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In recent years, machine learning and neuroscience are increasingly intertwined. On the one

hand, machine learning could benefit from the insights and inspiration provided by the dis-

coveries in neuroscience, as well as the integration of biologically-inspired components. On

the other hand, machine learning techniques can be used to enhance our knowledge of the

brain and its functions. In this dissertation, we demonstrate how they could benefit from each

other, with an emphasis on dynamic environments. We first introduce how machine learning

could benefit from neuroscience. We start with two projects that integrate neuromodula-

tory systems into machine learning systems to handle dynamic environment changes. In the

first project, we used a serotonergic (5-HT) neuromodulatory system to control the patience

level of a mobile robot navigating in outdoor environments, resulting in flexible behaviors

not typically found in traditional navigation solutions. The second project introduced a

reinforcement learning solution augmented with noradrenergic (NE) and cholinergic (ACh)

neuromodulation, enabling the agent to quickly adapt to dynamic environment changes.

Besides the utilization of neuromodulatory systems, in the third project, we proposed a

method of latent unified state representation (LUSR) to improve the domain adaptation

performance of reinforcement learning methods by addressing the adaptation problem from

the pixel domain to a latent space, inspired by the latent representation in brain. The
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fourth project introduced a method of policy distillation with selective input gradient reg-

ularization, inspired by memory consolidation, to achieve computation efficiency and high

interpretability in explainable reinforcement learning. Finally, the dissertation discusses how

machine learning can contribute to the field of neuroscience. The last project studied the

transformation between the first-person view and global view, which utilized the machine

learning technique of variational autoencoder (VAE) to enhance our understanding of how

the brain conducts view transformation in a 3D environment. In summary, this dissertation

demonstrated the mutually beneficial relationship between the fields of machine learning

and neuroscience, highlighting how each field can help the other to achieve advancements in

theory and practice.
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Chapter 1

Introduction

The ability to interact with the environment and make decisions based on those interac-

tions is a key aspect of both artificial and biological intelligence. In recent years, research

in machine learning has made significant advances in agent-based reinforcement learning,

utilizing deep neural networks. However, most of these achievements have been in static en-

vironments, where the environment dynamics and reward feedback remain fixed. In reality,

the environment can be dynamic and undergo continuous changes, presenting a significant

challenge to handling such scenarios.

Decision making under uncertainty and quick adaptation to environment changes is a crucial

ability for human and animals to survive in the environment. To accomplish this, the brain

employs a variety of processes and mechanisms such as perception, prediction, attention,

and learning and memory. These mechanisms and processes could provide inspirations for

researchers to augment machine learning and reinforcement learning with brain-inspired com-

ponents and algorithms, which may assist in addressing the challenge of handling dynamic

environments.

Besides providing biological inspirations for machine learning, neuroscience could also benefit
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Figure 1.1: Summary of research work conducted during my doctoral study. Four rectan-
gle blocks (Applications/Tasks, Machine Learning, Brain Mechanisms and Biological Evi-
dence/Data) form the base of the diagram. The green and purple arrows represent their
relationships (Brain mechanisms inspire machine learning which solves tasks while machine
learning also reinforces brain mechanisms which explain biological data). Each of them fur-
ther derives a series of examples/instances involved in my doctoral study.

from the advancement of machine learning. Machine learning algorithms can be used to ana-

lyze complex neuroscience datasets, enabling the identification of patterns and relationships

that may not be easily detectable through traditional methods. Moreover, machine learn-

ing can reinforce existing theories of brain mechanisms by identifying similar mechanisms

in both artificial neural networks and the human brain. By leveraging machine learning,

researchers can gain new insights into the cognitive processes and functions, leading to a

better understanding of brain.

This dissertation covers a variety of machine learning methods augmented with brain-inspired

components and algorithms to address dynamic environments, and one study to understand

the cognitive function of spatial perspective transformation with machine learning models.

2



Much of the work presented in this thesis relies on reinforcement learning. Chapter 2 pro-

vides background on AI, machine learning, neuro-inspiration, and reinforcement learning.

Chapter 3 shows how an autonomous system augmented with patience-based neuromod-

ulation mechanism could navigate in outdoor environments and adjust behavior based on

the context and uncertainty of a situation[Xing et al., 2020]. Chapter 4 demonstrates how

prediction and neuromodulation modules allow rapid detection of environment changes and

achieve quick adaptation them [Xing et al., 2022c]. Chapter 5 introduces a reinforcement

learning method to achieve seamless domain adaptation between multiple visually-different

environments, focusing on the perception [Xing et al., 2021]. Chapter 6 introduces a method

to improve the explanability and robustness of agent decision making, partially inspired by

memory replay[Xing et al., 2023]. Chapter 7 transitions to understanding the cognitive func-

tion of spatial perspective transformation using the machine learning method of variational

autoencoders (VAEs) [Xing et al., 2022a]. Finally, Chapter 8 discusses future directions and

conclusions in the neurorobotics of spatial navigation.
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning is concerned with how agents should take actions in an environment

in order to maximize their cumulative rewards. The environment is typically stated in the

form of a Markov decision process (MDP), which is expressed in terms of state s, action a

and numeric rewards r. At each time step t in the MDP, the agent takes an action at in

the environment based on current state st and receives a reward rt+1 following P (rt+1|st, at)

and next state st+1 following P (st+1|st, at) (See Figure 2.1). The goal of the agent is to

find a policy π(s) to choose actions to maximize the discounted cumulative future rewards

rt + γrt+1 + γ2rt+2 + ... where γ is the discount factor ranges from 0 to 1.

Because of the MDP setting, the state-action value Q(s, a) could be recursively expressed

via the Bellman Equation [Bellman, 1966] which underlies most reinforcement learning al-

gorithms.
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Figure 2.1: Reinforcement learning illustration

Qπ(st, at) = rt + γ
∑
st+1

P (st+1|st, at)Qπ(st+1, π(st+1)) (2.1)

Based on the Bellman equation, there are two main classes of reinforcement learning algo-

rithms, which are known as model-based and model-free. Model-free reinforcement learning

focuses on approximating the value estimation of states or state-action pairs directly from

experiences. One option to learn value estimation is Monte-Carlo methods. In Monte-Carlo

methods, a batch of complete episodes are first generated and then the empirical mean

is calculated from this value estimation. Monte-Carlo methods rely on tracking complete

episodes which could be difficult especially when the episodes are very long. Temporal dif-

ference learning is proposed to solve this challenge. It could update the value estimation

from incomplete episodes with the equation below:

V (st) = V (st) + α(rt+1 + V (st+1)− V (st)) (2.2)

where value is updated towards the estimated return and α is the learning rate.

Different from model-free reinforcement learning that learns value approximation only, model-
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based reinforcement learning has access to or learns a model of the environment. The model

contains information of the transition dynamics of the environment which is P (st+1, rt|st, at).

The model allows the agent to do planning by thinking ahead, seeing what would happen

after different choices and deciding what action to take. When the model is accurate, it helps

the agent to do better decision making by allowing it to do planning and also improves sam-

ple efficiency since the model could be used to sample experiences for training just like the

real environment. However, modeling the environment can be very challenging, especially

when the state space is large. As a result, model-based reinforcement learning requires more

processing and time to reach a decision. Compared to model-based reinforcement learning,

model-free reinforcement learning is faster and takes less computation, but cannot reason

over complex problems.

2.2 Neuromodulation

Neuromodulation is a field of neuroscience that focuses on the study of the neural mecha-

nisms that regulate the activity of neuronal circuits in the brain. Neuromodulatory systems,

including the noradrenergic (NE), serotonergic (5-HT), dopaminergic (DA), and cholinergic

(ACh) systems, track environmental signals and regulate various cognitive, emotional, and

physiological processes such as attention, learning and memory, arousal, and mood.

NE neurons exhibit a robust response to both unexpected environmental changes and task-

relevant stimuli. This suggests that they play a crucial role in triggering a ”network reset”,

which leads to a broad reorganization of neuronal activity throughout the brain [Bouret

and Sara, 2005]. This process enables changes in behavior and cognition, facilitating the

adaptation to new circumstances. Xing et al. [2022c] used NE system to track the unexpected

uncertainty about the environment to allow rapid adaptation to environment changes.
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5-HT neurons is believed to be important not only for regulating anxious behavior and harm

aversion, but also having an influence on patience control [Miyazaki et al., 2018]. 5-HT based

neuromodulatory system is applied in [Xing et al., 2020] for patience control in mobile robot’s

autonomous driving and navigation system. In a set of outdoor experiments, we showed how

changing the level of patience can affect the amount of time the robot will spend searching

for a desired location.

Dopamine neuromodulation is a vital mechanism in the brain that regulates reward, moti-

vation, and motor control. Theoretical and experimental evidence suggests that dopamine

neurons encode reward prediction error which is important for reward-based learning such

as reinforcement learning. Alternative hypotheses also suggest dopamine neurons respond to

salient or novel environmental events to discover novel actions, or contains the uncertainty

of alternative actions beliefs.

ACh plays an important role in memory consolidation [Hasselmo and McGaughy, 2004],

attention on sensory information [Zou et al., 2020] and uncertainty-mediated inference com-

putations [Yu and Dayan, 2005]. In our project, we used an ACh system to track the

expected uncertainty about the environment. Our ACh system was designed such that each

environment setting corresponded to a specific ACh neuron. The level of activation of the

ACh neuron was directly proportional to the likelihood of the corresponding environment

setting being the current state. As a result, the reinforcement learning agent could choose

appropriate actions based on the status of the ACh system which is particularly helpful when

the environment could dynamically change.
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2.3 Attention

Attention is a crucial cognitive process in the human brain that enables us to selectively

focus on specific stimuli or tasks while ignoring irrelevant or distracting information which

is important due to the constraints of limited processing resources in brain. Attention is

frequently studied as arousal or alertness [Oken et al., 2006, Posner, 2008], a form of resource

selectively deployed to specific sensory inputs [Zhou and Desimone, 2011, Bichot et al., 2015]

and important components in executive control [Miller and Buschman, 2014] and memory

[Aly and Turk-Browne, 2017].

Attention mechanism is also widely studied in the field of machine learning for explainabil-

ity and computation. Saliency maps or attention maps are visualization techniques used

to identify and highlight the most relevant or important regions in an input data, such as

an image or text. These maps help to provide insights into the inner workings of machine

learning models, especially neural networks, by demonstrating which parts of the input data

contribute the most to the model’s decision-making process. There are several methods for

generating saliency maps in machine learning. Gradient-based methods [Simonyan et al.,

2013, Springenberg et al., 2014, Selvaraju et al., 2017] compute the gradient of the model’s

output with respect to the input data and use the resulting gradient values to indicate the

sensitivity of the model’s prediction to small changes in the input, allowing for the iden-

tification of important regions. Perturbation-based methods [Greydanus et al., 2018, Puri

et al., 2020, Xing et al., 2022b] systematically perturb or occlude parts of the input data and

measure the impact of these modifications on the model’s output. Compared to perturbation-

based methods, gradient-based methods normally are more computationally efficient but the

resulted saliency maps are more blurry. Xing et al. [2023] proposed a technique of distilla-

tion with selective input gradient regularization to achieve both computation efficiency and

explainability.
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Attention mechanisms are also used in deep learning as a computation form to improve the

performance of deep learning models. It provides a way for models to weigh and prioritize

certain parts of the input data during the processing, enabling them to focus on the most

relevant features for a given task. It was first introduced to address the limitations of

sequence-to-sequence (seq2seq) models in natural language processing (NLP) tasks, such as

neural machine translation [Vaswani et al., 2017]. Traditional seq2seq models rely on fixed-

length context vectors to represent entire input sequences, which can lead to information loss

and difficulty in handling long sequences. Attention mechanisms were designed to alleviate

this issue by allowing the model to dynamically select and focus on specific parts of the input

sequence during the decoding process. More recently, the mechanism of self-attention was

developed to allow a model to focus on different parts of the input sequence relative to each

element within the sequence itself and has been the foundation for many state-of-the-art

models in natural language processing, such as BERT [Devlin et al., 2018] and GPT [Brown

et al., 2020].

2.4 Generative Modeling

Generative modeling is a powerful approach in machine learning that focuses on learning

the underlying structure and patterns of a given dataset. By understanding and represent-

ing the data’s distribution, generative models can generate new, previously unseen samples

that closely resemble the original data. Deep generative models, which leverage the expres-

sive power of deep neural networks, have played a significant role in advancing the state of

the art in generative modeling. By approximating complex probability distributions using

vast amounts of training data, deep generative models have demonstrated remarkable per-

formance in various applications such as image generation, text generation, text-to-image

conversion, speech synthesis and so on.

9



The successes of deep generative modeling come from the rapid development of model-

ing approaches such as Variational Autoencoders (VAE), Generative Adversarial Networks

(GANs), Normalizing Flows, Diffusion Models and Transformer-based Generative Models.

This section focuses on the introduction of VAE as this is the main approach used in my

dissertation projects.

VAEs combine concepts from deep learning and probabilistic graphical models to create a

flexible, unsupervised learning framework. They can be used to learn a low dimensional

representation z of high dimensional data x such as images. The relationship between the

data input and the latent encoding vector can be parameterized with θ where pθ(z), pθ(x|z)

and pθ(z|x) represent the priority probability of z, likelihood of x given z and posterior

probability of z given x. VAEs use qϕ(z|x) to approximate pθ(z|x) and optimize the Evidence

Lower BOund (ELBO), which is a lower bound on the log-likelihood of the data. The final

objective is:

LVAE(θ, ϕ) = − log pθ(x) + DKL(qϕ(z|x)∥pθ(z|x))

= −Ez∼qϕ(z|x) log pθ(x|z) + DKL(qϕ(z|x)∥pθ(z))

θ∗, ϕ∗ = arg min
θ,ϕ

LVAE

pϕ(z|x) and qθ(x|z) are represented by two neural networks respectively. The encoder pϕ(z|x)

maps the input data to a lower-dimensional latent space and the decoder qθ(x|z) reconstructs

the original data from the latent representation. By optimizing the ELBO, VAEs learn

to generate diverse and realistic samples while simultaneously learning meaningful latent

representations of the data. These latent representations can be used for various downstream

tasks, such as data visualization, clustering, transfer learning for supervised tasks and so on.
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Chapter 3

Neuromodulated Patience for Robot

and Self-Driving Vehicle Navigation

(This chapter is reprinted with permission, from Jinwei Xing, Xinyun Zou and Jeffrey L.

Krichmar. Neuromodulated patience for robot and self-driving vehicle navigation. 2020

International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). © IEEE.)

3.1 Introduction

Real-world environments can change due to the season, time of day, construction, or the

behavior of other agents. Furthermore, goals, motivations, or context can change due to

altered conditions. Uncertainty can arise due to sensor noise, unforeseen obstacles or uncer-

tain goals. An autonomous system needs to cope with these challenges and have the ability

to rapidly adapt its behavior based on the current situation.

For successful behavior in a dynamic world, an agent may need to tradeoff between patience

and assertiveness. For example, a self-driving car may get stuck at a four-way stop sign
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because human drivers are not waiting their turn. A self-driving car that became impatient

would eventually assert itself, and move into the intersection. On the other hand, in a

dangerous driving situation (e.g., icy roads), an autonomous vehicle may need to slow down

and possibly delay its arrival time for safe travel. In this case, patience is a virtue. Or if

a search and rescue robot’s task is to locate as many injured people as possible, even if it

means the robot could run out of energy, patient search would be a priority. In these cases, a

signal dynamically regulating the patience, or impatience, of the autonomous system would

be beneficial.

Biological inspiration for regulating patience in autonomous systems could be obtained from

the mammalian nervous system, which has a number of neuromodulators that regulate con-

text, signal changes, and direct actions. The neuromodulator serotonin (5-HT) is thought

to have a role in harm aversion, anxious states, and temporal discounting [Avery and Krich-

mar, 2017]. Recently, Miyazaki and colleagues showed that optogenetically increasing 5-HT

levels caused mice to be more patient, especially when the timing of a reward was uncertain

[Miyazaki et al., 2018]. Based on these results, they developed a Bayesian decision model

for the probability to wait or quit.

Although great progress has been made in the robotics community for path planning, there

are still a number of open issues when it comes to flexible navigation under dynamic con-

ditions [Lavalle, 2011]. Classic path planning algorithms include Dijkstra’s algorithm, A

Star (A*), and D*. Dijkstra’s algorithm uses a cost function from the starting point to the

desired goal. A* additionally considers the distance from the start to the goal “as the crow

flies” [Hart et al., 1968]. D* extends the A* algorithm by working backward from the goal

toward the start position, and can readjust costs, allowing it to replan paths in the face of

obstacles [Stentz, 1994]. However, these cost functions are typically fixed or deterministic.

Neurobiolgically inspired algorithms have demonstrated the ability to readjust paths de-

pending on cost, such as our work on adaptive path planning [Hwu et al., 2017], and Erdem
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and Hasselmo’s work that demonstrated the ability to take shortcuts [Erdem and Hasselmo,

2012]. The above algorithms do not consider motivation or context, and do not reflect the

flexibility observed in animal navigation.

In order to add context and flexibility to path planning, we apply the Miyazaki et al. [2018]

rodent model of patience to a ground robot. Specifically, our robot navigates through a

series of waypoints. The level of 5-HT dictates how patiently the robot will search for a

waypoint. We show that changing the 5-HT level can have dramatic effects on the robot’s

behavior. Such a system may be beneficial for adjusting autonomous behavior depending on

the context and uncertainty of a situation.

3.2 Methods

3.2.1 Navigation Task

Robot navigation tasks were carried out in two different outdoor parks with varying terrain

and features. Figure 3.1 shows satellite images of the two parks. Waypoints were GPS

coordinates placed on sidewalks in the park. The park on the left of Figure 3.1, Encinitas

Community park, was relatively flat. Waypoints were placed along the perimeter of the test

area on either sidewalks or the paved parking lot. In the middle of the test area was a grassy

region with some trees. The park on the right of Figure 3.1, Aldrich park at the University of

California, Irvine, was hilly with numerous obstacles (e.g., bushes, benches, and buildings).

It should be noted that the Aldrich park test area was in a sunken bowl surrounded by tall

buildings and trees. These features made GPS signals unreliable. For this reason, a road

following algorithm, which will be discussed below, was introduced to assist with navigation.

The waypoints were placed on the sidewalk that surrounded the inner grassy region.
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Figure 3.1: Parks where robot navigation experiments were carried out. The left is an image
of Encinitas Community park and the right is an image of Aldrich park at the University
of California, Irvine. The labels denote the waypoints (i.e., WP1...WP10). Waypoints were
approximately 50-60 meters apart. Imagery from Google Maps, 2019.

In both parks, the robot’s task was to proceed to each waypoint in order. If the robot became

impatient, it would skip searching for the present waypoint and randomly choose a future

waypoint. However, the robot had to reach the last waypoint for a trial to be complete.

