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Abstract

The asymptotics of ECH capacities and absolute gradings on Floer homologies

by

Vinicius Gripp Barros Ramos

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Hutchings, Chair

Embedded contact homology (ECH) capacities were defined by Hutchings and provide a
family of obstructions to embeddings of four-dimensional symplectic manifolds. In Part I of
this thesis, we prove that for a four-dimensional Liouville domain with all ECH capacities
finite, the asymptotics of the ECH capacities recover the symplectic volume. This was joint
work with Daniel Cristofaro-Gardiner and Michael Hutchings. In Part II of this thesis, we
construct topological absolute gradings in Heegaard Floer homology and bordered Floer
homology that satify all of the expected properties. This was joint work with Yang Huang.
We also show that the isomorphism between Heegaard Floer homology and ECH preserves
the absolute gradings.
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Part I

Asymptotics of ECH capacities
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Chapter 1

Introduction

Define a four-dimensional Liouville domain1 to be a compact symplectic four-manifold (X,ω)
with oriented boundary Y such that ω is exact on X, and there exists a contact form λ on
Y with dλ = ω|Y . In [13], a sequence of real numbers

0 = c0(X,ω) < c1(X,ω) ≤ c2(X,ω) ≤ · · · ≤ ∞

called ECH capacities was defined. The definition is reviewed below in §1.2. The ECH
capacities obstruct symplectic embeddings: If (X,ω) symplectically embeds into (X ′, ω′),
then

ck(X,ω) ≤ ck(X
′, ω′) (1.1)

for all k. For example, a theorem of McDuff [25], see also the survey [14], shows that
ECH capacities give a sharp obstruction to symplectically embedding one four-dimensional
ellipsoid into another.

The first goal of this paper is to prove the following theorem, relating the asymptotics
of the ECH capacities to volume. This result was conjectured in [13] based on experimental
evidence; it was proved in [13, §8] for star-shaped domains in R4 and some other examples.

Theorem 1.0.1. [13, Conj. 1.12] Let (X,ω) be a four-dimensional Liouville domain such
that ck(X,ω) <∞ for all k. Then

lim
k→∞

ck(X,ω)
2

k
= 4vol(X,ω).

Here the symplectic volume is defined by

vol(X,ω) =
1

2

∫
X

ω ∧ ω.

In particular, when all ECH capacities are finite, the embedding obstruction (1.1) for
large k recovers the obvious volume constraint vol(X,ω) ≤ vol(X ′, ω′). As we review below,

1This definition of “Liouville domain” is slightly weaker than the usual definition, which would require
that ω have a primitive λ on X which restricts to a contact form on Y .
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the hypothesis that ck(X,ω) < ∞ for all k is a purely topological condition on the contact
structure on the boundary; for example it holds whenever X is a star-shaped domain in R4.

We will obtain Theorem 1.0.1 as a corollary of the more general Theorem 1.3.1 below,
which also has applications to refinements of the Weinstein conjecture in Corollary 1.3.2. To
state Theorem 1.3.1, we first need to review some notions from embedded contact homology
(ECH). More details about ECH may be found in [11] and the references therein.

1.1 Embedded contact homology

Let Y be a closed oriented three-manifold and let λ be a contact form on Y , meaning that
λ ∧ dλ > 0. The contact form λ determines a contact structure ξ = Ker(λ), and the Reeb
vector field R characterized by dλ(R, ·) = 0 and λ(R) = 1. Assume that λ is nondegenerate,
meaning that all Reeb orbits are nondegenerate. Fix Γ ∈ H1(Y ). The embedded contact
homology ECH(Y, ξ,Γ) is the homology of a chain complex over Z/2 defined as follows.

A generator of the chain complex is a finite set of pairs α = {(αi,mi)} where the αi
are distinct embedded Reeb orbits, the mi are positive integers, mi = 1 whenever αi is
hyperbolic, and the total homology class

∑
imi[αi] = Γ ∈ H1(Y ). To define the chain

complex differential ∂ one chooses a generic almost complex structure J on R×Y such that
J(∂s) = R where s denotes the R coordinate, J(ξ) = ξ with dλ(v, Jv) ≥ 0 for v ∈ ξ, and
J is R-invariant. Given another chain complex generator β = {(βj, nj)}, the differential
coefficient 〈∂α, β〉 ∈ Z/2 is a mod 2 count of J-holomorphic curves in R× Y that converge
as currents to

∑
imiαi as s→ +∞ and to

∑
j njβj as s→ −∞, and that have “ECH index”

equal to 1. The definition of the ECH index is explained in [10]; all we need to know here is
that the ECH index defines a relative Z/d-grading on the chain complex, where d denotes the
divisibility of c1(ξ) + 2PD(Γ) in H2(Y ;Z) mod torsion. It is shown in [16, §7] that ∂2 = 0.

One now defines ECH(Y, λ,Γ, J) to be the homology of the chain complexECC(Y, λ,Γ, J).
Taubes [35] proved that if Y is connected, then there is a canonical isomorphism of relatively
graded Z/2-modules

ECH∗(Y, λ,Γ, J) = ĤM
−∗
(Y, sξ + PD(Γ)). (1.2)

Here ĤM
∗
denotes the ‘from’ version of Seiberg-Witten Floer cohomology as defined by

Kronheimer-Mrowka [20], with Z/2 coefficients2, and sξ denotes the spin-c structure deter-
mined by the oriented 2-plane field ξ, see e.g. [12, Ex. 8.2]. It follows that, whether or not
Y is connected, ECH(Y, λ,Γ, J) depends only on Y , ξ, and Γ, and so can be denoted by
ECH∗(Y, ξ,Γ).

There is a degree −2 map

U : ECH∗(Y, ξ,Γ) −→ ECH∗−2(Y, ξ,Γ). (1.3)

2One can define ECH with integer coefficients [17, §9], and the isomorphism (1.2) also exists over Z, as
shown in [37]. However Z/2 coefficients will suffice for this paper.
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This map on homology is induced by a chain map which counts J-holomorphic curves with
ECH index 2 that pass through a base point in R × Y . When Y is connected, the U map
(1.3) does not depend on the choice of base point, and agrees under Taubes’s isomorphism
(1.2) with an analogous map on Seiberg-Witten Floer cohomology [38]. If Y is disconnected,
then there is one U map for each component of Y .

Although ECH is a topological invariant by (1.2), it contains a distinguished class which
can distinguish some contact structures. Namely, the empty set of Reeb orbits is a generator
of ECC(Y, λ, 0, J); it is a cycle by the conditions on J , and so it defines a distinguished class

[∅] ∈ ECH(Y, ξ, 0), (1.4)

called the ECH contact invariant . Under the isomorphism (1.2), the ECH contact invariant
agrees with an analogous contact invariant in Seiberg-Witten Floer cohomology [38].

There is also a “filtered” version of ECH, which is sensitive to the contact form and
not just the contact structure. If α = {(αi,mi)} is a generator of the chain complex
ECC(Y, λ,Γ, J), its symplectic action is defined by

A(α) =
∑
i

mi

∫
αi

λ. (1.5)

It follows from the conditions on the almost complex structure J that if the differential
coefficient 〈∂α, β〉 6= 0 then A(α) > A(β). Consequently, for each L ∈ R, the span of
those generators α with A(α) < L is a subcomplex, which is denoted by ECCL(Y, λ,Γ, J).
The homology of this subcomplex is the filtered ECH which is denoted by ECHL(Y, λ,Γ).
Inclusion of chain complexes induces a map

ECHL(Y, λ,Γ) −→ ECH(Y, ξ,Γ). (1.6)

It is shown in [15, Thm. 1.3] that ECHL(Y, λ,Γ) and the map (1.6) do not depend on the
almost complex structure J .

A useful way to extract invariants of the contact form out of filtered ECH is as follows.
Given a nonzero class σ ∈ ECH(Y, ξ,Γ), define

cσ(Y, λ) ∈ R

to be the infimum over L such that the class σ is in the image of the inclusion-induced map
(1.6). So far we have been assuming that the contact form λ is nondegenerate. If λ is degen-
erate, one defines cσ(Y, λ) = limn→∞ cσ(Y, λn), where {λn} is a sequence of nondegenerate
contact forms which C0-converges to λ, cf. [13, §3.1].

1.2 ECH capacities

Let (Y, λ) be a closed contact three-manifold and assume that the ECH contact invariant
(1.4) is nonzero. Given a nonnegative integer k, define ck(Y, λ) to be the minimum of cσ(Y, λ),
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where σ ranges over classes in ECH(Y, ξ, 0) such that Aσ = [∅] whenever A is a composition
of k of the U maps associated to the components of Y . If no such class σ exists, define
ck(Y, λ) = ∞. The sequence {ck(Y, λ)}k=0,1,... is called the ECH spectrum of (Y, λ).

Now let (X,ω) be a Liouville domain with boundary Y and let λ be a contact form on Y
with dλ = ω|Y . One then defines the ECH capacities of (X,ω) in terms of the ECH spectrum
of (Y, λ) by

ck(X,ω) = ck(Y, λ).

This definition is valid because the ECH contact invariant of (Y, λ) is nonzero by [15, Thm.
1.9]. It follows from [13, Lem. 3.9] that ck(X,ω) does not depend on the choice of contact
form λ on Y with dλ = ω|Y .

Theorem 1.0.1 is now a consequence of the following result about the ECH spectrum:

Theorem 1.2.1. [13, Conj. 8.1] Let (Y, λ) be a closed contact three-manifold with nonzero
ECH contact invariant. If ck(Y, λ) <∞ for all k, then

lim
k→∞

ck(Y, λ)
2

k
= 2vol(Y, λ).

Here the contact volume is defined by

vol(Y, λ) =

∫
Y

λ ∧ dλ. (1.7)

Note that the hypothesis ck(Y, λ) < ∞ just means that the ECH contact invariant is in
the image of all powers of the U map when Y is connected, or all compositions of powers of
the U maps when Y is disconnected. The comparison with Seiberg-Witten theory implies
that this is possible only if c1(ξ) ∈ H2(Y ;Z) is torsion; see [13, Rem. 4.4(b)].

By [13, Prop. 8.4], to prove Theorem 1.2.1 it suffices to consider the case when Y is
connected. Theorem 1.2.1 in this case follows from our main theorem which we now state.

1.3 The main theorem

Recall from §1.1 that if c1(ξ) + 2PD(Γ) ∈ H2(Y ;Z) is torsion, then ECH(Y, ξ,Γ) has a
relative Z-grading, and we can arbitrarily refine this to an absolute Z-grading. The main
theorem is now:

Theorem 1.3.1. [13, Conj. 8.7] Let Y be a closed connected contact three-manifold with
a contact form λ and let Γ ∈ H1(Y ). Suppose that c1(ξ) + 2PD(Γ) is torsion in H2(Y ;Z),
and let I be an absolute Z-grading of ECH(Y, ξ,Γ). Let {σk}k≥1 be a sequence of nonzero
homogeneous classes in ECH(Y, ξ,Γ) with limk→∞ I(σk) = ∞. Then

lim
k→∞

cσk(Y, λ)
2

I(σk)
= vol(Y, λ). (1.8)
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The following application of Theorem 1.3.1 was obtained in [5]:

Corollary 1.3.2. [5, Thm. 1.1] Every (possibly degenerate) contact form on a closed three-
manifold has at least two embedded Reeb orbits.

The proof of Theorem 1.3.1 has two parts. In §2 we show that the left hand side of
(1.8) (with lim replaced by lim sup) is less than or equal to the right hand side. This is
actually all that is needed for Corollary 1.3.2. In §3 we show that the left hand side (with
lim replaced by lim inf) is greater than or equal to the right hand side. The two arguments
are independent of each other and can be read in either order. The proof of the upper bound
uses ingredients from Taubes’s proof of the isomorphism (1.2). The proof of the lower bound
uses properties of ECH cobordism maps to reduce to the case of a sphere, where (1.8) can
be checked explicitly. Part I was joint work with Daniel Cristofaro-Gardiner and Michael
Hutchings.
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Chapter 2

The upper bound

In this chapter we prove the upper bound half of Theorem 1.3.1:

Proposition 2.0.3. Under the assumptions of Theorem 1.3.1,

lim sup
k→∞

cσk(Y, λ)
2

I(σk)
≤ vol(Y, λ). (2.1)

To prove Proposition 2.0.3, we can assume without loss of generality that λ is nondegen-
erate. To see this, assume that (2.1) holds for nondegenerate contact forms and suppose that
λ is degenerate. We can find a sequence of functions f1 > f2 > · · · > 1, which C0-converges
to 1, such that fnλ is nondegenerate for each n. It follows from the monotonicity property
in [13, Lem. 4.2] that

cσk(Y, λ) ≤ cσk(Y, fnλ)

for every n and k. For each n, it follows from this and the inequality (2.1) for λn that

lim sup
k→∞

cσk(Y, λ)
2

I(σk)
≤ vol(Y, fnλ).

Since limn→∞ vol(Y, fnλ) = vol(Y, λ), we deduce the inequality (2.1) for λ.
Assume henceforth that λ is nondegenerate. In §2.1–§2.6 below we review some aspects

of Taubes’s proof of the isomorphism (1.2) and prove some related lemmas. In §2.7 we use
these to prove Proposition 2.0.3.

2.1 Seiberg-Witten Floer cohomology

The proof of the isomorphism (1.2) involves perturbing the Seiberg-Witten equations on Y .
To write down the Seiberg-Witten equations we first need to choose a Riemannian metric
on Y . Let J be a generic almost complex structure on R× Y as needed to define the ECH
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chain complex. The almost complex structure J determines a Riemannian metric g on Y
such that the Reeb vector field R has length 1 and is orthogonal to the contact planes ξ, and

g(v, w) =
1

2
dλ(v, Jw), v, w ∈ ξy. (2.2)

Note that this metric satisfies
|λ| = 1, ∗dλ = 2λ. (2.3)

One could dispense with the factors of 2 in (2.2) and (2.3), but we are keeping them for
consistency with [12] and its sequels.

Let S denote the spin bundle for the spin-c structure sξ + PD(Γ). The inputs to the
Seiberg-Witten equations for this spin-c structure are a connection A on det(S) and a section
ψ of S. The spin bundle S splits as a direct sum

S = E ⊕ (E ⊗ ξ),

where E and E ⊗ ξ are, respectively, the +i and −i eigenspaces of Clifford multiplication
by λ. Here ξ is regarded as a complex line bundle using the metric and the orientation.
A connection A on det(S) is then equivalent to a (Hermitian) connection A on E via the
relation A = A0 + 2A, where A0 is a distinguished connection on ξ reviewed in [33, §2.1].

For a positive real number r, consider the following version of the perturbed Seiberg-
Witten equations for a connection A on E and spinor ψ:

∗FA = r(〈cl(·)ψ, ψ〉 − iλ) + i(∗dµ+ ω̄)

DAψ = 0.
(2.4)

Here cl denotes Clifford multiplcation, ω̄ denotes the harmonic 1-form such that ∗ω̄/π repre-
sents the image of c1(ξ) in H

2(Y ;R), and µ is a generic coclosed 1-form that is L2-orthogonal
to the space of harmonic 1-forms and that has “P-norm” less than 1, see [33, §2.1].

The group of gauge transformations C∞(Y, S1) acts on the space of pairs (A, ψ) by
g · (A, ψ) = (A−2g−1dg, gψ). The quotient of the space of pairs (A, ψ) by the group of gauge
transformations is called the configuration space. The set of solutions to (2.4) is invariant
under gauge transformations. A solution to the Seiberg-Witten equations is called reducible
if ψ ≡ 0 and irreducible otherwise. An irreducible solution is called nondegenerate if it is cut
out transversely after modding out by gauge transformations, see [33, §3.1].

For fixed µ, when r is not in a certain discrete set, there are only finitely many irre-
ducible solutions to (2.4) and these are all nondegenerate. In this case one can define the
Seiberg-Witten Floer cohomology chain complex with Z/2 coefficients, which we denote by

ĈM
∗
(Y, sξ,Γ, λ, J, r). The chain complex is generated by irreducible solutions to (2.4), along

with additional generators determined by the reducible solutions. The differential counts so-
lutions to a small abstract perturbation of the four-dimensional Seiberg-Witten equations on
R×Y . In principle the chain complex differential may depend on the choice of abstract per-
turbation, but since the abstract perturbation is irrelevant to the proof of Proposition 2.0.3,
we will omit it from the notation.
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2.2 The grading

The chain complex ĈM
∗
has a noncanonical absolute Z-grading defined as follows. The

linearization of the equations (2.4) modulo gauge equivalence at a pair (A,ψ), not necessarily
solving the equations (2.4), defines a self-adjoint Fredholm operator LA,ψ. If (A,ψ) is a
nondegenerate irreducible solution to (2.4), then the operator LA,ψ has trivial kernel, and
one defines the grading gr(A,ψ) ∈ Z to be the spectral flow from LA,ψ to a reference self-
adjoint Fredholm operator L0 between the same spaces with trivial kernel. The grading
function gr depends on the choice of reference operator; fix one below. To describe the
gradings of the remaining generators, recall that the set of reducible solutions modulo gauge
equivalence is a torus T of dimension b1(Y ). As explained in [20, §35.1], one can perturb the
Seiberg-Witten equations using a Morse function

f : T → R, (2.5)

so that the chain complex generators arising from reducibles are identified with pairs ((A, 0), φ),
where (A, 0) is a critical point of f and φ is a suitable eigenfunction of the Dirac operator
DA. The grading of each such generator is less than or equal to gr(A, 0), where the latter is
defined as the spectral flow to L0 from an appropriate perturbation of the operator LA,0.

We will need the following key result of Taubes relating the grading to the Chern-Simons
functional. Fix a reference connection AE on E. Given any other connection A on E, define
the Chern-Simons functional

cs(A) = −
∫
Y

(A− AE) ∧ (FA + FAE
− 2i∗ω̄). (2.6)

Note that this functional is gauge invariant because the spin-c structure sξ+PD(Γ) is assumed
torsion.

Proposition 2.2.1. [33, Prop. 5.1] There exists K > 0 such that for all r sufficiently large,
if (A,ψ) is a nondegenerate irreducible solution to (2.4), or a reducible solution which is a
critical point of (2.5), then ∣∣∣∣gr(A,ψ) + 1

4π2
cs(A)

∣∣∣∣ < Kr31/16. (2.7)

2.3 Energy

Given a connection A on E, define the energy

E(A) = i

∫
Y

λ ∧ FA.

Filtered ECH has a Seiberg-Witten analogue defined using the energy functional as follows.

Given a real number L, define ĈM
∗
L to be the submodule of ĈM

∗
spanned by generators
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with energy less than 2πL. It is shown in [33], as reviewed in [15, Lem. 2.3], that if r is
sufficiently large, then all chain complex generators with energy less than 2πL are irreducible,

and ĈM
∗
L is a subcomplex, whose homology we denote by ĤM

∗
L. Moreover, as shown in [33]

and reviewed in [15, Eq.(3.3)], if there are no ECH generators of action exactly L and if r is
sufficiently large, then there is a canonical isomorphism of relatively graded chain complexes

ECCL
∗ (Y, λ,Γ, J) −→ ĈM

−∗
L (Y, sξ,Γ, λ1, J1, r). (2.8)

Here (λ1, J1) is an “L-flat approximation” to (λ, J), which is obtained by suitably modifying
(λ, J) near the Reeb orbits of action less than L; the precise definition is reviewed in [15, §3.1]
and will not be needed here.

The isomorphism (2.8) is induced by a bijection on generators; the idea is that in the
L-flat case1, if r is sufficiently large, then for every ECH generator α of action less than L,
there is a corresponding irreducible solution (A,ψ) to (2.4) such that the zero set of the E
component of ψ is close to the Reeb orbits in α, the curvature FA is concentrated near these
Reeb orbits, and the energy of this solution is approximately 2πA(α).

The isomorphism of chain complexes (2.8) induces an isomorphism on homology

ECHL
∗ (Y, λ,Γ, J)

'−→ ĤM
−∗
L (Y, sξ,Γ, λ1, J1, r), (2.9)

and inclusion of chain complexes defines a map

ĤM
−∗
L (Y, sξ,Γ, λ1, J1, r) −→ ĤM

−∗
(Y, sξ,Γ). (2.10)

Composing the above two maps gives a map

ECHL
∗ (Y, λ,Γ, J) −→ ĤM

−∗
(Y, sξ,Γ). (2.11)

The isomorphism (1.2) is the direct limit over L of the maps (2.11).

2.4 Volume in Seiberg-Witten theory

The volume enters into the proof of Proposition 2.0.3 in two essential ways.
The first way is as follows. It is shown in [12, §3] that for any given grading, there are

no generators arising from reducibles if r is sufficiently large. That is, given an integer j, let
sj be the supremum of all values of r such that there exists a chain complex generator with
grading at least −j associated to a reducible solution to (2.4). Then sj <∞ for all j.

We now give an upper bound on the number sj in terms of the volume. Fix 0 < δ < 1
16
.

Given a positive integer j, let rj be the largest real number such that

j =
1

16π2
r2j vol(Y, λ)− r2−δj . (2.12)

1In the non-L-flat case, there may be several Seiberg-Witten solutions corresponding to the same ECH
generator, and/or Seiberg-Witten solutions corresponding to sets of Reeb orbits with multiplicities which
are not ECH generators because they include hyperbolic orbits with multiplicity greater than one.
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Lemma 2.4.1. If j is sufficiently large, then sj < rj.

Proof. Observe that (Aredr , ψ) = (AE − 1
2
irλ + iµ, 0) is a solution to (2.4). Moreover, every

other reducible solution is given by (A, 0), where A = Aredr + α for a closed 1-form α. It
follows from (2.6) that

cs(A) = cs(Aredr ) =
1

4
r2 vol(Y, λ) +O(r). (2.13)

Now suppose that j is sufficiently large that Proposition 2.2.1 is applicable to r = rj, fix
r > rj, and suppose that gr(A, 0) ≥ −j. Then equation (2.13) contradicts Proposition 2.2.1
if r is sufficiently large, which is the case if j is sufficiently large.

The second essential way that volume enters into the proof of Proposition 2.0.3 is via the
following a priori upper bound on the energy:

Lemma 2.4.2. There is an r-independent constant C such that any solution (A,ψ) to (2.4)
satisfies

E(A) ≤ r

2
vol(Y, λ) + C. (2.14)

Proof. This follows from [33, Eq. (2.7)], which is proved using a priori estimates on solutions
to the Seiberg-Witten equations. Note that there is a factor of 1/2 in (2.14) which is not
present in [33, Eq. (2.7)]. The reason is that the latter uses the Riemannian volume as
defined by the metric (2.3), which is half of the contact volume (1.7) which we are using.

2.5 Max-min families

Given a connection A on E and a section ψ of S, define a functional

F(A,ψ) =
1

2
(cs(A)− rE(A)) + eµ(A) +

r

2

∫
Y

〈DAψ, ψ〉dvol,

where

eµ(A) = i

∫
Y

FA ∧ µ.

Since the spin-c structure sξ+PD(Γ) is assumed torsion, the functional F is gauge invariant.

The significance of the functional F is that the differential on the chain complex ĈM
∗

counts solutions to abstract perturbations of the upward gradient flow equation for F . In
particular, F agrees with an appropriately perturbed version of the Chern-Simons-Dirac
functional from [20], up to addition of an r-dependent constant, see [15, Eq. (7.2)].

A key step in Taubes’s proof of the Weinstein conjecture [33] is to use a “minimax”
approach to find a sequence (rn, ψn, An), where rn → ∞ and (ψn, An) is a solution to (2.4)
for r = rn with an n-independent bound on the energy. We will use a similar construction
in the proof of Proposition 2.0.3.
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Specifically, fix an integer j, and let sj be the number from §2.2. Let σ̂ ∈ ĤM
∗
(Y, sξ,Γ)

be a nonzero homogeneous class with grading greater than or equal to −j. Fix r > sj for

which the chain complex ĈM
∗
(Y, sξ,Γ, λ, J, r) is defined. Since we are using Z/2-coefficients,

any cycle representing the class σ̂ has the form η = Σi(Ai, ψi), where the pairs (Ai, ψi) are
distinct gauge equivalence classes of solutions to (2.4). Define Fmin(η) = miniF(Ai, ψi), and
Fσ̂(r) = max[η]=σ̂ Fmin(η). Note that Fσ̂(r) must be finite because there are only finitely
many irreducible solutions to (2.4).

The construction in [35, §4.e] shows that for any such class σ̂, there exists a piecewise
smooth, possibly discontinuous family of solutions (Aσ̂(r), ψσ̂(r)) to (2.4) of the same grading
as σ̂ defined for r > sj such that Fσ̂(r) = F(Aσ̂(r), ψσ̂(r)). Call the family (Aσ̂(r), ψσ̂(r))r>sj
a max-min family for σ̂. Given such a max-min family, define Eσ̂(r) = E(Aσ̂(r), ψσ̂(r)).

Lemma 2.5.1. (a) Fσ̂(r) is a continuous and piecewise smooth function of r ∈ (sj,∞).

(b)
d

dr
Fσ̂(r) = −1

2
Eσ̂(r).

Proof. (a) follows from [35, Prop. 4.7], and (b) follows from [33, Eq. (4.6)].

In particular, Eσ̂(r) does not depend on the choice of max-min family, except for a discrete
set of real numbers r.

2.6 Max-min energy and min-max symplectic action

The numbers Eσ̂(r) from §2.5 are related to the numbers cσ(Y, λ) from §1.2 as follows:

Proposition 2.6.1. Let σ be a nonzero homogeneous class in ECH(Y, ξ,Γ), and let σ̂ ∈
ĤM

∗
(Y, sξ,Γ) denote the class corresponding to σ under the isomorphism (1.2). Then

lim
r→∞

Eσ̂(r) = 2πcσ(Y, λ).

The proof of Proposition 2.6.1 requires two preliminary lemmas which will also be needed
later. To state the first lemma, recall from [34, Prop. 2.8] that in the case Γ = 0, if r is suffi-
ciently large then there is a unique (up to gauge equivalence) “trivial” solution (Atriv, ψtriv)
to (2.4) such that 1− |ψ| < 1/2 on all of Y . If (λ, J) is L-flat with L > 0, then (Atriv, ψtriv)
corresponds to the empty set of Reeb orbits under the isomorphism (2.8) with Γ = 0, see
the beginning of [36, §3]. Any solution not gauge equivalent to (Atriv, ψtriv) will be called
“nontrivial”. Let L0 denote one half the minimum symplectic action of a Reeb orbit.

Lemma 2.6.2. There exists an r-independent constant c such that if r is sufficiently large,
then every nontrivial solution (A,ψ) to (2.4) satisfies E(A) > 2πL0 and

|cs(A)| ≤ cr2/3E(A)4/3. (2.15)
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Proof. The chain complex ECCL0
∗ (Y, λ,Γ, J) has no generators unless Γ = 0, in which case

the only generator is the empty set of Reeb orbits. In particular, the pair (λ, J) is L0-flat. By
(2.8), if r is sufficiently large then every nontrivial solution (A,ψ) to (2.4) has E(A) ≥ 2πL0.
Given this positive lower bound on the energy, the estimate (2.15) now follows as in [33, Eq.
(4.9)]. Note that it is assumed there that E(A) ≥ 1, but the same argument works as long
as there is a positive lower bound on E(A).

Now fix a positive number γ such that γ < δ/4.

Lemma 2.6.3. For every integer j there exists ρ ≥ 0 such if r ≥ ρ and (A,ψ) is a nontrivial
irreducible solution to (2.4) of grading −j, then

|cs(A)| ≤ r1−γE(A). (2.16)

Proof. Fix j. Let (A,ψ) be a nontrivial solution to (2.4) of grading −j with

|cs(A)| > r1−γE(A). (2.17)

By Lemma 2.6.2, if r is sufficiently large then

|cs(A)| ≤ cr2/3E(A)4/3. (2.18)

Combining (2.17) with (2.18), we conclude that E(A) ≥ c−3r1−3γ. Using (2.17) again, it
follows that

|cs(A)| > c−3r2−4γ.

But this contradicts Proposition 2.2.1 when r is sufficiently large with respect to j, since
δ > 4γ.

Proof of Proposition 2.6.1. Choose L0 > cσ(Y, λ) and let (λ1, J1) be an L0-flat approxima-
tion to (λ, J). For r large, define f1(r) to be the infimum over L such that the class σ̂ is in
the image of the map (2.10). We first claim that

lim
r→∞

(f1(r)− cσ(Y, λ)) = 0. (2.19)

This holds because for every L ≤ L0 which is not the symplectic action of an ECH generator,
in particular L 6= cσ(Y, λ), if r is sufficiently large that the isomorphism (2.9) is defined, then
the class σ̂ is in the image of the map (2.10) if and only if L > cσ(Y, λ).

