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ABSTRACT OF THE DISSERTATION 

 

Assessing seasonal snowpack distribution  

and snow storage over High Mountain Asia 

 

by 

 

Yufei Liu 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2022 

Professor Steven A. Margulis, Chair 

 

Seasonal snowpack is a vital water resource that impacts downstream water availability. However, 

accurately estimating snow storage and characterizing its spatiotemporal distribution remain 

challenging, in particular for data-scarce regions such as High Mountain Asia (HMA). In this 

dissertation, a newly developed snow reanalysis method is used to estimate snow water equivalent 

(SWE) over the HMA region, assessing its spatiotemporal distribution and quantifying the regional 

snow storage. The method assimilates fractional snow-covered area (fSCA) from the Landsat and 

MODIS platforms, over the joint Landsat-MODIS record (Water Year (WY) 2000 – 2017).  A fine 

resolution (16 arc-second, ~480 m) and daily High Mountain Asia snow reanalysis (HMASR) 

dataset is derived and analyzed in the dissertation. 

The key conclusions are summarized as follows: 1) Snowfall precipitation is found underestimated 

in most precipitation products with sizeable uncertainty when evaluated in sub-domains of HMA. 



 iii 

The research shows the potential of using satellite snow observations as a constraint, to infer biases 

and uncertainties in snowfall precipitation in remote regions and complex terrain where in-situ 

stations are very scarce.  2) Through examining the HMASR dataset, the domain-wide peak 

seasonal snow storage is quantified as 163 km3 when aggregated across the full HMA domain and 

averaged across WYs 2000-2017, with notable interannual variations between 114 km3 and 227 

km3. 3) Existing global snow products over HMA on average underestimate the peak snow storage 

by 33% ± 52% over the entire HMA, and the uncertainty in peak snow storage estimates is 

primarily explained by accumulation season snowfall (88%) over HMA, partly due to a wide range 

(uncertainty) in precipitation (snowfall). Ultimately, the snow storage and its spatiotemporal 

variations characterized in this work can be used to understand the role of seasonal snowpack in 

the regional climate and water cycle over this region. 
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CHAPTER 1 

Introduction 

1.1 Background and motivation 

High Mountain Asia (HMA) consists of the highest mountain ranges (e.g. Tien Shan, Pamir, 

Kunlun Shan, Karakoram, Hindu-Kush, Himalayas) in Asia and the Tibetan Plateau. It provides 

sources of water for the largest river basins in Asia (e.g. Indus, Ganges, Brahmaputra, Yangtze, 

Yellow, etc.), which feeds billions of people living downstream (Immerzeel et al., 2010). The 

climate of this region is significantly affected by winter westerlies (brings moisture to the 

northwestern HMA), and the summer monsoons (brings moisture to the southeastern HMA), 

where the central HMA receives limited precipitation as vapor transport is blocked by the 

surrounding mountains (Aizen et al., 1997; Bookhagen and Burbank, 2010; Yao et al., 2012).   

Melt water from seasonal snowpack and glaciers are an important source of water in the large river 

basins of HMA (e.g. Bookhagen and Burbank, 2010; Immerzeel et al., 2010; Armstrong et al., 

2019; Khanal et al., 2021; Kraaijenbrink et al., 2021). Seasonal snowpack functions as a natural 

reservoir, which stores winter precipitation and releases it as snowmelt during spring and summer 

(Immerzeel et al., 2009). The snow-derived water supply is critical to meet the agricultural, 

industrial and human demands in HMA, in particular during the warm season when precipitation 

could be is insufficient in some regions (Bookhagen and Burbank, 2010; Kraaijenbrink et al., 2021).  

1.2 Challenges in large-scale snow mass estimation  

Despite the importance of snow-derived runoff in regional water cycle, our knowledge of the snow 

water equivalent (SWE) in HMA is poor. The spatiotemporal distribution in SWE and the overall 

snow storage remains largely uncertain. In fact, accurately estimating SWE at such scales remains 



 
2 

a great challenge worldwide, and it is even more difficult in mountainous regions due to the terrain 

complexity (Lettenmaier et al., 2015; Dozier et al., 2016; Bormann et al., 2018).  

In-situ stations offer direct measurements of snow depth and/or SWE and are considered more 

reliable sources, often used in model assimilation and validation for snowpack estimation. 

However, these stations are sparsely located in HMA, usually installed at flat locations, which is 

less representative of mountain snowpack with complex terrain (Winiger et al., 2005; Palazzi et 

al., 2013; Kirkham et al., 2019).  

Satellite-based platforms offer the potential for space-time continuous measurements of snow 

properties over large scales. Measurements of snowpack extent are broadly available from 

spaceborne platforms through the optical sensors (e.g. from Landsat, MODIS), with frequent (up 

to daily) and fine resolution (e.g. 30 m in Landsat), but are only indirectly related to snow mass. 

Snow depth and snow mass can be estimated from passive microwave sensors based on brightness 

temperature, yet such retrieval methods suffer from coarse resolution (e.g. 25 km) and bias 

(underestimation) in deep snowpacks (Takala et al., 2011; Dozier et al, 2016; Mortimer et al., 

2020). The application of active microwave sensors yields the potential of high-resolution and 

direct measurements in snow depth (e.g. Lievens et al., 2019), but is only available within the 

recent years and do not always have an unambiguous relationship between snow depth and radar 

backscatter.  

Global atmospheric reanalysis products provide another approach to large-scale SWE estimates as 

by-products of their land surface schemes. Nevertheless, most reanalysis datasets are not 

specifically designed for SWE estimation, and not well constrained by snow observations. 

Currently, there is still a need for large scale SWE datasets, that provide high-resolution and well-

constrained snow estimates over a longer period and covering mountainous areas in this region. 
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1.3 Objective of the dissertation 

The objective of this dissertation is to understand and quantify the spatiotemporal distribution in 

seasonal snow storage over HMA. To fill the spatiotemporal gap in existing SWE datasets and 

provide more realistic estimation of snow storage over HMA, we developed a novel High 

Mountain Asia snow reanalysis (HMASR; Liu et al., 2021) dataset. The dataset is derived using a 

newly developed snow reanalysis method (Margulis et al., 2019) that jointly assimilates fractional 

snow-covered area (fSCA) from the Landsat and MODIS platforms. SWE estimates are provided 

at fine resolution (16 arc-second, ~480 m) and daily, over Water Year (WY) 2000 – 2017 where 

Landsat and MODIS both exist. The snow reanalysis scheme is shown in details in the diagram 

below: 

 

Figure 1.1: Flow chart showing the snow reanalysis scheme that is used to derive the HMASR 

dataset in this dissertation (Figure from Margulis et al., 2019) 
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To generate reasonable uncertainty estimates in snowfall precipitation before applying the snow 

reanalysis over the full HMA, the bias and uncertainty in MERRA-2 snowfall precipitation is 

characterized at several sub-domains within HMA, with the following research questions 

addressed: 

1) Are the existing gridded snowfall products (e.g. MERRA2) biased over HMA and to what 

extent?  

2) How can the bias and uncertainty in these snowfall precipitation products be parameterized 

over HMA and its subregions?  

The derived uncertainty parameters were then applied in the development of the HMASR dataset 

over the full HMA domain. Through analyzing the HMASR dataset, the following scientific 

questions are addressed:  

1) How is seasonal snow distributed spatially and temporally across the major watersheds of 

HMA?  

2) What is the seasonal and interannual variability in the amount of snow storage over HMA? 

3) How is snow storage distributed across elevation and how does it vary under different 

climate conditions? 

The newly derived HMASR dataset offers the potential for evaluating the errors and uncertainty 

in SWE estimates from existing global datasets. In particular, the following scientific questions 

are addressed: 

1) What is the uncertainty in peak seasonal snow water storage over HMA and its watersheds?  

2) How much of the uncertainty in peak snow storage is explained by accumulation seasonal 

snowfall and ablation variability, respectively? 
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1.4 Organization of dissertation 

The dissertation is organized into five chapters: Chapter 2 quantifies the bias and uncertainty in 

snowfall precipitation from existing datasets (e.g. MERRA2), over representative sub-domains in 

HMA. Chapter 3 presents the spatiotemporal distribution of seasonal snowpack over HMA, 

derived from the newly developed HMASR dataset, and quantifies the seasonal storage as well as 

its variations over time. Chapter 4 evaluates the uncertainty in peak seasonal snow storage from a 

multi-dataset comparison, and examines the fractional variability explained by accumulation 

season snowfall and ablation. Chapters 2 and 3 have already been published (Liu and Margulis, 

2019; Liu et al., 2021), while it is anticipated Chapter 4 will be submitted for publication shortly. 

A brief summary of the key conclusion from this dissertation and proposed ideas for future work 

are presented in Chapter 5. 
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CHAPTER 2  

Deriving Bias and Uncertainty in MERRA-2 Snowfall Precipitation over 

High Mountain Asia 

A Bayesian approach to estimate bias and uncertainty in snowfall precipitation from MERRA-2 

and other precipitation products was applied over High Mountain Asia (HMA), using a newly 

developed snow reanalysis method. Starting from an ‘uninformed’ prior probability distribution, a 

posterior scaling factor applied to MERRA-2 snowfall was derived by constraining model-based 

estimates of seasonal snow accumulation and ablation over the water year (WY) with fractional 

snow covered area (fSCA) measurements derived from Landsat and MODIS (MODSCAG). 

Several sub-domains (nine representative 1° by 1° tiles) across HMA were examined over the 

period WYs 2001-2015 and compiled into an uncertainty parameterization where a lognormal 

distribution was fitted to the empirical posterior distribution with a mean of 1.54 (median of 1.19) 

and coefficient of variation of 0.83, indicating that MERRA-2 underestimates snowfall on average 

by ~54% with sizeable uncertainty. For reference, the uncertainties in snowfall precipitation from 

the ERA5 and APHRODITE-2 precipitation produces were also evaluated, and these products 

were found to underestimate snowfall, on average by a factor around 1.78 and 3.34 (with median 

scaling factors of 1.42 and 2.51) respectively. The results indicate that snowfall precipitation at 

high-elevations dominated by snowfall is underestimated in most existing products, especially in 

the gauge-based APHRODITE-2 product, where the biases were also found to exhibit geographical 

variations with the largest underestimation in monsoon-influenced high-elevation tiles. The 

derived MERRA-2 uncertainty model is being used to develop a full domain-wide HMA snow 
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reanalysis, which will shed further light onto the space-time variations in snowfall biases in these 

products. 

2.1 Introduction 

Accurate snowfall information is vital for hydrological modeling in snow-dominated regions, as it 

directly affects the estimation of snow water equivalent (SWE), and also influences streamflow 

prediction fed by snowmelt. This is especially important in High Mountain Asia (HMA), where a 

significant amount of precipitation falls as snow, resulting in large contributions of snowmelt to 

streamflow in many of its river basins (Bookhagen and Burbank, 2010).  

Snowfall is highly uncertain in HMA due to the large spatial variability in precipitation, limited 

ground observations and uncertainty in satellite measured precipitation (Andermann et al., 2011; 

Bolch et al., 2012; Palazzi et al., 2013; Maussion et al., 2014). Meteorological stations are sparsely 

located in this region, generally located at lower elevations, and therefore data from these stations 

can lack representativeness of precipitation at unmonitored locations, most notably higher 

elevations (Winiger et al., 2005; Palazzi et al., 2013). Satellite observations such as TRMM 

(Tropical Rainfall Measuring Mission; Huffman et al., 2007) can provide spatially continuous 

precipitation estimates, but have been found to be uncertain and potentially biased in the HMA 

region (Anders et al., 2006; Bookhagen and Burbank, 2006; Andermann et al., 2011; Hussain et 

al., 2017; Khan et al., 2018). In addition, both remote sensing and in situ data sources generally 

perform worse at characterizing snowfall compared to rainfall, often with significant 

underestimates of snowfall rates, because their instruments are mainly designed to measure liquid 

rainfall rather than snow or ice (Anders et al., 2006; Viste and Sorteberg, 2015).  

Precipitation can also be obtained from gridded datasets over the HMA region, including those 

derived from atmospheric reanalyses such as MERRA-2 (Modern-Era Retrospective analysis for 
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Research and Applications, version 2; Gelaro et al., 2017), and those that leverage interpolated 

rain-gauge data such as APHRODITE (Asian Precipitation Highly Resolved Observational Data 

Integration Towards Evaluation; Yatagai et al., 2012). Due to their coarse resolution, these gridded 

datasets often do not fully capture orographic precipitation in complex terrain (Palazzi et al., 2013) 

and those reliant on interpolated gauge data will suffer from the same representativeness issues at 

high elevations. Previous studies have investigated the uncertainty and bias in precipitation 

datasets, where significant variability among precipitation products was found over the Hindu-

Kush Karakoram Himalayas region, in both total precipitation (Andermann et al., 2011; Palazzi et 

al., 2013) and snowfall estimates (Viste and Sorteberg, 2015).  

Recent studies, using a variety of methods, suggest that most gridded precipitation datasets 

underestimate high-altitude precipitation in HMA. Tahir et al. (2011) found total annual 

precipitation estimates in APHRODITE to be lower than precipitation observed in high-altitude 

stations in the Hunza River Basin over the Karakoram range. Immerzeel et al. (2015) showed, by 

inversely inferring precipitation from glacier mass balance, that high-elevation precipitation in the 

upper Indus basin is underestimated in APHRODITE, ERA-Interim and TRMM, where ERA-

Interim is a global atmospheric reanalysis from the European Centre for Medium‐Range Weather 

Forecasts (ECMWF; Dee et al., 2011). Similarly, through evaluating runoff from glacio-

hydrological modeling against observations, Wortmann et al. (2018) showed APHRODITE 

underestimates precipitation by a factor of 1.5-4.4 in Tarim headwater catchments. The 

information gleaned from these previous studies generally provides bulk bias estimates through 

inferring precipitation from spatially integrated variables like streamflow or glacier mass balance. 

Moreover, most of the studies to date have focused on the upper Indus basin or other small-scale 
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catchments and on total precipitation, but provide less information over the broad HMA domain, 

and have not quantified the biases in snowfall.   

In this work, we used a Bayesian approach to estimate biases and uncertainties in MERRA-2 

snowfall precipitation using a newly developed snow reanalysis method (Margulis et al., 2019) 

that can indirectly infer precipitation estimates, by constraining prior model estimates with 

remotely sensed fSCA images over the HMA region. The specific motivation for this study is to 

generate reasonable uncertainty estimates for snowfall precipitation in order to apply the same 

Bayesian approach over the full HMA domain as part of the NASA High Mountain Asia project. 

However, the goal of providing an accurate accounting of precipitation uncertainty is relevant to 

any hydrologic modeling study in the region and therefore should be of interest beyond generating 

a new snow reanalysis dataset. Herein we aim to primarily characterize the uncertainty in MERRA-

2 snowfall precipitation at several sub-domains within HMA. Based on that characterization and 

inter-comparison with other products (e.g. APHRODITE-2 and ERA5) we address the following 

questions:  

1) Is MERRA-2 snowfall biased over HMA and how can its bias and uncertainty be 

parameterized?  

2) Is snowfall biased in other gridded precipitation products and to what extent?  

3) How do the snowfall biases vary spatially for these products and what is the spatial-

temporal distribution of snowfall? 
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2.2 Method and Dataset 

2.2.1 Test Tiles and Years 

The goal of this research is to characterize the uncertainty (including bias) in snowfall precipitation 

over HMA, which is critical for snow modeling in this region. We selected 9 representative tiles 

(1° longitude by 1° latitude) in our study domain to perform the analysis (Figure 2.1). These 9 test 

tiles were chosen to sample across variations in physiography and climate in the HMA region in 

order to assess the snowfall bias in different regimes. Four tiles are located in the western part of 

the domain, three tiles are located in southern part of the domain, and two tiles are located in the 

central/northeastern part of the domain (Figure 2.1). The expectation is that the precipitation 

regime of the first four tiles are dominated by winter westerlies, the southern three are influenced 

heavily by the Indian summer monsoon, and the remaining two are relatively dry locations forced 

by a mix of these and other synoptic drivers. Most of the selected tiles have a mean elevation above 

3000 meters, with limited glacier and forest cover (Table 2.1). The test years were chosen as water 

years (WYs) 2001 to 2015, where both Landsat and MODIS observations are used in the reanalysis 

method described below. The WY spans October 1st through September 30th of the following year, 

where the WY label corresponds to the calendar year in which the WY ends.  
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Table 2.1: Glaciation, climatological, and physiographic characteristics for the 9 test tiles. The tile 

coordinates in the table refer to the lower left corner of each tile. Annual temperature (Ta) and 

precipitation (Precip.) are based on MERRA-2 data.  

Tile  
Coordinates 

Sub- 
domain 

Mountain 
Range 

Mean 
Elevation 
(km) 

Glacial 
Coverage 
(%) 

Mean Forest 
Fraction (%) 

Annual 
Precip. 
(mm)  

Mean 
Annual Ta 
(℃) 

(41°𝑁, 77°𝐸) Syr Darya Tien Shan 3.8 13.3 1.1 719 -5.5 
(38°𝑁, 70°𝐸) Amu Darya Pamirs 2.6 1.0 2.8 1223 5.6 
(34°𝑁, 66°𝐸) Hindu Kush Hindu Kush 3.1 0.0 0.0 486 3.9 
(34°𝑁, 75°𝐸) Indus Karakorum 4.1 4.2 3.8 1542 -0.8 

(29°𝑁, 82°𝐸) 
Ganges/ 
Brahmaputra Himalayas 4.2 8.9 11.1 3376 -0.2 

(27°𝑁, 90°𝐸) 
Ganges/ 
Brahmaputra Himalayas 3.2 1.0 49.4 5566 7.7 

(29°𝑁, 97°𝐸) Salween Hengduan 4.5 5.0 7.1 1183 -0.1 
(36°𝑁, 85°𝐸) Tarim Kunlun 4.9 0.5 0.0 387 -6.9 
(38°𝑁, 98°𝐸) Yellow Qilian 4.1 1.1 1.5 723 -4.6 
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Figure 2.1: Elevation map of the HMA domain (middle) with locations of test tiles marked with 

red boxes. Major watersheds are delineated and labeled on the map, using the watershed 

boundaries from HydroSHEDS (Lehner et al., 2006). Corresponding to each test tile, the left panel 

shows the monthly climatology of precipitation (grey bars), snowfall (blue bars) and air 

temperature (red line), diagnosed by MERRA-2 data; the right panel shows the climatological 

mean fractional snow covered area (fSCA) map.  

2.2.2 Deriving the Bias and Uncertainty in MERRA-2 Snowfall Precipitation 

In this paper, we used the ensemble-based snow reanalysis method (Margulis et al., 2019) as a tool 

for estimating unknown precipitation biases and general uncertainty. The method is designed to 

acknowledge the typically large prior uncertainty in precipitation in high mountain regions and 

use a data assimilation approach to derive a posterior estimate that is constrained by the remotely 

sensed fSCA depletion time series. Specifically, a scaling factor b for precipitation is employed 
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for representing the prior uncertainty associated with the nominal precipitation estimate and its 

downscaling: 

𝑃!(𝑥" , 𝑡) = 𝑏!,$%&(𝑥") ∗ 𝑃$%&(𝑥$%&, 𝑡), for j = 1, …, N                              (1) 
 

where j is the replicate (individual realization) index and N is the total number of replicates in the 

ensemble. 𝑃!(𝑥" , 𝑡) is the snow reanalysis precipitation in replicate j at snow reanalysis pixel 𝑥" 

and time t. In this application, the model resolution (𝑥") is ~480 m (16 arcseconds). 𝑃$%&(𝑥$%&, 𝑡) 

is the nominal precipitation input from any precipitation data (e.g. MERRA-2 used in this study) 

at the nominal precipitation pixel 𝑥$%& and time t. 𝑏!,$%&(𝑥") is the scaling factor in replicate j at 

snow reanalysis pixel 𝑥", with respect to the nominal precipitation input 𝑃$%&. Typically, a specific 

distribution for b has been used in previous snow reanalysis applications (e.g. Durand et al., 2008; 

Girotto et al., 2014a; 2014b; Margulis et al., 2015; 2016; Cortés et al., 2016a; 2016b) with 

variations across different domains and/or with different precipitation products. For example, in 

the Sierra Nevada range in California (U.S.), b was postulated as lognormally distributed with a 

mean of 2.25 and coefficient of variation (CV) of 0.25 when applied with NLDAS-2 (Xia et al., 

2012) precipitation (Margulis et al., 2015; 2016). While in the Andes range in Central Chile, b was 

postulated as lognormally distributed with a mean of 1.75 and CV of 0.95 when used with MERRA 

(Rienecker et al., 2011) precipitation (Cortés et al., 2016a; 2016b). The b distributional parameters 

can be derived from in-situ observation data (where available), and provide a mechanism for 

performing precipitation downscaling, first-order bias correction and prior uncertainty 

perturbation, where the snow reanalysis framework provides posterior estimates for these 

parameters through conditioning (a Bayesian update) on fSCA measurements. 
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In data scarce domains like HMA, there may be insufficient data to even postulate a prior 

uncertainty model for precipitation. Hence, in contrast to previous applications, herein we take the 

approach that we know almost nothing about the prior uncertainty in MERRA-2 precipitation (and 

how it should be downscaled) beyond a range of values seen in the literature. In this ‘uninformed’ 

approach, the prior b distribution is specified as uniformly distributed (i.e. with equal probability) 

between 0.1 and 5 to reflect the wide range of biases seen in the literature as well as the potential 

for sub-grid heterogeneity in precipitation. Using such a distribution allows for the prior ensemble 

to reflect both under- and overestimation by the nominal precipitation dataset (i.e. MERRA-2), 

where those realizations that are most consistent with independent (fSCA) data will be determined 

by the Bayesian update. We used 50 replicates for the ensemble size in this study, which was 

deemed sufficient based on preliminary sensitivity tests. 

Characterization of the uncertainty in snowfall precipitation from MERRA-2 (including bias) is 

derived via the reanalysis step in the Particle Batch Smoother (PBS) approach (Margulis et al., 

2019), which is achieved through the conditioning of the prior ensemble of b on independent fSCA 

observations to derive a posterior distribution. A schematic illustration of the method used for 

updating the b distribution at a particular modeling pixel in a particular water year is presented in 

Figure 2.2, which is elaborated on below. 



 
18 

 

Figure 2.2: Flow chart highlighting how the reanalysis framework method is used to estimate 

uncertainty in snowfall precipitation at a particular modeling pixel in a particular water year, with 

red indicating prior and blue indicating posterior. In the time series plots, the shaded area shows 

the ensemble spread (inter-quartile range) and the solid line shows the ensemble median. Satellite 

retrieved fSCA from Landsat and MODSCAG are displayed in the posterior fSCA plot, and serve 

as the constraint that is used to infer snowfall precipitation.  