3.2.2 Robot and Software Design

For the robot experiments, we used the Android-Based Robotic platform [Hwu et al., 2017], a

mobile ground robot constructed from off-the-shelf commodity parts and controlled through

an Android smartphone (see Figure 3.2). An IOIO-OTG microcontroller communicated

with an Android smartphone via a Bluetooth connection and relayed motor commands to

a separate motor controller for steering the Dagu Wild Thumper 6-Wheel Drive All-Terrain

chassis. Three ultrasonic sensors, which were used for obstacle avoidance, were connected

to the robot through the IOIO-OTG. A software application, which controlled the robot,

was written in Java using Android Studio and deployed on a Google Pixel XL smartphone.

The application utilized the phone’s built-in camera, accelerometer, gyroscope, compass, and

14



(a) Android Based Robot in Encinitas Park. (b) Android Based Robot in Aldrich Park.

Figure 3.2: Android Based Robot used for the experiments.

GPS for navigation.

For waypoint navigation, a GPS location was queried using the Google Play services location

API. The bearing direction from the current GPS location of the robot to a desired waypoint

was calculated using the Android API function bearingTo. A second value, the heading, was

calculated by subtracting declination of the robot’s location to the smartphone compass

value, which was relative to magnetic north. This resulted in an azimuth direction relative

to true North. The robot traveled forward and steered in attempt to minimize the difference

between the bearing and heading. The steering direction was determined by deciding whether

turning left or turning right would require the least amount of steering to match the bearing

and heading. The navigation procedure continued until the distance between the robot’s

location and the current waypoint was less than 20 meters, at which point the next waypoint

in the list was selected.
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3.2.3 Waypoint Navigation and Model of Neuromodulated Pa-

tience

The robot proceeded through a list of waypoints as described above. However, if the robot

became impatient, it skipped the present waypoint and randomly chose a waypoint closer to

the final destination.

The likelihood to skip a waypoint was based on the Bayesian Decision Model given by

[Miyazaki et al., 2018]. Specifically, we calculated the probability to wait given the time

elapsed:

p(wait|t) =
1

1 + expβ·5HT ·L(t) , (3.1)

where β was equal to 50, and L(t) was the likelihood of reaching the waypoint at time t, and

5HT denoted the serotonin level. The likelihood was calculated with a Normal cumulative

distribution function having a mean of 40 seconds and a standard deviation of 20 seconds.

The likelihood function was multiplied by a scalar that represented the probability of receiv-

ing a reward. As in Miyazaki et al. [2018], we assumed that increasing 5-HT levels caused

an overestimation of the prior probability. Therefore, in our experiments low 5-HT equated

to a probability of a reward of 0.50 and high 5-HT equated to probability of a reward of 0.95

(see Miyazaki et al. [2018] for details). Figure 3.3 shows the resulting probability to wait,

p(Wait|t), curves.

The p(Wait|t) curves in Figure 3.3 were used to decide whether to keep searching for a

waypoint or to forego the desired waypoint and choose another. A random number between

0 and 1 was generated and if the number was greater than p(Wait|t), where t was the time
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elapsed that the robot had been searching for a waypoint, the robot stopped searching for

this waypoint. A new waypoint was randomly chosen that was closer to the final destination.

Note that if the robot was searching for the final destination waypoint or for a waypoint after

a skip, the p(Wait|t) curve was not referenced. That is, the robot had to reach the shortcut

waypoint or had to reach the final waypoint for a successful trial. See Algorithm 1 for

implementation details.

Figure 3.3: Probability of waiting function. Higher 5-HT levels shifted the curve to the right
resulting in longer wait times.

3.2.4 Road Following with Deep Reinforcement Learning

A road following algorithm based on deep reinforcement learning was used in the experiments

carried out in Aldrich park. This became necessary due to poor GPS reception in this

environment. We used a Deep Q-Network (DQN) for online learning of a driving policy on

the Aldrich park sidewalks [Mnih et al., 2013].
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Algorithm 1 Waypoint Navigation with Neuromodulated Patience

Input: GPS and compass readings, N waypoints Initialize waypoint index w = 0 Initialize
time count t = 0 Initialize shortcut = false Initialize finished = false while not finished
do

get the current GPS and compass readings if robot is within 20m of waypoint(w) then
if w == N then

finished = true break
else

w = w + 1 t = 0
end
shortcut = false

end
if not shortcut and w != N then

generate a random number rand num and update p(Wait|t) if rand num >
p(Wait|t) then

update w with a random integer in the range of [w + 1, N) t = 0 shortcut =
true

end

end
if not shortcut and in Aldrich park and on road then

move forward toward waypoint(w) based on road following algorithm
else

use GPS and compass to get bearing to waypoint(w) navigate toward waypoint(w)
end
t = t + 1

end
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Road Following DQN States and Actions

In reinforcement learning, an agent is acting in an environment. At each time step t, the

agent chooses an action at ∈ A in response to the current state st ∈ S. The system makes the

transition from st to st+1 with a reward rt based on the reward function R(st, at). The goal

of reinforcement learning algorithms is to learn a policy that maps a state s to an action

a, such that the expected sum of rewards Eπ[
∑∞

t γtrt|st, at] is maximized where π is the

agent’s behavior function. γ ∈ [0, 1] is a discounting factor used to penalize the rewards in

the future. As a value-based deep reinforcement learning method, the DQN learns a state-

action value function Qθ(s, a) which outputs the expected discounted sum of future rewards

that will be received by following the policy. Some recent works used deep reinforcement

learning in robot navigation tasks Kahn et al. [2018], Faust et al. [2018], but all of them

are set in ideal indoor environments. To the best of our knowledge, our project is the first

work that trained the robots to navigate in complicated outdoor environments with deep

reinforcement learning.

In our experiments that utilized road following, the agent was the Android-Based Robot

and the environment was Aldrich Park (see figure 3.6). The state was represented by an

annotated camera image, as will be described in Section 3.2.4, from the smartphone that

was mounted on the robot. The reward was either 0.5 when the robot stayed on road or

0 when the robot went off road. In the beginning of each training episode, the robot was

initialized in the center of the road. When the robot was not on road, the episode ended

and the robot was reset to the center of the road for the next episode. In each step, the

robot moved forward for 0.6 seconds with a constant speed but a different steering angle

ranged from sharp left to slight left to straight to slight right and to sharp right. During the

training, the robot was reinforced by staying on the road. After around 15 episodes and 2

hours of training, roughly 2000 training steps, the robot learned to follow the road.
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Figure 3.4: Examples of raw images and pixel-wise annotations in Aldrich Park dataset.
The size of each image is 320x240 pixels and each pixel has a label of either 1 (road) or 0
(non-road). In visualized annotations (lower half), the non-road portion is shown in black
and the road portion is in gray.

Semantic Segmentation of Images

To evaluate the states of the robot in the environment and then generate rewards for the

deep reinforcement learning module, we used ENet [Paszke et al., 2016], a pixel-wise real-

time semantic segmentation neural network. ENet labeled each pixel of the image as road or

non-road. We used middle-bottom portion of the segmented image to evaluate if the robot

was on road. The image size in the experiment is 320x240 pixels and the size of middle-

bottom portion for evaluation is 80x32 pixels. If most pixels in that portion were labeled

as road, we judged that the robot was on road. Otherwise, the robot was thought to be

off-road.

The environment of Aldrich Park and camera setting in this project were very different from

those of popular datasets such as Kitti [Menze and Geiger, 2015] where road detection was

also involved. Therefore, we created a scene understanding dataset for the robot from data

collected in Aldrich Park. Smartphone camera frames were collected in Aldrich Park at dif-

ferent times (i.e., 2pm to 7pm) of day. We selected 418 distinct and representative pictures

and performed binary (road and non-road) pixel-wise labeling for these using the PixelAn-
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notationTool from [Bréhéret, 2017]. Figure 3.4 shows examples of semantic segmentation

taken from the Aldrich Park dataset. The ENet model trained on the Aldrich Park dataset

allowed us to rapidly label road and non-road portions of a scene and generate rewards for

the deep reinforcement learning module.

Besides its necessity for reward generation, the semantic segmentation module provided two

other benefits. First, the segmented observation, which was fed to the deep reinforcement

module, removed noisy information from the original image and kept the most important

features (road or non-road). This simplified the task for deep reinforcement learning and thus

the training of the DQN was faster. Second, the semantic segmentation module increased

the generalization and adaptability of the self-driving navigation to handle dynamic char-

acteristics of outdoor environments such as lighting changes due to time of day or weather.

Examples in Figure 3.4 show some of the various lighting conditions in the park. Without

the semantic segmentation module, the DQN trained at 2pm could not work at 7pm because

sunlight differences. To solve this problem without the semantic segmentation module, we

would have needed to train under all different environment situations, which would be time

consuming and would need to deal with potential problems such as catastrophic forgetting.

Another case that demonstrates the advantage of semantic segmentation is that, the robot

could avoid a pedestrian automatically because the pedestrian would be labeled as non-road

and the robot would try to stay on road. The robot trained without semantic segmenta-

tion could not achieve this and would instead take random action since the appearance of a

pedestrian was a novel state for it. By separating the scene understanding task from rein-

forcement learning, semantic segmentation enables faster training and better generalization

capability [Hong et al., 2018].

21



Figure 3.5: High level illustration of the data pipeline for the road following algorithm.
Images from the Android Based Robot’s (ABR) smartphone camera are sent to a nearby
laptop via a socket. The laptop runs a deep reinforcement learning algorithm, which rewards
staying on the road, and generates steering actions for the robot.
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Road Following Data Pipeline

Figure 3.5 shows the data pipeline. The Android Based Robot took pictures with the smart-

phone’s camera. Using a WiFi “hotspot”, the image was sent to a nearby laptop, which

performed real-time image segmentation of “road” versus “non-road”. The laptop also ran

a deep reinforcement learning network, based on the DQN, which processed the image and

outputted action values used by the agent to choose actions. The actions ranged from sharp

left to slight left to straight to slight right and to sharp right. The reward was also based

on the segmented state. A detailed illustration of the road following deep reinforcement

neural network is given in Figure 3.6. The laptop took about 400 ms to process the infor-

mation, generate an action, and update the network. This was adequate for online learning

in real-time.

The robot learned to follow the road after roughly 2000 training steps. The road following

algorithm was used in Aldrich park where waypoints were set along the sidewalk that sur-

rounded a hilly grass region (Figure 3.1, right). The robot could move to the next waypoint

by following the road. In the present experiments, we segmented road and non-road. But,

potentially, we could also segment people, trees, benches, etc. These object classes could be

used as further inputs for training the network and implementing more complex behavior.

3.3 Results

Two sets of robot navigation experiments were carried out. One set was in the Encinitas

Community park (see Figure 3.1 left) and the other was in Aldrich park (see Figure 3.1

right). In both cases, the robot navigated through a set of waypoints with low and high 5-

HT levels. In Aldrich park, the navigation experiments were carried out with road following

activated.
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Figure 3.6: Detailed illustration of the data pipeline for the road following algorithm. ENet
was used to segment road from non-road Paszke et al. [2016]. The network gave a positive
reward for actions that kept the robot on the road and a penalty for actions that caused the
robot to go off road. Training was based on a DQN reinforcement learning paradigm Mnih
et al. [2013]. Training and testing were carried out online in Aldrich park.

3.3.1 Waypoint Navigation in Encinitas Community park

We ran 6 trials for low 5-HT and 6 trials for high 5-HT in the Encinitas Community park

(see Figure 3.7). The waypoints were roughly 50-60 meters apart. In Figure 3.7, each

marker denotes the GPS location from the smartphone when the robot was within 20 meters

of a waypoint (different colors denote different trials). Note that this reading could vary

dramatically due to GPS inaccuracies.

The level of 5-HT affected the robot’s patience in finding a waypoint. Over the 6 trials, 9

waypoints were skipped when 5-HT was low, but only 2 waypoints were skipped when 5-HT

was high. The average time before skipping a waypoint was 68 seconds for low 5-HT and

97 seconds for high 5-HT (see Table 3.1). These experiments demonstrated how this model

could change route planning behaviors.
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Figure 3.7: Robot navigation trials in the Encinitas Community park. The black dots are
the waypoint destinations (WP1 – WP10). There were 6 trials. Each color represents an
individual trial. Each colored marker denotes the robot reaching a waypoint.

Figure 3.8 shows all the GPS readings from two representative trials, one with high 5-HT

and the other with low 5-HT. In the high 5-HT trial, the robot reached every waypoint. In

the low 5-HT trial, the probability to wait was exceeded for reaching Waypoint 6 after 69

seconds and the robot skipped to Waypoint 9. A video of the robot performing waypoint

navigation with low 5-HT can be found at: https://youtu.be/6EcNchTGLKw, and a video

of the robot performing waypoint navigation with high 5-HT can be found at: https:

//youtu.be/q_m0gbVN6UE.

Table 3.1: Results of High/Low 5-HT Modulating Navigation

Encinitas Park (6 trials) Aldrich Park (5 trials)
High 5-HT Low 5-HT High 5-HT Low 5-HT

Navigation Time (s) 525.521 413.549 414.905 389.625
Shortcuts 0.3 1.5 0.0 1.4

Waypoints Reached 9.67 6.5 8.0 6.0
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Figure 3.8: Two representative navigation trials in the Encinitas Community park. All the
GPS points are shown. The markers in the figure correspond to the grey markers in Figure
3.7.
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Figure 3.9: Five trials in Aldrich park with high 5-HT (upper figure) and five trials in Aldrich
park with low 5-HT (lower figure). Red traces are drawn from GPS readings from the phone
mounted on the robot. The robot went across all waypoints one by one in trials with high
5-HT and took multiple shortcuts when 5-HT was low.

3.3.2 Waypoint Navigation in Aldrich park

We ran 5 high 5-HT trials and 5 low 5-HT trials in Aldrich park (see Figure 3.9). Since the

area is sunken in a bowl surrounded by tall buildings and trees, the GPS readings were highly

inaccurate. In particular, the robot had difficulty finding Waypoints 2 and 3 due to the poor

GPS signal. As a result, we introduced the road following algorithm described in Section

3.2.4, which helped the robot stay on the sidewalk and increased the likelihood of finding a

waypoint within the probability of wait constraint. During road following based navigation,

the robot moved towards the waypoint by following the road. Since the waypoints were

placed along the outer ring of the test area, the robot tended to move closer to the next

waypoint by following the road. When the robot decided to take a shortcut because of being

impatient, the movement of the robot was based on GPS because the shortcuts took the

robot off the road and over the grassy interior of the test area. Once the shortcut waypoint

was reached, the road following algorithm took over again.

It should be noted that during road following, the robot took longer to complete the course

with high 5-HT (i.e., 420 seconds on average) than with low 5-HT (i.e., 390 seconds on
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average) in which shortcuts were taken. However, since the robot was traveling over smoother

terrain with high 5-HT, it reached more waypoints and took less energy than when it took

shortcuts with low 5-HT (see Table 3.1). A video of the robot navigating using road following

can be found at: https://youtu.be/DixOxO2UafQ.

These results show the benefits and the tradeoffs associated with being patient versus being

impulsive during navigation. In both two parks, when 5-HT was high, the robot was more

patient when navigating towards waypoints, which meant it took less shortcuts and reached

more waypoints, but at the cost of taking longer to complete a trial (see Table 3.1).

3.4 Discussion

In the present paper, we showed how a concept from behavioral neuroscience could be applied

to robot navigation and possibly self-driving vehicles. It has been shown that 5-HT in the

brain affects impulsiveness in an animal’s behavior [Miyazaki et al., 2018]. The present model

applied this idea to waypoint navigation in autonomous robots. Specifically, we showed that

simulating high 5-HT led to increased search time for a desired location and that simulating

low 5-HT led to an increase in calling off the search for some waypoints. Even under high

5-HT conditions, if a waypoint was particularly difficult to find or there were environmental

challenges, there was a limit to how long the robot would try to reach a desired location

(see Figure 3.9). Our results showed that neuromodulated patience led to flexible behaviors,

which are not typically found in traditional navigation solutions [Lavalle, 2011, Stentz, 1994].

The goal of the present algorithm and demonstrations was not to achieve some benchmark,

but rather to suggest a neurobiologically inspired strategy that could complement other nav-

igation systems. The present approach could be applied to biomimetic navigation systems

[Milford and Schulz, 2014, Gaussier et al., 2019], as well as engineering approaches to navi-
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gation [Urmson et al., 2003, Wang et al., 2008]. In general, the probability to wait suggests

a level of urgency in the overall system. We imagine this could be applied to a number of

tasks where resource allocation is time critical.

Furthermore, the probability of waiting could be associated to some internal parameter in

the system (e.g., battery level or prioritizing goals). Presumably, the impulsiveness signal

in the rodent is closely tied to its natural foraging behavior. The animal will search for

food, but the time it will search depends on the food value and on the uncertainty of the

food resource. Such considerations could be beneficial for a robot navigation system or for

a self-driving vehicle.

The patience-based neuromodulated navigation algorithm adds another dimension to the

present navigation system. By giving the robot an alternative to point-to-point navigation,

the robot now must weigh the cost of staying on a smooth and reliable road that may take

longer to travel versus traversing over rough terrain that may be shorter but takes more

energy and could be potentially harmful to the robot. Since the deep reinforcement learning

introduced here is designed for online learning, these costs could be learned along with the

rewards for staying on the road. Ideally, the deep reinforcement learning algorithm could set

the 5-HT level dynamically.

The present algorithm is a step towards a complete navigation or self-driving system that

takes inspiration from neurobiology and behavioral neuroscience.
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Chapter 4

Adapting to Environment Changes

Through Neuromodulation of

Reinforcement Learning

(This chapter is reprinted with permission, from Jinwei Xing, Xinyun Zou, Praveen K. Pilly,

Nicholas A. Ketz and Jeffrey L. Krichmar. Adapting to Environment Changes Through

Neuromodulation of Reinforcement Learning. From Animals to Animats 16. SAB 2022. ©

Springer.)

4.1 Introduction

Reinforcement learning (RL) is a learning technique that enables agents to select the ap-

propriate actions in an environment to maximize cumulative reward. In recent years, by

combining RL with deep neural networks, deep RL has achieved success in a wide range

of applications such as games [Silver et al., 2016, Mnih et al., 2015], robot control [Akkaya
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et al., 2019, Lillicrap et al., 2015] and mobile autonomous driving [Kahn et al., 2021, Xing

et al., 2020]. Despite these successes, RL still faces challenges when applied to more practical

scenarios such as dynamic environments that contain uncertainty [Nagata et al., 2022].

In this work, we investigate how an RL agent can cope with uncertainty in dynamic environ-

ments. There are two challenges for the agent. First, the agent needs to rapidly detect the

environmental change. Without rapid detection, the knowledge learned before the change

could be tainted by the different reward feedback received by the agent after the change.

Furthermore, not recognizing the change could result in performance drops. Second, the

agent needs to remember the knowledge learned under each environment setting. This re-

quires the agent to not only detect the environment change but also identify whether the

changed environment has been interacted with before. When facing a familiar environment

setting, the agent needs to recall the knowledge and avoid learning from scratch again.