Next define f(r) for r large to be the infimum over L such that the class σ̂ is in the image
of the inclusion-induced map

ĤM
∗
L(Y, sξ,Γ, λ, J, r) → ĤM

∗
(Y, sξ,Γ). (2.20)

It follows from [15, Lem. 3.4(c)] that

lim
r→∞

(f(r)− f1(r)) = 0. (2.21)
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By (2.19) and (2.21), to complete the proof of Proposition 2.6.1 it is enough to show that

lim
r→∞

(Eσ̂(r)− 2πf(r)) = 0. (2.22)

To prepare for the proof of (2.22), assume that r is sufficiently large so that Lemma 2.6.2
is applicable and Lemma 2.6.3 is applicable to j = −gr(σ̂). Also assume that r is sufficiently
large so that all nontrivial Seiberg-Witten solutions in grading gr(σ̂) are irreducible and have
positive energy. Let (A,ψ) be a nontrivial solution in grading gr(σ̂). Then

F(A,ψ) =
1

2
(cs(A)− rE(A)) + eµ(A).

By [33, Eq. (4.2)] and Lemma 2.6.2, we have

|eµ(A)| ≤ κE(A) (2.23)

where κ is an r-independent constant. The above and Lemma 2.6.3 imply that

(1− r−γ − 2κr−1)E(A) ≤ −2

r
F(A,ψ) ≤ (1 + r−γ + 2κr−1)E(A). (2.24)

Also, it follows from the construction of the trivial solution in [34] that

lim
r→∞

E(Atriv) = lim
r→∞

F(Atriv, ψtriv)

r
= 0. (2.25)

Now (2.22) can be deduced easily from (2.24) and (2.25). The details are as follows. Fix
ε > 0 and suppose that r is sufficiently large as in the above paragraph. By the definition
of f(r), the class σ̂ is in the image of the map (2.20) for L = f(r) + ε. Also, if r is
sufficiently large, then by (2.24) and (2.25), and the fact that L has an upper bound when

r is large by (2.19) and (2.21), if η =
∑

i(Ai, ψi) is a cycle in ĈML representing the class
σ̂, then −2F(Ai, ψi)/r < 2π(L + ε) for each i. Consequently −2Fσ̂(r)/r < 2π(L + ε). By
(2.24) and (2.25) again, if r is sufficiently large then Eσ̂(r) < 2π(L+ 2ε), which means that
Eσ̂(r) < f(r) + 3ε.

By similar reasoning, if Eσ̂(r) < f(r) − ε, then if r is sufficiently large, the class σ̂ is in
the image of the map (2.20) for L = f(r)− ε/2, which contradicts the definition of f(r).

2.7 Proof of the upper bound

Proof of Proposition 2.0.3. The proof has six steps.

Step 1: Setup. If σ ∈ ECH∗(Y, ξ,Γ) is a nonzero homogeneous class, let σ̂ ∈ ĤM
∗
(Y, sξ,Γ)

denote the corresponding class in Seiberg-Witten Floer cohomology via the isomorphism
(1.2). We can choose the absolute grading I on ECH(Y, ξ,Γ) so that the Seiberg-Witten
grading of σ̂ is −I(σ) for all σ. For Steps 1–5, fix such a class σ and write j = I(σ). We
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will obtain an upper bound on cσ(Y, λ) in terms of j when j is sufficiently large, see (2.37)
below.

To start, we always assume that j is sufficiently large so that j > 0, the number rj
defined in (2.12) satisfies rj ≥ 1, Proposition 2.2.1 and Lemma 2.6.2 are applicable to
r ≥ rj, Lemma 2.4.1 is applicable so that rj > sj, and the trivial solution (Atriv, ψtriv) does
not have grading −j.

Fix a max-min family (Aσ̂(r), ψσ̂(r))r>sj for σ̂ as in §2.5. For r > sj define

E(r) = Eσ̂(r) = E(Aσ̂(r)),
cs(r) = cs(Aσ̂(r)),

eµ(r) = eµ(Aσ̂(r)),

v(r) = −2Fσ̂(r)

r
= E(r)− cs(r)

r
− 2eµ(r)

r
. (2.26)

It follows from Lemma 2.5.1 that v(r) is continuous and piecewise smooth, and

dv(r)

dr
=
cs(r)

r2
+

2eµ(r)

r2
. (2.27)

By Proposition 2.2.1 we have the key estimate∣∣∣∣−j + 1

4π2
cs(r)

∣∣∣∣ < Kr2−δ (2.28)

whenever r ≥ rj. Here we are using the fact that Lemma 2.4.1 is applicable, so that the
solution (Aσ̂(r), ψσ̂(r)) is irreducible, so that gr(Aσ̂(r), ψσ̂(r)) = −j.

Define a number r = rσ̂ as follows. We know from Lemma 2.6.3 that if r is sufficiently
large then

|cs(r)| ≤ r1−γE(r). (2.29)

If (2.29) holds for all r ≥ rj, define r = rj. Otherwise define r to be the supremum of the
set of r for which (2.29) does not hold.

Step 2. We now show that

lim sup
r≥r̄

E(r) ≤ v(r̄)g(r̄), (2.30)

where

g(r) = exp

(
r−γ + 2γκr−1

γ (1− r−γ − 2κr−1)

)
, (2.31)

and κ is the constant in (2.23). Here and below we assume that j is sufficiently large so that
1− r−γj − 2κr−1

j > 0.
To prove (2.30), assume that r ≥ r̄. Then by (2.26), (2.29), and (2.23), as in (2.24), we

have

E(r) ≤ 1

1− r−γ − 2κr−1
v(r). (2.32)
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Also v(r) > 0, since r ≥ 1. By (2.27), (2.29), (2.23) and (2.32) we have

dv(r)

dr
≤ (r−1−γ + 2κr−2)E(r) ≤ r−1−γ + 2κr−2

1− r−γ − 2κr−1
v(r) ≤ r−1−γ + 2κr−2

1− r̄−γ − 2κr̄−1
v(r).

Dividing this inequality by v(r) and integrating from r̄ to r gives

ln

(
v(r)

v(r̄)

)
≤ r̄−γ + 2γκr̄−1 − r−γ − 2γκr−1

γ (1− r̄−γ − 2κr̄−1)

<
r̄−γ + 2γκr̄−1

γ (1− r̄−γ − 2κr̄−1)
.

Therefore
v(r) < v(r̄)g(r̄).

Together with (2.32), this proves (2.30).
Step 3. We claim now that

v(r̄) ≤ 1

2
rj vol(Y, λ) + C0r̄

1−δ. (2.33)

Here and below, C0, C1, C2 . . . denote positive constants which do not depend on σ̂ or r, and
which we do not need to know anything more about.

To prove (2.33), use (2.27), (2.28), (2.23), and Lemma 2.4.2 to obtain

dv

dr
≤ 4π2(j +Kr2−δ)

r2
+ C1r

−1.

Integrating this inequality from rj to r̄ and using j > 0, we deduce that

v(r̄)− v(rj) ≤
4π2j

rj
− 4π2j

r̄
+

4π2K(r̄1−δ − r1−δj )

1− δ
+ C1(ln r̄ − ln rj)

≤ 4π2j

rj
+ C2r̄

1−δ.

(2.34)

Also, by (2.26), (2.28), (2.23), and Lemma 2.4.2, we have

v(rj) ≤
1

2
rj vol(Y, λ) + C +

4π2(−j +Kr2−δj ) + 2κ(rj vol(Y, λ)/2 + C)

rj

≤ 1

2
rj vol(Y, λ)−

4π2j

rj
+ C3r

1−δ
j .

(2.35)

Adding (2.34) and (2.35) gives (2.33).
Step 4. We claim now that if j is sufficiently large then

r̄ ≤ C4r
1

1−2γ

j . (2.36)
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To prove this, by the definition of r̄, if r̄ > rj then there exists a number r slightly smaller
than r̄ such that |cs(r)| > r1−γE(r). It then follows from Lemma 2.6.2 that

r1−γE(r) < cr2/3E(r)4/3.

Therefore
r2−4γ ≤ c3r1−γE(r) ≤ c3|cs(r)|.

By (2.28) and the definition of rj in (2.12), we have

c3|cs(r)| ≤ C5r
2
j + C6r

2−δ.

Combining the above two inequalities and using the fact that r can be arbitrarily close to r̄,
we obtain

r̄2−4γ ≤ C5r
2
j + C6r̄

2−δ.

Since δ > 4γ and r̄ > rj → ∞ as j → ∞, if j is sufficiently large then

C6r̄
2−δ ≤ 1

2
r̄2−4γ.

Combining the above two inequalities proves (2.36).
Assume henceforth that j is sufficiently large so that (2.36) holds.
Step 5. We claim now that

cσ(Y, λ) ≤
1

4π
rj vol(Y, λ)g(r̄) + C7r

1−ν
j , (2.37)

where ν = 1− 1−δ
1−2γ

> 0.

To prove (2.37), insert (2.36) into (2.33) to obtain

v(r̄) ≤ 1

2
rj vol(Y, λ) + C8r

1−ν
j .

The above inequality and (2.30) imply that

lim sup
r→∞

E(r) ≤
(
1

2
rj vol(Y, λ) + C8r

1−ν
j

)
g(r̄)

≤ 1

2
rj vol(Y, λ)g(r̄) + C9r

1−ν
j .

It follows from this and Proposition 2.6.1 that (2.37) holds.
Step 6. We now complete the proof of Proposition 2.0.3 by applying (2.37) to the sequence

{σk} and taking the limit as k → ∞.
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Let jk = I(σk) and r̄k = r̄σ̂k . It then follows from (2.37) and the definition of the numbers
rjk in (2.12) that for every k sufficiently large,

cσk(Y, λ)
2

I(σk)
≤

(16π2)−1r2jk vol(Y, λ)
2g(r̄k)

2 + C10r
2−ν
jk

(16π2)−1r2jk vol(Y, λ)− r2−δjk

(2.38)

=
vol(Y, λ)g(r̄k)

2 + C11r
−ν
jk

1− C12r
−δ
jk

.

By hypothesis, as k → ∞ we have jk → ∞, and hence r̄k > rjk → ∞. It then follows from
(2.31) that limk→∞ g(r̄k) = 1. Putting all this into the above inequality proves (2.1).
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Chapter 3

The lower bound

In this last section we prove the following proposition, which is the lower bound half of
Theorem 1.3.1:

Proposition 3.0.1. Under the assumptions of Theorem 1.3.1,

lim inf
k→∞

cσk(Y, λ)
2

I(σk)
≥ vol(Y, λ). (3.1)

In §3.1 we review some aspects of ECH cobordism maps, and in §3.2 we use these to
prove Proposition 3.0.1.

3.1 ECH cobordism maps

Let (Y+, λ+) and (Y−, λ−) be closed oriented three-manifolds, not necessarily connected, with
nondegenerate contact forms. Following [13], define a “weakly exact symplectic cobordism”
from (Y+, λ+) to (Y−, λ−) to be a compact symplectic four-manifold (X,ω) with boundary
∂X = Y+ − Y−, such that the symplectic form ω is exact on X, and ω|Y± = dλ±.

It is shown in [13, Thm. 2.3], by a slight modification of [15, Thm. 1.9], that a weakly
exact symplectic cobordism as above induces a map

ΦL(X,ω) : ECHL(Y+, λ+, 0) −→ ECHL(Y−, λ−, 0)

for each L ∈ R, defined by counting solutions to the Seiberg-Witten equations, perturbed
using ω, on a “completion” of X.

More generally, let A ∈ H2(X, ∂X), and write ∂A = Γ+ − Γ− where Γ± ∈ H1(Y±).
Suppose that ω has a primitive on X which agrees with λ± on each component of Y± for
which the corresponding component of Γ± is nonzero. Then the same argument constructs
a map

ΦL(X,ω,A) : ECHL(Y+, λ+,Γ+) −→ ECHL(Y−, λ−,Γ−), (3.2)
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defined by counting solutions to the Seiberg-Witten equations in the spin-c structure corre-
sponding to A. As in [13, Thm. 2.3(a)], there is a well-defined direct limit map

Φ(X,ω,A) = lim
L→∞

ΦL(X,ω,A) : ECH(Y+, ξ+,Γ+) −→ ECH(Y−, ξ−,Γ−), (3.3)

where ξ± = Ker(λ±).
The relevance of the map (3.3) for Proposition 3.0.1 is that given a class σ+ ∈ ECH(Y+, ξ+,Γ+),

if σ− = Φ(X,ω,A)σ+, then
cσ+(Y+, λ+) ≥ cσ−(Y−, λ−). (3.4)

The inequality (3.4) follows directly from (3.3) and the definition of cσ± in §1.1, cf. [13, Lem.
4.2]. Here we interpret cσ = −∞ if σ = 0. By a limiting argument as in [13, Prop. 3.6], the
inequality (3.4) also holds if the contact forms λ± are allowed to be degenerate.

The map (3.2) is a special case of the construction in [9] of maps on ECH induced by
general strong symplectic cobordisms. Without the assumption on the primitive of ω, these
maps can shift the symplectic action filtration, but the limiting map (3.3) is still defined.

For computations we will need four properties of the map (3.3). First, if X = ([a, b] ×
Y, d(esλ)) is a trivial cobordism from (Y, ebλ) to (Y, eaλ), where s denotes the [a, b] coordinate,
then

Φ(X,ω, [a, b]× Γ) = idECH(Y,ξ,Γ) . (3.5)

This follows for example from [15, Cor. 5.8].
Second, suppose that (X,ω) is the composition of strong symplectic cobordisms (X+, ω+)

from (Y+, λ+) to (Y0, λ0) and (X−, ω−) from (Y0, λ0) to (Y−, λ−). Let Γ0 ∈ H1(Y0) and let
A± ∈ H2(X±, ∂±X±) be classes with ∂A+ = Γ+ − Γ0 and ∂A− = Γ0 − Γ−. Then

Φ(X−, ω−, A−) ◦ Φ(X+, ω+, A+) =
∑

A|X±=A±

Φ(X,ω,A). (3.6)

This is proved the same way as the composition property in [15, Thm. 1.9].
Third, if X is connected and Y± are both nonempty, then

Φ(X,ω,A) ◦ U+ = U− ◦ Φ(X,ω,A), (3.7)

where U± can be the U map associated to any of the components of Y±. This is proved as
in [13, Thm. 2.3(d)].

Fourth, since we are using coefficients in the field Z/2, it follows from the definitions that
the ECH of a disjoint union is given by the tensor product

ECH((Y, ξ) t (Y ′, ξ′),Γ⊕ Γ′) = ECH(Y, ξ,Γ)⊗ ECH(Y ′, ξ′,Γ′). (3.8)

If (X,ω) is a strong symplectic cobordism from (Y+, λ+) to (Y−, λ−), and if (X ′, ω′) is a
strong symplectic cobordism from (Y ′

+, λ
′
+) to (Y ′

−, λ
′
−), then it follows from the construction

of the cobordism map that the disjoint union of the cobordisms induces the tensor product
of the cobordism maps:

Φ((X,ω) t (X ′, ω′), A⊕ A′) = Φ(X,ω,A)⊗ Φ(X ′, ω′, A′). (3.9)
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3.2 Proof of the lower bound

Proof of Proposition 3.0.1. The proof has four steps.
Step 1. We can assume without loss of generality that

Uσk+1 = σk (3.10)

for each k ≥ 1. To see this, note that by the isomorphism (1.2) of ECH with Seiberg-Witten
Floer cohomology, together with properties of the latter proved in [20, Lemmas 22.3.3, 33.3.9],
we know that if the grading ∗ is sufficiently large, then ECH∗(Y, ξ,Γ) is finitely generated
and

U : ECH∗(Y, ξ,Γ) −→ ECH∗−2(Y, ξ,Γ)

is an isomorphism. Hence there is a finite collection of sequences satisfying (3.10) such that
every nonzero homogeneous class in ECH(Y, ξ,Γ) of sufficiently large grading is contained
in one of these sequences (recall that we are using Z/2 coefficients). Thus it is enough to
prove (3.1) for a sequence satisfying (3.10). Furthermore, in this case (3.1) is equivalent to

lim inf
k→∞

cσk(Y, λ)
2

k
≥ 2 vol(Y, λ). (3.11)

Step 2. When (Y, λ) is the boundary of a Liouville domain, the lower bound (3.11) was
proved for a particular sequence {σk} satisfying (3.10) in [13, Prop. 8.6(a)]. We now set up
a modified version of this argument.

Fix a > 0 and consider the symplectic manifold

([−a, 0]× Y, ω = d(esλ))

where s denotes the [−a, 0] coordinate. The idea is that if a is large, then ([−a, 0]× Y, ω) is
“almost” a Liouville domain whose boundary is (Y, λ).

Fix ε > 0. We adopt the notation that if r > 0, then B(r) denotes the closed ball

B(r) = {z ∈ C2 | π|z|2 ≤ r}.

Choose disjoint symplectic embeddings

{ϕi : B(ri) → [−a, 0]× Y }i=1,...,N

such that ([−a, 0]× Y ) \ tiϕi(B(ri)) has symplectic volume less than ε. Let

X = ([−a, 0]× Y ) \
N⊔
i=1

int(ϕi(B(ri))).

Then (X,ω) is a weakly exact symplectic cobordism from (Y, λ) to (Y, e−aλ) t
⊔N
i=1 ∂B(ri).

Here we can take the contact form on B(ri) to be the restriction of the 1-form 1
2

∑2
k=1(xkdyk−

ykdxk) on R4; we omit this from the notation. Note that there is a canonical isomorphism

H2(X, ∂X) = H1(Y ).
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The symplectic form ω on X has a primitive esλ which restricts to the contact forms
on the convex boundary (Y, λ) and on the component (Y, e−aλ) of the concave boundary.
Hence, as explained in §3.1, we have a well-defined map

Φ = Φ(X,ω,Γ) : ECH(Y, ξ,Γ) −→ ECH

(
(Y, ξ) t

n⊔
i=1

∂B(ri), (Γ, 0, . . . , 0)

)
(3.12)

which satisfies (3.4). By (3.8), the target of this map is

ECH

(
(Y, ξ) t

n⊔
i=1

∂B(ri), (Γ, 0, . . . , 0)

)
= ECH(Y, ξ,Γ)⊗

n⊗
i=1

ECH(∂B(ri)).

Let U0 denote the U map on the left hand side associated to the component Y , and let Ui
denote the U map on the left hand side associated to the component ∂B(ri). Note that U0

or Ui acts on the right hand side as the tensor product of the U map on the appropriate
factor with the identity on the other factors. By (3.7) we have

Φ(U0σ) = UiΦ(σ) (3.13)

for all σ ∈ ECH(Y, ξ,Γ) and for all i = 0, . . . , N .
Step 3. We now give an explicit formula for the cobordism map Φ in (3.12).
Recall that ECH(∂B(ri)) has a basis {ζk}k≥0 where ζ0 = [∅] and Uiζk+1 = ζk. This

follows either from the computation of the Seiberg-Witten Floer homology of S3 in [20], or
from direct calculations in ECH, most of which are explained in [18, Ex. 4.2]. We can now
state the formula for Φ:

Lemma 3.2.1. For any class σ ∈ ECH(Y, ξ,Γ), we have

Φ(σ) =
∑
k≥0

∑
k1+...+kN=k

Uk
0 σ ⊗ ζk1 ⊗ · · · ⊗ ζkN .

Note that the sum on the right is finite because the map U0 decreases symplectic action.

Proof of Lemma 3.2.1. Given σ, we can expand Φ(σ) as

Φ(σ) =
∑

k1,...,kN≥0

σk1,...,kN ⊗ ζk1 ⊗ · · · ⊗ ζkN (3.14)

where σk1,...,kN ∈ ECH(Y, ξ,Γ). We need to show that

σk1,...,kN = Uk1+···+kN
0 σ. (3.15)

We will prove by induction on k = k1 + · · ·+ kN that equation (3.15) holds for all σ.
To prove (3.15) when k = 0, let X ′ denote the disjoint union of the trivial cobordism

([−a − 1, a] × Y, d(esλ)) and the balls B(ri). Then the composition X ′ ◦ X is the trivial
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cobordism ([−a− 1, 0]× Y, d(esλ)) from (Y, eλ) to (Y, e−a−1λ). Now each ball B(ri) induces
a cobordism map

ΦB(ri) : ECH(∂B(ri)) −→ Z/2
as in (3.3). By (3.9) and (3.5) we have

Φ(X ′,Γ) = idECH(Y,ξ,Γ)⊗ΦB(r1) ⊗ · · · ⊗ ΦB(rN ).

It then follows from (3.5) and the composition property (3.6) that

σ = (Φ(X ′,Γ) ◦ Φ)(σ))

=
∑

k1,...,kN≥0

σk1,...,kN

N∏
i=1

ΦB(ri)(ζki).

Now ΦB(ri) sends ζ0 to 1 by [13, Thm. 2.3(b)], and ζm to 0 for all m > 0 by grading
considerations (the corresponding moduli space of Seiberg-Witten solutions in the completed
cobordism has dimension 2m). Therefore σ = σ0,...,0 as desired.

Next let k > 0 and suppose that (3.15) holds for smaller values of k. To prove (3.15), we
can assume without loss of generality that k1 > 0. Applying U1 to equation (3.14) and then
using equation (3.13) with i = 1, we obtain

σk1,...,kN = (U0σ)k1−1,k2,...,kN .

By inductive hypothesis,
(U0σ)k1−1,k2,...,kN = Uk−1

0 (U0σ).

The above two equations imply (3.15), completing the proof of Lemma 3.2.1.

Step 4. We now complete the proof of Proposition 3.0.1. Let {σk}k≥1 be a sequence in
ECH(Y, ξ,Γ) satisfying (3.10). By (3.4) we have

cσk(Y, λ) ≥ cΦ(σk)

(
(Y, e−aλ) t

N⊔
i=1

∂B(ri)

)
.

By Lemma 3.2.1 and [13, Eq. (5.6)], we have

cΦ(σk)

(
(Y, e−aλ) t

N⊔
i=1

∂B(ri)

)
=

max
Uk′σk 6=0

max
k1+···+kN=k′

(
cUk′

0 σk
(Y, e−aλ) +

N∑
i=1

cζki (∂B(ri))

)
.

Since Uk−1σk = σ1 6= 0, it follows from the above equation and inequality that

cσk(Y, λ) ≥ max
k1+···+kN=k−1

N∑
i=1

cζki (∂B(ri)). (3.16)
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Now recall from [13] that Theorem 1.3.1 holds for B(r). In detail, we know from [13, Cor.
1.3] that

cζk(∂B(r)) = dr

where d is the unique nonnegative integer such that

d2 + d

2
≤ k ≤ d2 + 3d

2
.

Consequently,

lim
k→∞

cζk(∂B(r))2

k
= 2r2 = 4vol(B(r)). (3.17)

It follows from (3.16) and (3.17) and the elementary calculation in [13, Prop. 8.4] that

lim inf
k→∞

cσk(Y, λ)
2

k
≥ 4

N∑
i=1

vol(B(ri)). (3.18)

By the construction in Step 2,

N∑
i=1

vol(B(ri)) ≥ vol([−a, 0]× Y, d(esλ))− ε

=
1− e−a

2
vol(Y, λ)− ε.

(3.19)

Since a > 0 can be arbitrarily large and ε > 0 can be arbitrarily small, (3.18) and (3.19)
imply (3.11). This completes the proof of Proposition 3.0.1.
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Part II

Absolute gradings in Floer homologies
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Chapter 4

Introduction

4.1 Heegaard Floer homology

For a closed oriented 3-manifold Y , Ozsváth and Szabó [28] defined a collection of invariants

of Y , the Heegaard Floer homology groups HF ◦(Y ), where HF ◦(Y ) denotes either ĤF (Y ),
HF+(Y ), HF−(Y ), or HF∞(Y ). They showed that HF ◦(Y ) splits into a direct sum by
Spinc structures

HF ◦(Y ) =
⊕

s∈Spinc(Y )

HF ◦(Y, s).

For each s ∈ Spinc(Y ), they also defined a relative grading on HF ◦(Y, s), that takes val-
ues in Z/d(c1(s)), where d(c1(s)) is the divisibility of c1(s) ∈ H2(Y ;Z), i.e. d(c1(s))Z =
〈c1(s), H2(Y )〉.

Moreover given a 4-dimensional compact oriented cobordism W : Y0 → Y1, i.e. ∂W =
−Y0 ∪ Y1 as oriented manifolds, and given a Spinc structure t on W , there is a natural map
FW,t : HF

◦(Y0, t|Y0) → HF ◦(Y1, t|Y1) defined by Ozsváth-Szabó [31].
It has been shown that Heegaard Floer homology is isomorphic to two other homology

theories: Seiberg-Witten Floer homology [20] and embedded contact homology (ECH) [11].
For a proof of the existence of these isomorphisms, see [1, 21, 35]. It is known that both
ECH [10] and Seiberg-Witten Floer homology [20] are absolutely graded by homotopy classes
of oriented 2-plane fields, but no such absolute grading had been defined for Heegaard Floer
homology. In this paper, we construct such an absolute grading for Heegaard Floer homology,
which is compatible with the relative grading and cobordism maps discussed above.

We will now fix some notation that will be used in this paper. Let (Σ,α,β, z) be a
Heegaard diagram of Y . Here Σ is a genus g surface, α = (α1, . . . , αg) and β = (β1, . . . , βg)
are collections of disjoint circles on Σ and the basepoint z is a point on Σ in the complement
of α1 ∪ · · · ∪ αg ∪ β1 ∪ · · · ∪ βg. We also require that α and β are linearly independent sets
in H1(Y ) and that αi and βj intersect transversely for every i and j. We consider the tori
Tα = α1×· · ·×αg and Tβ = β1×· · ·×βg in the symmetric product Symg(Σ). Recall that the

Heegaard Floer chain complex ĈF (Y ) is the free abelian group generated by the intersection
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points x ∈ Tα∩Tβ. If x and y are intersection points in the same Spinc structure, we denote
by gr(x,y) their relative grading, as defined in [28].

We denote by P(Y ) the set of homotopy classes of oriented 2-plane fields on Y . Each
homotopy class of oriented 2-plane fields belongs to a Spinc structure, as we will explain in
§5.1. Therefore P(Y ) splits by Spinc structures as

P(Y ) =
∐

s∈Spinc(Y )

P(Y, s).

It turns out that P(Y, s) is an affine space over Z/d(c1(s)). For each Spinc structure s, we

will construct an absolute grading g̃r on ĈF (Y, s) with values in P(Y, s).
For a contact structure ξ on Y , Ozsváth-Szabó [29] defined the contact invariant c(ξ) ∈

ĤF (−Y ). In [28], Ozsváth-Szabó showed that a Heegaard move induces an isomorphism on
Heegaard Floer homology.

Consider a compact oriented cobordism W : Y0 → Y1. Let ξ0 and ξ1 be oriented 2-plane
fields on Y0 and Y1 respectively. We say that ξ0 ∼W ξ1 if there exists an almost complex
structure J on W such that [ξ0] = [TY0 ∩ J(TY0)] and [ξ1] = [TY1 ∩ J(TY1)] as homotopy
classes of oriented 2-plane fields.

We can now state the first main theorem of Part II.

Theorem 4.1.1. For every Heegaard diagram (Σ,α,β, z) of Y , there exists a canonical
function g̃r : Tα ∩ Tβ → P(Y ) such that:

(a) If x,y ∈ Tα ∩ Tβ are in the same Spinc structure s, then g̃r(x) and g̃r(y) belong to
P(Y, s) and g̃r(x)− g̃r(y) = gr(x,y) ∈ Z/d(c1(s)). In particular, g̃r extends to the set

of homogeneous elements of ĈF (Y ).

(b) Let ξ be a contact structure on Y , and let c(ξ) ∈ ĤF (−Y ) be the contact invariant.
Then g̃r(c(ξ)) = [ξ] as homotopy classes of oriented 2-plane fields.

(c) This absolute grading is invariant under the isomorphisms induced by Heegaard moves

and hence it induces an absolute grading on ĤF (Y ) which is independent of the Hee-
gaard diagram.

(d) Let W : Y0 → Y1 be a compact, oriented cobordism, and let t be a Spinc structure on

W . Then the induced map FW,t : ĤF (Y0, t|Y0) → ĤF (Y1, t|Y1) respects the grading in

the sense that g̃r(x) ∼W g̃r(y) for any homogeneous element x ∈ ĤF (Y0, t|Y0) and any

y ∈ ĤF (Y1, t|Y1), which is a homogeneous summand of FW,t(x).

Remark 4.1.2. Theorem 4.1.1(a) implies that we have the following decomposition by
degrees.

ĈF (Y ; s) =
⊕

ρ∈P(Y,s)

ĈF ρ(Y ; s). (4.1)

Here ĈF ρ(Y ; s) is the Z-module generated by all x ∈ Tα ∩ Tβ with g̃r(x) = ρ.



28

Remark 4.1.3. The generators of HF∞(Y ) are of the form [x, i], where x ∈ Tα ∩ Tβ and
i ∈ Z. We recall that Z acts on P(Y ), since P(Y, s) is an affine space over Z/d(c1(s)). So
we can define an absolute grading on HF∞(Y ), and hence on HF−(Y ) and HF+(Y ), by
g̃r([x, i]) = g̃r(x) + 2i, for a homogeneous element x. It is easy to see that Theorem 4.1.1
implies that (a),(c) and (d) also hold for HF∞(Y ), HF−(Y ) and HF+(Y ).