In the PBS approach, all replicates in the ensemble are initialized with equal prior weights, where 

the weights are interpreted as the discrete probability for b and other variables in the corresponding 

replicate: 

    𝑃𝑟𝑖𝑜𝑟: 𝑏!,$%&' (𝑥"), with	𝑤!'(𝑥") =
(
)

                          (2) 
 

where 𝑏!,$%&' (𝑥") is the prior scaling factor with respect to 𝑃$%& and 𝑤!'(𝑥") is the prior weight in 

replicate j at snow reanalysis pixel 𝑥". In this application a uniform distribution (between 0.1 and 
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5) is used to draw random prior samples of 𝑏!,$%&'  (Figure 2.2). The uncertainty in b is propagated 

to prior predictions of fSCA (𝑓𝑆𝐶𝐴*"+,,!' ) via the ensemble LSM-SDC modeling framework 

(Margulis et al., 2019). Modeling variables are updated through conditioning on the collection of 

satellite observed fSCA over the WY (𝑓𝑆𝐶𝐴&+-.): 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟: 𝑏!,$%&/ (𝑥") = 𝑏!,$%&' (𝑥"),				 

with	𝑤!/(𝑥") =
0!
)
𝑝1V(𝑓𝑆𝐶𝐴&+-.(𝑥") − 𝑓𝑆𝐶𝐴*"+,,!' (𝑥")), 𝐶1X    (3) 

where 𝑏!,$%&/ (𝑥") is the posterior scaling factor with respect to 𝑃$%& and 𝑤!/(𝑥") is the posterior 

weight in replicate j at snow reanalysis pixel 𝑥", and	𝑝2 is the likelihood function of measurement 

error (with specified covariance 𝐶1 ), and 𝑐3  is a normalization constant through which the 

posterior weights sum up to one (Margulis et al., 2019).  

Through conditioning on fSCA observations using the PBS approach, the modeling results are 

preserved in each replicate, but their corresponding weights are changed. Replicates with modeled 

fSCA closer to observations are assigned higher weights, and vice versa. The distribution of 

modeled variables (e.g. SWE, fSCA, etc.) and the b distribution at each pixel are therefore 

implicitly updated, due to the update in their posterior weights (Figure 2.2). It should be noted that, 

while the b scaling factor is applied to the total precipitation, since its posterior distribution is 

based on fSCA depletion, we would expect the posterior estimates should be most valid in snow-

dominated pixels, i.e. where a sufficient fraction of annual precipitation falls as snow such that 

there is a clear seasonal snowpack with fSCA depletion that can be captured by the Landsat and 

MODSCAG measurements. It is also possible that in some instances the b scaling factor is 

correcting for the fact that some storms through the year were misclassified as rain or snow based 
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on the air temperature. This would be expected to occur in transition zones where air temperature 

is near-freezing during snowfall events. 

In order to better interpret the posterior b distribution in terms of its probability rather than its 

posterior weights, we used a sequential importance resampling (SIR) algorithm (Zhou et al., 2006) 

to resample the b values, where we obtained a set of b values with the same posterior distribution 

but with equal weights. At each pixel, 𝑁 samples (where N is the total number of replicates) are 

randomly drawn from the discrete (posterior) 𝑏 distribution through a Monte-Carlo method, with 

the posterior weight 𝑤!/(𝑥") interpreted as the discrete probability to obtain the corresponding 

𝑏!,$%&/ (𝑥"). This generates a new sample set [𝑏!,$%&4 (𝑥")	\𝑗 = 1,… ,𝑁} (where the superscript R 

indicates “resampled”) at each pixel with N samples, and assign equal weights (𝑤!4(𝑥") =
(
)
) to 

each sample. This intermediate step is done for convenience in order to merge individual pixel 

distributions together to derive the distribution across the tile(s) as described below.  

We grouped the resampled scaling factor ensemble 𝑏!,$%&4 (𝑥") from all N samples and from all the 

pixels within each (1 °  by 1 ° ) test tile into an ensemble 𝑏567+,$%&4 	 to assess its tile-specific 

distribution, and also merged the 𝑏567+,$%&4  samples from all the test tiles into a larger ensemble 

𝑏87%9-7,$%&4 	to assess its ‘global’ distribution over the HMA region, with respect to the nominal 

precipitation 𝑃$%& . Furthermore, both 𝑏567+,$%&4  and 𝑏87%9-7,$%&4  are fitted with a lognormal 

probability function so as to parameterize the distributions. It should be noted that MERRA-2 is 

used as the nominal precipitation herein, such that the reanalysis application yields 𝑏$%& =

𝑏:;44<=. 

When merging the 𝑏!,$%&4  from different pixels into a large sample such as 𝑏567+,$%&4  and 

𝑏87%9-7,$%&4 , careful screening is performed so as to exclude the non-updated pixels from 
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contaminating the distribution. Three types of pixels are excluded from the large sample, namely 

pixels with water bodies, pixels that are non-snowy at low elevations, and pixels with glaciers or 

persistent snow at high elevations. The water bodies are identified from the land cover types, and 

the non-snowy pixels are identified when there is insignificant change in the posterior weights 

from the prior. The glaciers or persistent snow pixels are identified when there is significant carry-

over-snow that do not fully melt out in the melting season. Specifically, if, for a given pixel and 

year, the minimum SWE exceeds 1% of the maximum SWE, that pixel is considered to have 

significant carry-over-snow in that year, and that pixel-year is excluded in the large sample. It 

should be acknowledged that we found the posterior b distribution to be somewhat sensitive to the 

screening, especially for the carry-over-snow pixels at the high elevations (i.e. glacier pixels), 

hence the screening is meant to conservatively focus on seasonal snow pixels for the posterior b 

estimation.  

2.2.3 Other Gridded Precipitation Datasets 

To put the characterized MERRA-2 uncertainty results in larger context, we chose to also 

investigate the implicit uncertainty in two other gridded precipitation products, namely ERA5 (the 

fifth generation of ECMWF reanalysis product) and APHRODITE-2 (Asian Precipitation Highly 

Resolved Observational Data Integration Towards Evaluation; Yatagai et al., 2012).  

ERA5 is the latest reanalysis dataset produced by ECMWF, which provides global estimates of 

atmosphere, land and ocean variables. The dataset is currently available from 1979 to present at 

an hourly step, gridded to a spatial resolution of 0.25°. We used its hourly total precipitation from 

Copernicus Climate Change Service (C3S, 2017; https://cds.climate.copernicus.eu/cdsapp#!/home) 

to obtain surface precipitation estimates. APHRODITE-2 is produced by the Research Institute for 

Humanity and Nature (RIHN) and the Meteorological Research Institute of Japan Metrological 
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Agency (MRI/JMA) and provides daily precipitation estimates regionally over Asia based on a 

dense gauge network, gridded to spatial resolutions of 0.25° and 0.5°. We used the latest version 

APHRO_MA V1801_R1 Monsoon Asia Area Daily precipitation (http://aphrodite.st.hirosaki-

u.ac.jp/download/), which covers the period from 1950 to 2015.  

Similar to MERRA-2, ERA5 is a reanalysis product that assimilates both ground and satellite 

observations, while APHRODITE-2 is a station-based product that derives its estimate by 

interpolating precipitation gauges. These datasets are recently released, but their previous versions 

(e.g. ERA-Interim and APHRODITE) have been commonly used in studies over HMA, and many 

studies have assessed their performance of precipitation estimates in this region (e.g. Palazzi et al., 

2013; Immerzeel et al., 2015; Song et al., 2016; Hussian et al., 2017). Therefore, they are 

representative of an additional reanalysis product and gauge-based product respectively.  

We used 0.25 °  gridded resolution for ERA5 and 0.5 °  for APHRODITE-2, so as to best 

approximate the MERRA-2 resolution. The period chosen for analysis was WYs 2001-2015, 

which was the shared common period across all three precipitation products and MODIS snow 

products. The annual precipitation climatology maps (over WYs 2001-2015) are shown in Figure 

2.3. While some of the large scale precipitation features are similar, it is evident there are, in some 

cases, large differences between products.  
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Figure 2.3: Annual total precipitation (in mm) climatology (WYs 2001-2015) for raw ERA5, raw 

APHRODITE-2 and raw MERRA-2 over the HMA region. 

2.2.4 Deriving the Bias and Uncertainty in Snowfall Precipitation from Other Products  

The primary goal of this paper is the derivation of bias and uncertainty estimates for the MERRA-

2 product, which is accomplished by performing the snow reanalysis using the methodology 

described above. For context, bias and uncertainty estimates for the other gridded products were 

obtained by comparing them to the reanalysis estimates, i.e. whereby the posterior reanalysis 

estimates derived from MERRA-2 provide the reference. Specifically, note that the scaling factor 

𝑏$%& that is derived for each WY using the nominal MERRA-2 precipitation inputs (i.e. 𝑏:;44<=), 

can be thought of as follows by rearranging Equation (1): 

𝑏!,:;44<=4 (𝑥") =
>?"
#(A$)

>?%&##'((A$)
=

C>????"
#(A$)

C>????%&##'((A$)
     (4) 

 
where 𝑃a!4  represents the cumulative annual snow reanalysis precipitation for replicate 𝑗	and 

𝑃a:;44<=  represents the cumulative annual MERRA-2 precipitation. Since the scaling factor 

𝑏!,:;44<=4 	is particularly applied over snowfall precipitation (SP) that is conditioned on fSCA 

observations, 𝑏!,:;44<=4  is essentially the ratio between cumulative annual snowfall precipitation 

from the snow reanalysis (𝑆𝑃aaaa!4) for replicate j and that from MERRA2 (𝑆𝑃aaaa:;44<=).  
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Using the same notion we can derive scaling parameters for the other products, i.e.: 

𝑏!,;4<D4 (𝑥") =
C>????"

#(A$)

C>????&#')(A$)
	       (5) 

𝑏!,<>E4FGHI;=4 (𝑥") =
C>????"

#(A$)

C>????'*+#,-./&((A$)
	     (6) 

 

To avoid large scaling factors due to very small cumulative snowfall values in the denominator of 

Equations (5) and (6), any cases with less than 5 cm of cumulative annual snowfall were excluded 

from the analysis. Given the derived scaling factors for each product at the pixel scale, they were 

then aggregated to tile-based and global distributions in the same manner as described above for 

comparison with MERRA-2 and the snow reanalysis. 

In addition to precipitation itself, snowfall is dependent on air temperature. In the HMA snow 

reanalysis with MERRA-2 as the nominal forcing input, air temperature uncertainty is 

characterized with a normal distribution of N(-0.9℃, 1.2℃) based on the comparison to in-situ 

observations (Margulis et al., 2019). This means that the raw MERRA-2 air temperature was found 

to be 0.9℃ higher than in-situ on average, and this warm bias is corrected before performing the 

snow reanalysis. Similar bias-correction should also be performed in the ERA5 and APHRODITE-

2 air temperature before computing snowfall, so as to eliminate the effect of air temperature biases 

in the scaling factors. For consistency, we choose to commonly apply the snow reanalysis air 

temperature over all three products to obtain their snowfall estimates, which is essentially derived 

from the bias-corrected MERRA-2 air temperature. A threshold of 2℃ daily mean air temperature 

is applied to classify snowfall vs. rain over the daily precipitation, where daily precipitation is still 

obtained from their original product. The obtained snowfall in ERA5 and APHRODITE-2 is 

further used in Equation (5)-(6) to derive the snowfall bias estimates.  

It should be noted that snowfall biases in ERA5 and APHRODITE-2 are obtained herein by 

comparing to snowfall estimates from the snow reanalysis (i.e. “bias-corrected” MERRA-2 data). 
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This necessarily ties the baseline most closely to MERRA-2 rather than the other products, 

although the posterior corrects the raw MERRA-2 to values that are most consistent with the 

independent fSCA observations. This choice was made primarily because 1) the focus of this paper 

is on deriving an uncertainty parameterization for MERRA-2 and 2) due to the higher 

computational expense of running the reanalysis with each precipitation product. We leave a more 

thorough multi-product reanalysis for future work, and herein use the methods described above to 

provide a first-order comparison of the MERRA-2 biases relative to those from ERA5 and 

APHRODITE-2. Potential additional uncertainties introduced using our simplified comparison 

method come primarily from the diagnosis of MERRA-2 snowfall (i.e. using the 2℃  air 

temperature threshold) at the hourly time step, while for ERA5 and APHRODITE-2 we diagnose 

snowfall using the same threshold but at the daily time scale.  

2.3 Results and Discussion 

The snow reanalysis framework provides posterior pixel-wise estimates of the scaling factor 

𝑏:;44<= and the resulting seasonal precipitation time series. In the sections below, for each of the 

test tiles we present the resulting spatial distributions of climatological posterior precipitation and 

MERRA-2 tile-specific distributions for the scaling factor 𝑏567+,:;44<=4 , and the distribution across 

all of the tiles examined herein as 𝑏87%9-7,:;44<=4 . We then compare the derived snowfall 

uncertainty relative to the other precipitation products examined and compare how the posterior 

snowfall distribution varies with time and elevation in comparison to MERRA-2 and the other 

products.  

2.3.1 Snowfall Biases and Uncertainties in MERRA-2 

The climatology (i.e. average over WYs 2001-2015) maps of the interpolated MERRA-2 

precipitation, the downscaled MERRA-2 snowfall, the posterior snowfall from the snow reanalysis 
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(hereafter referred to as “snow reanalysis snowfall”) and the posterior b from the snow reanalysis 

at each of the test tiles are shown in Figure 2.4 (along with the respective elevation maps for 

reference). The snow reanalysis derived maps (posterior snowfall and posterior b) represent the 

climatology of the ensemble median fields. It should be noted that the conditioning of posterior b 

is most effective in seasonally snow-covered regions, so non-snowy or glacierized regions are 

masked out in Figure 2.4 and all results that follow. In terms of the spatial distribution, the 

MERRA-2 precipitation is bilinearly interpolated to the model grid (this is what the prior model 

uses as nominal input), but still retains the characteristics of the raw fields, and shows a smooth 

(coarse) representation of the precipitation field within a given 1 degree tile. The same smoothness 

is propagated to the downscaled MERRA-2 snowfall, which shows a mixed pattern of precipitation 

gradients and terrain variation, where the latter is due to the dependence on air temperature (which 

is downscaled to the model resolution). In contrast, the snow reanalysis effectively downscales the 

coarse-scale MERRA-2 by leveraging information in the set of higher-resolution (~480 m) fSCA 

images over each WY and in other model-based fields (i.e. terrain). For example, the 34°𝑁 66°𝐸 

tile in the Hindu Kush (Figure 2.4, third row) is characterized by a general elevation gradient from 

southwest to northeast, with the highest mountains in the northeast and lower lying valleys 

elsewhere. Due to its coarse resolution in the raw MERRA-2 fields, the spatial pattern of the 

interpolated MERRA-2 precipitation is nearly uniform in this tile (~500 mm/year) and clearly does 

not reflect the expected heterogeneity for such complex terrain. The downscaled MERRA-2 

snowfall also has a smooth field (where the heteoregeneity is introduced through air temperature 

dependence on elevation), with snowfall ranging between 200 mm to 500 mm in this tile. The 

snow reanalysis snowfall is significantly more heterogeneous, without preserving the continuous 

and smooth features from precipitation or elevation as in the downscaled MERRA-2 data. It also 
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exhibits high snowfall estimates at high elevations in the mountains and low snowfall in the valleys, 

but with more dramatic gradients across elevation. The snow reanalysis snowfall is greatly 

enhanced in the highest elevation mountain chain on its windward side, where the orographic 

precipitation would be expected, and it is greatly reduced in the northeasternmost valley on its 

leeward side, where a rainshadow would be expected. Similar heterogeneity in the snow reanalysis 

snowfall is seen across the other test tiles (Figure 2.4, fourth column), which are attributed to the 

heterogeneity in the fSCA data and the effects of topography on snowfall. Beyond the 

heterogeneity (downscaling), the snow reanalysis snowfall also contains bias correction, where 

most tiles (fourth column) show tile-average differences with the MERRA-2 data (third column).  
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Figure 2.4: (first column) DEM, and climatology (WY 2001-2015) for the: (second column) 

interpolated MERRA-2 precipitation, (third column) downscaled MERRA-2 snowfall, (fourth 

column) posterior snow reanalysis snowfall (ensemble median), and (fifth column) posterior snow 

reanalyis b (ensemble median) in each of the test tiles. Tile labels in blue and orange text represent 

their locations in the western domain or central-eastern domain respectively.  
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The spatial distribution of snow reanalysis snowfall (Figure 2.4, column 4) is a function of the 

spatial patterns in the posterior b maps (Figure 2.4, column 5), i.e. Equation (1), which are 

conditioned on fSCA data. The posterior b estimates are expected to be most robust in regions 

where there is a strong seasonal cycle in snow accumulation and ablation that is captured by the 

fSCA data. It shows complex patterns that reflect the combined effect of two possible corrections 

to the coarse scale MERRA-2 data: i) downscaling of MERRA-2 data that is accurate in a tile-

averaged sense but does not reflect the high-resolution patterns due to orography and other factors 

and ii) bias-correction of large-scale errors in MERRA-2 data. For example, in tile 38°𝑁 70°𝐸, the 

posterior b (ensemble median) is generally between 1.0 and 2.0, indicating that the MERRA-2 

snowfall is underestimated, and the snow reanalysis performs a bias-correction that effectively 

increases snowfall in this tile. However, the posterior b is also lower (and below 1.0) in certain 

pixels corresponding to the valleys in this tile, indicative of snowfall being overestimated in the 

downscaled MERRA-2 at those locations. Similar patterns are observed in other tiles, where the 

ensemble median of the posterior b is generally found to be between 1.0 and 2.0, but also exhibits 

values below 1.0 mostly in the valleys. Furthermore, the posterior median b is also found above 

2.0 at a few locations in these tiles, and are most apparent in tiles 27°𝑁 90°𝐸, 36°𝑁 85°𝐸, and 

38°𝑁 98°𝐸. We hypothesize that the higher posterior b observed in 36°𝑁 85°𝐸 (over the southern 

side mountains) is primarily due to capturing orographically enhanced precipitation, while that 

observed in tile 27°𝑁 90°𝐸 (at the foot of the mountain on the southern side) is primarily due to 

the misclassification of snow as rain. For tile 38°𝑁 98°𝐸 where the posterior b is found highest in 

the valleys, we hypothesize that it is primarily due to the non-effective updates in the intermittent 

snow. This tile is characterized by more intermittent snow that in some cases lasts only for several 

days at a time, where the accumulation or ablation of snow is more difficult to capture in the fSCA 
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measurement time series. As discussed earlier, the update in posterior b is most effective for 

seasonal snow pixels, which feature a distinct snow accumulation and ablation cycle that is 

reflected in fSCA observations.  

To provide a bulk assessment of the uncertainties, the posterior b distribution climatology across 

each tile (𝑏567+,:;44<=4 ) is shown in Figure 2.5 (blue bars). Note for reference that the prior 

distribution was uniform (dashed line) across the range so that the posterior distribution reflects 

the update in knowledge based on the assimilated fSCA measurements. The common feature seen 

in the empirical 𝑏567+,:;44<=4  distributions is that they all are skewed to the right, and most tiles are 

distinctly unimodal. To parameterize the empirical distributions, we chose to use a lognormal 

distribution. The lognormal distribution is commonly used in the literature to characterize the 

uncertainty distribution in precipitation, because it ensures non-negative precipitation, and the 

logarithm is suitable to characterize the extremely high precipitation amounts occurring at a low 

frequency. The fitted lognormal functions (using maximum likelihood estimation) are shown in 

Figure 2.5 (red curves), which match the empirical distributions well in most of the tiles (with the 

exception of 38°𝑁 98°𝐸). For example, in tile 38°𝑁 70°𝐸, the posterior 𝑏567+,:;44<=4  is highly right 

skewed with a mean of ~1.3 with most samples falling within a range of 0 to 2.5. In terms of the 

reanalysis procedure, this is indicative that replicates with values above 2.5 essentially have zero 

posterior weight and those near the mode have higher weights than the equal weights implicit in 

the prior uniform distribution. The other tiles in the western part of the domain (41°𝑁 77°𝐸, 34°𝑁 

66°𝐸, 34°𝑁 75°𝐸), those in the south and east (29°𝑁 82°𝐸, 27°𝑁 90°𝐸, 29°𝑁	97°𝐸) and one in 

the northern Tibetan Plateau (36°𝑁 85°𝐸) similarly show unimodal skewed distributions with 

mean values ranging from 1.0 – 1.9 and coefficient of variations ranging from 0.5 - 1.2. The tile 

in the northeastern Tibetan Plateau (38°𝑁 98°𝐸, Figure 2.1) is an exception in that, while right 
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skewed, the peak is not as distinctive and has much heavier tails on the right. As a result, it has a 

higher mean value of ~2.5.  From the empirical distribution it is clear that many of the higher prior 

values remain in the posterior distribution with non-negligible weights, where we hypothesize that 

the posterior b update may not be as effective in this tile due to intermittent snow, so that the 

𝑏567+,:;44<=4  distribution still retains some of the features of the prior uniform distribution. 

 

Figure 2.5: Distribution of 𝑏567+,:;44<=4  obtained from the snow reanalysis. The blue bars represent 

the empirical (posterior) distribution, the solid line is the fitted lognormal distribution, and the 

dashed line shows the prior uniform distribution for reference. The fitted lognormal parameters 

are displayed in each panel. Tile labels in blue and orange text represent their locations in the 

western domain or central-eastern domain respectively. 

For the purposes of applying the snow reanalysis (or for other modeling applications) over the full 

HMA domain, it is useful to derive a single “global” distribution for b that could serve as a prior 

estimate of uncertainty in MERRA-2 precipitation (snowfall). The global distribution of MERRA-
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2, i.e. 𝑏87%9-7,:;44<=4 , is presented in Figure 2.6 (left). It is the composite of the tile-specific 

distributions and therefore is also highly right skewed with a single mode around 1, with most of 

the values between 0.1 and 3. We again fit a lognormal function to the empirical global distribution, 

where it fits reasonably well but with a slightly higher and narrower peak than the empirical 

distribution (mostly due to the one tile described above). The lognormal distribution exhibits a 

mean value of 1.54 (median value of 1.19) and CV of 0.83 for the 𝑏87%9-7,:;44<=4  distribution. This 

implies that, on average, the magnitude of raw MERRA-2 snowfall is 54% too low compared to 

the snowfall diagnosed from the snow reanalysis over the HMA region. Moreover, the CV implies 

that there is significant uncertainty that should be considered when using MERRA-2 data for snow 

modeling in HMA. In other words, using MERRA-2 deterministically in snow modeling over 

HMA is likely to underestimate the snowfall distribution in terms of both the mean and its 

uncertainty. This global distribution is currently being used as the prior uncertainty model for 

precipitation inputs in applying the snow reanalysis over the full HMA domain shown in Figure 

2.1. The posterior estimates from that application will ultimately yield additional insight into the 

snowfall distribution over HMA that could be used to derive a more robust estimate of snowfall 

uncertainty and how it depends on physiographic, climatological, or other factors. 
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Figure 2.6: Derived distributions of the global precipitation scaling factor for MERRA-2 

(𝑏87%9-7,:;44<=4 , left), ERA5 (𝑏87%9-7,;4<D4 , middle), and APHRODITE-2 (𝑏87%9-7,<>E4FGHI;=4 , 

right). The blue bars represent the empirical (posterior) distribution, the solid line is the fitted 

lognormal distribution, and the dashed line shows the prior uniform distribution for reference. The 

fitted lognormal parameters are displayed in each panel. (Note the Bayesian approach is only used 

to derive the scaling factors in MERRA-2 precipitation, while those in ERA5 and APHRODITE-

2 are derived through comparing to posterior snow reanalysis results).  

