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ABSTRACT OF THE DISSERTATION

Geometry-aware topological decompositions of meshes

By

Jia Chen

Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Gopi Meenakshisundaram, Chair

Topology captures a surfaces global features invariant to local deformation, and many geom-

etry processing applications can benefit from topological information. However, traditional

topological data analysis methods, e.g., persistent homology, when applied to surfaces, suffer

from their massive computation cost and their lack of exact correspondence with surface ge-

ometry. In this dissertation, we use edge cycles as a compact representation of the surfaces

topology and apply it in two topological decompositions of meshes. We propose an iterative

method to localize tunnel and handle cycles, which respectively capture the surface’s exte-

rior and interior spaces. We then present the tori decomposition that segments the surface

into genus-1 components. We formulate the tori decomposition as a min-cut problem in the

dual graph and design geometry-aware edge weights to make the decomposition fit to the

geometry. We also propose a framework to decompose the surface into contractible solids.

Unlike previous methods which rely on volumetric representation, we solve the problem on

the surface. We find a redundant set of cycles, which form an oversegmentation of the

surface, and then we apply a dynamic programming method to merge the cells to form a

contractible decomposition. All of our algorithms are based on efficient surface-embedded

graph algorithms, and we demonstrate their robustness on numerous models.
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Chapter 1

Introduction

The recent advent of 3D acquisition technology, such as computer tomography, magnetic res-

onance imaging, 3D laser scanning, ultrasound, and microscopy has enabled highly accurate

digitization of 3D objects. Therefore, with the vast number of digital 3D objects, there is an

increasing research interest in digital geometry processing, which is concerned with math-

ematical models and algorithms for analyzing and manipulating geometric data. Typical

operations include surface reconstruction from point samples, filtering operations for noise

removal, geometry analysis, shape simplification, and geometric modeling and interactive

design.

In mathematics, two tools are commonly used for studying surfaces: geometry and topology.

The two are closely related but have distinct focuses. Geometry studies a surface shape’s

local properties, e.g., the location of each point, while topology represents the shape’s global

configuration. For example, a flat torus and a doughnut surface have the same global topol-

ogy, but different local geometry. If we extract the same number of sample points from

a smooth sphere and a smooth torus, the coordinates of the extracted sample points may

happen to be the same, but the two shapes have different topologies.

Early studies of digital geometry processing focus mostly on geometry as geometric features

themselves are sufficient for a lot of common tasks such as mesh smoothing or mesh defor-

1



Figure 1.1: Cycles reflect both the surface’s geometry and topology. (a) Representative cycles
give indication about the surface’s outline and local size (b) The topological relationship
between cycles are related to the surface topology, for example, a genus g surface has 2g
fundamental cycles. (c) A set of cycles split the surface, and determine the topology and
geometry of the decomposed components.

mation. However, along with the advent of tools which can capture or model topologically

complex meshes [1], there is an increasing demand for methods that can process the topolog-

ically complex meshes. The major challenges of processing such models are (1) the existing

tools in topological data analysis, such as persistence diagram, topological barcode, don’t

have exact correspondence with the shape geometry, which makes it difficult to directly apply

them in geometry processing problems (2) the topological analysis methods, mostly based

on algebraic topology and persistence filtration, are not efficient enough for practical surface

shapes.

1.1 Cycles of topological properties

In our work, we consider the cycles on a surface as a representation of the topology. The

advantages of using such cycles to represent topology are as follows: (1) The cycles are

part of the surface-embedded graph. While the graph is an extensively studied term, a lot

2



Figure 1.2: Our work presented in this dissertation. Given a 2-manifold surface with genus
g (a) we localize g tunnel cycles and g handle cycles which are topologically independent
(chapter 3), (b) we decompose the surface into topological tori (chapter 4), (c) we decompose
the surface into contractible pieces (chapter 5).

of theories and efficient algorithms on graphs can be used to find, analyze and manipulate

such cycles. (2) The cycles contain both topological and geometric properties: for geometry,

geometric measurements such as curvature and length are well defined on these cycles, shown

in Fig. 1.1(a); for topology, the cycles differentiates surfaces of different topology, shown in

Fig. 1.1(b). Furthermore, as shown in Fig. 1.1(c), a set of cycles can split the surface into

parts, and we can determine the geometry and topology of the segmented parts using these

cycles.

In this dissertation, we introduce an iterative tree-cotree algorithm to localize two special

kinds of cycles: tunnels and handles, as shown in Fig. 1.2(a). This method is based on solving

simple graph problems; thus it is more efficient than homology-based methods[14][13]. We

show its application on finding fundamental cycles in topologically complex meshes. Previous

methods generate a redundant set of non-contractible and non-separating cycles and select an

independent set of fundamental cycles. However, the selection procedure cannot guarantee
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Figure 1.3: Applications of topological tori. (a) Topological tori have been extensively stud-
ied from a theoretical perspective for abstract art[44], (b) On a torus there exist vector fields
without singular points. As in the case of art, multi-genus objects can be decomposed into
multiple tori and the vector field can be designed for individual tori and merged. (c) There
exist techniques which are especially suitable for making a torus [53]. Tori decomposition
makes it possible to apply these techniques to make component tori, which then can be
assembled into more complex shapes.

independence among cycles. Unlike such methods, our iterative method guarantees that the

cycles generated in each iteration are independent.

1.2 Topological decompositions of meshes

Shape decomposition, or shape segmentation, is a classic problem in mesh processing. Many

mesh processing algorithms such as shape matching, mesh editing, shape retrieval, and

object rigging, require shape segmentation as a pre-processing step. A lot of fabrication

methodologies, e.g., milling and 3D printing, require that the shape is of the particular

properties. Shape decomposition may segment the shape into parts such that each of them

can be manufactured using these fabrication techniques.

In this dissertation, we study two topological decompositions-tori decomposition and con-

tractible decomposition.

Tori decomposition partitions a surface mesh with genus g into g components each of
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Figure 1.4: Application of contractible solids in mechanical analysis. Given (a) a mechanical
part, it is required to be decomposed into contractible solids (b), such that isogeometric
analysis (c) can be applied on the mechanical part [42].

which has genus-1. We make use of the computed handle and tunnel cycles to find the

splitting cycles that produce such a tori decomposition. The problem is posed as a min-

cut problem on the mesh’s dual graph with earlier computed tunnels as source and target.

The edge weights for the min-cut problem are designed for the cut to be geometry-aware.

We present an implementation and demonstrate the results of our algorithm on numerous

examples. The tori decomposition is of great practical significance. In 3D art, a torus can be

an element for generating abstract artworks [44]. In surface matching, the relative location

of the decomposed tori helps consistently match parts in different models. In vector field

processing, since on a torus there exist differentiable vector fields with no singular points,

tori decomposition helps to avoid singular points or to determine where the singular points

should be located. In 3D printing, there is a growing interest in 3D printed coils which are

more suitable for manufacturing genus-1 objects. A tori decomposition may make application

of these manufacturing techniques suitable for more complicated shapes by partitioning the

shapes into genus-1 components.

Contractible decomposition partitions the surfaces into contractible solids. While finding

cuts in the volume is hard, we show that searching for such cuts is equivalent to finding handle

cycles and separating cycles on the surface. We present a two-stage method to find such
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a decomposition. First, we generate a series of handle cycles and separating cycles using

the iterative tree-cotree algorithm and tori decomposition algorithm. These cycles form an

oversegmentation of the surface shape. Second, we apply a dynamic programming based

method to find an optimal layout composed of a subset of the oversegmentation cycles. The

contractible decomposition is of practical significance as (1) each component of the result

has genus-0, thus is easier to manufacture compared to topologically complex shapes (2) as

shown in Fig. 1.4, such decomposition is a necessary pre-processing step for isogeometric

analysis.

We organize the dissertation as follows. First, we provide relevant concepts from compu-

tational geometry and computational topology in Chapter 2. In Chapter 3, we describe

the algorithm for localizing tunnel and handle cycles. Next, we elaborate on making use

of the tunnel and handle cycles on the classical mesh segmentation problem: in Chapter 4,

we describe methods for decomposing a surface mesh into topological tori. In Chapters 5,

we explain the approach we apply to decompose a surface shape into contractible pieces.

Finally, in Chapter 6 we summarize our results and discuss future research directions.
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Chapter 2

Definitions and Background

2.1 Surfaces and their topological classification

Given two topological spaces X and X ′, a map h : X → X ′ is a homeomorphism if h is

bijective and both h and its inverse are continuous. A surface (or 2-manifold possibly with

boundary) M is a compact Hausdorff space where each point has an open neighborhood

homeomorphic to either the plane R2 or the closed halfplane. The points with neighborhood

homeomorphic to the closed half-plane comprise the boundary of M . In computer graphics

and digital geometry processing, the most common representation of the surface is triangle

mesh, which is a collection of triangles without any particular mathematical structure. All

the meshes discussed in this dissertation are triangle meshes unless specified.

A surface is non-orientable if it contains a subset homeomorphic to the Mobius band,

otherwise orientable. A connected orientable manifold has exactly two different possible

orientations. Any orientable surface is homeomorphic to a sphere with g handles attached

and b open disks removed. The orientability is a topological invariant of the surface,

which only depends on the surface itself, but oblivious to its triangulation. For example,

orientable surfaces are not homeomorphic to non-orientable surfaces.

Let G be a graph cellularly embedded on a compact surface M . The Euler characteristic of
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G is v−e+f , where v is the number of vertices, e is the number of edges, and f is the number

of faces of the graph. For a closed orientable surface, it is known that v − e + f = 2 − 2g,

where g is genus. The Euler characteristic is also a topological invariant.

A surface is connected if any two points of the surface are the endpoints of some path. The

inclusionwise maximal connected subsets of a surface form its connected components. For

geometry processing applications, a surface with multiple connected components can usually

be processed by processing each one of the components. All the surfaces we discuss in this

dissertation are connected surfaces.

Two homeomorphic surfaces are regarded as topologically equivalent. For example, a

cube and a sphere are topologically equivalent. The topological invariants of the surface

determine the homeomorphism of the surfaces, for example, two compact orientable surfaces

without boundary are homeomorphic if and only if they have the same genus.

2.2 Primal graph and dual graph embedded on a surface

The primal graph takes a vertex v in the original mesh as a node in the graph, and the

mesh edge uv as a graph edge. Its dual graph is formed by considering each mesh face as a

node, and two nodes are connected if their corresponding faces are adjacent in the original

mesh surface. As shown in Fig 2.1, a mesh vertex is dual to a face in the dual graph, and a

mesh edge is dual to an edge in the dual graph.