To address the challenges above, we take inspiration from humans and animals. Decision

making is a core competency for humans and animals to survive in the environment. In

the past several decades, neuroscience research in decision making tasks support the idea

that the brain uses a form of reinforcement learning to shape decision making [Montague

et al., 1996, Schultz et al., 1997, Hare et al., 2008, Parker et al., 2016]. However, humans

and animals face a similar problem of adapting to environment changes as the real world is

normally uncertain. We suggest that brain’s neuromodulatory system plays an important

role in coping with this uncertainty.

In prior work, we investigated how neuromodulated neural networks could rapidly adapt to

goal changes in classification tasks [Zou et al., 2020]. It was based on a Bayesian model

of neuromodulation to track the uncertainty of interactions with the environment [Yu and

Dayan, 2005] in which the cholinergic (ACh) system tracked expected uncertainty (i.e., the

known degree of unreliability of predictive relationships in the environment) and the nora-

drenergic (NE) system tracked unexpected uncertainty (i.e., large changes in the environment
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that violate prior expectations). In addition, the NE system caused a rapid adaptation to

goal changes by triggering a ‘network reset’ [Bouret and Sara, 2005, Grella et al., 2019].

The present work extends Zou et al. [2020]’s goal-driven perception model to RL agents,

which must recognize changes to their reward function and adapt appropriately. Inspired by

the neuromodulation systems described above, we developed a reinforcement learning system

in which ACh system tracks the expected uncertainty of the current reward function while

NE system tracks the unexpected uncertainty which could increase when prior actions no

longer produce rewards. These two systems allow the agent to detect task changes rapidly

and identify whether a task is novel or not and thus decide whether and which knowledge

should be recalled. We show how this approach can improve the performance of RL agents

in a Gridworld environment and a MuJoCo walking robot.

4.2 Problem

In this work, we focus on the problem of how to enable reinforcement learning agents to

rapidly adapt to changes in the environment.

We focus on how to adapt when feedback from the environment changes of the reward

function R while other elements including state space S, action space A and state transition

function T remain unchanged. Here we define a task as a MDP:

Taski =< S,A, T,Ri > (4.1)

where i is the identity of the task. All tasks share the same < S,A, T > while each task

has its own Ri. The environment change could be demonstrated as task switching in a task
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sequence. As noted below, we define the environment to be composed of a sequence of tasks.

Env = [Task1, Task2, Task3, ...TaskN ] (4.2)

where N is the number of tasks in the sequence. Note that Taski and Taskj may share the

same reward function, in which case Ri = Rj. This means a given task can occur multiple

times in the sequence, and so the agent needs to learn the task and re-utilize the learned

knowledge when exposed to the task again.

4.3 Method

We developed a bio-inspired neuromodulatory system to track the uncertainty of the envi-

ronment which facilitates rapid adaptation to environment changes. Similar to the model

in Zou et al. [2020], our system is composed of ACh and NE neuromodulatory systems. We

introduce their underlying equations below.

4.3.1 ACh and NE Neuromodulation

In our system, the ACh system has K ACh neurons where K is the number of tasks the

agent has detected and initialized as 1. As more tasks are detected by our neuromodulatory

system, the value of K increases accordingly. We use a vector to represent the activity of

ACh neurons, where AChi represents the uncertainty of Taski. The higher AChi is, the

more certain that the current task is Taski. A task change is detected when the maximum

ACh value is below a threshold chchange.
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Task Change =


True if max (ACh) < chchange

False otherwise

(4.3)

Once a task change is detected, the agent needs to judge whether the task is a task that has

been learned before and thus previous knowledge should be recalled or the task is novel and

needs to be learned from scratch. We call this step a ‘task match’. A task match should

happen when the agent has low uncertainty on one task and high uncertainty on all other

tasks, as described below.

Pi =
exp(β ∗ AChi)∑K
j exp(β ∗ AChj)

(4.4)

Task Matchi =


True if Pi > pmatch

False otherwise

(4.5)

where Pi represents the certainty that the new task is Taski. Once Pi goes above the

threshold of pmatch, the system matches the new task with Taski and Task Matchi is set

as True. The softmax function in Equation 4.4 allows the agent to take the complete ACh

system into consideration in task match.

In addition to the task change detection and task match based on ACh system, we use the

NE system to decide whether a new task is novel. The NE system consists of one NE neuron

whose activity represents the unexpected uncertainty on the environment. The activity of
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the NE neuron increases when a task change is detected by the ACh system while the new

task cannot be matched with previous tasks. When the activity of the NE neuron goes above

a threshold nethreshold, the new task is believed to be novel.

Task Novel =


True if NE > nethreshold

False otherwise

(4.6)

4.3.2 Update of ACh and NE System

Since the only difference between tasks is the reward function R, the uncertainty about the

environment and the update of our neuromodulatory system are based on the difference

between the reward feedback expected by the agent and the actual reward, which is called

reward prediction error in this work. To produce the reward expectation, the agent learns a

reward predictor R̃i to approximate Ri for each Taski. For a set of < s, a, r >, the reward

prediction error is defined as the difference between the predicted reward R̃i(s, a) and the

true reward r is

RPEi = R̃i(s, a)− r (4.7)

The expected uncertainty (ACh neuron activity) increases when the reward prediction error

is high and decreases when the reward prediction error is low. To simulate this, we use

RPEmean and RPEstd to track the running mean and standard deviation, respectively, of

the reward prediction error and update the ACh system as follows:
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Expectedi =


True if abs(RPEi −RPEmean) < k ∗RPEstd

False otherwise

(4.8)

AChi =


min(chmax, AChi ∗ chexpected) if Expectedi

max(chmin, AChi ∗ chunexpected) otherwise

(4.9)

where Expectedi represents whether the reward for Taski is expected by the agent. If so,

AChi will increase. Otherwise, it will decrease. The hyperparameter k in Equation 4.8

controls the strictness of Expectedi. chexpected and chunexpected are scaling factors used to

increase or decrease ACh neuron activities while chmax and chmin represents their maximum

and minimum values.

The NE system tracks the unexpected uncertainty of the environment and can be used to

detect novel tasks that have have not been observed before. It is updated when a task change

is detected and increases when the task match is incorrect. If the current task is matched

with an old task, then the unexpected uncertainty is resolved and the NE neuron is reset.

NE =


min(nemax, NE ∗ neunmatched) if not any Task Match

neinit otherwise

(4.10)

where neunmatched is a hyperparameter bigger than 1 that is used to increase the NE neuron

activity. nemax and neinit represent the maximum and initial values of the NE neuron.
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4.3.3 The Complete System

The complete system of our work includes an agent conducting reinforcement learning and

a neuromodulatory system that helps it track the uncertainty of the environment and adapt

to environment changes. The agent needs to remember the knowledge learned in each task.

When a task is encountered again, the agent needs to conduct a task match based on the

neuromodulatory system and reactivate the knowledge once it’s matched to avoid learning

from scratch again. In this work, the knowledge includes the RL policy and reward predictor

that the agent learns for each task. We describe the complete system with the pseudocode

shown in Algorithm 2.

4.4 Experiments

We conducted two experiments to demonstrate the efficacy of our neuromodulatory system

for RL applications: 1. Gridworld (Fig. 4.1) and 2. bipedal walking with a MuJoCo robot

(Fig. 4.2).

The first experiment is based on a Gridworld Environment [Chevalier-Boisvert et al., 2018].

In this grid-based environment, there are four objects with unique colors where the red color

represents the agent while the green, blue and yellow colors represent objects that can be

picked up. The agent needs to navigate in the grid world and pick up the correct object.

Based on the target object to pick up, we define three tasks named as pickup-green, pickup-

blue and pickup-yellow. The agent receives non-zero reward only when picking up an object.

The reward is 1 if the agent picks up the correct object and is -1 if the wrong object is picked

up.

The second experiment is conducted on a MuJoCo simulated bipedal walker robot. Deep-

Mind control suite [Tassa et al., 2018] contains three walker-based tasks including walker-
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Algorithm 2 Reinforcement Learning with Neuromodulatory System

Input: chinit, chmax, chmin, chexpected, chunexpected, β, k, nemax, neinit, nethreshold
neunmatched,max step

Init: task ← 1, ACh1 ← chinit, NE ← neinit, task change← False, step← 0, K ← 1
while step ¡ max step do

Agent selects action and receives feedback from the environment
step ← step + 1
if not Task Change then

Agent stores experiences for RL training
Compute the reward predictor error RPEtask // Equation 4.7

Update ACh system // Equations 4.8,4.9

Update Task Change based on ACh system // Equation 5

if not Task Change then
Update RPEmean and RPEstd

Train the RL agent
Train the reward predictor

else
Save the learned knowledge for task

else
for i ← 1 to K do

Compute Task Matchi // Equation 6, 7

if Task Matchi = True then
task ← i
Task Change ← False
reactivate the saved knowledge for task i
reset neuromodulation system

Update NE system // Equation 12

Compute Task Novel // Equation 8

if Task Novel = True then
K ← K+1
task ← K
Task Change ← False
create a new policy and reward predictor for the novel task
reset neuromodulation system

stand, walker-walk and walker-run. In the walker-stand task, the reward is a combination

of terms encouraging an upright torso and some minimal torso height. The walker-walk and

walker-run tasks include a component encouraging forward velocity. We list the hyperpa-

rameters in two experiments in Table 4.1.
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Hyperparameters GridWorld Worker Robot

chinit 0.5 0.5
chmax 1.0 1.0
chmin 0.1 0.1
chchange 0.2 0.2
chexpected 1.1 1.1
chunexpected 0.9 0.9

pmatch 0.5 0.5
β 2 2

nemax 1.0 1.0
neinit 0.1 0.1

neunmatched 1.05 1.05
nethreshold 0.9 0.9

Table 4.1: Hyperparameters of ACh and NE neuromodulatory systems.

In our experiments, the environment change is demonstrated as a task switch. For Gridworld,

we set the task sequence for the experiment of Gridworld as [pickup-green, pickup-blue,

pickup-yellow, pickup-green, pickup-blue, pickup-yellow]. For the MuJoCo robot, we set the

task sequence for the walker as [walker-stand, walker-walk, walker-run, walker-stand, walker-

walk, walker-run]. The task switch in each sequence requires the agent to quickly detect

environment changes while the recurrence of tasks requires the agent to achieve successful

task match and utilize prior learned knowledge.

Our neuromodulatory system is compatible with different types of reinforcement learning

algorithms and settings. In the Gridworld experiments, the agent has a discrete action space

and we use the Proximal Policy Optimization (PPO) algorithm Schulman et al. [2017],

which is an on-policy RL method. In the MuJoCo walker robot experiment, the agent has

a continuous action space and we use the Twin Delayed Deep Deterministic policy gradient

(TD3) Fujimoto et al. [2018], which is an off-policy RL method.
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Figure 4.1: Gridworld environment. Examples of three tasks (pickup-green, pickup-blue and
pickup-yellow) in Gridworld environment. In each task, the agent moves towards the object
with a specified color.

Figure 4.2: MuJoCo environment. Examples of three tasks (stand, walk and run) of MuJoCo
walker robot. The agent has unique behavior in each task.
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4.5 Results

4.5.1 Reinforcement Learning Performance

In both experiments, the addition of our neuromodulatory system improved performance.

To demonstrate the efficacy of our method, we conducted an ablation study by disabling the

NE system or disabling both the ACh and the NE system. Since the NE system depends on

the ACh system, we cannot ablate ACh while keeping the NE system. We compared the per-

formance of the RL agent with and without ablations (Figure 4.3). The better performance

on novel tasks when neuromodulation was included due to the agent detecting environment

changes quickly and avoiding detrimental knowledge transfer between tasks. Meanwhile,

the immediate high score on recurring tasks demonstrates that the neuromodulatory system

allows the agent to recognize previously observed tasks and utilize prior knowledge. In the

ablation experiments, when the NE system is disabled, the agent cannot correctly detect a

new task after a task change. As a result, all new tasks were simply recognized as novel

tasks and the agent conducted learning from scratch every time a task change was detected.

When the ACh system is also removed, the agent cannot detect task changes and conduct

normal RL training throughout the whole task sequence. As a result, the agent would have

only one task policy and the knowledge learned in the previous task will all be transferred

to the next one. Its influence on the reward performance depends on the similarities of tasks

in the task sequence. For example, the knowledge transfer in Gridworld is negative since the

correct object to pick up in the last task will be wrong in the next task. As for tasks on

walker robot, knowledge transfer could be more positive since learning to run could benefit

from the knowledge of how to walk. However, in both two experiments, the RL agent with

our neuromodulatory system achieved the best performance.

Besides the general RL performance, we’re also interested in the benefits of our neuromod-

ulatory system in fast performance recovery. In the experiments above, each task occurs
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multiple times in the task sequence and the agent gradually improves performance via learn-

ing when interacting with each task. Although task changes regularly following the task

sequence, an intelligent agent should quickly recover the performance when encountering the

same task again. As a result, we compute the average time steps needed to recover 90% of

the performance when facing a task that has been learned before. As shown in Table 4.2,

our neuromodulatory system allows the agent to achieve much faster performance recovery

compared to the ablated agents.

(a) RL Performance on Gridworld (b) RL Performance on walker robot

Figure 4.3: Results of reinforcement learning performance with and without the neuro-
modulatory system. The bar on top of the figure represents the task sequence. The
task sequence in Gridworld experiment is [pickup-green, pickup-blue, pickup-yellow, pickup-
green, pickup-blue, pickup-yellow] and the task sequence in walker robot experiment
is [‘walker-stand’, ‘walker-walk’, ‘walker-run’, ‘walker-stand’, ‘walker-walk’, ‘walker-run’,
‘walker-stand’, ‘walker-walk’, ‘walker-run’].

Time Steps of Performance Recovery

Ours(Intact) No NE No NE, No ACh

pickup-green 150.3 45060.5 59753.3
pickup-blue 130.7 25510.7 69535.2

pickup-yellow 143.3 29428.7 87605.6
walker-stand 796.0 311000.0 354500.0
walker-walk 1843.0 411500.0 598000.0
walker-run 1542.2 501000.0 585333.3

Table 4.2: Average time steps needed to achieve 90% performance recovery of each task of
our method and ablated studies. The results are averaged over 6 runs.
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4.5.2 Activity of Neuromodulatory System

We examined the activity of the ACh and NE systems in these two experiments. As shown

in Figure 4.4, our ACh system is able to track the uncertainty on each task and always show

high certainty on the correct task. This allows the agent to efficiently identify the correct

task identity and adapt to task switches.

(a) ACh activity for the Gridworld experiment.
(b) ACh activity for the walker robot experi-
ment.

Figure 4.4: Dynamics of the activity of the ACh system in the two experiments. The bar on
top of the figure represents the task sequence.

As shown in Figure 4.5, our NE system shows high activity for the first and second task

switches since the second and third tasks are novel. The activity of the NE system also

increased for other task switches but didn’t reach the threshold because those switched tasks

have been encountered before by the agent and were not novel. This demonstrates that our

NE system can track the unexpected uncertainty of the environment which allows the agent

to distinguish between novel and familiar tasks. This capability helps the agent to better

adapt to environment changes.
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(a) NE activity for the Gridworld experiment. (b) NE activity for the walker robot experiment

Figure 4.5: Dynamics of the activity of the NE system in the two experiments. The bar on
top of the figure represents the task sequence.

4.6 Conclusion

We developed a system inspired by neuromodulation to track the uncertainty of the envi-

ronment and help reinforcement learning agents to quickly adapt to environment changes.

We demonstrated the efficacy of the neuromodulatory system in two reinforcement learning

experiments; namely, a Gridworld environment and a simulated walker robot. We believe

these results provide insights into how intelligent agents survive in uncertain environments

and also enable the deployment of artificial agents in complicated real-world applications.
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Chapter 5

Domain Adaptation in Reinforcement

Learning via Latent Unified State

Representation

(This chapter is reprinted with permission, from Jinwei Xing, Takashi Nagata, Kexin Chen,

Xinyun Zou and Jeffrey L. Krichmar. Domain Adaptation In Reinforcement Learning Via

Latent Unified State Representation. Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 35. No. 12. 2021. © AAAI.)

5.1 Introduction

Deep reinforcement learning has been successful in a series of control problems, such as

Atari 2600 video games [Mnih et al., 2013] and MuJoCo environments [Lillicrap et al.,

2015]. However, the advances of deep RL relies on a large amount of interactions with the

environment. In addition, the policy tends to specialize to the training domain and fails
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to generalize to new domains even when these two domains are similar. It has been shown

that slight visual changes on pixel-based observations from Atari games could cause the well

trained policy totally break down [Gamrian and Goldberg, 2019]. These two limitations

make deep reinforcement learning algorithms inefficient when applied to sets of tasks. As a

result, efficient domain adaptation approaches are important for the applicability of Deep

RL.

Although state-of-the-art methods have demonstrated compelling performance in domain

adaptation in RL, these approaches all have their limitations. Domain randomization [Tobin

et al., 2017, Andrychowicz et al., 2020, Slaoui et al., 2020] relies on the availability of multiple

source domains for training and cannot be applied in one-to-many generalization scenarios.

Image-to-image translation approaches [Pan et al., 2017, Tzeng et al., 2020, Gamrian and

Goldberg, 2019] need a computationally expensive generator model for image translation.

The extra burden on computation brought by the generator model is impractical for real-time

applications such as autonomous driving. Other approaches utilize the latent embedding of

encoder-decoder models to extract internal state representation for better generalization

Higgins et al. [2017]. However, domain-specific variations are also compressed into the latent

embedding which could be problematic for zero-shot policy transfer.

To solve the problem of domain adaptation across related RL tasks and avoid limitations of

prior methods, we propose to learn a latent unified state representation (LUSR) for differ-

ent domains and then train RL agents in the source domain based on that. After the RL

training, zero-shot policy transfer is evaluated in target domains. To learn LUSR, we split

the latent state representation into domain-general embedding which contains information

existing in all domains and domain-specific embedding that compress domain specific infor-

mation. LUSR is composed of domain-general embedding only and thus is able to ignore

domain-specific variations and generalize across domains.

To empirically justify our approach, we conducted experiments in two car driving tasks
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with different visual complexity. We first applied our approach in CarRacing games with

analysis of final domain adaptation performance, domain adaptation performance across

the training period, generalization to totally unseen domains and policy explanation with

saliency maps. Then we evaluated our approach in autonomous driving tasks in CARLA

simulator [Dosovitskiy et al., 2017a] with more challenging and realistic visual observations.

In comparison with other approaches, LUSR does not need RL training in multiple source

domains like domain randomization and thus is applicable to a wider range of tasks. In

addition, LUSR does not need computationally expensive generator models and can achieve

better training efficiency compared with image-to-image translation approaches that operate

in pixel-space. Finally, in contrast with other approaches that use latent state representa-

tion, LUSR filters out the factors of variation across domains and ensures the latent state

representation is unified across all domains.

