specificities were identified to be present in multiple specimens. Peptides observed in 

at least two of three libraries from (A) Specimen 2, (B) Specimen 3, and (C) Specimen 4 obtained without HTD 

were analyzed for common motifs. The 4,000 most enriched peptides were input for MEME motif discovery, 

and the 10 most significant motifs ranked by E-value were selected for analysis. Enrichments of the 10 motifs in 

specimen libraries obtained with and without HTD were determined to observe the effects of HTD on the 

shared motifs and to classify specificities as corresponding to common, high-titer antibodies. 

 

5.3 Discussion 

While advances have been made in technologies capable of interrogating the antibody 

repertoire with protein and peptide libraries, fundamental hurdles remain for identification of 

biomarkers and antigens associated with disease. Specifically for peptide libraries, the focus 

for improving antibody screening has largely been on design and construction [37,200], 

avidity-effects [54,66], library composition and complexity [42,201,202], and bioinformatic 

analysis [33,56,76]. However, the complexity and diversity of the antibody repertoire itself 

presents a significant challenge for discovering specificities, as rare or infrequent species 

need to be reliably detected and distinguished from abundant species. Other areas of 

proteomics research have overcome similar difficulties by employing methods to reduce 

sample complexity prior to analysis, such as bulk removal of abundant serum proteins 

[196,203]. Therefore, we developed a general method (HTD) to deplete sera of antibody 

species in proportion to titer prior to screening to reduce antibody repertoire complexity. 
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When analyzing the antibody repertoire with peptide libraries, removing antibody species 

with high abundance and affinity reduces competition for binding peptides that contain 

multiple motifs and decreases the proportion of sequences from NGS that correspond to the 

most dominant species. Collectively, these effects enable increased coverage of target 

binding and quantification. For individual species, three spiked mAbs were each detected at 

lower concentrations with HTD through significant increases in mAb motif enrichment, 

demonstrating improved detection limits. The mAb analysis also confirmed that HTD has 

varying effects on individual antibody species dependent upon concentration, affinity, and 

specificity. For instance, enrichment of the anti-HA motif was observed at two orders of 

magnitude lower concentration with HTD, suggesting that high affinity species could be 

detected at very low concentration. Focusing on the polyclonal serum antibodies from an 

individual specimen, the unaltered repertoire was dominated by only a few specificities. This 

is consistent with antibody repertoire sequencing where relatively few clonotypes dominate 

the repertoire, especially following an immune challenge [6,7]. After depletion, enrichments 

of these motifs were substantially reduced suggesting the corresponding antibody species 

were sufficiently depleted which enabled the discovery of over 5-fold more unique motifs. 

This increased depth and breadth of discovery could reveal previously inaccessible antibody 

specificities relevant for diagnostics and provide insights into disease etiology. 

Implementing HTD inevitably brings about trade-offs between gaining access to rare 

interactions while potentially losing some common interactions. For applications of 

biomarker or antigen discovery, the loss of information regarding abundant species in return 

for low-titer specificities may be advantageous. However, this loss of information may be 

undesirable for other applications and a strategy for minimizing this possibility would be 
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beneficial. The extent of depletion for any antibody species is dependent on several factors. 

Some factors are species-specific such as antibody affinity and specificity (and therefore 

prevalence of motifs in the peptide library) demonstrated by the varied effects that depletion 

had on the three mAbs tested at equal concentrations. Other factors are adjustable like serum 

concentration as well as concentration of pre-enriched peptides (the depletion reagent) used 

to physically deplete the serum. Therefore, we sought to mitigate inadvertent depletion by 

tuning the depletion screening parameters. Specifically, we increased the concentration of 

depleted serum during peptide screening, thereby increasing enrichment of all antibody 

species including those that were significantly reduced via depletion. This depletion strategy, 

applied to three specimens, exhibited only moderate depletion of the highest-titer species yet 

still increased the discovery of unique specificities. Collectively, these results confirm that 

the extent of depletion can be adjusted and illustrate the trade-offs of depletion: the presence 

of high-titer species affects the detection of low-titer species. 

While certain parameters can be adjusted to optimize the depletion of a given sample, the 

complexity and diversity of the antibody repertoire may make it challenging to devise a 

universal depletion scheme. One strategy could be to compile a set of peptides specific to 

antibody species that are relatively common throughout the population for use as depletion 

reagents. This would minimize off-target depletion. For example, peptides could be used to 

remove antibody species that target common viruses such as the Epstein–Barr virus which 

infects over 90% of adults [204]. Interestingly, it was found that Specimens 1, 2, and 4 had 

the same motif ranked as most significant when analyzing the repertoires without HTD. This 

consensus motif, P[SA][LF]SxxE[MTS], occupied a dominant share of each specimen’s 

enriched peptide library. This motif is likely from the enterovirus family which has been 
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studied and characterized for decades and is known to be highly immunogenic [205–207]. 

Further investigation of common specificities readily revealed additional motifs that were 

determined to be highly enriched in multiple specimens and subsequently depleted after 

applying HTD. Therefore, it is conceivable that a panel of peptides targeting various high-

titer antibody species like these could be catalogued, constructed, and employed for sera 

depletion. However, it is unclear whether this strategy would be robust enough to sufficiently 

deplete samples throughout a diverse population. This highlights the importance of a 

depletion method that is independent of the specimen and simply depletes species relative to 

titer. If inadvertent depletion is a serious concern, a solution is to simply combine the peptide 

data sets with and without HTD, maximizing coverage of the antibody specificity repertoire. 

This concept has also been suggested in other areas of proteomic biomarker discovery [208]. 

This eliminates the concern for unintentional depletion and allows for maximizing depletion 

leverage. For instance, combining both anti-HA mAb enrichment data sets (with and without 

HTD) would lead to detection over at least five orders of magnitude (0.02-200 nM). Because 

HTD in this study already requires the enrichment of a peptide library toward the abundant 

fraction of serum antibodies, and NGS is becoming more accessible and affordable, 

sequencing and combining both library data sets could be a reasonable, and perhaps 

desirable, option. 

Although HTD was applied to the analysis of the antibody specificity repertoire using 

bacterial display, the general concept of depleting species in relation to abundance and 

affinity could be extended to other applications. Simplifying a biological sample by depletion 

prior to analysis is not new to biotechnology but has been limited to depleting species known 

to be present a priori and has yet to be extended to more heterogeneous mixtures. The HTD 
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method presented here accompanies the shift toward personalized medicine with a robust 

depletion method specific to individual subject specimens and provides a framework for 

applying novel depletion strategies to biological samples. As high-dimensional data 

technologies and immunology continue to merge [209], this technique could greatly expand 

our ability to probe the complex and dynamic interactions of our immune systems and 

environments.  