2.3.2 Snowfall Biases and Uncertainties in other Gridded Precipitation Products 

The posterior snowfall biases and uncertainties provide a mechanism (i.e. reference baseline) to 

also provide a first-order characterization of uncertainty in other gridded precipitation products 

(ERA5 and APHRODITE-2) using Equations (5)-(6). For clarity it should be noted that posterior 

b values represent a bias-correction relative to the nominal product such that b values larger than 

1.0 represent a negative bias (underestimate) by the product and vice versa. The equivalent global 

uncertainty (i.e. resampled across all nine tiles) in snowfall precipitation in the other gridded 

products is shown in Figure 2.6 (middle and right). Based on the fitted lognormal distributions, we 

found that ERA5 has a comparable mean value of ~1.78 (median of 1.42), while APHRODITE-2 
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has a much higher mean value of ~3.34 (median of 2.51). This indicates that ERA5 is ~80% too 

low compared to the snowfall from the snow reanalysis, while APHRODITE-2 underestimates 

snowfall precipitation by more than a factor of 3. The CV values across all three products are 

comparable (~0.74-0.87), but the higher mean values in APHRODITE-2 imply a larger range of 

uncertainty. The large mean value for APHRODITE-2 is influenced in part by geographic 

differences across the domain. In particular, in the tiles east of 82°𝐸 (i.e. those most influenced by 

the Indian monsoon), the biases are generally above 4. Previous studies have pointed out that 

MERRA-2 snowfall is much greater than CRU TS (Climatic Research Unit Time series; Harris et 

al., 2014), TRMM and APHRODITE snowfall in the HMA region (Viste and Sorteberg, 2015), 

which is therefore consistent with larger underestimates in APHRODITE-2 compared to MERRA-

2. The underestimation of snowfall in the gauge-based APHRODITE-2 product, may be caused 

by not only the interpolation of gauges at lower elevations, but also the undercatch of snow and 

ice by traditional instruments in those gauges (Palazzi et al., 2013; Viste and Sorteberg, 2015). It 

should be noted that the analysis herein, by construct focuses on snowfall (not rainfall) by selecting 

high-elevation/snow-covered pixels, so that biases in APHRODITE-2 precipitation in lower 

elevation/rain-dominated (i.e. monsoon influenced) regions might be substantially lower.  

The geographic variation in the (tile-specific) biases across products is illustrated in Figure 2.7, 

where the biases are generally greater than 1 across all tiles in all datasets. It is apparent that the 

implied snowfall bias corrections in all datasets are smallest (less than ~2) in the three western 

tiles (38°𝑁 70°𝐸, 34°𝑁 66°𝐸, 34°𝑁 75°𝐸) and the southwestern tile (29°𝑁 82°𝐸) of the domain. 

The snowfall biases in all datasets are relatively larger (greater than ~2) in the northwestern tile 

(41°𝑁 77°𝐸) and the northeastern tile (38°𝑁 98°𝐸). For the remaining three tiles in the southern 

(27°𝑁  90°𝐸 , 29°𝑁  97°𝐸 ) and central-northern (36°𝑁  85°𝐸 ) part of the domain, it is only 
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APHRODITE-2 that show significantly large biases greater than 3. In contrast, the snowfall biases 

in MERRA-2 and ERA5 are relatively small (less than 2) in these tiles and are comparable to the 

other tiles. For the one tile (38°𝑁 98°𝐸) with more intermittent snow, where we hypothesize this 

leads to less robust posterior estimates, the biases are generally largest across products as shown 

in Figure 2.7. Whether these high biases are meaningful still needs further investigation. However, 

larger bias correction factors in areas like these tiles, where snowfall is very low, may not be as 

impactful as in other areas where snowfall is large. 

 
Figure 2.7: Geographic distribution of the snowfall bias correction (mean of 𝑏567+4 ) at each tile 

location across all precipitation datasets, including ERA5 (𝑏567+,;4<D4 , green), APHRODITE-2 

(𝑏567+,<>E4FGHI;=4 , black), and MERRA-2 (𝑏567+,:;44<=4 , red). The size of the circle is proportional 

to the value of the bias correction in each dataset, where a larger circle means greater bias (snowfall 

is more heavily underestimated in that dataset) and vice versa. 

In summary, when compared to the posterior snow reanalysis, the MERRA-2 is less biased than 

the other products in most tiles (7 out of 9 tiles) followed by ERA5 (2 out of 9 tiles) (Figure 2.7). 
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In contrast, APHRODITE-2 shows the highest bias in all of the tiles, which is consistent with the 

global distributions shown in Figure 2.6. The magnitudes of snowfall biases in all three products 

are more consistent in the western part of the domain, but less consistent in the central and eastern 

part of the domain. The most obvious differences are seen in the central part of the domain (36°𝑁 

85°𝐸, 27°𝑁 90°𝐸), where the snowfall biases from MERRA-2 and ERA5 are comparable and 

lower, while the snowfall biases from APHRODITE-2 are higher.  

2.3.3 Annual Snowfall Time Series among Different Products 

The posterior snowfall in the snow reanalysis was compared to the other precipitation products 

over the period of WYs 2001-2015 at each test tile (Figure 2.8). We found that the overall snowfall 

magnitude in the downscaled MERRA-2 is lower than that in snow reanalysis estimates at most 

tiles. Taking the tile 34°𝑁  66°𝐸  as an example, the snow reanalysis (blue line) snowfall is 

generally between 300-600 mm, while the MERRA-2 snowfall (red line) is between 200-500 mm 

and around 100 mm lower than the snow reanalysis. Similar patterns between MERRA-2 and the 

snow reanalysis snowfall can be observed in the other tiles, where MERRA-2 is generally lower 

than reanalysis snowfall in overall magnitude, which is consistent with the tile-specific and global 

distributions discussed above. The differences in snowfall between MERRA-2 and snow 

reanalysis is smallest in the two southern tiles (29°𝑁 82°𝐸, 27°𝑁 90°𝐸), where MERRA-2 shows 

a comparable magnitude of snowfall relative to the snow reanalysis. The largest differences are 

observed in the northeastern tile (38°𝑁 98°𝐸), where snowfall in MERRA-2 is around 200 mm 

smaller than that in snow reanalysis. Since we hypothesize the posterior estimates are less robust 

in this 38°𝑁 98°𝐸 tile with more intermittent snow, the posterior snowfall from snow reanalysis 

may be less reliable in this tile, explaining the large discrepancy between snow reanalysis and 

MERRA-2 in this tile.  
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Figure 2.8: Tile-averaged annual total snowfall time series from downscaled ERA5, downscaled 

APHRODITE-2, and downscaled MERRA-2 vs. the snow reanalysis (ensemble median and 

interquartile range). Tile labels in blue and orange text represent their locations in the western 

domain or central-eastern domain respectively. 

Snowfall time series estimates from other gridded products (ERA5 and APHRODITE-2) are also 

generally lower than the snow reanalysis. The magnitude of snowfall in ERA5 is comparable and 

slightly lower than MERRA-2, while that in APHRODITE-2 is significantly lower than all the 
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products, which is consistent with the snowfall biases discussed above (Figure 2.6). ERA5 

snowfall is lower than both MERRA-2 and snow reanalysis in the western tiles, while in the 

central-eastern domain it is sometimes comparable to MERRA-2 but lower than snow reanalysis 

(36°𝑁 85°𝐸 and 38°𝑁 98°𝐸), or comparable to the snow reanalysis (27°𝑁 90°𝐸) and higher than 

MERRA-2. APHRODITE-2 shows the minimum snowfall across all products, and the differences 

between APHRODITE-2 and other products are most apparent in the two southern tiles (27°𝑁 

90°𝐸, 29°𝑁 97°𝐸) and one central-northern tile (36°𝑁 85°𝐸), which is also consistent with the tile 

specific snowfall biases shown in Figure 2.7. Our results suggest that snowfall at these high-

altitude tiles is generally underestimated in the gauge-based products over HMA, which is 

consistent with Immerzeel et al. (2015) and Wortmann et al. (2018), where high-altitude 

precipitation was found to be underestimated in many existing products. Since the gauge-based 

products derive their estimates primarily by interpolating rain-gauges located at lower elevations, 

it is possible that those gauges undercatch precipitation and do not capture orographic effects, 

which consequently underestimates snowfall.  

The ensemble uncertainty in snowfall estimated from the snow reanalysis varies across the tiles 

(Figure 2.8). In general, the ensemble spread is relatively low in the western tiles, corresponding 

to the lower CV values in the 𝑏567+,:;44<=4  (~0.4-0.8 in Figure 2.5), and relatively high in the central 

and eastern tiles, corresponding to the higher CV values in the 𝑏567+,:;44<=4  (~0.9-1.2 in Figure 

2.5). As discussed earlier, the conditioning of the posterior b is most effective for seasonal snow. 

The western tiles are dominated by westerlies, and therefore receive most snowfall in winter when 

precipitation occurs; while the central-eastern tiles are more affected by monsoons, and receive 

less snowfall in winter but more in spring or summer (Figure 2.1). As a result, there is a strong 

seasonal cycle in the fSCA observations over the western tiles, resulting in better conditioning of 
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the posterior b and lower uncertainties in snowfall. In the central-eastern tiles, the fSCA 

observations are less seasonal, resulting in less effective conditioning of the posterior b and higher 

uncertainties in snowfall.  

In terms of the temporal correlations, snowfall in the gridded precipitation products are almost all 

positively correlated with snowfall from the snow reanalysis (Table 2.2). One exception is the 

correlation between APHRODITE-2 and the snow reanalysis, where a negative correlation 

coefficient of -0.13 exist in tile (34°𝑁 75°𝐸). Looking at individual tiles, the highest correlation 

coefficient averaged across all products is 0.76 for tile 34°𝑁 66°𝐸. The lowest average correlation 

coefficient is 0.31 for tile 34°𝑁 75°𝐸, mainly due to the negative coefficient from APHRODITE-

2. On average, the correlation coefficient with the snow reanalysis annual time series is highest for 

ERA5 (0.63), followed by MERRA-2 (0.57), and APHRODITE-2 (0.42). These averaged 

coefficient values, indicate that snowfall variability from the reanalysis is not fully explained by 

snowfall from the input products. This is not surprising, and not necessarily a drawback, because 

the reanalysis snowfall is conditioned on independent fSCA observations; therefore its variations 

should reflect the temporal variation in fSCA, which are more directly connected to snow 

dynamics than any of the precipitation products. 
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Table 2.2: Correlation coefficient of annual total snowfall between the snow reanalysis snowfall 

(ensemble median) and snowfall from other precipitation products (ERA5, APHRODITE-2 and 

MERRA-2). The tile coordinates in the table refer to the lower left corner of each tile.  

Tile 
Coordinates ERA5 APHRODITE-2 MERRA-2 Average 

(41°𝑁, 77°𝐸) 0.87 0.45 0.71 0.68 
(38°𝑁, 70°𝐸) 0.59 0.20 0.52 0.44 
(34°𝑁, 66°𝐸) 0.87 0.55 0.84 0.76 
(34°𝑁, 75°𝐸) 0.54 -0.13 0.51 0.31 
(29°𝑁, 82°𝐸) 0.76 0.80 0.58 0.71 
(27°𝑁, 90°𝐸) 0.18 0.28 0.69 0.38 
(29°𝑁, 97°𝐸) 0.73 0.86 0.33 0.64 
(36°𝑁, 85°𝐸) 0.75 0.21 0.54 0.50 
(38°𝑁, 98°𝐸) 0.35 0.59 0.37 0.43 
Average 0.63 0.42 0.57 0.54 

 

2.3.4 Snowfall Distribution with Elevation 

Finally, we investigated the snowfall distribution with elevation in each tile. All the coarse gridded 

precipitation products (MERRA-2, ERA5 and APHRODITE-2) were bilinearly interpolated to the 

reanalysis model grid, and downscaled with the reanalysis-derived air temperature to obtain 

snowfall estimates in each elevation bin (Figure 2.9). The solid lines represent the snowfall 

distribution from the downscaled MERRA-2 (red) and snow reanalysis (ensemble median, blue) 

respectively, and the two dashed lines represent the snowfall distribution from the downscaled 

ERA5 (green) and APHRODITE-2 (black). It should be acknowledged that none of the coarse 

products are expected to accurately resolve elevational snowfall distributions (beyond large-scale 

precipitation variations resolved by the coarse grids); the comparison herein is mainly to identify 

differences in localized elevational snowfall gradients within a tile.  
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Figure 2.9: Elevational distribution of annual total snowfall climatology (WY 2001-2015) from 

downscaled ERA5, downscaled APHRODITE-2, and downscaled MERRA-2 vs. the snow 

reanalysis (ensemble median). Tile labels in blue and orange text represent their locations in the 

western domain or central-eastern domain respectively. 

As expected, the snowfall exhibits positive elevational gradients across all products, where the 

gradient is highest for the snow reanalysis compared to other products (Figure 2.9). Taking tile 

41°𝑁 77°𝐸 as an example, snowfall from the snow reanalysis is 0 mm at the lowest elevations, but 

rapidly increased to around 1300 mm at the highest elevations (5000 m). For the other products in 

the same tile, while starting from 0 mm at the lowest elevations, snowfall at the highest elevations 

only ends up around 500 mm for MERRA-2, 400 mm for ERA5 and 250 mm for APHRODITE-

2. The most notable differences in snowfall is observed in the elevation range between 4000 m and 

5000 m, where the magnitude of snowfall is comparable at 4000 m, but almost 2~3 times higher 

in the snow reanalysis than other products at 5000 m. A similar feature is observed in other tiles, 

where the snow reanalysis shows the largest amount of snowfall in most elevation bins, followed 
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by MERRA-2, ERA5 and APHRODITE-2. The magnitude of snowfall across all products are 

comparable at low-mid elevations, but diverge at high elevations, with a mild slope observed in 

MERRA-2, ERA5 and APHRODITE-2, with a steeper slope observed in the snow reanalysis. 

Exceptions are two southern tiles (27°𝑁 90°𝐸, 29°𝑁 97°𝐸) that snowfall estimates are consistent 

among snow reanalysis, MERRA-2 and ERA5 across all elevation bins, and a steep slope is also 

observed in the latter two products at the highest elevation ranges. This indicates the potential of 

bias-correction in snowfall from the snow reanalysis especially at high elevations, where fSCA 

information exist, but precipitation gauges do not. 

Fitted with a linear regression (Table 2.3), the gradient of snowfall against elevation is highest in 

the snow reanalysis (451 mm/km), followed by MERRA-2 (252 mm/km), ERA5 (174 mm/km) 

and APHRODITE-2 (91 mm/km) on average. Overall, the snowfall gradients are highest (>300 

mm/km) in one western tile (38°𝑁 70°𝐸), two southern tiles (29°𝑁 82°𝐸, 27°𝑁	90°𝐸), and one 

north-eastern tile (38°𝑁 98°𝐸).  Specifically, the two southern tiles are strongly affected by the 

Indian monsoon thereby receiving significant amounts of precipitation in the summer. The phase 

of summer precipitation is therefore more sensitive to elevation, as lower elevations receive more 

rainfall and higher elevations receive more snowfall. In the other tiles that are affected by winter 

westerlies, the phase of winter precipitation may not be as dependent on elevation because of 

colder winter temperatures. In addition, the magnitude of precipitation brought by the Indian 

monsoon is much greater than the westerlies (Figure 2.3). Therefore, the southern tiles may still 

receive significant amounts of snowfall even in summer at the very high elevations, which 

accounts for the large snowfall gradients in these tiles.  
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Table 2.3: Snowfall gradients with elevation (mm/km) from the snow reanalysis (ensemble 

median) and other precipitation products (ERA5, APHRODITE-2 and MERRA-2) fitted with a 

linear regression. The tile coordinates in the table refer to the lower left corner of each tile.  

 
 
 

 

 

 

2.4 Conclusions 

Using an ‘uninformed’ prior estimate in a Bayesian snow reanalysis method, we parameterized the 

snowfall biases and uncertainties in MERRA-2 precipitation over the HMA region. The method 

was applied over 9 test tiles and spanned the WYs 2001-2015. The posterior scaling factor 

associated with using MERRA-2 as the nominal precipitation input (𝑏567+,:;44<=4 ) is effectively 

updated (from the prior uniform distribution) in most tiles featuring seasonal snow, which yields 

unimodal skewed uncertainty distributions that when fitted using lognormal distributions, 

exhibited tile-specific mean values ranging from 1.0 – 1.9 and tile-specific CV values ranging from 

0.5 - 1.2. One tile in the northeastern Tibetan Plateau is an exception with mean values around 2.5, 

which is likely indicative of a less robust parameterization due to the fact that intermittent snow 

plays a more significant role in that tile. By merging the results across tiles, we were able to 

quantify a global uncertainty model in snowfall using a lognormal distribution with a mean of 1.54 

(median of 1.19) and a CV of 0.83. The parameterized distribution indicates that MERRA-2 

Tile Coordinates ERA5 APHRODITE-2 MERRA-2 Snow Reanalysis Average 
(41°𝑁, 77°𝐸) 92 54 112 284 136 
(38°𝑁, 70°𝐸) 268 106 258 637 317 
(34°𝑁, 66°𝐸) 75 91 98 272 134 
(34°𝑁, 75°𝐸) 131 109 186 412 210 
(29°𝑁, 82°𝐸) 120 84 363 692 315 
(27°𝑁, 90°𝐸) 340 108 587 506 385 
(29°𝑁, 97°𝐸) 231 109 342 394 269 
(36°𝑁, 85°𝐸) 61 11 67 156 74 
(38°𝑁, 98°𝐸) 244 150 259 709 340 
Average 174 91 252 451 242 
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underestimates snowfall precipitation by ~54% on average (when compared to the posterior 

reanalysis estimates) with significant uncertainty.  

Estimates of the biases and uncertainty in snowfall from other gridded products (ERA5 and 

APHRODITE-2) were also derived in this study. Compared to the reanalysis snowfall, we found 

ERA5 and APHRODITE-2 generally, on average, underestimate snowfall by a factor of ~1.78 

(with a median scaling factor of 1.42) and ~3.34 (with a median scaling factor of 2.51) respectively 

over the HMA domain. The snowfall biases in MERRA-2 and ERA5 have similar magnitudes 

(where ERA5 is slightly larger), while that in APHRODITE-2 are much larger than the other two 

products, especially in the monsoon-influenced tiles. The biases in all datasets are generally lower 

in the western tiles compared to those in the central and eastern part of the domain.  

In addition to the biases and uncertainties in b, we also examined the spatial-temporal distribution 

of snowfall in the snow reanalysis and other products used in this study. Significant heterogeneity 

is observed in the snow reanalysis snowfall compared to the downscaled MERRA-2, showing the 

snow reanalysis effectively downscales the coarse MERRA-2 by leveraging information in the 

higher-resolution fSCA data observed in each WY and in other model-based fields (i.e. terrain). 

In terms of annual snowfall time series, snowfall from the snow reanalysis is generally greater than 

that from MERRA-2, where ERA5 shows similar magnitudes as MERRA-2 and APHRODITE-2 

significantly smaller than other products. The temporal correlation of snowfall between snow 

reanalysis and other products are mostly positive, and the averaged correlation coefficient across 

all tiles are between 0.42-0.63 for these products. The fact that the correlation is not higher is likely 

indicative of the impact of other factors (i.e. fSCA measurements) in the temporal variations in the 

posterior reanalysis estimates. Based on examination of the elevational distribution of snowfall, 
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we found the snowfall gradients largest in the snow reanalysis followed by MERRA-2, ERA5 and 

APHRODITE-2. 

Overall, this study shows the potential for using satellite snow observations as a constraint on 

models to infer biases and uncertainties in snowfall precipitation in remote regions and complex 

terrain where in-situ stations are very scarce. The results indicate that snowfall precipitation is 

underestimated in most precipitation products, and the biases are higher in the gauge-based 

precipitation product. One limitation in this study is that the method relies on the seasonal cycle 

of snow accumulation and ablation captured by fSCA observations to condition snowfall. 

Therefore, it is expected that the Bayesian update will be more effective in snow-dominated 

regions that feature a clear seasonal signal, but less effective in regions with intermittent snow. 

The approach is best suited to estimating high elevation precipitation where snowfall dominates, 

but likely not very informative of low elevation precipitation where rainfall dominates. In this 

sense, this effort is complementary to gauge-based estimates, which are expected to perform best 

in lower elevations where the gauges reside, but may have difficulty extrapolating precipitation 

information to higher elevations. Results from this work are being used in the development of a 

snow reanalysis dataset over the full HMA domain. That effort should lead to a more complete 

picture of snowfall biases and space-time variations across the domain and could be used to further 

inter-compare products more broadly. Additionally, while this work focused on using MERRA-2 

as the baseline input to the snow reanalysis scheme, future work could examine the usage of ERA5 

and/or products in combination to more thoroughly represent the uncertainty in precipitation in 

such domains. 
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CHAPTER 3 

Spatiotemporal distribution of seasonal snow water equivalent in High-

Mountain Asia from an 18-year Landsat-MODIS era snow reanalysis 

dataset  

Seasonal snowpack is an essential component in the hydrological cycle and plays a significant role 

in supplying water resources to downstream users. Yet the snow water equivalent (SWE) in 

seasonal snowpacks, and its space-time variation, remains highly uncertain, especially over 

mountainous areas with complex terrain and sparse observations, such as in High-Mountain Asia 

(HMA). In this work, we assessed the spatiotemporal distribution of seasonal SWE, obtained from 

a new 18-year HMA Snow Reanalysis (HMASR) dataset, as part of the recent NASA High-

Mountain Asia Team (HiMAT) effort. A Bayesian snow reanalysis scheme previously developed 

to assimilate satellite derived fractional snow-covered area (fSCA) products from Landsat and 

MODIS platforms has been applied to develop the HMASR dataset (at a spatial resolution of 16 

arc-second (~500 m) and daily temporal resolution) over the joint Landsat-MODIS period 

covering Water Years (WYs) 2000-2017.  