Remark 4.1.4. Using the absolute grading function g̃r constructed in Theorem 4.1.1, one
can recover the absolute Q-grading for HF ◦(Y, s) defined by Ozsváth-Szabó when c1(s) ∈
H2(Y ;Z) is a torsion class. See Corollary 5.4.3 for details.

We can also generalize the absolute grading function g̃r to the twisted Heegaard Floer
homology groups defined by Ozsváth-Szabó [27]. Recall that the twisted Heegaard Floer
homology group HF (Y, s) is the homology of the twisted Heegaard Floer chain complex
CF (Y ; s)⊗ Z[H1(Y ;Z)], where the (infinity version) differential is defined by

∂∞[x, i] =
∑

y∈Tα∩Tβ

( ∑
φ∈π2(x,y)

#M(φ)eA(φ)[y, i− nz(φ)]
)

where A : π2(x,y) → H1(Y ;Z) is a surjective, additive assignment. See [27] for more
details. Now we define the twisted absolute grading function by simply ignoring the twisted
coefficient as follows:

g̃rtw : Z[H1(Y ;Z)](Tα ∩ Tβ) → P(Y ) (4.2)

eξx 7→ g̃r(x),

where ξ ∈ H1(Y ;Z) and we write Z[H1(Y ;Z)] multiplicatively.1 Using an obvious twisted
version of Theorem 4.1.1(b), we will prove the following corollaries in Section 5.3.

Let FY denote the set of homotopy classes (as 2-plane fields) of contact structures on Y
which are weakly fillable.

Corollary 4.1.5 (Kronheimer-Mrowka [19]). FY is finite.

Corollary 4.1.6. If Y is an L-space, then |FY | ≤ |H1(Y ;Z)|.

Corollary 4.1.7 (Lisca [24]). If Y admits a metric of constant positive curvature, then
|FY | ≤ |H1(Y ;Z)|.

Remark 4.1.8. Corollary 4.1.5 and Corollary 4.1.7 are previously proved using the rela-
tionship between Seiberg-Witten theory and contact topology.

1The twisted absolute grading defined here does not refine the relative Z-grading within each Spinc

structure defined in [27]. A slightly more sophisticated construction of the twisted grading is needed to
recover the relative Z-grading. But since we do not need this refinement in this paper, we do not include
the details here.
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Remark 4.1.9. In fact the assertion in Corollary 4.1.5 holds for the set of homotopy classes
of 2-plane fields which support a tight contact structure by the work of Colin-Giroux-Honda
[4]. But our result does not imply this generalization. In particular we do not have an upper
bound on |F(Y )| for tight contact structures.

4.2 Bordered Floer homology

We now briefly review the construction of bordered Heegaard Floer homology, following [23].
Consider a compact oriented 3-manifold Y with non-empty connected boundary. A parametriza-
tion of ∂Y is an orientation preserving diffeomorphism φ : ∂Y → F , where F is a closed
oriented surface with a prescribed handle decomposition. According to [23], one can asso-
ciate to F a differential graded algebra A(F ). See § 6.1 for the precise definition of A(F ).

Then one defines the so-called type A and type D modules of Y , denoted by ĈFA(Y ) and

ĈFD(Y ). The type A module ĈFA(Y ) is a right A∞-module over A(F ). That means that
there exist maps

ml : ĈFA(Y )⊗A(F )⊗(l−1) → ĈFA(Y ),

satisfying the A∞-relations, see e.g. [23, Eq. (2.6)]. Here the tensor product is taken over an

appropriate ring, as we will review in §6.2. The type D module ĈFD(Y ) is a left differential

module over A(−F ), that is there exists a map ∂ : ĈFD(Y ) → ĈFD(Y ), which squares to
0 and which satisfies the Leibniz rule with respect to the left action of A(−F ). It is also
shown in [23] that if Y1 and Y2 are compact 3-manifolds such that ∂Y1 = −∂Y2, then there
is a homotopy equivalence

Φ : ĈFA(Y1) ⊗̃ ĈFD(Y2) → ĈF (Y1 ∪F Y2). (4.3)

Here ⊗̃ denotes the derived tensor product. For a closed oriented 3-manifold Y , we denote
by Vect(Y ) the set of homotopy classes of non-vanishing vector fields on Y . The goal of this
paper is to prove the following theorems.

Theorem 4.2.1. Given a parameterized surface F as above, there exist a groupoid G(F ),
with a Z-action denoted by λn for a given n ∈ Z, and a grading function gr with values on
G(F ) satisfying the following conditions:

1. If a, b are two composable generators of A(F ), then gr(a · b) = gr(a) · gr(b).

2. If a is a generator of A(F ), then gr(∂a) = λ−1gr(a).

Remark 4.2.2. It turns out that G(F ) is by construction a set of co-oriented plane fields
on F × [0, 1] modulo homotopy.2 The multiplication rule is by the obvious stacking of plane
fields when the boundary condition matches.

2By choosing a Riemannian metric on a 3-manifold, we can identify the set of nonvanishing vector fields
with the set of co-oriented plane fields, modulo homotopy, by taking the orthogonal complement.
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Theorem 4.2.3. For any compact 3-manifold Y with boundary F , there exist a set S(Y ),

admitting a right action by G(F ) and a left action by G(−F ), and a grading gr on ĈFA(Y )

and ĈFD(Y ) with values on S(Y ) such that

(a) If x is a generator of ĈFA(Y ) and a1, . . . , al are generators of A(F ) such that
ml+1(x; a1, . . . , al) 6= 0, then

gr(ml+1(x; a1, . . . , al)) = λl−1gr(x) · gr(a1) . . . gr(al).

(b) If x is a generator of ĈFD(Y ), then gr(∂x) = λ−1gr(x).

Theorem 4.2.4. Let Y1 and Y2 be compact 3-manifolds such that ∂Y1 = −∂Y2. Then there
exist a set S(Y1)⊗ S(Y2) and a map Ψ : S(Y1)⊗ S(Y2) → P(Y ) such that

g̃r(Φ(a⊗ b)) = Ψ(gr(a)⊗ gr(b))

for any generators a in ĈFA(Y1) and b in ĈFD(Y2). Here g̃r denotes the absolute grading
in Heegaard Floer homology.

Remark 4.2.5. Using essentially the same constructions that we will work out on this
paper, Theorem 4.2.1 can be generalized to any surface F , not necessarily with connected
boundary, using the generalized strands algebra defined by Zarev [39]. Both Theorems 4.2.3

and 4.2.4 can be generalized to the bimodules ĈFDD, ĈFDA, ĈFAA constructed in [23],
as well as the setting of bordered sutured Floer homology [39], in which case F ⊂ ∂Y , where
the inclusion can be strict. The main difference in the construction in the latter case is that
one needs to fix a nonvanishing vector field in ∂Y \ F , similarly to how Spinc structures are
assigned to generators in [39].

Part II is organized as follows: In §5.1, we construct the absolute grading on ĈF and in
§5.2, we prove that it refines the relative grading defined in [28]. That proves part (a) of the
Theorem 4.1.1. In §5.3, we compute the absolute grading of the contact invariant and show
that it is the homotopy class of the contact structure, which proves part (b) of the Theorem
4.1.1. This fact is known, by construction, for the absolute grading in ECH [10]. In §5.4,
we prove Theorem 4.1.1(d) at the chain level, showing that g̃r is natural under cobordism
maps, as stated in Theorem 5.4.1. This was shown for Seiberg-Witten Floer homology by
Kronheimer-Mrowka [20]. In §5.5, we prove that g̃r is preserved under Heegaard moves, see
Theorem 5.5.1. That means that the decomposition (4.1) is preserved under Heegaard moves
and therefore it also holds in the homology level. That implies that Theorem 4.1.1(d) also
holds in homology.
In §6.1, we review the definition of the strand algebra A(F ) associated to a parameterized
closed surface F following [23]. Then we construct the groupoidG(F ) in which the grading on
A(F ) takes value, and give the proof for Theorem 4.2.1. We finish this section by comparing
our geometric grading on A(F ) with the previously constructed grading in [23]. In §6.2, we
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construct the “left-G(−F ) and right-G(F ) bimodule” S(Y ) in which the grading on ĈFA(Y )

and ĈFD(Y ) takes value. Some variations of the standard Pontryagin-Thom construction
are made in this section which enable us to compute the relative gradings needed for the
proof of Theorem 4.2.3. The proof of Theorem 4.2.4 is provided in §6.3. This was joint work
with Yang Huang. In Chapter 7, we prove that te isomorphism between Heegaard Floer
homology and ECH constructed by Colin-Ghiggini-Honda preserves the absolute grading.
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Chapter 5

The absolute grading on Heegaard
Floer homology

5.1 The construction

Let Y be an oriented closed 3-manifold and let P(Y ) denote the set of homotopy classes of
oriented 2-plane fields on Y . Let us first recall that there is a surjection ψ : P(Y ) → Spinc(Y ).
Also, for a fixed Spinc structure s, we can endow ψ−1(s) = P(Y, s) with the structure of an
affine space over Z/d(c1(s)), where d(c1(s)) is the divisibility of the first Chern class of
s. So, given ξ, η ∈ P(Y ) mapping to the same Spinc structure s, there is a well-defined
difference ξ − η. One way of seeing this affine space structure is by using the Pontryagin-
Thom construction, as follows. Each ξ ∈ P(Y ) corresponds to a unique homotopy class
of nonvanishing vector fields, which we denote by [vξ]. Fixing a representative vξ and a
trivialization of TY , and after a normalization, we can think of vξ as a map Y → S2. The
preimage of a regular value of this map gives a link and the preimage of the tangent plane
to this regular point under the derivative map determines a framing of this link. We recall
that two framed links LO, L1 ⊂ Y are called framed cobordant, if there exists a framed
surface S ⊂ Y × [0, 1], whose boundary is −LO × {0} ∪ L1 × {1} and such that the framing
restricted to the boundary coincides with the initial framings on L0 and L1. It follows from
Pontryagin-Thom theory that two nonvanishing vector fields are homotopic if and only if
the respective framed links are framed cobordant. If ξ, η map to the same Spinc structure,
then the respective links are cobordant and the difference of framings is ξ − η ∈ Z/d(c1(s)).
The sign convention we are using here is that a left-handed twist increases a framing by +1.

Now let (Σ,α,β, z) be a Heegaard diagram representing Y , where α = (α1, . . . , αg)

and β = (β1, . . . , βg). Recall that the generators of ĈF (Y ) are the intersection points of
the tori Tα and Tβ in Symg(Σ). Our goal in this section is to construct a canonical map
Tα ∩Tβ → P(Y ) that refines the relative grading, which we denote by gr, and the map that
assigns a Spinc structure to a generator, which we denote by sz : Tα ∩ Tβ → Spinc(Y ). For
the definitions of these maps, see [28].



33

Theorem 5.1.1. There is a canonical map g̃r : Tα∩Tβ → P(Y ), such that if x,y ∈ Tα∩Tβ

are such that sz(x) = sz(y) = s, then

g̃r(x)− g̃r(y) = gr(x,y) ∈ Z/d(c1(s)).

We fix a self-indexing Morse function f : Y → R compatible with (Σ,α,β). Let
x ∈ Tα ∩ Tβ. Then x corresponds to g points x1, . . . , xg on Σ, which give rise to flow
lines γx1 , . . . , γxg connecting the index 1 critical points to the index 2 critical points. The
basepoint z determines a flow line γ0 from the index 0 critical point to the index 3 critical
point. We can choose a gradient-like vector field v, tubular neighborhoods N(γxi) of γxi and
diffeomorphisms N(γxi)

∼= B3 such that, under these diffeomorphisms, v|N(γxi )
: B3 → R3

is given by v(x, y, z) = (x,−y, 1 − 2z2), for i 6= 0 and v|N(γ0) : B3 → R3 is given by
v(x, y, z) = (2xz, 2yz, 1 − 2z2). Figure 5.1(a) shows two cross-sections of v|N(γxi )

, for i 6= 0.
Figure 5.1(b) shows v|N(γ0) on any plane passing through the origin containing the z-axis.
Outside the union of the neighborhoods N(γxi), v is a nonvanishing vector field. We will de-
fine a nonvanishing continuous vector field wx on Y that coincides with v in the complement
of the neighborhoods N(γxi).

xz-plane yz-plane

(a) (b)

Figure 5.1:

For i 6= 0, on ∂N(γxi)
∼= ∂B3, we note that

v(x, y, z) = (x,−y, 1− 2z2) = (x,−y, 2x2 + 2y2 − 1).

We define wx = (x,−y, 2x2 +2y2 − 1) in N(γi), see Fig 5.2(a). This is a nonzero vector field
in N(γxi) that coincides with v on ∂N(γxi). Also, on ∂N(γ0), we see that

v(x, y, z) = (−2xz,−2yz, 1− 2z2) = (−2xz,−2yz, 2x2 + 2y2 − 1).

This new vector field is still zero on the circle C = {(x, y, z)|x2+y2 = 1/2, z = 0}. A vertical
section of it in B3 is shown in Figure 5.2(b).So we define wx in N(γ0) by

wx(x, y, z) = (−2xz,−2yz, 2x2 + 2y2 − 1) + φ(x, y, z)(y,−x, 0),
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where φ is a bump function around C (i.e. φ = 1 on C and φ = 0 in the complement of a
small neighborhood of C). Therefore wx is a nonvanishing vector field on Y that equals v
outside the union of the neighborhoods N(γxi). We can perturb wx to a smooth vector field.
Finally we define g̃r(x) to be the homotopy class of the orthogonal complement of wx.

xz-plane yz-plane

(a) (b)

Figure 5.2:

Remark 5.1.2. We could use the gradient vector field itself instead of some other gradient-
like vector field to define the absolute grading, but it would be harder to write down the
formulas for the canonical modification of the gradient vector field in the neighborhoods of
the flow lines. Nevertheless, we would obtain the same homotopy class.

5.2 The relative grading

This subsection is dedicated to proving that the absolute grading refines the relative grading.
Given two intersection points x,y ∈ Tα∩Tβ such that sz(x) = sz(y), there exists a Whitney
disk A ∈ π2(x, y), as proven in [28]. This means that A is a homotopy class of maps
ϕ : D2 ⊂ C → Symg(Σ) taking i to x, −i to y, the semicircle with positive real part to
Tβ and the one with negative real part to Tα. Let D1, . . . , Dn denote the closures of the
connected components of Σ− α1 − · · · − αg − β1 − · · · − βg. We write D(A) =

∑n
k=1 akDk,

where ak is the multiplicity of ϕ on each Dk. We can choose a Whitney disk A so that ak ≥ 0
for every k.

We will now construct surfaces F1 ⊃ · · · ⊃ Fm, whose union projects to
∑n

k=1 akDk =
D(A) on Σ. We take ak copies of each Dk and we glue them along their boundaries in
the following way: we construct F1 by gluing one copy of each Dk with ak > 0. Then we
construct F2 by gluing one copy of each Dk such that ak − 1 > 0. Inductively we construct
surfaces F1, . . . , Fm, where m = max ak. So the union of the surfaces Fl can be identified
with D(A). (Similar constructions can be found in [22,28,32]).
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The Euler measure of a surface with corners S, denoted by e(S), is defined to be χ(S)−
p
4
+ q

4
, where p is the number of convex corners of S and q is the number of concave corners

of S. If w ∈ αi ∩ βj, for some i, j, then a small neighborhood of w, when intersected with
the complement of the union of the α and the β curves, gives rise to four regions. We define
nw(Dk) to be 1/4 times the number of those regions contained in Dk. We extend nw linearly
to the Z-module generated by the domains Dk. Now we define nx to be the sum of all nxi ,
for i = 1, . . . , g. For example, a convex corner xi of Fl contributes to nx(Fl) with 1/4 and
a concave corner xi with 3/4. Similarly we define ny. By Lipshitz [22], the Maslov index of
the Whitney disk A, denoted by µ(A), is given by

µ(A) = ind(A) = e(D(A)) + nx(D(A)) + ny(D(A)) =
m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)

)
.

For each Dk, we define nz(Dk) to be 0 if z 6∈ Dk and 1 if z ∈ Dk, and we extend nz linearly
to sums of Dk. The relative grading was defined by Ozsváth-Szabó [28] to be

gr(x,y) = µ(A)− 2nz(D(A)) ∈ Z/d,

where d is the divisibility of c1(s(x)). So we need to show that

g̃r(x)− g̃r(y) =
m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)− 2nz(Fl)

)
∈ Z/d.

Step 1 : We first assume that m = 1 and that nz(F1) = 0. Recall that a corner xi is called
degenerate if xi = yj for some j. We also assume that there are no degenerate corners.

We will now choose a convenient trivialization of TY in order to apply the Pontryagin-
Thom construction. Let f be a self-indexing Morse function f , which is compatible with
(Σ,α,β). Let F := F1. Let pi be the index 1 critical point corresponding to αi and qj the
index 2 critical point corresponding to βj. Each edge of the boundary of F is part of an αi or
a βj. So each edge of ∂F determines a surface by flowing downwards or upwards towards a
pi or qj, respectively, and, by adding pi and qj, we get a compact surface with corners. This
surface has typically three corners unless it corresponds to an edge starting at a boundary
degenerate corner in which case, this edge is actually a circle and the surface corresponding
to it is a disk. We call Ai and Bj the surfaces corresponding to the edges contained in
αi and βj, respectively. We note that the flow we consider here is the one generated by a
gradient-like vector field v compatible with the Morse function f .

Let C be the union of F and the surfaces Ai and Bj. We will first choose a trivialization
of TY on C. We start by defining a unit vector field E1, which is tangent to F . The
orientation of Σ induces an orientation on F . We set E1 to be the positive unit tangent
vector along ∂F , with respect to its boundary orientation, outside a small neighborhood of
the corners. At a neighborhood of a corner, we define E1 on ∂F by keeping it tangent to
F and rotating it by the smallest possible angle. That means that once we start rotating,
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E1 will not be tangent to ∂F at any point. In other words, each connected component of
the set of points of ∂F at which E1 is not tangent to ∂F contains exactly one corner of F .
We also have to choose a corner to rotate an extra 2πχ(F ) clockwise. That allows us to
extend E1 to F . We now define E1 on each Ai and Bj to be an extension of E1 on ∂F such
that it is tangent to Ai and Bj everywhere outside small neighborhoods of the corners xi
and yj and such that it is always transverse to the flow lines γxi and γyj . In particular E1 is
tangent to Ai near pi and to Bj near qj. Near the corners xi and yj, we require E1 to never
be tangent to Ai and Bj, similarly to how we defined E1 on F . We define E3 on F to be
the positive normal vector field to F , and we extend it to Ai and Bj so that {E1, E3} is an
oriented orthonormal frame on the respective tangent spaces, except maybe outside a small
neighborhood of ∂F . In this neighborhood, we require that each connected component of
the set of points where E3 is not tangent to Ai or Bj intersects F . Now we take E2 to be the
unit vector field on C orthogonal to E1 and E3 such that {E1, E2, E3} is an oriented basis
of TY . So mapping Ei to ei ∈ R3, we get a trivialization of TY along C. We extend this
trivialization to a neighborhood of C in such a way that E1 and E3 are still tangent to the
corresponding unstable and stable surfaces near the critical points pi and qj and that e1 is a
regular value of wx and wy when seen as maps Y → S2. Now, since there are no degenerate
points, C does not contain an α or β curve. Therefore there is no obstruction to extending
this trivialization to all of Y . So we choose one of those extensions.

Now we define K ′
x = w−1

x (e1) and K ′
y = w−1

y (e1) as framed links. We note that inside
neighborhoods of the flow lines γxi and γyi , these are one stranded braids contained in the
corresponding unstable or stable surface, except that near each corner of F , this braid rotates
around the respective flow line as much as E1 restricted to this flow line does, but in the
opposite direction. This is shown in Figure 5.3(a). It follows from the way that we chose
the trivialization on C that K ′

x and K ′
y do not intersect C outside of those neighborhoods.

We can isotope K ′
x in neighborhoods of each γxi in the following way. Near each corner,

this link is rotating around γxi . We isotope a neighborhood of this part of the link to the
segment of the flow line about which it is rotating fixing the endpoints. Outside of this
neighborhood of the corner, but still inside the neighborhood of the flow line, the link is
contained in the corresponding unstable or stable surface. We will call this new link Kx. We
can think of the framing of a link as a unit normal vector field to the link. So the framing
on Kx induced from this isotopy can be seen by a vector field that is normal to the stable
and unstable surfaces away from the corners and rotates with respect to the stable surface
as much as K ′

x rotates about the flow line, as seen in Figure 5.3(b). We denote this framing
by τx. We note that once we fix which of the two unit normal vector fields to the stable
surface we choose, the unit normal vector field to the unstable surface is determined.

We can do the same for K ′
y and define Ky with framing denoted by ηy. Figure 5.3(c)

shows a picture of both Kx and Ky at a neighborhood of a flow line γxi . Now we modify C
in the following way. For each edge of F , we substitute the corresponding Ai or Bj by the
region on the unstable or stable surface bounded by the corresponding edge of F and the
segments of Kx and Ky, see Figure 5.3(c). We smooth the edges of this surface and denote
by C̃ this smooth surface with boundary, which has cusps. We note that C̃ gives rise to a
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cobordism S ⊂ Y × [0, 1] between Kx × {0} and Ky × {1} that is trivial where Kx and Ky

coincide.

γxi K ′
x

β

α

γxi Kx

β

α
Kx

Ky

Ky

(a) (b) (c)

Figure 5.3:

If we are given a link cobordism between two links and a framing of one, then it induces a
framing of the other. So τx induces a framing τy of Ky. The Pontryagin-Thom construction
tells us that g̃r(x) − g̃r(y) equals τy − ηy. We will now compute this difference. Since
Kx and Ky coincide as framed links outside of C̃, we only need to do this calculation in a
neighborhood of C̃. To do so, we take a normal vector field N to C̃ and extend it arbitrarily
to Kx ∩Ky. So N gives rise to a framing of S, which we call ν. We denote by νx and νy the
restrictions of ν to Kx and Ky, resp. We will compute the difference between the framings
by first comparing them with ν and then using the fact that

τy − ηy = (τy − νy)− (ηy − νy) = (τx − νx)− (ηy − νy).

τxνx τxνx

ηy νy ηy νy

convex xi concave xi convex yj concave yj

β

α

β

α

α

β

α

β

Figure 5.4:

We will look at a neighborhood of the corners of F . In fact we only need to compute how
many times τx rotates with respect to νx, where Kx coincides with each γxi and similarly
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for ηy. We call a nondegenerate corner of F convex1 if it is a corner of some Dk ⊂ F for
only one k and concave1 if it is a corner of some Dk ⊂ F for three values of k. For convex
vertices, the difference is 0 for both an xi and a yj. For concave vertices, it is +1 for an
xi and −1 for a yj, as shown in Figure 5.4. In this picture, the orientation of the link is
pointing down, so a counterclockwise turn counts as a +1, since that is a left-handed twist.
At the distinguished corner, we rotated E1 by an additional 2πχ(F ) clockwise. If this is an
xi it accounts for χ(F ) in τx − νx and if it is a yj, it accounts for −χ(F ) in ηy − νy. So
τy − ηy = χ(F ) + q, where q is the number of concave corners.

Now if we denote by p the number of convex corners, by Lipshitz’s formula,

ind(F ) = e(F ) + nx(F ) + ny(F )

= χ(F )− 1
4
p+ 1

4
q + 1

4
p+ 3

4
q

= χ(F ) + q = τy − ηy.

Since nz(F ) = 0, we conclude that g̃r(x)− g̃r(y) = τy − ηy = µ(A) = gr(x,y).
Step 2 : We will now prove a technical lemma that will be useful in the general case.
Given two links K1 and K2 in Y that belong to the same homology class, let S be an

immersed cobordism between them. That means that S is an immersed oriented compact
surface in Y × [0, 1] that is embedded near its boundary and such that ∂S = K1 × {1} ∪
(−K2) × {0}. Since an immersed surface also has a normal bundle, we can ask whether
framings of K1 and K2 extend to a framing of S. So given a framing of K1, the surface
S induces a framing of K2. The induced framing of K2 depends heavily on S. In fact,
if we denote the signed number of self-intersections of S by δ(S), we have the following
lemma. Here we orient Y × [0, 1] by declaring that {∂t, E1, E2, E3} is an oriented basis,
where {E1, E2, E3} is an oriented basis for TY and t is the coordinate function on [0, 1].

Lemma 5.2.1. Let K1 and K2 be links in Y that belong to the same homology class and
let S and S ′ be immersed cobordisms between them, which are in the same relative homology
class. Given a framing of K1, let ζS and ζS′ be the framings induced on K2 by S and S ′,
respectively. Then ζS − ζS′ = 2(δ(S)− δ(S ′)).

To prove that, we will use another lemma, which is a standard result in Differential
Topology.

Lemma 5.2.2. Let Σ be a closed oriented surface immersed into a closed oriented 4-manifold
X. Let e(NΣ) be the Euler class ot the normal bundle of Σ with the orientation induced by
the orientation of X. Then

[Σ] · [Σ] = e(NΣ) + 2δ(Σ).

Proof of Lemma 5.2.1. We are given S, S ′ ⊂ Y × [0, 1] such that ∂S ′ = ∂S = K1 × {1} ∪
(−K2 × {0}) and such that S ′ − S vanishes in H2(Y × [0, 1]). Now we take two copies of
Y × [0, 1], switch the orientation of one of them and glue along their common boundaries.

1Some authors use the adjectives acute and obtuse to denote convex and concave, respectively.
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We can think of this as Y × [−1, 1] with the obvious identification of Y ×{−1} and Y ×{1},
which gives us Y × S1. We can also glue S ⊂ Y × [0, 1] to −S ′ ⊂ Y × [−1, 0] and we get
a closed surface that we call Σ. Now we can assume that in Y × [−ε, ε], the surface Σ is
K2× [−ε, ε], for ε small. We use S to get a framing on K2 ⊂ Y ×{ε} and S ′ to get a framing
on K2 ⊂ Y × {−ε}. These are exactly ζS and ζS′ , respectively. It follows that the relative
Euler class of the normal bundle of Σ restricted to K2 × [−ε, ε] given these two framings is
ζS′ − ζS. Therefore e(NΣ) = ζS′ − ζS. Now, if we think of S, S ′ and Σ as chains in Y × S1,
we can write Σ = S − S ′. So Σ− (K1 × S1) vanishes in H2(Y × S1). Hence

[Σ] · [Σ] = [K1 × S1] · [K1 × S1] = 0.

Therefore, by Lemma 5.2.2,

ζS − ζS′ = 2δ(Σ) = 2(δ(S)− δ(S ′)).

Step 3 : We now proceed to the general case. We had written D(ϕ) as a union of surfaces
Fl ⊂ Σ, which can be seen as 2-chains in Σ. We need to show that

g̃r(x)− g̃r(y) =
m∑
l=1

(
e(Fl) + nx(Fl) + ny(Fl)− 2nz(Fl)

)
.

Let γa be the projection to Σ of the image of ∂D2 ∩ {z; Re(z) ≤ 0} under ϕ and γb be
the projection of the image of ∂D2 ∩ {z; Re(z) ≥ 0}. Then γa − γb = ∂D(A) =

∑
l ∂Fl. We

observe that the a corner of Fl can either be an xi, a yj or neither. If it is neither of the
two, then the interiors of γa and γb intersect at that point. We call this point an auxiliary
corner and denote each of them by wk for some k. Now fix and auxiliary corner wk. Let r
be the multiplicity of γa and s be the multiplicity of γb in a neighborhood of wk and assume
r < s, see Figure 5.5(a). We might also have an extra t to the multiplicity of all the four
regions. But that will not affect the calculations. So, for simplicity, we can assume that
t = 0. We get a convex corner for r of the Fl’s and a concave one for r of the Fl’s. For
(s − r) of the Fl’s, this point lies on the boundary and is not a corner. We denote by γwk

the flow line passing through wk. We say that wk is positive if it behaves as a convex xi (i.e
γwk

is positively oriented) and as a concave yj (i.e γwk
is negatively oriented), and that wk

is negative if the opposite happens, as shown in Figure 5.5(b).
The orientations on γa and −γb give rise to an orientation of ∂Fl. That is also the

orientation induced from Σ, since A ≥ 0. Now we need to define {E1, E2, E3}. We want to
define E1 on Fl in the same way as we did when we had only one Fl. But we have to be more
careful since we may have α and β curves contained on the surface Fl. This can happen in
three different ways: there is a boundary degenerate corner, an interior degenerate corner or
a pair of nondegenerate corners that are on ∂Fl but are not corners of ∂Fl for some l. Figure
5.6 shows an example of each of those case.