 

5.4 Materials and methods 

5.4.1 Bacterial display peptide library screening for antibody binding 

Bacterial display peptide library screening for antibody binding with NGS was carried 

out as described in Section 2.4.2. Briefly, a 12-mer random E. coli display peptide library 

(trimer-X12) was screened for antibody binding using a human serum specimen previously 

depleted of E. coli binders [70,76]. Peptides bound by antibodies were enriched with two 

rounds of magnetic selection using protein A/G magnetic beads (Thermo Scientific Pierce) at 

a bead to cell ratio of 1:100 for the first round and 1:1 for the second round. Following 

magnetic selection, plasmid DNA from the enriched cellular libraries was extracted and 

amplicons containing the peptide region were constructed using a two-step PCR based on the 

Nextera XT (Illumina) protocol and sequenced as previously described [76]. For libraries 

screened without HTD, serum specimen 1 was screened at a 1:20 dilution in PBST while 

serum specimens 2, 3, and 4 were screened at a 1:100 dilution. All subjects provided 

informed consent and were adults with no known immunological conditions at sample 

collection. Specimens were de-identified and acquired according to institutional guidelines. 

Serum specimens were stored at -80 °C in long-term storage cryogenic vials (Nalgene). 
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5.4.2 High-titer serum antibody depletion 

To deplete a serum sample of high-titer antibodies, a bacterial display peptide library was 

first enriched towards the specimen as described in Section 2.4.2. A frozen aliquot of the 

enriched library cells was inoculated at 1:40 in 10 mL of LB supplemented with 34 μg/mL 

chloramphenicol (CM), grown to an OD600 of 0.4–0.6 at 37 °C with orbital shaking 

(250 rpm), and induced with 0.02% wt/vol L(+)-arabinose. After 1 hr of induction, cells 

were centrifuged at 3,000 rcf for 5 mins, washed with PBST, and resuspended with E. coli 

depleted serum diluted 1:10 with PBST. For all serum depletions used in this study, 2×10
9
 

induced library cells (depletion reagent) were used per 300 μL of 1:10 E. coli depleted 

serum. Samples were incubated overnight at 4 °C with gentle mixing on an orbital shaker 

(20 rpm). Unbound antibodies were separated from antibodies bound to peptides by 

centrifugation of the sample at 5,000 rcf for 5 min and extraction of the supernatant, the 

depleted serum. This separation process was completed three times to ensure no library 

cells remained in the depleted serum. The depleted serum was then used for a new peptide 

library screen. For libraries screened with HTD, serum was depleted with a corresponding 

library screened with 1:100 diluted serum. Depleted serum was then used at 1:50 for 

Specimen 1 library screens and 1:25 for Specimen 2, 3, and 4 library screens. 

5.4.3 Monoclonal antibody spike-in 

Three rabbit mAbs were used to screen peptide libraries for mAb binding and identify 

specificities: V5-Tag D3H8Q (GKPIPNPLLGLDST), myc-Tag 71D10 (EQKLISEEDL), and 

HA-Tag C29F4 (YPYDVPDYA) (Cell Signaling Technology). For Specimen 1 serum 

samples, each mAb was added at equal concentrations to mimic antibodies found in serum at 

various concentrations (200, 20, 2, 0.2, 0.02, and 0 nM). Specifically, the three mAbs were 
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added to E. coli depleted Specimen 1 sera and then further diluted for peptide library 

screening without HTD or depleted against a corresponding enriched peptide library and used 

for HTD screening. 

5.4.4 Determining antibody-binding specificities 

The motif discovery algorithm MEME [131] was used to identify antibody-binding 

specificities (motifs) from peptide sequence datasets. Because MEME is not suitable to 

analyze large NGS datasets, the MEME algorithm was run locally with a maximum of 5,000 

sequences. The consensus binding motifs for each mAb were determined previously 

(Section 2.4.7). With the mAb motifs defined as the regular expressions discovered via 

MEME, peptide datasets with and without HTD from Specimen 1 spiked screens were 

searched for these motifs to determine mAb motif enrichment in spiked sera. Motif 

enrichment was defined as the ratio of actual motif observations in the library to the expected 

observations, where expected observations were calculated using the amino acid frequencies 

observed in the library and assuming all positions were independent of one another. Poisson 

distribution statistics were used to calculate the p-value of observing a motif given the 

expected observation value (Section 2.4.8). 

For serum antibody-binding specificities, the 4,000 most enriched peptides for each 

sample were used as input for MEME motif discovery (minimum width of four). Regular 

expressions for serum antibody-binding motifs were defined from MEME but were restricted 

to the five most significant positions. Although sequences exhibiting the highest number of 

observations (counts) were used for motif discovery, the motif enrichments were calculated 

based on observations of the motifs in the full peptide dataset. However, for serum antibody-

binding motif discovery from Specimen 1, only peptides enriched in each library (screened 
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with serum spiked with mAbs at various concentrations) were used to reduce the peptide 

dataset size and avoid analyzing mAb-binding peptides. Enrichment values for motifs of 

interest were then averaged among the sample libraries, with or without HTD. 

5.4.5 Aligning and scoring motifs for similarity 

To compare two motifs and quantify the similarity, the two motifs were aligned and a 

similarity score was calculated using a modified PAM30 similarity matrix [76]. A similarity 

score greater than 12 was used to classify two motifs as similar. For each library, motifs 

discovered with MEME were scored for similarity to reduce redundancy within the discovery 

list due to subtle variations. If two motifs within a motif set were similar, the motif with 

lower significance (higher E-value) was removed. The resulting motifs were designated as 

unique. To identify motifs common to both sets, with and without HTD, motifs were scored 

for similarity and enrichments of motifs designated as similar were averaged for any 

calculations. 
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6 Mapping antibody binding to epitopes using multiplexed 

epitope substitution analysis 

 

A more complete understanding of antibody-binding epitopes would aid the development 

of diagnostics, therapeutic antibodies, and vaccines. However, current methods for mapping 

the binding to epitopes require targeted experimental approaches, which limit throughput. To 

address these limitations, we developed Multiplexed Epitope Substitution Analysis (MESA) 

which can rapidly characterize target epitopes from millions of antibody-binding peptides. 

We selected peptides from a random 12-mer library that bound to human serum antibody 

repertoires and determined their sequences using next-generation sequencing (NGS). Next, 

we evaluated the enrichment of all 5- and 6-mers in the peptide dataset. Computationally, we 

divided target epitope sequences into overlapping k-mers. Then, the positions in each k-mer 

were substituted with all 20 amino acids and the enrichments of the substituted k-mers were 

quantified in the peptide dataset. The substitution data for overlapping k-mers spanning the 

target epitope were compiled to identify substitutions favored for binding at each position in 

the target epitope, revealing the precise binding motif. This analysis can be completed 

rapidly for numerous target epitopes from a single peptide dataset, multiplexing epitope 

binding analysis. To validate MESA, we generated binding motifs for monoclonal antibodies 

spiked into a serum specimen, recovering the expected binding positions and amino acid 

preferences. To characterize epitopes bound by a population, we analyzed 50 serum 

specimens to determine the consensus binding motifs within various target epitopes including 

known pathogen epitopes. Binding motifs identified by MESA agreed with those discovered 

using alternative computational approaches. However, MESA’s ability to utilize the full 
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depth of NGS datasets enabled the identification of an Epstein–Barr virus binding motif that 

was not discovered with alternative approaches. These results demonstrate that MESA can 

rapidly identify binding motifs for multiple epitopes in parallel to enhance our understanding 

of antibody interactions and characterize epitopes. 