5.2 Related Work

Related work either tried to tackle domain adaptation in RL by directly generalizing the

policy or learning generalized state representations.

Domain randomization is the most popular approach to directly learn a policy with general-

ization capability [Tobin et al., 2017, Andrychowicz et al., 2020, Slaoui et al., 2020, Laskin

et al., 2020a]. By training on many source domains, the RL agent learns to ignore irrelevant

factors of variation and attend to common features only. However, this approach relies on

the availability of multiple source domains for training and the complexity of this approach

scales with the number of variations.

Instead of learning a policy with generalization capability directly, other works focus on the

generalization of state representations. Some visual domain adaptation works use image-to-
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image translation to map the pixel-based states in the target domain to the paired states

in the source domain [Pan et al., 2017, Tzeng et al., 2020, Gamrian and Goldberg, 2019].

This is generally achieved via adversarial methods such as Generative Adversarial Networks

(GANs) [Goodfellow et al., 2014], and Unaligned GANs [Liu et al., 2017, Zhu et al., 2017] in

the case where image pairs are lacking. While these methods provide promising results, the

image translation brings extra burden during inference time which is impractical in real-time

applications.

Other works take one step further and try to learn a generalized state representation by

mapping pixel-based states to a latent space [Higgins et al., 2017]. For example, the latent

embedding of variational autoencoder (VAE) can be used as an internal latent state repre-

sentation in RL. We call this method as VAE-Embedding. DARLA further extends the VAE

to β-VAE to encourage the disentanglement of the latent embedding and uses one internal

layer of a pre-trained Denoising AutoEncoder (DAE) [Vincent et al., 2010] as the recon-

struction target. Although disentanglement in latent state representation makes it easier for

RL agents to ignore irrelevant domain-specific features, the policy transfer performance is

not guaranteed because domain-specific features still reside in the latent state representation

and their contribution to the policy output cannot be generalized to other domains. CURL

extracts high-level features from raw pixels using contrastive learning and greatly improves

the sample efficiency [Laskin et al., 2020b].

In this work, we choose VAE-Embedding, DARLA, CURL and CycleGAN-based image-to-

image translation as benchmarks. To make it more clear how LUSR differs from them, we

use Figure 5.1 to demonstrate their frameworks.
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(a) DARLA (b) CURL

(c) LUSR (ours) (d) CycleGAN Image Translation

Figure 5.1: Architectures of our method (LUSR) and other benchmarks (DARLA, CURL
and CycleGAN based image-to-image translation) used in this work for comparison. The
architecture of VAE-Embedding could be considered as a special case of DARLA that replaces
β-VAE with VAE and avoids the usage of DAE. The learning of all these approaches could
be divided into two stages. The first stage is learning appropriate state representations that
support domain adaptation in RL and the second stage is doing RL training.

5.3 Domain Adaptation in Reinforcement Learning

Reinforcement learning is an area that studies how agents should take actions in an environ-

ment in order to maximize their cumulative rewards. The environment is typically stated

in the form of a Markov decision process (MDP), which is expressed in terms of the tuple

(S,A, T,R) where S is the state space, A is the action space, T is the transition function

and R is the reward function. At each time step t in the MDP, the agent takes an action at

in the environment based on current state st and receives a reward rt+1 and next state st+1.

The goal of the agent is to find a policy π(s) to choose actions that maximize the discounted

cumulative future rewards rt + γrt+1 + γ2rt+2 + ..., where γ is the discount factor ranging

from 0 to 1.
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To formalize domain adaptation scenarios in the setting of reinforcement learning, we define

the source and target domains as DS and DT . Each domain corresponds to a MDP defined

as tuple (S,A, T,R) and thus the MDPs in the source domain DS and target domain DT

are defined as (SS, AS, TS, RS) and (ST , AT , TT , RT ), respectively. The source and target

domains could have distinct state spaces S, but their action spaces A should be the same

and their transition function T and reward function R should have similarity because of the

sharing internal dynamics. Namely, we focus on policy transfers where TS ≈ TT , RS ≈ RT ,

AS = AT , but SS ̸= ST .

Take autonomous driving as an example, different domains may correspond to different

weather conditions. For instance, the source domain is driving on a sunny day and the

target domain is driving on a rainy day. While state space S (visual observations) could

differ due to rain and different lighting conditions, the action space A (throttle and steering)

remains the same. As for the transition function T and reward function R, they should have

similarity since the state transition for both domains are governed by the traffic condition and

driving control while the reward function for both domains are determined by the movement

of the vehicle.

5.4 Methods

Our approach focuses on learning a latent unified state representation (LUSR) for states

from different domains in RL. In this section, we first introduce the definition of LUSR and

then introduce how to learn it.
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5.4.1 LUSR Definition

We first introduce two notions for state space in RL which are the agent’s raw observation

state space So and the agent’s internal latent state space Sz. Raw observation states so

consists of a grid of pixels while each unit in the internal latent state sz represents a high

level semantic feature. A mapping function F : So → Sz maps the observation state to

the corresponding internal latent state. In our work, high level semantic features in Sz are

further divided into domain-specific ones (such as weather conditions in the driving task)

and domain-general ones (such as vehicle dynamics). Here we denote Sz = (Ŝz, Sz) where

Ŝz represents domain-specific features and Sz represents domain-general features. For state

representation in source and target domains, this is summarized as

So
S ̸= So

T

Sz
S = (Ŝz

S, S
z
S); Sz

T = (Ŝz
T , S

z
T )

Sz
S = Sz

T ; Ŝz
S ̸= Ŝz

T

(5.1)

In our setting of domain adaptation, the transition function T and reward function R only

depend on Sz which is consistent across domains. Here we define the reward and transition

function that take so as input as Ro and T o while the reward and transition function that

take sz as input as Rz and T z. Then, we have

T o
S ̸= T o

T ; Ro
S ̸= Ro

T

T z
S = T (Sz

S) = T (Sz
T ) = T z

T

Rz
S = R(Sz

S) = R(Sz
T ) = Rz

T

(5.2)
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Since Sz is consistent across domains and the reward structure (T and R) depend only on

this representation (not on Ŝz), the RL agent taking Sz as input will be able to be trained

successfully and the trained agent also has the capability to adapt from the source domain

to target domains. As a result, the goal of our approach is learning the mapping function

F : So → Sz that maps raw observation states to the latent unified state representation

which we call LUSR.

5.4.2 Learning LUSR

In this work, we choose to learn the mapping function F : So → Sz via Cycle-Consistent

VAE [Jha et al., 2018] which is a non-adversarial approach to disentangle domain-general

and domain-specific factors of variation. Similar to VAE [Kingma and Welling, 2013], Cycle-

Consistent VAE is also composed of an encoder and a decoder. However, the output from the

encoder is split into domain-general and domain-specific embeddings. To learn the mapping

function F , a number of random observation states from a set of pre-defined domains are

first collected and then used as input for Cycle-Consistent VAE model training. Once the

model is trained, the encoder is able to map observation states so from any domain in the

domain set to a latent state representation composed of sz and ŝz. As a result, we use the

trained encoder as our mapping function F and keep only domain-general representation as

LUSR.

Cycle-Consistent VAE is based on the idea of cycle consistency whose intuition is that two

well trained forward and reverse transformations composed together in any order should ap-

proximate an identity function. For example, in the VAE, the encoder is a forward transfor-

mation that converts an input image to a latent vector while the decoder is the reverse trans-

formation that converts the latent vector back to a reconstructed image. Here we define the

forward cycle as: Dec(Enc(so)) = so′ and the reverse cycle as Enc(Dec(ŝz, sz)) = (ŝz′, sz′).
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As indicated by the cycle consistency, so′ should be close to so and also (ŝz′, sz′) should be

close to (ŝz, sz).

In the forward cycle of Cycle-Consistent VAE, for two observation states so1, s
o
2 from the same

domain, Enc(so1) = ŝz1, s
z
1 and Enc(so2) = ŝz2, s

z
2. Since both originate from the same domain

and ŝz contains only domain-specific information, swapping ŝz1 and ŝz2 should have no effect

on the reconstruction loss which means we should get Dec(ŝz2, s
z
1) ≈ so1 and Dec(ŝz1, s

z
2) ≈ so2.

This operation ensures that domain-specific information and domain-general information are

compressed into ŝz and sz separately.

In the reverse cycle, a randomly sampled sz is passed through the decoder in combination

with two domain-specific embeddings ŝz1 and ŝz2 to obtain two reconstructed images so1′ and

so2′. Since both so1′ and so2′ are generated based on the same sz, their corresponding domain-

general latent embedding sz1′ and sz2′ should also be the same.

As a result, the objective for Cycle-Consistent VAE to minimize is

Lcyclic = Lforward + Lreverse (5.3)

where

Lforward =− Eqϕ(sz ,ŝz |so)[log pθ(s
o|sz, ŝz∗)]

+ KL(qϕ(sz|so)||p(sz))

Lreverse =Esz∼p(sz)[||qϕ(pθ(sz, ŝz1))− qϕ(pθ(sz, ŝz2))||1]

Lforward here is a modified variational upper-bound and Lreverse is the loss for cycle con-

sistency. qϕ and pθ are parameterized functions of the encoder and decoder. We define qϕ

as qϕ that only keeps the domain general embedding as output. The latent embedding sz

is composed of sz and ŝz which are domain-general and domain-specific latent embeddings

53



corresponding to observation state so. ŝz∗ represents any random domain-specific embedding

from the same domain while ŝz1 and ŝz2 are two different domain-specific embeddings.

5.5 Experiments

We first apply our approach to a set of CarRacing variants which allows manual manipula-

tions of the visual observations. This flexibility allows us to analyze the influence of different

categories of variations on the performance of domain adaptation in RL. After that, our

approach is applied in autonomous driving tasks in the CARLA simulator in which the ob-

servational states are much more complicated and helps us to evaluate the ability of our

approach to scale up to more challenging tasks.

5.5.1 CarRacing

We first apply our approach on variants of CarRacing game which is a continuous control

task to learn to drive from pixels. As shown in Figure 5.2, we divide all variants into

three categories: source domain, seen target domains and unseen target domains. We first

collect random observation states from the source domain and seen target domains to learn

the mapping function F which maps raw observation states to LUSR. In each domain, we

collect 100k images and thus have 500k images in total (one source domain and four seen

domains). The collected images are used as the dataset to train a Cycle-Consistent VAE

model whose encoder is the mapping function F we need. After that, we train the RL agent

in the source domain with LUSR for 10 millions steps via Proximal Policy Optimization

(PPO) [Schulman et al., 2017] algorithm. In this work, we use Ray RLlib [Liang et al.,

2018] and RLCodebase [Xing, 2020] for the PPO implementation. After the RL training, we

test the RL agent’s performance of adapting to the seen target domains and unseen target
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Figure 5.2: Variants of CarRacing games. A. The original version of CarRacing game which is
set as the source domain. B. The seen target domains of CarRacing games whose observation
states are collected for learning LUSR. C. The unseen target domains of CarRacing games.
These two domains are never exposed to the agent, not only during RL training but also
during latent state representation learning.

domains.

With the ability of inducing manual manipulations over the observation states, we design two

types of variations. The first type is color change including changing the background color,

the car color and the road color. For example, the background color in all target domains is

different from that in the source domain. Another type of variation is inducing patterns. For

example, we induce a red blob at a fixed position in the fourth game of seen target domains

(B4). In summary, compared with the source domain A1, seen target domains B1 and B2

have color changes while B3 and B4 have both color changes and new patterns. For unseen

target domains, C1 combines all variations introduced in seen target domains and C2 uses a

totally new background color.
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Figure 5.3: Experiment of the driving task in CARLA simulator. Examples of the driver
view (observation states) under three different weather conditions: evening, clear noon and
hard rain from left to right.

5.5.2 Autonomous Driving in CARLA

Although CarRacing games are suitable to study the domain adaptation problem of RL

agents, the observation states are relatively simple compared to real world observations

during driving. To further evaluate the performance of our approach, we applied it in a much

more challenging task: autonomous driving in the CARLA simulator. In this experiment,

we first choose a start point and an end point in the map of town07 for the driving task.

To go from the start point to the destination, the vehicle must go through a curvy road and

avoid collisions and lane crossings. The action space is composed of two continuous values

for driving control (throttle and steering). At each step, the driving control is applied on

the vehicle for 0.1 simulation second. We use images captured by a camera attached to the

front end of the RL agent vehicle along with the current speed as the observation states.

Each episode terminates if the vehicle collides, runs out of the lane, reaches the destination,

or reaches the maximum episode timesteps (800 in this experiment). To make the CARLA

simulator compatible with RL training, we use a gym wrapper of CARLA in the experiment

[Chen et al., 2019].

To study domain adaptation, we test the model under different weather conditions and times
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of day. Specifically, the RL agent is first trained in the late evening and then tested in the

weather of clear noon and hard rain. Examples of the driver view under these conditions are

shown in Figure 5.3.

Since CARLA aims to provide realistic simulations of urban driving, the observation states

in this driving task are much more complex and challenging for domain adaptation compared

to states in CarRacing games. Besides that, the complexity of environment dynamics also

makes the simulation of CARLA slower compared to CarRacing games. As a result, we set

the number of PPO training steps in this experiment as 50k. This further requires the RL

agent to have a high training efficiency to achieve good performance with limited number of

interactions with the environment.

5.6 Results and Discussion

In this section, we introduce the results of our approach in two experiments along with other

benchmarks.

5.6.1 CarRacing

LUSR Demonstration

We first demonstrate the effectiveness of LUSR. In our approach, the latent embedding is

split into domain-general embedding sz and domain-specific embedding ŝz. To verify that

these two embeddings are well disentangled, we first select random images from the source

domain and seen target domains and then extract their latent embeddings. For example,

we get ŝz1 and sz1 for image so1, and ŝz2 and sz2 for image so2. If we feed the decoder with a

latent embedding composed of ŝz1 and sz2, the reconstructed image so′ should have visual
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Figure 5.4: Results of Cycle-Consistent VAE. The first row are four random images from the
source domain and the second row are four random images from four seen target domains
respectively. The last row are reconstructed images that take ŝz from the first row and sz

from the second row.

58



features from both so1 and o
2. Furthermore, the shared features between so′ and so1 should be

domain-specific while the shared features between so′ and so2 should be domain-general. As

shown in Figure 5.4, the third row of images are generated with ŝz from the first row and

sz from the second row. As a result, their domain-specific features (color and patterns) are

the same as the first row of images while the domain-general features (road shape) are the

same as images in the second row.

Domain Adaptation After Training

After the RL training in the source domain, we evaluate the domain adaptation performance

of our approach and other benchmarks in both seen target domains and unseen target do-

mains (see table 5.1). The result shows that RL agents trained with LUSR are able to

generalize to all target domains almost without performance loss and achieve best scores in

most target domains. For DARLA, the choice of parameter β strongly affects the adaptation

performance. Furthermore, it generalizes better in target domains with only color variations

and could fail to adapt to domains with new patterns. VAE-Embedding has notable per-

formance loss for all target domains. CURL has the worst transfer performance among all

approaches and completely fails in most domains. Finally, CycleGAN can also adapt to all

target domains without performance loss. However, the final scores are not comparable to

other approaches that use latent embeddings as input for RL training.

Domain Adaptation During Training

Besides the domain adaptation performance after training, we’re also interested in the adap-

tation performance during the training period. Since the RL agent will be more and more

deterministic in action selection during the training, the domain adaptation performance

could also be affected. As a result, we evaluate the model adaptation performance every
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Approach Source Domain Seen Target Domains Unseen Target Domains
CarRacing A1

Score
CarRacing B1
Score(Ratio)

CarRacing B2
Score(Ratio)

CarRacing B3
Score(Ratio)

CarRacing B4
Score(Ratio)

CarRacing C1
Score(Ratio)

CarRfacing C2
Score(Ratio)

LUSR 805.13 803.52 (1.00) 807.37 (1.00) 803.11 (1.00) 781.94 (0.97) 678.7 (0.84) 800.56 (0.99)
DARLA(β = 10) 845.87 645.81 (0.76) 250.85 (0.30) -72.99 (-0.09) -62.96 (-0.07) -65.72 (-0.08) 631.09 (0.75)
DARLA(β = 30) 851.48 834.99 (0.98) 819.05 (0.96) -60.76 (-0.07) -73.18 (-0.09) -72.55 (-0.09) 806.76 (0.95)
DARLA(β = 100) 778.78 704.27 (0.90) 207.9 (0.27) 451.81 (0.58) 27.77 (0.04) 182.35 (0.23) 539.63 (0.69)
VAE-Embedding 816.74 616.89 (0.76) 282.71 (0.35) 484.57 (0.59) 223.88 (0.27) 332.58 (0.41) 595.42 (0.73)

CURL 748.58 560.23(0.75) -44.24(-0.06) -55.29(-0.07) -32.45(-0.04) -113.13(-0.15) -69.23(-0.09)
CycleGAN 709.12 707.64 (1.00) 704.33 (0.99) 713.86 (1.01) 711.85 (1.00) 715.43(1.01) 671.67(0.96)

Table 5.1: Domain adaptation performance of LUSR and benchmarks in CarRacing games.
We train 3 models for each approach and evaluate each model for 100 episodes in each
domain after training. The average final score of 3 models are reported in the table for each
approach. We also report the ratio of scores achieved in target domains to the score achieved
in the source domain to demonstrate the policy transfer performance.

Approach Source Domain Target Domains
CARLA (Evening) CARLA (Clear Noon) CARLA (Hard Rain)

Score Steps Score Steps Score Steps
LUSR 1125.06 469.1 1175.61 565.3 1270.32 515.6

DARLA 841.59 342.0 194.41 134.2 187.97 119.9
VAE-Embedding 1113.90 384.9 674.42 744.2 846.14 527.4

CURL 1112.42 521.2 44.34 42.4 73.63 60.2
CycleGAN 333.57 175.1 333.88 174.9 332.71 163.6

Table 5.2: Domain adaptation performance of LUSR and benchmarks in CARLA au-
tonomous driving tasks. We train 3 models for each approach and choose the best model
for evaluation. Each model is evaluated for 10 episodes. The average score and time steps
spent in each episode are reported in the table.
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Figure 5.5: Domain adaptation performance during training in CarRacing comparing LUSR
to other benchmarks.

1 million frames of training for all approaches. Our result shows that both LUSR and

CycleGAN have consistent adaptation performance during the whole training period while

the adaptation performance of DARLA and VAE-Embedding gradually decrease (see Figure

5.5). This demonstrates that domain-specific features do contribute to the RL policy output

if they are included in the latent state representation and their influence will be more and

more problematic as RL training goes on.