40

s

rr + s

positive wk negative wk

β β α

α α β

(a) (b)
Figure 5.5:
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Figure 5.6:

For each Fl, we can define Cl, just as we did to define C in Step 1, except that when one
of the edges of Fl is a circle, we will attach a disk to it, not a triangular surface. We will first
define E1 on Fm. For each edge of Fm that is not a circle, we define E1 to be the positive
unit tangent vector to ∂Fm outside neighborhoods of the corners. Along an edge that is a
circle, we define E1 to be any vector field whose rotation number along this circle is 0. We
note that nondegenerate corners along this circle, e.g. Figure 5.6, cannot happen for Fm. If
we have an α or β circle contained in the interior of Fm, then we define E1 along this circle
such that its rotation number is 0. In a neighborhood of each corner including the auxiliary
ones, we rotate E1 as least as possible, as we did in Step 1. We also need to choose some
nondegenerate corners, i.e. not auxiliary corners, to rotate a total of χ(Fm) + d(Fm), where
d(Fm) denotes the number of boundary degenerate corners of Fm. After doing that, we can
now extend E1 to a vector field on Fm. Now we extend it to the triangular surfaces belonging
to Cm just as we did in Step 1. For each circle on ∂Fm, we extend E1 to the attaching disk
by requiring that it is tangent to the surface f−1(t), for every 3/2 ≤ t ≤ 2, if the circle is a
βj and for every 1 ≤ t ≤ 3/2 if the circle is an αi. We note that E1 is not tangent to this
disk at any point except for the corresponding critical point, i.e when t = 1 or 2, and on Σ.

Now we want to extend E1 to Fm−1 ⊃ Fm. We first define E1 on ∂Fm−1. We can do it
the same way as we did for ∂Fm except near the intersection of ∂Fm−1 and Fm, where E1

is already defined. This can only happen in two cases. The first one is when they intersect
at an auxiliary corner. In this case we just rotate E1 along ∂Fm−1 as least as possible, so
that it coincides with E1 at the corner. The second case is when there is a circle in Fm−1
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that contains two nondegenerate corners. In this case, E1 is already defined in the segment
connecting the two nondegenerate corners. So we extend it to all of this circle in such a way
that its rotation number is 0. After doing that, we can extend E1 to Cm−1 just as we did for
Cm. Proceeding by induction, we define E1 on Cl, for l = m,m− 1, . . . , 1.

We can define E3 on Cl as we did before, but when we have a circle on ∂Cl, we extend
E3 to the corresponding disk by requiring that E3 is normal to f−1(t) for every t. Now we
define E2 such that {E1, E2, E3} is an orthonormal basis for TY along Cl for all l.

For every α or β circle contained in F1, either we have attached the corresponding disk to
it in some Cl or it contains an interior degenerate corner, in which case, we have also required
that the rotation number of E1 along this circle is 0. So in the latter case, we can extend
E1 and E3 as we did when the circle was in the boundary. Now, there is no obstruction to
extending the orthonormal frame {E1, E2, E3} to all of Y and, as before, that determines a
trivialization by sending Ei to ei ∈ R3.

Again, we take K ′
x = w−1

x (e1) and K
′
y = w−1

y (e1). We can isotope them the same way as
before to get Kx and Ky so that they contain segments of γxi and γyi near the respective
corners. We also define the surfaces C̃l in the same fashion as we did in Step 1. Now,
to compute the difference of their framings, we will use several immersed cobordisms. We
start from Ky. We use C̃1 to define an immersed cobordism. This cobordism exchanges
segments of the flow lines γyj corresponding to corners yj of F1 with segments of some
γxi corresponding to corners xi of F1 and possibly segments of some γwk

, corresponding to
concave auxiliary corners wk. The next step is to use C̃2 to construct an immersed cobordism
which exchanges segments of some γyi by segments of some γxi , possibly involves auxiliary
corners and keeps the rest of the link fixed. We can continue this construction inductively
and define immersed cobordisms for C̃1, . . . , C̃m. Every time we obtain a γwk

, it will first
appear as a concave corner and later as a convex corner. If wk is positively oriented, then
it will appear as a positive concave angle and a negative convex angle, which means that
they just cancel, when we stack the immersed cobordisms. If wk is negatively oriented, then
it will appear as a negative concave corner first and as a positive convex corner later. In
this case, we add trivial cobordisms to the immersed cobordisms where the segment of γwk

appears and to all of the ones in between. After stacking all those, the auxiliary corners
cancel and we obtain an immersed cobordism from Ky to Kx. Similarly to the case when we
had only one Fl, we conclude that the difference of the framings using the cobordism induced
by C̃l is χ(Fl) + d(Fl) + q(Fl) for each l, where q(Fl) is the number of concave corners of Fl,
not counting the auxiliary corners. Moreover for each auxiliary corner wk, the difference of
framings is +1 if wk is positive, and −1 if wk is negative. So using this immersed cobordism

from Ky to Kx, the difference between the framings is
∑m

l=1

(
χ(Fl)+d(Fl)+ q(Fl)

)
plus the

signed count of the auxiliary corners.
We know that there is an embedded link cobordism from Ky to Kx in the same relative

homology class as the immersed cobordism we were considering. So, by Lemma 5.2.1, τy−ηy
equals the difference obtained using the immersed cobordism minus twice the signed number
of self-intersections of the immersed cobordism, since the self-intersection number of an
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embedded cobordism is 0. We now need to consider three cases.

(i) There are boundary degenerate corners or a pair of nondegenerate corners on an α or
β curve contained in some ∂Fl.

(ii) There are interior degenerate corners

(iii) There are nondegenerate corners in the interior of some Fl.

(iii) The basepoint z in in the interior of F1.

In case (i), self-intersections could exist ifKx orKy intersects Cl for l such that Cl contains
the disk we attach to the corresponding α or β circle. Let xi and yj be the corresponding
corners. Then Cl divides N(γxi) in two disconnected components and we can see that Kx

enters and exits N(γxi) in the same component. Similarly for yj. Therefore the signed
number of intersections with Cl is 0. In this case, nxi + nyj = 1. But this +1 appears in the
difference of framings when we added d(Fl) turns to E1 near a nondegenerate corner.

In case (ii), let xi = yj be the interior degenerate corner. So, nxi + nyj = 2. Also,
Kx = Ky in N(γxi). Also, Kx intersects Cl negatively at only one point. Therefore, by
Lemma 5.2.1, we have two add +2 to the difference of the framings.

In case (iii), since Fi ⊃ Fj, for i < j, and the cobordism corresponding to C̃i is taken
before the one corresponding to C̃j, only the nondegenerate yj’s which are in the interior of
an Fj correspond to intersections. So, by Lemma 5.2.1, we have to add twice the number of
interior nondegenerate yj’s. On the other hand, if we had built our immersed cobordisms in
the opposite order, i.e. starting with Fm and going all the way to F1, then we would get the
same result, except that we would be counting twice the number of interior nondegenerate
corners xi, but in this case the sign of the auxiliary corners are switched. Since the two
calculations have to coincide, it follows that the number of interior nondegenerate corners xi
plus the number of positive auxiliary corners equals the number of interior nondegenerate
corners yj plus the number of negative auxiliary corners. So twice the number of interior
nondegenerate xi’s plus the signed count of the auxiliary corners equals the total number of
interior nondegenerate corners. That is exactly what we were missing to get the full nx(Fl)
and ny(Fl). Therefore, combining cases (i),(ii) and (iii), we conclude that the difference of

the framings is
∑m

l=1

(
e(Fl) + nx(Fl) + ny(Fl)

)
, which is equal to µ(A).

In case (iv), then Kx = Ky near γz. If Kx intersects Fl, then it does so positively. Hence,
by Lemma 5.2.1, we get an extra −2

∑
l nz(Fl) in the difference of framings. Therefore

g̃r(x)− g̃r(y) = τy − ηy = µ(A)− 2nz(A) = gr(x,y).

5.3 The absolute grading of the contact invariant

In [29], Oszváth-Szabó defined the contact class c(ξ) ∈ ĤF (−Y ) for a contact 3-manifold
(Y, ξ), and they showed that it is an invariant of ξ. Later, Honda-Kazez-Matić [8] gave an
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alternative definition of c(ξ) using an open book decomposition adapted to ξ. In this section,
we compute the absolute grading of the contact invariant c(ξ).

Contact topology and open book decompositions

Let Y be a closed oriented 3-manifold. A contact structure ξ is a maximally non-integrable
co-oriented 2-plane field, i.e. there exists a 1-form λ such that λ ∧ dλ > 0 and ξ = kerλ.
We call such λ a contact form of ξ. The Reeb vector field Rλ associated with λ is the unique
vector field which satisfies (i) Rλ y dλ = 0, (ii) Rλ y λ = 1. Although the dynamics of Rλ

depend heavily on the choice of λ, its homotopy class is an invariant of ξ. In fact, two contact
structures are homotopic if and only if their associated Reeb vector fields are homotopic.

Now recall that an open book decomposition of Y is a pair (S, h), where S is a compact,
oriented surface of genus g with boundary, h : S → S is a diffeomorphism which is the
identity on ∂S, and Y is homeomorphic to (S × [0, 1])/ ∼. The equivalence relation ∼ is
defined by (x, 1) ∼ (h(x), 0) for x ∈ S and (y, t) ∼ (y, t′) for y ∈ ∂S and t, t′ ∈ [0, 1]. Given
a contact structure ξ on Y , an open book (S, h) is adapted to ξ if there exists a contact form
λ for ξ such that Rλ is positively transverse to int(S) and positively tangent to ∂S.

Fix an adapted open book (S, h) of (Y, λ). Following [8], let {a1, · · · , a2g} be a set of
pairwise disjoint, properly embedded arcs on S such that S \

⋃2g
i=1 ai is a single polygon.

We call {a1, · · · , a2g} a basis for S. Next let bi be an arc which is isotopic to ai by a small
isotopy so that the following hold:

1. The endpoints of ai are isotoped along ∂S, in the direction given by the boundary
orientation of S.

2. ai and bi intersect transversely in one point xi in the interior of S.

3. If we orient ai, and bi is given the induced orientation from the isotopy, then the sign
of the intersection ai ∩ bi is +1.

See Figure 5.7.

ai bi

xiS

Figure 5.7: The arcs ai and bi on S.

Observe that (S, h) naturally induces a Heegaard splitting of Y by letting H1 = (S ×
[0, 1/2])/ ∼ and H2 = (S × [1/2, 1])/ ∼. This gives a Heegaard decomposition of Y of
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genus 2g with Heegaard surface Σ = ∂H1 = −∂H2. By choosing a basis {a1, · · · , a2g}
for S and following the constructions above, we obtain two collections of simple closed
curves α = {α1, · · · , α2g} and β = {β1, · · · , β2g} on Σ, where αi = ∂(ai × [0, 1/2]) and
βi = ∂(bi × [1/2, 1]) for i = 1, · · · , 2g. Then one can properly place the basepoint z and
reverse the orientation of Y to obtain a weakly admissible Heegaard diagram (Σ,β,α, z)

for −Y . It is observed in [8] that x = (x1, · · · , x2g) ∈ ĈF (Σ,β,α, z) defines a cycle, where
xi = ai ∩ bi ∈ αi ∩ βi, i = 1, · · · , 2g.

Theorem 5.3.1 (Honda-Kazez-Matić [8]). The class [x] ∈ ĤF (−Y ) represented by x ∈
ĈF (Σ,β,α, z) from above is an invariant of ξ and it is equal to c(ξ) defined in [29].

Remark 5.3.2. In light of Theorem 5.3.1, in order to prove Theorem 4.1.1(b), it suffices to
show

g̃r(x) = [ξ] (5.1)

as homotopy classes of oriented 2-plane fields.

Proof of Theorem 4.1.1(b)

Throughout this section, we fix a contact form λ and an adapted open book decomposition
(S, h) of (Y, λ). Note that the contact invariant is presented as an intersection point x in

ĈF (−Y ). The plan is to use the Pontryagin-Thom construction to show that the vector
field constructed in§5.1 to define g̃r(x) is homotopic to the Reeb vector field Rλ.

Proof of Theorem 4.1.1(b). Let f be a Morse function adapted to our special Heegaard di-
agram (Σ,α,β, z), where Σ = (S × {0}) ∪ (S × {1/2}). Note that one needs to reverse the
orientation of Y to define [x] = c(ξ). Equivalently, we shall consider, for the rest of the proof,
the same Heegaard diagram (Σ,α,β, z), but with the downward gradient vector field −∇f .
All the constructions of the absolute grading function carry over by simply reversing the
direction of all vector fields. Let vx be a nonvanishing vector field, which is a modification
of −∇f , as defined in §5.1. In particular, the homotopy class of the orthogonal complement
of vx equals g̃r(x). Let S̃ ⊂ int(S) be a closed subsurface such that S deformation retracts
onto S̃, and assume that h is supported in S̃×{1}. It is easy to see that −∇f is homotopic
to Rλ by linear interpolation in a small neighborhood N(S̃ × {1}) of S̃ × {1} in M because
they are both positively transverse to S̃ × {1}. Let H = Y \ N(S̃ × {1}) be the genus 2g
handlebody2. So it suffices to show that vx|H is homotopic to Rλ|H relative to ∂H.

To do so, consider a closed collar neighborhood ai × [−1, 1] ⊂ S × {1/2} of ai on
the middle page such that it contains bi in the interior, for i = 1, · · · , 2g. Let Bi =
(ai × [−1, 1] × [0, 1]) ∩ H ⊂ H be a 3-ball (with corners) in H, which contains ai and bi
in the interior. See Figure 5.8 for pictures of the vector fields Rλ|Bi

and −∇f |Bi
.

2In fact H is a handlebody with corners, but this is irrelevant here because we are considering continuous
vector fields.
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ai
bi

xiS S

(a) (b)

Figure 5.8: (a) The Reeb vector field Rλ restricted to Bi. (b) The downward gradient vector
field −∇f restricted to Bi.

Claim: There exists a non-singular vector field R′
λ on H, homotopic to Rλ relative to ∂H,

such that (i)R′
λ|∂Bi

= vx|∂Bi
, (ii)R′

λ|Bi
is homotopic to vx|Bi

relative to ∂Bi, for i = 1, · · · , 2g.

Proof of Claim. Let Dl = (ai × {−1} × [0, 1]) ∩H and Dr = (ai × {1} × [0, 1]) ∩H be the
left and right disk boundaries of Bi, respectively. Observe that Rλ = vx on ∂Bi \ (Dl ∪Dr)
by construction. We shall consider a collar neighborhood N(Dl) = (ai × [−1− δ,−1 + δ]×
[0, 1]) ∩H of Dl for some small δ > 0, and homotope Rλ to R′

λ with the desired properties
within N(Dl). Note that the same construction can be carried over to a collar neighborhood
of Dr.

We construct a model vector field Vl on D
2 × [−1, 1] in steps. First let F0 be a singular

foliation on D2 which has two elliptic singularities as depicted in Figure 5.9(a). Let γ ⊂
D2 × [−1, 0] be a properly embedded, boundary parallel arc such that ∂γ is exactly the
union of the two singularities of F0 on D2 × {−1}. Then there exists a foliation F by disks
on D2 × [−1, 0] such that for any leaf F of F , we have ∂F ∩ int(D2 × [−1, 0]) = γ, and
∂F ∩ (D2 × {−1}) is a leaf of F0. Let V

′
l be a non-singular vector field on D2 × [−1, 0] such

that it is positively tangent to γ and positively transverse to the interior of all leaves of F as
depicted in Figure 5.9(b). Up to homotopy, we can assume that V ′

l |D2×{0} = vx|Dl
as vector

fields on a disk. By fixing a trivialization of the tangent bundle T (D2 × [−1, 1]) using the
standard embedding D2 × [−1, 1] ⊂ R3, we define the vector field Vl on D

2 × [−1, 1] by

Vl(x, t) =

{
V ′
l (x, t) if − 1 ≤ t ≤ 0,

V ′
l (x,−t) if 0 ≤ t ≤ 1.

where x ∈ D2 is any point. Identify D2 × [−1, 1] with N(Dl) by rescaling in the [−1, 1]-
direction such that Dl is identified with D2×{0}, N(Dl) \Bi is identified with D2× [−1, 0],
and N(Dl) ∩ Bi is identified with D2 × [0, 1]. It is easy to see that Rλ|N(Dl) is homotopic
to Vl as vector fields on N(Dl) relative to the boundary. Similarly, one can define a non-
singular vector field Vr on N(Dr) such that Rλ|N(Dr) is homotopic to Vr as vector fields on
N(Dr) relative to the boundary. By applying the above homotopy, which is supported in
N(Dl) ∪N(Dr), to Rλ, and repeat this process for every Bi, i = 1, · · · , 2g, we obtain a new
non-singular vector field R′

λ. Observe that R′
λ satisfies condition (i) by construction.
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(a) (b)

γ

Figure 5.9: (a) The singular foliation on D2. (b) The vector field V ′
l on a leaf of F in

D2 × [−1, 0].

To show that R′
λ satisfies condition (ii), we use the Pontryagin-Thom construction. Triv-

ialize the tangent bundle TBi by embedding Bi ⊂ R3 such that Dl (or Dr) is parallel to the
xz-plane, and the [−1, 1]-direction is parallel to the y-axis. Consider the associated Gauss
maps Gvx|Bi

: Bi → S2 and GR′
λ
|Bi

: Bi → S2. Without loss of generality, we assume
that Gvx |Bi

and GR′
λ
|Bi

are smooth, and p = (0, 1, 0) ∈ S2 is a common regular value. Let

p′ = (ε,
√
1− ε2, 0) ∈ S2 be a nearby common regular value which keeps track of the fram-

ing, where ε > 0 is small. It is now a straightforward computation that the Pontryagin
submanifolds G−1

vx (p) and G
−1
R′

λ
(p) are both framed cobordant to the framed arc depicted in

Figure 5.10 relative to the boundary. Hence R′
λ|Bi

is homotopic to vx|Bi
relative to ∂Bi, for

all i = 1, · · · , 2g. This finishes the proof of the claim.

Figure 5.10: A framed arc in Bi, where the framing is indicated by the green arc.

It remains to show that R′
λ is homotopic to vx on H \ (

⋃2g
i=1Bi) relative to the boundary.

Let (D2, id) be the trivial open book of S3, and D̃ ⊂ int(D2) be a slightly smaller disk.

Let H̃ denote H \ (
⋃2g
i=1Bi) and observe that it is naturally identified with (D2 × [0, 1] \

((D̃× [0, ε))∪ (D̃× (1− ε, 1])))/ ∼ by construction. On the one hand, it is easy to see that
R′
λ|H̃ is homotopic to the restriction of the Reeb vector field compatible with the open book

(D2, id). On the other hand, note that H̃ is nothing but a neighborhood of the gradient
trajectory which connects the index 0 critical point to the index 3 critical point. Hence it
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follows immediately from our construction of g̃r(x) that vx|H̃ is also homotopic to the Reeb
vector field compatible with (D2, id). This finishes the proof of Theorem 4.1.1(b).

Now we compute the twisted absolute grading of the twisted contact invariant defined
in [26]. Let x ∈ Tα ∩ Tβ be the generator in ĈF (−Y ), which defines the usual contact
invariant as before. Let Z[H1(Y ;Z)]× denote the set of invertible elements in Z[H1(Y ;Z)].
First recall that the twisted contact invariant c(ξ) associated with the contact structure ξ is
defined by

c(ξ) = [u · x] ∈ ĤF (−Y )/Z[H1(Y ;Z)]×

where u ∈ Z[H1(Y ;Z)]×. Although c(ξ) is only well-defined up to a unit in Z[H1(Y ;Z)], the
twisted absolute grading g̃rtw(c(ξ)) defined by (4.2) still makes sense. The following result
is immediate.

Corollary 5.3.3. If ξ is a contact structure on Y , then g̃rtw(c(ξ)) = [ξ] ∈ P(Y ).

Proof. This follows immediately from (4.2) and Theorem 4.1.1(b).

Now we are ready to prove the corollaries given in Section 1.

Proof of Corollary 4.1.5. If (Y, ξ) is strongly fillable, then c(ξ) 6= 0 ∈ ĤF (−Y ) according

to [29]. Since ĤF (−Y ) is a finitely generated Abelian group, there can be only finitely
many absolute gradings, i.e., homotopy classes of 2-plane fields, that support strongly fillable
contact structures.

Now if (Y, ξ) is weakly fillable, then c(ξ) 6= 0 ∈ ĤF (−Y )/Z[H1(Y ;Z)]× according to [26].

Since ĤF (−Y ) is finitely generated as a Z[H1(Y ;Z)] module, the same argument as above
together with Corollary 5.3.3 implies that there can be only finitely many homotopy classes
of 2-plane fields in Y that support weakly fillable contact structures.

Proof of Corollary 4.1.6. By definition if Y is an L-space, then ĤF (−Y ) is a free Abelian
group of rank |H1(Y ;Z)|. Therefore there are at most |H1(Y ;Z)|-many homotopy classes of
2-plane fields that support strongly fillable contact structures. To get the same result for
weakly fillable contact structures, it suffices to observe that since Y is a rational homology
sphere by assumption, we have

ĤF (−Y ) ' ĤF (−Y )⊗ Z[H1(Y ;Z)].

Hence ĤF (−Y ) is a free Z[H1(Y ;Z)] module of rank |H1(Y ;Z)|, and therefore the conclusion
follows as before.

Proof of Corollary 4.1.7. It suffices to note that according to [30], if Y admits a metric of
constant positive curvature, then Y is an L-space.
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5.4 4-dimensional cobordism and absolute Q-grading

Let W be a connected compact oriented 4-dimensional cobordism between two connected
oriented 3-manifolds Y0 and Y1 such that ∂W = −Y0 ∪ Y1. Fixing a Spinc structure t on
W , Ozsváth-Szabó [31] constructed a map FW,s : HF ◦(Y0, t|Y0) → HF ◦(Y1, t|Y1) between
Heegaard Floer homology groups by choosing a handle decomposition of W , and counting
holomorphic triangles. It turns out that FW,t is an invariant of W , i.e., it is independent
of the choice of a handle decomposition of W . Throughout this section we fix a Heegaard
diagram (Σ,α,β) for Y0 and a handle decomposition of W . Let (Σ,α,γ) be the associated
Heegaard diagram for Y1 as constructed in [31]. We consider the associated chain map

FW,t : ĈF (α,β, t|Y0) → ĈF (α,γ, t|Y1).
Observe that FW,t : ĈF (α,β, t|Y0) → ĈF (α,γ, t|Y1) is a linear map between graded

vector spaces. However, according to Theorem 4.1.1(a), ĈF (α,β, t|Yi) is graded by the set
of homotopy classes of oriented 2-plane fields P(Yi), i = 0, 1, so it is not possible to define
an integer degree of FW,t. There is a weaker notion which is applicable here. Namely, let
W : Y0 → Y1 be a cobordism and ξi be an oriented 2-plane field on Yi, for i = 0, 1. We
say ξ0 ∼W ξ1 if and only if there exists an almost complex structure J on W such that
[ξi] = [TYi ∩ J(TYi)], for i = 0, 1, as homotopy classes of oriented 2-plane fields.

The main goal of this section is to prove Theorem 4.1.1(d) on the chain level, which we
formalize in the following theorem for the reader’s convenience.

Theorem 5.4.1. Let W : Y0 → Y1 be a compact oriented cobordism with a fixed han-
dle decomposition, t ∈ Spinc(W ) a Spinc structure on W , and FW,t : ĈF (α,β, t|Y0) →
ĈF (α,γ, t|Y1) the associated cobordism map as discussed above. Then g̃r(x) ∼W g̃r(y) for

any homogeneous generator x ∈ Tα ∩Tβ in ĈF (α,β, t|Y0), and any homogeneous summand
y of FW,t(x).

Before we give the proof of Theorem 5.4.1, we take a step back and look at the Heegaard
Floer homology HF ◦(Y, s) for a torsion Spinc structure s. By [31], there is an absolute Q-
grading of HF ◦(Y, s) which lifts the relative Z-grading. We shall see that our construction
indeed generalizes their absolute Q-grading. To do so, recall the following construction
due to R. Gompf [7]. Let ξ be an oriented 2-plane field on a closed, oriented 3-manifold
Y . Then there exists a compact, almost complex 4-manifold (X, J) whose almost-complex
boundary is (Y, ξ), i.e. Y = ∂X (as oriented manifolds) and ξ = TY ∩ J(TY ) with the
complex orientation. If c1(ξ) is a torsion class, then let θ(ξ) = (PD c1(X))2 − 2χ(X) −
3σ(X) ∈ Q, where χ is the Euler characteristic and σ is the signature. Observe that θ(ξ)
is independent of the choice of the capping almost complex 4-manifold (X, J) because the
quantity (PD c1(X))2 − 2χ(X)− 3σ(X) vanishes for a closed X.

Let s ∈ Spinc(Y ) be a Spinc structure such that c1(s) is a torsion class, and let U be the set

of homogeneous elements in ĈF (Y, s). We define an absolute grading function g̃r0 : U → Q
by g̃r0(x) = (2 + θ(g̃r(x)))/4 ∈ Q for any x ∈ U. This induces an absolute grading function
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on CF∞(Y, s) by g̃r0([x, i]) = 2i + g̃r0(x), and hence on the sub- and quotient-complexes
CF−(Y, s) and CF+(Y, s).

For reader’s convenience, we recall the following theorem/definition of the absolute Q-
grading due to Ozsváth-Szabó [31].

Theorem 5.4.2 (Ozsváth-Szabó). There exists an absolute grading function gr : U → Q
satisfying the following properties:

1. The homogeneous elements of least grading in ĤF (S3, s0) have absolute grading zero.

2. The absolute grading lifts the relative grading, in the sense that if x,y ∈ U, then
gr(x,y) = gr(x)− gr(y).

3. If W is a cobordism from Y0 to Y1 endowed with a Spinc structure t whose restriction
to Yi is torsion for i = 0, 1, then

gr(FW,t(x))− gr(x) =
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4

for any x ∈ U.

We have the following corollary:

Corollary 5.4.3. The function g̃r0 described above defines an absolute Q-grading for HF ◦(Y, s),
which coincides with the absolute Q-grading gr defined above.

Proof. We use the Pontryagin-Thom construction. By fixing a trivialization of TY , the ho-
motopy classes of oriented 2-plane fields on Y are 1-1 correspondent to the framed cobordism
classes of framed links in Y . The first assertion of the corollary follows from Theorem 4.1.1(a)
and the observation that adding a right-handed full twist to ξ is equivalent to decreasing
θ(ξ) by 4.

It follows from the proof of Theorem 5.4.1 that if t be a Spinc structure on W whose
restriction to Yi is torsion, for i = 0, 1, then FW,t(x) is homogeneous for every homogeneous
element x ∈ U. Since we have shown in Theorem 5.1.1 that our absolute grading g̃r refines
the relative grading, in order to show that g̃r0 coincides with the absolute Q-grading defined
in [31], it suffices to verify the following two conditions:

1. (Normalization) For the standard contact 3-sphere (S3, ξstd), g̃r0(c(ξstd)) = 0.

2. (Cobordism formula) Let W : Y0 → Y1 be a cobordism, and t be a Spinc structure on
W whose restriction to Yi is torsion, i = 0, 1. Then

g̃r0(FW,t(x))− g̃r0(x) =
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4

for any homogeneous x ∈ U.
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To prove (1), note that it follows from the fact that (S3, ξstd) is the almost complex
boundary of the standard unit 4-ball B4 ⊂ C2.

To prove (2), let (X, J) be an almost complex 4-manifold with almost complex boundary
(Y0, g̃r(x)). By Theorem 5.4.1, there exists an almost complex structure J ′ on W such that
both g̃r(x) and g̃r(FW,t(x)) are J

′-invariant with the complex orientation. We obtain a new
almost complex 4-manifold with almost complex boundary (X ∪Y0 W, g̃r(FW,t(x))) by gluing
(X, J) and (W,J ′) along Y0. Recall the following theorem on the signature of 4-manifolds
due to Novikov:

Theorem 5.4.4 (Novikov). Let M be an oriented 4-manifold obtained by gluing two 4-
manifolds M1 and M2 along some components of their boundaries. Then the signature is
additive:

σ(M) = σ(M1) + σ(M2).

We therefore calculate as follows:

g̃r0(FW,t(x))− g̃r0(x) =
θ(g̃r(FW,t(x)))− θ(g̃r(x))

4

=
(PD c1(W,J

′))2 − 2χ(W )− 3σ(W )

4

=
(PD c1(t))

2 − 2χ(W )− 3σ(W )

4
,

This finishes the proof of the second assertion of the corollary.

The proof of Theorem 5.4.1 occupies the rest of this section. We shall follow the con-
struction of FW,t given in [31].

Proof of Theorem 5.4.1. We fix a handle decomposition of W , and study the 2-handle at-
tachments and 1- and 3-handle attachments in W separately.
case 1. Suppose W is given by 2-handle attachments along a framed link L ⊂ Y0. Let ∆
denote the two-simplex, with vertices vα, vβ, vγ labeled clockwise, and let ei denote the edge
vj to vk, where {i, j, k} = {α, β, γ}. Recall that given a Heegaard triple (Σ,α,β,γ), one can
associate to it a 4-manifold

Wα,β,γ =
(∆× Σ)

∐
(eα × Uα)

∐
(eβ × Uβ)

∐
(eγ × Uγ)

(eα × Σ) ∼ (eα × ∂Uα), (eβ × Σ) ∼ (eβ × ∂Uβ), (eγ × Σ) ∼ (eγ × ∂Uγ)
(5.2)

where Uα (resp. Uβ, Uγ) is the handlebody determined by the α (resp. β, γ) curves. Let
Yα,β = Uα ∪ Uβ, Yβ,γ = Uβ ∩ Uγ, and Yα,γ = Uα ∪ Uγ be the 3-manifolds obtained by gluing
the α-, β- and γ-handlebodies along Σ in pairs. After smoothing the corners, we have

∂Wα,β,γ = −Yα,β − Yβ,γ + Yα,γ

as oriented manifolds. See Figure 5.11.
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eα

eβ eγ

Yα,β Yα,γ

Yβ,γ

Figure 5.11: The 4-manifold Wα,β,γ associated with a Heegaard triple (Σ,α,β,γ).