 

*This chapter was co-authored with Michael L. Paull (UCSB, ChE) with equal contributions. 

  

6.1 Introduction 

The capability to map the binding of antibodies to epitopes has become essential in 

applications ranging from basic research to therapeutic and diagnostic development. For 

example, therapeutic antibody development requires precise determination of epitopes to 

achieve desired biological activity [210] and to avoid undesired cross reactivity [211]. 

Similarly, epitope characterization can aid in the development of vaccines that generate 

neutralizing antibody responses by identifying epitopes that are immunodominant, variable, 

or hypervariable in infections such as HIV [212]. Additionally, the performance of many 

antibody-based diagnostic tests is limited by knowledge of the most sensitive and specific 

epitopes [139]. Finally, the identification of epitopes can yield more effective affinity-capture 

reagents for research applications [213]. 

While the gold standard for characterizing antigen epitopes is X-ray crystallography 

[214], epitope mapping methods using substitution analysis and peptide libraries have 

become commonplace [141,215]. To determine the extent that each position in an epitope 

contributes to binding, alanine scanning mutagenesis has commonly been employed [42]. 

Extending this approach, exhaustive mutagenesis can be used wherein each position in an 
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epitope is mutated to all amino acids [216]. Given the labor-intensive nature of these 

methods, there remains a need for more efficient, high-throughput methods to characterize 

and map antibody binding to epitopes. 

Peptide microarrays have been used extensively to determine antibody specificities [217]. 

Here, the antigen is tiled into overlapping peptides and exhaustively mutated. The importance 

of each amino acid for antibody binding in the entire protein sequence can then be inferred 

from extent of antibody binding to each peptide. Unfortunately, since this method uses a 

targeted library, additional microarrays must be prepared for each protein of interest. For the 

analysis of many antigens, or antibodies within unknown antigens, this process becomes 

impractical. 

To address the limitations of targeted epitope characterization approaches, we developed 

a method termed Multiplexed Epitope Substitution Analysis (MESA), which utilizes random 

peptide libraries, NGS, and bioinformatics to simulate exhaustive mutagenesis of arbitrary 

epitopes. First, we selected antibody-binding peptides from a large surface-displayed peptide 

library. Next, we evaluated the enrichment of all 5-mers or 6-mers in the antibody-binding 

peptide dataset. We then divided target epitope sequences into overlapping k-mers and 

evaluated the enrichments of the k-mers and all possible single-amino acid substitutions. By 

compiling the segment analyses that span the epitope, we determined the effect of amino acid 

substitution at each position in the epitope and revealed the binding positions and amino acid 

preferences within the epitope. Because MESA utilizes millions of peptides selected from a 

random library, many protein epitopes can be characterized simultaneously. 
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6.2 Results 

6.2.1 MESA maps antibody binding to epitopes using random peptide libraries 

MESA characterizes antibody binding to linear targets through random peptide library 

screening. MESA determines binding motifs of target epitopes that indicate which positions 

are conserved or variable and which amino acids are preferred at each position. We adapted 

the algorithm ArrayPitope [217] to use peptide sequences derived from random peptide 

libraries, rather than microarray binding data. By using random libraries, MESA can examine 

numerous target sequences via substitution analysis to determine binding motifs (Figure 

6.1). In this context, a binding motif can be visually represented as an “epitope logo” that 

reveals amino acid preferences at each position in a target sequence. Large peptide sequence 

datasets are obtained by enriching a random peptide library for serum antibody binding and 

identifying the enriched peptides using next-generation sequencing (NGS) [76]. The epitope 

region of interest (the target sequence) is first transformed into k-mer sequences (5- or 6-

mers) with one amino acid overlap spanning the entire sequence. Then, the enrichment of 

each k-mer in the antibody-binding peptide dataset is calculated. Each position of the 

overlapping k-mers is substituted with each amino acid and the enrichments of substituted k-

mers are calculated to determine the effect of amino acid substitution. Finally, the effects of 

substitution on each k-mer are compiled to determine the effects of substitution in the whole 

target sequence. 
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Figure 6.1. An overview of Multiplexed Epitope Substitution Analysis (MESA). A random peptide library is 

screened for antibody binding to serum specimens. Peptide sequences are determined and the enrichments for 

all k-mers of a set length are calculated. A target epitope is divided into k-mers with a single amino acid 

overlap. For each k-mer, every position is substituted with all amino acids to generate 20 variants. Enrichments 

for all k-mers are then compiled to determine statistically significant positions and valid substitutions in the 

epitope. The amino acid preferences for each position in the epitope are displayed in an epitope logo. Positions 

which were not important for binding are blank. 

 

6.2.2 Determining binding motifs for monoclonal antibodies with known epitopes 

To validate MESA, we analyzed antibody species with known linear epitopes to 

determine binding motifs. First, two monoclonal antibodies (mAbs), anti-myc and anti-HA, 

were spiked into a human serum specimen at 200 nM each. The linear epitopes for anti-myc 

and anti-HA are EQKLISEEDL and YPYDVPDYA, respectively. We identified 619,527 

12-mer antibody-binding sequences by screening this specimen. MESA was applied to each 

linear mAb epitope by dividing the epitopes into 5-mers and evaluating enrichments in the 

peptide dataset. The results generated by MESA are visually displayed with alignment 

heatmaps (Figure 6.2A,C) and epitope logos (Figure 6.2B,D). The relative frequencies of 

amino acids at each position in the target sequence are displayed in an epitope logo, wherein 

the total height of letters at a position represents the importance to binding of that position 

and the height of individual letters reflects the amino acid preference. Blank positions 

indicate the position was not statistically significant. MESA also generates a regular 

expression that represents the epitope logo. For each epitope, alignment heatmaps were 
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generated to visualize the importance of positions within each k-mer. In an alignment 

heatmap, the substituted and target k-mer enrichments are summed for each position in the k-

mers. Lower values represent a greater effect of substitution at a position because at an 

insignificant position, all substituted k-mers will have the same enrichment, leading to a 20 

times larger enrichment total than for a significant position. Additionally, the contribution of 

each k-mer to the epitope logo is proportional to its total enrichment, which corresponds to 

the total of each row. 