Given the primal graph, we can find a spanning tree, which is a tree formed by a subset

of the edges of the primal graph that incorporates all the vertices of the graph. Similarly,

for the dual graph, we can get a spanning tree, called spanning cotree. If the edges of a

map are given weights, the weight of a tree or cotree is defined to be the sum of the weights

of its edges.
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Figure 2.1: Primal graph and dual graph. (a) A primal graph embedded on a double
torus, (b) A dual graph corresponding to primal graph (a), (c) An edge uv and (d) its dual
(uv)∗ = f ∗g∗ are emphasized.

[21] proves that the following lemma is true, which is the basis of tree-cotree decomposition.

Lemma 1. Let a map M be given, with distinct weights on each of its edges. Then the

minimum weight spanning tree of M and the maximum weight spanning cotree of M are

disjoint.

2.3 Paths and cycles

A path on surface M is a continuous map p: [0, 1]→M with its two endpoints as p(0) and

p(1). A path is simple when the mapping is injective, except for the common endpoint in
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Figure 2.2: Separating and non-separating cycles. When cycle r1 is removed from the surface,
the surface is separated into two parts, thus r1 is a separating cycle. When cycle r2 is
removed, the surface is still one connected component, thus r2 is non-separating.

the case of loops. In discrete settings, a cycle is a closed path without repeated vertices.

Two paths p, q with p(0) = q(0) and p(1) = q(1) are called to be homotopic if there is a

continuous function h : [0, 1]2 →
∑

such that p(·) = h(0, ·), q(·) = h(1, ·),h(·, 0) = p(0), and

h(·, 1) = p(1). Two cycles α, β are called to be freely homotopic if there is a continuous

function g : [0, 1]× S1 :→
∑

such that α(·) = g(0, ·) and β(·) = g(1, ·).

Separating and non-separating cycles. A cycle is separating if cutting the surface

along the cycle gives rise to two connected components; the concept is closely related to

Z2-homology. Fig. 2.2 shows examples of separating and non-separating cycles.

Contractible and non-contractible cycles. A cycle is contractible if it can be con-

tinuously contracted into a point, for example, as shown in Fig. 2.3(e). Otherwise it is

non-contractible, for example, as shown in Fig. 2.3(a)-(d). A contractible cycle is also

a separating cycle. When cutting along a simple contractible cycle, a surface is segmented

into two connected components, and one of them is a topological disk. Being contractible or

separating is a property invariant under homotopy of cycles.
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Figure 2.3: Surface cycles with topological features. (a), (b) and (c) are all non-separating
and non-contractible cycles, also called fundamental cycles. (a) is a handle cycle, (b) is a
tunnel cycle while (c) is neither. (d) is a separating and non-contractible cycle, also called a
splitting cycle, (e) is a separating and contractible cycle.

As shown in Fig. 2.3, based on if a cycle is separating and contractible, the cycles can be

categorized into three classes:

• Contractible cycles are simple, contractible and separating cycles. Contractible

cycles are also called to be trivial, for example Fig. 2.3(e).

• Splitting cycles are simple, non-contractible and separating cycles, and such cycles

divide the topology of the surface as well as the underlying graph, for example Fig.

2.3(d).

• Fundamental cycles are simple, non-contractible and non-separating cycles, , for

example Fig. 2.3(a)-(c).

2.4 Tunnel and handle cycles

For a 2-manifold with genus g, there will be 2g independent fundamental cycles called the

generator set (or the homology basis) that can generate all other cycles on the mesh through
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algebraic addition of fundamental cycles and contractible cycles. A fundamental cycle may

further be classified as a tunnel cycle, a handle cycle, or neither[14]. An orientable manifold

surface M separates R3 into two parts: inside I and outside O. A fundamental cycle is a

tunnel cycle if it is contractible in O but non-contractible in M . A fundamental cycle is a

handle cycle if it is contractible in I but non-contractible in M . Intuitively speaking, the

handle cycles bound surfaces in I whereas tunnel cycles bound them in O. If we cut the

independent set of g handle cycles and g tunnel cycles from the surface, the surface becomes

a closed disk. Therefore, the fundamental cycles form a cut graph. For a formal treatment

of the subject, readers are referred to [30].

In this dissertation, both the tori decomposition and contractible decomposition rely on

the fundamental cycles: we use tunnel cycles to find splitting cycles which form a tori

decomposition, and the contractible decomposition is composed by only handle cycles and

separating cycles.
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Chapter 3

Iterative localization of handle and

tunnel cycles

Topological analysis on geometric data set has proved to work well on high-dimensional,

incomplete and noisy data sets [5]. However, there are many difficulties in applying it

on complex low dimensional data, such as surface meshes. (1) Computation of topological

attributes involving the construction of simplicial complex, Morse complex, homology groups,

etc., is expensive or even cannot be run on large-scale datasets. (2) The topological features,

such as Betti number, persistence, etc., draw insights on global information but lack exact

correspondence with local geometry. Thus, such topological features are not intuitive to

non-expert users. In this chapter, we propose an iterative method to find a set of handle

and tunnel cycles which form a compact representation of the surface’s topology. Each of

the cycles we find represents a class of equivalent cycles, all of which characterize the same

topological properties.

The handle and tunnel cycle are useful for a lot of topology related geometry processing

applications such as topology surgery, mesh parameterization[56], surface mapping[35]. A

series of previous works explore to localize handle and tunnel cycles using homology[14], Reeb

graph[13], or tree-cotree decomposition[17]. However, none of these methods is suitable for

the large-scale models for (1) The homology[14] and Reeb graph[13] based methods are too
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heavy in computation, especially when the surface is large. (2) Tree-cotree decomposition

based algorithm [17] generates a redundant set of cycles, and pick 2g good ones from the

set, in which the computed cycles are not guaranteed to be independent. In this chapter,

we adopt the tree-cotree algorithm for its efficiency but improve it into an iterative method

which guarantees that in each iteration the computed cycles are independent fundamental

cycles.

The main contributions of this chapter are as follows:

• We propose an iterative method to localize handle and tunnel cycles. We guarantee

that, in each iteration, the computed cycles are topologically independent.

• We propose a tightening method, which, instead of searching for the shortest-length

loops, refine the fundamental cycles to make them good for visualization, mechanical

and optical simulation.

• We analyze the properties of the refined fundamental cycles, and based on their geo-

metric properties and relationship between each other, we cluster and label them into

tunnels and non-tunnels.

3.1 Related work

[24] proposes a greedy algorithm to construct the shortest set of loops that generate the

fundamental group of any oriented combinatorial 2-manifold in O(n · logn) time. [14] study

two particular kinds of fundamental cycles: tunnels and handles, by constructing curve

skeletons for both inner space and exterior space bounded by the original manifold mesh. The

tunnels and handles are extremely useful for a lot of topology related problem, our algorithm

in this paper also requires finding tunnels and handles as a prerequisite. The computation

of the curve skeleton in [14] requires triangulating the spaces, which is a challenging task
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in itself when the input mesh is large. Thus [13] makes use of Reeb graph, which can be

computed efficiently, to avoid the triangulation. Moreover, by perturbating the cycle inside

and outside, the winding number between the perturbated cycles can be used to decide if

a specific cycle is a tunnel or handle cycle. In this paper, we use the same method for

classifying the found cycles that we compute with our algorithm into tunnels and handles.

Another set of work attempts to solve the problem in the surface’s embedded graph and

its dual graph. [21] introduces tree-cotree decomposition which is efficient in finding 2g

fundamental cycles. Pablo et al. [17] apply this idea while designing the edge weights

such that the computed fundamental cycles are aligned with principal curvature directions

of a surface. These graph-based methods are efficient as the most time-consuming part of

the tree-cotree decomposition is merely calculating spanning trees. Approaches studying the

structure of tunnels, or similarly pores, cavities, have been proposed in various domains. [20]

uses α-hulls to identify small tunnels that are not accessible by a user-defined ball rolling on

the surface. [29] applies Morse theory to segment a surface mesh into simple pieces called

”pants”, which, up to topology, are genus 0 orientable surfaces each with three boundary

components, however, although they are related, the ”pants” are not directly useful for

locating the tunnels. [51] and [50] study the tunnels in protein structure, and trace the

pathway from the internal cavity to the protein surface. These methods rely on the fact that

the tunnels in protein are mostly of a similar size. Therefore, they cannot be extended to

applications where the tunnels are of various sizes.

3.2 Problem formulation

In this chapter, we aim to find handle and tunnel cycles which are both topologically correct

and geometrically good. The method is expected to find exactly g handle cycles and g

tunnel cycles. As shown in Fig. 3.1, the tunnel and handle cycles must be topologically
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Figure 3.1: The computed fundamental cycles. (a) is considered as good as both cycles
are non-contractible and non-separating. The cycles in (b) are contractible, therefore, (b)
is topologically incorrect. The cycles in (c) are valid fundamental cycles, but they are
unnecessarily long and noisy, so (c) is not good in geometry.

independent. Furthermore, the cycles should be in proper location and without unnecessary

contours.

3.3 Localizing handle and tunnel cycles

In this chapter, we apply an iterative tree-cotree algorithm to find a set of fundamental

cycles. The computed cycles may not be optimal in geometry, therefore, we further improve

the cycles’ geometry by tightening the computed cycles while guaranteeing the tightened

cycles are homotopic to original ones. Furthermore, when there exist composite cycles, we

decompose them into handle and tunnel cycles.

3.3.1 Iterative tree-cotree algorithm

The tree-cotree algorithm is based on computing spanning trees in two graphs. We first

calculate a spanning tree in the primal graph, which we call a tree, and remove the edges

in the dual graph that correspond to the edges in the tree. On the resulting subgraph of

the dual graph, we compute a spanning tree in the dual graph, which we call a cotree. It
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is known that a tree-cotree decomposition of a mesh partitions the set E of edges of a mesh

into three sets (T,C,E\(T ∪C)), where T is the set of edges in the tree and C is the set of

mesh edges corresponding to the edges of cotree [21]. The set E\(T ∪ C) contains exactly

2g edges, and introducing these edges into tree creates 2g cycles which are the fundamental

cycles of the mesh, as shown in Fig. 3.2.