According to [31], if W is obtained by attaching 2-handles along a framed link L, then
there exists a triple Heegaard diagram (Σ,α,β,γ, z) such that Yα,β = Y0, Yβ,γ = #n(S1×S2)
for some n ≥ 1, and Yα,γ = Y1. Moreover, after filling in the boundary component Yβ,γ by
the boundary connected sum #n

b (S
1×B3), we obtain the original cobordism W . Fix a Spinc

structure t on W with si = t|Yi , i = 0, 1. Let Θ ∈ ĈF (#n(S1 × S2)) be the top dimensional
generator and let x ∈ Tα ∩ Tβ. By definition, the image of x under the cobordism map

FW,t : ĈF (Y0, s0) → ĈF (Y1, s1) is a linear combination of the generators y ∈ Tα ∩ Tγ with
coefficients being the count of Maslov index 0 holomorphic triangles connecting x, Θ and y.
Let y be a generator appearing in FW,t with a nonzero coefficient. We prove the following
claim.

x

Θ

y
α

β γ

Figure 5.12: A holomorphic triangle on Σ which connects x, Θ, and y.

Claim: There exists an almost complex structure J on Wα,β,γ such that g̃r(x) ∈ P(Y0),
g̃r(Θ) ∈ P(#n(S1×S2)), and g̃r(y) ∈ P(Y1) are all J-invariant with the complex orientation.

Proof of Claim. We first assume that y is the intersection point as shown in Figure 5.12,
which is connected to x and Θ by the obvious (embedded) holomorphic triangle. We begin
by constructing a 2-plane field on eα×Uα, and note that the same construction carries over
to eβ × Uβ and eγ × Uγ.
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For simplicity of notations, we assume g(Σ) = 1, so, for instance, x ∈ Tα ∩ Tβ is just
one point instead of a g-tuple of points. The same argument applies to Heegaard surfaces
of arbitrary genus without difficulty. Let Vα be the gradient flow on Uα compatible with the
α-curve so that it is pointing out along ∂Uα. Let p ∈ Uα be the index 1 critical point of Vα
and w ∈ Uα be the index 0 critical point of Vα. Identify the edge eα ⊂ ∆ with the subarc
of the α-curve from x to y, which is an edge of the holomorphic triangle, such that vγ is
identified with x and vβ is identified with y. Abusing notations, we shall not distinguish
a point on eα and the corresponding point on the α-curve under the above identification.
For any q ∈ eα, let γ0 and γ1 be the gradient trajectories which connect w to z and p to
q respectively. Let N(γi) be a tubular neighborhood of γi as depicted in Figure 5.13, for
i = 0, 1. By restricting the construction of the absolute grading in Section 5.1 to Uα, we
obtain a non-vanishing vector field V ′

α,q on Uα which depends on the choice of q ∈ eα as
depicted in Figure 5.14. Thus we have constructed a 2-plane field ξα(q, x) = (V ′

α,q(x))
⊥3 on

eα × Uα, for any q ∈ eα and x ∈ Uα. Here ⊥3 denotes taking the orthogonal complement of
V ′
α,q within TUα.

γ0 γ1

w

z

p

q

w

z

p

q

(a) (b) (c)

Figure 5.13: (a) The α-handlebody Uα and tubular neighborhoods of the gradient trajectories
γ0 and γ1. (b) The gradient vector field Vα|N(γ0) in N(γ0). (c) The gradient vector field
Vα|N(γ1) in N(γ1).

Similarly one constructs 2-plane fields ξβ and ξγ on eβ × Uβ and eγ × Uγ, respectively.
However, note that the boundary component Yα,β = (vγ × Uα) ∪ (vγ × Uβ) of Wα,β,γ is a
3-manifold with corners, and the 2-plane fields ξα and ξβ do not agree along vγ ×Σ because
they are tangent to the α- and β-handlebodies which intersect each other in an angle. To
smooth the corners, we replace the triangle ∆ in (5.2) with a hexagon H with right corners
and attach α, β, and γ handles accordingly as depicted in Figure 5.15. In this way we
obtain a smooth cobordism which we still denote by Wα,β,γ : Y0

∐
(S1 × S2) → Y1, where

Y0 = (vγ × Uα) ∪ ([0, 1] × Σ) ∪ (vγ × Uβ), Y1 = (vβ × Uα) ∪ ([0, 1] × Σ) ∪ (vβ × Uγ), and
S1×S2 = (vα×Uβ)∪ ([0, 1]×Σ)∪ (vα×Uγ) are smooth 3-manifolds. We construct a 2-plane
field ξ on (eα×Uα)∪ (eβ×Uβ)∪ (eγ ×Uγ)∪ ∂Wα,β,γ by extending ξα, ξβ, and ξγ to the three
copies of [0, 1] × Σ such that it is translation invariant in the [0, 1]-direction on each copy.
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z q

(a) (b)

Figure 5.14: (a) The non-vanishing vector field V ′
α,q restricted to N(γ0). (b) The non-

vanishing vector field V ′
α,q restricted to N(γ1).

By construction, it is easy to see that ξ|Y0 ' g̃r(x), ξ|S1×S2 ' g̃r(Θ), and ξ|Y1 ' g̃r(y).

eα

eβ eγ

H

Y0 Y1

S1 × S2

Figure 5.15: The smooth cobordism Wα,β,γ : Y0
∐
(S1 × S2) → Y1.

Let D1 ⊂ Σ be a closed neighborhood of z, and D2 ⊂ Σ be a closed neighborhood
of the holomorphic triangle so that the non-vanishing vector field V ′

i,q is transverse to TΣ
along Σ \ (D1 ∪ D2) for any i ∈ {α, β, γ}, q ∈ ∂∆. We extend ξ to the metric closure of
H × (Σ \ (D1 ∪ D2)) by letting ξ(x, y) = TyΣ for any x ∈ H, and y ∈ Σ \ (D1 ∪ D2). We
construct an almost complex structure J on a subset of Wα,β,γ by asking ξ and ξ⊥4 to be
complex line bundles, where ⊥4 denotes taking the orthogonal complement in TWα,β,γ . In
fact J is defined everywhere on Wα,β,γ except finitely many 4-balls (with corners), namely,
H ×D1 and H ×D2. To extend J to the whole Wα,β,γ , we round the corners of ∂(H ×Di),
i = 1, 2, in two steps.

Step 1. To round the corners of ∂H ×D1 and ∂H ×D2 near each vertex of H, we first
construct a local model for corner-rounding as follows.

Let (x1, y1, x2, y2) be coordinates on R2 × R2 with the Euclidean metric. Consider a
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non-singular vector field

v(x1, y1, x2, y2) = f(x2, y2)
∂

∂y1
+ g(x2, y2)

∂

∂x2
+ h(x2, y2)

∂

∂y2

on R2×R2, namely, f , g and h cannot be simultaneously zero. Observe that v is everywhere
tangent to R3 ' {(x1, y1, x2, y2) | x1 = constant}. Define v⊥3 to be the pointwise orthogonal
complement to v inside R3 ' {(x1, y1, x2, y2) | x1 = constant}. Let J be an almost complex
structure on R2 × R2 which preserves the metric and satisfies:

• J( ∂
∂x1

) = v
||v|| ,

• J(v⊥3) = v⊥3 .

Let L = {(x1, 0) | x1 ≥ 0} ∪ {(0, y1) | y1 ≥ 0} ⊂ R2 be a L-shaped broken line with a
corner at the origin. We round the corner of L by considering

Lr = {(x1, 0) | x1 ≥ 1}∪{(0, y1) | y1 ≥ 1}∪{(x1−1)2+(y1−1)2 = 1 | 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1}.

Consider the smooth submanifold L̄ = Lr×R2 in R2×R2. We compute the complex line
distribution T L̄ ∩ J(T L̄) on T L̄ with respect to J . To do so, identify L̄ with (−∞,∞)×R2

such that {(0, y1) | y1 ≥ 1} is identified with (−∞, 0] × R2, {(x1, 0) | x1 ≥ 1} is identified
with [1,∞)× R2, and {(x1 − 1)2 + (y1 − 1)2 = 1 | 0 ≤ x1 ≤ 1, 0 ≤ y1 ≤ 1} is identified with
[0, 1]× R2. Let φt : R3 → R3 be the clockwise rotation about the x-axis by χ(t)π/2, where
(x, y, z) are coordinates on R3 and

χ(t) =


0 if t ≤ 0,

t if 0 ≤ t ≤ 1,

1 if t ≥ 1.

Lemma 5.4.5. The 2-plane field T L̄ ∩ J(T L̄) on L̄ ' (−∞,∞) × R2 is the orthogonal
complement of the non-singular vector field µ(t, x2, y2) = φt(v(x2, y2)).

Proof of Lemma 5.4.5. We first compute J( ∂
∂y1

) as follows. Note that

v⊥3 =

{
span{ ∂

∂x2
, ∂
∂y2

} if g = h = 0,

span{g ∂
∂y2

− h ∂
∂x2
, ∂
∂y1

− fg
λ2

∂
∂x2

− fh
λ2

∂
∂y2

} otherwise.

where λ =
√
g2 + h2. Since we assume that J preserves the Euclidean metric, we haveJ(

∂
∂x2

) = ∂
∂y2

if g = h = 0,

J(g ∂
∂y2

− h ∂
∂x2

) = λ2√
f2+λ2

( ∂
∂y1

− fg
λ2

∂
∂x2

− fh
λ2

∂
∂y2

) otherwise.
(5.3)
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It follows from (5.3) and the equation J( ∂
∂x1

) = v
||v|| that

J
( ∂

∂y1

)
=

1√
f 2 + λ2

(
− f

∂

∂x1
− g

∂

∂y2
+ h

∂

∂x2

)
.

It is easy to see that T L̄ ∩ J(T L̄) restricted to {t} × R2, t ≥ 1, is the orthogonal
complement of J( ∂

∂y1
) = µ(1, ·) up to positive rescaling within T L̄. Moreover observe that

T L̄ ∩ J(T L̄) restricted to {t} ×R2, for 0 ≤ t ≤ 1, is the orthogonal complement of J(t ∂
∂y1

+

(1− t) ∂
∂x1

), which is exactly µ(t, ·) up to positive rescaling.

Without loss of generality, let q be a vertex of H whose adjacent edges are eα and [0, 1],
where [0, 1] is an edge of H connecting α- and β-handlebodies. Take a small neighborhood
N(q) of q in H. Identify N(q) with a small neighborhood of the origin in R2 restricted to
the first quadrant such that eα ∪ [0, 1] is identified with L. We can further assume that
J is defined on N(q) × Di by taking N(q) sufficiently small, and that it is invariant under
translation in any direction tangent to N(q). Hence we can apply Lemma 5.4.5 to compute
the complex line distribution on Lr × Di ⊂ N(q) × Di, i = 1, 2, with respect to J . By
rounding all the corners of H and applying Lemma 5.4.5, we conclude that:

1. The complex line distribution T (∂H × D1) ∩ JT (∂H × D1) on ∂H × D1 is, up to
homotopy relative to the boundary, the orthogonal complement of the non-singular
vector field v1, where v1|{p}×D1 is shown on Figure 5.16(a). In particular v1 is defined
to be invariant in the direction of ∂H.

2. Let θ ∈ [0, 2π) be the coordinate on ∂H with the boundary orientation and ψ : ∂H ×
D2 → ∂H ×D2 be a diffeomorphism defined by ψ(θ, z) = (θ, eiθz). The complex line
distribution T (∂H ×D2) ∩ JT (∂H ×D2) on ∂H ×D2 is, up to homotopy relative to
the boundary, the orthogonal complement of the non-singular vector field v2 = ψ∗(v

′
2),

where v′2 is invariant in the direction of ∂H and its restriction to p × D2, p ∈ ∂H, is
shown on Figure 5.16(b).

Step 2. Now we round the corners of ∂(H × Di) = (∂H × Di) ∪ (H × ∂Di), which is
the union of two solid tori meeting each other orthogonally. Note that the 2-plane field
T (H×∂Di)∩JT (H×∂Di) on H×∂Di is everywhere tangent to H by our choice of Di ⊂ Σ,
for i = 1, 2. Abusing notations, we still denote by ∂(H×Di) the smooth 3-sphere obtained by
rounding the corners in the standard way. Let ξi denote T (∂(H×Di))∩JT (∂(H×Di)), for
i = 1, 2. So ξ1 and ξ2 are oriented 2-plane fields. Using the Pontryagin-Thom construction,
we see that ξ1 is homotopic to the negative standard contact structure on S3, while ξ2 is
homotopic to the positive standard contact structure on S3. Embed H×Di = B4 ⊂ C2 such
that H and Di are contained in orthogonal complex planes respectively. Let

J0 =

(
i 0
0 i

)
, J ′

0 =

(
i 0
0 −i

)
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∂H ×D1 ∂H ×D2

(a) (b)
Figure 5.16:

be complex structures on C2. Then it is standard to check that ξ1 ' TS3 ∩ J ′
0TS

3 and
ξ2 ' TS3 ∩ J0TS3 as oriented 2-plane fields, where S3 = ∂B4 ⊂ C2. Hence we can extend J
to the whole Wα,β,γ satisfying all the desired properties.

Now we turn to the general case. Let y′ ∈ Tα∩Tγ be another intersection point in FW,t, i.e.
there exists a holomorphic triangle ψ′ ∈ π2(x,Θ,y

′) such that the Maslov index µ(ψ′) = 0.
Let y ∈ FW,t(x) be the intersection point as shown in Figure 5.12 and ψ ∈ π2(x,Θ,y) be the
obvious holomorphic triangle of Maslov index µ(ψ) = 0. Since ψ and ψ′ induces the same
Spinc structure t on W , we have ψ′ = ψ+ φ1 + φ2 + φ3 for φ1 ∈ π2(x,x), φ2 ∈ π2(Θ,Θ), and
φ3 ∈ π2(y,y

′). This implies

µ(ψ′) = µ(ψ) + µ(φ1) + µ(φ2) + µ(φ3).

Therefore
µ(φ1)− 2nz(φ1) = −(µ(φ3)− 2nz(φ3)),

because µ(ψ) = µ(ψ′) = nz(ψ) = nz(ψ
′) = µ(φ2) − 2nz(φ2) = 0. Since we have shown

that there exists an almost complex structure J on Wα,β,γ such that g̃r(x) ∈ P(Y0), g̃r(y) ∈
P(Y1) and g̃r(Θ) ∈ P(#n(S1 × S2)) are all J-invariant with the complex orientation, it
is easy to show that there exists another almost complex structure J ′ on Wα,β,γ such that
g̃r(x) + µ(φ1) − 2nz(φ1), g̃r(y) − (µ(φ3) − 2nz(φ3)), and g̃r(Θ) are all J ′-invariant with the
complex orientation. Here we are using the Z-action as explained in Remark 4.1.3. Now it
remains to observe that g̃r(x) = g̃r(x)+µ(φ1)− 2nz(φ1) ∈ P(Y0) since µ(φ1)− 2nz(φ1) is an
integral multiple of the divisibility of c1(g̃r(x)) ∈ H2(Y0;Z), and that

g̃r(y′) = g̃r(y)− gr(y,y′) = g̃r(y)− (µ(φ3)− 2nz(φ3)).

It remains to show that J can be extended to W . Recall thatW =Wα,β,γ ∪#n
b (S

1×B3).
We need to show that there exists an almost complex structure on #n

b (S
1 × B3) such that

its restriction to #n(S1 × S2) = ∂(#n
b (S

1 × B3)) coincides with J |#n(S1×S2). Note that
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[Θ] ∈ ĤF (−#n(S1 ×S2)) defines the contact invariant of the standard contact structure on
#n(S1 × S2), which is holomorphically fillable. Hence the conclusion follows immediately
from Theorem 4.1.1(b). We finish the proof of Case 1.
Case 2. Suppose W is given by attaching 1- and 3-handles. By duality, it suffices to
consider the case that W consists of 1-handle attachments. Let (Σ,α,β, z) be a Heegaard
diagram of Y0 and (Σ0,α0,β0, z0) a standard Heegaard diagram of #n(S1×S2). We obtain a
Heegaard diagram (Σ′,α′,β′, z′) = (Σ,α,β, z)#(Σ0,α0,β0, z0) of Y1. There is an associated
map between the Heegaard Floer homology groups

FW,t : ĈF (Σ,α,β, z, t|Y0) → ĈF (Σ′,α′,β′, z′, t|Y1)

which is induced by FW,t(x) = x⊗Θ, where x ∈ Tα∩Tβ is a generator in the Spinc structure

t|Y0 , and Θ ∈ ĈF (#n(S1 × S2)) is the top dimensional generator. Now the existence of an
almost complex structure J onW with desired properties follows from Theorem 4.1.1(b) and
the fact that the standard contact structure on #n(S1 × S2) is fillable by (#n

b (S
1 ×B3), J ′)

for some almost complex structure J ′. So Case 2 is also proved.

5.5 The invariance under Heegaard moves

Our aim for this section is to show that the absolute grading is an invariant of the 3-
manifold. That means that if we have two different Heegaard diagrams for the same 3-
manifold, then the absolute grading is preserved under the isomorphism between the Floer
homologies defined in [28]. It is shown in [28] that any two Heegaard diagrams for the same
manifold differ by a sequence of Heegaard moves, i.e. isotopies, handleslides, stabilizations
and destabilizations. Every Heegaard move gives rise to a chain map between the Floer
complexes, which induces an isomorphism in homology. It is easy to see that these chain
maps take homogeneous elements to homogeneous elements. We will show the following
theorem.

Theorem 5.5.1. Let (Σ,α,β, z) be a Heegaard diagram for Y and (Σ′,α′,β′, z′) a Hee-

gaard diagram obtained by a Heegaard move from (Σ,α,β, z). Let Γ : ĈF (Σ,α,β, z) →
ĈF (Σ′,α′,β′, z′) be the chain map defined in [28]. If x ∈ Tα ∩ Tβ, then g̃r(x) = g̃r(Γ(x)).

Remark 5.5.2. Theorem 5.5.1 gives the invariance we wanted and implies that the following
decomposition is independent of the Heegaard diagram.

ĤF (Y ; s) =
⊕

ρ∈P(Y,s)

ĤF ρ(Y ; s),

To prove Theorem 5.5.1, we will consider each type of Heegaard move at a time.
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Isotopies

Let (Σ,α,β, z) be a Heegaard diagram for Y and let α′ be given by moving α1 to α′
1

by a Hamiltonian isotopy without passing through z. Then there is a continuation map
Γ : ĈF (Σ,α,β, z) → ĈF (Σ,α′,β, z) defined by counting Maslov index 0 holomorphic
disks with dynamic boundary conditions, as defined in [28]. If this isotopy does not create
or destroy intersections between α and β curves, then it corresponds to isotoping the Morse
function without introducing or removing any critical point. In this case it is clear that Γ is
an isomorphism and that it preserves the absolute grading.

Figure 5.17:

A finger move is a Hamiltonian isotopy that creates a canceling pair of intersections, as
shown in Figure 5.17. We only need to show that Γ is invariant when the isotopy introduces or
eliminates one finger move and the general isotopy invariance follows from that. First assume
that α′

1 is obtained from α1 by introducing one finger move. Let x = (x1, . . . , xg) ∈ Tα∩Tβ,
where xi ∈ αi ∩ βσ(i), for some permutation σ. Then x1 is moved to a point x′1 ∈ α′

1 ∩ βσ(1).
We note that x′1 is never one of the two new intersection points. It is easy to see an index
0 holomorphic disk from x1 to x′1, which is actually just a flow line along βσ(1). So if
we take x′ = (x′1, x2, . . . , xg), then x′ is one of the terms in Γ(x). It is easy to see that
g̃r(x) = g̃r(x′). Therefore Γ preserves the absolute grading. Now we assume that α′

1 is
obtained from α1 by eliminating a finger move. It remains to see what happens when x1
is one of the two points that disappears. So we assume that x1 is one of those two points,
such that x = (x1, . . . , xg) ∈ ĈF (Σ,α,β, z). If Γ(x) = 0, then there is nothing to prove.
Assume that Γ(x) 6= 0. So we can take a term x′ in Γ(x). Then since we only isotoped α1,
none of the points xi, for i > 1, have moved. So we can write x′ = (x′1, x2, . . . , xg), where
x′1 ∈ α′

1 ∩ βσ(1). That means that there exists a Maslov index 0 holomorphic disk ϕ from x1
to x′1. Now undoing this isotopy and introducing the finger move again, x′1 corresponds to
an intersection x′′1 ∈ α1 ∩ βσ(1) and there is a Maslov index zero holomorphic disk ψ from
x′1 to x′′1. We now observe that the composition ϕ ∗ ψ is homotopic to a Whitney disk from
x1 to x′′1 with stationary boundary conditions, i.e. there exists a Whitney disk from x1 to
x′′1 with its boundary mapping to α1 ∪ βσ(1). Therefore there is an index zero Whitney disk

from x1 to x′′1. So, since the absolute grading refines the relative grading in ĈF (Σ,α,β, z),
it follows that g̃r(x) = g̃r(x′′), where x′′ = (x′′1, x2, . . . , xg), and hence g̃r(x) = g̃r(x′). That
implies that Γ preserves the absolute grading when a finger move is undone.
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Handleslides

Let (Σ,α,β, z) be a Heegaard diagram for Y and let β′
1 be the closed curve obtained by

handlesliding β1 over β2. Now we define β′ = (β′
1, β2, . . . , βg). This handleslide gives rise

to a trivial cobordism W = Y × [0, 1], which can also be obtained from the Heegaard
triple diagram (Σ,α,β,β′) by attaching g copies of S1 × D3, as explained in [28]. Let

FW : ĈF (Σ,α,β, z) → ĈF (Σ,α,β′, z) be the induced chain map. Then, it follows from
Theorem 4.1.1(c) that g̃r(x) ∼W g̃r(FW (x)). That means that there exists an almost-
complex structure J on W such that [T (Y × {0}) ∩ J(T (Y × {0}))] = g̃r(x) and [T (Y ×
{1}) ∩ J(T (Y × {1}))] = g̃r(FW (x)). Now let ξt = T (Y × {t}) ∩ J(T (Y × {t})), for 0 ≤
t ≤ 1. Under the canonical identification Y ' Y × {t}, {ξt} gives a homotopy between
T (Y ×{0})∩J(T (Y ×{0})) and T (Y ×{1})∩J(T (Y ×{1})). Therefore g̃r(x) = g̃r(FW (x)).

Stabilization

Given a Heegaard diagram (Σ,α,β, z) we stabilize it by taking the connected sum with a
two-torus and introducing a new pair of α and β curves in this two-torus that intersect at
exactly one point. This is equivalent to taking the connect sum of Y with an S3, that is
endowed with the standard genus one Heegaard decomposition. We can write (Σ′,α′,β′, z′)
for the Heegaard diagram of the stabilization. Here Σ′ = Σ#E, for a two-torus E, α′ =
(α1, . . . , αg, αg+1), β

′ = (β1, . . . , βg, βg+1) and z
′ ∈ Σ′ is naturally associated with z, assuming

that the connected sum removes a ball from Σ that does not contain z. Let w be the unique
point in αg+1 ∩ βg+1. It is clear that Γ : ĈF (Σ,α,β, z) → ĈF (Σ′,α′,β′, z′), which takes
(x1, . . . , xg) to (x1, . . . , xg, w), is an isomorphism. Is is also shown in [28] that this map gives
rise to an isomorphism in homology. We need to show that the absolute grading is invariant
under Γ. Let x = (x1, . . . , xg) ∈ ĈF (Σ,α,β, z). In the definition of g̃r(x) we modify a
gradient-like vector field in neighborhoods of the flow lines γxi and γ0 to get a nonzero vector
field. We can write

Y#S3 = (Y \Bε) ∪φ (S3 \BR),

where Bε is a small ball, BR is a large ball and φ : ∂Bε → ∂BR is a diffeomorphism.
We can see the same neighborhoods N(γxi) ⊂ Y and N(γ0) ⊂ Y in Y#S3. Now we take a
gradient-like vector field v for a Morse function compatible with (Σ′,α′,β, z′). The definition
of g̃r(Γ(x)) clearly implies that the vector field wΓ(x) is homotopic to wx in Y \ Bε. So it
remains to show that wx and wΓ(x) are also homotopic in S3\BR. We can think of S3\BR as
a small ball Bδ in R

3, where wx is very close to being constant with respect to the standard
trivialization. We note that v has only two critical points in Bδ. It is easy to homotope
wx in a neighborhood of Bδ so that it coincides with v on ∂Bδ. It is also easy to see that
after we modify v in N(γxg+1), the vector field we obtain is homotopic to wx in Bδ. That
concludes the proof of Theorem 5.5.1.
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Chapter 6

The absolute grading on bordered
Floer homology

6.1 The grading on the algebra

In this section, we construct the grading on the algebra A(Z). This grading takes values in
a certain groupoid G(Z). Before defining G(Z) and the grading, we will quickly review the
construction of A(Z). For a more thorough exposition, see [23].

The construction of the algebra A(Z)

The strand algebra A(Z) is defined as a subalgebra of A(4k). As a Z/2-vector space, A(4k)
is generated by partial permutations (S, T, φ), where S and T are subsets of {1, . . . , 4k}
containing the same number of elements and φ : S → T is a bijection such that φ(i) ≥ i
for every i ∈ S. We can represent (S, T, φ) by a diagram with 4k points on the left and
on the right and with strands connecting the set S on the left with the set T on the right.
This diagram is required to have the smallest possible number of crossings. Each crossing
corresponds to what is called an inversion, i.e. a pair of points i, j ∈ {1, . . . , 4k} with
i < j and φ(i) > φ(j). It follows from this definition that the strands either go up or stay
horizontal if we read from left to right. The product of (S, T, φ) with (S ′, T ′, φ′) is defined
to be (S, T ′, φ′ ◦ φ) provided that T = S ′ and that the number of inversions of the diagram
for (S, T ′, φ′ ◦ φ) equals the sum of the number of inversions of the diagrams for (S, T, φ)
with (S ′, T ′, φ′). Otherwise, the product is set to be 0. For each subset S, one can define an
idempotent element I(S) = (S, S, IS). One can also define a differential on A(4k) as follows.
For a generator a of A(4k), let ∂a be the sum over all ways to smooth one crossing of a,
where we require all the terms of this sum to have exactly one less intersection than a. In
other words, if smoothing one crossings decreases the number of inversions by more than 1,
we set that term to zero.

We denote by [2k] the set {1, . . . , 2k}. A pointed matched circle Z is a quadruple
(Z, a,M, z) consisting of an oriented circle Z, a set of 4k points a in Z, a two-to-one function
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M : a → [2k] and a basepoint z ∈ Z \a. We also require that 0-surgery on Z along the pairs
of points that are matched by M yields to a single circle. A pointed matched circle gives
rise to a surface F (Z) of genus k, which we often denote by F . The surface F is obtained by
starting with a disk whose oriented boundary is Z, attaching 1-handles along all the pairs
matched by M and attaching a 0-handle to the boundary circle. We observe that we can
find a self-indexing Morse function f : F → [0, 2] such that Z = f−1(3/2) and a is the
intersection between Z and the ascending manifolds from the index one critical points. We
can identify [2k] with the set of index one critical points {p1, . . . , p2k}.

By a Reeb chord ρ, we mean an oriented arc on Z \ z, with the same orientation as Z,
whose boundary lies in a. We denote by ρ− the initial endpoint of ρ and by ρ+ its final
endpoint. We write ρ = [ρ−, ρ+]. A set ρ = {ρ1, . . . , ρm} of Reeb chords is said to be
consistent if both sets ρ− := {ρ−1 , . . . , ρ−m} and ρ+ := {ρ+1 , . . . , ρ+m} have exactly m elements.
A consistent set of Reeb chords ρ gives rise to an element a0(ρ) in A(4k) given by

a0(ρ) =
∑

S⊂{0,...,4k}
S∩(ρ−∪ρ+)=∅

(S ∪ ρ−, S ∪ ρ+, φS)

where φS|S = I and φS(ρ
−
i ) = ρ+i for every i. Now, for every s ⊂ [2k], we can define the

following idempotent

I(s) :=
∑

S⊂{0,...,4k}
M maps S bijectively to s

I(S).

We let I(Z) be the ring of idempotents, which is defined to be the algebra generated by the
elements I(s) for s ∈ [2k]. The unit of this algebra is

I :=
∑
s⊂[2k]

I(s).