Saliency Map

Saliency map is an approach to visualize and understand the behavior of RL agents. In this

work, we also use saliency maps [Greydanus et al., 2018] to visualize how RL agents trained

with different methods attend to the observation states (see Figure 5.6). The result shows

that RL agent trained with LUSR has more centralized attention and mainly attends to the

center of the road. In comparison, the saliency maps generated by other approaches are
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Figure 5.6: Examples of saliency maps generated by RL agents trained via DARLA, LUSR,
VAE-Embedding, CURL and CycleGAN. The RL agent trained with LUSR has the most
centralized attention and mainly attends to the center of the road.

much more diffused and attend more to the edges between road and grass rather than road

itself. Although it also makes sense to learn to drive based on the edges, the contrast between

them could also change when the color of grass changes and thus brings more challenges in

generalization. This may explain why LUSR has better generalization performance than

other benchmarks.

5.6.2 Autonomous Driving in CARLA

We further apply our approach in the autonomous driving task in CARLA simulator whose

observation states are more complicated and thus increase the difficulty of RL training and

generalization.

LUSR Demonstration

We also demonstrate the disentanglement of domain-specific embedding and domain-general

embedding for images in CARLA simulator (see Figure 5.7). We first collect paired ob-
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(a)

(b) (c)

Figure 5.7: Demonstration of the disentanglement of domain-general embedding and domain-
specific embedding in related CARLA driving tasks. a. The workflow of generating paired
observational states and extracting latent embeddings. b,c. t-SNE plot of the domain-
general and domain-specific embeddings from three CARLA driving tasks.

servation images from three tasks by placing the vehicle at the same starting point in the

map and taking same actions in the driving. After collecting images, we extract their la-

tent domain-general and domain-specific embeddings via a trained encoder and show their

t-SNE plots in Figure 5.7b and 5.7c. It shows that domain-general embeddings from differ-

ent tasks do have close similarities while domain-specific embeddings from different tasks are

well clustered separately. The result demonstrates the disentanglement of domain-general

and domain specific embeddings for images in CARLA driving tasks and thus supports the

feasibility of LUSR in more challenging scenarios.
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Domain Adaptation Performance

For domain adaptation in CARLA autonomous driving tasks (see Table 5.2), RL agents

trained with LUSR is able to achieve zero-shot policy transfer without performance loss for

both two target domains. It also achieves best scores in all domains compared with other

approaches which shows the training efficiency of LUSR.

Different from in CarRacing games, DARLA fails to adapt the trained policy in two target

domains in CARLA autonomous driving tasks. This may be due to DARLA increasing

the disentanglement of the latent embedding at the sacrifice of information accuracy. For

complicated observation states like images in CARLA, it’s much more difficult to achieve

good disentanglement of each latent unit and the problem of information loss in the latent

embedding is more serious. This causes the quality of the latent embedding in DARLA to

be worse than LUSR and VAE-Embedding. This argument is supported by the results that

higher β in DARLA leads to worse RL training performance.

VAE-Embedding achieves similar training performance in the source domain as LUSR while

its adaptation performance in target domains is worse. Besides that, its driving behavior in

target domains is very different from the behavior in the source domain. When adapting to

target domains, the RL agent drives much slower and frequently reaches the time limit of

each episode. As shown in table 5.2, compared to the result in the source domain, RL agents

trained with VAE-Embedding receive lower scores while spending more time steps in each

episode when driving in target domains.

Although CURL achieves comparable training performance in the source domain as other

approaches, it completely fails to generalize to the two target domains in CARLA. To un-

derstand the reason, we conducted a tSNE analysis for CURL. The result reveals clusters

based on domain labels. We believe the reason is that domain specific features are very use-

ful in learning to assign low similarities for two states from different domains during CURL
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training and thus much domain specific information resides in the embedding of CURL. This

prevents generalization across domains.

CycleGAN is also able to generalize to target domains well. However, it relies on pixel-

wise input and the training efficiency is limited compared with other approaches that utilize

internal latent state representation.

5.7 Conclusion

In this work, we propose to disentangle domain-general embedding and domain-specific em-

bedding in the latent state representation of RL and theoretically formalize it in the scenario

of domain adaptation. We propose LUSR which utilizes the domain-general latent embed-

ding as state representation and prove its efficiency in two RL tasks with different visual

complexity. As a result, our work enhances the applicability of Deep RL to real-world tasks

that need both good domain adaptation performance and high training efficiency.
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Chapter 6

Achieving Efficient Interpretability of

Reinforcement Learning via Policy

Distillation and Selective Input

Gradient Regularization

(This chapter is reprinted with permission, from Jinwei Xing, Takashi Nagata, Xinyun Zou,

Emre Neftci and Jeffrey L. Krichmar. Achieving efficient interpretability of reinforcement

learning via policy distillation and selective input gradient regularization. Neural Networks,

161, 228-241. © Neural Networks.

6.1 Introduction

Reinforcement learning (RL) systems have achieved impressive performance in a wide range

of simulated domains such as games [Mnih et al., 2015, Silver et al., 2016, Vinyals et al.,
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2019, Wang et al., 2020], robotics [Lillicrap et al., 2015, Fujimoto et al., 2018, Haarnoja

et al., 2018], automatic control [Li et al., 2017, Wang et al., 2022] and computer vision tasks

[Le et al., 2021]. However, the interpretability of an agent’s decision making and robustness

to attacks need to be addressed when applying RL to real-world problems. For instance, in

a self-driving scenario, real-time interpretability could explain how an RL agent produces a

decision in response to its observed states and enable a safer deployment under real-world

conditions and adversarial attacks [Ferdowsi et al., 2018, McAllister et al., 2019, Bojarski

et al., 2018, Chen et al., 2020b].

Saliency maps in deep learning are used to interpret input features that are believed to be

important for the neural network output [Simonyan et al., 2013, Selvaraju et al., 2017, Fong

and Vedaldi, 2017, Smilkov et al., 2017, Sundararajan et al., 2017, Zhang et al., 2018, Nguyen

et al., 2019]. As the issue of interpretability in RL gets more attention, a number of methods

have been proposed to generate saliency maps to explain the decision making of RL agents.

Existing saliency map methods in RL either used gradients to estimate the influence of

input features on the output [Wang et al., 2016] (gradient-based methods) or computed the

saliency of an input feature by perturbing it and observing the change in output [Greydanus

et al., 2018, Iyer et al., 2018, Puri et al., 2020] (perturbation-based methods). Gradient-

based methods can compute saliency maps efficiently with backpropagation. However, the

quality of these gradient-based saliency maps was generally poor [Rosynski et al., 2020].

Perturbation-based methods are effective in highlighting the important features of the input,

but at a significant computational cost, which can make them ineffective when deployed on

systems with real-time constraints. As a result, existing RL agents cannot provide high

interpretability in a computation-efficient manner.

Different from previous work proposing new saliency calculation methods, we focus on im-

proving the natural interpretability of RL policies. Given an RL policy, we propose an

approach of Distillation with selective Input Gradient Regularization (DIGR) that uses pol-
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icy distillation and input gradient regularization to retrain a new policy. In our approach,

input gradient regularization selectively regularizes gradient-based saliency maps of the pol-

icy to imitate its interpretable perturbation-based saliency maps. This allows the new RL

policy to generate high-quality saliency maps with gradient-based methods and thus achieve

both high interpretability and computational efficiency. At the same time, to ensure that

input gradient regularization does not cause task performance degradation, we use policy

distillation [Czarnecki et al., 2019] to constrain the output of the new RL policy to remain

close to the original RL policy.

We evaluate our method in three different tasks, which include an object fetching task

from MiniGrid [Chevalier-Boisvert et al., 2018], Breakout from Atari games and CARLA

Autonomous Driving [Dosovitskiy et al., 2017b]. The results show that RL policies trained

with our approach are able to achieve efficient interpretability while maintaining good task

performance. Selective input gradient regularization also improves the robustness of RL

policies to adversarial attacks. These two desired properties allow the RL policy to better

adapt to real-world scenarios.

To summarize, we demonstrate a novel approach to improve the efficient interpretability and

robustness on attacks on RL policies based on the utilization of saliency maps. Our approach

increases the applicability of RL to real-world problems.

6.2 Background and Motivation

6.2.1 Policy Distillation

Policy distillation [Rusu et al., 2015, Czarnecki et al., 2019] transfers knowledge from one

teacher policy πt to a student policy πs by training the student policy to produce the same
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(a) Saliency Maps of Red-Fetch-Green
(b) Saliency Map Generation
Time

Figure 6.1: (a). Different saliency maps on Red-Fecth-Green. All gradient-based saliency
maps (Vanilla Gradient, Guided Backprop, Grad-CAM, Integrated Gradient and Smooth
Gradient) produced by the PPO policy are noisy and show noticeable saliency on task-
unrelated features. Gaussian-Blur Perturbation (GB Perturbation), SARFA saliency maps
and saliency maps produced by DIGR approach demonstrate saliency on the red agent and
green target object only. (b). The average time for each method to explain one action
selection for states of Red-Fetch-Green during policy deployment with a CPU of Intel i7-
9750H and a GPU of GeForce RTX 2080 Ti. We mark DIGR with purple and use red
and green colors to represent normal gradient-based and perturbation-based saliency map
methods.

behavior as the teacher policy. This is normally achieved by supervised regression to minimize

the following objective:

J = Es∼πc [D(πt(s), πs(s))], (6.1)

where πc is the control policy that interacts with the environment to produce states for

training, and D is a distance metric. There are multiple choices for both πc and D. For

example, the control policy πc could take the form of the teacher policy πt or student policy

πs or even a combination of them. Suitable distance metrics could be mean squared error or

Kullback–Leibler divergence (KL divergence).
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6.2.2 Saliency Map in RL

Addressing the interpretability of RL has attracted considerable attention in recent years.

One common category of methods used visualization techniques such as saliency maps [Wang

et al., 2016, Greydanus et al., 2018], attention mechanism [Mott et al., 2019] and object de-

tection [Iyer et al., 2018] to explain deep neural network policies. Some other methods aimed

to learn intrinsically interpretable policies in the formats of decision tree [Silva et al., 2020,

Liu et al., 2021], programming language [Verma et al., 2018] or logic formulations [Zhang

et al., 2021]. Besides the methods above, researchers also enhanced the understanding of RL

decision making by using evidence-driven interpretation [Dao et al., 2018, 2021], contrastive

explanations [Lin et al., 2020], counterfactual analysis [Rupprecht et al., 2019, Atrey et al.,

2020] and state abstraction [Topin and Veloso, 2019]. In this work, we focus on saliency map

explanations.

Saliency map techniques are popular in computer vision and RL communities for interpreting

deep neural networks. Gradient-based methods calculate the gradient of some function f

with respect to inputs s based on the chain rule and then use the gradients to estimate the

influence of input features on the output. In RL, one common approach is the Jacobian

saliency map [Wang et al., 2016] which computes the saliency of input feature si as |∂f(s)
∂si
|

where function f could be calculated from either the state-action value Q(s, a) in Q-learning

or the action distribution π(s) in actor-critic methods. Other gradient-based visualization

methods from the field of image classification are also explored [Greydanus et al., 2018,

Rosynski et al., 2020] but most of them didn’t work well in the RL domain.

Perturbation-based methods compute the saliency of an input feature by perturbing (e.g.

removing, altering or masking) the feature and observing the change in output. Given a state

input s, a perturbed state s′ could be generated by inducing a perturbation on input feature

si. The approach of computing the change in output caused by the perturbation may vary
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based on the form of RL agent. For example, in Q-learning, the network output is a scalar

and thus the saliency of si could be defined as |Q(s, a) − Q(s′, a)|. In actor-critic methods,

the saliency of si could be defined as DKL(π(s)||π(s′)) which is the KL divergence between

action distributions before and after the perturbation. Alternatively, [Greydanus et al., 2018]

considered the output of actor as a vector and computed the saliency as 1
2
||π(s) − π(s′)||2.

Puri et al. [2020] further proposed an approach of Specific and Relevant Feature Attribution

(SARFA) to address the specificity and relevance in perturbation-based saliency maps.

6.2.3 Motivation

We first introduce a simple fetching-object task in MiniGrid and demonstrate the results of

different saliency map methods on this task to motivate our method. In the fetching-object

task in MiniGrid, the environment is a room composed of 8x8 grids and 4 entities with

unique colors. The red agent needs to locate and pick up the green object, while the yellow

and blue objects are distractors. Based on the task rule, we name this task as Red-Fetch-

Green. We first use PPO [Schulman et al., 2017] to train an RL policy to solve the task and

then investigate the interpretability and computation efficiency of different saliency map

methods to explain the policy. Examples of gradient-based (Vanilla Gradient [Simonyan

et al., 2013], Guided Backprop [Springenberg et al., 2014], Grad-CAM [Selvaraju et al.,

2017], Integrated Gradient [Sundararajan et al., 2017], Smooth Gradient [Smilkov et al.,

2017]) and perturbation-based (Gaussian-Blur Perturbation [Greydanus et al., 2018] and

SARFA [Puri et al., 2020]) saliency maps for Red-Fetch-Green are shown in Figure 6.1a. We

also include an example of saliency maps generated by our DIGR approach for comparison.

In general, perturbation-based saliency maps mainly demonstrate high saliency on task-

relevant features (e.g. red agent and green target object) while gradient-based saliency maps

are noisier and harder to interpret. However, the high quality of perturbation-based saliency

maps is achieved with an increased cost of computation time. As shown in Figure 6.1b,
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perturbation-based saliency map takes more time to generate compared to gradient-based

saliency maps and counterfactual analysis of ‘Represent And Mimic’(RAMi) [Liu et al., 2021].

The computation time of perturbation-based saliency maps is highly affected by the input

size and policy network architectures. This makes it incompatible with many real-world tasks

that require real-time interpretability such as autonomous driving. Thus, based on the result

in Figure 6.1, we find that normal gradient-based saliency maps are computationally more

efficient but hard to interpret while perturbation-based saliency maps are more interpretable

but come with a higher computation cost during deployment. This finding motivates us to

think about how we can keep the computation efficiency of gradient-based methods and the

high interpretability of perturbation-based methods while avoiding their limitations, and

thus propose DIGR.

How does DIGR generate interpretable saliency maps like perturbation-based methods while

only requiring a short generation time as the most efficient Vanilla Gradient saliency maps?

Is it possible for us to use gradient-based methods such as Vanilla Gradient method to

generate high-quality saliency maps as those from perturbation-based methods? We answer

these questions in the next section.

6.3 Method

Our approach to achieving both computational efficiency and high interpretability in RL

is to produce a policy whose gradient-based saliency maps are comparable to those of

perturbation-based methods. To achieve this, given a trained RL policy, we set its perturbation-

based saliency maps as supervisory signals and update the weights of the policy so that its

gradient-based saliency maps match the perturbation-based saliency maps. Since the com-

putations involved in gradient-based saliency maps are differentiable, we can use stochastic

gradient descent to conduct the training. The idea of optimizing gradient-based saliency
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maps has a close connection with input gradient regularization which imposes constraints

on how input gradients behave. For example, Ross and Doshi-Velez [2018] penalized in-

put gradients based on an expert annotation to prevent the network from “attending” to

certain parts of the input in an image classification task. Inspired by this, the training of

the gradient-based saliency map in our approach is conducted by selectively penalizing the

gradients of input features that have low perturbation-based saliency.

One challenge of selective input gradient regularization is that optimizing gradient-based

saliency maps may also affect the policy output and thus degrade the task performance. To

avoid this, we conduct policy distillation to ensure that the new policy maintains the same

task performance. We give a more formal introduction of our method below.

Given an RL policy π and input s, we define the function g as the method used in gen-

erating gradient-based saliency map Mg and function f as the method used in generating

perturbation-based saliency map Mp. Both Mg and Mp have the same size as input s. Each

element in the saliency map, Mgi and Mpi, are computed as

g(s, i, π) =|
∑
a

π(a|s)∂π(a|s)
∂si

|

Mgi =
g(s, i, π)

max
0≤j≤N

g(s, j, π)

(6.2)

f(s, i, π) = DKL(π(s)||π(m(s, i)))

Mpi =
f(s, i, π)

max
0≤j≤N

f(s, j, π)

(6.3)

where g(s, i, π) and f(s, i, π) compute the gradient-based and perturbation-based saliency

values of input feature si given policy π. These saliency values are then normalized between
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Figure 6.2: Framework of our approach. Policy πθ is used as the control policy and interacts
with the environment. The experienced states are saved into a replay buffer and then sampled
later for policy distillation. The training includes two objectives. The first objective is using
input gradient regularization to regularize gradient-based saliency map M θ

g based on the
perturbation-based saliency map M t

p. The second objective is using policy distillation to
make sure the learning policy πθ has the same behavior as the trained policy πt.

0 and 1 to form saliency maps that contain N elements in each map. In this work, pertur-

bation function m induces a Gaussian blur on the input with the input feature of interest

si as the center [Greydanus et al., 2018]. It’s worth mentioning that, besides perturbation-

based saliency maps, DIGR could be easily extended to utilize other saliency data (e.g.

saliency maps from expert annotation) as supervisory signals. In this work, we focus on

using perturbation-based saliency maps for input gradient regularization as they show high

interpretability and can be computed as long as we have access to the policy and states.

After introducing the process of generating two types of saliency maps given an RL policy

and state input, we introduce how they are used in DIGR. Given a trained RL policy πt,

DIGR aims to produce a new policy πθ with parameters θ that can generate interpretable

saliency maps using a gradient-based method. Given a state input s, the saliency map

could differ based on the generation method (gradient-based vs perturbation-based) and the

policy (πt vs πθ) used to generate them. For clarity, we define these 4 types of saliency

maps as Mg
t, Mg

θ, Mp
t, Mp

θ where the subscript of g represents gradient-based saliency

maps and p represents perturbation-based saliency maps. The superscript of t represents
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the saliency map is generated by the original teacher policy πt and θ represents the saliency

map is generated by policy trained with DIGR (πθ). In DIGR, we use the perturbation-

based saliency maps generated by the teacher policy (Mp
t) to provide supervisory signals to

regularize the gradient-based saliency maps generated by the DIGR policy (Mg
θ). Then the

loss function for input gradient regularization is

L = Es∼dπθ
[

1

N

N∑
i=1

1[0,∞)(λ−Mp
t
i)×Mg

θ
i ] (6.4)

where dπθ
is the state distribution following policy πθ and N is the number of input features

in the saliency map. Mp
t and Mg

θ have the same size and are both indexed by i. Threshold

λ is used in the indicator function 1 to determine whether one input gradient should be

penalized. The indicator function 1 returns 1 if λ −Mp
t
i ≥ 0 and 0 otherwise. In other

words, if the perturbation-based saliency for an input feature is below threshold λ, the

loss penalizes its gradient-based saliency. This selective penalization allows the model to

only keep high saliency on task-relevant features selected by the perturbation-based saliency

maps.