We follow [17] to determine the edge weights using principal curvature directions. As shown

in Fig. 3.3, the weight of an edge is defined as the average angle the edge makes with one of

the chosen principal curvature directions (say, minimum curvature direction) at its incident

vertices. The minimum and maximum curvature directions have shown to represent the

directions of the tunnel and handle cycles respectively well.

[17] generate 2g cycles using minimum curvature direction and 2g cycles using maximum

curvature direction, and from the total 4g cycles [17] selects 2g cycles which are good in

geometry. We also compute fundamental cycles over multiple runs of the algorithm using

different edge weights, but we guarantee that the cycles are independent and form the basis

for the homology groups. The intuition behind this idea is that we would like the algorithm to

memorize some of the desired results computed in the previous iterations, and guarantee that

the cycles in subsequent iterations will be independent of earlier computed and memorized

cycles, as well as satisfy the new edge weights assigned for new iterations. The algorithm is

shown in Algorithm 3.1. In each iteration, we get a set of candidate cycles that are alternating

between using the minimum and maximum curvature directions. The good cycles are kept

and are forced to be selected in subsequent iterations as well. To achieve this, we apply two

techniques. First, we decide if a cycle is good using the geometry-based method introduced

in [8]. Second, after each iteration, we adjust the edge weights such that edges in good

cycles are chosen in any subsequent iteration to be part of the tree. Fig. 3.3 shows the

major steps of our iterative method. Unlike [17], our algorithm never generates redundant

cycles, so the cycles that are computed are guaranteed to be an independent set of cycles.
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Figure 3.2: Spanning trees of the primal and dual graph. (a) The spanning tree for the
primal graph is colored as blue, and the spanning tree for the dual graph is colored as green.
The two leftover edges are colored as red. When adding the leftover edges into the spanning
tree of the primal graph, a loop is formed for each of the leftover edges. For torus, one of
the formed cycles is tunnel cycle (b), the other is handle cycle (c).

The algorithm progressively finds better cycles and terminates if all the 2g found cycles are

good according to [8]’s criteria or the number of iterations exceeds the parameter MAX.

With a sufficiently dense triangulation, out of many options, good cycles can be computed

in less than MAX iterations. With very sparse triangulation, for example, as shown in Fig.

4.10, the cycles may have very few edges, may not be smooth, or may not be geometrically

good, causing the algorithm to fail to converge in MAX iterations. However, such cycles,

even if not good in geometry, are still topologically correct independent fundamental cycles

(guaranteed by tree-cotree algorithm). In each iteration, two spanning trees are constructed,

which can be computed in O(n · log(n)) time where n is the number of vertices, thus the

overall time complexity for fundamental cycles localization is O(MAX ·n · log(n)), and since

in our implementation we use 5g as MAX, the overall complexity is O(g · n · log(n)).

The 2g fundamental cycles computed by our method would include both tunnel and handle

cycles. We classify the cycles as tunnels and handles using the linking number method

introduced in [13].
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Figure 3.3: Major steps for finding handle and tunnel cycles. Left: Principal curvature direc-
tions. Red lines denote minimum curvature direction and the blue lines denote the maximum
curvature direction. Right:(a) Tree-cotree algorithm results with maximum curvature direc-
tion based edge weights, with cycles of good quality highlighted in red color (b) Tree-cotree
algorithm results with minimum curvature direction based edge weights. While [17] merges
the two sets of cycles by picking good ones, we apply an iterative method: we alternate
between two principal curvature directions and keep good cycles in the next iteration. This
guarantees that all the resulting cycles are independent.

Algorithm 3.1 Iterative method for localizing the g tunnel and g handle cycles.

Initialize edge weights min using min curvature directions Initialize edge weights max using
max curvature directions Initialize good cycles as null while number of good cycles ¡ 2g and
iteration ¡ MAX do

reset good cycles to null
if odd iteration then

tree-cotree decomposition using edge weights min
else

tree-cotree decomposition using edge weights max
end
foreach cycle c in found cycles do

if c is good then
add c to good cycles;
assign minimum weights to all edges ∈ c for both edge weights min and
edge weights max;

end

end

end
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Figure 3.4: Good and bad fundamental cycles are shown on a section of a torus. Cycle 3 is the
cycle with the shortest path, which is optimal for this tunnel. Cycle 2 contains unnecessary
contours, so it is not desired. Cycle 4 does not have any unnecessary local contours but has
a tilt orientation, which is also not suitable for mechanical and optical simulation. Cycle 1,
though it is longer than the optimal cycle 3, expresses almost the same information to the
viewers. Thus we consider it also as good.

3.3.2 Cycle tightening

Each computed fundamental cycle is a representative of other cycles that are topologically

equivalent to it. The weighting function introduced in the last section prefers representative

loops in the same slice and with the shorter distance, but artifacts may still exist, e.g., the

loop might be unnecessarily long or winding. So we further refine and tighten the loop.

A few previous works explore tightening the loops. [15] applies “geodesic size” to control the
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Figure 3.5: Homotopy equivalence. Given a cycle r1 in (a), r2 in (b) is homotopy equivalent
to r1, while cycles r3 (c) and r4 (d) are not as they cannot be continuously deformed to r1.
While tightening cycles, we have only homotopy equivalent cycles in the search space.
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order of adding triangles into the filtration. This method works well on persistent homology-

based methods, but may not be extended to the methods which do not have the process

of filtration. [26] deforms the loops along the gradient of the distance field, thus suffers

from the local minimum and also may not work well on noisy surfaces. [16] enumerates all

the fundamental cycles, ordering them by their length, and then find the independent loops

greedily. However, the enumeration of all canonical loops makes it only feasible for a small

data set. [13] constructs shortest path trees at “base points”, and finds independent handle

loops using “annotations”. All of those methods seek for loops with the shortest length, and

thus searching is inevitable. Note that as this searching problem is thought to be NP-hard

in general[13], the aforementioned methods all apply heuristics and do not guarantee to find

the actual optimal loops. For our application, as shown in Fig. 3.4, a “good” tunnel does

not have to be the shortest regarding the sum of the edge lengths. Instead, a good tunnel

for visualization and mechanical simulation (1) should not have unnecessary contours, e.g.,

cycle 2 in Fig. 3.4 (2) should not have tilted orientation, as cycle 4 in Fig. 3.4. Therefore,

in order to tighten the initial fundamental cycles into such defined good ones, instead of

searching for the shortest length loops, we iteratively apply refinements as follows.

Homotopy equivalent cycles: Let’s recall that each fundamental cycle we find is a repre-

sentative of a class of equivalent cycles. Two cycles are homotopy equivalent if one of them

can be continuously deformed into the other [19]. On the triangular mesh, we discretize this

relationship by two rules: (1) if cycle ri is different from rj by only one triangle, then they

are equivalent to each other (2) if ri is equivalent to rj, and ri is equivalent to rk, then rj is

equivalent to rk.

During cycle tightening, we need to ensure that the tightened cycle is homotopy equivalent

to the original cycle. Each step of the cycle tightening carefully replaces the edges in the

original cycle with alternative ones. For example, in Fig. 3.5, when replacing the edges

between vertices i and j with an arbitrary path from i to j, the modified loop may not be
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homotopy equivalent to the original cycle. In order to avoid cases such as (c) and (d) in

Fig. 3.5, we restrict the searching of alternative edges as follows (1) In each step, we search

alternative edges only in one-ring neighborhood of the current cycle, which is composed by

all incident faces or edges and neighboring vertices of the current cycle. This is to avoid case

(c) in Fig. 3.5, as the path in one ring neighborhood is impossible to create new winding

around the surface. (2) The one-ring neighborhood of a fundamental cycle has three edge

loops, and we label them with consistent direction, as shown in Fig. 3.6. In order to avoid

the case (d) in Fig. 3.5 , the alternative path is required to be consistent with the labeled

edge direction. (3) Additionally, in the alternative path, no vertex is allowed to appear more

than once.

Path cost definition: Given a fundamental cycle, we seek for a better alternative from all

the homotopy equivalent cycles in its one ring neighbor. As discussed earlier, we consider

a cycle as good when it has no unnecessary contours, and correct in orientation. The un-

necessary contours can be avoided using the sum of edge lengths as path cost. However, as

shown in Fig. 3.8, even if the path is the shortest in the search space, it cannot guarantee

the desired orientation. We refine the orientation of the tunnel loops based on a simple

observation: when a cycle is tilted, in the neighborhood of the vertex vi on the cycle, there

exist a vertex that is nearer to the centroid C of the cycle than vi, as shown in Fig 3.8.

Therefore, we apply the distance between the vertex and the centroid as a measure for ori-

entation correction. Combining these two, for a cycle γ we have the path cost:

φγ = α
∑
vi∈γ

|
−→
viC|+

∑
ei∈γ

|ei| (3.1)

where ei is the ith edge in the cycle, and α is a user-specified coefficient which keeps the

balance between edge lengths and orientation correctness.

Cycle searching as a scheduling problem: We iteratively search for a better alternative
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cycle and replace the original one with it. The search space gets big when the length of the

original cycle is long, thus enumeration is not feasible. To simplify the problem, we consider

another problem first: given a vertex vi in the one ring neighborhood, what is the shortest

non-trivial loop which passes through vi? As shown in Fig. 3.7, we flatten the one ring

neighborhood, then the region can be considered as three assembly lines with vi as their

starting and ending points when a job is on the assembly lines, it has to follow the labeled

dicrections but they can switch between the lines freely along the undirected edges. We

define the cost the same way as in eq. 3.1, and the shortest schedule is corresponding to the

optimal path in the original one-ring neighborhood. To choose vi which is the starting and

ending point of the schedule, we greedily pick the vertex that is nearest to the centroid in the

one ring. As scheduling problem can be solved by dynamic programming in O(n) time [11],

the searching in each step can be done in O(n) time, where n is the number of vertices in the

original fundamental cycle. Note that since we search for alternative cycles only in one ring

neighbor, the algorithm does not find the globally shortest path in most cases. However, as

discussed earlier global shortest path searching is an NP-hard problem, and our goal is not

the shortest path cycle but non-contouring and orientation correct cycle which is good for

visualization and mechanical simulation.