Based on the results, the HMA-wide total SWE volume is found to be around 163 km3 on average 

and ranges from 114 km3 (WY2001) to 227 km3 (WY2005) when assessed over 18 WYs. The 

most abundant snowpacks are found in the northwestern basins (e.g. Indus, Syr Darya and Amu 

Darya) that are mainly affected by the westerlies, accounting for around 66% of total seasonal 

SWE volume. Seasonal snowpack in HMA is depicted by snow accumulating through October to 

March and April, typically peaking around April and depleting in July-October, with variations 

across basins and WYs. When examining the elevational distribution over the HMA domain, 
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seasonal SWE volume peaks at mid-elevations (around 3500 m), with over 50% of the volume 

stored above 3500 m. Above-average amounts of precipitation causes significant overall increase 

in SWE volumes across all elevations; while an increase in air temperature (~ 1.5 K) from cooler 

to normal conditions leads to an redistribution in snow storage from lower elevations to mid 

elevations. 

This work brings new insight into understanding the climatology and variability of seasonal 

snowpack over HMA, with the regional snow reanalysis constrained by remote sensing data, 

providing a new reference dataset for future studies of seasonal snow and how it contributes to the 

water cycle and climate over the HMA region.   

3.1 Introduction 

The High-Mountain Asia (HMA) region consists of the major mountain ranges and headwaters of 

the largest rivers in Asia. It features extremely high elevation, complex topography and significant 

glacier and snow cover. In HMA, glacier melt and snowmelt are vital to the hydrological cycle 

and water supply, as they feed the major regional rivers with over one billion people living 

downstream (Barnett et al., 2005; Bookhagen and Burbank, 2010; Immerzeel et al., 2010; 

Immerzeel and Bierkens, 2012; Lutz et al., 2014; Armstrong et al., 2019; Scott et al., 2019; 

Immerzeel et al., 2020). 

Even though both seasonal snow and glaciers are crucial to hydrology and water availability, 

seasonal snow has arguably received less attention than glaciers in the HMA region. Many studies 

have addressed the status and changes in glaciers over HMA (e.g. Bolch et al., 2012; Kääb et al., 

2012; Sorg et al., 2012; Yao et al., 2012; Lutz et al., 2014; Bolch et al., 2019; Rounce et al., 2020; 

Shean et al, 2020). For seasonal snow, previous studies have examined the snow extent (e.g. Dahe 

et al., 2006; Pu et al., 2007; Immerzeel et al., 2009; Tahir et al., 2011; Basang et al., 2017; Wang 
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et al., 2017; Notarnicola 2020), or snow mass and snow depth (e.g. Dahe et al., 2006; Che et al., 

2008; Terzago et al., 2014; Dai et al., 2017; Stigter et al., 2017; Smith and Bookhagen, 2018. 2020; 

Ahmad et al., 2019; Kirkham et al., 2019; Xue et al., 2019; Bair et al., 2018, 2020, 2021). In the 

current literature involving seasonal snow, most of the studies have focused on snow covered area 

(or extent, which is readily available from satellite-borne remote sensing) instead of snow mass, 

or have been applied at relatively localized scales (e.g. individual small to moderate sized basins) 

or coarse scales (e.g. above 1 km) over larger scales. The seasonal snow water storage and its 

spatiotemporal distribution across HMA are highly uncertain, primarily due to the lack of in situ 

observations and fine-scale (e.g. < 1 km) snow water equivalent (SWE) datasets over this large 

domain (Takala et al., 2011; Kirkham et al., 2019). In fact, accurately estimating SWE at such 

scales remains a great challenge worldwide, and it is even more difficult in mountainous regions 

due to the terrain complexity (Lettenmaier et al., 2015; Dozier et al., 2016; Bormann et al., 2018).  

In situ measurements are usually expensive and difficult to install and maintain in HMA and are 

mostly located in low-lying valleys, thus resulting in a sparse and potentially nonrepresentative 

network (Winiger et al., 2005; Palazzi et al., 2013; Dozier et al., 2016; Kirkham et al., 2019). In 

recent decades, satellite observations can provide large-scale estimates of some snowpack 

properties. However, most of these measured properties, such as snow-covered area (SCA) based 

on visible and near infrared bands (e.g. Dozier, 1989, Hall et al., 2002, Painter et al., 2009), are 

only indirectly related to snow mass. While SWE and snow depth can be directly estimated from 

passive microwave sensors (using retrieval algorithms based on the brightness temperature; e.g. 

Chang et al., 1987), these estimates are at coarse spatial resolution (e.g. 25 km), and are generally 

negatively biased in deep snowpacks (Takala et al., 2011; Dozier et al, 2016). Recent applications 
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of C-band synthetic aperture radar (SAR) techniques show promise for snow depth retrieval 

(Lievens et al., 2019) but are available only over recent years and do not directly provide SWE. 

Global atmospheric reanalysis products provide another approach to large-scale SWE estimates as 

by-products of their land surface schemes. Examples include the Global Land Data Assimilation 

System (GLDAS, Rodell et al., 2004), Modern-Era Retrospective analysis for Research and 

Applications (MERRA, Rienecker et al., 2011; MERRA-2, Gelaro et al., 2017), European Centre 

for Medium-Range Weather Forecasts (ECMWF) Re-Analysis products (ERA-Interim, Dee et al., 

2011; ERA5, Hersbach et al., 2020), High Asia Refined analysis (HAR, Maussion et al., 2011; 

2014), Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015), and others. SWE estimates 

in these datasets are found to be generally consistent in their interannual and seasonal variations, 

but can differ significantly in their magnitudes when evaluated over different regions (Mudryk et 

al., 2015; Wrzesien et al., 2019), where the uncertainties come from different land surface models 

and meteorological inputs (Mudryk et al., 2015; Mortimer et al., 2020; Kim et al., 2021). In 

addition, most reanalysis datasets are not specifically designed for SWE estimation, and only a 

few of them (e.g. ERA5 and JRA55) assimilate snow observations (including in-situ and remote 

sensing) in HMA. Bian et al. (2019) found many reanalysis datasets overestimate SWE compared 

to ground observations in the Tibetan Plateau, although part of the differences may come from 

inconsistent spatial resolution and elevations between in situ and gridded datasets. The 

performance of these large-scale reanalysis datasets over the full HMA domain has not been fully 

assessed due to the sparse and uneven in situ station network.   

Recent works have contributed to the development of SWE (or snow depth) estimates covering 

the HMA region based on passive microwave (e.g. Talaka et al., 2011; Smith and Bookhagen, 

2016; Dai et al., 2017; Pulliainen et al., 2020) or active microwave measurements (Lievens et al., 
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2019), with machine learning approaches employed to improve the accuracy in SWE estimation 

(e.g. Ahmad et al., 2019). Alternatively, satellite observed snow covered area products can also 

provide valuable information in SWE estimation. For example, fractional snow-covered area 

(fSCA) products are used in SWE reconstruction methods to improve the estimates of SWE over 

Indus and Amu Darya, by calculating snowmelt backward from melt-out to peak SWE timing 

using satellite-observed snow disappearance rates (Bair et al. 2018; 2020). In addition, data 

assimilation (DA) approaches that explicitly merged snow observations with modeling are 

effective in providing more realistic SWE estimates and reducing SWE uncertainties especially 

over the mountains (Xue et al. 2019; Largeron et al., 2020): both JRA-55 and ERA5 products 

assimilate ground snow depth and satellite retrieved snow cover observations; GlobSnow (Talaka 

et al., 2011; Pulliainen et al., 2020) products assimilate passive microwave retrieved SWE along 

with ground snow depth observations to provide SWE and snow extent estimates, while mountain 

areas with high terrain complexity are masked out. These are promising approaches to improve the 

accuracy in SWE estimates over HMA, yet currently there is still a need for large scale SWE 

datasets at higher resolution, over a longer period and covering mountainous areas in this region. 

To better understand the spatiotemporal pattern and variability in seasonal snowpack over HMA, 

the so-called High-Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) dataset is used 

herein to characterize the seasonal snow climatology and variability over HMA. The dataset covers 

the joint Landsat-MODIS era between Water Years (WYs) 2000 to 2017 (which will be extended 

to present in later versions) and was developed as part of the NASA High-Mountain Asia Team 

(HiMAT) activities. HiMAT is a multi-investigator effort in developing new datasets to understand 

cryosphere variability over HMA (Osmanoglu et al., 2017). The HMASR dataset provides daily 

estimates of SWE, fSCA and other snow variables, at a 16 arc-second (~500 m) resolution. SWE 
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estimates are derived by assimilating fSCA from Landsat and MODIS platforms using a previously 

developed snow reanalysis framework (Margulis et al., 2019), where the method has been shown 

in previous applications to provide realistic SWE estimates over mountainous domains in the 

Sierra Nevada (Margulis et al., 2016) and Andes (Cortés and Margulis, 2017). The HMASR aims 

to fill the spatiotemporal gaps in existing SWE datasets and allow for better characterization of the 

distribution and changes in seasonal snow storage, and provide insights into the hydrologic cycle 

and water availability over HMA. Using this dataset, the spatial distribution of SWE climatology 

is examined at annual and seasonal scales over the HMA region, covering the highest mountain 

ranges and the Tibetan Plateau in Asia. Integrated SWE volumes over the full HMA domain and 

over the major river basins (e.g., Syr Darya, Amu Darya, Indus, Ganges-Brahmaputra, Yangtze, 

Yellow), and their variation with elevation, are also quantified in this work. The following 

scientific questions are addressed herein: 

1) How is seasonal snow distributed spatially across the major watersheds of HMA? 

2) What is the seasonal and interannual variability in amount of snow storage over HMA? 

3) How is the amount of snow distributed across elevation, and how does it vary under 

different climate conditions? 

3.2 Data and method 

This section describes the data and methods used in this study. Section 3.2.1 introduces the study 

domain, including the major river basins and mountain ranges in the region. Section 3.2.2 and 

3.2.3 provide a brief description of the reanalysis method, input data and models used in the 

development of the HMASR. Finally, a non-seasonal snow and ice mask applied to mask out semi-

permanent snow and ice for the assessment of seasonal snow is explained in Section 3.2.4. 
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3.2.1 HMA domain 

The HMA domain used in this work is bounded from 27° N to 45° N, and from 60° E to 105° E 

(Figure 3.1), covering the highest mountain ranges and plateaus (Tien Shan, Pamir, Hindu Kush, 

Karakoram, Himalayas, and Tibetan Plateau), as well as the headwaters of the main river basins 

(Syr Darya, Amu Darya, Indus, Ganges-Brahmaputra, Yangtze, and Yellow). Winter westerlies 

and the summer monsoon are the major moisture sources in this region, significantly influencing 

the spatiotemporal patterns in snowfall and glacier mass balance. More specifically, the northern 

and western HMA is dominated by westerlies and receives abundant winter snowfall, while the 

southern and eastern HMA is dominated by the Indian monsoon from June to September and 

receives a considerable amount of summer snowfall; the eastern edges of HMA are affected by the 

East Asia monsoon but with limited impact (Bookhagen and Burbank 2010; Yao et al., 2012; Bolch 

et al., 2019). Note that in HMASR, outputs are provided for each regular 1° by 1° latitude-

longitude tile (within which a regular computational grid of 16 arc-second is used), and tiles with 

a tile-averaged elevation above 1500 m were selected and processed in the dataset (Figure 3.1). 

This tile-average threshold (1500 m) was chosen conservatively to capture the vast majority of 

seasonal mountain snow over HMA, avoid running a large number of tiles with negligible snow, 

and reduce the computational load in product development. We acknowledge this threshold might 

exclude snow in some areas of the domain (e.g. northern HMA) and anticipate this threshold to be 

relaxed or removed in future versions of this product.  
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Figure 3.1: Map of HMA domain with HMASR tiles marked with black boxes. Major watersheds 

are delineated and colored on the map based on HydroSHEDS (Lehner et al., 2008). Major 

mountain ranges are labeled with reference to Bolch et al. (2019). A division of the HMA domain 

into Northwestern (NW), Northeastern (NE) and Southeastern (SE) sub-regions, which are used 

for descriptive purposes in this study, is shown in the inset.  

For convenience in presenting results herein, the HMA domain was divided into three large 

subregions, namely the Northwestern (NW), Southeastern (SE) and Northeastern (NE) subregions 

(Figure 3.1). Major river basins are identified in each subregion, namely those located in NW (Syr 

Darya, Amu Darya and Indus), in SE (Ganges-Brahmaputra, Salween, Mekong and Yangtze), and 

in NE (Tarim, Inner Tibetan Plateau and Yellow). Similarly, the major mountain ranges are also 

identified in each subregion, namely those located in the NW (e.g. Tien Shan, Pamir, Hindu Kush, 

Karakoram, western Himalayas), SE (e.g. central and eastern Himalayas, Nyainqentanglha, 

Tanggula Shan and Hengduan Shan), and NE (e.g. Kunlun Shan, Tibetan Interior, Eastern Tibetan 

and Qilian Shan), and are labelled in Figure 3.1. 
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3.2.2 Snow reanalysis scheme 

A previously developed snow reanalysis methodology (Margulis et al., 2019) is employed in 

deriving the HMASR. For brevity, only the key details are repeated here. Prior model estimates 

are obtained via the coupled Simplified Simple Biosphere model, version 3 (SSiB3; Sun and Xue, 

2001; Xue et al., 2003) and the Liston (2004) snow depletion curve (SDC). The SSiB3 model is 

used as the land surface model (LSM) in this work, which has three snow layers with vegetation 

canopy and soil representations. It requires hourly inputs of forcing data (e.g. precipitation, air 

temperature, radiation, wind speed, humidity and pressure) and static inputs (e.g. topography, land 

cover, vegetation and soil type), with more details clarified in Section 3.2.3.1. The SSiB3 model 

provides the basic mass and energy fluxes for the snowpack based on meteorological inputs and 

physiographic characteristics. These fluxes are used with the Liston SDC to derive estimates of 

grid-averaged SWE and fSCA. Specifically, the Liston SDC assumes that the subgrid distribution 

of SWE follows a lognormal distribution, and is a function of grid-averaged SWE, melt, and a 

parameter of subgrid coefficient of variation. The SDC yields the prediction of fSCA that is 

compared with satellite observed fSCA and serves as the constraint in the data assimilation. 

As done in many data assimilation methods, an ensemble approach is used in the snow reanalysis 

scheme, whereby the model generates prior estimates of snow states (i.e. SWE, snow depth, fSCA, 

etc.) with postulated uncertainties. Meteorological forcing inputs are bias-corrected, downscaled 

to the modeling grid (16 arc-second) and perturbed with uncertainty in the ensemble approach, 

using the methods described in Durand et al. (2008) and Girotto et al. (2014). To constrain the 

prior snow estimates on the remotely sensed fSCA observations, a Bayesian update is performed 

using the Particle Batch Smoother (PBS; Margulis et al., 2015; Margulis et al., 2019) approach. 

Posterior snow estimates are obtained in this update step, by more heavily weighting ensemble 
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members that are more consistent with the batch of observed fSCA in a given water year using a 

Bayesian likelihood function that accounts for model-measurement misfit and measurement error. 

It is worthwhile to note that, the posterior ensemble mean, median and spread (or other statistics) 

can be obtained via the Bayesian update step. Herein, the posterior ensemble median values of 

SWE are described when assessing the SWE over HMA. Details of the PBS methods are described 

in Margulis et al. (2015; 2019), and more details on fSCA observations are provided in Section 

3.2.3.2.  

The lack of in situ SWE data over HMA prevents a thorough verification of the HMASR. However, 

previous applications of the snow reanalysis method in similarly complex terrain in the Sierra 

Nevada of the Western U.S. and the South American central Andes thoroughly compared 

reanalysis estimates vs. in situ and airborne-derived SWE data. Performance in both domains were 

positive relative to in situ data with values of mean error, root-mean-squared error and correlation 

coefficients of: ~ 3 cm, 13 cm and 0.95 for the Sierra Nevada (Margulis et al., 2016) and ~ 1 cm, 

29 cm and 0.73 for the Andes (Cortés and Margulis, 2017), respectively. In Margulis et al. (2019), 

comparison with the Airborne Snow Observatory (ASO) SWE data in Tuolumne in the Sierra 

Nevada yielded similar results (mean error, root-mean-squared error, and correlation coefficients 

of ~ 5 cm, 23 cm, and 0.84). Here we provide the caveat that performance of the method may be 

degraded in parts of the HMA region due to the frequent cloud obscuring issues (see more details 

in Section 3.2.3.2), compared to previous work in the Sierra Nevada or Andes.  

3.2.3 Input data acquisition and processing 

3.2.3.1 Meteorological, topographic and land cover data 

In HMASR, the prior surface meteorological inputs were obtained from MERRA-2 at its raw 

resolution (0.5° by 0.625° latitude–longitude), including precipitation, air temperature, solar 
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radiation, specific humidity, surface pressure and wind speed. The uncertainty models and their 

parameters used to perform bias-correction and uncertainty perturbation are specified in Margulis 

et al. (2019) for the HMA region, except that prior ensemble precipitation is perturbed by a 

lognormal distribution with mean of 1.54 and coefficient of variation (CV) of 0.83 based on the 

results from Liu and Margulis (2019). 

Digital elevation model (DEM) data were obtained from the Shuttle Radar Topography Mission 

(SRTM, http://www2.jpl.nasa.gov/srtm/) 1 arc-second product, and aggregated to 16 arc-second 

(~500 m) resolution. Gaps in DEM data were filled by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM, version 

2) 1 arc-second product (https://asterweb.jpl.nasa.gov/). Land cover data were obtained from the 

AVHRR global land cover classification dataset (Hansen et al., 2000). Forest cover information 

was obtained from the Tree Canopy Cover (TCC) product containing the Landsat Vegetation 

Continuous Fields (https://lcluc.umd.edu/metadata/global-30m-landsat-tree-canopy-version-4; 

Sexton et al., 2013).  

3.2.3.2 fSCA data 

The fSCA observations used to condition prior snow estimates were retrieved from Landsat and 

MODIS platforms, for their joint period of WYs 2000 to 2017 (e.g. where WY2000 corresponds 

to October 1, 1999 - September 30, 2000). The (nadir-viewing) Landsat-based fSCA data were 

obtained from Landsat 5, 7 and 8 satellites, retrieved using a spectral unmixing algorithm (Painter 

et al., 2003; Cortés et al., 2014), available at 30 m and every 16 days (excluding cloudy days). The 

(nadir- and off-nadir-viewing) MODIS-based fSCA data were obtained from the MODIS Snow 

Covered Area and Grain size (MODSCAG) product (Painter et al., 2009), available daily at 500 
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m, with a viewing angle between 0° and 55°. Jointly assimilating fSCA from both platforms 

provides more measurements to compensate for cloud contamination in HMA.  

Cloud screening and viewing angle screening were performed as illustrated in Margulis et al. 

(2019), and here we only clarify the key steps for brevity. Specifically, for Landsat, any image 

with a diagnosed cloud cover fraction of greater than 40% is excluded entirely. For MODSCAG, 

only ‘near-nadir’ pixels within an image are included and, of those, any image with a diagnosed 

cloud cover fraction of greater than 10% is excluded entirely. This subset of Landsat and 

MODSCAG images for inclusion therefore uses a conservative screening meant to exclude 

significantly cloud-contaminated tiles. This does not prevent errors of omission/commission in 

cloud/snow identification, but is meant to mitigate cloud impacts by not including those deemed 

significantly cloudy. It should also be noted that the snow reanalysis method used herein is less 

susceptible to errors of omission/commission when compared to SWE reconstruction methods (e.g. 

Bair et al., 2020) that interpolate between fSCA measurements to estimate ablation rates. Instead, 

the snow reanalysis fitting of fSCA measurements is more akin to a least-squares type fit where 

measurement errors are accounted for in the framework. This mitigates the propagation of errors 

of omission/commission compared to SWE reconstruction techniques. For images that passed 

through the cloud/viewing angle screening, cloudy pixels within each image were further excluded 

through internal cloud masks. After screening, both Landsat and MODSCAG images were 

aggregated to the same modeling resolution (16 arc-second).  

No large systematic differences were seen when examining fSCA across different Landsat sensors, 

while substantial differences were found in same-day fSCA images between Landsat and 

MODSCAG (after screening and aggregation). To reconcile the inconsistency between products, 

a cumulative distribution function (CDF)-matching method was applied pixel-wise to statistically 
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match MODSCAG images with Landsat images. Based on the analysis in Margulis et al. (2019), 

we specify a measurement error standard deviation (10% of Landsat fSCA; 15% of CDF-matched 

MODSCAG fSCA) in the reanalysis to represent retrieval error/uncertainty. 

It is worthwhile to note that the fSCA data availability is significantly affected by cloud 

contamination in some areas of HMA region, especially during the monsoon season (June-

September) where fSCA measurements are limited over regions such as the Himalayas (Figure 

3.2). The lack of abundant fSCA data can be a potential limitation in assimilating fSCA 

observations for these monsoon-affected regions, and therefore leads to higher uncertainty and less 

constrained posterior SWE estimates (i.e. where in the limit of no available observations, the 

posterior will, by construct, equal the prior estimate). 

 
Figure 3.2: Monthly total number of available (near-nadir) MODSCAG measurements averaged 

over 18 years, with cloud and viewing angle screening. Landsat measurements supplement these 

MODIS-derived measurements. The dark blue color is used to distinguish pixels with zero 

MODSCAG measurements. 
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3.2.4 Non-seasonal snow and ice mask 

A significant fraction of HMA is covered by glacier or semi-permanent snow owing to its 

extremely high elevation. Thus, it is important to distinguish seasonal vs. non-seasonal snow over 

land or glacier surfaces. In particular, the reanalysis method used in the development of the 

HMASR is best suited for seasonal snow characterization, because it relies on the signal between 

fSCA depletion time series and SWE via the LSM-SDC model. Hence, those pixels where there is 

not a full melt-out of snow are expected to be potentially erroneous. So, while estimates are 

generated at all pixels in the domain, the aim to focus on seasonal snow requires masking out semi-

permanent snow and ice. Glacier inventories from the Global Land Ice Measurements from Space 

(GLIMS; Raup et al., 2007) and the Randolph Glacier Inventory (RGI; Pfeffer et al., 2014; RGI 

Consortium, 2017) have been employed in previous studies to exclude glaciers from snow 

modeling domains (e.g. Wrzesien et al, 2019, Smith and Bookhagen et al., 2018). Other studies 

such as Mudryk et al. (2015) and Mortimer et al. (2020) excluded glaciers based on estimates from 

the MERRA land fraction mask. Armstrong et al. (2019) applied the MODIS Persistent Ice 

(MODICE; Painter et al., 2012) algorithm to derive a minimum snow and ice mask based on the 

MODSCAG product, and used it to distinguish seasonal snow from glaciers or persistent snow. 