We now define the algebra A(Z) to be the subalgebra of A(4k) generated by I(Z) and
by the elements a(ρ) := Ia0(ρ)I, for every consistent set of Reeb chords ρ. The algebra
A(Z) is generated as a Z/2-vector space by elements of the form I(s)a(ρ). We note that if
I(s)a(ρ) 6= 0, then M |ρ− and M |ρ+ are injective, M(ρ−) ⊂ s and (s \M(ρ−))∩M(ρ+) = ∅.

Recall the three different ways that two Reeb chords can intersect. A pair of Reeb chords
{ρ1, ρ2} is said to be interleaved if ρ−i < ρ−j < ρ+i < ρ+j for i = j + 1 or i = j − 1, and nested
if ρ−i < ρ−j < ρ+j < ρ+i for i = j + 1 or i = j − 1. The Reeb chords ρ1 and ρ2 are said to abut
if ρ+1 = ρ−2 . In this case, one defines their join to be ρ1 ] ρ2 := [ρ−1 , ρ

+
2 ].

The groupoid G(Z)

Let F = F (Z). We consider the bundle TF ⊕R → F , where R is the trivial real line bundle.
We interpret this bundle as the pullback of the tangent bundle of a three-manifold in which
F is embedded, so we call sections of this bundle vector fields on F . We will now construct
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a vector field v′0 : F → TF ⊕ R. Let f be a self-indexing Morse function compatible with
Z as above. Consider its gradient vector field ∇f and modify it to first eliminate the index
zero and index two critical points as follows. Let γ be the flow line passing through the
basepoint z, which connects the index zero critical point to the index two critical point. Let
N(γ) denote a neighborhood of γ. Figure 6.1(a) illustrates ∇f restricted to N(γ). We now
define a nonvanishing vector field on N(γ), which coincides with ∇f on ∂N(γ), as shown in
Figure 6.1(b). This picture determines the desired vector field up to homotopy relative to
the boundary. Let v′0 denote the vector field given by this this construction in N(γ) and by
∇f in the complement of N(γ).

(a) (b)

Figure 6.1: (a) The gradient vector field ∇f in a neighborhood of the flow line passing
through z. (b) The non-vanishing vector field in the same neighborhood after modification.
The red arrow on the left is pointing into the page and the arrow on the right is pointing
out.

Note that each subset s ⊂ [2k] corresponds to a set of index one critical points of f , under
the identification [2k] = {p1, . . . , p2k}. We denote by s̄ the subset [2k]\s. For s ⊂ [2k], let φs

be a bump function, which equals 1 at each point of s and 0 outside of small neighborhoods
of each point of s. We denote by |s| the cardinality of the set s.

Definition 6.1.1. For each s ∈ [2k], we define vs : F → TF ⊕R to be the vector field given
by

vs = v′0 + φs
∂

∂t
− φs̄

∂

∂t
.

Here t denotes the R-coordinate.

We can now define the grading set G(Z).

Definition 6.1.2. For s, t ∈ [2k], such that |s| = |t|, we define G(s, t) to be set of the
homotopy class of nonvanishing vector fields on F × [0, 1] that restrict to vs on F ×{0} and
to vt in F × {1}. We define G(Z) to be the disjoint union of G(s, t) for all s, t ⊂ [2k] such
that |s| = |t|.
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Given vector fields v, w on F × [0, 1] such that v|F×{1} = w|F×{0}, we can take their
concatenation v · w, which we see as a vector field on F × [0, 1]. So given [v] ∈ G(s, t) and
[w] ∈ G(t,u), we define their composition by [v] · [w] := [v ·w] ∈ G(s,u). We now recall the
definition of a groupoid.

Definition 6.1.3. A groupoid is the set of morphisms of a small category1 in which every
morphism is invertible.

We observe that G(Z) is a groupoid, coming from a category whose objects are the vector
fields vs for s ⊂ [2k]. The groupoid G(Z) admits a Z-action, defined as follows. We will
denote the action of an integer n ∈ Z by λn. First observe that, since π3(S

2) ' Z, there is a
Z-action on the set of homotopy classes of nonvanishing vector fields on a ball B3 relative to
its boundary. Our sign convention is such that the Hopf map S3 → S2 acts on B3 by λ−1.
Let [v] ∈ G(Z) and fix a ball B in the interior of F × [0, 1]. For n ∈ Z, we define λn · [v] to
be the relative homotopy class of the vector field obtained by the acting on v|B by λn and
keeping v constant outside B. We observe that

λn · ([v] · [w]) = (λn · [v]) · [w] = [v] · (λn · [w]).

A G(Z)-grading on A(Z)

Recall that the strand algebra A(Z) is generated as a Z/2 vector field by all the elements of
the form I(s)a(ρ), where s ⊂ [2k] and ρ = {ρ1, . . . , ρm} is a consistent set of Reeb chords.
For every element I(s)a(ρ) 6= 0, we will define its grading gr(I(s)a(ρ)) ∈ G(s, t). where
t =M(ρ+) ∪ (s \M(ρ−)).

For a general s ⊂ [2k], in order to draw a picture of vs : F → TF ⊕ R away from the
index 0 and 2 critical points, we will project it to a vector field on TF and decorate the zeros
of this vector field using the following convention: an index one critical point p is decorated
with “ + ” if vs = ∂t at p, and with “− ” if vs = −∂t at p.

We will define the grading function gr by steps as follows.

Step 1. Assume that ρ consists of a single Reeb orbit ρ, such that M(ρ−) 6= M(ρ+).
We now construct gr(I(s)a(ρ)).

We will define a vector field v(s,ρ) on F × [0, 1] such that [v(s,ρ)] ∈ G(s, t). Recall that we
are identifying a point in [2k] with its corresponding index one critical point. Let pi =M(ρ−)
and pj = M(ρ+). So t = {pj} ∪ (s \ {pi}). It follows from our construction in §6.1 that vs
and vt only differ in small neighborhoods of pi and pj.

Let ρ̂ be the arc from pi to pj consisting of three pieces: the gradient trajectory from pi
to ρ−, the Reeb chord ρ and the gradient trajectory from pj to ρ

+, as shown in Figure 6.2.
Let N(ρ̂) ⊂ F be a tubular neighborhood of ρ̂. The vector field vs restricted to N(ρ̂) is

depicted in Figure 6.3.

1A small category is a category where the objects form a set.
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pi pj

ρ

Figure 6.2: Reeb chord ρ.

pi pj

ρ

Figure 6.3: The neighborhood N(ρ̂) of ρ̂.

Define v(s,ρ) on F×{0} and F×{1} by setting it equal to vs and vt, respectively. Since vs =
vt on the complement of N(ρ̂), we can extend v(s,ρ) on (F \N(ρ̂))× [0, 1], by requiring it to be
invariant in the [0, 1]-direction. The embedding N(ρ̂) ⊂ R2, as shown in Figure 6.3, gives rise
to a trivialization of TF |N(ρ̂) and, therefore, we obtain a trivialization of T (F×[0, 1])|N(ρ̂)×[0,1].
We observe that, under the identification given by this trivialization, vs|−1

N(ρ̂)(0, 0, 1) = pi and

vt|−1
N(ρ̂)(0, 0, 1) = pj. The points pi and pj are framed codimension two submanifolds of N(ρ̂).

By the relative Pontryagin-Thom construction, in order to define a nonvanishing vector field
onN(ρ̂)×[0, 1] with the given boundary condition, it is enough to choose a framed 1-manifold,
whose intersection with the boundary is {pi}×{0}∪ {pj}×{1} with the given framing. We
choose a framed 1-manifold as follows. Let γ : [0, 1] → F be a smoothing of ρ̂ such that
γ(0) = pi and γ(1) = pj. Let γ̃ : [0, 1] → F × [0, 1] be the arc defined by γ̃(t) = (γ(t), t).
Since F ×{t} is always transverse to γ̃, the embedding N(ρ̂) ⊂ R2 gives a canonical framing
on γ̃. Now, using this framed 1-manifold, the Pontryagin-Thom construction allows us to
extend v(s,ρ) to the interior of N(ρ̂)× [0, 1]. We note that v(s,ρ)|N(ρ̂)×[0,1] is well-defined up to
homotopy relative to the boundary. We now define gr(I(s)a(ρ)) to be the homotopy class of
v(s,ρ), which is an element of G(s, t).

It will be useful later to have a more concrete description of gr(I(s)a(ρ)). To do so, we
view a vector field on F × [0, 1] as a smooth one-parameter family of nonvanishing sections
F → TF × R, indexed by t ∈ [0, 1]. We will, in fact, define a family of such sections
{v t(s,ρ)}t∈[0,1]. This family can be explicitly defined by a composition of three bifurcations
and necessary isotopies, which we now describe.
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Consider the following model situation: Let Ξ0 be a singular vector field on the unit
disk D ⊂ R2 with two saddle points p, q as depicted in Figure 6.4(a). Then there exists a
1-parameter family of vector fields Ξt, for 0 ≤ t ≤ 1, such that

• each Ξt has only two saddle points which are p and q, and Ξt is constant near ∂D as t
goes from 0 to 1,

• for exactly one t, say t = 1/2, the vector field Ξt has a saddle-saddle connection from
q to p.

See Figure 6.4 for a pictorial illustration of Ξt. We call the one-parameter family {Ξt}t∈[0,1],
a bifurcation. Notice that in the situation of Figure 6.4, we decided to fix the unstable
trajectories of p and the stable trajectories of q throughout the homotopy, however, we
could instead fix the stable trajectories of p and the unstable trajectories of q throughout
the homotopy to define another similar one-parameter family of vector fields with the same
boundary condition, which we also call a bifurcation.

p p
pq q

q

(a) (b) (c)

Figure 6.4: A bifurcation.

We can now define v t(s,ρ) to be constant and equal to vs in the complement of N(ρ̂)× [0, 1].

In N(ρ̂)× [0, 1], we define v t(s,ρ) via a composition of bifurcations and isotopies, as shown in
Figure 6.5.

The family {v t(s,ρ)} gives rise to a vector field on F×[0, 1], which we still denote {v t(s,ρ)}. As
before, the embeddingN(ρ̂) ⊂ R2, as in Figure 6.3, induces a trivialization of T (N(ρ̂)×[0, 1]).
We observe that, in N(ρ̂) × [0, 1], the framed arc ({v t(s,ρ)})−1(0, 0, 1) is isotopic, and hence
cobordant, to the arc γ̃. Moreover their framings coincide under the isotopy. Therefore,
by the Pontryagin-Thom construction, this {v t(s,ρ)} is a representative of homotopy class

gr(I(s)a(ρ)).

Step 2. Now assume that ρ still consists of only one Reeb orbit ρ, butM(ρ−) =M(ρ+).
Let p = M(ρ−) = M(ρ+) and let ρ̂′ be the union of ρ and the flow lines connecting p

to ρ− ∪ ρ+. We construct a one-parameter family {Θt}t∈[0,1] of vector fields on F as follows.
Set Θ0 = vs and Θt ≡ Θ0, for t ∈ [0, 1], outside N(ρ̂′). Fix a small ε > 0. For t ∈ [0, ε],
define Θt in N(ρ̂′) to be the homotopy which creates an extra pair of singular points near p
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bifurcation isotopy

bifurcation

isotopybifurcation

+ − + −

+

−

+

−

−
+

− +

Figure 6.5: A sequence of three bifurcations which defines the grading of ρ. Arrows are
omitted for simplicity of the picture (cf. Figure 6.3).

decorated with negative signs, along the unstable trajectories of p as depicted in Figure 6.6.
More precisely, under the projection to TF , we create a pair of canceling critical points µ
of index one and ν of index two, lying on the flow line of ∇f connecting p to ρ+. Consider
the (broken) arc ρ̂ from p to ν, which is the union of the trajectory from p to ρ−, ρ and the
trajectory from ν to ρ+. Now we can repeat the method from Step 1 for Θε|N(ρ̂) and obtain a
homotopy Θt|N(ρ̂) for t ∈ [ε, 1−ε], which exchanges the signs of the index one critical points.
We define Θt in N(ρ̂′) \N(ρ̂) to be constant and equal to Θε. For t ∈ [1− ε, 1], let Θt|N(ρ̂)

be the homotopy which cancels the extra pair of “negative” singular points. The family
{Θt}t∈[0,1] gives rise to a vector field, which is again denoted by v(s,ρ). Finally gr(I(s)a(ρ))
is defined to be the homotopy class of v(s,ρ).

− + − −
p p ν µ

Figure 6.6: Creating a canceling pair of critical points with negative sign.

Step 3. The general case.
Suppose ρ = {ρ1, · · · , ρl}. Note that the choice of a basepoint z and an orientation on

Z induce an ordering on a: if we start from z and follow the positive orientation on Z,
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then ai < aj if and only if we meet ai before aj, where ai, aj ∈ a. We define a ordering
on ρ by setting ρi < ρj whenever ρ+i > ρ+j in a. Up to re-ordering, we may assume that
ρ1 < ρ2 < · · · < ρl. We want to define a relative homotopy class gr(I(s)a(ρ)) ∈ G(vs, vt),
where t = M(ρ+) ∪ (s \M(ρ−)). First, for every point in (M(ρ−) ∩M(ρ+)) \ (ρ− ∩ ρ+),
we create a pair of canceling “negative” singular points, as follows. If p =M(ρ+i ) =M(ρ−j ),
then we create a pair of “negative” singular points on the flow line connecting p to ρ+i , as in
Step 2. This construction gives rise to a vector field vε in F × [0, 1] similar to {Θ|t}t∈[0,ε] from
Step 2. We also consider the vector field v−ε, which corresponds to canceling the “negative”
singular points added to vt. Now consider the arcs ρ̂i associated to ρi as before, namely,
ρ̂i is the union of ρi with the gradient trajectories connecting index one critical points to
ρ−1 ∪ ρ+1 . Note that ρ̂i always connects a “positive” saddle to a “negative” saddle. Now we
can define v1(s,ρ) to be the homotopy class of the vector field supported on N(ρ̂1) defined in
Step 1. We repeat the same procedure for ρ2, . . . , ρl, such that for every i ≥ 2, the vector
field vi(s,ρ) corresponding to ρi is supported in N(ρ̂i). In particular,

vi−1
(s,ρ)|F×{1} = vi(s,ρ)|F×{0}.

Let v(s,ρ) be the concatenation

v(s,ρ) := vε · v1(s,ρ) . . . vl(s,ρ) · v−ε. (6.1)

Finally, we define gr(I(s)a(ρ)) to be the relative homotopy class of v(s,ρ), which is an element
of G(s, t).

The properties of the grading on A(Z)

We now show that the grading we constructed in the previous subsection satisfies the desired
properties.

Proposition 6.1.4. The grading function gr : A(Z) → G(Z) constructed above defines a
grading on the dg algebra A(Z), i.e., it satisfies the following:

• For any two sets of Reeb chords ρ,σ, if I(s)a(ρ)I(t)a(σ) 6= 0, then

gr(I(s)a(ρ)) · gr(I(t)a(σ)) = gr(I(s)a(ρ)I(t)a(σ)),

• For any ρ, if ∂(I(s)a(ρ)) 6= 0, then

gr(∂(I(s)a(ρ))) = λ−1 · gr(I(s)a(ρ)).

Proof. For each index one critical point pi ∈ [2k], we denote by hi the core of the corre-
sponding 1-handle and by σi the Reeb chord connecting the two points in hi ∩ Z. We also
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denote by N(z) and N(pi) small neighborhoods of z and pi. Let N be a small neighborhood
of

(Z \N(z)) ∪
2k⋃
i=1

(hi \N(pi)).

We can choose an orientation-preserving embedding N ↪→ R2 such that Z ∩ N is parallel
to the horizontal vector ∂x and its orientation is positive with respect to ∂x, and such that
hi ∩ N is parallel to the vertical vector ∂y, see Figure 6.7(a). Let N̄ := N ∪

⋃
iN(pi). So

we can extend the embedding from above to an immersion N̄ # R2 such that hi ∩ N(pi)
maps to a half-circle, see Figure 6.7(b). This immersion induces a trivialization of TF |N̄.
We obtain a trivialization of (TF ⊕ R)|N̄, which induces a [0, 1]-invariant trivialization τ of
T (F × [0, 1]) over N̄.

N N̄

(a) (b)
Figure 6.7:

Fix a generator I(s)a(ρ) ∈ A(Z). We write ρ = {ρ1, . . . , ρl} and we order the Reeb
chords as in Step 3 above. We now define a one-manifold Q(s,ρ) in N̄× [0, 1]. Let γi ⊂ N̄ be a
smoothing of the union2 of ρi with the gradient flow trajectories connecting M(ρ−i )∪M(ρ+i )
to ρ−i ∪ ρ+i . We can perturb the arcs γi on F such that the interior of every two of these
arcs intersect, at most, at one point. This happens precisely for an interleaved pair of Reeb
chords. We define arcs γ̃i on F × [0, 1] by γ̃i(t) = (γ(t), t). Now if γi(t) = γj(t) for some
t ∈ (0, 1), for i < j, we perturb γ̃i near t so that γ̃i(t) < γ̃j(t). Hence the arcs γ̃i are all
pairwise disjoint. So we can define Q(s,ρ) to be the union of γ̃i for all i and the constant arcs
p × [0, 1], where p ∈ s \M(ρ−). We observe that the Q(s,ρ) ∩N can be represented by the
strand diagram corresponding to ρ. Here if ρi and ρj intersect and i < j, then ρi goes under
ρj. See Figure 6.8 for examples of Q(s,ρ) ∩N.

(a) (b) (c)
Figure 6.8: (a) An abutting pair. (b) A nested pair. (c) An interleaved pair.

We shall use the Pontryagin-Thom construction to prove both assertions of the propo-
sition. For the first one, let I(s)a(ρ) and I(t)a(σ) be generators of A(F ) whose product

2If M(ρ+i ) 6= M(ρ−j ) for every j or ρ+i = ρ−j for some j, then this union is just ρ̂i. Otherwise, we need

to add a small segment connecting M(ρ+i ) to the “negative” index one critical point corresponding to ρ+i .
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is nonzero. Recall that the join ρ ] σ is obtained from the union ρ ∪ σ where for ev-
ery abutting pair (ρ, σ) with ρ ∈ ρ and σ ∈ σ is substituted by ρ ] σ. It follows that if
I(s)a(ρ)I(t)a(σ) 6= 0, then

I(s)a(ρ)I(t)a(σ) = I(s)a(ρ)a(σ) = I(s)a(ρ ] σ). (6.2)

Let v(s,ρ), v(t,σ) and v(s,ρ]σ) be the vector fields as in the construction of the grading,
whose homotopy classes are gr(I(s)a(ρ)), gr(I(t)a(σ)) and gr(I(s)a(ρ]σ), respectively. We
want to show that the product v(s,ρ) · v(t,σ) is homotopic to v(s,ρ]σ). We clearly only need to
look at the restriction of these vector fields to N̄ × [0, 1]. Using the trivialization τ we can
see the restriction of each of these vector fields as maps N̄ → S2. Up to a small perturbation
of the vector fields, we can assume that n = (0, 0, 1) ∈ S2 is a regular value of all of these
three maps. Then,

v−1
(s,ρ)(n) ' Q(s,ρ),

v−1
(t,σ)(n) ' Q(t,σ),

v−1
(s,ρ]σ)(n) ' Q(s,ρ]σ).

Here the symbol ' denotes relative framed cobordism. The framing on each of these one-
manifolds is trivial in N × [0, 1] and has a standard form near every pi

3. We now want to
concatenate Q(s,ρ) and Q(t,σ).

Write ρ = {ρ1, . . . , ρl} and σ = {σ1, . . . , σm} with the ordering given as in Step 3
of the construction of the grading. Observe that Q(s,ρ) is isotopic to the concatenation
of one-manifolds Q1,1 · . . . · Q1,l in F × [0, l] where each Q1,i consists of the union of the
arc corresponding to ρi and constant arcs. Note that the one-manifolds Q1,i all have the
same number of arcs. Similarly, we can write Q(t,σ) as a concatenation of one-manifolds
Q2,1 · . . . ·Q2,m in F × [0,m] corresponding to σ1, . . . , σm. So

Q(s,ρ) ·Q(s,σ)
∼= Q1,1 · . . . ·Q1,l ·Q2,1 · . . . ·Q2,m.

Here · denotes concatenation and ∼= denotes isotopy relative to the boundary, where we
identify F × [0, 1] ∼= (F × [0, l]) · (F × [0,m]). Now we want to reorder this concatenation in
order to obtain the decomposition of Q(s,ρ]σ) defined as above. We will move Q2,1, . . . , Q2,m

to the left one by one, as necessary, which we explain in what follows. We start with
Q2,1. First note that if ρi ∩ σj = ∅, then Q1,i · Q2,j

∼= Q2,j · Q1,i. So we can move Q2,1

to the left of Q1,i, whenever ρ
+
i < σ−

1 . If there exists ρi such that ρi and σ1 abut then we
stop at Q1,i · Q2,1, since this concatenation is isotopic to the one-manifold corresponding
to ρi ] σ1 in the decomposition of Q(s,ρ]σ). If that is the case, we can move Q1,i · Q2,1

to the left of all the terms Q1,i′ for which ρ+i′ < σ+
1 . In fact, let Q1,i′ be such a term,

i.e. ρ+i < ρ+i′ < σ1. Then {ρi ] σ1, ρi′} has to be nested, otherwise a(ρ)a(σ) = 0. So

3The standard framing is a rotation by π in N(pi) either positively or negatively depending on whether
pi = M(ρ−) or pi = M(ρ+) for the corresponding Reeb chord ρ, but it does not depend on anything else.
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Q1,i′ · (Q1,i · Q2,1) ∼= (Q1,i · Q2,1) · Q1,i′ . Now assume that there does not exist ρi such
that ρi and σ1 abut. Let ρi be such that ρi ∩ σ 6= ∅. Then {ρi, σ1} has to be nested,
otherwise a(ρ)a(σ) = 0. Therefore Q1,i · Q2,1

∼= Q2,1 · Q1,i. We now proceed analogously
with Q2,2, . . . , Q2,m. After all these isotopies, we obtain the decomposition of Q(s,ρ]σ) by
one-manifolds corresponding to the Reeb chords in ρ ] σ. Therefore we conclude that

Q1,1 · . . . ·Q1,l ·Q2,1 · . . . ·Q2,m
∼= Q(s,ρ]σ).

Note that the framing on the one-manifold corresponding to an abutting pair {ρi, σj} is
the same as the framing on Q1,i ·Q2,j. Therefore, since the framings on all of these manifolds
are standard, it follows that all these isotopies give rise to framed cobordisms. Therefore

gr(I(s)a(ρ))gr(I(t)a(σ)) = gr(I(s)a(ρ ] σ)).

The first assertion follows from (6.2).
Now let I(s)a(ρ) be a generator of A(F ) and let v(s,ρ) and Q(s,ρ) be as above. Recall

that the differential of I(s)a(ρ) is given by resolving one crossing of I(s)a(ρ) at a time.
We denote by ρj the sets of Reeb chords, such that ∂(I(s)a(ρ)) =

∑
j I(s)a(ρj), and let

v(s,ρj) and Q(s,ρj) be as above. So, resolving a crossing of the projection of Q(s,ρ) onto F
is equivalent to doing a 0-surgery on Q(s,ρ), leading to a one-manifold, which is isotopic to
Q(s,ρj) for some j. We observe that the framing on the result of the 0-surgery is one unit
less4 than the framing on Q(s,ρ). Therefore

gr(I(s)a(ρj)) = λ−1gr(I(s)a(ρ)).

Hence the differential decreases the grading by 1.

Comparison with the grading by a non-commutative group

We now compare our topological grading constructed in §6.1 with the gradings on A(Z)
defined in [23].

We first recall the definition of the non-commutative groups in which the gradings defined
in [23] takes values. The group G′(4k) is a Z-central extension of H1(Z\z, a). In order to give
a more concrete definition of G′(4k), we need to recall a few definitions from [23]. For a Reeb
chord α in Z \ z and p ∈ Z \ z, let m(p, α) be the average multiplicity with which α covers p,
i.e. m(p, α) = 1/2 for a boundary point, m(p, α) = 1 for an interior point and m(p, α) = 0,
otherwise. One can extend m bilinearly to a function m : H1(Z \ z, a) ×H0(a) → 1

2
Z. For

α1, α2 ∈ H1(Z \z, a), one can define L(α1, α2) = m(∂α1, α2), where ∂ : H1(Z \z, a) → H0(a)
is the boundary map. Also, for α ∈ H1(Z \z, a), let ε(α) ∈ (1

2
Z/Z) be 1

4
times the number of

parity changes in α mod 1. One can now define G′(4k) = {(j, α) ∈ 1
2
Z×H1(Z \ z, a)|ε(α) =

j (mod 1)}. The multiplication is defined by

(j1, α1) · (j2, α2) = (j1 + j2 + L(α1, α2), α1 + α2).
4Note that, using our sign conversions, the writhe of Q(s,ρ) is one unit more than the writhe of Q(s,ρj)

with respect to the canonical projection to F .
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It follows from [23, Prop. 3.37] that this operation defines a multiplication in G′(4k). For
an element g = (j, α) ∈ G′(4k), the number j ∈ 1

2
Z is called the Maslov component of g and

α is called the Spinc component of g.
Given an element a ∈ A(4k), it determines a class [a] ∈ H1(Z \ z, a). We denote by

inv(a) the number of inversions of a. Write a = (S, T, φ). Let ι(a) = inv(a) − m(S, [a]).
Then one can define

gr′(a) = (ι(a), [a]).

It follows from [23, Prop. 3.39] that gr′(a) ∈ G′(4k). Moreover gr′ is invariant under adding
horizontal strands. Let ρ = {ρ1, . . . , ρn} be a set of Reeb chords and s ⊂ [0, 2k] be such
that I(s)a(ρ) 6= 0. We can see ρ as an element of A(4k) with no horizontal strands. So
gr′(I(s)a(ρ)) = gr′(ρ). Let |ρ| denote the number of elements of ρ, and let |ab(ρ)| and
|int(ρ)| denote the number of abutting and interleaved pairs in ρ, respectively. Then a
calculation shows that

ι(ρ) = −|ρ|
2

− |ab(ρ)|
2

− |int(ρ)|. (6.3)

By making some non-canonical choices, one can also define a refined grading taking
values on a subgroup of G′(4k), see [23, §3.3.2]. That is necessary for the gluing theorems
to behave well with respect to grading. Alternatively, as suggested in [23, Rem. 10.44], one
could consider a more canonical subset of G′(4k), as follows. Let M∗ : H0(a) → H0([2k])
denote the pushforward of the map M : a → [2k]. Define G′(Z) to be the set of elements
(j, α) in G′(4k) such that M∗(∂α) = t − s, for t, s ⊂ [2k], with |t| = |s|. We observe that
G′(Z) is a groupoid and that gr′(a) ∈ G′(Z) for every homogeneous element a ∈ A(Z). We
now have the following proposition.

Proposition 6.1.5. There exists a homomorphism F : G(Z) → G′(Z) such that F(gr(a)) =
gr′(a) for every homogeneous element a ∈ A(Z).

Proof. Let N and N̄ be as in the proof of Proposition 6.1.4. Let τ be the trivialization
of T (F × [0, 1]) in N̄ × [0, 1] constructed in that proof. We extend this trivialization to a
trivialization of T (F × [0, 1]) arbitrarily.

For each s ⊂ [2k], we now see vs as a map F → S2. We can slightly perturb the vector
fields vs so that (0, 0, 1) is a regular value of these maps. Observe that v−1

s (0, 0, 1) = s ∪ P ,
where P is a set of points in the complement of N̄ and does not depend on s.

Now let [v] ∈ G(Z). Then [v] ∈ G(s, t), for some s, t ⊂ [2k], such that |s| = |t|. We
see the vector field v as a map F × [0, 1] → S2. We can slightly homotope v in F × (0, 1)
so that (0, 0, 1) is a regular value of v. Now consider Lv := v−1(0, 0, 1). Observe that
Lv ∩ (F × {0}) = (s × {0}) ∪ P and Lv ∩ (F × {1}) = (t × {1}) ∪ P . Since H1(F ) is
generated by hi ∪ σi ⊂ N̄ × [0, 1] for i = 1, . . . , 2k, it follows that Lv is framed homotopic
to L̃v ∪ (P × [0, 1]) relative to the boundary, where L̃v is a framed 1-manifold cointained in
N̄× [0, 1] and the framing on P × [0, 1] is trivial. By the Pontryagin-Thom construction, we
can homotope v and obtain v′ such that Lv′ = L̃v ∪ (P × [0, 1]). So we can assume, without
loss of generality, that Lv = L̃v ∪ (P × [0, 1]), where L̃v ⊂ N̄ × [0, 1] and the framing on



72

P × [0, 1] is trivial. Now, observe that N deformation retracts to N∩ (Z ∪
⋃
i hi). Projecting

L̃v∩ (N× [0, 1]) to F and using the deformation retraction from above, we obtain an element
in H1(Z \ z, a). We define Fsp([v]) to be this relative homology class in H1(Z \ z, a). Note
that M∗(∂Fsp([v])) = t− s.