3.3.3 Decoupling composite fundamental cycles.

Our fundamental cycle identification algorithm finds 2g fundamental cycles, which may be

(1) tunnels, (2) handles, and (3) ones that are neither tunnel nor handle. For the third class,

as it can be considered as a composition of tunnels and handles in topology, we call it a

composite cycle. The composite cycles are not desired, they may produce visually unpleasant

results, and furthermore, if we do not decouple them into pure tunnels and handles, we may

miss tunnels which are expected to be found. Fig 3.9 shows the procedure for decoupling

the composite cycles into tunnels and handles.
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Figure 3.6: Searching for better alternative cycle in one ring neighborhood. The one ring
neighborhood is composed by all the vertices adjacent to the original fundamental cycle.
The alternative cycle should be consistent with the labelled directions, and have no self-
intersections.

Figure 3.7: If we consider vi as starting and ending point, and flatten the one ring neighbor-
hood, the searching problem becomes a scheduling problem with three assembly lines. The
job can be switched between assembly lines along the undirected edges, and the schedule
with the lowest cost is corresponding to the optimal alternative cycle.
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Figure 3.8: Orientation refinement. If we consider only path in one ring neighborhood, the
local shortest paths chosen may have undesired orientation. By computing the distance from
vertices to the centroid of the cycle, the orientation is estimated.

Step 1. Detection of the composite cycles: We observe that, if the triangulation is

dense enough, a handle and a tunnel, after tightening of both cycles, will share no more

than an edge. If two intersecting fundamental cycles share more than one edge after cycle

tightening, one of them has to be a composite cycle as shown in Fig. 3.9. If the triangulation

is sparse, a tunnel and a handle may share more than one edge, and hence we may be looking

for a composite cycle. But the following steps in the algorithm can handle such false-positives

in our classification.

Step 2. Replacing shared edges: We replace the shared edges between cycles with the

part that is not shared. We label the edges in the two cycles into three groups (A) the edges
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in cycle 1 but not in cycle 2; (B) the edges in cycle 2 but not in cycle 1; (C) the edges in

both cycle 1 and 2. We may represent the original cycles we found as cycle 1=A+ C, cycle

2=B + C. Then if |A| < |B|, then we modify cycle 2 to A + B, and similarly if |A| > |B|,

we modify cycle 1 to A+B.

Step 3. Tightening.: After replacing the shared edges, we apply the cycle tightening in-

troduced in the last section on the modified cycles. We iteratively run the whole procedure

until no further change is made to any cycle.

Remark: It is possible that a mixed cycle does not have any intersection with any other fun-

damental cycle, and thus our algorithm cannot detect this case. However, such occurrences

seem rare and we have not observed in our experiments.

3.4 Results

We apply our algorithm on a series of data sets, including synthesized high genus meshes

and meshes extracted from corneal NLO-HRMac image slices. The synthesized meshes are

smooth, but with a high genus. The meshes extracted from image slices are from cornea

structures of dog, hawk, and chicken. The sizes of the meshes are shown in Table 4.1. Due

to the complexity of our data sets, the 3D tetrahedralization is very expensive, thus the

3D tessellation based methods, [15] [26] are not feasible for failing in our data sets. [18] is

efficient to work on a large data set, but does not have cycle refinement. The only previous

work that can work on large size data sets while has cycle refinement is [13]. In this paper,

we extensively compare our algorithm and [13], and evaluate the algorithm from the quality

of the identified tunnels, the performance, and the robustness of the algorithm.

Quality of the found tunnels: Fig. 3.13 shows the tunnels found by our algorithm
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Figure 3.9: Decoupling composite fundamental cycles. (a)The fundamental cycle identifica-
tion algorithm may find cycles which are neither tunnels or handles, such as r2. (b) After
tightening, this composite cycle shares common edges with adjacent fundamental. r1 is com-
posed by A and C, and r2 is composed by B and C (c) The composite cycle can be decoupled
by replacing r2=B+C with r2=A+B (d) The shape of decoupled cycle can be further refined.
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Figure 3.10: Tunnels found from a synthesized mesh with 404 randomly generated tunnels
in various sizes.

and by [13]. As [13] seeks for shortest path loop, the tunnels found by [13] are generally

smaller in size. However, for visualization and mechanical simulation purpose, the result of

ours is comparable with theirs. Fig. 3.12 shows [13]’s and our result of a model which has

two interlocking tunnels. [13] relies on constructing a Reeb graph from the surface, which

may introduce problems when two tunnels cross with each other. Our method is based on

the tree-cotree decomposition of the surface, therefore is not oblivious to such topological

relationship.

Performance: Table 4.1 shows the timing result. [13]’s performance is greatly affected by
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Figure 3.11: Tunnels found by our algorithm from hawk data set. (a) manifold mesh ex-
tracted from corneal images. (b) tunnels found by our algorithm (c-e) zoom in view of
selected regions, captured from a different point of view for visualizing nearby geometry.

Figure 3.12: Comparison of [13]’s and our result on interlocking tunnel model. (a) [13]’s
result. (b) ours. [13] relies on constructing a Reeb graph, which may introduce problems
when two tunnels cross with each other, while our method does not have such limitation.

the random direction along which it generates Reeb Graph, for a fair comparison, we run

the program several times and choose the shortest timing. For chicken and synthesized 2

data sets, [13] fails to identify the fundamental cycles as these meshes have a high genus and

complex structure, in which a good Reeb graph for identifying fundamental cycles is difficult

to build.

Robustness: [13] is based on the construction of the Reeb graph, and the quality of the Reeb

graph determines if all the fundamental cycles can be identified. As shown in Table 4.1, for

chicken and synthesized 2 data sets, due to the complexity and the high genus of the models,
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Figure 3.13: (a) Our vs. [13]’s results on hawk data set, ours are colored as green while
[13]’s are colored as red. (b-d) Zoom in views of selected tunnels. Some of the tunnels found
by our algorithm are larger in size compared to [13], but this does not have big negavtive
impact on visualization and mechanical simulation purpose. (e) Due to numerical issues of
matrix inversion, [13] may introduce excessively long tunnels, while our algorithm is stable
in all cases.

Model details [13] (sec) Our algorithm(sec)
Data set triangles genus step 1-5 tightening total cycle tightening total
synthesized 1 117,824 192 180 1,811 1,991 178 268 446
synthesized 2 231,138 404 N/A N/A N/A 561 878 1,439
dog 782,962 53 205 3,546 3,751 283 937 1,220
hawk 793,432 148 360 N/A N/A 538 1,429 1,967
chicken 994,136 562 N/A N/A N/A 849 1,926 2,775

Table 3.1: Timing results of our algorithm and [13]’s. Synthesized 1 and synthesized 2 are
smooth meshes randomly generated with a large number of tunnels. The others are manifold
meshes extracted from NLO-HRMac image slices. Tightening column includes time for both
tightening and classification. ”N/A” means the algorithm failed to finish in two hours after
ten times trials.

no good Reeb graph can be constructed, thus [13] is unable to identify fundamental cycles

on these data sets. Furthermore, [13] relies on inversion of a linking number matrix, and we

observe that the numerical issue related to the matrix inversion may introduce excessively

long tunnels. As every step of our algorithm is based on basic geometry operation, our

algorithm does not have such issues.
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3.5 Discussion

We have introduced an algorithm to extract tunnel and handle cycles from a manifold mesh.

The algorithm is designed to deal with the complex and noisy structure. We apply an iter-

ative tree-cotree algorithm to find fundamental cycles, and in each iteration, the computed

cycles are guaranteed to be topologically independent. On the computed fundamental cycles,

we present algorithms to tighten cycles and resolve cases of composite cycles. To identify

the tunnels from fundamental cycles which include both tunnels and non-tunnels, we present

a classification algorithm based on the fundamental cycles’ geometric properties and their

relationship between each other. Finally, we demonstrate the results of our algorithm on

various models. The results show that the algorithm is applicable to various complex model

and is robust to geometric noise.
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Chapter 4

Tori decomposition

Decomposing a 3D shape into smaller and simpler parts is a fundamental yet challenging

problem in mesh processing. As most mesh processing methods have limitations on the input

model’s geometric and topological complexities, similar to a divide-and-conquer strategy,

partitioning a complex shape into smaller pieces is often the basis and prerequisite for further

processing. The result of such shape decompositions can be used in various fields of computer

graphics such as shape deformation [52], geometric modeling [9], and shape editing [55].

The shape decomposition techniques can be categorized into two classes: geometry-based

methods and topology-based methods. The geometry-based methods, e.g. polycube decom-

position [39], cylinder decomposition [58], etc., seek to partition the surface into geometrically

simpler components. Such methods take predefined primitive shapes such as planes, spheres,

cylinders or cubes as their target components and apply either a top-down or a bottom-up

approach to fit parts of the surface shape to the primitives. However, these techniques do

not guarantee any topological property of the decomposed components. The topology-based

methods segment the shape into prescribed topological components, e.g. topological disks

[23][14] [13], topological pants [36], or stars [54], but most of the works do not take geometry

into account. Our work falls into the class of the topology-based methods, but we desire the

result to be not only of prescribed topology but also good in geometry.
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In this chapter, we introduce a novel topology based decomposition called tori decomposition

to partition a surface mesh with genus g into g components each of which has genus-1. The

torus is the simplest topologically non-trivial shape. Besides that, the tori decomposition is

of great practical significance. In 3D art, a torus can be an element for generating abstract

artworks [44]. In surface matching, the relative location of the decomposed tori helps consis-

tently match parts in different models. In vector field processing, since on a torus there exist

differentiable vector fields with no singular points, tori decomposition helps to avoid singular

points or to determine where the singular points should be located. In 3D printing, there

is a growing interest in 3D printed coils which are more suitable for manufacturing genus-

1 objects. A tori decomposition may make application of these manufacturing techniques

suitable for more complicated shapes by partitioning the shapes into genus-1 components.

The problem of finding tori decomposition is equivalent to seeking g−1 splitting cycles such

that when cut along these splitting cycles, the surface is decomposed into g topologically

nontrivial components. Computing the shortest splitting cycle on a given surface is NP-hard

[7], so instead of directly searching for shortest splitting cycles, we formulate the problem

as finding a minimum-weight graph cut in the dual graph of the surface mesh. We first

find the tunnel and handle cycles on the surface, and then we consider the tunnel cycles

as terminals for finding a minimum-weight cut. We analyze each possible result of min-

cut on a surface-embedded graph and design our algorithm to guarantee that the cycles we

compute are all splitting cycles. The weights assigned to the edges of the dual graph for the

min-cut problem are designed to produce geometrically pleasant cuts. The method is fully

automatic-not requiring the users to provide any seed points.