Herein a combination method was used to exclude the non-seasonal snow and ice pixels in 

HMASR, based on: 1) a glacier mask derived from GLIMS to identify glacierized pixels and 2) a 

persistent snow mask derived from the HMASR dataset itself. We acknowledge that RGI dataset 

may be more appropriate to use than GLIMS, as it obtains glacier outlines around 2000 while 

GLIMS obtains those from a larger date range. To be more specific on the second mask, pixels 

with a significant amount of persistent snow were identified, by comparing the annual minimum 

SWE at a particular pixel to its annual maximum SWE in each year. If the minimum SWE exceeds 
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10% of the maximum SWE for more than once out of the 18 years, the pixel is considered to be a 

persistent snow pixel to be masked out in the computation of seasonal snow estimates. The derived 

glacier and persistent snow masks are combined into a non-seasonal snow and ice mask, which is 

applied when presenting the spatiotemporal patterns of seasonal SWE in the following section.  

3.3 Results and discussion 

The HMASR dataset is designed to provide a reliable and consistent SWE product that can be used 

for assessing the spatiotemporal distribution of seasonal SWE over the recent remote sensing 

record. To present an overall assessment of seasonal snowpack variability in the HMA region 

using the HMASR dataset, the results are organized as follows: 1) the spatial distribution of 

seasonal snowpack climatology, at annual peak and seasonal scales; 2) the temporal distribution 

of seasonal snowpack volume at basin and domain-wide scales; 3) the elevational distribution of 

seasonal snowpack storage at HMA-wide and basin scales. 

3.3.1 Spatial distribution of seasonal SWE climatology  

The spatial distribution of SWE is valuable in assessing the regional water storage. Given the 

strong seasonal signature of snowpack processes over much of the domain, the pixel-wise peak 

SWE is a useful metric to quantify the distribution of the maximum amount of snow water mass 

held in the seasonal snowpack within a given water year. Hence, the spatial distribution of peak 

SWE (Section 3.3.1.1) and the associated timing (Section 3.3.1.2) are examined in this section, 

with seasonal evolution of SWE averaged over fall, winter, spring and summer also assessed 

(Section 3.3.1.3).  

3.3.1.1 Peak seasonal SWE climatology 

The climatology (18-year average) of pixel-wise peak SWE over the HMA region is depicted in 

Figure 3.3, where Figure 3.3a presents only the results for seasonal snow pixels (where non-
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seasonal snow and ice pixels have been masked out). Figure 3.3b presents the results for all pixels 

for illustration (where significantly higher amounts of SWE shows up in non-seasonal snow and 

ice mask pixels, corresponding to glaciers or permanent snow), where the non-seasonal snow mask 

covers ~4.7% of the domain area. The non-seasonal SWE values (Figure 3.3b) are expected to be 

unreliable because the initial conditions for SWE at those locations at the beginning of the dataset 

are unknown and the lack of full melt-out makes the relationship between fSCA depletion and 

peak SWE much less direct.  
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Figure 3.3: (a): Map of pixel-wise peak seasonal SWE climatology, with non-seasonal snow and 

ice pixels masked out (grey). (b): Map of pixel-wise peak seasonal SWE climatology, without 

masking of non-seasonal snow and ice pixels for reference. 
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In general, seasonal snow is most abundant in the NW region that is directly exposed to westerlies 

(Figure 3.3a). Among the northwestern mountain ranges, the highest climatological peak SWE 

values are found in Pamir, Karakoram and the western Himalayas, with more than 1 m of peak 

SWE estimated. A significant amount of peak SWE is also estimated in Tien Shan and Hindu Kush, 

showing peak SWE values of 1 m or less in Tien Shan, and 0.5 m or less in Hindu Kush in general 

(Figure 3.3a). The estimates of peak SWE values in Hindu Kush are consistent with measurements 

and SWE reconstruction estimates from Salang Pass in Afghanistan (35N, 69E, elevation 3366 m) 

that has records of snow (Bair et al., 2018). The non-seasonal snow and ice is most notable in 

Karakoram but also evident in a few locations over the Pamir, Tien Shan and western Himalayas 

(Figure 3.3b).   

In contrast, seasonal snowpack is less abundant in the SE HMA (Figure 3.3a), in part because it 

receives much of its precipitation in summer from the Indian and East-Asia monsoons, while the 

winter westerlies have minimum impact. Shallow snowpack exists over the Hengduan Shan and 

Tanggula Shan, with low values of SWE estimated (less than 0.2 m).  For the Himalayas and 

Nyainqentanglha mountain ranges (Figure 3.1), which exhibit extremely high elevation and 

receive significant summer precipitation from the monsoons, high values of SWE are estimated in 

some locations (Figure 3.3b). However, those locations are largely masked out herein through the 

non-seasonal snow and ice mask (Figure 3.3a), because the fSCA observations are persistently 

high throughout the year (no observed melt-out), show irregular temporal patterns without a clear 

accumulation-depletion cycle (non-seasonal), or are obscured by clouds between June-Sept. 

(insufficient measurements), any of which can contribute to estimates of SWE that are less 

constrained due to cloud screening with potential errors of omission or commission in fSCA 

estimation.  



 
69 

The least abundant seasonal snowpack is estimated in the NE (Figure 3.3a), where SWE is only 

notable over a few mountain ranges such as the Qilian Shan, Kunlun Shan and Eastern Tibetan 

mountains. Despite their high elevations, most of the NE areas are snow-free or only have shallow 

and intermittent snow as a result of being further away from the primary atmospheric moisture 

sources. 

Previous studies have also examined the spatiotemporal distribution in seasonal snowpack, 

regarding SCA (e.g. Pu et al., 2007; Basang et al., 2017), snow depth and SWE (e.g. Terzago et 

al., 2014; Bian et al., 2019; Orsolini et al., 2019), and the overall finding is that most existing 

datasets present consistent spatial patterns at large scales (e.g. regional) but differ greatly in the 

magnitudes of SWE and snow depth, which implies large uncertainties in snow mass estimates 

over this data scarce region. Similarly, HMASR exhibits coherent spatial patterns compared to 

these previous efforts, yet the magnitudes of SWE still show significant variability. A more 

comprehensive analysis of HMA SWE between multiple products will be addressed in an 

upcoming intercomparison paper using HMASR.  

3.3.1.2 Peak seasonal SWE timing 

The timing of peak seasonal SWE occurrence is associated with climatological (e.g. precipitation) 

and topographic (e.g. elevation) factors, and therefore shows significant heterogeneity over HMA. 

Figure 3.4 depicts the pixel-wise peak SWE day of water year (DOWY) climatology map. Highly 

intermittent snow pixels were excluded, as well as permanent snow and ice pixels via the non-

seasonal snow and ice mask. Peak SWE generally occurs between DOWY 100 and DOWY 250 

for seasonal snow. Specifically, the date of peak SWE timing is characterized spatially by a median 

of DOWY 169 (March 18th) and an interdecile range between DOWY133 (February 10th) and 

DOWY 217 (May 5th), as shown in Figure 3.4. However, the peak SWE DOWY shows a bimodal 
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distribution (Figure 3.4, inset) with the earlier peak centered on DOWY 145 and the later peak 

centered on DOWY 192. 

For those mountain ranges in the NW, the northern and western mountain slopes of Tien Shan, the 

western foothills of Pamir, the entire Hindu Kush, as well as the foothills of the western Himalayas, 

all have relatively early peak SWE occurrences between February 10th and March 18th (Figure 

3.4). In contrast, the southern mountain slopes of Tien Shan, the majority of the Pamir, Karakoram, 

and western Himalaya, show a relatively late peak SWE occurrence between March 18th and May 

5th (Figure 3.4). For those mountain ranges in the SE and NE, the peak SWE occurrence dates are 

more diverse (Figure 3.4). In the SE, the central and eastern Himalayas, Nyainqentanglha, and 

Hengduan mountains generally have later peak SWE occurrences (between March 18th and May 

5th), except in the southern foothills, where peak SWE tends to occur earlier (between February 

10th and March 18th). In the NE, the eastern Tibetan mountains show the earliest peak SWE 

occurrence dates (before February 10th), while the Qilian Shan and Kunlun Shan show the latest 

peak SWE occurrences (after May 5th).  
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Figure 3.4: Map of pixel-wise peak seasonal SWE DOWY climatology, with non-seasonal snow 

and ice pixels masked out (grey). The inset figure is the histogram of peak SWE DOWY. The three 

dates labeled in the colorbar (DOWY 133, DOWY 169 and DOWY 217) correspond to the 10th, 

50th and 90th percentile in the DOWY distribution, and are marked with vertical dashed lines in 

the inset histogram.  

3.3.1.3 Seasonal SWE evolution 

The spatial patterns of seasonal evolution of SWE, averaged over SON (September, October, 

November), DJF (December, January, February), MAM (March, April, May), JJA (June, July, 

August), are shown in Figure 3.5. As expected, higher SWE amounts are generally found in winter 

(DJF) and spring (MAM), while lower SWE amounts are found in summer (JJA) and fall (SON). 

Throughout the year, mountains in NW hold the maximum amount of SWE compared to other 

regions. In SON, the entire HMA region exhibits minimal SWE magnitudes (0.1 m or below) and 

most regions are snow free (Figure 3.5). During this period, SWE starts accumulating in the Tien 
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Shan, Pamir and western Himalayas that are directly facing the westerlies. SWE is also evident in 

Nyainqentanglha and Hengduan Shan that are associated with the summer monsoons. In DJF, both 

the overall magnitude and extent of SWE grow significantly, with mean SWE values up to 0.5 m 

found in Tien Shan, Pamir and western Himalayas (Figure 3.5). The magnitude of SWE grows 

even larger in MAM, with up to 1 m SWE values estimated in the western HMA mountains, and 

up to 0.5 m SWE values estimated in Nyainqentanglha and the eastern Himalayas. Meanwhile, the 

extent of SWE shrinks significantly during MAM in the Hindu Kush and Tien Shan due to the 

weakened westerlies in spring. In JJA, both the magnitude and extent of SWE drop dramatically 

over most of the domain, with some exceptions of more persistent snowpack (with up to 0.3 m 

SWE) still evident in the Pamir, Karakoram and Nyainqentanglha, where snow melts out slower 

than the surrounding regions.  
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Figure 3.5: Map of mean seasonal SWE climatology in SON (September, October, November), 

DJF (December, January, February), MAM (March, April, May) and JJA (June, July, August), 

with non-seasonal snow and ice pixels masked out (grey).   

3.3.2 Temporal distribution of seasonal SWE 

Despite the significant literature on seasonal snowpack in this region, quantification of the regional 

scale SWE volume is more difficult to obtain, partly due to the large uncertainties in SWE 

estimation over this region. In this section, the temporal variations in integrated seasonal SWE 

volumes across the major river basins are quantified, with the climatology presented in Section 

3.3.2.1, and the interannual variations illustrated in Section 3.3.2.2.  
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3.3.2.1 Climatology of seasonal SWE 

The climatology of the seasonal cycle in SWE volumes that are integrated across HMA and its 

major river basins are quantified and presented in Figure 3.6, with the key statistics of annual peak 

SWE volumes (peak of the annual time-series) summarized for the entire HMA region and each 

basin in Table 3.1. Note again that the non-seasonal snow and ice mask has been applied when 

calculating the aggregated SWE volumes. 

 
Figure 3.6: Climatological (18-year average; solid line) daily time-series of seasonal SWE 

volumes, aggregated to a) HMA-wide, and basins in the (b) Northwestern (NW), (c) Southeastern 

(SE), and (d) Northeastern (NE) subregions. The shaded area represents +/- 1 standard deviation 

around the climatological mean (i.e. representing a metric of interannual variation about the mean). 
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Table 3.1: Summary statistics for HMA-wide and basin-scale annual peak SWE volume (peak of 

annual time-series) assessed from the 18-year HMASR.  

Region Basin name 

 Peak SWE volume (peak of annual time-series) 

Climatology Interannual Variability 

Mean 
(km0) 

Total of 
sub-

regional 
mean 
(km0) 

Standard 
deviation 

(km0) 

Coeffi-
cient of 

variation 

Max 
(km0) 

Min 
(km0) 

Max 
year 

Min 
year 

HMA-wide HMA-wide 162.57 162.57 
(100%) 26.53 0.16 227.12 114.10 2005 2001 

Northwestern 
(NW) basins 

Syr Darya 21.16 
107.42 
(66%) 

5.19 0.25 29.88 13.61 2010 2000 
Amu Darya 37.31 7.10 0.19 48.31 25.92 2017 2008 

Indus 48.95 10.27 0.21 63.97 23.71 2009 2001 

Southeastern 
(SE) basins 

Ganges-
Brahmaputra 15.59 

29.49 
(18%) 

3.84 0.25 25.40 10.69 2005 2009 

Salween 3.97 1.23 0.31 6.71 2.21 2005 2002 
Mekong 1.92 0.77 0.40 3.56 1.02 2000 2004 
Yangtze 8.02 2.97 0.37 14.79 3.32 2005 2015 

Northeastern 
(NE) basins 

Tarim 8.78 
14.78 
(9%) 

2.45 0.28 12.92 4.81 2017 2007 
Inner Tibetan 

Plateau 2.35 0.99 0.42 4.98 0.57 2013 2004 

Yellow 3.65 1.25 0.34 6.10 1.76 2005 2004 
 

The HMA-wide SWE volume is presented in Figure 3.6a, and the 18-year average of annual peak 

SWE volume is found to be 162.57 km3 (note this is higher than the peak value in Figure 3.6a, as 

it is the direct average of 18-year maxima rather than averaged across DOWY). The climatological 

peak SWE volume was further assessed in each subregion (i.e. within NW, NE and SE), and 

compared against that over the entire HMA (Table 3.1). The results show the highest peak SWE 

volume occurs in NW basins (107.42 km3, ~ 66% of domain-wide total), followed by SE basins 

(29.49 km3, ~18%), and NE basins (14.78 km3, ~ 9%), which is coherent with the spatial pattern 

shown in Figure 3.3a. Note that around ~7% of HMA-wide SWE volume falls in the regions 
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outside of the watersheds examined (mainly in the northmost regions shown in Figure 3.1), which 

is why these basin-scale quantities do not sum up to 100% of the HMA-wide totals.  

For the NW basins, the maximum amount of SWE volume is found in the Indus basin, followed 

by Amu Darya and Syr Darya (Figure 3.6b). The seasonality of basin-scale SWE in NW displays 

similar features to the HMA-wide SWE, with snow accumulating from October to March/April 

and depleting until the end of the WY. Meanwhile, the peak SWE volume is found to occur earlier 

and disappear faster in the Syr Darya basin, followed by Amu Darya and Indus. This is potentially 

attributed to their geographic locations, where Syr Darya is located further north and only affected 

by the winter westerlies; Indus is located further south and is partially affected by the summer 

monsoons.  

For the SE basins, higher SWE volumes are found in Ganges-Brahmaputra, followed by Yangtze, 

Salween and Mekong (Figure 3.6c). It is worthwhile to note that Ganges-Brahmaputra has an 

average peak SWE volume of 15.59 km3, with an average carry-over SWE volume of around 2 

km3 at the end of the WY (Figure 3.6c). This amount of carry-over SWE volume in Ganges-

Brahmaputra is a result of the facts that 1) its mountain ranges (Himalayas) have higher elevation 

than those in other basins, and 2) based on the non-seasonal snow and ice criterion (Section 3.2.4), 

a carry-over SWE within 10% of the maximum SWE in each year is allowed. Meanwhile, the 

seasonality in basin-scale SWE over SE is distinct across basins, e.g. the Ganges-Brahmaputra and 

Salween shows more unimodal features (with obvious peaking in April-May), while Yangtze and 

Mekong shows more bimodal/uniform features, which are likely to be associated with the 

intermittent snowpack and summer monsoons.  

For the NE basins over HMA, the overall magnitude of SWE volumes is smallest (Figure 3.6d). 

These basins all have relatively large areas, but are mostly snow-free or covered by shallow snow 
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as depicted in Figure 3.3a. Distinct seasonal features are also observed in these basins, e.g. a 

unimodal seasonal cycle of SWE is found in Tarim with an obvious peak in mid-April, while the 

Inner Tibetan Plateau and Yellow show more uniform features that are potentially attributed to the 

intermittent snow, as they are further away from the moisture sources (limited influence by 

westerlies and monsoons).  

3.3.2.2 Interannual variations in SWE and timing 

In addition to the 18-year climatology of SWE volumes in Section 3.3.2.1, the interannual 

variations in HMA-wide and basin-scale peak SWE and its timing are further illustrated in Figure 

3.7- Figure 3.9 and Table 3.1. The aggregated seasonal SWE volume across HMA-wide or basin-

scales are visualized in the 18-year time-series (Figure 3.7), which illustrates a strong seasonal 

cycle and significant interannual variations in peak SWE. Over the record examined, the HMA-

wide annual peak SWE volume (Table 3.1; Figure 3.7) is found to be largest in WY2005 with a 

value of 227.12 km3, smallest in WY2001 with a value of 114.10 km3, and has a standard deviation 

of 26.53 km3 (i.e. a coefficient of variation of 16%). Basin-scale annual peak SWE volumes also 

exhibit significant variations, with their standard deviations ranging from 0.77 km3 (coefficient of 

variation of 40%) in Mekong to 10.27 km3 (coefficient of variation of 21%) in Indus. Moreover, 

different maximum/minimum years of peak SWE are found in each basin, and are not always 

synchronous with the maximum/minimum years found in HMA-wide SWE (Table 3.1; Figure 3.7).  
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Figure 3.7: Daily time-series of seasonal SWE volumes aggregated to (a) HMA-wide, (b) 

Northwestern (NW), (c) Southeastern (SE), and (d) Northeastern (NE) basin totals. 

When focusing on the HMA-wide seasonal cycle across different WYs (Figure 3.8), it is found 

that snowpack quickly accumulates to over 10 km3 in SWE volume during October, approaching 

~50% of its peak SWE volume in January for most WYs, reaching a peak SWE volume within 

March and April, with an averaged timing of DOWY 168 (March 17th) when averaged over 18 

WYs. After peaking, the seasonal snowpack starts depleting and declines back to ~50% of its peak 

volume in May and June for most WYs. Snowpack depletes to under 10 km3 in SWE volume 
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between July and September, except in WYs 2009, 2010 and 2014 that have persistent snow across 

the entire year. The interannual variations across WYs are evident in: 1) the variation in peak SWE 

volume and the peak dates, which range from 114 km3 to 227 km3 in volume and from late February 

(DOWY 146) to mid-April (DOWY 195); 2) the variation in the temporal window where the snow 

storage is more than 50% of the peak SWE, that span between 3.5 months (WY2003) to 5.5 months 

(WY2016); 3) the variation in timing when snowpack depletes to under 10 kmJ in SWE volume, 

which ranges between July and October.  

 

Figure 3.8: Daily time-series of HMA-wide SWE volumes displayed as functions of DOWY and 

WY. The symbol ‘x’ is used to mark the date of peak SWE volume occurrence, with the 

corresponding peak SWE volume labeled in each WY. The symbol ‘o’ is used to mark the dates 

when 50% of the peak SWE volume is reached in each WY. The vertical red line is used to indicate 

the 18-year average timing of HMA-wide peak SWE volume.  
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The basin-scale results (Figure 3.9) show more variation compared to the HMA-wide results, with 

divergent peak SWE dates across basins and across WYs. The seasonal cycle observed in NW and 

many other basins (Syr Darya, Amu Darya, Indus, Ganges-Brahmaputra, Tarim), are clearly 

influenced by winter westerlies, with SWE typically peaking around April and depleting in July – 

October, and that seasonality is consistent when examined across different WYs. The interannual 

variations in these basins are mainly reflected by 1) the overall magnitude of SWE volumes, 2) 

timing of snowpack occurrences/disappearances, while the peak SWE dates are closely centered 

around the climatological mean dates (~April). However, different seasonal cycles are observed in 

the other basins (Mekong, Yangtze, Inner Tibetan Plateau and Yellow) that are more influenced 

by the summer monsoons, when examined across different WYs. For example, peak SWE may 

occur as early as October and as late as July within the same basin. The persistence of snow also 

varies across basins and WYs, with SWE being either persistently high across several months, or 

intermittent over a short period of time. These factors explain the bimodal or uniform features in 

the SWE time-series and its climatology (Figure 3.6- Figure 3.7).   

It is also worthwhile to note that the average peak SWE dates are in March and April for most 

basins, while it is not necessarily representative for some basins (e.g. Inner Tibetan Plateau and 

Yellow) that have highly varying dates across years. Moreover, the average dates in many basins 

appear to be later than the HMA-wide average peak SWE date (March 17th), mainly because a 

portion of the HMA-wide SWE falls in the northmost regions that is outside of the watersheds 

examined (above Syr Darya), and those regions are most influenced by the winter westerlies and 

reach peak SWE very early (before March 19th; Figure 3.4). 
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Figure 3.9: Daily time-series of basin-scale SWE volumes displayed as functions of DOWY and 

WY. The symbol ‘x’ is used to mark the date of basin-scale peak SWE volume occurrence in each 

WY.  The vertical red line is used to indicate the 18-year average timing of basin-scale peak SWE 

volume. 

3.3.3 Elevational distribution of seasonal SWE 

The pixel-wise peak SWE distribution vs. elevation was assessed, both in terms of its 18-year 

averaged climatology (Section 3.3.3.1) and its variations under different climate conditions 

(Section 3.3.3.2). The HMA-wide domain and each basin were divided into 5-percentile elevation 

bins, so that the aggregated SWE volumes are calculated over comparable areas, following the 

method in Smith and Bookhagen (2018). The non-seasonal snow and ice pixels were removed 

when calculating peak seasonal SWE volume, and its fractional areal coverage within a given 

elevation band is computed to assess the relative elevational contributions to total seasonal SWE 

volume.  
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3.3.3.1 Seasonal peak SWE climatology 

When examining the SWE climatology over the full HMA domain (Figure 3.10), the seasonal 

pixel-wise peak SWE volume was found to be largest at mid elevations (3000 - 4000 m), with peak 

SWE values occurring at elevations around 3500 m (Figure 3.10a and Figure 3.10b, top row). The 

large increase in SWE from lower to mid-elevations is indicative of orographic enhancement, 

where the decrease at higher elevations is indicative of moisture limitations on orographic effects 

and/or increasing amounts of non-seasonal snow and ice. The presence of non-seasonal snow and 

ice becomes evident at elevations above 3500 m, and it increases dramatically above 5000 m with 

a value up to 35% (Figure 3.10c, top row). When assessing the cumulative fraction of SWE volume 

as a function of elevation, it was found that over 50% of HMA-wide seasonal SWE volume is 

stored at elevations above 3500 m, and less than 10% of seasonal SWE volume is stored at 

elevations below 2000 m (Figure 3.10d, top row). 
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Figure 3.10: Pixel-wise peak seasonal (a) SWE climatology, (b) SWE volume climatology, (c) 

fractional areal coverage of non-seasonal snow and ice within each elevation band, and (d) 

cumulative fraction of SWE volume above the specified elevation, within HMA, Northwestern 

(NW), Southeastern (SE) and Northeastern (NE) basins. Elevation is discretized into 5% percentile 

bins.  