 

Figure 6.2. MESA determined binding motifs for monoclonal antibody epitopes. A random bacterial 

display peptide library was screened against human serum spiked with anti-myc and anti-HA mAbs, each at 

200 nM, resulting in 619,527 12-mer sequences. MESA was applied to this dataset to generate an (A) alignment 

heatmap and (B) epitope logo for the myc target EQKLISEEDL, and an (C) alignment heatmap and (D) epitope 

logo for the HA target YPYDVPDYA. MESA used 5-mers, a 10% score threshold, and a 25% minimum 

enrichment threshold. In alignment heatmaps, the substituted and target k-mer enrichments are summed for each 

position in the k-mers. Lower values represent a greater effect of substitution at a position. For epitope logos, 

the absolute height of letters at a position represents the relative effect on binding due to amino acid substitution 

and the height of individual letters reflects the binding preference at that position relative to the initial target 

sequence. MEME sequence logos (insets) were obtained via MEME analysis of 5,000 sequences obtained from 

libraries screened with each mAb in PBST. 
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For the two mAbs tested, MESA identified distinct amino acid preferences at each 

position that were significant for binding. For example, position 8 of the myc epitope logo 

(Figure 6.2B) was highly conserved for binding with almost exclusive preference for 

glutamic acid (E), while position 9 was half as conserved with roughly equal preferences for 

aspartic acid (D) and glutamic acid (E). The regular expressions corresponding to the binding 

motifs were KLxSEE[DE] and [PI]Y[DN][IV] for myc and HA, respectively. To validate 

these epitope logos, we determined mAb binding motifs by screening each mAb spiked into 

buffer at 20 nM. After NGS, 5,000 peptides with the highest observations from each library 

were analyzed using MEME to identify sequence logos for each mAb (Figure 6.2B,D 

insets). While MEME and MESA identified similar binding motifs for the mAbs, only 

MESA could identify binding motifs for mAbs spiked into serum due to MEME’s sequence 

input limitations. Thus, MESA precisely determined the mAb binding motifs despite the 

presence of background serum antibodies. 

6.2.3 Applying MESA to identify binding motifs from a single specimen 

When exact antibody targets are unknown, MESA can instead be used with single 

peptides that were enriched for antibody binding. MESA can then reveal epitopes within the 

enriched peptides. We analyzed a single serum specimen library, which had 364,411 

antibody-binding peptides. Epitope logos and alignment heatmaps were generated for two of 

the most observed peptide sequences in the library, YADVFEYQYDWP (P1) and 

TWRDWWSKQPFQ (P2) with 1,429 and 611 observations, respectively (Figure 6.3). For 

P1, the regular expression was ADxFEY which, along with the alignment heatmap and 

epitope logo, indicated strong amino acid preferences at all positions except position 3 

(Figure 6.3A,B). MEME analysis of the 5,000 highest enriched antibody-binding peptides 
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revealed a motif with a highly similar logo (Figure 6.3B inset), suggesting that using MESA 

with the target peptide P1 converged upon the true binding motif. Similar success was 

obtained for P2, which had a regular expression of S[WF][KR]xW[FYW] and an epitope 

logo that was nearly identical to the MEME sequence logo (Figure 6.3C,D). Notably, even 

though the P2 target peptide TWRDWWSKQPFQ contained a tryptophan (W) at position 6, 

MESA accurately identified the preference for phenylalanine (F) and tyrosine (Y) as well. 

 

Figure 6.3. MESA identified binding motifs for antibodies in an individual serum specimen. We analyzed 

two highly enriched antibody-binding peptides using MESA with a peptide library from a serum specimen 

containing 364,411 sequences. MESA generated an (A) alignment heatmap and (B) epitope logo for the P1 

target YADVFEYQYDWP, and an (C) alignment heatmap and (D) epitope logo for the P2 target 

TWRDWWSKQPFQ. MESA used 5-mers, a 10% score threshold, and a 25% minimum enrichment threshold. 

MEME sequence logos (insets) were obtained via MEME analysis of 5,000 sequences obtained from the 

specimen library. 
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6.2.4 Identifying binding motifs using multiple serum specimens 

By using large peptide datasets from multiple specimens, MESA can identify binding 

motifs that represent a population. Peptide libraries screened against eight individual serum 

specimens were sequenced to obtain a total of 1×10
7
 sequences. This dataset was sufficiently 

large that MESA could utilize 6-mers for increased resolution relative to 5-mers. Due to the 

large sequence dataset from using multiple samples, MESA parameter stringencies for 

determining statistical significance were increased. From the dataset, the two peptides with 

the most observations in at least six specimen libraries, DPYLPHWSTVEV (P3) and 

KYAFPQRIFVSS (P4), were used as targets for MESA (Figure 6.4). For P3, MESA 

identified the regular expression as LPHW, with highly conserved residues at positions 4–7 

(Figure 6.4A,B). The epitope logo for P3 agreed with the MEME sequence logo determined 

using all 1,865 sequences present in at least six of the eight libraries. For P4, the regular 

expression was KxxFPQx[IV], in strong agreement with the MEME sequence logo (Figure 

6.4C,D). Despite the diverse dataset of >1×10
7
 sequences, MESA accurately characterized 

the binding of two antibody species present in multiple serum specimens. 
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Figure 6.4. Consensus binding motifs from multiple specimens were identified using MESA. Libraries 

screened against eight individual serum specimens were sequenced to obtain a total of 1×10
7
 12-mer sequences. 

The two peptides with the most observations in at least six specimen libraries, DPYLPHWSTVEV (P3) and 

KYAFPQRIFVSS (P4), were used as targets for MESA. MESA generated an (A) alignment heatmap and 

(B) epitope logo for the P3 target DPYLPHWSTVEV, and an (C) alignment heatmap and (D) epitope logo for 

the P4 target KYAFPQRIFVSS. Due to the larger sequence dataset from eight specimens, MESA used 6-mers, 

a 5% score threshold, and a 50% minimum enrichment threshold. To validate the MESA epitope logos, motifs 

were identified by MEME analysis of all 1,865 sequences observed in at least six of the eight libraries (insets). 

 

To validate MESA with an even larger population of specimens, we analyzed epitope 

sequences from common antigens using 50 specimens (>1×10
8
 sequences). We utilized 

MESA to generate the epitope logo of the common epitope SGSPPRRPPPGRRPFFHPVG 

from Epstein–Barr virus nuclear antigen 1 (EBNA1) [218] (Figure 6.5A). The regular 

expression generated for this epitope was RRP[FW]FHP, which was highly enriched 

(enrichment >10) in 64% of the specimen libraries. The EBNA1 motif RRPFF has been 

found in multiple previous analyses [41,219,220]. The binding motif for another EBNA1 

epitope, EADYFEYHQEGGPDGEPDVP [219], was also generated using MESA (Figure 
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6.5B). The regular expression for this epitope was ADYxEY, which is the same specificity 

identified with MESA using target P1 (Figure 6.3). This motif was highly enriched in 30% 

of the specimen libraries. The third epitope analyzed, VPEFKGSLP, was from the 

Staphylococcus aureus antigen extracellular matrix protein-binding protein emp [60]. MESA 

generated the binding motif for this epitope and identified the regular expression 

VPEFxG[AS], which was highly enriched in 92% of libraries (Figure 6.5C). As additional 

validation, we conducted a MEME analysis of 5,000 sequences observed in at least 10 of the 

50 specimen libraries. This analysis revealed motifs that corresponded to the binding motifs 

determined with MESA (Figure 6.5 insets). MESA therefore identified consensus binding 

motifs from public epitopes through substitution analysis of a multi-subject library with 

>1×10
8
 sequences. This demonstrates the power of MESA to efficiently mine large datasets 

for antibody binding characterization. 