In summary, our main contributions are as follows:

• We introduce a new topology decomposition of geometric manifold models called tori-

decomposition and present an analysis of this problem
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• We formulate the geometry aware tori decomposition problem and show results in

various high genus models

Figure 4.1: Tori decomposition generated by our method, each of the decomposed component
has genus 1.
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4.1 Related work

Shape decomposition is a well-studied problem with extensive surveys, e.g. [45]. Many meth-

ods are designed to segment the shape based on shape semantics or primitive fitting. Our

work has a different focus: instead of seeking semantically or geometrically simple compo-

nents, our goal is to decompose a shape into topologically simple but non-trivial components.

Here we review previous works on mesh segmentation, fundamental cycle localization, and

topological decomposition of surface shapes with a focus on those related to our problem.

4.1.1 Mesh segmentation

Depending on the application of the segmentation, mesh segmentation can be categorized into

two classes. The first class, which is often called primitive fitting[2] or shape approximation[10],

is mainly used for reverse engineering purposes. This category of segmentation cuts the mesh

into patches, and each patch is matched with one of the predefined primitive shapes such

as planes, spheres, or cylinders. The second class segments organic meshes into meaningful

parts using higher-level constraints such as minima rule[34] and symmetry. The goal of these

methods is to be consistent with human perception of shape geometry. Our approach falls

into the second category since we consider higher-level information-not just the geometry,

but also the shape’s topology.

A series of segmentation works are based on minima rule or part salience from cognitive

theory, which states that human perception usually divides a surface into parts along the

concave discontinuity of the tangent plane. [34] applies salience to find candidate contours.

[3] constructs a set of concavity-sensitive scalar fields to locate concave creases and seams.

Statistics-driven automatic segmentation algorithms have also been proposed, which attempt

to solve the segmentation problem by learning semantic information from human-labeled

training data [40]. More complete surveys on mesh segmentation techniques can be found in
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[45] and [43]. However, none of these methods consider topology. A few works such as [49]

use the term ”topology” to denote the hierarchical relationship between parts of the shape,

which is not the focus of our work.

4.1.2 Topological shape decomposition

Although many 3-manifold decomposition works exist, most of the theoretical findings on

the 3-manifold cannot be directly applied to 2-manifold in 3D. Here we review only the work

on the decomposition of 2D surfaces in 3D. Topological decomposition of surface meshes

includes pants decomposition [36][57], punctured tori decomposition [7], etc. Li et al. [36]

segment a surface mesh into a set of pants patches where each pants patch is a genus-zero

surface with three boundaries and applies the segmentation methods for finding a consistent

surface mapping among a set of surfaces. Zhang and Li [57] traverse different classes of pants

decompositions and search for the optimal one using a pre-defined geometric criterion that

includes length, symmetry, and concaveness. [38] exhaustively partitions a solid into a set of

tubular parts using a curve skeleton. The work that is most relevant to our problem is that

of Chambers [7] that presents a theoretical approach to constructing splitting cycles which

split the surface into two disconnected surfaces of prescribed topology and proposes a greedy

algorithm that leads to a decomposition into punctured tori. However, the cycles computed

by [7] need not be short or geometry-aware. There is also no practical implementation of

this theoretical approach. Our method is a geometry-aware topology-based decomposition

of a surface mesh into multiple tori components.
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4.2 Problem formulation

4.2.1 Tori decomposition

Definition: Tori decomposition decomposes a surface of non-trivial topology into mul-

tiple components, each of which is a punctured torus.

A few previous works in topology have defined similar decompositions. For example, Hee-

gaard splitting [6] decomposes a compact oriented 3-manifold that results from dividing it

into two handlebodies, but the result cannot be easily extended to 2-manifold surfaces. A

definition of tori decomposition similar to ours is given in [7], in which the tori decompo-

sition is defined as a set of simple, pairwise disjoint cycles that split M into g punctured

tori. The requirement of cycles being disjoint often leads to bad geometry of the individual

torus component, which is counterintuitive for human perception. Thus, in this chapter, we

remove this requirement.

4.2.2 Relationship between pants decomposition and torus decomposition

A pants decomposition partitions a surface into components each of which has genus 0,

and three boundaries [57][36]. Intuitively, tori decomposition is strongly related to pants

decomposition. Imagine that out of the three boundaries of the pants, two are the same,

we may form a torus by merging the two common boundaries together, resulting in tori

decomposition. So if we get a pants decomposition, we may be able to convert it into a

tori decomposition. However, as shown in Fig. 4.2, this is not always true, Fig. 4.2 shows

two different pants decompositions of a double-torus, one of them can be converted into tori

decomposition while not the other. In fact, any topologically non-trivial shape with genus ¿

1 has multiple ways of pants decomposition, but very few of them can be converted into a

tori decomposition. However, conversely, every tori decomposition can be further segmented
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Figure 4.2: Cut along the red cycles, both left and right figures result in valid pants de-
composition where the surface is split into two pants components, each with three boundary
cycles. The left decomposition can be converted to tori decomposition by repairing the cut
(a) and (c), but for the decomposition on the right no such conversion exists.

into pants using the A-move, and S-move introduced in [31]. Thus, a tori decomposition has

all the advantages and potential applications of a pants decomposition. In summary, our

tori decomposition can always be converted into a pants decomposition, but not all pants

decompositions can be converted into a tori decomposition.

4.3 Geometry-aware tori decomposition

The tunnel cycles as computed above capture the topological features of the interior space,

while the handle cycles capture mostly the topological features of the exterior space. These

cycles are simple, non-contractible and non-separating. But to get a tori decomposition,
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Figure 4.3: A well-known technique to compose splitting cycle from fundamental cycles:
(a) given a pair of intersecting fundamental cycles α and β, (b) the cycle γ = α · β · ᾱ · β̄
is guaranteed to be a splitting cycle [7]. Note that the result cycles are all unnecessarily
long and tightening them is not a trivial task. (c) Tightened result. Even if we tighten the
generated splitting cycles (γ′1 is the shortest cycle homotopic to γ1 and γ′2 is the shortest
cycle homotopic to γ2), some of the cycles e.g. γ′2 are still not desirable.
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Figure 4.4: A splitting cycle and its dual cut. (a) a surface and a splitting cycle which splits
it into two genus-1 pieces (b) the dual graph with the edges dual to the splitting cycle colored
in red (c) if the edges dual to the splitting cycle is removed from the dual graph, the graph
is split into two parts. In other words, the splitting cycle is dual to a cut in the dual graph.

we need to find splitting cycles, which are simple, non-contractible and separating. The

easiest way known for composing a splitting cycle (not requiring that it is the shortest) is to

combine two intersecting fundamental cycles: given two fundamental cycles α and β which

intersect with each other, the cycle γ = α · β · ᾱ · β̄ is a splitting cycle[7], where · denotes

concatenation and ᾱ denotes the reversed path of α. However, as shown in Fig. 4.3(b), the

result of this operation is always unnecessarily long. Fig. 4.3(c) suggests that this is not just

a geometry problem: even if we tighten each of the found cycles, i.e. find the shortest cycle

homotopic to it, the tightened cycle may still not be optimal, e.g. γ′2 shown in the figure.

(If one curve can be continuously deformed to another on the surface then the curves are

said to be homotopic to each other.) Chambers [7] proves that finding the shortest splitting
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cycle on a combinatorial surface is NP-hard. We pose the problem of computing splitting

cycles into a set of single-source single-target min-cut problems.

4.3.1 Graph min-cuts as splitting cycles

Min-cut is a classical problem in graph theory and has been widely applied in mesh segmen-

tation and mesh analysis [28]. The general approach is to select a set of K seed nodes in an

edge-weighted graph and then find the minimum cost cut (min-cut) that partitions the seeds.

This can be converted into a classical network flow problem with well-known polynomial-

time solutions for K = 2, and approximation algorithms for K > 2 since multi-way min-cut

is an NP-hard problem. The min-cut algorithm is more appropriate for our problem as (1)

its resulting cycles are guaranteed to be simple, i.e. no repeated vertices, (2) it naturally

leads to cycles with good geometry. For example, the cycles are shortest when taking the

lengths as edge weights. But unlike the cases in planar graphs, when applying min-cut on

meshes, trivial cuts may exist. For example, a cut which surrounds a source vertex and its

infinitesimal neighborhood is a valid cut, but it is trivial as the resulting region is too small.

Previous works e.g. [33] constrain cuts to lie within a ”fuzzy” area to avoid the problem of

making trivial cuts that encompass geometrically small size regions. In this chapter, we not

only avoid geometrically trivial cuts but also avoid topologically trivial cuts.

Observation 1. A splitting cycle on the surface is dual to a cut in the dual graph, as

shown in Fig. 4.4. Hence we run the min-cut algorithm on the dual graph of the mesh.

Observation 2. A cut in dual graph is not necessarily dual to a single splitting cycle.

For example, as shown in Fig. 4.5, a cut in the dual graph may be dual to cases such as

Fig. 4.5(b) and Fig. 4.5(c). 4.5(b) is not a splitting cycle as it is trivial, 4.5(c) contains

multiple cycles, and those cycles are not splitting cycles. So we analyze possible cases of

min-cut results and extend the min-cut algorithm to ensure that all the cycles we generate
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Figure 4.5: Three types of graph-cut results on embedded graphs: (a) splitting, for which
the cut is a splitting cycle, (b) contractible, for which the cut is a contractible cycle, and (c)
decomposable, for which the cut is composed of multiple non-separating and non-contractible
cycles. Note that unlike the case for a planar graph, a cut on surface-embedded graph may
be composed of multiple cycles.
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are splitting cycles.

4.3.2 Finding a splitting cycle

Min-cut finds a cut c which consists of a set of edges in the dual graph. For simplicity, we

also refer to the cycles formed by the mesh edges corresponding to c as cut. Recall that the

tori decomposition that we seek is composed of g − 1 splitting cycles. Since the multi-way

min-cut problem is NP-hard, we iteratively find g − 1 splitting cycles one at a time. So in

this subsection, we study a simpler problem: finding a cut (1) that splits a genus g surface

M into two pieces: one with genus 1, the other with genus g−1 (2) in which all the cycles in

the cut are splitting cycles. In a surface-embedded graph such as a manifold triangle mesh,

if we choose a set of vertices S as the source, and another set of vertices T as the target,

min-cut would give a region Ps belonging to S, a region Pt belonging to T , and a set of cycles

C which is the boundary between Ps and Pt. The result may fall into three types [22]:

Case 1. The boundary is a splitting cycle, as shown in Fig. 4.5(a);

Case 2. The boundary is a contractible cycle, as shown in Fig. 4.5(b);

Case 3. The boundary is composed of non-contractible cycles, as shown in Fig. 4.5(c).