The subregional elevational distribution of pixel-wise peak SWE climatology and its volume vary 

in each basin, compared to the HMA-wide results (Figure 3.10). Relatively similar characteristics 

are observed in the NW basins (Syr Darya, Amu Darya and Indus), Tarim in NE, and Ganges-

Brahmaputra and Yangtze in SE, where the pixel-wise peak SWE volumes (Figure 3.10b) 

generally increase with elevation (below ~4000 m) and then decline with elevation (above ~4000 

m), reaching their maximum values at mid elevations (3000 - 4000 m). While the SWE distribution 



 
84 

(Figure 3.10a) is generally consistent with the SWE volume distribution (Figure 3.10b) within 

these basins, the SWE values at high elevations (e.g. ~6000 m) are large, contributing to a non-

negligible amount of seasonal SWE volume at high elevations, despite the relatively high coverage 

of non-seasonal snow and ice (up to 60%; Figure 3.10c) above 4000 m in these basins. Moreover, 

for the cumulative fraction of SWE volumes above a specified elevation (Figure 3.10d), unique 

median values are found within each basin, e.g ~4000 m (Indus, Ganges-Brahmaputra, Tarim), 

~3500 m (Amu Darya), or ~2800 m (Syr Darya).  

Other basins in SE (Salween, Mekong) and NE (Yellow, Inner Tibetan Plateau) generally show 

monotonically increasing SWE and SWE volumes against elevation (Figure 3.10a, Figure 3.10b). 

These basins feature relatively small SWE volumes, and low coverage of non-seasonal snow and 

ice coverage (mostly under 25%; Figure 3.10c) at high elevations. For the cumulative fraction of 

SWE volumes above a specified elevation (Figure 3.10d), the median values are found at higher 

elevations for SE and NE (between 4000 - 5200 m) basins.   

3.3.3.2 Variations under different climate conditions 

The elevational distribution of peak SWE was also examined under different climate conditions 

(e.g. warm vs. cool years, wet vs. dry years) relative to normal conditions. Such analysis identifies 

whether different climate conditions affect the overall snow storage distribution across different 

elevations. For categorizing the different climate conditions, the HMA-wide winter precipitation 

and (near-surface) air temperature were used (Table 3.2), where winter (DJF) denotes the period 

from December 1st to March 1st. A “k-means” clustering analysis method (Lloyd, 1982) was used 

to seek classification of different climate conditions, based on the normalized winter precipitation 

and air temperature (subtracting the mean values and dividing by the standard deviations). The 

number of clusters to be classified is an input to the method; five clusters were specified in an 
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attempt to group annual realizations into ‘normal’, ‘wet’, ‘dry’, ‘warm’ and ‘cool’ categories. The 

classified clusters are displayed in Figure 3.11, where the five clusters are logically grouped and 

interpreted as the categories mentioned above. It should be noted that there is a slight correlation 

(correlation coefficient of 0.29 with a p-value of 0.25) between annual realizations of precipitation 

and air temperature, indicating warmer years tend to be wetter years (but statistically insignificant 

due to the limited number of years). 

Table 3.2: HMA pixel-wise peak SWE volume, winter precipitation volume and winter air 

temperature, with each year categorized as dry/normal/wet/warm/cool based on clustering 

classification. 

WY Peak SWE volume 
pixel-wise (km3) 

Winter 
Clustering 
Category 

Precipitation 
volume 
(km3) 

Air 
temperature 

(K) 

2000 214.08 251.51 261.65  dry 
2001 187.97 204.28 262.21  dry  
2002 240.66 309.23 262.60  normal  
2003 266.22 330.72 262.71  normal  
2004 235.36 313.29 262.31  normal  
2005 355.55 422.90 262.14  wet  
2006 254.80 318.94 263.04  warm  
2007 224.51 303.16 262.43  normal  
2008 249.79 316.56 260.73  cool  
2009 294.83 339.96 263.19  warm  
2010 313.81 331.18 262.53  normal  
2011 237.69 294.65 261.54  cool  
2012 283.24 282.77 260.77  cool  
2013 263.14 337.68 262.01  normal  
2014 273.41 292.81 262.19  normal  
2015 266.62 330.90 262.71  normal  
2016 226.62 258.84 262.48  dry  
2017 306.40 351.42 263.68  warm  
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Figure 3.11: Category of different climate conditions from clustering analysis, based on the 

normalized winter precipitation and winter air temperature. Five clusters were identified as normal, 

wet, dry warm and cool conditions, with the centroid of each cluster marked with the ‘+’ symbol.  

Based on these clusters, the average pixel-wise peak SWE volumes under the same climate 

conditions are computed. The cluster-averaged peak SWE volume under dry, normal, and wet 

years are 209.6 km3, 260.5 km3, and 355.6 km3 respectively. As shown in Figure 3.12a, as expected, 

in spanning from dry to wet years there are marked increases in peak SWE volume over all 

elevations, particularly over the mid to low elevations (e.g. below 4000 m). In drier years, while 

Figure 3.12a shows less SWE volumes across all elevations, the fractional SWE volumes are not 

always smallest, as shown in Figure 3.12b. It can be observed that the fractional SWE volumes in 

dry years are smaller than those in normal years, in the low-to-mid elevations (~1500 - 3600 m). 

At mid-to-high elevations (~3600 - 5500 m), the dry years show greater fractional SWE volumes, 

compared to normal years. On the contrary, wet years show larger fractional SWE volumes below 

~ 3000 m, and smaller fractional SWE volumes above ~3000 m, when compared to normal years. 
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Such differences in the fractional SWE volumes may be due to two potential factors: 1) the dry 

conditions generally have less humid air, which may have accelerated evaporation and snow 

sublimation at lower elevations prior to peak timing; and 2) a slight shift in snowfall/precipitation 

towards higher elevations during drier years due to orographic effects, i.e. precipitation tends to 

occur at higher elevations where the moist and less humid air is cold enough to reach condensation. 

Note that the cluster-averaged air temperature is quite consistent under wet/dry/normal conditions, 

which should minimize the effect of air temperature differences on snow distribution in Figure 

3.12a and Figure 3.12b.  

Similarly, the pixel-wise peak SWE distribution under warm, normal, and cool years are examined. 

The cluster-averaged peak SWE volumes under warm, normal and cool years are 285.34 km3, 

260.47 km3, and 256.91 km3, respectively, with cluster-averaged air temperatures of 263.30 K, 

262.44 K, and 261.01 K. It should be noted that, the warm year cluster has greater peak SWE 

volumes (by ~25 km3) than the normal and cool years, which is reflected by the slightly higher 

precipitation in the warm year cluster (Figure 3.11). Therefore, we put more emphasis on the 

fractional peak SWE distribution (Figure 3.12d) here, to eliminate the effect of overall snow 

volume on snow distribution. The results indicate that warm and normal years have very consistent 

distributions, when the fractional SWE volumes are examined (Figure 3.12d). It is most notable 

that cool years have higher fractions of snow stored at lower elevations (e.g. below 3000 m), and 

smaller fractions of snow stored at mid elevations (3000 - 4000 m), compared to normal and warm 

years (Figure 3.12d dotted lines). As the difference in air temperature between normal and cool 

years is ~1.5 K, this may indicate that the low elevation snow storage tends to shift towards higher 

elevations (e.g. to mid elevations) with 1.5 K of warming (from cool to normal conditions), when 

the overall snow storage is the same.  
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Figure 3.12: Cluster-averaged pixel-wise peak SWE volume (and its relative fraction, i.e. 

normalized with total SWE volume) distribution vs. elevation under different climate conditions 

in HMA. Here (a) and (b) show the distribution under dry, normal, and wet conditions; (c) and (d) 

show the distribution under warm, normal, and cool conditions. Difference curves with reference 

to the normal condition are also provided in (b) and (d) as shown with dashed lines.  

3.4 Conclusions 

A first-order spatiotemporal analysis of seasonal SWE over the HMA region is presented in this 

paper, using a new 18-year snow reanalysis dataset (HMASR; Liu et al., 2021). This HMASR 

dataset is derived based on a previously developed snow reanalysis scheme (Margulis et al., 2019) 
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that jointly assimilates fSCA observations from both Landsat and MODSCAG products, which 

has daily outputs of SWE and other snow variables, with a spatial resolution of 16 arc-second 

(~500 m), over the joint period of Landsat and MODIS from WYs 2000 to 2017.  

This work herein used the new HMASR dataset to address scientific questions aimed at 

characterizing how seasonal SWE and snow storage is distributed spatially, temporally and 

elevationally across and within HMA. In terms of the spatial distribution, seasonal snow is most 

abundant in the NW, with over 1 m of peak SWE observed over the mountain ranges. Seasonal 

snow is also significant in the SE, where both relatively deep snowpacks (with peak SWE values 

up to 1 m or above) and shallow snowpacks (with peak SWE up to 0.2 m) are found. Seasonal 

snow is less abundant in the NE where most areas are snow free, or only covered by shallow 

snowpacks (with peak SWE values below 0.2 m). The domain-wide median date of peak SWE is 

estimated to be March 18th with significant heterogeneity across this region, linked with 

climatological drivers and topography.  

When aggregating the total SWE volumes across the full HMA domain and its basins, the 

climatological peak seasonal SWE volume was found to be 163 km3, with NW basins accounting 

for around 66% of that volume, followed by SE (~18%) and NE (~9%) basins. The seasonal cycle 

of HMA-wide SWE is depicted by snow accumulating through October to March and April, 

typically peaking around April and depleting in July-October. When examined at basin-scales, 

similar seasonality is observed in the westerly-affected basins (e.g. in NW), while different SWE 

seasonality is observed in monsoon-affected basins (in SE and NE). Interannual variations in 

HMA-wide or basin-scale SWE are also evident, with peak SWE volumes ranging from 114 km3 

to 227 km3 and peak dates ranging from late February (DOWY 146) to mid April (DOWY 195), 

when examined over the HMA-scale. The basin-scale SWE is more different from the HMA-wide 
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SWE, where peak SWE may occur as early as October and as late as July, and are divergent across 

basins and across WYs. 

The climatology of HMA-wide seasonal peak SWE is found to be most abundant at mid-elevations 

(3000 - 4000 m), with over 50% of the seasonal SWE volume stored at elevations above 3500 m. 

When comparing wet, normal, and dry years, we found that years with above-average amounts of 

precipitation causes significant overall increase in SWE volumes across all elevations. Meanwhile, 

a slight increase in air temperature (e.g. ~ 1.5 K) from cooler to normal years, mainly leads to an 

redistribution in snow storage from lower elevations to mid elevations, when the overall snow 

volume is the same.  

This HMASR dataset is presented to augment the spatiotemporal gaps in previous SWE datasets 

and provide better characterization of spatiotemporal patterns in seasonal snowpack over the HMA 

region, especially over the mountainous areas with complex terrain where existing products tend 

to underestimate SWE and present large uncertainties (Wrzesien et al., 2019; Kim et al., 2021). It 

should prove useful in providing more insight into the role of seasonal snowpack in the regional 

hydrological cycle, as a verification dataset for atmospheric and other models, and in other 

applications where a space-time continuous snow dataset constrained by remote sensing data is 

needed.   

It should be noted that the reanalysis method is generally expected to work best for seasonal snow 

where there is a strong signature between snow disappearance and measured fSCA. Hence an 

important caveat is that non-seasonal snow pixels are likely to be more erroneous than the seasonal 

snow pixels. The use of a non-seasonal vs. seasonal snow mask is used in this paper to highlight 

the part of snow storage that is deemed seasonal snow. In the raw dataset, all pixels are provided 

and so users are free to take advantage of the non-seasonal snow estimates (with the caveat 
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mentioned above). For the purposes of highlighting a new estimate of seasonal snow climatology 

in this paper, we focus on seasonal snow alone.  

It is also acknowledged that the reanalysis method is best designed for non-ephemeral snow where 

there is a strong seasonal cycle and signal between snow disappearance and measured fSCA that 

can be captured at the frequency of the fSCA measurements. Hence ephemeral snow (i.e. shallow 

and intermittent) may not be fully captured. Finally, the accuracy of fSCA retrievals are likely not 

as high in the monsoon dominated parts of HMA, which in our case excludes many more 

Landsat/MODSCAG measurements, resulting in higher uncertainty in SWE estimation over 

affected sub-regions like the Himalayas. Other remote-sensing approaches (e.g., active microwave 

measurements) that could penetrate clouds may potentially aid in reducing the uncertainties for 

SWE estimation over those areas. More research can be done to address such issues and improve 

the accuracy of SWE estimates for those regions in the future. 
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CHAPTER 4 

How well do we know seasonal snow storage in HMA?:  

An intercomparison with a new snow reanalysis 

Accurate knowledge of peak snow water storage is essential to water supply for regions reliant on 

snowmelt-driven runoff. However, our knowledge in data-sparse regions such as High Mountain 

Asia (HMA) is still limited. In this work, eight globally available snow products were examined 

over HMA, using a newly developed High Mountain Asia Snow Reanalysis (HMASR) dataset as 

a reference. 

The analysis focused on peak accumulation season storage since it is a first-order determinant of 

warm-season water availability. The results suggest an HMA-wide peak snow storage estimate, 

across global snow products, of 161 km3 ± 102 km3 indicating a large uncertainty, with an average 

underestimate of 33% compared to HMASR (239 km3). The errors and uncertainty vary across 

watersheds, with estimates of seasonal (110 km3 ± 74 km3) vs. intermittent (51 km3 ± 28 km3) 

snow regimes, showing 33% less and 70% more peak snow storage compared to HMASR, 

respectively. 

Large inter-product variability is found in cumulative snowfall and ablation during the 

accumulation season leading up to peak snow storage. The accumulation season snowfall is 

quantified as 335 km3 ± 148 km3 over the entire HMA, where a significant fraction (51% ± 9%) 

of the snowfall is lost to ablation during the accumulation season. The fraction varies when 

considering snow regime with 37% ± 13% for seasonal snow and 67% ± 7% for intermittent snow. 

The results show that inter-product snowfall variability explains most of the peak snow storage 

uncertainty (over 80%) during the accumulation season, partly because of the wide range of 
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uncertainty in precipitation (and snowfall), while ablation explains more variation when 

considering subsets of snow products.  

4.1 Introduction: 

Seasonal snow from global mountain “water towers” provides a virtual reservoir during the cold 

season that can ultimately supply water in the warm season through snowmelt-driven runoff 

(Viviroli et al., 2007). In High Mountain Asia (HMA), snowmelt feeds the major river basins in 

their headwaters (Bookhagen and Burbank, 2010; Armstrong et al., 2019), with significant 

contributions to overall runoff (Khanal et al., 2021; Kraaijenbrink et al., 2021), and is critical for 

meeting the human water demands in spring and summer. Snow storage in seasonal snowpack and 

the timing of snowmelt are highly sensitive to a warming climate, which is likely to alter the 

frequency of snow droughts (Huning and AghaKouchak, 2020), and pose risks to the water 

security for natural and human use (Immerzeel et al., 2020; Qin et al., 2020; Kraaijenbrink et al., 

2021).  

Peak snow storage at a given location in the landscape (when snow water equivalent (SWE) 

reaches its peak at the end of the accumulation season before starting to melt) is the key metric of 

available water for warm-season runoff. Accurately estimating peak snow storage (and its spatial 

distribution) is a first-order requirement for assessing snow-derived water availability for 

downstream use. Despite its importance, quantification of snow mass over the world’s mountains 

is still poorly constrained (Mudryk et al., 2015; Wrzesien et al., 2019), primarily due to the 

difficulties in the direct measurements of SWE, which is not available over large scales from either 

dense enough in situ networks or satellite-based remote sensing platforms (Palazzi et al., 2013; 

Dozier et al., 2016; Bormann et al., 2018). Alternative estimates of snow mass can be provided 

through modeling approaches, e.g. from atmospheric reanalysis, land data assimilation, GCMs and 
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RCMs. Nevertheless, previous intercomparison studies suggest large discrepancies in snow mass 

estimation, when examining different models and products over the entire northern hemisphere 

(Mudryk et al., 2015; Mortimer et al., 2020; Xiao et al., 2020), North America (McCrary and 

Mearns, 2019; Wrzesien et al., 2019; Xu et al., 2019; Kim et al., 2021), Hindu Kush-Karakoram-

Himalaya (Terzago et al., 2014), and the Tibetan Plateau (Bian et al., 2019; Orsolini et al., 2019). 

Despite the large uncertainties seen in multi-dataset snow mass comparisons, often a single dataset 

is used when assessing the links between snowpack storage, regional water availability and climate 

change (e.g. Mankin et al., 2015; Huning and AghaKouchak, 2020; Immerzeel et al., 2020; Qin et 

al., 2020). Without improved characterization of seasonal snow storage in regions that depend 

heavily on snow-derived water (e.g.  HMA), our confidence in estimates of available water 

resources and how they are changing will remain compromised, thus impacting our ability to 

effectively adapt to ongoing changes. 

The scarcity of ground observations and the lack of reference datasets has limited a thorough 

evaluation of snow mass estimates over the broad HMA domain. In this study, the newly developed 

High Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) is employed as a reference SWE 

dataset for examining the peak snow storage estimates from eight global atmospheric reanalysis 

and land data assimilation products in this region. The focus herein is understanding peak SWE 

estimates during the accumulation season (and not melt season processes) due to its first-order 

determination of available water supply. The rationale for this focus is that accurately 

characterizing peak storage is a necessary condition for ultimately accurately representing ablation 

season processes. The following science questions are addressed in this research: 

1. What is the uncertainty in peak seasonal snow water storage over High Mountain Asia and its 

watersheds? 
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2. How much of the uncertainty in peak snow storage is explained by accumulation season snowfall 

and ablation variability, respectively?  

4.2 Data  

Herein the reference SWE dataset (HMASR) and the eight atmospheric and land data assimilation 

reanalysis datasets (chosen as representative community-based global products that span most of 

the period of HMASR (1999-2017)) are examined. The global products include:  ERA5 and ERA5-

land (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis products, 

5th generation), MERRA2 (Modern-Era Retrospective analysis for Research and Applications, 

version 2), JRA55 (Japanese 55-year Reanalysis) and GLDAS-2.1 (Global Land Data Assimilation 

System version 2.1 at several resolutions and with different land surface models). A summary of 

these datasets is given in Table 4.1, with details in the subsections below. The intercomparison 

study period is chosen as Water Years (WYs) 2001 to 2017, which has the maximum overlap 

between all datasets (as GLDAS datasets start in calendar year 2000 and HMASR ends in 

WY2017). The WY convention used is that, for example, WY 2001 spans from October 1, 2000 

to September 30, 2001. Hereafter, to distinguish between the globally-available datasets and the 

reference dataset, we use “snow products” and “HMASR” respectively.  
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Table 4.1: Characteristics of datasets used in this study, including the spatial-temporal extent and 

resolution, land surface model, and whether assimilating any snow observations. For the globally-

available snow products, in addition to SWE, other forcing variables such as precipitation (P), air 

temperature (Ta) and snowfall (S) are also used. 1 Liu et al., 2021; 2 Muñoz-Sabater et al., 2021; 3 Hersbach 

et al., 2020; 4 Rodell et al., 2004; 5 Gelaro et al., 2017; 6 Kobayashi et al., 2015 

Dataset Spatial 
resolution 

Temporal  
coverage   

Temporal 
resolution 

Land 
Surface 
Model 

Assimilated 
snow 
observations 

Available 
variables used 
in analysis 

HMASR1 
(reference) 

1/255° x 
1/255° 

1999/10 -
2017/09 

Daily SSiB3 Fractional 
snow-covered 
area from 
Landsat and 
MODSCAG 

SWE 

ERA5-Land2 0.1° x 0.1° 1950 - 
present 

Hourly H-TESSEL - SWE, P, Ta, S 

ERA53 0.25° x 0.25° 1950 - 
present 

Hourly H-TESSEL In situ snow 
depth; IMS 
snow cover 
(binary) 

SWE, P, Ta, S 

GLDAS-Noah 
(0.25°)4 

0.25° x 0.25° 
 

2000/01 - 
present 
 

3 hours 
 

Noah - SWE, P, Ta, S 

MERRA25 0.625° x 0.5° 1979 - 
present 

Hourly Catchment - SWE, P, Ta, S 

JRA-556 0.5625° x 
0.5616° 

1958 - 
present  

3 or 
6 hours 
 

SiB In-situ snow 
depth, SSM/I, 
SSMIS snow 
cover (binary) 

SWE, P, Ta, S 

GLDAS-Noah (1°) 1° x 1° 2000/01 - 
present 
 

3 hours 
 

Noah - SWE, P, Ta, S 
GLDAS-VIC (1°) VIC  
GLDAS-CLSM (1°) Catchment  

 

All nine datasets provide SWE estimates which are used to evaluate the metric of seasonal water 

storage up to peak SWE, with the use of HMASR SWE as the reference in the intercomparison. 

Other meteorological forcings (precipitation, P; air temperature, Ta; and snowfall, S) are obtained 

from the global snow products. HMASR (which does not output snowfall) provides only SWE for 

comparison. The meteorological forcing variables are obtained at their raw spatial and temporal 

resolution as listed in Table 4.1, and further aggregated into daily total values (for P and S) or daily 
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averaged values (for Ta) in each snow product. Spatial aggregation is also performed for SWE and 

meteorological forcings, which is further described in Sections 4.3.2 and 4.3.3.  

4.2.1 HMASR 

HMASR (Liu et al., 2021) is a novel snow-specific reanalysis dataset, providing estimates of daily 

SWE at 1/255° (~500 m) resolution, available from WYs 2000 to 2017. Among all datasets 

examined in this work, HMASR is unique in that it was specifically designed for seasonal snow 

estimation in the HMA region, leveraging remotely sensed fractional snow-covered area (fSCA) 

and an advanced ensemble-based data assimilation framework. It is directly constrained by snow 

observations and offers the potential of SWE evaluation at high elevations and over complex 

terrain, where in-situ stations are non-existent. 