 

Figure 6.5. MESA determined binding motifs of public epitopes from a large population. Libraries from 50 

specimens (>1×10
8
 sequences) were analyzed with MESA to determine the binding motifs of three common 

epitopes: (A) the EBNA1 epitope SGSPPRRPPPGRRPFFHPVG, (B) the EBNA1 epitope 

EADYFEYHQEGGPDGEPDVP, and (C) the extracellular matrix protein-binding protein emp epitope 

VPEFKGSLP from Staphylococcus aureus. MESA utilized 6-mers, a 2.5% score threshold, and a 50% 

minimum enrichment threshold for (A) and (B), but a 25% enrichment threshold was used for (C) due to the 

shorter epitope length. MEME sequence logos (insets) were obtained via MEME analysis of 5,000 sequences 

observed in at least 10 of 50 specimen libraries. 
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Importantly, MESA can generate binding motifs for less common epitopes that are 

represented in a small fraction of the sequence datasets, and would therefore be difficult to 

discover using algorithms like MEME. We utilized MESA to determine the binding motif for 

another common EBNA1 epitope, RPQKRPSCIGCKGTHGGTGA [218] (Figure 6.6). We 

determined the regular expression for the binding motif as CIGCR, but we did not identify a 

corresponding motif using MEME. However, we determined CIGCR to be highly enriched in 

34% of specimen libraries, suggesting this epitope was bound by a significant proportion of 

the population.  

 

Figure 6.6. A binding motif from a EBNA1 public epitope was discovered exclusively using MESA. 

Libraries from 50 specimens (>1×10
8
 sequences) were analyzed with MESA to discover a binding motif for the 

EBNA1 epitope RPQKRPSCIGCKGTHGGTGA. MESA utilized 6-mers, a 2.5% score threshold, and a 50% 

minimum enrichment threshold. MEME was not able to identify a corresponding motif due to the limited 

number of input sequences. 

 

6.3 Discussion 

Here, we introduced an algorithm for determining the most important positions and 

amino acid preferences in epitopes using random peptide library screening. Notably, this 

method enables the identification of binding motifs for arbitrary epitopes, avoiding the need 

Epitope:
RPQKRPSCIGCKGTHGGTGA
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to bias experiments. MESA computationally substitutes individual positions in an epitope 

and calculates the effect of the substitutions. Positions which are the most affected by 

mutations are plausibly important to antibody binding. Because the large, random bacterial 

display library has ~100% coverage of 5-mers and ~96% coverage of 6-mers, this approach 

can utilize k-mers to precisely evaluate the effect of a substitution in a peptide. It would be 

difficult to correctly identify binding motifs for approaches with smaller libraries such as 

microarrays with low k-mer coverage [56]. By analyzing known epitopes for mAbs spiked 

into serum, we demonstrated that only a few positions dominated binding for an antibody 

species. Additionally, by analyzing antibody-binding peptides and known pathogen epitopes, 

we could refine epitopes into shorter motifs representing the most important binding 

positions. We focused on common epitopes from antigens such as EBNA1 because the 

specimens were from a general population where Epstein–Barr virus infects over 90% [204]. 

We were able to validate our results by comparison to MEME [221], with the exception of 

the epitope CIGCR (Figure 6.6) which was exclusively identified using MESA and has been 

previously reported [75]. This is unsurprising since we could only input ~5,000 sequences to 

MEME, which for the single specimen and 50 specimen analyses was 1% and 0.005% of all 

sequences, respectively. Thus, MESA can more thoroughly explore the depth of NGS 

datasets for epitope characterization. Another limitation of using algorithms such as MEME 

to find significant positions in a target sequence is that it requires the cumbersome process of 

searching through motifs for similarity to the target. In contrast, MESA simply substitutes a 

target sequence and returns the binding motif. While the motif discovery algorithm IMUNE 

efficiently searches full NGS datasets [76], it is primarily designed to analyze groups of 
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specimens for disease-specific motifs, while MESA can be utilized for mapping antibody 

binding to target epitopes in single specimens or populations. 

MESA has significant advantages over other epitope mutagenesis approaches. Targeted 

mutagenesis schemes like ArrayPitope tile peptides from a protein sequence in a microarray 

format, and then mutate individual positions to all other amino acids [217]. The main issue 

with using a non-random library is that experiments must be repeated for each additional 

protein target. While researchers have used random bacteriophage libraries to identify 

epitopes [60], targeted libraries were required to refine epitopes. Non-random libraries can 

also lead to inaccurate results if serum antibodies have a preference towards a variant of a 

protein sequence. For example, celiac disease antibodies target deamidated gliadin, thus a 

microarray using the gliadin sequence could miss this binding interaction [70]. MESA 

represents the first algorithm that can multiplex epitope substitution using random libraries. 

With a computational mutagenesis scheme using k-mers and random libraries, there is no 

need to bias the experimental approach towards a specific antigen. Thus, epitopes 

corresponding to many antigens can be analyzed.  

Limitations of MESA are mostly related to its inclusion of noise, a necessary result of 

avoiding time-consuming motif discovery algorithms like pair-wise sequence comparisons. 

However, MESA’s substitution analysis sometimes leads to the inclusion of sequences that 

are irrelevant to the true binding motif, leading to a poor signal-to-noise ratio. Since this 

method evaluates many different 5- or 6-mers, it is crucial that there are >10
5
 sequences for 

the analysis of serum antibodies, which for typical NGS datasets should not be difficult to 

achieve [76]. Also, if a group of subjects does not have homogenous binding to an epitope, 

MESA may not generate a clear binding motif. 
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MESA could be used to discover and refine epitopes identified through epitope mapping 

for the development of more effective diagnostics, vaccines, and reagents. Generating a 

binding motif for a disease-specific epitope would allow for the optimization of diagnostic 

peptides [70]. Additionally, associating motifs with diseases could provide insights into 

etiology [75,222] and lead to the development of antibody therapeutics, such as for cancer 

[35]. MESA could aid the study of broadly neutralizing antibodies for vaccine design and 

therapeutic development in infections such as HIV [223,224]. This approach could also be 

used to improve the development of peptides vaccines [225] enabling a more focused 

immune response. Moreover, there is an increasing need for robust methods capable of 

studying and resolving cross-reactivity in vaccine development [26]. 

MESA can be used to refine epitopes in NGS datasets using antibody-binding peptides or 

using known protein epitopes. The substitution analysis of the algorithm allows it to rapidly 

probe the full depth of large NGS datasets. The ability to identify epitopes relating to 

arbitrary antigens will likely become indispensable to fully interrogating antibody 

repertoires. 