For our purpose of partitioning the mesh, case 1 is always good, case 2 is always bad,

and case 3 is good only when its cycles are not only non-contractible but also splitting. We

design our algorithm to avoid bad cases:

Avoiding case 2. If a separating cycle is contractible, then one of the two regions of

the mesh separated by the cycle is a topological disk. Therefore, to avoid that situation, we

always use tunnel cycles as sources and targets, which ensures that each separated part is

nontrivial.

Lemma 1. Let t1, ..., tg be the tunnel cycles of a 2-manifold, where the set of vertices in
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ti is the source and the set of vertices in the rest of the tunnels t1, ..., ti−1, ti+1, ..., tg is the

target, for the min-cut problem. If the min-cut has only one cycle component c, then c is a

splitting cycle and both sides of c are topologically non-trivial.

Proof: We can prove it by contradiction. Assume that Ps is topologically trivial, which is to

say Ps is a topological disk, then every cycle inside Ps is contractible, which contradicts with

the fact that ti ∈ Ps is a non-contractible cycle. Similarly, the assumption that Pt is topo-

logically trivial contracts with the fact that t1, ..., ti−1, ti+1, ..., tg ∈ Pt are non-contractible

cycles. Therefore, both Ps and Pt have to be topologically non-trivial, hence c is also non-

contractible. Further, since c is corresponding to a min-cut, so it is a separating cycle, and

therefore is a splitting cycle.

Avoiding non-separating cycles in case 3. For a tori decomposition, we seek split-

ting cycles, which are non-contractible and separating. When the cut is composed of

multiple component cycles, min-cut guarantees that each of its component cycles is non-

contractible. Otherwise, the cut will not be minimum[22]. Therefore, to get splitting cycles,

we just need to ensure the cycles are separating. If there are non-separating cycles, we en-

hance the set of source or target cycles with vertices in the non-separating min-cut cycles,

and re-run the min-cut algorithm, as described in Algorithm 4.1. The intuition behind the

idea is that the existence of the non-separating cycles indicates that either Ps or Pt needs

to grow further. When Ps has genus 0, as shown in the top of Fig. 4.6(1), we add cycle c

into S. When Ps has genus larger than 1, as shown in the bottom of Fig. 4.6(1), we add c

into T . When Ps has genus 1, Ps is a torus which is desired and we do nothing to the cycles.

As shown in Fig. 4.6(4), this operation converts cuts with non-separating cycles into cuts

composed of only separating cycles. To determine if the cycle is separating we simply check

how many connected components are produced when the cycle is removed from the surface,

and the genus can be calculated using the Euler characteristic. In each iteration, if there

exist non-separating cycles, at least one vertex is added to either set S or T , so the algorithm
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Figure 4.6: Assume that the tunnel cycle a is the source and the tunnel cycles b and c are
targets. (1) shows two undesirable results where some of the cut cycles are not splitting
cycles, (4) shows two desirable results where the cut cycles are all splitting cycles. (2) and
(3) show the fundamental polygonal (12-sided polygon) representation of the four respective
cases shown. Pairs of polygonal edges as labeled represent (the curves homotopic to) the
tunnel cycles (and the unlabeled pairs of dashed edges represent the handle cycles). Consider
the red curves in (2). If exactly one curve around either of the tunnels a or b is cut, there
is a copy of the same tunnel appearing in both pieces of the cut polygon. In other words,
the original model in (1) is not split when cut along that curve, and hence these individual
curves do not represent splitting cycles. However, in (3), if the polygon is cut along the red
line to the polygon is split, there is no tunnel appearing on both pieces of the polygon, which
shows that the original model in (4) is also split. (3) visually shows the existence of splitting
cycles between one tunnel and the rest of the tunnels. For cases in (2), the region around a
(top figure) is grown by making the curves around a as the source, or the region around b
(bottom figure) is grown by making the curves around tunnel b as the target, to achieve one
of the two cases in (3).

terminates in O(n) iterations where n is the number of vertices in the surface. As the time

complexity for min-cut is O(n2 · log(n)), the overall time complexity for finding one splitting

cycle is O(n3 · log(n)). But since in practice the number of iterations is small, we may even

consider it as a constant value, which leads to O(n2 · log(n)) overall time complexity. With

a sufficiently dense triangulation (enough triangles/edges between every two tunnels), there

are many separating cycle candidates for the algorithm to find a valid splitting cycle which

is both separating and non-contractible. However, very sparse, hand-crafted triangulations,

e.g. the one shown in Fig. 4.10(c), can be avoided by dynamic re-triangulation during run

time.
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4.3.3 Finding all splitting cycles

In the previous subsection, we discussed finding one cut that partitions the surface into a

punctured torus and a part with genus g−1. To decompose the surface into multiple tori, we

need to find g−1 such cuts. Fig. 4.7 shows this process. Each step is analogous to cutting a

torus from the shape, which introduces a new boundary to the original mesh. To deal with

the boundary in the follow-up iterations, for each such boundary, we add an extra virtual

vertex v and connect v to all the vertices on this boundary. For all the new added edges from

v, we assign edge weight 0, as we would like the cuts in later iterations to go through them

freely. If we would like a result similar to [7], where the cuts are disjoint, we may just set the

edge weights for them to a large value. As discussed in the previous subsection, while the

worst case and amortized time complexity for finding one splitting cycle are O(n3 · log(n))

and O(n2 ·log(n)), the worst case and amortized complexity for finding all the splitting cycles

are O(g · n3 · log(n)) and O(g · n2 · log(n)).

Algorithm 4.1 Finding a cut composed of only splitting cycles that separates tunnel ti
from the other tunnels.
Initialize S as {ti}, T as {t1, ..., ti−1, ti+1, ..., tg}
Initialize Ps and Pt as ∅ // The segmented regions belonging to S and T
Initialize C = ∅ // Set of boundary cycles between segmented regions
while C = ∅ or C contains non-separating cycles do
{C, Ps, Pt} = min-cut(S, T )
foreach cycle c in C do

if c is non-separating then
if genus of Ps ¡ 1 then

add vertices in c to S
else

add vertices in c to T
end

end

end
if C is unchanged as last iteration then

break
end

end
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4.3.4 Computation of edge weights

To make the splitting cycles generated by min-cut to be mesh geometry-aware, we take a

few other geometric measures, excluding edge lengths, into account:

Symmetry. As shown in Fig. 4.8, if we consider only the edge lengths as edge weights for

the algorithm, there might exist multiple optimal cuts, and the result may not be symmetric

even on the symmetric surface. Therefore, we would like the cycle to lie almost equidistant

between tunnels. In other words, we would like the splitting cycles to be as far as possible

from the tunnels. We apply the geodesic heat method [12] to compute the distance field

using all the tunnels as the source of the heat. We choose this method as (1) its amortized

time complexity is roughly linear and (2) the distance computed is geodesic, thus oblivious

to mesh triangulation. Other geodesic distance computation methods should work too.

Minima rule. Humans often perceive that the shapes are segmented along concave regions,

which is known as minima rule[34]. Therefore, if possible, we would like the cut to go along

the concave region of the mesh. For each edge, we determine its minima rule energy using

the average of its two incident vertices’ minimum curvature κ(v), where κ(v) is normalized

among the whole mesh.

In summary, for edge e = (vi, vj), its weight is defined as

we = le + α(disti + distj) + β(κ(vi) + κ(vj)) (4.1)

where le is the normalized length of e, disti is vi’s value in the geodesic distance field computed

with vertices on tunnels as source, α and β are predefined coefficients. Each of the terms

can be computed in linear time, so amortized time complexity for edge weight computation

is O(n), where n is the number of vertices.
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Figure 4.7: Steps to finalize each region. Each time a tunnel cycle is chosen as source, and
the other tunnel cycles as target, the min-cut found in each step would split the surface
further.

Figure 4.8: The role of distances to tunnels in determining optimal splitting cycle. (a)
optimal splitting cycle found using edge lengths as edge weights. Note that all the cross
sections of the central cylinder have the same diameters, so any one of them may be picked
by the algorithm as the optimal splitting cycle. (b) distance map formed by using tunnels
as a source. (c) optimal splitting cycle found using distance aware edge weights.
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4.4 Results

We implemented our algorithm and tested on several models with a wide variety of geometric

and topological complexity. Specifically, for max-flow/s-t cut, we adopt [4]’s implementa-

tion, which is not optimal in theoretical time complexity, but faster than most of the other

implementations in practice. Fig. 4.11 shows our results on various meshes. (a)-(d) are

models from public data sets, (e)-(g) are created to test our method on extreme topology:

one of the tunnels in (e) has a knot, (f) has two tunnels interlocking with each other, and

(g) is a high-genus object with genus 64. Our method is able to correctly segment the shape

in all these cases.

Imperfect input. To demonstrate that our algorithm is robust to various defects in the

input meshes, we consider two kinds of imperfect inputs: surface with boundaries (holes) and

surface with noise. Fig. 4.9 shows our result for mesh with boundary, as the two key steps

tree-cotree decomposition and min-cut both works with meshes with boundary, no special

precautions are necessary to handle them in Fig. 4.9(b) we perturb the mesh vertices to

introduce noise, and since none of the steps in our method require the mesh to be smooth,

the result is oblivious to such kind of artifacts.

Results from different triangulations. Fig. 4.10 shows our results from different trian-

gulations. Fig. 4.10(a) and (b) suggest that, since the splitting curves always follow mesh

edges, the geometric quality and smoothness of the boundaries are affected by the coarseness

of the triangulation. This can be improved by re-triangulating or up-sampling the surface.

The boundary smoothing technique introduced in [52] can also be applied to post-process

the boundaries. Fig. 4.10(c) shows that even when the triangulation is extremely sparse, the

decomposition result of our approach is still a valid tori decomposition, and the topological

correctness of our approach is not affected by the triangulation.
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Figure 4.9: Imperfect input: (a) mesh with boundaries (boundary labelled in red) (b) mesh
with vertex perturbation noise.