HMASR uses the SSiB3 snow and land surface model (Sun and Xue, 2001; Xue et al., 2003) 

coupled with the Liston snow depletion curve (Liston, 2004). A snow reanalysis scheme (Margulis 

et al. 2019) is employed to jointly assimilate the batch of satellite-derived fractional snow-covered 

area (fSCA) from Landsat and the MODIS Snow Covered-Area and Grain size retrieval 

(MOSCAG; Painter et al., 2009) over a given WY. The MERRA2 forcing variables (e.g. raw 

precipitation, air temperature, etc.) are used as the baseline forcing inputs in HMASR, with 

appropriate uncertainty and topographic downscaling and bias-correction (Margulis et al., 2019; 

Liu and Margulis, 2019). In particular, a priori precipitation is considered highly uncertain and 

then implicitly corrected as part of the assimilation framework (Margulis et al. 2019; Liu et al., 

2021).  

4.2.2 ERA5 and ERA5-land 

ERA5 (Hersbach et al., 2020) is the 5th generation product of ECMWF atmospheric reanalyses 

that provides hourly estimates from 1950 to present, at a spatial resolution of 0.25°. The Tiled 
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ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology (H-

TESSEL) is used as the LSM to obtain the ERA5 estimates. Both in-situ snow depth observations 

and snow cover data (binary) from the Interactive Multi-Sensor Snow and Ice Mapping System 

(IMS) are used in its snow data assimilation system with an Optimal Interpolation (OI) method. It 

is worthwhile to note that the IMS data was not applied to elevations above 1500 m in the ERA5 

snow scheme (Bian et al., 2019), and the available snow depth stations are relatively limited over 

the HMA region. 

In addition to the ERA5 product itself, the ERA5-land (Muñoz-Sabater et al., 2021) dataset at finer 

resolution (0.1°) is derived by ECMWF. The downscaled ERA5 forcing variables (e.g. air 

temperature and humidity, with lapse rate correction) are used as inputs, with the same LSM (H-

TESSEL) used in the ERA5-land simulation. No data assimilation is used to derive the ERA5-land 

product, and hourly estimates are available from 1950 to present. 

4.2.3 MERRA2 

MERRA2 (Gelaro et al., 2017) is the 2nd version of NASA’s Global Modeling and Assimilation 

Office (GMAO) reanalysis product, that provides hourly estimates from 1979 to present at a spatial 

resolution of 0.625° x 0.5°. The LSM used is the Catchment model (CLSM) and no snow data 

assimilation is performed. Note that a bias-corrected precipitation (PRECTOTCORR) field is what 

MERRA2 uses as the precipitation inputs (Reichle et al., 2017) to derive its land surface state 

estimates including SWE.  

4.2.4 JRA55 

JRA55 (Kobayashi et al., 2015) is the latest version of the Japan Meteorology Agency (JMA) 

reanalysis product that provides sub-daily (e.g. 3 hours for snowfall and 6 hours for SWE and air 

temperature) estimates for a 55-year period (from 1958 to present). The dataset contains outputs 
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at a few spatial resolutions where the highest so-called modeling resolution (~0.5625° x 0.5616°) 

is used herein. JRA55 uses the Simple Biosphere (SiB) model as the LSM in deriving its estimates. 

Station observed snow depth and satellite retrieved (binary) snow cover from the Special Sensor 

Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) are used to 

update snow depth through data assimilation, using an OI method. Snow mass (SWE) estimates 

are converted from snow depth estimates by assuming a constant snow density (200 kg/m3; Onogi 

et al., 2007). Note that the JRA55 product assimilates snow depth stations over the Tibetan Plateau, 

while ERA5 does not (Onogi et al., 2007; Bian et al., 2019; Orsolini et al., 2019). 

4.2.5 GLDAS-2.1 

GLDAS-2.1 (Rodell et al., 2004) is a global land data assimilation product generated by the NASA 

Goddard Space Flight Center (GSFC), providing estimates at sub-daily (3 hours) and 0.25° or 1° 

resolution, available from January 2000 to present. It contains four datasets: two Noah model 

driven datasets at 0.25° and 1° resolution, one Variable Infiltration Capacity (VIC) model driven 

dataset at 1° resolution, and one Catchment (CLSM) model driven dataset at 1° resolution, denoted 

as GLDAS-Noah (0.25°), GLDAS-Noah (1°), GLDAS-VIC (1°) and GLDAS-CLSM (1°) 

hereafter. All of the GLDAS-2.1 products are generated using the same set of meteorological 

forcing inputs, without any snow data assimilation.  

4.3 Study region and Methods 

4.3.1 Study domain and classification of seasonal, intermittent, and persistent snow regions 

The HMA region (Figure 4.1a; bounded by 27°N to 45°N and from 60°N to 105°N) includes key 

mountain ranges (e.g. Tien Shan, Pamir, Karakoram, Himalayas, etc.) and the Tibetan Plateau, 

providing sources of water for the largest river basins (e.g. Indus, Ganges, Yangtze, Yellow, etc.) 

in Asia. This region is significantly covered by snow and ice, with westerlies dominating winter 
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precipitation in the northwest and the Indian and East Asia monsoons dominating summer 

precipitation in the southeast (Yao et al., 2012). Melt water from seasonal snow and glaciers greatly 

contributes to the downstream water supply (Bookhagen and Burbank, 2010; Armstrong et al., 

2019). 

 

Figure 4.1: a) map of HMASR domain elevation with major watershed boundaries (DEM derived 

from SRTM as described in Margulis et al. (2019) where the red ‘+’ symbol indicates the location 

of the pixel shown in (b); b) illustrative example of seasonal cycle of SWE, cumulative snowfall 

and ablation at a representative pixel (34.5°N, 66.5°E) in WY2017 where the solid lines represent 

processes leading up to peak SWE (the focus of the work described herein) and the dashed lines 

are the processes after peak SWE, with the ‘o’ symbols indicate peak SWE; c) the 17-year 

climatology of seasonal cycle in HMA-wide SWE volume illustrating how pixel-scale uncertainty 

across datasets propagate to the full domain seasonal cycle.  
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As in Liu et al. (2021), the HMASR dataset can be used to derive masks for persistent snow/ice, 

seasonal snow, and intermittent snow (Figure S1; with intermittent snow defined as pixels with 

climatological peak SWE below 0.05 m). The persistent snow mask (derived in Liu et al., 2021) 

is used to remove areas that are likely glacierized or with significant carry-over snow storage from 

one WY to the next. The focus of this study is on the seasonal and intermittent snow regions, where 

the distinction is made due to expected differences in accumulation season characteristics. For 

consistency, we applied the three HMASR masks to all other datasets, by aggregating them from 

the original HMASR resolution (~500 m) to the coarser resolution grids (Figure S1). The masked 

areas were carefully examined to make sure they are comparable across datasets (Table S1). In 

general, the derived seasonal snow area is almost three times as large as the persistent snow/ice 

area, but only ~35% as large as the intermittent snow area. Most of the seasonal snow is in the 

northwestern mountain regions (dominated by winter westerlies), while intermittent snow mainly 

covers the vast area in the central and eastern regions (dominated by summer monsoons).  

4.3.2 Accumulation season snow mass balance at the pixel-scale 

Snowpack evolution can be characterized as snow mass gain (via solid precipitation, i.e. snowfall) 

and snow mass loss (via ablation, e.g. snowmelt, sublimation, wind drifting, etc.), which can be 

represented in terms of mass and energy balance (Liston and Elder, 2006; McCrary and Mearns, 

2019). By definition, peak snow storage is associated with snow mass balance processes during 

the accumulation season, therefore only the accumulation season snow mass gain and loss are 

examined in this study. 

Snow mass balance at the model pixel scale can be described as the relationship between SWE 

(denoted as swe in m), snowfall (s, in m/day) and ablation (a, in m/day), all expressed in equivalent 

water depth: 
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,5
𝑠𝑤𝑒 = 𝑠 − 𝑎	                               (1)  

The snow accumulation season is defined at the pixel scale, from DOWY 1 (𝑡3) up to pixel-wise 

peak SWE DOWY (𝑡*+-K; Figure S2) given by: 

  ∫ i ,
,5
𝑠𝑤𝑒j 𝑑𝑡51234

5!
= ∫ [𝑠 − 𝑎]𝑑𝑡51234

5!
            (2) 

𝑠𝑤𝑒*+-K = 𝑠-00 − 𝑎-00           (3) 

where 𝑠𝑤𝑒*+-K characterizes the net added SWE within the accumulation season at a specific pixel. 

The	𝑠-00 and 𝑎-00 	terms denote the cumulative snowfall integrated over the accumulation season, 

with units of m, respectively. The variables 𝑠𝑤𝑒*+-K 	and 𝑠-00 	are directly obtained from each snow 

product. Since different LSMs across products include and handle ablation processes differently, 

𝑎-00 is obtained as the residual (similar to Xu et al., 2019): 

𝑎-00 = 𝑠-00 − 𝑠𝑤𝑒*+-K           (4) 

Defining these quantities at the pixel-scale isolates accumulation season processes, where doing 

so at the basin or larger scale inevitably mixes accumulation season and melt season processes due 

to elevational gradients within the region examined. Spatial variations in 𝑡*+-K are indicative of 

seasonal and elevational patterns in climatology, but are also a function of model-specific inputs 

and process representation (Figure S2). 

Figure 4.1b provides an illustrative example of accumulation season mass balance showing the 

seasonal cycle of SWE, cumulative snowfall and ablation, at a representative pixel (34.5°N, 66.5°E) 

in WY2017. In this pixel-WY, HMASR has the highest 𝑠𝑤𝑒*+-K, with a value of ~0.4 m and a 

corresponding value for 𝑡*+-K of ~DOWY 180. In comparison, the snow products have 𝑠𝑤𝑒*+-K  

values ranging from ~0.1-0.32 m and 𝑡*+-K  values ranging from ~DOWY 125-180. The inter-

product uncertainty in 𝑠𝑤𝑒*+-K is the result of variability in both snowfall and ablation, with 𝑠-00 
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ranging from ~0.2-0.4 m and 𝑎-00  ranging from ~ 0.02-0.2 m. Note that this comparison is 

primarily for illustration due to the large grid size differences among datasets. This is why spatial 

integration is used (as described below in Section 4.3.3) for the formal intercomparison.  

It should also be noted that while most snow products showed consistency between integrated 

positive SWE increments and snowfall (Figure 4.1b), JRA55 consistently exhibits SWE changes 

lower than expected relative to snowfall (i.e. data assimilation increments appear to be mostly 

negative). For this reason, “ablation” (defined herein as the residual between 𝑠𝑤𝑒*+-K and 𝑠-00) 

for JRA55 is likely a mix of model-specific ablation processes and non-negligible data assimilation 

corrections. This explains why JRA55 has among the higher snowfall estimates, but among the 

lower SWE estimates in Figure 4.1b.  

4.3.3 Spatial integration 

The focus of this study is to quantitatively compare the seasonal snow storage estimates over the 

HMA domain as well subregional scales. Due to the disparity in native spatial resolutions from the 

eight snow products and HMASR, this is mainly achieved through integrating pixel-scale 

quantities into basin-scale or HMA-scale volumes. Seasonal, intermittent, and persistent snow 

masks (Figure S1) are applied prior to the integration.  

For the three quantities (𝑠𝑤𝑒*+-K, 𝑠-00 and 𝑎-00) in equation (3), the spatially integrated quantities 

are denoted herein as 𝑆𝑊𝐸*+-K , 𝑆-00  and 𝐴-00  (in units of km3), with the same relationship as 

characterized as: 

𝑆𝑊𝐸*+-K = 𝑆-00 − 𝐴-00           (5) 

It should be noted that 𝐴-00 is essentially calculated as the residual between 𝑆-00 and 𝑆𝑊𝐸*+-K 

based on equation (4) in this work: 

𝐴-00 = 𝑆-00 − 𝑆𝑊𝐸*+-K           (6) 
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The analysis below consists of examining 𝑆𝑊𝐸*+-K across all datasets (including using HMASR 

as a reference) and additionally 𝑆-00 and 𝐴-00 across all snow products.  

In addition, the spatially integrated precipitation is noted as 𝑃-00 , and the spatially average air 

temperature is noted as 𝑇-00, during accumulation season (up until 𝑡*+-K) over the HMA-scale or 

basin scales. Herein the 10 largest watersheds in HMA are examined, which are delineated based 

on HydroSHEDS (Lehner et al., 2008) and shown in Figure 4.1a. 

Spatial integration over elevation bands is also performed in this work. The DEM for each dataset 

(at the native resolution) is shown for a representative tile 34°N, 66°E in Figure S3a. The 

hypsometry over the whole domain (Figure S3b) shows how the areal distribution of elevation 

varies across datasets. For elevational distributions of variables (e.g. 𝑆𝑊𝐸*+-K 	and 𝑆-00 ), the 

native DEMs for each dataset were used to integrate into volumes by discretizing elevation bands 

using intervals of 1000 m (centered on 1500, 2500, 3500, 4500, and 5500 m) . Relative to HMASR, 

all snow product DEMs seem to have less area below 2000 m or above 3500 m, and more area in 

between (2000 – 3500 m). The hypsometry is generally consistent above 3500 m, and most 

different around 2500 m across snow products, with GLDAS (1°) product showing the highest 

area, followed by JRA55 and MERRA2, while ERA5 and GLDAS (0.25°) show the least area (yet 

slightly higher than HMASR). 

4.3.4 Linear regression 

As shown in many previous studies, precipitation (snowfall) is often regarded as the key variable 

affecting peak SWE estimation (Clark et al., 2011; Magnusson et al., 2015; Xu et al., 2019). Along 

these lines, we use a simple linear regression to examine the relationship between 𝑆𝑊𝐸*+-K and 

𝑆-00: 

𝑆𝑊𝐸*+-K = β ∗ 𝑆-00 + 𝜀           (7) 
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where 𝑆𝑊𝐸*+-K and 𝑆-00 are available for each snow product and each WY. In the analysis below, 

the regression is used to examine both global (i.e. across all snow products and WYs) and local 

(i.e. for a single snow product across all WYs) variations.  

The β term is the regression coefficient (slope), and is derived either (β87%9-7) or locally (β6). The 

slope physically represents the fraction of cumulative snowfall that remains in the snowpack at 

𝑡*+-K. In the limit of no ablation the slope would be ~1, while the occurrence of accumulation 

season ablation will generally lead to values < 1. The ε term is the random noise, which is assumed 

to be independent of the predictor (𝑆-00). To avoid collinearity, 𝐴-00 	is not explicitly included as 

a predictor in the linear regression, as it is simply computed as the residual between the other two 

variables (Equation (6)). The coefficient of determination (R= ) is often used to measure the 

goodness of fit for the linear model, and its value can be interpreted as the fraction of the explained 

variance. The above approach provides a mechanism to determine the relative role of snowfall vs. 

ablation in contributing to peak snow storage (through the slope) as well as explain the variation 

in peak storage relative to snowfall. Note that JRA55 and HMASR data were excluded in the linear 

regression, since their snowfall data is either not available (HMASR) or inconsistent with SWE 

(JRA55 due to significant data assimilation increments in SWE). 

4.4 Results and Discussion: 

The results are organized as follows: Section 4.4.1 presents the uncertainty in peak seasonal snow 

water storage over HMA and its watersheds; Section 4.4.2 examines the driver of peak SWE 

uncertainty from accumulation season snowfall and ablation variations.  
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4.4.1 Uncertainty in peak seasonal snow storage over HMA and its watersheds 

4.4.1.1 HMA-scale 

Characterizing pixel-wise peak SWE and its timing (Figure 4.1b) is important because any 

uncertainties propagate to basin or domain-averaged snow storage quantities. To first illustrate the 

domain-wide impacts, Figure 4.1c shows the climatological (17-year average) integrated SWE 

volume time series over HMA, where the peak storage varies from 29 km3 (MERRA2) to 270 km3 

(ERA5-land), and peak timing varies from DOWY 141 (GLDAS-CLSM) to DOWY 176 (ERA5-

land). In terms of the magnitude, ERA5-land and ERA5 show the highest seasonal storage 

followed by HMASR, while GLDAS products show lower seasonal storage (with an order, from 

highest to lowest, of GLDAS-VIC, GLDAS-Noah (0.25°), GLDAS-Noah (1°) and GLDAS-

CLSM). JRA55 and MERRA2 show the least seasonal storage. Since peak snow storage and its 

timing are direct indicators of snow-derived water availability, the results suggest large uncertainty 

across snow products. However, this domain-wide integral time series is the result of pixel-scale 

accumulation processes (e.g., Figure 4.1b) with spatially varying accumulation seasons (Figure 

S2). Hence to fully understand the uncertainty, all results to follow focus on the pixel-wise peak 

snow storage (𝑆𝑊𝐸*+-K) and the processes leading to that storage (𝑆-00 and 𝐴-00).  

The estimates of 𝑆𝑊𝐸*+-K across all datasets are shown in Table 4.2, which corresponds to an 

overall estimate of: 161 km3 ± 102 km3 (excluding HMASR as a standalone dataset for evaluation) 

illustrating the very large uncertainty across snow products. When partitioned into seasonal and 

intermittent snow the estimates are: 110 km3 ± 74 km3 and 51 km3 ± 28 km3, respectively. The 

ERA5-land and ERA5 snow products, with volumes of 341 km3 and 288 km3, exhibit larger values 

than HMASR (239 km3), corresponding to 43% and 20% more snow respectively. The remaining 

snow products exhibit less snow storage than HMASR. The GLDAS estimates range from 25-59% 
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less snow than HMASR with GLDAS-VIC (179 km3), GLDAS-Noah, (120 km3 and 114 km3 for 

0.25° and 1° respectively), and GLDAS-CLSM (98 km3) in order of highest to lowest estimates. 

The JRA55 and MERRA2 products exhibit the least amount of 𝑆𝑊𝐸*+-K with 93 km3 (61% less 

than HMASR) and 54 km3 (77% less than HMASR), respectively. When the snow products are 

compared collectively to HMASR over the full HMA domain, the mean difference (MD) in 

𝑆𝑊𝐸*+-K is -33% with a root mean square difference (RMSD) of 52%. In seasonal snow regimes, 

there is a MD of -47% and RMSD of 58%. In intermittent snow regimes, there is a MD of 70% 

and RMSD of 113%. This highlights the qualitative differences in snow regime (underestimate in 

seasonal vs. overestimate in intermittent) that are somewhat cancelled out when considered 

together. 

Table 4.2: 17-year climatology of 𝑆𝑊𝐸*+-K and the percent difference compared to HMASR, over 

the full HMA domain and over seasonal and intermittent snow regimes.  

  HMA Seasonal Intermittent 

Dataset 𝑆𝑊𝐸5678 
(km3) 

% difference 
with HMASR 

𝑆𝑊𝐸5678 
(km3) 

% difference 
with HMASR 

𝑆𝑊𝐸5678 
(km3) 

% difference 
with HMASR 

HMASR  239 - 210 - 30 - 
ERA5-land 341 43% 249 19% 93 210% 
ERA5 288 20% 198 -5% 90 200% 
GLDAS-Noah 
(0.25°) 120 -50% 84 -60% 36 20% 

MERRA2 54 -77% 35 -83% 18 -38% 
JRA55 93 -61% 64 -69% 29 -3% 
GLDAS-Noah (1°) 114 -53% 76 -64% 37 25% 
GLDAS-VIC (1°) 179 -25% 113 -46% 65 119% 
GLDAS-CLSM (1°) 98 -59% 61 -71% 38 26% 
Mean (excluding 
HMASR) 161 - 110 - 51 - 

Standard Deviation 
(excluding HMASR) 102 - 74 - 28 - 

MD - -33% - -47% - 70% 
RMSD - 52% - 58% - 113% 
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4.4.1.2 Basin-scale 

Figure 4.2 depicts the climatology of the spatial distribution of 𝑠𝑤𝑒*+-K 	for each dataset. All 

datasets exhibit coherent spatial patterns with the highest amount of snow estimated in the seasonal 

snow regimes and shallow or negligible amounts in the intermittent snow regimes; these patterns 

are consistent with previous studies (Terzago et al., 2014; Bian et al., 2019; Orsolini et al., 2019). 

Despite the consistency in spatial patterns across datasets, there are large differences in magnitude. 

This becomes clear when integrated across different basins (Figure 4.3). By comparing to the 

seasonal/intermittent snow classification (Figure S1), we categorize the ten basins into seasonal 

snow dominated basins (Syr Darya, Amu Darya, Tarim and Indus), mixed basins (Ganges-

Brahmaputra) and intermittent snow dominated basins (e.g. Inner Tibetan Plateau, Salween, 

Mekong, Yangtze and Yellow). 

In general, at the basin scale, relative estimates of 𝑆𝑊𝐸*+-K 	 across snow products are qualitatively 

consistent with the HMA-wide results. ERA5/ERA5-land products show more 𝑆𝑊𝐸*+-K 

compared to HMASR, with the least overestimation (up to 25%) in seasonal snow basins, moderate 

overestimation (~60%) in mixed basins, and the most overestimation (~100%) in intermittent snow 

basins. In contrast, GLDAS products generally exhibit less 𝑆𝑊𝐸*+-K than HMASR, with the most 

underestimation in the seasonal snow and mixed basins (up to 60% and ~75%, respectively), and 

the least underestimation (up to ~25%) in the intermittent snow basins, with the exception that it 

overestimates 𝑆𝑊𝐸*+-K (by 82%) in the Inner Tibetan Plateau. MERRA2 and JRA55 consistently 

show less 𝑆𝑊𝐸*+-K (both between 50% to 80% underestimation) than HMASR. The variations 

within the ERA5/ERA5-land products are found to be larger in seasonal snow basins than 

intermittent snow basins, while the GLDAS group shows the opposite. 
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Figure 4.2: The 17-year climatology of pixel-wise peak SWE (𝑠𝑤𝑒*+-K), with persistent snow/ice 

pixels masked out (grey). 
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Figure 4.3: The 17-year climatology of peak SWE volume (𝑆𝑊𝐸*+-K ) in each basin (with 

HMASR SWE shown with horizontal black line). The snow products are grouped into 4 main sets 

(ERA5 and ERA5-land, MERRA2, JRA55 and GLDAS), with the average 𝑆𝑊𝐸*+-K 	(bar plot) 

and the standard deviation (error bars) shown for the ERA5 and GLDAS groups.  