In order to define the Maslov component Fm([v]), we compute the framing on L̃v. Up to
homotoping v, we can assume that, everytime L̃v intersectsN(pi)×{t} for some t ∈ (0, 1), the
vector field v has the standard form in N(pi)× [0, 1], given by v{pi}|N(pi). In order to see the

framing on L̃v, we let Kv = v−1(δ, 0,
√
1− δ2), for a small δ > 0, such that (δ, 0,

√
1− δ2) is a

regular value of v. We define Fm([v]) to be one half times the algebraic count of intersections
of the projections of Lv ∩N and Kv ∩N to N, where the signs are as in Figure 6.9(a). We
observe that ε(Fsp([v])) = Fm([v]) (mod 1). So we can define

F([v]) = (Fm([v]),Fsp([v])) ∈ G′(4k).

+ −
(a) (b) (c)

Figure 6.9:

To prove that F is a homomorphism, we need to show that F([v] · [w]) = F([v]) · F([w]).
We first observe that the Spinc component of F([v] · [w]) is Fsp([v]) + Fsp([w]). Moreover,
the count of intersections of the composition, which gives the Maslov component of F([v] ·
[w]), is the sum of the intersections of each piece plus the intersections between the pieces.
We observe that one half times the number of intersections between the two pieces equals
L(Fsp([v]),Fsp([w])). Therefore Fm([v] · [w]) is the Maslov component of F([v]) · F([w]). We
also observe that F([v]−1) = F([v])−1, since taking the inverse of a vector field v is equivalent
to switching the signs of the intersections of the projection of Lv to F .

It remains to show that for a generator I(s)a(ρ) of A(Z), we have F(gr(I(s)a(ρ))) =
gr′(ρ). We first order ρ1, . . . , ρn as in Step 3 of §6.1. Let v be the vector field constructed
in §6.1 whose relative homotopy class is gr(I(s)a(ρ)). Let Lv and Kv be as above. The
1-manifold Lv ∩ (N × [0, 1]) is the union of arcs γ̃i, one for each Reeb chord ρi. Up to a
relative isotopy of Lv, we can assume that the projection of Lv ∩ (N × [0, 1]) has minimal
number of intersections, i.e. there is no relative isotopy of Lv that decreases the number of
intersections. It follows from the ordering of the Reeb chords that if the projections of γ̃i and
γ̃j intersect for i < j, then the pair {ρi, ρj} is interleaved and this is a negative intersection.
Now we note that the arc Kv∩ (N× [0, 1]) does not rotate around γ̃i, since the framing of Lv
is trivial in N× [0, 1] with respect to the trivialization. That implies the projection to N has
one negative intersection corresponding to each ρ̃i as in Figure 6.9(b). So for each Reeb chord
ρi, we get a contribution of −1/2 to the Maslov component of F(gr(I(s)a(ρ))). Moreover,
each interleaved pair gives rise to two negative intersections of the projections of L̃v and Kv.
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So each interleaved pair contributes to the Maslov component of F(gr(I(s)a(ρ))) by −1.
Finally if ρi and ρj abut, then we get an extra negative intersection, see Figure 6.9(c). So an
abutting pair contributes by −1/2 to the Maslov component of F(gr(I(s)a(ρ))). Therefore,
using (6.3), we conclude that

Fm(gr(I(s)a(ρ))) = ι(ρ).

Hence F(gr(I(s)a(ρ))) = gr′(ρ).

6.2 Grading on the modules

Let Y be an oriented connected compact 3-manifold with connected boundary. Following
[23], we consider the bordered Heegaard diagram

H = (Σ, αc1, · · · , αcg−k, αa1, · · · , αa2k, β1, · · · , βg, z)

which is compatible with Y in the sense that the following conditions are satisfied:

• Σ is a compact oriented surface with a single boundary component.

• (Σ ∪∂ D2, αc, β) is a Heegaard diagram for Y .

• αa1, · · · , αa2k are pairwise disjoint, embedded arcs in Σ with boundary on ∂Σ, and are
disjoint from the αci .

• Σ \ (αc1 ∪ · · · ∪ αcg−k ∪ αa1 ∪ · · · ∪ αa2k) is a disk with 2(g − k) holes.

• z is a point in ∂Σ, disjoint from all of the αai .

We will abbreviate αc = αc1 ∪ · · · ∪ αcg−k, αa = αa1 ∪ · · · ∪ αa2k, α = αc ∪ αa, and
β = β1 ∪ · · · ∪ βg.

In this section, we explain how to define the grading on the modules ĈFA(H) and

ĈDF (H). We start by defining the grading sets S(H) and S̄(H).

The grading set

Let F = ∂Y . We recall from [23] that H gives rise to a pointed matched circle Z =
(Z, a,M, z), where Z = ∂Σ, a = αc ∩ Z and M maps both points in αci ∩ Z to i ∈ [2k] for
every i. For s ∈ [2k], we denote by Vect(Y, vs) the set of homotopy classes of nonvanishing
vector fields in Y whose restriction to F is vs. Since F is connected, Vect(Y, vs) is nonempty
if and only if |s| = k. Let

S(H) =
∐
|s|=k

Vect(Y, vs).
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We observe that the groupoid G(Z) acts on S(H) on the right by concatenation. More
precisely, given vector fields v and w such that [v] ∈ Vect(Y, vs) and [w] ∈ G(s, t), define
[v] · [w] as follows. Identify a collar neighborhood N(F ) of F in Y with F × [0, 1] and
take a representative ṽ of [v] which is [0, 1]-invariant in N(F ) ∼= F × [0, 1]. Now define
[v] · [w] ∈ Vect(Y, vt) to be the relative homotopy class of the vector field which equals ṽ in
the complement of N(F ) and w in N(F ) ∼= F × [0, 1]. Note that we also have a Z-action
on S(H) just as before, which we again denote multiplicatively by λn on the left. We also
observe that this action need not be free. In fact, let [v] ∈ S(H) and denote by v⊥ the
orthogonal complement of v, seen as a complex line bundle. Then λd · [v] = [v] for every
d = 〈c1(v⊥), A〉, for some A ∈ H2(Y ).

Now we denote by −Z the pointed matched circle obtained by switching the orientation
of Z, i.e. −Z = (−Z, a,M, z). We observe that the groupoid G(−Z) acts on S(H) on the
left, as follows. Given a vector field w in (−F )× [0, 1], we define w̄ to be the vector field in
F × [0, 1] given by w̄(x, t) = w(x, 1− t). So, given a vector field v in Y , if v and w̄ coincide
along F ∼= F × {1}, we can glue them along F ∼= F × {1} and obtain a new vector field in
Y , which we denote by w̄ · v. So, given [w] ∈ G(s, t) ⊂ G(−Z) and [v] ∈ Vect(Y, vs), we can
define [v] · [w] to be [v̄ · w].

The homotopy classes [v], [w] ∈ Vect(Y, vs) are said to be in the same relative Spinc

structure if v is homotopic to w on the 2-skeleton relative to the boundary. We observe that
there exists n ∈ Z such that [v] = λn · [w] if, and only if, [v], [w] ∈ Vect(Y, vs) and v an w
are in the same relative Spinc structure.

Homotopy classes of vector fields

The goal of this section is provide a new way to compute the difference between homotopy
classes of nonvanishing vector fields, based on Pontryagin-Thom construction. The construc-
tion here is inspired and very similar to the work of Dufraine [6]. Let Y be a closed oriented
3-manifold. Suppose ξ, η are nonvanishing vector fields on Y . By a C∞-small perturbation,
we can assume that the set

L = Lξ,η = {y ∈ Y | ξ(y) = −η(y)}

is a link in Y . In the case that [L] = 0 ∈ H1(Y ;Z), there exists an embedded compact surface
Σ ⊂ Y with ∂Σ = L. Choosing a Riemannian metric on Y , we consider the orthogonal
complement η⊥ of η, which is a co-oriented plane field on Y . Since Σ deformation retracts
onto a wedge of circles, we can choose a trivialization τ : η⊥|Σ → Σ×R2. This in turn gives
a trivialization τ̃ : TY |Σ → Σ×R3 by setting τ̃ ∗(∂z) to be equal to η, where (x, y, z) are the
coordinates in R3. Let N(Σ) denote a small tubular neighborhood of Σ in Y . Then τ gives
rise to a trivialization TY |N(Σ)

∼= N(Σ)× R3.
Using the above trivialization, we can see ξ|N(Σ) as a map ξτ : N(Σ) → S2 ⊂ R3. It is

clear from construction that Lξ,η = ξ−1
τ (0, 0,−1) = ∂Σ. Taking the pre-image of a regular

value close to (0, 0,−1) in S2, we get a framing on Lξ,η. We represent this framing by a
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number nξ,η, given by the difference from the Seifert framing. The following proposition
gives a way to compute the difference between homotopy classes of nonzero vector fields.
The result was essentially known by Dufraine [6] but we write down a proof here for the
readers’ convenience.

Proposition 6.2.1. Given ξ, η nonvanishing vector fields on Y , ξ is homotopic to η if and
only if Lξ,η is null-homologous and the framing nξ,η = 0.

Proof. Suppose there exists a 1-parameter family of nonvanishing vector fields {ξt}t∈[0,1], on
Y such that ξ0 = ξ, ξ1 = η. We choose a Riemannian metric on Y such that ξt is of unit
length. Therefore we define a section Ξ : Y × [0, 1] → STY × [0, 1] by Ξ(y, t) = (ξt(y), t)
for all y ∈ Y, t ∈ [0, 1], where STY denotes the unit tangent bundle. We can also define a
section I : Y × [0, 1] → STY × [0, 1] by I(y, t) = (−η(x), t).

We observe that Lξ,η = {(y, 0) ∈ Y × [0, 1] | Ξ(y, 0) = I(y, 0)} and {(y, 1) ∈ Y ×
[0, 1] | Ξ(y, 1) = I(y, 1)} = ∅. By the standard transversality argument, we can assume that

{(y, t) ∈ Y × [0, 1] | Ξ(y, t) = I(y, t)}

is an embedded surface in Y × [0, 1]. Therefore [Lξ,η] = 0 ∈ H1(Y ;Z).
Now everything follows from the usual Pontryagin-Thom construction. Namely, let Σ ⊂

Y be a compact surface such that ∂Σ = Lξ,η, and consider a neighborhood N(Σ) of Σ in Y .
Observe that ξ is homotopic to η on the complement of N(Σ) by a linear homotopy, so we
can assume that ξ = η on Y \N(Σ). Since, again, N(Σ) deformation retracts onto a wedge of
circles, we can trivialize η⊥|N(Σ) and therefore obtain a trivialization of TY |N(Σ) by writing
TY = η ⊕ η⊥. The vector field ξ, under this trivialization, sends Lξ,η to (0, 0,−1) ∈ S2 as
before. The Pontryagin-Thom construction asserts that ξ is homotopic to η if and only if
Lξ,η is framed cobordant to the empty set.

We obtain the following corollary.

Corollary 6.2.2. Let ξ, η be nonvanishing vector fields on Y . Then ξ and η are in the same
Spinc structure if, and only if, [Lξ,η] = 0. And if that is the case, then [ξ] = λnξ,η · [η].

Proof. If ξ and η are in the same Spinc structure, then there exists m ∈ Z such that [ξ] =
λm · [η]. Let η̃ be a nonvanishing vector field in Y given by modifying η in a very small ball,
corresponding to the action of λm ∈ π3(S

2). By definition, [η̃] = λm · [η]. So ξ and η̃ are
homotopic. By Proposition 6.2.1, [Lξ,η] = [Lξ,η̃] = 0.

Conversely if [Lξ,η] = 0, then, as explained above, we obtain a framing nξ,η on Lξ,η.
Now we act on η by λnξ,η ∈ π3(S

2), obtaining a vector field η̃. We observe that Lξ,η is still
nullhomologous and that nξ,η̃ = 0. By Proposition 6.2.1, we conclude that [ξ] = [η̃]. So
[ξ] = λnξ,η · [η]. In particular, ξ and η are in the same Spinc structure. Note that we also
proved the second assertion.

Remark 6.2.3. The point of our approach is that in order to compute the difference between
ξ and η, it suffices to trivialize TY along a Seifert surface, which is much easier in practice.
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Grading on ĈFA(H)

We start by recalling the definition of the A∞-module ĈFA(H) from [23]. Let G(H) be the
set of g-tuples x = {x1, · · · , xg} ⊂ α ∩ β such that there is exactly one point xi on each

β-circle and on each α-circle and there is at most one xi on each α-arc. Then ĈFA(H) is
generated as a vector space over Z/2 by G(H). We also recall that given x ∈ G(H), there
is an idempotent IA(x) := I(o(x)), where o(x) ⊂ [2k] is the set of α-arcs containing xi for

some i. We have a right action of the ring of idempotents I := I(Z) on ĈFA(H) given by

x · I(s) =
{

x, if IA(x) = I(s),
0, otherwise.

Let A := A(Z). As explained in [23, Ch. 7], the A∞-structure on ĈFA(H) is given by maps

ml+1 : ĈFA(H)⊗I A⊗I · · · ⊗I A → ĈFA(H).

Now we want to define a grading function

gr : G(H) → S(H),

compatible with the maps ml+1. More precisely, let x ∈ G(H) and let a(ρ1), . . . , a(ρl) be
generators of A. If x⊗I a(ρ1)⊗I · · · ⊗I a(ρl) 6= 0 then we can write

x⊗I a(ρ1)⊗I · · · ⊗I a(ρl) = x⊗I I(s1)a(ρ1)⊗I · · · ⊗I I(sl)a(ρl),

for some s1, . . . , sl ⊂ [0, 2k]. Note, in particular, that I(s1) = IA(x). If y is a summand in
ml+1(x, a(ρ1), . . . , a(ρl)), we want gr to satisfy

gr(y) = λl−1 · gr(x) · gr(I(s1)a(ρ1)) . . . gr(I(sl)a(ρl)).

Recall the following definition from [23].

Definition 6.2.4. Given a compact 3-manifold Y with bordered Heegaard diagram H, we
say that a pair consisting of a Riemannian metric g on Y and a self-indexing Morse function
h : Y → [0, 3] is compatible with H if

• the boundary of Y is geodesic,

• the gradient vector field ∇h|∂Y is tangent to ∂Y ,

• h has a unique index 0 and a unique index 3 critical point, both of which lie on ∂Y ,
and are the unique index 0 and 2 critical points of h|∂Y , respectively,

• the index 1 critical points of h|∂Y are also index 1 critical points of h,
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• h|∂Y , viewed as a Morse function on F = ∂Y , is compatible with the pointed matched
circle Z.

Fix a compatible Morse function h : Y → [0, 3], and consider the gradient vector field ∇h
on Y . For any x ∈ G(H), the pair (x, z) determines g+1 gradient trajectories {γ0, · · · , γg},
where γ0 connects the index 0 and index 3 critical points passing through z, and γi connects
the index 1 and index 2 critical points passing through xi. We define gr(x) ∈ S(H) by
modifying ∇h near tubular neighborhoods of the trajectories γi.

Let N(γ0) be a small neighborhood of γ0 in Y . Let D = {(x, y) ∈ R2|x2+y2 ≤ 1, x ≥ 0}.
Then N(γ0) is diffeomorphic to D × [0, π]/ ∼, where the equivalence relation is given by
((0, y), t) ' ((0, y), t′) for every t, t′, and where (D × {0}) ∪ (D × {π})/ ∼ is identified with
N(γ0)∩∂Y , see Figure 6.10(a). Using the above identification, the vector field ∇h restricted
to D × {t} is depicted in Figure 6.11(a). For each t ∈ [0, π], we modify ∇h in D × {t}
as shown in Figure 6.11(d). Since these modifications coincide on D ∩ {y = 0}, we get a
nonvanishing vector field on D × [0, π]/ ∼. This is the restriction to the half-ball of the
analogous modification, used to define the grading on Heegaard Floer homology.

We order the flow lines γ1, . . . , γg so that the index one critical points corresponding to
γ1, . . . , γk lie on ∂Y . For each i = 1, . . . , k, let N(γi) be a small neighborhood of γi in Y . Let
B̃ be the intersection of the unit ball in R3 with {z ≥ −1/2}. Then N(γi) is diffeomorphic
to B̃, see Figure 6.10(b). Let D̃ = {(x, y) ∈ R2|x2 + y2 ≤ 1, y ≥ −1/2}. Each vertical
cross-section of B̃ can be identified with D̃. The vector field ∇h restricted to N(γi) can be
viewed as an interpolation between ∇h restricted to two transverse vertical cross-sections,
corresponding to the unstable manifold of the index one critical point and the stable manifold
of the index two critical point. Figure 6.11(b,c) shows the restriction of ∇h to these two
cross-sections. We modify ∇h on these cross-sections as in Figure 6.11(e,f). Again, this is
very similar to the corresponding construction on Heegaard Floer homology. Namely, this
is the restriction to {z ≥ −1/2} of the vector field defined in Chapter 5. The reader can
find a formula describing this modification in Chapter 5. For each i = k + 1, . . . , g, the
corresponding index one critical point lies in the interior of Y . So do the same modification
as in Chapter 5.

We still have to eliminate the boundary index one critical points which do not belong to
any γi. We do so by slightly perturbing ∇h in a neighborhood of each of these points so
that it points to the interior of Y . Alternatively, we observe that Y is diffeomorphic to the
complement of the union of small neighborhoods of each of these points. So ∇h restricted to
a tubular neighborhood of the boundary of this complement gives the desired modification
of ∇h, see Figure 6.10(c). Let vx denote the vector field in Y obtained by modifying ∇h
as explained above. Then we define gr(x) to be the relative homotopy class of vx. We note
that gr(x) ∈ Vect(Y, vo(x)).

Following [23], given generators x,y ∈ G(H), we consider the relative homology group

H2(Σ× [0, 1]× [0, 1], ((Sα ∪ Sβ ∪ S∂)× [0, 1]) ∪Gx × {0} ∪Gy × {1}),

where Sα = α×{1}, Sβ = β×{0}, S∂ = (∂Σ\z)× [0, 1], Gx = x× [0, 1] and Gy = y× [0, 1].
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(a) (b) (c)
Figure 6.10:

(a) (b) (c)

(d) (e) (f)
Figure 6.11: Modifying ∇h to a nonvanishing vector field.

This group is usually denoted by π2(x,y), following the tradition from [28].
A homology class B ∈ π2(x,y) can be interpreted as a domain in Σ. As such, one

defines e(B) to be the Euler measure of this domain as follows. For each positively covered
region in Σ \ (α ∪ β), we define its Euler measure to equal its Euler characteristic χ(B)
plus one quarter of the number of concave corners minus the number of convex corners. We
can extend this linearly to domains in Σ. One also defines nx(B) to be one quarter of the
number of components of Σ \ (α ∪ β) in B adjencent to x, counted with multiplicity. One
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defines ny similarly. For B ∈ π2(x,y), one defines ∂∂B to be the piece of the boundary of
B contained in ∂Σ. We think of ∂∂B as a class in H1(Z \ {z}, a). Let −→ρ = (ρ1, . . . ,ρl) be
an l-tuple of sets of Reeb chords. Recall that a(−→ρ ) is defined to be the product a(−→ρ ) =
a(ρ1) . . . a(ρl) and ι(−→ρ ) to be the Maslov component of gr′(a(−→ρ )). One can also define
[−→ρ ] = [ρ1] + · · ·+ [ρl] ∈ H1(Z \ z, a). Now recall the definition of ind(B,−→ρ ) for B ∈ π(x,y)
and −→ρ satisfying ∂∂B = [−→ρ ].

ind(B,−→ρ ) = e(B) + nx(B) + ny(B) + ι(−→ρ ) + l.

Given x,y ∈ G(H) such that π2(x,y) is nonempty5, we now compare gr(x) and gr(y).
The main result of this section is the following proposition.

Proposition 6.2.5. Let x,y ∈ G(H), B ∈ π2(x,y) and
−→ρ = (ρ1, . . . ,ρl) such that ∂∂B =

[−→ρ ]. Then

gr(x) · gr(IA(x)a(−→ρ )) = λind(B,
−→ρ )−l · gr(y). (6.4)

Proof. Instead of doing a direct computation, we reduce the problem to the computation of
relative gradings in Heegaard Floer homology, which has been done in Chapter 5. First it
follows from (6.2) that

IA(x)a(
−→ρ ) = IA(x)a(ρ1 ] · · · ] ρl).

Moreover, since ι(−→ρ ) = ι(ρ1]· · ·]ρl), it follows that ind(B,ρ)− l = ind(B,ρ1]· · ·]ρl)−1.
Therefore it suffices to prove (6.4) for l = 1. From now on, we shall assume that −→ρ = {ρ}.
We shall prove that

gr(x) · gr(IA(x)a(ρ)) = λe(B)+nx(B)+ny(B)+ι(ρ) · gr(y) (6.5)

Let (ρ, σ) be an abutting pair in ρ and let ρ̃ be the set obtained from ρ by substituting
the pair {ρ, σ} by their join ρ]σ. Since IA(x)a(ρ) is a term in the differential of IA(x)a(ρ̃),
by Proposition 6.1.4, gr(IA(x)a(ρ)) = λ−1gr(IA(x)a(ρ̃)). Moreover, by (6.3), ι(ρ) = ι(ρ̃)−1.
So if (6.5) holds for (B, ρ̃), then it also holds for (B,ρ). Hence we can assume that ρ has
no abutting pairs.

Now let {ρ, σ} be an interleaved pair in ρ so that ρ− < σ− < ρ+ < σ+. We substitute
the pair {ρ, σ} by the nested pair {[ρ−, σ+], [σ−, ρ+]} giving rise to a set of Reeb chords,
denoted once again by ρ̃. We observe that, again, IA(x)a(ρ) is a term in the differential of
IA(x)a(ρ̃). So gr(IA(x)a(ρ)) = λ−1gr(IA(x)a(ρ̃)). By (6.3), ι(ρ) = ι(ρ̃) − 1. Therefore we
can also assume that ρ has no interleaved pairs.

Now write ρ = {ρ1, . . . , ρm} with the ordering as in §6.1. Let Σ′ be a closed surface
obtained by gluing a compact surface of genus k with boundary −Z to Σ along the boundary.
We construct a Heegaard diagram (Σ′,α′,β′, z) as follows. For each arc αai , we glue an arc
on Σ′ \ Σ to obtain a closed circle on Σ′, which we denote by α′

i. We can always choose the
completion of the α-arcs such thatα′ = {αc1, . . . , αcg−k, α′

1, . . . , α
′
2k} is a set of pairwise disjoint

5This is equivalent to x and y being in the same Spinc structure.
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curves which are linearly independent in H1(Σ
′). Recall that Z \N(z) ⊂ ∂Σ is a line segment

containing all Reeb chords. Now consider k translates of Z \N(z) on a collar neighborhood
of ∂Σ in Σ′ \Σ with an ordering by the distance to ∂Σ. For each i = 1, . . . , k, we can define
a circle β′

i on Σ′ \Σ containing the i-th translate, such that these circles are pairwise disjoint
and linearly independent in homology. So we let β′ = {β1, . . . , βg, β′

1, . . . , β
′
k}. Therefore

we obtain a Heegaard diagram (Σ′,α′,β′, z), which gives rise to a closed three-manifold
containing Y , denoted by Y ′.

The domain B ∈ π2(x,y) naturally extends over Σ
′, as follows. Each Reeb chord ρi can be

translated to β′
i giving rise to a segment, whose endpoints are on the α-circles corresponding

to the endpoints of ρi. So each ρi gives rise to two intersection points on β′
i. We obtain a

new domain B′ on Σ′ by taking the union of B with a domain in Σ \ Σ′ bounded by the
translates of ρi and the corresponding α-circles, as in Figure 6.12. For the time being, let us
assume thatM(ρ−)∩M(ρ+) = ∅, so that the new intersection points can be added to x and
y, respectively, giving rise to intersection points x′ and y′ in Tα′ ∩ Tβ′ . So B′ ∈ π2(x

′,y′).
The case when M(ρ−) ∩M(ρ+) 6= ∅ is slightly technical and will be postponed to the end
of the proof.

x

x

y

y

x′ y′

x′y′

x′ y′

x′y′

Figure 6.12: The left side is a domain on Σ. The right side is the completion of the domain
on Σ′.

We recall the index formula from [22]

ind(B′) = e(B′) + nx′(B′) + ny′(B′). (6.6)

We observe that e(B) = e(B′). The points in x′ and y′ are either the elements of x and y or
the new convex corners on Σ′ \Σ, which are not interior corners, since we assumed that any
two Reeb orbits are either disjoint or nested. Since there are |ρ|/2 such corners, we conclude
that

ind(B′) = e(B′) + nx′(B′) + ny′(B′) = e(B) + nx(B) + ny(B) + |ρ|/2. (6.7)

In Chapter 5, we defined an absolute grading function

g̃r : Tα′ ∩ Tβ′ → P(Y ′),

where P(Y ′) is the set of homotopy classes of nonzero vector fields on Y ′. This is such that
for any B′ ∈ π2(x

′,y′), which does not intersect the basepoint z,

g̃r(x′) = λind(B
′) · g̃r(y′).
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Let s = IA(x) and t = IA(y). Note that we can decompose Y as Y ′ = Y ∪F (F ×
[0, 1])∪F Ŷ . Following our construction of the gradings, let vx, vy be the vector fields whose
relative homotopy classes are gr(x) and gr(y), and let v(s,ρ) be the vector field defined in §6.1,
such that [v(s,ρ)] = gr(I(s)a(ρ)). Let It denote the [0, 1]-invariant vector field on F × [0, 1],
whose restriction to F × {t} equals vt. Then the action of [It] on Vect(Y, vt) is trivial. So
[vy · It] = gr(y). We now show that vx · v(s,ρ) and vy · It are in the same Spinc structure and
we compute their difference.

Since v(s,ρ) and It coincide on F × {1}, we can extend vx · v(s,ρ) and vy · It to Y ′ so that

they coincide in Ŷ . Let X1 and X2 be the vector fields obtained by this extension from
vx · v(s,ρ) and vy · It, respectively. We apply Proposition 6.2.1, obtaining a link denoted by
L(x,ρ),y defined as

L(x,ρ),y := {y ∈ Y ′|X1(y) = −X2(y)}.

Since X1 and X2 coincide in Ŷ , the link L(x,ρ),y is contained in Y ∪ (F × [0, 1)) and it is

independent of the extension of the vector fields to Ŷ .
We define Lx′,y′ to be the link in Y given by

Lx′,y′ = {y ∈ Y ′|vx′(y) = −vy′(y)}.

We note that vx′|Y = vx and vy′|Y = vy. So the restrictions of L(x,ρ),y and Lx′,y′ to Y
coincide. We observe that this is the union of the flow lines corresponding to all points in x
and y, up to a small isotopy in neighborhoods of the critical points. Moreover the domain
B gives rise to a surface S in Y relative to the boundary, bounding Lx′,y′ ∩Y . We note that,
up to a small perturbation, S ∩ ∂Y is the union of the arcs ρ̂i, as defined in §6.1.

We will now show that L(x,ρ),y and Lx′,y′ are both nullhomologous and isotopic to each
other. We first look at L(x,ρ),y ∩ (F × [0, 1]). Observe that L(x,ρ),y ∩ (F × {0}) = M(ρ−) ∪
M(ρ+) by construction. Using the bifurcation description of v(s,ρ) illustrated in Figure 6.4,
we observe that L(x,ρ),y ∩ (F × [0, 1]) is the union of embedded arcs, each of which is as
depicted in Figure 6.13. In fact each tangency of LF and F × {t} happens exactly when t
corresponds to the middle of the second bifurcation for a Reeb chord. It follows that B′ gives

ρ− ρ+

Figure 6.13: The Pontryagin submanifold L(x,ρ),y. The blue arc indicates the framing.

rise to a surface Sρ containing S whose boundary is L(x,ρ),y. An example of Sρ ∩ (F × [0, 1])
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y′

x′

Lx′,y′

Figure 6.14: The Pontryagin submanifold Lx′,y′ (in green).

is shown in Figure 6.13. So [L(x,ρ),y] = 0 ∈ H1(Y ∪ (F × [0, 1])). Therefore vx · v(s,ρ)
and vy · It are in the same relative Spinc structure. We will now consider the framing on
L(x,ρ),y), as in §6.2. It is clear that Sρ ∩ (F × [0, 1]) is topologically the union of disjoint
disks. Let I⊥t be the oriented 2-plane field on F × [0, 1] which is orthogonal to It. We can
choose a trivialization of I⊥t |Sρ such that the vector field ∂/∂x is everywhere tangent to Sρ

and points into Sρ along L(x,ρ),y ∩ (F × [0, 1]). We extend this trivialization to a small
neighborhood N(Sρ) of Sρ and see v(ρ,s) as a map N(Sρ) → S2. So, to compute the framing

on L(x,ρ),y ∩ (F × [0, 1]) = v−1
(ρ,s)(0, 0,−1), we can look at v−1

(ρ,s)(ε, 0,−
√
1− ε2), for small

ε > 0. For each Reeb chord, which corresponds to an arc in L(x,ρ),y ∩ (F × [0, 1]), we observe
that this framing is represented by a negative full-twist as depicted in Figure 6.13.