Figure 4.10: Tori decomposition results from different triangulations. The smoothness of
the splitting cycles is affected by the triangulation (a)(b), but even when the triangulation
is extremely sparse (c), the components found by our method are still topological tori.
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Figure 4.11: Tori decomposition results of our method, with tunnel cycles highlighted in
(b)-(f). One of the tunnels in (e) is knotted and (f) contains tunnels interlocking with each
other. (g) has genus 64.
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Performance. We test our algorithm on various mesh models. Table 4.1 shows the perfor-

mance statistics of our approach, where tpre is the time for pre-processing the mesh, including

principal curvature calculation, distance field generation etc., tcycles is the time for calculat-

ing the fundamental cycles, tdecomp is the time for computing the final tori decomposition,

and ttotal is the total time spent. We remark that for distance field generation, we follow [12]

to prefactor a pair of sparse linear systems. The timing reported here does not include this

pre-computation.

Model #Tri g tpre tcycles tdecomp ttotal
Fig. 4.1 29,734 5 0.253 0.387 0.524 1.164

Fig. 4.11(a) 2,420 5 0.036 0.031 0.053 0.120
Fig. 4.11(b) 220,390 2 0.548 1.532 1.396 3.476
Fig. 4.11(c) 63,454 8 0.329 2.585 4.204 7.118
Fig. 4.11(d) 62,540 5 0.363 2.386 4.193 6.942
Fig. 4.11(e) 20,094 3 0.223 0.837 0.103 1.163
Fig. 4.11(f) 4,696 2 0.121 0.437 0.033 0.591
Fig. 4.11(g) 342,064 64 0.984 32.245 67.378 100.607
Fig. 4.9(a) 50,000 4 0.268 1.299 1.171 2.738
Fig. 4.9(b) 50,000 4 0.271 1.345 1.402 3.018

Table 4.1: Performance statistics (in seconds). tpre is the time for pre-processing, tcycles
is the time for localizing fundamental cycles, tdecomp is the time to generate the final tori
components, and ttotal is the total time spent.

4.5 Discussion

In this chapter, we developed a tori decomposition framework to partition a manifold surface

mesh into topologically non-trivial components, i.e. each of the components has genus-1. Our

tori decomposition is based on first iteratively finding all the g tunnel and g handle cycles

on the surface, and then rather than directly finding optimal splitting cycles on the surface,

we formulate the problem as finding minimum cuts in the surface’s dual graph. Unlike

the planar graphs, min-cuts in a surface-embedded graph may not always produce a single

splitting cycle, and hence we design our algorithm to avoid the undesired cases. This result
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generates splitting cycles with small edge weights, and we assign the edge weights to reflect

the mesh geometry. Experimental results suggest that our framework is efficient and robust

on numerous examples.

We would like to investigate several improvements to our method. The geometric qual-

ity of the boundaries between the decomposed components depends on the quality of the

triangulation of the input mesh. This can be improved by re-triangulating the surface or

post-processing the boundaries. Another limitation of our method is that we always decom-

pose the shape into g components, which may not be exactly consistent with how humans

perceive the shape. It would be interesting to apply our method along with perception based

mesh segmentation methods to determine the desired number of components.
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Chapter 5

Contractible decomposition

In this chapter, we aim to decompose the surface shape into topological contractible compo-

nents. This process reduces the number of tunnels, thus simplifies the topological complexity

of the surface. Therefore, many applications in 3D printing[25] can benefit from such decom-

position. Besides that, such decomposition is a necessary pre-processing step for isogeometry

based mechanical analysis[42]. For example, there exist numerous constructions of volumet-

ric spline models that represent contractible solids. Each of the components that our method

generates can be dealt with by these existing methods.

Previous methods depend on a volumetric representation of the interior volume to segment

the shape into contractible solids[42][48]. While the searching space is too big to search

arbitrary cuts inside the volume, these methods search only planar cuts, and thus they can

only deal with the straight tunnels, and the number of resulting pieces is often unnecessarily

high. In this chapter, instead of directly working on the volume, we adopt an approach purely

based on the surface. There exist numerous previous works that can segment a surface into

topological disks, e.g., cut locus[47] and homotopy generators[24]. Although topological disks

are contractible, they are not the desired result of this chapter. As shown in Fig. 5.1, the

contractible components we seek are surface patches that when their boundaries are filled,

the solid bounded inside the surface is contractible.
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Figure 5.1: Contractible decomposition (a) generated by our method, each of the components
(b) has genus-0, and the two sides of each cut cycle belong to different components.

In summary, our main contributions are:

• We formulate the problem of decomposing a volume as finding a combination of handle

cycles and separating cycles on the volume’s surface;

• Based on an initial set of fundamental cycles, we find a set of cycles which oversegment

the shape into contractible solids;

• Given the desired number of components m, we propose a method based on dynamic

programming to find a contractible decomposition composed of m components, and

the resulting pieces are good in geometry.

5.1 Related work

The previous work most relevant to ours is [48] which automatically subdivides 3D solids

into contractible pieces. Using a combination of volume and surface Reeb graphs as a
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skeletal representation of the volume, [48] finds the location of cuts where the solid can be

split. However, since linear Morse functions are used, their method works only for straight

tunnels, and the number of resulting pieces may be unnecessarily high.

Many research efforts are devoted to the decomposition of solid objects or their surfaces into

convex or nearly convex pieces. The typical methods for generating such decompositions are

to repeatedly split the surface in concave surface areas[34] [37] or to grow certain surface

regions with similar characteristics[41]. The convex pieces are contractible solids, but the

number of pieces generated by such methods is always more than needed.

A series of geometry-based decomposition methods decompose the shape into predefined

primitives. [58] forms over-complete covers of the input shape and decomposes a surface into

generalized cylinders. The primitive shape used by these methods are mostly contractible

shape, so in many cases, their segmentation results happen to be contractible decompositions.

However, since essentially they do not take the topology into account, so the results are not

guaranteed to be contractible decompositions.

5.2 Problem formulation

5.2.1 3-manifold topology

In this chapter, we consider the volume bounded by the surface, which is a 3-manifold. Thus,

this problem is closely related to a few topics in 3-manifold topology, e.g., handlebodies and

Heegaard splittings[30][32]. Here we introduce some of the theorems in 3-manifold topology

that are related to our problem.

Definition 5.1. Let B1,..., Bn be a collection of closed 3-balls and let D1, ..., Dm,D′1,...,D
′
m

be a collection of pairwise disjoint disks in
⋃
∂Bi. For each i ≤ m, let φi : Di → D′i be a

homeomorphism. Let H be the result of gluing along φ1, then gluing along φ2, and so on.

57



Figure 5.2: Handlebody is a collection of 3-balls, glued together along disks. (a) would be
denoted H4,6, and (b) would be denoted H3,5. (a) is homotopic to (b). Note that the union
of the disks forms a contractible decomposition.

After the final gluing, if H is connected then H is a handlebody.

In other words, a handlebody H is a 3-manifold with a connected boundary ∂Hn,m. ∂Hn,m

is a 2-manifold which we are familiar in Chapter 2, and we can compute the genus of ∂Hn,m

from n and m:

g = m+ 1− n (5.1)

Note that the boundary ∂Di of a disk Di is the handle cycle since it is contractible in the

interior space. The following theorem is the basis of proving a series of lemmas in this

chapter; see [32] for a line of proof.

Theorem 5.1. Two handlebodies are homeomorphic if and only if their boundaries have the

same genus.

Theorem 5.2. A handlebody of the form Hn,m, where n > 1, is always homeomorphic to a

handlebody of the form Hn−1,m−1.

Based on these theorems and the relationship between 3-manifold and its boundary, we may

58



derive a few lemmas as follows.

Lemma 5.3. Given an oriented connected 2-manifold surface M , we can always find a cut,

composed of only handle cycles, that cuts the surface into pieces.

Proof: Instead of the 2-surface, let us consider the interior space of M , which is a 3-manifold.

A 3-manifold can always be represented as a handlebody, as shown in Fig. 5.2. The union

of the topological disks splits the 3-manifold into a set of 3-balls, thus forms a contractible

decomposition. The boundaries of the disks are either separating cycles or handle cycles.

However, if we remove separating cycles from the union, for example, cycle γ in Fig. 5.2.

Therefore, we can find a union which contains only handle cycles to form a contractible

decomposition.

Lemma 5.4. Given a 2-manifold surface of genus-g, we need at least g + 1 cycles to form

a contractible decomposition.

Proof: Note that lower bound of the number of required cut cycles is the same as m of the

corresponding handlebody. According to theorem 5.2, g = m − n + 1, thus m = g + n − 1

while for a contractible decomposition, the number of components is at least 2, which is,

n ≥ 2, and we have m ≥ g + 1.

Lemma 5.5. Given a surface of genus g, if the contractible decomposition contains X cycles,

then the surface is decomposed into X − g + 1 pieces.

Proof: Note that the number of cut cycles X is equal to m of the corresponding handlebody,

and thus we can derive directly from theorem 5.2 that the number of components is X−g+1.

5.2.2 Contractible decomposition

In this chapter, we would like to seek a contractible decomposition in which the volume

bounded by each segmented surface patch is contractible. The resulting decomposition
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Figure 5.3: We seek decomposition in which each component has genus-0, and also the two
sides of each cut cycle belong to different components. The cut cycles in (a) can segment the
surface into pieces in (b), and if we consider only the surface, both pieces are contractible.
However, note that cycles α and γ are not separable (cannot be separated physically), so
this is not a valid contractible decomposition. Conversely, (c) is a valid contractible decom-
position. The components it segments into, shown in (d), both have genus-0, and each cut
cycle can be physically separated.

should be both topologically correct and geometrically proper. To guarantee topological

correctness (every decomposed piece is a contractible solid), the decomposition must satisfy

the following three conditions:

Condition 1. Each of the decomposed surface patches should bound a volume. To satisfy

this condition, as discussed in the previous section, the cut surfaces of the 3-manifold volume

must be topological disks, and the cut cycles of the corresponding 2-manifold surface must

be either handle cycles or separating cycles.

Condition 2. Each of the bounded volumes should be contractible. This condition can be

verified by checking if each of the decomposed surface patches has genus-0.
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Condition 3. The bounded volumes can be separated apart. This condition may look

trivial in the first glance, but consider Fig. 5.3(a) for example. The cycles in Fig. 5.3(a)

split the surface into surface patches, and each surface patch has genus-0, thus is contractible.

However, for cycle α, its two sides both belong to the same component, thus cycle alpha

cannot separate the upper genus-1 component. In Fig. 5.3(a), both the two decomposed

components have genus-1. Therefore, to guarantee that the components can be separated,

we require that each tunnel is covered by at least two decomposed components.