4.4.2 Drivers of peak SWE and their variation across snow products 

4.4.2.1 Variations in accumulation season snowfall and ablation 

As described in Equation (5), 𝑆𝑊𝐸*+-K is the result of cumulative snowfall and ablation through 

the accumulation season (𝑆-00  and 𝐴-00). The variability in 𝑆-00  and 𝐴-00 	climatology between 

snow products is characterized in Figure 4.4 to illustrate their relative influence on 𝑆𝑊𝐸*+-K 

variability. Overall, there exists large variations in 𝑆-00  and 𝐴-00 	estimates across the existing 

snow products. 𝑆-00 is generally largest in ERA5/ERA5-land products, and smallest in 

MERRA2/GLDAS products, with the mean and uncertainty characterized by 335 km3 ± 148 km3 

in the entire HMA, 178 km3 ± 83 km3 in seasonal snow regimes and 157 km3 ± 67 km3 in 
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intermittent snow regimes. 𝐴-00 	is also quite variable (and a significant fraction of 𝑆-00) across 

snow products, indicating that ablation during the accumulation season is a non-negligible factor 

in determining the 𝑆𝑊𝐸*+-K.  Specifically, between 40% (ERA5-land) and 65% (MERRA2) of 

snowfall is lost to ablation during the accumulation season, with the uncertainty characterized by 

51% ± 9%. The snowfall loss to ablation is less in seasonal snow regimes, but the ratio still varies 

significantly across products (from 17% in ERA5-land to 55% in MERRA2, or 37% ± 13% across 

snow products). In intermittent snow regimes, the snowfall loss to ablation is large but more 

consistent across snow products (from 58% in GLDAS-VIC to 76% in MERRA2; 67% ± 7%), 

during the accumulation season.  
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Figure 4.4: The 17-year climatology of peak SWE volume ( 𝑆𝑊𝐸*+-K , solid bars), and 

accumulation season snowfall volume (𝑆-00, shaded bars), integrated over HMA (top panel) as 

well as over seasonal (middle panel) and intermittent snow (bottom panel) regimes. HMASR SWE 

is provided as a reference (solid black horizontal line). The text labels in each bar plot indicate the 

fraction of cumulative snowfall lost to ablation. JRA55 ablation fraction is displayed here but not 

included in the discussion due to its ‘ablation’ being overestimated because it includes the effect 

of snow data assimilation updates. 
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The elevational distribution of 𝑆-00, 𝐴-00 and 𝑆𝑊𝐸*+-K climatology over the full HMA domain 

are depicted in Figure 4.5, with volumes normalized by total 𝑆-00 to present the volumetric fraction. 

Given the significant differences in snowfall across snow products, the normalization reflects how, 

for the same amount of snowfall, each snow product distributes snowfall across elevation and how 

that fraction is partitioned into 𝐴-00 and 𝑆𝑊𝐸*+-K . The elevational distribution over the full HMA 

domain is presented here, with a generally consistent pattern in the elevation distribution over 

seasonal and intermittent snow regimes. For convenience, we define the elevation bands centered 

on 2500 m, 3500 m and 4500 m as lower, mid and higher elevations herein.  

The fractional 𝑆-00 distribution over elevation is generally consistent across snow products, except 

that MERRA2 exhibits a slightly higher fraction	at lower elevations and a lower fraction at higher 

elevations. ERA5 and ERA5-land exhibit higher 𝑆-00 fractions at mid elevations (5% more than 

MERRA2) and lower fractions at higher elevations (comparable to MERRA2). The GLDAS 

products exhibits the lowest fractions at lower elevations (~ 5-8% less than MERRA2) but the 

highest fractions at higher elevations (~8% more than MERRA2).   

The fractional 𝐴-00 distribution is significantly more distinct across snow products. At lower and 

mid elevations, both ERA5-land and GLDAS-VIC stand out as showing the lowest fractions, 

where ERA5 and the other GLDAS products shows moderate fractions (8% more than ERA5-

land), and MERRA2 shows the highest fraction (20% more than ERA5-land). At higher elevations, 

ERA5-land and GLDAS-VIC still show the least fractional 𝐴-00, but ERA5 exhibits a comparable 

fraction compared to ERA5-land, and the other GLDAS products and MERRA2 shows the highest 

fractions (8% more than ERA5-land). The extremely low ablation in ERA5-land and ERA5 at 

higher elevations is described in Hersbach et al. (2020) and attributed to its single layer snow 

model not producing enough melt. The three GLDAS products only exhibit minor difference with 
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~2% less fractional 𝐴-00 in GLDAS-Noah (0.25°) and 1% less fractional 𝐴-00 in GLDAS-Noah 

(1°) compared to GLDAS-CLSM at lower elevations.  

The elevational distribution of fractional 𝑆𝑊𝐸*+-K is a direct result of fractional 𝑆-00 and 𝐴-00. In 

general, ERA5-land exhibit the highest fractional 𝑆𝑊𝐸*+-K, with MERRA2 showing the lowest 

fraction, primarily because MERRA2 consistently has higher fractional 𝐴-00  than ERA5-land. 

Their differences are largest (13%) at mid elevations where MERRA2 exhibits less fractional 𝑆-00, 

and smallest (5%) at low elevations where MERRA2 exhibits more fractional 𝑆-00. Compared to 

ERA5-land, GLDAS-VIC shows ~7% less fractional 𝑆𝑊𝐸*+-K at mid elevations, but ~6% more 

at high elevations, primarily because the difference in fractional 𝑆-00 distribution. Again, the other 

three GLDAS products exhibit a relatively consistent distribution in fractional 𝑆𝑊𝐸*+-K, except 

that the 0.25° product shows a slightly higher fraction (~3%) at mid elevations due to the fractional 

𝑆-00 difference compared to other products. GLDAS also exhibits more fractional 𝑆𝑊𝐸*+-K than 

MERRA2, with the difference largest (8%) at high elevations where GLDAS obtains more 

fractional 𝑆-00  but equivalent fractional 𝐴-00 , and smallest (<1%) where GLDAS obtains less 

fractional 𝑆-00 and less fractional 𝐴-00. These highlight the important role of ablation in removing 

snowfall differently with elevation over the accumulation season, leading to a distinct distribution 

in fractional 𝑆𝑊𝐸*+-K rather than just reproducing the fractional 𝑆-00 distribution. 
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Figure 4.5: Volumetric fraction of accumulation season snowfall (𝑆-00), ablation (𝐴-00) and peak 

SWE (𝑆𝑊𝐸*+-K), integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 4500, and 

5500 m) over the full HMA domain. The fractional distribution is obtained for each snow product 

by normalizing the distribution by the product-specific total 𝑆-00 across all elevations. The top 

panel displays the cumulative volumetric fraction across elevation bins, and the bottom panel 

displays the absolute volumetric fraction within elevation bins. Note that the fractional ablation 

and SWE in JRA55 are not displayed here, due to its ‘ablation’ being overestimated because it 

includes the effect of snow data assimilation updates.  
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4.4.2.2 Explaining peak SWE variation from accumulation season snowfall/ablation 

To explain peak SWE variations across and within snow products, linear regression (as described 

in Section 4.3.4) was applied across snow products and/or WYs.  Over the full HMA domain, a 

strong linear dependence between the interannual 𝑆𝑊𝐸*+-K  and 𝑆-00  is clearly illustrated in 

Figure 4.6. A large range of 𝑆-00 values are observed (ranging from 100 – 700 km3), with a notable 

gap between GLDAS (ranging from 200 – 400 km3) and ERA5/ERA5-land (ranging from 500 – 

700 km3). The global regression slope (𝛽87%9-7) is 0.54, indicating that, during the accumulation 

season, ~54% of snowfall goes into the 𝑆𝑊𝐸*+-K, while the other 46% is lost through ablation. 

This partitioning is higher in seasonal snow regimes, where ~71% of snowfall goes into peak SWE 

and 29% instead is lost via ablation. In intermittent snow regimes ~35% of snowfall goes into peak 

SWE and 65% instead is lost via ablation. These diagnosed fractions from multi-WY and multi-

product analysis (Figure 4.6) are consistent with those derived from the climatology (Figure 4.4).  

 



 
130 

 

Figure 4.6: Regression of peak SWE volume (𝑆𝑊𝐸*+-K) and accumulation season snowfall (𝑆-00) 

across WYs (WY 2001-2017),  with volumes integrated over the full HMA domain, as well as the 

seasonal and intermittent snow regimes, respectively. Note that JRA55 is displayed here but not 

included in the global linear regression due to its ‘ablation’ being overestimated because it includes 

the effect of snow data assimilation updates. 

The coefficient of determination (𝑅=) is 0.88, 0.88 and 0.80 for the full HMA domain, seasonal 

snow regime and intermittent snow regime, respectively (Figure 4.6). Such values are informative 

in 1) revealing the strong linear dependence of 𝑆𝑊𝐸*+-K and 𝑆-00 across all datasets and all WYs, 

and 2) that over 80% of 𝑆𝑊𝐸*+-K uncertainty is explained by 𝑆-00 variability, where the other 20% 

or less is explained by 𝐴-00 variations.  
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Besides viewing all datasets as a large sample, we also evaluated the interannual variability within 

each snow product and examined product-specific linear regression results. The individual 

regression slopes are also distinct, as illustrated in Figure 4.6 (and tabulated in Table S2). 

Compared to the global slope values, ERA5-land and GLDAS-VIC exhibit higher slopes, while 

MERRA2 and the other GLDAS products exhibit lower slopes. It is worthwhile to note that the 

linear dependence of 𝑆𝑊𝐸*+-K and 𝑆-00 are very strong in seasonal snow (with 𝑅= ranging from 

0.62 to 0.94), and much weaker in intermittent snow (with 𝑅= ranging from 0.25 to 0.48), when 

examining individual snow product as tabulated in Table S2. This can be attributed to intermittent 

snow being more influenced by ablation, which introduces additional noise into the snowfall-peak 

SWE relationship.  

Given the large range in 𝑆-00  across snow products, including the noticeable gap between 

ERA5/ERA5-Land and the other snow products (GLDAS and MERRA2), we also separately 

regressed 𝑆𝑊𝐸*+-K 	vs. 𝑆-00 for these two groups of snow products Figure S4). In doing so, the  

𝑅= values drop to 58% and 43% respectively (from the global value of 0.88). These lower 𝑅= 

values may reveal that 𝐴-00 is a more important source of uncertainty (explaining 42% and 57% 

of 𝑆𝑊𝐸*+-K uncertainty, respectively), when examined in certain subsets of products, even though 

𝑆-00 is the most dominant factor in explaining the wide range of 𝑆𝑊𝐸*+-K 	across all products.  

The results above indicate (not surprisingly) that 𝑆-00 	 variations are the primary factor in 

explaining 𝑆𝑊𝐸*+-K  variations, with ablation playing a secondary (but important) role. To 

decipher the degree to which those variations are explained by precipitation vs. rain-snow 

partitioning across snow products, the accumulation season snowfall volume (𝑆-00) was regressed 

against precipitation volume (𝑃-00 ) (Figure S5). It is found that 𝑆-00  shows very high linear 
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dependence on 𝑃-00  (𝑅=  up to 0.96), and there is relatively minor difference when adding 

accumulation season air temperature into the regression (𝑅=	slightly increased to ~0.98).  

4.5 Conclusion: 

Accurate knowledge of peak snow water storage is a necessary condition for predicting available 

water in warm-season runoff. Results in this study confirm that our current state of knowledge of 

this basic parameter in HMA is highly uncertain. Eight globally available snow products were 

examined over HMA, with the use of HMASR as a reference, to specifically analyze accumulation 

season processes. The key findings are: 

1) The 𝑆𝑊𝐸*+-K 	climatology across global snow products was found to be 161 km3 ± 102 

km3, with varying uncertainty levels for seasonal (110 km3 ± 74 km3) vs. intermittent (51 

km3 ± 28 km3) snow regimes. Compared to HMASR, the other snow products on average 

underestimate 𝑆𝑊𝐸*+-K by 33% (MD) with a RMSD of 52% over the entire HMA. The 

error and uncertainty vary across different watersheds, where on average, the snow 

products underestimate seasonal snow (by 47%) and overestimate intermittent snow (by 

70%), compared to HMASR. 

2) There exists large variability in the 𝑆-00 	and 𝐴-00 	climatology. 𝑆-00 	climatology was found 

to be 335 km3 ± 148 km3. The fraction of cumulative snowfall loss via ablation leading up 

to 𝑆𝑊𝐸*+-K  is 51% ±  9%. The fraction differs between seasonal (37% ±  13%) and 

intermittent (67% ± 7%) snow regimes. Both 𝑆-00  and 𝐴-00  play an important role in 

determining 𝑆𝑊𝐸*+-K distribution both spatially and over different elevation ranges.  

3) Uncertainty in inter-product peak snow storage estimates across all snow products is 

primarily explained by 𝑆-00 	(88%) with 88% and 80% in seasonal and intermittent snow 

regimes respectively. Across years and snow products, 54% of 𝑆-00 	goes into the 𝑆𝑊𝐸*+-K 
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and ~46% is lost through ablation on average, during the accumulation season. In seasonal 

snow regimes, ~71% of 𝑆-00 	goes into 𝑆𝑊𝐸*+-K  and ~29% instead is lost via 𝐴-00 . In 

intermittent snow regimes, ~35% of snowfall goes into 𝑆𝑊𝐸*+-K 	and ~65% instead is lost 

via 𝐴-00.  

The factors affecting 𝑆-00 are examined in this work, where precipitation (and not temperature) is 

found to play the dominant role when considering inter-product differences. As indicated in many 

previous studies (e.g. Xu et al., 2019; Xiao et al., 2021), land surface model and meteorological 

forcings (e.g. air temperature and shortwave radiation) could be additional key sources 

contributing to the variability in snow ablation.  The main drivers for snow ablation variability 

during the accumulation season are not explored in this work, as they are typically intertwined 

with individual model physics, but should be investigated in future work.  

We also provide the caveat that the relative importance of 𝑆-00 in explaining 𝑆𝑊𝐸*+-K uncertainty 

is also sensitive to the ensemble of datasets chosen. The explanatory power of accumulation season 

snowfall in 𝑆𝑊𝐸*+-K  across all product-WYs is partly a function of the wide range (large 

uncertainty) of precipitation (and snowfall). 𝐴-00 was found to explain more 𝑆𝑊𝐸*+-K variation 

when the snowfall uncertainty was reduced by considering subsets of snow products.  

To reduce the uncertainty in estimates of snow storage over HMA will require improved 

characterization of both snowfall and ablation processes and/or better measurements of SWE to 

constrain models during the accumulation season. Reducing accumulation season uncertainty is 

key to also better understanding and constraining (i.e. by providing the proper initial condition of 

stored snow) melt season processes that control snowmelt rates, infiltration, and runoff that are 

likely also highly uncertain, but the melt season uncertainties are, in part, masked by the significant 

uncertainty in peak SWE estimates. 
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4.6 Supporting information 

This section serves as an appendix containing supporting information figures and tables for 

Chapter 4. The numbering system used is sequential within this section, but using a prefix "S" to 

indicate that these figures and tables constitute supporting information. 

 

Figure S1: The derived seasonal snow, intermittent snow, and persistent snow/ice masks shown 

at the native resolution of each dataset. 
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Figure S2: Maps of the 17-year climatology of pixel-wise peak SWE DOWY (𝑡*+-K) for each 

dataset. 
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Figure S3: Illustration of dataset-specific a) DEMs for a representative tile (34°N, 66°E) at the 

native resolution and b) hypsometry over the HMA (masked with seasonal and intermittent snow 

areas shown in Figure S1), integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 

4500, and 5500 m). 
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Figure S4: Regression of peak SWE volume (𝑆𝑊𝐸*+-K) and accumulation season snowfall (𝑆-00) 

across WYs (WY 2001-2017), with volumes integrated over the full HMA domain. Regression is 

performed over two subsets of datasets (subset 1: GLDAS products and MERRA2, subset 2: ERA5 

and ERA5-land).  
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Figure S5: Regression of accumulation season snowfall (𝑆-00) vs. precipitation (𝑃-00) across WYs 

(WY 2001-2017), with volumes integrated over the full HMA domain. 
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Table S1: Total masked domain area and areas of seasonal snow, intermittent snow, and persistent 

snow/ice in all datasets. 

Dataset 
Total masked 

domain area (106 
km2) 

Seasonal Snow 
Area (106 km2) 

Intermittent Snow 
Area (106 km2) 

Persistent 
snow/ice area 

(106 km2) 

HMASR 4.14 1.00 2.88 0.26 
ERA5-land  4.13 0.97 2.78 0.38 
ERA5 4.11 0.98 2.77 0.36 

GLDAS-Noah (0.25°) 4.14 0.87 2.90 0.37 

MERRA2 4.10 0.88 2.90 0.32 
JRA55 4.14 0.97 2.81 0.35 
GLDAS-Noah (1°) 4.15 0.95 2.90 0.30 
GLDAS-VIC (1°) 4.15 1.01 2.84 0.30 

GLDAS-CLSM (1°) 4.15 1.06 2.79 0.30 

Table S2: Linear regression statistics of slope (𝛽) and 𝑅=, from global and snow product specific 

regressions. Note that JRA55 results are only displayed here but not included in the global linear 

regression due to its ‘ablation’ being overestimated because it includes the effect of snow data 

assimilation updates. 
 

Slope (𝛽) 𝑅9 
 

HMA-wide Seasonal Intermittent HMA-wide Seasonal Intermittent 

Global 0.54 0.71 0.35 0.88 0.88 0.80 

ERA5-land 0.61 0.83 0.35 0.58 0.94 0.25 

ERA5 0.53 0.67 0.36 0.53 0.70 0.32 

GLDAS-Noah (0.25°) 0.45 0.59 0.29 0.48 0.76 0.36 

MERRA2 0.35 0.46 0.24 0.48 0.62 0.42 

JRA55 0.25 0.30 0.17 0.61 0.77 0.33 

GLDAS-Noah (1°) 0.45 0.58 0.29 0.46 0.76 0.35 

GLDAS-VIC (1°) 0.58 0.76 0.41 0.60 0.83 0.48 

GLDAS-CLSM (1°) 0.44 0.55 0.33 0.46 0.66 0.37 
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CHAPTER 5 

Conclusions 

5.1 Summary and original contributions:  

Using a newly developed snow reanalysis method and a novel HMASR dataset, the spatiotemporal 

distribution in seasonal snowpack and its snow storage are examined in this dissertation. 

The bias and uncertainties in snowfall precipitation from existing datasets (e.g. MERRA2) are first 

evaluated in Chapter 2, with the key conclusions summarized as below: 

1) The results indicate that snowfall precipitation is underestimated in most precipitation 

products (e.g. by ~50% in MERRA2) with sizable uncertainty. 

2) The biases are higher in the gauge-based precipitation product (e.g. ~234% in 

APHRODITE2). 

3) This study shows the potential for using satellite snow observations as a constraint on 

models to infer biases and uncertainties in snowfall precipitation in remote regions and 

complex terrain where in-situ stations are very scarce.  

The uncertainty parameters derived in Chapter 2 are applied as a priori information in the 

development of HMASR dataset. Through analyzing the dataset, the spatiotemporal distribution 

in seasonal snowpack and its snow storage are quantified in Chapter 3, with the key conclusions 

as:  

1) Peak seasonal SWE is most abundant in the western HMA and occurs with a median date 

of March 18th across the domain.  

2) The peak seasonal snow storage is quantified as 163 km3 when aggregated across the full 

HMA domain and averaged across WYs 2000-2017, with notable interannual variations 

between 114 km3 and 227 km3.  
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3) Peak snow storage is found most abundant at mid elevations (3000 – 4000 m), and over 

50% of this storage is found above 3500 m on average, with variations under different 

climate conditions.  

The HMASR datasets facilitates a thorough evaluation of existing global snow products over HMA 

as described in detail in Chapter 4. With the focus on accumulation season processes leading to 

the (pixel-wise) peak snow storage, the conclusions are: 

1) The climatology in (pixel-wise) peak snow storage was found to be 161 km3 ± 102 km3 

within the global snow products, with varying uncertainty levels for seasonal (110 km3 ± 

74 km3) vs. intermittent (51 km3 ± 28 km3) snow regimes. Compared to HMASR, the 

other snow products on average underestimate peak snow storage by 33% ± 52% over the 

entire HMA. 

2) Overall, there exist large variabilities in cumulative snowfall and ablation over the 

accumulation season. The accumulation snowfall climatology is found as 335 km3 ± 148 

km3, and the cumulative snowfall loss into ablation is found as 51% ± 9% over HMA 

(with variations as 37% ± 13% in seasonal snow regimes, and as 67% ± 7% in intermittent 

snow regimes).  

3) Uncertainty in peak snow storage estimates is primarily explained by accumulation season 

snowfall (88%) over HMA, partly due to a wide range (uncertainty) in precipitation 

(snowfall). Accumulation season ablation is found to explain more uncertainty in peak 

snow storage when the snowfall uncertainty was reduced by considering subsets of snow 

products. 
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5.2 Potential for future work.  

The potential areas for future work are listed as follows: 

Regarding snowfall in HMA: 

1) Snowfall precipitation is a key input in snow modeling and a significant source of 

uncertainty. The current HMASR dataset did not output snowfall but can be provided in 

future versions for a thorough evaluation over this region.  

2) The posterior scaling factors for snowfall precipitation is generated as a by-product of the 

snow reanalysis. Its climatology and variations under different climate or physiographic 

conditions can be further investigated over this region to guide future versions of the 

reanalysis. 

Regarding snow data assimilation in HMA:  

1) The quantity and quality of assimilated fSCA measurements are highly sensitive to cloud 

cover, especially over the monsoon areas in HMA. Future work should investigate the 

potential of assimilating other remote-sensing measurements (e.g. from active microwave 

that can penetrate clouds) in reducing the uncertainties for SWE estimation over those areas.  

2) The current snow reanalysis scheme used in this dissertation is particularly designed for 

estimating seasonal snow (with a clear signal of snow accumulation and depletion observed 

in fSCA). The method is less well suited to estimating intermittent snow (only lasting 

within a short period). Future versions can investigate how to improve the characterization 

of intermittent snow using the existing snow reanalysis framework.  
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Regarding snow modeling in HMA: 

1) Both accumulation season snowfall and ablation affect uncertainty in peak snow storage. 

To reduce the uncertainty in peak snow storage over HMA, improved characterization in 

both snowfall and ablation processes are needed. More specifically, the large variation 

(uncertainty) seen in existing snow products over HMA points out the urgent need of 

reducing snowfall uncertainties in this region.  

2) The main drivers for snow ablation variability during the accumulation season are not 

explored in this work but can be investigated in future work. To be more specific, 

sensitivity tests for the key variables affecting ablation (e.g. air temperature, wind speed, 

radiation, etc.) can be performed to evaluate the relative importance on accumulation 

season ablation. Or using the same set of meteorological forcing but altering the land 

surface model to evaluate their impact on accumulation season processes.  

Regarding the impact of snowpack in the regional water cycle and climate in HMA: 

1) The derived HMASR datasets provides quantified seasonal snow storage constrained by 

satellite remote sensing, which offers the potential of evaluating the role of seasonal 

snowpack in regional hydrology. For example, both the timing and magnitude of snowmelt 

can be assessed to identify the relative contribution to total runoff.  

2) The response of seasonal snowpack to climate variability has not been explored in this 

work, due to the short length of the dataset (18 Water Years). Future work may extend the 

dataset for a more thorough evaluation on this topic.  