 

6.4 Materials and methods 

6.4.1 Bacterial display library screening and sequencing 

The protocol for screening bacterial display peptide libraries was carried out as 

previously described (Section 2.4.2). Briefly, we added 1:100 diluted human serum to an 

Escherichia coli display library of 8×10
9
 random 12-mer peptides (trime-X12), and sorted 

cells with bound antibodies through two rounds of magnetic selection using Protein A/G 

magnetic beads (Thermo Scientific Pierce). DNA amplicon libraries were prepared from the 
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enriched library cells for sequencing using the Illumina NextSeq. All sera (N=60) were 

obtained as de-identified specimens from biobanks according to institutional guidelines and 

handled according to CDC-recommended BSL-2 guidelines. 

6.4.2 Monoclonal antibody spike-in 

Two rabbit mAbs, myc-Tag 71D10 (EQKLISEEDL) and HA-Tag C29F4 

(YPYDVPDYA) (Cell Signaling Technology), were used for MESA analysis of known 

target sequences. The mAbs were added to a human serum specimen at 200 nM to mimic 

antibodies in serum (Section 5.4.3) [164].  

6.4.3 Sequence processing 

We generated non-redundant sequences from FASTQ files and calculated 5-mer and 

6-mer enrichments using an adapted version of IMUNE [76]. Enrichment is defined as the 

ratio of observations of a k-mer to the “expected” observations. The number of “expected” 

observations is calculated by multiplying the number of frames the k-mer could fit in a 

12-mer peptide with the total number of sequences and the probability of the k-mer appearing 

based on amino acid usage. For computations with large specimen datasets using 6-mers, we 

sum the enrichments from all specimens for each k-mer. Running these programs requires at 

least 16 GB of free RAM and 100 GB of hard-drive space. Analysis was carried out on a Dell 

Optiplex 9020 with an Intel® Core™ i7-4790 CPU @ 3.60 GHz, 64-bit operating system, 

and 32.0 GB of RAM. Processing FASTQ files into subsequences from 12 specimens (~1.5 

million unique sequences per specimen) and calculating 5-mer and 6-mer enrichments 

required 136 mins, 10.1 mins, and 140 mins, respectively. The duration of these calculations 

scales approximately linearly with the number of specimens and sequences. 
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6.4.4 MESA algorithm 

Multiplexed Epitope Substitution Analysis (MESA) determines which positions in an 

antibody-binding peptide are important for binding and the amino acid (AA) preferences at 

each binding position. This binding motif is displayed as an epitope logo in which the effect 

of AA substitution at a position corresponds to the absolute height at that position. Positions 

with an insignificant contribution to binding have a height of zero. The height of individual 

AA letters indicates the relative importance of an AA at a position. 

The approach for determining binding motifs is based on the methodology used in 

ArrayPitope [217]. To start, a sequence with known antibody binding, denoted the target 

sequence, is tiled into k-mers of 5 or 6 AA with a single AA overlap. For each k-mer, one 

position at a time is substituted with all AAs. This results in 100 variants for 5-mers and 120 

variants for 6-mers. The k-mer that corresponds to the native antigen sequence is termed the 

original k-mer. When using multiple specimens, the enrichment of a k-mer is the sum of 

enrichments in all specimens. All the enrichments are normalized by the original k-mer 

enrichment. The normalized enrichments are used to populate a position-specific scoring 

matrix (PSSM). In a PSSM, columns represent positions in the target sequence and rows 

represent AA substitutions.  

The average of each column in the PSSM, denoted the score, indicates whether a position 

in a k-mer is conserved (‘N’) or variable (‘X’). The “conservation string” for a k-mer 

indicates which positions are conserved (e.g. NXNXN). If a conserved position is mutated, 

antibody binding will diminish, whereas antibody binding is nearly unaffected by the 

mutation of a variable position. A score near 1 indicates that a position has little preference 

for the original AA at that position and it is therefore a variable position. If the score is far 
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below 1, this indicates a strong preference for the target sequence AA and it is considered a 

conserved position. Therefore, we use a binary cutoff value, termed the score threshold, on 

the score to determine if a position should be considered conserved or variable. The score 

threshold is determined by generating PSSMs for 1,000 random k-mers and compiling their 

scores into a list. The assumption is that these random k-mers should have all variable 

positions and should thus possess scores approximating random chance. A score threshold is 

chosen using a low percentile (e.g. 5%) of the list of random scores. Additionally, a position 

was considered variable if the sum of enrichments for the 20 variants that substitute that 

position (“the enrichment sum”) is less than the minimum enrichment threshold. This 

threshold excludes spurious results where a position appears conserved because the 

enrichment is too low. The minimum enrichment threshold is defined as a percentile in the 

distribution of all enrichment sums generated from a target sequence. To determine a 

“sequence conservation string”, the conservation string for each k-mer is aligned to the target 

sequence. If there is at least one k-mer that is conserved at a position in the alignment, then 

that position is conserved in the sequence conservation string. 

To determine the binding motif, a substitution matrix was generated for each position in 

the target sequence. A substitution matrix can then be used to describe the AA preferences 

for each position (the “substitution position”) in the target sequence. PSSM columns from 

positions that overlap with the substitution position are used to construct a substitution 

matrix. PSSM columns are only included in the substitution matrix if they are conserved in 

the k-mer. To determine the frequency of each AA at a substitution position, we determine 

the average of each column in the substitution matrix and normalize the averages by the sum 

of all column averages. 
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From the substitution matrices, each position in the target sequence has AA frequency 

values. The information that is directly used to generate the epitope logo is contained in the 

relative entropy matrix. To generate the relative entropy matrix, the following formula is 

applied to each AA frequency: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑓𝑎𝑎 log2
𝑓𝑎𝑎
𝑢𝑎𝑎

 
(6.1) 

where 𝑓𝑎𝑎 is the frequency of the AA and 𝑢𝑎𝑎 is the usage of the AA in the peptide dataset. 

In the relative entropy matrix, each row corresponds to a position in the initial sequence and 

each column corresponds to one of the 20 AAs. If a position is determined to be variable, it is 

represented by a row of zeros so that it will not appear in the epitope logo. The relative 

entropy matrix is then input into Seq2Logo to generate a sequence logo [226]. For generating 

an epitope logo from the single specimen for the peptide YADVFEYQYDWP (P1), it 

required 0.016 sec to generate the relative entropy matrix and 0.75 sec to generate the 

sequence logo using Seq2Logo. 

The regular expression of the sequence logo allows for a single textual representation of 

the binding motif. To determine the regular expression, each position in the target peptide is 

made into ‘X’ if it is variable or is replaced with one or more AAs if the position is 

conserved. AAs are included in the regular expression if they meet a frequency cutoff (0.2 in 

our analysis). Leading and trailing ‘X’s are then trimmed from the regular expression.  

Elements that were adapted from ArrayPitope [217] include dividing a target sequence 

into shorter overlapping subsequences, generating PSSMs and substitution matrices, and 

visualizing the results using Seq2Logo. MESA differs from ArrayPitope by using peptides 

selected from a random library rather than from targeted microarrays, dividing sequences 
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into k-mers, using a nonparametric statistical approach, and generating an entropy matrix for 

input to Seq2Logo. 