In summary, we formulate the contractible decomposition problem as finding a set of simple

cycles embedded on the surface. These cycles are either handle cycles or separating cycles,

and when cut along, the surface is decomposed into genus-0 surface patches, and each tunnel

should be covered by at least two decomposed components.

5.3 Geometry-aware contractible decomposition

In this chapter, as shown in Fig. 5.4, we propose a two-stage method to generate a number

of cycles which segments the shape into contractible solids.

First, we find an independent set of fundamental cycles using the iterative tree-cotree algo-

rithm introduced in chapter 3, and then based on these cycles, we find more handle cycles

and separating cycles whose union segments the surface into contractible solids. We call this

union of cycles an oversegmentation of the surface, as the number of components is larger

than desired.

Second, based on the oversegmentation, we apply a dynamic programming method to form

a contractible decomposition which satisfies (1) The number of components should be the

number as specified by the user (2) The decomposition is topologically correct, or in other

words, every decomposed component is contractible (3) The overall geometric quality of the

61



Figure 5.4: Major steps of finding a geometry-aware contractible decomposition. (a) We
find an independent set of fundamental cycles using the iterative tree-cotree algorithm in-
troduced in chapter 3 (b) we generate a set of cycles which, when cut along, oversegment
the surface into contractible solids (c) given a user specified number of components m, we
find a geometrically good decomposition with m components.

components should be good.

5.3.1 Generation of an oversegmentation

We follow four steps to generate an oversegmentation of the surface mesh as following.

(1) As shown in Fig. 5.5(b), we apply the iterative tree-cotree algorithm introduced in

chapter 3 to generate an independent set of fundamental cycles. The handles will be in the

set of final cut cycles. The tunnel cycles are not cut cycles but will be used to find more

handle cycles and separating cycles.

(2) We obtain a tori decomposition following chapter 4 as shown in Fig. 5.5(c). If two

tori components A and B are adjacent to each other and the tunnels in them are α and β

respectively, we may find a shortest cycle which intersect with both α and β, similar to the

method in [57], as follows: First, we cut the surface along α and β. After the cut, α becomes
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Figure 5.5: Generation of an oversegmentation of the surface mesh.

two boundaries b1 and b2 and a vertex αi on α is split into vertex b1i on b1 and vertex b2i on

b2. β becomes two boundaries b3 and b4, and a vertex βj on β is split into a vertex b3j on

b3 and a vertex b4j on b4. Second, for each i and j, we find the shortest path pij from b1i to

b3j, and the shortest path p′ij from b2i to b4j. Then the shortest cycle is the shortest union

of pij and p′ij.

(3) The cycles found in step (2) split each tunnel into several pieces, and we check each piece

if the piece intersects with an existing handle. If not, we try to find a handle

(4) We make copies of type B handles, and move them as long as the size of the copied

handle is not changed much (above a predefined threshold).

After the steps above, we get an oversegmentation, in which each piece is a contractible solid.

The number of components in this oversegmentation is necessarily large, and we will merge

the components to obtain a decomposition of the desired number of components.
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5.3.2 Geometric quality of a decomposition

To find a decomposition in which the pieces are geometrically good, we need an evaluation

function to measure the geometric quality of a decomposition. Intuitively, for the desired

decomposition, (1) the components should have an overlapping region as small as possible,

for example in Fig. 5.6, the decompositions (a) and (b) both have two components, but we

prefer (a) as it has a smaller overlapping region (2) the narrow shapes are not desired. for

example in Fig. 5.6, we prefer (c) as (d)’s components are relatively narrower than (c)’s

components. Based on these considerations, we formulate the quality function as:

LQ(D) =
∑
p∈D

V (p) + α
∑
p∈D

σ2(p) (5.2)

For a decomposition D, we calculate the bounding volume V for each component p, and the

variance σ2 of p’s principal axes. The cost of quality LQ is defined as the sum of bounding

volumes and the sum of variance, and for a high-quality contractible decomposition, we

would like LQ to be small.

5.3.3 Finding an optimal decomposition

Based on the oversegmentation, we apply a dynamic programming based method to find an

optimal decomposition. As shown in Fig. 5.7, starting from any cell, we label all the cells

in breadth-first search order. In each step, we classify one cell, and the cell may be either

merged into an existing component or create a new component. We observe that for each

step, only the quality of the components adjacent to the current cell can be updated, or in

other words, we just need to update a small portion of the quality function.

We keep track of the topological properties: the number of components C, and the number

of resolved tunnels T . A tunnel is considered as resolved if the tunnel is covered at least two
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Figure 5.6: Geometric quality of contractible decompositions. Decompositions (a) and (b)
both have two components, and our method prefers (a) as the total bounding volume of
(a) is smaller than (b). Decompositions (c) and (d) both have three components, and our
method prefers (c) as the pieces in (c) have smaller variance among their axes.

components. For a genus-g object with the number of components specified by the user as m,

a valid final decomposition should have C = m and T = g. For each (C, T ) pair in each step,

we keep the top-K scored results, where K is a user-specified constant. When K is infinitely

large, the dynamic programming method would enumerate all the possible layout. However,

the computational cost may become prohibitive if the object is topologically complex. To be

able to handle these inputs, one could trade off optimality for efficiency by using a smaller

K.

During the process of dynamic programming, we may filter out the invalid cases. For exam-

ple, if the user requires the number of components is m, then we may eliminate all the cases

where C is larger than m. Also, if a tunnel is entirely covered by one component, the tunnel

will not be resolved in the future, so the decomposition is not valid, and we may eliminate

it safely.
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Figure 5.7: Dynamic programming steps for finding optimal contractible decomposition. We
classify one cell at a time, and the cell may either be merged into an existing component or
create a new component. For each layout in each step, we calculate its topological property
represented by (components, resolved tunnels) pair. We keep top-K scored layouts in each
topological type.

5.4 Results

We test the ability of our algorithm on a variety of examples. Fig. 5.8 shows our results on

two models with a different prescribed number of components.

As shown in Fig. 5.9, we compare our method with shape diameter function [46] and approx-

imate convex decomposition [27]. Both of the two methods are geometry-based methods.

For the chair model in the first row, [46] is able to accurately locate the cylindrical structures

in the shape, but one of its decomposed components has genus-1 and thus is not contractible,
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Figure 5.8: Results of our algorithm with various prescribed number of components.

[27] segments the shape into approximate convex components, but the number of compo-

nents is necessarily large, and some of the geometrical details are lost in the process. Our

method can segment the shape into pieces each of which is a contractible solid. For the stand

model in the second row, [46] does not find the two holes in the center of the shape and

consider the two sides as a separate part, [27] completely misses the two holes and converts

the original genus-2 shape into a genus-0 object. Our method is able to locate both of the

two tunnels and properly segment the shape into contractible solids.
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Figure 5.9: Comparison with previous methods. (a) input meshes (b) shape diameter func-
tion [46] (c) approximate convex decomposition [27] (d) ours.

5.5 Discussion and future work

In this chapter, we present an algorithm to decompose the inner volume of a surface shape

into contractible solids. We analyze the topological relationship between the 2-manifold

surface and the 3-manifold volume inside it and reveal that the problem of finding cuts of

the volume is equal to finding handle cycles and separating cycles on the surface. There-

fore, unlike previous methods which rely on the volumetric representation, our approach is

completely on the surface. We solve the problem in two stages, first generating an over-

segmentation of the surface by finding a series of handle cycles and separating cycles, then

optimally merging the oversegmentation cells into the desired number of components.

Our approach has a few limitations. First, our algorithm is based on an oversegmentation
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Figure 5.10: Limitations of our method. (a) Our method cannot segment the finger-like
parts (b) The locations of the cut cycles may not be consistent.

formed by a series of handle cycles and separating cycles, which are both topologically and

geometrically significant. However, our algorithm fails to segment the finger-like parts as

shown in Fig. 5.10(a). The segmentation boundaries of the finger-like parts are contractible

cycles, which are trivial in topological but may be important in geometry and human percep-

tion of the shape. As a future work, we would like to investigate integrating our method with

geometry-based mesh segmentation methods to take these contractible cycles into account.

Second, as shown in 5.10(b), the locations of the cut boundary may not be consistent, and

the results can be improved by post-processing the cycles.
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Chapter 6

Conclusion

In this dissertation, we presented a geometry-aware approach to finding two particular kinds

of cycles which are of topological features: handle and tunnel cycles. These cycles are

important as handle cycles capture the interior space of the surface while tunnel cycles

capture the exterior space. Our approach formulated the problem as a surface-embedded

graph problem and applied an iterative method to find a topologically independent set of

handle and tunnel cycles, thus is more efficient than existing methods. We applied the

computed cycles on two topological decompositions of surface shapes: tori decomposition

and contractible decomposition. Tori decomposition splits a shape into genus-1 pieces, and

contractible decomposition splits a shape into genus-0 solids. For tori decomposition, we

formulated the problem as finding min-cuts in the dual graph and designed the edge weights

such that the computed tori are good in geometry. For contractible decomposition, we first

found a series of handle cycles and separating cycles to form an oversegmentation of the

shape and then merged the oversegmented cells into a desired number of components in a

dynamic programming manner. We presented results on a variety of models to show that

our approach guarantees the topology of the resulting pieces but also is geometry-aware.

All the questions studied in this dissertation leave considerable room for future research. For

handle and tunnel localization, edge weighing schemes other than the principal curvature

directions may help get robust results. It would also be interesting to test our algorithm on
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non-orientable surfaces.

For tori decomposition, we would like to investigate several improvements to our method.

The geometric quality of the boundaries between the decomposed components depends on

the quality of the triangulation of the input mesh. This can be improved by re-triangulating

the surface or post-processing the boundaries. Another limitation of our method is that we

always decompose the shape into g components, which may not be exactly consistent with

how humans perceive the shape. It would be interesting to apply our method along with

perception based mesh segmentation methods to determine the desired number of compo-

nents.

For contractible decomposition, our method cannot locate and segment the finger-like parts,

and this can be improved by integrating our approach with geometry-based methods. The

locations of the found cut cycles can be improved by post-processing. Furthermore, the

quality function we are currently does not involve enough human perception and machine

learning based methods may work better for determining the quality.

To sum up, there are many avenues for future work regarding the problems addressed in this

dissertation, and we hope that some of them will lead to exciting results.
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