Now we observe that Lx′,y′ ∩ (F × [0, 1]) is the union of the flow lines corresponding to
all points in x′ \ x and y′ \ y, up to a small isotopy in neighborhoods of the critical points.
Note that we can isotope Lx′,y′ ∩ (F × [0, 1]) to L(x,ρ),y∩ (F × [0, 1]) relative to the endpoints
and, after that isotopy, Sρ is a Seifert surface6 for Lx′,y′ . We can choose a trivialization of
v⊥y′|Sρ such that in a neighborhood of Sρ, the vector field ∂x is everywhere tangent to Sρ and
points into Sρ along Lx′,y′ . As before, we extend this trivialization to N(Sρ). Again, seeing
vx′ as a map N(Sρ) → S2 and taking the preimage of a regular value near (0, 0,−1), we
observe that the framing on Lx′,y′ ∩ (F × [0, 1]) is trivial.

Therefore the framing on L(x,ρ),y equals the framing on Lx′,y′ minus the number of Reeb
chords. Therefore, by (6.7) and (6.3),

gr(x) · gr(IA(x)a(ρ)) = λind(B
′)−|ρ| · gr(y) = λe(B)+ny(B)+ny(B)+ι(ρ) · gr(y). (6.8)

Therefore we proved (6.5), when M(ρ−) ∩M(ρ+) = ∅.
6Here we are using the fact that ρ does not contain any abutting or interleaved pair. Otherwise we would

not be able to use the same Seifert surface for both links.
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Now assume that M(ρ−) ∩M(ρ+) 6= ∅. See Figure 6.15 for an example. In this case
we may still construct the extended domain B′ connecting x′ and y′ although they are not
generators of ĈF (Y ′). Nevertheless the “index” of B′ is defined using the combinatorial
formula (6.6). To verify (6.8) in this case, we will modify the Morse function on Y near
the index one critical points corresponding to M(ρ−) ∩M(ρ+). For simplicity of notations,
we assume that ρ = {ρ} consists of one chord as depicted in left side of Figure 6.15. The
general case is just an iterated application of the modification we describe below.

x

y

x′

y′

y′

x′

Figure 6.15: The completion of a domain where the new x′ and y′ are not generators.

Recall that h is a Morse function on Y such that∇h|∂Y is compatible with the parametriza-
tion of ∂Y = F . Let p be the index one critical point corresponding to M(ρ−) = M(ρ+).
We construct a new Morse function h′ on Y such that h′ = h in the complement of a neigh-
borhood of p, and near p, ∇h′ has three critical points: p, p′ of index one and q of index two.
See Figure 6.16. This construction should be compared with the construction of gr(I(s)a(ρ))
using Figure 6.6. More precisely, assuming that the trajectories of ∇h′ connects x to p and
y to p′ as in Figure 6.16, we define a variant gr′(x) to be equal to gr(x) away from a neigh-
borhood of p where h′ 6= h, and in this neighborhood the vector field is pointing out of Y
near p and pointing into Y near p′ and q. We also define gr′(y) analogously. It follows from
the construction that gr(x) · gr(I(s)a(ρ)) − gr(y) is equal to gr′(x) · gr(I(s)a(ρ)) − gr′(y).
Here by taking differences we mean taking the power of λ in (6.8). Moreover for the latter
difference to be well-defined, we have to skip the steps of creating/canceling pairs of critical
points when defining gr(I(s)a(ρ)) in Step 2 of Section 6.1. After all, the computation of
gr′(x) · gr(I(s)a(ρ)) − gr′(y), as well as the computation of the difference between the ab-
solute gradings g̃r(x′) and g̃r(y′) where x′,y′ are extended generators as before, is identical
to the computation we did for the case that M(ρ−) 6= M(ρ+). Hence we have proved the
proposition.

Theorem 4.2.3(a) is an immediate corollary of Proposition 6.2.5.

The grading on ĈFD(H)

We start by recalling the definition of the module ĈDF (H). For x ∈ G(H), let ō(x) =
[2k] \ o(x) and define ID(x) = I([2k] \ o(x)). We have a left action of the set of idempotents
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x

y

p

p′

q

Figure 6.16: The modified Morse function h′.

I on G(H) given by

I(s) · x =

{
x, if ID(x) = I(s),
0, otherwise.

The module ĈDF (H) is generated over Z/2 by the elements of the form a ⊗ x, where
a ∈ A(−Z) and x ∈ G(H), and the tensor is taken over I. Its module structure is given by
the obvious left A(−Z)-action.

We can define the grading gr on a generator a(−ρ)⊗ x of ĈDF (H) by

gr(a(−ρ)⊗ x) := gr(a(−ρ)ID(x)) · gr(x).

The differential ∂ on ĈDF (H) is defined in [23] by counting moduli spaces of holomorphic
curves of the form MB(x,y,−→ρ ), where −→ρ = (ρ1, . . . , ρn) is a sequence of Reeb chords.
More precisely ∂(ID(x)⊗ x) is a some of terms of the form a(−−→ρ )⊗ y, where B ∈ π2(x,y)
and ind(B,−→ρ ) = 1. Here −−→ρ denotes (−ρ1, . . . ,−ρn) and a(−−→ρ ) denotes the product
a(−ρ1) . . . a(−ρn).

Proposition 6.2.6. Let x,y ∈ G(H), B ∈ π2(x,y) and −→ρ such that ∂∂B = [−→ρ ]. If
a(−−→ρ )⊗ y 6= 0, then

gr(a(−−→ρ )ID(y)) · gr(y) = λ−ind(B,−→ρ )gr(x).

Proof. The proof is very to similar to that of Proposition 6.2.5. For the purposes of this
calculation, we again group all the Reeb chords in −→ρ = (ρ1, . . . , ρl) into one set ρ and assume
that ρ contains no interleaved or abutting pairs, so ind(B,−→ρ )− l = ind(B,ρ)− 1. We again
construct a closed manifold

Y ′ = Ŷ ∪F̄ ∪F̄ × [0, 1] ∪F̄ Ȳ .



85

And we extend H to a Heegaard decomposition of Y ′ so that the new β-curves are translates
of the Reeb chords. We again get generators x′, y′ of ĈF (Y ′) and a homology class B′ ∈
π(x′,y′). So

ind(B′) = ind(B,ρ)− 1 + |ρ| = ind(B,−→ρ )− l + l = ind(B,−→ρ ).

Now the main difference in the calculation is that, when we compare the vector fields
gr(a(−−→ρ )ID(y)) · gr(y) and I · gr(x) in (F̄ × [0, 1]) where I is I-invariant, we obtain an arc
with trivial framing for each Reeb chord. Therefore

gr(x) = λind(B
′) · gr(a(−−→ρ )ID(y)) · gr(y).

That implies our claim.

We have therefore proven Theorem 4.2.3(b).

6.3 The pairing theorems

Our absolute grading is also compatible with the pairing theorems proved in [23]. More
precisely, given two bordered Heegaard diagrams H1 and H2 for Y1 and Y2, respectively,
with ∂H1 = −∂H2, we obtain a Heegaard diagram H = H1 ∪∂ H2 for the closed manifold
Y := Y1 ∪∂ Y2. Let F = ∂Y1 = −∂Y2 be the parameterized boundary.

Recall that the box tensor product ĈFA(Y1)� ĈFD(Y2) is G(H1)⊗I(Z) G(H2) as a set.
See [23, Def. 2.26] for the definition of the differential. If x1 ∈ G(H1) and x2 ∈ G(H2), such

that x1 ⊗ x2 ∈ ĈFA(Y1)� ĈFD(Y2) is nonzero, then x1 and x2 must lie on complementary

α-arcs. Therefore the pair (x1,x2) corresponds to a generator of ĈF (Y ). So there is a
canonical map

Φ : ĈFA(Y1)� ĈFD(Y2) → ĈF (Y ). (6.9)

We recall the following theorem from [23].

Theorem 6.3.1 ( [23, Thm. 1.3]). The map (6.9) is a homotopy equivalence.

Let S(H1)×F S(H2) denote the set of elements of the form ([v1], [v2]) with [v1] ∈ S(H1)
and [v2] ∈ S(H2), such that [v1] and [v2] agree along F . Recall that G(Z1) = G(−Z2) acts
on S(H1) on the right and on S(H2) on the left. We now define S(H1) ⊗G(Z1) S(H2) to be
the quotient of S(H1)×F S(H2) by the equivalence relation given by (ξ1 · a, ξ2) ∼ (ξ1, a · ξ2),
where ξi ∈ S(Hi) for i = 1, 2 and a ∈ G(Z1). Recall that the absolute grading on ĈF (Y )
takes value in Vect(Y ). Now given nonvanishing vector fields v1 in Y1 and v2 in Y2, which
agree along ∂Y1 = −∂Y2, we obtain a vector field v1 · v2 on Y by gluing along the boundary.
Therefore we obtain a map

Ψ : S(H1)⊗G(Z1) S(H2) → Vect(Y ).

We have the following proposition.
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Proposition 6.3.2. The map Ψ is a bijection.

Proof. To show that Ψ is surjective, let v be a nonvanishing vector field on Y and write
v = v1 · v2, where v1 and v2 are nonvanishing vector fields on Y1 and Y2, respectively. Now
we fix a trivialization of TY , and hence a trivialization of TY |F . By the Pontryagin-Thom
construction, two maps F → S2 are isomorphic if, and only if, their pullback of the generator
of H2(S2;Z) coincide. We observe that the pullback map ι∗ : H2(Y1,Z) → H2(F ) is trivial.
Hence v1|F is homotopic to the constant map F → S2. Now fix s ⊂ [0, 2k], such that |s| = k.
Since we can extend vs to a vector field in Y , it follows that vs is again homotopic to the
constant map. Therefore there exists a nonvanishing vector field u in F × [0, 1] such that
u|F×{0} = v1 and u|F×{1} = vs. Let ū denote the inverse of the homotopy determined by u.
It follows that v1 · u · ū · v2 is homotopic to v1 · v2. So Ψ([v1 · u]⊗ [ū · v2]) = [v1 · v2]. Hence
Ψ is surjective.

Now let [v1], [w1] ∈ S(H1) and [v2], [w2] ∈ S(H2) such that Ψ([v1]⊗ [v2]) = Ψ([w1]⊗ [w2]).
So [v1 · v2] = [w1 · w2] as elements in Vect(Y ). Let H : Y × [0, 1] denote the homotopy
from v1 · v2 to w1 · w2. Let u be the restriction of H to F × [0, 1]. So u|F×{0} = v1|F and
u|F×{1} = w1|F . We observe that [v1 · u] = [w1] ∈ S(H1) and that [ū · v1] = [w2] ∈ S(H2). So

[v1]⊗ [v2] = [v1 · u]⊗ [ū · v2] = [w1]⊗ [w2] ∈ S(H1)⊗G(Z1) S(H2).

Therefore Ψ is injective.

We can now prove that the map (6.9) preserves the absolute grading.

Theorem 6.3.3. Given x1 ∈ G(H1) and x2 ∈ G(H2), such that x1 ⊗ x2 6= 0. Then

g̃r(Φ(x1 ⊗ x2)) = Ψ(gr(x1)⊗ gr(x2)).

Proof. This follows immediately from our construction of the gradings in §3.3 and from the
definition of the grading on Heegaard Floer homology.
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Chapter 7

The isomorphism between Heegaard
Floer homology and ECH

In this chapter, we will prove that the absolute grading is preserved under the isomorphism
map from Heegaard Floer homology to ECH defined by Colin-Ghiggini-Honda in [3].

We start by recalling the definition of the absolute grading on ECH from [10]. Let γ =
{(γi,mi)} be an orbit set. The absolute grading I(γ) is the homotopy class of nonvanishing
vector fields obtained by modifying the Reeb vector field in disjoint neighborhoods of the
Reeb orbits γi, as follows. For each i, choose a braid ζi with mi strands around γi, such that
the braids ζi belong to disjoint neighborhoods of γi. Let L be the union of zi. A trivialization
τi of ξ over each γi, induces a framing τi on each ζi. Let τ denote the framing on L. Now,
for each component K of L, its framing induces a diffeomorphism φK : NK → S1 ×D2 and
a trivialization of TNK , identifying ξ = {0} ⊕ R2 and R = (1, 0, 0). Using the previous
identifications, one can define a vector field P on NK as

P : S1 ×D2 → R⊕ R2

(t, reiθ) = (− cos(πr), sin(πr)e−iθ).

One can now construct a vector field by defining it to be given by P in each neighborhood NK

and by the Reeb vector field outside these neighborhoods. Let Pτ (L) to be be the homotopy
class of this vector field. Now define

I(γ) = Pτ (L)−
∑
i

wτi(ζi) + CZI
τ (γ),

Here wτi(ζi) denotes the writhe of ζi with respect to τi and

CZI
τ (γ) =

∑
i

mi∑
j=1

CZτ (γ
k
i ),

where CZτ (γ
k
i ) is the Conley-Zehnder index of γki with respect to τ . Hutchings showed that

I(γ) does not depend on the choice of τ or L, and that this absolute grading refines the
relative grading defined by the ECH index.
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The isomorphism ĤF (−Y ) ∼= ÊCH(Y ) is given by a sequence of maps that we will
now recall from [3]. First, we fix an open book decomposition (S, h) for Y . That is, we
choose a surface S with boundary and a diffeomorphism h of S, which is the identity near
the boundary. Then Y = (S × [0, 1])/ ∼, where (x, 1) ∼ (h(x), 0) for every x ∈ S and
(x, t) ∼ (x, t′) for every x ∈ ∂S and for every t ∈ [0, 1]. We will assume that S and ∂S are
connected. Moreover, by [3, Lemma 2.1.1], we can assume that there exists a diffeomorphism
of a neighborhood of ∂S in S to [−ε, 0] × ∂S such that the monodromy h is given by
h(y, θ) = (y, θ − y) in this neighborhood. Such an open book decomposition gives rise to a
Heegaard decomposition, where the two handlebodies are given by H1 = (S × [0, 1/2])/ ∼
and H2 = (S × [1/2, 1])/ ∼. The Heegaard surface is Σ := S1/2 ∪ −S0, where St denotes
S × {t}. This surface has even genus, which we denote by 2g. We choose a set of properly
embedded arcs a = {a1, . . . , a2g} of S such that S \a is a disk. One can then let αi = a†i ∪ai,
where ai is seen as an arc in S0 and a†i is its copy in S1/2. One also lets βi = β†

i ∪ h(ai),

where b†i is the simplest arc in S1/2 which is isotopic to a†i and extends h(ai) to a smooth
curve in Σ. For a picture, see [3, Fig. 1]. We fix z on the binding away from the curves
γi. Hence (Σ,β,α, z) is a Heegaard diagram for −Y . Let f be a Morse function and X
a gradient-like vector field such that the pair (f,X) is compatible with (Σ,α,β, z). Then
(−f,−X) is compatible with (Σ,β,α, z).

For each i, there are three intersections of a†i with b
†
i in S1/2. Following [3], we label them

xi, x
′
i, x

′′
i , where x

′′
i is the only one in the interior of S1/2. One can define ĈF

′
(S, a, h(a)) to

be the subcomplex of ĈF (Σ,β,α, z) generated by 2g-tuples of intersection points contained

in S0. One also defines ĈF (S, a, h(a)) to be ĈF
′
(S, a, h(a))/ ∼, where two 2g-tuples of

intersection points in S0 are equivalent if they differ by substituting xi by x
′
i. There is an

induced differential on ĈF (S, a, h(a)). It is shown in [3, Theorem 4.9.4] that the homology

of this chain complex is isomorphic to ĤF (Σ,β,α, z). We also get an induced grading on

ĈF (S, a, h(a)), as the following lemma shows.

Lemma 7.0.4. If x is a 2g-tuples of intersection points in S0 containing xi and x′ = (x \
{xi})∪{x′i}, then gr(x) = gr(x′). Therefore gr is well-defined on the quotient ĈF (S, a, h(a)).

Proof. We observe that x and x′ are in the same Spinc structure and that gr(x,x′) = 0.
Therefore, since the absolute grading refines the relative grading Theorem 4.1.1,

gr(x)− gr(x′) = 0.

We now explain how to obtain ÊCH(Y ) using the open book decomposition. For more
details, see [2]. Let N = (S × [0, 1])/ ∼, where (x, 1) ∼ (h(x), 0), i.e. Y is obtained from
N by collapsing the S1 direction along the boundary of the pages. We choose a contact
form λ on N such that the Reeb vector field Rλ is positively transverse to S × {t}. One
can assume that Rλ is parallel to ∂t on S. Hence the torus ∂N is foliated by Reeb orbits.
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After a Morse-Bott perturbation, we obtain a pair of Reeb orbits {e, h} on ∂N . One now
defines ECCj(N, λ) to be the chain complex generated by orbit sets whose homology class
intersects S × {t} exactly j times. The inclusions ECCj(N, λ) → ECCj+1(N, λ) are given
by the map γ 7→ eγ. In [2], it is proven that

ÊCH(Y ) ∼= lim
j→∞

ECHj(N, λ).

In order to construct the isomorphism ĤF (−Y ) ∼= ÊCH(Y ), Colin, Ghiggini and Honda

first choose a stable Hamiltonian structure (λ0, ω) onN and define a map from ĈF (S, a, h(a))
to a periodic Floer chain complex for a stable Hamiltonian structure, as follows. Let t denote
the [0, 1]-coordinate, λ0 := Cdt, for a constant C > 0 and let ω be an area form on S. The pair
(λ0, ω) is a stable Hamiltonian structure on N . It is still defines a Reeb vector field which
is parallel to ∂t. Then one can construct periodic Floer chain complexes PFCj(N, λ0, ω)
generated by orbit sets, just as ECH for a contact form. It is shown in [3, §3.1] that for if
C is large enough, then we can find a smooth family of 1-forms {λτ}τ∈[0,1] such that λτ is a
contact form for every τ > 0 and λ1 = λ. In [3, §3.6], it is shown that1 given j > 0, there
exists τ0, such that for all 0 < τ ≤ τ0,

PFCj(N, λ0) ∼= ECCj(N, λτ ).

The next step is the construction of a map Φ : ĈF (S, a, h(a)) → PFC2g(N, λ0). This map
is constructed by counting certain holomorphic curves, as we now review. Let πS1 : N → S1

denote the projection (x, t) 7→ t and let B′ := R×S1. Now let πB′ : R×N → B′ be the map
(s, x, t) 7→ (s, πS1(x, t)) and let B+ := B \ ((0,∞)× (1/2, 1)) with the corners rounded. Now
define W+ = πB′(B+) and Ω+ = ds ∧ dt+ ω. Then (W+,Ω+) is a symplectic manifold with
boundary and ends S× [0, 1/2] and N . The symplectic fibration πB+ : (W+,Ω+) → (B+, ds∧
dt) admits a symplectic connection. Now if we take a copy of α on the fiber π−1

B+
(1, 1/2)

and take its parallel transport along ∂B+, we obtain a Lagrangian submanifold of (W+,Ω+),
which is denoted by L+

α. The reason for the +-subscript in all those objects is that one can

also define simlar objects that are used to construct a map PFC2g(N, λ0) → ĈF (S, a, h(a)).
But we will not need to use this map.

Now to each generator x of ĈF (S, a, h(a)), we can associate a subset of S× [0, 1/2] given
by the union of xi× [0, 1/2], for all xi ∈ x. We will still denote this union of Reeb chords by
x. Given x, a generator γ of PFC2g(N, λ0) and an admissible2 almost-complex structure J+,
one definesMJ+(x, γ) to be the moduli space of J+-holomorphic maps u : (Ḟ , j) → (W+, J+),

where (Ḟ , j) is a Riemmann surface with boundary and punctures, both in the interior and
on the boundary, satisfying the following conditions:

• u(∂Ḟ ) ⊂ L+
a and each component of ∂Ḟ is mapped to a different L+

ai
.

1We must also fix a family of almost complex structures, but we will omit this from the notation, since
it has no effect in our grading computations.

2We do note need to use the definition of admissibility. We refer the reader to [3, §5.4].



90

• The boundary punctures are positive3 and the interior punctures are negative.

• At a boundary puncture, u converges to x× [0, 1/2].

• At an interior puncture, u converges4 to γ.

• The energy of u is bounded.

For a map u : (Ḟ , j) → (W+, J+) in MJ+(x, γ), one defines its ECH-index I(u) as follows.

First let W̆+ be the compactification ofW+. We can construct W̆+ by taking the intersection
of W+ with [−R,R]×N for R >> 0. We choose an orientation of the arcs ai and that gives
rise to a trivialization τ of TS along L+

a ∩W̆+. We extend this trivialization arbitrarily along
{R} × x × [0, 1/2] and along {−R} × γ. Then (τ, ∂t gives rise to a trivialization of TW̆+

along ∂W̆+. Let c1(u
∗TW̆+, (τ, ∂t)) denote the first Chern class of the complex bundle u∗TW̆+

relative to (τ, ∂t). In other words, if we take two generic complex sections of u∗TW̆+ which
are trivial and linearly independent on ∂W̆+ with respect to (τ, ∂t), then c1(u

∗TW̆+, (τ, ∂t))
is a signed count of the points where the sections are linearly dependent. For each γi, the
intersection u(Ḟ ) ∩ ({−R} × N) is a braid around γi with mi strands for R >> 0. The
writhe of this braid with respect to τ is independent of R, for R sufficiently large. Then
one defines w−

τ (u) to be the sum of the writhes of all the braids corresponding to each γi.
Now let L0 be a real rank one subbundle of TS along x × [0, 1/2] defined as follows. At
x×{0}, let L0 = Th(a) and at x×{1/2}, let L0 = Ta in TS. Then L0 is defined by rotating
counterclockwise by the minimum possible amount as we travel along x× [0, 1/2]. Then one
defines µτ (x) to be the sum of the Maslov indices of L0 along each xi × [0, 1/2]. Finally, let
δ(u) ≥ 0 denote the number of singularities5 of u. Now define

I(u) = −χ(Ḟ ) + 2c1(u
∗TW̆+, (τ, ∂t)) + w−

τ (u) + µτ (x)− CZI
τ (γ)− 2g + 2δ(u).

This follows from [3, Def. 5.6.5] combined with an adjunction formula [3, Lemma 5.6.3].
Finally 〈Φ(x), γ〉 is defined to be the signed count of maps u in MJ+(x, γ) with I(u) = 0.

It turns out that for a sufficiently generic J+, this is well-defined and all the maps that are
counted are embeddings.

In order to prove that the isomorphism between Heegaard Floer homology and ECH
preserves the absolute gradings, it is enough to show the following proposition.

Proposition 7.0.5. If u : (Ḟ , j) → (W+, J+) be a map in MJ+(x, γ), where x and γ

be generators of ĈF
′
(S, a, h(a)) and PFC2g(N, λ0, ω), respectively. Assume that u is an

immersion. Then
gr(x)− I(γ) = I(u).

3A positive puncture p is a point such that the s-coordinate of u(x) converges to ∞ as x → p. A negative
puncture is defined analogously.

4This convergence is in the sense of currents. That is, for each interior puncture, u converges to a
cylinder over a Reeb orbit γj with a certain multiplicity. The sum of all the multiplicities of all these
cylinders corresponding to a fixed γj is required to be mj .

5The number δ(u) is zero precisely when u is embedded.
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Before proving Proposition 7.0.5, we will prove a simple lemma. Let x be a generator of
ĈF (S, a, h(a)). Let L be a link given by the union of the compactified gradient trajectories
corresponding to each intersection point in x and to each x′i. We fix a vector field V in the
homotopy class gr(x). Then on the boundary of a small enough neighborhood H of L, the
vector field V is positively transverse to ξ. So by a homotopy, we can assume that V = Rλ

on ∂H.

Lemma 7.0.6. Let x be a generator of ĈF (S, a, h(a)). Let L, H and V be as in the
paragraph above. Then V |Y \H is homotopic to Rλ relative to ∂H.

Proof. The proof of this lemma is a slight modification of the proof of Theorem 4.1.1(b).

Proof of Proposition 7.0.5. We write γ = {(γi,mi)}. We first note that by rounding the
corners of W̆+, we obtain a trivial cobordism from N to itself, which we denote by X. Here
we identify X ' N × [0, 1]. So we can see u(Ḟ ) as a (non-necessarilly embedded) cobordism
F̆ from x′ to a union L of braids ζi around γi with total multiplicity mi, where x′ is the
union of x with segments on the arcs ai. Up to a small isotopy, we can assume that x′×{1}
is transverse to S × {t} × {1}.

We will now use the relative Pontryagin-Thom construction. We first choose a nonva-
nishing tangent vector field along the arcs ai. That induces a trivialization of TS|L+

a
. We

extend it arbitrarily to the Reeb chords x. We also choose a trivialization of TS|L. We can
now extend this trivialization to a small neighborhoods of x′ and L in N . We denote this
trivialization of TS on these two neighborhoods by τ . Therefore (τ, ∂t) gives rise to a trivi-
alization of TN in these neighborhoods. Now we evoke the Pontryagin-Thom construction.
Using τ , taking the preimage of (0, 0, 1) under an appropriate choice6 of vector fields in the
homotopy classes gr(x) and Pτ (L), we obtain x′ in N × {1} and L in N × {0}. Moreover,
we also get framings on x′ and L, which we denote by ν. We claim that

gr(x)− Pτ (L) = c1(NF̆ , ν) + c1(TS|F̆ ) + 2δ(F̆ ). (7.1)

To see that, first extend X to N × [0, 1+ ε] and glue a cylinder F̂ := x′ × [1, 1+ ε] to F̆ .
We denote the resulting surface by F̆ ′. Let τ ′ be a trivialization of TS|F̆ ′ , which coincides
with τ over L× {0}. Then τ ′ induces a trivialization of TS|x′×{1+ε}. Using τ

′ as above, we
obtain a framing ν ′ on x′ × {1 + ε} ∪ L × {0}. By the Pontryagin-Thom construction for
immersed surfaces

gr(x)− Pτ (L) = c1(NF̆
′, ν ′) + 2δ(F̆ ′) = c1(NF̆ , ν) + (ν ′x′ − νx′) + 2δ(F̆ ). (7.2)

We note that ν ′x′ − νx′ = −c1(TS|F̂ , (τ, τ ′)), where (τ, τ ′) is the trivialization of TS|∂F̂ given
by τ on x′ × {1} and by τ ′ in x′ × {1 + ε}. Moreover, since τ ′ is a trivialization of TS over
F̆ ′, it follows that c1(TS|F̆ ′ , τ ′) = 0. So

c1(TSF̆ , τ) = −c1(TS|F̂ , (τ, τ
′)) = ν ′x′ − νx′ . (7.3)

6The vector field we used to define these homotopy classes gives the desired preimage, up to a small
isotopy.
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So combining (7.2) and (7.3), we obtain (7.1).
We claim that c1(NF̆ , ν) = c1(NF̆ , τ) + µτ (x) − 2g. In fact, the difference c1(NF̆ , ν)−

c1(NF̆ ; τ) is given by (ν+ − τ+) − (ν− − τ−). Here ν+ and ν− denote the restrictions of ν
to x′ and L, respectively. One defines τ+ and τ− analogously. It follows from calculations
in [10] that ν− − τ− = 0. We will now compute the difference ν+ − τ+. Define (ν+)x to be
(ν+)−1(1, 0) and define (τ+)x similarly. We note that (ν+)x = (τ+)x in π−1([−ε, 1/2 − ε])
and (ν+)x = −(τ+)x in π−1([1/2 + ε, 1− ε]). We also observe that, along each strand, (ν+)x
does half a turn clockwise with respect to (τ+)x in π−1([1/2− ε, 1/2 + ε]). Now to see how
many times (ν+)x rotates with respect to (τ+)x in π

−1([−ε, ε]), first assume that, along each
strand, the projection of (τ+)x to S rotates a quarter turn counterclockwise as we go from
−ε to ε. Then (ν+)x does half a turn clockwise with respect to (τ+)x. Moreover µτ (x) = 0.
Now if we change τ+ along a strand in π−1([−ε, ε]), the difference ν+ − τ+ will change by
the same amount as µτ (x). Therefore ν

+ − τ+ = µτ (x)− 2g. Hence

gr(x)− Pτ (L) = µτ (x)− 2g + c1(NF̆ , τ) + c1(TS|F̆ , (τ, ∂t)).

We observe that

c1(TS|F̆ , τ) = c1(u
∗TX, (τ, ∂t)) = c1(T F̆ , ∂t) + c1(NF̆ , τ)

= χ(F̆ ) + c1(NF̆ , τ).

So
gr(x)− Pτ (L) = −χ(Ḟ ) + 2c1(u

∗TX, (τ, ∂t)) + µτ (x)− 2g + 2δ(F̆ ).

We recall I(γ) = Pτ (L)−
∑
wτi(ζi) + µτ (γ). Therefore

gr(x)− I(x) = −χ(Ḟ ) + 2c1(u
∗TW̆ , (τ, ∂t)) + w−

τ (u) + µτ (x)− CZI
τ (γ)− 2g + 2δ(u)

So the result follows, since the right hand side equals I(u).
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