6.4.5 Identifying antibody-binding motifs with MEME 

To validate the binding motifs discovered using MESA, the motif discovery algorithm 

MEME [131] was used to determine antibody-binding motifs in a set of peptide sequences. 

MEME uses pair-wise sequence comparisons in small sequence sets of less than ~5,000 

members, while MESA utilizes substitution analyses throughout full NGS datasets. Although 

variations in the results from MESA and MEME will exist due to differences in algorithms 

and data input, comparison to MEME is effective for broadly confirming antibody-binding 

motifs and assessing MESA performance. 

MEME is not suitable to analyze large peptide datasets due to run-time constraints. 

Therefore, all MEME analyses were run with a maximum of 5,000 sequences. To identify 

mAb motifs, a random bacterial display peptide library was screened against each mAb at 

20 nM in PBST [164] and sequenced. A minimum motif width of 8 was utilized for the 

MEME mAb analyses. For all analyses of serum antibody motifs, a minimum motif width of 

4 was used. For 5,000 sequences, MEME analysis required 10.0 ± 1.4 hours. 
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7 Conclusion 

 

7.1 Perspectives 

7.1.1 Development of high-throughput screening method 

Random bacterial display peptide library screening has the potential to offer a high-

throughput platform for interrogating the serum antibody repertoire to discover and 

characterize epitopes associated with a wide range of immunological diseases. However, 

bacterial display can suffer from biological limitations such as codon biases and stop codons 

that can impact epitope discovery. Therefore, it is critical to construct and characterize a 

high-quality display library before the application to complex systems for discovery. Here, 

we constructed a large random bacterial display peptide library (trimer-X12) containing ~10 

billion peptides with restricted codon usage optimized for randomized sequences and E. coli 

growth. Next-generation sequencing (NGS) was performed to determine ~70 million 

sequences from the naive library, enabling in-depth characterization. The trimer-X12 library 

was compared to a previously constructed library using the traditional NNS codon method 

(NNS-X15) to reveal major improvements. We determined that less than 4% of the trimer-X12 

sequences contained a stop codon compared to 43% in the NNS-X15 library. Additionally, the 

trimer-X12 library had less variability of amino acid frequencies with a standard deviation of 

1.4% and a range of only 5.5%, compared to the NNS-X15 library frequencies which had a 

standard deviation of 3.2% and a range of 11%. NGS was also utilized to determine the 

amino acid frequencies following library screening with serum specimens. We determined 

that the amino acid frequencies after selection were highly dependent on the naive library, 

and bias in the naive library was propagated through the screening process. Therefore, the 
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minimization of stop codon usage and codon bias in the trimer-X12 library will enable 

efficient sampling of the highly diverse peptides for unbiased epitope discovery. 

With a high-quality peptide library constructed and characterized, we screened libraries 

for antibody-binding against a set of serum specimens to reveal fundamental characteristics 

of antibody binding to linear peptides. Through the analysis of hundreds of binding motifs, 

we determined that 90% of motifs were five to eight amino acids wide with four to six 

conserved residues. Knowing the structure of the majority of motifs now provides us with a 

basis for motif identification in large peptide datasets. Finally, we demonstrated unbiased 

motif discovery using monoclonal antibodies (mAb) with known epitopes by identifying 

precise binding motifs for each mAb and quantifying motif enrichment. Ultimately, the 

availability of NGS has enabled an in-depth characterization of random and enriched peptide 

libraries, providing a better understanding of the fundamentals of peptide library screening 

for epitope discovery. With a large, high-quality library constructed and characterized, we 

have developed a reproducible and high-throughput screening methodology that can be 

readily applied to interrogate the antibody repertoires from immunological diseases. 

7.1.2 Application of random peptide screening to diverse immune-related diseases 

A major advantage of random peptide library screening is the applicability to diverse 

immune-related diseases to discover antibody-binding peptides. This facilitates the discovery 

of diagnostic reagents for detecting antibody biomarkers and the identification of antigens 

associated with disease. Here, we analyzed the serum antibody repertoires associated with 

herpes simplex virus (HSV) for epitope discovery and characterization. The two HSV 

species, HSV-1 and HSV-2, are highly similar with over 80% of the protein-coding regions 

from each virus sharing sequence homology [94]. Therefore, highly-specific reagents need to 
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be identified for accurate diagnostics. By applying our peptide screening methodology, we 

identified 14 HSV-2 specific motifs that each demonstrated 100% sensitivity and specificity 

when distinguishing HSV-2 from HSV-1. Motifs specific for HSV-1 were also identified but 

with lower sensitivity. A classification algorithm was developed to improve diagnostic 

accuracy by utilizing reactivity towards nine motifs in parallel, achieving 100% type-specific 

accuracy. To bolster evidence for the specificity of the HSV motifs, our database of peptide 

libraries from various sample cohorts was analyzed for motif enrichment. A general 

population of adults was evaluated for motif enrichment and the estimated HSV prevalence 

was consistent with epidemiological trends. Finally, the HSV-specific motifs were aligned to 

the HSV proteomes using online protein sequence databases to identify candidate antigens. 

Numerous motifs mapped to HSV glycoproteins, such as the HSV-1 glycoproteins G1 and 

D1 and the HSV-2 glycoproteins G2 and D2, known for being antigenic [82,85,90]. 

Moreover, we identified previously unreported candidate antigens containing highly specific 

motifs, including tegument proteins and capsid proteins. While additional studies are needed 

to further validate these antigens, these results demonstrate the broad capabilities for 

discovering epitopes in highly similar infectious diseases. The numerous epitopes discovered 

with high diagnostic utility could be integrated into novel point-of-care devices for rapid, 

multiplexed diagnosis of viral species. The ability to accurately detect highly similar species 

could improve diagnostics and enable the monitoring of disease prevalence and the spread of 

infectious diseases. 

We next applied our antibody repertoire analysis platform to age-related macular 

degeneration (AMD). It is known that AMD progression involves immune dysregulation [98] 

and unique antibody signatures have been previously identified [124,125]. However, unlike 



 

143 

an infectious disease, age-related macular degeneration (AMD) does not have clear antibody 

targets. By analyzing the serum antibody repertoires from specimens obtained at different 

stages of AMD, we identified a set of binding motifs specific to the onset of late AMD. An 

SVM classifier was developed to classify onset late AMD specimens from cohorts with 

varying risk of developing late AMD. The classifier demonstrated improved performance as 

the risk of developing late AMD decreased. Importantly, the classifier demonstrated 84% 

diagnostic accuracy when classifying independent onset late AMD specimens from age-

matched controls with low risk of developing late AMD (small drusen). AMD-specific 

motifs were also found to be reactive over years of disease progression, indicating that the 

corresponding antibodies were present and sustained over time. These findings suggest 

unique antibody signatures exist at the beginning stages of late AMD that could be detected 

to facilitate early treatment and AMD prevention. Due to the severity of late stage AMD and 

the irreversibility of the accompanied vision loss, there is an increasing need to accurately 

diagnosis the disease as early as possible. To further validate the AMD motif panel for 

diagnostic accuracy, cohorts with increased sample sizes will need to be analyzed. Additional 

work can be completed to evolve the AMD-specific motifs to elucidate additional epitope 

sequence identity and enable novel antigen identification. This could be completed by 

constructing bacterial display focused motif libraries and screening the motif libraries against 

additional AMD specimens. The identification of antigens associated with AMD would 

greatly improve our understanding of the complex disease pathology and provide new 

opportunities for therapies. 