The final loss function in our approach is a weighted combination of selective input gradient

regularization and policy distillation. In practice, generating perturbation-based saliency

maps online for input gradient regularization could be time-consuming and slow down the

overall training. To address this, we build an offline perturbation saliency dataset D which

contains states sampled from dπt and the corresponding perturbation-based saliency maps

generated in advance. Because of the policy similarity brought by policy distillation, we use

D to approximate dπθ
for input gradient regularization. As a result, the loss function for
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DIGR is

LDIGR = Es∼D[
1

N

N∑
i=1

1[0,∞)(λ−Mp
t
i)×Mg

θ
i︸ ︷︷ ︸

Input Gradient Regularization

]

+αEs∼dπθ
[DKL(πt(s)||πθ(s))︸ ︷︷ ︸

Policy Distillation

]

(6.5)

where α is a weighting parameter used to balance the loss of input gradient regularization

and policy distillation. We show the complete architecture of our approach in Figure 6.2.

6.4 Experimental Results

We conduct experiments on three tasks including Red-Fetch-Green in MiniGrid, Breakout

in Atari games and CARLA Autonomous Driving to demonstrate the effectiveness of our

approach. In Red-Fetch-Green, the red agent needs to locate and pick up the green object

while avoiding picking up other distractors in a room composed of 8x8 grids. In Breakout,

the paddle is controlled to move at the bottom to ricochet the ball against the bricks and

eliminate them for rewards. Besides these two tasks, we designed a CARLA Autonomous

Driving task in which the agent needs to control an autonomous car driving on a highway

while avoiding collisions. Since CARLA’s simulation clock can be matched with the real

time, we use it to show how the high quality and computation efficiency of our approach in

interpreting RL policies could be important in real-world scenarios.
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6.4.1 Setup

RL Training

In our experiments, we first use PPO algorithm to train RL policies on Red-Fetch-Green,

Breakout and CARLA Autonomous Driving. The trained RL policies, which are used to

generate offline perturbation saliency datasets for input gradient regularization, also serve

as the teacher policy in policy distillation and generate saliency maps for comparison. In all

three tasks, we used similar network architectures composed of 3 convolutional layers and

2 linear layers but with different layer sizes. The trained RL policies achieved reasonably

good performance in each task: The policy in Red-Fetch-Green solves the task with a success

rate of 100%; the policy in Breakout achieves an average score of 320; the policy in CARLA

Autonomous Driving could drive smoothly and learned to steer to avoid collision with other

vehicles. We include more details of RL training in the appendix.

Offline Perturbation Saliency Dataset

To conduct selective input gradient regularization, we generate an offline perturbation saliency

dataset by sampling states experienced by the trained RL policy πt and generating the corre-

sponding Gaussian-Blur perturbation saliency maps [Greydanus et al., 2018]. The perturba-

tion saliency datasets of Red-Fetch-Green, Breakout, and CARLA Autonomous Drivinghe

1k, 10k, and 2.5k pairs of states and saliency maps. Although our method still needs to

generate perturbation-based saliency maps, the computation happens in the training stage

without affecting the computation efficiency during deployment. Also, the computation

problem could be mitigated by the limited size of the dataset (e.g. 1k, 10k, and 2.5k states

in Red-Fetch-Green, Breakout, and CARLA respectively) and the potential utilization of

parallel computing with multiple machines.
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DIGR Training

DIGR uses selective input gradient regularization and policy distillation to produce a new

policy that achieves efficient interpretability while maintaining task performance. In all

three experiments, we randomly initiate the new policy πθ. To further stabilize the training,

we consider the training of selective input gradient regularization and policy distillation

as a multi-objective optimization problem and used the technique of projecting conflicting

gradients (PCGrad) [Yu et al., 2020] to mitigate gradient interference. More hyperparameters

of training are included in the appendix.

6.4.2 Effectiveness via Visual Illustrative Examples

Figure 6.3: Demonstration of our approach on Red-Fetch-Green. There are four sets of
examples and each set includes a state, a Vanilla Gradient saliency map generated by the
original policy (Original VG), a Gaussian-Blur perturbation-based saliency map (GB Per-
turbation) generated by the original policy and a Vanilla Gradient saliency map generated
by the policy trained with DIGR. The annotation of DIGR on the figure refers to Vanilla
Gradient saliency maps generated by the policy trained with DIGR. In all examples, GB
Perturbation and DIGR saliency maps show high saliency on the red agent and green target
while Original VG saliency maps are noisy and hard to interpret.

The main goal of our approach is to allow RL policies to generate interpretable saliency maps

with computationally efficient gradient-based methods. To demonstrate the effectiveness of

our approach, we provide examples of the most computationally-efficient Vanilla Gradient

saliency maps before and after our method, and Gaussian-Blur perturbation saliency maps
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Figure 6.4: Demonstration of our approach on Breakout. VG and GB Perturbation stand
for Vanilla Gradient and Gaussian-Blur Perturbation. Both DIGR and Gaussian-Blur
perturbation-based saliency maps demonstrate high saliency mainly on the paddle and ball
while the Vanilla Gradient saliency maps generated by the original policy (Original VG) are
noisier.

Figure 6.5: Demonstration of our approach on CARLA Autonomous Driving. VG and GB
Perturbation stand for Vanilla Gradient and Gaussian-Blur Perturbation. In the left two
sets of examples, DIGR and GB Perturbation methods demonstrate high saliency on the
vehicles that got close to the controlled vehicle. In the top-right example, DIGR and GB
perturbation methods show high saliency on the vehicle and road curb. In the bottom-right
example, DIGR and GB perturbation methods show high saliency on two vehicles ahead.
DIGR and GB perturbation methods didn’t show saliency on the controlled vehicle because
the controlled vehicle is always at the same region of the images for all states and is not
salient to the performance. The saliency is demonstrated on other features that may lead to
a collision and affect the performance. In all four sets of examples, Vanilla Gradient saliency
maps generated by the original policy (Original VG) are very similar and hard to distinguish.

that work as supervisory guidance in Figures 6.3, 6.4, and 6.5.

Our results show that Vanilla Gradient saliency maps generated by original RL policies are

noisy and hard to interpret. However, after the optimization with our approach, we can use
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the same saliency map method to generate much more interpretable saliency maps which

reduces a large amount of unexplainable saliency and demonstrate high saliency on task-

relevant features only. The saliency maps generated by our approach also have a close simi-

larity to Gaussian-Blur perturbation-based saliency maps which demonstrates the successful

saliency guidance. We provide more visual examples containing saliency maps produced by

other gradient-based methods for comparison in the appendix.

6.4.3 Importance of Computational Efficiency

Figure 6.6: Different types of saliency maps on a sequence of states in CARLA Driving.
Vanilla Gradient saliency maps generated by the policy trained with DIGR always demon-
strate high saliency on the traffic vehicles while Vanilla Gradient saliency maps generated
by the original policy (original VG) are noisy and just show saliency in the center region of
all states. Gaussian-Blur perturbation-based saliency maps show saliency behind the vehicle
because of the computation delay. The bar on the right represents the mapping between
saliency values and colors.

In this section, we further show the importance of our approach by demonstrating that

missing either computation efficiency or high interpretability makes it difficult to achieve

interpretable RL in real-world scenarios. We take Autonomous Driving as an example and

show the results of utilizing different saliency maps to explain a sequence of RL decision
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making in Figure 6.6. In our experiments, the state of CARLA Autonomous Driving is

a 128x128 RGB image taken every 0.05 seconds by a camera attached to the ego vehicle.

Although Gaussian-Blur perturbation-based saliency maps show high interpretability as seen

in Figure 6.5, it takes 0.97±0.02 seconds to generate one saliency map with a GPU of RTX

2080Ti. This means there’s a delay of almost one second between meeting the state and the

availability of the corresponding saliency map and all saliency maps for states experienced

during the delay will be missed. In contrast to Gaussian-Blur perturbation-based saliency

maps each takes 0.97 seconds to generate on average, Vanilla Gradient saliency maps are

much more efficient to compute and take only 0.0021±0.0001 seconds for each state with the

same machine. However, Vanilla Gradient saliency maps generated by normal RL policies

are hard to interpret and only our approach achieves both computation efficiency and high

interpretability.

6.4.4 Saliency Dataset and Evaluation

Besides illustrative examples, we also aim to provide a quantitative evaluation of saliency

maps generated by different approaches and thus introduce a new saliency dataset based

on Red-Fetch-Green. Different from previous work that relies on expert annotations and

classifies each state element as either an important or unimportant feature [Puri et al., 2020],

we focus on features whose saliency importance is certain. There are six types of objects

in Red-Fetch-Green including the red agent, the green target object, the blue and yellow

distractors, grey walls, and black empty grids. Based on the roles of objects, we assume

the red agent and green target are important features as they have the most important

information required for optimal decision making and assume the empty tiles as unimportant

features since they do not provide any information. The two distractors and grey walls are

not included in the dataset because their influence on decision making is either uncertain or

only exists in a small subset of state space. We collected 10k states in the saliency dataset
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and provide an example in Figure 6.7.

(a) state
(b) important
saliency

(c) unimportant
saliency

Figure 6.7: a. An example state in the saliency dataset of Red-Fetch-Green. b. Regions
whose saliency is important. c. Regions whose saliency is unimportant.

Saliency on Red-Fetch-Green

important unimportant AUC

VG 56.04 278.10 0.840
Guided BP 82.84 35.67 0.993
Grad-CAM 43.12 364.97 0.686
Smooth G 83.05 84.76 0.991

Integrated G 67.79 232.09 0.900
GB Perturbation 86.11 77.81 0.989

SARFA 58.40 42.17 0.895
DIGR 72.52 0.00 0.997

Table 6.1: Saliency results of Vanilla Gradient (VG), Guided Backpropagation (Guided BP),
Grad-CAM, Smooth Gradient (Smooth G), Integrated Gradient (Integrated G), Gaussian-
Blur Perturbation (GB Perturbation), SARFA of the original policy and Vanilla Gradient
of DIGR policy on Red-Fetch-Green. Our method keeps a comparable amount of important
saliency, reduces all unimportant saliency, and achieves the highest AUC.

To evaluate the quality of different saliency maps, we compute the average amount of impor-

tant saliency and unimportant saliency in each saliency map. Furthermore, we also compare

different saliency maps with Area under the Receiver Operating Characteristic Curve (AUC),

which is a popular metric used to evaluate saliency maps [Iyer et al., 2018, Puri et al., 2020].

As shown in Table 6.1, our approach keeps a comparable amount of important saliency,

reduces all unimportant saliency and achieves the highest AUC compared with other ap-

proaches. The decreased amount of unimportant saliency is in line with our expectation

since our approach works by penalizing the saliency that is not helpful for interpretation.
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As a result, our approach utilizes gradient-based and perturbation-based saliency maps for

training and finally achieves even better saliency maps.

6.4.5 Policy Performance Maintenance

The objective of optimizing gradient-based saliency maps may change the action selection

of the original policy and thus cause the policy performance to degrade. In DIGR, we use

policy distillation to constrain the output of the new RL policy to remain close to the original

policy. To verify its effectiveness, we plot the performance of DIGR policy during training

and compare it with the results of the original policy. As seen in Figure 6.8, the policy

trained with our approach could achieve similar performance as the original policy.

Figure 6.8: The performance of DIGR policy could match the performance of the original
policy.

6.4.6 Improved Robustness to Attacks

Due to the importance of robustness of neural networks [Zheng et al., 2016, Cheney et al.,

2017, Carlini and Wagner, 2017] and recent research findings of a deep entanglement between

adversarial attacks and interpretability of deep neural network (DNN) models [Tao et al.,

2018, Ignatiev et al., 2019], we are also interested in DIGR’s influence on policy’s robustness

to attacks. To study that, we evaluate the robustness of RL policies before and after applying
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Figure 6.9: Policies trained with DIGR achieve much stronger robustness to all four types
of adversarial attacks (FGSM, PGD, MI-FGSM and MAD) compared to the policies trained
with normal RL algorithms. Although policy distillation also helps robustness slightly, selec-
tive input gradient regularization makes the most contribution to the improved robustness.
All results are averaged over 50 runs in Red-Fetch-Green and 20 runs in CARLA Autonomous
Driving. The shaded area represents one standard deviation.

DIGR to four types of adversarial attacks including Fast Gradient Sign Method (FGSM)

[Huang et al., 2017], Projected Gradient Descent (PGD) [Madry et al., 2018], Momentum

Iterative Fast Gradient Sign Method (MI-FGSM) [Dong et al., 2018] and Maximum Action

Difference (MAD) [Zhang et al., 2020] in Red-Fetch-Green and CARLA Autonomous Driving

tasks. Since both policy distillation and input gradient regularization in our approach could

affect the robustness of RL policies, we further include an ablation study by conducting policy

distillation only to understand their own influence on robustness. As shown in Figure 6.9, our

approach significantly improves the robustness of RL policies. Although policy distillation

also improves the robustness slightly, selective input gradient regularization contributes the

most to the significant robustness gains.

6.5 Conclusion

We propose an approach called DIGR to improve the efficient interpretability of RL by re-

training a policy with selective input gradient regularization and policy distillation. Our
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approach allows RL policies to generate highly interpretable saliency maps with compu-

tationally efficient gradient-based methods. We further show that our approach is able to

improve the robustness of RL policies to multiple adversarial attacks. Interpretable decision-

making and robustness to attacks are two challenges in deploying RL to real-world systems.

We believe our approach could help to build trustworthy agents and benefit the deployment

of RL policies in practice.
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Chapter 7

Linking Global Top-Down Views to

First-Person Views in the Brain

(This chapter is reprinted with permission, from Jinwei Xing, Elizabeth R Chrastil, Douglas

A Nitz and Jeffrey L. Krichmar. Linking global top-down views to first-person views in

the brain. Proceedings of the National Academy of Sciences 119.45 (2022): e2202024119.

@PNAS

7.1 Introduction

Humans are able to translate their location and navigational goals on an external map into

decision making behaviors in the environment. A glance at a map can help place you in

your local surroundings. Conversely, when looking at one’s local surroundings, one can place

oneself on a global map. The ability to seamlessly move between top-down (TDVs) and

first-person views (FPVs) may be important for navigation and memory formation, as well

as many cognitive tasks (e.g., building a cabinet from a plan drawn on paper, or finding an
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extra screw after the cabinet is constructed and referring back to the plan to find out where

the screw should go). Evidence from other animals suggests that they also have the ability

to translate their position from one spatial reference frame to another [Alexander and Nitz,

2015, Meister and Buffalo, 2018, Meister, 2018, Geva-Sagiv et al., 2015]. In particular, bats

appear to have the ability to take translate a TDV while flying above the landscape to a

FPV when navigating on the ground or foraging for food [Ulanovsky and Moss, 2007, Omer

et al., 2018, Sarel et al., 2017, Geva-Sagiv et al., 2015].

Studies suggest that the entorhinal cortex (EC), retrosplenial cortex (RSC), subiculum

(SUB), posterior parietal cortex (PPC), and hippocampus (HPC) could play significant

roles in linking locations and orientations relative to one view to locations and orientations

relative to another [Alexander and Nitz, 2015, Byrne et al., 2007, Chrastil et al., 2018, Clark

et al., 2018, Epstein et al., 2017, Oess et al., 2017, Meister and Buffalo, 2018]. The compu-

tations and neural implementations that manifest this cognitive ability have scarcely been

addressed despite numerous navigation experiments in humans and rodents. Computational

modeling suggests that these transformations and linkages could be accomplished through

specific encoding of parameters [Bicanski and Burgess, 2018, Byrne et al., 2007, Oess et al.,

2017], or mixed selectivity that responds to multiple variables [Rounds et al., 2018]. How-

ever, it is unclear whether mechanisms for linkage and transformation among perspectives

operate to form a single mapping of location from both perspectives, or serve to link anal-

ogous locations in two different mappings. Mapping of location and orientation is robustly

observed in the rodent EC, HPC and SUB [Danjo et al., 2018, Derdikman and Moser, 2010,

Kim et al., 2012, Sharp, 1997], which provide input to RSC and other brain regions. The

PPC provides egocentric information to the RSC [Wilber et al., 2014]. Furthermore, the

visual system plays an important role in driving spatial activity [Meister, 2018]. Still, the

exact role of these brain regions and their neural computations, especially in the context of

viewpoint transformations, remain poorly understood.
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In the present article we attempt to answer the following open questions: 1) What architec-

tures might support these transformations and linkages? 2) What are the computations and

neural implementations underlying linkages and transformations between TDVs and FPVs?

3) What cues or landmarks are required to make these transformations and linkages? To

answer these questions, we take a model-free approach by using Variational AutoEncoders

(VAEs) to reconstruct the FPV from the TDV of a robot simulation, and vice versa [Kingma

and Welling, 2019]. The latent variables, which make a transformation between the encoding

network layers and the decoding network layers, will be compared with brain responses.

In contrast to neurobiologically inspired models of these transformations [Bicanski and

Burgess, 2018, Byrne et al., 2007], which suggest that the computations in each direction

utilize the same circuit by inverting the transformation operation, our results indicate that

each direction of transformation is dictated by different computations carried out by separate

circuits. Whereas going from a TDV to FPV required specific representations of place and

objects, going from a FPV to a TDV tended to use mixed representations and strong head

direction signaling. In both cases, one view was accurately reconstructed from the other. In

addition, both neural codes were flexible and adaptive to perturbations. We suggest that

this is a possible neural implementation that could support important navigation functions.

7.2 Results

7.2.1 Robot Simulation and Modeling Transformations

To test the ability to link TDV to FPV and vice versa, data was collected with the Webots

[Webots, Michel, 2004] robot simulation environment (Fig. 7.1A). The simulated robot was a

Khepera with a camera, and proximity sensors to detect objects and boundaries. The robot

freely explored its space. Approximately every second, the overhead view of simulation
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Figure 7.1: Simulation setup and model architectures. A. Robot freely explored a square
arena, which had 3 colored cylinders. The robot is located on the middle right facing the
blue cylinder. The inset shows the robot’s camera view. Note the camera view did not
overlay the top-down images during data collection. Robot was simulated using Webots
[Webots, Michel, 2004]. B and C. Variational AutoEncoders (VAE) reconstruct images from
robot simulation. The latent variables between the Encoder and Decoder are analyzed to
understand the transformations and linkages between views. B. Takes first-person view as
input and reconstructs top-down view. C. Takes top-down view as input and reconstructs
first-person view.

(TDV), the robot’s camera image (FPV), position, heading, and distance to the 3 cylinders

were saved. 10,000 data points were collected: 8000 for training and 2000 for testing. In

all conditions, even when environmental conditions changed (e.g., removing an object or

changing the background) the robot position, heading and trajectory were identical for the

10,000 data points.

Two VAEs were constructed; one for reconstructing the TDV of the simulation environment

from the FPV of the robot (Fig. 7.1B), and another for reconstructing the FPV from the

TDV (Fig. 7.1C). The number of latent variables (µ, σ, and z in Figures 1B and 1C) varied

from 30, 50, and 100. In the results presented below, only the 2000 testing data points were

used for analysis.