The discoveries of antibody-binding motifs associated with diverse infections and 

diseases such as HSV and AMD demonstrate the versatility of antibody repertoire analysis 
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using bacterial display. Peptide reagents can be readily identified and utilized with an 

assortment of classification schemes to develop diagnostic panels with high accuracy. The 

unbiased approach of random peptide screening enables the discovery of novel peptides and 

antigens not possible in targeted approaches. 

7.1.3 Advancements in peptide screening and epitope discovery 

While we successfully applied the bacterial display screening platform for a variety of 

antibody repertoire analyses, the complexity of the serum antibody repertoire remains a 

barrier for biomarker discovery. Specifically, the antibody repertoire is often dominated by 

high-titer antibody species, limiting the detection of low-titer antibodies that may be relevant 

to diseases. We therefore developed a novel method to selectively deplete high-titer 

antibodies from serum specimens, termed high-titer depletion (HTD). With HTD, random 

peptides were enriched towards binding high-titer antibody species and then utilized as 

binding reagents to deplete the corresponding species from the specimen. Importantly, the 

depletion reagents are customized for each unique antibody repertoire, optimizing the 

depletion process for each specimen. A random peptide library can then be screened using 

the depleted serum specimen to enhance the discovery of peptides bound by low-titer 

antibodies. HTD was validated by detecting three monoclonal antibodies at concentrations at 

least an order of magnitude lower than without HTD. Moreover, 92 serum antibody 

specificities were readily discovered from an individual specimen using HTD compared to 

only 25 specificities without HTD. These results indicate that the HTD method could be 

reproducibly applied for the discovery of rare antibody biomarkers related to disease and 

characterization of the serum antibody repertoire at depths not previously possible. 
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Aside from improving the sensitivity and depth of the peptide screening technology, there 

is an increasing need for the development of advanced bioinformatics to analyze the large 

NGS datasets. Currently, motif discovery algorithms such as MEME and IMUNE are 

unbiased discovery algorithms. However, if an antigen or epitope is known or suspected, it is 

difficult to identify the binding motifs associated with the target epitope using unbiased 

discovery methods. Moreover, these algorithms are limited when analyzing the peptide 

libraries screened against a single antibody repertoire. In the past, studies have required a 

targeted approach of tiling peptide sequences from an antigen and interrogating binding for 

each antigen of interest. However, this approach is low-throughput and restrictive. Therefore, 

we developed an approach to rapidly map the antibody binding to epitopes of interest 

following random peptide library screening, termed Multiplexed Epitope Substitution 

Analysis (MESA). Given a target epitope sequence, MESA computationally mutates each 

epitope position and evaluates the enrichment of the peptide variant. By evaluating all amino 

acid substitutions, a precise map of binding preferences for each position in the epitope can 

be determined. Because MESA utilizes data from random peptide library screening, any 

peptide epitope can be characterized for antibody binding. MESA was applied to individual 

peptide libraries to accurately characterize patient-specific epitopes as well as large cohort 

libraries to map consensus epitopes from common pathogens such as the Epstein–Barr virus. 

The ability of MESA to efficiently search entire NGS datasets allows for maximum 

utilization of the library sequences and optimal epitope discovery and characterization. 
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7.2 Future directions 

The integration of bacterial display peptide library screening and NGS has enabled 

unprecedented access to the serum antibody repertoire. The immunological memory of the 

antibody repertoire provides countless opportunities to discover antibody biomarkers and 

reveal novel antigens from infections, allergens, the microbiome, autoimmune diseases, and 

cancers. Random peptide library screening provides a broad, high-throughput platform for 

discovery and characterization. The antibody-binding peptides discovered can be utilized as 

diagnostic reagents and mapped to antigens to inform of disease pathology and novel 

therapies. 

The methodologies developed and applied in this work are part of the emerging field of 

immunoinformatics, the integration of immunology and bioinformatics [209]. The 

complexity and dynamic nature of the immune system requires sophisticated computational 

analysis to expose the network of interactions. The serum antibody repertoire is one such 

network connecting the adaptive immune response to interactions with the environment. By 

cataloging millions of antibody-peptide interactions for patient specimens, we have 

constructed a database that can be readily searched for antibody-binding motifs. We utilized 

this database to examine motif reactivity in various populations, including youth cohorts and 

adult cohorts, to further validate diagnostic specificity. Diagnostics require massive 

collections of patient specimens to validate accuracy, and thus databases of these types 

generated from high-throughput analyses could greatly impact the field of diagnostic 

development. Numerous other databases involving epitopes and antigens have been 

developed, such as the immune epitope database (IEDB) [227] and the B-cell epitope 
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database Bcipep [228]. As these databases grow and antigen information becomes readily 

available, these databases will be indispensable tools for antibody biomarker discovery. 

While random peptide library screening has many advantages for epitope discovery, all 

screening platforms currently suffer from fundamental limitations for discovering structural 

epitopes and epitopes with post-translational modifications (PTMs). While advances have 

been made for mapping linear antibody-binding peptides onto three-dimensional antigen 

structures [229], this is only possible for the small number of antigens with elucidated 

structures. Recently, high-throughput yeast display has been used to display mutated antigens 

and screen for antibody binding to map conformational epitopes [230]. These methods are 

still limited to known antigens and are targeted approaches with narrow scopes but 

nonetheless provide a foundation for complex epitope screening platforms. To further expand 

the scope of epitope discovery, screening methods incorporating PTMs into epitopes will 

need to be developed. A prominent PTM epitope with diagnostic relevance is the cyclic 

citrullinated peptide used to diagnose rheumatoid arthritis [11]. PTMs have successfully been 

integrated into bacterial display peptide screening by utilizing enzymes to modify the 

displayed peptides [231].This approach could be used to identify novel linear and cyclic 

epitopes with PTMs such as citrullinated peptides. Although these methods will inevitably be 

lower throughput than traditional peptide library screening, they will expand the breadth of 

epitope discovery and create new opportunities for diagnostics and therapeutics. 

While the antibody repertoire analyses completed in this work primarily focused on 

populations of specimens with disease, experimental and computational advances will enable 

the characterization of individual repertoires. The ability to analyze an individual antibody 

repertoire could enable precision health monitoring and personalized diagnostics and 
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therapies. Additional advancements in personalized medicine technologies such as single B-

cell sequencing [7,232] could be used in conjunction with functional antibody repertoire 

analysis to characterize the repertoire at great depth for patient-specific diagnostics and 

therapeutics and to gain important insights into disease pathology. Moving forward, these 

antibody repertoire technologies will greatly impact the development of diagnostics and 

therapeutics and the study of immune system networks. 
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