89



The VAE was able to reconstruct a top-down view (TDV) from a first-person view (FPV) and

vice versa. Figure 7.2 shows how the reconstructions improved as the loss decreased during

training with 100 latent variables. After 20,000 epochs of training, the median reconstruction

losses for the FPV to TDV and the TDV to FPV transformations were less than 0.01. The

process was repeated five times with different random number generator seeds. All 5 runs

for each number of latent variables were used for analysis. Supplemental figures 1-3 show the

loss for simulations with 30, 50, and 100 latent variables. Although the medians were roughly

similar for both types of transformations (e.g., with 100 latent variables, the median was

0.0078 for FPV to TDV and 0.0084 for TDV to FPV in supplemental figure 3), the TDV to

FPV transformation had more outliers (i.e., images it had difficulty reconstructing). Because

of this, the two distributions for all numbers of latent variables were significantly different

(p < 0.000001; Wilcoxon sign rank test). Supplemental figures 4 and 5 show examples of

the reconstructions after training.

7.2.2 Spatial Representations in Latent Variables

We wondered whether the latent variables of the VAEs had similar qualities to spatial repre-

sentations observed in RSC, HPC, and SUB recordings. Indeed, many latent variables were

sensitive to place, heading and objects. We looked at how well a latent variable correlated

with the robot’s distance to a cylinder, to an idealized head direction cell (cosine tuning

curve with one of 16 preferred directions), or to an idealized place cell (2D Gaussian with

one of 16 preferred locations). Table 7.1 shows the percentage of significant correlations in

each case. The TDV to FPV transformations had significantly more latent variables that

were strongly correlated with distance to the cylinder objects, and significantly more latent

variables strongly correlated with place fields than the FPV to TDV transformations. In

contrast, the FPV to TDV transformations had significantly more latent variables sensitive

to head direction than the TDV to FPV transformation. Supplemental Figure 6, which
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Figure 7.2: Reconstruction loss during VAE training with 100 latent variables. The true
image is the VAE target and the other images are reconstructions at different points in the
training. A. TDV to FPV transformation. B. FPV to TDV transformation.
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Table 7.1: Percentage of strong correlations (p < 0.01). Asterisk denotes significantly more
strong correlations for that transformation direction (p < 0.01; Wilcoxon rank sum test).

LV
Hdg

(FPV to TDV)
Hdg

(TDV to FPV)
Obj

(FPV to TDV)
Obj

(TDV to FPV)
Plc

(FPV to TDV)
Plc

(TDV to FPV)

30 49%* 33% 50% 73%* 50% 73%
50 54%* 26% 49% 73%* 47% 70%*
100 55%* 30% 49% 67%* 47% 69%*

plots the correlations for all latent variables, shows these trends, especially in the tails of the

distributions where latent variables were strongly positively and negatively correlated.

Fig. 7.3 shows representative latent variable examples of head direction and location-specific

tuning. Interestingly, the place fields for TDV to FPV tended to be sharp, whereas the FPV

to TDV tended to be more diffuse. Even though there were fewer head direction sensitive

latent variables in the TDV to FPV transformation, the shape of the head direction latent

variables was similar for both transformation directions (see Supplemental Figures 7 and 8

for more examples). In contrast, FPV to TDV latent variables that were strongly correlated

with place tended to be more diffuse than those in the TDV to FPV direction. For example,

compare the FPV to TDV place fields in Supplemental Figure 11 to the TDV to FPV place

fields in Supplemental Figure 12.

To understand the difference in spatial coding between transformation directions, we mea-

sured the spatial information [Skaggs et al., 1996] and spatial coherence [Kubie et al., 1990]

of the latent variables. In general, spatial information measures the extent to which activity

rates are high across a small subset of locations and low or non-existent across the remainder

of an environment. Coherence measures the extent to which high activity rates cluster in a

single location, as in ”place fields” of HPC neurons. Together they provide a good metric

for how strongly the latent variables encode locations. Figure 7.4 shows the distributions

for these spatial metrics in simulations with 100 latent variables. For both transformation

directions, the spatial information and spatial coherence were significantly larger than a

random distribution containing the same latent variables with their positions shuffled (p <
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Figure 7.3: Representative latent variable responses during simulations with 100 latent vari-
ables. A and B. Latent variables that responded similarly to head direction cells. C and D.
Latent variables that responded similarly to place cells. Note that C was typical of a First-
Person to Top-Down view transformation and D was typical of a Top-Down to First-Person
view transformation.

0.000001; Wilcoxon sign rank test). Furthermore, the spatial metrics were significantly larger

for the TDV to FPV transformation than the FPV to TDV transformation (p < 0.000001;

Wilcoxon sign rank test). Latent variable place fields were distributed throughout the envi-

ronment with some tendency for the centers of place fields to be on the borders and corners

(Supplemental Figure 36). The sparsity metric [Skaggs et al., 1996], which is roughly the

fraction of the environment that the latent variable was active, ranged from very specific

to broad (Supplemental Figure 37). Together, these measures suggest that both VAEs had

strong spatial tuning and that the TDV to FPV had stronger spatial tuning than FPV to

TDV. Overall, these results suggest that the TPV to FPV transformation relied more on

place specific coding, whereas the FPV to TPV transformation relied more on head direction

coding with diffuse place fields.

Spatial representations, such as place cells, grid cells, and head direction cells appear early
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Figure 7.4: Spatial metrics for latent variables. The top row shows the distributions of
spatial information and the bottom row shows the distributions of spatial coherence for
simulations with 100 latent variables. The left column compares the spatial metrics for
FPV to TDV transformations (orange) with a random distribution (blue) in which the
location activity bins were shuffled. The middle column compares the spatial metrics for
TDV to FPV transformations (orange) with a random distribution (blue). The right column
compares TDV to FPV transformations (orange) with FPV to TDV transformations (blue).
The TDV to FPV transformation had significantly stronger spatial metrics then the FPV to
TDV transformation for both information and coherence.

in rodent development [Wills et al., 2010] and almost immediately upon entering a new

environment [Frank et al., 2004]. We looked at the spatial metrics of the latent variables

in the VAE model at 20, 200 and 2,000 epochs of training (Fig. 7.5). At each of these

training stages, the spatial information and coherence were significantly larger than random

in both transformation directions (Wilcoxon signed rank test p < 0.001). At 20 epochs, the

spatial information was bimodal with many latent variables close to zero. By 200 epochs and

continuing to the end of training (20,000 epochs), the spatial information had a high degree

of overlap with the end of training (Fig. 7.5 top). After 20 epochs of training coherence was

extremely low. Similar to spatial information, from 200 epochs until the end of training,

the coherence had a high degree of overlap with the end of training (Fig. 7.5 bottom).

Supplemental figures 43 through 54 show example latent variables that respond to place and

head direction after 20, 200, and 2,000 training epochs. Given the spatial metric values and

low reconstruction loss by 200 training epochs, it appears the model can support spatial

navigation after limited environmental exposure.
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Figure 7.5: Spatial metrics for latent variables during early training. The top row shows the
distributions of spatial information and the bottom row shows the distributions of spatial
coherence for simulations with 100 latent variables after 20, 200, 2,000, and 20,000 epochs
of training.

7.2.3 Effect of Latent Variable Ablations

We next tested how sensitive reconstruction was to particular latent variables. We ablated

(i.e., set to zero) the most sensitive (top 25%) latent variables to environmental features.

Fig. 7.6A shows the relative FPV to TDV reconstruction losses and Fig. 7.6B shows the

relative TDV to FPV reconstruction losses. Relative loss was calculated by dividing the

ablation loss by intact loss for each image. For the sensitivity to cylinders, head direction

and location, the loss was significantly greater for the TDV to FPV transformation when the

top 25% latent variables were ablated. This may be due to different representation schemes;

whereas TDV to FPV rely more on specific selectivity, which could be sensitive to ablations,

FPV to TDV may rely on a more distributed population code.
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Figure 7.6: Relative loss during ablation studies of the top 25% latent variables that were
correlated with objects (Obj), heading (HD), or place (Plc). The figures show the ratio of
the ablation loss to the intact model loss for each image. In each box, the central mark is
the median (red), the edges of the box are the 25th and 75th percentiles (blue), the whiskers
extend to the most extreme data points that are not considered outliers, and the outliers are
plotted individually with a red plus sign.A. FPV to TDV transformation. B. TDV to FPV
transformation. All reconstruction losses for ablations were significantly larger for TDV to
FPV than for FPV to TDV transforms (p < 0.0000001, Wilcoxon sign rank test).

7.2.4 Effect of Environmental Perturbations

We wondered how the VAEs would respond to perturbation of local and distal cues in the

environment. Therefore, we ran simulations where the robot took the same trajectory for

10000 data points, but some aspect of the environment was changed. For example, the

original background, which was a ballroom (Fig. 7.1A), was changed to mountains while
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leaving everything else the same. This was an example of perturbing distal cues. In the

other cases, we perturbed local cues by rendering the green cylinder to be invisible, or by

rendering both the green and blue cylinders invisible. We then examined how the VAE,

which was trained on the original environment, responded to the 2000 test data points in

the perturbed environment (Fig. 7.7).

Figure 7.7: Relative loss during perturbation experiments. The figures show the ratio of
the loss due to a perturbation loss to the intact model loss for each image. Relative losses
are shown for changing the background to mountains (Mtn), removing the green cylinder
(NoGrn), and removing both the green and blue cylinders (NoGrnBlu). A. FPV to TDV
transformation. B. TDV to FPV transformation. All reconstruction losses for ablations were
significantly larger for TDV to FPV than for FPV to TDV transforms.

Perturbing the local and distal cues had three effects. First, the relative loss was significantly

greater for the TDV to FPV than the FPV to TDV transformation for both distal and local
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cues (p < 0.0000001; Wilcoxon sign rank test). In fact, the median loss for FPV to TDV when

the green cylinder was zero, meaning that there was no loss in many cases. This makes sense

since images in the FPV do not always contain a cylinder. Second, in both transformation

directions the loss due to the background change was significantly larger than removing

cylinders, and the loss due to removing the green and blue cylinder was significantly greater

than removing just the green cylinder. Large loss due to background change makes sense

since more pixels in the images are affected. Third, in most cases the transformation losses

were relatively small suggesting that with the exception of outliers, the VAEs were able to

recover many features in a view image (see Supplemental Figures 25 to 32). Furthermore, at

the population level, these perturbations appeared to have a minimal effect on latent variable

sensitivity to the distance to an object, heading or place (see Supplemental Figures 33 to

35). The range of correlation values (i.e., many latent variables had strong correlations) and

the trends observed in the intact model were preserved.

Perturbations of local and distal cues led to substantial remapping. Table 7.2 shows the per-

centage of latent variables that were not correlated before the perturbation, but remapped

to be significantly correlated with spatial features after the perturbation, and those latent

variables that were previously correlated with spatial features prior to the perturbation and

remapped to not be correlated with spatial features after the perturbation. There was signif-

icantly more remapping when the distal cues changed during FPV to TDV transformations

(see top row in Table 7.2), and there tended to be more remapping during FPV to TDV

transformations when local cues changed (see bottom two rows in Table 7.2). Such adapta-

tion and remapping has been observed in the retrosplenial cortex [Alexander and Nitz, 2015,

Rounds et al., 2018].
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Table 7.2: Remapping due to environmental perturbations (LV = 100). Table entries show
the % latent variables that became significant (p < 0.01) and table entries in parentheses
show the % latent variables that became insignificant (p ≥ 0.01) after the perturbation.
Asterisk denotes significantly more remapping for that transformation direction (p < 0.01;
Wilcoxon rank sum test).

Perturbation
Obj

(FPV to TDV)
Obj

(TDV to FPV)
Hdg

(FPV to TDV)
Hdg

(TDV to FPV)
Plc

(FPV to TDV)
Plc

(TDV to FPV)

Mountains 30%* (18%*) 14% (12%) 28%* (19%*) 8% (10%) 28%* (19%*) 13% (11%)
No green cylinder 2% (2%) 13%* (16%*) 1% (1%) 8% (11%*) 2% (1%) 12%* (15%*)

No green,
no blue cylinder

6% (4%) 13%* (17%*) 2% (3%) 8% (11%*) 6% (4%) 13%* (15%*)

7.2.5 Alternative Models

Benefit of Sequences for Linking Views

Unlike the nervous system, the model presented here does not have a temporal component.

Rather, a single image from one view is linked to another. We wondered whether a sequence

of image views would benefit the ability to link different view perspectives. We created VAEs

that took as input a sequence of 5 images from one view and output a reconstruction of the

last image in the other view (see Supplemental Figures 38 and 39). Interestingly, the loss

was roughly the same for a TDV to a FPV transformation, but the loss was reduced when

a sequence of FPVs was used to reconstruct the TDV (Fig. 7.8). This makes intuitive sense

because a sequence of FPVs would provide more varied information than a sequence of TDV

images. Despite these differences, the reconstruction loss was small in both cases and the

spatial metrics in both cases were similar (see Supplemental Figure 41 for spatial metrics

and Supplemental Figures 55 through 58 for example place and head direction sensitive

latent variables). Although this may be important for a living organism, the computational

overhead may outweigh the benefit of using sequences if this model were deployed on a

system like a navigating robot.
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Figure 7.8: Loss comparison between a sequence of images and a single image used for
reconstruction.

Combined VAE that Reconstructs FPV to TDV and TDV to FPV Simultane-

ously

An open issue is whether a single VAE could perform the linkage of views in both direc-

tions. We constructed a VAE to test this by interleaving FPVs and TDVs as inputs, while

conducting the training for reconstructing the transformed view (see Supplemental Figure

40). This combined model had nearly identical spatial information and coherence as the two

separate VAEs (see Supplemental Figure 42). As before, the spatial information and the

coherence of latent variables was higher going from a TDV to a FPV than from a FPV to

a TDV. Furthermore, many latent variables responded to head direction. Example latent

variables that are sensitive to place and heading for the combined model can be seen in

Supplemental Figures 59 through 62). It should be noted that although the reconstruction

loss going from TPV to FPV was similar, the loss going from FPV to TDV was significantly

higher in the combined model (Wilcoxon signed rank test p < 0.001). These results suggest

that one system could perform this function, but that there may be advantages to having a

separate system for each transformation direction.
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7.3 Discussion

Using tools from machine learning and artificial intelligence (i.e., Variational AutoEncoders

or VAEs), we investigated a fundamental cognitive computation, which is the ability to

change one’s perspective from a global mental map to an egocentric sensory experience,

and vice versa. This is an important, but oftentimes overlooked, aspect of the cognitive

map [Tolman, 1948]. Our results suggest that two types of neural activity can support

this transformation: 1) Specific representations of locations and objects were observed when

reconstructing a first-person view (FPV) from a top-down view (TDV), and 2) Specific

representations of heading with more diffuse representations of location were observed when

reconstructing a TDV from a FPV. The response of the hidden variables in the present

VAEs have similarities to those observed in the brain, with latent variables resembling head

direction cells, place cells and cells that encode the distance to objects. Critically, we did

not explicitly create such cell types in our model, rather these responses, which resemble

place and head direction cells, emerge from the way our model solves this problem.

7.3.1 Neurobiological Evidence for Transformations between Views

Studies with humans and non-human primates have revealed neural correlates for trans-

formations between views or perspectives. In humans, evidence suggests that retrosplenial

cortex (RSC) activity is related to route learning from an egocentric viewpoint [Wolbers

et al., 2004] and to navigating from a first-person perspective after looking at a top-down

map perspective [Sherrill et al., 2013, Zhang et al., 2012]. Although RSC is more active in

first-person navigation compared with top-down navigation [Sherrill et al., 2013], the evi-

dence for a transformation is indirect, and there are multiple factors to which the RSC could

be responding. Within the first-person perspective, RSC is involved in changing viewpoints

to different locations. For example, mentally rotating one’s viewpoint to the position of an

101



avatar or an arrow yields activation in RSC and parietal-occipital sulcus [Lambrey et al.,

2012]. In addition, RSC activity is related to the amount of viewpoint change relative to

the environmental frame [Sulpizio et al., 2013] and RSC activity is modulated by the magni-

tude of a viewpoint shift [Sulpizio et al., 2016]. Furthermore, RSC responds to perspective

changes when the magnitude of the shift is unknown ahead of time, indicating that it is

helpful in making online perspective changes.

Human intracranial recordings in the medial temporal lobe revealed boundary-anchored

neural representations that were modulated by one’s own as well as another individual’s

spatial location [Stangl et al., 2021], and recordings of the EC in monkey revealed neurons

that represent gaze position in multiple spatial reference frames [Meister and Buffalo, 2018].

These findings more broadly indicate that multiple brain regions in the primate play a role

in orienting and processing view-based information from different perspectives [St Jacques

et al., 2017, 2018].

In the rat, neurons have been observed that respond to specific spatial frames of reference

(e.g., allocentric, egocentric or route-centric), as well as multiple spatial reference frames

[Alexander and Nitz, 2015, Jacob et al., 2017, Nitz, 2012]. Some RSC neurons have place

specific responses, and the activity of a population of RSC neurons is sufficient to predict

the location of a rat in a maze [Alexander and Nitz, 2015]. RSC neurons are sensitive

to distance and orientation relative to boundaries [Alexander et al., 2020a]. RSC in both

humans [Chrastil et al., 2015, 2016] and rodents [Alexander and Nitz, 2017] has been im-

plicated in mapping distance to other locations in the environment. RSC head direction

neurons encode allocentric orientation relative to environmental boundaries [Cho and Sharp,

2001]. RSC activity is sensitive to distance and orientation relative to boundaries and to

left versus right turning actions [Alexander et al., 2020b, Alexander and Nitz, 2017]. PPC

neurons have been observed to simultaneously map position in multiple external frames of

reference. [Nitz, 2012]. Still, none of these studies have put the rodent in situations where it
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had multiple viewpoints, which would be difficult to undertake. One study, which is a step

in this direction, recorded from the rodent hippocampus and showed place cell responses to

itself and to another rat it was observing [Danjo et al., 2018].

However, these studies only involve changes between different first-person viewpoints. Ex-

tending this, our simulations suggest a neural solution that uses strong heading signals plus

a mixture of place responses to link FPVs to TDVs and more specific place responses with

heading to link TDVs to FPVs.

An interesting parallel to the task carried out in our simulations is studies with freely behav-

ing bats. Place cells, head direction cells, and grid cells have been observed in the bat both

on the ground when crawling and in the air when flying [Geva-Sagiv et al., 2015, Ulanovsky

and Moss, 2007, Sarel et al., 2017]. Similar to [Danjo et al., 2018], social place cells have been

found when the bats are viewing other bats [Omer et al., 2018]. GPS tracking of foraging

bats over long time periods have demonstrated the ability to use landmarks and take novel

routes from a TDV [Toledo et al., 2020, Harten et al., 2020]. Taken together, there is evi-

dence suggesting that encoding and utilizing different spatial perspectives during navigation

and memory is a common cognitive function across multiple organisms and multiple brain

regions.

7.3.2 Modeling Transformations between Views

Computational neuroscience models have attempted to simulate transformations between

allocentric position and orientation in the real world and the egocentric, retina-framed view

at that location and orientation. In one influential model, head direction or gaze direction

cells modulated activity in RSC by rotating environmental variables [Bicanski and Burgess,

2018, Byrne et al., 2007]. This modulation converted allocentric border or object vector cells

into an egocentric bearing to boundaries and objects, and vice versa. Such gain modulated
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fields have been postulated and observed in PPC [Pouget and Sejnowski, 1997, Snyder et al.,

1998]. In another model, RSC acted as an arbitrator, which depending on the model’s

confidence in the current task, would activate an allocentric reference frame in the HPC

or an egocentric frame in the PPC [Oess et al., 2017]. While these models and others

have been useful in suggesting the pathways and neural activity that might produce these

transformations, they make assumptions on the underlying computations. For example,

Byrne, Becker and Burgess [Byrne et al., 2007] and later Bicanski and Burgess [Bicanski

and Burgess, 2018] suggested that the same circuit computed the transformation for both

directions. In addition, they did not specifically examine the linkages between FPVs and

TDVs.

The present model attempts to be agnostic on how these computations are implemented.

Rather than creating a neural network model based on the known responses or connectiv-

ity in specific brain regions, we used VAEs to solve the transformation task [Kingma and

Welling, 2019], and then tested their feasibility by comparing their responses (i.e., hidden

layers and latent variables) to empirical experiments. The latent variables in these VAEs

indicate different responses and computations depending on the transformation direction.

Furthermore, the separate models for each transformation had less reconstruction loss than

a combined model. Whereas strong spatial coding by individual latent variables were ob-

served in TDV to FPV transformations, head direction coding and diffuse place coding were

more prevalent in FPV to TDV transformations.

7.3.3 Applying Artificial Neural Networks to Neuroscience

Neuroscientists are turning to Artificial Intelligence (AI) methods to explain their data [Chen

et al., 2020a]. For instance, using deep convolutional neural networks (CNNs) as models of

hierarchical feature representation in the ventral visual stream can show different cortical
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responses in the hidden layers [Cichy and Kaiser, 2019, Güçlü and van Gerven, 2015, Yamins

and DiCarlo, 2016]. Moreover, CNNs have shown cortical responses in the dorsal visual

stream [Mineault et al., 2021]. Others proposed similar models to synthesize control images

to maximally activate specific neuron sites in the monkey V4 [Bashivan et al., 2019]. In

a somewhat related robotics study, a deep learning network used the robot’s local views

and geographic hints, such as satellite images or road maps, to plan paths over a variety of

environments [Shah and Levine, 2022]. In the present work, these TDVs were used to predict

FPV, and vice versa. This might be an alternative method to localization and mapping in

robotics.

The present work compared the sensitivity of latent variables with neural responses. Simi-

larly, latent representations have been used to model the human visual system during working

memory tasks [Hedayati et al., 2021]. In another modeling study, a latent factor analysis

using dynamical systems was applied to monkey and human motor cortex data to accurately

predict behavioral variables and neural dynamics [Pandarinath et al., 2018]. Deep VAEs

have been used to interpret fMRI data where there is a lack of labeled data [Qiang et al.,

2021]. Our work is another example of how VAEs can be used to model the nervous sys-

tem and make valuable predictions about the computations and implementations underlying

cognitive function.

The present modeling work suggests a means to link a FPV to a TDV and vice versa.

Although the modeling work is not based in neurobiology, the different encodings depending

on the transformation direction may be compatible with the RSC anatomy [Vann et al., 2009].

Whereas the dysgranular RSC has greater connectivity with cortical regions, such as visual

cortex, which provide first-person information [Makino and Komiyama, 2015], granular RSC

interacts more with the hippocampal formation and subiculum, which is more sensitive to

the allocentric coordinates [Alexander et al., 2020a, Alexander and Nitz, 2017, Olson et al.,

2017]. In our simulations, we showed that the model can recover from perturbations, without
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retraining, much like place cells in the hippocampus. Moreover, the system did not collapse

when large proportions of latent variables were ablated. These perturbation and ablation

simulations, suggest that the model can flexibly and rapidly adapt to change, which is a

hallmark of neural systems.

In summary, we present a computational model for linking perceptual views, which sug-

gests a potential neural implementation for this cognitive function. Furthermore, it makes

predictions regarding the functional anatomy suggesting separate encodings depending on

the direction of the view transformation, and the ability to adapt without retraining when

challenged with perturbations. Although this model provides a possible implementation, we

do not yet know exactly how the mammalian brain carries out such a task. Therefore, it will

be of interest to follow up this modeling study with similar experiments tailored for humans

and other animals. Furthermore, linking different views, as in [Shah and Levine, 2022], may

be applicable to robot navigation.

7.4 Materials and Methods

7.4.1 Robot Simulations

The Webots robot environment [Webots, Michel, 2004] was used to simulate an animal

freely exploring its environment (Fig. 7.1). The Khepera robot, which is a two-wheeled

robot produced by K-Team, was used for the simulations. During exploration, the robot

had a 50% chance of moving straight, 25% chance of veering (i.e., an arcing turn) toward

the left, and 25% chance of veering to the right. The robot has 8 distance sensors that

were used to detect the arena walls and the cylinders. If detected, the robot rotated, with

a 50% chance, either clockwise or counterclockwise until the front facing distance detectors

were clear. A camera was mounted on top of the robot for the FPV. Every update cycle,
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the camera frame was converted into a 64x64 RGB image (FPV) and a simulated overhead

camera took a JPEG image (TDV) of the robot in its environment. During the exploration,

the TDV from the simulator, the FPV from the robot’s camera, and other environmental

parameters (e.g., place, heading, distance to object) were collected and saved. The ”entrance

hall” was used as a default background. In the perturbation experiments, this was replaced

with the ”mountains” background which was a desert scene with mountains in the distance.

During the local cue perturbation experiments, either the green cylinder or both the green

and blue cylinders were rendered invisible using the transparency setting in Webots. The

Khepera’s distance sensors still detected the object, but they were not visible by the camera.

The same random number generator seed was used on all simulation runs to ensure that the

robot’s trajectory was the same in each condition. The software used to run the simulation

will be made available on GitHub upon publication.

7.4.2 Variational Autoencoder Construction and Latent Variable

Analysis

VAEs [Kingma and Welling, 2019] were constructed to transform between TDV and FPV.

Briefly, the VAE design is as follows. The perspective transformation model used in the

preliminary results is based on standard VAE training whose loss includes a reconstruction

loss term and a KL divergence term. The reconstruction term optimizes the network so

that the input could be reconstructed while the KL divergence term is used to constrain the

latent representation close to the prior distribution. To promote stable training, we used KL

annealing to gradually increase the weight of the KL term from 0 to 1 [Bowman et al., 2016].

The model was trained for 20,000 epochs. In the first 50 epochs, the KL term increased

linearly from 0 to 1. After 50 epochs, the KL term weight was kept at 1. After the VAE

was trained, TDVs or FPVs were presented to the model. We then can measure the latent

variable sensitivity by examining how much each latent variable changes with environmental
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changes. More details are given in the supplemental materials.

The VAE’s latent variables were analyzed for sensitivity to objects, heading, and place.

Object sensitivity was measured by Pearson’s correlation of the latent variable to the distance

from the robot to the red, green and blue cylinder. The distance function was given by eqn.

7.1:

dCylti =
T∑
t=1

3∑
i=1

∥(loct − cyli)∥ (7.1)

Where ∥(loct − cyli)∥, is the Euclidean distance between the location of the robot, loc, and

the location of cylinder, cyl. The distance, dCyl, was calculated for each i cylinder at time

t with T equal to 2000 time steps. This created a vector of length 2000 of the distances to

each cylinder object (dCyl) in the simulation. The sensitivity of each latent variable to the

cylinder objects was then given by eqn. 7.2:

cylni =
N∑

n=1

3∑
i=1

corr(lvn, dCyli) (7.2)

Where N is the number of latent variables, i is the preferred direction, lvn is the response of

the latent variable n for the 2000 time steps. The resulting cylni are correlation coefficients

for each latent variable to the red, green, and blue cylinder objects.

Head direction sensitivity was measured by Pearson’s correlation of the latent variable to a

cosine tuning curve with one of 16 preferred directions, which were evenly spaced from 0 to

2π. The cosine tuning curve was given by (eqn. 7.3):
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rHDti =
T∑
t=1

16∑
i=1

max(0.0, cos(rott − pdi)) (7.3)

Where the expected cosine tuning response for each i preferred direction pd was calculated

based on the robot’s heading rot at data point t with T equal to 2000 time steps. This

created a vector of length 2000 of expected head direction responses for each preferred

direction (rHD). The sensitivity of each latent variable to head direction was then given by

eqn. 7.4:

hdni =
N∑

n=1

16∑
i=1

corr(lvn, rHDi) (7.4)

Where N is the number of latent variables, i is the preferred direction index, and lvn is the

response of the latent variable n for the 2000 time steps. The resulting hdni are correlation

coefficients for each latent variable for each of the 16 idealized head direction cells.

Place cell sensitivity was measured by Pearson’s correlation of the latent variable to a 2-

dimensional Gaussian centered at one of 16 locations, which were evenly spaced across the

robot’s arena. The Gaussian function was given by eqn. 7.5:

rP lcti =
T∑
t=1

16∑
i=1

exp(−∥(loct − ctri)∥)
σ

(7.5)

Where ∥(loct − ctri)∥, is the Euclidean distance between the location of the robot, loc, and

the centroid of the place cell, ctr, and σ was set to 0.33. The response, rP lc, was calculated
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for each i place at time t with T equal to 2000 time steps. This created a vector of length

2000 of expected place cell responses for each location (rP lc). The sensitivity of each latent

variable to place was then given by eqn. 7.6:

plcni =
N∑

n=1

16∑
i=1

corr(lvn, rP lci) (7.6)

Where N is the number of latent variables, i is the preferred direction, lvn is the response of

the latent variable n for the 2000 time steps. The resulting plcni are correlation coefficients

for each latent variable for each of the 16 idealized place cells.
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Chapter 8

Conclusions

8.1 Summary

In recent years, there has been a growing convergence between machine learning and neuro-

science. On the one hand, machine learning could benefit from the insights and inspiration

provided by the discoveries in neuroscience, as well as the integration of biologically-inspired

components. On the other hand, machine learning techniques can also be used to enhance

our knowledge of the brain and its functions.

The projects introduced in this dissertation all involve machine learning techniques and neu-

roscience findings. For the projects of neuromodulated patience control for robot navigation

(Chapter 3) and reinforcement learning with neuromodulation systems for dynamic environ-

ment adaptation (Chapter 4), we integrated 5-HT, NE and ACh neuromodulation systems

to help the self-driving mobile robot and reinforcement learning agents to achieve better

performance. Inspired by the latent representation in brain, we proposed a method called

LUSR to improve the domain adaptation performance of reinforcement learning algorithms

by addressing the adaptation problem from the pixel domain to a latent space (Chapter
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5). Furthermore, inspired by memory consolidation in the cortex, we introduced a method

of policy distillation with selective input gradient regularization to achieve both computa-

tion efficiency and high interpretability for explainable reinforcement learning (Chapter 6).

These chapters showed how inspiration from neuroscience could improve machine learning.

In contrast to the other chapters, , my work of linking first-person views and global views

utilized the machine learning technique of VAE to enhance our understanding about how

brain may conduct the view transformation in a 3-D environment (Chapter 7).

Overall, this dissertation demonstrated the mutual beneficial relationship between the fields

of machine learning and neuroscience. The successful integration of machine learning and

brain mechanisms/findings in the projects encourage more developments of bio-inspired ma-

chine learning and AI-augmented neuroscience research.

8.2 Future Directions

The bio-inspired machine learning projects in this defense focus on the utilization of bio-

inspired components (e.g. neuromodulation systems) and high-level intuitions (e.g. memory

consolidation) to help the machine learning system. One limitation of projects introduced

in Chapter 3 and 4 is that the machine learning and bio-inspired components are trained or

updated separately. For example, in the project of utilizing neuromodulation systems to help

reinforcement learning agents to adapt to dynamic environment changes, the training of re-

inforcement learning policies and the update of NE and ACh neuromodulation systems were

conducted separately. To further utilize neuroscience inspirations, one future direction is

integrating them into the learning of machine learning techniques. For example, dopamine

neuromodulation is a vital mechanism in the brain that regulates reward and dopamine

neurons play a key role in reinforcement learning. We may try to integrate dopamine neu-

romodulation into the learning method of reinforcement learning.
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A potential area of future research involves expanding upon the project presented in Chapter

5, which deals with the problem of domain adaptation in reinforcement learning. In Chapter

5, the assumption was made that the test domains are visually distinct from the training do-

main, but share the same underlying dynamics. This assumption restricts the applicability

of our approach. To overcome this limitation, we could broaden the problem to encompass

transfer learning. In doing so, the test domains would not be required to share the same un-

derlying dynamics as the training domain. However, this approach raises a broader question

of how to effectively transfer the knowledge acquired from the policy trained in the original

domain to the new domains. One possible solution to this question is to use the technique of

policy distillation, which was introduced in Chapter 6. However, further research is needed

to fully address this issue.

Future research could also build upon the perspective transformation project, which utilized

a standard variational autoencoder (VAE) to learn latent encodings within a simulated robot

environment. To advance this work, the experiment could be upgraded from a simulated

robot to a real mobile robot navigating in an outdoor park. This would require the use

of more advanced deep learning techniques to handle the complex real-world environment.

For example, advanced attention mechanisms, transformer architectures, or diffusion models

could be induced into the neural network models. Such improvements in the experiment

setting and deep learning techniques may lead to further advancements in the findings.
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route knowledge in complex spatial environments. Cognitive Brain Research, 21(3):401–
411, 2004. ISSN 0926-6410. doi: https://doi.org/10.1016/j.cogbrainres.2004.06.013.

Jinwei Xing. Rlcodebase: Pytorch codebase for deep reinforcement learning algorithms.
https://github.com/KarlXing/RLCodebase, 2020.

Jinwei Xing, Xinyun Zou, and Jeffrey L Krichmar. Neuromodulated patience for robot and
self-driving vehicle navigation. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2020.

Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar.
Domain adaptation in reinforcement learning via latent unified state representation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10452–
10459, 2021.

Jinwei Xing, Elizabeth R Chrastil, Douglas A Nitz, and Jeffrey L Krichmar. Linking global
top-down views to first-person views in the brain. Proceedings of the National Academy
of Sciences, 119(45):e2202024119, 2022a.

Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Policy
distillation with selective input gradient regularization for efficient interpretability. arXiv
preprint arXiv:2205.08685, 2022b.

Jinwei Xing, Xinyun Zou, Praveen K Pilly, Nicholas A Ketz, and Jeffrey L Krichmar. Adapt-
ing to environment changes through neuromodulation of reinforcement learning. In From
Animals to Animats 16: 16th International Conference on Simulation of Adaptive Be-
havior, SAB 2022, Cergy-Pontoise, France, September 20–23, 2022, Proceedings, pages
115–126. Springer, 2022c.

Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Achieving
efficient interpretability of reinforcement learning via policy distillation and selective input
gradient regularization. Neural Networks, 161:228–241, 2023.

D. L. Yamins and J. J. DiCarlo. Eight open questions in the computational modeling of higher
sensory cortex. Curr Opin Neurobiol, 37:114–120, 2016. ISSN 1873-6882 (Electronic) 0959-
4388 (Linking). doi: 10.1016/j.conb.2016.02.001.

Angela J Yu and Peter Dayan. Uncertainty, neuromodulation, and attention. Neuron, 46
(4):681–692, 2005.

128

https://github.com/KarlXing/RLCodebase


Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 5824–5836. Curran Associates, Inc., 2020. URL https://proceedings.

neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 21024–21037. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

f0eb6568ea114ba6e293f903c34d7488-Paper.pdf.

Hui Zhang, Milagros Copara, and Arne D. Ekstrom. Differential recruitment of brain net-
works following route and cartographic map learning of spatial environments. PLOS ONE,
7(9):e44886, 2012. doi: 10.1371/journal.pone.0044886.

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan
Sclaroff. Top-down neural attention by excitation backprop. International Journal of
Computer Vision, 126(10):1084–1102, 2018.

Li Zhang, Xin Li, Mingzhong Wang, and Andong Tian. Off-policy differentiable logic rein-
forcement learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 617–632. Springer, 2021.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness
of deep neural networks via stability training. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 4480–4488, 2016.

Huihui Zhou and Robert Desimone. Feature-based attention in the frontal eye field and area
v4 during visual search. Neuron, 70(6):1205–1217, 2011.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2223–2232, 2017.

Xinyun Zou, Soheil Kolouri, Praveen K Pilly, and Jeffrey L Krichmar. Neuromodulated
attention and goal-driven perception in uncertain domains. Neural Networks, 125:56–69,
2020.

129

https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f0eb6568ea114ba6e293f903c34d7488-Paper.pdf

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Reinforcement Learning
	Neuromodulation
	Attention
	Generative Modeling

	Neuromodulated Patience for Robot and Self-Driving Vehicle Navigation
	Introduction
	Methods
	Navigation Task
	Robot and Software Design
	Waypoint Navigation and Model of Neuromodulated Patience
	Road Following with Deep Reinforcement Learning

	Results
	Waypoint Navigation in Encinitas Community park
	Waypoint Navigation in Aldrich park

	Discussion

	Adapting to Environment Changes Through Neuromodulation of Reinforcement Learning
	Introduction
	Problem
	Method
	ACh and NE Neuromodulation
	Update of ACh and NE System
	The Complete System

	Experiments
	Results
	Reinforcement Learning Performance
	Activity of Neuromodulatory System

	Conclusion

	Domain Adaptation in Reinforcement Learning via Latent Unified State Representation
	Introduction
	Related Work
	Domain Adaptation in Reinforcement Learning
	Methods
	LUSR Definition
	Learning LUSR

	Experiments
	CarRacing
	Autonomous Driving in CARLA

	Results and Discussion
	CarRacing
	Autonomous Driving in CARLA

	Conclusion

	Achieving Efficient Interpretability of Reinforcement Learning via Policy Distillation and Selective Input Gradient Regularization
	Introduction
	Background and Motivation
	Policy Distillation
	Saliency Map in RL
	Motivation

	Method
	Experimental Results
	Setup
	Effectiveness via Visual Illustrative Examples
	Importance of Computational Efficiency
	Saliency Dataset and Evaluation
	Policy Performance Maintenance
	Improved Robustness to Attacks

	Conclusion

	Linking Global Top-Down Views to First-Person Views in the Brain
	Introduction
	Results
	Robot Simulation and Modeling Transformations
	Spatial Representations in Latent Variables
	Effect of Latent Variable Ablations
	Effect of Environmental Perturbations
	Alternative Models

	Discussion
	Neurobiological Evidence for Transformations between Views
	Modeling Transformations between Views
	Applying Artificial Neural Networks to Neuroscience

	Materials and Methods
	Robot Simulations
	Variational Autoencoder Construction and Latent Variable Analysis


	Conclusions
	Summary
	Future Directions

	Bibliography



